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FORWARD 

I am a quantitative ecologist, and I study ecology at macroscales. In some of my work with 

collaborators at Purdue University and across the globe, I showed that climate change is the most 

rapidly growing research area in ecology (McCallen et al., 2019), and that macrosystems biology 

is at the leading edge of ecological research (LaRue et al., In press). Therefore, my research aims 

to elucidate macroscale forest responses to climate change, which has impacted forests globally.  

Besides climate change, forests are facing many other threats including invasion by non-

native plants and pests, land use change, fire regime shifts, and management and timber harvest. I 

have worked on some of these topics, such as investigating patterns of non-native species richness 

along elevational gradients (Guo et al., 2018) and the mesophication hypothesis that eastern U.S. 

forests are transitioning from fire-tolerant to shade-tolerant species (Knott et al., 2019). 

Additionally, I worked on a project quantifying species-level tree migrations in response to climate 

change (Fei et al., 2017), which provided motivation for studying the effects of climate change on 

community-level dynamics.  

In this dissertation, I present two main studies which focus on (1) species-level 

phenological responses and (2) community-level spatial and compositional responses to climate 

change (Knott et al., 2020). The purpose of these studies was to identify and quantify forest 

responses to climate change across organizational scales (population to community levels). These 

projects revealed (1) consistent spring phenological shifts in response to climate warming but a 

lack of autumn phenological responses, and (2) spatial shifts in forest communities that are not 

keeping pace with climate change. The results of these projects have implications for the 

sustainability of forest ecosystems and will hopefully inform management decisions in the face of 

continuing climate change. This dissertation is a culmination of many years of work and the 

support from many others, and I hope you enjoy reading my dissertation. 
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ABSTRACT 

Climate change has dramatically altered the ecological landscape of the eastern U.S., leading 

to shifts in phenological events and redistribution of tree species. However, shifts in phenology 

and species distributions have implications for the productivity of different populations and the 

communities these species are a part of. Here, I utilized two studies to quantify the effects of 

climate change on forests of the eastern U.S. First, I used phenology observations at a common 

garden of 28 populations of northern red oak (Quercus rubra) across seven years to assess shifts 

in phenology in response to warming, identify population differences in sensitivity to warming, 

and correlate sensitivity to the productivity of the populations. Second, I utilized data from the 

USDA Forest Service’s Forest Inventory and Analysis Program to identify forest communities of 

the eastern U.S., assess shifts in their species compositions and spatial distributions, and determine 

which climate-related variables are most associated with changes at the community level. In the 

first study, I found that populations were shifting their spring phenology in response to warming, 

with the greatest sensitivity in populations from warmer, wetter climates. However, these 

populations with higher sensitivity did not have the highest productivity; rather, populations closer 

to the common garden with intermediate levels of sensitivity had the highest productivity. In the 

second study, I found that there were 12 regional forest communities of the eastern U.S., which 

varied in the amount their species composition shifted over the last three decades. Additionally, 

all 12 communities shifted their spatial distributions, but their shifts were not correlated with the 

distance and direction that climate change predicted them to shift. Finally, areas with the highest 

changes across all 12 communities were associated with warmer, wetter, lower temperature-

variable climates generally in the southeastern U.S. Taken together, these studies provide insight 

into the ways in which forests are responding to climate change and have implications for the 

management and sustainability of forests in a continuously changing global environment.  
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 INTRODUCTION 

Climate change has impacted the ecological landscape of the eastern U.S. (Parmesan, 2006; 

Parmesan & Yohe, 2003). Climate has shifted rapidly in the eastern U.S. over the last three decades, 

with shifts in temperature ranging from -0.5 to +1.5°C and shifts in total annual precipitation 

ranging from +/- 150 mm (Fei et al., 2017). Although climate change has become the fastest 

growing area of research in ecology (McCallen et al., 2019), there still remain many unknown 

impacts of climate change on ecological systems.   

Shifts in temperature and precipitation can shape the dynamics of populations, species, and 

communities, and alter many ecological systems and processes, such as phenology, migration, 

productivity, and biodiversity (Corlett & Westcott, 2013; Kharouba et al., 2018; Parmesan & Yohe, 

2003; Piao et al., 2019; Richardson et al., 2010). A general paradigm to describe responses to 

climate change is “move or adapt.” Species need to either adapt to novel environments or migrate 

to areas that are more suitable (Corlett & Westcott, 2013; Fei et al., 2017; Kokko et al., 2017; 

Parmesan & Yohe, 2003; Woodall et al., 2009). For most species—especially sessile species such 

as plants—these mechanisms can take a long time. Adaptation requires genotypes suitable for 

novel conditions either preexisting within the population or entering the population through 

geneflow and mutation (Kokko et al., 2017), and migration requires dispersal to new locations (Fei 

et al., 2017; Woodall et al., 2009; Zhu et al., 2012). As such, adaptation and migration require 

multiple generations to respond to climate change, which is typically much slower than the rate of 

climate change (Corlett & Westcott, 2013). In this dissertation I studied two aspects of the “move 

or adapt” paradigm: shifts in phenology—the timing of reoccurring biological events—as a short-

term response to climate change when moving or adapting are not possible (i.e. within a generation) 

and shifts in the spatial distribution and species composition of regional forest communities as a 

result of species-level migrations.  

Species often use their phenology as a buffer to changing conditions. When environmental 

conditions shift from year to year, species can adjust their phenology—the timing of certain events 

such as leaf out in the spring and leaf senescence in the autumn—to align with novel conditions 

(Cleland et al., 2007; Piao et al., 2019). Many studies have shown that spring phenology is 

advanced and autumn phenology is delayed in warmer years (Cleland et al., 2007; Fu et al., 2015; 

Morin et al., 2010; Piao et al., 2019). There is some evidence that phenological responses lead to 
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an extended growing season and increased productivity (Richardson et al., 2010), but these shifts 

can also have negative impacts such as increasing the competitive advantage of invasive species, 

mismatch in the timing of species interactions, and increased risk to frost damage when early 

spring warming is followed by frost events (Fridley, 2012; Kharouba et al., 2018; Piao et al., 2019; 

Zohner et al., 2020). However, it is still mostly unknown if shifts in phenology are species- or 

population-specific and if shifts in phenology are always translated in to productivity. 

Species that are unable to adapt to new conditions at their current location may be able to 

move to new locations that better align with their current climate adaptations. Several studies have 

shown that species are shifting their ranges to higher elevations and poleward to track with climate 

change (Fei et al., 2017; Parmesan, 2006; Woodall et al., 2009). However, it has been hypothesized 

that these migrations may alter species interactions, consequently impacting human well-being, 

ecosystem functioning, and climate feedbacks (Corlett & Westcott, 2013; Pecl et al., 2017).  

Studies on climate-driven migration usually focus at the population and/or species level, 

but rarely the community level. However, as species shift their distributions in response to climate 

change, it is likely that communities are being impacted as well. Historically, migration of tree 

species after the last glaciation led to large-scale patterns of forest communities (Davis, 1983), 

such as those described E. Lucy Braun’s publication The Deciduous Forests of Eastern North 

America (Braun, 1950) which is still widely used today (Dyer, 2006). Others such as Ricklefs 

(1987) have argued that regional climatic drivers are more important for understanding long-term, 

large-scale community change. Therefore, as result of species migrations in response to climate 

change, regional communities are likely to experience shifts in species interactions and/or shifts 

geographic distributions. For instance, as communities shift through geographic and climatic space, 

a component species may either track with the community as a whole, lag behind and become 

disconnected from its historic community, or migrate more quickly and outpace other species. This 

can lead to species becoming associated with other pre-existing communities as well as species 

generating novel communities.  

At the macroscale, shifts in forest communities have generally not been studied because of 

data availability and computational intensity. Early studies, such as the foundational work by 

Clements (1916) and Gleason (1926) or the aforementioned work by Braun (1950) and Davis 

(1983), used small sample sizes and anecdotal evidence to identify communities and address how 

they change over time. Recently, large scale databases such as the USDA Forest Service’s Forest 

Inventory and Analysis Program (FIA) have allowed researchers to apply new modeling 
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approaches to identify forest communities in big data (Costanza et al., 2017, 2018; Dyer, 2006; 

Valle et al., 2014); however, these approaches have not directly tested for community responses 

to climate change.  

In this dissertation, I utilized two studies to understand climate change impacts on eastern 

U.S. forests. First, I assessed how phenology varies across populations in a common garden of 

northern red oak (Quercus rubra). Specifically, I aimed to (1) quantify how rapidly populations 

shift their phenology in response to warmer spring and autumn temperature, (2) identify historic 

adaptations to climate that lead to increased sensitivity to warming, and (3) assess whether 

increased sensitivity leads to increased productivity. Second, I identified forest communities in the 

eastern U.S. using Latent Dirichlet Allocation (LDA) and Forest Inventory and Analysis (FIA) 

data. I then used the communities identified by LDA to assess (1) how species composition within 

the communities has changed over time, (2) how the centroid of each community has shifted 

geographically, and (3) how these changes are related to climate change both within and across 

communities. These studies will provide both evidence of ways that forests are impacted by 

climate change and insight into the sustainability of forests for management and other stakeholders.  
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 DIFFERENTIAL PERFORMANCE OF TREE 
POPULATIONS IN RESPONSE TO CLIMATE CHANGE 

2.1 Abstract 

Climate change can dramatically alter species performance and survival unless species can quickly 

respond to novel environments. Shifts in phenology in response to climate change have been 

widely observed, but it is unclear if these shifts are population-specific and can be translated into 

actual changes in fitness/growth. Here, we tested population-level sensitivity to climate change 

using phenological data from a 58-year-old common garden of 28 distinct range-wide populations 

of northern red oak. Spring phenology consistently advanced in response to warmer temperatures, 

but fall phenology remained static. Populations originating from warmer and wetter locales were 

more sensitive to spring warming, but greater sensitivity did not result in faster growth, as 

intermediate levels of sensitivity correlated to the highest productivity. Our results indicate that 

although trees are able to shift their phenology in response to climate change, productivity is often 

limited by local adaptations, which highlights the potential impacts on the sustainability of forest 

ecosystems as species distributions continue to shift in response to climate change. 

2.2 Introduction 

Climate change can dramatically impact species performance and survival, and it is unclear 

how populations or species as a whole can adapt to rapidly changing climate. Mechanisms to 

respond to climate change, such as adaptation to novel environments and migration to more 

suitable habitat, require long periods of time (1–3). Adaptation assumes that genotypes that are 

more suitable for novel conditions either exist within a population or are entering the population 

through gene flow or mutation and increase via selection over many generations (1, 3, 4). As such, 

adaptations for species with long generation times—especially for long-lived tree species—can 

take centuries to millennia. Migration of species requires dispersal to new locations, and dispersal 

events are often paired with population declines or extirpations at the trailing edge of the species’ 

range where conditions have become unsuitable (5, 6). Migration is also limited by time to 

maturation but has been observed at decadal time scales (2, 5–7).  Given that projected rates of 

climate change exceed the rates of adaptation and migration (1, 3), species’ success must rely on 

more rapid adaptive responses to climate change at daily to annual time scales. 
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Many tree species can shift their phenology—the timing of recurring biological events such 

as bud burst, leaf out, and leaf senescence—to act as short-term (daily to seasonal time scale) 

responses to climate change (8–10). Advances in spring bud burst and leaf out and delays in 

autumn leaf senescence in response to warmer conditions have been observed across many tree 

species; these responses extend their growing season and can increase productivity (8–12).  

Evidence of accumulation of chilling requirements (cold temperature accumulation) and/or 

photoperiod requirements (day- and night-length cues) to trigger phenological events (13–16) 

suggests the possibility of muted or reversed responses to climate warming if these requirements 

are no longer met. Multiple ecosystem processes, such as plant-insect synchrony, nutrient and 

water cycling, and climate-productivity feedbacks, are closely linked to phenological transitions, 

so shifts in phenology in response to climate change can have important implications for the 

sustainability of forest ecosystems and the services they provide (8–10, 17).  Assessing 

phenological sensitivity to changing environmental conditions provides an opportunity to assess 

which populations or species are most capable of extending their growing season to keep up with 

continued climate warming. 

Common garden studies (provenance tests), which transplant trees from a wide variety of 

historic climate conditions to a new location, act as pseudo-climate change experiments (space-

for-time substitutions) (18–20).  Populations from widespread species are genetically different 

from one another due to adaptations to local climate and are expected to have different responses 

to climate change (4), thus leading to differential thermal accumulation and/or photoperiod 

requirements across the species’ range (13, 19–21). Therefore, when transplanted to a common 

garden, populations of the same species may differ in the rate of response to warming conditions 

(gene-by-environment interaction, G x E). By monitoring common gardens over multiple years, 

interannual shifts in environmental conditions can elucidate which populations are most sensitive 

to climate change and which ones are most likely to be hindered by continued warming. Common 

garden studies provide a wide range of pseudo-climate change conditions and cover a large spatial 

extent, which alleviate some of the limitations of remote sensing and experimental warming 

studies due to natural climate fluctuations and spatial distribution of populations, respectively. 

Here, we utilized a 58-year-old common garden of northern red oak (Quercus rubra), a 

widespread North American tree species, to (i) quantify phenological responses to climate change, 

(ii) identify which populations are most capable of taking advantage of changing climate, and (iii) 
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test if phenological sensitivity to climate change is reflected in productivity. Specifically, we 

hypothesized that (i) in warmer years, spring bud burst and leaf out are advanced and autumn 

senescence is delayed, but that (ii) populations from colder climates, that are experiencing the 

highest levels of climate change at the common garden, have lower phenological sensitivity to 

climate change than warmer populations. We also hypothesized that (iii) populations that are more 

sensitive to climate change would be more capable of extending their growing season, resulting in 

higher productivity. Our results will examine the range of phenological responses within northern 

red oak to identify which populations are most sensitive to climate change and whether 

phenological sensitivity has measurable effects on productivity.  

2.3 Results and Discussion 

2.3.1 Phenology shift in response to changing climate 

Populations of northern red oak took advantage of warmer spring temperatures by breaking 

buds and leafing out earlier. The date of bud burst (the first date when 50% of the buds had swollen) 

and leaf out (first date when 90% of leaves unfolded) at the common garden varied from year to 

year (Fig 2.1), with climate warming (shifts in growing degree days, GDD) explaining 56% and 

36% of variability in bud burst and leaf out, respectively (P < 0.001 for both bud burst and leaf 

out). At the population level, both spring bud burst and leaf out were consistently advanced in 

warmer years as indicated by significant negative relationships between shifts in GDD and shifts 

in bud burst and leaf out (hereafter, “sensitivity values”) (Table S2.1, Figs 2.2 and S2.1). In 

general, bud burst showed greater sensitivity to changing spring temperatures than leaf out, with 

mean sensitivity values of -0.49 days GDD-1 (range: -0.65 to -0.35 days GDD-1) for bud burst 

compared to -0.11 days GDD-1 (range: -0.14 to -0.07 days GDD-1) for leaf out (Table S2.1). Within 

populations, the day of year (DOY) of bud burst shifted from 33.2 days earlier in response to 

warmer spring temperatures to 27.1 days later in response to colder spring temperatures than the 

mean DOY of bud burst, whereas the DOY of leaf out shifted from 10.7 days earlier to 14.6 days 

later than the population mean DOY of leaf out (Table S2.1).  

Despite consistent spring responses to warming, leaf senescence showed little response to 

changing autumn climate. Autumn sensitivity to shifts in chilling degree days (CDD) were non-

significant except for one population which had a small significant delay in senescence in warmer 
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years (slope = -0.04 days CDD-1, Table S2.1, Figs 2.2 and S2.1). Although senescence did vary 

across years (Fig 2.1), shifts in senescence were not consistently related to shifts in temperature. 

Non-significant senescence sensitivity to interannual temperature variability indicates that 

populations are limited in their ability to take advantage of warmer autumn weather. Since a 

mixture of delays and advances in senescence in response to warming have been observed for other 

species (22–25), it was not surprising to find little evidence of autumn responses to warming; 

however, it was concerning that even when conditions were favorable populations did not extend 

their growing season into autumn. A lack of temperature sensitivity of senescence often indicates 

a stronger photoperiod cue (20, 26, 27), and photoperiod effects in combination with other stressors 

such as drought and frost before and during autumn can override the effects of warming (25, 28). 

2.3.2 Factors influencing phenology sensitivity 

Historic adaptations to temperature gradients were most associated with leaf out sensitivity, 

whereas adaptations to temperature-precipitation interactions were more associated bud burst 

sensitivity (Figs 2.3 and S2.2, Table S2.2). We extracted the value of 19 bioclimatic (BIOCLIM) 

variables from the WorldClim database (29) at each population’s seed source as proxies for 

historical adaptation, and we tested these as explanatory variables of population differences in bud 

burst and leaf out sensitivities using linear regression. Bud burst sensitivity was best predicted by 

seed source temperature-precipitation interactions (Fig 2.3A), with populations from areas with 

cooler wet seasons having lower bud burst sensitivity (BIOCLIM 8, mean temperature of the 

wettest quarter, MeanTWetQ; background gradient in Fig 2.2A; P < 0.001, R2 = 0.35, AIC weight 

= 0.737). Leaf out was more temperature-driven (Fig 2.3B), with populations from warmer areas 

having higher leaf out sensitivity to climate change (BIOCLIM 10, mean temperature of the 

warmest quarter, MeanTWarmQ; background color in Fig 2.2B; P = 0.003, R2 = 0.29, AIC weight 

= 0.289). Both bud burst and leaf out sensitivities had significant yet weaker associations with 

precipitation gradients (Fig 2.3). We also calculated average springtime accumulated GDD at the 

seed sources using Daymet daily temperature data (30) and found that average springtime 

accumulated GDD was a poor predictor of bud burst sensitivity but a significant negative predictor 

of leaf out sensitivity, consistent with temperature-related BIOCLIM variables (Fig 2.4, Table 

S2.2). Although more phenologically-relevant, average springtime GDD was only marginally 

better than BIOCLIM predictors (AIC weight = 0.352 and 0.289 for Daymet GDD and the best 



 
 

23 

BIOCLIM predictor, MeanTWarmQ, respectively). Populations with high leaf out sensitivity 

(large negative values) tended to have longer growing seasons (Fig 2.5B), but bud burst sensitivity 

had no measurable connection with growing season length (Fig 2.5A). Additionally, annual shifts 

in leaf out and senescence were weakly negatively correlated (r = -0.15), indicating northern red 

oak does not have a fixed longevity of its leaves.  

Our results indicated that populations from colder, drier climates were limited in their 

spring sensitivity to climate change. These populations are facing two-fold challenges: (1) they are 

unable to rapidly respond to climate change due to their chilling requirements being compromised 

which leads to delayed dormancy release, and (2) they are experiencing climate change at rates 

faster than other areas within the species’ range (2). Given that climate is expected to continue to 

warm over the next century (31), it is likely that these cold-adapted populations will face additional 

limitations in their responses to warming spring conditions. 

2.3.3 Phenology sensitivity vs. productivity 

Populations with more sensitive leaf out dates and longer growing seasons did not show 

increased productivity. We used allometric equations to estimate total aboveground biomass of 

populations as a proxy for productivity (32). Estimates were based on diameter at breast height 

(DBH) measurements taken after the study period. Annual accumulated aboveground biomass 

(hereafter, “biomass”) was calculated by dividing total aboveground biomass by the number of 

years since establishment of the common garden (Table S2.3). Biomass showed no relationship 

with bud burst sensitivity (R2 = 0.04, P = 0.297, Fig 2.5C) and a concave down (hump-shaped) 

relationship with leaf out sensitivity (Adj. R2 = 0.22, P = 0.02, Fig 2.5D). Growth estimates based 

on periodic annual increment of basal area (PAI) (change in basal area over the study period) 

showed the same trend as biomass (correlation between PAI and biomass = 0.95, P < 0.001, Fig 

S2.3). Maximum productivity was observed for populations with leaf out sensitivity values similar 

to estimated local sensitivity (designated by vertical lines in Fig 2.5). 

Sensitivity to climate change does not lead to increased growth of the trees. We found that 

both low and high sensitivity populations showed lower productivity than populations with 

moderate sensitivity to climate change, which reflects local climate. Populations from colder 

climates with low leaf out sensitivity are generally more conservative due to their high chilling 

requirements and tend to leaf out later in the season (Fig S2.4), guaranteeing leaf out under more 
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climatically safe conditions. Conversely, populations from warmer climates with high leaf out 

sensitivity tended to shift their phenology more rapidly in response to warming conditions, but 

their lack of increased productivity suggests that other constraints (such as damage from 

subsequent frost events, reduced growth rate during the early spring, and/or increased respiration 

in warmer years) prevented these populations from taking full advantage of an extended growth 

period (9, 11, 12, 33). Local populations were predicted to have moderate levels of sensitivity 

which correlates to the highest levels of productivity, generally supporting the hypothesis that 

populations are best adapted to local conditions (4, 20). This suggests that, despite populations 

from warmer, wetter climates being most able to react to spring warming, populations ultimately 

grow best nearest to their area of origin. This has implications for species migration (both natural 

migration and human-mediated management strategies such as assisted migration); as populations 

disperse to new areas they are likely to be poorly adapted to those areas even if environmental 

conditions are favorable, and they may have reduced productivity relative to their historic range.  

There are a few caveats to our study that must be considered. First, our study encompasses 

seven years of data collection. While these seven years included a wide range of environmental 

conditions and phenological shifts, there are possibly even more dramatic shifts expected under 

future climate change. Within populations, bud burst and leaf out were linearly related to climate 

warming (Fig S2.1), however, if chilling requirements were no longer met at high levels of 

warming, it would be possible for gains in the spring season to be slowed or reversed.  Second, 

although northern red oak is an ecologically and economically important North American tree 

species, there are other species that comprise North American forests that are also responding to 

climate change. Other species may help offset the consequences of shifts in northern red oak 

phenology such as productivity, mast production, canopy closure, and structure (likewise, northern 

red oak may also offset shifts in other species), leading to balancing effects of community 

complexity (34, 35). Finally, there exist many proxies of species fitness besides productivity. 

Additional measures such as recruitment and dispersal may be closely linked to the potential 

sustainability of trees species; however, we found little-to-no recruitment of northern red oak in 

the understory, which is consistent with regional patterns of oak species decline over recent 

decades (5, 36, 37).  
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2.4 Conclusions 

 Taken together, our results provide evidence of potential impacts on the sustainability of 

oak forests under climate change. Our study revealed that populations are able to shift their spring 

phenology in response to climate change, but autumn responses are lacking, and the ability to more 

rapidly shift spring phenology in response to warmer temperatures was not linked to higher 

productivity. Recent studies have shown that oak species have been declining over recent decades, 

resulting in significant northward migration of northern red oak (2, 36, 37). Paired with the 

expected reduced productivity of relocated populations, continued species migration will likely 

have impacts on the productivity and sustainability of this economically and ecologically valuable 

species. 
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2.5 Figures and Tables 

 
Fig. 2.1. Timing of (A) bud burst, (B) leaf out, and (C) senescence. Histogram indicates 
distribution of phenological events for all plots across all years, with histogram and density line 
color reflecting stage (blue = bud burst, green = leaf out, brown = senescence). Vertical lines 
indicate annual mean for each event, with colors specifying individual years and labels “BB” and 
“LO” representing bud burst and leaf out, respectively due to the overlap in these two events. Note 
that sampling began in autumn 2013 as indicated by the additional vertical line for 2013 in (C) that 
is not present in (A) or (B). Vertical dashed line indicates break in X axis between spring and 
autumn seasons.   
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Fig. 2.2. Maps of phenological sensitivity to climate change.  Shifts in day of year (DOY) of 
phenological events at the common garden (gold star) were modeled as a function of shifts in 
growing degree days (GDD) for (A) bud burst and (B) leaf out, and shifts in chilling degree days 
(CDD) for (C) senescence. Background gradient represents the strongest bioclimatic predictor of 
sensitivity (green colors are higher values; see Fig 2.3 for relationships): (A) BIOCLIM 8, mean 
temperature of wettest quarter (MeanTWetQ); (B) BIOCLIM 10, mean temperature of warmest 
quarter (MeanTWarmQ); (C) BIOCLIM 3, isothermality (Isotherm). Larger circles indicate more 
sensitivity to climate change (larger slope coefficients). Red circles indicate negative relationship 
(spring advancement/autumn delay in response to warming); blue circles indicate positive 
relationship (autumn advancement in response to warming); open circles are non-significant. See 
Table S2.1 for climate sensitivity values. 
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Fig. 2.3. Historical climate impacts on phenological sensitivity to climate change. The 
sensitivity of bud burst and leaf out to shifts in growing degree days were modeled as a function 
of seed source climate conditions using Worldclim BIOCLIM variables. BIOCLIM variables were 
standardized by subtracting the value at the common garden and dividing by the standard deviation. 
Circles indicate coefficient values, and color indicates direction of relationship: red = negative, 
blue = positive, and black = non-significant. Negative coefficient values are interpreted as an 
increase in the BIOCLIM variable leads to an increase in sensitivity (more negative sensitivity 
value); conversely, positive coefficient values are interpreted as an increase in the BIOCLIM 
variable leads to a decrease in sensitivity (less negative sensitivity value). Circle sizes are 
proportional to R2 values. Error bars represent 95% confidence intervals; those that overlap the 
dashed vertical line at zero are non-significant (P > 0.05). Variables are grouped by category 
(designated by gray shading), from top to bottom: (a) temperature, (b) precipitation, and (c) 
temperature-precipitation interactions. See Fig S2.2 for scatterplots of these relationships and 
Table S2.2 for a description of the BIOCLIM variables. 
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Fig. 2.4. Seed source growing degree days as a predictor of phenological sensitivity. Daymet 
temperature data were used to create 30-year average springtime accumulated growing degree days 
for each of the seed sources. Red line in (B) indicates significant negative relationship between 
seed source GDD and leaf out sensitivity; warmer seed sources tend to have more sensitivity to 
warmer spring temperature. Black line in (A) indicates non-significant relationship. Dot size and 
hue represent phenological sensitivity and reflect symbology of Fig 2.2.  
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Fig. 2.5. Effects of spring phenology sensitivity on growing season length and productivity. 
Mean growing season length for the 28 populations was modeled as a function of (A) bud burst 
sensitivity and (B) leaf out sensitivity to climate change. Estimated annual accumulated biomass, 
a proxy for productivity, was modeled as a function of (C) bud burst sensitivity and (D) leaf out 
sensitivity. Red line (B) indicates significant negative relationship and black line (D) indicates 
significant concave down quadratic relationship at P < 0.05; gray lines (A and B) indicate non-
significant relationships. Blue areas represent 95% confidence intervals. Vertical dashed lines 
indicate predicted sensitivity of local populations based on spatial patterns of bud burst and leaf 
out sensitivity. Circle size and hue represents leaf out sensitivity values and significance of 
sensitivity (darker hue = more significant), respectively, and reflects symbology of Fig 2.2 A and 
B. 
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2.7 Supplementary Information 

2.7.1 Materials and Methods 

Phenology test site 

In the early 1960s, a common garden (hereafter, “test site”) of northern red oak (Quercus 

rubra) was established at Martell Forest near West Lafayette, IN (40.438°N, -87.038°W). The 

original study aimed to quantify the effects of transplanting northern red oak trees on growth and 

survival (38, 39).  The test site contained populations of northern red oak from 32 locations across 

most of the native range in eastern North America, but currently 28 populations with large enough 

sample sizes remain (Fig S2.5). Seed source locations ranged from 35.6°N to 47.3°N and -96.5°W 

to -68.5°W. Each population was replicated in three blocks for a total of 96 plots. Each plot 

originally contained 16 trees, but due to mortality the median number of remaining trees at the end 

of the study period (autumn 2019) was four per plot. Additionally, one population had missing 

seed source information, one population (Ogle County, IL) had no remaining trees at the start of 

the study period, and 10 plots contained no remaining trees. Therefore, we removed a population 

from our analysis if it had high mortality (fewer than 3 trees or fewer than 2 plots remaining at the 

end of the study period), leaving a total of 398 trees across 83 plots and 28 populations (mean = 

4.5 trees per plot). The final list of seed source locations is available in Table S3, and their spatial 

distribution is in Figs 2.2 and S2.5. For more details on the establishment of the test site, see 

reference (39). 

Phenology observations 

Beginning in autumn 2013 and continuing through autumn 2019, phenology was observed 

every 2-7 days during the spring and autumn seasons. Observations were made by walking through 

the middle of each plot and making visual observations by eye or with binoculars as the stages 

necessitated [following (40)]. Each observation represented the average phenological stage 

(phenophase) across all trees in the plot. Spring phenology was recorded in four phenophases. The 

first phenophase was the bud swell stage, when dormant buds began swelling at the beginning of 

the season. The second phenophase was the bud opening stage (hereafter “bud burst”), when buds 

were visibly opening. The third phenophase was the leaf unfolding stage, when small leaves unfold 
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and become visible before the fourth phenophase of leaf growth, where leaves grow to their final 

size. The first three phenophases were recorded at 10%, 50% and 90% thresholds, and the fourth 

phenophase was recorded at 25%, 50%, 75%, and 100% thresholds (due to the more linear growth 

rate of leaves). Autumn phenology was recorded into two co-occurring stages (as opposed to 

progressive). The autumn phenophases were leaf coloration (percent leaves changed color) and 

leaf fall (percent leaves lost from the canopy). Both autumn phenophases were recorded at 10%, 

50%, and 90% thresholds. Leaf coloration was also recorded at a 100% threshold, but leaf fall was 

not since northern red oak often retains a small portion of leaves throughout the winter. In total, 

we had 282 observation days during the study period (114 spring observation days across six 

seasons and 168 autumn observation days across seven seasons).  

We calculated the day of year (DOY) of specific observed phenological transitions 

(hereafter, “phenological events”). In the spring, we were interested in the timing of bud burst as 

the end to the dormant season and the timing of leaf out as the beginning of the growing season. 

We defined the DOY of bud burst as the first observation when 50% or more of the canopy had 

reached the bud swell stage (first spring phenophase). Although the bud swell stage indicates the 

end of the dormant period, detection of swollen buds is more difficult than detecting the emergence 

of leaves, so we also analyzed the timing of leaf out, which we defined as the DOY of the first 

observation when the 90% or more of the leaves had unfolded (end of the third spring phenophase). 

In the autumn, we were interested in the timing of senescence as the end of the growing season 

and beginning of the winter dormant season. We used the simultaneous observations of leaf color 

and leaf fall to calculate DOY of leaf senescence by taking the first observation when both leaf 

color was above 50% and leaf fall was above 10%. All phenological events were recorded as day 

of year for comparison across years. For each phenological event, we calculated the difference 

between the observed DOY and the mean within-population DOY across all years to represent the 

shift in phenology due to climate change and other variables.  

Climate and weather data 

 We aimed to assess the effects of local environmental conditions on the timing of 

phenological events. Hourly weather station data was downloaded from the two closest weather 

stations (Purdue University Airport, KLAF, about 9.3 km from the test site, and Purdue Agronomy 

Center for Research and Education, ACRE, about 16.0 km from the test site) from the Indiana 
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State Climate Office (https://ag.purdue.edu/indiana-state-climate/) for all years of the study period 

(January 1, 2013 through December 31, 2019). We averaged the KLAF and ACRE weather station 

data when both stations had recorded temperature measurements, and we used the only available 

record when either station had missing data. We used the hourly weather station data to calculate 

daily maximum (Tmax) and minimum (Tmin) temperature, and we used these values to calculate 

growing degree days (GDD) for spring observations using the formula: 𝐺𝐷𝐷 =

𝑚𝑎𝑥	(	*+,-.*+/0
1

− 𝑇4567, 0), where Tbase is a fixed value of 5°C, and GDD is given a value of 0 

when the average of Tmax and Tmin is less than Tbase [following (41)]. We also calculated chilling 

degree days (CDD) for autumn observations (due to the lack of GDD accumulation in mid-to-late 

autumn) using the formula: 𝐶𝐷𝐷 = 𝑚𝑎𝑥	(𝑇4567 −	
*+,-.*+/0

1
, 0), where Tbase is a fixed value at 

20°C (26, 42). Higher values of CDD indicate colder autumn weather and higher values of GDD 

indicate warmer spring weather. To quantify differences across the seven autumn and six spring 

seasons, we measured accumulated GDD from the 1st of February each year to the date of bud 

burst and leaf out and accumulated CDD from the 1st of August each year to the date of senescence 

(43). This allowed us to calculate how different a given day of year was relative to the other years 

in the study period. For example, October 16, 2013, the first observed date of senescence, had 

accumulated 7.27 CDD units more than the average accumulated CDD on October 16 (i.e., 7.27 

CDD units colder than average).  

We aimed to assess the effects of historic climate at the seed source on the timing 

phenological events. Bioclimatic variables (BIOCLIM) are commonly used biologically relevant 

variables often used in species distribution modeling to identify differences in climatic niche of 

populations of widespread species (29). There exist many BIOCLIM variables—19 in the 

WorldClim dataset (29)—that represent precipitation and temperature magnitude and variability 

and the interaction between precipitation and temperature. We accessed WorldClim BIOCLIM 

variables using the “getData()” function in the R package “raster” (44).  A full list and description 

of BIOCLIM variables is available in Table S2, with more details available at (45). We also aimed 

to test if phenologically-relevant measures of average springtime growing degree days were better 

predictors of phenology than BIOCLIM variables. Daily gridded temperature data from Daymet 

were downloaded using the R package “daymetr” for each of our 28 seed sources for 30 years 

(1980-2009). GDD and CDD were calculated for each day, daily averages were calculated for the 



 
 

38 

30 years, and daily averages were summed for winter (January through March) and spring (March 

through May).  

Quantifying sensitivity of phenology to climate change 

Differences in environmental conditions (accumulated GDD and CDD) are hypothesized 

to shift phenology. We assessed the sensitivity of northern red oak using linear regression. We fit 

models in a hierarchical fashion [following (46) and(47)], first modeling the shift in a phenological 

event (e.g. shift in the DOY for population j in year i relative to the mean DOY for population j 

across all years) as a function of environmental conditions (shifts in accumulated CDD and GDD 

for autumn and spring phenophases, respectively) at the common garden (climate sensitivity, “CS” 

models). Then, we modeled the slope of the CS models as a function of seed source climate (19 

BIOCLIM variables) to identify which populations from different climates had higher/lower 

sensitivity to changing environmental conditions. 

Assessing impact of shifting phenology on growing season length and productivity 

Diameter at breast height (DBH) is commonly used to measure tree growth, and allometric 

scaling equations can be used to estimate above ground biomass from DBH (32). All trees within 

the test site were measured in January 2013 before the beginning of the study period, and all trees 

were re-measured in February 2020 after the end of the study period. Some trees had negative or 

abnormally large growth rates (identified as a gap between 1.1 cm year-1 and 2.7 cm year-1 DBH 

change between measurements) that were likely measurement errors; therefore, we removed trees 

with negative or larger than 1.2 cm year-1 growth rates from basal area and biomass calculations, 

leaving a total of 346 trees in our analysis of productivity (Table S3). We estimated total 

aboveground biomass (kg) using the allometric equation (32): 𝑏𝑖𝑜𝑚𝑎𝑠𝑠	 =

	𝑒.1.BC1DE1.FGF1HI	(JKL)  for 2020 and 2013, and then we subtracted 2020 biomass from 2013 

biomass and divided by Nyear = 7 growing seasons between measurements to calculate annual 

accumulated biomass (kg year-1). We also calculated periodic annual increment of basal area (PAI, 

cm2 year-1) based on DBH (cm): 𝑃𝐴𝐼 = 	
PQRSTUVUVU W

U
.PQRSTUVXYU W

U

Z[\,]
, where Nyear = 7 growing seasons 

between measurements. We summed tree-level productivity measures to the population level and 
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used linear regression and a Pearson correlation test to compare population-level annual 

accumulated biomass to PAI. 

We also aimed to measure the effects of shifting phenology on the length of growing season 

and leaf longevity. We calculated growing season length (GSL) as the number of days between 

leaf out and senescence and modeled mean GSL as a function of leaf out and bud burst sensitivity 

using linear regression.  We used a correlation test between shift in leaf out and shift in autumn 

senescence to determine whether red oak has a fixed leaf longevity. A strong negative correlation 

would indicate that gaining days in the spring would lead to losing days in the autumn due to a 

fixed leaf longevity. Finally, we used linear regression to determine the relationship between bud 

burst and leaf out sensitivity and our two measures of productivity (biomass and PAI). We included 

a quadratic term to determine if a linear or hump-shape relationship predominated. All analyses in 

this project were performed in R version 3.6.1 (48) using packages “rgdal” (49) and “raster” (44) 

for geospatial analysis and “stats” (48), “car” (50), and “MuMIn” (51) for linear regression and 

model selection. 
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2.7.2 Supplementary Figures and Tables 

 
 

Fig. S2.1. Scatterplots of phenological shifts as a function of changes in environmental conditions. Each 
scatterplot represents one of the 28 populations. Regression line color indicates direction and significance: significant 
negative trend in red, non-significant trend in gray. Negative trends indicate an advancement of spring or delay of 
autumn in warmer years. Blue area represents 95% confidence interval.  Each dot represents one replicate in one year. 
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Figure S2.1 continued
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Figure S2.1 continued
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Fig. S2.2. Scatterplots of bioclimatic predictors of bud burst and leaf out sensitivity. Bud burst and leaf out 
sensitivity were modeled as a function of seed source BIOCLIM predictors. Circles represent individual populations, 
with color and size representing significance of sensitivity. BIOCLIM variables were standardized by subtracting the 
value at the common garden and dividing by the standard deviation. Blue areas represent 95% confidence intervals. 
Color of regression line indicates significance of the relationship: red = significant negative; blue = significant positive; 
black = non-significant. Negative coefficient values are interpreted as an increase in the BIOCLIM variable leads to 
an increase in sensitivity (more negative sensitivity value); conversely, positive coefficient values are interpreted as 
an increase in the BIOCLIM variable leads to a decrease in sensitivity (less negative sensitivity value). 
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Figure S2.2 continued 
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Fig. S2.3. Relationship between measures of productivity. X axis = periodic annual increment (PAI) measured as 
the annual change in basal area during the study period. Y axis = annual biomass accumulation measured as the change 
in estimated biomass between 2013 and 2020 based on the allometric scaling equation for oak species (30). Colors 
and dot size reflect leaf out sensitivity as shown in Fig 2.2. 
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Fig. S2.4. Bud burst and leaf out sensitivity as a function of mean DOY of (A) bud burst and (B) leaf out. 
Populations that break bud early or late tend to have less sensitivity to climate change, but populations that leaf out 
early are generally more sensitive to climate change than populations that leaf out late. 
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Fig. S2.5. Map of study area. Gray area indicates the native range of Quercus rubra based on Little (37). Green 
circles indicate seed source locations of the 28 populations used in this study, and size is proportional to the survival 
of original population of 48 trees. Gold star indicates location of the common garden site at Martell Forest, West 
Lafayette, IN. 
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Table S2.1. Mean day of phenological events and climate sensitivity values. Max and min shift values in 
parentheses. Bolded sensitivity values were statistically significant (P < 0.05), and asterisks indicate level of 
significance of advances (negative values) or delays (positive values) in response to increased GDD in spring or CDD 
in autumn: * P < 0.05, ** P < 0.01, *** P < 0.001. Populations are ordered from north to south.  

 Mean day of year (min, max shift) Sensitivity (slope coefficient values) 

Pop. ID Bud burst Leaf out Senescence 
Bud burst 
(Days GDD-1) 

Leaf out 
(Days GDD-1) 

Senescence 
(Days CDD-1) 

20 98 
(-23, 13) 

111.6 
(-6.6, 9.4) 

284.3 
(-18.3, 7.7) 

-0.445*** -0.099* 0.001 

13 99.7 
(-19.7, 17.3) 

115.2 
(-8.2, 11.8) 

298 
(-12, 13) 

-0.521*** -0.102** 0.016 

24 99 
(-31, 18) 

114.9 
(-7.9, 10.1) 

295.8 
(-11.8, 10.2) 

-0.541*** -0.104** 0.034 

22 98.3 
(-30.3, 12.7) 

112.1 
(-7.1, 10.9) 

294.2 
(-17.2, 10.8) 

-0.430*** -0.111** 0.050 

26 99.9 
(-24.9, 17.1) 

115.7 
(-10.7, 11.3) 

293.2 
(-9.2, 11.8) 

-0.488*** -0.108* 0.047 

2 98.8 
(-15.8, 9.2) 

111.6 
(-6.6, 9.4) 

296.2 
(-12.2, 6.8) 

-0.346*** -0.099** 0.041 

3 100.8 
(-25.8, 16.2) 

116.9 
(-5.9, 10.1) 

300.5 
(-15.5, 11.5) 

-0.501*** -0.097** 0.012 

21 98.9 
(-30.9, 18.1) 

117 
(-6, 12) 

299.6 
(-14.6, 12.4) 

-0.606*** -0.119** 0.026 

17 102.6 
(-27.6, 18.4) 

120.4 
(-9.4, 11.6) 

303.6 
(-8.6, 12.4) 

-0.501*** -0.094* 0.025 

19 101.3 
(-21.3, 15.7) 

115.7 
(-6.7, 9.3) 

303.4 
(-8.4, 12.6) 

-0.510*** -0.088* 0.017 

23 99.5 
(-24.5, 14.5) 

114.1 
(-9.1, 8.9) 

299.5 
(-13.5, 12.5) 

-0.462*** -0.096* 0.043 

12 98.9 
(-23.9, 18.1) 

112.9 
(-7.9, 10.1) 

300.6 
(-11.6, 15.4) 

-0.464*** -0.105* 0.038 

6 101.3 
(-26.3, 17.7) 

118.3 
(-7.3, 10.7) 

303.8 
(-11.8, 10.2) 

-0.562*** -0.103* 0.021 

29 99.2 
(-24.2, 19.8) 

117.6 
(-6.6, 11.4) 

303.7 
(-11.7, 12.3) 

-0.647*** -0.103** 0.030 

14 104.7 
(-29.7, 18.3) 

123.4 
(-9.4, 11.6) 

304.5 
(-12.5, 11.5) 

-0.372** -0.089** 0.021 

8 101.8 
(-26.8, 21.2) 

121.8 
(-7.8, 11.2) 

304.3 
(-9.3, 7.7) 

-0.488** -0.088* 0.008 

9 100.4 
(-25.4, 13.6) 

114.5 
(-7.5, 12.5) 

303 
(-11, 7) 

-0.385*** -0.131** -0.021 

15 107.5 
(-27.5, 25.5) 

124.1 
(-9.1, 8.9) 

306.8 
(-11.8, 9.2) 

-0.407** -0.071 0.011 

18 101.9 
(-21.9, 27.1) 

121.8 
(-7.8, 11.2) 

304.7 
(-9.7, 9.3) 

-0.584** -0.076* 0.025 

30 107.9 
(-24.9, 19.1) 

123.3 
(-8.3, 9.7) 

307.3 
(-8.3, 11.7) 

-0.427*** -0.081* 0.002 

31 100.6 
(-20.6, 16.4) 

116.8 
(-7.8, 12.2) 

300.6 
(-15.6, 13.4) 

-0.444*** -0.107* 0.026 

32 100.8 
(-32.8, 16.2) 

116.6 
(-7.6, 12.4) 

302.3  
(-13.3, 9.7) 

-0.539*** -0.123* 0.027 

7 101.5 
(-26.5, 15.5) 

117.1 
(-8.1, 11.9) 

308 
(-13, 9) 

-0.562*** -0.118** 0.024 

10 101.8 
(-26.8, 15.2) 

116.9 
(-7.9, 12.1) 

306.8 
(-11.8, 10.2) 

-0.570*** -0.129** 0.021 

11 99.3 
(-24.3, 11.7) 

114.3 
(-5.3, 10.7) 

310.2 
(-9.2, 7.8) 

-0.470*** -0.130*** 0.007 

1 102.2 
(-19.2, 14.8) 

117 
(-10, 12) 

309.5 
(-10.5, 13.5) 

-0.463*** -0.139** -0.035* 

5 99.9 
(-19.9, 17.1) 

114.4 
(-9.4, 14.6) 

309.7 
(-8.7, 13.3) 

-0.415*** -0.123** -0.010 

27 101.2 
(-33.2, 19.8) 

120.5 
(-9.5, 10.5) 

309.8 
(-8.8, 13.2) 

-0.560*** -0.122** -0.015 
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Table S2.2 Bioclimatic predictors and their effect on climate change sensitivity. WorldClim 
BIOCLIM variables and Daymet accumulated growing degree days were used as predictors of bud 
burst and leaf out sensitivity. See references (29, 30, 45) for more detailed descriptions of the 
BIOCLIM and Daymet data. Significant slope coefficients in bold, with asterisks indicating 
significance of relationship: * P < 0.05, ** P < 0.01, *** P < 0.001. 
 

   Bud burst  Leaf out  

Variable 
(abbreviation) Category Description 

Slope  
(+/- 95% 
CI) R2 

AIC 
weight 

Slope  
(+/- 95% 
CI) R2 

AIC 
weight 

BIOCLIM 1 
(AnnMeanT) 

Temperature Annual mean 
temperature 

-0.005  
(+/-0.030) 

<0.01 0.002 -0.008**  
(+/-0.006) 

0.23** 0.020 

BIOCLIM 2 
(Diurnal) 

Temperature Annual mean 
diurnal range 

-0.008  
(+/-0.030) 

0.01 0.002 -0.008**  
(+/-0.006) 

0.27** 0.044 

BIOCLIM 3 
(Isotherm) 

Temperature Isothermality -0.021  
(+/-0.029) 

0.08 0.006 -0.005  
(+/-0.006) 

0.09 0.002 

BIOCLIM 4 
(TSeason)  

Temperature Temperature 
seasonality 

0.026  
(+/-0.028) 

0.13 0.012 0.001  
(+/-0.006) 

<0.01 0.001 

BIOCLIM 5  
(MaxT) 

Temperature Maximum 
temperature of 
warmest month 

0.007  
(+/-0.030) 

0.01 0.002 -0.009***  
(+/-0.005) 

0.35*** 0.204 

BIOCLIM 6  
(MinT) 

Temperature Minimum 
temperature of 
coldest month 

-0.015  
(+/-0.029) 

0.04 0.003 -0.004  
(+/-0.006) 

0.05 0.001 

BIOCLIM 7 
(AnnTRange)  

Temperature Annual 
temperature range 

0.022  
(+/-0.028) 

0.09 0.007 0.002  
(+/-0.006) 

<0.01 0.001 

BIOCLIM 10 
(TwarmQ)  

Temperature Mean temperature 
of warmest quarter 

0.009  
(+/-0.030) 

0.01 0.002 -0.010***  
(+/-0.005) 

0.36** 0.289 

BIOCLIM 11 
(TColdQ) 

Temperature Mean temperature 
of coldest quarter 

-0.015  
(+/-0.029) 

0.04 0.003 -0.005  
(+/-0.006) 

0.11 0.003 

BIOCLIM 12 
(TotAnnP)  

Precipitation Total annual 
precipitation 

-0.024  
(+/-0.028) 

0.11 0.009 -0.004  
(+/-0.006) 

0.05 0.001 

BIOCLIM 13 
(PWetM)  

Precipitation Total precipitation 
of wettest month 

-0.014  
(+/-0.029) 

0.03 0.003 -0.009*  
(+/-0.006) 

0.22* 0.017 

BIOCLIM 14 
(PDryM)  

Precipitation Total precipitation 
of driest month 

-0.035*  
(+/-0.026) 

0.22* 0.056 0.000  
(+/-0.006) 

<0.01 0.001 

BIOCLIM 15 
(PSeason)  

Precipitation Precipitation 
seasonality 

0.034*  
(+/-0.027) 

0.21* 0.048 0.005  
(+/-0.006) 

0.05 0.001 

BIOCLIM 16 
(PWetQ)  

Precipitation Total precipitation 
of wettest quarter 

-0.006  
(+/-0.030) 

<0.01 0.002 -0.008**  
(+/-0.005) 

0.26** 0.036 

BIOCLIM 17 
(PDryQ) 

Precipitation Total precipitation 
of driest quarter 

-0.031*  
(+/-0.027) 

0.18* 0.028 -0.000  
(+/-0.006) 

<0.01 0.001 

BIOCLIM 8 
(TWetQ) 

Temp.-
precip. 
interaction 

Mean temperature 
of wettest quarter 

0.044*** 
(+/-0.024) 

0.35*** 0.737 -0.002  
(+/-0.006) 

0.02 0.001 

BIOCLIM 9 
(TDryQ)  

Temp.-
precip. 
interaction 

Mean temperature 
of driest quarter 

-0.030* 
(+/-0.027) 

0.17* 0.024 -0.004  
(+/-0.006) 

0.07 0.001 

BIOCLIM 18 
(PWarmQ)  

Temp.-
precip. 
interaction 

Total precipitation 
of warmest quarter 

0.021  
(+/-0.029) 

0.08 0.006 -0.008**  
(+/-0.006) 

0.25** 0.027 

BIOCLIM 19 
(PColdQ)  

Temp.-
precip. 
interaction 

Total precipitation 
of coldest quarter 

-0.034* 
(+/-0.027) 

0.21* 0.045 -0.000  
(+/-0.006) 

<0.01 0.001 

Daymet spring 
GDD 

Temperature Mean spring 
(March-May) 
accumulated 
growing degree 
days 

0.007 
(+/-0.030) 

0.01 0.002 -0.010***  
(+/-0.005) 

0.37** 0.352 
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Table S2.3. Seed source locations and number of trees. Nalive indicates number of trees remaining at the end of the 
study period. NDBH indicates number of trees with reliable diameter at breast height (DBH) measurements in both 
2013 and 2020 (some trees were removed from the analysis with suspected measurement errors). Populations are 
ordered from north to south, and population ID (Pop. ID) reflects original population ID number from plantation 
establishment (38). 

Pop. ID 
State/ 
Province County 

Year 
planted Lat. Lon. Nalive NDBH 

20 MN Cass 1962 47.33 -94.50 12 10 
13 MD Marquette 1962 46.50 -87.33 21 18 
24 ONT Algoma 1962 46.25 -83.33 11 11 
22 WI Pierce 1963 45.75 -92.67 25 24 
26 WI Oneida 1962 45.58 -89.33 23 19 
2 MN Carver 1962 44.83 -93.58 12 9 
3 ME Penobscot 1962 44.83 -68.50 16 13 
21 ONT Simcoe 1962 44.83 -80.00 19 18 
17 MI Missaukee 1962 44.25 -85.33 18 17 
19 NY Essex 1962 44.17 -73.33 16 13 
23 MN Winona 1963 44.08 -92.08 15 12 
12 WI Vernon 1963 43.58 -90.83 23 20 
6 ME York 1962 43.50 -70.58 18 15 
29 ME York 1962 43.50 -70.75 20 19 
14 MI Ingham 1964 42.75 -84.33 4 3 
8 MI Kalamazoo 1964 42.33 -85.33 7 5 
9 IA Boone 1963 42.08 -91.33 18 16 
15 PA Warren 1964 41.83 -79.25 6 5 
18 PA Luzerne 1964 41.25 -76.08 10 9 
30 OH Wayne 1963 40.75 -81.92 7 6 
31 OH Allen 1962 40.75 -84.17 18 16 
32 KS Riley 1963 39.17 -96.50 3 3 
7 IN Orange 1962 38.50 -86.50 14 13 
10 MO Dent 1963 37.67 -91.50 11 8 
11 IL Jackson 1962 37.58 -89.50 14 12 
1 TN Anderson 1962 36.17 -84.17 9 6 
5 AR Newton 1963 36.00 -93.17 18 16 
27 NC Buncombe 1964 35.58 -82.50 10 10 
     TOTAL 389 346 
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 COMMUNITY-LEVEL RESPONSES TO CLIMATE 
CHANGE IN FORESTS OF THE EASTERN UNITED STATES 

A version of this chapter has been previously published in Global Ecology and Biogeography. 

Citation: Knott, J. A., Jenkins, M. A., Oswalt, C. M., & Fei, S. (2020). Community-level 

responses to climate change in forests of the eastern United States. Global Ecology and 

Biogeography. https://doi.org/10.1111/geb.13102 

3.1 Abstract  

Aim: Climate change has impacted forest ecosystems, leading to species-level tree migration.  

However, climate change impacts on forest communities are mostly unknown.  Here, we assess 

changes to forest communities at three scales: within community changes in species composition, 

individual community spatial shifts, and changes across all communities.  

Location: Eastern United States 

Major taxa studied: Forest tree species 

Methods: Using a region-wide forest inventory dataset from the USDA Forest Service’s Forest 

Inventory and Analysis Program with over 70,000 plots, we identified forest communities using 

the Latent Dirichlet Allocation method. We analyzed species composition changes within 

communities and assessed community-level spatial shifts over the last three decades to quantify 

individual community responses to climate change.  We utilized the distribution of forest 

communities across climate conditions to predict where communities could migrate to during the 

study period and compared climate-predicted shifts to observed community shifts.  Changes across 

all communities were modeled as a function of climate and non-climate variables using generalized 

linear mixed-effects models. 

Results: We identified 12 regional forest communities of the eastern United States, which varied 

in their stability of species composition over the study period. All communities experienced 

relatively short yet significant shifts in their spatial distribution (median = 8.0 km dec-1).  Historic 

climate and changes in seasonal temperature variability were the best predictors of change across 

all communities. However, the distance and direction of individual community migration was 
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poorly predicted by climate change, and the observed direction was often opposite of the predicted 

direction. 

Main conclusions: Forest communities shifted their distributions over the last three decades, but 

climate change outpaced the rate of community migration.  Continued lags between climate change 

and forest community responses and the lack of migration in the direction predicted by climate 

change may lead to the inability of forests to keep up with changing climate. 

Keywords: Climate change, forest communities, Forest Inventory and Analysis, Latent Dirichlet 

Allocation, spatial shifts, tree migration 

3.2 Introduction 

Forest ecosystems across the United States (U.S.) are threatened by human disturbance 

(Riitters, Coulston, & Wickham, 2012; Vanderwel & Purves, 2014), invasion of nonnative plants 

and pests (Fei, Morin, Oswalt, & Liebhold, 2019; Oswalt et al., 2015), and climate change (Fei et 

al., 2017; Iverson & Prasad, 1998).  Among these major threats, climate change has been shown 

to cause tree species to shift their distributions.  Often, species have moved to higher latitudes or 

elevations in response to temperature change (Lenoir, Gégout, Marquet, De Ruffray, & Brisse, 

2008; Woodall et al., 2009; Zhu, Woodall, & Clark, 2012), but westward movement has also been 

observed in response to precipitation change (Fei et al., 2017).  Changes in the distribution of forest 

species can have severe consequences for ecosystem functioning; however, changes at the 

community level—impacting not only the species composition but also the interactions among 

species—may be even more important to ecosystem functioning (Loreau et al., 2001; Symstad, 

Tilman, Willson, & Knops, 1998).  Understanding the effects of climate change and other large-

scale threats to forest communities is important for predicting the future sustainability of forests 

and the services they provide. 

Ecologists have attempted to define communities for over a century, yet communities are 

dynamic, and their stability is increasingly questioned due to climate change.  Early attempts at 

defining communities, such as Clements (1916) and Gleason (1926), revealed multiple conflicting 

views of ecological communities. Clements argued that communities acted as superorganisms that 

matured into a climax community determined by regional macroclimate, whereas Gleason argued 

that communities were artificial groupings of overlapping species distributions created by 
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individualistic responses to environmental gradients.  In addition to the difficulty of defining 

communities, Braun (1950) identified large-scale, sub-continental patterns of forest species 

distributions, which Davis (1983) showed were the result of post-glaciation migrations of 

individual species over the last five millennia.  As a result of these migration patterns, distinct 

forest regions emerged that were considered mostly stable in the recent past (Braun, 1950), but 

their current and future stability is questionable given decade-scale tree species migrations in 

response to recent climate change (e.g., Fei et al., 2017; Woodall et al., 2009; Zhu et al., 2012) that 

rival the distance of these historic millennium-scale post-glaciation migrations.   

In addition to difficulty defining communities, data availability and computational 

complexity often limited earlier attempts at describing and analyzing changes to ecological 

communities.  Many early studies were based on limited, local-scale samples and used simplified 

statistical tests or relied on anecdotal evidence. The availability of large-scale datasets (e.g., Forest 

Inventory and Analysis from the USDA Forest Service; FIA) containing tens of thousands to 

millions of observations and the advancements in analytical techniques for big data (e.g., Bayesian 

statistics and machine learning) have allowed researchers to confirm the patterns in species co-

existence observed by earlier studies and provide greater detail about these communities (Dyer, 

2006; Peters et al., 2014).  However, these large-scale community analyses still have underlying 

problems related to the abundance and complexity of data.  First, many multivariate methods rely 

on the creation of a distance matrix in multidimensional species space to determine if they exhibit 

different species compositions (Costanza, Coulston, & Wear, 2017; Legendre & Legendre, 2012).  

These approaches can be influenced by the abundance of non-overlapping species (i.e., the 

“double-zero” problem), where patterns are driven by the lack of species co-occurrence (Legendre 

& Legendre, 2012).  As such, distance metrics used in multivariate analyses need to be carefully 

considered in order to minimize these effects (Dyer, 2006).  Multivariate methods are good at 

detecting abrupt changes between communities, but may fail to detect differences when transitions 

between communities occur slowly (Valle, Baiser, Woodall, & Chazdon, 2014).  In addition, the 

creation and analysis of a distance matrix for tens of thousands of samples can become 

computationally unfeasible (e.g., a distance matrix between 80,000 samples, the approximate size 

of the FIA database for the eastern U.S., contains 6.4 billion entries).  Second, irregular sampling 

density can cause community delineations to be biased by areas where forests are more abundant. 

Regions such as the southern Appalachian Mountains or the upper Midwest that have large regions 

of continuous forest with many sampling sites in the FIA database can drive the patterns found in 
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traditional clustering and multivariate methods.  Thus, the results of these methods may provide 

great detail about one region but little detail about a more sparsely forested or sampled region. 

There is a need to address these problems by using different models of species coexistence. 

Here, we take a multiple-lens view of forest community changes over time by assessing 

changes at multiple scales: (1) within community changes in species composition, (2) spatial shifts 

of individual communities, and (3) changes in composition and dominance across all communities. 

We first needed to identify forest communities, so we used the Latent Dirichlet Allocation (LDA) 

topic model (Blei, Ng, & Jordan, 2003; Valle et al., 2014) to identify forest communities within 

two datasets (T1, 1980s and T2, 2010s), each containing over 70,000 FIA plots.  As such, 

communities in this study are similar to those considered in traditional local-scale ecological 

studies, but are more generalized given the large amount of data used to identify consistent patterns 

in species associations. The resulting communities, therefore, represent regional species 

assemblages or regional forest types similar to those defined by Braun (1950), Costanza et al. 

(2017), or Dyer (2006).  Our first assessment of forest community changes (1) was to analyze: (a) 

changes in species rank within a community (i.e., changes in dominant species of the community), 

(b) changes in the contribution of species to a community (i.e., shifts in the proportion/abundance 

of each species in each community), and (c) the gain or loss of species over time. These analyses 

would reveal if new assemblages of species are formed or if the species composition of existing 

communities is shifting.  Our second assessment of forest community changes (2) was to test if 

communities were shifting their geographic distributions, and if the community migrations were 

tracking with climate change. Given recent knowledge of spatial shifts at the species level (Fei et 

al., 2017; Zhu et al., 2012), we aimed to test if forest communities were also shifting their 

distributions in response to climate change. Finally, our third assessment of forest community 

changes (3) was to identify areas with high levels of community change and test if these areas were 

also experiencing greater levels of climate change.  By taking this multiple-lens view of forest 

community responses to climate change, we can better understand the ways in which forest 

communities change over time and can use this information to address the future sustainability of 

forest communities in a continuously changing global climate. 
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3.3 Methods 

3.3.1 Forest inventory data 

The USDA Forest Service’s Forest Inventory and Analysis (FIA) program is a nationwide 

sampling effort of approximately one plot per 2428 hectares (6000 acres) of forested land, 

containing approximately 130,000 plots nationwide and approximately 80,000 plots in the eastern 

U.S. We selected FIA data from the eastern U.S., encompassing 37 states and four ecoregions 

(Cleland et al., 2007): the Northern Hardwood Region (NHR), the Central Hardwood Region 

(CHR), the Forest-Prairie Transition Region (FPTR), and the Southern Pine-Hardwood Region 

(SPHR) (Table S3.1, Fig S3.1). We compiled two datasets (T1 and T2) to assess changes over the 

last three decades. Before the early 2000s, the FIA program utilized a periodic sampling protocol, 

in which states completed sampling every 10 to 15 years. More recently, a panel system for FIA 

sampling has been used, where each year partial sampling is completed, and states report sampling 

every 5 to 7 years when all plots in the state have been sampled.  Therefore, the year of completion 

varied across the eastern U.S. for both time periods.  For the first period (T1), we used the first 

measurement available in 1980 or later (a full periodic sample from each state completed in a 

single year from 1980 to 1995).  For the second period (T2), we used measurements from sampling 

that concluded in 2015 to 2017 (the compiled sampling that was carried out over the previous 5 to 

7 years). The median interval between T1 and T2 sampling periods in each state was 31 years.  

Ideally, we would have used data for all species available in the FIA database.  However, 

some species were aggregated to the genus level in certain states’ surveys at T1.  For example, 

coastal states from Virginia to Florida have Celtis genus-level records at T1 but have Celtis 

occidentalis and Celtis laevigata recorded separately at T2.  Similarly, some genera (such as the 

Carya genus) were identified to the genus level at T1 across most of the range.  Therefore, we 

assigned species with only genus-level samples at T1 to their genus-level species code even when 

species-level data were collected at T2.  Similarly, ash species (Fraxinus species) were aggregated 

to the genus level to reduce the effects of uncertainty from known identification issues (e.g., 

overlapping ranges of species with similar morphological characteristics).  Additional species that 

were not aggregated to the genus level were considered rare and removed from the dataset if they 

occurred in fewer than 300 plots (following Fei et al., 2017).  The final species list included 138 

species of interest (out of approximately 263 species in the FIA database for the eastern U.S.) that 

were aggregated into 85 new species or genus labels (hereafter “species”; Table S3.2).   
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We utilized three metrics to measure species abundance in each plot: relative basal area, 

relative stem density, and importance value (average of relative basal area and relative density).  

These metrics were derived for all stems and for two separate size classes: < 5.1 cm DBH (hereafter, 

saplings) and > 5.1 cm DBH (hereafter, trees).  The use of relative metrics allowed each plot to be 

weighted equally (i.e., the sum of importance values for all species in each plot is equal). All values 

were rounded up to the nearest integer percentage to accommodate for the LDA model (which was 

built using integer word counts) and to avoid removing species from samples where they had low 

abundance (with a metric value between 0% and 0.5%).  The plot-level data were used to fit the 

LDA model. However, to account for the spatial mismatch between T1 and T2 (i.e., not all plots 

inventoried at T1 were re-inventoried at T2, or vice versa), we aggregated plot-level results to a 

1452 km2 hexagon tessellation following Fei et al. (2017).  To reduce the potential biases in our 

analysis of spatial shifts caused by hexagons with few FIA plots (i.e., dramatic community 

turnover due to mismatch in sampling), we selected hexagons that contained > 10 FIA plots at both 

T1 and T2.  A final total of 89,231 plots at T1 and 75,715 plots T2 fell into 1813 hexagons with > 

10 FIA plots. 

3.3.2 Identifying forest communities with the Latent Dirichlet Allocation model 

The Latent Dirichlet Allocation topic model is a Bayesian hierarchical model that was developed 

to identify topics in text data based on the frequency and co-occurrence of words across hundreds 

to thousands of documents (Blei et al., 2003).  It has been widely used for text-mining uses (e.g., 

Tirunillai & Tellis, 2014), but has recently been expanded to other uses in the natural sciences such 

as remote sensing, vegetation classification, and community detection (Damgaard, 2015; Tang et 

al., 2013; Valle et al., 2014).  For community detection, the analogy to traditional text-mining is 

quite clear: communities (or topics) are based on the frequency and co-occurrence of species (or 

words) across hundreds to thousands of plots (or documents).  The LDA model is a Bayesian 

hierarchical model that assumes a generative process to forest (or document) sampling (or creation) 

(Blei et al., 2003; Valle et al., 2014).  This assumption means that first a forest (or document) 

selects a number of communities (or topics) to include in the sample following a Dirichlet 

distribution.  Then, for each community (or topic) a number of species (or words) related to the 

community (or topic) is chosen.  The posterior distributions of the LDA model contain two main 
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components: (1) the proportion of each community in each sample (or each topic in each document) 

and (2) the proportion of each species in each community (or each word in each topic).   

We ran the LDA model on the T1 data using the built-in Gibbs sampler in the “topicmodels” 

package in R (Grün & Hornik, 2011), with 5000 iterations and a 500 iteration burn-in period.  The 

LDA model requires specifying the number of groups a priori.  Since we did not have a priori 

knowledge of the exact number of communities in the FIA data, we used an iterative approach, 

increasing the number of communities, k, by 1 from 2 to 50.  We used the plot-level data with 

importance value for all stems to fit the LDA model.  The models were evaluated for goodness of 

fit and complexity using a suite of four metrics (Arun, Suresh, Veni Madhavan, & Narasimha 

Murthy, 2010; Cao, Xia, Li, Zhang, & Tang, 2009; Deveaud, SanJuan, & Bellot, 2014; Griffiths 

& Steyvers, 2004) from the “ldatuning” package in R (Nikita, 2016).  The value k is chosen by 

maximizing two of the metrics (Deveaud et al., 2014; Griffiths & Steyvers, 2004) and minimizing 

the other two (Arun et al., 2010; Cao et al., 2009); therefore, we included possible values of k that 

were at these maximum and minimum values of the four metrics.  Due to the asymptotic nature of 

the metrics, we also included break points indicated by multivariate adaptive regression splines 

(MARS regression; Friedman, 1991) using the “earth” package in R (Milborrow, 2017).  Finally, 

we used the posterior distributions from the candidate models to evaluate an ecologically-based 

metric, the number of species with proportion > 1/nspecies in each community, to remove models 

that contained communities that were comprised of only one species.  To test if there were 

differences between input data type (i.e., relative basal area, relative density, or importance value 

for saplings, adults, or all stems), we used the best fit model to initialize new models with different 

input data and tested for differences in species composition using Mantel tests using the “ade4” 

package in R (Dray & Dufour, 2007).  After identifying the best-fit model from the T1 data, we 

used the posterior distributions to initialize the T2 model. Doing so allowed the species 

composition of the communities to begin aligned with the T1 communities but then progressively 

change to fit the T2 data, reflecting the way that communities naturally change over time.  We 

compared species composition between T1 and T2 to identify communities that changed dominant 

species or lost/gained species. 

To visualize the distribution of identified communities and calculate measures of 

community change over time, we aggregated our results to the 1452 km2 hexagon tessellation (Fig 

S3.1) by taking the average community proportion across all plots within a hexagon. We then 

created regional forest community maps for T1 and T2 by mapping the community with the highest 
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proportion in each hexagon.  We used these maps to identify hexagons where the dominant 

community type changed between T1 and T2 and create a transition matrix containing the 

proportion of hexagons changing from one dominant community type to another over the study 

period. Non-forested areas were masked out using the 2011 National Land Cover Database for 

visualization purposes only (https://www.mrlc.gov/data).  A GIS shape file with the posterior 

distribution of communities in each hexagon and a spreadsheet of the posterior distribution of 

species in each community are available at https://www.doi.org/10.4231/GCE5-ZY59. 

3.3.3 Climate and non-climate forest condition data 

The PRISM climate dataset (4 km resolution) was used to create climate normals for 30 years 

leading up to the T1 FIA sampling (1951-1980, hereafter, “historic climate conditions”) and 30 

years during the study period (1986-2015, hereafter, “study period conditions”; PRISM Climate 

Group, Oregon State University, http://prism.oregonstate.edu/). The PRISM dataset contains 

monthly mean, maximum, and minimum temperature, and monthly accumulated precipitation. We 

calculated the mean of monthly mean temperature (MAT), the minimum of monthly minimum 

temperature (TMIN), the maximum of monthly maximum temperature (TMAX), and the sum of 

monthly precipitation (TAP) across the twelve months in each year. We also calculated climate 

variability by taking the standard deviation (SD) of monthly precipitation (PSD), SD of monthly 

minimum temperature (TMINSD), SD of monthly maximum temperature (TMAXSD), and 

temperature range (annual maximum temperature minus annual minimum temperature, TRANGE). 

Therefore, TRANGE, TMINSD, and TMAXSD are measures of seasonal temperature variability, 

and PSD is a measure of seasonal precipitation variability.  Temperature and precipitation 

conditions are closely linked to drought severity (Hu & Willson, 2000; McEwan, Dyer, & Pederson, 

2011), so we used Palmer Drought Severity Index (PDSI) data (from the same two periods, 1951-

1980 and 1986-2015) to test whether drought severity was a better predictor of community change 

than the PRISM-derived temperature and precipitation variables (available at 

https://wrcc.dri.edu/wwdt/). Then, we averaged each variable across 30 years before and during 

the study period (1951-1980 and 1986-2015, respectively). We calculated the difference between 

historic climate conditions and study period conditions for each variable to use as indicators of 

climate change (hereafter, “climate change variables”).   
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A variety of non-climate factors can influence forest dynamics, and we aimed to test forest 

developmental stage, nitrogen deposition, and fire frequency as potential drivers of community 

change (hereafter, “non-climate variables”). As we do not have reliable information on tree or 

stand age, we used hexagon-level total basal area (BA) at T1 (across all species in all plots in each 

hexagon) as a proxy for forest developmental stage following Fei et al. (2017).  We also calculated 

hexagon-level total basal area at T2 and took the difference between T1 and T2 as a measure of 

forest development over the study period. Nitrogen deposition data (NDEP) during a portion of 

the study period (2000-2015) were aggregated at the hexagon level (available at 

http://nadp.slh.wisc.edu/) following Jo, Fei, Oswalt, Domke, and Phillips (2019).  We used the 

kernel density tool in ArcGIS (V.10.4, Esri Inc., USA) on fire occurrence point data during a 

majority of the study period (1992-2015) as a proxy for fire frequency within each hexagon (Jo et 

al., 2019; Short, 2017). We natural-log transformed fire frequency (LOG(FIRE)) to normalize the 

predictor. Maps of predictor variables are available in Fig S3.2. 

3.3.4 Analysis of individual community changes over time 

To assess changes in the distribution of communities over time, we computed a proportion-

weighted community centroid and community area for T1 and T2.  We used the proportion of the 

community in each hexagon to weight the XY coordinates of the hexagon centroid, and took the 

difference in community centroid between the two time periods to assess distance and direction of 

movement of the centroid (following Fei et al., 2017).  This approach allowed shifts in abundance 

within the community to influence the community’s centroid, even if the spatial extent did not 

change.  We assessed the significance of the change in latitude, longitude, and overall shift distance 

using randomization tests by randomly disassociating the XY coordinates with the community 

proportion and recalculating the centroid shifts.  We then repeated the randomization process 1000 

times and calculated a P value for each community (i.e., the proportion of random shifts larger 

than the observed shift).  All P values were corrected for multiple testing using the Benjamini-

Hochberg method (PBH) (Benjamini & Hochberg, 1995), and shifts were considered significant 

when PBH ≤ 0.05. We also assessed changes in community spatial coverage by weighting the 

hexagon area by the community proportion at T1 and T2.  We used randomization tests to assess 

the significance of changes in community area by randomly reassigning community proportions 

to T1 or T2 and recalculating the difference in proportion-weighted area between the randomly 
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assigned T1 and T2 groups.  This process was repeated 1000 times to test how extreme the 

observed expansions or contractions were relative to random increases or decreases in area.  

For each community, we tested if climate change predicts shifts in its distribution. We first 

calculated the relative frequency of the community under each of the nine historic climate 

conditions (eight PRISM-derived variables and PDSI). Then, a kernel density tool (density.default 

in the “stats” package in R) (R Core Team, 2019) was used to create a smoothed probability of 

occurrence distribution across each of the historic climate conditions.  Locations with study period 

conditions within the range of observed historic climate conditions were assigned the 

corresponding probability of occurrence for each of the eight PRISM climate variables and PDSI.  

The probability of occurrence was averaged across the nine variables to generate a probability of 

occurrence in each hexagon for each community based solely on climate.  Then, we calculated the 

climate-predicted centroids for the communities by weighting each hexagon’s XY coordinates by 

the probability of occurrence and compared these centroids to the observed T2 centroids.  

3.3.5 Analysis of change across communities 

The communities in each hexagon are compositional data; that is, the proportion of all 

communities in a hexagon sums to one, which leads to lack of independence between the 

communities (i.e., if the proportion of k-1 out of the k communities is known, the proportion of the 

kth community can be derived as 1 minus the sum of the k-1 community proportions). To reduce 

the issue of violating independence and identify which forest regions are changing the most, we 

calculated the Jensen-Shannon Divergence (JSD; Hall, Jurafsky, & Manning, 2008; Lin, 1991) 

between the k-dimensional community composition at T1 and T2 using the “philentropy” package 

in R (Drost, 2018).  JSD is a measure of dissimilarity between compositional data or probability 

distributions based on Kullback-Liebler divergence (Lin, 1991).  It is calculated by taking the 

Shannon entropy of the average of the T1 and T2 community proportions and subtracting the 

average of the Shannon entropy of T1 and T2 community proportions: 𝐽𝑆𝐷 = 𝐻	(abXEabU
1

) −

L(abX)EL(abU)
1

, where H is the Shannon entropy: 𝐻 =	−∑ 𝑝e log1 𝑝ee , and XT1 and XT2 are vectors 

of community proportions in a hexagon at T1 and T2, respectively (Lin, 1991).  We then square 

root transformed JSD to calculate Jensen-Shannon Distance (JSDT1,T2), which is a distance metric 

that is symmetric and approximately normal, but bounded by [0, 1] (Lin, 1991). 
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To test the importance of drivers of community composition, we modeled JSDT1,T2 as a 

function of initial climate conditions, climate change variables, and non-climate variables.  

Theoretically, JSDT1,T2 is approximately normal but bounded by [0,1]; however, we found that our 

measures of JSDT1,T2 were slightly right skewed, so we fit generalized linear mixed-effects models 

(GLMMs) with a beta distribution and logit link (which better fits our JSDT1,T2 values) using the 

“glmmTMB” package in R (Brooks et al., 2017).  Due to collinearity between predictor variables 

(Fig S3.2), we fit each model with two predictor variables: the historic climate condition and the 

change between historic and study period conditions.  Fire frequency and nitrogen deposition only 

contained data during the study period, so we fit these GLMMs as univariate models.  ANOVA 

revealed significant differences in JSDT1,T2 across the 12 communities (F11,1801 = 15.93, P < 0.001), 

so we included random slopes and a random intercepts for the dominant community at T1 in our 

GLMMs.  However, models that included random slopes failed to converge (due to some 

communities being dominant in only a few hexagons), so we used a random intercept only.  Since 

the predictor variables were standardized, coefficient values are a measure of effect size: a 

predictor with a larger coefficient value indicates that it more strongly influences the response.  A 

total of 1757 hexagons were used in the GLMMs due to hexagons with missing climate and non-

climate data (hexagons with missing data outlined in Fig 3.4). All analyses were conducted in R 

version 3.6.1 (R Core Team, 2019), and all maps were projected to Albers Equal Area Conic 

projection. A full list of R packages used in these analyses is available in Table S3.3. 

3.4 Results 

3.4.1 Assessment of communities identified by LDA 

Using the LDA model on Forest Inventory and Analysis data, we identified 12 dominant forest 

communities in the eastern U.S. (Table 3.1, Fig 3.1).  Model selection via an iterative approach 

identified a candidate set of models with values of k, the number of communities in the model, 

ranging from 12 to 43 (out of possible k values from 2 to 50). However, when we applied an 

ecologically based metric, the number of species with proportion in the community >1/nspecies 

(>1/85), the k = 12 community model was chosen because it did not include any communities 

comprised of only one species.  Models with varying inputs (relative density, relative basal area, 

and importance value for saplings, trees, and all stems) generally agreed in species composition 
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and were not significantly different from one another (Mantel test correlation r > 0.99, P < 0.01 

for all tests).  Therefore, results shown are based on the model including importance value of all 

stems; it was the most generalized community, incorporating density, basal area, and all size 

classes.   

Since the LDA model does not incorporate spatial constraints on the communities, 

clustering of communities in a specific region would indicate the model is generating meaningful 

communities. Indeed, the observed communities were centered on a specific geographic region 

(Figs 3.1 and S3.3).  Likewise, we used the species composition of each community to assess if it 

aligned with previous knowledge of the forest communities in these different regions.  We found 

similarities between our communities and those from Braun (1950), Dyer (2006), and Costanza et 

al. (2017) (see Discussion) indicating the that LDA model was identifying meaningful ecological 

communities.  The spatial and ecological consistency of the communities indicated that further 

analysis using communities as a unit was justified. 

3.4.2 Community compositional shift between T1 and T2 

Generally, communities were identifiably similar between T1 and T2, and correlation tests 

revealed significant correlation between T1 and T2 species composition for all communities (r = 

0.67-0.99, P < 0.001 for all tests).  Three main community groups were observed in terms of their 

compositional shifts, although the groupings are not mutually exclusive. The first group of 

communities (Communities 5, Oak-hickory; 6, Beech-maple; 8, Yellow poplar-oak; 9, Red maple; 

10, Poplar-aspen; and 12, Spruce-tamarack) remained stable over the study period, with only minor 

shifts in species composition or gain/loss of minor component species (Table 3.1).  For example, 

Community 6 (Beech-maple) only lost the bottom two species in the community and had no 

changes in dominance, and Community 9 (Red maple) had very minor changes in the relative 

proportion of red maple (Acer rubrum) vs. willow species (Salix species).  The second group of 

communities (Communities 2, Central woodlot; 7, Pine-sweetgum; and 11, Southern lowland) 

gained or lost major species over time.  Community 11 (Southern lowland) gained oak species 

(Quercus nigra, Quercus laurifolia, and Quercus virginiana) from Community 7 (Pine-sweetgum), 

and Community 2 (Central woodlot) lost Virginia pine (Pinus virginiana), the second highest 

proportion species in Community 2 at T1.  All other communities except Communities 1 (Cherry-

oak) and 9 (Red maple) gained or lost species; however, these gains and losses were generally a 
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minor component of the community.  The third community group (Communities 1, Cherry-oak; 4, 

Pine-sweetgum; and 11, Southern lowland) shifted the dominant species in the community. For 

example, Community 1 (Cherry-oak) switched from being dominated by red oak (Quercus rubra) 

to being dominated by cherry species (Prunus species), and Community 4 (Pine-tupelo-oak) 

switched from being dominated by shortleaf pine (Pinus echinata) to being dominated by 

blackgum (Nyssa sylvatica).  The most dramatic shift in species composition occurred in 

Community 11 (Southern lowland) which switched from being dominated by slash pine (Pinus 

elliottii) to a species new in the community, water oak (Quercus nigra). 

3.4.3 Shifts in communities’ spatial distributions 

We found that there was large variability in the distance communities shifted over the last three 

decades.  Compared to the species-level (i.e., observed shifts from Fei, et al. 2017), community-

level shifts in spatial distribution were relatively short, ranging from 3.6 to 24.6 km dec-1 with a 

median of 8.0 km dec-1 (Table 3.2).  All communities had significant shift distances when tested 

with randomization tests (Fig 3.2a).  The forest community with the largest spatial shift, 

Community 11 (Southern lowland), was centered in the Southern Pine Hardwood Region (SPHR).  

This community shifted its centroid 24.6 km dec-1 to the southwest (Benjamini-Hochberg adjusted 

P value, PBH < 0.001).  Communities 2 (Central woodlot), 3 (Conifer-birch), and 4 (Pine-tupelo-

oak) also had relatively large shift distances (24.2, 21.2, and 21.5 km dec-1, respectively, PBH < 

0.001 for all three communities) (Table 3.2).  The community with the smallest shift, Community 

1 (Cherry-oak) had a marginally significant southeastward shift (3.6 km dec-1, PBH = 0.045).  

The shift direction also varied across the 12 communities (Table 3.2, Fig 3.2b). Half of 

the communities shifted eastward (five significant, Communities 1, Cherry-oak, 2.8 km dec-1, PBH 

= 0.035; 3, Conifer-birch, 21.2 km dec-1, PBH < 0.001; 4, Pine-tupelo-oak, 11.3 km dec-1, PBH  < 

0.001; 5, Oak-hickory, 2.5 km dec-1, PBH = 0.035; and 8, Yellow poplar-oak, 3.7 km dec-1, PBH = 

0.015) and the other half shifted westward (five significant, Communities 2, Central-woodlot, 23.2 

km dec-1, PBH < 0.001; 6, Beech-maple, 11.4 km dec-1, PBH < 0.001; 9, Red maple, 6.7 km dec-1, 

PBH < 0.001; 11, Southern lowland, 12.2 km dec-1, PBH < 0.001; and 12, Spruce-tamarack, 6.4 km 

dec-1, PBH < 0.001). A total of five communities shifted northward (four significant, Communities 

2, Central woodlot, 6.9 km dec-1, PBH = 0.002; 4, Pine-tupelo-oak, 18.3 km dec-1, PBH < 0.001; 5, 

Oak-hickory, 5.8 km dec-1, PBH < 0.001; and 7, Pine-sweetgum, 8.6 km dec-1, PBH < 0.001), and 
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seven communities shifted southward (four significant, Communities 6, Beech-maple, 6.9 km dec-

1, PBH < 0.001; 8, Yellow poplar-oak, 4.2 km dec-1, PBH = 0.009; 10, Poplar-aspen, 6.4 km dec-1, 

PBH < 0.001; and 11, Southern lowland, 21.4 km dec-1, PBH < 0.001). 

Additionally, eight communities expanded their area of coverage, and four communities 

contracted their area of coverage (Table 3.2). Of the eight expansions, four communities 

significantly gained spatial coverage (Communities 1, Cherry-oak, 4578 km2 dec-1, PBH = 0.03; 9, 

Red maple, 3423 km2 dec-1, PBH = 0.026; 11, Southern lowland, 13,759 km2 dec-1, PBH < 0.001; 

and 12, Spruce-tamarack, 2903 km2 dec-1, PBH = 0.003), and of the four contractions, two 

communities significantly lost spatial coverage (Communities 4, Pine-tupelo-oak -11,506 km2 dec-

1, PBH < 0.001; and 5, Oak-hickory, -17,089 km2 dec-1, PBH < 0.001) (Table 3.2). The largest 

increase in community area was Community 11 (Southern lowland), which increased by 13,759 

km2 dec-1, a 26.7% expansion in area (PBH < 0.001). The largest decrease in area was Community 

5 (Oak-hickory), which decreased by 17,089 km2 dec-1, a 15.6% contraction in area (PBH < 0.001). 

Community 2 (Central woodlot) had the smallest change in area, increasing by 175 km2 dec-1 (0.2% 

expansion), and Community 6 (Beech-maple) had a similar decrease in area (-205 km2 dec-1, 0.2% 

contraction).   

Observed T2 locations of communities were predicted well by climate conditions during 

the study period (Fig S3.4a and S3.4b) but shifts in the communities were smaller than predicted 

by climate change except for Community 6 (Beech-maple; Fig 3.3). Climate-predicted longitude 

was moderately associated with observed longitude of the 12 communities (R2 = 0.278), and the 

slope of the association was no different than the 1:1 line (slope = 1.14, P = 0.826, Fig S3.4a). 

However, the relationship between observed and predicted latitude was very strong (R2 = 0.96) 

and significantly smaller than the 1:1 line (slope = 0.84, P < 0.001, Fig S3.4b), indicating that the 

predicted locations are generally farther from the center of the study region than observed. In 

contrast, there were very low R2 values between predicted and observed shifts in distance in 

latitude and longitude, with slopes close to 0 and far from the 1:1 line (R2 = 0.02 and 0.05, and 

slope = 0.047 and -0.06 for latitude and longitude, respectively, Figs 3.3, S3.4c and S3.4d). The 

map depicting observed and predicted shifts (Fig 3.3) showed many communities shifting different 

directions than predicted by climate change, and only three communities had the same observed 

and predicted shift direction (Table 3.2).  



 
 

65 

3.4.4 Across community responses to climate and non-climate factors 

We assessed changes in all communities collectively across the study region to identify where 

forest communities are changing most rapidly and compare those areas to a variety of climate and 

non-climate factors. Areas in the southern portion of the study region tended to have the largest 

changes in community composition over time (i.e., the largest JSDT1,T2; Fig 3.4a). Our GLMMs 

with climate and non-climate predictors of JSDT1,T2 showed that eight PRISM-derived historic 

climate conditions were significant predictors of community change over time (TAP, PSD, MAT, 

TMAX, TMIN, TRANGE, TMAXSD, TMINSD; PBH < 0.001 for all eight), but PDSI was only 

marginally significant (PBH = 0.047; Fig 3.4b). Of the nine climate variables, only changes in 

temperature variability (TRANGE, TMINSD, TMAXSD; PBH < 0.001 for all three) and MAT 

(PBH = 0.025) were significant (Fig 3.4b). Of the non-climate variables we tested, only basal area 

(BA, a proxy for forest developmental stage) was significant (PBH < 0.001 for initial BA and PBH 

= 0.004 for change in BA). Areas that had forests that were initially older or that had increases in 

basal area (forests that progressively got older over the study period) tended to be more stable over 

time.  

About one-quarter of hexagons showed turnover in the dominant community type in 

(24.6%, 446 out of 1813 hexagons, Fig 3.5), even though correlation tests revealed overall 

community composition was consistent between T1 and T2 across all 12 communities (r = 0.80 to 

0.97, P < 0.001 for all tests).  The map of change in dominant community between T1 and T2 (Fig 

3.5a) showed that areas changing from one community to another tended to occur along the 

boundaries of the T1 communities (e.g., along the northern and southern edges of Community 7, 

Pine-sweetgum, in the SPHR, or the boundary between Communities 8, Yellow poplar-oak, and 

5, Oak-hickory, in the CHR).  Hexagons dominated by Communities 3 (Conifer-birch), 7 (Pine-

sweetgum), 11 (Southern lowland), and 12 (Spruce-tamarack) at T1 were most frequently 

classified under the same dominant community at T2 (86.2%, 90.0%, 91.5% and 100.0%, 

respectively) (Fig 3.5b).   

3.5 Discussion 

 We showed that the LDA model works for identifying meaningful communities of co-

occurring species at a regional scale.  In general, the 12 communities aligned with previous studies 

of forest communities.  The boundaries of our regional forest community maps (Fig 3.1) were 
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quite similar to those found in Dyer (2006) and Braun (1950). Similarly, the species composition 

and distribution of some of our communities aligned closely with those identified by Costanza et 

al. (2017). For example, the Balsam fir-quaking aspen community identified by Costanza et al. 

(2017) is similar in species composition and spatial distribution to Community 3 (Conifer-birch).  

A benefit of the LDA model is that it provides relative frequency of each forest community within 

each sample versus other methods that assign a single dominant community type to each sample 

(Valle et al., 2014).  This allows for the analysis of community dynamics across the entire study 

area, including areas where a community is a minor component (e.g., community centroids were 

weighted by the community proportion in all hexagons, not just the hexagons where it was 

dominant).  However, our maps in Fig 3.1 and analysis of dominant community change (Fig 3.5) 

only indicate the community with the highest proportion in each hexagon sampling unit; that is, 

many samples contained multiple community types (median number of communities with 

proportion >1/12 in each hexagon = 4; minimum = 1; maximum = 8).  

Given the wide range of responses to climate change at the species level (e.g., Fei et al., 

2017; Woodall et al., 2009; Zhu et al., 2012), we expected to find communities responding to 

climate change with different spatial dynamics.  For example, we found a wide range of spatial 

shifts, such as the Southern lowland community (Community 11) which had large southwest shift 

and large increase in area versus Communities 1 (Cherry-oak) and 8 (Yellow poplar-oak) which 

had highly stable spatial distributions (both showing marginally significant southeastern shifts and 

small increases in area). The dramatic shifts in Community 11 are likely due to increases in the 

slash pine (Pinus elliottii) component of this community in this region (Fox, Jokela, & Allen, 2007; 

Knott, Desprez, Oswalt, & Fei, 2019) and the addition of Quercus species over the study period.  

On the other hand, Communities 1 (Cherry-oak) and 8 (Yellow poplar-oak) have contrasting 

mechanisms for stability: the Cherry-oak community is most commonly found as a mid-to-late 

successional component of forests in the CHR and NHR versus the Yellow poplar-oak community 

which is dominated by yellow poplar (Liriodendron tulipifera), a disturbance dependent species 

that can grow under a wide range of conditions and create a stable community where it dominates 

multi-tree canopy openings (Burns & Honkala, 1990).  

In addition to variability in the spatial dynamics of the communities, we also expected to 

find variability in the amount of changes to the species composition of the communities. Again, 

Community 11 (Southern lowland) was most dynamic, gaining oak species (Quercus nigra, 

Quercus laurifolia, and Quercus virginiana) at T2 from Community 7 (Pine-sweetgum). On the 
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other hand, Communities 6 (Beech-maple) and 9 (Red maple) were highly stable in species 

composition. While they both had significant spatial shifts (indeed, Community 6 was the only 

community that shifted farther than climate predicted), the stability of their species composition is 

not surprising given that Beech-maple forests are considered to be a climax community (Braun, 

1950) and red maple (Acer rubrum) has consistently increased over recent decades (Fei & Steiner, 

2007).  

The strongest predictors of community change over time were related to historic climate 

conditions and changes in seasonal temperature variability.  In general, forests that had the greatest 

changes in community composition tended to have wetter and warmer historic climate, higher 

precipitation variability, or lower seasonal temperature variability (Fig 3.4b).  In addition, forests 

that decreased in seasonal temperature variability over the study period tended to have larger 

changes over time. Measures of precipitation change were not significant in relationship to 

community spatial shifts despite species-level migration in response to precipitation change (Fei 

et al., 2017), and measures of temperature change (MAT) were less significant than measures of 

temperature variability change.  The nature of the relationship between seasonal temperature 

variability and JSDT1,T2 (areas with larger climate variability and areas that increased in climate 

variability led to more stable communities) generally supports the hypothesis that fluctuations in 

temperature can act as stabilizing processes in vegetation dynamics (Lloret, Escudero, Iriondo, 

Martínez-Vilalta, & Valladares, 2012). 

Although the non-climate variables we tested play an important role in local forest 

dynamics, they generally lack strong relationships with community change at the regional scale 

(the largest of three scales studied in this research), which aligns with the view of Ricklefs (1987) 

that regional-scale processes are more important than local-scale processes. Fire frequency is often 

considered an important disturbance metric in forest ecosystems, especially at the stand level 

(Briggs, Knapp, & Brock, 2002; Hutchinson, Sutherland, & Yaussy, 2005; Nowacki & Abrams, 

2008), but was found to have little effect on the overall changes to forest communities at the 

regional scale (Fig 3.4b). In addition, nitrogen deposition was found to have a non-significant 

effect on forest community change despite the regulatory influence of the nitrogen and carbon 

cycles—and the mycorrhizal communities that influence these cycles—in forest ecosystems (Jo et 

al., 2019; Lovett, Weathers, & Arthur, 2002; Pellegrini et al., 2017).  Areas with initially higher 

total basal area or that gained basal area—generally associated with older forests—were found to 

be more stable over time, consistent with comparisons of old-growth forests to younger forests 
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(Fralish, Crooks, Chambers, & Harty, 1991); however the relationship was weaker than the effect 

of climate.  

Previous studies at the local scale have shown dramatic within-site turnover in forest 

communities as a response to climate change (Feeley, Davies, Perez, Hubbell, & Foster, 2011; 

Lebrija-Trejos, Pérez-García, Meave, Bongers, & Poorter, 2010; Ozier, Groninger, & Ruffner, 

2006).  At the regional scale, about 25% of the study region experienced turnover in the dominant 

community (Fig 3.5), with some communities losing dominance at higher rates than other 

communities.  This trend was also indicated by the significant community shift distances but lack 

of directionality—as one community moves out of an area, another fills in behind, leading to a 

lack of consistent directional shifts.   

The rate of change in communities is likely lagging behind climate change. Although we 

showed many dramatic changes in species composition, spatial distribution, and turnover in 

dominant community type, climate change outpaced the rate of community migration (Fig 3.3). 

However, this is not surprising since there are expected to be significant time lags between climate 

change and community-level responses (Bertrand et al., 2011).  It is possible that communities 

have not yet accumulated enough species-level responses (e.g., increased mortality in unsuitable 

areas or differential recruitment rates across the region) to produce a community-wide response to 

climate change, especially over a relatively short study period.  Our study encompassed three 

decades of forest inventory data, but more direct response to climate change may emerge when 

considering a longer time interval.   

A second reason for climate lags is the resilience of complex systems.  Generally, with 

increased complexity there is a greater resilience to stressors (Loreau et al., 2001; Symstad et al., 

1998).  With these complex communities comprised of multiple species, it is likely that species 

with large responses are balanced out by others with small responses, and the diversity and 

plasticity of traits within a community can allow it to compensate for climate change.  Additionally, 

climate effects may be masked out by other unaccounted factors such as trait variability (e.g., 

variation in the dispersal ability of the component species), invasive species, and disturbances 

(such as deer browse and land use change) that differentially affect communities (Côté, Rooney, 

Tremblay, Dussault, & Waller, 2004; Jo, Potter, Domke, & Fei, 2018; Knott et al., 2019; Oswalt 

et al., 2015).   

There are a few caveats of our study that need to be considered, especially when utilizing 

the results of our study for management and extrapolation to other regions. First, our results are 
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aggregated to a larger scale (i.e., the 1452 km2 hexagon tessellation) than most management occurs.  

This is important for managers who intend to use our results as an indicator of changes beyond 

their local plot-level observations.  Managers should consider the dynamics of the various regional 

communities represented in their forests when making decisions, but they also should recognize 

that the trends in regional forest communities may not always reflect the variability in local-scale 

forest dynamics.  Second, it is also important to consider the location of our study.  Forest 

communities near the coast (hard boundaries) may tend to shift inland, and forest communities 

along the soft boundaries of our study area (i.e., Canada and the central U.S.) may have shifted 

into these regions but are not observable in the FIA data used in this study.  Likewise, our analysis 

of climate-predicted shifts was limited to climate data within the study region boundaries, and it 

is likely that some communities (especially those near the Canadian border) will find suitable 

climate outside of the study area. However, many of the northern communities did not move as far 

north as predicted by climate change even when limited to the study area, so extending our 

modeling approach to include potentially suitable climate in Canada might further increase the 

divergence between observed and predicted shifts.  Finally, although we found many significant 

shifts in eastern U.S. communities, communities in other locations (e.g., in other parts of North 

America or on other continents) may be more or less stable than found in our study area; however, 

to our knowledge, there have not been studies similar to ours in other areas of North America or 

globally. 

 The consistently significant shifts in forest communities can serve as a warning sign of the 

continued impact of anthropogenic activities.  Although we detected changes in forest 

communities within three decades that surpasses rates of change observed during times of historic 

climate change (e.g., century to millennium time scales of post-glaciation migration; Davis, 1983), 

climate change is currently outpacing the rate of community migration.  Forest communities not 

only migrated shorter distances than climate change predicted, but also shifted in directions 

opposite of climate change.  This is alarming in that forest communities are unable to keep up with 

neither the pace nor direction of climate change.  Future analyses incorporating individual species 

traits within a community can help elucidate the susceptibility of certain ecosystem functions to 

climate change.  In addition, understanding other potential threats to forest communities, such as 

invasive species, specific management practices, and other climate-related factors, can help further 

quantify the sustainability of forest ecosystems and the services they provide.  Nevertheless, our 

analysis presents one of the first attempts at quantifying the redistribution of regional forest 
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communities, and our results can aid in the monitoring and management of forest ecosystems in a 

rapidly changing global environment. 

 

Data Accessibility 

The original FIA data used in this project are available through the USDA Forest Service 

(https://www.fia.fs.fed.us/).  The climate data are available through the PRISM Climate Group, 

Oregon State University (for temperature and precipitation; http://prism.oregonstate.edu/) and the 

West Wide Drought Tracker (for PDSI; https://wrcc.dri.edu/wwdt/).  Nitrogen deposition data are 

available from the National Atmospheric Deposition Program http://nadp.slh.wisc.edu/), and fire 

frequency data are available from Short (2017). More details about the publicly available data are 

in Methods Sections 3.3.2 and 3.3.3. GIS shapefiles of the hexagon-level output for mapping 

individual communities or creating maps of the top communities and a full list of community 

species compositions are available through the Purdue University Research Repository (PURR, 

https://www.doi.org/10.4231/GCE5-ZY59). 
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3.6 Figures and Tables 

Table 3.1 Top species in each community at the two sampling periods. Species are only 
included if their proportion is >1/nspecies (>1/85). Species proportion in each community in 
parentheses. Asterisks indicate species that were present in the community at one sampling period 
but not the other. 

Community Time Species 

1: Cherry-oak 

T1 
Quercus rubra (0.360), Prunus spp. (0.286), Pinus strobus (0.177), Tsuga canadensis (0.126), Betula 

lenta (0.051) 

T2 
Prunus spp. (0.318), Quercus rubra (0.238), Pinus strobus (0.216), Tsuga canadensis (0.148), Betula 

lenta (0.081) 

2: Central woodlot 

T1 

Ulmus spp. (0.346), Pinus virginiana (0.117)*, Sassafras albidum (0.095), Quercus laevis (0.069)*, 

Celtis spp. (0.061), Robinia pseudoacacia (0.054), Juglans nigra (0.046), Acer negundo (0.043), 

Platanus occidentalis (0.034), Cercis canadensis (0.032), Acer saccharinum (0.029), Quercus 

muehlenbergii (0.021), Gleditsia triacanthos (0.014), Populus deltoides (0.013), Maclura pomifera 

(0.012) 

T2 

Ulmus spp. (0.382), Celtis spp. (0.108), Acer negundo (0.088), Juglans nigra (0.072), Sassafras 

albidum (0.067), Robinia pseudoacacia (0.052), Platanus occidentalis (0.047), Acer saccharinum 

(0.040), Cercis canadensis (0.036), Quercus muehlenbergii (0.025), Gleditsia triacanthos (0.023), 

Maclura pomifera (0.023), Populus deltoides (0.020), Quercus imbricaria (0.012)* 

3: Conifer-birch 

T1 
Abies balsamea (0.343), Betula papyrifera (0.260), Thuja occidentalis (0.183), Populus 

grandidentata (0.096), Picea glauca (0.052), Picea rubens (0.046), Betula alleghaniensis (0.021) 

T2 

Abies balsamea (0.371), Thuja occidentalis (0.131), Betula alleghaniensis (0.113), Betula papyrifera 

(0.106), Picea rubens (0.098), Populus grandidentata (0.075), Picea glauca (0.059), Acer 

pensylvanicum (0.048)* 

4: Pine-tupelo-oak 

T1 
Pinus echinata (0.316), Nyssa sylvatica (0.235), Pinus palustris (0.195), Quercus falcata (0.165), 

Diospyros virginiana (0.066), Quercus lyrata (0.022) 

T2 
Nyssa sylvatica (0.318), Pinus echinata (0.199), Pinus palustris (0.179), Quercus falcata (0.163), 

Diospyros virginiana (0.074), Quercus lyrata (0.031), Quercus laevis (0.030)* 

5: Oak-hickory 

T1 
Carya spp. (0.302), Quercus alba (0.294), Quercus velutina (0.160), Quercus stellata (0.134), 

Juniperus virginiana (0.076), Quercus marilandica (0.035)* 

T2 
Carya spp. (0.322), Quercus alba (0.287), Juniperus virginiana (0.144), Quercus velutina (0.123), 

Quercus stellata (0.114) 

6: Beech-maple 

T1 
Acer saccharum (0.372), Fraxinus spp. (0.302), Fagus grandifolia (0.120), Tilia spp. (0.078), Ostrya 

virginiana (0.066), Betula alleghaniensis (0.045)* Acer pensylvanicum (0.014)* 

T2 
Acer saccharum (0.351), Fraxinus spp. (0.310), Fagus grandifolia (0.182), Ostrya virginiana 

(0.093), Tilia spp. (0.065) 

7: Pine-sweetgum 
T1 

Pinus taeda (0.472), Liquidambar styraciflua (0.298), Quercus nigra (0.108)*, Quercus laurifolia 

(0.054)*, Quercus virginiana (0.027)*, Quercus phellos (0.027), Quercus pagoda (0.015)* 

T2 Pinus taeda (0.674), Liquidambar styraciflua (0.301), Quercus phellos (0.026) 

8: Yellow poplar-
oak 

T1 
Liriodendron tulipifera (0.279), Quercus prinus (0.186), Pinus banksiana (0.162), Pinus resinosa 

(0.118), Oxydendrum arboreum (0.112), Quercus coccinea (0.109), Pinus rigida (0.023) 

T2 

Liriodendron tulipifera (0.330), Quercus prinus (0.178), Pinus resinosa (0.131), Oxydendrum 

arboreum (0.092), Pinus virginiana (0.084)*, Quercus coccinea (0.080), Pinus banksiana (0.066), 

Pinus rigida (0.024) 
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Table 3.1 continued 

9: Red maple T1 Acer rubrum (0.964), Salix spp. (0.036) 

 T2 Acer rubrum (0.959), Salix spp. (0.041) 

10: Poplar-aspen 

T1 Populus tremuloides (0.804), Populus balsamifera (0.105), Quercus macrocarpa (0.091), 

T2 
Populus tremuloides (0.715), Quercus macrocarpa (0.121), Populus balsamifera (0.069), Betula 

papyrifera (0.056)*, Fraxinus spp. (0.038)* 

11: Southern 
lowland 

T1 

Pinus elliottii (0.539), Magnolia virginiana (0.114), Taxodium ascendens (0.101), Pinus serotina 

(0.078), Taxodium distichum (0.051), Persea borbonia (0.049), Nyssa aquatica (0.041), Gordonia 

lasianthus (0.023) 

T2 

Quercus nigra (0.302)*, Pinus elliottii (0.279), Quercus laurifolia (0.108)*, Magnolia virginiana 

(0.075), Taxodium ascendens (0.049), Taxodium distichum (0.047), Quercus virginiana (0.042)*, 

Persea borbonia (0.030), Nyssa aquatica (0.028), Gordonia lasianthus (0.020), Pinus serotina 

(0.019) 

12: Spruce-tamarack 

T1 
Picea mariana (0.383), Larix laricina (0.213), Carpinus caroliniana (0.212), Ilex opaca (0.102), 

Quercus michauxii (0.025), Betula populifolia (0.024), Quercus palustris (0.020) 

T2 

Picea mariana (0.274), Carpinus caroliniana (0.220), Larix laricina (0.195), Ilex opaca (0.137), 

Quercus pagoda (0.072)*, Betula populifolia (0.026), Quercus palustris (0.023), Quercus shumardii 

(0.021)*, Quercus michauxii (0.020) 
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Table 3.2 Shifts in forest communities over the last three decades. Shifts were measured by 
movement of community centroid and changes in community spatial coverage.  Positive values of 
latitude and longitude shift represent northward and eastward movement, respectively; conversely, 
negative values represent southward and westward movement.  Predicted direction based on 
expected shifts due to climate change (bolded communities had the same observed and predicted 
shift direction). Percentage change in area in parentheses. Asterisks indicate significant Benjamini-
Hochberg adjusted P values (PBH) when tested by randomization tests: * PBH ≤ 0.05; ** PBH ≤ 0.01; 
*** PBH ≤ 0.001. 

Community Lat. shift 

(km dec-1) 

Lon. shift  

(km dec-1) 

Observed 

direction 

Predicted 

direction 

Dist. shift  

(km dec-1) 

Area change 

(km2 dec-1) 

1: Cherry-oak -2.3 2.8* Southeast Northwest 3.6* 4578* 

(+7.1%) 

2: Central 
woodlot 

6.9** -23.2*** Northwest Northeast 24.2*** 175 

(+0.2%) 

3: Conifer-
birch 

0.2 21.2*** Northeast Northwest 21.2*** 1259 

(+2.5%) 

4: Pine-tupelo-
oak 

18.3*** 11.3*** Northeast Northeast 21.5*** -11506*** 

(-18.5%) 

5: Oak-
hickory 

5.8*** 2.5* Northeast Northeast 6.3*** -17089*** 

(-15.6%) 

6: Beech-
maple 

-6.9*** -11.4*** Southwest Northeast 13.3*** -205 

(-0.2%) 

7: Pine-
sweetgum 

8.6*** -3.1 Northwest Northeast 9.1*** 1830 

(+1.8%) 

8: Yellow 
poplar-oak 

-4.2** 3.7* Southeast Southwest 5.6*** 2878 

(+5.0%) 

9: Red maple -1.7 -6.7*** Southwest Northwest 6.9*** 3423* 

(+5.1%) 

10: Poplar-
aspen 

-6.4*** +0.0 Southeast Northeast 6.4*** -2005 

(-4.7%) 

11: Southern 
lowland 

-21.4*** -12.2*** Southwest Southwest 24.6*** 13759*** 

(+26.7%) 

12: Spruce-
tamarack 

-2.3 -6.4*** Southwest Northwest 6.8*** 2903** 

(+7.7%) 
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Fig. 3.1 Maps of 12 regional forest communities across the eastern U.S.  Hexagon sampling 
units are mapped according to the community with the highest proportion in each hexagon at (a) 
T1 and (b) T2. Non-forested areas are masked out by the 2011 National Land Cover Database for 
visualization purposes only (https://www.mrlc.gov/data).  Community 12 (Spruce-tamarack) was 
the dominant community in only eight hexagons at T1 and 11 hexagons at T2 and therefore does 
not show clearly on the maps.  Maps are projected to Albers Equal Area Conic projection. Species 
composition of the 12 communities can be found in Table 3.1, and map showing the difference 
between T1 and T2 can be found in Fig 3.5. GIS shapefiles of these maps available for download 
from https://www.doi.org/10.4231/GCE5-ZY59.  
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Fig. 3.2. Centroid shift of forest communities.  (a) Frequency distribution of randomized 
centroid shifts (blue area) and observed shift distance (dashed lines). Proportion of frequency 
distribution greater than observed shift distance in red. Asterisks indicate significant Benjamini-
Hochberg adjusted P values (PBH): * PBH ≤ 0.05; ** PBH ≤ 0.01; *** PBH ≤ 0.001. (b) Direction 
and distance of forest community shifts. Arrow colors represent significance of distribution shifts. 
Map is projected to Albers Equal Area Conic projection, and inset map shows location displayed 
relative to the study area (white areas included for display purposes only). 
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Fig. 3.3. Predicted vs. observed shifts in forest communities. Black dots represent community 
centroids at T1, and arrows represent climate-predicted (red) and observed (black) shifts in 
community centroid. All predicted shifts are larger than observed shifts except Community 6 
(Beech-maple). Inset map indicates location of community centroids within the study area. White 
areas outside of study area included for display purposes only.  Map is projected to Albers Equal 
Area Conic projection. See Fig 3.2 for significance of observed community shifts.  
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Fig. 3.4 Changes in forest communities and associated factors. (a) Response variable from 
GLMMs: change in community composition measured by Jensen-Shannon Distance in k = 12-
dimensional community space between T1 and T2 (JSDT1,T2).  Areas in red have greater 
dissimilarity in community composition between T1 and T2. Hexagons with black borders were 
removed from the analysis due to missing data. Map is projected to Albers Equal Area Conic 
projection. (b) Predictors of community composition change over the last three decades. Dots 
represent standardized slope coefficient estimates from GLMMs with a beta distribution and logit 
link function. Shading indicates individual models. All models except fire frequency and nitrogen 
deposition (LOG(FIRE) and NDEP, respectively) contained the historic climate conditions 
(indicated by “T1”) and change between the historic and study period conditions (indicated by 
“D”). Bars represent 95% confidence intervals, and those that cross the vertical line at zero are 
considered non-significant.  LOG(FIRE) = fire frequency; NDEP = nitrogen deposition; BA = 
basal area; PDSI = Palmer Drought Severity Index; TMINSD = standard deviation (SD) of 
minimum monthly temperature; TMAXSD = SD of maximum monthly temperature; TRANGE = 
annual temperature range; TMIN = annual minimum temperature; TMAX = annual maximum 
temperature; MAT = mean annual temperature; PSD = SD of monthly precipitation; TAP = total 
annual precipitation. 
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Fig. 3.5 Change in dominant forest communities between T1 and T2. (a) Hexagons with red 
borders indicate where the dominant community at T2 differs from the dominant community at 
T1. Hexagon outer color represents dominant community at T1 and inner point color represents 
dominant community at T2. Map is projected to Albers Equal Area Conic projection. (b) Transition 
matrix between T1 and T2. Each box contains the proportion of hexagons with dominant 
community at T1 (x-axis) transitioning to dominant community at T2 (y-axis). Number of 
hexagons in each transition in parentheses. Colors represent higher proportions (red = low, blue = 
high). A total of 446 out of 1813 hexagons (24.6%) changed dominance between T1 and T2.  
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3.8 Supplementary Tables and Figures 

Table S3.1 States with Forest Inventory and Analysis data included in this study, including sampling years (T1 
and T2) and the interval between them. The median sampling years were 1985 and 2017 for T1 and T2, respectively, 
with a median interval of 31 years. See Fig S3.1 for a map of the study location. 

 Sampling year Interval 

(years) State T1 T2 

Alabama 1982 2017 35 

Arkansas 1988 2017 29 

Connecticut 1985 2017 32 

Delaware 1986 2017 31 

Florida 1980 2015 35 

Georgia 1982 2016 34 

Illinois 1985 2017 32 

Indiana 1986 2017 31 

Iowa 1990 2017 27 

Kansas 1981 2016 35 

Kentucky 1988 2015 27 

Louisiana 1984 2015 31 

Maine 1995 2017 22 

Maryland 1986 2017 31 

Massachusetts 1985 2017 32 

Michigan 1980 2017 37 

Minnesota 1990 2017 27 

Mississippi 1987 2016 29 

Missouri 1989 2017 28 

Nebraska 1983 2017 34 

New Hampshire 1983 2017 34 

New Jersey 1987 2016 29 

New York 1993 2016 23 

North Carolina 1984 2017 33 

North Dakota 1980 2017 37 

Ohio 1991 2016 25 

Oklahoma 1986 2016 30 

Pennsylvania 1989 2016 27 

Rhode Island 1985 2017 32 

South Carolina 1986 2016 30 

South Dakota 1980 2017 37 

Tennessee 1980 2015 35 

Texas 1986 2016 30 

Vermont 1983 2017 34 

Virginia 1985 2016 31 

West Virginia 1989 2017 28 

Wisconsin 1983 2017 34 
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Table S3.2 List of species used in this study. Some species were aggregated to the genus level (such as Carya spp.) 
when trees were identified only to the genus level in either the T1 or T2 samples. SPCD = species code from the Forest 
Inventory and Analysis database. 

SPCD Common name Scientific name 
Aggregated 
SPCD 

Aggregated 
common name 

Aggregated 
scientific name 

12 Balsam Fir Abies balsamea 12 Balsam Fir Abies balsamea 
68 Eastern Redcedar Juniperus virginiana 68 Eastern Redcedar Juniperus virginiana 
71 Tamarack Larix laricina 71 Tamarack Larix laricina 
94 White Spruce Picea glauca 94 White Spruce Picea glauca 
95 Black Spruce Picea mariana 95 Black Spruce Picea mariana 
97 Red Spruce Picea rubens 97 Red Spruce Picea rubens 
105 Jack Pine Pinus banksiana 105 Jack Pine Pinus banksiana 
110 Shortleaf Pine Pinus echinata 110 Shortleaf Pine Pinus echinata 
111 Slash Pine Pinus elliottii 111 Slash Pine Pinus elliottii 
115 Spruce Pine Pinus glabra 115 Spruce Pine Pinus glabra 
121 Longleaf Pine Pinus palustris 121 Longleaf Pine Pinus palustris 
125 Red Pine Pinus resinosa 125 Red Pine Pinus resinosa 
126 Pitch Pine Pinus rigida 126 Pitch Pine Pinus rigida 
128 Pond Pine Pinus serotina 128 Pond Pine Pinus serotina 
129 Eastern White Pine Pinus strobus 129 Eastern White Pine Pinus strobus 
131 Loblolly Pine Pinus taeda 131 Loblolly Pine Pinus taeda 
132 Virginia Pine Pinus virginiana 132 Virginia Pine Pinus virginiana 
221 Baldcypress Taxodium distichum 221 Baldcypress Taxodium distichum 
222 Pondcypress Taxodium ascendens 222 Pondcypress Taxodium ascendens 
241 Northern White-Cedar Thuja occidentalis 241 Northern White-Cedar Thuja occidentalis 
261 Eastern Hemlock Tsuga canadensis 261 Eastern Hemlock Tsuga canadensis 
313 Boxelder Acer negundo 313 Boxelder Acer negundo 
315 Striped Maple Acer pensylvanicum 315 Striped Maple Acer pensylvanicum 
316 Red Maple Acer rubrum 316 Red Maple Acer rubrum 
317 Silver Maple Acer saccharinum 317 Silver Maple Acer saccharinum 
318 Sugar Maple Acer saccharum 318 Sugar Maple Acer saccharum 
330 Buckeye, Horsechestnut Aesculus spp. 330 Buckeye, Horsechestnut Aesculus spp. 
371 Yellow Birch Betula alleghaniensis 371 Yellow Birch Betula alleghaniensis 
372 Sweet Birch Betula lenta 372 Sweet Birch Betula lenta 
375 Paper Birch Betula papyrifera 375 Paper Birch Betula papyrifera 
379 Gray Birch Betula populifolia 379 Gray Birch Betula populifolia 
391 Am Hornbeam, Musclewood Carpinus caroliniana 391 Am Hornbeam, 

Musclewood 
Carpinus caroliniana 

400 Hickory Spp. Carya spp. 400 Hickory Spp. Carya spp. 
401 Water Hickory Carya aquatica 400 Hickory Spp. Carya spp. 
402 Bitternut Hickory Carya cordiformis 400 Hickory Spp. Carya spp. 
403 Pignut Hickory Carya glabra 400 Hickory Spp. Carya spp. 
404 Pecan Carya illinoinensis 400 Hickory Spp. Carya spp. 
405 Shellbark Hickory Carya laciniosa 400 Hickory Spp. Carya spp. 
406 Nutmeg Hickory Carya myristiciformis 400 Hickory Spp. Carya spp. 
407 Shagbark Hickory Carya ovata 400 Hickory Spp. Carya spp. 
408 Black Hickory Carya texana 400 Hickory Spp. Carya spp. 
409 Mockernut Hickory Carya alba 400 Hickory Spp. Carya spp. 
410 Sand Hickory Carya pallida 400 Hickory Spp. Carya spp. 
411 Scrub Hickory Carya floridana 400 Hickory Spp. Carya spp. 
412 Red Hickory Carya ovalis 400 Hickory Spp. Carya spp. 
413 Southern Shagbark Hickory Carya carolinae-

septentrionalis 
400 Hickory Spp. Carya spp. 

460 Hackberry Spp. Celtis spp. 460 Hackberry Spp. Celtis spp. 
461 Sugarberry Celtis laevigata 460 Hackberry Spp. Celtis spp. 
462 Hackberry Celtis occidentalis 460 Hackberry Spp. Celtis spp. 
463 Netleaf Hackberry Celtis laevigata 460 Hackberry Spp. Celtis spp. 
471 Eastern Redbud Cercis canadensis 471 Eastern Redbud Cercis canadensis 
521 Common Persimmon Diospyros virginiana 521 Common Persimmon Diospyros virginiana 
531 American Beech Fagus grandifolia 531 American Beech Fagus grandifolia 
540 Ash Spp. Fraxinus spp. 540 Ash Spp. Fraxinus spp. 
541 White Ash Fraxinus americana 540 Ash Spp. Fraxinus spp. 
543 Black Ash Fraxinus nigra 540 Ash Spp. Fraxinus spp. 
544 Green Ash Fraxinus 

pennsylvanica 
540 Ash Spp. Fraxinus spp. 

545 Pumpkin Ash Fraxinus profunda 540 Ash Spp. Fraxinus spp. 
546 Blue Ash Fraxinus 

quadrangulata 
540 Ash Spp. Fraxinus spp. 

547 Velvet Ash Fraxinus velutina 540 Ash Spp. Fraxinus spp. 
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Table S3.2 continued 
548 Carolina Ash Fraxinus caroliniana 540 Ash Spp. Fraxinus spp. 
549 Texas Ash Fraxinus texensis 540 Ash Spp. Fraxinus spp. 
552 Honeylocust Gleditsia triacanthos 552 Honeylocust Gleditsia triacanthos 
555 Loblolly-Bay Gordonia lasianthus 555 Loblolly-Bay Gordonia lasianthus 
591 American Holly Ilex opaca 591 American Holly Ilex opaca 
602 Black Walnut Juglans nigra 602 Black Walnut Juglans nigra 
611 Sweetgum Liquidambar 

styraciflua 
611 Sweetgum Liquidambar styraciflua 

621 Yellow-Poplar Liriodendron tulipifera 621 Yellow-Poplar Liriodendron tulipifera 
641 Osage-Orange Maclura pomifera 641 Osage-Orange Maclura pomifera 
651 Cucumbertree Magnolia acuminata 651 Cucumbertree Magnolia acuminata 
653 Sweetbay Magnolia virginiana 653 Sweetbay Magnolia virginiana 
691 Water Tupelo Nyssa aquatica 691 Water Tupelo Nyssa aquatica 
693 Blackgum Nyssa sylvatica 693 Blackgum Nyssa sylvatica 
701 E. Hophornbeam Ostrya virginiana 701 E. Hophornbeam Ostrya virginiana 
711 Sourwood Oxydendrum arboreum 711 Sourwood Oxydendrum arboreum 
721 Redbay Persea borbonia 721 Redbay Persea borbonia 
731 Sycamore Platanus occidentalis 731 Sycamore Platanus occidentalis 
741 Balsam Poplar Populus balsamifera 741 Balsam Poplar Populus balsamifera 
742 Eastern Cottonwood Populus deltoides 742 Eastern Cottonwood Populus deltoides 
743 Bigtooth Aspen Populus grandidentata 743 Bigtooth Aspen Populus grandidentata 
746 Quaking Aspen Populus tremuloides 746 Quaking Aspen Populus tremuloides 
760 Cherry/Plum Spp. Prunus spp. 760 Cherry/Plum Spp. Prunus spp. 
761 Pin Cherry Prunus pensylvanica 760 Cherry/Plum Spp. Prunus spp. 
762 Black Cherry Prunus serotina 760 Cherry/Plum Spp. Prunus spp. 
763 Chokecherry Prunus virginiana 760 Cherry/Plum Spp. Prunus spp. 
764 Peach Prunus persica 760 Cherry/Plum Spp. Prunus spp. 
765 Canada Plum Prunus nigra 760 Cherry/Plum Spp. Prunus spp. 
766 Wild Plum Prunus americana 760 Cherry/Plum Spp. Prunus spp. 
769 Allegheny Plum Prunus alleghaniensis 760 Cherry/Plum Spp. Prunus spp. 
770 Chickasaw Plum Prunus angustifolia 760 Cherry/Plum Spp. Prunus spp. 
771 Sweet Cherry Prunus avium 760 Cherry/Plum Spp. Prunus spp. 
772 Sour Cherry Prunus cerasus 760 Cherry/Plum Spp. Prunus spp. 
773 European Plum Prunus domestica 760 Cherry/Plum Spp. Prunus spp. 
774 Mahaleb Plum Prunus mahaleb 760 Cherry/Plum Spp. Prunus spp. 
802 White Oak Quercus alba 802 White Oak Quercus alba 
804 Swamp White Oak Quercus bicolor 804 Swamp White Oak Quercus bicolor 
806 Scarlet Oak Quercus coccinea 806 Scarlet Oak Quercus coccinea 
812 Southern Red Oak Quercus falcata 812 Southern Red Oak Quercus falcata 
813 Cherrybark Oak Quercus pagoda 813 Cherrybark Oak Quercus pagoda 
817 Shingle Oak Quercus imbricaria 817 Shingle Oak Quercus imbricaria 
819 Turkey Oak Quercus laevis 819 Turkey Oak Quercus laevis 
820 Laurel Oak Quercus laurifolia 820 Laurel Oak Quercus laurifolia 
822 Overcup Oak Quercus lyrata 822 Overcup Oak Quercus lyrata 
823 Bur Oak Quercus macrocarpa 823 Bur Oak Quercus macrocarpa 
824 Blackjack Oak Quercus marilandica 824 Blackjack Oak Quercus marilandica 
825 Swamp Chestnut Oak Quercus michauxii 825 Swamp Chestnut Oak Quercus michauxii 
826 Chinkapin Oak Quercus muehlenbergii 826 Chinkapin Oak Quercus muehlenbergii 
827 Water Oak Quercus nigra 827 Water Oak Quercus nigra 
830 Pin Oak Quercus palustris 830 Pin Oak Quercus palustris 
831 Willow Oak Quercus phellos 831 Willow Oak Quercus phellos 
832 Chestnut Oak Quercus prinus 832 Chestnut Oak Quercus prinus 
833 Northern Red Oak Quercus rubra 833 Northern Red Oak Quercus rubra 
834 Shumard Oak Quercus shumardii 834 Shumard Oak Quercus shumardii 
835 Post Oak Quercus stellata 835 Post Oak Quercus stellata 
837 Black Oak Quercus velutina 837 Black Oak Quercus velutina 
838 Live Oak Quercus virginiana 838 Live Oak Quercus virginiana 
901 Black Locust Robinia pseudoacacia 901 Black Locust Robinia pseudoacacia 
920 Willow Spp. Salix spp. 920 Willow Spp. Salix spp. 
921 Peachleaf Willow Salix amygdaloides 920 Willow Spp. Salix spp. 
922 Black Willow Salix nigra 920 Willow Spp. Salix spp. 
923 Diamond Willow Salix eriocephala 920 Willow Spp. Salix spp. 
925 Coastal Plain Willow Salix caroliniana 920 Willow Spp. Salix spp. 
926 Balsam Willow Salix pyrifolia 920 Willow Spp. Salix spp. 
927 White Willow Salix alba 920 Willow Spp. Salix spp. 
929 Weeping Willow Salix sepulcralis 920 Willow Spp. Salix spp. 
931 Sassafras Sassafras albidum 931 Sassafras Sassafras albidum 
950 Basswood Spp. Tilia spp. 950 Basswood Spp. Tilia spp. 
951 American Basswood Tilia americana 950 Basswood Spp. Tilia spp. 
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Table S3.2 continued 
952 White Basswood Tilia americana var. 

heterophylla 
950 Basswood Spp. Tilia spp. 

953 Carolina Basswood Tilia americana var. 
caroliniana 

950 Basswood Spp. Tilia spp. 

970 Elm Spp. Ulmus spp. 970 Elm Spp. Ulmus spp. 
971 Winged Elm Ulmus alata 970 Elm Spp. Ulmus spp. 
972 American Elm Ulmus americana 970 Elm Spp. Ulmus spp. 
973 Cedar Elm Ulmus crassifolia 970 Elm Spp. Ulmus spp. 
974 Siberian Elm Ulmus pumila 970 Elm Spp. Ulmus spp. 
975 Slippery Elm Ulmus rubra 970 Elm Spp. Ulmus spp. 
976 September Elm Ulmus serotina 970 Elm Spp. Ulmus spp. 
977 Rock Elm Ulmus thomasii 970 Elm Spp. Ulmus spp. 

 

Table S3.3 R packages used in this project. All analyses were conducted in R 3.6.1 (R Core Team 2019). 
Package Purpose Citation 
ade4 Mantel tests Dray and Dufour (2007) 
glmmTMB Generalized linear mixed-effects models with beta distribution Brooks et al. (2017) 
earth Identifying potential best-fit models from ldatuning Milborrow (2017) 
ldatuning Evaluating the Latent Dirichlet Allocation model output Nikita (2016) 
MuMIn Assessing model fit Bartoń (2018) 
philentropy Computing Jensen-Shannon Divergence Drost (2018) 
raster GIS – raster layers Hijmans (2018) 
RColorBrewer Graphics – color schemes Neuwirth (2014) 
rgdal GIS – shapefiles Bivand et al. (2018) 
scales Graphics – color scales Wickham (2018) 
shape Graphics – arrows Soetaert (2018) 
sp GIS – shapefiles Pebesma and Bivand (2005) 
topicmodels Running the Latent Dirichlet Allocation model Grün and Hornik (2011) 
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Bartoń, K. 2018. MuMIn: Multi-model inference. 
Bivand, R., T. Keitt, and B. Rowlingson. 2018. rgdal: Bindings for the geospatial data abstraction library. 
Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.A., Nielsen, A., Skaug, H.J., Maechler, 

M., and Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated 
generalized linear mixed modeling. The R Journal, 9(2), 378-400.  

Dray, S., and A. Dufour. 2007. The ade4 package: Implementing the duality diagram for ecologists. Journal of 
Statistical Software. 

Drost, H. 2018. Philentropy: Information theory and distance quantification with R. Journal of Open Source 
Software. 

Grün, B., and K. Hornik. 2011. topicmodels: An R package for fitting topic models. Journal of Statistical Software. 
Hijmans, R. J. 2018. raster: Geographic data analysis and modeling. 
Milborrow, S. 2017. earth: Multivariate adaptive regression splines. 
Neuwirth, E. 2014. RColorBrewer: ColorBrewer palettes. 
Nikita, M. 2016. ldatuning: Tuning of the Latent Dirichlet Allocation models parameters. 
Pebesma, E., and R. Bivand. 2005. Classes and methods for spatial data in R. 
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Figure S3.1 Study area including hexagon tessellation and plot locations. Dots represent approximate locations of 
Forest Inventory and Analysis plots for T1 (red) and T2 (blue). The gray hexagon tessellation was used to aggregate 
the LDA results for calculating community shifts. Black hexagons either contained no data or contained < 10 plots 
and were removed from the analysis. Green border indicates hexagons that were used to fit the LDA model and 
calculate community shifts but were removed from the analysis of climate and non-climate drivers due to missing data. 
Inset map shows the four ecoregions of the eastern U.S.: the Northern Hardwood Region (NHR, pink color), the 
Central Hardwood Region (CHR, green color), the Forest-Prairie Transition Region (FPTR, orange color), and the 
Southern Pine-Hardwood Region (SPHR, blue color). See Table S3.1 for state-level sampling information. 
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Figure S3.2. Climate and non-climate variables used in this study. Units are millimeters for TAP and PSD, and °C 
for MAT, TMAX, TMIN, TRANGE, TMAXSD, TMINSD. Coefficient of variation of monthly precipitation (PCV) 
was removed from the final analysis due to interpretability (PCV is unit-less). PRISM-derived variables (earth tones) 
are at 4 km resolution. Total basal area, PDSI, NDEP, and fire frequency (blue) were aggregated to the 1452 km2 
hexagon level. 
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Figure S3.2 continued 
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Figure S3.2 continued 
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Figure S3.2 continued 
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Figure S3.3 Maps of regional forest communities at T1. Darker red indicates a higher proportion of the sampling 
unit comprised of the community; however, colors are normalized to a 0-1 color intensity scale for display purposes. 
Due to high correlations between T1 and T2 (r = 0.80-0.97, P < 0.001 for all communities), only the T1 distribution 
is shown. A GIS layer containing the community composition at both T1 and T2 is available at 
https://www.doi.org/10.4231/GCE5-ZY59 
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Figure S3.4 Climate predicted vs. observed locations and shifts of forest communities. Nine climate variables 
were used to identify climate conditions where the communities were located at T1 and predict locations that aligned 
with these conditions at T2. (a and b) Predicted vs. observed community centroids in longitude (a) and latitude (b). (c 
and d) Predicted vs. observed shifts in community centroid in longitude (c) and latitude (d). Dashed lines indicate 1:1 
line and solid lines indicate regression lines. R2 values indicate fit of the regression line. P values indicate significant 
differences of the regression line from the 1:1 line. Slope > 1 in (a) indicates climate predicted T2 centroids are more 
central to the study region than observed T2 centroids in longitude. Slope < 1 in (b) indicates climate predicted T2 
centroids are more poleward than observed T2 centroids in latitude. Slope < 1 in (c) and (d) indicates climate predicted 
shifts are farther than observed shifts. Gray rectangles (c) and (d) indicate communities where predicted and observed 
shifts are in the same direction.  
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 CONCLUSIONS 

The purpose of this research was to assess the impacts of climate change on eastern U.S. 

forests. By studying the phenology of northern red oak at a common garden across multiple years, 

I was able to quantify the phenology sensitivity of widespread populations. This analysis revealed 

consistent bud burst and leaf out responses to warmer spring temperatures but the inability for 

populations to extend their growing season into fall during warmer years. Pairing phenological 

observations with diameter at breast height measurements showed that phenological sensitivity 

does not positively correlate with estimates of productivity; rather, local populations with 

intermediate leaf out sensitivity had the highest productivity. By studying large-scale responses of 

forest communities using FIA data, I showed that forest communities are shifting in three main 

ways: shifts in species composition of the communities, shifts in spatial distribution of the 

communities, and changes across all communities that aligned with warmer, wetter, more 

temperature-variable climates. This second study revealed that although communities are shifting 

their spatial distributions as a result of species-level migration, climate change predicted 

communities to move farther than the observed shifts and often in a different direction.  

The outcomes of my research provide insight into the sustainability of forests. For example, 

previous studies have shown that oak forests have been in decline over the last few decades (Knott 

et al., 2019; Nowacki & Abrams, 2008). My research on phenology highlights how populations of 

northern red oak have differential responses to warming, with some populations able to shift their 

phenology in response to warming more quickly. However, this study also revealed the locally 

adapted populations have the highest productivity, indicating that populations that are relocated 

under climate change (either natural dispersal/recruitment or human-mediated assisted migration) 

may be less productive than local populations. Similarly, my research on forest communities 

showed that the oak-hickory community, one of the most widespread communities of the eastern 

U.S., had dramatic decreases in spatial coverage over the last three decades. Taken together, these 

studies expand on previous studies by providing additional evidence of the decline in oak forests. 

Given the economic and ecological importance of oak species, these findings can serve as a 

warning sign of the potential impacts on the sustainability of oak forests under continued climate 

change.  
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Forests respond to climate change at many spatial (local to global), temporal (near real-

time to millennia), and organizational scales (individuals to communities). In this dissertation I 

aimed to address multiple scales, from the population-level shifts in phenology to species- and 

community-level tree migrations. The processes I studied have direct and indirect effects on 

ecosystem functioning, climate feedbacks, and human wellbeing (Parmesan & Yohe, 2003; Pecl 

et al., 2017). Small changes in phenology and community composition can likely lead to changes 

in the overall structure and functioning of forest ecosystems. These observed responses to climate 

change in the recent past are a warning sign of the impacts that future climate change—which may 

be greater than already observed climate change—may have on forest ecosystems and ultimately 

bring into question the overall sustainability of forests under climate change. 
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2014. Summer research fellow, Calvin College. Forty years of forest development in the Calvin 

College ecosystem preserve. Advisor: Dr. Randy VanDragt. 
2013. Summer research fellow, Calvin College. Teaching ecology and evolution through the 

lens of Vision and Change. Advisor: Dr. David Koetje. 

TEACHING 
2020. Outstanding Graduate Teaching Assistant for the College of Agriculture, Purdue 

University.  
2019 (Fall). Teaching assistant for FNR 64700 Quantitative Methods for Ecologists. Provided 

help sessions and office hours for graduate students; created and graded homework 
assignments. Instructor: Robert Swihart. 

2018 and 2019 (Spring). Teaching assistant and guest lecturer for FNR 38400 Statistical 
Methods for Natural Resources. Instructed and aided during lab; presented guest lectures 
on regression analysis; provided office hours for students. Instructor: Robert Swihart. 

2018 (Fall). Certificate of Foundations in College Teaching awardee, Purdue University. 
2017 and 2018 (Fall). Instructor for FNR 59800-18 Introduction to R Programming. Created 

and delivered hands-on lectures; provided help during co-instructor lectures; created and 
graded assignments and individual projects. Co-instructors: (2017) Gabriela Nunez-Mir, 
Insu Jo, and Emily McCallen; (2018) Samuel Ward, Elizabeth LaRue, and Insu Jo. 

2017 (Fall). Instructor for FNR 59800-19 Introduction to Automated Content Analysis. Created 
and delivered hands-on lectures; provided help during co-instructor lectures; aided 
students with individual ACA projects. Co-instructors: Gabriela Nunez-Mir, Emily 
McCallen, and Benjamin Taylor. 

MENTORING, SERVICE, AND PROFESSIONAL MEMBERSHIP 
2017-Present. Undergraduate student mentor for five Forestry/Wildlife/Natural Resources and 

Environmental Science undergraduate students (Ali Gilchrist, Amy Hanners, Avery 
Cook, Rachel Brummet, and Erica Mueller) and one Statistics Living-Learning 
Community undergraduate student (Jessica Gilbert). 
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2016-Present. Graduate student peer mentor for four Ecological Sciences and Engineering and 
three Forestry and Natural Resources graduate students (Leonardo Bertasello, Patricia 
Nease, Songhao Wu, Zackary Delisle, Akane Ota, Kyle Richardville, and Joshua Tellier). 

2016. Speakers Committee Chair, Ecological Sciences and Engineering Symposium. 
Coordinated keynote speaker, group discussion leaders, and panelists. 

Reviewer for Global Ecology and Conservation and The Landscape Journal. 
Member of the Ecological Society of America (ESA), the International Biogeography Society 

(IBS), and the International Association for Landscape Ecology-North America (IALE-
NA, formerly US-IALE). 

 


