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ABSTRACT

Cervantes Botero, Vı́ctor Hernando. PhD, Purdue University, August 2020. Contex-
tuality and Noncontextuality in Human Choice Behavior. Major Professor: Ehtibar
N. Dzhafarov.

The Contextuality-by-Default theory describes the contextual effects on random vari-

ables: how the identity of random variables changes from one context to another. Di-

rect influences and true contextuality constitute different types of effects of contexts

upon sets of random variables. Changes in the distributions of random variables across

contexts define direct influences. True contextuality is defined by the impossibility

of sewing all the variables of a system of random variables into a particular overall

joint distribution. In the absence of direct influences, the theory specializes to the

theory of selective influences in psychology and the traditional treatment of contextu-

ality in quantum mechanics. Consistently connected (i.e., with no direct influences)

noncontextual systems are the systems with selective influences. However, observable

systems of human behavior are seldom consistently connected. Contextuality-by-

Default allows one to classify and measure the degree of deviation from or adherence

to the pattern of selective influences, both for consistently and inconsistently con-

nected systems.

The papers here included follow the development of the Contextuality-by-Default

theory. The theory is presented for cyclic systems of binary random variables, for ar-

bitrary systems of binary random variables, and for systems that include categorical

random variables. Although contextuality has been searched for in human behavior

since at least the 1990s, I report here the first experiments that have demonstrated

contextuality in choice behavior without making the mistake of ignoring the direct

influences present in the systems of random variables. A psychophysical experiment



xiv

was conducted and then analyzed using the theory for systems of binary random vari-

ables. Its results showed no contextuality in a double-detection paradigm, that is, in

an experiment in which each participant was asked to make dual conjoint judgments

of signal detection for two stimuli at a time. Several crowdsourcing experiments were

conducted and analyzed using the theory for cyclic systems of binary random vari-

ables. These experiments demonstrate contextuality using a between-subjects exper-

imental design. Among them, the Snow Queen experiment, in which each participant

made two conjoint choices in accordance with a simple story line, provided a method-

ological template (used afterward to design the other crowdsourcing experiments) for

systematically exploring contextuality. Lastly, another psychophysical experiment

was conducted and then analyzed using the theory for systems with categorical ran-

dom variables. This one is the first experiment that demonstrates contextuality in a

within-subject design.

In addition to the experimental work reported in these papers, I also present

the development of the Contextuality-by-Default theory from the theory for cyclic

systems to the theory for systems with categorical random variables. The nominal

dominance theorem, which states a necessary condition for noncontextuality of sys-

tems where all dichotomizations of categorical variables are considered, is the most

relevant theoretical result of this development.

The role that the notion of contextuality can play in psychology is difficult to fully

understand at our present stage of knowledge. Most obviously, contextuality analysis

is a generalization of the traditional psychological problem of selective influences. It

is, in fact, the only existing theoretical tool for classifying and quantifying patterns of

deviations from the hypothesis of selective influences. It is less evident whether the

degree of (non)contextuality correlates with specific aspects of behavior that may be

of interest. Although some such correlations seem to suggest themselves, to be certain

and precise in identifying them, we need to expand our knowledge of the degree of

(non)contextuality to a broader class of behavioral systems.
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1. INTRODUCTION

The Contextuality-by-Default theory, which is the subject of the papers collected

in this dissertation, is an extension of the theory of selective influences. The latter

was introduced by Saul Sternberg (1969) to characterize the situations when a set of

factors are identified as influencing a set of responses. The notion of selectivity itself

may be traced back at least as far as the work by Donders (1868/1969) on the use

of the differences method for assessing the speed of mental processes. There, in the

analysis of response times, selectivity of influences would be assumed when an addi-

tional mental process was hypothesised to be performed without affecting other men-

tal processes under some experimental manipulations. Thus, differences of response

times produced estimates of the duration of the interposed process. The theory of

selective influences has been further developed by Townsend (1984), Townsend and

Nozawa (1995), Schweickert and Xi (2011), Schweickert, Fisher, and Kyongje (2012),

and Dzhafarov (1999, 2001, 2003), among others. Contextuality-by-Default is be-

ing developed by Dzhafarov and collaborators, myself among them (Dzhafarov, 2016;

Dzhafarov, Cervantes, & Kujala, 2017; Dzhafarov & Kujala, 2013, 2014; Dzhafarov,

Kujala, & Cervantes, 2016; Kujala & Dzhafarov, 2016a, 2016b; Kujala, Dzhafarov, &

Larsson, 2015). In this dissertation, I include some of the published papers I have

co-authored that have made theoretical or experimental contributions to this the-

ory. In the remainder of this chapter, I will briefly recount the development of the

Contextuality-by-Default theory during the period since I joined the research team.

Along the way, I will mention the papers included as the subsequent chapters and

will indicate my specific contributions to each of them. While I participated in all
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major aspects of these papers, I will only focus on describing the parts for which my

contribution was critical.

1.1 Selective influences and contextuality

By 2014, the work on the Contextuality-by-Default theory, as a generalization

of the theory of selective influences, was underway. A presentation of the theory of

selective influences that already contains some of the core elements of Contextuality-

by-Default is found in the chapter by Dzhafarov and Kujala (2017), originally pre-

pared in 2013 and 2014. At its core, the theory develops from the explicit recognition

that random variables recorded under mutually exclusive conditions are necessarily

different random variables: the different contexts under which they are recorded form

an inherent part of their identity. Moreover, any two variables recorded in different

contexts do not possess a joint distribution, and they are said to be stochastically un-

related. These two characteristics may be easily noticed if one considers, for example,

the prognosis of patients suffering of some disease depending on whether they receive

a placebo or an effective drug. The distributions of outcomes for the patients are

different for the two groups; clearly, they represent different variables. If a patient

receives a placebo, then they were not administered the drug, and vice-versa. No

joint observation can be made for a patient under both conditions; the variables are

not jointly distributed.

The manner by which Contextuality-by-Default formalizes selective influences can

be elaborated using the simple diagram of selective influences in Figure 1.1. According

to the diagram, factors α and β selectively influence responses A and B, respectively.

As a consequence, changes in the levels of α produce changes in the distribution of

responses A but not do not affect the distribution for B, and symmetrically for β, B

and A. If factors α and β can each be manipulated on two different levels, say α1, α2
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α β

A B

Fig. 1.1. Diagram of selective influences. Factors α and β selectively
influence responses A and B, respectively.

and β1, β2, the system of random variables obtained by recording responses A and

B under the four treatments generated by the levels of α and β may be represented

as in Figure 1.2. For each of the treatments, there are two random variables being

recorded together. For instance, under treatment α1, β1, we record observations of A

that respond to α1 together with observations of B that respond to β1. The respective

random variables are represented by Rα1,β1
α1

and Rα1,β1

β1
. Here, we identify the random

variables representing these observations both by what they are responses to (by a

subscript) and under which treatment they are recorded (by superscripts). In the

figure, the boxes indicate the contexts of random variables recorded under the same

treatment; the dashed lines connect the random variables that respond to the same

level of the factor that selectively influences them.

In Contextuality-by-Default, the system of random variables in Figure 1.2 is usu-

ally represented by a matrix as the one in Figure 1.3. In such a matrix, the set of

variables in the same row are the jointly distributed variables recorded in the same

context ; the set of variables in the same column are the stochastically-unrelated-to-

each-other random variables responding to the same property or quantity. Within

the Contextuality-by-Default theory, the former are usually referred to as bunches,

or sometimes simply as contexts, and the latter are usually referred to as connections

of random variables. The property to which the variables in the same connection
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β

β1 β2

α1 Rα1,β1
α1

Rα1,β1

β1
Rα1,β2

α1
Rα1,β2

β2

α

α2 Rα2,β1
α2

Rα2,β1

β1
Rα2,β2

α2
Rα2,β2

β2

Fig. 1.2. Random variables associated with the diagram of selective influ-
ences in Figure 1.1. The boxes indicate the contexts of random variables
recorded under the same treatment. The dashed lines represent the con-
nections between random variables recorded at the same level of the factor
that selectively influences them.

Rα1,β1
α1

Rα1,β1

β1
· ·

· Rα2,β1

β1
Rα2,β1

α2
·

· · Rα2,β2
α2

Rα2,β2

β2

Rα1,β2
α1

· · Rα1,β2

β2

Fig. 1.3. System of random variables representing the situation from Fig-
ure 1.2.

respond to is referred to as their content (see for example, Cervantes & Dzhafarov,

2017b; Dzhafarov et al., 2016). In the example in Figure 1.3, the jointly distributed

variables Rα1,β1
α1

and Rα1,β1

β1
are recorded in the same context, and (Rα1,β1

α1
, Rα1,β1

β1
) con-

stitutes a bunch; the stochastically unrelated variables Rα1,β1
α1

and Rα1,β2
α1

both respond

to the same level α1 of factor α, and { Rα1,β1
α1

, Rα1,β2
α1

} is the connection of random

variables in the system that respond to content α1.
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Now, it follows from the definition of selective influences that the respective dis-

tributions of the random variables sharing a content should be equal to each other.

Moreover, the notion of selective influence entails the counterfactual claim that for

any given observation of, say, variable Rα1,β1
α1

, the observation would have been the

same if it had been recorded in the context of treatment α1, β2 instead of α1, β1. An

equivalent way to express this counterfactual is to state that if the variables Rα1,β1
α1

and Rα1,β2
α1

were jointly distributed they should not only share the same distribution,

but should also be always equal to each other (Dzhafarov, 2019). This construction

of a ‘what-if’ joint distribution is formalized by the probabilistic notion of coupling,

and a coupling that always satisfies the equality of its random variables is called

identity coupling. While this description suffices for the purposes of this introduction,

a formal definition is given in Chapter 2 which reproduces the paper by Cervantes

and Dzhafarov (2017b); additionally, a thorough treatment of probabilistic couplings

can be found in Thorisson (2000). Finally, using the language of couplings and the

contextual identification of the random variables in a system, selectivity of influences

can be restated by saying that a coupling of all random variables in the system can be

found in such a way that: a) marginalizing this coupling to the variables in a single

context produces the same joint distribution originally recorded in that context; and

b) marginalizing this coupling to any pair of variables in a connection produces their

identity coupling (Dzhafarov & Kujala, 2017).

For the system in Figure 1.3, this means finding a set of eight jointly distributed

random variables

�
Sα1,β1
α1

, Sα1,β1

β1
, Sα2,β1

β1
, Sα2,β1

α2
, Sα2,β2

α2
, Sα2,β2

β2
, Sα1,β2

β2
, Sα1,β2

α1

�
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such that the marginal
�
Sα1,β1
α1

, Sα1,β1

β1

�
has the same joint distribution as the bunch

�
Rα1,β1

α1
, Rα1,β1

β1

�
from the system in Figure 1.3; for the marginal

�
Sα1,β1
α1

, Sα1,β2
α1

�
, cor-

responding to the connection {Rα1,β1
α1

, Rα1,β2
α1

}, we have

Pr(Sα1,β1
α1

= Sα1,β2
α1

) = 1;

and similarly for the other bunches and connections. Clearly, Pr(Sα1,β1
α1

= Sα1,β2
α1

) can

only be made equal to unity when the distributions of Rα1,β1
α1

and Rα1,β1
α1

are equal.

When the distributions of all random variables sharing a content are the same for

each of the connections in a system, the system is said to be consistently connected ;

otherwise, it is called inconsistently connected. An example of how the system in

Figure 1.3 can be consistently connected is when all variables R
αi,βj
αi and R

αi,βj

βj
are

binary, take values 0 or 1, and Pr(R
αi,βj
αi = 1) = Pr(R

αi,βj

βj
= 1) = 1/2 for i, j = 1, 2.

The traditional treatment of the notion of noncontextuality coincides with this in-

formal description of selective influences. This treatment has developed from the anal-

ysis of some problems in logic and from the analysis of some predictions of quantum

mechanics. According to this treatment, and using the language of Contextuality-by-

Default, a system of random variables —as the one in Figure 1.3— is said to be non-

contextual if the system is consistently connected, and the overall coupling containing

the identity couplings, as described above, can be constructed. However, the notion

of noncontextuality as used in the Contextuality-by-Default theory is more general.

Whenever we consider random variables recorded under different conditions in a psy-

chological research setting, we expect to observe changes in the distributions of these

random variables. Thus, the respective system of random variables will be inconsis-

tently connected and, consequently, an overall coupling that marginalizes to identity

couplings for those pairs does not exist. In Contextuality-by-Default one takes a cou-

pling that makes Pr(Sα1,β1
α1

= Sα1,β2
α1

) as large as allowed by the distributions of Rα1,β1
α1
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�Y = 1 �Y = 0
�X = 1 1/8 5/24 1/3

�X = 0 0 2/3 2/3

1/8 7/8

Fig. 1.4. Maximal coupling of two binary random variables

and Rα1,β2
α1

. Such a coupling is called a maximal coupling and it coincides with the

identity coupling whenever the respective distributions are the same. Unlike the iden-

tity coupling, a maximal coupling always exists. As an example of how to construct

a maximal coupling consider two binary random variables, X and Y , such that both

take values 0 or 1, and Pr(X = 1) = 1/3 and Pr(Y = 1) = 1/8. The joint distribution

presented in Figure 1.4 is the maximal coupling of the variables X and Y constructed

with the new variables �X and �Y . The probability Pr( �X = �Y ) = 19/24 and cannot be

made larger while keeping Pr( �X = 1) = Pr(X = 1) and Pr(�Y = 1) = Pr(Y = 1).

A system is noncontextual when the overall coupling, with the maximal couplings

as marginals corresponding to pairs of variables sharing a content, can be constructed.

Otherwise, it is contextual. In this framework, selectiveness of influences is satisfied

when the system of random variables is consistently connected and is noncontextual;

and the traditional account of contextuality in quantum mechanics is obtained by

restricting the analysis to consistently connected systems. With these definitions,

the Contextuality-by-Default allows one to identify two kinds of contextual effects:

a) direct influences which are defined by the lack of consistent connectedness and

can be measured by the differences between the distributions of the random variables

that share the same content; and b) true contextuality which is defined above by the

nonexistence of the mentioned overall coupling. Defining measures of contextuality

and of noncontextuality, as well as discovering the properties of such measures, is
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a work in progress (see e.g. Dzhafarov, Kujala, & Cervantes, 2020a, 2020b). The

ubiquity of direct influences in psychological data prevents the possibility of selective

influences, as well as the applicability of the traditional definition of noncontextuality,

but it does not imply that the full behavior of a system is accounted for by the direct

action of inputs upon the responses. An inconsistently connected system of random

variables of behavioral data may still be contextual.

1.2 Contextuality in systems of binary random variables

In 2015, I designed and conducted a psychophysical experiment following an idea

found in Dzhafarov and Kujala (2017, example 2.1 on p. 86). The idea consisted

in the simultaneous presentation of two stimuli in each of which a certain signal

should be detected by the participant: a double-detection experiment. This experi-

mental paradigm provides a scheme in which both (in)consistent connectedness and

(non)contextuality can be systematically studied. The experiment I designed is pre-

sented in Cervantes and Dzhafarov (2017b), and reproduced as Chapter 2 in this

dissertation. For this paper, I designed, programmed (using Visual Basic), and con-

ducted the experiment; I also carried out all data analyses with R, and prepared the

first draft of the whole document.

The analysis of the double detection experiment presented in Chapter 2 is based

on the theory of cyclic systems of random variables. These are systems in which all

variables are binary, and where each connection and each context has precisely two

random variables. The system presented in Figure 1.3 is an example of a cyclic system.

The main reason for representing the results of this experiment by means of cyclic

systems was that the original experimental idea consisted of exploring the detection

of the presence (absence) of a signal in each of two stimuli. From this perspective,

this experimental design provides the closest analogue to the most prominent example
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c- -c u- -u d- -d

cc Rcc
c- Rcc

-c · · · ·

uc · Ruc
-c Ruc

u- · · ·

uu · · Ruu
u- Ruu

-u · ·

du · · · Rdu
-u Rdu

d- ·

dd · · · · Rdd
d- Rdd

-d

cu Rcu
c- · · Rcu

-u · ·

ud · · Rud
u- · · Rud

-d

dc · Rdc
-c · · Rdc

d- ·

cd Rcd
c- · · · · Rcd

-d

Fig. 1.5. Complete system of random variables for the double-detection
experiment. The letters c, d, and u indicate that the dot is, respectively,
in the center, below, or above. Thus, c- denotes the dot in the center
of the left circle, -d denotes the dot shifted down in the right circle, etc.
The resulting contexts are denoted cc, uc, uu, etc., the left (right) letter
indicating the location of the dot in the left (respectively, right) circle.

of contextuality: that of the Alice-Bob EPR/Bohm paradigm in quantum physics,

which is described by a cyclic system. A brief discussion of the Alice-Bob paradigm

and how it is described as a cyclic system is presented in the Chapter 4.

For the experiment, the signal to be detected was the eccentricity of a dot inside

a circle. The eccentricity of the dot was manipulated so that there were three levels:

at the center, eccentric above, and eccentric below. A full representation of the

experimental data considering all three levels for each factor (the location of the

dot in the specific circle) produces a system of random variables that is not cyclic

(see Figure 1.5). At the time, it was possible to perform contextuality analysis of

cyclic systems, but the theory was not yet developed for arbitrary systems of random

variables. The analysis of cyclic systems is based on a closed form criterion for
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c- -c u- -u d- -d

cc Rcc
c- Rcc

-c · · · ·

uc · Ruc
-c Ruc

u- · · ·

uu · · Ruu
u- Ruu

-u · ·

du · · · Rdu
-u Rdu

d- ·

dd · · · · Rdd
d- Rdd

-d

cd Rcd
c- · · · · Rcd

-d

Fig. 1.6. Example of a system of random variables for the double-detection
experiment, extracted from the complete system presented in Figure 1.5.

contextuality that was proved in 2015-2016 (Kujala & Dzhafarov, 2016b; Kujala et

al., 2015). We applied this criterion to cyclic systems extracted from the complete

data set. These systems were extracted either by taking subsystems of the system in

Figure 1.5, or by clustering two of the factor levels together as a single content (for

example, we could cluster the above and below forms of eccentricity, creating thereby

a single category of an eccentric dot). Figure 1.6 shows an example of an extracted

subsystem. Figure 1.7 shows an example of a redefined system obtained by clustering

of contents. These analyses form the core of the paper reprinted as Chapter 2.

Later developments of the Contextuality-by-Default theory permitted the analysis

of the contextuality of arbitrary systems of binary random variables (Dzhafarov &

Kujala, 2016). The data from the double-detection experiment were then reanalysed

using the linear programming task defined for such systems of random variables. The

results of this analysis were published in Cervantes and Dzhafarov (2017a) which is

reprinted here as Chapter 3. For this paper, I have implemented and run the linear

programming task used for the analysis, and also prepared the first draft of most of

the document.
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c- -c e- -e

cc Rcc
c- Rcc

-c · ·

ec · Rec
-c Rec

e- ·

ee · · Ree
e- Ree

-e

ce Rce
c- · · Rce

-e

Fig. 1.7. Example of a system of random variables for the double-detection
experiment, with clustered factor levels. The letters c and e indicate that
the dot is in the center, or eccentric. The interpretation is otherwise as in
Figure 1.5

The results from this double-detection experiment indicated that selective influ-

ences were not satisfied in any of the systems of random variables considered. How-

ever, the violation of selectivity was only of the direct influence type and not that of

true contextuality. Up to the time when this experiment was conducted and anal-

ysed, most evidence indicated that true contextuality could not be found in systems

of random variables that represented behavioral data. The analyses of this experi-

ment, together with those of another psychophysical experiment conducted in our lab

by Ru Zhang (Zhang & Dzhafarov, 2017), added to this evidence. The evidence col-

lected hitherto included several attempts by different teams of researchers that had

examined and searched for contextual effects in psychology corresponding to true

contextuality. These teams had regularly employed a between-subjects design, and

the data from their experiments were represented by cyclic systems of binary random

variables. Several of these attempts at searching for contextuality were discussed and

reanalysed under the framework of the Contextuality-by-Defaul theory in Dzhafarov,

Zhang, and Kujala (2015) and in Dzhafarov, Kujala, Cervantes, Zhang, and Jones

(2016). Similarly to the results reported in Chapters 2 and 3 for the double-detection

experiment, the analyses of these data indicated no contextuality in human behavior.
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We further explored the possibility of contextuality in human decision-making us-

ing a similar between-subjects design. We designed a crowdsourcing experiment (we

refer to it as the Snow Queen experiment) where participants made a pair of conjoint

choices depending on the context/treatment to which they were assigned. The goal

of this experiment was to exploit the properties of the criterion of contextuality in

order to investigate the possibility of contextuality in a setting similar to those that

had been usually employed. This experiment was reported in Cervantes and Dzha-

farov (2018c) which is reproduced in this dissertation as Chapter 4. The Snow Queen

experiment provided the first experimental data where true contextuality could be

established in human behavior. For this paper, I implemented the experiment using

Purdue’s Qualtrics platform for developing online surveys and recruited participants

from Amazon’s Mechanical Turk; I performed the contextuality analysis and statisti-

cal analysis in R; I also prepared the methods and results sections of the paper, and

the first draft of the discussion.

After communicating the results from the Snow Queen experiment (Cervantes

& Dzhafarov, 2018a, 2018b; Dzhafarov & Cervantes, 2018), we were approached by

Irina Basieva (then of the City University London) and Andrei Khrennikov (Linnaeus

University, Sweden) to conduct a series of additional experiments. Six crowdsourc-

ing experiments were conducted with analogous formal structures and following the

design strategy from the Snow Queen experiment. The results from these experi-

ments were reported in Basieva, Cervantes, Dzhafarov, and Khrennikov (2019) and

are reproduced here as Chapter 5. For this paper, I co-designed the experiments

together with the coauthors of the paper, and I helped implementing them on the

Qualtrics platform of City University of London. I also conducted the contextuality

and statistical analyses of the experiments, and prepared a first skeletal draft of the

paper. These experiments, together with the Snow Queen experiment, accomplish the
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following: a) they establish that true contextuality may be found in human choices

using the usual between-subjects design; b) they present a methodological approach

by which contextuality may be more systematically investigated in psychology; and

c) they show that the methodology of the Snow Queen experiment does not force a

system to be contextual: contextuality or its absence is an empirical property of a

particular system.

Along with these experimental results, we have advanced the theory of contextual-

ity for cyclic systems of binary random variables. We now have a complete geometric

characterization of arbitrary cyclic systems and their (non)contextuality. This char-

acterization is presented in Dzhafarov, Kujala, and Cervantes (2020a), where the

polytope of noncontextual joint distributions and well defined measures of contex-

tuality (for a system outside of the polytope) and noncontextuality (for a system

within) are characterized. From this characterization, we also achieve some addi-

tional intuition of how likely it is to find contextuality for arbitrary cyclic systems.

This intuition is formally laid out in Dzhafarov, Kujala, and Cervantes (2020b). With

the description of the polytope and of the measures defined on it, the development of

the theory of Contextuality-by-Default for contextuality in cyclic systems of binary

random variables may be considered complete.

1.3 Contextuality in systems with categorical random variables

Besides the work on systems with binary random variables recounted in the pre-

vious section, I have also been involved in developing the theory for defining and

analyzing contextuality of systems with random variables that take more than two

values. In this development, we have been guided by the consideration that the theory

of contextuality for binary random variables has some properties that are desirable

to preserve in all generalizations of the theory. First and foremost, for systems where
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random variables sharing a content have the same distribution, the theory specializes

to the traditional theory of contextuality. A second property is that the maximal

coupling of a pair of binary random variables is unique. Lastly, for any noncontex-

tual system, a subsystem obtained by dropping any subset of its random variables

remains noncontextual.

In Dzhafarov, Cervantes, and Kujala (2017), we propose a possible way in which

the theory may be extended to categorical random variables. It is based on the

observation that any categorical variable may be represented by some set of jointly

distributed binary random variables. In addition, for strictly categorical random

variables, another property that may be deemed desirable is that a noncontextual

system remains noncontextual under coarse-graining of categories. Consider a loaded

die for which the random variable Z represents the outcome from a single roll. Let the

distribution of Z be as depicted in Table 1.1. We clearly have the same information

about the outcome of the die from the set of binary random variables

{ Zj : Zj = 1 if Z = j, and Zj = 0 if Z �= j, where j = 1, . . . , 6 } .

These six random variables are jointly distributed, and the joint outcomes that have

nonzero probabilities are presented in Table 1.2. For this die, one may also be inter-

ested in coarse-grainings such as whether the outcome is odd or even, or the sets of

two values of the die that would add up to seven. These coarse-grainings create two

new random variables whose distributions are presented in Table 1.3.

The theory developed in Dzhafarov et al. (2017) presents a way to represent cat-

egorical variables by systems of binary random variables consisting of the set of all

possible dichotomizations of the categorical variables. This is necessary to preserve

noncontextuality under any coarse-graining. In this paper, we also derive a neces-

sary condition for noncontextuality of the system thus constructed. This paper is
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Table 1.1.
Distribution of the random variable Z

Z Pr(Z = z)
1 6/21

2 5/21

3 4/21

4 3/21

5 2/21

6 1/21

Table 1.2.
Probabilities of some joint events of random variables Zj

Event Pr(Event)
{ Z1 = 1, Z2 = 0, Z3 = 0, Z4 = 0, Z5 = 0, Z6 = 0 } 6/21

{ Z1 = 0, Z2 = 1, Z3 = 0, Z4 = 0, Z5 = 0, Z6 = 0 } 5/21

{ Z1 = 0, Z2 = 0, Z3 = 1, Z4 = 0, Z5 = 0, Z6 = 0 } 4/21

{ Z1 = 0, Z2 = 0, Z3 = 0, Z4 = 1, Z5 = 0, Z6 = 0 } 3/21

{ Z1 = 0, Z2 = 0, Z3 = 0, Z4 = 0, Z5 = 1, Z6 = 0 } 2/21

{ Z1 = 0, Z2 = 0, Z3 = 0, Z4 = 0, Z5 = 0, Z6 = 1 } 1/21

Table 1.3.
Distributions of two variables that coarse-grain the values of Z

Zodd Pr(Zodd = z) Zsum Pr(Zsum = z)
odd 12/21 { 1, 6 } 7/21

even 9/21 { 2, 5 } 7/21

{ 3, 4 } 7/21

reproduced here as Chapter 6. For this paper, I formulated the initial conjecture

and contributed to the discovery of the proof of the mentioned condition (nominal

dominance theorem). I also contributed to the writing of the paper.

With this necessary condition at hand, we revisited the previous double-detection

experiment. We designed a new psychophysical experiment where the task asked
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of the participants was to identify the location of two stimuli, instead of detecting

two signals. As in the double-detection experiment, a dot could be located in the

center or be eccentric for each of two circles. There were five levels (center, up, down,

left, and right) for each of the two dot locations, and the responses were to identify

these locations. The results from this experiment are reported in Cervantes and

Dzhafarov (2019) which is reprinted here as Chapter 7. For this paper, I designed,

programmed in PsychoPy/Python, and conducted the experiment; I also performed

all data analyses with R, and prepared the first draft of the whole document. This

experiment is the first one to establish contextuality in a within-subject experimental

design.

1.4 Contextuality and scientific inquiry

The implications of the notion of contextuality for scientific research, and in par-

ticular, for psychology, are difficult to fully understand at our present stage of knowl-

edge. Some considerations are made in the papers reproduced as Chapters 4, 5 and

6. I summarize them in this section.

The notion of contextuality and the results of contextuality analysis have clear

substantive implications in quantum mechanics. The quantum-mechanical theory is

used to determine a system’s behavior, and for several quantum-mechanical experi-

mental paradigms, such as the EPR/Bohm paradigm, the conditions under which the

resulting systems are (non)contextual are well known. There, the notion of contextu-

ality helps to separate quantum-mechanical models from those of classical mechanics.

In addition, the results of contextuality analysis play a role as ‘witnesses’ of the de-

sired quantum behavior (Abramsky, Barbosa, & Mansfield, 2017). Moreover, the

degree of contextuality has been found to correlate with the computational advan-
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tage of quantum computing over conventional one (Abramsky et al., 2017; Frembs,

Roberts, & Bartlett, 2018).

In psychology, the notion of noncontextuality specializes to the one of selective in-

fluences under certain circumstances: consistently connected noncontextual systems

are the systems with selective influences. In these cases, the results of contextuality

analysis determine the tenability of the hypothesis of selectivity of influences. The

analysis is essentially a classification and measurement of the degree of deviation

from or adherence to the pattern of selective influences. While selective influences

is the traditional topic in psychology, observable systems of human behavior are sel-

dom consistently connected, precluding thereby the possibility of selective influences.

Contextuality analysis, and the Contextuality-by-Default theory in particular, allow

us to perform the classification and measurement of contextual effects into direct

influences and true contextuality for both consistently and inconsistently connected

systems. An example of the application of contextuality analysis to the substantive

issue of characterizing mental architectures is presented by Zhang and Dzhafarov

(2015).

Unlike in quantum mechanics, we do not possess a psychological theory that helps

determine the conditions when a system is (non)contextual. However, as is the case

for measurements in quantum mechanics, the stochasticity of responses in most ar-

eas of psychology cannot be reduced by progressively greater control of stimuli and

conditions. Thus, the status and role of contextuality can be expected to be sim-

ilar. For now, by analogy with the contextuality advantage mentioned above, one

may point out that the degree of similarity or unanimity of decisions in experiments

with between-subjects design can correlate with the degree of (non)contextuality of

the system of random variables that represent them. If, for example, across pools

of respondents, respondents agreed among themselves on what options to choose in
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each context, the system of its responses would then become deterministic and non-

contextual. However, it is not possible to replace contextuality with some measure of

unanimity because deep noncontextuality can be achieved with nondeterministic sys-

tems. Whether the degree of (non)contextuality correlates with this or other aspects

of behavior that may be of interest in their own right, requires that we gain more

knowledge of the degree of (non)contextuality for a much larger class of behavioral

systems.

More generally, the considerations of contextuality with respect to theoretical

models lead also to identify classes of viable explanations. As pointed in Chapter 5,

given a system of random variables representing some data, if contextuality or non-

contextuality is established for them, a model is to be rejected if it fails to predict this

property. An example of a simple decision model that should be rejected because it

only predicts contextual systems for the experiments reported in the paper reprinted

as Chapter 5 is also presented in that chapter. The issue of what classes of causal

models are consistent with contextual systems is explored for some types of quantum

paradigms by Cavalcanti (2018), and Pearl and Cavalcanti (2019). The relationship

between contextuality, as defined in the Contextuality-by-Default theory, and causal

models has been explored by Jones (2019).

Lastly, in addition to the previous considerations, the theory of contextuality

brings to the fore the nature of random variables. This is debated especially in

Chapter 4, where the relational nature of contextuality as a property of a system of

random variables is discussed: that part of the identity of a random variable is given by

its relation with the other random variables with which it is jointly distributed. The

nature of the interrelations among variables, for different types of random variables,

also comes into play for developing the theory and appropriately defining contextuality

for different classes of systems of random variables, as discussed in Chapters 6 and 8.
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2. EXPLORATION OF CONTEXTUALITY IN A

PSYCHOPHYSICAL DOUBLE-DETECTION

EXPERIMENT

Reprinted by permission from Springer Nature Customer Service Centre GmbH. Lec-
ture Notes in Computer Science. Cervantes, V. H., & Dzhafarov, E. N. (2017).
Exploration of contextuality in a psychophysical double-detection experiment. In J.
A. de Barros, B. Coecke, & E. Pothos (Eds.), Quantum Interaction. LNCS (Vol.
10106, pp. 182–193). Springer International Publishing. https://doi.org/10.

1007/978-3-319-52289-0_15

Abstract The Contextuality-by-Default (CbD) theory allows one to separate con-

textuality from context-dependent errors and violations of selective influences (aka

“no-signaling” or “no-disturbance” principles). This makes the theory especially ap-

plicable to behavioral systems, where violations of selective influences are ubiquitous.

For cyclic systems with binary random variables, CbD provides necessary and suffi-

cient conditions for noncontextuality, and these conditions are known to be breached

in certain quantum systems. We apply the theory of cyclic systems to a psychophysi-

cal double-detection experiment, in which observers were asked to determine presence

or absence of a signal property in each of two simultaneously presented stimuli. The

results, as in all other behavioral and social systems previous analyzed, indicate lack

of contextuality. The role of context in double-detection is confined to lack of selec-

tiveness: the distribution of responses to one of the stimuli is influenced by the state

of the other stimulus.

Keywords: Contextuality · Cyclic systems · Inconsistent connectedness · Psychoph-

ysics
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The Contextuality-by-Default (CbD) theory [9, 10] describes systems of measure-

ments with respect to the conditions under which they are recorded and determines

the tenability of a non-contextual description of the system. In this paper, we study

the double-detection paradigm suggested in Refs. [6, 8]. In this paradigm, two stim-

uli are presented to an observer simultaneously (left-right), each on one of several

possible levels. The observer is asked to state (Yes/No), for each of the two obser-

vation areas, whether it contains a particular target property (signal). The signal is

objectively present in a subset of levels of a stimulus. When such experimental situ-

ation includes only two levels for each stimulus (e.g., present/absent), the system of

measurements is formally equivalent to that of the Einstein–Podolski–Rosen/Bohm

(EPR/B) paradigm (see e.g, Ref. [6]).

2.1 Contextuality in CbD

We briefly recapitulate the concepts of the CbD, to make this paper self-sufficient.

For detailed discussions see Refs. [9, 10]; the proofs may be found in Refs. [11, 14, 15].

Definition 1. (System of measurements) A system of measurements is a matrix

Rn×m, in which columns correspond to the properties {q1, . . . , qn} and rows to the

contexts {c1, . . . , cm}. A cell (i, j) contains the random variable Rj
i if qi is measured

in context cj, and the cell is left empty otherwise.

When adopting the CbD framework, the first goal is to produce a matrix R that

formally represents the experiment and its results.

Definition 2. (Connections and bunches) The random variables in any column of

a system of measurements form a connection for the corresponding property; denote

the connection for property qi by Ri. Those in any row form a bunch representing

the corresponding context; denote the bunch for context cj by Rj.
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Note that elements of a connection are necessarily (“by default”) pairwise distinct

and pairwise stochastically unrelated, i.e., no Rj
i and Rk

i with k �= j have a joint dis-

tributions. Consequently, the system R does not have a joint probability distribution

including all of its elements. See Refs. [5, 10].

Definition 3. (Coupling) Let Xi, with i ∈ I, an index set, be a random variable

on a probability space (Xi,Σi, Pi). Let {Yi : i ∈ I} be a collection of jointly dis-

tributed random variables (i.e., a random variable in its own right) on a probability

space (Y,Ω, p). The random variable {Yi : i ∈ I} is called a coupling of the collection

{Xi : i ∈ I} if for all i ∈ I, Yi
d
= Xi, where

d
= denotes identity in distribution.

Definition 4. (Maximal coupling) Let Y = (Yi : i ∈ I) be a coupling of a collec-

tion {Xi : i ∈ I}. And let M be the event where {Yi = Yj for all i, j ∈ I}. If Pr(M) is

the largest possible among all couplings of {Xi : i ∈ I}, then Y is a maximal coupling

of {Xi : i ∈ I}.

Definition 5. (Contextual system) Let R be a system of measurements. Let S be

a coupling of R such that for each cj ∈ {c1, . . . , cm}, S j is a coupling of Rj contained

in S . The system R is said to be non-contextual if it has a coupling S such that for

all qi ∈ {q1, . . . , qn}, the coupling Si is a maximal coupling.

Definition 6. (Cyclic system with binary variables) Let R be a system of

measurements such that (a) each context contains two properties; (b) each property is

measured in two different contexts; (c) no two contexts share more than one property;

and (d) each measurement is a binary random variable, with values ±1. Then the

system R is a cyclic system with binary variables and in the following will be simply

called a cyclic system.

Remark 1. Note that a cyclic system is composed of the same number n of connections

and of bunches, and it contains 2n random variables. We shall say that a cyclic system

has rank n or is of rank n to explicitly refer to this number.



25

Definition 7. (Consistent connections) Let Ri be a connection in a system R.

It is said that Ri is a consistent connection if for all cj, ck ∈ {c1, . . . , cm} such that

Rj
i and Rk

i are defined (i.e., both cells (i, j) and (i, k) of R are not empty), Rj
i

d
= Rk

i .

Definition 8. (Consistently connected system) A system of measurements R is

said to be consistently connected if for all qi ∈ {q1, . . . , qn}, the connection Ri is a

consistent connection. For a cyclic system, definea

ICC =
n�

i=1

���Rj
i

�
−

�
Rk

i

��� .

ICC provides a measure of how inconsistent the connections are in the system.

Definition 9. (Contextuality in cyclic systems) Let R be a cyclic system with

n binary variables. Let

s1(x1, x2, . . . , xn) = max

�
n�

k=1

akxk : ak = ±1 and
n�

k=1

ak = −1

�
.

Let

ΛC = s1
���

Rj
i R

j
i�
�

: qi, qi� measured in cj, and cj ∈ {c1, . . . , cm}
��

Let ΔC = ΛC − ICC − (n − 2). The quantity ΔC is a measure of contextuality for

cyclic systems.

Theorem 1. (Cyclic system contextuality criterion, [14]) A cyclic system R

is contextual if and only if ΔC > 0.

Remark 2. ΔC for a consistently connected cyclic system with n = 4 reduces to the

Bell/CHSH inequalities [3, 10].

a(Explanatory note added in the dissertation.) Here, �·� denotes expected value.
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2.2 Contextuality in Behavioral and Social Data

In Ref. [13] many empirical studies of behavioral and social systems were reviewed.

Most of those systems come from social data; that is, an observation for each mea-

surement was the result of posing a question to a person, and the set of observations

comes from questioning groups of people. For all the studies considered there, the

CbD analyses showed that the systems, treated as cyclic systems ranging from rank

2 to 4, were non-contextual. Only one of the studies reviewed in Ref. [13] dealt with

responses from a single person to multiple replications of stimuli.

Now, a key modeling problem in cognitive psychology has been determining whether

a set of inputs selectively influences a set of response variables (Refs. [4, 16–18]). The

formal theory of selective influences has been developed for the case of consistent con-

nectedness, which has been treated as a necessary condition of selective influences; it

follows from this formalism that selectiveness of influences in a consistently connected

system is negated precisely in the case where it is contextual [6].

However, in most, if not all, behavioral systems, some form of influence upon

a given random output is expected from most, if not all, of the system’s inputs

(Ref. [17]). This means that in the behavioral domain inconsistently connected sys-

tems are ubiquitous. While the presence of inconsistent connections rules out the

possibility of selective influences, it does not imply that the full behavior of the sys-

tem is accounted for by the direct action of inputs upon the outputs; an inconsistently

connected behavioral system may still be contextual in the sense of CbD.

The double detection paradigm suggested in [6, 8] provides a framework where

both (in)consistent connectedness and contextuality can be studied in a manner very

similar to how they are studied in quantum-mechanical systems (or could be studied,

because consistent connectedness in quantum physics is often assumed rather than

documented).
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2.3 Method

2.3.1 Participants

Three volunteers, two females and one male, graduate students at Purdue Uni-

versity, served as participants for the experiment, including the first author of this

paper. They were recruited and compensated in accordance to Purdue University’s

IRB protocol #1202011876, for the research study “Selective Probabilistic Causality

As Interdisciplinary Methodology” under which this experiment was conducted. All

participants reported normal or corrected to normal vision and were aged around 30.

They are identified as P1 − P3 in the text and their experience with psychophysical

experiments ranged from none to more than three previous participations.

2.3.2 Apparatus

The experiment was run using a personal computer with an Intel® Core™ processor

running Windows XP, a 24-in. monitor with a resolution of 1920 × 1200 pixels (px),

and a standard US 104-key keyboard. A chin-rest with forehead support was used so

that the distance between subject and monitor was kept at 90 cm; this made each

pixel on the screen to occupy about 62 s arc of the subjects’ visual field.

2.3.3 Stimuli

The stimuli were similar to those from Refs. [1, 12]. They consisted of two circles

drawn in solid grey (RGB 100, 100, 100) on a black background in a computer screen,

with a dot drawn at or near their center. The circles radius was 135 px with their

centers 320 px apart; the dots and circumference lines were 4 px wide. The offset of

each dot with respect to the center of each circle, when they were not presented at



28

Fig. 2.1. Stimulus example

the center, was 4 px. An example of the stimuli (in reversed contrast) is shown in

Fig. 2.1.

2.3.4 Procedure

Each participant performed nine experimental sessions. At the beginning of each

experimental session, the chin-rest and chair heights were adjusted so that the subject

could sit and use the keyboard comfortably. The time available for each session was 30

minutes, during which the participants responded in 560 (non-practice) trials (except

for participant P3 in the sixth session, who only responded in 557 trials) preceded

by up to 30 practice trials. The number of practice trials was set to 30 during the

first two sessions and reduced to 15 during subsequent sessions. After each practice

trial, the subject received feedback about whether their response for each circle was

correct or not. The responses to practice trials were excluded from the analyses.

Additionally, depending on their previous experience in psychophysical experiments

the participants had up to three training sessions, also excluded from subsequent

analyses.

Instructions for the experiment were presented to each participant verbally and

written in the screen. In each trial the participant was required to judge for each



29

circle whether the dot presented was displaced from the center or not. The stimuli

were displayed until the subject produced their response. The responses were given

by pressing and holding together two keys, one for each circle. Then, the dots in each

circle were removed and a “Press the space bar to continue” message was flashed on

top of the screen. After pressing the space bar, the message was removed and the

next stimuli pair were presented after 400 ms. (Reaction times were measured from

the onset of stimulus display until a valid response was recorded, but they were not

used in the data analysis.)

2.3.5 Experimental Conditions

In each of two circles the dot presented could be located either at its center, or

4 px above, or else 4 px under the center. These locations produce a total of nine

experimental conditions.

During each session, excepting the practice trials, the dot was presented at the

center in a half of the trials; above the center in a quarter of them; and below

the center in the remaining quarter, for each of the circles. Table 2.1 presents the

proportions of allocations of trials to each of the 9 conditions.

For each session, each trial was randomly assigned to one of the conditions in

accordance with Table 2.1. The number of experimental sessions was chosen so that

the expected number of (non-practice) trials in the conditions with lowest probabilities

was at least 300. This number of observations was chosen based on Refs. [2], whose

results show that coverage errors with respect to nominal values are below 1% for

almost all confidence intervals for proportions with n > 300.
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Table 2.1.
Probabilities with which a trial was allocated to one of the 9 experimental
conditions.

Center Up Down
Center 1/4 1/8 1/8

Up 1/8 1/16 1/16
Down 1/8 1/16 1/16

2.4 Analyses

Based on the experimental design depicted in Table 2.1, we specify the following

properties:

– lc: a dot is presented in the center of the left circle;

– rc: a dot is presented in the center of the right circle;

– lu: a dot is presented above the center of the left circle;

– ru: a dot is presented above the center of the right circle;

– ld: a dot is presented below the center of the left circle; and

– rd: a dot is presented below the center of the right circle.

The 9 experimental conditions (contexts) then are denoted lcrc, lcru, etc. Thus, the

system of measurements depicted by the matrix in Fig. 2.2 represents the complete

3 × 3 design given in Table 2.1.

We approach the exploration of this system through the theory of contextuality

for cyclic systems in two ways. Firstly, note that from the system in Fig. 2.2 we can

extract six different cyclic subsystems of rank 6 and nine of rank 4. One of the rank

4 subsystems is presented in the left matrix in Fig. 2.3. One of the rank 6 subsystems

is shown in the right matrix in Fig. 2.3.
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lc rc lu ru ld rd

lcrc Rlcrc
lc

Rlcrc
rc

· · · ·
lurc · Rlurc

rc
Rlurc

lu
· · ·

luru · · Rluru
lu

Rluru
ru

· ·
ldru · · · Rldru

ru
Rldru

ld
·

ldrd · · · · Rldrd
ld

Rldrd
rd

lcru Rlcru
lc

· · Rlcru
ru

· ·
lurd · · Rlurd

lu
· · Rlurd

rd

ldrc · Rldrc
rc

· · Rldrc

ld
·

lcrd Rlcrd
lc

· · · · Rlcrd
rd

Fig. 2.2. System of measurements for double detection experiment.

lc rc lu ru

lcrc Rlcrc
lc

Rlcrc
rc

· ·
lurc · Rlurc

rc
Rlurc

lu
·

luru · · Rluru
lu

Rluru
ru

lcru Rlcru
lc

· · Rlcru
ru

lc rc lu ru ld rd

lcrc Rlcrc
lc

Rlcrc
rc

· · · ·
lurc · Rlurc

rc
Rlurc

lu
· · ·

luru · · Rluru
lu

Rluru
ru

· ·
ldru · · · Rldru

ru
Rldru

ld
·

ldrd · · · · Rldrd
ld

Rldrd
rd

lcrd Rlcrd
lc

· · · · Rlcrd
rd

Fig. 2.3. Examples of cyclic subsystems of rank 4 and 6.

Secondly, in addition to the definition of the quantities as presented above, there

are several interesting systems produced by redefining these quantities.1 From the

description of the double-detection paradigm, one can argue, e.g., that the center

location may be viewed as a signal to be detected, with either of the two off-center

locations being treated as absence of the signal. This way of looking at the stimuli

induces the following definition of the properties to be measured:

– lc: a dot is presented in the center of the left circle;

1There are also several uninteresting ways to construct systems of measurements for the conditions
and measurements in this experiment. Examples of how to construct them and why they are not
interesting may be found in Ref. [7]
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x y

lxry R
lxry
x R

lxry
y

lyrx R
lyrx
x R

lyrx
y

Fig. 2.4. Rank 2 systems structure where (x, y) is any of
(c, ud) , (cu, d) , (cd, u) , (c, u) , (c, d) , (u, d) .

– rc: a dot is presented in the center of the right circle;

– lud: a dot is presented off-center in the left circle;

– rud: a dot is presented off-center in the right circle.

Analogously one could also consider lcu, lcd, rcu, rcd, as properties to be measured in

appropriately chosen contexts,

Another way of dealing with our data is to consider the locations of the dots as

properties to be measured (by responses attributing to them to a left or to a right

circle). For instance, a pair of properties can be chosen as

– c: a dot is presented in the center of a circle; and

– ud: a dot is presented off the center of a circle.

A systematic application of both of these redefinitions leads to also consider quantities

lcu, lcd, rcu, rcd, u, cd, d, and cu with the analogous interpretations. In this way, six

systems of rank 2 and 27 systems of rank 4 may be constructed. Thus, we shall

consider systems with the structures depicted by the matrices in Figs. 2.4, 2.5, and

2.6.
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lx rx ly ry

lxrx Rlxrx
lx

Rlxrx
rx

· ·
lyrx · R

lyrx
rx R

lyrx

ly
·

lyry · · R
lyry

ly
R

lyry
ry

lxry R
lxry

lx
· · R

lxry
ry

Fig. 2.5. Rank 4 systems structure where (lx, ly) is any of
(lc, lud) , (lcu, ld) , (lcd, lu) , (lc, lu) , (lc, ld) , (lu, ld), and (rx, ry) is any of
{(rc, rud) , (rcu, rd) , (rcd, ru) , (rc, ru) , (rc, rd) , (ru, rd)} .

lx rx ly ry lz rz

lxrx Rlxrx
lx

Rlxrx
rx

· · · ·
lyrx · R

lyrx
rx R

lyrx

ly
· · ·

lyry · · R
lyry

ly
R

lyry
ry · ·

lzry · · · R
lzry
ry R

lzry

lz
·

lzrz · · · · Rlzrz
lz

Rlzrz
rz

lxrz Rlxrz
lx

· · · · Rlxrz
rz

Fig. 2.6. Rank 6 systems structure where (x, y, z) is any of
(c, u, d) , (c, d, u) , (u, c, d) , (d, c, u) , (u, d, c) , (d, u, c) .

2.5 Results

2.5.1 Results for Cyclic Subsystems

Table 2.2 presents the individual data for all of the expectations used in the

calculations of all subsystems. Note that the statistics associated with the redefined

quantities are obtained by an apropriate linear combination of those in Table 2.2 with

weights proportional to the number of trials of the combined conditions.

Table 2.3 presents the values of ΛC, ICC, and ΔC calculated for each participant

and each of the rank 6 cyclic subsystems. Table 2.4 presents the respective values
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Table 2.2.
Individual level data

P1 P2 P3
l r

�
Rlr

l

� �
Rlr

r
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Rlr

l Rlr
r
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Rlr

l

� �
Rlr

r

� �
Rlr

l Rlr
r

� �
Rlr

l

� �
Rlr

r

� �
Rlr

l Rlr
r

�

lc rc 0.4349 0.2730 0.4825 0.7317 0.5683 0.3984 0.3582 0.1946 −0.0913
lc ru 0.6190 −0.5397 −0.2095 0.7016 −0.0825 −0.2413 0.6762 −0.8508 −0.6159
lc rd −0.1873 0.2698 0.4095 0.8857 −0.8635 −0.7937 0.3937 −0.3524 −0.3429
lu rc −0.5048 0.1175 0.2254 −0.2063 0.5238 −0.5302 −0.7302 0.6603 −0.5683
lu ru 0.0476 −0.0286 0.4794 0.1111 0.1683 0.2190 −0.4904 −0.6624 0.4459
lu rd −0.8476 −0.0857 0.1619 0.2254 −0.7778 −0.4222 −0.7643 −0.2166 0.0446
ld rc 0.5873 −0.3937 −0.0825 −0.6667 0.7810 −0.5238 −0.4159 0.3429 −0.4762
ld ru 0.5619 −0.9111 −0.5365 −0.7333 0.2635 −0.4286 −0.2508 −0.7079 0.0095
ld rd 0.5111 0.3016 0.4730 −0.5175 −0.5937 0.5810 −0.3079 −0.1746 0.0413

Table 2.3.
Contextuality cyclic subsystems of rank 6

System P1 P2 P3
(lx,, ly, lz), (rx, ry, rz) ΛC ICC ΔC ΛC ICC ΔC ΛC ICC ΔC
(lc, ld, lu), (rd, ru, rc) 1.6254 2.4127 -4.7873 2.4571 1.3714 -2.9143 2.0382 1.0779 -3.0397
(ld, lc, lu), (rc, rd, ru) 1.7143 2.4889 -4.7746 2.4508 1.4286 -2.9778 2.4078 1.3138 -2.9060
(ld, lu, lc), (rc, ru, rd) 1.9873 3.4476 -5.4603 2.3476 0.7286 -2.3810 1.4104 0.8040 -3.3936
(lc, lu, ld), (rd, rc, ru) 2.6063 2.2952 -3.6889 2.9508 1.0968 -2.1460 1.4991 1.0213 -3.5222
(lu, lc, ld), (rd, ru, rc) 1.7238 2.7206 -4.9968 2.3857 0.9413 -2.5556 1.7151 1.0784 -3.3633
(lu, ld, lc), (rc, rd, ru) 1.7651 1.4921 -3.7270 2.1190 1.2524 -3.1333 1.3708 1.0598 -3.6890

Table 2.4.
Contextuality cyclic subsystems of rank 4

System P1 P2 P3
(lx, ly), (rx, ry) ΛC ICC ΔC ΛC ICC ΔC ΛC ICC ΔC
(lc, lu), (rc, ru) 1.3968 1.4032 -2.0063 0.9508 0.6429 -1.6921 1.7213 1.2118 -1.4904
(lc, lu), (rc, rd) 0.9556 1.4762 -2.5206 2.1444 0.7159 -0.5714 1.0470 0.6711 -1.6241
(lc, lu), (ru, rd) 1.2603 2.5683 -3.3079 1.6762 0.6349 -0.9587 1.3600 0.8806 -1.5206
(lc, ld), (rc, ru) 1.3111 1.2476 -1.9365 1.5921 0.6556 -1.0635 1.1929 0.7742 -1.5812
(lc, ld), (rc, rd) 1.4476 1.3968 -1.9492 1.5000 0.7857 -1.2857 0.9517 0.4694 -1.5177
(lc, ld), (ru, rd) 1.2095 1.2603 -2.0508 2.0444 1.0159 -0.9714 0.9905 0.6603 -1.6698
(lu, ld), (rc, ru) 1.1587 1.9714 -2.8127 1.7016 0.7365 -1.0349 1.4808 0.7678 -1.2870
(lu, ld), (rc, rd) 0.9429 1.3175 -2.3746 2.0571 1.0222 -0.9651 1.0478 0.5015 -1.4538
(lu, ld), (ru, rd) 1.6508 2.2159 -2.5651 1.2127 0.6095 -1.3968 0.5222 0.4185 -1.8963

for each of the rank 4 cyclic subsystems. For all participants, the subsystems are

noncontextual.
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Table 2.5.
Contextuality cyclic systems of rank 2

System P1 P2 P3
(x,y) ΛC ICC ΔC ΛC ICC ΔC ΛC ICC ΔC
(c, ud) 0.0286 0.5302 -0.5016 0.0095 0.1778 -0.1683 0.0429 0.0619 -0.0190
(cd, u) 0.5228 0.5947 -0.0720 0.1905 0.2286 -0.0381 0.0430 0.0631 -0.0201
(cu, d) 0.5608 0.5862 -0.0254 0.1778 0.2032 -0.0254 0.1003 0.0695 0.0308
(c, u) 0.4349 0.5365 -0.1016 0.2889 0.3016 -0.0127 0.0476 0.1365 -0.0889
(c, d) 0.4921 0.5238 -0.0317 0.2698 0.3016 -0.0317 0.1333 0.1143 0.0190
(u, d) 0.6984 0.7111 -0.0127 0.0063 0.0825 -0.0762 0.0351 0.0906 -0.0556

2.5.2 Results for Cyclic Systems with Redefined Quantities

Table 2.5 presents the values of ΛC, ICC, and ΔC calculated for each participant

for each of the rank 2 cyclic systems, and Table 2.6 shows those for the rank 4

cyclic systems. Note that for participant P3, two of the rank 2 systems, those with

(x, y) = (c, d) and (x, y) = (cu, d), have a positive ΔC value, which might suggest that

these two systems show contextuality. However, their respective confidence intervals,

ΔC(cu,d) ∈ (−0.267, 0.241) and ΔC(c,d) ∈ (−0.233, 0.215),2 indicate that the values

are consistent with lack of contextuality.

2.6 Conclusions

The experiment presented in this paper illustrates the use of the double factorial

paradigm in the search of contextuality in behavioral systems, namely in the responses

of human observers in a double-detection task. This paradigm provides the closest

analogue in psychophysical research to the Alice-Bob EPR/Bohm paradigm.

295% confidence intervals corrected by Bonferroni for the number of tests for ΔC values in the
experiment. However, it should be noted that even uncorrected intervals covered the value 0.
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Table 2.6.
Contextuality cyclic systems of rank 4

System P1 P2 P3
(lx, ly), (rx, ry) ΛC ICC ΔC ΛC ICC ΔC ΛC ICC ΔC
(lc, lud), (rc, rud) 0.6556 0.7032 -2.0476 1.4556 0.5921 -1.1365 1.2281 0.7648 -1.5367
(lc, lud), (rcd, ru) 0.7926 1.1228 -2.3302 0.6720 0.5238 -1.8519 1.3525 0.9192 -1.5667
(lc, lud), (rcu, rd) 0.9407 1.3937 -2.4529 1.2857 0.7460 -1.4603 0.9247 0.5181 -1.5934
(lc, lud), (rc, ru) 0.7349 0.9286 -2.1937 1.2714 0.5381 -1.2667 1.4568 0.9931 -1.5363
(lc, lud), (rc, rd) 1.1381 1.4048 -2.2667 1.6397 0.7063 -1.0667 0.9993 0.5365 -1.5371
(lc, lud), (ru, rd) 0.9079 1.5111 -2.6032 1.2190 0.8254 -1.6063 1.1431 0.7703 -1.6271
(lcd, lu), (rc, rud) 0.7841 0.4688 -1.6847 1.0423 0.6106 -1.5683 1.3443 0.7911 -1.4469
(lcd, lu), (rcd, ru) 1.3418 1.6402 -2.2984 1.0681 0.4804 -1.4123 1.4357 0.9428 -1.5070
(lcd, lu), (rcu, rd) 0.8127 1.6275 -2.8148 0.9975 0.5284 -1.5309 0.7726 0.5453 -1.7727
(lcd, lu), (rc, ru) 1.3175 1.3683 -2.0508 0.9619 0.6106 -1.6487 1.6412 1.0639 -1.4227
(lcd, lu), (rc, rd) 0.7884 1.2159 -2.4275 1.3788 0.7037 -1.3249 1.0473 0.5867 -1.5394
(lcd, lu), (ru, rd) 1.3905 2.4508 -3.0603 1.2804 0.4487 -1.1683 1.0235 0.6986 -1.6751
(lcu, ld), (rc, rud) 0.6212 0.9725 -2.3513 0.9153 0.6868 -1.7714 0.9903 0.4030 -1.4127
(lcu, ld), (rcd, ru) 1.0328 1.3848 -2.3520 0.6603 0.6145 -1.9541 0.8142 0.5372 -1.7230
(lcu, ld), (rcu, rd) 1.3051 1.4399 -2.1347 1.7129 0.8698 -1.1570 0.8240 0.2918 -1.4677
(lcu, ld), (rc, ru) 0.9958 1.4889 -2.4931 1.1291 0.6423 -1.5132 0.9988 0.5452 -1.5464
(lcu, ld), (rc, rd) 1.2794 1.3704 -2.0910 1.6857 0.8646 -1.1788 0.9818 0.2608 -1.2790
(lcu, ld), (ru, rd) 1.3566 1.5788 -2.2222 1.7672 0.8804 -1.1132 0.5084 0.5496 -2.0412
(lc, lu), (rc, rud) 0.9286 0.5571 -1.6286 1.5476 0.6492 -1.1016 1.3842 0.9073 -1.5231
(lc, lu), (rcd, ru) 1.3513 1.7915 -2.4402 0.9534 0.5069 -1.5534 1.6014 1.1021 -1.5007
(lc, lu), (rcu, rd) 0.8095 1.6328 -2.8233 1.6815 0.6296 -0.9481 0.8847 0.6947 -1.8101
(lc, ld), (rc, rud) 0.6333 1.1063 -2.4730 1.3635 0.6238 -1.2603 1.0723 0.6218 -1.5495
(lc, ld), (rcd, ru) 1.1016 1.1968 -2.0952 0.8265 0.7757 -1.9492 1.1043 0.7363 -1.6320
(lc, ld), (rcu, rd) 1.3683 1.3513 -1.9831 1.6815 0.8624 -1.1810 0.9647 0.4479 -1.4833
(lu, ld), (rc, rud) 0.5968 0.9143 -2.3175 1.2317 0.8127 -1.5810 1.2643 0.5585 -1.2942
(lu, ld), (rcd, ru) 1.3228 1.7608 -2.4381 1.2974 0.6180 -1.3206 1.1044 0.6240 -1.5195
(lu, ld), (rcu, rd) 1.1788 1.6169 -2.4381 1.7757 0.8847 -1.1090 0.5485 0.4365 -1.8880

We have found that for the participants in the study there was no evidence of

contextuality in their responses. These results add to the existing evidence that

points towards lack of contextuality in psychology (cf. Ref. [13].)
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3. ADVANCED ANALYSIS OF QUANTUM

CONTEXTUALITY IN A PSYCHOPHYSICAL

DOUBLE-DETECTION EXPERIMENT

Reprinted from Cervantes, V. H., & Dzhafarov, E. N. (2017). Advanced analysis of
quantum contextuality in a psychophysical double-detection experiment. Journal of
Mathematical Psychology, 79, 77-–84. https://doi.org/10.1016/j.jmp.2017.03

.003

Abstract The results of behavioral experiments typically exhibit inconsistent con-

nectedness, i.e., they violate the condition known as “no-signaling,” “no-disturbance,”

or “marginal selectivity.” This prevents one from evaluating these experiments in

terms of quantum contextuality if the latter understood traditionally (as, e.g., in the

Kochen-Specker theorem or Bell-type inequalities). The Contextuality-by-Default

(CbD) theory separates contextuality from inconsistent connectedness. When ap-

plied to quantum physical experiments that exhibit inconsistent connectedness (due

to context-dependent errors and/or signaling), the CbD computations reveal quantum

contextuality in spite of this. When applied to a large body of published behavioral

experiments, the CbD computations reveal no quantum contextuality: all context-

dependence in these experiments is described by inconsistent connectedness alone.

Until recently, however, experimental analysis of contextuality was confined to so-

called cyclic systems of binary random variables. Here, we present the results of a

psychophysical double-detection experiment that do not form a cyclic system: their

analysis requires that we use a recent modification of CbD, one that makes the class of

noncontextual systems more restricted. Nevertheless our results once again indicate
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that when inconsistent connectedness is taken into account, the system exhibits no

contextuality.

Keywords: contextuality, cyclic systems, double-detection, inconsistent connect-

edness, psychophysics.

In recent years there were many reports of behavioral experiments (Accardi,

Khrennikov, Ohya, Tanaka, & Yamato, 2016; Aerts & Sozzo, 2014, 2015; Aerts, Sozzo,

& Veloz, 2015; Asano, Hashimoto, Khrennikov, Ohya, & Tanaka, 2014; Bruza, Kitto,

Ramm, & Sitbon, 2015; Cervantes & Dzhafarov, 2017; Dzhafarov, Zhang, & Kujala,

2015; Khrennikov, 2015; Sozzo, 2015; Wang, Solloway, Shiffrin, & Busemeyer, 2014;

Zhang & Dzhafarov, 2017) aimed at (or interpretable as aimed at) revealing contex-

tuality of the kind predicted by and experimentally confirmed in quantum physics

(Bell, 1964; Clauser, Horne, Shimony, & Holt, 1969; Fine, 1982; Hensen et al., 2015;

Klyachko, Can, Binicioğlu, & Shumovsky, 2008; Kochen & Specker, 1967; Kurzyński,

Ramanathan, & Kaszlikowski, 2012; Lapkiewicz et al., 2011). All known to us behav-

ioral data, however, violate a certain condition that makes a direct application of the

traditional quantum contextuality analysis impossible. This condition is variously

called “no-signaling” or “no-disturbance” in quantum physics (Bacciagaluppi, 2015,

2016; Cereceda, 2000; Kofler & Brukner, 2013; Kurzyński, Cabello, & Kaszlikowski,

2014; Popescu & Rohrlich, 1994; Ramanathan, Soeda, Kurzyński, & Kaszlikowski,

2012) and “marginal selectivity” in psychology (Dzhafarov, 2003; Townsend & Schwe-

ickert, 1989; Zhang & Dzhafarov, 2015). It is a required condition for the traditional

quantum contextuality analysis, even though it is often violated in quantum me-

chanical experiments as well (this issue was first systematically discussed in Adenier

& Khrennikov, 2007; see also Adenier & Khrennikov, 2016; Lapkiewicz et al., 2011,

2013). The Contextuality-by-Default (CbD) theory (de Barros, Dzhafarov, Kujala, &
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Oas, 2015; Dzhafarov, 2016; Dzhafarov & Kujala, 2014a, 2014b, 2015, 2016a, 2016b,

2017a, in press; Dzhafarov, Kujala, & Cervantes, 2016; Dzhafarov, Kujala, & Larsson,

2015) overcomes this difficulty by proposing a principled way of separating contex-

tuality proper from inconsistent connectedness (the CbD term for violations of the

“no-signaling” or “marginal selectivity” condition). This theory was used to reanalyze

the behavioral experiments aimed at contextuality, with the conclusion that they pro-

vide no evidence for contextuality (Cervantes & Dzhafarov, 2017; Dzhafarov, Kujala,

Cervantes, Zhang, & Jones, 2016; Dzhafarov, Zhang, & Kujala, 2015; Zhang & Dzha-

farov, 2017): inconsistent connectedness is the only form of context-dependence that

we have in them. By contrast, when CbD is used to reanalyze a quantum-mechanical

experiment that exhibits inconsistent connectedness (Lapkiewicz et al., 2011), con-

textuality proper (on top of inconsistent connectedness) is established beyond doubt

(Kujala, Dzhafarov, & Larsson, 2015).

Virtually all experiments aimed at revealing contextuality, both in quantum physics

and in behavioral sciences, deal with a special kind of systems of random variables,

called cyclic systems in CbD (Kujala et al., 2015). In these systems each property is

measured in precisely two different contexts, and each context contains two proper-

ties being measured together. If, in addition, all random variables in the system are

binary (each indicating presence or absence of a certain property), then the system

is amenable to complete and exhaustive contextuality analysis (Dzhafarov & Kujala,

2016a; Dzhafarov, Kujala, & Cervantes, 2016; Dzhafarov, Kujala, & Larsson, 2015;

Kujala et al., 2015). In spite of their prominence in quantum theory, however, it is

highly desirable to extend contextuality analysis beyond the class of cyclic systems.

Many researchers (although not the present authors) find the lack of contextuality

in behavioral data to be a disappointing negative result. What if this result is due

to the fact that cyclic systems in human behavior are too simple? What if it is “too
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easy” for a cyclic system to be noncontextual? These are valid questions, and they

will have no definite answers until we have a predictive theory of (at least certain

types of) human behavior on a par with quantum mechanics.

In the absence of a predictive theory, the only, admittedly imperfect way of dealing

with these considerations is to expand the experimentation and contextuality analysis

to progressively broader classes of systems. In this paper we make a first step in this

direction by analyzing a psychophysical experiment whose results form a non-cyclic

system of random variables. This experiment was reported previously (Cervantes &

Dzhafarov, 2017), but its analysis was confined to extracting from it a large number of

cyclic subsystems and showing all of them to be noncontextual. It is mathematically

possible, however, that a system is contextual with all its cyclic subsystems being

noncontextual.

A satisfactory way to expand the contextuality analysis beyond cyclic systems was

proposed in a recent modification of CbD, dubbed “CbD 2.0” (Dzhafarov & Kujala,

2017a, in press): it is essentially the original CbD in which the measurements of the

same property (say, responses to the same stimulus) are analyzed in pairs only. This

modification has compelling reasons behind it, The main one is that in the modified

theory a subsystem of a noncontextual system is always noncontextual. Another

reason is that contextuality analysis is reduced to the problem of compatibility of two

uniquely defined sets of distributions: the empirically known distributions of context-

sharing random variables and the distributions of the “multimaximal couplings” of

the random variables measuring the same property in different contexts. All of this is

clarified below (Section 3.2). The modification in question does not affect the theory

of cyclic systems, so the results mentioned earlier remain unchanged. However, when

it comes to non-cyclic systems, the modification makes the requirements that a system

should satisfy to be noncontextual more stringent.
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The plan of the paper is as follows. In Sections 3.1 and 3.2 we present the basics

of the CbD theory, in the “CbD 2.0” version. The discussion is primarily confined to

systems of binary random variables (dichotomic measurements), both for simplicity

and because the double-detection experiment to be analyzed involves only dichotomic

judgments. In Section 3.3 we apply this theory to the results of our double-detection

experiment. Our conclusion is that in spite of the notion of noncontextuality we use

being more restrictive than in the original version of the CbD theory, the double

detection experiment does not exhibit any contextuality.

3.1 Introduction to contextuality

Every experiment results in a system of random variables. In most physics exper-

iments these random variables are interpreted as measurements of properties, in most

behavioral experiments they are interpreted as responses to stimuli, such as ques-

tions. For brevity we will use the term “measurement” in both meanings (because

responding to a stimulus can always be viewed as a form of measurement). What is

being measured therefore is part of the identity of a random variable representing a

measurement. It is referred to as the content of the random variable. The content,

however, does not specify a random variable uniquely, because one and the same con-

tent can be measured under different conditions, referred to as contexts. For instance,

if a content q is measured simultaneously with measurements of other contents, in

some cases q� and in other cases q��, then in the former cases the context is c = (q, q�)

and in the latter ones it is c� = (q, q��). As in Dzhafarov and Kujala (2016a, 2017a),

we will write “conteXt” and “conteNt” to prevent their confusion in reading. The

conteXt and conteNt of a random variable uniquely identify it within a given system

of random variables. So each random variable in a system is double-indexed, Rc
q.
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According to the CbD theory’s main principle (Dzhafarov, 2016; Dzhafarov &

Kujala, 2014a, 2016a, 2016b, in press; Dzhafarov, Kujala, & Cervantes, 2016), two

random variables Rc
q and Rc�

q� are jointly distributed if and only if c = c�, i.e., if and

only if they are recorded in the same conteXt. Otherwise they are stochastically

unrelated, i.e., joint probabilities for them are undefined. This means, in particular,

that any two Rc
q and Rc�

q with the same conteNt in different conteXts are stochastically

unrelated (which implies, among other things, that they can never be considered to

be one and the same random variable). Their individual distributions may be the

same but they need not be. If these distributions are different, the system exhibits

a form of context-dependence. However, in CbD, this context-dependence by itself

does not say that the system is contextual in the sense related to how this term

is used in quantum mechanics. Rather the difference in the distributions is treated

as manifestation of information/energy flowing to the measurements of conteNt q

from elements of the contexts c, c� other than q. We will refer to this transfer of

information/energy as direct cross-influences. Thus, if c = (q, q�) and c� = (q, q��), the

conteNt q does, of course, directly influence its measurement, but, with q fixed, the

second conteNt in the pair can also affect this measurement. This can sometimes be

attributed to some physical action of q� or q�� upon the process measuring q, or (as

another form of information transfer) it can be a form of contextual bias, a change

in the procedure by which q is measured depending on what else is being measured.

q

(fixed) direct

influence

��

q�, q��

(variable) direct

cross-influence��
measurement of q
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The difference between the distributions of Rc
q and Rc�

q (equivalently, the strength

of the direct cross-influences responsible for this difference) is measured in CbD by

the probability with which Rc
q and Rc�

q could be made to coincide if they were jointly

distributed. This means that we consider all couplings of Rc
q, R

c�
q , i.e., the jointly

distributed pairs of random variables T c
q , T c�

q whose respective individual distributions

are the same as those of Rc
q, R

c�
q , and among these pairs we find the one(s) with the

maximal possible probability of T c
q = T c�

q . The larger this maximal probability, the

closer the two distributions to each other, and the weaker the direct cross-influences

by conteXts c, c� upon the measurement of q. This maximal probability is 1 if and only

if the two distributions are identical, and it is 0 if and only if the two distributions

have disjoint supports.

Consider now an experiment represented by a system of random variables Rc
q with

varying c and q, and suppose that we have computed the maximal probability just de-

scribed for each pair of random variables that share a conteNt. And we know (or can

empirically estimate) the joint distributions of all random variables that share a con-

teXt. Intuitively, quantum contextuality is about whether these computed maximal

probabilities and these empirically defined joint distributions are mutually compat-

ible. If they are not, then one can say that conteXts force the random variables

sharing conteNts to be more dissimilar than they are made by direct cross-influences

alone. The system then can be considered contextual.

To understand this without conceptual and technical complications, consider first

a cyclic system of binary random variables (Dzhafarov, Kujala, & Larsson, 2015;

Kujala & Dzhafarov, 2015; Kujala et al., 2015). It is depicted in Fig. 3.1. The

conteXts and conteNts are such that, with appropriate enumeration, in conteXt ci
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one measures precisely two cyclically-successive conteNts qi, qi⊕1 (where i = 1, . . . , n;

i ⊕ 1 = i + 1 for i < n; and n ⊕ 1 = 1):

q1
c1 �� q2

c2 �� · · · cn−2 �� qn−1
cn−1 �� qn,

cn

��

Each pair Ri
i, R

i
i⊕1 (i = 1, . . . , n) of random variables sharing a conteXt (within a

row in Fig. 3.1) are jointly distributed. Since all the measurements in the system are

binary (±1), the joint distribution of Ri
j is uniquely determined by three probabilities,

pi
i = Pr [Ri

i = 1] , pi
i⊕1 = Pr

�
Ri

i⊕1 = 1
�
,

pi = Pr
�
Ri

i = Ri
i⊕1 = 1

�
.

(3.1)

Random variables Ri�1
i , Ri

i within a column share a conteNt, and we compute for

each such a pair the magnitude of direct cross-influences, max Pr
�
T i

i = T i�1
i

�
, across

all couplings
�
T i�1

i , T i
i

�
of Ri�1

i , Ri
i: in this case the couplings are the pairs

�
T i�1

i , T i
i

�

with all possible values of Pr
�
T i

i = T i�1
i = 1

�
and with

Pr
�
T i

i = 1
�

= pi
i, Pr

�
T i�1

i = 1
�

= pi�1
i . (3.2)

Here, i = 1, . . . , n; i � 1 = i − 1 for i > 1; and 1 � 1 = n. The coupling
�
T i�1

i , T i
i

�

with this property is called maximal coupling. It is easy to show (Thorisson, 2000)

that this maximal coupling always exists and is defined by complementing (3.2) with

pi = Pr
�
T i

i = T i�1
i = 1

�
= min

�
pi

i, p
i�1
i

�
. (3.3)

The probabilities (3.1) and (3.3) are shown in Fig. 3.2. Note that (3.2) and (3.3)

uniquely define the joint distribution of the two random variables T i�1
i , T i

i within each
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� � · · · c1

� � · · · c2

� � · · · c3
...

...
...

...
. . .

...
...

...
· · · � � cn−1

� · · · � cn

q1 q2 q3 q4 · · · qn−1 qn CYC

Fig. 3.1. A cyclic system (shown here for a sufficiently large n, although n
can be as small as 2 or 3). The system involves n conteNts q1, . . . , qn and
n conteXts c1, . . . , cn. The star symbol in the (ci, qj)-cell indicates that
conteNt qj was measured in conteXt ci, and the result of the measurement
is random variable Ri

j; otherwise qj was not measured in ci and the cell
is left empty. All Ri

j are binary random variables, with possible values
denoted +1 and −1.

column of the matrix, in the same way as (3.1) uniquely define the joint distribution of

Ri
i, R

i
i⊕1 within each row of the matrix. The only difference is that the row-wise joint

distributions are empirical reality, whereas the column-wise joint distributions are

constructed artificially to depict the direct cross-influences. Contextuality in CbD is

all about the compatibility of these column-wise and row-wise joint distributions: the

system is considered noncontextual if all these probabilities can be achieved within

a jointly distributed set of 2n random variables. In other wordsa, we seek a set of

jointly distributed random variables Si
j replacing the star symbols in Fig. 3.1, such

that

(i) Pr [Si
i = 1] = pi

i, Pr
�
Si

i⊕1 = 1
�

= pi
i⊕1,

(ii) Pr
�
Si

i = Si
i⊕1 = 1

�
= pi,

(iii) Pr
�
Si

i = Si�1
i = 1

�
= pi = min

�
pi

i, p
i�1
i

�

(3.4)

a(Erratum note added in the dissertation.) Originally “word”. Corrected in the text.



47

p1
1 p1

2 · · · p1

p2
2 p2

3 · · · p2

p3
3 p3

4 · · · p3

...
...

...
...

. . .
...

...
...

· · · pn−1
n−1 pn−1

n pn−1

pn−1
1 · · · pn

n pn

p1 p2 p3 p · · · pn−1 pn CYC

Fig. 3.2. The probability values that characterize the cyclic sys-
tem in Fig. 3.1 in accordance with (3.1) and (3.3). The system
is noncontextual if there is a set of 2n jointly distributed random
variables

�
Si

j : i = 1, . . . , n; j = i or j = i ⊕ 1
�

with Pr
�
Si

j = 1
�

= pi
j,

Pr
�
Si

i = Si
i⊕1 = 1

�
= pi, and Pr

�
Si

i = Si�1
i = 1

�
= pi = min

�
pi

i, p
i�1
i

�
.

The equations (i) and (ii) in (3.4) tell us that the set of the Si
j-variables we seek

is a coupling of the original random variables Ri
j arranged row-wise in Fig. 3.1: in

each row the variables Ri
j have a well-defined joint distribution, but different rows are

stochastically unrelated, so the coupling “saws them together” in a single joint distri-

bution. The equations (i) and (iii) in (3.4) tell us that the set of the Si
j-variables is a

coupling for the column-wise maximal couplings T i
j : in each of the columns the vari-

ables T i
j have a well-defined joint distribution, but different columns are stochastically

unrelated because the maximal couplings were computed for each column separately;

so the coupling “saws the columns together” in a single joint distribution. It is easy to

see that each of these two couplings (of the rows and of the columns) exists, because

the random variables in the different rows do not overlap, and the same is true for

different columns. In a typical case, each of the two couplings can be constructed in

an infinity of ways, and the question is whether a jointly distributed set of 2n random

variables can be simultaneously a coupling for the rows and for the columns. If the

answer to this question is negative, the conteXts intervene beyond the effect of the

direct cross-influences.
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� � c1

� � c2

� � c3

� � c4

q1 q2 q3 q4 CYC4

� � � c1

� � c2

� � c3

� � c4

q1 q2 q3 q4 X

Fig. 3.3. A cyclic system with n = 4 (CYC4) and a system X obtained
from CYC4 by adding to it the random variable R1

4.

3.2 Contextuality in arbitrary systems of binary measurements

Let us discuss now how the analysis just presented extends beyond cyclic systems.

We will continue to assume that all the random variables in play are binary.

Consider Fig. 3.3. The system X is not cyclic, as it has three random variables

in the first row (conteXt c1) and three random variables in the fourth column (con-

teNt q4). The number and arrangement of the random variables in a row, however,

is immaterial for the logic of the contextuality analysis. The joint distribution of

R1
1, R

1
2, R

1
4 in the first row of X is uniquely defined empirically. It simply requires

more probabilities than in (3.1) to be described:

p1
1 = Pr [R1

1 = 1] , p1
2 = Pr [R1

2 = 1] ,

p1
4 = Pr [R1

4 = 1] ,

p1
12 = Pr [R1

1 = R1
2 = 1] ,

p1
24 = Pr [R1

2 = R1
4 = 1] ,

p1
14 = Pr [R1

1 = R1
4 = 1] ,

p1
124 = Pr [R1

1 = R1
2 = R1

4 = 1] .

(3.5)
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Nor does anything change in how one treats the pairs of the conteNt-sharing random

variables in the first three columns: one computes the maximal coupling for each

of these columns. One faces choices, however, when dealing with the three random

variables in the fourth column. What is the right way of generalizing the maximal

coupling in this case? There is a compelling reason (Dzhafarov & Kujala, 2017a, in

press) to consider the three conteNt-sharing random variables one pair at a time,

and to compute maximal couplings for them separately. This means finding a jointly

distributed triple (T 1
4 , T 3

4 , T 4
4 ) whose elements are distributional copies of, respectively,

R1
4, R

3
4, R

4
4, i.e.,

Pr [T 1
4 = 1] = p1

4, Pr [T 3
4 = 1] = p3

4,

Pr [T 4
4 = 1] = p4

4,
(3.6)

such that (T 1
4 , T 3

4 ) is the maximal coupling of R1
4, R

3
4, (T 3

4 , T 4
4 ) is the maximal coupling

of R3
4, R

4
4, and (T 1

4 , T 4
4 ) is the maximal coupling of R1

4, R
4
4. In terms of probability

values,

Pr [T 1
4 = T 3

4 = 1] = min {p1
4, p

3
4} ,

Pr [T 3
4 = T 4

4 = 1] = min {p3
4, p

4
4} ,

Pr [T 1
4 = T 4

4 = 1] = min {p1
4, p

4
4} .

(3.7)

As shown in Dzhafarov and Kujala (2017a, in press), such a coupling (called multi-

maximal in CbD ) always exists, and it is unique (as all the random variables here

are binary). The above-mentioned compelling reason for maximizing the couplings

pairwise is that then, if the system is noncontextual, it will remain noncontextual af-

ter one deletes from it one or more random variables. In other words, any subsystem

of a noncontextual system is noncontextual. This would not be true, for instance, if

we only maximized the value of Pr [T 1
1 = T 1

2 = T 1
4 = 1]. At the same time, the max-

imization of Pr [T 1
1 = T 1

2 = T 1
4 = 1] is achieved “automatically” if (3.7) is satisfied.

Moreover, one of the equalities in (3.7) is redundant as it can be derived from the
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other two: if, e.g., p3
4 ≤ p1

4 ≤ p4
4,

b then the redundant equality in (3.7) is the second

one. Generalizing, we have the following theorem.

Theorem 1 (Dzhafarov & Kujala, 2017a, in press). Let R1
q , . . . , R

k
q , k > 1, be binary

(±1) random variables with conteXts enumerated so that

p1
q = Pr

�
R1

q = 1
�
≤ . . . ≤ Pr

�
Rk

q = 1
�

= pk
q .

Then there is a unique set of jointly distributed
�
T 1

q , . . . , T k
q

�
such that

�
T i

q , T
i+1
q

�
is

the maximal coupling of Ri
q, R

i+1
q , for i = 1, . . . , k−1. The coupling

�
T 1

q , . . . , T k
q

�
has

the following properties.

(i) For any subset {i1, . . . , im} ⊆ (1, . . . , k) with m ≤ k,
�
T i1

q , . . . , T im
q

�
is the

maximal coupling of Ri1
q , . . . , Rim

q , i.e., Pr
�
T i1

q = . . . = T im
q

�
has the maximal possible

value among all couplings of Ri1
q , . . . , Rim

q . In particular, for any i, j ∈ (1, . . . , k),
�
T i

q , T
j
q

�
is the maximal coupling of Ri

q, . . . , R
j
q.

(ii) The distribution of
�
T 1

q , . . . , T k
q

�
c is defined by

Pr
�
T 1

q = . . . = T k
q = 1

�
= p1,

Pr
�
T 1

q = . . . = T l
q = −1 ; T l+1

q = . . . = T k
q = 1

�
= pl+1 − pl,

(for l = 1, . . . , k − 1)

Pr
�
T 1

q = . . . = T k
q = −1

�
= 1 − pk,

(3.8)

with all other combinations of values having probability zero.

b(Erratum note added in the dissertation.) Originally p3
4 ≤ p1

4 ≤ p44. Corrected in the text.
c(Erratum note added in the dissertation.) Originally

�
T i1

q , . . . , T im
q

�
. Corrected in the text.
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Now we can formulate the generalization of the definition of contextuality given

in the previous section.

Definition 2. A system of binary random variables Rc
q is noncontextual if there

exists a jointly distributed set of (correspondingly labeled) random variables Sc
q such

that (i) for every conteXt c, the joint distribution of all Sc
q with this value of c is

identical to the joint distribution of the corresponding Rc
q; and (ii) for every conteNt

q, the joint distribution of all Sc
q with this value of q forms the (unique) multimaximal

coupling of the corresponding Rc
q.

The notion of contextuality is, once again, about compatibility of the uniquely

determined row-wise and column-wise distributions. The row distributions are em-

pirically given, the column distributions are computed as multimaximal couplings,

and the question is whether it is possible to find a single coupling for both the rows

and the columns. Once again, the logic of the approach is that if the coupling in

question does not exist, it means that the conteXts force some pairs of the random

variables measuring the same conteNt to be more dissimilar than they are made by

direct cross-influences alone — and the system is therefore contextual.

If a system of random variables turns out to be contextual, one can compute the

degree of its contextuality as the smallest possible total variation of quasi-couplings

of this system. A quasi-coupling differs from a coupling in that the probabilities for

its values are replaced with arbitrary real numbers (not necessarily nonnegative) that

sum to 1. The existence of quasi-couplings for any system and the uniqueness of

the minimum total variation are proved in Dzhafarov and Kujala (2016a). We need

not discuss this otherwise important topic further because the experimental results

reported below reveal no contextuality.
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3.3 Double-detection experiment

We now apply the theory just described to the results of a double-detection ex-

periment. We remind the reader that this experiment was previously described in

Cervantes and Dzhafarov (2017), but to keep this paper self-sufficient we recapitulate

the procedural details below. In Cervantes and Dzhafarov (2017) the system formed

by the data was analyzed by extracting from it a multitude of cyclic subsystems. In

this paper we analyze the system in its entirety.

The double-detection experiment is one of only two contextuality-aimed experi-

ments known to us that uses a within-subject design, i.e., with probabilities estimated

from the responses of a single person to multiple replications of stimuli. (The other

such experiment is the psychophysical matching one described in Dzhafarov, Zhang,

& Kujala, 2015; Zhang & Dzhafarov, 2017.) Most experiments use aggregation of

responses obtained from many persons. The double detection paradigm suggested in

Dzhafarov and Kujala (2012, 2017b) provides a framework where both (in)consistent

connectedness and contextuality can be studied in a manner very similar to how they

are studied in quantum-mechanical systems (or could be studied, because consistent

connectedness in quantum physics is often assumed rather than documented).

3.3.1 Method

3.3.1.1 Participants

The participants were three volunteers, graduate students at Purdue University,

two females and one male (the first author of this paper), aged around 30, with

normal or corrected to normal vision. The experimental program was regulated by

the Purdue University’s IRB protocol #1202011876. The participants are identified

as P1 − P3 in the text below.
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3.3.1.2 Equipment

A personal computer was used with an Intel® Core™ processor running Windows

XP, a 24-in. monitor with a resolution of 1920 × 1200 pixels (px), and a standard US

104-key keyboard. The participant’s head was steadied in a chin-rest with forehead

support at 90 cm distance from the monitor; at this distance a pixel on the screen

subtended 62 s arc.

3.3.1.3 Stimuli

The stimuli presented on the computer screen consisted of two brightly grey col-

ored circles (RGB 100-100-100) on a black background, with their centers 320 px

apart horizontally, each circle having the radius of 135 px and circumference 4 px

wide. Each circle contained a dot of 4 px in diameter in its center or 4 px away

from it, in the upward or downward direction. An example of the stimuli (in reversed

contrast and scaled) is shown in Fig. 3.4.

Fig. 3.4. An example of the stimulus in the double-detection experiment.
In the left circle the dot is in the center, in the right one it is shifted 4
px upwards. The participant’s task was to say, for each of the two circles,
whether the dot was in the center (the answer coded 1) or off-center (the
answer coded -1), irrespective of whether it was shifted up or down.
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3.3.1.4 Procedure

In each trial the participant was asked to indicate, for each circle, whether the

dot was in its center or not in the center (irrespective of in what direction). The

responses were given by pressing in any order and holding together two designated

keys, one for each circle, and the stimuli were displayed until both keys were pressed.

Then, the dots in each circle disappeared, and a “Press the space bar to continue”

message appeared above the circles. Pressing the space bar removed the message,

and the next pair of dots appeared 400 ms later. (Response times were recorded but

not used in the data analysis.)

Each participant completed nine experimental sessions, each lasting 30 minutes

and containing about 560 trials recorded and used for the analysis, preceded by several

practice trials. In each practice trial the participants received feedback as to whether

their response for each of the two circles was correct or not. No feedback was given

in the non-practice trials. The experimental sessions were preceded by one to three

training sessions, excluded from the analysis.

3.3.2 Experimental ConteXts and ConteNts

In each of two circles the dot presented could be located either at its center, or 4

px above the center, or else 4 px under the center. These pairs of locations produce

a total of nine conteXts. During each session, excepting the practice trials, the dot

was presented at the center in a half of the trials, above the center in a quarter of

them, and below the center in the remaining quarter, for each of the circles. Fig. 3.5

presents the proportions of allocations of trials to each of the 9 conditions.

For each session, each trial was randomly assigned to one of the conditions in

accordance with Table 3.5. The number of experimental sessions was chosen so that
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Right
Center (-c) Up (-u) Down (-d)

L
ef

t Center (c-) 1/4 (cc) 1/8 (cu) 1/8 (cd) 1/2

Up (u-) 1/8 (uc) 1/16 (uu) 1/16 (ud) 1/4

Down (d-) 1/8 (dc) 1/16 (du) 1/16 (dd) 1/4

1/2 1/4 1/4

Fig. 3.5. Probabilities with which a trial was allocated to one of the 9
conteXts, with the notation used for the conteXts and the conteNts: c,
u, and d denote that the dot is, respectively, in the center, shifted up, or
shifted down. The 9 conteXts are denoted cc, cu, du, etc., the left (right)
symbol indicating the location of the dot in the left (respectively, right)
circle. To denote conteNts, the location of a dot is shown on the left or
on the right with a dash filling the other side: thus, c- denotes the dot in
the center of the left circle, -d denotes the dot shifted down in the right
circle, etc.

the expected number of (non-practice) trials in the conditions with lowest probabilities

was at least 300. This number of observations was chosen based on Cepeda Cuervo

et al. (2008), whose results show that coverage errors with respect to nominal values

are below 1% for almost all confidence intervals for proportions with n > 300.

The system of random variables representing the data is shown in Fig. 3.6.

3.3.3 Results

The results are shown in Figs. 3.7– 3.9, one for each of the three participants. Each

row, together with its margins, specifies an empirical estimate of the joint distribution

of the two random variables sharing the corresponding conteXt. This distribution is

shown in the format

Pr [X = 1] , Pr [Y = 1] , Pr [X = Y = 1] ,
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c- -c u- -u d- -d
cc � �
uc � �
uu � �
du � �
dd � �
cu � �
ud � �
dc � �
cd � �

Fig. 3.6. The conteNt-conteXt system of measurements for the double
detection experiment. The cell corresponding to context xy and content
z (with z being x- or -y), if it contains a star, represents the random
variable Rxy

z ; the absence of a star means that content z was not measured
in context xy. For instance, xy = cc and z = c- define a random variable
Rcc

c- . The random variables within a given row (in the same conteXt) are
jointly distributed. In our design there are two random variables, Rxy

x- and
Rxy

-y in each conteXt xy, and their joint distribution is uniquely defined by

three probabilities: Pr [Rxy
x- = 1], Pr

�
Rxy

-y = 1
�
, and Pr

�
Rxy

x- = Rxy
-y = 1

�
.

where X and Y are the two variables in the same row. Each column, together with

its margins, shows an empirical estimate of the multimaximal coupling of the three

random variables sharing the corresponding conteNt. The distribution of the coupling

is shown in the format

Pr [A = 1]

Pr [B = 1]

Pr [C = 1]

Pr [A = B = 1]

Pr [B = C = 1]

Pr [A = C = 1]

,

where A, B, C are the three random variables in the same column listed from top

down. The analysis of contextuality consists in considering a set of jointly distributed

18 binary random variables (corresponding to the star symbols in Fig. 3.6), and
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determining whether the 218 values of this set can be assigned probabilities that

sum to the probabilities whose empirical estimates are shown in the data matrices

(Figs. 3.7–3.9). This is a standard linear programing task,

M
46×218

218×1

Q = P
46×1

, Q > 0 (componentwise).

The number of the rows in M and P (i.e., the number of linear constraints imposed

on Q) is the number of the probability estimates shown in each of the data matrices

(45) plus the constraint that ensures that all the 218 probabilities in Q sum to 1.

(The number of the probability estimates could be reduced from 45 to 39, because

one of the three marginal probabilities for each column could be eliminated. We did

not, however, make use of this small reduction in our computations.) The linear pro-

graming was performed by using the GLPK (GNU Linear Programming Kit) package

(version 4.6; Makhorin, 2012) and the R interface to the package (Rglpk, version

0.6-1; Theussl & Hornik, 2015).

The outcome of the analysis is that, for all three participants, the system of

linear equations has a solution in nonnegative values —that is, the data matrices in

Figs. 3.7–3.9 describe noncontextual systems of random variables. Note that in this

case the empirical estimates were fit by the solution precisely, eliminating the need

for statistical analysis.

3.4 Conclusion

The experiment presented in this paper illustrates the use of the double factorial

paradigm in the search of contextuality in behavioral systems, namely in the responses

of human observers in a double-detection task. This paradigm provides the closest

analogue in psychophysical research to the Alice-Bob EPR/Bohm paradigm (Bell,

1964; Clauser et al., 1969; Fine, 1982). We have found that for the participants in



58

P1 c- -c u- -u d- -d Pr [X = Y = 1] # of trials

cc .7175 .6365 .5476 1260

uc .5587 .2476 .2095 630

uu .5238 .4857 .3746 315

du .0444 .7810 .0286 315

dd .7556 .6508 .5714 315

cu .8095 .2302 .2175 630

ud .0762 .4571 .0571 315

dc .3032 .7937 .2778 630

cd .4063 .6349 .3730 630

Pr [A = B = 1] .7175 .5587 .2476 .0444 .7556 .4571

Pr [B = C = 1] .4063 .3032 .0762 .0444 .7556 .4571

Pr [A = C = 1] .4063 .3032 .0762 .2302 .7810 .6349

Fig. 3.7. Empirical data (relative frequencies) for the conteNt-conteXt
system in Fig. 3.6 for participant P1. For every conteXt xy and every
conteNt z measured in xy (either x- or -y), the cell for Rxy

z contains the
frequency estimate of Pr [Rxy

z = 1]; the right margins of the row for xy
show the frequency estimate of Pr

�
Rxy

x- = Rxy
-y = 1

�
and the total number

of measurements in this conteXt. Since xy and z vary, the column for joint
probabilities denotes the two random variables by X = Rxy

x- and Y = Rxy
-y .

The bottom margins in the column for conteNt z show the three frequency
estimates of the maximal values of Pr [Rxy

z = Ruv
z = 1], Pr [Ruv

z = Rst
z = 1],

and Pr [Rxy
z = Rst

z = 1] (where xy, uv, st are three conteXts in which z was
measured). To make notation compact, the three random variables in each
column are labeled A, B, C (from top down), and the three probabilities
are shown as Pr [A = B = 1], Pr [B = C = 1], and Pr [A = C = 1] (one of
which is always redundant but shown for completeness).

the study there was no evidence of contextuality in their responses. These results

add to the existing evidence that points towards lack of contextuality in behavioral

data (Cervantes & Dzhafarov, 2017; Dzhafarov, Kujala, Cervantes, Zhang, & Jones,

2016; Dzhafarov, Zhang, & Kujala, 2015; Zhang & Dzhafarov, 2017). The present

result is in fact stronger than the previous ones, as it uses a more stringent than

before criterion of noncontextuality. This criterion is based on multimaximality rather

than on the simple maximality of the couplings in cyclic systems. However, we
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P2 c- -c u- -u d- -d Pr [X = Y = 1] # of trials

cc .8659 .7841 .6746 1260

uc .7619 .3968 .1968 630

uu .5556 .5841 .3746 315

du .6317 .1333 .0254 315

dd .2413 .2032 .1175 315

cu .8508 .4587 .3444 630

ud .6127 .1111 .0063 315

dc .8905 .1667 .1476 630

cd .9429 .0683 .0571 630

Pr [A = B = 1] .8508 .7619 .3968 .5556 .1333 .1111

Pr [B = C = 1] .8508 .7619 .5556 .4587 .1667 .0683

Pr [A = C = 1] .8659 .7841 .3968 .4587 .1333 .0683

Fig. 3.8. Empirical data (frequencies) for the conteNt-conteXt system in
Fig. 3.6 for participant P2. The rest is as in Fig. 3.7.

P3 c- -c u- -u d- -d Pr [X = Y = 1] # of trials

cc .6791 .5973 .3654 1259

uc .8302 .1349 .0905 630

uu .2548 .1688 .0732 314

du .1460 .3746 .0127 315

dd .3460 .4127 .1397 315

cu .8381 .0746 .0524 630

ud .1178 .3917 .0159 314

dc .6714 .2921 .1127 630

cd .6968 .3238 .1746 630

Pr [A = B = 1] .6791 .5973 .1349 .1460 .3460 .3917

Pr [B = C = 1] .6968 .6714 .1178 .0746 .2921 .3238

Pr [A = C = 1] .6791 .5973 .1178 .0746 .2921 .3238

Fig. 3.9. Empirical data (frequencies) for the conteNt-conteXt system in
Fig. 3.6 for participant P3. The rest is as in Fig. 3.7.
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should emphasize that in the absence of a predictive theory on a par with quantum

mechanics, no failure to find contextuality in even a large number of experiments can

be safely generalized: contextuality may very well be found under as yet unexplored

modifications of experimental conditions. Consider, e.g., the Alice-Bob EPR/Bohm

paradigm, and imagine that we have no theory that could guide us in choosing the

specific axes along which Alice and Bob are to measure the spins in their respective

particles. It would be rather unlikely to hit at a “right” combination of the angles by

pure chance, and after numerous failures one could very well conclude, in this case

wrongly, that contextuality is absent in this paradigm. More work is needed.
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4. SNOW QUEEN IS EVIL AND BEAUTIFUL:

EXPERIMENTAL EVIDENCE FOR PROBABILISTIC

CONTEXTUALITY IN HUMAN CHOICES

Copyright © 2018, American Psychological Association. Reproduced with permis-
sion. Cervantes, V. H., & Dzhafarov, E. N. (2018). Snow queen is evil and beautiful:
Experimental evidence for probabilistic contextuality in human choices. Decision,
5 (3), 193—204. https://doi.org/10.1037/dec0000095

Abstract We present unambiguous experimental evidence for (quantum-like) prob-

abilistic contextuality in psychology. All previous attempts to find contextuality in a

psychological experiment were unsuccessful because of the gross violations of marginal

selectivity in behavioral data, making the traditional mathematical tests developed in

quantum mechanics inapplicable. In our crowdsourcing experiment respondents were

making two simple choices: of one of two characters in a story (The Snow Queen by

Hans Christian Andersen), and of one of two characteristics, such as Kind and Evil, so

that the character and the characteristic chosen matched the story line. The formal

structure of the experiment imitated that of the Einstein-Podolsky-Rosen paradigm

in the Bohm-Bell version. Marginal selectivity was violated, indicating that the two

choices were directly influencing each other, but the application of a mathemati-

cal test developed in the Contextuality-by-Default theory, extending the traditional

quantum-mechanical test, indicated a strong presence of contextuality proper, not

reducible to direct influences.

Keywords: concept combinations, context-dependence, contextuality, direct influ-

ences, marginal selectivity.
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It is commonplace to say that human behavior is context-dependent. What is

usually meant by this is that one’s response to stimulus S (performance in task S)

depends on other stimuli (tasks) S �. Asked to explain the meaning of LINE, one’s

answer will depend on whether the word is preceded by CHORUS or OPENING.

Visual size perception, if interpreted as a response to retinal size, is influenced by

distance cues. In all such cases one can avoid speaking of context-dependence by

simply including the relevant elements of S � into S: visual size is a response to both

retinal size and distance cues, the meaning of LINE is a response to the word LINE and

to the words preceding it. J. J. Gibson’s (1950, 1960) psychophysics was, essentially,

a change from understanding a percept as a response to a target stimulus modified by

context stimuli (as, e.g., in H. von Helmholtz’s, 1867, theory of unconscious inference)

to a “direct” response to all relevant aspects of the optical flow.

This form of context-dependence is depicted in Figure 4.1, with the acknowl-

edgement of the obvious fact that all psychological responses are random variables,

generally varying from one presentation to another or from one person to another

(Thurstonian cases I and II, respectively). Figure 4.1 therefore presents a probabilis-

tic response R to S, such that its distribution is influenced not only by S but also by

S �. This means, of course, that the identity of the response R as a random variable

S

directly
��

S �

directly

��
R

Fig. 4.1. R is a random variable interpreted as a response to S: As S
changes, the distribution of R generally changes. It also changes as the
“context stimuli” S � change. The influences of S and S � upon R are both
direct.
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S

directly
��

S �

R �� contextually

Fig. 4.2. The situation when R, interpreted as a response to S, changes
its identity but not its distribution as “context stimuli” S � change. This
can be revealed by looking at how R is codistributed with other random
variables as S � changes. The influence of S on R is direct, while influence
of S � on R is “purely contextual.”

is different for different S �, at a fixed S: One and the same random variable cannot

have two different distributions.

One might think that all context-dependence is of this nature: we simply have

some “secondary” factors influencing the distribution of one’s response to a “primary”

one. Quantum mechanics, however, provides striking examples of another form of

context-dependence, when the distribution of R at a fixed S does not change with

S �, but R nevertheless is not one and the same random variable at different values

of S �. This type of context-dependence is schematically depicted in Figure 4.2, and

can be called “purely contextual.” To make sure there is no logical problem here,

different random variables R� and R�� may very well have the same distribution (as in

the case of two different fair coins). One can distinguish them if, e.g., R� is positively

correlated with some random variable A, R�� is negatively correlated with some B,

and A always equals B. Obviously then, R� and R�� cannot be one and the same

random variable, even if identically distributed.

An example of pure contextuality in quantum mechanics that is especially relevant

for us (because our behavioral experiment follows its formal structure) is the Einstein-

Podolsky-Rosen paradigm in the Bohm-Bell version (EPR/BB, Figure 4.3). Let us

denote the spins along axes αi and βj by, respectively, Ai and Bj. As it turns out,
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the axes can be chosen so that it is impossible for the identity of Ai not to depend

on the choice of βj and for the identity of Bj not to depend on the choice of αi.

This is established by the following reasoning. If we assume that Ai is one and the

same random variable under β1 and β2 (and analogously for Bj under α1 and α2),

then we should have four jointly distributed random variables A1, A2, B1, B2, and the

observed pairs of measurements by Alice and Bob then should be derivable from this

distribution as its marginals (A1, B1), (A1, B2), (A2, B1), and (A2, B2). If so, these

pairwise joint distributions should satisfy the following inequality, abbreviated CHSH

(Clauser, Horne, Shimony, & Holt, 1969; Fine, 1982):

max
k,l∈{1,2}

������
�

i,j∈{1,2}
E [AiBj] − 2E [AkBl]

������
− 2 ≤ 0, (4.1)

where E is expected value. Now, the expected values in the CHSH inequality can be

computed for any axes α1, α2, β1, β2 by using the principles of quantum mechanics,

and it turns out that for certain choices of these axes these expected values violate

the inequality. By reductio ad absurdum, therefore, we have to reject the initial

assumption that Ai is the same for both choices of βj and Bj is the same for both

choices of αi.

In other words, Ai and Bj measured together are in fact Aj
i and Bi

j, so that, e.g.,

A1
1 (Alice’s measurement along axis α1 when Bob has chosen axis β1) is different from

A2
1 (Alice’s measurement along the same axis when Bob has chosen β2). However,

we do not have the same situation as in Figure 4.1: Bob’s choice of an axis cannot

directly influence Alice’s measurement because this choice and the measurement are

simultaneous (in some inertial frame of reference). They cannot be causally related.1

In the past, this situation was often presented as paradoxical, with Einstein famously

1Note that the “pure contextuality” we have here is not a characteristic of the physical system
comprised of the two particles in Figure 4.3. Rather it is a characteristic of the system of random
variables representing a particular choice of two axes by Alice and two axes by Bob. For the same
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Fig. 4.3. Einstein-Podolsky-Rosen paradigm adapted to spins by Bohm
(Bohm & Aharonov, 1957) and famously investigated by Bell (1964). Two
spin-1/2 particles (e.g., electrons) are created in what is called a “singlet
state” and move away from each other. Alice measures the spin of the left
particle along one of the two axes denoted α1 and α2, Bob simultaneously
does the same for the right particle along one of the two axes denoted
β1 and β2. Spins are binary random variables, with values +1 or −1.
Adapted from Dzhafarov & Kujala (2016a). See the online article for the
color version of this figure.

referring to it as “a spooky action at a distance.” In fact, contextual influences

involve no “actions” (i.e., no transfer of energy or information). They simply reflect a

fundamental fact of probability theory, that part of the identity of a random variable

is what other random variables it is jointly distributed with (see Dzhafarov & Kujala,

2014a, 2016a, 2017b, for probabilistic foundations of contextuality). A simple analogy

would be the property of being or not being “the brightest star in the sky” considered

part of each star’s identity: The identity of a given star then can change depending

on the brightness of stars that do not influence it directly. It is a basic but fascinating

aspect of reality, fundamentally different from direct influences in being non-causal

(see Dzhafarov & Kujala, 2016a, for a detailed discussion).2

two entangled particles but a different choice of the four axes, the system of random variables
representing them may very well exhibit no contextuality.
2A formal definition of a random variable in probability theory is that it is a measurable function
mapping one probability space into another, and it is jointly distributed with any other measurable
function defined on the same domain probability space. Conversely, the set of all random variables
with which it is jointly distributed define the domain space of this random variable, which obviously
is part of this variable’s identity.
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With contextuality (or lack thereof) understood as a property of a system of

random variables describing an aspect of a physical system (see Footnote 1), there are

no known principles, in physics or elsewhere, that would confine all contextual systems

to quantum mechanics. Quantum mechanical computations may establish certain

properties of a set of particles, and then by means of classical probability theory one

may establish that a certain system of random variables describing these properties

forms a contextual system. No quantum mechanical computation, however, is based

on contextuality as a physical property. It is not surprising therefore that numerous

attempts were made to reveal probabilistic contextuality analogous to the EPR/BB

one outside quantum physics, in particular, in human cognition and decision making

(Aerts, 2014; Aerts et al., 2017 ; Aerts, Gabora, & Sozzo, 2013; Asano, Hashimoto,

Khrennikov, Ohya, & Tanaka, 2014; Bruza, Kitto, Nelson, & McEvoy, 2009; Bruza,

Kitto, Ramm, & Sitbon, 2015; Bruza, Wang, & Busemeyer, 2015). The idea of

constructing a behavioral analogue of a quantum-mechanical experiment is simple:

each experimental setting (e.g., an axis chosen by Alice) is replaced with a task of

responding to a stimulus or question, and the measurement outcome (e.g., the spin

along this axis) is replaced with a response given to this stimulus or question. With

these correspondences, the design of a behavioral experiment can be made formally

identical to that of the quantum one. For instance, in the experiment described in

Aerts et al. (2013), the axis αi corresponded to the task of choosing between two

animals (one pair for i = 1, another for i = 2), and βj corresponded to the task of

choosing between two animal sounds (again, different pairs for j = 1 and j = 2).

The respondent was asked to choose an animal in response to αi and to choose the

best matching animal sound in response to βj. The expectation in this experiment

was that the responses to αi and βj could be treated as random variables Ai and Bj,



71

respectively, and the CHSH inequality (4.1) could then be used to reveal the presence

or absence of contextuality.

Here, however, the study in question, as well as all other studies mentioned above,

faced a serious difficulty (Dzhafarov & Kujala 2014b; Dzhafarov, Kujala, Cervantes,

Zhang, & Jones, 2016; Dzhafarov, Zhang, & Kujala, 2015). The CHSH inequality

(4.1) and other traditional contextuality tests in quantum mechanics are derived

under the assumption of “no-signaling” (Abramsky & Brandenburger, 2011; Adenier

& Khrennikov, 2017) or “marginal selectivity” (Dzhafarov & Kujala, 2014b), which is

the condition ensuring that the context does not influence random variables directly.

Thus, in the classical version of EPR/BB, the distribution of Ai does not depend on

whether it is measured together with B1 or B2. Without this condition the expression

in (4.1) would be hopelessly confused, as the symbols it contains for random variables

then would change their meaning within the expression. In human behavior, however,

this condition is almost never satisfied: As response to a stimulus S is typically

directly influenced by any stimulus S � in the temporal-spatial vicinity of S. For

instance, in Aerts et al. (2013), when choosing between Tiger and Cat (task α2), Tiger

was chosen with probability 0.86 when combined with the choice between Growls and

Winnies (task β1), but Tiger was only chosen with probability 0.23 when combined

with the choice between Snorts and Meows (β2). There is no way therefore one can

denote the response to α2 by A2 and use Inequality 4.1. The change in the distribution

of the response to α2 indicates that it is directly influenced by the choice of the sound,

while the CHSH inequality expressly excludes this possibility (Dzhafarov & Kujala

2014b).

However, the presence of direct influences from S � to R does not automatically

exclude the presence of pure contextuality: it is possible, as schematically shown in

Figure 4.4, that contextual influences coexist with direct ones. The situation depicted
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S

directly
��

S �

directly

��
R �� contextually

Fig. 4.4. A combination of the situations depicted in Figures 4.1 and 4.2.
As S � changes, the distribution of R changes (i.e., S � directly influences R),
but the identity of R (revealed by looking at how R is codistributed with
other random variables) changes more than the change in its distribution
can explain. Here, influence of S � on R is in part direct and in part
contextual.

in Figure 4.2 is merely a special case, when the change in the distribution of R with

S � is nil, so whatever change in the identity of R is observed in response to changes in

S �, it is purely contextual. More generally, however, one can consider the possibility

that the distribution of R does change with S �, but the extent of this change is not

sufficient to account for the extent of the changes in R’s identity, as revealed by

its joint distribution with other random variables. This combined form of context-

dependence has been studied in the mathematical theory called Contextuality-by-

Default (CbD; Dzhafarov, Cervantes, & Kujala, 2017; Dzhafarov & Kujala, 2014a,

2016a, 2016b, 2017a; Dzhafarov, Kujala, & Cervantes, 2016; Dzhafarov, Kujala, &

Larsson, 2015; Kujala, Dzhafarov, & Larsson, 2015).

When applied to the EPR/BB system, the logic of CbD is as follows. One deter-

mines the maximal probability with which A1
1 could equal A2

1 if the two were jointly

distributed. This probability is a measure of difference between the two distributions

(the smaller the probability the larger the difference). Analogously one determines

the maximal probabilities of A1
2 = A2

2, B1
1 = B2

1 , and B1
2 = B2

2 . If this measure of

difference between the distributions is sufficient to account for the entire difference be-

tween the random variables A1
1 and A2

1, B1
1 and B2

1 , and so forth, then these maximal
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probabilities should be compatible with the observed joint distributions of (A1
1, B

1
1),

(A2
1, B

1
2), (A1

2, B
2
1), and (A2

2, B
2
2). If they are, the system in noncontextual. If they

are not, then A1
1 and A2

1, or B1
1 and B2

1 , and so forth, have to be more dissimilar as

random variables than they are because of the difference between their distributions.

Such a system exhibits contextuality proper (“on top of” direct influences).3

It is proved (Dzhafarov, Kujala, & Larsson, 2015; Kujala & Dzhafarov, 2016) that

the EPR/BB system is noncontextual if and only if

maxk,l∈{1,2}

���
�

i,j∈{1,2} E
�
Aj

iB
i
j

�
− 2E

�
Al

kB
k
l

����

−�
i∈{1,2} |E [A1

i ] − E [A2
i ]|

−�
j∈{1,2}

��E
�
B1

j

�
− E

�
B2

j

���− 2 ≤ 0.

(4.2)

The formula generalizes the CHSH Inequality (4.1), which obtains if the second and

third sums in the expression are zero (no-signaling or marginal selectivity condition).

When this formula was applied to behavioral experiments imitating the EPR/BB

design, all available data (Aerts, 2014; Aerts et al., 2013, 2017; Bruza, Kitto, Ramm,

& Sitbon, 2015; Cervantes & Dzhafarov, 2017a; Zhang & Dzhafarov, 2017) were in

compliance with lack of contextuality. The same conclusion (lack of contextuality)

was reached regarding behavioral experiments with other designs (Asano et al., 2014;

Cervantes & Dzhafarov, 2017b; Wang & Busemeyer, 2013; Wang, Solloway, Shiffrin,

& Busemeyer, 2014). This series of negative results led Dzhafarov et al. (2015) and

Dzhafarov et al. (2016) to hypothesize that all context-dependence in behavioral and

social data may be due to direct influences, with no contextuality proper.

3To avoid technicalities, the formulation given is far from being general and is less than rigorous. A
rigorous formulation for the EPR/BB system involves considering maximal couplings of

�
A1

1, B
1
1

�
,�

A2
1, B

1
2

�
,
�
A1

2, B
2
1

�
, and

�
A2

2, B
2
2

�
. More complex systems require dichotomizations of the random

variables and multimaximal couplings (Dzhafarov, Cervantes, & Kujala, 2017; Dzhafarov & Kujala,
2017a, 2017b).
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Inspection of Inequality 4.2, however, suggests another possibility: perhaps the

correlations between A and B variables in the previous attempts imitating the formal

structure of the EPR/BB experiment were not strong enough. The maximum of the

first sum in (4.2) is large if the four expectations E
�
Aj

iB
i
j

�
are large in absolute value,

and one of them has the sign opposite to the sign of the remaining three. What if

this maximum were large enough to offset the terms reflecting violations of marginal

selectivity and to make the left-hand side of the expression positive? Here, we report

an experiment in which contextuality proper is definitely established by achieving the

desired pattern of sufficiently large correlations between A and B variables.

The design of the experiment is similar to other behavioral imitations of the

EPR/BB paradigm: the choice of an axis is replaced by a choice between two options,

the options corresponding to each α-axis being two characters from a story, and the

options corresponding to each β-axis being two characteristics which characters from

the story may possess. The story was The Snow Queen by Hans Christian Andersen,

and, for example, the pair (α1, β1) was the offer to choose between Gerda and the Troll

(the result being A1
1) and also to choose between Beautiful and Unattractive (B1

1), so

that the two choices match the story line (in which Gerda is Beautiful and the Troll is

Unattractive). The choices are offered to many people in a crowdsourcing experiment,

and the probabilities are estimated by the proportions of people making this or that

pair of choices. The expectation is that a respondent who understands the story line

would choose a “correct” combination of a character and a characteristic (e.g., either

Gerda and Beautiful, or the Troll and Unattractive). If so, the max of the first sum

in Inequality 4.2 should equal 4 (its maximal possible value), and the presence or

absence of contextuality would depend only on the the relative proportions of people

preferring one correct choice to another. We will see, however, that a fraction of

respondents, more than 8%, chose “incorrect” options.
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4.1 Method

4.1.1 Participants

A total of 1,989 participants signed up for the study on Amazon’s Mechanical Turk

(Barr, J., 2005) and indicated their agreement with a standard informed consent page

in exchange for financial compensation ($0.10). No demographics were required nor

recorded. A total of 1,799 of the participants completed the experiment by answering

the two questions posed to them. They will be referred to below as respondents, and

their responses were used for the analysis. The number of respondents was planned

to exceed 1,600, estimated to be more than sufficient for construction of 99.99%

bootstrap confidence intervals (as explained in Results). The data were collected in

January 12-14, 2017.

4.1.2 Materials and Procedure

The experiment was set up as a “survey” on Purdue University’s Qualtrics plat-

form (Purdue University, 2015). Each participant was randomly assigned to one of

four conditions, referred to as contexts (Table 4.1). The experiment consisted in the

participant being presented with the instructions (“story line”) and, on the same

computer screen, offered to make two choices forming the context assigned to this

participant: of a character from a given pair of characters, and of a suitable charac-

teristic of this character from a given pair of characteristics. For example, in Context

3 (Table 4.1), the computer screen looked as shown in Figure 4.5, asking to choose

between Snow Queen and Old Finn Woman and to choose between Beautiful and
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Table 4.1.
Each Context Consisted of Two Choices, Between Two Characters and
Between Two Characteristics

Character choice Characteristic choice N total (correct)

Context 1 Gerda Beautiful 447 (425)

Troll Unattractive

Context 2 Gerda Kind 453 (429)

Troll Evil

Context 3 Snow Queen Beautiful 446 (410)

Old Finn Woman Unattractive

Context 4 Snow Queen Kind 453 (388)

Old Finn Woman Evil

Note. N total is the number of respondents assigned to each context (the number in
parentheses shows the subset of respondents whose answers were correct, in
accordance with the story line).

Unattractive, with the instruction that the two choices had to be true to the story

line (which says that Snow Queen is Beautiful and Old Finn Woman is Unattractive).4

4.2 Results

We present the results first for correct responses only, and then for all responses,

with the numbers of respondents shown in Table 4.1. In Tables 4.2 and 4.3,a we

present the observed proportions for each combination of choices in the first and

second group, respectively. We refer to these tables of proportions (or probabilities

they estimate) as “systems,” in accordance with the terminology of “context-content

systems” introduced in Dzhafarov & Kujala (2016a).

4As pointed out at the end of the Discussion section, the logic of CbD dictates that only one context
(one pair of choices) be presented to a given respondent, dividing thereby the pool of respondents
into four groups, one responding to Context 1, another to Context 2, etc.

a(Erratum note added in the dissertation.) In Tables 4.2–4.4, the columns with the heading “Mar.
character” appear with the heading “Mar. characteristic”. Corrected in text.
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Fig. 4.5. The appearance of the computer screen for participants assigned
to Context 3.

4.2.1 System of Correct Choices

In this system, the max of the first sum in Inequality 4.2 equals 4 (its maximal

possible value), and the presence or absence of contextuality depends only on the

the relative proportions of two correct pairs of choices. The system is contextual on

the sample level: The left-hand side of Inequality 4.2 equals 0.452. To evaluate how

reliable this figure is, a bootstrap confidence interval (Davison & Hinkley, 1997) was

calculated by generating n = 400, 000 resamples from each of the contexts, computing

the lefthand side of Inequality 4.2 for each of them, choosing a confidence level C,

and finding the 1−C
2

and 1− 1−C
2

quantiles of their distribution. The histogram of the

distribution is shown in the upper panel of Figure 4.6. For this system, the 99.99%

bootstrap confidence interval for the lefthand side of Inequality 4.2 is [0.226, 0.668].

The confidence needed for the bootstrap interval to cover zero exceeds 99.999% be-

cause none of the 400, 000 resamples produced a nonpositive value.
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Table 4.2.
Observed Proportions of Correct Choices for Each of the Four Contexts

B1
1 B1

2

Context 1 Beautiful Unattractive Mar. character Context 2 Kind Evil Mar. character

A1
1 A2

1

Gerda 0.887 0.000 0.887 Gerda 0.841 0.000 0.841
Troll 0.000 0.113 0.113 Troll 0.000 0.159 0.159

Mar. characteristic 0.887 0.113 Mar. characteristic 0.841 0.159

B2
1 B2

2

Context 3 Beautiful Unattractive Mar. character Context 4 Kind Evil Mar. character

A1
2 A2

2

Snow Queen 0.837 0.000 0.837 Snow Queen 0.000 0.626 0.626
Old Finn woman 0.000 0.163 0.163 Old Finn woman 0.374 0.000 0.374

Mar. characteristic 0.837 0.163 Mar. characteristic 0.374 0.627

Note. Mar. = marginal observed proportions. To apply Inequality 4.2, one of the two options (no matter which) in each

choice is encoded by +1, the other by −1.

4.2.2 System of All Responses

This system is contextual on the sample level: The left-hand side of Inequal-

ity 4.2 equals 0.279. A bootstrap confidence interval was calculated by generating

n = 400, 000 resamples and analyzing them in the same way as for the system of

correct responses. The histogram of the distribution of values of the lefthand side of

Inequality 4.2 is shown in the lower panel of Figure 4.6. For this system, the 99.99%

bootstrap confidence interval for the lefthand side of Inequality 4.2 is [0.008, 0.506].

4.3 Discussion

We have demonstrated that a contextual system of random variables formally

analogous to the EPR/BB system in quantum mechanics can be observed in human

behavior. It has been done without making the mistake of ignoring lack of marginal

selectivity in psychological data. Marginal selectivity (or no-signaling condition), in

application to the EPR/BB system, means that the second and third sums in In-

equality 4.2 are zero. If this were the case in our experiments (e.g., if the two correct
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Table 4.3.
Observed Proportions of All Choices, for Each of the Four Contexts

B1
1 B1

2

Context 1 Beautiful Unattractive Mar. character Context 2 Kind Evil Mar. character

A1
1 A2

1

Gerda 0.843 0.020 0.864 Gerda 0.797 0.035 0.832
Troll 0.029 0.107 0.136 Troll 0.018 0.150 0.168

Mar. characteristic 0.872 0.128 Mar. characteristic 0.815 0.185

B2
1 B2

2

Context 3 Beautiful Unattractive Mar. character Context 4 Kind Evil Mar. character

A1
2 A2

2

Snow Queen 0.769 0.011 0.780 Snow Queen 0.135 0.536 0.671
Old Finn woman 0.070 0.150 0.220 Old Finn woman 0.320 0.009 0.329

Mar. characteristic 0.839 0.161 Mar. characteristic 0.455 0.545

Note. Mar. = marginal observed proportions.

choices of the character-characteristic pairs were made with equal probability), the

lefthand side of Inequality 4.2 for the system with correct choices would have the

maximal theoretically possible value, 2. This would make the system a so-called PR

box (Popescu & Rohrlich, 1994), a system forbidden by laws of both classical and

quantum mechanics. There is no a priori reason why a behavioral system could not

violate boundaries established by quantum mechanics, but the sample level contextu-

ality value of 0.452 obtained in our experiment for correct responses is quite moderate,

well below the quantum boundary (so-called Tsirelson bound) of 2
�√

2 − 1
�
.5 Re-

call that application of Inequality 4.2 and similar formulas to all previously reported

experimental data showed no contextuality at all, leading Dzhafarov et al. (2015)

and Dzhafarov et al. (2016) to consider the possibility that all context-dependence in

psychology is because of direct influences only. This hypothesis is now falsified.6

5Note, however, that the derivability of the Tsirelson bound without assuming non-signaling is not
obvious and requires special investigation.
6It is worth mentioning that violations of marginal selectivity or no-signaling condition (the general
CbD term being “consistent connectedness”) are also common in quantum physical experiments
(Adenier & Khrennikov, 2007; Khrennikov, 2017, pp. 25-28). Compared with behavioral data,
however, inconsistent connectedness in quantum mechanics is relatively small, even when statistically
significant, and with the use of CbD theory pure contextuality can usually be established at extremely
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Fig. 4.6. Histograms of the bootstrap values of the lefthand side of In-
equality 4.2, for correct responses (upper panel) and for all responses
(lower panel). The solid vertical line indicates the location of the ob-
served sample value. The vertical dotted lines indicate the locations of
the 99.99% bootstrap confidence intervals.

Contextuality in our experiment was exhibited by both the system of correct

responses and the system of all responses, correct and incorrect. It is not clear, how-

ever, why some respondents made incorrect choices to begin with. The possibilities

range from misunderstanding of the instructions to deliberate non-compliance. This

makes no difference for the formal contextuality analysis, but one might consider the

legitimacy of excluding incorrect choices as outliers.

Focusing on the system of correct responses, one might wonder if a story line that

makes one of the two choices in each context rigidly determined by the other choice

high level of confidence (see, e.g., the analysis of experimental data in Kujala, Dzhafarov, & Larsson,
2015).
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Table 4.4.
Hypothetical Proportions of Correct Choices for Each of the Four Contexts

B1
1 B1

2

Context 1 Beautiful Unattractive Mar. character Context 2 Kind Evil Mar. character

A1
1 A2

1

Gerda 0.817 0.000 0.817 Gerda 0.911 0.000 0.911
Troll 0.000 0.183 0.183 Troll 0.000 0.089 0.089

Mar. characteristic 0.817 0.183 Mar. characteristic 0.911 0.089

Context 3 Beautiful Unattractive Mar. character Context 4 Kind Evil Mar. character

A1
2 A2

2

Snow Queen 0.907 0.000 0.907 Snow Queen 0.000 0.696 0.696
Old Finn woman 0.000 0.093 0.093 Old Finn woman 0.304 0.000 0.304

Mar. characteristic 0.907 0.093 Mar. characteristic 0.304 0.696

Note. This system is obtained by adding or subtracting .07 to/from each of the nonzero probabilities in Table 4.2.

(Table 4.1) may somehow predetermine the contextuality of the system. Could the

results reported in this paper be essentially forced by the experiment’s design? It

is easy to see that this is not the case. For example, in Table 4.4 all responses are

correct but the system is noncontextual, with the left-hand side of Inequality 4.2

equal to -0.004. No superficial inspection of this system would reveal a qualitative

difference from the one in Table 4.2. The question should not be therefore whether

noncontextuality is compatible with the story line, but whether the latter makes it

“rare.”

One way of making the meaning of “rare” precise is as follows. The experimental

design we use (considering only correct responses) makes the value

max
k,l∈{1,2}

������
�

i,j∈{1,2}
E
�
Aj

iB
i
j

�
− 2E

�
Al

kB
k
l

�
������

(4.3)

equal to 4, its maximal possible value. The system’s (non)contextuality therefore is

determined entirely by the value of

�

i∈{1,2}

��E
�
A1

i

�
− E

�
A2

i

��� +
�

j∈{1,2}

��E
�
B1

j

�
− E

�
B2

j

��� . (4.4)
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The system is contextual if and only if this expression’s value is less than 2. In

the system of correct responses

a = E [A1
1] = E [B1

1 ] ,

b = E [A2
1] = E [B1

2 ] ,

c = E [A1
2] = E [B2

1 ] ,

d = E [A2
2] = −E [B2

2 ] .

(4.5)

Each of the four values a, b, c, d ranges between −1 and 1. It is reasonable now to

ask how probable it is that these four values chosen “randomly and independently”

(meaning that the quadruple of the expected values is uniformly distributed within

the 4-dimensional cube) would yield (4.4) equal to or exceeding 2. The answer is

easily obtained by Monte Carlo simulation, and the probability in question, that is,

the probability that a randomly created system is noncontextual, turns out to be

about 0.6667. This is hardly a “rare” event.

In psychological terms, the interpretation of context-dependence in our experi-

ment is straightforward: the meaning of such characteristics as Kind versus Evil or

Beautiful versus Unattractive is different depending on what choice of characters is

offered to ascribe these concepts to. This difference, however, cannot be fully ex-

plained by assuming that the impact of the character choice upon the characteristic

choice is “direct” (analogous to a signal propagating from Bob’s measurement to

Alice’s measurement). The direct influence is there without doubt, manifested in

the lack of marginal selectivity in our data, but the context-dependence contains a

component of pure contextuality. We have no psychological terms to discern the two

parts of context-dependence. The value of contextuality analysis here is in that it

provides rigorous analytic discernments where “ordinary” psychological analysis is

underdeveloped or moot.



83

Note that the term “direct influences” in CbD refers to mathematical properties

of a specific system of random variables rather than to physical or psychological

mechanisms. Although the initial intuition of direct influences involves conventional

schemes with forces and energy transfer, in the mathematical theory direct influences

are defined by the differences between the distributions of random variables measuring

(responding to) the same property in different contexts. In the EPR/BB system, the

difference between the distributions A1
1 and A2

1 is, by definition, the difference between

the direct influences exerted by β1 and β2 (or, simply, the direct influence of the β)

upon the measurement of α1. If the two distributions are identical, β exerts no direct

influence, because we only think of particular random variables and of differences in

their distributions. It is perfectly possible that the two identical distributions would

differ from the distribution of some A3
1, had there been a third context in which α1

were measured alone or together with some β3. Moreover, it is possible that a physical

theory could establish that the influences exerted by β1 and β2 are physically different

despite affecting the distributions of A1
1 and A2

1 identically (see, e.g., Filk, 2015).

Our analysis, however, does not depend on this or that physical or psychological

theory. Even in the case of the classical EPR/BB system with two particles, the

Bohmian version of quantum mechanics allows for the possibility of direct influences

being responsible for the entire picture, albeit defying special relativity. However,

the EPR/BB system with a specific choice of axes would remain contextual even if

the Bohmian mechanics became universally accepted. As everything else in CbD,

“direct influence” is not a physical term (although it may be assigned a physical

interpretation in many cases), it is a mathematical term that is relative to the system

of random variables in play.7

7Of course, if the systems with physically certified direct influences that are not reflected in the
differences between the distributions were ubiquitous, the CbD analysis would be less interesting
to physicists. This is too complex an issue to discuss in a paper focusing on a single experiment.
We believe in the “no-conspiracy” principle reflected in Einstein’s famous “Subtle is the Lord, but
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Our experiment establishes a clear template for designing analogous experiments

aimed at pure contextuality, whether in the EPR/BB or similar format. In the

terminology of CbD, the EPR/BB system is a cyclic system of rank 4 (Dzhafarov,

Kujala, & Larsson, 2015; Kujala, Dzhafarov, & Larsson, 2015). This system involves

eight binary random variables, Ai
j, Bj

i (i, j ∈ {1, 2}), and the design maximizing the

chances of this system exhibiting contextuality (“on top of” direct influences) is as

follows. Label the values of all the random variables +1 and −1 and create a “story

line” in which +1 of Ai
j and +1 of Bj

i are associated with a very high probability in

three out of four pairs
�
Ai

j, B
j
i

�
, and with a very low probability in the fourth pair (or

vice versa). For other cyclic systems (say, of ranks 3 or 5) the criteria of contextuality

are similar to (4.2), and the design can be constructed similarly.

An important feature of the design is that each respondent should be assigned

to a single context only, instead of asking each of them to make (in the case of the

EPR/BB system) all four pairs of choices (α1, β1) , . . . , (α2, β2), whether presented

simultaneously, in a fixed order, or a variable order. The reason for this is that

making all four pairs of choices would have created an empirical joint distribution of

the eight random variables in play,

A1
1, B

1
1 , A

2
1, B

1
2 , A

1
2, B

2
1 , A

2
2, B

2
2 ,

contravening the logic of CbD in which different contexts are mutually exclusive, and

different pairs
�
Aj

i , B
i
j

�
are not jointly distributed (are stochastically unrelated to each

other). Contextuality analysis consists in finding out whether a joint distribution can

be imposed on these eight random variables, subject to certain constraints (maximal-

ity of the probabilities of A1
1 = A2

1, B1
1 = B2

1 , etc.). For this analysis an empirical

malicious He is not.” All known to us examples of hidden direct influences are artificially constructed
on paper, with even slight modifications revealing them.
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joint distribution involving, say, A1
1 and A2

1 would be a nuisance relation. It would

have to be ignored, and an additional theory would be required to know how the ig-

nored relations affect the results of the analysis. Consider, for example, the fact that

every given choice (e.g., between Gerda and Troll) in the EPR/BB system enters in

two different contexts. The respondent would normally remember her previous choice

when facing it the second time, albeit in combination with another pair of charac-

teristics (which in turn, will appear once again, in combination with another pair of

characters). It is clear that the respondent’s choice would depend on the previously

made one in some complex way (e.g., the strategy may be adopted to always repeat

it, or to always choose a new option). This would affect the marginal distributions

of the choices in some unknown way. Note that our design is not different from how

the measurements are made in the quantum-mechanical EPR/BB system, where only

one pair of measurements can be performed on a given pair of entangled particles.

Jerome Busemeyer (personal communication, November 2017) mentioned to us

that the “respondents” in our design need not be people, they can be any entities to

which A and B properties can be probabilistically assigned. This observation points

at ways of searching for contextual systems outside both quantum mechanics and

psychology.
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5. TRUE CONTEXTUALITY BEATS DIRECT

INFLUENCES IN HUMAN DECISION MAKING

Copyright © 2019, American Psychological Association. Reproduced with permis-
sion. Basieva, I., Cervantes, V. H., Dzhafarov, E. N., & Khrennikov, A. (2019).
True contextuality beats direct influences in human decision making. Journal of Ex-
perimental Psychology: General, 148 (11), 1925–1937. https://doi.org/10.1037/

xge0000585

Abstract In quantum physics there are well-known situations when measurements

of the same property in different contexts (under different conditions) have the same

probability distribution but cannot be represented by one and the same random vari-

able. Such systems of random variables are called contextual. More generally, true

contextuality is observed when different contexts force measurements of the same

property (in psychology, responses to the same question) to be more dissimilar ran-

dom variables than warranted by the difference of their distributions. The difference

in distributions is itself a form of context-dependence, but of another nature: it is at-

tributable to direct causal influences exerted by contexts upon the random variables.

The Contextuality-by-Default theory allows one to separate true contextuality from

direct influences in the overall context-dependence. The Contextuality-by-Default

analysis of numerous previous attempts to demonstrate contextuality in human judg-

ments shows that all context-dependence in them can be accounted for by direct in-

fluences, with no true contextuality present. However, contextual systems in human

behavior can be found. In this paper we present a series of crowd-sourcing experi-

ments that exhibit true contextuality in simple decision making. The design of these

experiments is an elaboration of one introduced in the Snow Queen experiment (De-
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cision 5, 193-204, 2018), in which contextuality was for the first time demonstrated

unequivocally.

Keywords: concept combinations, context-dependence, contextuality, direct influ-

ences.

A response to a stimulus (say, a question) is generally a random variable that can

take on different values (say, Yes or No) with certain probabilities. The identity of a

random variable, in nontechnical terms, is what uniquely distinguishes this random

variable from other random variables.1 The distribution of this random variable

(probabilities with which it takes on different values) is part of this identity, but

clearly not the entire identity: Think of a handful of fair coins—a set of distinct

random variables with the same distribution. Other stimuli (e.g., other questions

posed together or prior to a given one) may directly influence the identity of the

response to the given stimulus by changing its distribution. In fact, this change in

the distribution, mathematically, is how the directness of the influence is defined.

True contextuality is such dependence of the identity of a response to a stimulus on

other stimuli that cannot be wholly explained by such direct influences. We will

elaborate this definition below.

Contextuality is at the very heart of quantum mechanics (see, e.g., Liang, Spekk-

ens, & Wiseman, 2011), where it can be observed by eliminating (or at least greatly

reducing) all direct influences by experimental design. (In quantum physics “response

to a stimulus” has to be replaced with “measurement of a property,” but this is in

essence the same input-output relation.) This paper addresses a question that ever

since the 1990’s interested researchers in physics, computer science, and psychology,

1In rigorous mathematical terms, a random variable is defined as a (measurable) function mapping
a domain probability space into another (measurable) space. Its distribution is just one property of
this function, the probability measure it induces on the codomain space.
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the question of whether true contextuality can be observed outside quantum mechan-

ics, with special interest (largely for philosophical reasons we will not be discussing)

in whether it is present in human behavior. Many previous behavioral experiments

designed to answer this question (e.g., Aerts, 2014; Aerts, Gabora, & Sozzo, 2013;

Asano, Hashimoto, Khrennikov, Ohya, & Tanaka, 2014; Bruza, Kitto, Nelson, &

McEvoy, 2009; Bruza, Kitto, Ramm, & Sitbon, 2015; Bruza, Wang, & Busemeyer,

2015; Cervantes & Dzhafarov, 2017a, 2017b; Dzhafarov & Kujala, 2014b; Dzhafarov,

Kujala, Cervantes, Zhang, & Jones, 2016; Dzhafarov, Zhang, & Kujala, 2015; Zhang

& Dzhafarov, 2017) have been shown to result in systems of random variables that are

noncontextual. This prompted Dzhafarov, Zhang, and Kujala (2015) to consider the

possibility that human behavior may never exhibit true contextuality. It turns out,

however, that contextual systems in human behavior can be found. In this paper we

describe a series of experiments that, added to one previously conducted (Cervantes

& Dzhafarov, 2018), demonstrate this unequivocally.

It should be emphasized at the outset that it would be incorrect to think of

contextuality as being surprising and strange while noncontextuality is trivial and

expected. In the absence of constraints imposed by a general psychological theory,

comparable to quantum mechanics, we have no justification for such judgements.

One might argue in fact that it is most surprising that so many experiments in

psychology are described by noncontextual systems of random variables. Nor would

it be correct to assume that typical psychological models, even very simple ones, can

only predict noncontextual systems: thus, in the concluding section of this paper

we mention a simple model that, on the contrary, predicts only contextual systems

(and has to be dismissed because of this). Contextuality analysis is not a predictive

model of behavior, and both contextual and noncontextual systems are compatible

with ordinary psychological models. In that, as we point out in the Discussion,
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psychology is not different from quantum physics, in which (non)contextuality of a

system is established based on the laws of quantum physics but is not used to derive

or revise them. What contextuality analysis elucidates is the nature and structure of

random variables—arguably, the most basic and mandatory construct in the scientific

analysis of empirical systems, whether in psychology or elsewhere. In a well-defined

and mathematically rigorous sense, in a contextual system random variables form

true “wholes” that cannot be reduced to sets of distinct random variables measuring

or responding to specific elements of contexts while being also cross-influenced by

other elements of contexts. This makes contextuality analysis inherently interesting,

but we need much greater knowledge of which behavioral systems are contextual

and which are not in order to determine to what other properties of behavior these

characteristics are related. We will return to the role and meaning of contextuality

after we introduce necessary definitions, theoretical results, and empirical evidence.

5.1 Direct Influences and True Contextuality

We introduce the basic notions related to contextuality analysis using a simple

example—responses to three Yes/No questions asked two at a time. Most of the

experiments reported below are of this kind. Let, for example, the three questions be:

q1: Do you like chocolate?

q2: Are you afraid of pain?

q3: Do you see your dentist regularly?

Let a very large group of people be divided into three subgroups: In the first

subgroup each respondent is asked questions q1 and q2; in the second subgroup, each

respondent is asked questions q2 and q3; and in the third subgroup, the questions are q3

and q1. We call these pairwise arrangements of questions contexts, and we denote them
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c1, c2, and c3, respectively. It does not matter for the example whether the questions

are asked in a fixed order, randomized order, or (if in writing) simultaneously. A

response to question qi asked in context cj is a random variable that we denote Rj
i :

Some of the people in the subgroup corresponding to context cj will answer question qi

with Yes, others with No. Assuming the subgroups are so large that statistical issues

can be ignored, by counting the numbers of responses we can get a good estimate of

the probability distribution for our random variable:

Rj
i :

Y es No response

pj
i 1 − pj

i probability
. (5.1)

All in all, we have six random variables in play, and they can be arranged in the

form of the following content-context matrix (Dzhafarov & Kujala, 2016):

R1
1 R1

2 c1

R2
2 R2

3 c2

R3
1 R3

3 c3

q1 q2 q3 system R3

. (5.2)

Now the distributions of the responses to question qi should be expected to differ,

depending on the context in which it is asked. For instance, when q1 (Do you like

chocolate?) is asked in combination with q2 (Are you afraid of pain?), the probability

of R1
1 =“Yes, I like chocolate” may be relatively high because chocolate is usually

liked, and the mentioning of pain in q2 may make it sound especially comforting.

However, when the same question q1 is asked in context c3, in combination with

mentioning a dentist, the probability of R3
1 =“Yes, I like chocolate” may very well be

lower. The same reasoning applies to the two other questions: the responses to each

of them will generally be distributed differently, depending on its context. This type
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of influence exerted by a context on the responses to questions within this context

can be called direct influence. Indeed, the dependence of R1
1 (responding to q1) on

q2 (another question in the same context) is essentially of the same nature as the

dependence of R1
1 on q1: A response to q1 is based on the information contained in q1

and (even if to a lesser extent) on the information contained in q2. The other question

in the same context can be viewed as part of the question to which a response is given.

Is all context-dependence of this direct influence variety? As it turns out, the

answer is negative. Imagine, for example, that all direct influences are eliminated

by some procedural trick, and each question in each context is answered Yes with

probability 1/2. This means, in particular, that R1
1 and R3

1 have one and the same

distribution,

R1
1 :

Y es No

1/2 1/2
, R3

1 :
Y es No

1/2 1/2
, (5.3)

and if one does not take into account their relations to R1
2 (in context c1) and to R3

3

(in context c3), one could consider R1
1 and R3

1 as if they were always equal to each

other—essentially one and the same random variable;2 and similarly for R1
2 and R2

2,

and for R2
3 and R3

3. If one looks at each column of matrix (5.2) separately, ignoring

the row-wise joint distributions, then one can write

R1
1 = R3

1

R1
2 = R2

2

R2
3 = R3

3

. (5.4)

Consider, however, the possibility that no respondent ever gives the same answer

to both questions posed to her. Thus, if she answers Yes to q1 in context c1 (which can

2The “as if” here serves to circumvent the technicalities associated with the fact that, strictly
speaking, we are dealing here not with R1

1 and R3
1 themselves but with their probabilistic copies

(couplings) that are jointly distributed. See Dzhafarov and Kujala (2014a, 2017b) for details.
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happen with probability 1/2), she always answers No to q2, and vice versa. Denoting

Yes and No by +1 and −1, respectively, we have a chain of equalities

R1
1 = −R1

2

R2
2 = −R2

3

R3
1 = −R3

3

, (5.5)

and it is clear that (5.4) and (5.5) cannot be satisfied together: combining them

would lead to a numerical contradiction. We should conclude therefore that when

the joint distributions within contexts are taken into account, R1
1 and R3

1 or R1
2 and

R2
2 or R2

3 and R3
3 cannot be considered always equal to each other. In at least one of

these pairs, the two random variables should be more different than it is warranted

by their individual distributions (which are, in this example, identical). This is a

situation in which we can say that the system exhibits true contextuality, the kind of

context-dependence that is not reducible to direct influences (in this example, absent).

Empirical data, especially outside quantum physics, almost always involve some

direct influences, but the logic of finding out whether they also involve true contex-

tuality remains the same. Continuing to use matrix (5.2) as a demonstration tool,

we first look at the columns of the matrix one by one, ignoring the contexts. For

each pair of random variables in a column (responses to the same question), we find

out how close to each other they could be made if they were jointly distributed. In

other words, we find the maximal probabilities with which each of the equalities in

(5.4) can be satisfied. Then we investigate whether all the variables in our system

can be made jointly distributed while preserving these maximal probabilities. If the

answer is negative, we conclude that the contexts force the random variables sharing

a column to be more dissimilar than warranted by direct influences (differences in

their individual distributions). We then call such a system contextual. Otherwise it is
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noncontextual. This is the gist of the approach to contextuality called Contextuality-

by-Default (CbD), and we illustrate it in the next section by a detailed numerical

example.

CbD forms the theoretical basis for the design and analysis of our experiments.

For completeness, however, another approach to the notion of contextuality should be

mentioned, one treating context-dependent probabilities as a generalization of condi-

tional probabilities defined through Bayes’s formula (Khrennikov, 2009). With some

additional assumptions these contextual probabilities can be represented by quantum-

theoretical formalisms—state vectors in complex Hilbert space and Hermitian oper-

ators or their generalizations. Applications of such approach to cognitive psychology

can be found in Khrennikov (2010) and Busemeyer and Bruza (2012), among other

monographs and papers. CbD, by contrast, is squarely within classical probability

theory. Although contextuality in CbD can be called quantum-like because of the

origins of the concept in quantum physics, CbD uses no quantum formalisms.

5.1.1 Numerical Example and Interpretation

The following numerical example illustrates how CbD works. Let there be just

two dichotomous questions, q1 and q2, answered in two contexts, c1 and c2 (e.g., in

two different orders, as in Wang & Busemeyer, 2013). The content-context matrix

here is

R1
1 R1

2 c1

R2
1 R2

2 c2

q1 q2 system R2

. (5.6)

Assume that the joint distributions along the rows of the matrix are as shown:
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c1 R1
2 = Y es R1

2 = No

R1
1 = Y es 1/2 0 1/2

R1
1 = No 0 1/2 1/2

1/2 1/2

c2 R2
1 = Y es R2

1 = No

R2
2 = Y es a 1/2 − a 1/2

R2
2 = No 3/4 − a a − 1/4 1/2

3/4 1/4

, (5.7)

where a is some value between 1/4 and 1/2. Knowing these distributions means that,

for any filling of the matrix (5.6) with values of the random variables R1
1, R

1
2, R

2
1, R

2
2

(Yes or No, for a total of 16 combinations), we know the row-wise probabilities: e.g.,

R1
1 = Y es R1

2 = Y es p1 (Y es, Y es) = 1/2

R2
1 = Y es R2

2 = No p2 (Y es, No) = 3/4 − a
. (5.8)

We see from (5.7) that R1
2 and R2

2 (the responses to question q2) are distributed

identically. Because of this, if they were jointly distributed (see footnote 1), the

maximal probability with which they could be equal to each other would be 1:

q2 R2
2 = Y es R2

2 = No

R1
2 = Y es 1/2 0 1/2

R1
2 = No 0 1/2 1/2

1/2 1/2

. (5.9)

The responses to question q1, however, are distributed differently, and in the imagi-

nary matrix of their joint distribution,

q1 R2
1 = Y es R2

1 = No

R1
1 = Y es 1/2 0 1/2

R1
1 = No 1/4 1/4 1/2

3/4 1/4

, (5.10)
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the maximal possible probability of R1
1 = R2

1 = Y es is 1/2, and the maximal possible

value of R1
1 = R2

1 = No is 1/4. Therefore, if they were jointly distributed, the

maximal probability with which R1
1 = R2

1 would be 3/4. Now, with these imaginary

distributions, for any filling of the matrix (5.6) with Yes-No values of the random

variables R1
1, R

1
2, R

2
1, R

2
2, we also have the column-wise probabilities: e.g.,

R1
1 = Y es R1

2 = Y es

R2
1 = Y es R2

2 = No

p�1 (Y es, Y es) = 1/2 p�2 (Y es, No) = 0

. (5.11)

The problem we have to solve now is: Are these column-wise probabilities compat-

ible with the row-wise probabilities in (5.8)? The compatibility means that, to any of

the 16 filling of the matrix (5.6) with values of the random variables R1
1, R

1
2, R

2
1, R

2
2, we

can assign a probability, e.g., p (R1
1 = Y es, R1

2 = Y es, R2
1 = Y es, R2

2 = No), such that

the row-wise sums of these probabilities agree with (5.8) and the column-wise sums

agree with (5.11). This is a classical linear programming problem: For any given value

of a, it is guaranteed that either such an assignment of probabilities will be found

(so that the system is noncontextual) or the determination will be made that such

an assignment does not exist (the system is contextual). In our case, however, one

need not resort to linear programing to see that no such assignment of probabilities

is possible for any value of a other than 1/2. Indeed, we see from the c1 distribution

in (5.7) and from (5.9) that, with probability 1,

R1
1 = R1

2 = R2
2. (5.12)

So, R1
1 and R2

2 are essentially the same random variable, say X. But, from (5.10),

this X equals R2
1 with probability 3/4, whereas from the c2 distribution in (5.7), this

X equals R2
1 with probability 2a − 1/4, which is not 3/4 if a �= 1/2. The conclusion
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is that the joint distributions along the two rows of the content-context matrix (5.6)

prevent the responses to the same questions in the two columns of the matrix to be

as close to each other as they can be if the two columns are viewed separately. The

system therefore is contextual for any a �= 1/2.

Why is this interesting? In psychological terms, the interpretation of the question

order effect seems straightforward: The first question reminds something or draws

one’s attention to something that is relevant to the second question. What is shown

by the contextuality analysis of our hypothetical question-order system is that this

interpretation is only sufficient for a = 1/2, being incomplete in all other cases. The

responses to two questions posed in a particular order form a “whole” that cannot be

reduced to an action of the first question upon the second response: the identity of the

two random variables changes beyond the effect of this action on their distributions.

We will return to this issue in the concluding section of the paper.

The reader should not forget that we are discussing a numerical example rather

than experimental data. The large body of experimental data on the question-order

effect collected by Wang and Busemeyer (2013) has been subjected to contextual

analysis in Dzhafarov, Zhang, and Kujala (2015), the result being that the responses

to any of the many pairs of questions studied exhibit no contextuality. In fact, almost

all question pairs are in a good agreement with the QQ law discovered by Wang and

Busemeyer (2013),

Pr
�
R1

1 = R1
2

�
= Pr

�
R2

1 = R2
2

�
, (5.13)

and, as shown in Dzhafarov, Zhang, and Kujala (2015), this law implies no con-

textuality: This system of random variables is entirely describable in terms of each

response being dependent on its own question, plus the second responsea being also

influenced by the first question. The idea of a whole being irreducible to interacting

a(Erratum note added in the dissertation.) Originally “respond”. Corrected in the text.
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parts is not therefore an automatically applicable formula. To see if it is applicable

at all, in psychology, one should look for empirical evidence elsewhere. Such evidence

is presented below.

5.1.2 Contextuality-by-Default

CbD was developed (Dzhafarov, Cervantes, Kujala, 2017; Dzhafarov & Kujala

2014a, 2016, 2017a, 2017b; Kujala, Dzhafarov, & Larsson, 2015) as a generalization of

the quantum-mechanical notion of contextuality (Abramsky & Brandenburger, 2011;

Fine, 1982; Kochen & Specker, 1967; Kurzynski, Ramanathan, & Kaszlikowski, 2012).

The latter only applies to consistently connected systems, those in which direct influ-

ences are absent, that is, responses to the same stimulus (or measurements of the same

property) in different contexts are distributed identically. In physics this requirement

is known by such names as no-signaling, no-disturbance, and so forth; in psychol-

ogy it is known as marginal selectivity (Dzhafarov, 2003; Townsend & Schweickert,

1989). This requirement is never satisfied in behavioral experiments (Dzhafarov &

Kujala, 2014b; Dzhafarov et al., 2016; Dzhafarov, Zhang, & Kujala, 2015), and it is

often violated in quantum physical experiments too (Adenier & Khrennikov, 2017;

Kujala et al., 2015). The main difficulty faced by many previous attempts to reveal

contextuality in human behavior was that they could not apply mathematical tests

predicated on the assumption of consistent connectedness to systems in which this

requirement does not hold. As mentioned in the introduction, a CbD-based analysis

of these experiments (Dzhafarov & Kujala, 2014b; Dzhafarov et al., 2016; Dzhafarov,

Zhang, & Kujala, 2015) showed that all context-dependence in them was attributable

to direct influences. The first unequivocal evidence of the existence of contextual

systems in human behavior was provided by Cervantes and Dzhafarov’s (2018) Snow

Queen experiment.
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The idea underlying the design of the Snow Queen experiment (and all the ex-

periments reported below) is suggested by the criterion (necessary and sufficient con-

dition) of contextuality when CbD is applied to cyclic systems with dichotomous

random variables (Dzhafarov, Kujala, & Larsson, 2015; Kujala & Dzhafarov, 2016;

Kujala et al., 2015). In such a system n questions and n contexts can be arranged as

q1
c1

q2
c2 · · · cn−2

qn−1
cn−1

qn

cn

(5.14)

The number n is referred to as the rank of the system. The question-order system

(5.6) considered in the Numerical Example and Interpretation section is the smallest

possible cyclic system, of rank 2,

q1
c1 q2.

c2

(5.15)

The system (5.2) in the Direct Influences and True Contextuality section is a cyclic

system of rank 3,

q1
c1

q2
c2

q3,

c3

(5.16)

and it is used in four of the six experiments reported below. The remaining two are

analyzed as cyclic systems of rank 4,

q1
c1 q2

c2 q3
cn−1

q4

cn

, (5.17)
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with the content-context matrix

R1
1 R1

2 c1

R2
2 R2

3 c2

R3
3 R3

4 c3

R4
1 R4

4 c4

q1 q2 q3 q4 system R4

. (5.18)

To formulate the criterion of contextuality in cyclic systems, we encode the values

of our random variables by +1 and −1. Then the products of the random variables

in the same context, such as R1
1R

1
2, are well-defined, and so are the expected values

E [R1
1R

1
2], E [R2

2R
2
3], and so forth. For instance, if the joint distribution of R1

1 and R1
2

(responses to questions q1 and q2 in context c1) is

c1 R1
2 = +1 R1

2 = −1

R1
1 = +1 a b a + b

R1
1 = −1 c d c + d

a + c b + d

, (5.19)

then R1
1R

1
2 has the distribution

R1
1R

1
2 = +1 R1

1R
1
2 = −1

a + d b + c
, (5.20)

and the distribution of R1
1 and R1

2 is described by the expected values

E [R1
1] = (a + b) − (c + d) ,

E [R1
2] = (a + c) − (b + d) ,

E [R1
1R

1
2] = (a + d) − (b + c) .

(5.21)
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We will also need a special function, sodd: given some real numbers x1, . . . , xn,

sodd (x1, . . . , xn) = max (±x1 ± . . . ± xn) , (5.22)

where each ± is to be replaced with + or −, and the maximum is taken over all

choices that contain an odd number of minus signs. Thus,

sodd (x, y) = max (−x + y, x − y) ,

sodd (x, y, z) = max (−x + y + z, x − y + z, x + y − z,−x − y − z)

etc.

, (5.23)

The theorem proved by Kujala and Dzhafarov (2016) says that a cyclic system of

rank n is contextual (exhibits true contextuality) if and only if

D = sodd

�
E
�
R1

1R
1
2

�
, E

�
R2

2R
2
3

�
, . . . , E [Rn

nRn
1 ]
�
− (n − 2) −Δ > 0, (5.24)

where

Δ =
��E

�
R1

1

�
− E [Rn

1 ]
�� +

��E
�
R1

2

�
− E

�
R2

2

��� + . . . +
��E

�
Rn−1

n

�
− E [Rn

n]
�� . (5.25)

The value of Δ is a measure of direct influences, or of inconsistent connectedness.

It shows how much, overall, the distributions of responses to one and the same ques-

tion differ in different contexts. If Δ = 0, the system is consistently connected: the

response to a given question is not influenced by the other questions with which it

co-occurs in the same context.3 One can loosely interpret sodd as a measure of the

potential true contextuality: It shows how much, overall, the identities of the random

variables responding to the same question differ in different contexts. The contex-

3The special case of (5.24) for Δ = 0 was proved, by very different mathematical means, in Araújo,
Quintino, Budroni, Cunha, & Cabello (2013).
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tuality test for a cyclic system therefore can be viewed as a test of whether these

differences exceed those due to direct influences alone. The failure of the previous

attempts to find contextuality in behavioral data may be described by saying that

the empirical situations chosen for investigation had too strong direct influences for

the amount of potential true contextuality they contained.

The idea of the Snow Queen experiment was to make the value of sodd as large as

possible, increasing its chances of beating Δ, a quantity that cannot be controlled by

experimental design.4 The formal structure of the experiment was a cyclic system of

rank 4, with q1 and q3 being two choices of characters from a story (Snow Queen, by

H.C. Andersen), and q2 and q4 being two choices of attributes of these characters.

R1
1 R1

2 c1

R2
2 R2

3 c2

R3
3 R3

4 c3

R4
1 R4

4 c4

q1 :
Gerda

Troll
q2 :

beautiful

unattractive
q3 :

Snow Queen

old Finn woman
q4 :

kind

evil
system SQ4

. (5.26)

For instance, in context c3, a respondent could choose either Snow Queen or old

Finn woman, and also choose either kind or evil. The instruction said the choices

had to match the story line. The respondents knew, for example, that Snow Queen is

beautiful and evil, and that the old Finn woman is unattractive and kind.5 It is easy to

show that if all respondents followed the instruction correctly, sodd in this experiment

had to have the maximal possible value of 4. The amount of direct influences measured

by Δ was considerable, but the left-hand side expression in (5.24) was well above

4In physics the situation is different: One can eliminate or greatly reduce direct influences by, e.g.,
separating two entangled particles by a space-time interval that prevents transmission of a signal
between them.
5This instruction is an analogue of the quantum-mechanical preparation, an empirical procedure
preceding an experiment with the aim of creating a specific pattern of high correlations between
measurements.
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zero, with very high statistical reliability (evaluated by 99.99% bootstrap confidence

intervals).

One possible criticism of the Snow Queen experiment can be that the paired

choices were too asymmetric: Choice of a character, such as Gerda, and choice of

a characteristic, such as beautiful, seem too different in nature. In the experiments

reported below the paired choices were on a par. Otherwise, the experiments followed

the same logic, ensuring the highest possible value for sodd. This value equals n, the

rank of the cyclic system. In quantum physics, the systems with this property (if,

additionally, they are consistently connected, i.e., Δ = 0), are called PR boxes, after

Popescu and Rohrlich (1994). In our experiments n was 3 or 4.

5.2 Method

5.2.1 Participants

We recruited 6, 192 participants on CrowdFlower (2018) between February 7 and

12, 2018. They agreed to participate in this study by accepting a standard consent

from. The consent form and the interactive experimental procedure were provided

via a Qualtrics survey hosted by City University London. The study was approved

by City University London Research Ethics Committee, PSYETH (S/L) 17/18 09.

(The number of participants was chosen so that we could construct reliable 99.99%

bootstrap confidence intervals for each context in each experiment, as described be-

low.)

5.2.2 Materials and Procedure

Each respondent participated in all six experiments, in a random order. For each

of the experiments, each participant was randomly and independently assigned to one
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Fig. 5.1. The appearance of the computer screen to the participant if
assigned to context c1 in Experiment 1. The participant was required to
choose an option for each question, in this case each menu section; the
next experiment or the end of the survey would be reached by clicking the
Next arrow. If the participant had made both choices in accordance with
the instructions, in this case having chosen Soup (H) with Beans (L) or
Salad (L) with Burger (H), clicking the ’Next’ arrow allowed the survey to
continue; otherwise the participants were prompted to revise or complete
their responses. See the online article for the color version of this figure.

of the conditions (contexts). In each context, a participant was introduced to a pair

of choices to be made by a fictional Alice; each choice was between two alternatives.

There were three contexts in Experiments 1-4, and four contexts in Experiments 5 and

6. Figure 5.1 shows the way the instruction and choices were presented to respondents

in one context of Experiment 1.

5.3 Experiments 1–4

In Experiments 1–4, in each context, the character Alice was faced with two

choices of a set of three dichotomous choices. The participant was asked to select a

pair of responses that respected Alice’s preferences as stated in the instructions (see

Figure 5.1). The system would not allow the respondent to make only one choice
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or two choices contradicting the instructions. The following depicts the situations

presented, whereas Table 5.1 summarizes the sets of dichotomous choices.

5.3.1 Experiment “Meals.”

Alice wishes to order a two-course meal. For each course she can choose a high-

calorie option (indicated by H) or a low-calorie option (indicated by L). Alice does

not want both courses to be high calorie nor does she want both of them to be low

calorie.

5.3.2 Experiment “Clothes.”

Alice is dressing for work, and chooses two pieces of clothing. She does not want

both of them to be plain, nor does she want both of them to be fancy.

5.3.3 Experiment “Presents.”

Alice wishes to buy two presents for her nephew’s birthday. She can choose either

a more expensive option (indicated by E) or a cheaper option (indicated by C). Alice

does not want both presents to be expensive or both presents to be cheap.

5.3.4 Experiment “Exercises.”

Alice is doing two physical exercises. Alice does not want both exercises to be

hard or both to be easy.
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Table 5.1.
Dichotomous Choices in Experiments 1–4

Experiment q1 q2 q3

1. Meals Starters: Main course: Dessert:

Soup (H)* or Salad (L) Burger (H)* or Beans (L) Cake (H)* or Coffee (L)

2. Clothes Skirt: Blouse: Jacket:

Plain* or Fancy Plain* or Fancy Plain* or Fancy

3. Presents Book: Soft toy (bear): Construction set:

Big expensive book (E)* or (E)* or (C) (E)* or (C)

Smaller book (C)

4. Exercises Arms: Back: Legs:

Hard* or Easy Hard* or Easy Hard* or Easy

Note.Each respondent was asked to make two choices (q1&q2 or q2&q3 or q3&q1), randomly and

independently assigned to this respondent in each experiment.
* Denotes the response encoded with +1

Table 5.2.
Dichotomous Choices in Experiments 5 and 6

Experiment q1 q2 q3 q4

5. Directions West—East fork NorthWest—SouthEast fork North—South fork NorthEast—SouthWest fork
← or → � or � ↑ or ↓ � or �

6. Colored figures one of one of one of one of

Note. Each respondent was asked to make two choices (q1 and q2, or q2 and q3, or q3 and q4, or q4 and q1), randomly and

independently assigned to this respondent in each experiment. For each choice qi, the response encoded by +1 is the one
on the left: e.g., for q1 in Experiment 5, the response ← was encoded by +1.

5.4 Experiments 5 and 6

In experiments 5 and 6, in each context, the character Alice was faced with two

choices out of a set of four. In all other respects the procedure was similar to that

in Experiments 1–4. The participant was asked to select a pair of responses that

respected the character’s preferences as stated in the instructions. The following de-

picts the situations presented, whereas Table 5.2 summarizes the sets of dichotomous

choices.
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5.4.1 Experiment “Directions.”

Alice goes for a walk, and has to choose path directions at forks. Alice wants the

two directions to be as similar as possible (i.e., the angle between them to be as small

as possible).

5.4.2 Experiment “Colored figures.”

Alice is taking a drawing lesson, and is presented with two pairs consisting of a

square and a circle (the pairs being labeled as Section 1 and Section 2). Alice needs

to choose one figure from each section, and she wants the two figures chosen to be of

similar color.

5.5 Results

In Experiments 1–4, irrespective of the specific content of the questions, there

were three dichotomous choices, q1, q2, q3, offered to the respondents two at a time.

Denoting, for each of the choices, one of the response options +1 and the other −1,

the results have the following form:

c1 R1
2 = 1 R1

2 = −1

R1
1 = 1 0 p1 p1

R1
1 = −1 1 − p1 0 1 − p1

1 − p1 p1

c2 R2
3 = 1 R2

3 = −1

R2
2 = 1 0 p2 p2

R2
2 = −1 1 − p2 0 1 − p2

1 − p2 p2

c3 R3
1 = 1 R3

1 = −1

R3
3 = 1 0 p3 p3

R3
3 = −1 1 − p3 0 1 − p3

1 − p3 p3

(5.27)
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Table 5.3.
Probability Estimates p̂1, p̂2, p̂3 That Determine the Outcomes of Exper-
iments 1–4 in Accordance With (5.27), and the Sizes N1, N2, N3 of the
Samples From Which These Estimates Were Computed.

c1 c2 c3

Experiment p̂1 N1 p̂2 N2 p̂3 N3

1. Meals .349 2, 090 .658 2, 052 .653 2, 050
2. Clothes .639 1, 996 .566 2, 086 .435 2, 110
3. Presents .547 2, 081 .387 2, 052 .515 2, 059
4. Exercises .590 2, 058 .306 2, 024 .580 2, 110

In reference to the CbD criterion (5.24)–(5.25), it follows that in these experiments

sodd

�
E
�
R1

1R
1
2

�
, E

�
R2

2R
2
3

�
, E

�
R3

3R
3
1

��
= sodd (−1,−1,−1) = 3, (5.28)

so that D in (5.24) is

D = 2 −Δ, (5.29)

where

Δ = |E [R1
1] − E [R3

1]| + |E [R2
2] − E [R1

2]| + |E [R3
3] − E [R2

3]|

= 2 |p1 + p3 − 1| + 2 |p2 + p1 − 1| + 2 |p3 + p2 − 1| .
, (5.30)

Table 5.3 presents the observed values of p̂1, p̂2 and p̂3 for each context of each

of Experiments 1–4 and the corresponding numbers of participants from which these

probabilities were estimated.

In Experiments 5 and 6, there were four dichotomous choices, q1, q2, q3, q4, and each

respondent was offered two of them, forming one of four possible contexts. Denoting,

again, for each of the choices, one of the response options +1 and another −1, the

results have the following form:
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c1 R1
2 = 1 R1

2 = −1

R1
1 = 1 p1 0 p1

R1
1 = −1 0 1 − p1 1 − p1

p1 1 − p1

c2 R2
3 = 1 R2

3 = −1

R2
2 = 1 p2 0 p2

R2
2 = −1 0 1 − p2 1 − p2

p2 1 − p2

c3 R3
4 = 1 R3

4 = −1

R3
3 = 1 p3 0 p3

R3
3 = −1 0 1 − p3 1 − p3

p3 1 − p3

c4 R4
1 = 1 R4

1 = −1

R4
4 = 1 0 p4 p4

R4
4 = −1 1 − p4 0 1 − p4

1 − p4 p4

(5.31)

In reference to the CbD criterion (5.24)–(5.25), it follows that in these experiments

sodd

�
E
�
R1

1R
1
2

�
, E

�
R2

2R
2
3

�
, E

�
R3

3R
3
4

�
, E

�
R4

4R
4
1

��
= sodd (1, 1, 1,−1) = 4, (5.32)

where, once again,

D = 2 −Δ, (5.33)

where

Δ = |E [R1
1] − E [R4

1]| + |E [R1
2] − E [R2

2]| + |E [R2
3] − E [R3

3]| + |E [R3
4] − E [R4

4]|

= 2 |p1 + p4 − 1| + 2 |p2 − p1| + 2 |p3 − p2| + 2 |p4 − p3| .
(5.34)

Table 5.4 presents the observed values of p̂1, p̂2, p̂3, p̂4 in Experiment 5 and 6,

and the corresponding numbers of participants from which these probabilities were

estimated.

Table 5.5 shows the estimated values of D = 2 − Δ in all our experiments. We

see that contextuality is observed in Experiments 1–4 and 5. Experiment 6, however,
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Table 5.4.
Probability Estimates p̂1, p̂2, p̂3, p̂4 That Determine the Outcomes of Ex-
periments 5 and 6 in Accordance With (5.31), and the Sizes N1, N2, N3, N4

of the Samples From Which These Estimates Were Computed.

c1 c2 c3 c4

Experiment p̂1 N1 p̂2 N2 p̂3 N3 p̂4 N4

5. Directions .471 1, 549 .706 1, 504 .645 1, 537 .750 1, 602
6. Colored figures .419 1, 603 .819 1, 589 .360 1, 482 .154 1, 517∗

* One participant assigned to context c4 was excluded from Experiment 6 because

she or he did not complete the responses in accordance with the instructions.

Table 5.5.
Estimated Values of D = 2 − Δ in Experiments 1–4 (n = 3) and 5-6
(n = 4)

Experiment 1. Meals 2. Clothes 3. Presents 4. Exercises 5. Directions 6. Colored figures

D̂ = 2 − Δ̂ 1.361 1.440 1.548 1.223 0.758 −.984

Note. Positive (negative) values of D indicate contextuality (resp., noncontextuality).

shows no contextuality: The negative value in the last column indicates that direct

influences here are all one needs to account for the results.

We evaluate statistical reliability of these results in two ways. The first way is to

compute an upper bound for the standard deviation of D̂ and use it to conservatively

test the null-hypothesis D = 0 (the maximal noncontextual value) against D >

0 (contextuality). In Experiment 6 the alternative hypotheses changes to D < 0

(noncontextuality), with D = 0 in the null hypothesis interpreted as the infimum of

contextual values. We begin by observing that each p̂i has variance pi(1−pi)
Ni

≤ 1
4Ni

≤
1

4Nmin
, where Nmin is the smallest among Ni for a given experiment, as shown in

Tables 5.3 and 5.4. Using the independent coupling of stochastically unrelated p̂i’s,

commonly adopted in statistics, each summand in (5.30) and (5.34) has a variance

bounded by 2
Nmin

. The different summands are not independent, but the standard
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Table 5.6.
Statistical Significance of Contextuality in Experiment 1-5 and of Non-
contextuality in Experiment 6.

Experiment 1. Meals 2. Clothes 3. Presents 4. Exercises 5. Directions 6. Colored

D̂ = 2 − Δ̂ 1.361 1.440 1.548 1.223 .758 −.984

Nmin 2, 050 1, 996 2, 052 2, 024 1, 504 1, 482

Upper bound for SD of D̂ .094 .095 .094 .095 .146 .147
Number of st. dev. from zero > 14.5 > 15.1 > 16.5 > 12.9 > 5.1 > 6.6
t-distribution p-value < 10−45 < 10−48 < 10−57 < 10−36 < 10−6 < 10−10

Chebyshev p-value < .005 < .005 < .004 < .006 < .038 < .023

deviation of the sum cannot exceed the sum of their standard deviations. This means

that 3
�

2
Nmin

for Experiments 1–4 and 4
�

2
Nmin

for Experiments 5–6 are upper bounds

for the standard deviation of D̂. These values are reported in Table 5.6. If we

assume applicability of the central limit theorem, given the very large sample sizes,

the t-distribution-based p-values are essentially zero. If we make no assumptions, the

maximally conservative p-values based on Chebyshev’s inequality are still below the

conventional significance levels.

In our second statistical analysis, we computed bootstrap distributions and con-

structed the 99.99% bootstrap confidence intervals for D from 500, 000 independent

resamples for each context of each experiment (Davison & Hinkley, 1997). These are

presented in Figure 5.2. As we see, the left end points of the confidence intervals

for Experiments 1–5 are well above zero. For Experiment 6, the 99.99% bootstrap

confidence interval (see Figure 5.2) has the right endpoint well below zero, indicating

reliable lack of contextuality.

5.6 Discussion

Our results confirm beyond doubt the presence of true contextuality, separated

from direct influences, in simple decision making. Compared to the Snow Queen
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6. Colored figures

Fig. 5.2. Histograms of the bootstrap values of D̂ = 2 − Δ̂ for Experi-
ments 1–6. The solid vertical line indicates the location of the observed
sample value. The vertical dotted lines indicate the locations of the 99.99%
bootstrap confidence intervals.
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experiment (Cervantes & Dzhafarov, 2018), in which the paired choices belonged to

different categories (choice of characters, such as Gerda or Troll, was paired with the

choice of characteristics, such as kind or evil), in our experiments the paired choices

belonged to the same category (e.g., two levels of arm exercises were paired with two

levels of leg exercises). The fact that our results are similar to those of the Snow

Queen experiment shows that this difference is immaterial. What is material is the

design that ensures a very large value of sodd in the contextuality criterion (5.24). In

our experiments it was in fact the largest possible value, one equal to the rank of the

cyclic system, n. This value in all but one of our experiments was sufficient to beat

direct influences, measured by Δ (in the sense that their difference exceeded n − 2).

The one exception we got, with “Colored figures,” is also valuable, as it shows that the

presence of true contextuality in our experiment is an empirical finding rather than

mathematical consequence of the design: Even with sodd maximal in value, direct

influences may very well exceed the value of sodd − (n − 2), making the the value of

D in (5.24) negative.

As explained in Cervantes and Dzhafarov (2018), in much greater detail than in

the present brief recap, it is important that the design we used was between subjects,

that is, each respondent in each experiment was assigned to a single context only.

The reason for this is that if a single respondent were asked to make pairs of choices

in all three contexts (in Experiments 1–4) or in all four contexts (in Experiments

5 and 6), it would have created an empirical joint distribution of all the random

variables in the respective systems. This would contravene the logic of CbD, in which

different contexts are mutually exclusive, and the random variables in different rows

of content-context matrices are stochastically unrelated (have no joint distribution).

One might question another aspect of our experimental design: the fact that the

respondents were not allowed to contravene their instructions and make incorrect
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choices (e.g., choose two “high” options or two “low” options in Experiments 1–4).

The main reason for this is that in a crowdsourcing experiment, with no additional

information about the respondents, it is difficult to understand what could lead a

person not to follow the simple instructions. Ideally, one would want to separate data

due to deliberate non-compliance or disregard from honest mistakes, and this is im-

possible. In fact, it is hard to fathom what an honest mistake in a situation as simple

as ours might be. In the Snow Queen experiment (Cervantes and Dzhafarov, 2018), in

which the choices were, arguably, less simple than in the present experiments, incor-

rect responses were allowed, and their percentage was just over 8%. Their inclusion

or exclusion did not make any difference for analysis and conclusions.

In the opening of the paper and at the end of the Numerical Example and Inter-

pretation section, we alluded to the interpretation of true contextuality in terms of

the wholes irreducible to interacting parts. One must not mistake this interpretation

for the old adage that “the whole is something besides the parts” (Aristotle) or, as

reformulated by Kurt Koffka (1935), “the whole is something else than the sum of

its parts” (p. 176). These and similar statements are not only vague, they have also

been rendered essentially meaningless by their indiscriminate application to all kinds

of situations. In most of cases one has a justifiable suspicion that what is meant is

that parts interact, or that someone can discern a pattern in them. This is prob-

ably always true when the parts are deterministic entities. In the case of random

variables, however, there is a rigorous analytic meaning of saying that the whole is

different from, and indeed greater than a system of parts with all their interactions.

Random variables measuring or responding to one and the same “part” (property or

stimulus) have different identities in different “wholes” (contexts), with the difference

being greater than warranted by the mere distributional differences caused by their

interactions with other elements of the wholes. If this sounds too philosophical to
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be of importance in scientific practice, we have an example of quantum mechanics to

counter this view.

Contextuality in quantum mechanics is not a predictive theory, and it is never

used to derive any parts of quantum-mechanical theory. Rather the other way around:

Quantum-mechanical theory is used to determine a system’s behavior, from which it

is possible to establish if the system is contextual. Thus, in the most famous ex-

ample of quantum contextuality, involving spins of entangled particles (Bell, 1964,

1966), the correlations between spins are computed by standard quantum-theoretic

formulas, and the results are used to establish that, for certain choices of axes along

which the spins are measured, the system is contextual. The computations them-

selves make no use of contextuality, nor are they being amended in any way as a

result of establishing contextuality or lack thereof. Nevertheless, the contextuality

analysis of spins of entangled particles (Bell, 1964, 1966; Clauser, Horne, Shimony, &

Holt, 1969; Fine 1982), mathematically related to a special case of our contextuality

criterion (5.24), with n = 4 and Δ = 0, is considered highly significant. A prominent

experimental physicist, Alain Aspect, called it “one of the profound discoveries of the

[20th] century” (Aspect, 1999), and teams of experimentalists have put much effort

into verifying that the quantum-mechanical predictions used to derive it are correct

(Handsteiner et al., 2017). The reason for this is, of course, that contextuality reveals

something about one of the most fundamental aspects of quantum theory: the nature

of random variables used to describe quantum phenomena. Thus, it is significant

that typical systems of random variables describing classical mechanics happen to be

noncontextual, wheras some quantum-mechanical systems are contextual. In time it

has also become clear that, in addition to its foundational significance, quantum con-

textuality correlates with physical properties that can be used for practical purposes.

Physicists and computer scientists at present are beginning to pose the question of
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“contextuality advantage” or “contextuality as a resource,” which is the question of

whether contextuality or noncontextuality of a system can be utilized for practical

purposes. It is argued, for example, that the degree of contextuality (a notion we have

not discussed in this paper; see Dzhafarov et al., 2017; Kujala & Dzhafarov, 2016) is

directly related to computational advantage of quantum computing over conventional

one (Abramsky, Barbosa, & Mansfield, 2017; Frembs, Roberts, & Bartlett, 2018).

Psychology shares the mandatory use of random variables with quantum physics:

stochasticity of responses in most areas of psychology is inherent, it cannot be re-

duced by progressively greater control of stimuli and conditions. The status and role

of contextuality therefore can be expected to be similar. The same as in quantum

physics, contextuality analysis is not a predictive model competing with other mod-

els. Thus, in constructing a model to fit our data, contextuality analysis can help

only in the trivial sense: as with any other property of the data, if contextuality or

noncontextuality of them is established, a model is to be rejected if it fails to pre-

dict this property. As an example, one could attempt to fit our data by a model

with responses being chosen from some covertly evoked initial responses actualized

with the aid of some conflict resolution scheme. Assume that each question q has

a probability h of being covertly answered +1 (standing here for one of the two op-

tions), and that in a context c = (q, q�) these covert responses occur independently, so

that (+1, +1) occurs with probability hh�, (+1,−1) with probability h (1 − h�) and

so forth. If the combination of covert responses is allowed by the instructions (e.g.,

West and North-West in Experiment 5, or Red and Orange in Experiment 6), they

turn into observed responses; if the combination is prohibited (say, West and South-

East, or Red and Blue), the respondent randomly flips one of the two responses, say,

with probability 1/2. Then the observed probability of choosing an allowed combi-

nation (+1,−1) is computed as h (1 − h�) + hh�/2 + (1 − h) (1 − h�) /2. This model
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can be shown to predict that a system in our experiments is contextual, but it is in-

compatible with the noncontextuality in Experiment 6. This was only one example,

however. Simple models that can predict both contextual and noncontextual out-

comes in our experiments can be readily constructed, because all one has to predict

are three probabilities (p1, p2, p3) in (5.27) for Experiments 1–4, and four probabili-

ties (p1, p2, p3, p4) in (5.31) for Experiments 5 and 6. Consider, for example, a model

with eight triples (+1, +1, +1) , (+1, +1,−1) , . . . , (−1,−1,−1), mental states evoked

with certain probabilities, with the following decision rule: if the context is (qi, qj),

i, j = 1, 2, 3 and the mental state contains ri (+1 or −1) and rj (+1 or −1) in the ith

and jth positions, respectively, then respond (ri, rj) if this response combination is

allowable; if the combination is forbidden, choose one of the allowable combinations

with probability 1/2. The model has 7 free parameters, and it can fit (p1, p2, p3) in

Experiments 1–4 precisely. For Experiments 5 and 6, the eight triples have to be re-

placed with 16 quadruples. We need not get into discussing such models here: It was

not a purpose of our experiments to achieve a deeper understanding of how someone

chooses to eat soup and beans over burger and salad. Rather our aim was to capitalize

on the psychological transparency and modeling simplicity of such choices to firmly

establish that quantum-like contextuality can be observed outside quantum physics,

in human behavior. Recall that many previous attempts to demonstrate behavioral

contextuality have failed, so our paper is only one of the first two steps (the other

one being the Snow Queen experiment in Cervantes & Dzhafarov, 2018) on the path

of identifying contextual systems in human behavior.

Thinking by analogy with the contextuality advantage mentioned above, can we,

at this early stage of exploration, point out any properties of human behavior as

correlating with or being indicated by contextuality? One obvious fact is that in

our experiments contextuality is negatively related to the value of Δ, the amount of
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direct influences. Lack of direct influences means that the probability of choosing a

particular option, say, burger, is the same irrespective of what context this option is

included in (e.g., whether the plain skirt is chosen in the skirt-blouse combination or

in the jacket-skirt one). The lack of direct influences would result in the maximal pos-

sible value of D = 2. This simplicity, however, is specific to our design, in which sodd

function does not vary. For a more general class of systems of random variables, one

cannot simply replace contextuality with a measure inversely related to the amount

of direct influences (we even have examples when the two are synergistic rather than

antagonistic). Another dimension of human behavior that can be related to contex-

tuality can be called the degree of similarity or unanimity of decisions across pools of

respondents, or across repeated responses by the same person when a within-subject

design is possible (as in Cervantes & Dzhafarov, 2017a, 2017b, and Zhang & Dzha-

farov, 2017). Consider, for example, one of our Experiments 1–4 and assume that the

respondents agreed among themselves on what option to choose in each context. The

system then would become deterministic and noncontextual, with D = −4 or D = 0,

depending on the pattern of choices agreed upon. Small deviations from an agreed-on

pattern would result in small deviations from the corresponding values of D. On the

other extreme, we have maximal diversity, when in each context the opposite options

are chosen with equal probabilities. In this case the system would reach the maximal

possible degree of contextuality. Again, it is not possible to simply replace contex-

tuality with some measure of unanimity, such as variance: The maximal value of

contextuality can also be achieved without maximal diversity of responses, and deep

noncontextuality, with D between −4 and 0, can be achieved with nondeterministic

systems. With due caution, one can conjecture that the degree of (non)contextuality,

for a given format of the content-context matrix, may reflect a combination of the

two dimensions mentioned: (in)consistency of choices across contexts (reflecting the
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amount of direct influences) and unanimity/diversity of choices made in each context

across a pool of respondents or repeated in a within-subject design (reflecting the

amount of determinism/stochasticity). We will not know if this or other relations of

contextuality to various aspects of behavior can be established until we broaden our

knowledge of the degree of (non)contextuality to a much larger class of behavioral

systems.
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cient conditions for an extended noncontextuality in a broad class of quantum me-
chanical systems. Physical Review Letters, 115, 150401. http://doi.org/10.1103/
PhysRevLett.115.150401



124

Kurzynski, P., Ramanathan, R., & Kaszlikowski, D. (2012). Entropic test of
quantum contextuality. Physical Review Letters, 109, 020404. http://doi.org/
10.1103/PhysRevLett.109.020404

Liang, Y.-C., Spekkens, R. W., Wiseman, H. M. (2011). Specker’s parable of the over-
protective seer: A road to contextuality, nonlocality and complementarity. Physics
Reports 506, 1-39. http://doi.org/10.1016/j.physrep.2011.05.001

Popescu, S., & Rohrlich, D. (1994). Quantum nonlocality as an axiom. Foundations
of Physics, 24, 379–385. http://doi.org/10.1007/BF02058098

Townsend, J.T., & Schweickert, R. (1989). Toward the trichotomy method of reaction
times: Laying the foundation of stochastic mental networks. Journal of Mathematical
Psychology, 33, 309-327. http://doi.org/10.1016/0022-2496(89)90012-6

Wang, Z., & Busemeyer, J. R. (2013). A quantum question order model supported
by empirical tests of an a priori and precise prediction. Topics in Cognitive Science,
5, 689–710. http://doi.org/10.1111/tops.12040

Zhang, R., & Dzhafarov, E. N. (2017). Testing contextuality in cyclic psychophysical
systems of high ranks. In J. A. de Barros, B. Coecke, E. Pothos (Eds.) Quantum
interaction. LNCS (Vol. 10106, pp. 151–162). Dordrecht: Springer. http://doi
.org/10.1007/978-3-319-52289-0 12



125

6. CONTEXTUALITY IN CANONICAL SYSTEMS OF

RANDOM VARIABLES

Republished with permission of The Royal Society (U.K.), from Dzhafarov, E. N.,
Cervantes, V. H., & Kujala, J. V. (2017). Contextuality in canonical systems of
random variables. Philosophical Transactions of the Royal Society A, 375, 20160389.
https://doi.org/10.1098/rsta.2016.0389; permission conveyed through Copy-
right Clearance Center, Inc.

Abstract Random variables representing measurements, broadly understood to in-

clude any responses to any inputs, form a system in which each of them is uniquely

identified by its content (that which it measures) and its context (the conditions un-

der which it is recorded). Two random variables are jointly distributed if and only if

they share a context. In a canonical representation of a system, all random variables

are binary, and every content-sharing pair of random variables has a unique maximal

coupling (the joint distribution imposed on them so that they coincide with maximal

possible probability). The system is contextual if these maximal couplings are in-

compatible with the joint distributions of the context-sharing random variables. We

propose to represent any system of measurements in a canonical form and to consider

the system contextual if and only if its canonical representation is contextual. As

an illustration, we establish a criterion for contextuality of the canonical system con-

sisting of all dichotomizations of a single pair of content-sharing categorical random

variables.

This article is part of the themed issue ‘Second quantum revolution: foundational

questions’.
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Keywords: canonical systems, contextuality, dichotomization, direct influences,

measurements

6.1 Introduction

We begin by recapitulating the basics of our theory of ‘quantum-like’ contextuality,

and then explain how this theory is developed in this paper. The name of the theory

is Contextuality-by-Default (CbD), and its recent accounts can be found in [1–3].

Remark 6.1.1. We use the following two notation conventions throughout the paper:

(1) owing to its frequent occurrence, we abbreviate the term random variable as rv

(rvs in plural); and (2) we unconventionally capitalize the words conteNt and conteXt

to prevent their confusion in reading.

The matrix below represents the smallest possible version of what we call a cyclic

system [4–7]:

R1
1 R1

2 c = 1

R2
1 R2

2 c = 2

q = 1 q = 2 R

.

Each of the rvs Rc
q represents measurements of one of two properties, q = 1 or q = 2,

under one of two conditions, c = 1 or c = 2. The ‘properties’ q can also be called

‘objects’, ‘inputs’, ‘stimuli’, etc. depending on the application, and we refer to q

generically as the conteNt of the measurement Rc
q. The superscript c in Rc

q describes

how and under what circumstances q is measured, including what other conteNts

are measured together with q. We refer to c generically (and traditionally) as the

conteXt of the measurement Rc
q. The conteNt-conteXt pair (q, c) provides a unique

identification of Rc
q within the system of measurements R. In addition, being an
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rv, Rc
q is characterized by its distribution. In this paper, consideration is confined

to categorical rvs, those with a finite number of values. The term ‘measurement’ is

understood very broadly, to include any response to any input or stimulus.

Let us begin with the simplest case of the system R, when all four rvs Rc
q are

binary. In quantum physics, Rc
q may describe a measurement of spin along one of

two fixed axes, q = 1 or q = 2, in a spin-1/2 particle. In psychology, Rc
q may describe

a response to one of two Yes–No questions, q = 1 or q = 2. In both applications,

in conteXt c = 1 one measures first q = 1 and then q = 2; in conteXt c = 2 the

measurements are made in the opposite order. The rvs sharing a conteXt c are

recorded in pairs, (Rc
1, R

c
2), which means that they are jointly distributed and can be

viewed as a single (here, four-valued) rv. No such joint distribution is defined for rvs

in different conteXts, such as R1
2 and R2

1. They are stochastically unrelated (to each

other): one cannot ask about the probability of an ‘event’ [R1
2 = x, R2

1 = y], as no

such ‘event’ is defined. In particular, two conteNt-sharing rvs, R1
q and R2

q , are always

stochastically unrelated, hence they can never be considered one and the same rv,

even if they are identically distributed (see [1] for a detailed probabilistic analysis).

In both applications mentioned, the distributions of R1
q and R2

q are de facto dif-

ferent. In the quantum-mechanical example, the first spin measurement generally

changes the state of the particle [8]. Assuming identical preparations in both con-

teXts c, therefore, the state of the particle when a q-spin is measured first will be

different from that when it is measured second. In the behavioural example, one’s

response to a question asked second will generally be influenced by the question asked

first [9, 10]. This creates obvious conteXt-dependence of the measurements, but this

is not what we call contextuality in our theory. The original meaning of the term in

quantum mechanics, when translated into the language of probability theory (as in

[1, 3, 11] and, with caveats, [6, 12–17]), is that measurements of one and the same
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physical property q have to be represented by different rvs depending on what other

properties are being measured together with q—even when the laws of physics exclude

all direct interactions (energy/information transfer) between the measurements. By

extension, when such direct interactions are present, as they are in our two appli-

cations of the system R, we speak of contextuality only if the dependence of Rc
q on

c is greater, in a well-defined sense, than just the changes in its distribution. Con-

textuality is a non-causal aspect of conteXt-dependence, revealed in the probabilistic

relations between different measurements rather than in their individual distributions.

This is how this understanding is implemented in CbD. We characterize the

conteXt-induced changes in the individual distributions, i.e., the difference between

those of R1
q and R2

q , by maximally coupling them. This means that we replace R1
q

and R2
q with jointly distributed T 1

q and T 2
q that have the same respective individual

distributions, and among all such couplings we find one with the maximal value of

Pr
�
T 1

q = T 2
q

�
. This maximal coupling

�
T 1

q , T 2
q

�
always exists and is unique. The next

step is to see if there exists an overall coupling S of R, a jointly distributed quadruple

with elements corresponding to those of R,

S1
1 S1

2 c = 1

S2
1 S2

2 c = 2

q = 1 q = 2 S

,

such that its rows (Sc
1, S

c
2) are distributed as the rows of R and its columns

�
S1

q , S
2
q

�

are distributed as the maximal couplings
�
T 1

q , T 2
q

�
of the columns of R. If such a

maximally connected coupling S does not exist, one can say that the within-conteXt

(row-wise) relations prevent different measurements of the same conteNt (column-

wise) from being as close to each other as this is allowed by the direct influences alone.

Put differently, the relations of R1
q and R2

q with their same-conteXt counterparts force

them, if imposed a joint distribution on, to coincide less frequently than if these
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relations are ignored. The system then is deemed contextual. Conversely, if the

coupling S above exists, the within-conteXt relations do not make the measurements

of R1
q and R2

q any more dissimilar than required by the direct influences: the system

is non-contextual.

The (non)existence of S is determined by a simple linear programing proce-

dure [3, 4]: in our example, S has 24 possible values, and we find out if they can

be assigned nonnegative numbers (probability masses) that sum to the given row-

wise probabilities Pr [Rc
1 = x, Rc

2 = y] and the computed column-wise probabilities

Pr
�
T 1

q = x, T 2
q = y

�
. There is also a simple criterion (inequality) for the existence

of a solution for this system of equations [4–6]. Using it one can show, e.g., that in

our quantum-mechanical application the system R is always non-contextual, and this

is also true for the behavioural application if one adopts the model proposed in [9]

(see [18] for details). Mathematically, however, the system R can be contextual, and

if it is, CbD provides a simple way of computing the degree of its contextuality [3]:

one replaces the probability masses in the above linear programing task with quasi-

probabilities, allowed to be negative, and finds among the solutions the minimum sum

of their absolute values (see §6.2.3).

Although most of these principles and procedures of CbD have been formulated

for arbitrary systems of measurements [3, 11], they only work without complications

with systems that satisfy the following two constraints: (A) they contain only binary

rvs, and (B) there are no more than two rvs sharing a conteNt (i.e., occupying the

same column). What we propose in this paper is to always present a system of mea-

surements in a canonical form, which is in essence one with the properties A and B.

The cyclic systems form a subclass of canonical systems, rich enough to cover most ex-

perimental paradigms of traditional interest in quantum-mechanical and behavioural

contextuality studies [3, 4, 6, 11, 18, 19], but far from satisfactory generality.
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What are the complications one faces if a system does not satisfy the properties

A and B? Consider the system below, with all its rvs binary but with three rather

than two of them in each column:

R1
1 R1

2 c = 1

R2
1 R2

2 c = 2

R3
1 R3

2 c = 3

q = 1 q = 2 R�

How does CbD apply here? In the earlier version of the theory (summarized in

[3, 11]), we computed the couplings
�
T 1

q , T 2
q , T 3

q

�
of each column that maximize

Pr
�
T 1

q =T 2
q =T 3

q

�
. One problem with this approach is that the maximal coupling

�
T 1

q , T 2
q , T 3

q

�
, while it always exists, is not defined uniquely. What should be the con-

textuality analysis of R� if the within-conteXt (row-wise) distributions are compatible

with some but not all combinations of the maximal couplings for the two columns?

Shall one then speak of a partial (non)contextuality? Originally, we proposed to

consider a system non-contextual if it is compatible with at least one of these pairs

of maximal couplings, but in addition to being arbitrary, this leads to another com-

plication: it may then very well happen that the system R� is non-contextual but

one of its subsystems, e.g. R, is contextual. This is contrary to one’s intuition of

non-contextuality.

In the most recent publications therefore [1, 2], we modified our approach into

‘CbD 2.0’, by positing that a coupling for conteNt-sharing measurements should be

computed so that it maximizes the probability of coincidence for every pair (equiva-

lently, every subset) of them. In our case, this means maximization of Pr
�
T 1

q = T 2
q

�
,

Pr
�
T 2

q = T 3
q

�
, and Pr

�
T 1

q = T 3
q

�
(it is in fact sufficient to maximize only certain pairs

rather than all of them, but this is not critical here). Such a coupling
�
T 1

q , T 2
q , T 3

q

�

is called multimaximal. With only binary rvs involved, a multimaximal coupling al-
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ways exists and is unique; and a subsystem of a non-contextual system then is always

non-contextual.

Returning to system R, consider now the situation when the measurements in-

volved are not dichotomous. For example, let the two successive spin measurements

along axes q = 1 and q = 2 be made on a hypothetical spin-2 particle, with the

measurement outcomes denoted by {−2,−1, 0, 1, 2}. In the behavioural application,

let the questions asked allow five answers each, labeled in the same way. A maximal

coupling in this situation exists for each column of R, but not uniquely. This takes

us back to the problem of what one should do if the row-wise distributions are com-

patible with some but not all pairs of these maximal couplings. Another problem is

even harder. If the system is deemed non-contextual, one may consider it desirable

that it remain non-contextual after some of the measurement outcomes are ‘lumped

together.’ Thus, one may wish to consider {−2,−1, 0, 1, 2} in terms of ‘negative-zero-

positive’, lumping together −2 with −1 and 2 with 1. Or one may wish to look at

the outcomes in terms of ‘zero-non-zero.’ As it turns out, a non-contextual system

may become contextual after such coarsening of some of its measurements.

Both these problems can be resolved if we agree that every measurement included

in the system, empirically recorded or computed from those empirically recorded,

should be represented by a set of binary rvs. Let us denote by Dc
qW the Bernoulli

rv that equals 1 if the value of Rc
q is within the subset W of its possible values. We

call Dc
qW a split (of the original rv). We posit that a measurement with k distinct

values should always be represented by k ‘detectors’ of these values, i.e. the splits

with one-element subsets W . Thus, in our system R, each measurement Rc
q should

be replaced with the jointly distributed splits

�
Dc

q{−2}, D
c
q{−1}, D

c
q{0}, D

c
q{1}, D

c
q{2}

�
.
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If one is also interested in the coarsening of Rc
q� into values ‘negative-zero-positive’,

then the list should be expanded into

�
Dc

q{−2}, D
c
q{−1}, D

c
q{0}, D

c
q{1}, D

c
q{2}, D

c
q{−2,−1}, D

c
q{1,2}

�
.

If one wishes to include all possible coarsenings of the original rvs in R, then the set

of binary rvs should consist of all possible splits. As every dichotomization creating a

split should be applied to all rvs sharing a conteNt, one ends up replacing the system

R with

D1
1{−2} · · · D1

1{2} D1
1{−2,−1} · · · D1

1{1,2} · · · D1
2{1,2} c = 1

D2
1{−2} · · · D2

1{2} D2
1{−2,−1} · · · D2

1{1,2} · · · D2
2{1,2} c = 2

q = 1 {−2} · · · q = 1 {2} q = 1 {−2,−1} · · · q = 1 {1, 2} · · · q = 2 {1, 2} D

There are (25 − 2)/2 = 15 distinct dichotomizations of the set {−2,−1, 0, 1, 2}, and

the 15 subsets W in Dc
qW should be chosen to avoid duplication, such as in Dc

q{0,1}

and Dc
q{−2,−1,2}. Once duplication is prevented, however, all splits of all rvs one is

interested in should be included. It is irrelevant that some of them can be presented

as functions of the others. In fact, any split of our Rc
q can be presented as a function

of just three splits, chosen, e.g., as

Dc
q� = Dc

q{−1,1}, D
c
q�� = Dc

q{0,1}, D
c
q��� = Dc

q{2}.

It is easy to show, however, that in the subsystem

D1
1� D1

1�� D1
1��� f (D1

1� , D
1
1�� , D

1
1���) c = 1

D2
1� D2

1�� D2
1��� f (D2

1� , D
2
1�� , D

2
1���) c = 2

q = 1� q = 1�� q = 1��� q∗ D�

of the system D, the f -transformation of the maximal couplings of the first three

columns, because these couplings are not jointly distributed, would not determine

the coupling of the fourth column, let alone ensure that this coupling is maximal.
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There is no general prescription as to which rvs should or should not be included

in the system representing an empirical set of measurements: what one includes (e.g.

what coarsenings of the rvs already in play one considers) reflects what aspects of

the empirical situation one is interested in. Once a set of rvs is chosen, however, we

uniquely form their splits and place them in a canonical system.

The remainder of the paper is organized as follows. In §6.2, we present the ab-

stract version of CbD applicable to all possible systems of categorical (and not only

categorical) rvs. In §6.3, we formalize the idea of representing any system of rvs by

their splits and applying contextuality analysis to these representations only. In §6.4,

we investigate the representation of all coarsenings of a single pair of conteNt-sharing

rvs by all possible splits. In the concluding section, we explain why one might wish

to consider only some rather than all possible splits.

Remark 6.1.2. The proofs of the formal propositions in the paper, unless obvious

or referenced as presented elsewhere, are given in electronic supplementary material,

file Sa, together with additional theorems and examples.

6.2 Formal theory of contextuality

6.2.1 Basic notions

The definition of a system of rvs requires two non-empty finite sets, a set of

conteNts Q and a set of conteXts C. There is a relation

� ⊆ Q × C, (6.2.1)

a(Explanatory note added in the dissertation.) The supplementary material is reproduced as Sec-
tion 6.7
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such that the projections of � into Q and C equal Q and C, respectively (this means

that for every q ∈ Q, there is a c ∈ C, and vice versa, such that q � c). We read both

q � c and c � q as ‘q is measured in c’.

A categorical rv is one with a finite set of values and its power set as the codomain

sigma-algebra. A system of (categorical) rvs is a double-indexed set (we use calli-

graphic letters for sets of random variables)

R =
�
Rc

q : q ∈ Q, c ∈ C, q � c
�

, (6.2.2)

such that (i) any Rc
q and Rc�

q have the same set of possible values; (ii) Rc
q and Rc�

q� are

jointly distributed if c = c�; and (iii) if c �= c�, Rc
q and Rc�

q� are stochastically unrelated

(possess no joint distribution). For any c ∈ C, the subset

Rc =
�
Rc

q : q ∈ Q, q � c
�

= Rc (6.2.3)

of R is called a bunch (of rvs) corresponding to c. As the elements of a bunch are

jointly distributed, the bunch is a (categorical) rv in its own right, so it can be also

written as Rc. Note that we do not distinguish the representations of R as (6.2.2)

and as

R = {Rc : c ∈ C} . (6.2.4)

(See [1, 3] for a detailed probabilisitic analysis.)

For any q ∈ Q, the subset

Rq =
�
Rc

q : c ∈ C, q � c
�

(6.2.5)

of R is called a connection (between the bunches of rvs) corresponding to q. Any two

elements of a connection are stochastically unrelated, so it is not an rv.
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6.2.2 General definition of (non)contextuality

A (probabilistic) coupling Y of a set of rvs {X1, . . . , Xn} is a set of jointly dis-

tributed {Y1, . . . , Yn} such that Yi ∼ Xi for i = 1, . . . , n. The tilde ∼ stands for ‘has

the same distribution as’.

An (overall) coupling S of a system R in (6.2.2) is a coupling of its bunches. That

is, it is an rv

S = {Sc : c ∈ C} (6.2.6)

(with jointly distributed components) such that Sc ∼ Rc for any c ∈ C. This implies

that

Sc =
�
Sc

q : q ∈ Q, q � c
�

(6.2.7)

is a set of jointly distributed rvs in a one-to-one correspondence with the identically

labeled elements of R.

For a given q ∈ Q, a coupling Tq of a connection Rq is an rv

Tq =
�
T c

q : c ∈ C, q � c
�

(6.2.8)

such that T c
q ∼ Rc

q. In particular, if S is a coupling of R, then

Sq =
�
Sc

q : c ∈ C, q � c
�

(6.2.9)

is a coupling of Rq, for any q ∈ Q.

Definition 6.2.1. Given a set T = {T c : c ∈ C} of couplings for all connections in

a system R, the system is said to be non-contextual with respect to T if R has a

coupling S with Sq ∼ Tq for any q ∈ Q. Otherwise R is said to be contextual with

respect to T .
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Put differently, R is non-contextual with respect to T if and only if there is a

jointly distributed set

S =
�
Sc

q : q ∈ Q, c ∈ C, q � c
�

, (6.2.10)

such that, for every c ∈ C, Sc ∼ Rc, and for every q ∈ Q, Sq ∼ Tq. A coupling S with

this property is called T -connected.

If the couplings Tq are characterized by some property C such that one and only

one coupling Tq satisfies this property for any given connection Rq, then the definition

can be rephrased as follows:

Definition 6.2.2. R is said to be non-contextual with respect to property C if it has a

C-connected coupling S, defined as one with Sq satisfying C for any q ∈ Q. Otherwise

R is said to be contextual with respect to C.

Remark 6.2.3. In §6.3.3, we will use the property of (multi)maximality to play the

role of C, and the couplings in question then are referred to as (multi)maximally-

connected.

6.2.3 Degree of contextuality

A quasi-distribution on a finite set V is a function V → R (real numbers) such

that the numbers assigned to the elements of V sum to 1. We will refer to these

numbers as quasi-probability masses. A quasi-rv X is defined analogously to an rv

but with a quasi-distribution instead of a distribution.

A quasi-coupling X of R is defined as a quasi-rv

X =
�
Xc

q : q ∈ Q, c ∈ C, q � c
�

, (6.2.11)

such that Xc ∼ Rc for every c ∈ C. We have the following results.
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Theorem 6.2.4. ([3, Theorem 6.1]) For any system R and any set T of cou-

plings for the connections of R, there is a quasi-coupling X of R such that Xq =
�
Xc

q : c ∈ C, q � c
�
∼ Tq for any q ∈ Q.

The total variation of X is denoted by �X� and defined as the sum of the absolute

values of the quasi-probability masses assigned to all values of X.

Theorem 6.2.5. ([3, Section 6.3]) The total variation �X� reaches its minimum

in the class of all quasi-couplings X satisfying the conditions of theorem 6.2.4.

If min �X� is 1, then all quasi-probability masses are non-negative, and the system

R is non-contextual with respect to T . If min �X� > 1, then the system is contextual

with respect to T , and min �X�−1 can be taken as a (universally applicable) measure

of the degree of contextuality.

6.3 Splits and canonical representations

6.3.1 Expansions of the original system

One is often interested not only in a system of empirically measured rvs R but

also in some transformations thereof. Each such a transformation Fq1,...,qk
is labeled

by a set of conteNts, q1, . . . , qk, and it takes as its arguments the rvs Rc
q1

, . . . , Rc
qk

in

each conteXt c such that c � q1, . . . , qk. The outcome,

Rc
q∗ = Fq1,...,qk

�
Rc

q1
, . . . , Rc

qk

�
, (6.3.1)

is an rv interpreted as measuring a new conteNt q∗ in the conteXt c. One is free to

choose any such transformations and form the corresponding new conteNts, as there

can be no rules mandating what one should be interested in measuring.
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Using various transformations to add new conteNts and new rvs to the original

system expands it into a larger system. Two types of expansions that are of particular

interest are expansion-through-joining and expansion-through-coarsening. Joining is

defined as

Rc
q1

, . . . , Rc
qk

�−→
�
Rc

q1
, . . . , Rc

qk

�
= Rc

q� , (6.3.2)

whereas coarsening is transformation

Rc
q �−→ Fq

�
Rc

q

�
= Rc

q�� . (6.3.3)

In fact any other transformation Fq1,...,qk

�
Rc

q1
, . . . , Rc

qk

�
can be presented as joining

followed by coarsening.

Example 6.3.1 (Joining). Consider the system

R1
1 R1

2 · c = 1

R2
1 R2

2 · c = 2

R3
1 · R3

3 c = 3

· R4
2 R4

3 c = 4

q = 1 q = 2 q = 3 R

.

It contains the jointly distributed R1
1, R

1
2 and also the jointly distributed R2

1, R
2
2,

but in determining the maximal couplings of R1
1, R

2
1 and of R1

2, R
2
2 in the first and

second columns these row-wise joints are not used. In some applications, this would

be unacceptable (e.g., in the theory of selective influences [20, 21] and in the approach

advocated by Abramsky and colleagues [22, 23] this is never acceptable), and then

the following expansion has to be used:
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R1
1 R1

2 · (R1
1, R

1
2) c = 1

R2
1 R2

2 · (R2
1, R

2
2) 2

R3
1 · R3

3 · 3

· R4
2 R4

3 · 4

q = 1 2 3 12 R∗

.

Example 6.3.2 (Coarsening). If V is a set of possible values of Rc
q, then U = Fq (V )

is the set of possible values of the rv Rc
q∗ = Fq

�
Rc

q

�
. This rv is a coarsening of Rc

q.

Note that any rv is its own coarsening. As the way one labels the values of U is usually

irrelevant, each such function Fq can be presented as a partition of V . Consider, e.g.

the ‘mini’-system

R1
q c = 1

R2
q c = 2

q R

,

and let the two rvs take values on {1, 2, 3, 4, 5}. If these values are considered ordered,

1 < . . . < 5, one may be interested in all possible partitions of {1, 2, 3, 4, 5} into sub-

sets of consecutive numbers, such as {12 | 34 | 5}, {1 | 2345}, etc. There are 15 such

partitions (counting {1 | 2 | 3 | 4 | 5} that defines the original rvs Rc
q, but excluding

the trivial partition {12345}). If the values 1, 2, 3, 4, 5 are treated as unordered la-

bels, one might consider all possible non-trivial partitions, such as {{14} , {25} , {3}},

{{145} , {23}}, etc. There are 51 such partitions. In either of these two coarsen-

ing schemes the partitions can be ordered in some way, and the respective expanded

systems then become

R1
q R1

q1� · · · R1
q14� c = 1

R2
q R2

q1� · · · R2
q14� c = 2

q q1� · · · q14� R�

and

R1
q R1

q1�� · · · R1
q50�� c = 1

R2
q R2

q1�� · · · R2
q50�� c = 2

q q1�� · · · q50�� R��
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Remark 6.3.3. Although the number of the states (combinations of the values of

the elements) of the bunch Rc in R� and especially in R��
is very large, the support

of each bunch (the set of the states with non-zero probabilities) has the same size as

that of the initial random variable Rc
q in R (i.e. in our example, it cannot exceed 5).

This follows from the facts that each event Rc
q = x uniquely defines the state of Rc

in R� and in R��
, and that

�
x Pr

�
Rc

q = x
�

= 1.

6.3.2 Dichotomizations and canonical/split representations

Definition 6.3.4. A dichotomization of a set V is a function f : V → {0, 1}. Apply-

ing such an f to an rv R with the set of possible values V , we get a binary rv f (R).

We call this f (R) a split of the original R.

If Rc
q is an element of a system R, let us agree to identify f

�
Rc

q

�
as Dc

qW , where

W = f−1 (1), with the understanding that Dc
qW and Dc

q(V −W ) are indistinguishable.

To make the choice definitive, we always choose W as the smaller of W and V − W ;

in the case they have the same number of elements, we order the elements of V , say

1 < 2 < . . . < k, and then choose W as lexicographically preceding V − W .

With V = {1, 2, . . . , k}, the jointly distributed set of splits

�
Dc

q{1}, D
c
q{2}, . . . , D

c
q{k}

�
(6.3.4)

is called the split representation of Rc
q. If k = 2, then Rc

q is its own split representation,

because Dc
q{1} and Dc

q{2} are indistinguishable.

Definition 6.3.5. The system D obtained from a system R by replacing each of its

elements by its split representations is called the canonical (or split) representation

of R.
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Example 6.3.6 (continuing example 6.3.1). Let all rvs in R be binary, 0/1,

whence (R1
1, R

1
2) and (R2

1, R
2
2) in R∗ have four values each: 00, 01, 10 and 11. Replac-

ing them with the split representations and observing that the first three columns do

not change, we get the following canonical representation of R∗:

D1
1 = R1

1 D1
2 = R1

2 · D1
12{00} D1

12{01} D1
12{10} D1

12{11} c = 1

D2
1 = R2

1 D2
2 = R2

2 · D2
12{00} D2

12{01} D2
12{10} D2

12{11} 2

D3
1 = R3

1 · D3
3 = R3

3 · · · · 3

D4
2 = R4

2 D4
3 = R4

3 · · · · 4

q = 1 2 3 12 {00} 12 {01} 12 {10} 12 {11} D∗

.

Example 6.3.7 (continuing example 6.3.2). For the system R�, it is clear that

the split representations of the 15 coarsenings of Rc
q variously overlap: e.g. D1

q{3}

belongs to the split representations of R1
q and of the coarsenings defined by the par-

titions {12 | 3 | 45}, {1 | 2 | 3 | 45}, and {12 | 3 | 4 | 5}. Following our rules, W in the

splits Dc
qW comprising the split representation of R� are (when written as strings)

1, 2, 3, 4, 5, 12, 23, 34, 45 and 15 (note that, e.g., the split of the coarsening {1|23|4|5}

with W = {1, 23} should be denoted D1
q{1,23} according to our definitions, but this

is the same random variable as D1
q{45} which we have included in the list). For the

system R�� the canonical representation, obviously, consists of all possible splits of

Rc
q. It will be the target of the analysis presented in §6.4.

6.3.3 Multimaximality for canonical representations

If each connection in a canonical representation D contains just two rvs, one can

compute unique maximal couplings for all of these connections. The determination of

whether D∗ is (non)contextual then can proceed in compliance with the general theory

presented in §6.2.2, and amounts to determining if D∗ has a maximally connected
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coupling S (see remark 6.2.3). If no such coupling exists, the computation of the

degree of contextuality in D∗ can be done in compliance with §6.2.3.

In a more general case, however, with an arbitrary number of rvs in each connec-

tion, maximal couplings should be replaced with computing what we call multimaxi-

mal couplings [1, 2].

Definition 6.3.8. A coupling Tq of a connection Dq of a split representation D is

called multimaximal if, for any c, c� ∈ C such that c, c� � q, Pr
�
T c

q = T c�
q

�
is maximal

over all possible couplings of Dq. (If the connection contains two rvs, its multimaximal

coupling is simply maximal.)

A multimaximal coupling is known to have the following properties.

Multimax1: The multimaximal coupling exists and is unique for any connection Dq

([2] Corollary 1).

Multmax2: Tq is a multimaximal coupling of Dq if and only if any subset of Tq is

a maximal coupling for the corresponding subset of Dq ([2, Theorem 5]; [1,

Theorem 2.3]).

Multimax3: In a connection Dq, if {c1, . . . , cn} is the set of all c � q enumerated so

that

Pr
�
Dc1

q = 1
�
≤ . . . ≤ Pr

�
Dcn

q = 1
�
,

then Tq is a multimaximal coupling of Dq if and only if Pr
�
T ci

q = T
ci+1
q

�
is

maximal for i = 1, . . . , n − 1, over all possible couplings of Dq ([1, Theorem

2.3]).
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6.4 The largest canonical representation of a two-element connection

We consider here the case when one is interested in all possible coarsenings of the

rvs in a system. The canonical/split representation of the system then contains all

splits of all rvs. We will investigate in detail a fragment of the original (expanded)

system involving just two k-valued rvs within a single connection:

R1
1 c = 1

R2
1 c = 2

q = 1 R

The canonical system with all splits of these k-valued rvs is

D1 : D1
W1 D1

W2 D1
W(2k−1−1)

c = 1

D2 : D2
W1 D2

W2 · · · D2
W(2k−1−1)

c = 2

q = W1 W2 · · · W
�
2k−1 − 1

�
D

where W1, W2, etc. are the subsets f−1 (1) chosen as explained in §6.3.2 from the

2k−1 − 1 distinct dichotomizations f of {1, . . . , k}. The number 2k−1 − 1 is arrived at

by taking the number of all subsets, subtracting 2 improper subsets, and dividing by

2 because one chooses only one of W and {1, 2, . . . , k}−W . The goal is to determine

whether D is contextual. If it is, then any canonical system that includes D as its

subsystem (i.e., represents an original system with R as part of its connection) is

contextual.

The two original rvs have distributions

Pr
�
R1

1 = i
�

= pi and Pr
�
R2

1 = i
�

= qi, i = 1, 2, . . . , k. (6.4.1)

A state (or value) of a bunch in the system D is a vector of 2k−1 − 1 zeroes and

ones. However, the support of each of the bunches in system D consists of at most k
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corresponding states, and we can enumerate them by any k symbols, say, 1, 2, . . . , k,

as in the original variable:

Pr
�
D1 = i

�
= pi, Pr

�
D2 = i

�
= qi , i = 1, 2, . . . , k, (6.4.2)

As a result, D = {D1, D2} has k2 possible states that we can denote ij, with i, j ∈

{1, 2, . . . , k}. A coupling S =
�
S1

q , S
2
q

�
of D assigns probabilities

rij = Pr
�
S1

q = i, S2
q = j

�
, i, j ∈ {1, . . . , k} , (6.4.3)

to these k2 states so that they satisfy 2k linear constraints imposed by (6.4.1),

k�

j=1

rij = pi and
k�

i=1

rij = qj, i, j ∈ {1, . . . , k} . (6.4.4)

If S is maximally connected, then it should also satisfy 2k−1 − 1 linear constraints

imposed by the maximal couplings of the corresponding connections. Specifically, if

W = {i1, . . . , im} ⊂ {1, . . . , k}, then the maximal coupling (S1
W , S2

W ) of (D1
W , D2

W ) is

distributed as

Pr [S1
W = 1] = Pr [D1

W = 1] = pi1 + pi2 + . . . + pim

Pr [S2
W = 1] = Pr [D2

W = 1] = qi1 + qi2 + . . . + qim

and Pr [S1
W = S2

W = 1] = min (pi1 + pi2 + . . . + pim , qi1 + qi2 + . . . + qim)





. (6.4.5)

Let us use the term m-split to designate any split DW with an m-element set W

(m ≤ k/2). Thus, DW with W = {i} is a 1-split, with W = {i, j} it is a 2-split,

and the higher-order splits appear beginning with k > 5. Theorem 6.4.3 and its

corollaries below show that in determining whether the system D is contextual, one

needs to consider only the 1-splits and 2-splits. Let us use the term 1–2 system for
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this subsystem of D. An overall coupling S of D contains as its part a maximally

connected coupling of the 1–2 system if and only if the probabilities rij in (6.4.3)

satisfy (6.4.5) for m = 1 and m = 2:

rii = min (pi, qi) , i ∈ {1, . . . , k} (6.4.6)

and

rii + rij + rji + rjj = min (pi + pj, qi + qj) , i, j ∈ {1, . . . , k} , i < j. (6.4.7)

That is, a maximally connected coupling of the 1–2 system is described by the 3k+
�

k
2

�

linear equations (6.4.4), (6.4.6) and (6.4.7). We have therefore the following necessary

condition for non-contextuality of D.

Theorem 6.4.1. If the system D is non-contextual, then the 3k+
�

k
2

�
linear equations

(6.4.4), (6.4.6) and (6.4.7) are satisfied.

Remark 6.4.2. Note that 3k +
�

k
2

�
< k2 for k > 5. (For completeness only, theorem

6.7.1 in electronic supplementary material, file S, shows that the rank of this system

of equations is 2k − 1 +
�

k
2

�
.)

Theorem 6.4.3. In a maximally connected coupling S of D with k > 5, the distribu-

tions of the 1-splits and 2-splits uniquely determine the probabilities of all higher-order

splits. Specifically, for any 2 < m ≤ k/2, and any W = {i1, . . . , im} ⊂ {1, . . . , k}, the

probability that the corresponding m-split equals 1 is

min (pi1 + pi2 + . . . + pim , qi1 + qi2 + . . . + qim) =
�m

j=1 min
�
pij , qij

�

+
�m−1

j=1

�m
j�=j+1

�
min

�
pij + pij� , qij + qij�

�
− min

�
pij , qij

�
− min

�
pij� , qij�

��
.

(6.4.8)
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It is easy to find numerical examples of the distributions of R1
1 and R2

1 for which

(6.4.8) is violated (see example 6.7.2 in electronic supplementary material, file S). As

shown below, however, (6.4.8) cannot be violated if a maximally connected coupling

for the 1–2 system exists. It follows from the fact that the statement of theorem 6.4.1

can be reversed: (6.4.4), (6.4.6) and (6.4.7) imply that D is non-contextual. We

establish this fact by first characterizing the distributions of R1
1 and R2

1 for a non-

contextual 1–2 system (theorem 6.4.4 with corollary 6.4.5), and then showing that

(6.4.8) always holds for such distributions (theorem 6.4.6).

Theorem 6.4.4. A maximally connected coupling for a 1–2 system is unique if it

exists. In this coupling, the only pairs of ij in (6.4.3) that may have non-zero proba-

bilities assigned to them are the diagonal states {11, 22, . . . , kk} and either the states

{i1, i2, . . . , ik} for a single fixed i or the states {1j, 2j, . . . , kj} for a single fixed j

(i, j = 1, . . . , k).

Assuming, with no loss of generality, that the single fixed i or the single fixed j in

the formulation above is 2, the theorem says that the non-zero probabilities assigned

to the states of the maximally connected coupling (shown below for k = 4) could only

occupy the cells marked with asterisks:

1 2 3 4

1 ∗ ∗ 0 0

2 0 ∗ 0 0

3 0 ∗ ∗ 0

4 0 ∗ 0 ∗

or

1 2 3 4

1 ∗ 0 0 0

2 ∗ ∗ ∗ ∗

3 0 0 ∗ 0

4 0 0 0 ∗

.

Corollary 6.4.5. The 1–2 system for the original rvs R1
1, R

2
1 has a maximally con-

nected coupling if and only if either pi > qi for no more than one i (this single possible

i being the single fixed i in the formulation of the theorem), or pj < qj for no more
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than one j (this single possible j being the single fixed j in the formulation of the

theorem), i, j ∈ {1, . . . , k}.

The relationship between (p1, . . . , pk) and (q1, . . . , qk) described in this corollary is

some form of stochastic dominance for categorical rvs, but it does not seem to have

been previously identified. We propose to say that R1
1 nominally dominates R2

1 if

pi < qi for no more than one value of i = 1, . . . , k (i.e., pi ≥ qi for at least k − 1 of

them). Two categorical rvs nominally dominate each other if and only if either they

are identically distributed or k = 2.a Using this notion, and combining corollary 6.4.5

with theorems 6.4.1 and 6.4.4, we get the main result of this section.

Theorem 6.4.6. The system D is non-contextual if and only if its 1–2 subsystem

is non-contextual, i.e., if and only if one of the R1
1 and R2

1 nominally dominates the

other.

6.5 Concluding remarks

Contextuality analysis of an empirical situation involves the following sequence of

steps:

empirical

measurements

��
initial

system of rvs

��
expanded

system of rvs

��
canonical/split

representation

In the initial system, measurements are represented by rvs each of which generally

has multiple values. Expansion means adding to the system new conteNts with cor-

responding connections (conteNt-sharing rvs) computed as functions of the existing

connections. In a canonical representation of the system all rvs are binary, and the

a(Erratum note added in the dissertation.) This statement is incorrect. A correct description
would be “Two categorical rvs nominally dominate each other if they are identically distributed or
k = 2, 3”. Noting that two rvs may still nominally dominate each other when they are not identically
distributed and k ≥ 4.
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connections are coupled multimaximally, meaning essentially that one deals with their

elements pair-wise. The issue of contextuality is reduced to that of compatibility of

the unique couplings for pairs of conteNt-sharing rvs with the known distributions

of the conteXt-sharing bunches of rvs. Coupling the connections multimaximally

ensures that a non-contextual system has all its subsystems non-contextual too.

The canonical system of rvs is uniquely determined by the expanded system,

but the latter is inherently non-unique, it depends on what aspects of the empirical

situation one wishes to include in the system. Thus, it is one’s choice rather than

a general rule whether one considers a multi-valued measurement as representable

by all or only some of its possible coarsenings. If one chooses all coarsenings, the

split/canonical representation involves all dichotomizations, and then theorem 6.4.6

says that the canonical system is non-contextual only if, for any pair of rvs Rc
q, R

c�
q

in the expanded system, one of them, say Rc
q, ‘nominally dominates’ the other. This

domination means that Pr
�
Rc

q = x
�

< Pr
�
Rc�

q = x
�

holds for no more than one value

x of these rvs: a stringent necessary condition for non-contextuality, likely to be

violated in many empirical systems.

This is of special interest for contextuality studies outside quantum physics. His-

torically, the search for non-quantum contextual systems was motivated by the pos-

sibility of applying quantum-theoretic formalisms in such fields as biology [24], psy-

chology [9, 25, 26], economics [26, 27] and political science [28]. In CbD, the notion

of contextuality is not tied to quantum formalisms in any special way. The possibil-

ity of non-quantum contextual systems here is motivated by treating contextuality

as an abstract probabilistic issue: there are no a priori reasons why a system of rvs

describing, say, human behaviour could not be contextual if it is qualitatively (i.e. up

to specific probability values) the same as a contextual one describing particle spins.

Nevertheless, all known to us systems with dichotomous responses investigated for
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potential contextuality (with the exception of one, very recent experiment) have been

found to be non-contextual [18, 19, 29]. The use of canonical representations with

dichotomizations of multiple-choice responses offers new possibilities.

In some cases, however, the use of all possible dichotomizations is not justifiable.

Notably, if the values of an rv are linearly ordered, x1 < x2 < . . . , xN , it may be

natural to only allow dichotomizations f with f−1 (1) containing several successive

values, {xl, xl+1, . . . , xL}, for some l, L ∈ {1, . . . , N}. An even stronger restriction

would be to only allow ‘cuts’, with f−1 (1) = {xl, xl+1, . . . , xN} or {x1, x2, . . . , xl−1}.

A	 B	 C	 D	

f(x)	

g(x)	

x	

Stronger restrictions on possible dichotomizations translate into stronger restrictions

on the pairs Rc
q, R

c
q� whose canonical representation is contextual. This fact is espe-

cially important if one considers expanding CbD beyond categorical rvs. Thus, it is

easy to see that if one considers all possible dichotomizations of two conteNt-sharing

rvs with continuous densities on the set of real numbers, then the system will be con-

textual whenever the two distributions are not identical. Let the densities of these

rvs be f (x) and g (x) shown in the graphic above. If the set of all splits of these

rvs forms a non-contextual system, then any discretization of these rvs should satisfy
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corollary 6.4.5 to theorem 6.4.4. That is, for any k > 2 and any partition H1, . . . , Hk

of the set of reals into intervals, we should have either

�
Hi

f (x) dx <
�

Hi
g (x) dx for no more than one of i = 1, . . . , k,

or
�

Hi
f (x) dx >

�
Hi

g (x) dx for no more than one of i = 1, . . . , k.

(6.5.1)

This is, however, impossible unless f (x) = g (x). If they are different, then f exceeds

g on some interval, and g exceeds f on some other interval. If we take any two

subintervals within each of these intervals (in the graphic they are denoted by A, B

and C, D), any partition H1, . . . , Hk that includes A, B, C, D will violate (6.5.1). The

development of the theory of canonical representations with variously restricted sets

of splits is a task for future work.
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6.7 Supplementary Text to “Contextuality in Canonical Systems of Ran-

dom Variables” by Ehtibar N. Dzhafarov, Vı́ctor H. Cervantes, and

Janne V. Kujala

Theorem 6.7.1 (Section 6.4, Remark 6.4.2). The rank of the system of linear equa-

tions (6.4.4)-(6.4.6)-(6.4.7) is 2k − 1 +
�

k
2

�
.
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Proof of Theorem 6.7.1. This system of linear equations can be written as

M × X = P,

where

PT =




k� �� �
p1, . . . , pk,

k� �� �
q1, . . . , qk,

k� �� �
min (p1, q1) , . . . , min (pk, qk),

(k
2)� �� �

min (p1 + p2, q1 + q2) , . . . , min (pk−1 + pk, qk−1 + qk)




,

XT = {xij : i, j ∈ {1, . . . , k}} ,

and M is a Boolean matrix. The
�
k + k + k +

�
k
2

��
rows of matrix M correspond to

the elements of P and can be labeled as




k� �� �
r1·, . . . , rk·,

k� �� �
r·1, . . . , r·k,

k� �� �
r11, . . . , rkk,

(k
2)� �� �

r12, . . . , rk−1,k


 ,

whereas the k2 columns of M correspond to the elements of X and can be labeled as

{cij : i, j ∈ {1, . . . , k}} .
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Thus, if k = 4, the matrix M is

c

r
11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

1· 1 1 1 1

2· 1 1 1 1

3· 1 1 1 1

4· 1 1 1 1

·1 1 1 1 1

·2 1 1 1 1

·3 1 1 1 1

·4 1 1 1 1

11 1

22 1

33 1

44 1

12 1 1 1 1

13 1 1 1 1

14 1 1 1 1

23 1 1 1 1

24 1 1 1 1

34 1 1 1 1
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We will continue to illustrate the steps of the proof using this matrix. We begin

by adding to M the row rall with all cells equal to 1, and denote the new matrix M�.

c

r
11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

1· 1 1 1 1

2· 1 1 1 1

3· 1 1 1 1

4· 1 1 1 1

·1 1 1 1 1

·2 1 1 1 1

·3 1 1 1 1

·4 1 1 1 1

11 1

22 1

33 1

44 1

12 1 1 1 1

13 1 1 1 1

14 1 1 1 1

23 1 1 1 1

24 1 1 1 1

34 1 1 1 1

all 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

This does not change the rank of the matrix since rall is the sum of all r·i. Then we

observe that the rows rk·, r·k, and all rik with i < k can be deleted as they are linear

combinations of the remaining rows of M�. Indeed, it can be checked directly that

rk· = rall −
k−1�

i=1

ri·,

r·k = rall −
k−1�

i=1

r·i,
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(rik − rii − rkk) = (ri· − rii) + (r·i − rii) −
�

l<i

(rli − rll − rii) −
l<k�

l>i

(ril − rii − rll) ,

for all i < k. Moreover, one can also delete rkk, because

�

i<j<k

(rij − rii − rjj) +
�

i<k

(rik − rii − rkk) +
�

i<k

rii + rkk = rall.

Let the resulting matrix be M��:

c

r
11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

1· 1 1 1 1

2· 1 1 1 1

3· 1 1 1 1

·1 1 1 1 1

·2 1 1 1 1

·3 1 1 1 1

11 1

22 1

33 1

12 1 1 1 1

13 1 1 1 1

23 1 1 1 1

all 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

This matrix contains

initial

3k +

�
k

2

�
− 3����

rk·,r·k,rkk

−
all rik,i<k� �� �
(k − 1) + 1����

rall

= 2k − 1 +

�
k

2

�

rows. We prove that this matrix is of full row rank. Consider equation

�

all r in M��

αrr = 0.
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We use the following principle: if a row r intersects a columns whose only nonzero

entry is in the row r, then αr = 0, and we can delete the row r from the matrix,

decreasing the row rank of the matrix by 1. The following statements can be directly

verified.

rall can be deleted because column ckk has its only 1 in rall.

c

r
11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

1· 1 1 1 1

2· 1 1 1 1

3· 1 1 1 1

·1 1 1 1 1

·2 1 1 1 1

·3 1 1 1 1

11 1

22 1

33 1

12 1 1 1 1

13 1 1 1 1

23 1 1 1 1

Then each of r·i can be deleted because the column cki has its only 1 in r·i (i =

1, . . . , k − 1).

c

r
11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

1· 1 1 1 1

2· 1 1 1 1

3· 1 1 1 1

11 1

22 1

33 1

12 1 1 1 1

13 1 1 1 1

23 1 1 1 1
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Then each of ri· can be deleted because the column cik has its only 1 in ri· (i =

1, . . . , k − 1).

c

r
11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

11 1

22 1

33 1

12 1 1 1 1

13 1 1 1 1

23 1 1 1 1

Then each of rij can be deleted because the column cji has its only 1 in rij

(i, j ∈ {1, . . . , k − 1} , i < j).

c

r
11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

11 1

22 1

33 1

This leaves only r11, . . . , r(k−1)(k−1) that are obviously linearly independent.

Theorem (Section 6.4, Theorem 6.4.3). In a maximally-connected coupling S of

D with k > 5, the distributions of the 1-splits and 2-splits uniquely determine the

probabilities of all higher-order splits. Specifically, for any 2 < m ≤ k/2, and any

W = {i1, . . . , im} ⊂ {1, . . . , k}, the probability that the corresponding m-split equals 1

is

min (pi1 + pi2 + . . . + pim , qi1 + qi2 + . . . + qim) =
�m

j=1 min
�
pij , qij

�

+
�m−1

j=1

�m
j�=j+1

�
min

�
pij + pij� , qij + qij�

�
− min

�
pij , qij

�
− min

�
pij� , qij�

��
.

(6.7.1)
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Proof of Theorem 6.4.3. From (6.4.6) and (6.4.7),

r12 + r21 = min (p1 + p2, q1 + q2) − min (p1, q1) − min (p2, q2)

...
...

...

rij + rji = min (pi + pj, qi + qj) − min (pi, qi) − min (pj, qj) (i < j).

...
...

...

r(k−1)k + rk(k−1) = min (pk−1 + pk, qk−1 + qk) − min (pk−1, qk−1) − min (pk, qk)

Consider an m-split with 2 < m ≤ k/2, and assume without loss of generality that

W = (1, . . . , m). We have

m�

i=1

m�

j=1

rij = min (p1 + . . . + pm, q1 + . . . + qm) . (6.7.2)

The left-hand-side sum can be presented as

�m
i=1 rii +

�m−1
i=1

�m
j=i+1 (rij + rji)

=
�m

i=1 min (pi, qi) +
�m−1

i=1

�m
j=i+1 [min (pi + pj, qi + qj) − min (pi, qi) − min (pj, qj)] ,

whence we get (6.4.8).

Example 6.7.2. (showing that the relation (6.4.8) may be violated, see Section 6.4.)

If

R1
1= 1 2 3 4 0 0

prob. mass p = .6 .1 .1 .2 0 0
,

R2
1= 1 2 3 4 0 0

prob. mass q = .2 .3 .4 .1 0 0
,
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then

.8� �� �
min (p1 + p2 + p3, q1 + q2 + q3)

�=

min (p1, q1) .2

+ min (p2, q2) .1

+ min (p3, q3) .1

+ min (p1 + p2, q1 + q2) − min (p1, q1) − min (p2, q2) .5 − .2 − .1

+ min (p1 + p3, q1 + q3) − min (p1, q1) − min (p3, q3) .6 − .2 − .1

+ min (p2 + p3, q2 + q3) − min (p2, q2) − min (p3, q3) .2 − .1 − .1





= .5

Theorem (Section 6.4, Theorem 6.4.4). A maximally-connected coupling for a 1-2

system is unique if it exists. In this coupling, the only pairs of ij in (6.4.3) that may

have nonzero probabilities assigned to them are the diagonal states {11, 22, . . . , kk}

and either the states {i1, i2, . . . , ik} for a single fixed i or the states {1j, 2j, . . . , kj}

for a single fixed j (i, j = 1, . . . , k).

Proof of Theorem 6.4.4. (The matrices illustrating the proof are shown for k > 6 but

the theorem is valid for all k > 1.) If the only nonzero entries in the matrix are in the

main diagonal, the theorem is trivially true. Assume therefore that rij > 0 for some

i �= j. Without loss of generality, we can assume that r12 > 0 and p1 + p2 ≤ q1 + q2.

Indeed, if some rij > 0, we can always rename the values so that i = 1 and j = 2;

and if p1 + p2 > q1 + q2, then we can simply rename all ps into qs and vice versa. In

the following we will use the expression “rij is p-minimized” if pi + pj ≤ qi + qj, and

“rij is q-minimized” if pi + pj ≥ qi + qj (in both cases, i �= j).

We have (the empty cells are those whose value is to be determined later)
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1 2 3 4 5 6 . . .

1 r11 r12 > 0 p1

2 r21 r22 p2

3 r33

4 r44

5 r55

6 r66

...
...
...
...

...

q1 q2 . . .

..

From (6.4.6)-(6.4.7), r11 + r12 + r21 + r22 = min {p1 + p2q1 + q2}, and since r12 is

p-minimized, r11 + r12 + r21 + r22 = p1 + p2. This means

1 2 3 4 5 6 . . .

1 r11 r12 > 0 0 0 0 0 0 p1 = r11 + r12

2 r21 r22 0 0 0 0 0 p2 = r21 + r22

3 r33

4 r44

5 r55

6 r66

...
...
...
...

...

q1 ≥ r11 + r21 q2 ≥ r12 + r22 . . .

.
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We also should have

1 2 3 4 5 6 . . .

1 r11 r12 > 0 0 0 0 0 0 p1 = r11 + r12

2 0 r22 0 0 0 0 0 p2 = r22

3 0 r33

4 0 r44

5 0 r55

6 0 r66

... 0
...
...
...

...

q1 = r11 q2 ≥ r12 + r22 . . .

because r11 = min {p1, q1} and r11 < p1.

Generalizing, we have established the following rules:

(R1) If rij > 0 and it is p-minimized, then all non-diagonal elements in the rows i

and j are zero except for rij, and all non-diagonal elements in the column i are zero.

(R2) (By symmetry, on exchanging ps and qs) If rij > 0 and it is q-minimized,

then all non-diagonal elements in the columns i and j are zero except for rij, and all

non-diagonal elements in the row j are zero.

Returning to our special arrangement of the rows and columns, let us prove now

that all r1j with j > 2 are q-minimized. Assume the contrary, and with no loss of

generality, let r15 = 0 be p-minimized. This would mean that

r15 + r51 = p1 + p5 − r11 − r55 = r12 + p5 − r55 = 0,

which could only be true if r12 = 0, which it is not.
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1 2 3 4 5 6 . . .

1 r11 r12 > 0 0
q−min

0
q−min

0
q−min

0
q−min

0
q−min

p1 = r11 + r12

2 0 r22 0 0 0 0 0 p2 = r22

3 0 r33

4 0 r44

5 0 r55 p5

6 0 r66

... 0
...
...
...

...

q1 = r11 q2 ≥ r12 + r22 . . .

Generalizing, we have established two additional rules:

(R3) If rij and rij� are both p-minimized (for pairwise distinct i, j, j�), then they are

both zero (because if one of them is not, say rij > 0, then rij� = 0 and it must be

q-minimized).

(R4) (By symmetry, on exchanging ps and qs) If rij and ri�j are both q-minimized

(for pairwise distinct i, i�, j), then they are both zero.

Returning to our special arrangement of the rows and columns, it follows that

nowhere in the matrix can we have rij > 0 (i > 2) which is q-minimized. Indeed, if

j > 2, then this would have contradicted R4 (because the zeros in the first row are

all q-minimized), and if j = 2, it would have contradicted R2 (because r12 > 0).

Let us prove now that if j > 2 and i > 2 and i �= j, then there is no rij > 0 that

is p-minimized. Assume the contrary: rij > 0 and q-minimized, and consider r2i, ri2.

With no loss of generality, let (i, j)=(4, 6). In accordance with R1, we fill in the 4th

and the 6th rows with zeros, and we fill in the 4th column with zeros too:
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1 2 3 4 5 6 . . .

1 r11 r12 > 0 0 0 0 0 0 p1 = r11 + r12

2 0 r22 0 0 0 0 0 p2 = r22

3 0 r33 0

4 0 0 0 r44 0 r46 > 0 0 p4 = r44 + r46

5 0 0 r55

6 0 0 0 r64 = 0 0 r66 0 p6 = r66

... 0 0
...
...
...

...

q1 = r11 q2 ≥ r12 + r22 q4 = r44 q6 ≥ r46 + r66 . . .

Then r24, r42 are both zero, whence min (p2 + p4, q2 + q4) must equal r22 + r44 to be a

maximal coupling. But

min (p2 + p4, q2 + q4) = min (r22 + r44 + r46, r12 + r22 + r44 + x) > r22 + r44,

since both r12 and r46 are positive, a contradiction.

We come to the conclusion that the only positive non-diagonal elements in the

matrix can be in the column 2 (and they are all p-minimized).

1 2 3 4 5 6 . . .

1 r11 r12 > 0 0 0 0 0 0 p1 = r11 + r12

2 0 r22 0 0 0 0 0 p2 = r22

3 0 r32 ≥ 0 r33 0 0 0 0 p3 = r32 + r33

4 0 r42 ≥ 0 0 r44 0 0 0 p4 = r42 + r44

5 0 r52 ≥ 0 0 0 r55 0 0 p5 = r52 + r55

6 0 r62 ≥ 0 0 0 0 r66 0 p6 = r62 + r66

... 0
... 0 0 0 0

...
...
...

...

q1 = r11 q2 ≥ r12 + r22 q3 = r33 q4 = r44 q5 = r55 q6 = r66 . . .

Generalizing, let rij > 0 and i �= j. Then, if rij is p-minimized, all non-diagonal

elements of the matrix outside column j are zero (and the non-diagonal elements in
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the jth column are p-minimized); if rij is q-minimized, then all non-diagonal elements

of the matrix outside row i are zero (and the non-diagonal elements in the ith row

are q-minimized).

It is easy to check that such a construction is always internally consistent.

Corollary (Section 6.4, Corollary 6.4.5). The 1-2 system for the original rvs R1
1, R

2
1

has a maximally-connected coupling if and only if either pi > qi for no more than one

i (this single possible i being the single fixed i in the formulation of the theorem), or

pj < qj for no more than one j (this single possible j being the single fixed j in the

formulation of the theorem), i, j ∈ {1, . . . , k}.

Proof of Corollary 6.4.5. The “only if” part is obvious. To demonstrate the “if” part,

consider (without loss of generality) the arrangement

1 2 3 4 5 6 . . .

1 . . . p1 ≥ q1

2 . . . p2

3 . . . p3 ≥ q3

4 . . . p4 ≥ q4

5 . . . p5 ≥ q5

6 . . . p6 ≥ q6

...
...

...
...

...
...

...
...
...
...

...

q1 q2 ≥ p2 q3 q4 q5 q6 . . .

and fill it in as
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1 2 3 4 5 6 . . .

1 q1 p1 − q1 0 0 0 0 0 p1 ≥ q1

2 0 p2 0 0 0 0 0 p2

3 0 p3 − q3 q3 0 0 0 0 p3 ≥ q3

4 0 p4 − q4 0 q4 0 0 0 p4 ≥ q4

5 0 p5 − q5 0 0 q5 0 0 p5 ≥ q5

6 0 p6 − q6 0 0 0 q6 0 p6 ≥ q6

... 0
... 0 0 0 0

...
...
...

...

q1 q2 ≥ p2 q3 q4 q5 q6 . . .

with the empty cells filled in with zeros. Check that (a) all rows sum to the marginals;

(b) the second column sums to

k�

i=1

pi −
�

k�

i=1

qi − q2

�
= q2;

(c) the rest of the columns sum to the marginals; (d) all rii are min (pi, qi); and (e)

for all pairs rij (i �= j) the sums rii + rij + rji + rjj equal min (pi + pj, qi + qj). The

latter is proved by considering first all j �= 2, where it is obvious, and then j = 2

where the computation is, for i �= 2,

rii + ri2 + r2i + r22 = qi + (pi − qi) + 0 + p2 = pi + p2,

as it should be because the values in the second column are to be p-minimized.

Theorem (Section 6.4, Theorem 6.4.6). The system D is noncontextual if and only if

its 1-2 subsystem is noncontextual, i.e., if and only if one of the R1
1 and R2

1 nominally

dominates the other.
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Proof of Theorem 6.4.6. The “only if” part is Theorem 6.4.1. All we need to proof

the “if “ part is to check that the relation (6.4.8) holds. Assume the arrangement is

as in the previous corollary. Consider first any set i1, . . . , im that does not include 2:

min (pi1 + pi2 + . . . + pim , qi1 + qi2 + . . . + qim) = qi1 + qi2 + . . . + qim ,

m�

j=1

min
�
pij , qij

�
= qi1 + qi2 + . . . + qim ,

min
�
pij + pij� , qij + qij�

�
− min

�
pij , qij

�
− min

�
pij� , qij�

�
= 0.

So, (6.4.8) holds. If one of the indices (let it be i1) is 2, then

q2 + qi2 + . . . + qim =

�
p2 +

�

x�=2

(px − qx)

�
+ qi2 + . . . + qim > p2 + pi2 + . . . + pim ,

so

min (p2 + pi2 + . . . + pim , q2 + qi2 + . . . + qim) = p2 + pi2 + . . . + pim .

We also have
m�

j=1

min
�
pij , qij

�
= p2 + qi2 + . . . + qim ,

and for any j �= 2, j� �= 2,

min
�
pij + pij� , qij + qij�

�
− min

�
pij , qij

�
− min

�
pij� , qij�

�
= 0,

min
�
p2 + pij , q2 + qij

�
− min (p2, q2) − min

�
pij , qij

�
= pij − qij .

Since index i1 = 2 is paired with each of i2, . . . , im only once, the right-hand side in

(6.4.8) is

p2 + qi2 + (pi2 − qi2) + . . . + qim + (pim − qim) = p2 + pi2 + . . . + pim .
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7. TRUE CONTEXTUALITY IN A PSYCHOPHYSICAL

EXPERIMENT

Reprinted from Cervantes, V. H., & Dzhafarov, E. N. (2019). True contextuality
in a psychophysical experiment. Journal of Mathematical Psychology, 91, 119-–127.
https://doi.org/10.1016/j.jmp.2019.04.006

Abstract Recent crowdsourcing experiments have shown that true contextuality

of the kind found in quantum mechanics can also be present in human behavior.

In these experiments simple human choices were aggregated over large numbers of

respondents, with each respondent dealing with a single context (set of questions

asked). In this paper we present experimental evidence of contextuality in individ-

ual human behavior, in a psychophysical experiment with repeated presentations of

visual stimuli in randomly varying conteXts (arrangements of stimuli). The analysis

is based on the Contextuality-by-Default (CbD) theory whose relevant aspects are

reviewed in the paper. CbD allows one to detect contextuality in the presence of

direct influences, i.e., when responses to the same stimuli have different distributions

in different contexts. The experiment presented is also the first one in which contex-

tuality is demonstrated for responses that are not dichotomous, with five options to

choose among. CbD requires that random variables representing such responses be

dichotomized before they are subjected to contextuality analysis. A theorem says that

a system consisting of all possible dichotomizations of responses has to be contextual

if these responses violate a certain condition, called nominal dominance. In our ex-

periment nominal dominance was violated in all data sets, with very high statistical

reliability established by bootstrapping.
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Keywords: Contextuality, Inconsistent connectedness, Nominal dominance, Psych-

ophysics.

Contextuality (or lack thereof) is a characteristic of a system of random variables.

A set of random variables forms a system if each random variable Rc
q in it is uniquely

identified by its content q and its context c. The content q is that which the random

variable measures or responds to, while the context c is a complex of recorded con-

ditions under which this random variable is observed. As an example, the following

set of random variables,

R1
1 R1

2 R1
4 c = 1

R2
2 R2

3 c = 2

R3
1 R3

2 R3
3 c = 3

q = 1 q = 2 q = 3 q = 4 system E

, (7.1)

forms a system with three contexts and four contents.

To prevent possible misreadings, we will follow the convention adopted in Dzha-

farov and Kujala (2016a) and capitalize the distinguishing letters in the words “con-

teNt” and “conteXt.”

The conteNts could be, e.g., four stimuli (say, questions or light flashes), and

conteXts be defined by which two or three of them are presented in a single trial,

say, in a fixed succession. Thus, in conteXt c = 1, three stimuli (q = 1, q = 2, and

q = 4) are presented, and each of them is being responded to in accordance with some

instructions. Depending on the arrangements, a response to a given stimulus can be

given immediately after it is presented or after all three of them are presented — such

experimental details are immaterial for contextuality analysis insofar as responses and

stimuli are in a one-to-one correspondence. The responses in the conteXt c = 1 are

the random variables R1
1, R

1
2, R

1
4 shown in the first row of (7.1). They may be binary
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(e.g., Yes/No, or I saw it/I did not see it), or they can be multi-valued ones (e.g.,

each stimulus may have a name, and the task may be to identify which stimulus

was shown). The difference between binary and more-than-binary responses plays a

central role in the present paper.

Let us explain the intuition behind the notion of contextuality using (7.1). The

random variables within a given conteXt are jointly distributed, and the marginal

distribution of a given-conteNt variable may depend on the conteXt in which it is

recorded. Thus, the distributions of R2
2 and R3

2 may be different, so by knowing

the distribution one can guess in which of the two conteXts, c = 2 or c = 3, the

conteNt q = 2 is being responded to. This means that the effect of a conteXt upon

a distribution is information-carrying, i.e., it is a causal influence. We call such

influences direct. The terminology used in physics for direct influences is “signaling,”

“disturbance,” “invasiveness,” etc. (Cereceda, 2000; Leggett & Garg, 1985). In

psychology we usually speak of “violations of marginal selectivity” (Dzhafarov, 2003;

Dzhafarov & Kujala, 2016b). If, e.g., the conteNts in (7.1) are questions, and in each

conteXt they are posed in a succession, in the order of their values (q = 1, 2, 3, 4),

then the response R2
2 to q = 2 in conteXt c = 2 may very well differ in distribution

from the response R3
2 to the same q = 2 in conteXt c = 3, because in the later

case the respondent could have been affected by the previously asked q = 1. The

(dis)similarity of two conteNt-sharing variables, such as R2
2 and R3

2, can be measured

by how often their values could coincide had they been jointly distributed (de facto,

they are not, because they occur in mutually exclusive conteXts). In other words,

the similarity of R2
2 and R3

2 is measured by the maximal value of Pr [T 2
2 = T 3

2 ] among

all jointly distributed pairs {T 2
2 , T 3

2 } such that T 2
2 is distributed as R2

2, and T 3
2 as

R3
2. Any such a pair {T 2

2 , T 3
2 } is called a coupling of R2

2 and R3
2, and the couplings

with the maximal value of Pr [T 2
2 = T 3

2 ] are called maximal. We can find maximal
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couplings for all other conteNt-sharing pairs
�
Rc

q, R
c�
q

�
. For some of them we may

expect no distributional differences (in our example with questions it could be, e.g.,

R1
1, R

3
1, as in both these cases q = 1 is asked first), and then the maximal value of

Pr [T 1
1 = T 3

1 ] will be 1. This is the case of traditional interest in quantum physics.

However, generally, both in physics and psychology, differences in distributions of

conteNt-sharing random variables should be expected and taken into account. Direct

influence is, of course, a form of conteXt-dependence, but it is very different from what

is considered contextuality in the proper sense of the word. The latter is detected in

the system by showing that the just mentioned maximal couplings of the conteNt-

sharing pairs are not compatible with the joint distributions of the random variables

within conteXts. In other words, a system is contextual if the joint distributions

within conteXts force the conteNt-sharing pairs across conteNts to be more dissimilar

than they could be if taken without the conteXts. While direct influences exerted by

conteNts are causal (information-carrying), true contextuality is of a correlational,

non-causal nature.1 More rigorous definitions are given below, in Section 7.1.

To provide historical perspective, contextuality (without using this term at first)

was introduced in quantum physics by Bell (1964, 1966) and Kochen and Specker

(1967). They demonstrated that one could meaningfully address, using only ob-

servable measurements, the question famously discussed in Bohr’s (1935) critique

of Einstein, Podolsky, and Rosen (1935). The question is whether all measurement

outcomes in a system of measurements can be presented as being determined by

1To prevent objections, direct influences are defined in our theory as the differences in distributions,
so one cannot speak of “hidden” influences (Filk, 2015, 2016). Thus, if the variables in system E are
binary, +1/ − 1, and Pr

�
R1

1 = 1
�

= Pr
�
R3

1 = 1
�

= 0.5, one can imagine that “in reality” conteXt
c = 3 somehow acts upon the “potential values” of R3

1 reversing their signs, R3
1 → −R3

1, without
changing the distribution. However, this is not considered a “direct influence,” because in the given
system of random variables these unnoticeable changes do not carry information. If one can actually
observe the changes R3

1 → −R3
1, the system of random variables one deals with changes dramatically,

and the CbD analysis then changes accordingly (Dzhafarov, Cervantes, & Kujala, 2017; Dzhafarov
& Kon, 2018; Dzhafarov & Kujala, 2018).
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some “hidden” random variable in a conteXt-independent way, i.e., using conteXt-

independent mappings from the values of this hidden variable into the values of the

observed measurement outcomes. With the work of Fine (1982a, 1982b) and Sup-

pes and Zanotti (1981), it became clear that contextuality can also be formulated

in terms of the (non)existence of certain joint distributions involving random vari-

ables recorded in different conteXts. Although some researchers disagree (Griffiths,

2017), this seems to have become a common way of understanding contextuality

(Abramsky, Barbosa, Kishida, Lal, & Mansfield, 2015; Abramsky, & Brandenburger,

2011; Araújo, Quintino, Budroni, Cunha, & Cabello, 2013; Budroni, 2016; Budroni

& Emary, 2014; Cabello, 2013; Khrennikov, 2008; Klyachko, Can, Binicioglu, & Shu-

movsky, 2008; Kurzynski, Ramanathan, & Kaszlikowski, 2012; Liang, Spekkens, &

Wiseman, 2011; Ramanathan, Soeda, Kurzynski, & Kaszlikowski, 2012). Probabilis-

tic underpinnings of this understanding have been critically examined by Khrennikov

(2000a, 2000b, 2001) and Dzhafarov and Kujala (2016a, 2017a). Irrespective of the

debated issues and disagreements, however, contextuality analysis has been moved

from physics to probability theory, making it apparent that random variables in con-

textuality analysis need not represent quantum measurements, they can also be, e.g.,

responses of biological organisms to stimuli. However, the search for contextuality in

psychology was frustrated by the fact that all behavioral systems of random variables

exhibit strong direct influences, whereas the theory of contextuality in quantum me-

chanics, until recently, was only developed for consistently connected systems, those

in which conteNt-sharing random variables have identical distributions. When di-

rect influences are taken into account, a large body of experimental data collected

in search of contextuality can be shown to exhibit no contextuality (Dzhafarov, &

Kujala, 2014; Dzhafarov, Kujala, Cervantes, Zhang, & Jones, 2016; Dzhafarov, Zhang

& Kujala, 2015). Nevertheless two very recent series of experiments unequivocally
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demonstrate that behavioral data (simple conjoint choices made by people) can be

represented by contextual systems of random variables (Basieva, Cervantes, Dzha-

farov, & Khrennikov, 2019; Cervantes & Dzhafarov, 2018). These experiments dealt

with responses aggregated over large pools of people, with each person making choices

within a single conteXt.

This paper presents the first experimental evidence of contextuality in individual

human behavior. In the experiment presented below, each of the three participants

made repeated choices in a series of randomized conteXts. A similar experiment, with

essentially the same stimuli and similar instructions, has been conducted before, and

analyzed in two different ways (Cervantes & Dzhafarov, 2017a, 2017b): both these

analyses revealed no contextuality in the data. The main difference of that experiment

from the present one is that in the former all choices were binary, whereas in the

present experiment each choice was made among five options. This is an important

difference in the theory presented below.

7.1 Contextuality-by-default theory

7.1.1 Generalities

A system of random variables is defined as a set of double-indexed random vari-

ables

R =
�
Rc

q : c ∈ C, q ∈ Q, q ≺ c
�

, (7.2)

where C is a set of conteXts, Q is a set of conteNts, and q ≺ c (or c � q) is read

“conteNt q is recorded in conteXt c”.2 Examples of a conteNt q (the “thing” being

measured or responded to) are particle’s spin in a given direction in a Hilbert space,

2Here and throughout, we conveniently confuse Rc
q and

�
Rc

q, c, q
�
, so that, e.g.,

�
Rc

q, R
c
q�
�

consists of
two random variables even if Rc

q ≡ Rc
q� , the same measurable function. Also, we follow the common

tradition of conveniently confusing functions Rc
q with their values.
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or a question asked of a person. Examples of a conteXt c may be subsets of conteNts

measured “together” (simultaneously or sequentially), or different conditions associ-

ated with a given subset of conteNts (e.g., the order in which two fixed questions are

asked). The corresponding Rc
q would then be the spin value (say, “up” or “down”)

along axis q in a given set c of measured properties, or the response (say, “yes” or

“no”) to question q asked before or after another question, q�, with c = (q�, q). As a

random variable, Rc
q is a measurable function from a probability space (Xc, Ξc, πc) to

a measurable space (Yq, Υq), with the usual meaning of the components. The proba-

bility space
�
Yq, Υq, p

c
q

�
induced by this function is the distribution of Rc

q. The indices

show that (Xc, Ξc, πc) is common to all Rc
q within a conteXt c, i.e., all such Rc

q are

jointly distributed, reflecting the fact that their realizations are empirically linked.

Put differently, for any c ∈ C, the set

Rc =
�
Rc

q : q ∈ Q, q ≺ c
�

(7.3)

can be viewed as a random variable. It is a principle of CbD that any Rc
q, R

c�
q� with

c �= c� are stochastically unrelated, i.e., (Xc, Ξc, πc) �= (Xc� , Ξc� , πc�), reflecting the

fact that conteXts are mutually exclusive, so no pairing of the values of Rc
q and Rc�

q�

is defined. In particular, the variables in

Rq =
�
Rc

q : c ∈ C, q ≺ c
�

(7.4)

for a given q are not jointly distributed. However, the distributions of any Rc
q, R

c�
q in

Rq always share the same measurable space, (Yq, Υq), reflecting the fact that Rc
q and

Rc�
q have the same conteNt (i.e., they measure or respond to the same “thing”).

The next definition is a modification of the usual one (Thorisson, 2000), to better

suit our purposes. A (probabilistic) coupling of an indexed set of random variables
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{Vi}i∈I is an identically indexed set of jointly distributed random variables {Wi}i∈I

such that, for any subset I � ⊆ I, if the elements of {Vi}i∈I� are jointly distributed, then

{Wi}i∈I�
dist
= {Vi}i∈I� (the same distribution). In particular, a coupling of a system R

in (7.2) is a set

S =
�
Sc

q : c ∈ C, q ∈ Q, q ≺ c
�

(7.5)

of jointly distributed random variables, such that, for all c ∈ C,

Rc =
�
Rc

q : q ∈ Q, q ≺ c
� dist

=
�
Sc

q : q ∈ Q, q ≺ c
�

= Sc. (7.6)

Returning to our example (7.1), the following matrix of jointly distributed random

variables (or simply, the following random variable) E,

S1
1 S1

2 S1
4 c = 1

S2
2 S2

3 c = 2

S3
1 S3

2 S3
3 c = 3

q = 1 q = 2 q = 3 q = 4 coupling E

, (7.7)

is a coupling of E if Sc dist
= Rc for c = 1, 2, 3.

Let Pmax be the following statement, well-defined (in the sense of being true or

false) for any two jointly distributed random variables A, B:

Pmax (A, B) = “Pr [A = B] is maximal possible, given the distributions of A and B.” (7.8)

If a coupling
�
Sc

q , S
c�
q

�
of two conteNt-sharing random variables Rc

q and Rc�
q satisfies

this statement, it is called a maximal coupling of Rc
q and Rc�

q . The system R is

noncontextual if R has a coupling S in which any
�
Sc

q , S
c�
q

�
is a maximal coupling of

Rc
q and Rc�

q . Otherwise, if such a coupling S does not exist, the system is contextual.
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Using our example in (7.7), system E is noncontextual if and only if among all its

couplings E one can find at least one in which all equalities S1
1 = S3

1 , S1
2 = S2

2 ,

S2
2 = S3

2 , and S2
3 = S3

3 occur with the maximal probability allowed by their individual

distributions. Thus, if R1
1 and R3

1 are dichotomous, +1/ − 1, with Pr [R1
1 = 1] = p

and Pr [R3
1 = 1] = q, then the maximal possible probability of S1

1 = S3
1 is 1 − |p − q|.

Obviously, any subsystem of a noncontextual system (obtained by deleting some of

the random variables) is noncontextual, or, equivalently, any system with a contextual

subsystem is contextual.

7.1.2 Dichotomous random variables

Most systems of traditional interest consist of dichotomous random variables.

Among basic properties of such systems one should mention the following (Dzhafarov,

2017; Dzhafarov et al., 2017; Dzhafarov & Kujala, 2017a, 2017b).

(P1) Adding to or removing from a system a deterministic random variable (at-

taining a single value with probability 1), or a variable that does not share

its conteXt or its conteNt with other variables, does not change the system’s

(non)contextuality (in fact, does not change the degree of contextuality, but we

do not discuss this notion here).

(P2) A set of conteNt-sharing random variables Rq =
�
Rc

q : c ∈ C, q ≺ c
�

always

has a unique coupling such that any two of its elements satisfy Pmax. (Such a

coupling is referred to as a multimaximal coupling).

(P3) Tq =
�
T c

q : c ∈ C, q ≺ c
�

is a multimaximal coupling of Rq if and only if, for

any {c1, . . . , ck} ⊆ C, the probability of T c1
q = . . . = T ck

q is maximal among all

couplings of
�
Rc1

q , . . . , Rck
q

�
.
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(P4) If Rq =
�
Rc1

q , . . . , Rcl
q

�
is enumerated so that Pr

�
Rc1

q = 1
�
≤ . . . ≤ Pr

�
Rcl

q = 1
�
,

then Tq is a multimaximal coupling of Rq if and only if Pr
�
T ci

q = T
ci+1
q

�
is max-

imal for i = 1, . . . , l − 1 among all possible couplings of Rq.

Especially important in quantum-mechanical applications are cyclic systems of ranks

n = 2, 3, . . .. Denoting by ⊕1 cyclic clockwise shift 1 �→ 2, . . . , n− 1 �→ n, n �→ 1 (and

by �1 the opposite shift), a cyclic system of rank n has conteXts c = 1, . . . , n,

conteNts q = 1, . . . , n, and consists of dichotomous (+1/ − 1) random variables
�
Ri

i, R
i
i⊕1 : i = 1, . . . , n

�
. Some examples of such systems are: for n = 2, question or-

der effects (Wang & Busemeyer, 2013; Wang, Solloway, Shiffrin, & Busemeyer, 2014);

for n = 3, the Suppes and Zanotti (1981), original Bell (1964), and Leggett and Garg

(1985) systems in quantum mechanics, and simple decision making systems in cogni-

tion (Asano, Hashimoto, Khrennikov, Ohya, & Tanaka, 2014; Basieva et al., 2019);

for n = 4, the EPR/Bohm-Bell-CHSH systems (Bell, 1966; Bohm & Aharonov, 1957;

Clauser & Horne, 1974; Clauser, Horne, Shimony, & Holt, 1969; Fine, 1982a, 1982b),

and decision making and psychophysical systems (Bruza, Kitto, Nelson, & McEvoy,

2009; Bruza, Kitto, Ramm, & Sitbon, 2015; Cervantes & Dzhafarov, 2017a, 2017b,

2018); for n = 5, the KCBS system (Klyachko et al., 2008; Lapkiewicz et al., 2011);

for n > 5, some psychophysical systems (Zhang & Dzhafarov, 2016). The main the-

oretical result here is

Theorem 7.1.1 (Kujala & Dzhafarov, 2016). A cyclic system of rank n is contextual

if and only if (denoting expected value by �·�)

max
ι1,...,ιk∈{−1,1},

�n
i=1 ιi=−1

n�

i=1

ιi
�
Ri

iR
i
i⊕1

�
− (n − 2) −

n�

i=1

���Ri
i

�
−
�
Ri�1

i

��� > 0. (7.9)
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Prior to Kujala and Dzhafarov (2016), this general result was conjectured and

proved for small values of n (Dzhafarov, Kujala, & Larsson, 2015; Kujala & Dzhafarov,

2015). The special case of this result for consistently connected systems had been

proved, by very different means, in Araújo et al. (2013).

We do not have analogous closed-form criteria for non-cyclic systems, but the

theory here is well-developed. There is a general linear programming method for

establishing contextuality or lack thereof in any given system with finite sets C and

Q and dichotomous random variables (Dzhafarov et al., 2017; Dzhafarov & Kujala,

2016a) (in fact, the method would work for any categorical random variables, but the

CbD approach does not require this, see Section 7.1.3). The problem is reduced to a

certain underdetermined system of linear equations,

MQ = P. (7.10)

Here, P =
�
1, #1. . ., #2. . .

�
, where #1 denotes all probabilities characterizing the distri-

butions within the conteXts (e.g., Pr [R1
1 = 1, R1

2 = 1, R1
3 = −1]), and #2 denotes all

probabilities characterizing the maximal couplings
�
T c

q , T c�
q

�
of the separate conteNt-

sharing pairs (e.g., Pr [T 1
2 = 1, T 2

2 = 1]); Q is a vector of probabilities (summing to 1)

for all possible values of the hypothetical coupling S; and M is a Boolean matrix with

1’s in each row corresponding to values of S comprising the events whose probabili-

ties are given in P. The system is noncontextual if and only if these linear equations

have a solution for Q with nonnegative components. The linear programming repre-

sentation of CbD naturally leads to its geometric representations by polytopes and

graph-theoretic renderings. A detailed version of the latter was recently proposed by

Amaral, Duarte, and Oliveira (2018).
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7.1.3 Arbitrary random variables

The current version of CbD (Dzhafarov et al., 2017; Dzhafarov & Kujala, 2017a,

2017b) posits that all random variables in a system should be dichotomized before

they are submitted to contextuality analysis. One reason for this is that the property

P2 in the previous section does not hold for non-dichotomous variables: a multimax-

imal coupling need not exist, and when it does, need not be unique. The other reason

is that one expects a noncontextual systema to remain noncontextual if some values

of a random variable are “lumped together” (e.g., if in {1, 2, 3, 4} one ceases to dis-

tinguish 1 and 2) (Dzhafarov et al., 2017). Dichotomizations are easy if in the initial

description of an empirical domain all random variables are categorical (i.e., have un-

ordered finite sets of values). One then is interested in all possible dichotomizations:

an n-valued random variable is replaced with 2n−1−1 distinct dichotomizations (with

unordered pairs of values). For instance, if an initial R has values {1, 2, 3, 4}, in con-

textual analysis it is replaced with 7 jointly distributed values (see Box I). Assume,

e.g., that in system E of (7.1) the variables for q = 1 have 4 values, variables for

q = 3 have 3 values, and the other two variables are binary. Dichotomization of the

system then transforms it into one shown in Box II where the numbers in parentheses

encode different dichotomizations. The procedure effectively splits old conteNts into

new conteNts. The size of the system increases only in visual appearance, because in

each row of E∗ the support of the joint distribution is precisely the same as in system

E . The original system is considered contextual if its dichotomization is contextual.

The main result here is

Theorem 7.1.2 (Dzhafarov et al., 2017). A system of categorical random variables

(before dichotomization) is contextual if, for some (q, c, c�), neither of Rc
q, R

c�
q nomi-

nally dominates the other.

a(Erratum note added in the dissertation.) Originally “systems”. Corrected in the text.
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R(1) R(2) R(3) R(4) R(5) R(6) R(7)

values: 1 � 2, 3, 4 2 � 1, 3, 4 3 � 1, 2, 4 4 � 1, 2, 3 1, 2 � 3, 4 1, 3 � 2, 4 1, 4 � 2, 3
(7.11)

Box I.

R1
1(1) R1

1(2) R1
1(3) R1

1(4) R1
1(5) R1

1(6) R1
1(7) R1

2 R1
4 c = 1

R2
2 R2

3(1) R2
3(2) R2

3(3) c = 2

R3
1(1) R3

1(2) R3
1(3) R3

1(4) R3
1(5) R3

1(6) R3
1(7) R3

2 R3
3(1) R3

3(2) R3
3(3) c = 3

q = 1(1) 1(2) 1(3) 1(4) 1(5) 1(6) 1(7) 2 3(1) 3(2) 3(3) 4 system E∗

(7.12)

Box II.

(i) Values 1 2 3 4 5
probabilities for A: 0.1 0.2 0.2 0.5 0
probabilities for B: 0.1 0.2 0.2 0.5 0

,
(ii) 1 2 3 4 5

probabilities for A: 0.1 0.2 0.2 0.5 0
probabilities for B: 0.2 0.1 0.2 0.5 0

,

(iii) Values 1 2 3 4 5
probabilities for A: 0.1 0.2 0.2 0.5 0
probabilities for B: 0.5 0 0.1 0.4 0

,
(iv) Values 1 2 3 4 5

probabilities for A: 0.1 0.2 0.2 0.5 0
probabilities for B: 0.3 0.3 0.1 0.2 0.1

,

(7.13)

Box III.

It is this theorem that we use to analyze the experiment below. The meaning of

nominal dominance is as follows: given A and B with the same set of values {1, . . . , k},

A nominally dominates B if the inequality Pr [A = i] < Pr [B = i] holds for no more

than one value of i = 1, . . . , k (i.e., if Pr [A = i] ≥ Pr [B = i] for at least k − 1 of

them). Thus, among the pairs of probability distributions shown in Box III, in (i)

and (ii) A and B nominally dominate each other, in (iii) A nominally dominates B,

and in (iv) neither of the two random variables nominally dominates the other.

The theorem above tells us that if we are interested in all possible dichotomiza-

tions, we may not need to actually create them to determine that the system is con-

textual. It suffices instead to find at least one instance when neither of two original

(as observed, before dichotomization) conteNt-sharing random variables nominally

dominates the other, as in (iv) above. The condition is only sufficient but not neces-
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sary for contextuality: if nominal dominance is found in all pairs of conteNt-sharing

random variables, the system may or may not be contextual.

7.2 Double-identification experiment

7.2.1 Method

7.2.1.1 Participants

Three volunteers, graduate students at Purdue University, one female and two

males (including the first author of this paper), with normal or corrected to normal

vision, participated in this study. The experimental program was regulated by Purdue

University’s IRB protocol #1202011876. The participants are identified as P1, P2,

and P3 in the text below.

7.2.1.2 Equipment

A personal computer was used with an Intel® Core™ processor running Windows

XP, and with a 24-in. monitor with a resolution of 1920 × 1200 pixels (px). The

participant’s head was steadied in a chin-rest with forehead support at 90 cm dis-

tance from the monitor; at this distance a pixel on the screen subtended 62 sec arc.

The response keys on a US 104-key keyboard were indicated by stickers with the

corresponding response labels (see Figure 7.1).

7.2.1.3 Stimuli

The stimuli presented on the computer screen consisted of two brightly grey col-

ored circles (RGB 100-100-100) on a black background, with their centers 320 px

apart horizontally, each circle having the radius of 135 px and 4 px wide circumfer-
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Fig. 7.1. Layout of the keyboard with the response keys stickers for left
and right stimuli.

ence. Each circle contained within it a dot of 4 px in diameter, that could be located

in the circle’s center or 4 px away from it, in the left, right, upward or downward

direction. An example of the stimuli is shown in Figure 7.2.

Fig. 7.2. An example of the stimuli in experiment (in reversed contrast
and not to scale). In the left circle the dot is in the center, in the right
one it is shifted to the right by 4 px (� 4.1 min arc). The participant’s
task was to identify the location of the dot in each of the two circles by
pressing corresponding keys on a keyboard.

7.2.1.4 Procedure

In each trial the participant was asked to indicate, for each circle, whether the dot

was in its center or shifted in one of the four directions (up, down, left, or right). The

responses were given by pressing in any order and holding together two designated
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keys, one for each location in each circle, as shown in Fig. 7.2. The stimuli were

displayed until both keys were pressed. Then, the dots in each circle disappeared,

and the next pair of dots appeared 600 ms later. The circles, with or without the

dots, remained displayed continuously throughout the experiment. (Response times

were recorded but not used in the data analysis.)

Each participant completed between 20 and 23 experimental sessions, each last-

ing 30 minutes and consisting of about 380 trials recorded and used for subsequent

analysis. The experimental sessions were preceded by two training sessions, excluded

from the analysis. The first 75 trials of each training session were practice trials in

which the participants received feedback as to whether their response for each of the

two circles was correct or not. No feedback was given in the experimental trials.

7.2.2 Experimental conteXts and conteNts

In each of two circles the dot presented could be in one of 5 locations: at the

center, or shifted to the left, right, up, or down. These locations formed conteNts of

the random variables in the probabilistic description of the experiment, denoted as

shown in Table 7.1. The same table shows that the 5× 5 pairs of locations of the two

dots formed 25 conteXts. In each experimental session, all conteXts were presented

[close-to-]equal numbers of times (about 15).

For each session, each trial was randomly assigned to one of the conditions in

Fig. 7.1. The number of experimental sessions was chosen so that the expected

number of experimental trials in each of the conteXts was at least 300. This number

of observations was chosen based on Cepeda Cuervo, Aguilar, Cervantes, Corrales,

Dı́az, and Rodŕıguez (2008), whose results show that coverage errors with respect

to nominal values are below 1% for most confidence intervals for proportions with

n > 300.
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Table 7.1.
Notation used for the conteXts and the conteNts: c, l, r, u, and d denote
that the dot is, respectively, in the center, shifted to the left, to the right,
up, or down. The 25 conteXts are denoted cc, cu, du, etc., the left (right)
symbol indicating the location of the dot in the left (respectively, right)
circle. To denote conteNts, the location of a dot is shown on the left (for
the left circle) or on the right (for the right circle) of a dash: thus, c-
denotes the dot in the center of the left circle, -l denotes the dot shifted
to the left in the right circle, etc.

Right circle conteNts

(-c) (-l) (-r) (-u) (-d)

Left circle Center (c-) cc cl cr cu cd
conteNts Left (l-) lc ll lr lu ld

Right (r-) rc rl rr ru rd
Up (u-) uc ul ur uu ud
Down (d-) dc dl dr du dd

The system of random variables describing the experiment is shown in Fig. 7.3.

7.2.3 Results

The complete set of results obtained in the experiment (excluding training ses-

sions) is stored in “Contextuality in a psychophysical double-identification experi-

ment” , https://doi.org/10.7910/DVN/FCT9VO. The data used in the analysis of

the nominal dominance condition are shown in Tables 7.A.1–7.A.3, placed in Ap-

pendix.a These tables show the estimated probabilities with which each of the three

participants responded in each of five possible ways (center, left, right, up, and down)

to the left stimulus and to the right stimulus, in each of the 25 conteXts. For all

participants, the nominal dominance condition fails for at least one pair of random

variables for each of the conteNts. This means that, for all three participants, the

pattern of the results indicates contextuality.

a(Explanatory note added in the dissertation.) Reproduced here as Section 7.5.
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c- -c l- -l r- -r u- -u d- -d
cc � �
cl � �
cr � �
cu � �
cd � �
lc � �
ll � �
lr � �
lu � �
ld � �
rc � �
rl � �
rr � �
ru � �
rd � �
uc � �
ul � �
ur � �
uu � �
ud � �
dc � �
dl � �
dr � �
du � �
dd � �

Fig. 7.3. The conteNt-conteXt system of measurements for the double
detection experiment. The cell corresponding to conteXt xy and conteNt
z (with z being x- or -y), if it contains a star, represents the random
variable Rxy

z ; the absence of a star means that conteNt z was not measured
in conteXt xy. For instance, xy = cc and z = c- define a random variable
Rcc

c- . There are two random jointly distributed variables, Rxy
x- and Rxy

-y , in
each conteXt xy, and their joint distribution is defined by the probabilities:
Pr

�
Rxy

x- = j, Rxy
-y = k

�
where j, k ∈{center, left, right, up, down}.
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To assess the reliability of these results, we generated 100,000 bootstrap resam-

ples for each participant: each bootstrap resample was generated by independently

selecting, with replacement, a random sample from (and of the same size as) the

responses given in the experiment to each of the two circles in each conteXt. The

proportions of resamples in which nominal dominance was observed are presented

in Table 7.2, for each conteNt separately, and (in the bottom row of the table) for

all conteNts simultaneously. Note that it is the latter that matters for our analysis:

the system may be noncontextual only if nominal dominance is satisfied for all pairs

of conteNt-sharing random variables. This was observed for none of the resamples

and none of the participants. We can model this situation, for each participant, as a

sequence of 100,000 binomial trials with zero successes. If p denotes the probability

of this happening (let us label this as a “success”), we can model the results, for each

participant, as a Bernoulli sequence of length 100,000, with probability of a “success”

(overall compliance with nominal dominance) being p, and the observed number of

successes being zero. The exact 99.999% Clopper and Pearson (1934) confidence in-

terval for p is [0, 0.00012]. We can clearly dismiss the possibility that our data result

from random perturbations of a pattern that satisfies nominal dominance.

7.3 Discussion

Based on the CbD analysis of many published experiments in none of which con-

textuality was found, it was tempting to hypothesize that all behavioral systems were

noncontextual (Dzhafarov et al., 2016; Dzhafarov, Zhang, & Kujala, 2015; Zhang &

Dzhafarov, 2017).b This hypothesis was rejected by recent crowdsourcing experiments

(Basieva et al., 2019; Cervantes & Dzhafarov, 2018), but the question remained open

b(Erratum note added in the dissertation.) Reference “Dzhafarov, Zhang, & Kujala, 2015” appeared
as “Dzhafarov, Kujala et al., 2015”, and reference “Zhang & Dzhafarov, 2017” appeared as “Zhang
& Dzhafarov, 2016”. Corrected in the text.
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Table 7.2.
Bootstrap estimates of the probabilities for the systems to satisfy the
nominal dominance condition.

ConteNt P1 P2 P3
c- 0.038 0.000 0.000
l- 0.000 0.000 0.224
r- 0.000 0.000 0.003
u- 0.429 0.000 0.023
d- 0.002 0.000 0.001
-c 0.412 0.000 0.000
-l 0.019 0.000 0.385
-r 0.000 0.000 0.015
-u 0.566 0.001 0.034
-d 0.001 0.000 0.000
Overall 0.000 0.000 0.000
all contents

as to whether contextuality can also be observed in individual human behavior. In

the crowdsourcing experiments the stimuli were questions to be answered in one of

two ways. In such an experiment a repeated presentation of a question to the same

person cannot be viewed as a repeated recording of the same random variable, be-

cause the person would most likely remember her previous answers and repeat them

not to contradict herself, or would deliberately vary them due to the phenomenon of

satiation. Therefore, to investigate contextuality in a within-subject paradigm, one

has to use stimuli that do not have any distinguishing characteristics by which they

can be remembered. Thus, if a variety of weak flashes varying in intensity are judged

in terms of “I have seen it” or “I have not seen it,” there is no way the observer may

remember seeing a particular flash before, unless this flash was seen with probability

1. Analogously, in our experiment, there was no way a participant could remem-



188

ber seeing a specific dot position in one of the circles, as no position was identified

perfectly.

A previously conducted experiment (Cervantes & Dzhafarov, 2017a, 2017b), sim-

ilar to the one presented in this paper, revealed no contextuality, i.e., all conteXt-

dependence in it could be attributed to direct influences. In that experiment the dots

within two circles could vary on three levels (center, up, down) and the responses

were dichotomous: “in the center” or “not in the center.” As it turns out, switching

to questions with five possible answers (and increasing the number of conteNts to five

to match them) changed the system from noncontextual to contextual.

The overall conteXt-dependence in our experiment means that a given location q of

the dot in a circle is judged differently for different locations q� of the dot in the other

circle. This direct influence of q� on responses to q manifests itself in the changing

distribution of the responses to q as q� changes. The contextuality of the system,

however, shows that these direct influences cannot account for the entire situation:

the changes in the identity of the random variable representing the responses to q in

different conteXts are greater than warranted by their distributional differences. This

is another way of stating the definition of a contextual system, according to which

the joint distributions of the random variables within conteXts force conteNt-sharing

random variables (responses to the same q at different q�) to be more dissimilar than

warranted by the difference in their distributions.

The relationship between the two forms of conteXt-dependence in a contextual

system, direct influences and contextuality proper, is a complex issue of which we

have very little knowledge at present. A remarkable fact is that this relationship

seems to be different in systems of binary random variables (at least in cyclic systems,

mentioned in Section 7.1.2) and in systems of multivalued random variables. As is
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responses to q in context qq�: center left right up down
probabilities: p1 p2 p3 p4 p5

and
responses to q in context qq��: center left right up down

probabilities: p�1 p�2 p�3 p�4 p�5
.

Box IV.

evident from (7.9), the direct influences and contextuality in a cyclic system are

antagonistic. Direct influences in (7.9) are represented by

n�

i=1

���Ri
i

�
−
�
Ri�1

i

��� , (7.14)

and as this quantity increases, the value of the left-hand-side expression in (7.9)

decreases, making the system less likely to be contextual. In our present experiment

the situation is more complex. Direct influences here are responsible for the differences

between the distributions shown in Box IV;

In the absence of all direct influences, i.e., with pi = p�i for all i, the nominal

dominance is trivially satisfied. This does not mean that the system in noncontextual,

but its contextuality will have to be established by other means, generally, by solving

the linear programming task (7.10). Direct influences must be present to break the

nominal dominance relation and thereby allow us to establish contextuality “easily.”

More work is needed to understand this relationship better.
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7.5 Appendix. Data tables

See Table 7.A.1–7.A.3.

Table 7.A.1.
Empirical estimates of marginal distributions for the conteNt-conteXt sys-
tem in Fig. 7.3 for participant P1.

P1 Left response Right response
Context Trials Center Left Right Up Down Center Left Right Up Down
cc 336 .318 .521 .000 .155 .006 .235 .455 .000 .310 .000
cl 334 .213 .656 .000 .132 .000 .015 .871 .000 .108 .006
cr 336 .390 .435 .000 .155 .021 .601 .060 .018 .318 .003
cu 336 .298 .554 .000 .143 .006 .021 .149 .000 .830 .000
cd 336 .265 .574 .000 .152 .009 .271 .613 .000 .030 .086
lc 334 .036 .931 .000 .027 .006 .195 .527 .000 .278 .000
ll 335 .024 .928 .000 .042 .006 .021 .860 .000 .119 .000
lr 335 .051 .913 .003 .030 .003 .558 .122 .018 .299 .003
lu 335 .054 .904 .000 .033 .009 .042 .176 .003 .779 .000
ld 334 .042 .910 .003 .042 .003 .314 .605 .000 .024 .057
rc 333 .763 .081 .033 .117 .006 .246 .483 .000 .270 .000
rl 334 .605 .159 .051 .183 .003 .018 .859 .000 .120 .003
rr 335 .782 .048 .024 .137 .009 .591 .042 .021 .346 .000
ru 336 .685 .077 .027 .202 .009 .045 .083 .000 .872 .000
rd 335 .701 .075 .036 .179 .009 .322 .555 .000 .033 .090
uc 335 .116 .269 .003 .612 .000 .200 .457 .000 .343 .000
ul 336 .062 .345 .000 .592 .000 .021 .872 .003 .101 .003
ur 334 .156 .216 .000 .629 .000 .581 .051 .027 .335 .006
uu 334 .084 .260 .000 .656 .000 .033 .108 .000 .859 .000
ud 335 .096 .191 .000 .713 .000 .343 .558 .000 .033 .066
dc 335 .337 .478 .000 .006 .179 .242 .460 .000 .296 .003
dl 334 .237 .599 .000 .006 .159 .012 .880 .000 .108 .000
dr 336 .312 .449 .000 .009 .229 .589 .054 .027 .330 .000
du 335 .310 .504 .000 .015 .170 .030 .116 .000 .854 .000
dd 335 .346 .451 .000 .006 .197 .370 .549 .000 .012 .069
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Table 7.A.2.
Empirical estimates of marginal distributions for the conteNt-conteXt sys-
tem in Fig. 7.3 for participant P2.

P2 Left response Right response

Context Trials Center Left Right Up Down Center Left Right Up Down
cc 336 .616 .062 .039 .226 .057 .560 .062 .164 .202 .012
cl 336 .586 .080 .033 .268 .033 .265 .604 .015 .107 .009
cr 336 .586 .045 .062 .259 .048 .185 .000 .720 .071 .024
cu 336 .607 .083 .033 .220 .057 .131 .062 .089 .717 .000
cd 336 .580 .054 .024 .304 .039 .348 .033 .086 .024 .509
lc 336 .223 .604 .000 .134 .039 .610 .092 .119 .152 .027
ll 336 .214 .583 .003 .164 .036 .274 .548 .021 .134 .024
lr 336 .223 .586 .009 .158 .024 .220 .006 .682 .065 .027
lu 336 .310 .527 .000 .128 .036 .149 .042 .089 .720 .000
ld 336 .226 .557 .003 .179 .036 .333 .039 .098 .021 .509
rc 336 .339 .003 .443 .176 .039 .548 .086 .158 .173 .036
rl 336 .318 .012 .432 .205 .033 .247 .631 .018 .080 .024
rr 336 .310 .003 .429 .229 .030 .140 .018 .696 .116 .030
ru 336 .336 .000 .467 .158 .039 .170 .033 .074 .720 .003
rd 336 .351 .000 .405 .211 .033 .381 .054 .095 .030 .440
uc 336 .146 .018 .015 .818 .003 .646 .048 .134 .137 .036
ul 336 .131 .030 .015 .821 .003 .345 .545 .012 .068 .030
ur 336 .146 .030 .006 .815 .003 .235 .000 .688 .057 .021
uu 336 .167 .021 .018 .795 .000 .196 .036 .128 .637 .003
ud 336 .137 .015 .009 .836 .003 .390 .024 .068 .015 .503
dc 336 .354 .030 .036 .021 .560 .539 .057 .143 .229 .033
dl 336 .366 .039 .024 .018 .554 .220 .583 .006 .158 .033
dr 336 .375 .039 .006 .009 .571 .199 .003 .661 .119 .018
du 336 .393 .018 .033 .021 .536 .122 .027 .065 .786 .000
dd 336 .360 .039 .024 .036 .542 .393 .048 .116 .021 .423
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Table 7.A.3.
Empirical estimates of marginal distributions for the conteNt-conteXt sys-
tem in Fig. 7.3 for participant P3.

P3 Left response Right response

Context Trials Center Left Right Up Down Center Left Right Up Down
cc 336 .738 .092 .012 .143 .015 .634 .149 .015 .188 .015
cl 337 .801 .053 .030 .110 .006 .027 .955 .000 .018 .000
cr 336 .762 .098 .021 .107 .012 .321 .003 .631 .036 .009
cu 336 .768 .086 .033 .098 .015 .128 .060 .000 .812 .000
cd 335 .785 .081 .021 .101 .012 .648 .081 .009 .003 .260
lc 337 .056 .935 .000 .009 .000 .700 .104 .039 .151 .006
ll 336 .060 .929 .000 .012 .000 .045 .929 .000 .027 .000
lr 337 .053 .929 .000 .015 .003 .288 .000 .680 .033 .000
lu 337 .059 .917 .000 .021 .003 .148 .059 .006 .786 .000
ld 336 .051 .938 .000 .012 .000 .676 .054 .015 .006 .250
rc 336 .336 .000 .649 .012 .003 .658 .125 .024 .185 .009
rl 337 .335 .009 .635 .021 .000 .027 .935 .000 .039 .000
rr 336 .312 .000 .670 .012 .006 .298 .000 .667 .036 .000
ru 337 .332 .000 .653 .015 .000 .142 .071 .000 .783 .003
rd 336 .280 .000 .699 .015 .006 .658 .074 .021 .012 .235
uc 336 .164 .033 .003 .801 .000 .699 .134 .021 .137 .009
ul 336 .143 .065 .003 .789 .000 .042 .943 .000 .012 .003
ur 336 .134 .033 .003 .830 .000 .327 .000 .631 .033 .009
uu 336 .202 .033 .003 .762 .000 .164 .062 .000 .774 .000
ud 337 .172 .021 .003 .804 .000 .668 .080 .015 .000 .237
dc 335 .603 .021 .012 .000 .364 .618 .137 .009 .230 .006
dl 337 .626 .030 .027 .000 .318 .030 .950 .000 .021 .000
dr 337 .644 .030 .021 .000 .306 .329 .000 .635 .033 .003
du 337 .638 .030 .015 .000 .318 .151 .080 .003 .766 .000
dd 336 .619 .039 .012 .003 .327 .708 .068 .009 .006 .208
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8. DISCUSSION

Random variables representing measurements form systems in which each variable

is identified both by its content (what it measures) and its context (the conditions

under which it is recorded). Any two random variables are jointly distributed if and

only if they are measured in the same context. The Contextuality-by-Default theory

permits to separate true contextuality from direct influences (or, equivalently, from

inconsistent connectedness) in the analysis of such systems. This makes the theory

especially relevant to behavioral systems because the results of behavioral experiments

normally exhibit inconsistent connectedness.

In Chapter 2 (Cervantes & Dzhafarov, 2017b), we applied the theory of cyclic sys-

tems to a psychophysical double-detection experiment, in which observers were asked

to determine the presence or absence of a signal property in each of two simultane-

ously presented stimuli. In Chapter 3 (Cervantes & Dzhafarov, 2017a), we applied

the theory for arbitrary systems of binary random variables to the same data. The

experiment provides the closest analogue in psychophysical research to the Alice-Bob

EPR/Bohm paradigm, the most prominent example of a contextual system in quan-

tum mechanics. We have found that for the participants in the study there was no

evidence of contextuality in their responses.

Now, the progress in the theory from Chapter 2 to Chapter 3, highlights one

of the desirable properties of the theory for binary random variables (Dzhafarov &

Kujala, 2017). This property is that a subsystem of a noncontextual system, obtained

by dropping one or more of its random variables, remains noncontextual. In other

words, noncontextuality of all subsystems of a system of random variables is necessary

for the system to be noncontextual; however, it is not sufficient. Consider for instance
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c = 1 R1
α R1

β

c = 2 R2
α R2

β

α β

Fig. 8.1. Example of a system whose all subsystems are noncontextual.

c = 1 R1
α R1

β

c = 2 R2
α ·
α β

Fig. 8.2. Example of a subsystem of the system in Figure 8.1. This system
is necessarilly noncontextual.

the system of binary random variables in Figure 8.1. Regardless of the contextuality

of the system, all subsystems that can be extracted from it are noncontextual. If, for

example, we drop variable R2
β, the resulting system, shown in Figure 8.2, is necessarilly

noncontextual. This can be seen in the construction of an overall coupling of the

system regardless of the actual probabilities involved. One such coupling is shown

in Table 8.1. An analogous result would result if we had dropped any of the other

three random variables in the system in Figure 8.1. It is also clear that dropping any

additional variables from the system in Figure 8.2 will also result in a noncontextual

system: a) if we drop R1
α, any coupling of {R1

β, R
2
α } will satisfy the definition; b)

if we drop R1
β, the maximal coupling of {R1

α, R
2
α } is the required coupling; c) if we

drop R2
α, then a copy of the jointly distributed (R1

α, R
1
β) gives the required coupling;

d) if we drop any two variables, we are left with a system of a single random variable

which is trivially noncontextual. This example helps us to approach a less obvious

example that shows a contextual system without contextual subsystems.1

1The following example is due to Janne Kujala (personal communication, 2019).
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Table 8.1.
Coupling of the system in Figure 8.2. Without loss of generality, here we
assumed Pr(R1

α = 1, R1
β = 0) ≤ Pr(R2

α = 1) ≤ Pr(R1
α = 1).

Event Pr(Event)
{ S1

α = 0, S1
β = 0, S2

α = 0 } Pr(R1
α = 0, R1

β = 0)
{ S1

α = 0, S1
β = 0, S2

α = 1 } 0
{ S1

α = 0, S1
β = 1, S2

α = 0 } Pr(R1
α = 0, R1

β = 1)
{ S1

α = 0, S1
β = 1, S2

α = 1 } 0
{ S1

α = 1, S1
β = 0, S2

α = 0 } Pr(R1
α = 1, R1

β = 0)
{ S1

α = 1, S1
β = 0, S2

α = 1 } 0
{ S1

α = 1, S1
β = 1, S2

α = 0 } Pr(R2
α = 1) − Pr(R1

α = 1, R1
β = 0)

{ S1
α = 1, S1

β = 1, S2
α = 1 } Pr(R1

α = 1, R1
β = 1)

Consider the system of binary random variables in Figure 8.3. Let the variables

in context 1 be independent, with

Pr(R1
α = i, R1

β = j, R1
γ = k) = 1/8, for i, j, k = 0, 1.

And let the variables in context 2 be distributed as shown in Table 8.2. In this case

there are three nontrivially noncontextual subsystems. These are found by dropping

the two random variables in a single connection. If we drop, for example, the variables

responding to content γ, we obtain the system in Figure 8.1. The distributions are

known in this case; all random variables in the system have the same distribution,

c = 1 R1
α R1

β R1
γ

c = 2 R2
α R2

β R2
γ

α β γ

Fig. 8.3. Example of a system whose all subsystems are noncontextual.
The distributions of the random variables are given in-text and in Ta-
ble 8.2.
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Table 8.2.
Joint distribution of variables in context 2 from the system in Figure 8.3.

Event Pr(Event)
{ R2

α = 0, R2
β = 0, R2

γ = 0 } 0
{ R2

α = 0, R2
β = 0, R2

γ = 1 } 1/4

{ R2
α = 0, R2

β = 1, R2
γ = 0 } 1/4

{ R2
α = 0, R2

β = 1, R2
γ = 1 } 0

{ R2
α = 1, R2

β = 0, R2
γ = 0 } 1/4

{ R2
α = 1, R2

β = 0, R2
γ = 1 } 0

{ R2
α = 1, R2

β = 1, R2
γ = 0 } 0

{ R2
α = 1, R2

β = 1, R2
γ = 1 } 1/4

and both bunches have the same joint distribution with its random variables being

independent. We see that the system is noncontextual because the identity coupling

of the two bunches satisfies the requirements for noncontextuality. The same result

holds if we drop the random variables responding to either α or β. If we drop any

additional variable, we have the same situation as in Figure 8.1. The remaining sub-

systems, those obtained by dropping a single random variable can easily be shown to

be noncontextual. Whenever there is only one variable in a context or in a connection,

contextuality of the system does not change by dropping that variable (Dzhafarov &

Kujala, 2016). Hence, we use the results above to conclude that these subsystems are

noncontextual. Lastly, we can see that the whole system is contextual by noting that

in a coupling
�
S1
α, S

1
β, S

1
γ , S

2
α, S

2
β, S

2
γ

�

the maximal sub-couplings for each connection are identity couplings. Consequently,

any event of that coupling that includes Sj
ι = 0 and Sk

ι = 1, for ι = α, β, γ and

j, k = 1, 2, must have zero probability mass. If we assume that a coupling that shows

the system to be noncontextual exists, then we reach the following contradiction

0 = Pr(S2
α = 0, S2

β = 0, S2
γ = 0) = Pr(S1

α = 0, S1
β = 0, S1

γ = 0) = 1/8.
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That is, the system presented in Figure 8.3 is contextual, and all of it subsystems are

noncontextual.

Therefore, analyses based on subsystems of the system of interest, such as those

in Cervantes and Dzhafarov (2017b) or Zhang and Dzhafarov (2017), are inconclusive

when all the subsystems are found to be noncontextual. This is what makes the

results in Chapter 3 stronger than those in Chapter 2. According with the results

of the contextuality analysis in Chapter 3, the role of context in double-detection is

attributed to direct influences: the distribution of responses to one of the stimuli is

influenced by the state of the other stimulus.

Nonetheless, as discussed in Chapters 3 and 4 (Cervantes & Dzhafarov, 2017a,

2018), without a predictive theory, even if a large number of experiments fail to find

contextuality, contextuality could be found under as yet unexplored experimental

conditions. The likelihood of ‘randomly’ (or better, the epistemic probability one

could assign to the event of) finding a noncontextual system varies with the structure

of the system. For a system of random variables such as the one of the Snow Queen

experiment, it was estimated as 2/3. A relationship between these epistemic proba-

bilities and the shape of the noncontextuality polytopes that describe cyclic systems

of binary random variables has been established in Dzhafarov, Kujala, and Cervantes

(2020, in press). These results show that, absent a guiding theory that would pre-

dict under which conditions contextuality can be found, it is rather unlikely that one

will find a contextual system. The methodological procedure proposed in Chapter 4

(Cervantes & Dzhafarov, 2018) has provided a guide to explore contextuality more

systematically. This procedure is predicated on the relatively simple structure of

contextuality in cyclic systems of binary random variables. Using this procedure, we

found unambiguous experimental evidence for contextuality in decision making. The

experiments reported in Chapters 4 and 5, the Snow Queen experiment (Cervantes

& Dzhafarov, 2018) and the ‘Directions’ experiment (experiment 5 in Basieva, Cer-

vantes, Dzhafarov, & Khrennikov, 2019) demonstrated that a contextual system of
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random variables formally analogous to the EPR/Bohm system in quantum mechan-

ics can be observed in human behavior. Experiments 1-4 in Basieva et al. (2019),

demonstrated contextuality in cyclic systems of rank 3. Unlike the results reported in

the literature preceding our work, these demostrations have been done without mak-

ing the mistake of ignoring the inconsistently connectedness of the systems. Lastly,

Experiment 6 (‘Colored figures’) shows that contextuality in our experiments is an

empirical finding rather than mathematical consequence of the experimental design.

The issue of measuring the degree of contextuality is mentioned in several of the

included papers. In Chapters 2, 4, and 5, the quantity
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is referred to as a measure of contextuality for cyclic systems of random variables.

In Chapters 3 and 6, the minimum total variation of a quasi-coupling is used to

define a measure of contextuality. These measures are two among several that have

been proposed to measure contextuality (Abramsky, Barbosa, & Mansfield, 2017;

Amaral, Duarte, & Oliveira, 2018; Kujala & Dzhafarov, 2019). A limitation of the

total variation measure of contextuality is that it does not extend to a measure of

noncontextuality. Kujala and Dzhafarov (2019) examined several proposed measures

of contextuality, and found one (there called CNT2) that does extend to a measure

of noncontextuality (NCNT2). Dzhafarov, Kujala, and Cervantes (in press) have

shown that these measures, CNT2 and NCNT2, are closely related to quantity D

for, respectively, contextual and noncontextual cyclic systems with binary random
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variables. More work is needed to describe the behavior of these measures for more

general systems of random variables.

In the crowdsourcing experiments, and more generally in the between-subjects ex-

periments that have searched for contextuality (Dzhafarov, Kujala, Cervantes, Zhang,

& Jones, 2016; Dzhafarov, Zhang, & Kujala, 2015), the stimuli were questions to be

answered in one of two contexts. In these experiments a repeated presentation of a

question to the same person cannot be viewed as a repeated recording of the same

random variable. However, if the same question is repeatedly posed to someone, the

person would most likely remember them and their previous answers. Thus, to ap-

propriately use a within-subject paradigm to study contextuality, the stimuli should

not have any distinguishing characteristics by which they can be remembered. This

was the case with the psychophysical experiment considered in Chapters 2 and 3;

hence, we revisited its design for the empirical exploration of the theory of contextu-

ality for systems of random variables that includes categorical variables (Dzhafarov,

Cervantes, & Kujala, 2017). The experiment, presented in Chapter 7 (Cervantes &

Dzhafarov, 2019), is also the first one that demonstrates contextuality for responses

that are not dichotomous. This was shown by finding that the nominal dominance

condition (see Theorem 6.4.6) was violated in the data of each participant, with

very high statistical reliability established by bootstrapping. In this experiment, the

change of the questions from detecting eccentricty to identifying it with five possible

answers led to a contextual system rather than a noncontextual one. As noted in

the discussion of Chapter 7, direct influences must be present to break the nominal

dominance relation and allow us to establish contextuality “easily.”

The generalization of the Contextuality-by-Default theory to arbitrary systems of

categorical random variables satisfies the three desiderata for any generalization of a

theory of contextuality that were mentioned in the Introduction, and in Chapter 5.

First, the theory specializes to the traditional theory of contextuality when applied

to consistently connected systems. Second, the maximal couplings of each pair of
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variables for the same content is unique. And third, any subsystem of a noncontextual

system remains noncontextual. In addition to these properties, with the proposed

generalization, we identify the characteristics that a system of random variables needs

to have for the coarse-graining property to be satisfied: that a system obtained from

coarse-graining variables of a noncontextual system is also noncontextual. In this

paper, we also find a simple condition (the nominal dominance theorem) that may

be used to detect contextuality in systems with categorical random variables when

all coarse-grainings are deemed of interest.

A broader issue that is highlighted in this paper and, to a lesser extent, in the paper

reproduced in Chapter 2 (Cervantes & Dzhafarov, 2017a; Dzhafarov et al., 2017) is

that a system of random variables represents an empirical situation, and there is a one-

to-many, rather than a on-to-one, mapping from the empirical situation to systems

of random variables. Recall the sequence of steps that constitute the contextuality

analysis of an empirical situation (Chapter 6):

empirical

measurements

��
initial

system of rvs

��
expanded

system of rvs

��
canonical/split

representation

The final canonical/split representation of the system of random variables is uniquely

determined by the expanded system. The other two steps depend on one’s choices

regarding what aspects of the empirical situation one wishes to include in the system.

The expanded system of random variables generally has new contents added to

the system via functions applied to the connections in the initial system. What

contents are added to the system is not forced by the initial system. For instance, the

expanded system may include all the coarsenings of some variables, if one considers

that no coarsening of those variables should turn a noncontextual system into a

contextual one. The expanded system may include functions of several variables,

such as all the random vectors of variables responding to the same subset of contents,
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Fig. 8.4. Expanded system of random variables obtained by including the
joining of contents α and β for the system in Figure 8.1.

as in the example in Figure 8.4. Expanded systems such as this one would reflect

the desideratum that whenever a set of contents are measured together, the joint

distributions of the corresponding random variables should also be maximally coupled.

In the initial empirical system, one also faces a non-unique choice as to what con-

tents one decides to measure, and how the measurements will be recorded as random

variables. It also includes what aspects of the measurement conditions one decides

or is able to record as contexts. For instance, in the double-detection experiment

described in Chapter 2, the choice of what defines a content may lead to the system

that was analysed in Chapter 3 or to one of the ‘redefined systems’ analysed in Chap-

ter 2. In the identification experiment, there was the choice to ask the participants

to report the location of each dot rather than simply detect each dot’s eccentricity,

as well as the decision to record the location they reported instead of just recording,

say, if their identification was correct or incorrect. We have proposed to represent

any system of measurements in a canonical form and to consider the system contex-

tual if and only if its canonical representation is contextual. However, by the above

considerations, starting with the same set of empirical measurements, there are many

different canonical representations. Each of them will reflect the aspects that led to

that specific representation, and contextuality or lack thereof is a property of that

canonical system.
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With the above caveats, psychology shares mandatory use of random variables

with quantum physics: stochasticity of responses in most areas of psychology is inher-

ent, it cannot be significantly reduced, let alone eliminated, by progressively greater

control of stimuli and conditions. The role of contextuality therefore can be expected

to be similar. In quantum physics, contextuality analysis is not a predictive model

competing with other models. When one considers a model to explain some data,

contextuality analysis can help only in the trivial sense: as with any other property

of the data, if contextuality or noncontextuality of them is established, a model is to

be rejected if it fails to predict this property.
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