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ABSTRACT

Zhao, Jieqiong Ph.D., Purdue University, May 2020. Visual Analytics for Decision
Making in Performance Evaluation. Major Professor: David S. Ebert.

Performance analysis often considers numerous factors contributing to perfor-

mance, and the relative importance of these factors is evolving based on dynamic

conditions and requirements. Investigating large numbers of factors and understand-

ing individual factors’ predictability within the ultimate performance are challenging

tasks. A visual analytics approach that integrates interactive analysis, novel visual

representations, and predictive machine learning models can provide new capabilities

to examine performance effectively and thoroughly. Currently, only limited research

has been done on the possible applications of visual analytics for performance evalua-

tion. In this dissertation, two specific types of performance analysis are presented: (1)

organizational employee performance evaluation and (2) performance improvement of

machine learning models with interactive feature selection. Both application scenar-

ios leverage the human-in-the-loop approach to assist the identification of influential

factors. For organizational employee performance evaluation, a novel visual analytics

system, MetricsVis, is developed to support exploratory organizational performance

analysis. MetricsVis incorporates hybrid evaluation metrics that integrate quanti-

tative measurements of observed employee achievements and subjective feedback on

the relative importance of these achievements to demonstrate employee performance

at and between multiple levels regarding the organizational hierarchy. MetricsVis II

extends the original system by including actual supervisor ratings and user-guided

rankings to capture preferences from users through derived weights. Comparing user

preferences with objective employee workload data enables users to relate user eval-

uation to historical observations and even discover potential bias. For interactive
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feature selection and model evaluation, a visual analytics system, FeatureExplorer,

allows users to refine and diagnose a model iteratively by selecting features based on

their domain knowledge, interchangeable features, feature importance, and the result-

ing model performance. FeatureExplorer enables users to identify stable, trustable,

and credible predictive features that contribute significantly to a prediction model.
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1. INTRODUCTION

Imagine that a manager has to decide which of their 10,000 employees should receive a

bonus. The manager needs to evaluate the performance of all employees based on their

contributions to the development of an organization. However, distinct positions and

job requirements make direct comparisons among employees challenging. In smart

agriculture, hyperspectral images are collected to predict the phenotypic traits of

plants. Which hyperspectral features matter the most in the prediction? Performance

evaluation, as described in the examples above, is used by a wide range of decision

makers in a variety of scenarios, such as workforce optimization or improving the

accuracy of machine learning models. During a performance evaluation, decision

makers rely on their domain knowledge, recorded observations, and historical data

to quantify performance. However, quantifying overall performance is difficult when

a decision maker must consider both multiple performance related factors and the

relative contribution of each factor. Often, there are too many factors for a decision

maker to meaningfully consider and evaluate.

The problem is thus: how can a decision maker make sense of large-scale, multi-

dimensional datasets during performance evaluation? Visual analytic tools and tech-

niques offer a possible solution, as these tools are designed to aid in the analysis of

large-scale multi-dimensional data [1]. So far, only limited research has been done

on the possible applications of visual analytics for performance evaluation. This

dissertation proposes visual analytics systems to assist domain experts when evaluat-

ing current performance and predicting future performance by identifying influential

performance-related factors.

In this chapter, we present the needs and challenges of performance evaluation in

Section 1.1; this is followed by an explanation of the role of visual analytics can play in
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performance evaluation in Section 1.2. The thesis statement and unique contributions

are described in Section 1.3. Finally, Section 1.4 lists the roadmap of this document.

1.1 Needs and Challenges in Performance Evaluation

Performance analysis is a multi-faceted decision-making problem. For instance,

to improve the performance of a machine learning model, it is necessary to identify

which features play important roles in the prediction, and the ways that changing a

given feature value would impact the prediction. In organizational employee perfor-

mance evaluation, evaluators need to consider various parameters and metrics that

contribute to the ultimate evaluation outcome. Each factor is weighted differently

during the evaluation process, and a subset of factors may have a joint effect on the

performance outcome. In addition, the relative importance (weighting) of factors

may vary under different conditions or scenarios. Therefore, the evaluation process

becomes complicated when evaluators need to consider numerous supporting factors

and determine how to prioritize them.

Traditional performance evaluation approaches rely on a fixed number of metrics

to inform an evaluation. These systems are frequently unable to support diverse

ranges of evaluation criteria or perform real-time evaluation. Moreover, insufficient

performance measurements may result in an incomplete understanding of the per-

formance in question, and may even introduce bias as users tend to use their own

background knowledge and subjective opinions to infer the values of missing measure-

ments. Ranking or sorting the performance of an individual data item is a broadly

adopted solution that a decision maker can use to understand the contributions of

elements in the system. For instance, in the context of operational management or

strategic planning, an administrator needs to answer the following questions: Who

are the best performers and what is the supporting evidence? Which specific activities

need noticeable improvement? How can the overall performance be improved?
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Such questions cannot be answered using the traditional evaluation practice of

simply ranking the overall performance of individuals. It is necessary for evalua-

tors to gain a thorough understanding of performance by interactively ranking and

sorting factors contributing to the overall performance. The problem then becomes

identifying methods to derive comprehensive and quantifiable performance evaluation

metrics, composed of both performance-related factors and associated weights. Vi-

sual analytics based performance evaluation approaches offer techniques to overcome

the existing drawbacks of incorporating both quantitative measurements from data

records and subjective feedback from users, enabling the interactive investigation of

performance. In this dissertation, we will focus on two specific types of performance

analysis: (a) organizational employee performance evaluation and (b) performance

improvement of machine learning models with interactive feature selection. To clar-

ify the terms used in describing the multi-dimensional or high-dimensional data in

both applications, the terms factors, attributes, and features are used to denote the

dimensions.

Organizational Employee Performance Evaluation Performance evaluation is

usually applied as a tool to understand the performance of individuals within a sys-

tem. The result of a performance evaluation allows an evaluator to recognize the

strengths and weaknesses of an organization and take appropriate action if improve-

ments are needed. An effective performance evaluation system with clearly defined

goals and prompt feedback is an essential tool for organizations to improve their

productivity [2], especially with limited resources and personnel. Characterizing em-

ployee, unit, and organizational performance requires a decision maker to consider

multiple facets, including economic return, social impact, sustainability, and team

and individual productivity. This performance data may be stored as subjective

reports, financial statements, or employee evaluations.

It is challenging to develop an appropriate method of integrating complex data, in-

cluding qualitative, quantitative, and subjective data, into an accurate representation
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of organizational performance. This task is further complicated when teams within

the organization have geographically and temporally distinct workloads as well as var-

ious positions and specialties (e.g., patrol officers vs. detectives); this complication

commonly occurs in public safety organizations where there are temporal differences

in the number of reports a unit may respond to.

Applying standardized evaluation factors and quantitative metrics can help over-

come subjective biases caused by personal traits [3,4]. Such evaluation metrics should

account for the importance of each task in accomplishing organizational objectives. In

addition, the evaluation metrics must accommodate the perspectives of team leaders

across various departments. Thus, it can be beneficial to interactively analyze, visu-

ally explore, accurately weight, compare, and evaluate employee performance in the

context of organizational hierarchy as a way to support comprehensive and holistic

evaluation.

Interactive Feature Selection and Model Evaluation In scientific research,

improving the performance of machine learning models often requires analyzing the

way in which target values respond to changes in input features. Because features

usually do not contribute equally to a prediction model, it is critical to identify fea-

tures that are substantial in the prediction. Most machine learning models assume

that input features should be independent and identically distributed; however, this

is often not the case in practice. The collinearity of features can increase their redun-

dancy in feature space, which can then reduce the performance of machine learning

models as well as increasing computation time. Many automatic feature selection

algorithms exist to handle that problem; however, users may question why some fea-

tures are selected and others are not due to having insufficient information about the

decisions. Explainable machine learning and artificial intelligence algorithms need to

increase the understandability and interpretability of models in order to help users

understand why certain decisions are made [5, 6]. Furthermore, it is beneficial for

users to interactively examine the feature space and understand the predictability of
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features. Adopting a visual analytics approach that supports comparative analysis of

models and the feature space can assist researchers in gaining comprehensive insights

in modeling and selecting the best-fitting models.

1.2 Visual Analytics for Performance Evaluation

As mentioned in the previous section, performance evaluation is multi-faceted

and dynamic in various circumstances, demanding a comprehensive analytical envi-

ronment to enable detailed interactive investigation of performance. The inherent

capabilities of visual analytics incorporate both exploratory data analysis and do-

main knowledge from user feedback, allowing it to support complicated performance

evaluation requests. Keim et al. [7] define the visual analytics process (Fig. 1.1) as an

interactive knowledge discovery process with the assistance of visual and automated

data exploration. Specifically, human-in-the-loop or human-centered visual analytics

approaches are developed to enhance users’ data exploratory experience with seamless

integration of visualizations and data models into their work routine [8]. Often, au-

tomated models are applied to learn from user interactions for sophisticated analysis

regarding large data, such as social media data [9], time-series financial data [10], and

textual data [11]. We have created interactive visualization systems to support the

exploration of performance-related data records to achieve sophisticated and thorough

performance evaluation goals while accounting for multiple factors and relationships

among factors and data samples.

1.2.1 Organizational Employee Performance Evaluation

Organizations need to evaluate their employees’ performance, both at any organi-

zational level and among groups of employees performing similar jobs at potentially

different locations and time periods. A team leader may be knowledgeable about the

workload and job-handling ability of each team member in their unit, based on per-

sonal interactions and job activity reports. However, a team leader may still struggle
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Fig. 1.1. The visual analytics process proposed by Keim et al. [7]. The
process highlights that the interactive data exploration environment
integrates well designed visualizations and data models.

to gain meaningful insights when comparing different aspects of ‘good’ performance

both within their team and against other units; likewise, organizational leaders may

struggle to compare several units or make organization-wide comparisons. In ad-

dition, the completion of different tasks can contribute differently toward ultimate

organizational objectives. For example, employees may either engage in self-initiated

activities, such as seeking new sales, or accomplish assigned jobs, i.e. fulfilling or-

ders. Employee performance can be partially rated on self-initiated activities, which

indicates proactivity. In law enforcement agencies, the chief and commanders have

to consider the relative contributions made by an individual officer based on their

effectiveness when handling emergency calls (dispatched) in addition to their ability

to prevent crimes (self-initiated).

To support the interactive exploration and evaluation of employee performance

at multiple scales (individuals, teams, and the entire organization), we developed a

visual analytics system — MetricsVis (Chapter 3) — to support the comprehensive

investigation of performance measures. Discussions with domain experts in a law
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enforcement agency regarding its quarterly subjective review process revealed that

each supervisor only provides ratings and subjective feedback for one team. Thus,

they lack reliable evidence to compare their own team’s performance with other teams.

A better understanding of both individual and team performance, as well as workload

demand, can be the first step to improving overall organizational performance and

work efficiency.

The MetricsVis system summarizes generic evaluation tasks in performance-related

analyses and provides customized visualization components to support dynamic eval-

uations and comparisons of individual, team, and organizational performance. The

system considers the in-depth requirements of performance evaluators, including nu-

merical contributing factors in different relations, the evaluation rating knowledge of

domain experts, and the organizational hierarchy. It also combines these evaluation

concerns with hybrid evaluation metrics (details presented in Section 3.2) to achieve a

data supported performance evaluation approach that alleviates subjective bias and

incomplete understanding of subjects toward performance assessment. To demon-

strate the usability of the MetricsVis system, two case studies from medium-sized

law enforcement agencies are described to highlight its broader applicability to other

domains.

Besides visualizing multi-dimensional performance data at multiple levels to expe-

dite performance evaluation, dynamic adjustments of evaluation metrics are provided

to satisfy the disparity between organizations. Users can interactively tune the eval-

uation metrics based on their preferences in order to predict future performance.

However, if too many factors are involved in the manual fine-tuning process, users

may find the process tedious and repetitive. To speed up this process, two methods

are applied to obtain the suggested importance of performance-related factors: (a)

an online survey to collect service recipients’ and employees’ opinions about the im-

portance of each performance-related factor (described in Chapter 3 MetricsVis), and

(b) using machine learning models to obtain the importance of each factor (discussed

in Chapter 4 MetricsVis II).
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1.2.2 Interactive Feature Selection and Model Evaluation

Machine learning models are increasingly used to analyze an overwhelming amount

of multi-dimensional data and provide predictive analysis. However, many of these

models are used as black boxes (primarily because of the way current computational

libraries present the models/results). Therefore, domain users who do not have train-

ing in machine learning may not understand how the results are generated, and as

a consequence may not trust the models. These problems are further complicated

by insufficient data samples and the curse of dimensionality. Feature selection is of-

ten adopted to improve these models by identifying relevant features that make the

most significant contribution to the prediction results while removing noisy, irrelevant,

and less important features. We propose a visual analytics system, FeatureExplorer

(Chapter 5), to support interactive feature selection by inspecting different rankings

of features generated by two feature selection algorithms. Through examining the

importance of features, users can discern the predictability and interchangeability of

particular features. In addition, users can interactively add or remove features to

investigate the impact of a subset of features on a model to verify their hypotheses.

Specifically, domain experts can select a subset of features based on their domain

knowledge. When users manipulate the input features of a learning model, quan-

tifiable measurements are necessary to indicate the effectiveness of a model, such

as accuracy, root-mean-square error, relative errors, and R2 [12]. We used root-

mean-square error and R2 as performance measurements for a learning model, since

numerical ground truth (e.g., the biomass of plants) was used in our case studies.

Thus, users can add or remove features based on their subjective judgements and

then verify their hypotheses based on whether a feature is critical to the prediction or

not. This working pipeline of manipulating the feature space and validating with ex-

periments (shown in Fig. 1.2) has been incorporated into FeatureExplorer to identify

the most influential subset of features. In the pipeline, two categories of feature selec-

tion methods are deployed: filter methods and wrapper methods. For filter methods,
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Models
User

Interactively Add/Remove Features
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Feature 
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Performance
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Fig. 1.2. The pipeline of interactive feature selection and regression
model evaluation in the FeatureExplorer system.

Pearson’s correlation coefficient is applied to indicate the collinearity between fea-

tures. For wrapper methods, the recursive feature elimination is utilized to indicate

the predictability of features for a given regression model. Currently, the two specific

feature selection methods are selected based on domain practice. In addition, it is an

initial step toward verifying the utility of the pipeline with domain experts.

To demonstrate the use of the FeatureExplorer system, a case study conducted

in collaboration with remote sensing experts is presented to show the prediction of

plant biomass using features extracted from hyperspectral images. Feature mining

techniques, including feature generation, feature selection, and feature extraction, are

typically applied on hyperspectral images to identify the optimal feature space [13].

Remote sensing experts work intensively in feature generation and feature extraction

on collected raw data in order to construct meaningful and substantial features for

prediction. We aim to provide an interactive feature selection system that fulfills their

requirements by extensively examining the predictability of those features. In Fea-

tureExplorer, we focus on visualizing the importance of features provided by different

feature selection methods to assist users in refining the feature space. Decreasing the

number of features not only improves the performance of models but also reduces

the computation complexity. Additional feature selection methods and regression
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models can be included in the FeatureExplorer pipeline to satisfy the extended needs

in comparing different feature selection methods and learning models. The pipeline

(Fig. 1.2) can be augmented by plugging in various filter feature selectors (e.g. mu-

tual information), wrapper feature selectors (e.g. forward selection), and regression

models.

1.3 Thesis Statement and Contributions

This dissertation includes a set of visual analytics (VA) systems that we devel-

oped to assist the exploration of multi-dimensional performance data to enable do-

main experts to analyze performance-related factors and influence final performance

evaluations by interactively customizing input factors. Two specific use cases in per-

formance analysis are explored: organizational performance and feature selection for

machine learning models. During an employee performance analysis (Chapter 3 Met-

ricsVis), we developed a VA system that organization managers and supervisors can

use to conduct a performance evaluation by inputting weights of performance-related

factors to better reflect their opinions of the relative significance of particular mea-

surements (e.g. the impact of a task on individual productivity). Furthermore, the

hierarchical structure of data items is considered and incorporated into the visual

design to illustrate the performance at and between multiple levels: individual data

items, aggregated groups, and the entire dataset. The structure can be assigned by in-

herent relationships (e.g. members in a team) or by clustering algorithms that group

similar items together by shared patterns. In interactive feature selection (Chapter 5

FeatureExplorer), machine learning algorithms are deployed to automatically provide

a systematic ranking of features. Though two specific cases are explored, they share

the common theme of analyzing numerous factors contributing to the ultimate per-

formance and evolving relative importance of these factors in dynamic conditions.

The thesis statement is as follows:
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Interactive exploration analysis, summarization, and visualization of multi-

level and multi-dimensional data can assist in reducing the efforts required

to identify influential factors and analyze multi-level comparisons neces-

sary to improve user comprehension, performance evaluation, and decision

making.

The core contributions of this dissertation are a collection of innovative visual an-

alytics approaches that integrate interactive analysis, novel visualizations, and pre-

dictive machine learning models to support informed decisions during exploratory

performance evaluation tasks. The combination of novel visualizations displaying

multi-dimensional data at multiple levels creates a unique interactive environment

to increase effectiveness and comprehension of performance analysis. In addition,

predictive machine learning models are deployed to enhance user experience when

identifying influential factors through interactive user feedback. Specific contribu-

tions of this work include the following:

• A visual analytics approach, MetricsVis, that summarizes and visualizes em-

ployee performance at and between multiple levels of an organization (i.e., in-

dividual, group, and individual contributions to a group) to enable dynamic

performance evaluation [14]. MetricsVis visualizes multiple data attributes at

multiple levels to enhance a user’s interpretation of the overall performance of

an organization.

• In MetricsVis, hybrid evaluation metrics are applied to obtain the overall perfor-

mance of individuals. The set of hybrid evaluation metrics integrates both quan-

titative measurements of achievements based on observed performance-related

factors (data-driven) and qualitative subjective ratings for the relative impor-

tance of each factor based on online survey results collected from employees

and service recipients. The performance-related factors are derived from ex-

isting job performance analysis techniques and employee activity records from

public safety agencies [14,15].
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• An alternative approach to deriving the weights for performance-related factors

in the hybrid evaluation metrics is applied to capture the preferences from users

(Chapter 4 MetricsVis II). The approach seeks to relate subjective rankings

of employees to their quantitative measures of workload. Users can manually

adjust the rankings of employees, and then a ranking algorithm is utilized to

learn the weights of performance-related factors based on the user supplied

feedback.

• A visual analytics approach, FeatureExplorer, to support interactive feature

selection and model evaluation with visualizations for ranked features provided

by multiple algorithms [16]. FeatureExplorer visualizes the relationship among

features and the contribution of features in machine learning models to facilitate

the identification of optimal combinations of features.

1.4 Roadmap

This dissertation centers on applying visual analytics approaches as new capa-

bilities to help decision makers make comprehensive and effective decisions during

performance analysis. These visual analytics approaches integrate visual represen-

tations to assist multi-level comparisons and predictive machine learning models in

order to expedite the identification of influential factors. Fig. 1.3 shows the structure

of the main components in this dissertation. The MetricsVis system, presented in

Chapter 3, supports dynamic performance evaluation at multiple organizational lev-

els. In Chapter 4, a ranking algorithm is added into the primary MetricsVis system

to automatically derive weights associated with performance-related factors, allowing

users to rank some employees based on their personal preference and predict the per-

formance of the rest. The VA system, MetricsVis II, integrates the automatic weights

learning driven by user-guided ranking and is named after the original MetricsVis

system. A visual analytics approach (FeatureExplorer) supporting interactive feature

selection and regression model evaluation is described in Chapter 5. The core concept
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of MetricsVis II and FeatureExplorer is leveraging the human-in-the-loop to identify

influential factors with the aid of predictive machine learning models. In contrast

to the pipeline in FeatureExplorer (shown in Fig. 1.2) which improves learning mod-

els by manipulating the feature space, MetricsVis II allows users to manipulate the

ground truth (i.e., labels) of training data.

Chapter 3

MetricsVis: Multi-level and
multi-attributes performance

evaluation

MetricsVisⅡ: User-guided
ranking to relate subjective
preferences to quantitive
measurements of workload

Chapter 4

A

B

C

Chapter 5

FeatureExplorer: Interactive
feature selection and model

evaluation

Fig. 1.3. Overview of core chapters composing this dissertation.
Chapter 3 introduces a visual analytics approach, MetricsVis, to vi-
sualize multiple attributes of employee performance at and between
multiple levels. In Chapter 4, the MetricsVis II system is introduced,
which extends the original MetricsVis system to relate subjective pref-
erences to quantitative measurements of employee workload using a
pair-wise ranking algorithm. Chapter 5 presents a visual analytics
approach supporting interactive feature selection and model evalua-
tion, which enables users to identify influential features contributing
significantly to a prediction model.
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2. RELATED WORK

In this chapter, we review work related to applying visual analytics approaches to solve

problems in two research fields: (1) evaluating organizational performance in public

safety agencies and (2) interactive feature selection and evaluation of regression mod-

els. Both of these fields share the common themes of representing multi-dimensional

data attributes/features and fulfilling complex exploratory tasks solicited by domain

experts. For employee performance evaluation, we focus on performance evaluation

in organizations (Section 2.1), interactive sorting techniques to aid in effective rank-

ing and comparison of multi-dimensional data (Section 2.2), and analytical systems

for making sense of multi-attribute data (Section 2.3). For interactive feature selec-

tion, we focus on algorithms to offer automatic feature selection (Section 2.4), and

VA approaches to support interactive feature selection (Section 2.5). In addition, we

describe related work in predictive visual analytics in Section 2.6.

2.1 Performance Evaluation in Organizations

Performance evaluation in organizations needs to compare performance obser-

vations with expectations, reveal barriers preventing the desired performance, and

generate action plans for either maintenance or improvement in order to achieve orga-

nizational objectives [17,18]. Performance appraisal systems assist decision makers in

realigning employee performance to meet the evolving organizational objectives [19].

An ongoing problem in organizational performance is designing metrics to measure

employee effectiveness and productivity [20,21].

Several researchers have derived taxonomies to evaluate employee performance-

related factors that characterize the performance of individual employees [22–28].

The results are lists of generalizable evaluation factors (e.g. task performance, or-
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ganizational citizenship behavior, and counterproductive work behavior) that could

be adopted in diverse evaluation scenarios. MetricsVis leverages dynamic evaluation

factors which users can customize based on organizational objectives, and supports

interactive variable weighting to reflect the relative importance of each task/job type

(i.e., factor). In addition to evaluating individual performance, the hierarchical struc-

ture in an organization has a fundamental impact on the organization’s behavior and

management [29, 30]. Our MetricsVis system supports the exploration of individual

performance as well as team- and organization-level performance with respect to the

organizational hierarchy.

2.2 Interactive Sorting and Visualization

For convenient ranking and visual comparison among data items and their at-

tributes, many research studies have utilized bar graphs and interactive sorting tech-

niques. Tabular visualization is widely used due to its simplicity, clarity, and fa-

miliarity. Reorderable matrices [31] are designed to efficiently explore associations

between hundreds of data items and data attributes. Usually, a permutation (sort-

ing or clustering) method is provided to highlight the pattern of multidimensional

data [32]. Many tabular visualization techniques are mainly designed for numerical

data and bar chart representation. For example, Table Lens [33] utilized the focus +

context technique on large relational tables; ValueCharts [34] was designed to support

hierarchical structure additive linear models; and LineUp [35] was designed as a multi-

attribute ranking system that considers a combination of attributes and timeframes.

Conversely, the Parallel Sets [36] system focused on the interactive exploration of cat-

egorical attributes. Specifically, reorderable matrices efficiently explore associations

between hundreds of data items and data attributes [31]. Furthermore, permutation

(sorting, clustering) methods help highlight similarity patterns in these matrices [32].

Interactive ranking and sorting is an active research area. Some techniques sort

all data attributes simultaneously and use linkages across all attributes to highlight
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the same data entry [37, 38]. Timespan [39] supports hierarchical reordering, which

sorts data samples based on the priority of a data attribute. However, MetricsVis

provides conventional sorting on a reorderable matrix that allows flexible rearranging

of attributes (i.e., factors such as job categories) and data items (employees), because

we found that these components are more familiar to end users.

MetricsVis computes rankings based on attribute weights provided by end users, as

opposed to several recent systems that leverage user-assigned data ordering to reverse

engineer the weights [40, 41]. These systems require users to interactively update

the overall ranking of data samples and inspect the validity of weights. MetricsVis,

however, requires domain experts to have a good understanding of the weights, which

is coherent with the goal of aligning with the priorities of an organization for dynamic

evaluation purpose.

2.3 Visual Analytics for Multi-Attribute Decision Making

Researchers have presented several VA systems to facilitate the exploration and

understanding of multi-dimensional data. Zhao et al. [42] developed SkyLens, a VA

solution that enables comparison of multi-dimensional data through multiple coordi-

nated views, while filtering out inferior data candidates. LineUp [35], perhaps the

work most similar to ours, performs ranking visualization of multi-attribute data,

and allows users to flexibly adjust weighting parameters to identify potential rela-

tionships. However, SkyLens and LineUp do not provide interactive visualizations to

support multi-level performance comparisons, such as individual to group or group

to organization, which is necessary for organizational evaluation. MetricsVis was de-

signed with this key consideration in mind. In addition, LineUp utilizes bar charts

to facilitate ranking comparison; MetricsVis employs radial layouts, which have out-

performed tabular layouts when comparing data attributes [43] and provide compact

visualization.
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The software suite Tableau [44] can provide useful individual interactive data

visualizations to explore relationships, trends, and rankings among multi-attribute

data, such as pie, bubble, bar charts, treemaps, and tabular visuals. However, the

user may not be able to generate a visualization that communicates the data most

effectively to compare multi-level performance. MetricsVis provides compact and in-

teractively linked visualizations specifically tailored for efficient, multi-level compar-

ison of organizational performance metrics. For instance, MetricsVis allows users to

view individuals with potentially similar performance through integrated clustering.

Tableau does not support this. Furthermore, while Tableau can provide a hierarchi-

cal overview of an individual’s contribution to the group (and group to organization)

with treemap visualization, MetricsVis supports simultaneous comparison of multiple

attributes to the overall group with stacked radar charts, which can also be used to

compare groups.

2.4 Feature Selection Methods

Feature selection methods are widely applied to remove irrelevant features and

boost the performance of machine learning models. Feature selection methods can be

generally divided into four categories: filter methods, wrapper methods, embedded

methods, and hybrid methods [45]. The filter and wrapper categories are relevant to

our work; therefore, we will focus on them here.

Typical filter methods are Pearson’s correlation coefficient [46], mutual informa-

tion [47], and features are ordered by their relationship with the dependent variable

(i.e., prediction target) using statistical measurements. The advantages of filter meth-

ods are straightforward to compute and can avoid overfitting. However, filter methods

may not generate the optimal subset of features for a few reasons: (1) overlooking

the relationship with other features (mainly focus on the relationship with depen-

dent variable), (2) neglecting features that are less informative by themselves than

combined with other features, (3) not considering the underlying learning models.



18

We used Pearson’s correlation coefficient to narrow down selected features to the

ones with high linear correlation with the dependent variable. However, correlated

but redundant features may be selected, and the coefficient is unable to characterize

nonlinear relationships.

Wrapper methods are appropriate complements for filter methods, since wrapper

methods use regression or classification models to find an optimal feature subset by

iteratively adding or removing features. Many search algorithms such as sequential

feature selection [48,49], greedy search [47], and genetic algorithms [50] are designed

to expedite the search for an optimal subset. A compelling advantage of wrapper

methods is the flexibility to apply different learning models; therefore, users can se-

lect a preferred learning model. The combination of learning models (e.g. SVR) and

wrapper methods (e.g. RFE) has traditionally been used for automatic feature se-

lection [51,52], and we implemented the combination in the FeatureExplorer system.

However, in wrapper methods, the learning models are used as black boxes and over-

fitting may occur. Therefore, visual examination of the feature space is necessary in

order to leverage domain knowledge in choosing meaningful features.

2.5 Visual Analytics for Feature Selection

Several visualizations have been proposed for feature selection, including corre-

lation matrices [53], feature clustering [54], feature ranking [55–57], scatterplot ma-

trices [58], and dimensionality reduction [59]. A few visual analytics systems have

leveraged a combination of automatic and visual feature selection techniques. Regres-

sionExplorer [60] is one such system for inspecting logistic regression models. Other

systems have been proposed to support exploring linear relationships among features

[61–63]. BEAMES [64] is another multi-model system that enables users to interac-

tively compare different types of models with various hyper-parameters (e.g., logistic

regression vs. Bayesian regression models), while allowing users to interactively weigh

data instances and features. INFUSE [65] enables the ensemble of multiple feature
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selection methods by visualizing feature importance as determined by various feature

selection methods in a radial glyph. Our focus, however, is to support domain ex-

perts in efficiently reducing a high-dimensional feature space into key feature subsets,

and tracing back the features to the underlying data (wavelengths) for incorporating

domain knowledge.

Partition-based visual analytics systems [66, 67] primarily focus on the interac-

tive exploration of local structures and relationships between independent and target

variables, appropriate for lower feature space dimensions. They are aimed at closer

inspection of limited numbers of selected features for optimal distribution partition-

ing and model building. However, our focus is on high dimensions (of both data

instances and feature space). Our system’s integrated hierarchical clustering and

matrix visualizations facilitate the quick identification of (a) influential feature sub-

sets (either already selected or missing) for model building, (b) the interchangeable

features within those subsets, and (c) detailed feature distribution and importance.

2.6 Predictive Visual Analytics

Predictive analytics is defined as the process of identifying patterns in input data

and predicting the output using quantitative models [68]. Machine learning algo-

rithms are often adopted as quantitative models in predictive analytics, since they

can accurately capture the relationship between input and output data. In predictive

visual analytics, interactive machine learning techniques and users’ desires to be in-

volved in the modeling process require VA systems to explain and interpretation the

modeling process at 3 stages: (1) before building a model, (2) building a new model,

and (3) after building a model. There are two distinct approaches widely adopted in

predictive visual analytics: (1) interpreting the input-output relationship and using

machine learning algorithms as black-boxes, and (2) interpreting the internal logic of

machine learning algorithms.
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The first approach usually involves the first stage (before building a model) and

the third stage (after building a model) in a modeling process. Krause et al. [69] show

that investigating the input-output relationship can improve users’ understanding of

prediction outcomes. Manifold [70] is another example of such a visual analytics sys-

tem that assists users in interactively interpreting the input-output relationships for

several models at the same time. Prospector [71] explains how features impact pre-

diction models by interactively exploring the partial dependence. In FeatureExplorer

(Chapter 5), the internal logic of the machine learning model is not demonstrated; we

increase users’ interpretation of the input-output relationship by applying two fea-

ture selection algorithms at two stages of the modeling process: (1) demonstrating the

correlation between features before a model is built, (2) showing feature importance

after a model is built.

For the second approach, the interpretability of a model is increased by visual-

izing the internal logic of machine learning models, which is more conventional in

predictive visual analytics [72]. Building a model such that its internal logic can be

easily understood by end-users who are not familiar with the mechanisms of predic-

tive models is critical. Two types of models are straightforward to understand: (1)

rule-based models (e.g., decision trees adopted in BaobabView [73]), and (2) linear

models [40]. In MetricsVis II (Chapter 4), a linear model is included to externalize

users’ preferences using weights. A higher value on specific weights indicates that

an organizational performance evaluator may show a stronger preference for a given

category, e.g. employees who handled more cases in a given job category.
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3. A VISUAL ANALYTICS APPROACH FOR

EVALUATING EMPLOYEE PERFORMANCE IN PUBLIC

SAFETY AGENCIES

This chapter is based on papers published in IEEE TVCG 2020 and IEEE HST 2017:

J. Zhao, M. Karimzadeh, L. S. Snyder, C. Surakitbanharn, Z. C. Qian, and D. S.

Ebert, “MetricsVis: A visual analytics system for evaluating employee performance in

public safety agencies,” IEEE Transactions on Visualization and Computer Graphics,

vol. 26, no. 1, pp. 1193–1203, Jan 2020. doi: 10.1109/TVCG.2019.2934603

J. Zhao, A. Malik, H. Xu, G. Wang, J. Zhang, C. Surakitbanharn, and D. S. Ebert,

“MetricsVis: A visual analytics framework for performance evaluation of law enforce-

ment officers,” in 2017 IEEE International Symposium on Technologies for Homeland

Security (HST), April 2017, pp. 1–7. doi: 10.1109/THS.2017.7943468

Performance evaluation is critical for supervisors and managers to understand

the performance of employees to improve the overall productivity of an organization.

Currently, specialized visual analytics tools for harnessing multi-dimensional orga-

nizational data to facilitate effective employee performance evaluation are lacking.

Current performance evaluation practices often apply subjective supervisory ratings

with data tables listing the simple statistical summaries of entire departments and

details regarding tasks completed by individual employees. Existing visual analyt-

ics applications support either multi-dimensional data visualizations or multi-criteria

decision-making [35, 42] that treat individuals uniformly, ignoring the inherent hier-

archical relationships and different teams or task types typical of public safety and

many other organizations.
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In this chapter, we present MetricsVis (Fig. 3.10), a visual analytics system for

evaluating the performance of individual employees, teams, and the entire organiza-

tion in public safety agencies. We designed the system iteratively with users from

two medium-sized law enforcement agencies (representing similar-sized organizations

in our study). We rooted our metrics in the existing organizational performance lit-

erature and adaptively tailored MetricsVis to meet the requirements of public safety

organizations with groups of employees performing similar jobs but at different lo-

cations and times, resulting in different workloads that impact their contribution to

organizational goals. Additionally, we formalized the analytical tasks, goals, and met-

rics; derived metrics; and surveyed organizational personnel and the public to decide

on priorities of evaluation. We implemented multiple coordinated views in MetricsVis

to support efficient, effective, and dynamic performance evaluation for multiple levels

of an organization.

The MetricsVis system enables a holistic evaluation of organizational priorities

versus actual achievements, and helps identify opportunities for improvement. Addi-

tionally, it facilitates the evaluation of strategic goals, expedites resource allocation

(e.g. understanding which employees may need additional training or would be good

trainers), and improves workload balance and individual employee performance. Spe-

cific contributions of our research and design are as follows:

• The mapping of the analysis of public-safety organizational performance evalu-

ation into four visual analytical task categories.

• A novel system supporting interactive visual organizational performance anal-

ysis in public safety agencies based on hybrid evaluation metrics that integrate

quantitative employee data and qualitative subjective feedback, and appropriate

visual representations to support the four aforementioned visual task categories.

• A system evaluation with domain experts from two medium-sized law enforce-

ment agencies to validate system usability.
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In the remainder of this chapter, we first present the visual analytics task cate-

gories that were distilled through reviewing literature and collaboration with domain

experts. What follows is a detailed description of deriving the hybrid evaluation met-

rics. Next, we describe the MetricsVis system in detail and demonstrate its utility

through two case studies. Finally, the generalization and limitations of the MetricsVis

system are discussed.

3.1 Domain Characterization

We identified the general requirements for an effective and efficient performance

evaluation system by reviewing the literature [17–21,25,29,30,74,75], which informed

our discussions with domain experts from law enforcement. We then mapped the

refined requirements into four visual analytical task categories, as explained below.

3.1.1 Requirements Analysis

Assessing employee performance involves considering and integrating multiple

performance-contributing factors to enable accurate comparison against organiza-

tional objectives. To satisfy the diverse and evolving requirements of different orga-

nizations, we decided to adopt dynamic evaluation metrics that can be refined based

on user preferences. For clarification, evaluation metrics in our context are comprised

of two aspects: the performance-contributing factors and their weights. Choosing

performance factors is a challenging task specific to each domain. We derived these

factors from a combination of (a) unstructured interviews with commanders and

chiefs at law enforcement agencies and (b) taxonomies of task performance in work

settings [22–25,74,75].

Organizational hierarchy affects the performance evaluation process. Evaluators’

differing perspectives can hinder comparisons across the entire department, especially

when traditional performance evaluation practices rely heavily on subjective ratings

from management. Leaders may analyze their team’s workload and performance
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quality through personal interaction and job activity reports; however, it may still

be difficult to compare different aspects of satisfactory performance between units

across the organization. Though the evaluators can ensure unbiased judgment within

their teams, variation across multiple evaluators is inevitable. Besides comparisons

at the same level (individual versus individual, group versus group), we also need

to evaluate the contribution of an individual to its group and a group to its orga-

nization. Therefore, an effective performance management system must support the

performance evaluation at and between multiple levels of the organizational hierarchy.

We summarize these requirements from three independent perspectives: (1) dy-

namic performance metrics that can be adjusted by users to align with organizational

objectives; (2) multiple levels including individual, team, and the entire organization;

and (3) two relational contexts including comparisons at the same level as well as

between two levels.

3.1.2 Analytical Tasks

The goal of MetricsVis is to enable the evaluation of individual employee, team,

and organization effectiveness through the exploration of performance measures de-

rived from digital activity records (quantitative, qualitative, and subjective). To

accomplish this goal, MetricsVis was designed to address several visual analytical

task categories for performance evaluation:

T1 Evaluate individual employee performance: The first challenge a team

manager may encounter is aggregating and transforming activity reports and

statistics into measures of subordinate performance. One approach to evalu-

ating performance is to determine the frequency of different jobs accomplished

by an employee, the difficulty and effort required for a certain category of job,

and whether the job was self-initiated or dispatched. Since not all job types

are equal in difficulty and effort, the option to weight each job type should be
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incorporated. Additionally, a supervisor needs to select and compare multiple

employees’ performance to find patterns in low- and high-performing employees.

T2 Evaluate group and team performance: The second challenge is to under-

stand the most influential factors that create successful teams for a variety of

jobs. Some factors that may impact team effectiveness include location, man-

ager, shift time of day, personnel proficiency levels, and time spent working.

For instance, assigning police officers with experience in a certain geographic

area to respond to calls in that area may increase patrolling effectiveness due

to additional tacit knowledge providing an advantage over someone unfamiliar

with that area. Additionally, understanding how these issues affect workload

balance and morale serves to help optimize personnel allocation.

T3 Investigate organizational workload: Managers want to understand re-

source and personnel allocation strategies, pattern changes in services, and the

effect on workload balance to increase overall organizational effectiveness. Ex-

ploring and comparing grouping factors (e.g. locations, time periods, and ser-

vicing patterns) can enable understanding of whether resource expenditure is

aligned with organizational goals, discover unexpected drains on resources, and

find excess personnel capacity in certain areas or during certain time periods.

This information is crucial for advanced resource allocation strategies (e.g. dy-

namic allocation, request-based allocation), and evaluating the effectiveness of

alternative strategies.

T4 Evaluate department priorities: If the priorities of the organization shift

over time due to increased requests based on a particular service, the managers

will be able to reflect these changes through adjusting the weights of the eval-

uation metrics. Stakeholders and managers may have different opinions about

the importance of a job type or activity, and a good performance evaluation

system should allow the administrator and managers to investigate the impacts

of applying different evaluation criteria.
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Fig. 3.1. Illustration of MetricsVis system diagram with three mod-
ules: data processing, views, and visual analytical task categories.

3.2 Deriving Performance Metrics

One of the key challenges of a successful performance appraisal system is quanti-

fying the workload of employees and then deciding the contribution of specific jobs

to the team or organizational objectives with appropriate scoring to reflect the pri-

orities of a given organization. We describe our method, which (a) transforms job

activity reports to workload descriptors and (b) transforms subjective feedback from

employees and communities to qualitative measurements of contributions (shown in

Fig. 3.1 Data Processing). To demonstrate the performance data extraction stage,

we utilize activity records of law enforcement agencies as an example and explain the

transformation process in detail. For that, we need to briefly describe the data source

and several terms related to law enforcement agencies.

Law enforcement agencies typically use two related databases: computer-aided

dispatch (CAD) and record management system (RMS). The CAD tables contain

calls for service event information such as call nature, address, time, patrol units

dispatched, etc. The calls usually fall into two categories: dispatched and self-

initiated. The self-initiated calls are usually started by officers on their patrolling

duties, whereas dispatched calls are assigned to the officers. RMS tables are concerned
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with criminal incidents that have been written into reports by officers, including pa-

rameters such as date, location, offense committed, etc. We denote the calls ending

with patrol service but not resulting in criminal incident report as Call for Service

events, which need to be considered as a separate category. Dispatched activities

and self-initiated activities should not be treated equally, since self-initiated activities

are proactive behavior to prevent crimes and dispatched activities are responses to

citizen requests; the option of filtering activities by behavior types (self-initiated ver-

sus dispatched) is extremely useful for evaluating the performance of patrol officers.

Both tables store data in a multi-dimensional format in which every entry contains a

report with its associated metadata.

Based on the taxonomy of major indicators of individual employee task perfor-

mance [22–25, 74, 75], the top three common performance-related factors are job

completion, work quantity, and work quality. Rooted in these factors and

based on feedback from our users, MetricsVis utilizes offense categories from law en-

forcement agencies as the diversity of job completion, the number of cases responded

to by officers as work quantity, and the crowdsourced survey rating for the seriousness

of offense categories as a practical substitute for work quality.

Table 3.1.
Eight parameters in evaluation of each offense.

Economic Loss to Victim

Economic Loss to Group

Economic Loss to Government

Economic Loss to Private Organization

Impact on Culture

Impact on Victim’s Mental Well-being

Impact on Victim’s Physical Well-being

Risk to Officer’s Life

We conducted this crowdsourcing online survey with two participating groups:

police officers (59 participants) and community citizens (33 participants), each rating
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the severity and economic impact of 27 offense categories on a Likert scale. The

severity and economic impact were assessed by eight parameters listed in Table 3.1.

A final rating of an offense category was assigned by the aggregated score of the eight

parameters and scaled to a range from zero to one hundred. Each participant was

asked to rate 216 questions in total (27 offense categories * 8 parameters). During

the survey, participants might skip some survey questions that they found difficult to

rate. We replaced missing ratings with the average rating from all other participants.

The average ratings of the majority of offense categories for both citizens and officers

are shown in Table 3.2.

MetricsVis transformed these crowdsourced ratings to weights, which can be as-

signed either based on the average rating from the survey or on interactive adjustment

from end-users. Ultimately, the overall performance of an officer is calculated as the

summation of these weighted offense categories. In summary, the evaluation metrics

are denominated as a set of hybrid evaluation metrics that contain (a) the quantita-

tive measurement of employee achievements based on activity reports with respect to

classified job types (data-driven) and (b) qualitative ratings from surveys or dynamic

input from end-users (subjective input).

Burglary

Homicide

Police Officers Citizens

Fig. 3.2. The rating distribution of two sampled severe criminal of-
fenses, burglary and homicide, from police officers and citizens. In a
histogram, the x-axis shows the rating scale from zero to one hundred,
and the y-axis shows the count of each score. The black lines denote
the averages.
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Table 3.2.
Sample survey result for weights of 27 offense categories based on a
range from zero to a hundred.

Offense Category Police Citizen

Homicide 76.44 83.80

Robbery 66.62 74.43

Drug Abuse 64.24 77.01

Offense Against Family 59.06 69.35

Arson 58.8 66.38

Burglary 58.01 73.17

Operating While Intoxicated (OWI) 56.82 70.22

Assault 56.37 72.59

Fraud 54.48 67.59

Weapon Violation 53.82 67.28

Embezzlement 53.26 66.58

Motor Vehicle (MV) Theft 51.71 64.64

Stolen Property Offense 49.57 61.96

Forgery 49.57 61.96

Larceny 49.43 61.79

Drunkenness 46.8 58.50

All Other Offenses 43.26 54.08

Liquor Law Violation 42.49 53.11

Vandalism/Mischief 40.63 50.79

Runaway 38.73 48.41

Trespass/Threats 35.92 44.90

Disorderly Conduct 35.61 44.51

Suspicious Incident/Person 35.32 44.15

The ratings from citizens are much higher than those of officers for all offense

categories. One possible interpretation is that since officers are exposed to a wide

range of crimes on a daily basis, they have a less-biased viewpoint, whereas citizens

usually only experience crimes from the position of a victim or witness. Both officers
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and citizens weighted homicide as the top crime. Fig. 3.2 shows the rating comparison

between police officers and citizens for Burglary and Homicide. The rating from

citizens has especially high values for both categories, but the rating from police

officers is normally distributed.

To compare the public’s opinion with that of law enforcement towards different

types of offenses, the chief from a partner law enforcement agency applied both of

these weightings from officers and citizens. He found that the ranking based on

total performance score did not diverge significantly from their administrative goals.

However, he noted the difference between citizens’ concern towards some types of

crimes and the officers’ understanding of these crimes. Although these differences did

not affect the overall performance rating, they can be used in community meeting

discussions to help align both groups’ priorities.

Rating weights for other organizations can be obtained directly from managers or

supervisors. Organizations can also survey employees and service recipients to obtain

initial estimates of job category importance. If it is easier for end users to rank

the employees, initial weights can also be reverse-calculated using machine learning

algorithms. However, weights obtained through such methods could be difficult to

explain. As shown in Fig. 3.1, the derived evaluation performance metrics and the

job activity records are populated into designated views to show the performance of

employees within and across multiple levels.

3.3 MetricsVis System

MetricsVis is implemented as a web-based application that utilizes Redux [76] to

manage asynchronous calls between the client and server for data consistency, Re-

act [77] to support efficient updates of visualizations when data are modified, and

D3 [78] to render the customized graphical interface. MetricsVis contains four views:

(1) a priority adjustment view displaying the domain-dependent evaluation metrics,

(2) the performance matrix showing the details of individuals, (3) the group per-
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formance view showing the summarized results of groups as well as an individual’s

contribution to its group, and (4) the projection view supporting similarity pattern

analysis of team members. In this section, each view is described based on its usage

purpose and visual representations. To demonstrate the visual representations in an

example context, the views are rendered with datasets provided by a law enforcement

agency.

3.3.1 Priority Adjustment View

The priority adjustment view encodes the evaluation metrics that consider the

diversity of evaluation factors in an organization. Its main role is to support the

dynamic selection of evaluation factors and the adjustment of associated weights

to match organizational priorities (T4). As evaluation metrics in appraisal systems

evolve due to rapid changes in service requests, we adopt a priority adjustment view to

illustrate the contribution of each evaluation factor by associated weights. After the

dynamic modification of evaluation metrics (filtering of evaluation factors or tuning

of weights), users can observe the impact on individual and group performance in all

other views.

Offense Name

Calls For Service

Button for 

Filtering

Current Weight Rating Distribution 

Survey 

Participants

Reset

Weights

Option Button for 

Showing Distribution 

Survey: Weight: Histogram

HistogramWeight

Police Police

Offense Category

Fig. 3.3. A sample row in priority adjustment view: designed for law
enforcement agencies.
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In the domain-dependent priority adjustment view (Fig. 3.3), each offense category

appears as a row. Each row has a slider bar to modify the current weight and a

histogram to illustrate the rating distribution from either police officers or citizens.

In the histogram, the x-axis shows the rating weight scale from zero to one hundred,

and the y-axis shows how many participants provided each rating score. Placing

the rating distribution beside the slider bar provides extra visual cues [79] as to the

severity of each offense category. The rating distribution indicates the variation of

opinions among survey participants. The initial recommended weights are the average

ratings from either police officers or citizens, with the exact value indicated by a red

dot along the x-axis. Users can dynamically adjust the weight by dragging the red dot

in a slider bar. If the priorities of the organization change, users can appropriately

tune the weights of offense categories until the performance scores reflect the change

in goals for the department.

3.3.2 Performance Matrix View

To efficiently evaluate and compare the performance of employees for the entire

organization (T1, T3), our performance matrix (Fig. 3.4) is designed to show the

detailed job completion status of all employees in a holistic view. We adopted a

color-coded reorderable matrix for this purpose because the matrix (1) occupies a

compact screen space to encode all employees, (2) provides a variation of a table

in order to maintain visual familiarity, and (3) provides flexible sorting interactions.

In the matrix, employees and job types are represented by the columns and rows,

respectively. The column heading located at the top with gray bars shows the total

performance score of individuals. The row heading located at the left side shows

the total score of all performance-related factors. Each cell shows the performance

score based on the hybrid evaluation metrics. Each cell’s color is defined by the score

of a job category accomplished by an employee. When users mouse over a cell, a
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Employee IDs

Job Types

Row heading: Total scores of performance-related factors 

Column heading: Total scores of employees

Fig. 3.4. The performance matrix shows the employees (columns)
and job types (rows). The matrix is sorted based on the total score
of employees and job types. Darker colors encode higher values.

tooltip shows the precise score, number of completed jobs, and weight. Clicking on

an employee or job category re-sorts the table with transitional animations.

To satisfy the requirement of comparing multi-dimensional data at the individual

level to the entire organization, the mapping of high- and low-level comparison tasks,

visual encoding, and sorting interactions are listed in Fig. 3.5. Two sorting interac-

tions are provided in the performance matrix: (1) sort by total score of employees or

job categories, and (2) sort by an individual employee or a particular job category.

We use event and incident records from a law enforcement agency as an example;

the sorted results are shown in Fig. 3.4. Because some job types have low occurrences
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Fig. 3.5. The mapping of comparison tasks, visual encoding, and
sorting interactions for the performance matrix view.

(e.g., arson, liquor law violation), the data in the performance matrix is relatively

sparse. In order to minimize the visual impact of this uneven data distribution and

increase contrast within the matrix, we applied quantile mapping after a logarithmic

transformation of the original scores and used nine sequential green colors recom-

mended by ColorBrewer [80]. Our color mapping method is built on a data binning

procedure that first normalizes the data using a power transformation and then ap-

plies equal interval binning on the transformed space [81]. We employed green colors

because humans can perceive more shades of green than red or blue color tones [82].

As shown in Fig. 3.4, the performance matrix is sorted by the total scores of

officers in a descending order so that users can easily observe the officers with top
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performance scores. Moreover, users can investigate the top performing officers who

are dispatched, those who self-initiate the call response, or a combination of both (T1).

With offense categories sorted by a selected officer, users can observe the officers’

relative workload across different offense categories and where they focused their self-

initiated work. This helps commanders understand the strengths and weaknesses of an

officer. The performance matrix includes all members across the organization, which

provides comparisons in an organizational context. Users can observe how an officer

ranks in the organization. Selection interactions are supported to simplify officer

comparison; for instance, users can select any officers that they are interested in,

and then those officers will be aligned on the left side of the matrix. With selection

operations, commanders can evaluate and compare the officers in their teams and

explore the different types of incidents responded to by individuals, their team, and

the organization.

Sorting by total score of offense categories demonstrates the overall workload

needed to be addressed by an agency (T3). Comparing the total score of offense cate-

gories in two time frames, such as between consecutive months, can indicate changes

in the prevalence of certain crimes. Ranking officers by a given offense category can

directly reveal the most experienced officers for dealing with such incidents. If the

police department wants to target a specific crime category, the commanders can

determine the officers most suited for the task.

3.3.3 Group Performance View

Most organizations have employees working in teams; as a result, for effective

performance evaluation, it is essential to understand the performance within these

groups. To support comparisons among groups (T2), our system provides two group-

ing methods: (1) group by team assignments and (2) group by a clustering algorithm.

We implemented three visual representations in our overall group performance view

to support this comparison and analysis of team performance: (1) a table list, (2)
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Fig. 3.6. The mapping of comparison tasks, glyphs, and visual encod-
ing for the group performance view.

dandelion glyphs, and (3) stacked radar charts. The group performance view provides

an overview of the aggregated multi-dimensional performance data items for groups.

For high-level comparison tasks (Fig. 3.6), the group performance view demonstrates

(1) performance evaluation and comparison at the group level (within the same level),

and (2) each individual data item’s performance contribution to its group and per-

formance contribution of a group to the entire organization (across two levels). For

low-level comparison tasks, the customized dandelion glyphs provide an efficient si-

multaneous comparison for a set of data attributes, and identification of outliers and

correlation among attributes. The combination of the dandelion glyph and stacked

radar chart enables retention of inherent hierarchical relationships among employees

and supports high- and low-level comparison tasks. In addition, the dandelion glyph
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displays an overview of a group, with the details of individual employees expanded

on-demand in the stacked radar chart.

Fig. 3.7. The transformation steps from a table to dandelion glyphs.
(1) Get the union of the top five categories in both groups. (2) Order
the categories by total in descending order. (3) Apply the logarith-
mic transformation to the total count. (4) Dandelion glyphs for two
groups.

Table

The table at the top of the group performance view shows the overall perfor-

mance of each group (Fig. 3.7(1) group by assigned shifts). With a summary of jobs

accomplished by employees, the table lists the ranking of job categories based on
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their counts, making it intuitive for users to examine the workload of each team. For

instance, patrol officers that work in law enforcement agencies need to constantly mon-

itor designated areas to ensure the safety of the community and are usually assigned

by shifts and districts. The A shift and B shift split the days of week (alternating

days). Each day is broken down into a day shift and a night shift. Fig. 3.7(1) shows

the top five offense categories for A Day shift and B Night shift . For both

teams, officers spent the most time on Calls for Service events that did not generate

criminal case reports or incidents belonging to the All Other Offenses category. Calls

for Service events are not considered a high priority, but generate a large portion of

the workload. Our law enforcement partner agency found that this view provided the

insight that they needed to break down the All Other Offenses category and examine

which offenses in this category should receive further examination. With the ordering

of offense categories for each group, users can easily determine which tasks utilize the

most resources from each team and shift. However, it is not as easy to compare the

different groups with only the table listing. Thus, we created a dandelion glyph to

enable convenient comparison among such groups.

Dandelion Glyph

Small multiple glyphs are expressive and use screen space effectively to illustrate

large data [84]. Thus, we incorporated characteristics of various small multiple glyph

designs (Fig. 3.8) into the design of the dandelion glyph. Inspired by previous research

indicating that star plots with radial layout outperform tabular displays for comparing

attribute values [43], we also adopted the radial layout into our dandelion glyph. In

our dandelion glyph, the axes encode different attributes (categorical data) and the

length of the axes encode the attribute values (numerical data). We compare our

dandelion glyph with the graphs shown in Fig. 3.8 and Table 3.3. Dandelion glyphs

have high data-to-ink ratio and are intuitive, visualizing the differences among groups

effectively.
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Fig. 3.8. The five examples of small multiple glyph to represent the
multi-dimensional data attributes of two groups.

The transformation process from tabular display to dandelion glyphs is shown in

Fig. 3.7. In step 2, we took the union of offense categories across all groups, and then

ordered the offense categories based on the total count. Finally, the order of axes was

determined based on the total count of each attribute. A logarithmic transformation

of the total count was applied to the dandelion glyph, since the values of each cate-

gory axes vary extensively in our dataset. However, datasets with minimal variance

(e.g., agencies in which group performance categories contain similar values) might

only require linear transformations. The transformation enables users to perceive

the contribution of each job category. Notably, the dandelion glyph is a simplified

version of star coordinates. Munzner [83] discussed the suitable scenarios of applying

radial layout and importantly mentioned the inappropriate representation effect that



40

Table 3.3.
Comparison of dandelion glyph versus other glyphs in small multiple settings.

Visualization Advantages Disadvanrages for Increased Data Size

Dandelion Glyph
• Radial layout1

• High data-ink ratio
• Scalability problem3

Table List
• Precise values

• Commonly understood

• Less efficient in comparison tasks

• Large pixel size for single data item

Bar Chart • Rectangular layout2
• Complex in comparison tasks than radial

layout: harder to locate identical attribute

Stacked Bar Chart
• Easy to compare the

sum of all attributes
• Hard to compare the bars in the middle

Radar Chart • Radial layout1

• Scalability problem3

• The connections at the end of axes are

unnecessary

• Unequal importance among attributes

Petal Glyph

• Radial layout1

• Double encoding (length

and color) for values

• Scalability problem3

• More pixels on the screen are used for

each attribute
1Efficient in comparison tasks for large data [43], 2Simple layout to indicate the data variance,

3Only appropriate to show a dozen data attributes or less [83]

symmetric axes have on the same value. To eliminate symmetric impressions in our

dandelion glyphs, we rotated the glyph by a small amount (1
8
π).

Although the dandelion glyph is most suitable for displaying up to 10 to 12 at-

tributes, users can interactively adjust the number of top categories in each group.

Users also can interactively explore the total count among groups with selection inter-

action. Comparing two groups’ performance in Fig. 3.7(4), the significant difference of

OWI incidents is readily apparent. To further confirm the exact numerical difference,

users can select the OWI axis, and the corresponding axes in all dandelion glyphs

are highlighted with precise values (Fig. 3.9(a)). The dandelion glyphs represent an

overview to avoid initial visual clutter and can be expanded to stacked radar charts

to show moderate details of individuals on-demand.
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Calls For Service

Drug Abuse

Officer: 1449

Connect

a Selection of OWI offensea Selection of OWI offense b Stacked Radar Glyphsb Stacked Radar Glyphs

d Officer 1449 in 

performance matrix
d Officer 1449 in 

performance matrix
c Selection of officer 1449c Selection of officer 1449

OWI: 3

Expand
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Fig. 3.9. The two radial layout visual representations in the group
performance view: dandelion glyphs and stacked radar glyphs. The
glyphs show the list of criminal incidents responded to by A Day shift
and B Night shift. (a) Highlight of OWI incidents in dandelion glyphs.
(b) Stacked radar glyphs show the contribution of each member. (c)
Selection of Officer 1449 in B Night shift. (d) Highlight of Officer
1449 in performance matrix.

Stacked Radar Chart

The stacked radar chart is customized to illustrate contributions of subordinate

individuals to their upper levels/groups, and it holds the same contour as dandelion

glyph to keep familiarity and consistency. It can be applied to show connections

between two levels and preserve the information of aggregated upper groups and
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show moderate details of subsequent levels in a compact space. An example of a

stacked radar chart can be found in Fig. 3.9(b). For a group member, the values of

axes are shown as colored ribbons in the radial layout. As shown in Fig. 3.9(c), the

selected officer 1449 dealt with 22 Drug Abuse incidents, which is around 31.42% (22
70

)

of the entire group. The proportion of pixels along one axis is calculated based on

the ratio between the value of a member to the group total. Using the link to the

performance matrix, we can observe that, unsurprisingly, officer 1449 had the top

performance score in his or her group (Fig. 3.9(d)).

The stacked radar chart allows users to inspect the contribution ratio of each

member of a group. Diehl et al. [85] found that using a radial layout to encode data

attributes by sectors outperforms Cartesian coordinates (i.e., matrix) when focusing

on one dimension. This observation from Diehl et al. was made based on an evenly

distributed radial grid layout with a single grid highlighted. In our scenario, colored

ribbons are adopted to show the variations across multiple attributes simultaneously.

We chose to use this method because it allows users to not only identify which mem-

bers contribute significantly to a group, but to compare performance pattern with

those of other members as well. However, while the stacked radar chart effectively

demonstrates individual contributions within a group context, users should use it

with caution. The length of axes cannot be compared directly since a logarithmic

transformation (a non-linear monotonic function) is applied in the dandelion glyph

generation process, yet values within an axis are linearly mapped. As discussed in

the previous section, the transformation is necessary due to the skewed nature of the

original input dataset. Our approach is a tradeoff between encoding the actual value

and providing appropriate visual perception. In conclusion, we believe the advantage

of using stacked radar charts outweighs the side effects caused by the transformation.

To compensate for the uneven spatial distribution of the radial layout, we add a null

inner circle (Fig. 3.9(c)) to reduce the bias introduced in the connection between axes.

Compared with matrix and tabular visualizations, the stacked radar chart is less

precise regarding showing exact values. The alternating neighboring colors are used
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to separate individuals in a compact screen space; therefore, only a limited number

of items can be shown. Filtering interactions (showing only a few of the members)

and keyboard selection of a single data item mitigate the scalability issues of the

stacked radar chart. In our informal interview with domain experts, they confirmed

the advantages of using stacked radar chart as following: easy and quick identification

of high-contributing individuals and extreme attribute values.

3.3.4 Projection View

The projection view contains a scatterplot showing the projected distance among

data items. In this view (Fig. 3.10(b)), each data item is shown as a solid dot

with an identifiable label, and its color encodes the group information. For instance,

the officers close to each other in the projection view have handled similar types of

offenses, and their performance is highly correlated. During shift planning, team

commanders can build a new team of employees with similar experiences addressing

specific types of crime.

To assist with designing resource allocation strategies that balance workload and

the skill set of a group, we applied a K-means clustering method [86]. The scatterplot

displays the results of a manifold dimensionality reduction algorithm t-SNE [87],

which can reduce the multi-dimensional data into a lower number of dimensions to

reveal the relationship among data items. The clustering results are marked in the

scatterplot through group colors. Users may adjust the number of clusters to get

rid of outliers, since the K-means algorithm is sensitive to noise. For K-means, the

input data attributes are the number of cases in offense categories. A normalization

of input data (maps the original range of one attribute to the range 0 to 1) is applied

to guarantee each data attribute contributes properly to the final clustering results.
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3.4 Evaluation

To demonstrate how our partner agency utilized MetricsVis in exploring event

and incident records as well as evaluating patrol officers’ effectiveness, we describe

two example use cases.

1

2

3

4

6

Fraud

All Other Offenses 

Drug Abuse

Trespass/Threats

Larceny

OWI

Assault

Vandalism/Mischief

Burglary

Larceny: 18 Burglary: 7 Assault: 18

Officer: 961 Officer: 1399 Officer: 1557

5

7

8

9

Fig. 3.10. MetricsVis overview: The priority adjustment view (2)
encodes the crowdsourced crime severity ratings from police officers
and citizens (perceived importance of factors); the red dots indicate
the currently assigned weights used in the evaluation metrics. The
projection view (6) shows the dimensionality reduction results. The
group performance view (5) contains three visual representations that
show an overview of group performance and the contribution of each
member. The performance matrix view (3) displays the individual
employee performance with employees in columns and job types in
rows (here, employees are sorted based on their group first and then
their total performance scores). The control panel shows the filters
(1) and grouping method (4) applied in use case 1.
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3.4.1 Use Case 1

The chief of a law enforcement agency needs to build provisional specialized anti-

drug teams. Before forming the new teams, he wants to know the historical workforce

performance of handling drug abuse incidents. He is interested in exploring five

months (July 1st to Dec 1st, 2017) of incident records (Fig. 3.10(1)). He selects all

officers and filters out the dispatched cases and call for service events (Fig. 3.10(2)),

since the majority of drug abuse incidents are self-initiated and result in a criminal

report.

He first examines the ranking of officers’ total scores in the performance matrix

view. He observes that the top 3 officers responded to 88, 74, and 67 total cases,

respectively. Next, he examines the most prevalent crimes through sorting by offense

categories. He finds that drug abuse is the second most frequent offense category

(Fig. 3.10(3)) with an initial weighting of 64 (average rating from police officers). In

examining the precise numbers, he notices that the top 3 officers handled 36, 33, and

15 drug abuse incidents, which required 40.90%, 44.59%, and 22.39% of their self-

initiated workload. To explore drug abuse cases more closely, he directly sorts the

officers by drug abuse offense category and discovers that 52 officers were involved in

a total 383 cases (ranging from 1 to 36 by individual officer). With 3 officers handling

over 20% of the cases, when creating an anti-drug team, these officers and officers

with similar performance across all cases are good potential candidates.

Since offense categories are not independent and drug abuse is highly correlated

with 80% of crimes, he explores the activity patterns of the 52 officers more closely

using the automatic grouping generated by our clustering algorithms and the visu-

alization results in the group performance view, projection view, and performance

matrix view. After a few trials, he finds that K-means clustering with six clusters

(Fig. 3.10(4)) provides a good grouping of the results to understand the performance

pattern among officers. The majority of the 52 officers are scattered into four clusters,

and officers in three clusters responded to the majority of the total number of drug
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abuse incidents: the blue cluster of 11 officers handled 133 drug abuse incidents,

the red cluster of 7 officers handled 97 drug abuse incidents, and the brown cluster

of 12 officers handled 84 drug abuse incidents (Fig. 3.10(5)). The combination of

these three clusters of 43 officers responded to 81.98 % of drug abuse incidents. He

also inspects the clustering results in the projection view to observe the similarity

pattern among clusters, where he finds that green and red clusters are farther

apart in the projection space than blue and brown clusters, which can also

be observed in the group performance view (Fig. 3.10(6)). He digs into the details

among these 3 clusters by first examining the dandelion glyphs (Fig. 3.10(7)). Be-

sides large numbers of overlapping cases (e.g. trespass/threats, operating [a vehicle]

while intoxicated (OWI)), he finds that officers in the blue cluster also dealt with

many larceny cases, officers in the red cluster dealt with many burglary cases,

and officers in the brown cluster handled many assault cases. The stacked radar

chart (Fig. 3.10(8)) shows the patterns among the three groups and distinguishable

officers in each group. By further examining the officers in the performance matrix

(Fig. 3.10(9)), the chief identifies the officers that are most experienced with combi-

nations of different offenses with drug abuse. “This tool provides [commanders] with

objective data to assist in resource deployment decision making rather than solely

relying on subjective, ‘best guess’, practices that are the norm in law enforcement,”

commented the chief.

3.4.2 Use Case 2

The department currently evaluates each officer by their supervisors’ scores, which

contain subjective metrics that are time-consuming and possibly biased. The chief

wants to know if he can utilize data-driven officer metrics in combination with Met-

ricsVis to more effectively and efficiently evaluate performance. He applies the average

weighting initially provided by police officers to each incident type. He uses the same

time frame as Use Case 1, as well as all call events and crime incidents for both
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dispatched and self-initiated activities. He now compares his view and his command

staff’s view of the top performing officers versus the results shown in our system.

Interestingly, the top-ranked officer in the performance matrix view does not match

their internal evaluation results. Interactively exploring factors and ideas about what

they consider characteristics of the best officers, he decides to consider only criminal

incidents that exclude the call events. He finds some officers that match his under-

standing of good performance get better rankings in the performance matrix under

this system. Exploring deeper, he proceeds to filter out dispatched incidents, because

he thinks self-initiated incidents are a key component of a top officer. He finally

finds that a ranking using only self-initiated incidents matches his command team’s

understanding of top individual officer performance.

Fig. 3.11. Day (AD, BD) and night (AN, BN ) shifts have signif-
icant differences in drug abuse and OWI incidents for self-initiated
incidents.

With the confirmation of the effectiveness of the collected evaluation metrics,

the chief is interested in investigating the difference between shifts and districts.

He continues with shifts grouped using self-initiated incidents. (As mentioned in

Section 3.3.3, A shift and B shift are alternating by days, and each day is broken into
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a day shift and a night shift. Some patrol officers are not assigned to a specific shift.)

It is not surprising that the day shifts exhibit a similar pattern and the night shifts

show another trend (Fig. 3.11). Based on the dandelion glyphs, he notices that the

significant difference between day shift and night shift is the number of drug abuse

and OWI cases. He also wants to compare the dispatched incidents between shifts,

and expects the four shifts to have very similar patterns and the workload to be

evenly distributed across all shifts for dispatched incidents. He also wonders about

the workload across different districts. Even for dispatched incidents, the difference is

noticeable. Therefore, these differences can be used to guide effective policing on each

shift and district and also must be factored into an officer’s performance evaluation,

since an officer should not be scored poorly because they are assigned to a low crime

time period and area. A lieutenant from highway patrol recognizes this: “MetricsVis

would enable [commanders] to look at the total impact of officers and teams and not

just sums of cases/incidents. This enables them to assess team and organization level

performance in achieving their goals.”

3.5 Domain Expert Feedback

We deployed the system to a local police chief, shift commanders, and a crime

analyst. The local chief stated that MetricsVis is a valuable visual analytics tool

that supports a broad view of the entire organization and provides the possibility to

break stereotypes and overcome bias in understanding organizational performance.

MetricsVis has also revealed new insights into staff workload and which quantitative

metrics (e.g. self-initiated incidents) relate to supervisor’s subjective evaluation of

top officers. Moreover, the chief noticed the necessity of deconstructing the All Other

Offenses category, which contains around 50 % of criminal incidents. Drilling down on

this generic offense category can improve the comprehensiveness of evaluation metrics

in aligning with organizational objectives.
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The command staff have now used the tool during their last four quarterly per-

formance reviews and have provided very positive feedback. They expressed that the

tool enables them to ground their evaluations, and quickly and effectively explore

understandable quantitative metrics. It also indicates role models and activity types

for officers to use as guidelines for improving their performance. Another noted valu-

able aspect of MetricsVis is its ability to convey the most effective and experienced

officers for handling certain incident types. This information is helpful in preparing

shifts and training sessions.

A crime analyst who was engaged in the development process of MetricsVis pro-

vided valuable interpretation of the data (e.g. night shifts often deal with more

self-initiated incidents even though there are fewer calls after midnight, since officers

during the day are largely occupied with dispatched cases; day and night shifts usu-

ally have very different working patterns), as well as helped validate datasets and

define questions of interest. He has identified additional factors that contribute to

organizational performance for inclusion for future improvement of MetricsVis (e.g.

days worked, arrests, traffic stops).

3.6 Discussion

Tasks, Views, and Interaction Mapping To accomplish each task, a number

of views and several interaction categories (proposed by Yi et al. [88]) are required.

Fig. 3.12 outlines the role of the views and interactions needed for each task, and the

shaded cells were colored based on the frequency of using views and interaction cate-

gories to accomplish tasks during the interactive sessions with domain experts (police

and commanders). To efficiently evaluate individual employee performance (T1), the

performance matrix view is frequently used to explore the details of all employees in

a holistic view. Users can highlight (select) a subset of employees to compare and

rank by performance with sorting and reconfiguring interactions. To support compar-

isons among groups (T2), the group performance view shows the aggregated results of
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groups (group level comparison) as well as the contribution of group members (across

individual and group level comparison). Abstract/elaborate interaction categories are

frequently used to show the overview among groups first and on-demand details of in-

dividuals within one group in the group performance view. Select, explore, filter, and

connect are the basic interaction categories for linking employees to their groups and

identifying prominent patterns (e.g. anomalies with low/high performance). Evalu-

ating organizational workload (T3) and priorities (T4) are more comprehensive tasks

that require exploration with all views. Analyzing the workload across the entire

organization (T3) involves the summation of all completed jobs during a certain pe-

riod. The performance matrix aggregates all jobs completed by selected employees,

showing the productivity outcome of the entire organization. The options to select,

filter, and reconfigure interaction categories provide the flexibility to investigate the

T1

T2

T3

T4

Important

Moderate

Low

None

Important

Moderate

Low

None

Important

Moderate

Low

None

VIEWS INTERACTIONS

Fig. 3.12. The relationship between analytical tasks (rows) and Met-
ricsVis views and low-level interaction categories [88] (columns). Cell
shading quantifies how a particular view or an interaction contributes
to the analysis process of a task.
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overall performance over different time frames, locations, and alternative team as-

signment. To verify the alignment of evaluation metrics vs. department priorities

(T4), the priority adjustment view is heavily used for the filtering of job types (filter)

and tuning of weights, and then the corresponding changes are reflected in all other

views (encode).

Evaluation Metrics We started by trying to understand the general characteristics

of employees, teams, and shifts with different workloads in various organizations

while consulting the literature. Our collaboration with domain experts from law

enforcement agencies enabled us to better understand the importance of refining

the evaluation metrics. We considered using the number of cases responded to per

officer to represent the quantitative measurement of productivity. However, the effort

required to resolve each case is different. After consultation with police supervisors,

we adopted the idea of substituting the effort of handling a case with the severity

of the crime. The severity somewhat reflects the relative importance of responding

to a case. Based on the initial weights determined through surveys, domain experts

can dynamically investigate the overall performance, which is derived using additive

weighting. The goal of MetricsVis is not micromanagement (deciding who is the best

officer), but a systematic approach to investigating the effectiveness of an organization

at and across multiple levels. The optimization of evaluation metrics is an ongoing

area of research, but with the assistance of MetricsVis, domain experts can investigate

different sets of evaluation metrics to identify the best match with their organizational

objectives.

Visual Designs For visualization design, we deduced that a tabular visualization

summarizing all employees provided better utility than graphs of individual statis-

tics. Besides the individual performance, we noticed the importance of providing an

overview on the aggregated group results. After examination of different designs in

small multiple settings, we adopted a dandelion glyph, which is a variation of star

coordinates. We added the stacked radar chart to bridge the gap between dandelion
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glyph (group) and performance matrix (individual). The stacked radar chart shows

all members within a group as well as their performance-related factors in limited

screen space. Compared with treemaps [89] and node-linked graphs that usually fo-

cus on displaying the hierarchical relationships among data items, the stacked radar

chart allows simultaneous comparison for multiple attributes using continuous shape

instead of separated ones. The radial layout can show only a limited number of

visually differentiable categories; however, the number of common job types across

different teams is limited, and filtering interactions and selection by keyboard can

improve the usability.

Generalization We believe that the four visual analytical tasks categories identi-

fied in this paper are applicable to other team- or shift-based organizations that use

automatic systems to record employee activities, such as delivery drivers, nurses, and

emergency medical services. In addition, MetricsVis, although implemented for pub-

lic safety agencies, was designed with individual and group performance evaluation

in mind and, therefore, we expect that the system can be extended to similar type

organizations.

Limitations There are several limitations in our current system. For instance,

officers who work fewer shifts cannot be directly compared with officers working full

shifts. Also, the number of hours officers work each shift is not currently logged.

The time required to respond to each type of incident needs to be incorporated as

a weighting factor when computing metrics of performance. Currently, our system

is designed for organizations with only a few hundred employees and dozens of job

categories. Scalability of the system for larger organizations may be an issue as the

number of dimensions for similarity pattern analysis increases; additional hierarchical

modeling and filtering may be a solution for scaling to higher dimensions.
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3.7 Conclusion and Future Work

We presented MetricsVis, an interactive visual analytics system for organizational

performance evaluation. Our system contains four visual components to support in-

teractive visual analysis of organizational performance with a set of hybrid evaluation

metrics, integrating subjective ratings and quantifiable outcomes of job activities at

multiple grouping granularities. The usability of MetricsVis was demonstrated with

two use cases that leverage the designed features and their use for real-world problems:

new group staffing and actual group assignments to shifts and districts.

To optimize and improve the evaluation metrics, we plan to incorporate more

activity records (e.g. number of arrests, traffic stops). Another possible improvement

is to include the time associated with job types as another contributing factor in

the final performance outcome, since the time to complete a particular problem is

of interest regardless of the domain. Furthermore, the actual performance ratings

from supervisors can be used as potential rankings of officers to reverse engineer the

evaluation factors/weights to investigate potential biases.
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4. AUTOMATIC PERFORMANCE WEIGHTS

LEARNING DRIVEN BY USER-GUIDED RANKING

In this chapter, we present MetricsVis II, a visual analytics system supporting the

learning of weights through user-guided ranking. As previously mentioned in Chap-

ter 3, a set of hybrid evaluation metrics that combine (a) quantitative measurements

of employee achievements and (b) qualitative subjective feedback on relative contri-

butions are applied to demonstrate the performance of individuals. A simple addi-

tive weighting [90] is applied to the evaluation metrics to derive the overall scores

of officers. Specifically, the quantitative measurements of employee workload are

used as data attributes, and subjective feedback on the importance of each task is

transformed into weights. The quantitative measurements of employee workload are

extracted from historical employee activity records (Section 3.2). For instance, the

number of responded cases for different offense categories is utilized to produce the

data attributes in case studies with law enforcement agencies. What could be an

appropriate approach to applying similar evaluation metrics in organizations that do

not have an accurate estimation of the weights for different job categories? In partic-

ular, a method of collecting satisfying weights that precisely reflect the contribution

of different tasks is not adequately addressed in the original MetricsVis system, since

the system focuses on performance evaluation across multiple levels according to or-

ganizational hierarchy.

Compared to the former weights obtained through a survey of employees and

service recipients, we recommend another approach to obtain weights through user-

guided ranking. Supervisors can provide the rankings of some employees that they

are familiar with and empower learning algorithms to determine the weights, and

then predict the performance for the rest. In addition, the actual subjective ratings

of employees are provided in the MetricsVis II system as supplementary information
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for obtaining potential weights. We are leveraging the human-in-the-loop approach

in order to learn the weights interactively. The weights, automatically determined by

either the subjective ratings or user-guided rankings, can provide meaningful insights

to users in two perspectives: (1) relate their evaluation to the workload of different

offense categories, and (2) reveal potential unintended biases in their rankings.

We summarize the contributions of this chapter as follows:

• An interactive performance evaluation system supporting the dynamic learning

of weights based on users’ adjustments of ranking orders and visual comparisons

of ranking results.

• Comparisons of learned weights based on subjective ratings provided by multiple

supervisors, and analyze preferences between supervisors.

• A qualitative user evaluation conducted with domain users to collect their feed-

back on using MetricsVis II to evaluate employee performance as general, and

their preferences between the two weighting methods (survey method vs. inter-

active user-guided ranking).

4.1 MetricsVis II System

The MetricsVis II system, which extends the original MetricsVis system, encour-

ages the interactive learning of weights by training ranking algorithms dynamically.

New visual components are incorporated into the existing matrix view that allows

users to modify input ranking orders, investigate derived weights, and analyze pre-

dicted overall performance ranking orders. Furthermore, subjective ratings by multi-

ple supervisors are integrated into the system to enable comparisons among different

rating groups.
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4.1.1 Workflow

Compared to the survey method that directly acquires the weights from employ-

ees and service recipients as indicators of importance for different job tasks, the Met-

ricsVis II system takes relative rankings of employee performance as input to compute

the weights. Users can provide their preferred order of employee ranking by dragging

and dropping a few selected employee entries to the proper ranking positions, and

can then obtain weights calculated by machine learning algorithms. Based on the

derived weights, users can verify the generalizability of the weights through further

inspection of the predicted performance of other employees. This interactive refine-

ment of ranking orders can provide an alternative approach to identifying influential

factors in performance prediction driven by user preference. In addition, subjective

ratings from supervisors are included in the system to support the investigation of

uniformity and variety among supervisors. Taking subjective ratings from a supervi-

sor as an example, users can drag and drop employees to positions that comply with

the order of subjective ratings from a given supervisor, then obtain learned weights

that reflect the preference of that supervisor. Similarly, users can repeat these steps

to obtain weights from different supervisors, and further investigate similarity and

diversity among supervisor preferences.

4.1.2 User Interface

To satisfy the interactive learning of weights and verification of predicted over-

all performance, we include three additional visual representations (Fig. 4.1) in the

performance matrix view (the original performance view is described in Section 3.3.2):

1. The ground truth subjective ratings (i.e., total rating scores) provided by su-

pervisors are added at the top as extra reference for interactive adjustments.

Each supervisor only provides ratings for a few employees. Border colors are

used to denote different supervisors to distinguish the subjective ratings from

calculated total scores. The list of supervisors is found in a dropdown list, and
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Fig. 4.1. Additional visual representations in the MetricsVis II in-
terface: (1) subjective ratings from multiple supervisors; (2) compar-
isons of total scores calculated based on updated weights and previ-
ous weights; (3) indication of selected individuals that are used in the
weights learning.

users can filter out employees by their supervisors. To ensure the confidential-

ity of supervisors, only the categorical information is kept in the system. We

use rater A and rater B in the MetrcisVis II system to denote specific super-

visors who provide the ratings for a group of employees. Furthermore, users
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can compare the diversity of employee performance based on different grouping

strategies (e.g., shift, location, or rater).

2. Back-to-back dual rectangles are included to illustrate the total scores derived

from updated weights and previous weights for an individual. Therefore, users

can observe the changes of rankings and total scores. Since the changing of

weights is not limited to a single performance-related factor, the direct com-

parisons between updated and previous total scores are not reasonable. Addi-

tionally, the ranking is more insightful than total scores alone; it indicates the

performance of an employee in the context of the entire department. Thus, we

use color encoding on the updated total scores to indicate higher (blue) or lower

(red) rankings compared with the previous total scores.

3. The selected individuals that are applied as a preferred ranking to obtain the

updated weights are highlighted with gray shadows. Users can keep track of

selected individuals and then further inspect their positions among the rest.

4.1.3 Interactions

Editing Mode An editing mode is introduced in MetricsVis II to enable the in-

teractive adjustment of ranking while retaining existing sorting interactions. Once

the editing mode is turned on, the sorting interactions are suspended to ensure the

relative orders among selected individuals are preserved. Users can interactively drag

an individual to the left or right to indicate a higher or lower ranking. The same color

encoding is applied to illustrate relocating to a higher (blue) or lower (red) ranking.

Default Ranking Two type of rankings can be used as the default ranking: (1)

ranking by subjective ratings and (2) ranking by latest calculated total scores. Users

can choose either one as the default ranking, which can be regarded as a starting point

to manipulate the positions of individuals. If users choose ranking by subjective

ratings as the initial stage, they can take advantage of predefined ranking. More
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importantly, they can examine fewer individuals filtering by their raters. For instance,

if a supervisor as a user of the system is only interested in his/her group, the ranking

of that selected group can be used to derive a ranking. If none of the raters are

selected in the dropdown list, all the data will be displayed. The latest calculated

total is another default ranking that can be used to verify whether the input ranking

is accurately reflected by the automatically derived weights.

Compute Weights When users are satisfied with the ranking of selected individ-

uals, they can click the compute weights button to initiate the learning of weights.

Then the updated weights are used to obtain the latest calculated total scores, and

the former weights become previous weights. We adopted the pairwise learning to

rank approach that was advocated by Podium [40] and Ranking SVM [91] in order

to create the list of training data samples. The pairwise approach only considers rel-

ative ranking by two data samples; users are more confident providing their relative

preferences for two samples rather than an absolute ranking of all data samples [92].

Therefore, we use entirely pairs of selected individuals to generate the training data

samples. Pairwise approaches usually outperform standard regression and classi-

fication approaches, because pairwise approaches consider the relative relationship

between a pair of data samples (i.e., the order of two data samples), which follows

the natural practice of ranking [93].

4.1.4 Weights Learning

Ranking SVM The Ranking SVM [91] algorithm was initially proposed to ob-

tain weights constrained by pairwise preference in information retrieval applications.

Later, Podium [40] uses the algorithm to obtain weights for general ranking applica-

tions (e.g., ranking of football teams based on offense and defense statistics, ranking

of movies) in an interactive visualization system. Ultimately, the ranking problem

is reduced into a two-class classification problem using standard SVM with a par-
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ticular transformation on the feature space. Next, we briefly explain how to use

performance-related factors to derive the proper input.

We use a row vector xi = 〈xi1, xi2, ..., xid〉 to denote one data sample i, where d

equals number of dimensions. A tuple of (xi, yi) represents a data sample and its

corresponding label, and yi equals a ranking score that is higher for a preferred data

sample. For instance, the top ranked data sample will have the highest numerical

value. For a pair of data samples xi and xj , the difference between the two vectors

(xi−xj) is the input data attributes for standard SVM, and the label equals sign(yi−

yj). As a result, for any pair of data samples, a tuple in Equation 4.1 represents an

input training sample for SVM. Generally sign(yi−yj) ∈ {−1, 0,+1} has three classes,

we ignore all the 0s in our application, and excluding i = j, wherein a pair of data

samples have equal importance are incomparable for a ranking algorithm. Therefore,

Ranking SVM becomes a two-class classification problem using standard SVM.(
(xi − xj), sign(yi − yj)

)
(4.1)

For any two data samples i 6= j, if sign(yi − yj) = 1, the input tuple (Equation 4.1)

belongs to the +1 class, and vice versa. To balance the number of training samples for

each class (+1,−1), the combination of any two data samples are tested before deter-

mining the input tuples. The label of a input tuple can be alternated by rearranging

the position of xi and xj, such as
(

(xj − xi), sign(yj − yi)
)

.

Non-negative Weights The hybrid evaluation metrics adopted in the MetricsVis

system integrate both quantitative measurements of observed achievements exter-

nalized using performance-related factors, and subjective feedback on the relative

importance of each factor (more details can be found in Section 3.2). Specifically,

each weight is in a range between 0 and 100. To maintain consistency and famil-

iarity, the same performance-related factors are applied in the MetricsVis II system,

and the range of each weight remains unchanged. The non-negative weights are re-

quired due to two reasons: (1) each data attribute (i.e., performance-related factor)

is initially designed to positively contribute to the prediction target (i.e., the overall
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performance of employees); (2) negative weights can mean inverse relationship be-

tween an attribute and the prediction target, which means less service is better. We

can argue that negative weights are meaningful to some extent, since they show less

preferred job categories. However, it conflicts with the initial design of the perfor-

mance evaluation metrics. More precisely, we use w = 〈w1, w2, ..., wd〉 to denotes

the row vector of weights, where wi ∈ [0, 100]. To comply with the non-negative

weights constraint, we used the VarSVM 1 as the two-class linear classifier to obtain

the non-negative weights. VarSVM is a variation of standard SVM, and it sets extra

constraints on non-negative weights in each iterative coordinate descent step using

dual form of linear SVM and Lagrangian multiplier.

4.2 Weights Comparisons by Subjective Ratings

The weights obtained by applying a ranking algorithm for the subjective ratings

from all supervisors are shown in Fig. 4.2. Each supervisor provides subjective ratings

for a group of officers, and these officers are usually working on the same shift. For

instance, supervisor B works closely with 7 officers, and their subjective ratings are

in a range between 14 and 17 out of 20 as maximum. The 7 officers can be ranked

by their subjective ratings. Here, we use only the default ranking without drag and

drop interactions, and the underlying data applied in the analysis is all self-initiated

incidents for the second half year in 2017 (July 1st to Dec 31st, 2017). The time frame

explicitly matches with the semi-annual supervisor ratings time window. Then we

click the compute weights button to obtained automatically calculated weights by the

ranking algorithm. Only 6 non-negative weights are returned, 5 of which are relatively

high (Trespass/Threats : 56, Larceny : 37, Stolen Property Offense: 42, Robbery : 42,

Runaway : 42) and 1 of which has a lower value (Fraud : 11). After referring back

to the raw incidents, the officers who have high supervisor ratings dealt with more

incidents in these 6 offense categories. The returned weights can almost reflect the

1https://github.com/statmlben/Variant-SVM
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Fig. 4.2. Colored cells displaying the derived weights based on rank-
ings provided by multiple supervisors. The column header includes
the rater information, and the row header shows the offense categories.
The first row under the column header displays how many employees
are evaluated by one rater. The first column besides the row header
contains the average weights obtained by surveying police officers.
The orders of both raters and offense categories are determined by a
hierarchical clustering algorithm.

preference of supervisors who often work on a day shift. Comparing among all the

supervisors, supervisor J has a strong preference for officers who dealt with a high

volume of Burglary incidents; and supervisors G, F, and I have similar preferences,

which may be due to all of them working on night shifts.

4.3 Qualitative User Evaluation

We conducted online pairwise analytics [94] evaluations with administrative per-

sonnel in a partner law enforcement agency to collect their feedback from management
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perspectives. Though the participants were quite familiar with the system, we still

demonstrated the four views and then specifically spent more time on explaining the

new automatic weights learning functionalities in the performance matrix view. The

instruction session took about 15 minutes, and users spent another 20 minutes ex-

ploring the performance of individuals and groups. During the exploratory analysis,

participants could consult the VA expert with any questions about the system, and

the VA expert might ask questions about insights discovered by domain experts. After

the analysis session, a short interview was conducted concerning three topics: (1) how

does MetricsVis II fit the general objectives of their organizations, (2) which views

are more relevance to their daily work, and (3) which weighing method is preferred

(survey vs. user-guided ranking).

We collected feedback from three participants: a police chief and two comman-

ders. Participants provided their opinions on the aforementioned topics. In describing

the uses of MetricsVis II to address the objectives of their organization, they listed

several objectives, including achieving systematic and objective performance evalua-

tions, identifying proactive and efficient officers, performing timely evaluations, and

identifying low performers and improving their contributions. They all agreed that

the usage of case numbers is sufficient as a first step to improve the fairness of evalu-

ations, rather than relying on pure subjective ratings. Regarding the usage frequency

of different views, they all stated that the performance matrix is most frequently used

in their evaluations.

One of the valuable features of MetricsVis II highlighted by all participants is

the new capability to comprehensively analyze the objective data while incorporating

subjective feedback with a holistic understanding of the entire department. After

comparing officer workloads and their subjective ratings, it is quite common for the

volume of responses to not correlate well with the subjective ratings. MetricsVis II

is appreciated for its first attempt to bring the quantitative measurement of officers’

workload and supervisors’ subjective ratings together and relate them. For the com-

parisons of two weighting methods, one participant prefers the crowdsourced survey,
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and the other two prefer the user-guided ranking. The advocates of the user-guided

ranking method believe that the weights derived from user-guided rankings are help-

ful in indicating the preferences of different supervisors. In addition, the different

working patterns on day and night shifts also largely impact the weights derived from

different supervisors, as shown by comparing groups based on supervisors and shifts

in Section 4.2. The participant who prefers the crowdsourced survey also confirmed

the benefits of having user-guided rankings, which provide novel perspectives based

on user or supervisor preference; however, the direct manipulation is also very im-

portant to their work routine. He expressed the need to apply standard evaluation

metrics across the entire department, and stated that all supervisors should agree

upon the evaluation metrics. In addition, participants mentioned the outdated sub-

jective ratings; one clear next step based on this complaint would be to incorporate

digitized subjective ratings into the real-time system. Other advantages have already

been discussed in the domain expert feedback section in Chapter 3 (Section 3.5), such

as reducing subjective bias based on objective data, evaluating performance at mul-

tiple scales, understanding performance across teams, assigning officers to particular

incidents, identifying officers who need additional training, etc. After deploying the

MetricsVis II system, domain experts can further explore the relationship between

subjective ratings and objective data. They can even dig into other ‘soft criteria’ such

as quality of written reports, call handling, interview skills, effective of arrests, physi-

cal abilities, safety tactics, and job knowledge, which have not been digitally recorded

or measured.

4.4 Discussion

The requirement of non-negative weights lowers the performance of the applied

ranking algorithm, since the false interpretation of the workload is more mislead-

ing. For example, Call for Service events are usually recorded in non-emergency

circumstances. If the weight of Call for Service is negative, then someone working
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on a larger number of Call for Service events might be penalized even when han-

dling more cases. All performance-related factors in our case are designed based on

a positive relationship with the overall performance. Mathematically, collinearity

among the input features are the main causes for negative weights. If two features

are highly correlated, then a slight increase on one feature will cause another feature

to be negative in a linear machine learning model. As we discussed in FeatureEx-

plorer (Chapter 5), that collinearity can be mitigated by feature selection. However,

applying feature selection does not significantly improve the performance. There are

two main reasons for this, relate to the intrinsic characteristics of the dataset we used

to represent officer performance: the sparsity of data and the skewed distributions of

offense categories. Some offense categories consume more than half the workload of

officers; therefore, these categories need to be broken down.

Nonetheless, VarSVM performs accurately on non-negative weights. Compared

with standard SVM, VarSVM does not shift the signs of negative weights but pushes

them to be zero in each coordinate descent step, and it can highlight the preferred

features by user favored rankings.

The user-guided ranking method requires more training than direct manipulation

on weights, but the domain users can drag and drop data samples and interpret the

derived weights after few trails. Thus, users can capture the contradictory results

between objective data and subjective ratings and find out possible explanations

through further digging into soft factors such as the quality of written reports or

evaluation comments from supervisors. In addition, it is beneficial to provides weights

comparisons between different supervisors or users.

4.5 Conclusion and Future Work

The MetricsVis II system extends the original system by including subjective

ratings from supervisors and automatic weights learning through user-guided rank-

ing. The manipulation of the ranking of preferred employees provides new insights
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through derived weights, where higher weights for a performance-related factor means

preferred employees contribute to the factor. The adoption of subjective ratings from

supervisors allows domain experts to compare the different preference from different

supervisors. Based on qualitative evaluation with domain users, the disparity between

objective data and subjective ratings encourages the organization managers to take

advantage of our system to gradually mitigate subjective bias and understand where

the bias originated.

To improve the predictability and interpretability of learned weights, additional

data pre-processing methods besides normalization should be incorporated to reduce

the collinearity among features. The fairness of the weights should be further studied

across more domain users and different law enforcement agencies. The MetricsVis II

system can be deployed to other shift- or team- based organizations to assist organi-

zational performance evaluation.
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5. INTERACTIVE FEATURE SELECTION AND

REGRESSION MODEL EVALUATION FOR

HYPERSPECTRAL IMAGES

This chapter is based on the paper published in 2019 IEEE Visualization Conference:

J. Zhao, M. Karimzadeh, A. Masjedi, T. Wang, X. Zhang, M. M. Crawford, and D. S.

Ebert, “FeatureExplorer: Interactive feature selection and exploration of regression

models for hyperspectral images,” in 2019 IEEE Visualization Conference (VIS), Oct

2019, pp. 161–165. doi: 10.1109/VISUAL.2019.8933619

In this chapter, we present FeatureExplorer, a visual analytics system to support

interactive feature selection and model evaluation for remotely-sensed data. To de-

sign this system, we collaborated with remote sensing experts and plant scientists

whose goal was to predict plants’ wet biomass using data recorded in hyperspec-

tral imagery. These domain experts needed to identify the predictive ability and

interchangeability of key features derived from hyperspectral images (and their un-

derlying wavelengths) for biomass prediction. It was challenging to investigate such

high-dimensional datasets and regression models without visual analytics tools, which

motivated the design of FeatureExplorer. It enables experts to trace the regression

models back to the key contributing features (hyperspectral indices), and ultimately

the pertinent image wavelengths (among a large number of bands), along with op-

tions for interactive manipulation, feature selection, and model evaluation based on

domain knowledge.

Our system supports integrated visual exploration and selection of features through

the analysis of: (1) linear relationships among features using a correlation matrix; (2)

distribution of any pair of two features using a scatterplot enhanced with Kernel Den-
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sity Estimation (KDE) visualizations; (3) feature importance ranking for non-linear

relationships based on a combination of a feature selection method (Recursive Feature

Elimination (RFE)) and a regression model (Support Vector Regression (SVR)).

We summarize the contributions of this chapter as follows:

• An interactive system supporting dynamic feature exploration and selection

based on univariate and multivariate feature analysis with integrated regression

models, reducing the large number of features to a few key ones that can be

used for improved modeling and future data collection and analysis.

• Experimental results comparing various machine learning methods for predict-

ing biomass using hyperspectral indices.

• A workflow for identifying key hyperspectral indices and the original reflectance

values used in index calculations.

• A case study of the use of the platform by domain experts for hyperspectral

image analysis to predict plant wet biomass.

In the remainder of this chapter, we first describe the background information

related with features and the prediction target in remote sensing and plant breeding

domains. Then, we present the design goals identified collaboratively with remote

sensing experts. This is followed by a detailed description of FeatureExplorer system

and a case study to demonstrate its potential usage. Lastly, we summarize the work

and discuss possible future directions.

5.1 Background

Biomass is an important plant characteristic that helps with crop monitoring,

yield estimation, and indicating plant growing conditions, and is quantified based on

the above-ground weight of a plant before and after dehydration (i.e., wet biomass

and dry biomass). In the case of sorghum (the crop in our study), biomass determines
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the amount of ethanol product. To identify superior plant varieties for breeding and

determine the development of plants, biomass can be manually measured during a

growing season; however, this traditional method is time consuming, expensive, and

retrospective. Instead, hyperspectral images collected by Unmanned Aerial Vehicles

(UAVs) throughout the season can potentially be used to predict the final biomass.

Remote sensing experts in our team collected high-resolution hyperspectral images

multiple times (from June to Sept.) over 14 acres of experimental sorghum fields with

830 varieties in the 2017 growing season. The ground truth wet biomass applied as

the prediction target was measured at the end of the growing season (Oct. 15th).

A hyperspectral image used in prediction is obtained by a camera that covers

the visible near-infrared (VNIR) range, which ranging from 400 nm to 1000 nm in

2.2 nm increments for each pixel (272 bands). The recorded spectra can be applied

to distinguish different materials (e.g., plants, soils, water) due to the uniqueness of

acquired signals. However, the hyperspectral signatures emulate contiguous narrow

bands, which are highly correlated with neighboring ones. To mitigate dependency

among original bands and reduce dimensionality, we adopted hyperspectral indices

based on domain practice. Specifically, we utilize the 36 hyperspectral vegetation

indices listed in [95]. Each index is typically derived from two or three band values

and based on a unique plant biophysical meaning such as leaf chlorophyll and nutrition

content [96], photosynthesis status [97]. As biomass is a more comprehensive indicator

of plant growth, we investigate the joint prediction effect of all 36 indices. However,

some indices are closely-related and can provide redundant information in prediction.

More information about the sensors, data pre-processing, and feature extraction is

available in [98–100].

5.2 Design Goals

We collaborated with three remote sensing experts: two Ph.D. students and a

senior faculty member with expertise in hyperspectral image analysis for agronomy.
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Traditionally, they predict biomass using feature reduction techniques (including fea-

ture selection and feature extraction) and regression models. Often, optimally tuning

these algorithms requires large numbers of data samples, which are expensive to col-

lect. It is challenging to build a model that performs well for all kinds of hybrid

varieties, plants in different locations, or at different growing stages/conditions with

limited samples. Therefore, domain experts needed to identify the key hyperspectral

features to achieve stable, credible, and accurate prediction results, using both au-

tomated methods and their domain knowledge to inspect the relationships between

features and the feature importance, and trace the hyperspectral indices back to the

biophysical space. Hyperspectral indices indicate meaningful chemical concentrations

in plants, which can be applied to differentiate plant varieties. The domain experts

also expressed the need for clustering features, dynamic feature selection, and model

performance comparisons with and without feature selection. We derived the follow-

ing design goals to fulfill these requirements:

DG1 Interactive exploration of features, including feature density distributions and

relationships among multivariate features.

DG2 Identification of important features such as influential hyperspectral indices

and the underlying wavelengths that contribute to the prediction of wet biomass.

DG3 Direct manipulation and refinement on subsets of features through interactively

adding and removing specific features.

DG4 Evaluation of regression results with ground truth for subset of selected features

versus the full set of features.

These requirements were formalized into design mock-ups using visualizations

already familiar to domain users based on their requests. We then implemented the

design, and made minor modifications according to feedback from domain experts, as

described below.



71

5.3 FeatureExplorer

In this section, we first explain how our system addresses the design goals, and

then elaborate on the frontend user interface and backend analytics components of

FeatureExplorer.

5.3.1 Workflow

Figure 5.1 presents the system components in FeatureExplorer, and our process.

As shown in Figure 5.1, FeatureExplorer supports the analysis of both linear and

non-linear relationships (DG1, DG2). To visualize feature relationships, a correlation

matrix serves as an overview to render the Pearson’s correlation coefficient for all

pairs of features. Users can click on any cell for a detailed inspection of any particu-

lar pair of features. For non-linear relationship analysis, Support Vector Regression

and Recursive Feature Elimination (SVR + RFE) provide feature importance rank-

ings. Users can compare and analyze the ranking results and use the synthesized

information to add or remove features (DG3). R2 and Root Mean Square Error

(RMSE) are calculated to show the regression models’ performance with the selected

subset of features (DG4). After initial implementation, users requested the capability

to adjust the number of folds in cross validation, to compare the performance of re-

gression models with a selected subset of features versus with all features, and to map

Fig. 5.1. The components diagram of FeatureExplorer.
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hyperspectral indices to original wavelengths. This way, users can utilize the gained

insights from the interactive exploration process to identify the underlying pertinent

wavelengths, and strategize ways to collect only pertinent data in the future to save

cost and time.

A

B

C

Fig. 5.2. FeatureExplorer overview: (A) the control panel with a list
of unselected features, a list of selected features, a regression button,
an automatic feature selection button; (B) feature correlation panel
with a correlation matrix and a scatterplot; (C) evaluation panel with
a scatterplot of ground truth and predicted values, a horizontal bar
chart showing the importance score of each feature, a histogram show-
ing the frequency of used pertinent wavelengths, a table displaying the
results with and without feature selection.
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5.3.2 User Interface

Figure 5.2 illustrates the user interface that contains three panels: (A) a control

panel, (B) a correlation panel, and (C) an evaluation panel. As we described in

the previous section, the two latter panels are separated based on the linearity of

the relationship between input features and predicted variables. In this section, we

describe the views individually, and will showcase the integrated use of these views

in a use case in Section 5.4.

In the correlation panel, a correlation matrix shows the Pearson’s correlation

coefficient between any pair of features. The coefficient value is double-encoded using

two visual channels (color and radius) for better usability. Hierarchical clustering

groups features based on the similarity of correlations to other features. This helps

users identify representative pairs from each cluster, while minimizing the chances

of including other similarly correlated pairs. While providing a good overview, a

single correlation value does not provide sufficient information for interpreting the

relationship between two features. To address this, users can click on any cell to

see the scatterplot of the selected two features. The system uses both histograms

and KDE to illustrate the marginal distribution of univariate features at the edge

of the histogram. We also overlaid a 2D KDE on the scatterplot to better visualize

the distribution of two features. The marginal distributions and KDE contours are

beneficial in understanding general data patterns. The domain users pointed out

that exploring the hyperspectral index vs. wet biomass scatterplot could help them

investigate whether the index captures the variation across high and low biomass

values.

At the top part of the evaluation panel, a scatterplot shows ground truth values

against predicted results along with R2 and RMSE values. With this graph, domain

users identified that the regression model does not perform well on extremely high

or low biomass values. The horizontal bar graphs show the feature importance score

for each input feature (using SVR + RFE), and the light blue rectangles indicate
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selected features. The histogram beside the bar graphs shows the frequency of using

pertinent reflectance (raw data) to derive the indices in the subset of selected features

over the wavelength range of 400 nm to 900 nm. This enables domain experts to

trace back the selected features to the wavelengths that are utilized to derive the

indices. Moreover, a table shows performance comparisons for a subset of selected

features versus all features based on the same data partition (training vs. testing)

and regression model.

As we mentioned before, the correlation matrix and the SVR + RFE bar graphs

provide different rankings, the former for linear relationships and the latter for non-

linear models. Users can refer to both to adjust the subset of selected features. In

the control panel, the leftmost list shows unused features, and the list in the middle

shows selected ones. Users can drag and drop features between these two lists and

evaluate the results on the fly. To avoid exhaustive feature searching at the beginning

by users, the system enables an initial automatic feature selection method based on

SVR + RFE.

Table 5.1.
Comparison of average R2 for 100 trials among multiple regression
models on 10 datesets.

Date Ridge
Elastic

Net

Partial

Least

Square

SVR
Random

Forest
AdaBoost

06/21/2017 0.20 0.13 0.20 0.20 0.20 0.15

06/27/2017 0.25 0.16 0.25 0.24 0.23 0.18

07/04/2017 0.27 0.17 0.27 0.27 0.26 0.19

07/18/2017 0.51 0.23 0.51 0.53 0.44 0.36

07/30/2017 0.51 0.28 0.52 0.55 0.49 0.45

08/08/2017 0.53 0.34 0.53 0.56 0.50 0.45

08/14/2017 0.53 0.35 0.53 0.54 0.51 0.45

08/23/2017 0.54 0.34 0.54 0.54 0.54 0.50

09/10/2017 0.52 0.32 0.52 0.52 0.52 0.47

09/24/2017 0.51 0.35 0.51 0.52 0.51 0.45
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5.3.3 Regression Models

After testing several regression models including Ridge, Elastic Net, Partial Least

Squares, SVR, Random Forest, and AdaBoost, we found that SVR [101] outperforms

other models for predicting biomass from hyperspectral indices for most dates. The

results of R2 for these regression models are listed in Table 5.1. Since R2 and RMSE

are highly correlated (higher R2 means lower RMSE), we only report the R2. Based

on the results, we decided to integrate SVR + RFE (for automatic feature selection)

into the system.

The system runs k-fold cross validation for model evaluation. For each training of

the SVR model, the system first runs a grid search with a Radial Basis Function

(RBF) [102] kernel to select the best model hyperparameters that maximize R2,

and then performs initial feature selection on that model [103]. The RFE ranks

the features based on their contributions in the regression model, and the system

transforms these ranks to scores in the range of [0, 1], 0 meaning no contribution and

1 meaning the most important feature in the model.

We use Equation 5.1 to compute the ranking score of a feature, where k is the

number of folds, d is the number of dimensions in the feature space, and r denotes

the ranking determined by RFE. The RFE method outputs the feature ranking in

sequential order from the most important to least; the most important feature has a

ranking of 1 and the least important feature has a ranking of d. The numerator of

Equation 5.1 sums the normalized ranking (mapping values in [1, d] to [0, 1]), which

is then divided by k to calculate the average of these scores for multiple runs (in k-fold

cross validation). We use this RankingScore in feature importance visualization (the

horizontal bar graphs).

RankingScore =

∑k
i=1

(d+1−ri)−1
d−1

k
(5.1)
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(1) (2) (3) (4)

(6)

(5)

Fig. 5.3. Case study using FeatureExplorer for two hyperspectral datasets.

5.4 Case Study

A remote sensing expert in our team used FeatureExplorer to investigate hyper-

spectral indices for biomass prediction. He aimed to determine which indices were

the most predictive ones, and if he could reduce a combination of 36 features down

to 10 key features while understanding their biophysical meanings in collaboration

with a plant scientist. He used 10 hyperspectral images collected from June 21st

to Sept. 24th in 2017 to investigate whether the important subset of hyperspectral

indices changed in each image set. First, he started with one dataset (July 18th) and

applied automatic feature selection for 20 features (out of 36 total), and found that

the performance using 20 features was slightly better than when using all 36 features.

Then, he applied automatic feature selection, limiting to 3 features. The regression

performance (R2) dropped significantly (higher RMSE). Based on ranked feature sets

and the correlation matrix, he added 4 features that had high importance scores and

low correlation among them. These 4 features were selected from different clusters
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in the correlation matrix, since he wanted the regression model to learn useful infor-

mation from diverse features. The performance of the model improved. After adding

up to 10 features, the performance of the regression model was almost equivalent

to its performance when using 20 features (Figure 5.3(1)). He then tested whether

applying automatic selection limited to 10 features would lead to similar results; it

turned out that the manually selected features outperformed the automatic selection

(Figure 5.3(2)).

Next, he applied the same subset of features on another hyperspectral image (July

30th) that was captured 12 days after the first one. He found that wet biomass had

stronger correlations with most hyperspectral indices (the correlation matrix shown

in Figure 5.3(5)) compared with the first dataset (the correlation matrix shown in

Figure 5.2(B)). The regression model performed better on the second dataset than

the first one because the plants were at a different growing stage [104] and their

reflectance had changed [105]. Tuning the regression model on the second dataset

with the 10 features selected during analyzing the first dataset did not improve the

prediction results; however, the performance of the regression model did not drop

dramatically (Figure 5.3(3)). By carefully examining the correlation matrix for the

second dataset, he found 3 features that did not have high correlations with biomass.

After removing these 3 features and adding another feature which had a high im-

portance score and high correlation with biomass, the model’s performance improved

significantly (Figure 5.3(4)). This indicates the human-in-the-loop can improve the

predictive performance of the regression model.

5.5 Conclusion and Future Work

We presented a visual analytics system for the exploration, ranking, and selection

of features in integrated regression models supporting analysis on linear and non-linear

relationships. The system provides initial automated feature selection, and enables

users to dynamically change, compare and evaluate models’ performance based on
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user-specified subsets of features. We demonstrated the successful use of the system

by remote sensing experts to identify important hyperspectral indices at various plant

growth stages for predicting the biomass at the end of the growing season, as well as

tracing these indices back to the underlying wavelengths for each growing stage. This

enables more targeted data collection and analysis in the future. FeatureExplorer

can also be applied to other sensor data (e.g., multispectral, LiDAR) that possess

similar properties to hyperspectral indices (e.g. high dimensions, derived correlated

features), to predict variables other than biomass. Our system can also be adjusted to

include different regression models, since the underlying model will not intrinsically

impact the feature exploration workflow.

Future visual analytics research should investigate the dynamic generation of fea-

tures based on raw input data, e.g. customized features based on different formula-

tions of hyperspectral indices. Also, one can improve the feature selection workflow

by visually highlighting potential features in clusters that are ranked high importance

(or low), for faster subgroup inclusion/exclusion. Feature selection in regression mod-

els for spatially and temporally heterogeneous data is also an open area for research.

Specifically, the geovisualization of feature importance for spatial regression methods

has not been adequately addressed. Finally, time series analysis can be incorporated

to model temporally variable feature contributions, e.g. in a sequence of hyperspec-

tral images with temporally variable wavelength reflectances at different plant growing

stages.
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6. CONCLUSIONS AND FUTURE WORK

In this dissertation, we have presented three visual analytics systems to assist users

with evaluating performance in two application scenarios: (1) organizational employee

performance evaluation, and (2) improving the performance of machine learning mod-

els through interactive feature selection. All of these approaches have been developed

by working closely with domain users and are designed to integrate domain users’

work processes into these systems. In particular, MetricsVis has been deployed to

a partner agency to assist with quarterly performance reviews. Furthermore, Fea-

tureExplorer integrates feature selection methods, which is a substantial step forward

in remote sensing experts’ feature mining pipeline and provides assistance with the

assessment of feature predictability and model performance. MetricsVis and its ex-

tension MetricsVis II are novel VA approaches with customized visual representations

that demonstrate employee performance at multiple scales, enabling dynamic, effec-

tive, and comprehensive performance evaluations. FeatureExplorer and MetricsVis II

both leverage the human-in-the-loop approach to improve either the performance of

machine learning models or predictions of employee performance. We restate our

main contributions in the following two perspectives:

• Identify influential factors: In FeatureExplorer, we applied two feature se-

lection methods in two stages of building regression models: (1) before building

a model, analyze the relationship between features using a correlation matrix;

(2) after building a model, obtain the relative importance of features by apply-

ing recursive feature elimination on regression models. The hierarchical clus-

tered correlation matrix can expedite the identification of (1) influential features

in different clusters, and (2) interchangeable features within one cluster. The

importance scores provided by RFE + SVR are crucial indicators of feature
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predictability. With visual representations to effectively demonstrate feature

importance, users can iteratively add or remove features (i.e. alter the fea-

ture space) by incorporating their domain knowledge in order to achieve higher

model performance.

In MetricsVis II, users can manipulate the ranking of data samples (i.e., ground

truth from training data) to derive the weights of different performance-related

factors. These weights can reflect users’ preferences for certain features. Both

applications adopt human-in-the-loop approaches in VA systems, incorporating

user feedback in identifying influential factors.

• Multi-level comparisons: In MetricsVis, employee performance is evaluated

at individual, group, and organizational levels. Specifically, the groups can

be assigned by (1) shifts, (2) locations, (3) supervisors, and (4) clustering al-

gorithms. Customized visual representations are designed to show employee

performance at multiple levels: (1) a reorderable matrix showing individual

performance, (2) a dandelion glyph showing aggregated group performance, (3)

a stacked radar chart showing an individual’s contribution to a group. The

comparisons across multiple levels can help create new group assignments and

investigation of the total impact of individual, teams as well as the organization.

Unlike MetricsVis, where multiple levels are reflected by the relationship be-

tween data samples, FeatureExplorer illustrates features at multiple levels. The

hyperspectral indices (i.e., input features) are hierarchically clustered in a corre-

lation matrix, and the detailed distributions of any two features can be inspected

in a scatterplot. In addition, users can trace the hyperspectral indices back to

their original wavelength. Based on a clustered matrix, users can rapidly nar-

row down the number of features into a key subset. Further details about each

feature can help users understand the data and dig into potential reasons to

select or remove a feature.
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In summary, a collection of VA approaches is presented to assist with informed

decision making in organizational performance evaluation and to improve the per-

formance of machine learning models by feature selection. In our future work, we

intend to extend these systems by including additional data sources and improving

the interpretability of applied machine learning models. We discuss future directions

in the context of two performance analysis scenarios:

• Organizational employee performance evaluation: An additive weight-

ing method is applied to derive the overall performance of employees based on

hybrid evaluation metrics. A simple extension that would include additional

impact factors (e.g., the time spent on each case, the subjective feedback on

the quality of service, the quality of written reports) is to deploy a linear hier-

archical model [34] to accommodate more complex descriptions of work quality.

Though non-negative weights are required in MetricsVis II, it is still worthwhile

to explore other popular pairwise ranking algorithms (e.g., RankNet [106], IR

SVM [107], Lambda Rank [108], LambdaMART [109]) and additional data pre-

processing techniques that reduce collinearity between features to improve the

quality of prediction models. Based on the domain user evaluation, the next

step is to deploy the MetricsVis II system with our partner agency. Domain

users can further compare subjective ratings with objective workload measure-

ments in order to reveal the subjective preferences of evaluators and discover

potential biases.

• Interactive feature selection and model evaluation: A straightforward

extension is to include other types of remote sensing data (e.g., LiDAR data)

and additional ground truth data that depicts other appearance characteris-

tics of plants (e.g., height, canopy cover). Our domain users also suggested

the inclusion of additional regression models (e.g., partial least squares regres-

sion, random forest regression) to provide additional flexibility for the machine

learning models without extensive updates to the system, since recursive fea-
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ture elimination can work well with any models. For faster subgroup inclu-

sion/exclusion, the system should incorporate the optimal cluster number and

automatically highlight potential features with high importance scores in each

cluster. Another appropriate extension is the inclusion of time-series analysis

across multiple datasets, since the remote sensing data are collected regularly

across the entire growing season. It is necessary for domain users to distinguish

features that are performing well and poorly at different stages of plant growth.
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