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ABSTRACT 

In this thesis, the design and implementation of an autonomous system that will equip a multi-

rotor unmanned aerial vehicle (UAV) for visual detection and tracking of other UAVs is presented. 

The results from detection and tracking are used for real-time motion planning.  

 

The goal is to effectively detect unwanted UAVs, track them and finally capture them with a net. 

Having a net that traps the UAVs and enables dragging intruders to another location is of great 

importance, since these could be carrying dangerous loads.      

 

The project consists of three main tasks: object detection using a stereo camera, video tracking 

using a Kalman filter based algorithm, and lastly executing an optimal flight plan to aim a net at 

the detected intruder UAV. The computer vision, motion tracking and planning algorithms are 

implemented as ROS nodes what makes them executable on a reduced size onboard computer that 

is installed on the aerial vehicle. 

 

Previous work related to this project consists of either a UAV detection system with 

computationally heavy algorithms or a tracking algorithm that does not include information about 

the dynamics of the UAVs. For the capture methods, previous ideas do not consider autonomous 

decisions or an optimized method to guarantee capture. In this thesis, these three aspects are 

considered to develop a simple solution that can be mounted on any commercially available UAV. 
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 INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) and multi-copter drones, keep increasing in quantity. As a 

result of reduced prices, ease of access, advancements in technology, and creation of developer 

communities, numerous applications for UAVs were enabled. That has also led to the misuse of 

this technology. For example, commercial UAVs can be easily misused by carrying harmful 

material to populated areas and important infrastructure [1], or to perform unwarranted 

reconnaissance. Therefore, there is a demand for systems that can help safely reduce the risk that 

UAV misuses may pose to the security of people and infrastructure. For these cases, the use of a 

UAV hunter to intercept, capture, and remove intruder UAVs to a safe zone for neutralization is 

proposed.   

   

Previously a prototype hunter [2] that can capture other UAVs by trapping the intruder UAV in a 

tethered net and dragging it to a remote location was developed by the research group. For that 

system, the operator of the hunter UAV prototype used the video downlink feedback from an 

onboard camera to manually aim and trigger the net launching mechanism. In this thesis the 

development and evaluation of a visual-based UAV tracking algorithm and a UAV motion 

controller to automate the aiming of the hunter UAV is presented. 

1.1 Motivation 

Drones can be used in the wrong way, either for terrorism, incidents in mass events, interference 

with air traffic, spying, or disrespecting privacy. There have been several incidents reported to be 

caused by UAVs. 

 

Looking at the future, the projected number of hobbyist UAVs in use by 2021 is around 3.5 million. 

E-commerce is a market looking to benefit by the drone industry's growth. As indicated by a review, 

79% of U.S. web users are positive about selecting drones as a means for delivery [3]. Another 

examination that the United States Postal Service directed, found that 56% of users consider drone 

deliveries possibly being quicker, and at the same time 53% believe deliveries using drones will 
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be more environmentally friendly. These are only a few reasons that assure that the UAV market, 

and therefore their availability and use, will only grow in number in the following years. 

 

There is also a downside to the growing number of UAVs, and that is the threat to safety. In 2018, 

drones carrying explosives approached as Venezuelan President gave a speech and the attack 

injured seven soldiers [4]. On December 2018, some flights had to be delayed due to the presence 

of drones near London’s Gatwick Airport [5]. Another concern is that drones can be used to spy 

on people. A simple investigation simulated ordinary activities both downstairs and upstairs in a 

typical house, and showed that it was easy for a drone to monitor a person on both floors while 

hovering out of sight [6]. 

 

To counter the misuse of drones, a solution is needed to help decrease the risks without 

compromising public safety. 

1.2 Research objective 

The objective of this work is to devise a reliable system that minimizes the danger of unwanted 

UAVs. The proposed system consists of one UAV capable of detecting the presence of other UAVs. 

A UAV is chosen as the detection platform since it has the capability of reacting with dynamics 

comparable to that of the desired target.  

 

The final intention of this project is to mount a visual detection device on the platform hunter drone. 

From the visual feed the location of the invader will be estimated and then an autonomous planner 

will determine the best way to approach the intruder. Finally, a net launcher will be integrated as 

mentioned in the Introduction.  

1.3 Assumptions 

To limit the scope of the project, it is supposed that the hunt starts somewhere close to the desired 

target. This is a reasonable assumption, since the protected area can have a local radar that informs 

the hunter of the approximate location of an intruder. Alternatively, it can be assumed that a fleet 
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of drones flying constantly around a protected environment would detect the presence or approach 

of an undesired UAV, that would be communicated to the hunter drone. 

 

Another consideration is that the target UAV is of the size and shape of commercial, general-use 

UAVs available as of today. Therefore, the dynamics of the proposed hunter UAV will be carefully 

selected so that it can be as fast and maneuverable as the targets. This study does not include large 

and fast military missile type drones.  

 

The hunter UAVs are thought to be hexacopters or octocopters, which provide a more stable 

platform with the ability to carry heavier payloads. 

1.4 Notation and Terminology 

Throughout the text, the designed UAV is referred to as the hunter, and the unwanted UAV is 

referred to as the intruder. Coordinate frames fixed to the world (inertial reference frame) and to 

the hunter UAV are used, labeled as W and C, respectively. Figure 1.1 shows the coordinate frames 

of the world, UAV, and the camera. The hunter drone will carry the stereo camera and net launcher 

system. The X-Y-Z world axes point to East-North-Up (ENU coordinate frame convention), Z and 

Y for the UAV axes point forward and down, respectively.  

 

 

 

 

 

 

 

Only for clarity of notation, it is considered that the hunter UAV and camera are fixed to each 

other, and that they share the same coordinate frame.  

 

Figure 1.1  Coordinate frames of the world, UAV, and camera. The hunter drone will 

carry the stereo camera and net launcher system. Image of the Tarot T18 drone carrying 

the proposed net launcher and camera system. Tarot T18 can carry an 8 kg payload and it 

is proposed as the final hunter prototype. 
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The net launcher is the system that consists of the net cannon and will be carried by the hunter 

drone. It has two nets containing bullets on the ends, to ensure a conic opening of the net used to 

capture the intruder drone. 

1.5 Limitations 

The limitations of the Hunter drone are the range of detection of around 10m, the size of the target 

UAVs, and the possibility of launching two nets. In future work these can be improved.  
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 LITERATURE REVIEW 

2.1 Object detection 

Object detection is a pre-requisite for the tracking process, as it is necessary to find the location of 

the object of interest in every frame. There are various approaches for detection found in the 

literature.  

 

Radar sensors have been a crucial part of safety systems because of their weather and lights 

independence. For this reason, radar is considered good for handling the detection and 

classification of a variety of targets in city environments. Despite this factors, radars can face 

challenges for the detection of UAVs, since these are low objects and fly with changing speed [1]. 

Low altitude and slow speeds may cause difficulties for separating the target from a large clutter 

response. Additionally, the drones need to be differentiated from biological and other 

environmental targets like birds and insects often present in the same monitored regions. Birds and 

drones may have comparable values and flying patterns for radar signals, which produces a hard 

challenge for classifiers to difference them. 

 

A Radio Frequency (RF)-based approach to identify the presence of UAVs is proposed in [7]. In 

general, commercial UAVs communicate with the pilot via a controller that uses RF 

communication. By detecting these signals, they estimate the presence of UAVs. The interference 

for this method was reduced implementing a background filtering method.  

 

Acoustic sensors can provide an inexpensive object detection by, for example, an array with 

dynamically placed microphones as presented in [8]. The method can identify and estimate the 

position of the broadband sources. The paper proposes a calibration strategy to resolve the best 

arrangement of the microphones to be placed. The experiments demonstrated favorable results. 

 

Laser sensors have great potential as object detectors. In particular the method described in [9], 

uses an inertial measurement unit and laser scanners to form a map of the surroundings and perform 

obstacle avoidance. Laser sensors can generate point clouds and thus form a 3D map of the 
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environment. Constantly updating such a grid is computationally expensive as every ray scanned 

by the laser has to be updated for all the cells it travels through.  

 

LiDAR (Light Detection And Ranging) sensors emit laser rays of light and by analyzing the 

reflection from the surrounding objects obtain a description of the environment. By filtering details 

in the 3D scan of the scene, the probability of detecting objects arises. The work from [10] shows 

that UAVs can be detected by this method if the dynamics of the UAVs fall within the LiDAR 

sensor’s capabilities in scanning performance, range, and resolution. The downsides of LiDAR are 

the high cost and the vulnerability to weather conditions.  

2.1.1 Computer vision  

Object Detection is a common Computer Vision problem that aims to identify and locate objects 

in a digital image or video sequence. There are a few attempts to detect and track moving objects 

using camera-based systems in UAVs. Background subtraction [11] is extensively used in video 

sequences when they have a static background. This idea focuses on separating the image into the 

foreground (moving objects) and background (static objects). 

 

Temporal differencing presented in [12] differs from the traditional background image subtraction 

method by taking differences of consecutive frames, making it more suitable for scenarios where 

the camera is moving.  

 

Optical Flow [13] is the measure of how far a pixel moves from one frame to another. Optical flow 

creates a vector field in the plane of the image, also known as a motion field. This represents the 

velocity and direction of the pixels in successive frames. Discontinuities in the optical flow help 

to split each frame into areas that represent different objects. This method is computationally 

expensive but has an advantage of detecting moving objects in video feeds having a non-static 

background.  

 

Object detection can also be achieved by training a classifier. Deep learning classifiers can learn 

different object views and appearances. A trained classifier can recognize different objects and 

decide if they correspond to the target object or not.  These trained classifiers show powerful 
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detection performance even in challenging environments with lightning variations and background 

clutters. However, to extract shape and appearance features, they assume sufficiently large and 

clearly visible moving objects which are not sometimes the cases for UAV applications. 

 

This project is based on stereo imaging and computer vision and further review of the method is 

presented in the next section. 

Stereo Vision 

Normally, visual object detection is handled using videos acquired from a single camera setting. 

Yet, replacing a single camera by a multi-camera system results in more information about the 

environment. The most common multi-view camera system consists of two cameras, also known 

as a stereo camera. 

 

The stereo correspondence was a very active topic of research in the computer vision field in the 

1970s. Stereo imaging consists of obtaining two images and from them, deducing a three-

dimensional map of the scene. From personal experiences, it is known that the perception is 

different when comparing the left and right eye images. These two different images allow the 

reconstruction of the 3D understanding of the environment [14]. The sense of depth comes from 

the distance (disparity) for the same point between the left and right retinal images. 

 

A stereo parallel camera is shown in Figure 2.1. A parallel stereo camera has two cameras to obtain 

the right and left images. The cameras are placed facing in the same direction, separated by a 

horizontal baseline distance. The correspondence between depth (Z) and disparities (d) is explained 

by equation 2.1, where f and b are the focal and baseline distance respectively (both parameters of 

the stereo camera). This method of determining disparity from depth is called triangulation. 

𝑑 = 𝑓
𝑏

𝑍
  (2. 1) 

 

An object detector using a stereo vision camera is presented in [15]. This idea detects the location  

of a moving object and estimates the tracking error to servo-actuate a loop in the eye-hand system 

structure of a humanoid robot. An application of depth images used for a fall detector for elderly 
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people is presented in [16]. In this case, the contour detection of the walking figure is achieved by 

subtracting the background frame and estimating the floor plane in the depth images. 

 

The effect of motion, when a camera is in movement is analyzed in [17]. A vehicle tracking 

procedure based on stereo vision is presented there, where an autonomous robot is actuated and 

the camera is under the movements transmitted to the structure. This study shows the incidence of 

the camera movements in the calculation of the range and direction angle of the complete system. 

 

 

Figure 2.1. Parallel stereo camera.[18] 

 

2.2 Video tracking 

Many attempts are described in the literature to track the position of moving objects in a video 

feed. Multiple object tracking (MOT) can be divided in two parts, the first is object detection 

(previous section 2.1) and the second is motion prediction. The target detection is based on image 

processing and thus it tends to require a large part of the computational resources. 

 

For multi-object tracking, the main challenge is the label association problem, for connecting 

object detections to their respective tracks. Most of the batch methods formulate MOT as an 
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optimization problem. Other online methods try to achieve the data association either 

probabilistically or determinatively [19]. 

 

The work from [20] features a football player tracking algorithm where the implementation is 

based on a modified Hungarian algorithm for the data association and the prediction being obtained 

by the use of the Kalman filter. The most important part of the tracking algorithms is the ability of 

the system to manage an object’s identity even in occlusion scenarios or at boundary conditions. 

An approach based on Markov Decision Processes is found in [19], where the MOT problem is 

described in terms of decisions from a Markov Decision Process. 

 

The method of Multiple Hypotheses Tracking (MHT) is presented in [21]. For every new 

observation, MHT analyzes the possible associations by keeping the potential object-to-track 

assignments represented as target trees. When new observations arrive for each frame, the target 

trees keep spawning, and growing. The trees keep a set of hypotheses that propagate with the hope 

that future input data will help resolve any assignment ambiguities. The potential thus is that MHT 

can salvage wrong object-to-track associations. 

 

For tracking in videos recorded by UAVs, an improved method for object tracking is presented in 

[22]. This work implements a Mean Shift algorithm based on particle filtering, to optimize the 

search of the origin of the Mean Shift algorithm. This idea can achieve the tracking of fast-moving 

objects. A study for tracking vehicles was presented in [23]. In this work, the state estimation for 

the agents is obtained using a Kalman filter method. The data association is done through the 

Hungarian method. For this study, an extension was needed to prevent assignments of objects too 

far apart from each other in space. This method is the most similar to the one being implemented 

in this work. 

2.3 UAV capture methods 

To neutralize unwanted UAVs, work is being done to develop a drone-killing microwave weapon 

to knock down drones with pulses of energy [24]. Also, radio control frequencies that disrupt 

commercial drones’ communications, smart bullets, and even mobile high-energy laser weapons 

to damage or destroy UAVs are being thought of. The problem of these attempts is that they either 



 

 

21 

alter the flight path or force-land the UAV to an unpredictable location. If the UAV is carrying 

harmful materials, dropping the UAV to the ground is not an effective way to protect people or 

infrastructure.  

 

One valid approach was the use of a net hanging from a UAV as was shown by the Japanese police 

[25], where the hunter system captures the intruder UAV by flying over it and having the propellers 

caught in the mesh of the net. With that method, the possibility exists for the target drones falling 

from the sky and causing harm or damage.   

2.4 Robotic operating system 

The Robot Operating System (ROS) is an open-source framework for robotic systems 

development. ROS is considered a meta-operating system, because despite not being considered 

an operating system in the same way Windows or Linux are, it provides a system of nodes that 

allows inter-processes to occur within the selected intelligent platform. These allow the sharing of 

functional messages. The architecture of a ROS system consists of five components: a ROS Master, 

nodes, publishers, subscribers, and topics. 

 

ROS allows the creation of robust software for robot platforms in general, multiple sensors and 

effectors. Nodes in ROS are pieces of software written in C++ or Python. It allows the functionality 

of a robot to be divided into subsets of tasks. In further chapters, it will be shown how different 

parts of the system are instantiated as nodes. ROS grants the communication between different 

nodes. In this way, the result obtained from a node can be an input to another. 

 

The communication between nodes is through topics. Topics use the same type of message for the 

node publishing and the node subscribing [26]. ROS is suitable for sensor data, since topics are 

unidirectional and stay continuously connected to send or receive messages. Also, multiple 

subscribers can receive a message from a publisher and vice versa. Multiple publishers and 

subscribers’ connections are available as well (Figure 2.2). 
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Among the advantages of using ROS, the nodes can be written in either C++ or Python and work 

perfectly together. Also, nodes can run on different hardware and be connected through a common 

network. ROS is open source and extensive documentation can be found. 

 

 

Figure 2.2. ROS communication between nodes.  

Nodes can publish and subscribe to topics [27]. 

 

2.5 Summary 

The detection method for the project will be based on a vision system, a stereo camera. A stereo 

camera gives the same information as a single camera plus the information of distance to objects 

in the scene. The tracking method will be based on the idea of a Kalman filter for prediction of the 

location of the object, and the Hungarian algorithm to associate the detected objects to their tracks. 

The capture system will be mounted on the hunter drone, carrying a net to have the invader drone 

tangle in it. The selected platform for development is ROS, providing the modularity for the design 

of the system. Figure 2.3 illustrates the pipeline for the project. 

 

 

 

  
Stereo image 

capture
3D 

Reconstruction
Detection and 

tracking
Motion 

planning

Figure 2.3. Simplified project pipeline. 
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 PROPOSED METHODOLOGY 

3.1 3D Reconstruction 

The main purpose of the Vision System in this project is to localize an object, so that the hunter 

system can act upon this information. There are a few things to consider when choosing the 

detection method. The detection system is mounted on a UAV and sends the feed to an onboard 

computer. Thus, the weight, communication protocol, and specific parameters related to the 

detection must be considered. 

 

The first limitation is weight, as the drone can only carry a certain amount of weight. More payload 

directly impacts the battery life. Thus, choosing a device that is as light as possible is important. 

Another requirement is the processing capabilities required for detection. The data coming from 

the device that does the detection will have to be processed by an onboard computer that has 

limited capabilities. Concerning the video quality, since the target is another flying UAV, the 

detection needs to be able to detect a fast-flying object in the video feed. A good option to account 

for these requirements is a camera.  

 

A stereo camera can help to detect objects by using both the depth information (3D environment 

reconstruction) and the monocular images for a further match of image features (2D image 

classification). The depth information provided by a stereo camera makes tracking features over a 

long distance comparatively robust. This method is effective and practical, as NASA had a stereo 

camera on Curiosity, the Mars Rover. 

 

The 3D image reconstruction pipeline is illustrated in Figure 3.1.  

 

 

 

Stereo image 
capture

Depth 
calculation

3D map 
generation

Downsample 
for faster 

processing

Figure 3.1. 3D Image reconstruction pipeline. 
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3.1.1 Stereo cameras 

Two stereo cameras were selected at the beginning to be evaluated for the project, WithRobot 

oCamS-1CGN-U and Mynteye S1030. The characteristics of these are shown in Table 3.1. 

 

Table 3.1. Stereo cameras considered for the project. 

 WithRobot oCamS-1CGN-U Mynteye S1030 

Resolution 1280 x 720 @ 60 FPS 752 x 480 @ 60 FPS 

Field of view V: 50˚   H: 92.8˚ V: 76˚   H: 122˚ 

Weight 30 grams 85 grams 

IR Light No Yes 

Range 0.5 ~ 12 m 0.5 ~ 18 m 

Baseline 120 mm 120 mm 

IMU Yes Yes 

Color images Yes No 
 

 

Figure 3.2. WithRobot oCamS-1CGN-U. Image retrieved from 

http://withrobot.com/en/camera/ocams-1cgn-u/. 

Calibration 

To calibrate the stereo cameras, the camera_calibration library was used within ROS. This library 

takes a left and right image of a printed checkerboard of known dimensions to perform the 

parameter tuning. A precise calibration is key to obtaining the best results of depth in the video 

feed. 

 

The stereo cameras have two sets of parameters that must be tuned. The Intrinsic parameters are 

internal and referent to the camera setup; these allow a correspondence between the camera 

coordinates and the pixel coordinates in the image (camera model parameters, focal length, lens 
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distortion). The Extrinsic parameters are external to a camera; these are referent to the spatial 

disposition of the camera with reference to a fixed frame (both rotation and translation can be 

expressed as a homogeneous transformation matrix). The extrinsic parameters consider the 

location and orientation of the two cameras related to a common world frame (Figure 3.3). 

 

In the case of Mynteye S1030, the calibration parameters can be uploaded and saved to the camera 

directory itself. For WithRobot oCamS-1CGN-U, the parameters are stored in the user’s directory 

and loaded every time the camera is launched. 

 

The selected camera for the rest of the work is WithRobot oCamS-1CGN-U (Figure 3.2, Figure 

3.3). It has shown a better resolution for the same frame rate, lighter weight, and color images. 

Another interesting feature of this camera is the possibility to customize the field of view by 

changing the lenses. 

 

 

 

Figure 3.3. oCamS-1CGN-U, showing the coordinate systems of the IMU sensor and the image 

sensors. Image retrieved from https://us.amazon.com/Stereo-Shutter-Disparity-WITHROBOT-

oCamS-1CGN-U/dp/B07R5NG6HK. 

 

3.1.2 Preprocessing 

The stereo camera provides the image feed for the left and right cameras. The following step uses 

the library stereo_image_proc to obtain the Disparity image and the Point Cloud. In the disparity 

image, every pixel contains information about the disparity (the difference in location for the same 
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features) within two stereo images. In the case of a point cloud, which is an assembly of points in 

three-dimensional space, each point presents the spatial location from the camera to objects in the 

environment. 

Using the disparity image 

The first tests for object detection using a stereo camera were done on disparity images. For this 

approach the first step consists of the use of a filtering stage to smooth the images and remove 

noisy data. 

 

After the filtering stage, a ground removal algorithm is needed to get rid of areas that can be close 

to the camera and not representative of a UAV. A RANSAC (Random Sample Consensus) 

algorithm was used to approximate the ground plane and remove it from the disparity image. After 

that step, the remaining image was segmented considering the size and location of the objects in 

the depth axis of to the camera. Morphological operations play an important role in segmenting 

the right blobs in a disparity image [28]. The results from this stage were promising, but there is 

more potential in using 3D information of the environment. 

Using point cloud data 

An array of points in 3D space is obtained from the left and right images. Using the camera with 

a VGA resolution (640x480 pixels), running at 30 FPS, the amount of points to process every 

second is of approximately nine million points. Thus, the processing cost for every frame will be 

expensive.  

 

Downsampling the point cloud data (reducing the number of points), yields a less populated point 

cloud with similar information of the environment. This procedure reduces the computational cost. 

With this goal, a Voxel Grid filter is considered [29]. This filter generates a three-dimensional 

voxel grid (seen as boxes in 3D space) over the original point cloud data. For each voxel (each box 

in 3D), all the points in that region will be approximated with their centroid. Voxel Grid is an 

implementation of the method from the Point Cloud Library. 
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A filtering stage is launched after the data is downsampled. The point cloud is restricted to the 

working distance range, between 0.5 ~ 10 m in the camera z-axis. 

3.2 Object detection 

3.2.1 Cluster extraction 

A Euclidean clustering algorithm identifies clusters of points after the point cloud is filtered.  A 

cluster of points is at least within 0.5 m from the next one. Clusters with more than 200 points or 

less than 20 points are removed since they likely do not represent the desired UAV. The detections 

are selected as the centroid of each remaining cluster. Again, the Euclidean Cluster Extraction is 

an implementation of the method from the Point Cloud Library. 

3.2.2 Metrics used for object detection 

For performance interpretation of the detection method, the Precision-Recall curves were 

considered as in [30]. The precision and recall metrics evaluate the performance in detecting all 

UAV appearances and in ignoring environmental or sensor noise. The equations 3.1 and 3.2 

present the calculation of these indices. The quantities considered are the amount of true-positive 

(TP), false-negative (FN), and false-positive (FP) detections. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3. 1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3. 2) 

3.3 Video tracking 

The essence of multi-object tracking is matching objects in successive frames of a video feed. The 

objects of interest within the images would be tracked as the objects move around in the image in 

successive frames. The tracking starts by initializing the position of the object with the information 

coming from the objects’ detection. 
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For this work, the detected UAVs need to be tracked. A prediction of their motion is useful to 

anticipate the trajectory of the invader. For this purpose, a Kalman filter approach is implemented 

as the tracking method. 

3.3.1  Kalman Filter 

A discrete Kalman filter algorithm evaluates the state variables for a system, based on inaccurate 

and uncertain measurements. For the studied case, the Kalman filter tracks the intruder UAV’s 

position, velocity, and acceleration, given the noisy visual detections. The Kalman filter 

propagates the current track state into the future assuming a motion for the intruder UAV. 

 

Note that the sensed information (detections) can support or disprove the predictive model over 

time, therefore, the algorithm keeps multiple UAV tracks at any time and continuously adds or 

eliminates tracks depending on the incoming detected objects. New tracks are created when 

incoming detections are too far from all existing tracks. Similarly, deficient tracks are removed 

when they do not correspond to incoming detections after several consecutive iterations. 

 

This tracking framework has the advantages of: 1) smoothing the trajectory of the track for stable 

aiming, 2) interpolating temporarily-undetected UAVs, 3) estimating the velocity and 

accelerations of the UAV, and finally, 4) quantifying the statistical confidence of the UAVs' 

position, all using low computation resources [20]. 

 

The filter assumes a motion model of constant acceleration in 3D space; thus, the track state is 

𝑋 = [𝑥, �̇�, �̈�]𝑇 (position, velocity, and acceleration respectively). This is not entirely true, since the 

UAV track has a time-varying acceleration. This variation was incorporated as an additive random 

noise to the state update equation. 

 

The covariance matrix of this noise in the discrete space is defined as in equation 3.3, where T is 

the interval between updates. 
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𝑄𝑥 = 𝑞 

[
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 (3. 3) 

 

The Kalman filter uses noisy detection measurements to correct the state estimates. It assumes a 

3D reconstruction error with a noise covariance matrix of 𝑅𝑥 = 𝑟 ∗ 𝐼, where r is a scaling factor. 

The state initialization error is modeled as a random variable with a covariance matrix in equation 

3.4. 

 

𝑃𝑥
0 = 𝑝 [

12

0

0 0
302 0

0 0 5.52

] (3. 4) 

 

These numbers were selected since 1.0 m, 30 m/s, and 5.5 m/s2 are reasonable maximum 3D 

reconstruction error, UAV speed, and UAV acceleration. Note that 𝑄𝑥 , 𝑅𝑥 , and 𝑃𝑥
0 are 

respectively the model noise covariance, the measurement noise covariance, and the initial state 

error covariance matrices of a Kalman filter (Figure 3.4). The parameters q, r, and p are scaling 

factors, manually tuned based on the intruder UAV maneuverability and the stereo camera noise. 

 

 

Figure 3.4. Discrete Kalman filter, the involved matrices are A: Dynamics, B: Control input, 

P:State error covariance, H: Measuring, I: Unit , Q: Process noise covariance, R: Measurement 

noise covariance. 
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3.3.2 Linear Sum Assignment 

Often there might be multiple active tracks at a moment in time and multiple incoming detections 

from a single camera frame (Figure 3.5). Using the linear sum assignment, also known as the 

Hungarian algorithm, detections are assigned to tracks by minimizing the sum of distances 

between the detections and their assigned tracks [31]. 

  

New tracks are created to accommodate detections that are farther to any other track by a maximum 

position error, 𝜀𝑚𝑎𝑥. The state of the tracks that are not assigned to any detections are still projected 

into the future via the update stage of the Kalman filter algorithm (this increases the state error 

covariance); however, since they do not incorporate information from the measurements (which 

decreases the state error covariance), their state error increases. 

  

If the position error exceeds 𝜀𝑚𝑎𝑥, the track is eliminated. Finally, the longest living track was 

selected for aiming after observing that the detections due to environmental or camera noise are 

transient, and their corresponding tracks are quickly eliminated. 

 

 

 

Figure 3.5. Multiple detections and tracks in the same frame. Image obtained from simulated 

experiments. 

3.3.3 Performance 

For evaluation of the tracking method, the MOTA (Multiple Object Tracking Accuracy) index as 

used by MOT16 (a standardized measure for object tracking), was used as a reference [32]. This 
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framework is widely used for evaluation of the performance of Multi-Object Tracking in videos, 

since it combines multiple sources of errors. Besides the errors considered for Precision and Recall; 

they are true-positive (TP) that describes an actual target, false-positive (FP) in the case of an 

erroneous target, and false-negative (FN) when a target that is missed. MOTA also accounts for 

the incorrectly matched error or Identity Switch (IDSW). An identity switch occurs when a target 

has been associated with a different track number. MOTA is reported by the next equation (3.5), 

where the index k refers to the frame number and GT represents the quantity of ground truth targets, 

known by empirical evidence.   

 

𝑀𝑂𝑇𝐴 = 1 − 
∑ (𝐹𝑁𝑘 + 𝐹𝑃𝑘 + 𝐼𝐷𝑆𝑊𝑘)𝑘

∑ 𝐺𝑇𝑘𝑘
 (3. 5) 

 

In Figure 3.6, an ID switch occurs when the mapping switches from the previously assigned green 

track to the blue one. In frame 1 a false-negative is present. For frames 2 and 3, true-positive 

detections for the green target are tracked. For the frames 4,5 and 6, true-positive detections are 

tracked for the blue target. An identity switch occurs in the frame 4 where the blue target is 

assigned to the same track that was started for the green target. 

 

 

Figure 3.6. Figure adapted from [32]. A case illustrating an identity switch in the tracker-to-

target assignments. 
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3.4 Motion control 

For the control of the hunter UAV, the work of [33] is taken as reference. There, a geometric 

controller is studied and presented for the case of a quadcopter. The dynamics are studied 

considering them part of the special Euclidean group SE(3). This controller focuses on tracking a 

set of trajectories for the position and heading of the UAV.  

 

For simplicity, the hunter will be controlled for position in x and z and orientation in the yaw axis 

(Figure 3.7). The motion controller will be implemented using the available implementation for 

the lee_position_controller in the RotorS package for ROS. 

 

 

 

 

 

 

 

 

The theory for the hunter algorithm is adapted from [34]. The dynamical model can be represented 

by the two defined coordinate frames, W and C (Figure 1.1). Euler angles are used to define the 

hunter's attitude (roll, pitch, yaw) which are convenient to define the rotation matrix between the 

two coordinate frames W and C. 

 

For the position control of the UAV, the dynamical model developed by [33] aims to obtain 

asymptotic behavior for the track of four variables, three are for the position of the UAV, and one 

for the orientation of one body-fixed axis. This applies to this study, by controlling the position of 

the hunter in the x-axis, z-axis, and the rotation in the yaw axis, as to always keep the invader UAV 

in its field of view. 

 

After the extraction of the best track, the hunter would know the position of the invader drone 

𝑥𝐸 = [𝑥, 𝑦, 𝑧]𝐶
𝑇 in its reference frame, C. The best location of the intruder to be captured is defined 

as 𝑥𝐸
𝑑. The error in the position controller of the hunter is given by equation 3.6. 

Figure 3.7. Rotations: Roll is the rotation around the front-to-back axis, Pitch is the 

turn about the side-to-side axis and Yaw is the direction of the heading of the UAV. 
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𝑒𝑋 = 𝑥𝐸
𝑑 − 𝑥𝐸  (3. 6) 

3.5 Net launcher 

The net launcher system will be the one in [2]. The system has at least one net launcher being 

disposed at the base of the Hunter UAV, operable to launch a net toward a target object. A 

controller responsive to a signal indicative of a detected target object, will trigger the net launch 

toward the target object (Figure 3.8). 

 

 

 

 

 

 

 

 

 

 

From preliminary experiments (Figure 3.9) it was found that the net launcher shoots the net with 

a parabolic trajectory, initially expanding in size, then retracting. The net reaches a maximum 

expanded area when its center is located approximately 2 meters in front and 1 meter below the 

net launcher (equation 3.7), in the C frame. 

𝑥𝐸
𝑑 = [0, 1, 2]𝑇 (3. 7)  

 

Thus, the hunter UAV should control its attitude to place the moving intruder UAV at the desired 

𝑥𝐸
𝑑 location.  

 

 

Figure 3.8. Net launcher system, as designed by [2]. 
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Figure 3.9. Experiment to determine the trajectory and speed of the net when 

launched by the net launcher system. 

a) 

b) 
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  IMPLEMENTATION 

The system is designed using ROS nodes for different processes. Both in simulation and a physical 

scenario, the UAV can be controlled using ROS. It serves as an interface for the robot and the 

sensor and actuator systems. For the simulation environment, the algorithm will subscribe to the 

simulated sensor data. 

 

ROS allows the functionality of a robot to be divided into subsets of tasks. In the further sections 

of this chapter, it will be presented how different parts of the system are instantiated as nodes. For 

example, the conversion from 2D images to point cloud data is done by a node, the detection of 

the intruder is done by a different node, and the control of the hunter UAV will be planned by 

another node.  

 

 

 

 

 

 

 

 

 

 

4.1 Simulation environment 

To test the proposed methods, a simulated environment using the Gazebo simulator is launched. 

Gazebo allows the test of algorithms using simulated robots, and to train AI systems using realistic 

scenarios.  

 

Along with Gazebo, the RotorS simulator [35] is used. RotorS is a MAV (Micro Aerial Vehicle) 

Gazebo simulator. It comes with a few multi-rotor UAV models and the possibility to include 

ROS (onboard 
computer)

Real system: Camera, 
sensors and actuators

Simulated environment 
(RotorS)

OR 
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simulated sensors (such as an IMU, odometry, and vision) mounted on them. RotorS also contains 

a few examples of controllers. 

 

A realistic scenario (also referred to as World) for the simulation is created. A few houses, an 

uneven ground plane, and roads are placed. The hunter and intruder UAV are launched. The hunter 

UAV is a hexacopter (Firefly model in RotorS), which is similar to the one used for tests later on 

in the real scenario (Figure 4.1). On the hunter, the simulated stereo camera is mounted, with the 

parameters matching the ones from the selected camera (see Table 3.1). The intruder drone/s can 

be any model of UAV. A small quadrotor is chosen to be the invader UAV to test the algorithms 

(Hummingbird model in RotorS). 

 

 

 

Figure 4.1 Simulated scenario for testing. Gazebo simulator. 

 

Rviz is another useful tool for the development of the system. It is a 3D visualization tool for ROS 

applications. There the robot model can be seen, and sensor information analyzed. It also allows 

the replay of recorded data. 

 

For the simulation stage, a laptop computer running ROS Kinetic Kame, supported on Ubuntu 

16.04 Xenial was used. The computer has a processor Intel Core i7-9750, video card NVIDIA 

Quadro T1000 with 4GB, and 16Gb of RAM.  
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4.1.1 Evaluation of the UAV targeting in a simulated environment 

As mentioned in section 3.1.2, the images coming from the simulated stereo camera were sampled 

at 30 FPS, with a resolution of 640x480 pixels. Figure 4.2 illustrates the image processing pipeline. 

The stereo images obtained from the simulated camera are converted to point cloud data (Figure 

4.2 b). To reduce the computational time, the point cloud was downsampled into a voxel grid 

(Figure 4.2 c) and filtered to the working environment values (between 0.5m and 10m).  

 

Figure 4.2. Image processing pipeline. Grid 1x1 m. (a) Simulated environment, a hunter UAV, 

and an intruder UAV. (b) Point cloud data obtained from the camera mounted on the hunter. (c) 

Filtered point cloud down-sampled into a voxel grid. (d) Cluster extraction. 

 

A Euclidean clustering algorithm (Figure 4.2 d), identifies clusters of points after the point cloud 

is filtered. Clusters that are too large and too small possibly represent environment landscape (e.g., 

ground, walls) or stereo camera noise. Those clusters are removed. The detections are selected as 

the centroid of each remaining cluster. 

 

a) b) 

c) d) 
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Error Analysis of the Detection 

In the RotorS simulator, using a simulated stereo camera attached to the hunter UAV, an intruder 

UAV is placed for testing. The simulated environment provides ground truth information about 

both UAVs’ position, which is used to compare with the results from the visual detection to obtain 

the performance of the method. 

 

 

Figure 4.3. Trajectory of the intruder UAV for the simulated experiment. This trajectory is used 

to evaluate the detection and tracking accuracy. 

 

The experiment was designed as follows: the stereo camera mounted on the hunter UAV sees an 

intruder UAV following a figure-8 trajectory in three different planes normal to the camera z-axis, 

as seen in Figure 4.3. The Root Mean Square Error (RMSE) analysis in detecting the intruder's 

centroid is shown in Table 4.1. This error analysis is comparing the ground truth against the 

detections (not to the tracking predictions). 

 

Table 4.1. Spatial Root Mean Square Error (RMSE) in meters. 

Distance 

[m] 

RMSE Precision Recall 

X Y Z 

2.5 0.063 0.112 0.032 1.000 0.974 

5.0 0.073 0.108 0.035 1.000 0.983 

7.5 0.174 0.083 0.032 0.998 0.993 
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Execution time of detection 

It is important to account for the delay in the detection of the algorithm. A detection lag of ∆𝑡𝐷𝑒𝑡 =

0.15 𝑠 was calculated as the maximum cross-correlation coefficient for the ground truth trajectory 

and detected trajectory (Figure 4.4). Similarly, the tracking lag for the tracking trajectory, was 

∆𝑡𝑇𝑟𝑎𝑐𝑘 = 0.15 𝑠. This means that the computational time of the detection is the limiting part of 

the algorithm. 

 

 

Figure 4.4. Detection lag for the simulated experiment. Comparison of part of the ground truth, 

detected and tracked trajectory of the intruder in the y axis. 

 

Tracking Accuracy of the Intruder UAV 

In Figure 4.5, the MOTA and RMSE were evaluated for several r parameters, ranging from 0.5 to 

5.0. The r parameter scales the measurement noise covariance matrix R of the Kalman filter 

supporting the tracking algorithm. For all tested values of r, the MOTA index was above 0.999 

and the RMSE had a minimum value of 0.09 m at r = 1.0. Note that for very small values of r the 

tracks rely more on the noisy measurement (detection) data, producing a noisy track. While for 

very large values of r, the tracking algorithm trusts the motion model too much, and does not 

update the acceleration state on time. 
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Figure 4.5. In red, MOTA index for the analysis of tracking accuracy. In blue, the RMSE of the 

best track when compared to the ground truth data, for different values of r, scaling factor in the 

Kalman filter R matrix. 

 

An advantage of the Kalman filter based algorithm is shown above in Figure 4.4, where the 

tracking procedure correctly predicts the position of the intruder UAV even when there are 

temporarily missing detections (between 37.0 and 37.5 seconds). 

Aiming Control 

The motion control for the simulated hunter was achieved sending desired pose commands to a 

position controller. The sequence of pose commands set the trajectory of the hunter UAV that 

will reduce the position error in Equation (3.5). 

4.1.2 Discussion on the simulated experiment 

Using point cloud data from a stereo camera as the rubric for UAV recognition appears to be a 

feasible solution. A good recall index is needed to guarantee the detection of all invader UAVs. 

Table 4.1 shows a reliable recall index, and a precision that stays high as recall increases. For 

object detection, it is desirable to have good precision as recall increases.  

 

The tracking algorithm based on a Kalman filter has the smoothing and predictive characteristics 

required for a steady aiming, as shown in Figure 4.4. The detection and tracking lags were similar, 

suggesting that the detection step has a longer execution time than the tracking step. This is 

expected, considering that the detection step performs operations in thousands of points contained 

in the point cloud. In contrast, the tracking step performs operations in a few 9x9 matrices (the 

Kalman filter state has nine variables).  
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A value of MOTA above 0.999 means the tracking algorithm always assigned the intruder UAV 

to the same track, even during missing detections. This is important for target aiming applications 

to avoid switching between targets. Additionally, the tracking error of 0.09 m RMSE is 

considerably smaller than the area of the net, which spans above 1 meter in diameter. Therefore, 

this tracking error is small enough for a successful intruder UAV capture.  

 

The simple control of the simulated hunter UAV using its visual feed for position control 

performed as expected, keeping the intruder drone at the desired distance from the hunter and 

staying centered in the camera’s field of view. 

 

The next section will focus on adapting and testing the algorithm on a real-world scenario, 

performing the detection and tracking using a feed from the WithRobot stereo camera, and 

implementing a motion controller to send the position to a flight controller and thus aim at the 

invader UAV. 

4.2 Experimental platform 

In this section, the overview of the proposed hunter testing platform is introduced along with the 

hardware and software components. The proposed hunter drone can be analyzed by parts: aerial 

vehicle frame, flight control, onboard computer, and visual input device (Figure 4.6). 

 

A hexacopter UAV is chosen as the test platform. The DJI Flamewheel F550 (Figure 4.6 a) is built 

with light and strong compounds to grant better crashworthiness. It comes with a high strength 

compound PCB frame board, easy to wire, and optimized with assemble space for autopilot 

systems. The specifications for the frame are found in Table 4.2. For this frame, six E300 ESCs 

(Electronic Speed Controller) of 15 A control the six E300 motors. The specifications about the 

propulsion system can be found in Table 4.3. 

Table 4.2. DJI Flamewheel frame specifications. 

DJI Flamewheel F550 Specifications 

Frame Weight 478 g. 

Diagonal Length 550 mm. 

Takeoff Weight 1200g ~ 2400g. 
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Table 4.3. DJI propulsion system for the F550 frame. 

DJI propulsion system E300 Specifications 

Recommended Payload 300 g/axis 

Maximum Thrust 600 g/axis 

Recommended Battery 3S - 4S LiPo 

KV 920 rpm/V 

 

The flight controller used for the hunter drone is the Pixhawk PX4, manufactured by Radiolink 

(Figure 4.6 b). The PX4 is an open-hardware project by Pixhawk which features leading-edge 

processor and sensor technology for good performance, flexibility, and reliability for the control 

and development of autonomous vehicles. The details about this flight controller are in Table 4.4. 

 

 

Figure 4.6. a) the DJI Flamewheel F550, selected frame for the experimental hunter platform, 

image from https://www.dji.com/flame-wheel-arf/feature; b) Radiolink PixHawk PX4, open 

source flight controller, image from https://spexdrone.com/products/pixhawk-classic-radiolink-

pixhawk-px4-autopilot-pixhawk-px4; c) Selected onboard computer, Orbitty Carrier for NVIDIA 

Jetson TX1, image from http://connecttech.com/product/orbitty-carrier-for-nvidia-jetson-tx2-

tx1/; d) Stereo camera, WithRobot oCamS-1CGN-U, image from 

http://withrobot.com/en/camera/ocams-1cgn-u/. 

 

A remote controller, FrSky Taranis X9D is connected to the flight controller for manual operation 

of the hunter UAV and override of the autonomous mode if necessary. The Taranis X9D has 16 

a) b) 

c) d) 

https://spexdrone.com/products/pixhawk-classic-radiolink-pixhawk-px4-autopilot-pixhawk-px4
https://spexdrone.com/products/pixhawk-classic-radiolink-pixhawk-px4-autopilot-pixhawk-px4
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channels available, it was configured using QGroundControl to use the first 8 channels as follows: 

the first four channels control the roll, pitch, throttle and yaw; channel 5 selects the flight mode 

and channel 8 arms or disarms the hexacopter. 

 

Table 4.4. Specifications of the fight controller. 

Radiolink Pixhawk PX4 Specifications 

Processor 
32bit 32F427 ARM Cortex M4 Core 

168 MHZ / 256 KB RAM / 2 MB Flash 

Gyroscope ST Micro L3GD20H 16 bit 

Accelerometer/magnetometer ST Micro LSM303D 14 bit 

Accelerometer/gyroscope MPU 6000 3-axis 

Barometer MEAS MS5611 

GPS M8N GPS Module 

 

The flight controller needs feedback on the vehicle position to perform autonomous missions. The 

Pixhawk PX4 comes with a GPS module (Figure 4.7 a). For indoor tests where the GPS signal is 

not available, an option to obtain odometry estimation consists of an Optical Flow setup, which 

requires a downward-facing camera and a distance sensor (preferably a LiDAR). For the indoor 

tests, a PX4FLOW optical flow smart camera as presented in [36] is used in conjunction with a 

Garmin Lidar Lite V3 distance measurement sensor (Figure 4.7 b). 

 

 

Figure 4.7. Pixhawk PX4 requires a position estimation system. a) GPS module, image from 

https://www.getfpv.com/holybro-px4-2-4-6-pixhawk-m8n-gps-pm-100mw-radio-telemetry-v3-

915mhz.html, b) PX4Flow and LiDAR Lite, image from 

https://ardupilot.org/copter/docs/common-px4flow-overview.html. Both optical flow camera and 

distance sensor are connected to the I2C bus of the flight controller. 

https://docs.px4.io/v1.9.0/en/sensor/rangefinders.html
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For the Onboard computer, the Orbitty Carrier for NVIDIA Jetson TX1 was chosen (Figure 4.6 c). 

This Orbitty Carrier board incorporates connectivity and multimedia interfaces, a few of them 

being USB, Ethernet, and HDMI for the computer module Jetson TX1. This module is ideal for 

robotics and unmanned applications, being low cost and granting the performance required while 

keeping a low power consumption. Jetson TX1 fits the requirements for visual computing 

applications. 

Table 4.5. Specifications of the onboard computer. 

NVIDIA Jetson TX1 Specifications 

Size 87mm x 50mm 

GPU 256-core NVIDIA Maxwell 

CPU Quad-Core ARM Cortex - A57 MP Core 

Memory 4GB 64-bit 

Storage 16GB 

Power Under 10W 

PCIE Gen 2 

Wi-Fi Yes 

 

The input voltage required by the module is in the range 9V~14V, which makes it feasible to power 

it by a LiPo battery once mounted on the hunter drone. 

Data flow diagram 

The information flow is as seen in Figure 4.8. Connectivity-wise, the stereo camera is attached to 

the onboard computer via a USB port; the onboard computer communicates to the flight controller 

using serial communication; and the flight controller sends the commands to the motors of the 

hunter using PWM signals. 

Software architecture 

ROS nodes command the execution of the system. A diagram is shown below in Figure 4.9. A 

similar ROS-based system proposed for the simulated environment processes the images obtaining 

the point cloud data. This time, the images are processed by ROS nodes on the companion 

computer. The detections and tracks together with a position reference given by either visual 

odometry or a GPS module, feed an algorithm in ROS that will plan the motion of the hunter. This 

plan is then communicated to the flight controller through MAVROS.  
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Figure 4.8. Information flow diagram for the experimental platform. 

 

MAVROS is a package of communication tools used between systems running ROS and various 

autopilots with MAVLink protocol. A joystick or remote controller is also linked to the flight 

controller to provide a manual mode.  

 

 

Figure 4.9. Software architecture for the detection, tracking and motion planning. 
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The flight controller Pixhawk PX4 is configured using QGroundControl. This is open source and 

provides the support for the PX4 autopilot stack. QGroundControl was used to configure and tune 

the parameters for the hunter hexacopter, and the desired flight modes and sensors. 

 

 

Flowchart of the experimental platform 

The final experimental platform is shown in Figure 4.10, and the principal components and the 

flow of information is represented in Figure 4.11. 

 

Figure 4.11. Components of the experimental platform and data flow indication. Images obtained 

from the previously mentioned sources in Figure 4.6 and Figure 4.7. 

Figure 4.10. Experimental platform using the DJI F550 hexacopter frame and the 

components mentioned in Figure 4.6 and Figure 4.7. 
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4.2.1 Evaluation of the UAV tracking in the real scenario 

The detection and tracking algorithms were tested in an outdoor scenario. A static camera was set 

for the experiment, and an intruder UAV (manually controlled) was in the camera field of view. 

 

When testing outdoors, the exposition parameter of the camera needed adjustment. A mechanism 

for automatic exposure adjustment will be useful for future tests. In Figure 4.12, the obtained image 

processing pipeline is shown. As a difference to the simulated environment, the Euclidean cluster 

extraction needed some parameters to be tuned. The cluster tolerance was modified to 0.5m 

(minimum distance between different clusters), and the smallest and largest cluster size admitted 

were set to 60 and 500 respectively. These parameters were tuned after the experiment, using the 

data stored in a bag file. A bag file subscribes to one or more ROS topics and stores the serialized 

message data in a file as it is received. The extraction of the clusters was successful in this scenario, 

as can be seen in Figure 4.12 d). 

 

 

 

 

a) b) 

c) d) 

Figure 4.12. Image processing pipeline in the real scenario. (a) Outdoor testing 

environment with an intruder UAV, image feed from the oCamS-1CGN-U camera. 

(b) Point cloud data obtained. (c) Filtered point cloud down sampled into a voxel grid. 

(d) Euclidean cluster extraction. 
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The tracking algorithm, by keeping the best track and using the prediction of the speed of the target 

in real-time (Figure 4.13, Figure 4.14), recovered from cases when false positives were present in 

the images. 

 

The onboard camera used for the experimental platform has limited processing capabilities. Using 

the library provided by the manufacturer of the stereo camera WithRobot oCamS-1CGN-U, the 

maximum speed of the image feed was of 10 Hz. After a modification of the library for this camera, 

with the focus of maintaining only the parameters and data that are used for this project, an input 

image feed of 20 Hz was obtained.  

 

From the image feed coming at 20 Hz, the point cloud 3D reconstruction was obtained with a 

frequency of 15 Hz. The detection algorithm published a result with a frequency of 30 Hz, and the 

best track runs at 100 Hz. The system proves to be valid for use as a real-time method for the 

detection of unwanted UAVs. 

  

 

Figure 4.13. The red arrow represents the best track in every frame presented. The algorithm 

keeps track of the position of the intruder in successive frames. Images in a), b) and c) are taken 

after successive intervals of 1s. 

a) b) c) 
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Figure 4.14. Detection and best track obtained in the outdoor environment. 

 

For the outdoor experiment the metrics obtained were a value of 0.95 for the Recall index, a value 

of 0.92 for the Precision index, and a value of 0.94 for the MOTA index. The values stay relatively 

high and close to 1.0, the ideal case scenario. With respect to the simulated tests, these indexes 

have lower values due to the presence of false-positives which were mostly due to noise detected 

by the stereo camera. 

Quantitative Evaluation 

For validation of the computer vision algorithm, a motion capture system can precisely record the 

trajectory of an intruder UAV to then compare it to the estimates obtained by the onboard camera 

(Figure 4.15). The setup for this test uses an array of Qualisys motion capture cameras to determine 

the location of the stereo camera and the intruder drone. The onboard computer at the same time 

records the detections and tracks obtained for the movement of the intruder indoors.  

 

This experiment needs to be done indoors, in a laboratory setting. From this test, several comments 

arise and need to be approached in the future. In an indoor environment the point cloud data 

reconstruction results in many clusters being recognized as positive targets. Due to objects, walls, 
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ceiling, or the motion capture system, more clusters are detected and become part of the false-

positive information (Figure 4.16). When the intruder UAV is close to the walls, floor, or ceiling, 

the Euclidean cluster extraction algorithm fails to detect the intruder. This happens due to the 

cluster tolerance required by the method. This situation makes clear that for indoor detection of 

UAVs, or environments with more features, a further cluster analysis is needed. 

 

 

Figure 4.15. Motion capture system setup for the performance analysis. 

4.2.2 Discussion about the experiments 

From the previous experiments, the outdoor detection and tracking performed as expected, in a 

similar way to the simulated tests. The hunter UAV successfully detected, tracked and acted upon 

the recognition of an intruder UAV.  

 

For indoor environments, the detection and tracking relying only on stereo vision and cluster 

extraction is almost unfeasible. A few options to overcome this situation can be the use of an object 

classification method based on deep learning, or SLAM (Simultaneous Localization And 

Mapping) for the generation of maps of the indoor settings. 
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Figure 4.16. Indoor detection using point cloud data and the cluster extraction method. In a) only 

true-positive data is detected; in b) the detections include false-positive data. 

 

From simple tests using Darknet, an open-source neural network framework, with support for CPU 

and GPU computation [37], and a set of training images for drones as in [38], promising results 

were obtained (Figure 4.17).  

 

 

Figure 4.17. Object recognition using deep learning.  

b) 

a) 
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4.2.3 Motion control experiment 

A simple test to check the integration of the system can be obtaining a yaw changing motion of 

the hunter drone, so that its heading tends to align with the position of the invader drone. The 

hunter UAV changes its yaw orientation, hovering at a static height, in an aim to keep the intruder 

drone centered in the camera’s field of view. 

 

 

Figure 4.18. Simple yaw control algorithm for the experimental platform. 

 

To achieve the motion in Figure 4.18, the onboard computer runs over ROS the detection and 

tracking algorithm, a motion control node, and a MAVROS node, which allows communication 

to the flight controller. A topic message controlling the desired attitude of the hunter UAV is 

published with a 10 Hz frequency. The flight controller interprets and actuates the motors to 

perform the desired motion. 
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 SUMMARY AND FUTURE WORK  

5.1 Summary 

A drone hunting platform capable of detecting invader UAVs in an area using stereo vision was 

proposed in this work. The method includes an object detection step based on computer vision, 

using 3D point cloud information. The tracking step is based on a Kalman filter combined with 

the Linear Sum Assignment algorithm. 

 

This method can be executed in real-time on an onboard computer and mounted on a commercial 

UAV platform. The fast execution time of the algorithm added to the predictive nature of the 

tracking algorithm, makes this a reliable system for the detection of intruder UAVs for use in aerial 

security. 

 

The final stage of the system controls the hunter UAV with the motion dynamics necessary to 

capture the intruder. 

5.2 Future Work 

This project paves the way for further development. The tests using the stereo camera and point 

cloud data were successful in outdoor environments more than in indoor environments.  

 

There is an opportunity for improvement related to processing time. Adding the functionality of 

the CUDA cores, already available in the selected hardware, will support parallel processing and 

speed up the processing considerably.  

 

For enhance of the detection with this method in indoor environments, a layer of control of the 

positives targets can be added. The use of deep learning object recognition or SLAM algorithms 

can help detect false positives and give the precision for the detection needed for a surveillance 

system. 
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Related to the performance of the camera-based method, details that can be improved in future 

work include using a source of infrared light for low lit environments and the use of an automatic 

exposure corrector for different lighting conditions. 

 

Concerning the motion dynamics required for the hunter drone, the addition of a gimbal for the 

camera can overcome this limitation. Another gimbal can be used to mount the net launcher cannon 

as well. 

 

The adoption of a larger platform for the hunter, able to carry the weight of the net launcher and a 

captured drone is necessary for a closed-loop test of the complete system. For this test, the motion 

algorithm should compensate for the detection and tracking lag, the ballistic dynamics of the net, 

and anticipate to the predicted trajectory of the intruder. 
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