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ABSTRACT 

To support the growing human population, plant phenotyping technologies must innovate 

to rapidly interpret hyperspectral (HS) data into genetic inferences for plant breeders and 

managers.  While pigment and nutrient concentrations within canopies are known to be vertically 

non-uniform, these chemical distributions as sources of HS noise are not universally addressed in 

scaling leaf information to canopy data nor in detecting spectral plant health traits.   

In this project, soybeans (Glycine Max, cultivar Williams 82) were imaged with a Spectra 

Vista Corporation (SVC) HR-1024 spectroradiometer (350-2500 nm) at the highest five node 

positions.  The samples were subjected to nitrogen and drought stress in factorial design (n=12) 

that was validated via relative water content (RWC) and PLS Regression of photopigments 

(chlorophyll a, chlorophyll b, lutein, neoxanthin, violaxanthin, and zeaxanthin in mg/g DW) and 

N concentration (%) for each imaged tissue.  Welch’s ANOVA and Tamhane’s T2 post-hoc testing 

quantified spectral heterogeneity with respect to treatments and node positions through spectral 

angle measurements (SAMs) and percent NDVI difference.  Drought-stressed samples had the 

lowest SAM between node positions compared to other treatments, and SAM node comparisons 

were greatest when including the highest sampled tissues.  Taking ratios of NDVI between node 

positions proved more statistically effective at discerning between all factorial treatments than 

individual leaf NDVI values.  Finally, intra-canopy spectral heterogeneity was exploited by 

training Linear Discriminant Analysis (LDA) classifiers on relative reflectance between node 

positions, tuning for the F1-Score.  A classifier built on Node 1 vs. Node 3 reflectance 

outperformed in class-specific accuracies compared to analogous models trained on point-view 

data.  Accounting for intra-canopy spectral variability is an opportunity to develop more 

comprehensive phenotyping tools for plant breeders in a world with rapidly rising agricultural 

demand.  
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1. INTRODUCTION 

Agricultural management techniques and plant phenotyping must innovate to 

accommodate the needs of a 9.7 billion human population in time for 2050 (DESA, 2019; Walter, 

Finger, Huber, & Buchmann, 2017).  Plant phenotyping aims to measure the manifestation of 

genomes with respect to their environments, with particular attention to traits supporting yield and 

stress resistance (Pieruschka & Schurr, 2019; Poorter et al., 2012).  Hyperspectral imaging (HSI) 

techniques have delivered the benefits of radiometers’ spectral resolution in addition to spatial 

data, evolving into a potent tool for plant phenotyping over the past decades (Curran, Dungan, & 

Peterson, 2001; Fahlgren, Gehan, & Baxter, 2015; Fiorani & Schurr, 2013; L. Li, Zhang, & Huang, 

2014; Mahlein, Kuska, Behmann, Polder, & Walter, 2018).  One of plant phenotyping’s acute 

challenge is linking imaging and spectral data collected from varying resolutions (leaf, canopy, 

etc…) to actionable genetic information (Furbank & Tester, 2011; Minervini, Scharr, & Tsaftaris, 

2015; Mochida et al., 2018).   

HS data can permit nondestructive inferences on targets’ chemical profiles, a crucial 

feature to monitoring crops over seasons.  Absorptions features at specific wavelengths are used 

to generate vegetative indices (VIs) that contain information on water content (Gao, 1996; Tilling 

et al., 2007), photochemical concentrations such as chlorophylls, carotenes, and xanthophylls 

(Blackburn, 2007; Gamon & Surfus, 1999; Haboudane, Miller, Pattey, Zarco-Tejada, & Strachan, 

2004; Peñuelas, Josep; Filella & Gamon, 1995; Sims & Gamon, 2002; Yoder & Pettigrew-Crosby, 

1995), and structural chemicals such as lignin (Green et al., 1998; Kokaly, Asner, Ollinger, Martin, 

& Wessman, 2009).  The Normalized Difference Vegetation Index (NDVI) is a ubiquitous 

example, which is frequently used to represent general vegetative health (Fischer et al., 1998).  

However, many VIs exist that are correlated to specific changes in pigment concentrations 

indicative of environmental stresses (Altangerel et al., 2017).  High dimensional spectra are also 

examined with spectral angle measurements (SAM) (Kruse et al., 2008), signal derivatives (Le 

Maire, François, & Dufrêne, 2004), and even spectral ratios (Matsuda, Tanaka, Fujita, & Iba, 

2012).   
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To generate HS data that accurately characterizes reflectance of a target, radiometric 

calibration is essential to produce useful data from gantry, imaging chamber, and point-view 

sources (Bai et al., 2019; V. S. Ciganda & Gitelson, 2008; Condorelli et al., 2018; Martínez-

Martínez, Gomez-Gil, Machado, & Pinto, 2018; Römer et al., 2012).  Controlled imaging facilities 

aim to manage variables that influence HS data quality such as background reflectance (Elsayed, 

Mistele, & Schmidhalter, 2011; Kolber et al., 2005; Zarco-Tejada, Ustin, & Whiting, 2005), sensor 

height and angle (Crusiol et al., 2017; He et al., 2016; Herrmann et al., 2018), and shading (Corti, 

Marino Gallina, Cavalli, & Cabassi, 2017; Jay et al., 2017).  Another approach to calibrating plant 

spectra is taking into account anatomy, reconstructing 3D canopies (Behmann et al., 2015; 

Bellasio, Olejníčková, Tesař, Šebela, & Nedbal, 2012; Biskup, Scharr, Schurr, & Rascher, 2007; 

Neilson et al., 2015; Paproki, Sirault, Berry, Furbank, & Fripp, 2012; Paulus, 2019; Thapa, Zhu, 

Walia, Yu, & Ge, 2018; Zhou et al., 2019).  This focus on architecture has led to organ-level 

segmentation, where leveraging spatial data has effectively predicted diseases (Abdu, Mokji, & 

Sheikh, 2019; Nagasubramanian et al., 2019), linked geometric traits to desired heritable genes 

(Miao et al., 2020), and identified drought stress via leaf incident angle (Behmann et al., 2016).  

Spectra carry useful data that becomes more relevant when accounting for lurking environmental 

factors.   

Currently, spectral profiles of plants collected from either top or side view cameras are 

averaged to a single spectral profile (Bruning et al., 2019; Herrmann et al., 2018; Pandey, Ge, 

Stoerger, & Schnable, 2017) (Du et al., 2016; Haboudane et al., 2004).  This approach provides 

limited information about plant condition because it does not take into account within canopy 

variation in neither plant traits (Blackburn, 1998; Lemaire & Gastal, 1997; H. Li, Zhao, Yang, & 

Feng, 2015) nor illumination patterns (Mercado et al., 2006).  Vegetative age and development 

stage confound the predictive power of spectral data (Elsayed et al., 2011; Fiorani, Rascher, 

Jahnke, & Schurr, 2012; Zarco-Tejada et al., 2005).  Standardizing sampling positions for HS 

point-collections (V. Ciganda, Gitelson, & Schepers, 2008; Yuan et al., 2016) and designing multi-

angled metrics (He et al., 2016) are strategies to mitigate the impact of non-uniform canopy 

spectra.  Despite its potential to obfuscate HS signals of plant health and distress, the literature 

does not characterize variance in spectral reflectance along vertical canopy profiles, (Gara, 

Darvishzadeh, Skidmore, & Wang, 2018; Gara, Skidmore, Darvishzadeh, & Wang, 2019; H. Li, 

Zhao, Huang, & Yang, 2013; H. Li et al., 2015; Ye et al., 2018).  A knowledge gap exists in that 
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spectral variability has not explicitly been measured between canopy positions, nor utilized to 

classify crop responses to environmental stresses.   

The following research aimed to directly leverage HS variability within the highest five 

nodes of soybean plants (Glycine Max) to detect drought and nitrogen stress treatments.  Soybean 

was investigated due to the species’ ubiquity in contemporary agriculture, and tissue biochemical 

concentrations were established via High-performance liquid chromatography (HPLC) analysis of 

extract separations and Partial Least Squares Regression (PLSR).  While prior work has scaled 

leaf-level data by its cumulative LAI (Gara, Skidmore, et al., 2019), in this experiment spectra are 

directly compared between node positions with spectral angle measurements (SAM) and percent 

difference between NDVI to represent commonly utilized VIs.  Single NDVI values and ratios 

between node positions are compared in efficacy at discerning each of the treatment groups using 

post-hoc testing.  Finally, Linear Discriminant Analysis (LDA) classifiers built on relative 

reflectance between node positions are compared against analogous models built on point-view 

spectra.   
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2.  MATERIALS AND METHODS 

2.1 Experimental Design   

In 14-1 of the Lily Hall of Life Sciences Greenhouse at Purdue University, dry-down and 

nitrogen deprivation treatments were executed in a factorial experimental design in replicates of 

12.  Williams 82 soybean plants (Glycine Max) were grown in randomized block without 

Rhizobium inoculation in Berger soilless media (coarse sphagnum peat moss (70-75%), perlite, 

composted sphagnum peat moss, and vermiculite).  Control samples were watered to saturation 

with one liter of nutrient solution every four days, and on the data collection day.  Fertilization 

was delivered with ICL 20N-1.3P-15.8K Specialty Fertilizers solution using reverse osmosis water 

at a concentration of 150 N, 9.8 P, 119 K, 12 Mg, 21 S, 1.5 Fe, 0.4 Mn and Zn, 0.2 Cu and B, and 

0.1 Mo mg/L, with 61% nitrate and 39% ammoniacal sources.  Using 0.734 gallon pots with a 

diameter of 16.2 cm, this fertilization is equivalent to 72.8 kg N/hectare and 36.4 kg N/hectare 

respectively for control and nitrogen-deprived treatments.     

Dry-down lasted for 10 or 11 days, beginning when most of the plants were at V5 maturity.   

Visual inspection monitored for pests, which did not emerge over the experiment.  Greenhouse 

temperature maintained within 23.9-32.2°C over the 32 days growing period extending from 

planting on October 6th, 2019 to the data collection days on November 7th and 8th 2019.  Five 

equally spaced 500W halogen lamps supplemented lighting from 6:00am to 8:00pm.   

2.2 HS Measurements  

A Spectra Vista Corporation (SVC) HR-1024 spectroradiometer captured samples’ point 

measurements.  Using a leaf clip, two spectra were collected from the center trifoliate at the highest 

five nodes per plant to be averaged together, resulting in 235 point-view spectra.  White references 

were taken every six samples.  The sensor has spectral resolution from 350 nm to 2500 nm with 

respective intervals of 1.5 nm, 3.8 nm, and 2.5 nm for the 350-1000 nm, 1000-1890 nm, and 1890-

2500 nm regions. Spectra were interpolated into 1.0 nm steps.  NDVI was computed for each point-

sampling position as (R800 – R650)/( R800 + R650).  Analysis was limited to the first trifoliate leaves 

from Nodes 1-4 from the top, excluding the highest due to challenging sampling logistics and 
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higher noise.  Within each plant, SAMs were computed exhaustively between node position 

spectra as in Kruse et al. 1993.  Spectral angle between spectrum can by calculated with the 

following formula, where y and r are sources with reflectance values in bands from i to n:  

𝛼 = cos−1
∑ 𝑦𝑖𝑟𝑖
𝑛
𝑖=1

√∑ 𝑦𝑖
2𝑛

𝑖=1 √∑ 𝑟𝑖
2𝑛

𝑖=1

 

Each datum was labeled based on the source leaflet’s position from the highest node of the 

plant, inspired by the Lindenmayer naming convention (Prusinkiewicz, 1998).  This system is 

suited to soybean’s anatomical plasticity and applicable to indeterminate, determinate, and semi-

determinate varieties.     

2.3 Reference Measurements 

Determining total nitrogen content and the concentrations (mg/g DW) of neoxanthin, 

violaxanthin, lutein, zeaxanthin, chlorophyll a&b, and B-carotene in tissue samples validated the 

effects of the nitrogen deprivation and drought stress.  For N and pigment concentrations, 118 and 

116 tissues were processed for concentrations, respectively.  This set of samples represented each 

node position and treatment combination.  Referenced leaves were then used to generate a PLSR 

models per chemical to predict the concentrations of the rest of the spectral measurements. 

Standard analytical determination of foliar carbon and nitrogen was performed using a 

Thermo Finnigan Flash 1112 elemental analyzer (San Jose, CA, USA). Pigments were quantified 

via HPLC following Cotrozzi et al (2016). Briefly, 50mg of lyophilized leaf material was 

homogenized with 1mL HPLC-grade methanol in a 2mL microtube.  After incubating overnight 

at 4°C in darkness, samples were centrifuged for 15 min at 15,000 rpm. Supernatant was filtered 

through a 0.2 um Ministart SRT15 aseptic filter into amber HPLC vials for assessment and then 

run on a Shimadzu Prominence HPLC system with a PDA detector. Pigments were eluted with a 

solvent of 75% acetonitrile, 25% methanol for 14 minutes followed by a 1.5 linear gradient to a 

solvent of 68% methanol, 32% ethylacetate.  The second solvent ran for another 14.5 minutes 

followed by a 2-minute linear gradient back to the first solvent for 5 minutes to equilibrate the 
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column.  The flow rate was 1 mL/min with an injection volume of 25 µL, and pigments were 

identified based on their absorbance at 445 nm compared to pure standards.   

Finally, the dry-down treatment was validated by deriving relative water content (RWC) 

per plant from tissue collected from the third highest node.  This investigation acknowledges that 

these greenhouse results will not be directly transferrable to field hyperspectral data nor modern 

germplasm lines.  Etiolation observed in samples may have affected spectral and chemical trends.  

2.4 Statistical Tests 

Matlab R2019a and The Field Spectroscopy Facility (FSF) Post Processing Toolbox 

imported, referenced, and delivered the spectroradiometer data.  Python 3.6 scipy, sklearn, and 

matplotlib generated all visualizations and statistical analysis.  The following methods and tests 

served to support the validation and evaluation of the experiment and its findings.  Alpha was set 

to 0.05 and bootstrapping for mean values was set to 1000 resamples for 95% confidence intervals.   

2.4.1 Referencing Tissue Photopigment and Nitrogen Concentrations 

Photopigment concentrations were required for each imaged location in order to evaluate 

the significance of their relationships with treatment and node height.  For chemical concentration, 

PLSR models built on established extracts and their spectra predicted the concentrations from the 

spectra of unreferenced samples (Wold, Ruhe, Wold, & Dunn, 1984; Wold, Sjostrom, & Eriksson, 

2001).  PLSR reduces the highly-dimensional spectra into latent variables which best predict the 

dependent pigment concentrations (Wegelin, 2000).  Each model was refined using nested cross-

validation (20 repetitions each) to tune to the optimal number of latent variables and generate 

train/test explained variance and root mean squared error (RMSE). 

2.4.2 Quantify Significant Biochemical between Nodes and Treatments 

Welch’s ANOVA was used to test whether tissue concentrations were uniform across node 

heights or treatment groups.  This test compares the means of groups, and is used on balanced, 

approximately normal data with heterogeneous variance between groups.    
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2.4.3   Evaluate Spectral Variability Pairwise Comparisons with Concentrations and VI Data 

with respect to Node Position and Treatment 

Across treatments and node positions, a 3-way ANOVA tested the uniformity of NDVI 

intensities.  When evaluating with respect to only treatment or node position, NDVI and NDVI 

ratios were evaluated with Welch’s ANOVA.  Following a rejected null hypothesis from a Welch’s 

ANOVA test, post-hoc Tamhane’s T2 tests identified which pairwise comparisons were 

significantly different between canopy positions or between treatment groups.  Tamhane’s T2 test 

conservatively evaluates data that is approximately normal with different variance between 

compared groups.  

2.4.4 Classify Treatments based on Point Spectra or Relative Reflectance Spectra 

Multiclass LDA models were trained on either spectra point-measurements or relative 

reflectance between various node positions, which emphasized intra-canopy spectral variability. 

These nonparametric classifiers performed dimensionality reduction on the spectra via singular 

value decomposition to maximize the distance between treatment groups in a projected linear 

subspace (Hastie, Tibshirani, & Friedman, 2008).  Each classifier was refined using nested cross-

validation (20 repetitions each) to tune based on F1-score and track precision, recall, accuracy, and 

kappa performance metrics.  Confusion matrices summarized the classification performance across 

the treatments.  
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3.  VALIDATION 

3.1 Biochemical Concentrations over Node Positions  

Chemical and RWC referencing characterized 47 plants (one sample died before data 

collection) to validate the impacts of the nitrogen-deprivation and dry-down treatments.  While 

RWC was collected for each plant, PLSR completed the full set of photopigment and nitrogen 

concentrations with the unreferenced positions’ spectra.  

Nonparametric tests were used because homogeneity of variance was violated.  Normal 

QQ plots deemed each concentration dataset acceptably normal, though each concentration and 

RWC with respect to treatment rejected homogeneous variance with p = 1.1e4 and p = 3.7e4 

respectively from Levene’s Test.   

Table 1 summarizes the performance of the optimized chemical concentration PLSR 

models.  Modeling ChlA/ChlB generated high RMSE (test = 1.43 +/- 1.45) with only 0.03 +/- 0.10 

explained variance.  To contrast, the model for nitrogen percent is comparable to the work of 

Bruning et. al (2019) who regressed using top-view HS data (400-2500 nm) to get validation R2 

and RMSE scores of 0.60 and 0.43 respectively.   
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Table 1: PLSR Train and Test Cross Validation Performance Metrics 

Metric Neoxanthin 
(mg/g DW) 

Violaxanthin 
(mg/g DW) 

Lutein (mg/g 
DW) 

Zeaxanthin 
(mg/g DW) 

Chlorophyll 
a+b (mg/g 
DW) 

Chlorophyll 
a/Chlorophyll 
b 

B-carotene 
(mg/g DW) 

Nitrogen (%) 

NLV 4 3 3 5 4 2 3 16 
Train Explained Var. 0.67 (+/- 0.07) 0.42 (+/- 0.06) 0.65 (+/- 0.07) 0.75 (+/- 0.10) 0.57 (+/- 0.10) 0.10 (+/- 0.04) 0.42 (+/- 0.09) 0.96 (+/- 0.02) 

Test Explained Var. 0.55 (+/- 0.37) 0.25 (+/- 0.25) 0.57 (+/- 0.25) 0.31 (+/- 1.18) 0.46 (+/- 0.28) 0.03 (+/- 0.10) 0.44 (+/- 0.26) 0.20 (+/- 2.90) 

Train RMSE 0.03 (+/- 0.01) 0.02 (+/- 0.01) 0.20 (+/- 0.07) 0.01 (+/- 0.01) 2.29 (+/- 0.86) 1.45 (+/- 0.95) 0.71 (+/- 0.29) 0.17 (+/- 0.10) 

Test RMSE 0.03 (+/- 0.02) 0.02 (+/- 0.01) 0.22 (+/- 0.13) 0.01 (+/- 0.01) 2.48 (+/- 1.49) 1.43 (+/- 1.45) 0.67 (+/- 0.48) 0.80 (+/- 1.59) 

NLV is Number of Latent Variables 
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The complete chemical concentrations dataset is displayed in Figure 1.  When evaluated 

within treatments and along nodes with Welch’s ANOVA, concentrations are significantly non-

uniform for except for nitrogen percent in irrigated groups, B-carotene in the drought-stress 

treatment, and zeaxanthin in any of the treatment groups.  B-carotene concentrations may have 

increased in the drought conditions due to accumulation in tissues due to stunting.  When 

evaluating with Welch’s ANOVA at each node position, the only concentrations which did not 

vary with respect to treatment were neoxanthin at nodes 3 and 4 as well as ChlA/ChlB at node 2.  

The ChlA/ChlB model’s weak performance precluded researchers to not rely on its predictions.    

 

 

Figure 1: PLSR generated photopigment and nitrogen concentrations were generally 

significantly non-uniform  per treatment and node positions according to Welch's ANOVA.  

Reduced nitrogen (%) and total Chl validate the nitrogen stress, while elevated zeaxanthin, 

and lutein validated the drought-stress. 
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Along analogous tissues subjected to the nitrogen-stress, overall chlorophyll concentration 

and percent nitrogen were reduced. This behavior validated the nitrogen deprivation, as it is typical 

of nutrient deprivation (Fang, Bouwkamp, & Solomos, 1998; Liu et al., 2009).  Furthermore, 

nitrogen’s apparent non-uniform descending trend is supported in the literature, where vertical 

nitrogen concentrations are tied to LAI (Grindlay, 1997; Hirose & Werger, 1987; Lemaire & 

Gastal, 1997; Pons, Schieving, Hirose, & Werger, 1990; Shiraiwa & Sinclair, 1993) 

As displayed in Figure 2, RWC was significantly different between the irrigated and 

drought-treated groups.  Water-stress was further validated in the significant increase in 

concentration of xanthophyll pigments zeaxanthin and lutein with respect to control as protections 

against oxidative stress (Altangerel et al., 2017; Havaux, 1998; Jaleel et al., 2009).  

 

 

Figure 2: RWC per treatment was visibly and significantly distinct.  Each treatment’s 

RWC was respectively significantly indistinguishable and distinct from their shared and 

opposed irrigation regimens.   

 

  

* 

** 

** 

** 

** 

*Significantly distinct by Welch’s ANOVA  
**Significantly unique by Tamhane T2’s Test 
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4.  RESULTS AND DISCUSSION 

4.1 Spectral variability across node positions  

SAMs were generally greater between nodes that were further apart, but treatment-specific 

responses appeared in the magnitudes.  Across intra-canopy comparisons shown in Figure 3, 

drought-stressed spectra vary less between node positions than in the other treatments, even at the 

most extreme pairings where the data is more variable (this is explicitly presented in Table 2).   

 

Figure 3: Spectral divergence between nodes of greater relative age difference or distance 

trends to be greater.  These magnitudes, however, are significantly influenced by treatment 

when comparing nodes 1 vs. 2 and nodes 1 vs. 3.  

  

* 

* 

** ** 
** 

*Significantly distinct by Welch’s ANOVA  
**Significantly unique by Tamhane T2’s Test 
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Table 2:  Mean SAM and Standard Deviation between Node Positions per Treatment 

Node 
Comparison 

CNTRL  NS  NSWS  WS  

1 vs. 2  0.044, 0.025 0.045, 0.013 0.038, 0.024 0.028, 0.011 
1 vs. 3  0.057, 0.018 0.049, 0.014 0.045, 0.026 0.024, 0.014 
1 vs. 4  0.048, 0.014 0.046, 0.015 0.049, 0.028 0.036, 0.018 
2 vs. 3 0.025, 0.015 0.020, 0.009 0.014, 0.006 0.014, 0.006 
2 vs. 4 0.028, 0.012 0.018, 0.010 0.018, 0.009 0.024, 0.009 
3 vs. 4 0.021, 0.011 0.019, 0.010 0.014, 0.005 0.020, 0.011 

 

Node position’s influence on SAM magnitude could be partially explained by tissues’ 

relative maturities, as developing mesophilic tissue influences the path and absorption of light, 

fundamentally shifting vegetation’s reflectance (Rapaport, Hochberg, Rachmilevitch, & Karnieli, 

2014).  Leaf age has been shown to influence abiotic and biotic stress responses, which inform HS 

data collection methods (Berens et al., 2019; Elvanidi, Katsoulas, & Kittas, 2018).  Additionally, 

the dynamics of photosynthesis with respect to younger, more intensely illuminated tissues 

compared to those with more diffuse illumination could also be culpable (Gara, Darvishzadeh, 

Skidmore, Wang, & Heurich, 2019; Mercado et al., 2006).  To model canopy compositions, sensor 

positioning balances the need to capture representative canopy data (Elvanidi et al., 2018; Ye et 

al., 2018) with maintaining signal over noise (Martínez-Martínez et al., 2018).     

4.2 Efficacies of intra-canopy combination VIs at distinguishing abiotic distress treatments  

SAM reports the magnitude of spectral variability, but without specifying which 

chemometrically relevant wavelengths are responsible.  As an illustrative example of potential VI 

non-uniformity, NDVI was plotted with respect to treatment and node position, displayed in Figure 

4A.  Results from a 3-way ANOVA evaluated the relationship of watering, fertilizing, and node 

position as features with respect to NDVI in Table 3.  Water treatment and node height were 

significant factors individually, though the nitrogen treatment was significant in its interaction with 

irrigation or with irrigation and node height.  With these findings, NDVI does not appear equally 

sensitive to water and nitrogen stresses.  

 



22 

Table 3:  Node height, nitrogen treatment, and water treatment relationships 

with NDVI intensity 

Feature Sum of 
Squares 

DoF F P-value 

Intercept 8.111 1 21648.68 7.91e-183 
C(Water) 7.77e-3 1 20.731 9.97e-6 

C(Nitrogen) 2.43e-4 1 0.649 0.422 
C(Node Height) 0.010 3 9.303 9.83e-6 

C(Water):C(Nitrogen) 3.86e-3 1 10.300 1.59e-3 
C(Water):C(Node Height) 0.022 3 19.929 3.91e-11 

C(Nitrogen):C(Node Height) 2.66e-4 3 0.237 0.871 
C(Water):C(Nitrogen):C(Node Height) 3.58e-3 3 3.183 0.025 

 

Within each treatment group, post-hoc analysis after a failed Welch’s ANOVA reveal 

significant variability at specific node comparisons (Figure 4B).   In stressed treatments, 

comparisons between the highest and lowest tissues were significant, and the greatest proportion 

of significant NDVI node comparisons came from the nitrogen-stressed samples.  The 

directionality of NDVI changes between nodes in nitrogen-stressed samples were mirrored in the 

control, but the magnitude made the stress response distinct.  Water-stressed treatments shared a 

characteristic NDVI decline in from the highest to lowest canopy positions.   
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Figure 4: Nonlinear trends appear in NDVI intensity along node positions, which 

include changes in rank between treatments depending on node height.  Error bars 

are 95% CI (A). Significant changes in NDVI intensity between node positions 

characterize sample responses to drought and nitrogen stresses via magnitude and 

directionality of the changes (B).        

 

Nitrogen-stress is likely so apparent in post-hoc testing due to NDVI’s constituent 

wavelengths NIR and red being stronger correlated to key nitrogen-incorporating pigments than 

to a direct water absorption feature (Peñuelas, Josep; Filella & Gamon, 1995).   

The significant NDVI fluctuations within canopy were tested as a signal to separate 

treatment groups with additional post-hoc testing.  Single and ratios of NDVI readings 

distinguished between the treatments to variable efficacy, summarized in Figure 5.  The only 

NDVI point-measurement effective at differentiating all treatments was at the fifth node from the 

top (node 4).  Alternatively, ratio NDVI metrics were also effective (Node 1 vs. Node 3, Node 1 

vs. Node 4) and to greater statistical significance.    

  

Mean NDVI Percent Difference between Node 
Positions 

A)                                                                                          B) 
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Figure 5: Post-Hoc significance of NDVI at discerning between treatments as single 

measurements or ratios between node positions.  Point-view NDVI and combination NDVI 

metrics can significantly discern between all of the treatments, though the ratio metrics do 

so to greater statistical significance. 

 

These results indicate that the variability in NDVI intensity between canopy positions can 

be more effective at discerning treatment groups than point measurements.  Individual locations 

can be effective, but the lurking effects of canopy position are observed in the literature.  Even 

when controlling sampling positions for collecting point view data, it is possible vegetative 

maturation can influence the collected spectra in addition to environmental stresses (Herrmann et 

al., 2018; Rapaport et al., 2014; Yuan et al., 2016) 

1.3 LDA Classification using single-measurements spectra or relative reflectance between 

positions 

Built on individual spectra or ratios between pairs of positions, multiclass LDA models 

were tuned using nested cross-validation (repeats=20) with an external cross-validation, selecting 

for F1-Score.  The performance metrics from outer CV with their 95% confidence intervals are 

summarized in Table 4, where classifiers built on data from Node 1, Node 3, or their ratio 

performed superiorly.  

  

Significance of Individual and Ratio NDVI Metrics at Distinguishing Treatments 
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Table 4:  LDA Performance metrics with 95% CI: Overall and per Treatment 

Node Data Precision Recall F1-Score Accuracy Kappa 

1 vs. 3 0.83 (+/- 0.22) 0.83 (+/- 0.22) 0.81 (+/- 0.23) 0.82 (+/- 0.21) 0.75 (+/- 0.21) 

1 0.82 (+/- 0.15) 0.81 (+/- 0.17) 0.79 (+/- 0.19) 0.80 (+/- 0.21) 0.73 (+/- 0.21) 

3 0.78 (+/- 0.30) 0.80 (+/- 0.27) 0.76 (+/- 0.29) 0.77 (+/- 0.26) 0.69 (+/- 0.26) 

1 vs. 4 0.71 (+/- 0.23) 0.70 (+/- 0.22) 0.67 (+/- 0.20) 0.72 (+/- 0.19) 0.61 (+/- 0.19) 

2 0.70 (+/- 0.21) 0.71 (+/- 0.13) 0.66 (+/- 0.18) 0.68 (+/- 0.17) 0.57 (+/- 0.17) 

1 vs. 2 0.66 (+/- 0.19) 0.64 (+/- 0.24) 0.61 (+/- 0.20) 0.64 (+/- 0.16) 0.51 (+/- 0.16) 

4 0.64 (+/- 0.25) 0.66 (+/- 0.26) 0.61 (+/- 0.23) 0.63 (+/- 0.24) 0.51 (+/- 0.24) 

2 vs. 3 0.62 (+/- 0.25) 0.59 (+/- 0.25) 0.56 (+/- 0.25) 0.61 (+/- 0.24) 0.47 (+/- 0.24) 

2 vs. 4 0.54 (+/- 0.18) 0.54 (+/- 0.22) 0.50 (+/- 0.20) 0.54 (+/- 0.20) 0.38 (+/- 0.20) 

3 vs. 4 0.33 (+/- 0.26) 0.32 (+/- 0.24) 0.28 (+/- 0.20) 0.30 (+/- 0.21) 0.09 (+/- 0.21) 

 

The Node 1/Node 3 classifier performed the best overall, followed by the Node 1 classifier.  

In Table 5, confusion matrices for both classifiers illustrate how the Node 1 classifier was more 

confused in detecting the water stressed samples.  While the Node 1/Node 3 classifier was less 

effective at identifying the nitrogen stressed samples, it had lower or comparable variability for 

the rest of the treatments.  

 

Table 5: Mean Confusion Matrices and confidence intervals for classifiers 

built on Node 1 and Node 1/Node 3 spectra 

Node 1/Node 3 
   

 
CNTRL WS NS NSWS 

CNTRL 0.912 (+/- 0.234) 0.0 (+/- 0.0) 0.065 (+/- 0.22) 0.022 (+/- 0.136) 
WS 0.0 (+/- 0.0) 0.837 (+/- 0.368) 0.0 (+/- 0.0) 0.163 (+/- 0.368) 
NS 0.056 (+/- 0.23) 0.0 (+/- 0.0) 0.909 (+/- 0.3) 0.035 (+/- 0.23) 
NSWS 0.077 (+/- 0.27) 0.262 (+/- 0.472) 0.012 (+/- 0.108) 0.599 (+/- 0.578) 

Node 1 

 CNTRL WS NS NSWS 

CNTRL 0.912 (+/- 0.326) 0.012 (+/- 0.108) 0.025 (+/- 0.218) 0.05 (+/- 0.254) 
WS 0.02 (+/- 0.174) 0.736 (+/- 0.502) 0.03 (+/- 0.146) 0.214 (+/- 0.472) 
NS 0.0 (+/- 0.0) 0.0 (+/- 0.0) 0.978 (+/- 0.136) 0.022 (+/- 0.136) 
NSWS 0.153 (+/- 0.494) 0.22 (+/- 0.436) 0.01 (+/- 0.088) 0.617 (+/- 0.548) 

 

 

 



26 

Figure 7 presents the ratio of spectra between Nodes 1 and 3, in which relative reflectance 

per treatment reveals distinctive features.  By emphasizing spectral variability resulting from 

treatment, sampling groups were separated as in Matsuda et al. 2012.  It is possible that the relative 

reflectance model’s advantage was by capturing non-uniform hyperspectral signals in canopies 

(Römer et al., 2012) that could be tied to age-mediated responses to stresses (Berens et al., 2019).  

In the literature, the usefulness of HS data collected from canopies compared to leaf measures 

depends how much of the plants are in view (Herrmann et al., 2018; Martínez-Martínez et al., 

2018; Mishra et al., 2017).  SAMs between Nodes 1 and 3 were among the largest overall as they 

represent distinct portions of the canopy, though the water/nitrogen stressed samples had greater 

variability at this comparison.  It is possible this unequal noise contributed to the relative 

reflectance model’s confusion in classifying the water/nitrogen stressed samples compared to the 

Node 1 model.   

 
Figure 6: The transformed Node 1 vs. Node 3 spectra had distinctive shape, but overall 

greater variance over the range and within treatments.  Node 1 data, on the other hand, 

had observably greater variability in the drought treatments compared to the irrigated. 
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5.  CONCLUSIONS 

As phenotyping technologies become ubiquitous in plant breeding and farming operations, 

it is our obligation to account for significant and known signal noise in our methods.  In this project, 

soybeans were subjected to nitrogen and drought stress were distinguished apart by leveraging HS 

heterogeneity collected from the highest nodes.  SAMs and percent NDVI differences between 

node positions quantified spectral heterogeneity with respect to treatments, and spectral stress 

responses displayed characteristic non-uniform, directional, and significant NDVI intensity trends.  

Leveraging spectral variability revealed that NDVI ratios proved more statistically effective at 

discerning treatments than individual leaf NDVI values and a LDA classifier built on relative 

reflectance delivered more uniform classification performance.  This work will inform and justify 

the design of organ-level HS segmentation and more effective sensing methods to detect plant and 

canopy health statuses.  Understanding the signal in canopy spectral variability is an opportunity 

to develop more comprehensive phenotyping tools to swiftly glean actionable information on 

expressed crop stresses and resiliencies. 
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