
A SOFTWARE VISUALIZATION-BASED APPROACH FOR

UNDERSTANDING AND ANALYZING INCREMENTAL

IMPLEMENTATIONS OF COMPLEX GRAPH-BASED ALGORITHMS
by

Jiaxin Sun

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

Department of Computer Graphic Technology

West Lafayette, Indiana

May 2020

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. David Whittinghill, Chair

Department of Computer Graphic Technology

Dr. Tim McGraw

Department of Computer Graphic Technology

Dr. Esteban Garcia Bravo

Department of Computer Graphic Technology

Approved by:

Dr. Nicoletta Adamo-Villani

Head of the Graduate Program

2

This thesis is dedicated to my advisor Dr.David Whittinghill for his professional guidance and

patient revision, Dr.Tim McGraw’s great help on the revision of my thesis and Dr.Esteban Garcia

Bravo’s creative suggestions on the design of my system.

3

ACKNOWLEDGMENTS

First, I can’t thank my advisor Dr.David Whittinghill more. He spent huge effort in

helping me find an interesting and valuable research topic and shape it to be an appropriate thesis.

I had a great experience and acquired a lot of innovative knowledge while doing the research

because of his company along.

Besides, I sincerely appreciate Dr.Tim Mcgraw’s patient revision of my thesis. The quality

of my thesis is greatly increased with the help of his detailed revision. In addition, Dr.Esteban

Garcia Bravo offered me very creative and innovative suggestions and insight on the design of my

system. It’s impossible for my system to have good usability and cool user interface.

Last but not least, my gratitude goes to students in Computer Graphics Technology who

actively participated in my testing of the AV system. Their valuable responses contribute to the

interesting conclusion of this thesis

Author

Jiaxin Sun

4

TABLE OF CONTENTS

LIST OF TABLES . 7

LIST OF FIGURES . 8

LIST OF ABBREVIATIONS . 9

ABSTRACT . 10

CHAPTER 1. INTRODUCTION . 11

1.1 Problem . 11

1.2 Significance . 12

1.3 The Purpose . 12

1.4 Hypotheses . 12

1.5 Assumptions . 13

1.6 Delimitations . 13

1.7 Limitations . 13

1.8 Definitions . 14

1.9 Summary . 14

CHAPTER 2. REVEIW OF LITERATURE . 15

2.1 Definition of graph-based algorithm and its educational methods 15

2.2 Introduction to knowledge visualization . 17

2.3 Existing graph-based algorithm visualization 18

2.3.1 AV system in general . 18

2.3.2 Graph-based AV system . 21

2.4 Problems of existing graph-based AV systems 23

2.4.1 Lean towards easy topic . 23

2.4.2 Lacking compiler-based AV system 25

2.5 Summary . 26

CHAPTER 3. RESEARCH METHODOLOGY . 27

3.1 Algorithm Chosen to Visualize . 27

3.2 Design of the graph-based visualization system 28

3.2.1 User journey map . 29

5

3.2.2 Prototype Design . 30

3.2.3 Preliminary Testing and refinement 31

3.2.4 System Design . 32

3.3 Development of the graph-based visualization system 35

3.3.1 Technologies utilized . 35

3.3.2 System Components . 36

3.4 Testing . 39

3.4.1 Population and Sample . 39

3.4.2 Variables . 39

3.4.3 Method . 40

CHAPTER 4. RESULT . 42

4.1 Confidence Result . 42

4.2 Competence result . 43

4.3 Usability result . 44

CHAPTER 5. CONCLUSION AND DISCUSSION . 46

5.1 Conclusion . 46

5.2 Discussion . 46

REFERENCES . 49

APPENDIX A. QUESTIONNAIRE . 51

6

LIST OF TABLES

2.1 Counts of AV systems on different data structures and algorithms 20

4.1 Collections of suggestions . 45

7

LIST OF FIGURES

1.1 Representation of a tree in leetcode . 12

2.1 Examples of tree and graph data structure . 15

2.2 Example of A* algorithm . 16

2.3 Examples of AV systems in each class . 19

2.4 Map based AV system with real world data (Teresco et al., 2018) 21

2.5 XML-based AV system (Karavirta, 2007) . 22

2.6 A example of algorithm question in real technical interview 24

2.7 Incomplete scenarios of AV usage in education (Hundhausen, Douglas, & Stasko,

2002) . 25

3.1 The frequency of Critical Connection problem (need Tarjan-Bridge algorithm to solve)

in leetcode among 1300 problems . 28

3.2 User Journey Map of algorithm learning process 29

3.3 Personas . 30

3.4 Prototype design . 31

3.5 System Design . 32

3.6 Visualization Route . 34

3.7 Create Route . 35

3.8 Visualization Page . 37

3.9 Message explaining why the algorithm claim this edge as a bridge 38

3.10 Create Page . 38

4.1 Result on understanding algorithm . 42

4.2 Result on understanding implementation . 43

4.3 Result on competence questions . 44

4.4 Usability rating result . 44

8

LIST OF ABBREVIATIONS

AV Algorithm Visualization

9

ABSTRACT

Algorithm has always been a challenging topic for students to learn because of its high level of

abstraction. To provide visual aid for algorithm education, many algorithm visualization systems

have been designed, developed, and evaluated for the last two decades. However, neither the

topics covered nor the interactivity of most AV systems are satisfying. This problem is presented

in detail in chapter 2. As a result, this research aims to design, implement and evaluate a

compiler-based algorithm visualization system on complex graph algorithm implementation with

the assumption that it can help students build both confidence and competence in understanding

it. This system is designed and developed according to the method in chapter 3. To test the

hypothesis, a comparison experiment on 10 students in the Computer Graphics Technology

department is conducted. The complete test protocol can be found in chapter 3.4, and the result

can be found in chapter 4. Based on the limited number of subjects’ testing data, a rough

conclusion is made that this AV system has only a slight positive effect on subjects’ confidence

and competence in understanding complex graph algorithm’s implementation, and its usability is

acceptable. However, a concrete conclusion can only be reached if the testing is conducted to a

larger group of subjects. In addition to the objective testing data, some interesting subjective

observations, which are listed in chapter 5.2 are also made while doing the test. These

observations indicate that algorithm visualization may more of a tool to examine users’

understanding of the implementation than a tool to help them learn it.

10

CHAPTER 1. INTRODUCTION

Algorithm education has always been a tough task for novice(Vrachnos & Jimoyiannis,

2014), especially for advanced algorithm education. In order to solve this challenge, knowledge

visualization technologies have been applied to this area, and systems called ”algorithm

visualization system” have been experimented and developed over the years. However, these AV

systems have failed to catch the mainstream of algorithm education for some reasons.

(Hundhausen et al., 2002) This chapter will present this problem and introduce the purpose of

this research, which is to develop a compiler-based AV system to visualize advanced graph-based

algorithms in order to improve this failure.

1.1 Problem

AV systems are created to serve as a visual aid for computer science education. However,

their pedagogy effect is far from satisfying. First, most AV systems are of low quality and only

cover easy algorithms problems.(Shaffer et al., 2010) To master algorithm, students need a vast

amount of practicing of various complex algorithm problems. Since these real-world algorithm

problems are not included in AV systems, it’s natural neither educators nor learners will utilize

AV systems. The second severe problem is that most AV systems are interface-based or

script-based. (Urquiza-Fuentes & Velázquez-Iturbide, 2009) There are very few compiler-based

systems that allow users to visualize their solution to the algorithm in real programming

languages. For algorithm education, the final goal is that students are able to design and

implement solutions to solve real algorithm problems, and a compiler-based system is very

effective for helping students understand and analyze their solution. Without compiler-based

visual aid, students usually have a hard time debugging and optimizing their solutions. A picture

is shown below to illustrate how they debug solution without visual aid. The lack of

compiler-based AV systems is a critical reason for the unsatisfying state of the AV system.

11

Figure 1.1. Representation of a tree in leetcode

1.2 Significance

In 2015 there are 216,228 students graduate from computer science, and the number keeps

growing. Algorithm is a compulsory course for every student in computer science. Not only

students in computer science but some students in majors such as electrical engineering, electrical

computer engineering are also required to learn algorithms. Therefore an AV system that can help

students understand and analyze algorithms will be beneficial to a vast amount of students.

1.3 The Purpose

The purpose is of this research is to design, develop and evaluate a compiler-based AV

system which can visualize complex graph-based AV system and testing whether it can help

students understand and analyze their implementations to complex algorithm problems or not.

1.4 Hypotheses

This research is conducted based on the hypothesis that the algorithm visualization has a

significant positive effect on helping students build confidence and competence in understanding

complex graph algorithm’s implementation. Besides, it should also have good usability.

12

1.5 Assumptions

The subjects in the testing will be active and engaged while doing the testing.

1.6 Delimitations

The delimitations of this reserach are listed below:

• The potential users of this AV system will only be people who already have received some

levels of algorithm education before.

• Instead of being able to visualize all graph algorithms’ implementation, this algorithm

visualization system will only visualize Tarjan-Bridge algorithm. The reason to choose this

algorithm can be found in chapter 3.1.

• This system will only compile Javascript based solution.

• This system will only be developed in windows operating system.

• The testing of this system will only be conducted to a group of 10 subjects in Computer

Graphics Technology department due to the fact that the number of students with algorithm

education in this department is not large.

1.7 Limitations

The ideal subjects of this research will be students who have taken an algorithm course

before and are not exposed to the Tarjan algorithm. In addition, they are supposed to have a

similar level of algorithm education and learning ability. However, these two metrics are very hard

to measure. Therefore, there’s a possibility that subjects may actually differ a lot in algorithm

ability and learning ability. This is a big limitation of this research that may affect the result of it.

13

1.8 Definitions

Algorithm visualization is a ”subclass of software visualization concerned with with

illustrating computer algorithms in terms of their high-level operations, usually for the purpose of

enhancing computer science students’ understanding of the algorithms’ procedural behavior.”

(Hundhausen et al., 2002, p. 5)

Compiler-based algorithm visualization system is the one that allows user to compile and

visualize the algorithm implementation in real time.Urquiza-Fuentes and Velázquez-Iturbide

(2009)

Tarjan algorithm is a series of algorithms to find ”strong connected component” in a

directed graph. Tarjan Bridge algorithm is one of them which aims to find the ”bridge” in a

undirected graph using depth first search. (Tarjan, 1972)

1.9 Summary

There is a gap between the need for a compiler-based AV system to visualize complex

algorithm problems and the lack of such systems among existing AV systems. Therefore such a

system will be experimented and developed in this research.

14

CHAPTER 2. REVEIW OF LITERATURE

Visualization technologies have been applied to many domains, and they have already

been applied to algorithm education, and a new domain called algorithm visualization (AV)

appeared two decades ago. Many AV systems have been developed and evaluated for general

educational purposes. In this section, literature is reviewed to study this discipline. First, the

concept of a graph-based algorithm, knowledge visualization, and algorithm visualization are

introduced. Then the state and problem of existing AV systems are found.

2.1 Definition of graph-based algorithm and its educational methods

In computer science, graph is an abstract data structure implemented by a directed graph and

undirected graph. Graph is defined as ”a type of data structure in which pairs of vertices are

connected by edges”.(Anderson, 2012, p. 10) Edges can also be assigned value, and such a graph

is called a weighted graph. Graphs can also be distinguished by whether it contains a cycle or not.

A directed graph without cycles is also known as a tree. The most common trees are binary tree,

binary search tree, AVL tree, and heaps.

(a) Binary tree (b) Undirected graph

Figure 2.1. Examples of tree and graph data structure

15

Graph-based algorithms are algorithms that are developed based on graph data structures.

One of the most typical graph-based algorithm problem is graph traversal. One important

algorithm to traverse the graph is the depth-first-search (DFS) algorithm. DFS algorithm traverses

the graph following the rue that ”always chooses an edge emanating from the vertex most recently

reached, which still has unexplored edges.” (Tarjan, 1972, p. 147) Another classic graph-based

problem is pathfinding. Path-finding is known as ”an important problem for many applications,

including network traffic, robot planning, military simulations, and computer games.” (Yap,

2002, p. 1) It refers to the process of finding a path–sometimes the shortest path– between a node

and a target node in a graph data structure. A* algorithm is the best-known one to solve

pathfinding problem which traverses the graph based on the heuristics distance to the target

node.(Algfoor, Sunar, & Kolivand, 2015) It keeps examining whether the current node is the goal

node while traversing. If it’s the goal node, the algorithm is finished, and the shortest path is

returned, and otherwise, it labels all surrounding nodes for further exploration. (Cui & Shi, 2011)

Figure 2.2. Example of A* algorithm

16

Graph is also considered as a non-linear data structure. Compared with linear data

structures such as array, list, queue, and stack, graph and graph based algorithms need more visual

aid in education because of their spatial complexity. In fact, both educators and learners tend to

draw the graphical representation of trees and graphs when they teach and study this topic.

Therefore a graph-based AV system can be helpful for graph-based algorithm education.

2.2 Introduction to knowledge visualization

Information visualization is defined as ”computer generated interactive graphical

representations of information.” This discipline attracts a vast amount of researchers because

information visualization has the magic to uncover the hidden important and informative patterns

of information. (Ware, 2012) Information visualization techniques are widely applied to vast

amount of areas. Herman, Melançon, and Marshall (2000) made a collection of areas that graph

visualization (here graph refers to a visualization method instead of a data structure) that can be

applied to. They are ”computer system file hierarchy, web site maps and browsing history,

evolutionary trees, phylogenetic trees, molecular maps, genetic maps, biochemical pathways, and

protein functions, object-oriented systems, data-structure, data flow diagrams, real-time systems,

subroutine-call graphs, entity-relationship diagrams, semantic networks, and

knowledge-representation diagrams, project management, logic programming, VLSI, virtual

reality, and document management systems.”(Herman et al., 2000, p. 1) Rohrer and Swing

(1997) presented several web-based types of information that have been visualized: Hierarchical

information such as organization structure, computer file systems, interlinked Web hierarchies,

and communication hierarchies, network information including computer network topology and

network traffic monitoring, content-based document clustering, visual web search, and

information space metaphors. Some of the examples are shown below.

17

One important type of information visualization is knowledge visualization. It’s defined as

”using visual representations to create and transfer knowledge between different individuals.”

(Eppler & Burkhard, 2004, p. 3) It’s growing into an independent discipline because of its ability

to help people to face the rapidly increasing knowledge.(Da & Jianping, 2009) Contero, Naya,

Company, Saorı́n, and Conesa (2005) also identified the importance of visualization in

engineering education as to improve the spatial abilities of students. Knowledge visualization

proofed to be effective in education. For instance, Ifenthaler (2014) developed a web-based

system to analyze natural language and represent graphical knowledge, and the tool proofed to be

reliable and valid.

2.3 Existing graph-based algorithm visualization

Since knowledge visualization technique has successfully applied to many other

educational disciplinary, this chapter will examine the possibility of usage of knowledge

visualization technique on algorithm visualization.

2.3.1 AV system in general

Knowledge visualization techniques have already been applied to visualize algorithms for

years, and an interdisciplinary field between knowledge visualization and computer science

education identified as ”algorithm visualization” appeared for a very long time. Algorithm

visualization is defined as ”Algorithm visualization is a subclass of software visualization

concerned with illustrating computer algorithms in terms of their high-level operations, usually

for the purpose of enhancing computer science students’ understanding of the algorithms’

procedural behavior.” (Hundhausen et al., 2002, p. 5) In fact, algorithm visualization can be

treated as a kind of knowledge visualization, as mentioned in section 2.2 because most AV

systems are developed in order to serve as an algorithm education aid.

18

So far, at least hundreds of AV applications have been developed and evaluated.(Shaffer et

al., 2010) Urquiza-Fuentes and Velázquez-Iturbide (2009) classified program and algorithm

visualization systems into 3 classes based on the types of interactivity: script-based systems,

interface based systems and compiler-based system. Since program visualization is very similar

to algorithm visualization, this classification method can also be applied to algorithm

visualization. Script-based AV systems allow users to interact with the system with script

languages. Interface-based AV systems enable users to interact with the system with user

interface. Compiler-based systems can compile users’ code in real programming languages and

visualize users’ solutions. Some AV systems fit multiple classes. Examples of AV systems of

each class are shown below.

(a) LJV, a script-based data structure

visualization system (Hamer, 2004)

(b) DAVE, a script+interface-based AV system

(Vrachnos & Jimoyiannis, 2014)

(c) A interface-based AV system for debugging

minimum spanning tree Khedr and Bahig

(2017)

(d) SRec, a compiler-based AV system to

visualize recursion (Velázquez-Iturbide et al.,

2008)

Figure 2.3. Examples of AV systems in each class

19

Shaffer et al. (2010) grouped AV systems according to the algorithms visualized. They

studied over 500 AV systems and counted how many AV systems on each algorithm topics.

Table 2.1. Counts of AV systems on different data structures and algorithms
(a) Counts of AV systems on different data

structures (Shaffer et al., 2010)

(b) Counts of AV systems on different

algorithms (Shaffer et al., 2010)

Besides the classification of AV systems, other research studied different aspects of AV

systems. Karavirta and Shaffer (2013) developed a javascript library for algorithm visualization.

Scott Grissom conducted an experiment to find the correlation between the level of student

engagement on AV tool and learning effect.(Grissom, McNally, & Naps, 2003) The AV system

they use is to visualize a simple sorting algorithm. The conclusion from this experiment is that

learning increases as the level of student engagement increases. Hundhausen et al. (2002)

conducted a meta-study on 24 experimental studies of AV and found that how students use AV

system is much more important than the AV system itself.

20

2.3.2 Graph-based AV system

As shown in section 2.3.1, AV systems can be classified by algorithms and data structures

visualized. Graph-based AV systems refer to AV systems focus on visualizing graph data

structures and algorithms based on graph data-structures. Teresco et al. (2018) developed a

map-based AV tool with data from the Travel Mapping project. This AV system aims to visualize

algorithms related to graphs such as sequential search, graph traversals, and Dijkstra’s algorithm.

The most distinguishing aspect of this AV tool is that it used data from the real-world instead of

small, synthetic graphs.

Figure 2.4. Map based AV system with real world data (Teresco et al., 2018)

Khedr and Bahig (2017) created a tool for debugging and learning minimal spanning tree

as shown in figure 2.4.(c). The system has both a debugging mode and learning mode. It provides

users with the explanation of Kruskal algorithm to find the minimum spanning tree from a graph

and use a matrix to represent a graph. Users should choose the correct edge and vertices based on

Kruskal algorithm, and the program will alert users if the edge and vertices are not correct.

21

Karavirta (2007) made an XML-based data structure system for educational purposes. It

allows users to interacts with a graphical representation of data structures with XML languages.

This AV system merely allows users to interact with tree data structures without related

algorithms.

Figure 2.5. XML-based AV system (Karavirta, 2007)

22

2.4 Problems of existing graph-based AV systems

2.4.1 Lean towards easy topic

Although AV has been studied for over two decades and hundreds of AV systems have

been developed (Shaffer et al., 2010), there are still some severe problems. ”Despite the intuitive

appeal of the AV techniques, it has failed to catch on in mainstream computer science education.”

(Hundhausen et al., 2002) One serious problem is that most AV systems tend to cover only easy

topics. (Shaffer et al., 2010), presented the current state of research on AV by studying over 500

AV systems. The research studied their availability, implementation, range of algorithms covered,

dissemination, author, time, existence, and license. The most important conclusion is most AV

systems’ quality is low and the algorithm topics covered are easy topics. Systems that can

visualize easy algorithms are valuable for the novice, but for people with basic algorithm

knowledge and need advanced algorithm education, these systems are not helpful. Especially in

real algorithm interviews, the algorithms questions tend to be much more difficult and complex

than basic algorithm problems covered in existing AV systems, as shown in figure 2.8. For

advanced algorithm problems– especially for graph-based problems – visual aid is very beneficial

for people to understand how algorithm works behind the scene. Unfortunately, so far, the most

popular visual aid for advanced algorithm problems are still traditional visualization, such as

blackboard and paper-based visualization, because they are not covered in current visualization

systems. In fact, most research on AV doesn’t even include the scenario of advanced algorithm

education and preparing for technical interviews in scenarios of usage of AV systems, as shown in

figure 2.9. Therefore a gap is shown between the need for systems that can visualize advanced

algorithm problems for experienced users and the existing AV systems that only cover easy

algorithm problems.

23

(a) Binary Tree Maximum Path Sum problem in leetcode

(b) Visual Explanation of solution to Binary Tree Maximum Path Sum problem

Figure 2.6. A example of algorithm question in real technical interview

24

Figure 2.7. Incomplete scenarios of AV usage in education (Hundhausen et al., 2002)

2.4.2 Lacking compiler-based AV system

The second problem is the lack of compiler-based systems. As shown in section 2.3.1, AV

systems can be classified as script-based, interface-based, and compiler-based AV systems

(Urquiza-Fuentes & Velázquez-Iturbide, 2009). For advanced algorithm education

compiler-based AV systems are more beneficial than the other two types of AV systems since

compiler-based systems are better for the ”changing, construction and presenting engagement

levels of algorithm education”.(Urquiza-Fuentes & Velázquez-Iturbide, 2009, p. 20) However,

there are very few compiler-based AV systems with good quality. Urquiza-Fuentes and

Velázquez-Iturbide (2009) presented a few compiler-based AV-systems : SRec

(Velázquez-Iturbide et al., 2008), MAVIS (Koifman, Shimshoni, & Tal, 2008). SRec is designed

to visualize recursive functions written in java, as shown in figure 2.4(d). The recursion is

visualized with incremental animation, which allows you to play the animation back and forward.

Users need to first mark the recursion function to be visualized in a java file and then run the

visualization system. However, the test case that runs in this AV system is only a function to

calculate the 6th Fibonacci number. With such an easy test case, the system can not prove to be

capable of visualizing complex recursive algorithms. In fact, recursive dynamic programming

algorithm problems are considered to be both popular and difficult among all algorithm problems.

Therefore such an AV system cannot help too much in recursive algorithm education.

25

2.5 Summary

After a systematic study of existing AV systems, two major problems are found: algorithm

topics covered are too easy and lacking compiler-based AV systems. At least in advanced

algorithm education, AV systems are not taken into account because of these two problems.

Therefore the need for developing compiler-based AV systems for advanced algorithms

visualizations emerges.

26

CHAPTER 3. RESEARCH METHODOLOGY

In order to study a software visualization-based approach for understanding and to

analyze incremental implementations of complex graph-based data structures and algorithms, a

system to visualize complex graph-based algorithm problems will be developed, and its design,

development, and evaluation method will be presented in this chapter. First of all, all the

functions and features will be carefully designed based on user experience principles and

processes. A prototype will be designed based on the user journey map and will be examined by

small-scale preliminary testing. After that, the detailed program architecture will be developed,

and libraries and API utilized will be shown and explained.

Finally, a questionnaire-based evaluation will be conducted to examine the effect of this AV system.

3.1 Algorithm Chosen to Visualize

As explained in the delimitation section, only Tarjan-Bridge algorithm’s implementation is

chosen to visualize because it’s impossible to visualize all graph algorithms. It is an important

algorithm in graph theory. As explained in the definition, this algorithm finds a ”bridge” of an

undirected graph. Bridge is a critical connection of a graph, without which the graph will become

separated from connected. Tarjan-Bridge algorithm utilizes depth first search to find bridges in

linear time.

27

Figure 3.1. The frequency of Critical Connection problem (need Tarjan-Bridge
algorithm to solve) in leetcode among 1300 problems

There are 3 major reasons why this algorithm is chosen in this research. First of all,

although there are many AV systems that are designed to visualize the graph algorithm, this

algorithm has not been visualized in any AV system yet. Second, this is a relatively complex

algorithm, and the implementation of it is very tricky. In the coding platform such as leetcode,

people make lots of posts to ask the details of the implementation. Besides, this algorithm is a

very popular interview question. Software engineer applicants of big technology companies, such

as Amazon, have been asked of this question many times. Therefore, as shown in figure 3.1, its

frequency shown in the interview is in the top 5 of all 1300 questions. Based on all the important

facts above, this algorithm is very suitable for this research, and a visualization system for this

algorithm is in need.

3.2 Design of the graph-based visualization system

The design process of this system consists of 4 parts, user journey map, prototype design,

preliminary testing, and system design. They will be described in detail in this chapter.

28

3.2.1 User journey map

The user journey map is conducted in order to find the pain point of the process of

learning algorithm implementation, and the prototype will be designed to solve this pain point.

Journey maps and the personas are shown below. The journey clearly showed that for algorithm

learners, the most time consuming and frustrating process is to debug algorithm errors since the

only visual aid they have is paper. On the other hand, for users with visual aid from AV systems,

the usability of the debugging algorithm is improved significantly. Furthermore, with the visual

aid of AV system, users are more likely to come up with an optimized solution. Therefore, a

compiler-based AV system is necessary, and the prototype should be able to compile users’

solutions and visualize solutions.

Figure 3.2. User Journey Map of algorithm learning process

29

(a) (b)

Figure 3.3. Personas

3.2.2 Prototype Design

A prototype of the compiler-based AV system on Tarjan algorithms is designed based-on

the pain points found in the user journey with the help of Adobe Axure. This prototype contains 2

sub-pages: main page and create page. The main page consists of 3 components: header

component, visualization component, and code editor. The header component allows users to

choose or create new test cases and build and play visualization animation. The visualization

animation will be played in the visualization component. Users can modify the code in the code

in the code editor and compile it in real-time. When the user clicks the ”Create testcase button”

the application will be redirected to create page as shown in figure 3.4. Here the user is asked to

create a connected undirected graph. In ”Create Node” mode the user can click on the component

to create a node, and in ”Create Edge” mode user can click two nodes to create an edge. After a

valid test case is created user can click create ”Create testcase” button to go back to main page,

and the system will add the test case the user just created into the testcase list and allow the user

to build and run the visualization on it.

30

(a) Prototype’s main page (b) Prototype’s create page

Figure 3.4. Prototype design

3.2.3 Preliminary Testing and refinement

A small-scale preliminary testing will be conducted to examine the usability of this

prototype design. 3 people from the Computer Graphic Department with basic algorithm

education are chosen to participate in the testing. The testing is designed as follows: each

participant is provided with the prototype exported from Axure and is taught how to use this

system. After that, they are asked to do a learning task with this system. The learning task asks

them to create a test case, build and visualize it. In the whole process, they are asked to think

aloud, and their responses and activities is recorded in order to refine the prototype.

During the preliminary testing, there are two things that are commonly mentioned by the

participates. First, the shapes and colors of nodes and edges are designed to express the different

statuses of them, but the participants don’t understand. In order to fix that, a legend bar is needed

in the finalized design. Second, as the incremental visualization plays, the changing of the state of

nodes or edges is not clearly expressed. To make it clear, a pop-up component with an

explanation of changing state will be associated with each change. Besides, some minor changes

in the user interface are also mentioned. For example, some of them think that in the create page

the code editor is not needed. All of these responses will be taken into consideration in the final

design so that the system will have better usability.

31

3.2.4 System Design

To make sure the system is developed correctly and efficiently, the system is designed

carefully before the development. The AV system includes a front-end client-side application and

a back-end server. The front-end contains two routes: visualization route and create a route. The

overall system design is illustrated in figure 3.5.

Figure 3.5. System Design

The front-end is developed as a typical react-redux application. Each rendering

component extends react’s base component. A redux store is attached to the front-end application

to store the central data. The system design of the visualization route is shown in figure 3.6. This

is the most important and complicated part of this system. The key functionality is building the

code in the code editor and play visualization. The build function will send the code to the server

as a string. The server will run the code with the help of the inherent javascript function and

generate a command array that stores all the visualization commands. The commands will be sent

to the front-end and then be stored in the redux store. When the user plays the visualization, the

command corresponding to the current playing step will be applied to the visualization

component, and the graph render of it will render the visualization accordingly.

32

The create page is relatively simple. When users create a graph using the user interface, a

matrix representation of the graph is stored in the local state variable. When the creation is done

and confirmed, the matrix will be converted to a string and then sent to the redux store. The

design is shown in figure 3.7. The back-end server is built so that the rendering and logic of the

system are separated. The server contains the key API of this system. It contains the graph tracer

API to run the code received from the front and generate the commands array to send back to the

front-end.

33

Figure 3.6. Visualization Route

34

Figure 3.7. Create Route

3.3 Development of the graph-based visualization system

3.3.1 Technologies utilized

This AV system includes a front-end application and a back-end server. To develop the

front end application, the framework React and Redux is utilized because they are among the

most popular and powerful front-end framework. Some plugins of react, such as React-Ace that is

used in the code editor component, react-router, which is used to create a router, are also utilized.

React-Semantic-UI is also used in some UI elements such as pop up component. The back-end

server is built with node.js and express, which are the most common server frameworks. Besides,

the server-side API is written in typescript and then compiled to javascript because typescript

provides type checking and can avoid errors.

35

3.3.2 System Components

As explained in the system design section, the developed system has two pages:

visualization page and the create page. Both pages follow the header-content style and similar

theme.

Figure 3.8 shows the visualization page of the system. The header contains three parts:

test case control, visualization mode control, and the visualization player. The system is designed

to encourage the user to create test cases of the algorithm by themselves, and the test case control

part allows the user to create new test cases and choose the currently built test case. When users

click the ”create new test case” button the application is redirected to the create page to build a

test case, which will be described later. On the right of test case control part, user can choose

what information to show on the visualization panel. For example, the user can turn on or off the

pop up showing all variables value of each node by clicking the ”show full info” button. The

player contains all the user interface to play the visualization. Users can choose to let it play

automatically or go through each step manually.

Below the header is the content of the system. It consists of three panels: visualization

legend, visualization, and code editor. The visualization is designed in a way that the states of

each node and edge are differentiated by their color and shape. Users can always refer to detailed

state information. The implementation of the Tarjan-Bridge algorithm in Javascript is provided in

the code editor. Besides code for Tarjan-Bridge algorithm, the visualization code is also ’hided’ in

the code. This visualization code is used for tracer API to generate commands. For example, at

the beginning of critical connection function, the code of marking current node is hidden inside

”//visualize” so that every time a new recursive call is activated, the currently visiting node will

appear flash and yellow. This code is carefully pre-designed. Since this system can compile and

generate visualization commands in real-time, it enables the user to modify the code and visualize

the modified code as long as there is no compile or run time errors. Given time, it’s even possible

for the user to write their own visualization code.

36

Figure 3.8. Visualization Page

This visualization is carefully designed to follow the logic of Tranjan-Bridge algorithm in

order to make the incremental visualization understandable. The algorithm finds the bridges of a

connected undirect graph by doing a depth first search on the graph and keep updating the

variables of each node. When he updated variable meets certain conditions, it yells that a bridge is

found. Therefore, the visualization is designed based on this. First of all, each node is

accompanied by a pop-up panel to show the values of its variable and how are the updated as the

depth first search goes on. In addition, each step a pop up will appears along with the node or

edge that is being executed. As shown in the figure, when the algorithm finds a bridge, a pop up

will appear near this bridge, telling you why this is a bridge. These pop-up messages contain all

the information for the user to understand the algorithm. Last but not least, the state of nodes and

edges are shown by their color and shapes. For example, visiting nodes and visited ones are of the

same color but different fill mode so that the logic behind it can be easily seen.

37

Figure 3.9. Message explaining why the algorithm claim this edge as a bridge

Create page is shown in figure 3.10. User can create a node by clicking on the canvas and

create an edge by clicking on two nodes. Some supporting functions are provided, such as undo

the changes and changing the nodes and edges size. When the creation is done, users can click

”create testcase” button to generate a new one and redirect it to the visualization page. Since the

input of this algorithm is restricted to be a connected undirected graph, this button will be

disabled when the graph is not valid.

Figure 3.10. Create Page

38

3.4 Testing

In order to prove the hypothesis that the AV system will help students understand the

implementation of complex graph algorithms better, testing is conducted to measure the effect of

this AV system on the subject’s confidence, competence, and usability. This section will give a

detailed explanation of how the test is conducted.

3.4.1 Population and Sample

The population of this research is all the students that have received some basic algorithm

education and in the process of learning complex graph algorithms. Due to the limitation

explained before, only 10 students who have learned algorithms before in the CGT department

have been selected as a sample.

3.4.2 Variables

The effectiveness of this system is explained in three variables: the subject’s confidence,

competence, and the system’s usability. The confidence explains how much the subjects are

confident about their understanding of the implementation of this algorithm. It’s a subjective

metrics. On the other hand, the competence is a totally objective metrics. Subject’s competence of

understanding of the implementation is measured by objective questions of the implementation.

The usability means how user-friendly the system is. The testing method of these variables will

be explained in detail in the next section.

39

3.4.3 Method

In order to measure the three variables listed above, the testing is carefully designed, and

the testing method is explained in this section. 10 subjects are randomly divided into two equal

groups. One group will be asked to finish some learning tasks in regard to the algorithm

implementation after watch the algorithm tutorial video only in 30 minutes, while the other group

needs to finish the same tasks after watching the same video and being taught how to use the av

system in the same time. For simplicity, these two groups are referred to as group A and group B.

The complete test protocol is list below.

a. Establish remote communication with subjects via Zoom meeting.

b. The purpose of this research and the steps of the testing will be introduced to subjects.

c. Subjects in both groups are asked to watch a 12 minutes video tutorial on Tarjan-Bridge

Algorithm. This video consists of 3 parts: what problem does this algorithm solve, the theory of

this algorithm and the implementation of this algorithm. As soon as subjects start watching the

timer of 30 minutes will begin.

d. After finished the video, group B will be taught how to use the AV system. Following

that, they will be asked to finish two simple learning tasks. Task one requires them to create a test

case that has bridges and run the visualization. Task two is almost the same except for the test

case is changed to one without bridges. This process takes about 3 to 5 minutes. Group A is not

involved in this step.

e. Subjects in both groups are asked to answer the pre-designed questionnaire in Google

Docs. The complete questionnaire can be found in the appendix. While answering questions in it,

group A can refer to the video they just watched, and group B can both refer to the video and

playing the AV system. Group A will not answer the usability part of the questionnaire.

f. Group B is asked to ”think out loud” whenever they use the AV systems. They are asked

to tell the researcher everything they have in mind about the system, such as whether the

visualization is clear, whether they find some user interface is hard to use. Their response will be

recorded by the researcher to analyze the usability.

g. Subjects submitted the questionnaire when they finish.

40

After all subjects haven been test, their result will be analyzed. The mean correctness or

rates of each question in the questionnaire will be compared. For competence questions, the

correctness for the individual question will be compared to see if some questions are more

difficult than others. There are three questions about self-efficacy (confidence) and three

content-related questions (competence). A comparison will be made to see if one of the

experimental conditions is associated with greater or lesser correspondence between confidence

and competence, and whether one of the conditions is associated with greater competence

/confidence in general. Besides, all responses about the usability of group B acquired from step f

of the protocol will be gathered to evaluate the usability of this system.

41

CHAPTER 4. RESULT

4.1 Confidence Result

Subjects are asked to rate their confidence level on their understanding of algorithm,

implementation and analysis. The result of these three questions will be shown in this section.

The confidence in understanding the algorithm of two groups is shown in figure 4.1. If the

5 levels from disagreeing to agree can be rated with a number from 1 to 5, the mean value of

group A and group B is 4 and 4.6, respectively.

Figure 4.1. Result on understanding algorithm

The confidence in understanding the implementation of two groups is shown in figure 4.2.

Similarly, the mean value of group A and group B is 3.8 and 4.6, respectively.

42

Figure 4.2. Result on understanding implementation

The confidence in understanding the analysis of the algorithm is shown in figure 4.3.

Similarly, the mean value of group A and group B is 3 and 4.4, respectively.

4.2 Competence result

In the testing, all subjects are asked to answer 3 questions about the implementation. The

count of correct answer of each question of the two group is presented in figure 4.4. The average

correct count among all three questions of group A and group B is 1 and 2, respectively.

43

Figure 4.3. Result on competence questions

4.3 Usability result

Each subject is asked to rate how easy the system is to understand and how easy the

system is to use. The result is shown in figure 4.5. Besides that, all the usability suggestions

retrieved from subjects ”thinking out loud” are collected in figure 4.6. Since some suggestion is

mentioned by multiple subjects, the count of each subject is also recorded.

(a) How easy to understand (b) How easy to use

Figure 4.4. Usability rating result

44

Table 4.1. Collections of suggestions

Usability feed back Count
The difference between back and create button is confusing 5

The updating of data in the pop up component is not obvious 1
It’s not easy to create edge 1

It will be more practical to be able to support importing files as input 1
The representation of graph in create page and visualization page is not consistent 1

Buttons in the header is not big enough 1
The meaning of the arrow is not clear 1

45

CHAPTER 5. CONCLUSION AND DISCUSSION

5.1 Conclusion

As explained in the limitation, due to the small quantity of the testing subjects and the

uneven algorithm ability of them, the research can not reach any concrete conclusions, and only

rough conclusions can be reached. Based on the result shown in chapter 4, this system seems to

slightly help subjects build both confidence and competence in the understanding of the

implementation of the Tarjan-Bridge algorithm. Besides, it’s basically user friendly but still need

to be improved. In order to get a more convincing outcome, further research should conduct

testing on a larger scale of testing subjects with the similar algorithm level.

5.2 Discussion

Besides the conclusions reached from the data of testing, some interesting phenomenon is

also observed while doing the testing for the subjects. Since these phenomenons are only

subjectively observed, this research will not try to reach any conclusion from them and only

discuss them in this section.

46

The most common phenomenon is that all subjects seem to rely more on their mind than

on the AV system when answering some of the competence questions. In fact, all three questions

can be easily solved with the help of the AV system. For example, the second question asks what

will happen if there’s no ”parent” variable in the implementation. With the help of the system,

they can simply delete the codes in regard to this variable and run the visualization to see the

result. However, subjects still tend to think the implementation in their mind even if they are

repeatedly told that they can utilize the system to find the answer. After the testing is done,

subjects are interviewed about the reason why they prefer their mind than the system, and their

answers are different. Some say they no matter how useful the system is if they failed to visualize

the implementation in their mind, it’s impossible for them to truly understand it. This may

provide some insight into why algorithm visualization systems have been studied for decades but

still fail to be the mainstream of algorithm education. In other words, algorithm visualization may

be more of a tool to check students’ understanding of the algorithm than a tool to help them learn

it. Others were too confident about the result to use the system while they don’t know that they

did it wrong. In the future test, researchers may try to tell the subjects which questions they give

wrong answers to after that researcher should ask them to try to correct their wrong answers with

the help of the system and record whether they can correct them.

Second, the system did help some subjects find correct answers, but it may not actually

help them understand the implementation. For example, the last question asks them to find what

the return value be if the condition of finding the bridge is slightly changed. Some subjects found

that the return value will contain wrong values easily by changing the code in the editor and run

the visualization. However, in the interview after the testing, they shared that they don’t actually

understand why the return value will be wrong. This again may lead to the hypothesis that the AV

system can merely be a checking tool inside of a learning tool.

47

Third, although none of the subjects mentioned this, for recursive algorithms such as

Tarjan-Bridge algorithm the visualization of the stack may be helpful. This hypothesis is made

due to the fact that think the algorithm should be done when the depth first search reached the last

node of the graph. When the visualization still goes on after it reaches the last node, some of them

start to question the correctness of the system. In fact, there are functions on the stack that hasn’t

returned yet, so the algorithm will go back to them. Therefore a visualization of how the stack

manipulates the recursive functions may be helpful.

Last but not least, AV systems may not replace traditional algorithm educations media,

such as simple video. When answering the competence questions, some subjects prefer to refer to

the video than the AV system. As a result, the AV system may not be a replacement of the

traditional educational method.

In summary, AV system should be assigned to a less important role in algorithm

education. Future research may be conducted to test whether it can become a competent tool to

examine students’ understanding of algorithm implementation.

48

REFERENCES

Algfoor, Z. A., Sunar, M. S., & Kolivand, H. (2015). A comprehensive study on pathfinding
techniques for robotics and video games. International Journal of Computer Games
Technology, 2015, 7.

Anderson, E. (2012, August 21). Techniques for graph data structure management. Google
Patents. (US Patent 8,250,107)

Contero, M., Naya, F., Company, P., Saorı́n, J. L., & Conesa, J. (2005). Improving visualization
skills in engineering education. IEEE Computer Graphics and Applications, 25(5), 24–31.

Cui, X., & Shi, H. (2011). A*-based pathfinding in modern computer games. International
Journal of Computer Science and Network Security, 11(1), 125–130.

Da, Z., & Jianping, Z. (2009). Knowledge visualization-an approach of knowledge transfer and
restructuring in education. In Proceedings of the 2009 international forum on information
technology and applications-volume 03 (pp. 716–719).

Eppler, M., & Burkhard, R. (2004). Knowledge visualization: Towards a new discipline and its
fields of applications. ICAWorking Paper, 2, 3–25.

Grissom, S., McNally, M. F., & Naps, T. (2003). Algorithm visualization in cs education:
comparing levels of student engagement. In Proceedings of the 2003 acm symposium on
software visualization (pp. 87–94).

Hamer, J. (2004). A lightweight visualizer for java. In Proceedings of third progam visualization
workshop (pp. 55–61).

Herman, I., Melançon, G., & Marshall, M. S. (2000). Graph visualization and navigation in
information visualization: A survey. IEEE Transactions on visualization and computer
graphics, 6(1), 24–43.

Hundhausen, C. D., Douglas, S. A., & Stasko, J. T. (2002). A meta-study of algorithm
visualization effectiveness. Journal of Visual Languages & Computing, 13(3), 259–290.

Ifenthaler, D. (2014). Akovia: Automated knowledge visualization and assessment. Technology,
knowledge and learning, 19(1-2), 241–248.

Karavirta, V. (2007). Integrating algorithm visualization systems. Electronic Notes in Theoretical
Computer Science, 178, 79–87.

49

Karavirta, V., & Shaffer, C. A. (2013). Jsav: the javascript algorithm visualization library. In
Proceedings of the 18th acm conference on innovation and technology in computer
science education (pp. 159–164).

Khedr, A. Y., & Bahig, H. M. (2017). Debugging tool to learn algorithms: A case study minimal
spanning tree. International Journal of Emerging Technologies in Learning, 12(4).

Koifman, I., Shimshoni, I., & Tal, A. (2008). Mavis: A multi-level algorithm visualization system
within a collaborative distance learning environment. journal of Visual Languages &
computing, 19(2), 182–202.

Rohrer, R. M., & Swing, E. (1997). Web-based information visualization. IEEE Computer
Graphics and Applications, 17(4), 52–59.

Shaffer, C. A., Cooper, M. L., Alon, A. J. D., Akbar, M., Stewart, M., Ponce, S., & Edwards, S. H.
(2010). Algorithm visualization: The state of the field. ACM Transactions on Computing
Education (TOCE), 10(3), 9.

Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM journal on computing,
1(2), 146–160.

Teresco, J. D., Fathi, R., Ziarek, L., Bamundo, M., Pengu, A., & Tarbay, C. F. (2018). Map-based
algorithm visualization with metal highway data. In Proceedings of the 49th acm
technical symposium on computer science education (pp. 550–555).

Urquiza-Fuentes, J., & Velázquez-Iturbide, J. Á. (2009). A survey of successful evaluations of
program visualization and algorithm animation systems. ACM Transactions on
Computing Education (TOCE), 9(2), 9.

Velázquez-Iturbide, J. Á., Pérez-Carrasco, A., & Urquiza-Fuentes, J. (2008). Srec: An animation
system of recursion for algorithm courses. In Acm sigcse bulletin (Vol. 40, pp. 225–229).

Vrachnos, E., & Jimoyiannis, A. (2014). Design and evaluation of a web-based dynamic
algorithm visualization environment for novices. Procedia Computer Science, 27,
229–239.

Ware, C. (2012). Information visualization: perception for design. Elsevier.

Yap, P. (2002). Grid-based path-finding. In Conference of the canadian society for computational
studies of intelligence (pp. 44–55).

50

APPENDIX A. QUESTIONNAIRE

4/2/2020 Algorithm visualization testing

https://docs.google.com/forms/d/1dpai971lWOwKM0nr1f8W5KrT7bxGunazD9o-V68jUcU/edit 1/6

1.

Mark only one oval.

Weak

1 2 3 4 5

Strong

2.

Mark only one oval.

Haven't heard about

1 2 3 4 5

Know it pretty well

Test
Please rate how well do you understand the Tarjan Algorithm

3.

Mark only one oval.

Disagree

Somewhat disagree

Neither agree nor disagree

Somewhat Agree

Agree

Algorithm visualization testing

How strong is your current understanding of algorithms in general?

How well do you know about Tarjan algorithm?

I understand how the theory of the algorithm works.

51

4/2/2020 Algorithm visualization testing

https://docs.google.com/forms/d/1dpai971lWOwKM0nr1f8W5KrT7bxGunazD9o-V68jUcU/edit 2/6

4.

Mark only one oval.

Disagree

Somewhat disagree

Neither agree nor disagree

Somewhat Agree

Agree

5.

Mark only one oval.

Disagree

Somewhat disagree

Neither agree nor disagree

Somewhat Agree

Agree

6.

Mark only one oval.

The result will be wrong.

Stack will overflow

The result is still correct but the performance will be worse.

The result is still right and the performance is still the same.

None of the above choices

I understand the implementation of this algorithm.

I understand the time complexity of this algorithm

What will happen if there isn't "visited" variable in the implementation?

52

4/2/2020 Algorithm visualization testing

https://docs.google.com/forms/d/1dpai971lWOwKM0nr1f8W5KrT7bxGunazD9o-V68jUcU/edit 3/6

7.

Mark only one oval.

The return value will still be correct

The return value will contain edges that are not critical connections

The return value will always be an empty array

The return value will be random edges in the graph

None of the above choices

What will happen if there isn't "parent" variable in the implementation?

53

4/2/2020 Algorithm visualization testing

https://docs.google.com/forms/d/1dpai971lWOwKM0nr1f8W5KrT7bxGunazD9o-V68jUcU/edit 4/6

8.

Mark only one oval.

One of the edges in red color. (
Which one will be returned depends on
the input)

One of the edges in red color . (
Which one will be returned depends on
the input)

This algorithm finds a critical connection when the ids[at] < low_ids[to]. Consider the
graph below which doesn't have any critical connections and the algorithm should
return an empty array. If the condition is changed to ids[at] <= low_ids[to], what will
the return value be ? (The depth first search start from the yellow node)

54

4/2/2020 Algorithm visualization testing

https://docs.google.com/forms/d/1dpai971lWOwKM0nr1f8W5KrT7bxGunazD9o-V68jUcU/edit 5/6

An empty array. None of above choices

Post-test

9.

Mark only one oval.

Disagree

1 2 3 4 5

Agree

10.

Mark only one oval.

Disagree

1 2 3 4 5

Agree

11.

This content is neither created nor endorsed by Google.

It was easy to me to understand HOW the visualization tool operates

It was easy to me to use the visualization tool

Please share any additional thoughts or suggestions regarding the application,
aspects of learning the Tarjan Algorithm, or any other concerns you would like to
share with the researcher.

55

