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PREFACE

Originally I never thought I would pursue a PhD. I went to Purdue to earn a

masters degree in cyber forensics. When I started, I thought I would earn the degree

and go into industry and make the big bucks that I had heard I could earn. The

latter never happened. I earned the M.S., but instead of going to industry, I thought

I should continue on and pursue my doctorate. The catalyst that changed my mind

was being a teaching assistant for Dr. Rogers. I did something that terrifies most

people, I stood in front of a classroom and taught. I enjoyed it.

Somehow during my time at Purdue, I evolved from being a student into an expert

in cyber forensics and began passing that knowledge onto others. I became the law

enforcement coordinator for the cyber forensics program. I was placed in charge of

developing training, assisting in investigations, and advising officers in cyber forensics.

All of this lead to me realizing I truly enjoyed what I was doing. I imagined that

someday I would like to be a professor. The only thing standing in my way, having

to earn a PhD.

I began working on this dissertation long before I knew I was going to be writing it.

The initial research came from a project I was working on as an intern for MITRE.

There, I was introduced to Periodic Mobile Forensics, PMF for short. PMF is a

forensic framework for Android mobile phones that utilizes differential analysis to

make multiple forensic images over time. From working on PMF, I learned a lot

about Python and how the Android OS actually works. Part of my work involved

coordinating the first experiment for PMF at Purdue University.

That experiment showed me some of the capabilities of PMF and the possibilities

that could come from it. It was the research into designing a masquerade detection

system (MDS) from the data that we collected that inspired the research that culmi-

nated in my dissertation. While I value the ability to look at full forensic images, I
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also own a phone. Knowing how personal my data is and how easily a forensic image

could be abused, I thought there had to be a way to preserve user privacy while still

providing the security and forensic capabilities of PMF.

That is when I came up with the research idea for this dissertation. Could the

changes recorded by the differential nature of PMF be used to create a MDS that kept

all user data private until further investigation was needed? All I had to do to find

out was master programming, gain expertise in machine learning, and combine them

to make a novel MDS. In short I had an idea that would take the next several years of

my life to figure out. During that time, I also started a full-time career with MITRE,

moved across the country, and most importantly, asked my girlfriend to marry me.

Luckily she said yes and continued to support me as we moved and started a new

life together. Writing a dissertation while working full-time has been a challenge, but

it is finally finished. This work required me to combine several different disciplines

together. I have done my best to present the most pertinent information in a manner

that is comprehensible to anyone who wishes to read. With luck, it is also as enjoyable

as it is informative.

The results of this research have a multitude of implications on how security and

privacy can work together in the future. This is becoming ever more important in

an era of big data analytics and increasing integration of smart devices into daily

life. The research presented here will show that security and forensic capabilities do

not necessarily require sacrificing personal privacy. I hope that this work will inspire

future research as I know full well there is still much to learn.

Thank you for reading,

Eric Katz, PhD
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ABSTRACT

Katz, Eric D. Ph.D., Purdue University, May 2020. Differentiating Users Based on
Changes in the Underlying Block Space of Their Smartphones. Major Professor:
Dr. Marcus Rogers.

With the growing popularity of using smartphones in business environments, it is

increasingly likely that phones will be the target of attacks and sources of evidence

in cyber forensic investigations. It will often be important to identify who was using

the phone at the time an incident occurred. This can be very difficult as phones

are easily misplaced, borrowed, or stolen. Previous research has attempted to find

ways to identify computer users based on behavioral analysis. Current research into

user profiling requires highly invasive examinations of potentially sensitive user data

that the user might not be comfortable with people inspecting or could be against

company policy to store. This study developed user profiles based on changes in a

mobile phone’s underlying block structure. By examining where and when changes

occur, a user profile can be developed that is comparable to more traditional intrusion

detection models, but without the need to use invasive data sets. These profiles can

then be used to determine user masquerading efforts or detect when a compromise

has occurred. This study included 35 participants that used Samsung Galaxy S3s for

three months. The results of the study show that this method has a high accuracy of

classifying a phone’s actual sessions correctly when using 2-class models. Results from

the 1-class models were not as accurate, but the Sigmoid SVM was able to correctly

classify actual user sessions from attack sessions.
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1. INTRODUCTION

Smartphones are increasingly an important source of evidence in cyber forensic in-

vestigations. When an incident occurs, it is necessary to show who was using the

phone. This can be challenging as phones can be infected with malware and are eas-

ily misplaced, borrowed, or stolen. To combat this, there has been significant research

done utilizing machine learning to create user profiles and detect masqueraders. The

research in this paper reveals that current methods are inadequate and are often

overly invasive of the user’s privacy. The conducted study shows that user privacy

can be respected while accurately being able to detect incidents when they occur.

The following chapters are laid out to explain the importance of this research, show

what has been done in the past, provide the methodology used in this experiment,

and provide an analysis of the results.

1.1 Statement of the Problem

Mobile phones are one of the most prolific forms of technology available today.

The International Telecommunications Union (ITU) estimated that 96% of the world’s

population, roughly 6.8 billion people, have a mobile phone (I.T.U., 2013). In the

United States, that estimation is increased to 109% of the population (I.T.U., 2013).

Comscore’s October 2014 report indicated that there are 176 million smartphone

subscribers in the US, nearly 73% of all US mobile phone subscriptions (ComScore,

2013). Smartphones have become so prevalent that there are more phones being

activated than there are new babies being born on a daily basis (AFP, 2013).

Applications known as apps are one of the most common reasons that people are

interested in owning a smartphone. In 2009 Apple created the catchphrase “There’s an

app for that” to market iPhones and the Apple App Store (Grover, 2013). Since then,
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the number of apps available to smartphone users has increased almost exponentially

with both the Apple App Store and Google Play Store offering more than 1 million

apps each (Kalis, 2014). As the number of apps available has increased, so has the

smartphone’s integration into its users’ daily life. According to a poll from Nielsen,

the average person uses 26 different apps and logs over 30 hours each month using

them (Nielsen, 2014). The growing use of apps has caused mobile data usage to

double from 2012 to 2013 and it is expected to increase by 650% by 2018 (CTIA,

2016). This prediction seems to be on track because in 2017, mobile data usage

increased by nearly 400% from 2014 and from 2017 to 2018 increased again by 85%

(CTIA, 2019b,a) Smartphones accounted for 56% of connected devices and 76% of

all wireless traffic in the United States (CTIA, 2016). A 2012 TIME survey showed

that 20% of people check their phone every 10 minutes (Gibbs, 2012). The same

survey showed that 1/3 of the respondents started to suffer from anxiety when they

were separated from their phone for short periods of time (Gibbs, 2012). No other

technology has ever been this integrated into its owner’s daily life and habits.

Integration of smartphones into daily life has created the push in recent years for

the “Bring Your Own Device” (BYOD) trend. BYOD is a trend where employee

desire has caused companies to allow employees to bring their own personal electron-

ics to work for use on company networks, products, and services. It is so popular

that in the US 85% of companies and 67% of workers already participate in BYOD

(IngramMicroAdvisor, 2016; Wainwright, 2016). Often increased productivity and

remote work capability are cited as the most compelling reasons more and more com-

panies are implementing BYOD policies, but this increased productivity comes with

a risk. 80% of BYOD is unmanaged and most companies are relying on their em-

ployees to protect their personal devices and company assets (IngramMicroAdvisor,

2016; Wainwright, 2016).

This reliance is misplaced though as most users do not practice strong security

procedures. Standard security mechanisms such as firewalls, antivirus and encryption

are uncommon in smartphones and security patches are less frequent and often delayed
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(Ruggiero & Foote, 2011; Snell, 2016). Often users won’t even engage in basic security

precautions such as using a PIN to lock their phone (Tapellini, 2014). Figure 1.1

shows the percentages of how users secured their phones in 2014. A study from the

Pew Research Center shows that in 2016 28% of users still did not use a screen lock

(Anderson, 2017). While down from the 36% in 2014, that is still a large number of

users that are not even taking basic precautions for securing their phone. From this

information, it is clear that current security methods are not working and even if they

were, users are not implementing them. This leaves not only personal data at risk

but company resources and information as well. To make matters more difficult, per

the President’s Information Technology Advisory Council’s (PITAC) report on cyber

security, insider threat incidents are rising at a rapid rate (Benioff & Lazowska, 2005).

Not only do companies worry about unauthorized 3rd parties stealing information,

they have to worry about legitimate users illegally accessing and/or disseminating it

as well.

Fig. 1.1. How Smartphone Users Secure Their Phones (Tapellini, 2014)

As phones become more powerful and access more personal and corporate/government

systems and information, they will continue to face an increasingly hostile environ-



4

ment. They will be targeted not only for the physical value they possess, but for the

wealth of information stored on them. Phones are now a primary means of social

interaction, a method of payment, mobile banking, and have access to private and

sensitive information. According to Sophos, the first mobile malware arrived in 2004

and by 2014 has increased to 2,000 new samples per day (Svajcer, 2014). Syman-

tec’s 2016 Internet Security Threat Report (ISTR) continues to show this trend by

reporting that there was a 214% increase in the number of smartphone vulnerabil-

ities and a 77% increase in the number of viruses for smartphones from 2014 to

2015 (Symantec, 2016). Despite seeing drops in the total amount of mobile malware,

Kaspersky reported finding over 5 million malicious packages in 2018 (Chebyshev,

2019). According to Kaspersky’s 2014 report 20% of smartphone users experienced

a mobile threat that year, while in 2015 the number skyrocketed to an estimate of

25% of smartphone users encountering a threat each month (Garnaeva et al., 2014;

CyberEdge, 2015). The 2019 Symantec ISTR reported that one in thirty-six phones

has high risk apps installed (Symantec, 2019). To put some perspective on how per-

vasive a problem this is, there are roughly 7.19 billion people on Earth and roughly

7.22 billion active mobile devices (Zachary, 2014). At that rate approximately 1.8

billion phones encounter some form of cyber threat each month. Malware is not the

only threat facing smartphones either. Crime statistics for mobile phones are hard to

find, but in 2014, 5.2 million phones were reported lost or stolen in the United States,

over 14,000 per day (Deitrick, 2015). A 2017 article from the Mirror reports that over

67,000 phones were stolen in the UK, that breaks down to 183 phones stolen per day

(Phillips, 2017). While anti-theft measures are reducing the number of stolen phones,

they are clearly still being targeted for theft.

Combining weak security and a high volume of threats means it cannot be assumed

that the owner of a smartphone was in control of it when a crime occurs. In 2007 it was

estimated that 80-90% of all crimes involved some form of digital evidence (Rogers

et al., 2007). It is more important than ever that forensic science be able to identify

who or what was actually using the phone at the time in question. Masquerade
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detection systems (MDS) are designed to do this by determining between the normal

user and an alternative party. They detect anomalies in user behavior predicated on

the idea that both normal and malicious behaviors are captured by computers as they

are used (Mazhelis & Puuronen, 2007a). These techniques are based on the concept

that everyone’s cognitive process is unique and that a person’s personality, behaviors,

and environment reciprocally affect one another leaving a unique impression on the

environment (Mazhelis & Puuronen, 2007a). Research has shown that a user leaves a

print behind when using a computer and that this print can be detected using machine

learning and neural networks. Analysts can then use the print to identify a user in

a manner similar to how fingerprints are used to identify individuals (Ryan et al.,

1998). This follows Locard’s Principle of Exchange, a criminal justice theory, that

states; it is impossible for a criminal to act without leaving traces of their presence at

the scene of the crime (Handbook, 2012). In the digital world this means any activity

taken by the user will leave traces of that activity recorded by the computer system.

Most MDS that have been developed rely on collecting large amounts of system

and user data. This can create a conflicting requirement with user privacy needs as

sensitive and personal information is often captured and analyzed in order to create

the user profile. This is especially true on smartphones which can contain data from

all aspect of a person’s life.

New methods designed to operate in mobile environments are needed. These meth-

ods must be effective, transparent and cannot interfere with how the user experience

or the user may disable them. This study proposes a novel method of identifying

smartphone owners without the need to analyze sensitive user data. Instead it will

monitor resource utilization, specifically it will look at where changes occur in the

underlying drive space of a smartphone over time. This will allow user profiles to be

built that can distinguish the correct user from a different one without the need to

expose personal or sensitive data.
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1.2 Scope

This research assessed whether it is possible to develop a distinguishable user

profile from collected information indicative of mobile device storage changes. The

goal was to establish user profiles and to determine if a different user is utilizing the

mobile device. The corpus of data was from the Purdue Masquerading Experiment,

where a Purdue team and a MITRE team identified, with significant accuracy, users of

the mobile devices other than an enterprise issued device user based solely on collected

device behaviors. The data from the Purdue experiment included everything needed

to reproduce full forensic images of the phones in the study. Only the data related to

when and where changes occurred was used to assess whether similar results to the

Purdue Experiment can be achieved utilizing this more primitive dataset.

1.3 Significance

The research proposed here is important for several reasons. The first reason

is that being able to forensically attribute who was or was not using a smartphone

when an incident occurs is import to any investigations. Smartphones are easily

compromised despite storing significant amounts of sensitive information. For this

reason, smartphones are the targets of cyber-criminals both physically and digitally.

The second reason is because evidence from smartphones is becoming increasingly

important in court. Possession of a smartphone is not a reliable means of determining

who or what was controlling the phone at a given time. Malware and other users can

quickly change how a phone is used without the owner ever knowing the phone is

no longer under their control even if it is in their pocket. In the first half of 2109,

Kaspersky detected over 1.6 million new malware packages (Chebyshev et al., 2019).

This is down in total number from the year before, but only because cyber-criminals

are standardizing the malware and not because they are slowing down (Chebyshev

et al., 2019). The final reason is because traditional techniques for masquerade and

intrusion detection do not work in mobile environments and new methods are needed
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that can take advantage of how smartphones function while preserving the privacy of

the owner.

As discussed in section 1.1, smartphones are one of the most prolific forms of

technology available today. They have unprecedented levels of access to their owner’s

lives and the networks to which they connect. Unfortunately, smartphones can be

easily, lost, stolen, infected, or otherwise compromised. This potentially grants ille-

gitimate third parties access to all of the personal identifying information (PII) and

any business or government information stored on that phone. Organizations must

also beware of insiders abusing BYOD to steal information. The combination of these

means the ability identify who was using the device (forensic attribution) when an

incident occurs is becoming even more important.

Establishing forensic attribution has always been difficult for science, but espe-

cially so in cyber investigations. The existence of a file or network resource being

accessed doesn’t by itself prove who was responsible. The internet allows computers

to be accessed from anywhere in the world, even while the legitimate user is operating

it. There are several cases where evidence seemed to point to one person but inves-

tigation revealed a different person or introduced reasonable doubt. For example, in

the U.S. v Moreland (2011), Moreland’s conviction for possession of child pornogra-

phy was overturned because the prosecutor could not establish who was accessing the

computer when the images were downloaded (U.S., 2011).

Falsely accusing someone with possession of child pornography can ruin their lives,

careers, and relationships. While legally innocent until proven guilty, public percep-

tion does not care. A study from the University of Oxford Center for Criminology

shows that even after being acquitted, the lives of the innocent are negatively im-

pacted for years afterwards (Hoyle et al., 2016). Similar issues can arise with many

types of crimes and smartphones are more often being used as a source of evidence.

As phones are targeted by more sophisticated adversaries and malware, ownership

of the phone cannot be relied upon as means of establishing the identity of a smart-

phone’s user. With lax security, phones are too easily compromised as shown in the
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2104 Consumer Reports and 2017 Pew Research studies (Tapellini, 2014; Anderson,

2017). A method of determining who was controlling the phone needs to exist or

else the provenance of any evidence from it could be called into question. That is an

unacceptable state for any civil or criminal case.

MDS use behavioral characteristics captured by computers to establish user pro-

files. The behavior of a user for any given session can then be compared to the

legitimate profile to determine if they are the same person. A crucial step in de-

signing a MDS is determining what features need monitored and how to model them

(Mazhelis & Puuronen, 2005). Much of the research done in Intrusion Detection

Systems (IDS) MDS rely on statistical models involving truncated or enriched Unix

commands entered by the user in a command line terminal (Dash et al., 2005). This

option is not normally available on and is not how smartphones are typically used.

Newer methods of masquerade detection need to be developed in order to operate

in mobile environments. They need to take advantage of the unique and pervasive

nature of smartphones while not interfering with user experience. The research pro-

posed here aims to bridge this gap by exploring a novel means of user identification

by monitoring the changes in the underlying drive space of a smartphone. Doing this

takes advantage of how smartphones work while still preserving user privacy. This

technique is forensically sound and will allow for more in depth forensic investigations

to occur when necessary. With the amount of risk smartphones are exposed to, this

research has never been more important.

1.4 Research Question

The question proposed for this research was: How accurate can the process of

assessing block structure changes of a mobile device during normal use be in detecting:

• masquerading users

• mobile malware
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• the exploitation of the device

To answer this question, two hypothesis were tested.

• Hypothesis 1: The behavior of the owner of a phone creates unique patterns

in the block space of a phone that will allow it to be uniquely identified and

classified from other phones of the same make and model.

• Hypothesis 2: The behavior of a masquerader (human or software) is different

from the owner and will leave patterns in the block structure of a smartphone

that can be used to determine when the phone is not being used by the owner.

1.5 Assumptions

The assumptions for this research included:

• Participants were using their smartphones from the Purdue Experiment in the

same manner they would use their personal phones

• Participants did not give their phones to other people to use during the Purdue

Experiment.

• Some participant behavior is more easily profiled than others.

• The results from this research can be applied to a larger population.

• The block structure of a phone’s drive is granular enough system that it can be

used to create profiles.

• The sessions times from the original Purdue Experiment (roughly every 24

hours) are granular enough to be useful in creating profiles and testing mas-

querade attempts.
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1.6 Limitations

The limitations for this research included:

• The data for this study came from a prior study by MITRE in conjunction with

Purdue University and was not specifically designed for this research.

• There are only 35 subjects in the study.

• The number of sessions per phone is limited with an average of 30.

• The participants might have used their phones in an irregular manner because

they were aware it belonged to an experiment

– IRB approved subterfuge was used to mitigate this

• The study data was originally collected for a masquerading experiment looking

a higher lever user behavior pattern.

• The session time is based on the intervals between data collection runs from the

smartphone. Scans were run approximately once every 4 hours to detect changes

and uploaded roughly once every 24 hours, excluding holidays and weekends

• The study only recruited student and staff from Purdue University as test sub-

jects

• Unencrypted user information was not allowed to be examined or analyzed as

part of this research

1.7 Delimitations

The delimitations for this study included:

• The study was only conducted on Samsung Galaxy S3s

• The study only used Android smartphones running Android OS Gingerbread

and may not be applicable to non-Android or more recent phones
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1.8 Definitions

For the purposes of this dissertation, the following terms are defined as follows:

Insider threat : users with legitimate access to company assets who use that access,

whether maliciously or unintentionally, to cause harm to the business (Gold-

stein, 2019).

Intrusion Detection System : A software application that can be implemented

on host operating systems or as network devices to monitor activity that is

associated with intrusions or insider misuse, or both (Grance et al., 2002).

Masquerader : is an attacker who succeeds in obtaining a legitimate user’s identity

and impersonates another user for illegitimate purposes (Salem, 2012).

Masquerade Attack : is a class of attacks, in which a user of a system illegitimately

poses as, or assumes the identity of another legitimate user (Salem, 2012).

Mobile Phone: a wireless handheld device that allows users to make and receive

calls and to send text messages, among other features (Techopedia, 2020).

Smartphone: For the purpose of this paper smartphone is synonymous with mobile

phone.

SVM : Support Vector Machine – a set of supervised learning methods used for

classification, regression and outliers detection (Learn, 2020b).

ocSVM : One class SVM - an unsupervised algorithm that learns a decision function

for novelty detection: classifying new data as similar or different to the training

set (Learn, 2020a)

1.9 Summary

This chapter provided the scope, significance, research question, assumptions, lim-

itations, delimitations, definitions, and other background information for the research
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project being proposed. The rest of the paper is organized as follows. Chapter 2 pro-

vides a literature review on user profiling and masquerade detection. Chapter 3 lays

out the methodology that was followed for the proposed research. Chapter 4 is the

analysis of the results from experiment. The conclusions from this research and future

research proposals are in chapters 5 and 6 respectively.
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2. REVIEW OF RELEVANT LITERATURE

This chapter provides a review of the literature relevant to user profiling and mas-

querade detection. While there has been significant research conducted into the best

methods to identify a particular user during a session, little of it has focused on mo-

bile devices. Additionally none of the research has focused on data as primitive as

the where changes occur in the storage device itself. This literature review examines

multiple methods of modeling user behavior in order to distinguish one user from

another. It also covers the social cognitive theories behind how users can be pro-

filed from artifacts and traces left on a computer. There is also a brief discussion

on machine learning and the mathematics the support user profiling and masquerade

detection.

2.1 Threats to and from Smartphones

Cybercrime is a rising issue. Across all fronts cybercrime is increasingly committed

as attackers grow more sophisticated and more devices are connected to the internet.

One of the fastest rising targets for cybercrime are mobile phones. According to

Sophos, the first mobile malware for smartphones arrived in 2004 and by 2014 had

the increased to 2,000 new samples per day (Vanja, 2014). Symantec’s 2016 Internet

Security Threat Report continues to show this trend by reporting that there was a

214% increase in the number of smartphone vulnerabilities and a 77% increase in the

number of viruses for smartphones from 2014 to 2015 (Symantec, 2016). According

to Kapersky’s 2014 report 20% of Android users experienced a mobile threat that

year, while a year later the number skyrocketed to an estimate of 25% of smartphone

users encountering a threat each month (CyberEdge, 2015; Garnaeva et al., 2014).
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The 2019 Symantec ISTR reported that one in thirty-six phones has high risk apps

installed (Symantec, 2019).

Malware is not the only threat facing smartphones either. In 2014, 5.2 million

phones were reported lost or stolen in the United States (Deitrick, 2015). As phones

gain more access to personal and corporate/government systems they will continue

to face an increasingly hostile environment. They will be targeted for not only the

physical value they possess, but for the wealth of information stored on them. Phones

are now a primary means of social interaction, provide mobile banking, and have

access to private and sensitive information. It’s no wonder that smartphone are

considered to be IT’s weakest security link (CyberEdge, 2015).

Unfortunately, smartphone security has not kept pace with traditional computer

security (Ruggiero & Foote, 2011). Standard security mechanisms such as firewalls,

antivirus and encryption are not available in smartphones and security patches are

less frequent and often delayed (Ruggiero & Foote, 2011; Snell, 2016). Often users

won’t even engage in basic security precautions such as using a PIN to lock their

phone (Tapellini, 2014). Figure 1.1 shows the percentages of how users secure their

phones. From this information, it is clear that current security methods are not

working and even if they did users are not implementing them.

Failure to implement security is not just a personal problem. It is estimated that a

mobile malware breach could cost enterprises $26.4 million dollars annually (Lookout,

2017). This was based on a study of 588 IT and security leaders from Global 2000

companies conducted by the Ponemon Institute and Lookout (Lookout, 2016). This

report shows that the average cost of a single infection can cost almost $9,500 for

remediation and can skyrocket to $21,000 if employee credentials or corporate data

is stolen (Vijayan, 2016). This includes the cost forensics, loss of productivity, theft

of information, and cost of brand damage. These numbers are staggering considering

that 54% of the respondents admitted to a mobile malware infection within the past

two years and another 12% don’t know if they are suffering from an infection.
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On average, it can take anywhere between 98 to 197 days for a company to detect a

breach (Osborne, 2015). This leaves a lot of time for an adversary to steal credentials

and access sensitive information. If those numbers seem inflated, they are not. There

is a reason mobile malware sells for $5,000 and up to $15,000 in underground markets

(Bach, 2015; Kessem, 2016). These are the same prices as PC-based trojan kits and it

shows that the value of mobile malware is increasing as more methods of monetizing

infections are found (Bach, 2015). It is estimated that the global cost of cybercrime

is as high as $400 billion a year and is estimated to grow to $2.1 trillion per year by

2019 (Morgan, 2016). Each year an increasing percentage of these costs come from

losses due to compromised smartphones. The lack of security and wealth of data are

enticing more and more cyber-criminals to target smartphones.

New methods designed to operate in mobile environments are needed. These

methods must be effective and transparent. They cannot interfere with how the

user interacts with their mobile phone or the user may choose to disable them. The

following section discusses user behavior and how it affects the phone. It is in these

affects that machine learning can be used to create a profile of the user.

2.2 Behavior Profiling

This section explains how user behavior can be identified using data recorded by

a computer while the user is operating a device. The implication is that the various

methods and operations that a user engages in is unique to them. Identifying the

correct feature set to extract and study can then be used to develop a profile. Com-

paring the profile to data from a given session can then be used to determine who was

or was not using the computer for that session. The theories behind user profiling are

based on social cognitive theory and Locard’s Principle of Exchange. Social cognitive

theory explains human functioning in terms of triadic reciprocal causation (Bandura,

1986). In this model, behavior, cognitive, personal factors, as well as environmental

events all operate as interacting determinants that influence each other bidirection-
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ally (Bandura, 1988). Figure 2.1 below is a diagram showing how the triadic system

of determinism works. It means that a person’s individuality (personality) effects

their behavior and their environment while those factors also have an influence on

individuality and each other (Mazhelis & Puuronen, 2005). This interaction becomes

important when trying to determine a user because it is the behavioral characteristics

that are recorded by the computer system (the environment).

Fig. 2.1. Triadic Reciprocal Determinism (Bandura, 1988)

According to Mazhelis and Puuronen (2007) not all influences have equal impor-

tance in revealing individuality being reflected in aspects of behavior in the environ-

ment. We are most interested in the effect of behavior on the environment as well as

the effect of personality on behavior as shown in Figure 2.2. The relationships the are

most influential for user profiling are drawn with solid lines. The reasoning behind

this is (Mazhelis & Puuronen, 2007a):

1. P : B: That personality will influence behavior, meaning certain actions will

be taken and done in an order due to the user’s personality

2. B : E: Behavior will influence what and how items are changed in the envi-

ronment

3. E : B: The environment itself may impose restrictions on user behavior

By relating the environment to behavior and personality it is possible to uniquely

identify a user. Illegitimate users are likely to display markedly different behavior
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Fig. 2.2. Interesting Relationships (Mazhelis & Puuronen, 2007b)

from legitimate ones (Lunt, 1990). An illegitimate user will lack the same knowledge

of the device and its data as the real user. They will also have different goals such as

data exfiltration or the theft of personally identifying information (PII) or financial

credentials. When applied to this research, comparing the artifacts left in the storage

medium from an intruder to a profile of the legitimate user should have enough

statistical differences to show that it was not the legitimate user operating the device

at the time.

Often when conducting a cyber forensic investigation, the environment (smart-

phone) is the only thing available for examination. According to Locard’s Principle

of Exchange whenever a person commits a crime something is left at the scene that

was not present when the person arrived (Locard, 1934). While Locard was referring

to trace evidence from physical crime scenes, this principle is also true in digital crime

scenes. It is almost impossible to avoid leaving a trace in an audit log, a modification

of meta data, or an alteration in a sector when using a digital device. These changes

are what creates a unique print for each user that can be used in a manner similar to

a fingerprint in order to place a user at the scene of a crime (Ryan et al., 1998).

In order to compare this fingerprint, repeated observations of the legitimate user

are statistically compared in order to generate a profile. There is a wide variety of

different features that can be monitored; including application usage, entered com-

mands, system calls, security events and etc (Salem & Stolfo, 2009). Unfortunately,
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users are extremely varied and adapt their behaviors over time. This can make it

difficult to identify patterns for them. Human generated data is notoriously noisy,

meaning it can be very erratic with several outliers (Lane, 2000). Users constantly

change and modify their behavior to accomplish new tasks, they make mistakes, are

distracted by interruptions, forget items, and face many other problems (Lane, 2000).

In order to compensate for this, a significant amount of research has been done to

determine the most effective means of user profiling on computer systems.

The following three sections explore the current literature on user profiling and

masquerade detection. They are broken down into different methods of profiling

starting with command line attempts as those were the some of the first methods

developed. As research advanced, new techniques studying graphical user interfaces

(GUI) interfaces emerged. Finally, methods specifically designed to work on cell-

phones will be examined as they are the focus of the research being proposed.

2.3 Command Line Methods

Automated masquerade detection involves statistical analysis of multiple legiti-

mate user sessions in order to create a profile. A session is the length of time in which

the user operated the computer, they can be predetermined or based on when users

begin and end interacting with the computer. Profiles are created by monitoring dif-

ferent feature sets that the researcher believes will provide the necessary insights to

determine the legitimate user’s behavior (Salem & Stolfo, 2009). One of the earliest

and most commonly studied feature sets are command line inputs from the user in

a UNIX-like environment. This section will briefly cover some of the research and

capabilities of this type of study.

Ryan, Lin, and Miikkilainen (1998) were among the first to use neural networks

to study masquerade detection. Their NNID (Neural Network Intrusion Detector)

used a backpropagation neural network to identify users based on what commands

they implemented. Backpropagation essentially causes the estimated answer from
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the first pass of a neural network to be fed back through it again until errors are

removed (Hecht-Nielsen, 1989). Ryan, et al. (1998) had a limited study of 10 users

on one computer that was monitored for 12 days. They examined 100 of the most

commonly inputted commands from the subjects to generate profiles by training on

eight days’ worth of data and testing on the remaining four days’ worth of data. Their

results showed a remarkable 95% accuracy in detecting anomalous behavior with a

false alarm rate of 7% (Ryan et al., 1998). This appears to be near perfect until the

limited sample size and highly restricted feature set is considered.

Lane’s 2000 thesis on machine learning techniques improved on Ryan et al.’s 1998

work by allowing for all user commands to be included in the model. He also explored

the concept of changing user behavior, known as drift, by comparing to possible

models, instance-based learning and hidden Markov models (HMMs). Lane’s findings

showed that users rarely (7%) used the exact same command sequences (Lane, 2000).

This means understanding user drift is vital for any intrusion/masquerade detection

system. Lane also admitted that he was unable to locate the optimum detection

method because the values varied too much amongst individual subjects. Some of

the features he tested did show more promise than others though. One of the more

important measures was that of the similarity of entered commands to previously

entered commands. In the end the best results Lane produces was an 83% detection

rate with a false alarm rate of 10% (Lane & Brodley, 2003).

Perhaps one of the most important studies in masquerade detection was done by

Shonlau, DuMouchel, Ju, Karr, Theus, and Vardi in 2001. What made this study

so important is that Schonlau et al. created a data set of 15,000 commands from 70

different users (Schonlau et al., 2001). This dataset, known as the SEA dataset, has

become a defacto standard for research in studying masquerade detection. They used

50 subjects as their legitimate users while the remaining 20 subjects had their data

injected into the legitimate data sessions as masqueraders. The feature set they used

consisted of command and user names. As with Lane (2000), Schonlau et al. tested

six detection schemes, but admitted that no single method could sensible serve as the
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sole means of intrusion detection (Schonlau et al., 2001). The best results Shonlau

et al. achieved were in their uniqueness metric with a 39.4% success rate and a 1.4%

false alarm rate (Maxion & Townsend, 2002).

Maxion and Townsend expanded on Shonlau et al.’s work and improved on their

results, increasing the success rate by 56% and lowering the false alarms to 1% (Max-

ion & Townsend, 2002). Their results had a 61.5% detection rate with only 1.3%

false positives. Maxion and Townsend used a Näıve Bayes algorithm to achieve these

results. Figure 2.3 shows a comparison of their results compared to Schonlau et al.’s.

The x-axis represents false alarm rates and the y-axis represents successful detection

rates. It might appear as though the Bayes One-Step Markov method has the best

results, but when the cost of false alarms is taken into account, it is both less effective

and more expensive to use that the Näıve Bayes method (Maxion & Townsend, 2002).

Yung conducted a similar experiment in 2004 that reduced the missing alarm rate by

40% from Maxion and Townsend’s work (Yung, 2004).

Dash, Reddy, and Pujari also made use of the SEA dataset in their 2005 study

that examined groups of commands instead of individual commands. They used a

voting algorithm to create episodes from the sets of user commands and a Näıve Bayes

algorithm for detecting masqueraders. Their best result was a detection rate of 88%

with a false alarm rate of 12% (Dash et al., 2005). Their contribution shows that

episode-based detection schemes can be more effective than individual commands.

Where the Näıve Bayes experiments ignored sequence information, Coull and Szy-

manski (2008) introduced bioinformatics to masquerade detection, bringing the focus

to sequence alignment (Huang & Stamp, 2011). They too used the SEA dataset

and achieved even better results than Maxion and Townsend. Adapting the Smith-

Waterman algorithm for local sequence alignment to user commands, Coull and Szy-

manski were able to get a 68.6% detection rate with a 1.9% false positive rate (Coull

& Szymanski, 2008).

Another effective method of masquerade detection was developed by Posadas,

Mex-Perera, Monroy, and Nolazco-Flores in their 2006 study Hybrid Method for
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Fig. 2.3. Comparing Maxion and Townsend’s Results to Schonlau et
al.’s Results (Maxion & Townsend, 2002)

Detecting Masqueraders Using Session Folding and Hidden Markov Models. They

used the Sequitur algorithm to create a hierarchical structure for the user commands.

Then they applied folding techniques to create compressed versions of user sessions.

Their Hybrid-Grammar-HMM was able to reduce both the false alarm rate and the

missing alarm rates to about 5% each (Posadas et al., 2006). Their research showed

that masquerade detectors do better when based on both frequency and sequence

properties of legitimate user profiles (Posadas et al., 2006).

Using a different method of sequence alignment, Profile Hidden Markov Models

(PHMMs), Huang and Stamp (2011) were able to show that the number of hidden

states have a low impact and two is all that is needed for efficiency. They also conjec-

tured that with the right positional data (session start and end times) that PHMMs
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would be more accurate than standard HMMs. Unfortunately, they were using the

SEA dataset which did not contain this information. At the time it was created

positional data was not considered an important feature, proving that collecting the

correct features for profiling is extremely important. To test their theory, Huang and

Stamp created a simulated dataset to test PHMMs against and were able to prove

that with smaller training sets, PHMMs are better at masquerade detection (Huang

& Stamp, 2011).

Despite all of the improvements in masquerade detection via command line pro-

filing several key problems still persist. Often the crossover error rate remained too

high to be deployed in working environments to detect masqueraders. Forensically

they leave too much error when it comes to identifying if the legitimate user created

the session in question. Most importantly though, command line is not how most

users interact with a computer. The majority of users today operate in Graphical

User Interfaces (GUIs). Smartphones in particular us touch enabled GUIs for most

of the user interaction. To detect masqueraders in these environments it is necessary

to look at the features that occur in modern operating systems.

2.4 GUI Operating Systems

Even in Unix/Linux environments, commands entered through the terminal are

being used less and less. More often than not, users interact with their computer via

a Graphical User Interface (GUI). There are a variety of methods researchers have

used to profile users in GUI environments. Researchers have studied everything from

mouse movement, to text mining, and how files or windows are manipulated. The

following subsections cover some of the key research in these areas.

2.4.1 Keyboard and Mouse

In GUIs there are multiple ways for a user to accomplish the same task. De-

pending on the user’s experience and preferences, the manner that they accomplish
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an objective can vary. Figure 2.4, seen below, illustrates this concept. Even though

there may be a “perfect” or most efficient way to accomplish a task, users will differ

in how they achieve it. Profiling how users accomplish these tasks is what allows

them to be differentiated from one another.

Fig. 2.4. Behavioral Paths for Various Types of Users (Garg et al., 2006)

One of the first studies to take advantage of GUI environments for masquerade

detection was conducted by Pusara and Brodley in 2004. They monitored the mouse

state as users interacted with their computer. By examining how fast and where a

user moved the mouse, clicked, and scrolled the wheel, they were able to successfully

distinguish between their 18 subjects (Pusara & Brodley, 2004). Their false negative

rate was an acceptable 3.06%; however, several of their users had significantly higher

rates of false positives (27.50%), because those subjects did not generate as many

mouse events during a session (Pusara & Brodley, 2004). When Pusura et al. applied

their smoothing filter to user sessions they were able to lower the false positive rate

to 0.43% and the false negative rate to 1.75% (Pusara & Brodley, 2004).

This would be an acceptable rate for testing in a real world environment except

that it will not work when the subject is not a prolific user of the mouse. It should

be noted that subjects for this study were also restricted to using Windows, Internet

Explorer, and browsing the same websites. Opening the restrictions could alter the

results of this experiment. In the end, while the results were promising, the experi-
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ment showed that mouse events by themselves are not enough to create an effective

means of distinguishing users.

Garg, Rahalkar, Upadhyaya, and Kwiat conducted a more flexible and compre-

hensive study that combined mouse events, typing speed, and system background

processes to create 16 different features. They were able to achieve a 92.31% de-

tection rate with only 7.00% false positives using Support Vector Machines (SVMs)

(Garg et al., 2006). Unfortunately, they only had three subjects in their test which

greatly limits the generalizability of their study. This is an issue with many mas-

querade detection studies, especially in mobile environments. For numerous reasons,

including the protection of sensitive data and subject privacy, there tends to be fewer

subjects to make reliable conclusions.

A similar study by Ahmed and Traore in 2007 included additional metrics such

as average mouse speed and distance traveled. They ran two experiments, one with

twenty-two subjects and another with seven. The smaller experiment was designed

specifically to look at some of the confounding factors that were witnessed in the first

one. They emphasized the importance of passive monitoring in intrusion detection

systems. The dynamics they used were mouse movement, drag-and-drop, and click

speed. Ahmed and Traore were able to lower the false acceptance rate (FAR) and

false rejection rate (FRR) to 2.46% (Ahmed & Traore, 2007). The Mean Time to

Alarm (MTTA) was also calculated for each test. The MTTA is the average time

needed to detect a masquerader. Included in this calculation is the time needed to

generate a session, the time needed to analyze the session, and the time needed to

compare it to the user profile. The shorter the MTTA, the sooner a masquerader can

be detected and the appropriate actions can be applied. For Ahmed and Traore’s

(2007) experiment the MTTA was 13.55 minutes, where only .44 seconds of it was

data processing and decision making (Ahmed & Traore, 2007). This is quick and may

be reduced further by shortening session time. Further experiments would be neces-

sary to know how that impact the overall detection rate. Their experiment showed
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promising results that might be effective in traditional computing environments, but

would fail to function properly with smartphones that use touch interfaces.

Bhukya, Kommuru, and Negi (2007) also did a similar experiment looking at

mouse and keyboard dynamics together utilizing 18 different features. The events

in each session were collected by a logging agent installed on each computer. They

compared a one-class SVM to a two-class SVM method. They point out that the

one-class SVM was successful 94.88% of the time compared to the two-class SVM’s

53.08% (Bhukya et al., 2007). This was only for one user though and other subject’s

results were not mentioned. There were also only eight subjects, of which results were

only shown for four, severely limiting the reliability of their results. The important

take-away is that one-class SVMs appear to be not only viable, but might be better

for masquerade detection than two-class SVMs.

2.4.2 Navigation

Another aspect of user behavior that has been investigated is that of navigation.

How the user access files and resources on a computer can also be captured and used

to create a profile. For example, Camina et al. (2011) conducted a preliminary study

that looked at how a user browses while working on their own computer (Camina

et al., 2011). Their study involved six subjects, three legitimate users and three that

acted as masqueraders trying to compromise the legitimate user’s computers. They

found two interesting results; the first is that it is more difficult to detect masqueraders

with users who carry out few tasks or have poor directory organization, the second

is that it is more difficult to detect a novice masquerader than an experienced one

(Camina et al., 2011). This is likely because the more random the user is (the noisier)

the harder it is to profile them. Experienced users are more likely to take specific and

directed actions making their behavior more characteristic. This also makes it harder

for a masquerader to fake the behavior of a legitimate user. While this study is too
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small to provide strong statistical significance, it showed promising results regarding

user profiling and masquerade detection.

Gupta conducted an observational study in 2012 that used a keylogger and desktop

recording software to capture 13 features about how the computer was used, such as

opening a website. Her study had 60 different subjects the first 30 were tested to

determine which features would be used and the other 30 subjects had those features

monitored as they used their computers. Using cluster analysis she found that a user’s

sessions will show a strong cohesion (98%) with their other sessions. Meaning that a

user’s session will be clustered closer to their own sessions than to any other users’

sessions (Gupta, 2012). This study comes closer to detecting actual user behavior

than any prior. One important aspect of these studies is that they show that recorded

system events are not the only means of gathering information on user behavior and

other methods can be constructed that might be more successful.

2.4.3 Search Patterns

Search behavior is another aspect of user behavior that can potentially be used

to differentiate users. In 2011, Salem and Stolfo conducted a study involving 18

subjects using a computer for four days. They developed a sensor that monitored all

registry activity, process creation and destruction, open windows, file access and DLL

library activity. In all they had over 10GB of data and more than 500,000 records

per user (Salem & Stolfo, 2011). Their hypothesis was that user search behavior

is a feature impacted by user intent and thus hard for a masquerader to fake. To

test this, they then had a new group of 60 computer science students assigned to

three different groups (benign, neutral, and malicious) attempt to masquerade as the

user while compromising data. Comparing the masquerade sessions to the legitimate

profiles, Salem and Stolfo claim to have 100% masquerade detection with only 1.1%

of them being false positives (Salem & Stolfo, 2011). While at face value this seems

extremely effective, to conduct this study requires a large database of potentially
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sensitive information. The large amount of data was for a fairly small group of users

over a short time frame. This is not scalable for large enterprises and highly risky to

store such sensitive information. It is also ineffective on mobile devices where that

level of aggressive monitoring would devour system resources and have a negative

impact on user experience.

2.4.4 Smartphones

Mobile devices are integrating more and more into their user’s daily life. Their

rapid increase in online applications and services has generated an increased need for

security (Shi et al., 2010). The fact that smartphones can be easily lost or stolen

means it is possible that a severe security incident concerning private or enterprise

data could occur (Mazhelis & Puuronen, 2005). Unfortunately, many masquerade

detection systems require the collection of highly intrusive user specific data that is

at odds with the security it is trying to accomplish (Samfat & Molva, 1997). Barring

that, there is a treasure trove of information on smartphones for masquerade detection

researchers that are unavailable on traditional computing devices. This information

can include:

• Accelerometer data

• Application databases and usage statistics

• Biometrics

• Bluetooth and USB connections

• Browsing and Search behavior

• Calendars

• Cell Towers

• Contacts
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• Email

• EXIF metadata

• GPS

• Call History

• SMS and MMS (Text Messaging)

• WiFi access Points

• etc.

One of the first studies in mobile masquerade detection was done by Samfet and

Molva in 1997. Their goal was to detect masqueraders from the cellular provider’s

perspective. They used call origination, call termination, base station handovers,

and location updates to develop user profiles. Using a Wireless Network Simulator

(WINES) they simulated user data and traffic patterns. Deviations from the users’

call or travel patterns were designed to raise a Focuser of Attention (FOA) alert.

While they were never able to deploy their sensors in the real world, their study

showed a detection rate between 80 and 100% with less than 5% false alerts (Samfat

& Molva, 1997). This limited study was capable of showing when a phone had been

stolen and was used to make calls in abnormal locations. It does little to reveal when

a masquerader is using a phone in the same area as the legitimate user and does

nothing if no calls are made.

Another study looking at mobility was conducted by Sun, Yu, Wu, and Leung in

2004. They simulated user travel paths through a series of cell zones. While they a

FAR of less than 3% and a successful detection rate of 80% or more, they admitted

that their method was only good for a small subset of users that follow a regular travel

itinerary (Sun et al., 2004). Examples of users that are difficult for their method to

profile include users that didn’t move much, moved in random patterns, or if the

phone deviated too far from its normal route (Sun et al., 2004).
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A more accurate way of detecting when an illegitimate user has taken a phone

was developed by Mantyjarvi, Lindholm, Vildjiounaite, Makela, and Ailisto in 2005.

They found that people generate distinct patterns in their accelerometers as they move

about (Mantyjarvi et al., 2005). While providing far more accuracy than Samfet et

al.’s study (1997), this form of masquerader detection is primary capable of identifying

when a phone has been stolen. As with all mobility based detectors, it does little to

detect when an illegitimate user picks up a phone and starts rummaging through it

to find information or install malware.

Keystroke latency on mobile phones (how fast a user types) was studied by Clarke

and Furnell in 2007. They tested both inter-keystroke latency and hold time. Inter-

keystroke latency is the time between key presses and hold time is the time it takes

to press and release a key. They had mixed results with some users achieving an

EER (Equal Error Rate) of less than 2% and others over 20%. The EER is the point

where the FAR and FRR are equal. To compare fingerprint recognition has about a

9% EER and hand geometry have 1.5% as can be seen in Table 2.1.

Table 2.1.
Comparing the Performance of Biometric Techniques (Clarke & Furnell, 2007)

Biometric Technique EER(%) Company

Hand Geometry 1.5 Recognition Systems Handkey II

Facial Recognition 2.5 Identix FaceIT

Voice Verification 3.5 OTG SecurPBX

Fingerprint (Chip) 4.5 Infineon VeriTouch

Fingerprint (Chip) 6 Infineon VeriTouch

Facial Recognition 7 Identix FaceIT

Fingerprint (Optical) 9 Company not disclosed

Vein 9 Neuscience Biometrics, Veincheck Prototype
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The authors admit that the average error rates of their experiments are too high

to be considered viable and that confounding factors such as walking could also have

increased the error rate (Clarke & Furnell, 2007). They determined that keystroke

analysis is not appropriate for all users, specifically those who don’t regularly use their

phone’s keypad (Clarke & Furnell, 2007). The research proposed in this paper is more

universal than their research and allows for any type of user to be profiled without

requiring specific behaviors from that user. Clarke and Furnell then discussed what

would be needed to make an effective authentication mechanism. The requirements

include (Clarke & Furnell, 2007):

• Increasing security beyond secret knowledge based approaches (PIN and Pass-

word).

• Provide transparent authentication of the user to remove user inconvenience.

• Provide continuous or periodic authentication of the user.

• Function across a range of mobile devices despite hardware, OS, and network

differences.

To detect user substitutions, Mazhelis and Puuronen (2007) developed a frame-

work for detectable behaviors and environmental aspects. Characteristics and mea-

sures to represent them were also created. Their frame work includes the following

assumptions (Mazhelis & Puuronen, 2007b):

• There exists only legitimate user.

• User behavior and environment includes aspects peculiar to the user.

• Operations of the mobile device are managed by the user who is assumed to

carry the device and control it through a predefined interface.

• The user accepts monitoring.



31

• Within a limited time frame, particular aspects of user behavior and environ-

ment do not change.

• The user does not suffer from mental stress or other condition that dramatically

alters behavior.

They also related various behaviors to environmental characteristics as seen in

figure 2.5 These characteristics tie user personality to behavior and behavior to how

the device records it.

Fig. 2.5. List of Distinctive Characteristics (Mazhelis & Puuronen, 2007b)

Combining Mazhelis and Puuronen’s assumptions with their distinctive charac-

teristics provides a direct tie to how user behavior and personality can be recorded

by smartphones. This supports social cognitive theories and user profiling. To
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prove that their ideas are valid, Mazhelis and Puuronen put their framework to use

and attempted to find the best combination of schemes to detect a masquerader in

2007. They compared three schemes, mean of estimated probabilities (MP), product

combination of probabilities (PP), and modified mean of the estimated probabili-

ties (modMP). The dataset used was from the Context Project that monitored two

small groups of phone users for approximately three months. Recorded data included

movement between cells, phone profile, application use, idle/active times, use of the

charger, bluetooth connections, and communications (calls and SMS/MMS) (Mazhe-

lis & Puuronen, 2007a). Using a t-test, the Wilcoxon signed ranks test, and the sign

test they compared the three schemes using between two and five different features.

They determined the best results came from two and three features using the modMP

scheme. This study does not state which features were the best and why, nor were

their results 100% accurate. Some confounding factors include users changing their

routes or configuration shifts in the GSM network.

In a slightly different twist on user profiling, Shi, Niu, Jakobsson, and Chow

(2010) developed a method of conducting implicit authentication. They scored a

user’s behavior based on number of known good events vs number of bad events

over time. Examples of good events included calling a known number and visiting

a known website. Bad events included calling unknown numbers or visiting new

websites. Location information was used as well were being in an area normally

visited was weighted good and new areas bad. Time provided a decaying factor so

that good events would decay and be weighted less the longer the delay between

them. After passing a predetermined threshold, the system would force the user

to reauthenticate (Shi et al., 2010). In their experiment, they attempted to test

different adversarial models based on an uninformed and informed intruder. For the

uninformed intruder, they spliced another user’s session into the legitimate sessions

as is often done in masquerade detection experiments. For the informed intruder,

they combined elements from the legitimate user with the illegitimate one to create

a new session.
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Shi et al.’s system could detect an intruder 95% of the time after a maximum of

16 interactions with the phone (Shi et al., 2010). This leaves several problems that

can be undetected such as an informed intruder accessing specific data and leaving

or installing malware on the phone instead of directly using it. The malware in this

case would eventually trick the system as its actions would be mixed with good user

behavior and authentications, eventually becoming a signifier of “good” behavior.

While they had a good idea, there is significant room for improvement.

A 2014 study in intrusion detection on smartphones focused on location. This

study used two datasets, Reality Mining and Geolife. Reality Mining ran for nine

months and had over 100 users and collected data such as; call logs, event logs,

area IDs, and tower IDs. Geolife by comparison tracked 178 users for four years

logging GPS data every 1-5 seconds (Yazji et al., 2014). Yazji et al. compared two

models using empirical cumulative probability and the Markov transition property.

For the empirical cumulative probability, a table was created for each user where the

columns were every recorded location and the rows were times. Each cell contained

the probability that a user was at that location at any given time. This method

could detect an intruder within 15 minutes 94.4% of the time and 92% within five

minutes (Yazji et al., 2014). The Markov transition model created profiles using a 3-

dimensional table representing location, time, and move where move is the probability

of a user moving from their current location to a new one. This model had a 90.5 to

96% chance of detecting an intruder within 15 minutes (Yazji et al., 2014). Overall

the results were similar but method two was more accurate. The standard deviations

were smaller in model two but the space and computational requirements were greater.

The authors therefore recommend model one over model two.

With either model the MDS is storing a large database of where the user was and

at what times. Other methods as discussed also stored large databases of sensitive

user data such as location, call logs, message, browsing history, biometrics, contact

lists, keystrokes, and search history to name a few. In these instances, the MDS’

database is as dangerous or more of a security risk than each individual phone that
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it is supposed to be protecting. A breach of this database could be catastrophic

for both the enterprise and the individual users. All the previous studies also fail

to create a forensically useful database in the process. This means breaches cannot

be forensically examined to prosecute criminals or improve detection methods. The

Periodic Mobile Forensics (PMF) project from MITRE provides both security and

forensic soundness. The next section describes PMF and how it functions.

2.5 Periodic Mobile Forensics (PMF)

Periodic Mobile Forensics (PMF) was a research project conducted by the MITRE

corporation as part of its MITRE Innovation Program. The concept behind PMF was

to use traditional forensic techniques in mobile enterprise environments for a variety

of use cases including; insider threat monitoring, malware, masquerade detection,

and forensic investigations. This is accomplished by doing differential analysis on the

mobile phone, which can be seen in figure 2.6. A small program is installed on the

phone in the system partition allowing the original state of the smartphone to be

forensically imaged and stored in a database in a secure center (Guido et al., 2016b).

The same program then periodically checks the phone for sectors that have changed,

in this instance about once every four hours. At set intervals, approximately once

every 24 hours for the Purdue Experiment, the changed sectors are then encrypted,

uploaded, and stored in the same database as the original image. This allows forensic

investigators to insert the changed sectors into the original image, creating a snapshot

of the phone at the time the collection was uploaded. For forensic investigations, this

means that any altered or deleted data can be recovered. Allowing the examiner to

study changes to the phone as they occurred over time can provide a better timeline

and reveal evidence that would otherwise not exist.

For masquerade detection, it also means that changes in user behavior can be

monitored over time. All of this is accomplished without consuming large amounts of
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battery and processing power making for a negligible impact on the user’s interaction

with the phone. More about how PMF functions can be found in Chapter 3.

Fig. 2.6. Reconstruction of Images (Guido et al., 2013)

In 2013 in collaboration with Purdue University, MITRE ran an experiment to

collect live data from 38 Samsung Galaxy S3’s. After achieving approval from both the

MITRE and Purdue Institutional Review Boards (IRB), students were given phones

with unlimited data, talk, and text plans to use for approximately three months (109

days). The students were told that they were participating in an app usage study

to avoid altering their normal behavior. After the study the students were informed

of the real purpose of the study and 35 of them signed the post-study consent form

to allow their data to be used. This created a database with 35 phones with 872

snap shots of those phones. Most of the periodic images were less than 2GB in size

and only one was 11GB, a 50x storage reduction. The database ended up being only

325GB, if left in raw format this database would require roughly 17TB of space which

would make it unusable at scale in an enterprise environment (Grover, 2013).

MITRE researchers could reconstruct 821 forensic images of the phones and ex-

tract over 1.1 million audit events using 22 different forensic processes (Grover, 2015).
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Some of the features included emails, calls, SMS, number of words in SMS, what time

was the phone used, and more (Guido et al., 2013). They used the following machine

learning techniques to determine which functioned best for creating user profiles and

detecting masqueraders (Guido et al., 2016a):

• Latent Dirichlet Allocation

• Decision Tree

• Näıve Bayes

• Linear Support Vector Machine (SVM)

• Radial Basis Function (RBF) kernel SVM

• Adaptive Boosting (AdaBoost)

• Random Forests

• K Nearest Neighbors

Using two pairing methods, one that compares a session to see if it looks more

like user X or user Y and the other method looks to see if a session is from phone

X or Not-X. Using receiver operating characteristic (ROC) curves to compare the

area under curve (AUC) for the different methods, Guido et al. could determine that

Random Forests worked best for their feature sets as seen in figure 2.7. The most

effective features studied were phone calls, Short message service/multimedia message

service (SMS/MMS) messages, and emails. The best results came from the Random

Forest algorithm with a median score of 84% across all pairs (Guido et al., 2016a).

It is possible that with a less random pairing method that this performance could be

improved.

While the PMF project could successfully detect masqueraders using the 22 fea-

tures, it is also computationally expensive. PMF was designed from the beginning
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Fig. 2.7. Results from the PMF Project (Guido et al., 2016a)

to be secure and protect user privacy but still can potentially expose users to un-

necessary risk. For Guido et al. (2016) to test a user profile, the user data must

first be unencrypted and the forensic image of the phone rebuilt. Then the feature

sets need to be extracted from each image and stored in a new database. Once the

features are extracted the data can be used to build a profile and finally have that

profile compared to another session of data to see if it is the legitimate user or not.

Even though the databases are stored in a secure environment, if the database was

breached all the users’ data could be stolen. In an enterprise environment, it also

does not’t make sense to rebuild every single user’s phone every time a collection is

made.

2.6 Summary

One thing that all the masquerade detection methods have in common is that they

all rely on user behavior leaving changes in the storage medium of a device, as Ryan et

al., put it, a ”print” on the system (Ryan et al., 1998). Many of the systems designed

to collect user information are invasive and can violate user privacy or company policy.

The data collection processes can impair user interaction, eat large amounts of system
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space, and are computationally expensive thus prohibitive on mobile devices. The

database being collected and analyzed itself becomes a prime target for theft and

exploitation. Better methods of masquerade detection need to be developed for mobile

phones that are transparent to the user and provide security without exposing user

privacy unnecessarily. The next chapter provides the framework and methodology for

such a method that will be used to conduct the research proposed.
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3. FRAMEWORK AND METHODOLOGY

This chapter introduces the methodology that was followed for this study. First

is a general outline on how the study was conducted followed by a more detailed

breakdown of the techniques that were implemented. Along the way the rationale for

the decisions made are also be explained. Following that, will be an explanation of

the samples chosen and the hypothesis being tested. The variables for the experiment

will be explained and the rationale for why decisions were made about them. Finally,

the factors for a successful test will be discussed.

3.1 Overview of the Study

This study assessed how accurately changes in block structure of a mobile device

were at classifying a phone and at masquerade detection. Testing was done using

multiple machine learning methods to determine if a session belongs to the owner

of a smartphone or someone else. It used the 36 subjects from the 2013 Purdue

Experiment dataset as the source of its user sessions. The Purdue Experiment was

a research project developed by MITRE engineers as part of the PMF project, in-

cluding the author of this experiment. The Purdue Experiment dataset came from

a collaborative research project between MITRE and Purdue University. It was a

one of a kind collection of mobile phone images taken while the phones were actively

being used by unsuspecting subjects and not created in a laboratory setting.

The unique design of the PMF not only created forensic images of the phones on

a regular periodic basis but also allows for reverse tethering. Reverse tethering means

the images can be pushed back onto the phones themselves. Allowing any phone to

be recreated identically to how it was at any point when a collection was taken. This

ability was used in the study to inject attacks into the phones so that the attack’s data
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would be fully incorporated into the original data. New images were then collected

and analyzed to test which algorithms can best detect masquerader sessions. The

ability to inject specific attacks into a data collection to study its effects proved novel

and advantageous. Being able to determine if changes in device storage can be used

for masquerade detection while maintaining user privacy is even more important.

This is especially true as big data and mining reveal increasingly more information

about device users.

3.2 PMF Explained

Periodic Mobile Forensics (PMF) is a forensic platform for creating and analyzing

images from Android smartphones (Guido et al., 2016a). As the dataset used in exper-

iment was from the Purdue Experiment and was created using PMF, it is important

to understand how the data was collected, transmitted, transformed, reconstructed,

and analyzed. Most of the information in this section comes from already published

reports by the MITRE research team that conducted the Purdue Experiment (in-

cluding this author) that describe PMF and its capabilities.

PMF utilizes differential analysis and several other techniques to create forensic

images of smartphones that have been preconfigured with an agent known as Trac-

torBeam (Guido et al., 2016a). TractorBeam then periodically sends data that has

been changed back to a secure enclave where it is de-duplicated and stored in a re-

lational database (Guido et al., 2016a). From there the images are reconstructed by

the Analysis Framework, which also automates several other forensic processes and

detectors. Any artifacts and audit data pulled out by the Analysis Framework are

stored in a Mongo database (Guido et al., 2016a). Throughout this entire process

there are several preprocessing techniques that occur to guarantee the data is trans-

ferred, stored, and reconstructed in a forensically sound and secure manner (Guido

et al., 2016a).



41

The Purdue Experiment was a three month field deployment of PMF run in con-

junction with the Computer and Information Technology Department at Purdue Uni-

versity. It was divided into two phases; the collection phase and the analysis phase

(Guido et al., 2016a). The collection phase required human subjects for testing and

both the MITRE Institutional Review Board (IRB) and the Purdue IRB approved

the research before the experiment was conducted. The Purdue Experiment started

in September 26, 2013 when 33 smartphones were handed out to human subjects.

The smartphones were Samsung Galaxy S3s with unlimited calling plans that in-

cluded mobile data and wi-fi hot spotting enabled (Guido et al., 2016a). Some minor

deception was used to encourage normal phone usage from the subjects. The collec-

tion phase ended on January 13, 2014 when the phones were collected and services

shut off (Guido et al., 2016a). Post-session consent forms were given to the subjects

informing them of the true nature of the experiment. During the experiment, two

denied consent to use their data and one dropped out of the experiment early. All

three subjects were treated the same and their data was purged before the analysis

phase began (Guido et al., 2016a).

The analysis phase started with the reconstruction of images that had been col-

lected and stored from the collection phase. After the data for the three aforemen-

tioned users were purged, there were a total of 821 potential images that could be

reconstructed (Guido et al., 2016a). The Analysis Framework reassembles the images

by inserting the stored bit sequences and offset points into a baseline image as seen

in figure 2.6 (Guido et al., 2013). After an image is rebuilt, the Analysis Framework

initiates a series of forensic process that extract information from it and stores them

in the Mongo database. The audit data stored in the Mongo database was then used

by the Predictive Heuristic Interface Layer (PHIL) to develop a profile of standard

behavior for the phone. After the profiles for each subject were created, session data

was switched around to simulate a masquerading user. Machine learning algorithms

were then used to determine which types of data could best be used in detecting the

masquerader.



42

Throughout the PMF process, data originating from the smartphones were hashed,

transferred, de-duplicated, and analyzed. The rest of this section breaks down each of

the preprocessing techniques and how they were used as well as how forensic soundness

was maintained. Section 3.2.1 examines TractorBeam and how it identified changes

and passed them to the PostgreSQL server. Section 3.2.2 goes over the PostgresSQL

database and the deduplication and storage processes that occurred there. Section

3.2.3 is about the Analysis Framework and the automated processes it uses. Section

3.2.4 is about PHIL and the masquerade detection. Finally, Section 3.2.5 goes over

the results and insights that were learned.

3.2.1 TractorBeam

TractorBeam is an agent that is installed on a mobile device. A small modification

to the phone’s init.rc file starts TractorBeam when the phone boots and provides it

the proper privileges to read the block devices (Guido et al., 2016b). Before deploying

any phone, TractorBeam ran an initial scan to create an SQLite database containing

a SHA256 hash of every 1MB chunk for each block device (Guido et al., 2013). The

database is small and stored in an area unavailable to an unprivileged user. At the

same time, TractorBeam transmitted every chunk to the PostgreSQL database to

create the baseline image. After that TractorBeam was set to run a scan every 6

hours (Guido et al., 2016a).

These scans would compare the SHA256 values of each chunk to the ones stored in

the local database. If the hashes did not match the offset for that chunk, it was marked

as changed and updated. Every 24 hours, TractorBeam would attempt to establish a

secured connection to the RabbitMQ listening service. Once the connection has been

made TractorBeam would encrypt and send all the bit sequences from the changed

chunks. If the Purdue Experiment had been designed to look at the change in the

block structure itself from the start, shorter sessions and different logging could have

been used to make the experiment proposed here more effective.
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There were several features built into TractorBeam to prevent data loss if the

connection was lost or interrupted. One of the most important features was using

an asynchronous message queuing system that could rewind and recollect data from

interrupted connections. In the worst-case scenario, if the connection was cut for too

long, as soon as it could be re-established a new collection entry would be inserted

into the database (Guido et al., 2016a).

From this point on TractorBeam continued to run in the background, monitoring

for changes in the block structure. The data that was transmitted via RabbitMQ to

the PostgreSQL database still had several transitions before it could be analyzed at

the secure enclave. The next section covers what happens to the data after it leaves

the phone and is transmitted to the relational database.

3.2.2 PostgreSQL

After TractorBeam established a connection to RabbitMQ the data was trans-

ferred to a server in the Amazon Web Services Government Cloud running a Post-

greSQL database (Guido et al., 2016a). The data was encrypted using public key

encryption. To ensure the safety and security of the data, the private key was never

saved on the server.

Once the data (changed bit sequences) was transferred to the PostgreSQL database

it was de-duplicated before being stored. To de-duplicate the data the SHA256 hash

values were compared to the hash values already stored in the database. If the hash

had a match, a reference pointer to the matching value was recorded instead of the

entire bit sequence. This resulted in a significant storage savings. By the end of the

Purdue Experiment the Analysis Framework could rebuild 1,060 forensic images, each

15,025MB (approximately 16GB). Storing each image in its entirety would require al-

most 17TB of storage space, but PMF’s PostgreSQL database was only 325GB in

size. The single instancing strategy resulted in a 52.8 times reduction in the amount

of required storage space (Guido et al., 2016a).
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Data was only stored in the PostgreSQL database for a short period of time. The

final resting place for the data was in a secure enclave within the MITRE enterprise

network (Guido et al., 2016a). Once data had been transferred to the enclave and

successfully decrypted, it was deleted from the database so the space could be reused

(Guido et al., 2016a). At this point the Analysis Framework would take over and re-

build the images as needed as well as run the forensic processes to extract information

from the images.

3.2.3 Analysis Framework

The Analysis Framework was used to rebuild images as they were needed. It did

this by inserting the collected data into the appropriate offsets in the base image, as

shown in Figure 2.6. All 821 separate collections from the 30 consenting volunteers

and test phones could be successfully rebuilt (Guido et al., 2016a). Once the raw

image was rebuilt a series of forensic processes were immediately executed to extract

information.

Prior to the Purdue experiment, a series of tests were conducted comparing the

images produced by PMF to ones created by Cellebrite’s UFED4PC and MSAB’s

XRY on a battery of test phones. These two products were chosen because they

are industry leaders in the realm of mobile forensics. They operate by taking a full

physical image of a phone each time it ran as compared to the differential imaging

of PMF. The hash values for all three images were a match, meaning that bit for bit

every single byte of the images was identical.

The detectors and loggers the Analysis Framework launched were designed to be

modular and each gathered specific types of information. Loggers recorded events

that occurred on the phone such as changes to Modified, Accessed, Created, and

Entry modified times (MACE) (Guido et al., 2013).

Detectors were designed to look for evidence of malicious activity. Some of the

detectors, such as detect droidwatch.py, recorded multiple events while others would



45

only look for a specific event or file (Guido et al., 2016a). Table 3.1 below is a list of

the detectors, events, and event counts that was run against the rebuilt images.

Table 3.1.: Detectors Used in the Purdue Experiment

(Guido et al., 2016a)

Detector Event Count

detect app usage.py Daily app usage 18964

detect browser.py Browser URL 2240

detect cameraevents.py Picture taken 1786

detect cameraevents.py GPS coordinates added to picture 0

detect collection runs.py Finished collection 821

detect collection runs.py Unfinished collection 128

detect droidwatch.py Network status event 73111

detect droidwatch.py Process list event 31998

detect droidwatch.py Screen event 168232

detect droidwatch.py User present event 36446

detect droidwatch.py App Event 3905

detect droidwatch.py Ringer mode event 8084

detect droidwatch.py Shutdown event 442

detect droidwatch.py USB event 5473

detect droidwatch.py Location provider event 338

detect droidwatch.py Contact event 566

detect droidwatch.py Bluetooth event 32

detect camcorderevents.py Camera recording 96

detect chrome.py Chrome usage 167990

detect firefox.py Firefox usage 2097

detect new calls.py Phone usage 6744

detect new sms.py SMS/MMS message 12192

continued on next page
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Table 3.1.: continued

Detector Event Count

detect screenshots.py Screenshot taken 100

detect settings.py Settings changed 20306

detect map activity.py Map searches 17

detect groupon.py Groupon GPS recording 115

detect emails.py Email message 12427

detect inspect apk.py App installed, app carved 1651

detect google.py Google picture 2855

detect google.py Google search 1955

detect gps.py GPS coordinate capture 300

detect gps.py GPS current location 59

detect gps.py GPS location history 121

log file mace.py* logs any added or changed files

log fls parse.py* logs and deleted files

* These detectors were only partially run on rebuilt partitions and their usage

during the analysis was limited

The numbers above do not equate directly to being useful for masquerade detection

by themselves. An example of this is detect emails, which recorded the number of

emails sent and received. Having a high or low number of emails is not a indicator

for masquerade detection. Oppositely is detect bootdelta, which indicate malicious

use if it is ever above 0. For the purpose of the Purdue Experiment it was chosen to

limit events to those characterized as a communication action such as; phone calls,

SMS, MMS, and emails (Guido et al., 2016a). These events were chosen because it

was believed they would be the most indicative of user behavior and could therefore

be used in masquerade detection.
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The counts of the audit data were then aligned into groupings called sessions.

Each session represented a period of device activity such as hourly or daily usage.

Using heatmaps to look at these sessions it was clear that they could distinguish

different subjects. Figures 3.1 through 3.3 show examples of hourly session heatmaps

from three different subjects over the course of a week. These users had roughly the

same number of sessions so that the maps would look the same if their behavior was

not different.

Fig. 3.1. Session heatmaps from phone 8 (Guido et al., 2016a)

Other usage patterns were also developed using 23 separate statistical features.

While useful for showing that each user did have distinguishable behavior, it was not

enough to tell if someone was masquerading as the subject. To do that the Predictive

Heuristic Interface Layer (PHIL) was needed. PHIL was the framework used to test

various machine learning algorithms and create user profiles that could be compared

to test sessions to determine if that session belonged to the user or a masquerader.

3.2.4 Predictive Heuristic Layer (PHIL)

PHIL itself is a framework built in IPython using the NumPy, SciPy, scikit-learn,

and Pandas (Guido et al., 2016a). IPython is an interactive Python shell that provides
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Fig. 3.2. Session heatmaps from phone 15 (Guido et al., 2016a)

Fig. 3.3. Session heatmaps from phone 28 (Guido et al., 2016a)

some GUI support for the user. The other libraries are scientific and machine learning

libraries with many built in features capable of analyzing and visualizing the audit

data. The classifiers chosen were Latent Dirichlet Allocation (LDA), Decision Tree,

Gaussian Näıve Bayes, Linear Support Vector Machine (SVM), Radial Basis Function

kernel SVM, Adaptive Boosting (AdaBoost), Random Forest, and K Nearest Neighbor

(Guido et al., 2016a).
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An automated tool called a notebook was created for each test set, a combination

of a classifier, a subset of statistical features, and session data. Runners were created

to incorporate several notebooks so that each test set would not have to be run

individually. A leaderboard was established to track which features and classifiers

were doing the best at detecting masqueraders (Guido et al., 2016a).

To evaluate the classifiers, a pairing scheme was used that paired two phones at

random from the 30 phones in the study. It used K-fold cross validation where K =

6. K-fold cross validation means that a sample is divided into k subsamples where

k - 1 samples are used as training data with the remaining sample used as the test

sample. Cross validation is repeated k times (the folds) until every sample has been

used as the validation test. The results are then averaged to get a single estimated

value. This meant that our tests used five sessions training and the sixth was used

as the validation test.

For the K-fold cross validation to work, each phone had to have sessions present

for every fold and needed a minimal subset of features present in those sessions. If

a session did not meet the features requirement, then those sessions were discarded

from the paired phones session list. In total, 870 pairings were made after phones that

did not have enough valid sessions were discarded (Guido, et al., 2016). Each pair

was plotted on a ROC curve using a one algorithm and feature subset, an example

of which is seen in figure 3.2. The more area under the curve (AUC) the better the

algorithm was at determining if a session belonged to the user or someone else. This

is used to maximize the number of true positives while minimizing the number of

false positives.

Most of the tests could achieve a perfect result on some of the pairings, but on

average were slightly lower. Figure 3.3 shows a box plot that graphs how the various

classifiers performed. The best performer was the Random Forest model with a

median score of 84% across all pairs. For masquerade detection, this is a very high

degree of accuracy. It is possible that with a less random pairing method that this

performance could be improved.
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Fig. 3.4. ROC curve showing the comparison of phones 1 and 3 (Guido
et al., 2016a)

Fig. 3.5. Box plot of classifiers across all pairings (Guido et al., 2016a)
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3.2.5 Reverse Tethering

Determining the effectiveness at PMF in detecting masqueraders was the purpose

for the Purdue Experiment, but was not the end for testing and improving upon

PMF. There were many lessons learned and techniques that were either improved on

or developed because of the success of the Purdue Experiment including the proposed

experiment of this paper. One of the new features that was developed for PMF is

the ability to push a previously recorded session back onto the phone it came from,

known as reverse tethering.

Reverse tethering essentially scans the phone and compares the hash values of each

block to the hash values of a previous collection. When a difference is discovered,

the data from the stored collection is written onto the phone at the same offset.

Effectively returning the phone to the exact same state it was in when the collection

was taken, bit for bit.

This research took advantage of reverse tethering by restoring a phone to its prior

state and injecting an attack into it. After the attack has been conducted, PMF can

be used to create a new collection. The new image had the original block structure

from the good session except for where the attack has changed it, creating a perfect

masquerading session.

Before these masquerade sessions can be created, the specific attacks that were

used needed to be determined. The next section describes how to create an attack

pool for masquerade detection and security research on smartphones. It also explains

which attacks were be used in this experiment and why.

3.3 Attack Pool

To create a pool of attacks that accurately reflects the environment a smartphone

will be exposed to, it is important to understand what types of threats the phone

will face. Closely related to understanding the types of attacks is understanding the

various motivations, tactics, and techniques of an adversary. Knowing these helped
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in determining what attacks to expect or what categories would be exploited by the

adversary. It is also important to consider what the security mechanisms are detecting

and how the attacks will trigger that detection. Without considering it would be

possible for the tool to miss artifacts that would otherwise signal an attack occurred.

Another important item to understand is what attacks are happening around the

globe. There are simply too many ways to compromise a smartphone and too many

threats to test them all.

NIST published a website, Mobile Threat Catalogue, to describe and identify the

threats posed to smartphones and other mobile devices. They created eleven different

categories of threats (NIST, 2016):

• Application

• Authentication

• Cellular

• Ecosystem

• Emergency Mobility Management (EMM)

• GPS

• Local Area Networks and Personal Area Networks (LAN & PAN)

• Payment

• Physical Access

• Stack

• Supply Chain

Each of these categories have multiple threats that fall under their purview with

several of the threats having overlap or being able to contribute to one another.

The Application category is split into two subcategories, vulnerable applications and
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privacy-invasive application. Vulnerable applications refer to any vulnerability that

resides within an application running atop the mobile OS. Privacy-invasive application

on the other hand consists of malware that gathers and transmits data about the

user. Authentication mechanisms has three subcategories, breaking down who/what

is authenticating and to what.

Examples of these threats would include lock screen bypasses and applications that

capture credentials. Cellular includes any number of threats that can be exploited

over-the-air (OTA) via several means. The ecosystem category includes threats that

are created when the owner of a smartphone uses added services, such as data back-

ups, offered by the OS vendor or device manufacturer. Even though it is supposed

to protect both the user and enterprise, the EMM can be abused to allow illicit

monitoring of the phone, installation of malware, or theft of credentials. The GPS

category covers any jamming or spoofing that can occur. The LAN and PAN cate-

gory are threats that come from wi-fi, Bluetooth, Near Field Communication (NFC)

or similar network that the phone can be connected to. Any form of mobile payment

technology can be abused to steal money, or the credentials needed. One of the most

dangerous threats to phones is loss of physical control. The stack category refers to

the mobile device technology stack which includes any software or hardware required

to make the smartphone function. Finally, the supply chain category includes any

threats that attempt to compromise a phone while it is being manufactured (NIST,

2016).

These categories are purposely left broad so that all forms of threats can be

accounted for. They do not discuss which attacks are the most frequent or even

the most likely to occur. Many of these attacks do not have known or published

statistics regarding frequency and gathering information on them is difficult. The

information most commonly published is about mobile malware, in the application

category, and often comes from security companies that have a vested financial interest

in promoting the knowledge and fear of mobile malware. This does not make their

reports inaccurate but is a potential source of bias in the knowledge base.



54

Knowing that a vulnerability could exist is not enough for security testing, as

actual exploits and attacks need to be used. Instead, examples that represent the

types of threats that are occurring should be used. A great deal of research has been

done on mobile malware as it is one of the most common threats to smartphones (Cy-

berEdge, 2015; Bach, 2015; Garnaeva et al., 2014; Huang & Stamp, 2011; Miettinen

& Halonen, 2006; Shabtai et al., 2010; Shi et al., 2010; Symantec, 2016; Vanja, 2014;

Yazji et al., 2014). For example, not all malware is equally prolific and different coun-

tries face different distributions of them. The distribution and amounts of malware

need to be taken into consideration when developing a pool of attacks for research.

Finally understanding who is using the phone, where it is being used, and which

adversary wants what data can provide significant insights into which attacks the

phone may face. This use case can be designed to be as specific or generalized as

desired. The use case being studied for this research is a lunchtime attack. The

term was phrased from computer security because the attacks would occur while

the user is away from their desk or at lunch (Tech-Faq, 2015). Smartphones are

particularly susceptible to lunchtime attacks because a moment of inattention can

leave the phone vulnerable whenever the user sets it down. During this time the

adversary may attempt to do anything from accessing files, exfiltrating data, or even

installing malware or other apps without the user noticing. Unlike malware infections,

there are no statistics for how frequently this style of attack occurs, but they do occur

and should be included in the attack pool.

The following subsections break down each of these elements to provide guidance

into what attacks need to be included in the pool. Correctly determining this pool

will simulate the actual environment and provide more realistic testing results when

developing new security tools. Considering these elements may also reveal weaknesses

in the tool that would otherwise be overlooked in the testing environment. The

following subsection starts this process by examining how attacks are conducted using

the Cyber Kill Chain.
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3.3.1 Cyber Kill Chain

The seven stage Cyber Kill Chain from Lockheed Martin was designed to model

how cyber-attacks are carried out against traditional computer networks. It provides

a high level understanding of how network attacks are conducted. With a little

modification, it can be applied to attacks against smartphones. The seven stages of

the Cyber Kill Chain include (Martin, 2016):

• Reconnaissance

• Weaponization

• Delivery

• Exploitation

• Installation

• Command and Control (C2)

• Actions on Objectives

The first two of these stages, reconnaissance and weaponization, are done before

the adversary ever attempts to conduct the attack. Reconnaissance traditionally

means identifying targets via the internet. Often this is done by searches or network

scans (Sager, 2014). For smartphones, this includes learning about the hardware

and the OS involved. Every variant of a phone and OS will require slightly different

tools and techniques to exploit it. Once the exploits and tools have been chosen, the

adversary can then package them for delivery in a process known as weaponization.

These two stages are hard to detect as they have little direct interaction with the

target.

Delivery occurs when the weapon is transmitted to the target. This can be done

via the internet or in the case of a lunchtime attack, in person. From here the security

exploit is ran to give the adversary control. Once control has been established any
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tools or software the adversary needs are installed. For persistent threats, C2 is

established, allowing the adversary remote control of the phone and its processes.

After C2 has been established the adversary then can exfiltrate the desired data off

the phone.

Choosing attacks that impact the phone at specific points in the kill chain can be

used to determine how early the tool is capable of detecting the attack. If the tool

works at an early enough stage in the attack, a response can be done to mitigate the

effectiveness of that attack.

While the Cyber Kill Chain describes the general stages of an attack, to under-

stand specifically what is happening during those stages a more in depth model is

needed. The next section covers the ATT&CK framework and provides a deeper un-

derstanding of the tactics and techniques being used at those stages. Understanding

the tactics and techniques being used allows one to choose attacks for the pool that

highlight the techniques wanting to be studied.

3.3.2 ATT&CK

The MITRE ATT&CK model expands on the last three stages of the Cyber Kill

Chain, installation, C2, actions on objectives, to provide a better understanding

of how attacks are accomplished (MITRE, 2015). ATT&CK stands for Adversarial

Tactics, Techniques, and Common Knowledge. It consists of nine categories of tactics

each listing the various techniques that could be used to affect that tactic (MITRE,

2015). Figure 3.4 shows the nine tactics categories and a few of the various techniques

that could be used to achieve them. Like the Cyber Kill Chain, ATT&CK was

developed for network security, but can be modified for smartphones and other mobile

devices.
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Any attack against smartphones could require several different tactics and multiple

techniques to be successful. Knowing what tactics and techniques will be used lets one

make an informed decision on what types of security mechanisms will be required to

detect them. For instance, privilege escalation is often done using a security exploit to

gain root access (Lohrum, 2014). This could be done by swapping out SD cards with

one that is preloaded with an exploit such as towelroot. Once the phone is rooted, the

adversary then has full control of the mobile phone. They could potentially embed

software wherever they like, including editing the system/recovery partitions or even

installing a new OS. Rooting the phone also can provide persistence, another tactic

category that could be highly used.

Malware often requires a means of establishing persistence to be effective. This is

because malware can be used to enable several other tactics and once it is installed

on the phone it is unlikely it will ever be noticed. Only 14% of users have antivirus

running on their phones and the antivirus that exists is often woefully behind the

times (Ruggiero & Foote, 2011; Tapellini, 2014). That means many users are not

looking for malware on their phones and any attempts to hide it are likely to work.

As far back as 2012 the Ginmaster malware started using the obfuscation of class

names, encrypting its C2 code, and using polymorphism techniques previously only

found in traditional computer malware (Svajcer, 2014). While the clear majority of

users are not checking for malware on their phones, the malware writers are already

prepared to use defensive evasion tactics to ensure their malware remains unnoticed

and effective.

Smartphones are a potential smorgasbord of sensitive data including email, cal-

endars, contact information, passwords and point of sales (Ruggiero & Foote, 2011).

Often a malware author wants access to banking accounts and credentials, common

goals for smartphone malware (Lookout, 2014). Kaspersky Lab reported that there

were nine times as many banking Trojans in 2014 as there were in 2013 (Garnaeva

et al., 2014). Much of this data is stored in SQLite databases and sometimes in plain

text. Any of this data could be targeted for exfiltration.
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Exfiltration includes any techniques that aid an adversary in removing information

from the smartphone (MITRE, 2015). This can be done in several different ways. One

common technique is using the available networks (Cellular, Bluetooth, or WiFi) to

transmit data to another location. This is often handled by a C2 system and can use

the same channel as the C2 or an alternate one (MITRE, 2015). Another technique

that can be used against smartphones is using physical mediums to transmit data.

An adversary could potentially connect the phone to a computer through a cable and

physically copy data. Depending on the amount of time available and the location this

may be noticeable. Another physical method would involve switching the SD card

and copying data over. Once the transfer is complete the SD card can be replaced

with the original and no one would be the wiser.

These were just a few examples of the tactics and techniques that can be em-

ployed in an attack. It is important to understand these different tactics and the

techniques because they determine what the adversary is doing and how they are go-

ing to accomplish it. This information should not only guide how a new security tool

is developed but also how it is tested. Now that the life-cycle of any given attack can

be understood it is important to also understand what types of attacks are occurring

in the wild and to what extent. The next section covers the distribution of attacks

both by number of occurrences and geographical location.

3.3.3 Distribution of Attacks

The lack of security, the information, and money accessible to smartphones has

proven to be irresistible to cyber criminals. The number of attacks facing mobile

phones has been increasing at nearly an exponential rate. A clear majority of attacks

on smartphones are malware. In ten years, the amount of malware for mobile phones

has increased from a mere handful to over 30 million in 2018 (Samani et al., 2019).

Symantec reported blocking over 10 thousand malicious mobile apps per day in 2018
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as well (Symantec, 2019). Over time as new vulnerabilities are found and old ones

are patched, the landscape of malware continually shifts.

Not all countries or even organizations are equal when it comes to cyber-attacks

and threats. All malware does not spread evenly throughout the globe as can be seen

in the figures 3.5 through 3.7. The reasons for committing cyber-crime are as myriad

as the individuals and organizations that commit them. The culture, customs, and

laws of one region can make a particular attack more popular than others. Something

as simple as a popular app or phone in one country may cause a certain family of

malware to be more effective. At other times politics and economics influence what

happens as nation states square off against one another. No matter what the reason,

the attack landscape is an ever changing and evolving environment.

Fig. 3.7. Geographical distribution of mobile malware (Chebyshev et al., 2019)
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Table 3.2.
Top 5 countries by share of users attacked by mobile malware (Chebyshev, 2019)

Rank Country %

1. Iran 28.31

2. Bangladesh 28.10

3. Algeria 24.77

4. Pakistan 24.00

5. Tanzania 23.07

Fig. 3.8. Geographical distribution of banking Trojans (Chebyshev et al., 2019)
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Table 3.3.
Top 5 countries by share of users attacked by mobile banking Trojans
(Chebyshev, 2019)

Rank Country %

1. South Africa 0.64

2. Russia 0.31

3. Tajikistan 0.21

4. Australia 0.17

5. Turkey 0.17

Fig. 3.9. Geographical distribution of mobile ransomware (Chebyshev et al., 2019)
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Table 3.4.
Top 5 countries by share of users attacked by ransomware (Chebyshev, 2019)

Rank Country %

1. United States 1.58

2. Kazakhstan 0.39

3. Iran 0.27

4. Pakistan 0.16

5. Saudi Arabia 0.10

As can be seen in the maps, geographic dispersion of malware is not equal. Not

only do the amounts of malware infections vary, the types of infections also change

by country. Each country has its own peculiarities that alter the nature of what

occurs in them. In 2014 weak cyber-laws and a lack of enforcement have combined

with poverty in Brazil made banking malware the most common threat there whereas

by 2018 improvements have significantly reduced the amount of banking infections

(Team, 2016; Chebyshev et al., 2019). In 2018 McAfee found that the South Africa

had the most banking trojan infesctions, while ransomware was more infectious in

the United States (Chebyshev et al., 2019). While simplified, these maps show that

different countries face different threat environments.

When choosing malware samples, a variety of malware should be used to test

a MDS. Special attention should be payed to the most common malware that the

MDS will encounter. According to Spreitzenbarth (2016), there are approximately

208 different families of Android malware (Spreitzenbarth, 2016). A sample from all

208 different families would require extensive testing that may be too intensive for

both time and resources. Many of these families are also isolated to specific regions

of the globe or are completely outdated. To create a sample pool to choose from, the

current most prolific malware families should be examined. The absolute positions of

these families may change based on the company detecting them and the regions they
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are monitoring. Table 3.5 is a list of the top 10 most infectious malware as reported

by the security firm Symantec for 2018.

Table 3.5.
Top 10 most infectious mobile malware of 2018 (Symantec, 2019)

Malware Name Percent

Malapp 29.7

Fakeapp 9.1

MalDownloader 8.9

FakeInst 6.6

Mobilespy 6.3

HiddenAds 4.7

Premiumtext 4.4

MobileSpy 2.8

HiddenApp 2.5

Opfake 2.0

Simulating a realistic attack environment would require attacks to occur in similar

percentages. While using top 10 lists will provide a generic base for the amount and

type of malware that should be used in a simulated environment, each country will

have its own differences. These differences should be accounted for when designing

the simulated environment.

The ARGUS Cyber Security Lab has created the Android Malware Dataset (AMD)

that consists of multiple samples of the major Android malware families. They also

created a detailed table, the Android Malware Behavior Table, that allows the user

to: quickly find out what type of malware a sample is, what it does, how it installed,

what privileges it uses, how it many variants it has, how many samples were collected,

and several more items that could be of interest to a researcher (ARGUS, 2019). It

also provides links with detailed data and virus reports the malware families and the
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variants. The AMD project provides a means to select the types of malware and the

various features that the researcher wishes to examine. ARGUS also provides a copy

of their dataset to universities and research labs. These are known good samples of

malware that are suited for conducting research. Having safe samples to work with is

also an important factor when determining which malware should be chosen to work

with. As such, there will be a restriction on this research that limits it to samples

that can be found within the AMD.

Samples from the most infectious families and the current most prevalent malware

will better simulate the overall threatscape that a smartphone is facing. It also will

reduce the number of needed tests to a more reasonable amount. While malware is

the most common threat being encountered in the wild it is by no means the only

threat to a smartphone as the NIST catalogue proves. One should consider where

a phone is being used and by whom in order to include a more representative view

of the threats being faced. The next section covers the idea of a use case and other

threats that may need representation in the attack pool.

3.3.4 Use Case and Scenario

Understanding of who is going to be using the phone and where it will be used can

also help determine what attacks should be included in the attack pool. A use case

simply describes who owns the phone, where it is located, who might be interested

in it, and why. A smartphone owned by a child in the Midwest of the United States

faces a very different scenario than a phone owned by business person in New York.

A good MDS should be able to identify when anyone other than the owner is using

the phone for any reason.

Outright theft of the phone, while an option does alert the owner that something

has happened. It may take a little time, but a responsible person will eventually note

the theft occurred and have it reported. The may even attempt to remotely lock,

wipe, or locate the phone. This gives the adversary some time to look at the phone,



66

but that time is limited. If the adversary’s goal is to fence the phone for profit, then

these issues might not matter. If the adversary is more insidious, they may try attacks

such as accessing the phone and transferring data off it or installing targeted malware.

This is known as a lunchtime attack and it leaves the owner oblivious to what has

happened while providing the adversary persistent access to data on the phone and

potentially access to any network it connects to (Tech-Faq, 2015). These types of

attacks typically belong to the physical access category of the NIST catalogue.

As discussed in section 2.1, many users still don’t employ even a simple PIN lock

to keep strangers from using their phone (Anderson, 2017). To make matters worse,

many exploits exist that can easily bypass screen locks,other security mechanisms,

and grant root level privilege. With just a few minutes of inattention, an adversary

could easily swap a phone’s SD card with one preloaded with a security exploit such

as towelroot and gain root access, complete control over the phone. With root level

privilege the adversary may install or modify any software on any partition including

the recovery and system partitions. This would give them a persistent foothold that

will be nearly impossible to detect and difficult to remove.

Even if the adversary chooses to not install any malware, they could simply start

exfiltrating data directly from the phone. A quick SD card swap and then they could

copy data directly over and then replace the original, once again leaving the owner

none the wiser. The adversary could also start forwarding sensitive emails and other

data to themselves. When was the last time you looked in your sent items to see

if an email you did not send was in there? Sometimes, simply knowing who is in

your contact list and how to reach them may be all that is desired. The point is, if

you turn your back on your phone for even a brief period it may come under attack

in ways you never thought about and will likely never detect without a well-tested

security tool.

Even if one does not turn their back on their phone, it may come under attack

without one’s knowledge. Smartphones are highly networked devices with not only

4G cellular connections but wi-fi and Bluetooth antennas as well. Many people who



67

use Bluetooth leave the service on and unprotected even when they are not actively

using a Bluetooth device. Attacks such as Bluesnarfing and Bluebugging can give an

adversary remote access to the phone’s contact list, emails, text messages, and even

allow them to listen in or place phone calls (HubPages, 2016). These attacks fall

under the NIST LAN & PAN category. They have limited range but don’t require

the adversary to physically access the phone.

Another series of attacks, in the cellular category, doesn’t require the owner to

enable anything on their phone as it takes advantage of the Open Mobile Alliance

– Device Management (OMA-DM) network. In their 2014 presentation, Solnik and

Blanchou demonstrated that they were able to exploit the OMA-DM tool embedded

in most smartphones by the manufacturer or carrier (Solnik & Blanchard, 2014).

With control over this tool they could send OTA commands with root level privilege.

This allowed them to tell the phone to do whatever they wanted, make calls, transfer

data, or even process updates that they initiated.

Some of these attacks may seem a little far-fetched, but they do occur. For

example, in November 2016 it was reported that a VP at a global technology company

had spyware installed on his smartphone when an adversary gained physical access to

the it (Zorz, 2016). Depending on who you are and what you are worried about, these

attacks can be very important to defend against. Therefore, understanding the use

case for the phone is important when designing security tools. If it is not considered

and only malware is examined, then highly damaging attacks could slip by the tool

when it is deployed in the field. In the high stakes worlds of politics, military might,

and even corporate finance, a single successful attack could have dire consequences.

The next section of this paper compiles all the information together and discusses how

decisions should be made regarding how to create the pool of attacks that should be

used when testing new security tools.
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3.3.5 Attack Decision Making

This section has examined the life cycle of attacks, the techniques and tactics used

in them as well as some common and uncommon attacks. This provides a good basis

for making rational decisions about which attacks to include when creating a pool of

attacks for testing security tools. The closer the pool is to being representative of

what will occur in the wild, the more accurate the results of testing and validation

will be.

There are no hard and fast rules regarding how many of and of what type of

attacks should be included. Due to the near exponential rise in malware it is obvious

that some of the attacks in the pool must be malware, but how many and which? The

larger the sample size the more accurate the testing will be but the more expensive

testing will be in time and resources. The types of malware and how often they occur

can also vary dramatically based on where the phone was located. For this reason,

the geographic region chosen to be studied was the United States and the top five

malware from that region was included in the pool. This represented about 25% of

the malware that was occurring in the wild in that region (Michael, 2016).

Other malware obviously exists, but it occurs so infrequently that they do not

necessarily need to be included in the test pool. The 10th ranked malware, COUDW,

in F-Secure’s list for example only represents .2% of malware infections. The rela-

tive percentage that each piece of malware occurs in can also be used to weight how

often they are used in the testing environment. Combine this with the frequency

that phones face a threat (25% each month) and effective representation of the envi-

ronment can be created (CyberEdge, 2015). Any malware samples that are new and

noteworthy or are specifically desired to be tested should also be included in the pool.

For example, when ransomware first started increasing in occurrence it may not have

made a top ten list but was important enough to warrant study.

Attacks from the use case for the phone also needs to be included in the attack

pool. For the research being conducted the chosen use case was a lunchtime attack
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against a smartphone. Determining what should be included from the use case is

trickier than determining the malware that should be included because the possibili-

ties are highly varied and there are no statistics for how frequently they occur. The

closest research was designed to see how frequently people snoop on another person’s

phone. Marques, Muslukhov, Guerreiro, Carrico, and Beznosov (2016) conducted a

self-reported survey that found 31% of participants had conducted this lunchtime

attack sometime in the last year. It does not mention how frequently this activity

occurred nor does it include any other attacks.

The last items to be considered while exploring the use case is that of the Cyber

Kill Chain and or ATT&CK. If the security tool is supposed to trigger at a specific

point in the chain or detect a particular technique, then special attention needs to

be paid to make sure attack pool includes examples that meet those requirements.

These attacks can be additional malware or attacks derived from use cases.

3.4 The Current Study

The experiment conducted in this paper utilizes MITRE’s PMF framework to

study if changes in a smartphone’s underlying block structure over time can be used

to develop a unique user profile. Profiles for each phone were created using five

different two-class machine learning algorithms and one one-class algorithm. For

the first hypothesis, user behavior will create unique patterns that can be identified,

success will be determined by how well the legitimate sessions from a given phone can

be classified. The success of the second hypothesis, masqueraders behavior is different

that the user’s behavior and will leave different patterns in the device, depends on

how accurately a legitimate user session can be distinguished from an illegitimate

one. For the purposes of this study, an illegitimate user can be a person conducting

an attack or undesired software such as malware.

Figure 3.10 shows how the original user images were recorded by PMF for the

Purdue Experiment. Figure 3.11 shows how the process is reversed and the original
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data is restored using reverse tethering. From there an attack is performed and the

changes are injected into the phone exactly as if the attack had occurred in the wild,

creating one of the most realistic masquerade sessions ever developed. The original

PMF process then repeated and a new collection run is created and stored within the

PostGRES database. The machine learning algorithms will then be tested against

both the original legitimate user sessions and the newly created masquerader sessions

to see how accurately assessing block structure changes of a mobile device can be in

detecting masquerading users, mobile malware, and the exploitation of the device.

Fig. 3.10. PMF Process (Guido et al., 2016a)

The attack pool for this study was chosen because they are representative of

attacks that could have occurred at the time the phones were in use. According to

the Symantec (2017) on in thirty-six smartphones experiences an attack each month.

That would mean over the course of the Purdue Experiment at least one phone a

month should have experienced some sort of attack. Some of the phones could be
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Fig. 3.11. Reverse Tethering Process parts of image from (Guido et al., 2016a)

subject to malware, others to snooping, or even third-party intrusions. For this

reason, a variety of attacks were chosen.

The first attack for each phone was chosen as a matter of necessity. This was the

deletion of the phone’s security files. Specifically, the deleted files were:

• Gesture.key

• Locksettings.db

• Locksetting.db-shm

• Locksettings.db-wal

This was done to ensure the researcher could unlock the phone to conduct the addi-

tional attacks. The phones were imaged after this to see if this action was detectable.

These files are small and do not change frequently, but their removal is indicative of
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malicious behavior and represent a large security risk. It would be important for this

system to alert if these actions are taken.

From the use case, two different attacks were conducted. The first attack was

installing an application and the second was uninstalling an application. As this was

a pilot study it was desired to see if this behavior would be considered legitimate or

illegitimate. Both actions can be taken by the user, but they can also be taken by a

masquerader that takes possession of the phone. For security and forensic purposes,

it was desirable to know how these actions would be classified by the algorithms.

For the first attack, the application installed was Plants vs. Zombies, a mobile

game. This app was chosen for convenience and because it was able to function on

the Samsung Galaxy S3s used in this experiment. The version number was 1.1.44-52

and it was 9.1MB in size. An apk file for the app was loaded onto a micro SD card

that was inserted into the phone and then the app was installed from the SD card.

Here the objective was to see if the installation of an application can be detected.

The chosen app has a below average size for an Android app, but is still large enough

to cause changes to the storage space (Boshell, 2017). While this particular app

is harmless, a different one may not be, even if it is installed by a legitimate user.

Whether the app is harmless or not, it could represent a security risk and the system

should alert for further investigation. Knowing if this action is detectable is there for

extremely important.

For the second attack, the deleted application was Angry Birds, a mobile game.

It was installed on all the phones before they were given to the subjects as part of the

standard package of apps. While it is normal for users to occasionally remove apps,

it was not known if this action could be detected by the proposed system. As with

app installation this action could represent a risk and be desirable to be detected.

The AMD was used to provide the malware and ensure that different types of mal-

ware are included such as the banking Trojan and adware that were used. Originally

a backdoor agent, ransomware, and spyware were also wanted, but were excluded
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from the study do to time constraints. The following malware were chosen for this

research:

• BankBot (Banking Trojan)

• Dowgin (Adware)

This malware was chosen because it represents variety of commonly occurring

malware from 2013. Any of these samples could have potentially been contracted by

the phones while the Purdue Experiment was being run. These types of malware

are still common today, but the variants have changed. There are also known valid

samples in the AMD to ensure the right malware is being tested. Care was given to

make sure that the malware selected will make changes to the hard drive that can be

potentially detected by the algorithms.

Malware was installed by transferring it as an apk from an SD card to the phone’s

data partition and then running it. The phones did not have an active data plan

preventing them from connecting to a provider network ensuring user data remained

safe. Research was also conducted within a Faraday cage to prevent any signal from

escaping and ensuring the malware could not spread or risk subject data from being

exposed. A server was set up using INetSim to provide any necessary responses

the malware needed to function. INetSim is a simulation suite designed to mimic

DNS and other internet services inside a malware examination lab (Hungenberg &

Eckert, 2019). The phones connected to the server via a wireless network using a

router dedicated for this research. Once the malware was installed on the phone,

it was allowed to run, making whatever changes it would normally make. There

was no connection to the internet available to the INetSim server, the router, or the

phones. Afterwards, the phones were scanned and forensically imaged using PMF.

This new image represented a new session that was tested using the machine learning

algorithms.

After the attacks were concluded, the phones were wiped, removing all traces of

the subject’s data and the attacks. These five attacks represent a small portion of the
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threats faced by smartphones. The goal was to see if these attacks modify the phone’s

underlying block structure in a manner that is varied enough from the user’s normal

behavior for the machine learning algorithms to properly identify which sessions have

attacks in them and which ones do not. Testing each of these attacks against the

pool of phones will show which attacks are best detected and which algorithms are

the most sensitive. To do this, attack sessions need to be generated. The next section

covers how these sessions will be created.

3.5 Creating Attack Sessions

One of the most difficult parts of detecting masqueraders on any electronic device

is coming up with a valid example of an attack. Many experiments such as (Schonlau

et al., 2001; Maxion & Townsend, 2002; Mazhelis & Puuronen, 2007a), and the original

PMF masquerade detection experiment train on actual subject data from the training

dataset and then insert sessions from other subjects in the testing datasets. The

idea is that when the original subject’s actions are extracted and examined that the

differences between the subjects will become apparent. There are several reasons to

do this, one of the most compelling being that session data is set after it is recorded

and can’t be modified.

The problem with this method is that it does not generate actual attack data. This

experiment used primitive data in the sense that it is examining time and locations

of data change. Even if users started with physically identical phones, their actions

over time would diverge and data would be recorded in different places. Using an

alternate subject’s data in the testing phase should by default automatically fail as

everything would have been recorded in physically different places. The tables below

show a simplified hypothetical of why just comparing different user’s sessions to each

other would fail. Each cell with an app listed is a changed block on the phone. Even

if the subjects are using identical apps, time will cause the physical layout of the
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phones to drift apart making their sessions look nothing alike as seen in Tables 3.6

and 3.7.

Table 3.6.
Example of Where Data is Stored for Subject A

Facebook

Email

Instagram

Chrome Chrome

Twitter

Table 3.7.
Example of Where Data is Stored for Subject B

Facebook Chrome

Twitter

Camera

Camera

Email Instagram

This experiment leveraged reverse tethering (section 3.2.5), a unique capability

developed for PMF that allows it to inject prior session data back onto a phone

and recreate the working state of the phone from any point in time that a previous

collection was made. It works by scanning the phone and comparing the hash values

of the blocks to the ones stored in the PostGRES database. When a difference is

detected it writes the stored data over the scanned block offsets. This forensically

duplicates the phone’s physical layout at the time the collection was made. From here

an attack from the pool was injected, modifying the original data session with the

changes that occurred from an actual attack. Table 3.8 shows what the same subject
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A’s session from before would look like after it has been recreated and an attack run

against it.

Table 3.8.
Example of an Attack Session Against Subject A

Facebook Attack

Email Attack

Instagram/Attack

Chrome Chrome

Twitter Attack

Creating another PMF collection run at this point, allowed the attack data to

be recorded in the database. The detection algorithms were then tested against this

newly generated dataset. This methodology allowed for the proposed experiment to

function by keeping user data in the correct physical location while having actual

attack data injected into it. A successful prediction in this experiment would be able

to determine that this new session, which came from the phone owned by the subject,

had been used by someone else and would thus trigger a potential compromise/alert

status. Depending on the necessary follow up, this could trigger automated mitigation

responses such as alerting security personnel, disconnecting the phone from the net-

work, or disabling apps and other features of the phone. A full forensic investigation

could even be conducted if necessary.

The original subject sessions chosen to be injected with attack data were quasi-

randomly selected. Quasi-randomness occurs because some of the phones used in the

original experiment no longer functioned and could not be restored to their original

states. Of the phones that remained, selection was randomized across all of them

and included all the recorded sessions. The forensic image for the chosen session was

pushed back onto the phone and an attack conducted. After the attack sessions were

generated, the phone was reimaged using the same PMF method that created the
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original sessions. It was then up to the machine learning algorithms to determine if

the attack sessions could be identified. The next section describes how this occurred.

3.6 Testing and Training

This study tested two types of machine learning methods. The researcher first

compared the accuracy of the eight machine learning algorithms running a two-class

test. The second one used four different one-class SVMs to determine how well outlier

detection can be used to classify a single phone’s sessions. The attack sessions from

each set of tests should be determined to not belong in the same classification as the

actual sessions.

The first portion of this research tested a series of two-class comparisons using

eight different machine learning algorithms. The following algorithms were the ones

chosen for this experiment:

• Multilayer Perceptron

• Two Support Vector Machine (SVM)

– Each with k-fold Cross Validation (CV)

• Two Random Forest

• Majority Voting Classifier

They were chosen to test how different algorithms and settings affect the success

of the classification. The Random Forest algorithm was chosen specifically because it

was the most successful at classifying phones in the original Purdue Experiment and

provided a means of comparing the two experiments. The comparisons that were run

compared each phone’s sessions to a set of sessions created from five other randomly

selected phones. Class 1 was the phone being tested while the comparison phones

in each test were considered class 0. Each of the experiments was conducted using

training/testing splits of 80/20, 70/30, and 30/70. The training data was used to
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create the model while the testing data was used as a means of checking the model’s

validity. The machine learning models generated were then used to test the attack

sessions. This tested how similar the attacks were to the actual user session. For

these tests, a successful test would result in the attack session being classified as class

0.

The second portion of this experiment used a one-class SVM to compare a phone’s

sessions to all its other sessions. The idea behind a one-class test is that normal session

will be clustered together while abnormal sessions would show up as outliers. This

test showed if a phone by itself can be a classified using only its own data. Models

were generated by using the same 80/20, 70/30, and 30/70 training/testing splits

as the two-class experiments. After the models were created, the attack sessions

were tested. A successful prediction would have resulted in the attack sessions being

determined to be outliers. The next sections go into more detail on how the models

were generated.

3.6.1 Two-Class Machine Learning Method

This being a pilot study, several algorithms were used to find out which one

performed the best. Two SVMs were created with slightly different settings. The

first SVM, referred to as SVM1, used a C parameter of 1 and the second, SVM2, of

20. “The C parameter trades accuracy for speed. Lower values of C make the decision

function simpler (faster), at the cost of accuracy (Learn, 2019d).” Here the decision

was made to see how accuracy would change under vastly different C parameters.

Separate models of both SVMs were also made using the same parameters, but

applied k-fold Cross Validation (CV) to them as well. “K-fold CV splits the training

set into smaller sets called folds. The model is then trained on all but one of the folds,

using the last one to validate the model (Learn, 2019d).” This is repeated until every

sample has been used as the validation sample. While computationally expensive,

this method can be advantageous on small datasets such as the one being used in this
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experiment. The first SVM was given a CV value of two and the second CV a value

of ten. Again, this was done to better understand the effects of the machine learning

settings on the accuracy of the model.

The next set of classifiers were RF classifiers. RF classifiers are ensemble classifiers

that work by creating multiple decision trees. Each tree makes a prediction and the

classification with the most predictions is chosen (Yui, 2019). Generally speaking, the

more trees that are in the model the more accurate it will be at the cost of increased

computational difficulty. As with the SVMs, each RF classifier’s settings were slightly

different to study the effects on the models’ predictions. For the RF classifiers, the

n estimators parameters was changed. One was set to 10 and the other to 50. The

n estimators parameter controls how many trees are in the forest, the default being

10. For this research it was desired to know if the increase in trees would significantly

improve the accuracy of predictions.

A multilayer perceptron (MLP) was also created using a Limited-memory Broyden-

Fletcher-Goldfarb-Shanno (lbfgs) solver as it can perform better on smaller datasets

(Learn, 2019b). MLPs work by taking an input layer and an arbitrary number

of hidden layers that then proceed to an output layer (Skymind, 2019). The hid-

den layer size was reduced from the default of 100 to 30 because of the small dataset

used, where the average number of sessions for each phone was 30.

The final classifier created was a Voting Classifier (VC). This voting classifier

takes as an input the results of the other models and creates a majority vote using

the average of the predicted probabilities from the other models (Learn, 2019a). Often

these can improve on the results of weak estimations from other classifiers.

3.6.2 One-Class Models

The models for this portion of the experiment were all SVMs with different kernels.

Kernels are different ways of calculating dot products from two vectors and mapping

them higher dimensional feature space. Effectively turning the 2-dimensional dataset
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into 3-dimensions or more. This allows datasets that are not normally linearly sep-

arable to be divided by a plane and thus classified (Team, 2018; Saptashwa, 2018).

A visual example can be seen in figure 3.12. In the input space the circles cannot be

linearly separated but using the kernel to increase the dimension space separates the

circles and allows them to be divided by a linear plane.

Fig. 3.12. Example of how a SVM Kernel Works (Wilimitis, 2018)

For this experiment, the chosen SVM kernels were:

• Linear

• Radial Basis Function (RBF)

• Polynomial

• Sigmoid

The goal of selecting multiple kernels was to see which, if any, could correctly

classify the sessions. As with the two-class method, each phone was tested using the

70/30, 80/20, and 30/70 training splits. The next section discusses the hypotheses

this research proposed.
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3.7 Hypotheses

The purpose of this research is to test two hypotheses.

The first hypothesis is:

The behavior of the owner of a phone creates unique patterns in the block

space of a phone that will allow it to be uniquely identified and classified

from other phones of the same make and model.

The second hypothesis is:

The behavior of a masquerader (human or software) will be different than

the owner and will leave patterns in the block structure of a smartphone

that can be used to determine when a phone is not being used by the

owner.

3.8 Units and Sampling

This section discusses the units being tested and the sample chosen. It also covers

the variables being tested and evaluated as well as what will be considered a successful

test.

3.8.1 Sample

The dataset used for this research came from the Purdue Experiment. It used a

convenience sample of 34 students from Purdue University, mostly within the College

of Technology, were provided Samsung Galaxy S3s for the duration of the Purdue

Experiment. The subjects in this experiment were unaware of the true nature of the

experiment being conducted in order to convince them to use their phones in a normal

manner. If the subjects were aware of the experiment, they may have changed how

they interacted with the phone and thus alter the behavior being recorded. After



82

the Purdue Experiment was ran, the subjects were informed of the true nature of the

experiment and given a post consent form. Any subjects who wished, could withdraw

from the experiment and have their data removed.

Three of the subjects did request to be removed. Which brought the total sub-

jects down to 31. From the 110 days the experiment ran, 872 images were collected

across all the phones. This made roughly one image per phone every four days. The

collections were done wirelessly while the subject was on Purdue’s campus. Subjects

were encouraged to be on campus everyday but weekends and holidays to facilitate

the successful collection runs. Granularity was not perfect however, as some phones

had more sessions than others and sessions were not always collected with the same

amount of time between them.

There were also five phones whose data was of undetermined origin. A few of

them were used by members of the research team during the experiment to provide

control and test services while the experiment was being conducted. Others were

replacement phones sent out to the subjects when their phones were broken. The

data for these phones were also stored in the Purdue Experiment and due to the

anonymized nature of the research, the data from these phones cannot be extracted

from the dataset. That being said, the behavior of the users will still have patterns

based on their normal behavior and the data still was applicable to this study. One

phone, identified as phone 2, had to be dropped from this research because it had

only two recorded sessions. This creates a total sample size of 35 subjects.

It is important to note that the sample size of 35 subjects is significantly larger

than many MDS studies with several having less than 10 subjects (Garg et al., 2006;

Ahmed & Traore, 2007; Bhukya et al., 2007; Camina et al., 2011). The College

of Technology at Purdue University had 3,640 students in 2013 when the Purdue

Experiment was conducted (Purdue, 2016). Assuming a normal distribution, that

means the study had a 95% confidence interval with a 17.8% margin of error with

regards to the students in the College of Technology, now known as the Polytechnic

Institute of Technology (Systems, 2012). Expanding this to all 38,788 students at
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Purdue University in 2013 and the confidence interval and margin of error stay the

same. This means that the results of this study can be generalized not only to students

in the College of Technology, but to students at Purdue University as well.

The majority of subjects for this study were educated consumers in the age range

of 18-30. Specifically, they were mostly from the College of Technology, so they

were likely to have a certain mindset and comfort level when it comes to using and

adapting to new technology such as smartphones. This might have caused different

behavior than that of the average person in the U.S. While a larger sample would

reduce the margin of error when it comes to generalizability, it is cost prohibitive to

provide enough phones and service to create a larger sample. The primitive dataset

being used in this study did not require the users to behave in a certain manner

or use designated programs and functions which helped overcome the narrowness of

the subject pool when it comes to generalizability. For a pilot study, the results are

statistically significant and reliable enough to generalize to a much larger population.

3.8.2 Variables

There were two variables being examined in this study. The number of blocks

that change between sessions and where those blocks are located. Each user session

represents a different day in which the phone was scanned and imaged. The number of

blocks that changed between sessions are representative of how much activity occurred

on the phone. Where each block changed is what creates the patterns that the user’s

behavior is leaving behind on the phone.

3.9 Originality

The research in this paper is original for several reasons. Although it takes ad-

vantage of the PMF framework and dataset the research itself was not based on any

of the results from the Purdue Experiment. In fact, the proposed study explored
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a completely new space for masquerade detection instead of making refinements to

methods already developed.

For example, this research went to a lower level than any of the previous methods

used in masquerade detection. By examining only which blocks changed between

sessions it is possible to build a user profile without needing to know any sensitive

user information. This will not only lower the time needed to alert security in case

of a violation, it will also maintain user privacy by keeping data encrypted until it

is needed for further investigation. Analysts do not have to be exposed to user data

unless a session is identified as not belonging to the user. Once a session has been

flagged as aberrant, further response can be conducted based on the organization

desire’s, including a full forensic investigation.

Using a more primitive dataset also makes this MDS more universal than prior

methods. Specific actions do not need to be taken by the user for this method to work.

No matter how the user interacts with their smartphone, changes will occur in the

block storage. Even malware piggybacking on a legitimate user’s session will cause

changes to occur and can be detected. This defeats the need to know in advance what

changes are important and which features need monitoring as this research operates

at the lowest common denominator.

The proposed experiment also has a novel method of generating attack sessions.

Where most MDS experiments use data sessions from other users to simulate a mas-

querader, this experiment used actual user sessions with attacks injected into them.

The reverse tethering feature allowed forensic images to be restored to a phone. This

recreated the exact state the phone was in when the collection run was made. Al-

lowing attack sessions to be generated as part of the user generated sessions instead

of having to create poor simulations by switching sessions from other users. It also

means multiple attacks can be conducted at the same point in time to study how they

propagate on the phone. By always being able to reverse the phone back to a prior

state the same session data can be used to study new attacks as they are discovered.

Methods that require user sessions to be switched or faked to generate a bad session
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cannot adapt to new attacks after the original user data has been collected. The

framework proposed here does.

3.10 Summary

This chapter provided the framework and methodology to be used in the research

study. The next chapter will provide the results of the experiment after it has been

conducted.
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4. ANALYSIS AND RESULTS OF THE STUDY

This section covers the analysis and results of the study. The machine-learning al-

gorithms were trained against each phone and the model tested to see how effective

they were at classifying the user sessions from their phones. The phones were numeri-

cally labeled for identification and then selected for the study using a random number

generator. Phones 4, 15, 16, 27, and 32 were selected. Each phone had its sessions

numbered from 1 to x with x being the last session. Randomized sessions were then

chosen to be the subject of attacks by using a random number generator. The data

from the experiments were then submitted to the appropriate models for each phone

to find how accurately they could classify sessions conducted by a masquerader.

A session for each phone is defined as one collection run from the Purdue Ex-

periment dataset. There was an average of 30 sessions per phone with a median of

23. The data partitions for the Samsung Galaxy S3s used in this research are 12,531

MB. Each block in PMF was set is 1 MB. This would create a feature set far too

large for the study to effectively use. In order to reduce the number of features being

examined from 12,531 to more reasonable number the blocks were grouped into 126

sections. Each section is 100 blocks long, except for the last which was 31 blocks

in size. The number of chunks that changed in each section were added together to

create a number between 0 and 99. These were then used as the feature set for each

session.

When generating the two-class models, sessions for the phone being examined were

considered class 1, all other sessions, class 0. From there the sessions were split into

training and testing sessions. The splits were done at the standard 70/30 and 80/20

to see how the number of training samples impacted the accuracy of the models in

predicting the testing samples. To further test the capabilities of the models, another

set was created using a 30/70 split. Once the data was split, it was scaled using
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sklearn’s StandardScaler function. StandardScaler is used to center the distribution

of numbers around zero (Learn, 2019c). This is used to prevent an individual feature

from dominating results because it is too high or low compared to the others. Principle

Component Analysis (PCA) was used to further reduce the number of features being

examined. The number of components were set so that 95% of the variance could be

explained (Brems, 2017). The training split data was then ready to be used to train

the models. The following sections will cover the results from the machine learning

models for the two-class and then the one-class algorithms.

4.1 Two-Class Results

The first hypothesis of this research is that the user of a phone will behave in a

way that influences how and where the phone writes its data creating unique patterns

specific to that phone. To test this hypothesis, two-class machine-learning algorithms

were used to compare all the sessions for one phone from the Purdue Experiment

to all the sessions for five other phones from the experiment. Pairings were done

using a random number generator to select the five additional phones. If the first

hypothesis is correct, then the models will be able to successfully categorize the phones

as belonging to the correct class. The second hypothesis is that a masquerader will

behave differently than the user and the patterns left behind will be significantly

different enough that the models will be able to identify these new sessions as not

belonging with other session from the phone. The following subsections discuss how

the models were created and the results from running the experiments.

4.1.1 Two-Class Model Analysis

A model was generated and tested for each phone with a training/testing data

split at 80/20, 70/30, and 30/70. As with other changed in parameters for the models,

this was one to see if there was a significant difference in the accuracy of predictions.

A receiver operating characteristic (ROC) curve was generated for each phone to show
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where the maximum number of true positives occurs with minimal amounts of false

positives (Narkhede, 2018).

A false positive in this case would be the model identifying a session that does not

belong to the phone as belonging to it. A perfect mean ROC area under the curve

(AUC) would be a 1.0. Several of the models were able to achieve this on a few phones

but none consistently. Most of the time the models were able to generate AUC scores

between .85 and .95 which means the number of true positives is very high compared

to false positives based on only changes in the block structure. Figures 4.1 through 4.3

below are examples of the ROC curves from phone 3 from all three testing sets (See

Appendix C for all of the ROC curves from the experiment). The straight dashed line

in the middle of the diagrams is where a reference to the linear relationship between

true and false positives, giving a baseline for how random classification would appear.

The area below that line would suggest that the model is doing worse than randomly

guessing and above the line signifies accurate classifications by the models.

Fig. 4.1. Phone 3: 80/20 Training/Test split
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Fig. 4.2. Phone 3: 70/20 Training/Test split

Fig. 4.3. Phone 3: 30/70 Training/Test split



90

As can be seen in all three example the models were capable of accurately clas-

sifying the phones with minimal false positives. Not all the phones were as easily

classified as the others. While most were in low 90% range some, such as phone 12

(.826) scored significantly lower. Complete charts for all models and phones’ accuracy

can be found in Appendix A. The sessions from phone 12 were the most misclassified

of the phones and the following ROC curves (Figures 4.4 - 4.6) were generated by

the models from it. Despite being the models performing the worst on this phone,

they were still able to accurately determine the correct classifications. There is more

differentiation in the ROC curves from each model for phone 12 which helps show

that each of the models were indeed calculating different scores and working properly.

Fig. 4.4. Phone 12: 80/20 Training/Test split

A few phones, such as phone 21, also had graphs where one of the SVM2 seems

to underperform, as can be seen in Figure 4.7. It also has a similar underperformace

in Figure 4.9, the 70/30 test split graph. In both the 80/20 and 70/30 testing splits,

several of the models appear to significantly underperform. The models were RF1

and SVM2 with 47% and 5% reported AUC. Phone 21 only had 6 sessions which
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Fig. 4.5. Phone 12: 70/30 Training/Test split

Fig. 4.6. Phone 12: 30/70 Training/Test split
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would suggest the idea that a low number of sessions could be the cause of the

underperforming models.

Fig. 4.7. Phone 21: 80/20 Training/Test split

Phone 24 also had a low number of sessions with only eight in total. However,

it had relatively normal looking ROC graphs by comparison as seen in Figures 4.8

and 4.9 below. The low number of sessions could explain the sharp curves, but the

models still performed similarly to each other and to the rest of the study. Except

for SVM2 in the 70/30 test split which reports an area of only 7%. To make it

even more challenging to figure out why some of the graphs are so different, the

underperforming models in each phone were reported to have a high accuracy when

examining the results from the models. Phone 21’s RF1 and SVM2 actually had an

accuracy of 95% while phone 24’s were 94% and 97% accurate. This high accuracy

is also supported in the graphs by the voting classifier having a high AUC of 95%

(phone 21) and 97% (phone 24). If the models were truly performing as poorly as

the graph indicates, the voting classifier would have had lower results. This suggests
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the apparent under-performance in the graphs has more to do with the an error in

the graphing of the data and not with the number of sessions.

Fig. 4.8. Phone 24: 80/20 Training/Test split

Table (4.1) shows the average accuracy of predictions for each model across all

the phones. Appendix A contains all the tables for each phone. These scores are

useful when discussing generalities, but unlike the ROC curves, they do not show

the tradeoffs between false positive and negative scores. The 80/20 training split

was slightly more accurate than the 70/30 split in almost all instances, but not with

much statistical significance. This was expected as there is more data being trained

on and gives the models a better chance to make accurate predictions on the test

data. This shows that the null for hypothesis one can be rejected. The way a phone

stores its data appears to be very unique and every model on average was able to

correctly classify phones sessions more than 90% of the time. The most accurate

model overall based on this dataset was the Voting Classifier with 92.3% average

accuracy in all three tests. This was expected as voting classifiers often outperform

the classifiers from which they are comprised. The RF classifier did indeed perform
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Fig. 4.9. Phone 21: 70/30 Training/Test split

better with more trees being involved which is also expected behavior. Surprisingly,

though the CV SVMs performed worse than the regular SVMs and the lower C score

SVM (SVM1) was more accurate than the higher one.

In the original Purdue Experiment the models were only 84% accurate at best

compared to an average of 92% from this experiment. This suggests that changes in

the block space are more unique to the users and a better feature than the actual

data itself. This is supported by the data collected in these trial when the models

are using legitimate sessions from one phone compared to other phones. The next

phase of the study was designed to test how well the models could detect masquerade

sessions where the experimenter made changes to the phone that would not follow

the same patterns as the original user.

The same model generated by the first phase was used to examine the data from

the attack sessions. Almost all the models performed worse. The average went from

92% in phase one to 37% in phase two. This provides both positive and negative

feedback to the experiment. The positive feedback indicates that the attack sessions
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still look more like the original phone sessions than like a different phone. The negative

feedback indicates the attack sessions would get past most of the models. Most is

key because the cross-validated SVMs were both able to detect the attack sessions

accurately. The following tables show the results of the predictions for each model

by phone.

The CV SVMs were able to on average detect the attack sessions 88% and 91%

respectively. This would indicate that hypothesis two is also correct and that the

behavior of a masquerader is different enough from the behavior of the owner and

can be detected by some of the machine learning models. Not only can the attack

sessions be found, this method of finding them appears to be as good as or better than

the traditional IDS that was created in the Purdue Experiment. While successful,

this method requires multiple phones to be used. The one-class tests in the next

section cluster an individual’s phones sessions without the need for other phones to

be part of the examination.

4.2 One-Class Results

The one-class experiments were also used to test the two hypotheses, just in a

different manner. In these one-class tests, all the sessions came from the phone being

tested. The algorithm then clusters the sessions with ones that look the most simi-

lar being closest together. Sessions within the cluster are considered authentic user

session while outliers are considered suspect and possibly belonging to a masquer-

ader. If the first hypothesis is true, then the models should cluster the actual user

sessions together with as few false positives as possible. If the second hypothesis is

true, the attack sessions should be classified as outliers with as few false negatives as

possible. The following subsections discuss the algorithms used and the results of the

experiments.
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4.2.1 One-Class Model Analysis

The results from the one-class were more varied than the two-class models. Unlike

the two-class models, most of the one-class models failed. Failure in this case means

the model was less accurate than random chance would dictate, less than 50%. There

were several instances where a model was 100% successful while other models com-

pletely failed for an individual phone. Out of the four models used in this phase of the

experiment, only the SVM using a Sigmoid kernel was able to accurately classify the

user sessions. Even then it was only 68% accurate when classifying the actual user

sessions. It was also the only one that successfully classified the masquerade sessions

at 84% accuracy.

Testing the first hypothesis with the one-class models was done in a similar method

to the two-class tests. Each phone had all its sessions split, a model was trained for

it, and then tested on the remaining sessions. Table 4.5 shows how accurately each

model was on average at predicting actual user sessions. The full tables for how each

model predicted sessions for the phones can be found in Appendix B.

Table 4.5.
One-Class Model Average Accuracy

Test Split Linear RBF Polynomial Sigmoid

80/20 .425 .293 .170 .658

70/30 .500 .342 .203 .673

30/70 .421 .108 .192 .698

Average .449 .248 .188 .676

For the most part, it would appear that using only sessions from an individual

phone, that the first hypothesis is not true. Three out of the four SVMs were unable

to do better than chance. However, the SVM using the Sigmoid kernel shows that
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it is possible to successfully classify user sessions. This would suggest that the first

hypothesis is true, but more experimenting is needed before it can be confirmed.

The accuracy for all the models is much lower than the two-class tests were. The

most likely reason for this is that the two-class tests had five times the number of

samples to work with. Investigating the idea that sample size is the issue, Table 4.6

shows all of the phones and how many sessions they had alongside the accuracy from

the Sigmoid SVM’s predictions. At first glance, it may appear that the results are

random, with the model doing well in one test and not in another. This gives the

appearance that session size may not matter, but further examination shows it does

have an impact on the results. Table 4.7 shows how using only phones with more

sessions improves the average accuracy of the Sigmoid SVM. When all the phones with

fewer than 10 sessions are removed from the data, the accuracy raises for most of the

testing sets. When the phones with 20 or fewer sessions are eliminated, the accuracy

raises higher for all three testing sets. This trend continues when only phones with

30 or more sessions are used.

Table 4.6.: Sigmoid SVM Sessions to Accuracy

Phone Sessions Accuracy 80/20 Accuracy 70/30 Accuracy 30/70

1 12 1 .667 .286

3 125 .840 .763 .896

4 11 1 .750 .750

5 23 1 .571 .813

6 22 .800 .714 .867

7 45 .555 .429 .709

8 42 .444 .538 .966

9 50 .600 .800 .743

10 56 .636 .647 .641

11 20 .500 .330 .643

continued on next page
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Table 4.6.: continued

Phone Sessions Accuracy 80/20 Accuracy 70/30 Accuracy 30/70

12 38 .750 .750 .538

13 33 .857 .500 .870

14 48 1 .933 .879

15 30 .833 .889 .905

16 41 .500 .333 .857

17 30 .833 .556 .950

18 20 .250 .333 .462

19 22 .600 .571 .733

20 18 .750 .500 .917

21 6 0 1 0

22 20 0 .167 .786

23 23 .600 .571 .500

24 8 1 1 .400

25 25 0 .500 .750

26 29 .500 .667 .769

27 19 1 .833 .842

28 27 .833 .750 .625

29 23 .800 .857 .643

30 21 .750 .667 .769

31 42 .778 .923 .500

32 42 .875 .833 .500

33 8 .500 .500 .900

34 16 .667 .200 .500

35 9 1 1 .857

36 11 .500 1 .857
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Table 4.7.
Changes in Average Sigmoid SVM Accuracy

Accuracy 80/20 Accuracy 70/30 Accuracy 30/70

All Phones .658 .673 .698

Sessions ≥ 10 .685 .618 .714

Sessions ≥ 20 .699 .671 .714

Sessions ≥ 30 .731 .684 .766

For one-class models, the sample size is important. The phones with more samples

were generally more accurately classified by the model. With at least 30 sessions, the

model was 76.7% accurate. This method could probably be even more accurate if the

sessions occurred more regularly and frequently. As discussed in Limitations (section

1.6), the PMF collection runs that were used as sessions for this experiment were often

24 hours or more apart. If the time between sessions was reduced and kept at more

regular intervals, it is possible the inherent randomness of human behavior and thus

the noise created in the drive space for the phone would also be reduced, allowing for

more accuracy in the classification process. There may also be an over-fitting issue

as the most accurate model was trained on the least amount of data. More sessions

at more frequent intervals would need to be conducted to test this theory.

Despite most of the one-class models being relatively inaccurate at classifying

the user sessions, the more important question was how well did the models predict

the attack sessions. False positives, while annoying, are not nearly as bad as false

negatives, where an attack session would be classified as belonging to the phone and

miss going through further security. Table 4.8 shows the average accuracy of each of

the SVM models at predicting the attack sessions.

Unsurprisingly, most of the models fail to correctly classify the attack sessions.

The Sigmoid SVM once again was the best at classification and outperformed itself

in this phase. It was more accurate at classifying the attack sessions than the actual
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Table 4.8.
Average accuracy of SVMs at classifying attack

Test Split Linear RBF Polynomial Sigmoid

80/20 .440 .280 .360 .840

70/30 .560 .160 .120 .760

30/70 .520 .040 .280 .840

Average .501 .160 .253 .813

sessions, averaging 81%. This also indicates that hypothesis two is correct. The

behavior recorded during the attacks was different enough that the Sigmoid SVM was

able to detect and identify the changes in the phones block storage as not belonging

to the user.

4.3 Analysis Conclusions

The purpose of these experiments was to test the two hypotheses proposed by

this research. The first hypothesis is that user behavior is unique and that it will

cause patterns in the block structure that allow it to be identified from other phones.

Hypothesis two is that sessions created by a masquerader using the phone will be

different because the masquerader behaves differently.

Both the one-class and two-class models support the first hypothesis being true.

The two-class models were extremely accurate at identifying the actual sessions from

the sessions belonging to any other phone. The average accuracy for the two-class

models was over 90%. The Sigmoid SVM from the one-class tests was also able to

successfully identify the actual user sessions. For the first hypothesis to be true, user

behavior would have to create enough differences in the underlying block structure of

the phone. This would allow them to be correctly classified by the machine learning

models. While the current study does not provide conclusive proof, it does show that
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the models appear to be able to classify sessions correctly, which is why both sets of

models support hypothesis one being true.

Both the one-class and two-class class models also support the second hypothesis

being true. For hypothesis two to be correct, the models would have to be able to tell

the difference between the user session and the attack sessions. The process of creating

the attack sessions is inherently different than the behavior of the the phone’s actual

user. If hypothesis two is true, these differences should create a different pattern in

the block structure and be detectable by the models. Both of the CV SVMs and the

Sigmoid SVM were able to accurately classify the attack sessions as not belonging

to the phone. The two cross validated SVMs were both about 90% accurate at

classifying the attack sessions. The Sigmoid SVM was less accurate, but was still

able to correctly identify the attack sessions 80% of the time. The high accuracy in

both types of models suggests that hypothesis two is also true.

Not all the models were successful though and even the best one-class model

(Sigmoid SVM) was not as accurate as desired. There are many factors that could

be responsible for the lower accuracy. One that was already shown to be a factor

is the low number of sessions for some of the phones. In section 4.2.1 it was shown

that having more sessions improved the accuracy of the models. Phones that had

at least 30 sessions were generally more accurately predicted than phones with fewer

sessions. Some phones with a low number of sessions were still accurately classified

for example: Phone 19 only had 18 sessions, but it was still accurately classified by

the two-class models and the one-class Sigmoid SVM. Phone 7 on the other hand had

45 sessions and was not accurately classified by the Sigmoid SVM. This means the

number of sessions is not the only import factor.

Frequency is also an issue. PMF scanned the phones for changed sections of device

storage every four hours, but the collection of the session data was only once every 24

hours at best. Often three or more days could pass before the data was collected and

a new session made. This potentially left too much time between sessions and allowed

for too much noise in the data. Phones such with a higher than average number of
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sessions, such as phone 7, that were poorly classified might have better results if the

time between collections was reduced. Increased frequency means less time for the

randomness of human behavior to create noise in the storage space of the phone.

Two of the attacks involved actions that could be taken by the user during the

course of normal activity. These attacks were the deletion and installation of an app.

When sessions with these attacks were ran through the machine learning models,

the CV SVMs were able to identify them as attacks. That is a positive result, but

could suggest that any action the user takes that installs or deletes an app will be

determined as aberrant behavior. It is certainly possible that if enough blocks in a

session change that the models will always predict the session as an attack. It is also

likely that the subjects in the Purdue Experiment did install and delete apps. These

actions could be what caused some user sessions to be incorrectly predicted. It is also

possible that sessions with these actions were correctly predicted. Without looking

at the actual user data, it is not possible to know. Future research should include

protocols for this, but it is outside of the scope of this research.

This was a pilot study that utilized machine learning. Before working with the

various models and trying to utilize them with the data, it is nearly impossible to know

which ones will work beforehand. It is entirely possible that alternative models and

machine learning algorithms will work better than the ones tested in this experiment.

With the one-class methods in particular, there are many other models and kernels

that could potentially be better at classification and prediction.

While not all the models were successful and not all the variation in classification

can be explained by this study, the overall objectives of this experiment were achieved.

For a pilot study, this research was very successful and showed results that supported

both hypothesizes. The next section of this paper discusses the conclusions and

ramifications of this research and what it means to cyber forensics, security, and

privacy.
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5. CONCLUSIONS

The purpose of this research was to answer the question, how effective can assessing

the block structure of a phone be at detecting masqueraders, malware, and exploita-

tion. To study this, two hypothesis were tested. First, that user behavior creates

unique patterns in the block structure of the phone that can be uniquely identified

and classified. The second is that the behavior of a masquerader using the phone

is different than the owner and will leave different patterns behind that can be The

results of this study show that the underlying block structure of a phone does change

in a manner unique to the phone and it’s user. The patterns created in the block

structure by the user interacting with their phone are able to be recognized by ma-

chine learning algorithms. The models created by the algorithms were then able to

correctly classify legitimate sessions as belonging to the user. These models were

then tested using attack sessions created from legitimate session data. Several of the

models were able to correctly identify the attack sessions as not belonging to the

legitimate user. The results of this study indicate that the hypothesis are correct

and that this method of masquerade detection is effective. This has important im-

plications for cyber forensics, security, and user privacy. Despite the success of this

study, more research needs done into this method of masquerade detection to verify

the results and efficacy.

The Purdue Experiment was considered a successful test using PMF to create a

traditional MDS for smartphones. Using a similar two-class Random Forest model,

the Purdue Experiment was able to correctly classify sessions from phones 84% of the

time (Guido et al., 2016a). To intentionally allow a comparison to a known good value,

two different random forest models were tested in this study, along with several other

model types. The random forest models tested in this study were nearly identical to

each other, with only the n variable being different. The n variable sets how many
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trees the model uses, in this case it was 10 and 50 in order to test how a larger

number of trees would affect the results. Generally speaking, the more trees, the

more accurate the model at an increase of computational complexity. The random

forest models in this study best average accuracy was .917 and .922 in the 70/30

training/test split respectively. This was a surprisingly high result as no personal

user data was examined in this research. Even more surprising, the random forest

models were not the most accurate models tested in this study.

The most accurate of the two-class models at was the VC in the 80/20 training

split with an average accuracy of .937. This is a little misleading as the VC is a

composite model based on the accuracy of all the other models combined. The next

most accurate model was the MLP with an average accuracy of .931 in the 80/20

training/test split. Both of these results are almost 10% more accurate than the

random forest model from the original Purdue Experiment.

The two-class tests required the comparison of sessions from one phone to sessions

from other phones. To test how similar sessions from a single phone were to each other,

one-class models were also tested. Most of these models were not accurate with the

only one that did better than random chance being the Sigmoid SVM. The Sigmoid

SVM’s best accuracy was .698 in the 30/70 training/test split. This accuracy was

easily increased to .766 by removing phones that had fewer than 30 sessions. This

shows two items of interest. The first being that the one-class models are more

sensitive to sample size than the two-class. The second is that there may be some

over fitting issues as the accuracy was highest when the training data was at the

lowest.

The purpose of conducting both the one and two-class tests using only valid session

data was to test the first hypothesis and show that changes in the block structure

can be used to create user profiles. Without being able to successfully classify user

sessions there would no point in testing the second hypothesis. Testing the attack

sessions changed which of the two-class models were the most effective. When testing

the models using the attack sessions, only the CV SVMs were accurate at 88% and
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91% respectively. While these were not the most accurate models for test the first

hypothesis they were still over 90% accurate. They maintained that accuracy when

identifying attacks created from legitimate user data. The Sigmoid SVM was still

the only one-class model that could accurately classify the attack sessions. Here the

accuracy actually rose to an average of .813. The high accuracy of these models

support hypothesis 2 being true.

If the Purdue Experiment was considered successful at 84% then this experiment

was successful as well. The Random Forest models for this study were even more

accurate when classifying legitimate user sessions at 91.7% and 92.2% accuracy. Un-

fortunately, the RF models were not able to accurately classify the attack sessions

at 29.3% and 26.7%. The best at classifying both legitimate sessions and the attack

sessions were the CV SVMs. These SVMs were 87.8& and 89.0% accurate when pre-

dicting legitimate sessions. They were just as accurate when predicting if the attack

sessions at 88.3% and 90.5%. The Sigmoid SVM was also fairly accurate at 67.6%

and increased to 76.6% when the amount of sessions was accounted for. It was also

able to correctly classify the attack sessions 81.3% of the time. Considering it was

unknown if any of the models would be any more accurate than random chance, these

results were very promising.

It would appear that the answer to the research question is that examination and

analysis of the underlying block structure of a smartphone is highly effective at de-

tecting masqueraders, malware, and exploitation. This study had several limitations

that should to be addressed before it can be declared that the hypotheses are proven

facts. As a pilot study there were many limitations that restrict the how definitively

the results can be taken. The biggest limitation is that the dataset used is from the

Purdue Experiment and was not designed with this study in mind. The sessions were

not collected with the regularity and granularity that would have been ideal for this

study. There were also not as many sessions as would be desired. Greater granularity,

regularity, and recorded sessions would allow for better analysis of the data and could

provide greater insights. The analysis in 4.2.1 has already exposed that the number
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of sessions has a large impact on the accuracy of some of the models. There was also

only one model of smartphone and version of the Android operating system involved

in this study. It is possible that other phones and operating systems could behave

differently enough that it would invalidate the findings of this research, but social

cognitive theory would suggest otherwise. User behavior also changes over time and

the longer the experiment the more likely these changes would be recorded. Changes

in a users behavior could introduce noise into the data that would make classifica-

tion of sessions difficult. The Purdue Experiment was run over a course of 109 days,

which is a significantly longer time frame than most other research into masquerade

detection. This provided a decent amount of time for users to alter their behavior,

but cannot account for everything.

Another limitation to this research was that user data was not allowed to be de-

crypted and examined. This means that legitimate sessions that were misclassified

cannot be further investigated. The false positives, sessions classified as being ab-

berant when they aren’t, are a waste of time for investigators. The false negatives,

sessions classified as belonging to the user when they do not, are even worse as it

means an attack has gone undetected. If it was known what caused the prediction,

the data could be accounted for to make the models more accurate. Even without

this knowledge though, the accuracy of the models was high, especially for a pilot

study.

Other weaknesses come from the study itself. One of the biggest weaknesses was

caused by time and resource constraints and can be easily rectified by additional

testing. That shortcoming is that only two malware samples were used in the this

study. Additional samples of malware can be used in future studies to examine if

the findings in this research still hold true. The other big weakness is that all of the

attacks had to be conducted by first deleting the security files so that the researcher

could access the phone. This can have the unintended consequence of all having all

of the models detect that and not the actual attack. In all 5 of the studied attacks

there are examples where each model failed to predict the session where only deletion
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of the security files occurred as an illegitimate session while still correctly predicting

the other attacks. Additional research could be done to verify it is the attack that is

being detected and not only the deletion of security files,

Despite the weaknesses in this study, the results strongly support both hypothesis.

The implications this has for cyber forensics, security, user privacy, masquerade de-

tection, and even psychological theory should not be underestimated. Both classes of

models showed that the patterns created in the block structure of the phone by mas-

querader is different than those of the legitimate user’s behavior. The differences seem

to be caused by the masquerader having different behavior. The literature review for

this research suggested that user behavior should influence how the block structure

of the phone is utilized, but until this study was done, there was no research that

directly showed this to be the case. As discussed in section 2.2, reciprocal determin-

ism theorizes that personality and behavior impact the environment, in this case the

storage space of the smartphone (Bandura, 1989). While not emphatically proving it,

the results of this research support social cognitive theory and the idea of reciprocal

determinism. Even though each phone in the study was the same model, with the

same operating system, and identical software, the block structure of each phone sig-

nificantly diverged. The primary catalyst of the change in the block structure of the

phone was the user interacting with it. Those differences were accurately classified

by the machine learning models, especially in the two-class tests which averages 92%

accuracy in classifying user sessions.

Masquerade detection research can also benefit greatly from this research. At-

tack sessions for many MDS research are sessions that are swapped from other users

involved in the study. This can create room for bias as normal behavior for each

user can be significantly different. The MDS instead of detecting actual attacks is

instead detecting differences in between legitimate users. This research used reverse

imaging to restore forensic images back onto a phone, recreating the exact condition

the phone was in as it was being used by the subject. Putting the phone back in this

state allowed attacks to be conducted directly against the phone as if it were still in
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the subjects hands. When the phone was forensically imaged again, the new image

is a legitimate user session with the changes cause by the attack recorded within it.

Other research can use this method to create attack session that are more accurate

than those created by session swapping.

As smartphones are further integrated into people’s lives, the protection of privacy

is all the more important and shouldn’t be sacrificed in the name of security. This

method of MDS has an added benefit in that it also protects user privacy. Unlike other

MDS that rely on substantial amounts of sensitive user information, the methods

employed in this research were conducted at a lower layer and does not rely on

knowing any specifics about the user. Not only does this protect the user’s privacy,

it eases the burden on enterprise security as sensitive data is not exposed by default

operations or in the event of a breach and compromise.

The models can also be used to show which blocks caused a session to be classified

as illegitimate. This can be used to extract and decrypt only the necessary data from

the image, allowing the remaining user data to stay private. If a full forensic investiga-

tion is deemed necessary the entire image can be restored, but this method means the

first look does not expose all of the potentially private and sensitive information on

the phone. It also means that examiners can spend less time on initial investigations

as the amount of data they must sift through is greatly reduced. Another security

advantage is that this method is based on heuristics and not signatures. Any attack

that alters how the phone behaves can potentially be detected. Not only could zero

days be detected, but the time to detection for attacks can be reduced depending on

the time the occurs between sessions. This could prevent greater security incidents

from occurring.

One of the biggest security threats to an enterprise is an insider threat. While

most of this research focused on attacks against the user and their phone, this is an

attack where a legitimate user behaves in a manner to cause harm to the enterprise.

If the insider threat in this case is uses their smartphone as part of their attack, the

shift in behavior could potentially be detected by this method. Suddenly transferring
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large amounts of data or connecting to systems and networks that the phone does

not normally connect to could reveal an insider threat in action. This is another way

to use the changes in block structure to provide security.

After an incident occurs, often a forensic investigation is required. In cyber foren-

sics, one of the most difficult questions to answer is, who was using the device?

Attribution has always been challenging as artifacts on a computer or smartphone

can show what and how, but provide little evidence to say specifically who was using

the device. Without some external form of monitoring such as a security camera,

most of the evidence as to who is circumstantial. Even if a phone remained in the

owner’s possession the entire time, it does not necessarily prove they were in control

of the phone. Malware of all types can run without the user ever being aware of it.

This method, however, is based on user behavior. When implemented it can be used

provide evidence of who or what was using the phone at the time in question. Behav-

ior that is indicative of the user would provide direct attribution that adds weight to

all the other evidence discovered on the phone.

This is incredibly important to cyber forensics as it can be used to confirm or

invalidate theories about what actually happened. An example of this is the ”malware

did it” defense. While malware can certainly be responsible for taking nefarious

actions the system used here would be able to establish if the behavior fell in line

with normal user behavior or if a masquerader. This could provide clarity to issues

where it argued that someone else or malware took the action and not the user. If

malware was really acting at that time, the session should be seen as aberrant and

classified by the models as not belonging to the user. This could prove helpful in

many types cases.

The purpose of forensics is to reveal the truth about what occurred. Often this

can be murky and hard to determine. An example discussed in section 1.3 is the

U.S. v Moreland (2011) where it could not be determined who was actually using

the computer when illegal pictures were downloaded. If a system similar to the one

in this study had been implemented it may have been possible to see who was using
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the computer based on their behavior. It becomes much harder to convince a jury

that someone else/malware is responsible when the behavior is shown to be indicative

of the user. At the same time can provide exculpatory evidence if the behavior is

deemed aberrant by the models.

This method also allows for a unique perspective when conducting an investi-

gation. In most investigations, the forensic image is made once and only after an

incident has occurred. This method here would allow for examinations over several

time frames. This could help provide a clearer picture of how and what occurred. An

attack that occurs over several sessions would show the order of how that attack pro-

gressed. This could be used to create more accurate timelines and establish a better

understanding of how the attack occurred. Security research would also benefit by

being able to examine the tactics, techniques and procedures of the attack.

Perhaps the most important result of this research is that it shows that new

and innovative methods for security and forensics can be successful. Mobile phones,

while technically computers, are different than traditional desk/laptops that have

dominated enterprise computing. They are far more personal and integrated into

their user’s life and that needs to be respected. Traditional methods, while effective,

are not necessarily the most appropriate. They are often resource intensive and

can decrease performance or cause other operational impacts that have a deleterious

impact on user experience. The methodology in this research is fast and designed to

take advantage of the unique properties of a mobile phone, without placing a burden

on the phone’s resources or creating a negative user experience.

This was a pilot study and more research will need to be conducted before it

can be claimed to better than current methods, but it shows that there is room for

improvement and innovation. It resulted in strong support of both hypothesis with

the best model being able to identify between user sessions and attacks 91% of the

time. Suggesting that changes in the underlying block structure of a smartphone

are an effective means of identifying between a legitimate user and a masquerader.

While there are limitations and weaknesses to this study, the results justify continuing
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research into this method of masquerader detection. Once this method has been

validated and had time to mature, it can be used to improve privacy, security, and

forensics.
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6. FUTURE WORK

Being a pilot study means that more research needs to be conducted before declaring

this method viable for deployment in an enterprise environment. There would need

to be longer studies with more frequent and regular user sessions created. Different

models of machine learning would need to be tested as well as alternate methods such

as including a moving window to adjust for changes in user behavior over time. As

this method of masquerade detection holds promise, it is possible to develop other

novel methods of detection using a similar method as well.

One of the limitations of this study is that all the phones involved in it were

Samsung Galaxy S3s. Future research should test multiple models of phones and

versions of Android to confirm that the results of this study are generalizable to all

Android smart phones. There was also a limitation in the granularity of the sessions

for this experiment. The Purdue Experiment often had several days go between

collection runs, creating sessions that could introduce more noise and prevent proper

classification. It would be beneficial to have a dataset with more frequent sessions to

study the impact of shorter times between the collection runs. This could result in

more accurate models that are able to detect malicious activity faster.

It would also be beneficial to test more attacks and malware to confirm that

different activities can be caught by this method of detection. This research only

examined five different attack vectors in order to test the feasibility of this style of

masquerade detection. As there are a wide variety of attacks that can target a smart

phone, many more attacks will need to be tested before this method can be considered

a general detector and used in the wild. The high levels of accuracy in the two-class

and Sigmoid SVM suggest that this method is worth pursuing and could be useful in

enterprise environments.
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There is also interest in seeing if instead of user behavior, application behavior

can be profiled across multiple phones. This would involve installing an application

on multiple phones and using PMF to create sessions. The goal would then be to see

if the application changes the same number of blocks at the same time and frequency.

If so, it may be possible to profile behaviors as belonging to an application or class

of applications. This could also be applied to malware research and provide another

behavioral heuristic for malware detection.
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A. TWO-CLASS MODELS - AVERAGE RESULTS

Table A.1.: Two-Class 80/20 Test Results

Phone SVM1 SVM1 CV SVM2 SVM2 CV RF1 RF2 ML VC

1 0.961 0.951 0.941 0.907 0.922 0.922 0.961 0.961

3 0.963 0.953 0.963 0.93 0.926 0.926 0.944 0.963

4 1 0.985 1 0.977 1 1 0.970 1

5 0.971 0.914 0.914 0.914 0.886 0.886 0.886 0.886

6 0.939 0.892 0.879 0.867 0.909 0.939 0.879 0.939

7 0.866 0.920 0.857 0.928 0.886 0.914 0.943 0.914

8 0.812 0.881 0.844 0.901 0.844 0.812 0.906 0.844

9 0.963 0.917 0.889 0.877 0.741 0.778 0.926 0.926

10 0.907 0.959 0.907 0.93 0.907 0.907 0.907 0.930

11 0.977 0.924 0.930 0.921 0.930 0.930 0.953 0.930

12 0.889 0.721 0.944 0.720 0.778 0.778 0.889 0.889

13 0.862 0.931 0.897 0.906 0.897 0.862 0.862 0.897

14 0.879 0.916 0.970 0.879 0.818 0.879 1 0.970

15 0.952 0.798 0.952 0.847 0.952 0.952 0.952 0.952

16 0.818 0.908 0.818 0.929 0.909 0.818 0.773 0.864

17 0.973 0.905 1 0.911 0.892 0.892 0.973 0.946

18 1 0.957 1 0.979 1 1 1 1

19 0.966 0.877 0.931 0.928 0.966 0.931 0.897 0.931

20 1 0.973 1 0.951 0.957 0.957 1 0.957

21 0.950 0.934 0.950 0.926 0.950 0.950 0.950 0.950

22 0.872 0.923 0.872 0.967 0.897 0.923 0.923 0.949

23 0.938 0.872 0.875 0.914 0.844 0.844 0.969 0.906

24 0.944 0.937 0.972 0.924 0.944 0.944 0.972 0.944

25 0.958 0.935 0.917 0.871 0.958 0.958 0.917 0.958

26 0.933 0.948 0.867 0.920 0.900 0.933 0.867 0.900

continued on next page
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Table A.1.: Two-Class 80/20 Test Results

Phone SVM1 SVM1 CV SVM2 SVM2 CV RF1 RF2 ML VC

27 0.880 0.910 0.920 0.851 0.920 0.880 0.960 0.960

28 0.881 0.898 0.905 0.912 0.929 0.905 0.905 0.952

29 0.906 0.929 0.906 0.922 0.812 0.844 0.875 0.875

30 0.880 0.938 0.880 0.814 0.960 0.960 0.960 0.960

31 0.800 0.874 0.800 0.839 0.867 0.767 0.867 0.900

32 0.944 0.917 0.944 0.931 0.833 0.889 0.944 0.972

33 1 0.936 0.964 0.945 0.964 0.964 0.893 0.929

34 0.969 0.896 0.906 0.860 1 0.969 1 0.969

35 0.981 0.944 0.963 0.940 0.963 0.981 0.963 0.981

36 0.967 0.814 1 0.958 0.967 1 1 1

Average 0.928 0.911 0.922 0.905 0.909 0.908 0.931 0.937

Attack Sessions

4 0 0.970 0 0.977 0 0.600 0 0

15 0.400 0.798 0 0.847 0.400 0.400 0.200 0.200

16 0 0.875 0 0.929 0.200 0.200 0 0

27 0 0.860 0 0.851 0.400 0 0 0

32 0 0.952 0 0.931 0.400 0.200 0.200 0.200

Average 0.0800 0.891 0 0.907 0.280 0.280 0.080 0.080

Table A.2.: Two-Class 70/30 Test Results

Phone SVM1 SVM1 CV SVM2 SVM2 CV RF1 RF2 ML VC

1 0.935 0.938 0.935 0.956 0.948 0.948 0.961 0.974

3 0.938 0.898 0.938 0.926 0.901 0.938 0.938 0.938

4 1 0.974 1 0.955 1 1 0.98 1

5 0.906 0.934 0.906 0.945 0.925 0.925 0.887 0.906

6 0.939 0.876 0.857 0.864 0.959 0.959 0.857 0.959

7 0.904 0.908 0.904 0.925 0.865 0.885 0.923 0.904

8 0.854 0.872 0.833 0.909 0.812 0.896 0.896 0.833

9 0.878 0.936 0.829 0.853 0.829 0.780 0.854 0.854

continued on next page
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Table A.2.: Two-Class 70/30 Test Results

Phone SVM1 SVM1 CV SVM2 SVM2 CV RF1 RF2 ML VC

10 0.908 0.966 0.908 0.860 0.877 0.892 0.908 0.892

11 0.985 0.927 0.954 0.922 0.969 0.954 0.969 0.954

12 0.667 0.778 0.593 0.860 0.778 0.630 0.630 0.630

13 0.909 0.910 0.886 0.901 0.909 0.909 0.955 0.955

14 0.920 0.930 0.920 0.848 0.840 0.900 0.960 0.940

15 0.906 0.782 0.938 0.845 0.969 0.938 0.938 0.938

16 0.758 0.935 0.758 0.971 0.879 0.848 0.788 0.788

17 0.964 0.891 0.964 0.913 0.964 0.964 0.929 0.964

18 0.971 0.938 0.986 0.964 0.986 0.986 0.986 0.986

19 0.907 0.840 0.930 0.902 0.860 0.907 0.860 0.860

20 0.971 0.975 0.971 0.981 0.957 0.957 0.957 0.957

21 0.966 0.926 0.966 0.927 0.966 0.966 0.966 0.966

22 0.932 0.926 0.881 0.947 0.898 0.915 0.915 0.932

23 0.958 0.863 0.875 0.873 0.896 0.958 0.896 0.917

24 0.981 0.952 0.963 0.913 0.944 0.963 0.944 0.963

25 0.972 0.926 0.944 0.922 0.972 0.972 0.944 0.972

26 0.932 0.951 0.932 0.930 0.955 0.955 0.955 0.932

27 0.895 0.896 0.789 0.874 0.895 0.947 0.947 0.895

28 0.905 0.890 0.905 0.897 0.889 0.954 0.952 0.937

29 0.917 0.955 0.938 0.874 0.854 0.875 0.917 0.896

30 0.892 0.941 0.919 0.817 0.973 0.946 0.973 0.973

31 0.933 0.856 0.889 0.834 0.911 0.867 0.911 0.911

32 0.870 0.929 0.870 0.928 0.852 0.889 0.907 0.889

33 0.952 0.969 0.952 0.947 0.952 0.929 0.976 0.952

34 1 0.863 0.896 0.858 0.979 0.979 0.979 0.979

35 0.938 0.963 0.951 0.927 0.963 0.975 0.975 0.975

36 0.977 0.902 0.955 0.932 0.977 0.977 0.955 1

Average 0.921 0.912 0.904 0.906 0.917 0.922 0.923 0.923

Attack Sessions

4 0 0.948 0 0.955 0.200 0.200 0 0

continued on next page
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Table A.2.: Two-Class 70/30 Test Results

Phone SVM1 SVM1 CV SVM2 SVM2 CV RF1 RF2 ML VC

15 0.400 0.754 0 0.845 0.800 0.400 0 0.200

16 0 0.934 0 0.971 0.200 0.200 0 0

27 0 0.828 0 0.874 0.200 0 0 0

32 0 0.937 0 0.928 0.400 0.600 0.200 0.400

Average 0.080 0.880 0 0.915 0.360 0.280 0.040 0.12

Table A.3.: Two-Class 30/70 Test Results

Phone SVM1 SVM1 CV SVM2 SVM2 CV RF1 RF2 ML VC

1 0.927 0.921 0.949 0.871 0.972 0.972 0.966 0.972

3 0.909 0.924 0.909 0.935 0.813 0.850 0.941 0.925

4 0.974 0.980 0.974 0.967 0.966 0.948 0.974 0.983

5 0.877 0.865 0.934 0.867 0.918 0.885 0.926 0.910

6 0.895 0.960 0.877 0.963 0.904 0.904 0.930 0.895

7 0.909 0.942 0.909 0.908 0.785 0.826 0.884 0.876

8 0.865 0.808 0.865 0.86 0.838 0.874 0.914 0.874

9 0.863 0.776 0.863 0.893 0.8 0.821 0.874 0.863

10 0.900 0.861 0.9 0.957 0.767 0.867 0.953 0.913

11 0.934 1 0.934 1 0.921 0.907 0.960 0.960

12 0.571 0.926 0.571 0.758 0.587 0.635 0.667 0.651

13 0.941 0.719 0.882 0.797 0.824 0.873 0.843 0.931

14 0.922 0.917 0.922 0.935 0.848 0.887 0.913 0.904

15 0.595 0.775 0.757 0.800 0.784 0.757 0.784 0.811

16 0.883 0.908 0.883 0.975 0.857 0.792 0.896 0.883

17 0.899 0.8 0.899 0.85 0.884 0.884 0.915 0.891

18 0.957 0.928 0.957 0.959 0.957 0.969 0.963 0.975

19 0.861 0.762 0.891 0.758 0.891 0.911 0.891 0.881

20 0.963 0.942 0.963 0.936 0.932 0.938 0.963 0.951

21 n/a n/a n/a n/a n/a n/a n/a n/a

22 0.927 1 0.927 0.963 0.883 0.883 0.934 0.942

continued on next page
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Table A.3.: Two-Class 30/70 Test Results

Phone SVM1 SVM1 CV SVM2 SVM2 CV RF1 RF2 ML VC

23 0.864 0.853 0.864 0.855 0.864 0.864 0.918 0.873

24 0.960 0.963 0.944 0.986 0.960 0.960 0.937 0.960

25 n/a n/a n/a n/a n/a n/a n/a n/a

26 0.883 0.953 0.883 0.905 0.816 0.883 0.903 0.864

27 0.932 0.727 0.864 0.758 0.898 0.909 0.977 0.966

28 0.878 0.870 0.878 0.881 0.844 0.850 0.939 0.891

29 0.848 0.893 0.777 0.858 0.857 0.848 0.848 0.839

30 0.844 0.862 0.884 0.922 0.919 0.895 0.953 0.930

31 0.838 0.701 0.848 0.702 0.790 0.810 0.886 0.857

32 0.905 0.944 0.905 0.960 0.881 0.905 0.944 0.921

33 0.959 0.804 0.928 0.830 0.969 0.979 0.928 0.969

34 0.873 0.852 0.873 0.983 0.918 0.927 0.891 0.936

35 0.968 0.963 0.937 0.872 0.968 0.968 0.958 0.968

36 0.951 0.839 0.942 0.875 0.961 0.981 0.922 0.971

Average 0.887 0.877 0.888 0.889 0.872 0.884 0.912 0.907

Attack Sessions

4 0.200 0.959 0.200 0.967 0.200 0.400 0.200 0.200

15 0.200 0.719 0.400 0.800 0.400 0.400 0.400 0.400

16 0 0.937 0 0.975 0 0 0 0

27 0.200 0.811 0 0.758 0.200 0.200 0.200 0.200

32 0 0.963 0 0.960 0.400 0.200 0 0

Average 0.120 0.8778 0.120 0.892 0.240 0.240 0.160 0.160
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B. ONE-CLASS MODELS - AVERAGE RESULTS

Table B.1.: One-Class 80/20 Test Results

Phone Linear RBF Polynomial Sigmoid

1 1 0.5 0 1

3 0.52 0.52 0.040 0.84

4 0 0.330 0.330 1

5 0.600 0.400 0.200 1

6 1 0 0.200 0.800

7 0.333 0.444 0.222 0.555

8 0.556 0.667 0 0.444

9 0.500 0.400 0.200 0.600

10 0.727 0.455 0.272 0.636

11 0 0.500 0 0.500

12 0.375 0.875 0.125 0.750

13 0.571 0.571 0 0.857

14 0.800 0.300 0.300 1

15 0.833 0.333 0.333 0.833

16 0.375 0.500 0.500 0.500

17 0.667 0.333 0.167 0.833

18 0 0.500 0 0.250

19 0.800 0.200 0.400 0.600

20 0.750 0.500 0 0.750

21 1 0 1 0

continued on next page
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Table B.1.: One-Class 80/20 Test Results

Phone Linear RBF Polynomial Sigmoid

22 0.750 0.250 0.750 0

23 0.400 0 0.200 0.600

24 1 0 0 1

25 0 0 1 0

26 0.500 0.333 0.167 0.500

27 0.250 0 0 1

28 0.333 0.500 0.167 0.833

29 0.800 0.400 0.200 0.800

30 0.250 0.500 0 0.750

31 0.333 0.444 0.222 0.778

32 0.500 0.375 0.125 0.875

33 0.500 0 0 0.500

34 0 0.333 0 0.667

35 0.500 0 0 1

36 0 0.500 0 0.500

Average 0.501 0.342 0.203 0.673

Attack Sessions

15 0.800 0.200 0.800 0.600

16 0.600 0.600 0 0.800

27 0.200 0.400 0.200 0.800

32 0.400 0.200 0 1

Average 0.500 0.350 0.250 0.800
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Table B.2.: One-Class 70/30 Test Results

Phone Linear RBF Polynomial Sigmoid

1 0.333 0.333 0.333 0.667

3 0.579 0.579 0.026 0.763

4 0.250 0.250 0.250 0.75

5 0 0.571 0 0.571

6 0.571 0.143 0.1413 0.714

7 0.500 0.500 0.143 0.429

8 0.462 0.462 0.154 0.538

9 0.800 0.200 0 0.800

10 0.529 0.412 0.412 0.647

11 1 0.500 0 0.333

12 0.330 0.583 0.167 0.750

13 0.400 0.600 0 0.500

14 0.267 0.333 0.133 0.933

15 0.778 0.333 0 0.889

16 0.333 0.333 0.583 0.333

17 0.111 0.444 0.222 0.556

18 0.833 0.167 0.500 0.333

19 0.143 0.286 0.286 0.571

20 0.333 0.333 0.167 0.500

21 0.500 0 0 1

22 0.667 0.167 0.667 0.167

23 0.429 0.143 0.143 0.571

24 0.667 0 0 1

25 0 0 0.500 0.500

26 0.444 0.222 0.111 0.667

continued on next page
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Table B.2.: One-Class 70/30 Test Results

Phone Linear RBF Polynomial Sigmoid

27 0.500 0.167 0 0.833

28 0 0.500 0.250 0.750

29 0.143 0.571 0 0.857

30 0.167 0.500 0 0.667

31 0.615 0.385 0.077 0.923

32 0.417 0.250 0.167 0.833

33 0.500 0 0 0.500

34 0.600 0 0.200 0.200

35 0.333 0 0 1

36 0.333 0 0.333 1

Average 0.425 0.293 0.170 0.658

Attack Sessions

4 0.600 0 0 1

15 0.800 0.200 0.200 0.400

16 0.400 0.200 0 0.600

27 0.800 0.200 0.400 0.800

32 0.200 0.200 0 1

Average 0.560 0.160 0.120 0.760

Table B.3.: One-Class 30/70 Test Results

Phone Linear RBF Polynomial Sigmoid

1 0 0 0.286 0.286

3 0.804 0.517 0.170 0.896

continued on next page
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Table B.3.: One-Class 30/70 Test Results

Phone Linear RBF Polynomial Sigmoid

4 0 0 0.250 0.750

5 0.500 0.313 0.063 0.813

6 0.237 0.267 0.200 0.867

7 0.516 0.161 0.161 0.709

8 0.552 0.310 0.067 0.966

9 0.686 0.114 0.057 0.743

10 0.513 0.282 0.179 0.641

11 0.357 0 0.071 0.643

12 0.615 0.269 0.154 0.538

13 0.391 0.261 0 0.870

14 0.333 0.091 0.091 0.879

15 0.667 0.286 0.286 0.905

16 0.571 0 0.107 0.857

17 0.600 0 0.100 0.950

18 0.692 0 0.462 0.462

19 0.333 0.067 0.267 0.733

20 0.583 0 0.083 0.917

22 0.500 0.071 0.071 0.786

23 0.313 0.063 0.313 0.500

24 0 0 0.400 0.400

26 0.600 0.150 0.100 0.750

27 0.538 0 0.231 0.769

28 0.579 0 0.158 0.842

29 0.063 0.063 0.313 0.625

30 0.357 0 0.286 0.643

continued on next page
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Table B.3.: One-Class 30/70 Test Results

Phone Linear RBF Polynomial Sigmoid

31 0.552 0.172 0.172 0.586

32 0.536 0.107 0.214 0.500

33 0 0 0 0

34 0.200 0 0.100 0.900

35 0 0 0.500 0.500

36 0.714 0 0.429 0.857

Average 0.421 0.108 0.192 0.699

Attack Sessions

4 0.400 0 0.200 1

15 0.600 0 0.400 0.800

16 0.600 0 0.200 0.600

27 0.200 0.200 0.200 0.800

32 0.800 0 0.400 1

Average 0.520 0.040 0.280 0.840
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C. ROC CURVES 80/20 TRAINING TEST SPLIT

Fig. C.1. Phone 1: 80/20 Training/Test split
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Fig. C.2. Phone 3: 80/20 Training/Test split

Fig. C.3. Phone 4: 80/20 Training/Test split
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Fig. C.4. Phone 5: 80/20 Training/Test split

Fig. C.5. Phone 6: 80/20 Training/Test split
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Fig. C.6. Phone 7: 80/20 Training/Test split

Fig. C.7. Phone 8: 80/20 Training/Test split
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Fig. C.8. Phone 9: 80/20 Training/Test split

Fig. C.9. Phone 10: 80/20 Training/Test split
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Fig. C.10. Phone 11: 80/20 Training/Test split

Fig. C.11. Phone 12: 80/20 Training/Test split
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Fig. C.12. Phone 13: 80/20 Training/Test split

Fig. C.13. Phone 14: 80/20 Training/Test split
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Fig. C.14. Phone 15: 80/20 Training/Test split

Fig. C.15. Phone 16: 80/20 Training/Test split
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Fig. C.16. Phone 17: 80/20 Training/Test split

Fig. C.17. Phone 18: 80/20 Training/Test split
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Fig. C.18. Phone 19: 80/20 Training/Test split

Fig. C.19. Phone 20: 80/20 Training/Test split
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Fig. C.20. Phone 21: 80/20 Training/Test split

Fig. C.21. Phone 23: 80/20 Training/Test split
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Fig. C.22. Phone 24: 80/20 Training/Test split

Fig. C.23. Phone 25: 80/20 Training/Test split
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Fig. C.24. Phone 26: 80/20 Training/Test split

Fig. C.25. Phone 27: 80/20 Training/Test split
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Fig. C.26. Phone 28: 80/20 Training/Test split

Fig. C.27. Phone 29: 80/20 Training/Test split
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Fig. C.28. Phone 30: 80/20 Training/Test split

Fig. C.29. Phone 31: 80/20 Training/Test split
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Fig. C.30. Phone 32: 80/20 Training/Test split

Fig. C.31. Phone 34: 80/20 Training/Test split
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Fig. C.32. Phone 35: 80/20 Training/Test split

Fig. C.33. Phone 36: 80/20 Training/Test split
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D. ROC CURVES 70/30 TRAINING TEST SPLIT

Fig. D.1. Phone 1: 70/30 Training/Test split
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Fig. D.2. Phone 3: 70/30 Training/Test split

Fig. D.3. Phone 4: 70/30 Training/Test split
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Fig. D.4. Phone 5: 70/30 Training/Test split

Fig. D.5. Phone 6: 70/30 Training/Test split
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Fig. D.6. Phone 7: 70/30 Training/Test split

Fig. D.7. Phone 8: 70/30 Training/Test split
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Fig. D.8. Phone 9: 70/30 Training/Test split

Fig. D.9. Phone 10: 70/30 Training/Test split
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Fig. D.10. Phone 11: 70/30 Training/Test split

Fig. D.11. Phone 12: 70/30 Training/Test split
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Fig. D.12. Phone 13: 70/30 Training/Test split

Fig. D.13. Phone 14: 70/30 Training/Test split
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Fig. D.14. Phone 15: 70/30 Training/Test split

Fig. D.15. Phone 16: 70/30 Training/Test split
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Fig. D.16. Phone 17: 70/30 Training/Test split

Fig. D.17. Phone 18: 70/30 Training/Test split
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Fig. D.18. Phone 19: 70/30 Training/Test split

Fig. D.19. Phone 20: 70/30 Training/Test split
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Fig. D.20. Phone 21: 70/30 Training/Test split

Fig. D.21. Phone 23: 70/30 Training/Test split
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Fig. D.22. Phone 24: 70/30 Training/Test split

Fig. D.23. Phone 25: 70/30 Training/Test split
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Fig. D.24. Phone 26: 70/30 Training/Test split

Fig. D.25. Phone 27: 70/30 Training/Test split
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Fig. D.26. Phone 28: 70/30 Training/Test split

Fig. D.27. Phone 29: 70/30 Training/Test split
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Fig. D.28. Phone 30: 70/30 Training/Test split

Fig. D.29. Phone 31: 70/30 Training/Test split
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Fig. D.30. Phone 32: 70/30 Training/Test split

Fig. D.31. Phone 34: 70/30 Training/Test split
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Fig. D.32. Phone 35: 70/30 Training/Test split

Fig. D.33. Phone 36: 70/30 Training/Test split
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E. ROC CURVES 30/70 TRAINING TEST SPLIT

Fig. E.1. Phone 1: 30/70 Training/Test split
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Fig. E.2. Phone 3: 30/70 Training/Test split

Fig. E.3. Phone 4: 30/70 Training/Test split
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Fig. E.4. Phone 5: 30/70 Training/Test split

Fig. E.5. Phone 6: 30/70 Training/Test split
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Fig. E.6. Phone 7: 30/70 Training/Test split

Fig. E.7. Phone 8: 30/70 Training/Test split
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Fig. E.8. Phone 9: 30/70 Training/Test split

Fig. E.9. Phone 10: 30/70 Training/Test split
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Fig. E.10. Phone 11: 30/70 Training/Test split

Fig. E.11. Phone 12: 30/70 Training/Test split
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Fig. E.12. Phone 13: 30/70 Training/Test split

Fig. E.13. Phone 14: 30/70 Training/Test split
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Fig. E.14. Phone 15: 30/70 Training/Test split

Fig. E.15. Phone 16: 30/70 Training/Test split
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Fig. E.16. Phone 17: 30/70 Training/Test split

Fig. E.17. Phone 18: 30/70 Training/Test split
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Fig. E.18. Phone 19: 30/70 Training/Test split

Fig. E.19. Phone 20: 30/70 Training/Test split
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Fig. E.20. Phone 21: 30/70 Training/Test split

Fig. E.21. Phone 23: 30/70 Training/Test split
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Fig. E.22. Phone 24: 30/70 Training/Test split

Fig. E.23. Phone 25: 30/70 Training/Test split
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Fig. E.24. Phone 26: 30/70 Training/Test split

Fig. E.25. Phone 27: 30/70 Training/Test split
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Fig. E.26. Phone 28: 30/70 Training/Test split

Fig. E.27. Phone 29: 30/70 Training/Test split
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Fig. E.28. Phone 30: 30/70 Training/Test split

Fig. E.29. Phone 31: 30/70 Training/Test split
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Fig. E.30. Phone 32: 30/70 Training/Test split

Fig. E.31. Phone 34: 30/70 Training/Test split
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Fig. E.32. Phone 35: 30/70 Training/Test split

Fig. E.33. Phone 36: 30/70 Training/Test split
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F. TWO-CLASS STATISTICS FOR INDIVIDUAL

PHONES

Phone 1: 80/20

PCA Number of Variables: 39

Model Results:

SVM 1 Accuracy (C=1): 0.961 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.951 (+/- 0.04)

SVM 2 Accuracy (C=20): 0.941 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.907 (+/- 0.11)

Random Forest (10) mean accuracy score: 0.922

Random Forest Score: 0.9215686274509803

Random Forest (50) mean accuracy score: 0.922

Random Forest Score: 0.9215686274509803

MLP mean accuracy mean accuracy: 0.961

MLP Score: 0.9607843137254902

VC mean accuracy: 0.961

VC Score: 0.9607843137254902

Phone 1: 70/30

PCA Number of Variables: 36

Model Results:

SVM 1 Accuracy (C=1): 0.935 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.938 (+/- 0.06)

SVM 2 Accuracy (C=20): 0.935 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.956 (+/- 0.07)
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Random Forest (10) mean accuracy score: 0.948

Random Forest Score: 0.948051948051948

Random Forest (50) mean accuracy score: 0.948

Random Forest Score: 0.948051948051948

MLP mean accuracy mean accuracy: 0.961

MLP Score: 0.961038961038961

VC mean accuracy: 0.974

VC Score: 0.974025974025974

Phone 1: 30/70

PCA Number of Variables: 23

Model Results:

SVM 1 Accuracy (C=1): 0.927 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.921 (+/- 0.00)

SVM 2 Accuracy (C=20): 0.949 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.871 (+/- 0.25)

Random Forest (10) mean accuracy score: 0.972

Random Forest Score: 0.9719101123595506

Random Forest (50) mean accuracy score: 0.972

Random Forest Score: 0.9719101123595506

MLP mean accuracy mean accuracy: 0.966

MLP Score: 0.9662921348314607

VC mean accuracy: 0.972

VC Score: 0.9719101123595506

Phone 3: 80/20

PCA Number of Variables: 38

Model Results:
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SVM 1 Accuracy (C=1): 0.963 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.953 (+/- 0.02)

SVM 2 Accuracy (C=20): 0.963 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.930 (+/- 0.11)

Random Forest (10) mean accuracy score: 0.926

Random Forest Score: 0.9259259259259259

Random Forest (50) mean accuracy score: 0.926

Random Forest Score: 0.9259259259259259

MLP mean accuracy mean accuracy: 0.944

MLP Score: 0.9444444444444444

VC mean accuracy: 0.963

VC Score: 0.9629629629629629

Phone 3: 70/30

PCA Number of Variables: 37

Model Results:

SVM 1 Accuracy (C=1): 0.938 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.898 (+/- 0.12)

SVM 2 Accuracy (C=20): 0.938 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.926 (+/- 0.11)

Random Forest (10) mean accuracy score: 0.901

Random Forest Score: 0.9012345679012346

Random Forest (50) mean accuracy score: 0.938

Random Forest Score: 0.9382716049382716

MLP mean accuracy mean accuracy: 0.938

MLP Score: 0.9382716049382716

VC mean accuracy: 0.938

VC Score: 0.9382716049382716
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Phone 3: 30/70

PCA Number of Variables: 24

Model Results:

SVM 1 Accuracy (C=1): 0.909 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.924 (+/- 0.05)

SVM 2 Accuracy (C=20): 0.909 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.935 (+/- 0.18)

Random Forest (10) mean accuracy score: 0.813

Random Forest Score: 0.8128342245989305

Random Forest (50) mean accuracy score: 0.850

Random Forest Score: 0.8502673796791443

MLP mean accuracy mean accuracy: 0.941

MLP Score: 0.9411764705882353

VC mean accuracy: 0.925

VC Score: 0.9251336898395722

Phone 4: 80/20

PCA Number of Variables: 29

Model Results:

SVM 1 Accuracy (C=1): 1.000 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.985 (+/- 0.03)

SVM 2 Accuracy (C=20): 1.000 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.977 (+/- 0.07)

Random Forest (10) mean accuracy score: 1.000

Random Forest Score: 1.0

Random Forest (50) mean accuracy score: 1.000

Random Forest Score: 1.0

MLP mean accuracy mean accuracy: 0.970
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MLP Score: 0.9696969696969697

VC mean accuracy: 1.000

VC Score: 1.0

Attack Session Results:

SVM 1 Accuracy (C=1): 0.000 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.970 (+/- 0.00)

SVM 2 Accuracy (C=20): 0.000 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=10): 0.977 (+/- 0.07)

Random Forest (10) mean accuracy score: 0.000

Random Forest Score: 0.0

Random Forest (50) mean accuracy score: 0.600

Random Forest Score: 0.0

MLP mean accuracy mean accuracy: 0.000

MLP Score: 0.0

VC mean accuracy: 0.000

VC Score: 0.0

Phone 4: 70/30

PCA Number of Variables: 31

Model Results:

SVM 1 Accuracy (C=1): 1.000 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.974 (+/- 0.02)

SVM 2 Accuracy (C=20): 1.000 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.955 (+/- 0.12)

Random Forest (10) mean accuracy score: 1.000

Random Forest Score: 1.0

Random Forest (50) mean accuracy score: 1.000
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Random Forest Score: 1.0

MLP mean accuracy mean accuracy: 0.980

MLP Score: 0.98

VC mean accuracy: 1.000

VC Score: 1.0

Attack Session Results:

SVM 1 Accuracy (C=1): 0.000 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.948 (+/- 0.04)

SVM 2 Accuracy (C=20): 0.000 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=10): 0.955 (+/- 0.12)

Random Forest (10) mean accuracy score: 0.200

Random Forest Score: 0.2

Random Forest (50) mean accuracy score: 0.200

Random Forest Score: 0.2

MLP mean accuracy mean accuracy: 0.000

MLP Score: 0.0

VC mean accuracy: 0.000

VC Score: 0.0

Phone 4: 30/70

PCA Number of Variables: 18

Model Results:

SVM 1 Accuracy (C=1): 0.974 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.980 (+/- 0.04)

SVM 2 Accuracy (C=20): 0.974 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.967 (+/- 0.13)

Random Forest (10) mean accuracy score: 0.966
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Random Forest Score: 0.9655172413793104

Random Forest (50) mean accuracy score: 0.948

Random Forest Score: 0.9482758620689655

MLP mean accuracy mean accuracy: 0.974

MLP Score: 0.9741379310344828

VC mean accuracy: 0.983

Attack Session Results:

SVM 1 Accuracy (C=1): 0.200 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.959 (+/- 0.00)

SVM 2 Accuracy (C=20): 0.200 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=10): 0.967 (+/- 0.13)

Random Forest (10) mean accuracy score: 0.200

Random Forest Score: 0.2

Random Forest (50) mean accuracy score: 0.400

Random Forest Score: 0.2

MLP mean accuracy mean accuracy: 0.200

MLP Score: 0.2

VC mean accuracy: 0.200

VC Score: 0.2

Phone 5: 80/20

PCA Number of Variables: 11

Model Results:

SVM 1 Accuracy (C=1): 0.877 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.865 (+/- 0.04)

SVM 2 Accuracy (C=20): 0.934 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.867 (+/- 0.28)
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Random Forest (10) mean accuracy score: 0.918

Random Forest Score: 0.9180327868852459

Random Forest (50) mean accuracy score: 0.885

Random Forest Score: 0.8852459016393442

MLP mean accuracy mean accuracy: 0.926

MLP Score: 0.9262295081967213

VC mean accuracy: 0.910

VC Score: 0.9098360655737705

Phone 5: 70/30

PCA Number of Variables: 21

Model Results:

SVM 1 Accuracy (C=1): 0.906 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.934 (+/- 0.03)

SVM 2 Accuracy (C=20): 0.906 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.945 (+/- 0.10)

Random Forest (10) mean accuracy score: 0.925

Random Forest Score: 0.9245283018867925

Random Forest (50) mean accuracy score: 0.925

Random Forest Score: 0.9245283018867925

MLP mean accuracy mean accuracy: 0.887

MLP Score: 0.8867924528301887

VC mean accuracy: 0.906

VC Score: 0.9056603773584906

Phone 5: 30/70

PCA Number of Variables: 11

Model Results:

SVM 1 Accuracy (C=1): 0.877 (+/- 0.00)
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SVM 1 Accuracy cross validated (cv=2): 0.865 (+/- 0.04)

SVM 2 Accuracy (C=20): 0.934 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.867 (+/- 0.28)

Random Forest (10) mean accuracy score: 0.918

Random Forest Score: 0.9180327868852459

Random Forest (50) mean accuracy score: 0.885

Random Forest Score: 0.8852459016393442

MLP mean accuracy mean accuracy: 0.926

MLP Score: 0.9262295081967213

VC mean accuracy: 0.910

VC Score: 0.9098360655737705

Phone 6: 80/20

PCA Number of Variables: 28

Model Results:

SVM 1 Accuracy (C=1): 0.939 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.892 (+/- 0.09)

SVM 2 Accuracy (C=20): 0.879 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.867 (+/- 0.19)

Random Forest (10) mean accuracy score: 0.909

Random Forest Score: 0.9090909090909091

Random Forest (50) mean accuracy score: 0.939

Random Forest Score: 0.9393939393939394

MLP mean accuracy mean accuracy: 0.879

MLP Score: 0.8787878787878788

VC mean accuracy: 0.939

VC Score: 0.9393939393939394
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Phone 6: 70/30

PCA Number of Variables: 27

Model Results:

SVM 1 Accuracy (C=1): 0.939 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.876 (+/- 0.00)

SVM 2 Accuracy (C=20): 0.857 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.864 (+/- 0.18)

Random Forest (10) mean accuracy score: 0.959

Random Forest Score: 0.9591836734693877

Random Forest (50) mean accuracy score: 0.959

Random Forest Score: 0.9591836734693877

MLP mean accuracy mean accuracy: 0.857

MLP Score: 0.8571428571428571

VC mean accuracy: 0.959

VC Score: 0.9591836734693877

Phone 6: 30/70

PCA Number of Variables: 15 Model Results:

SVM 1 Accuracy (C=1): 0.895 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.960 (+/- 0.08)

SVM 2 Accuracy (C=20): 0.877 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.963 (+/- 0.15)

Random Forest (10) mean accuracy score: 0.904

Random Forest Score: 0.9035087719298246

Random Forest (50) mean accuracy score: 0.904

Random Forest Score: 0.9035087719298246

MLP mean accuracy mean accuracy: 0.930

MLP Score: 0.9298245614035088
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VC mean accuracy: 0.895

VC Score: 0.8947368421052632

Phone 7: 80/20

PCA Number of Variables: 42

Model Results:

SVM 1 Accuracy (C=1): 0.886 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.920 (+/- 0.01)

SVM 2 Accuracy (C=20): 0.857 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.928 (+/- 0.17)

Random Forest (10) mean accuracy score: 0.886

Random Forest Score: 0.8857142857142857

Random Forest (50) mean accuracy score: 0.914

Random Forest Score: 0.9142857142857143

MLP mean accuracy mean accuracy: 0.943

MLP Score: 0.9428571428571428

VC mean accuracy: 0.914

VC Score: 0.9142857142857143

Phone 7: 70/30

PCA Number of Variables: 39

Model Results:

SVM 1 Accuracy (C=1): 0.904 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.908 (+/- 0.02)

SVM 2 Accuracy (C=20): 0.904 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.925 (+/- 0.16)

Random Forest (10) mean accuracy score: 0.865
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Random Forest Score: 0.8653846153846154

Random Forest (50) mean accuracy score: 0.885

Random Forest Score: 0.8846153846153846

MLP mean accuracy mean accuracy: 0.923

MLP Score: 0.9230769230769231

VC mean accuracy: 0.904

VC Score: 0.9038461538461539

Phone 7: 30/70

PCA Number of Variables: 23

Model Results:

SVM 1 Accuracy (C=1): 0.909 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.942 (+/- 0.04)

SVM 2 Accuracy (C=20): 0.909 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.908 (+/- 0.19)

Random Forest (10) mean accuracy score: 0.785

Random Forest Score: 0.7851239669421488

Random Forest (50) mean accuracy score: 0.826

Random Forest Score: 0.8264462809917356

MLP mean accuracy mean accuracy: 0.884

MLP Score: 0.8842975206611571

VC mean accuracy: 0.876

VC Score: 0.8760330578512396

Phone 8: 80/20

PCA Number of Variables: 29

Model Results:
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SVM 1 Accuracy (C=1): 0.812 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.881 (+/- 0.02)

SVM 2 Accuracy (C=20): 0.844 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.901 (+/- 0.18)

Random Forest (10) mean accuracy score: 0.844

Random Forest Score: 0.84375

Random Forest (50) mean accuracy score: 0.812

Random Forest Score: 0.8125

MLP mean accuracy mean accuracy: 0.906

MLP Score: 0.90625

VC mean accuracy: 0.844

VC Score: 0.84375

Phone 8: 70/30

PCA Number of Variables: 28

Model Results:

SVM 1 Accuracy (C=1): 0.854 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.872 (+/- 0.08)

SVM 2 Accuracy (C=20): 0.833 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.909 (+/- 0.14)

Random Forest (10) mean accuracy score: 0.812

Random Forest Score: 0.8125

Random Forest (50) mean accuracy score: 0.896

Random Forest Score: 0.8958333333333334

MLP mean accuracy mean accuracy: 0.896

MLP Score: 0.8958333333333334

VC mean accuracy: 0.833

VC Score: 0.8333333333333334
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Phone 8: 30/70

PCA Number of Variables: 21

Model Results:

SVM 1 Accuracy (C=1): 0.865 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.808 (+/- 0.05)

SVM 2 Accuracy (C=20): 0.865 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.860 (+/- 0.44)

Random Forest (10) mean accuracy score: 0.838

Random Forest Score: 0.8378378378378378

Random Forest (50) mean accuracy score: 0.874

Random Forest Score: 0.8738738738738738

MLP mean accuracy mean accuracy: 0.910

MLP Score: 0.9099099099099099

VC mean accuracy: 0.874

VC Score: 0.8738738738738738

Phone 9: 80/20

PCA Number of Variables: 30

Model Results:

SVM 1 Accuracy (C=1): 0.963 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.917 (+/- 0.02)

SVM 2 Accuracy (C=20): 0.889 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.877 (+/- 0.18)

Random Forest (10) mean accuracy score: 0.741

Random Forest Score: 0.7407407407407407

Random Forest (50) mean accuracy score: 0.778

Random Forest Score: 0.7777777777777778

MLP mean accuracy mean accuracy: 0.926
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MLP Score: 0.9259259259259259

VC mean accuracy: 0.926

VC Score: 0.9259259259259259

Phone 9: 70/30

PCA Number of Variables: 29

Model Results:

SVM 1 Accuracy (C=1): 0.878 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.936 (+/- 0.04)

SVM 2 Accuracy (C=20): 0.829 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.853 (+/- 0.21)

Random Forest (10) mean accuracy score: 0.829

Random Forest Score: 0.8292682926829268

Random Forest (50) mean accuracy score: 0.780

Random Forest Score: 0.7804878048780488

MLP mean accuracy mean accuracy: 0.854

MLP Score: 0.8536585365853658

VC mean accuracy: 0.854

VC Score: 0.8536585365853658

Phone 9: 30/70

PCA Number of Variables: 20

Model Results:

SVM 1 Accuracy (C=1): 0.863 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.776 (+/- 0.03)

SVM 2 Accuracy (C=20): 0.863 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.893 (+/- 0.27)
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Random Forest (10) mean accuracy score: 0.800

Random Forest Score: 0.8

Random Forest (50) mean accuracy score: 0.821

Random Forest Score: 0.8210526315789474

MLP mean accuracy mean accuracy: 0.874

MLP Score: 0.8736842105263158

VC mean accuracy: 0.863

VC Score: 0.8631578947368421

Phone 10: 80/20

PCA Number of Variables: 35

Model Results:

SVM 1 Accuracy (C=1): 0.907 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.959 (+/- 0.01)

SVM 2 Accuracy (C=20): 0.907 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.930 (+/- 0.10)

Random Forest (10) mean accuracy score: 0.907

Random Forest Score: 0.9069767441860465

Random Forest (50) mean accuracy score: 0.907

Random Forest Score: 0.9069767441860465

MLP mean accuracy mean accuracy: 0.907

MLP Score: 0.9069767441860465

VC mean accuracy: 0.930

VC Score: 0.9302325581395349

Phone 10: 70/30

PCA Number of Variables: 36

Model Results:
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SVM 1 Accuracy (C=1): 0.908 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.966 (+/- 0.01)

SVM 2 Accuracy (C=20): 0.908 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.960 (+/- 0.11)

Random Forest (10) mean accuracy score: 0.877

Random Forest Score: 0.8769230769230769

Random Forest (50) mean accuracy score: 0.892

Random Forest Score: 0.8923076923076924

MLP mean accuracy mean accuracy: 0.908

MLP Score: 0.9076923076923077

VC mean accuracy: 0.892

VC Score: 0.8923076923076924

Phone 10: 30/70

PCA Number of Variables: 27

Model Results:

SVM 1 Accuracy (C=1): 0.900 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.861 (+/- 0.09)

SVM 2 Accuracy (C=20): 0.900 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.957 (+/- 0.13)

Random Forest (10) mean accuracy score: 0.767

Random Forest Score: 0.7666666666666667

Random Forest (50) mean accuracy score: 0.867

Random Forest Score: 0.8666666666666667

MLP mean accuracy mean accuracy: 0.953

MLP Score: 0.9533333333333334

VC mean accuracy: 0.913

VC Score: 0.9133333333333333
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Phone 11: 80/20

PCA Number of Variables: 37

Model Results:

SVM 1 Accuracy (C=1): 0.977

SVM 1 Accuracy cross validated (cv=2): 0.924 (+/- 0.03)

SVM 2 Accuracy (C=20): 0.930 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.921 (+/- 0.15)

Random Forest (10) mean accuracy score: 0.930

Random Forest Score: 0.9302325581395349

Random Forest (50) mean accuracy score: 0.930

Random Forest Score: 0.9302325581395349

MLP mean accuracy mean accuracy: 0.953

MLP Score: 0.9534883720930233

VC mean accuracy: 0.930

VC Score: 0.9302325581395349

Phone 11: 70/30

PCA Number of Variables: 35

Model Results:

SVM 1 Accuracy (C=1): 0.985 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.927 (+/- 0.09)

SVM 2 Accuracy (C=20): 0.954 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.922 (+/- 0.13)

Random Forest (10) mean accuracy score: 0.969

Random Forest Score: 0.9692307692307692

Random Forest (50) mean accuracy score: 0.954

Random Forest Score: 0.9538461538461539

MLP mean accuracy mean accuracy: 0.969
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MLP Score: 0.9692307692307692

VC mean accuracy: 0.954

VC Score: 0.9538461538461539

Phone 11: 30/70

PCA Number of Variables: 26

Model Results:

SVM 1 Accuracy (C=1): 0.934 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 1.000 (+/- 0.00)

SVM 2 Accuracy (C=20): 0.934 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 1.000 (+/- 0.00)

Random Forest (10) mean accuracy score: 0.921

Random Forest Score: 0.9205298013245033

Random Forest (50) mean accuracy score: 0.907

Random Forest Score: 0.9072847682119205

MLP mean accuracy mean accuracy: 0.960

MLP Score: 0.9602649006622517

VC mean accuracy: 0.960

VC Score: 0.9602649006622517

Phone 12: 80/20

PCA Number of Variables: 24

Model Results:

SVM 1 Accuracy (C=1): 0.889 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.721 (+/- 0.07)

SVM 2 Accuracy (C=20): 0.944 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.720 (+/- 0.22)
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Random Forest (10) mean accuracy score: 0.778

Random Forest Score: 0.7777777777777778

Random Forest (50) mean accuracy score: 0.778

Random Forest Score: 0.7777777777777778

MLP mean accuracy mean accuracy: 0.889

MLP Score: 0.8888888888888888

VC mean accuracy: 0.889

VC Score: 0.8888888888888888

Phone 12: 70/30

PCA Number of Variables: 24

Model Results:

SVM 1 Accuracy (C=1): 0.667 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.778 (+/- 0.01)

SVM 2 Accuracy (C=20): 0.593 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.860 (+/- 0.16)

Random Forest (10) mean accuracy score: 0.778

Random Forest Score: 0.7777777777777778

Random Forest (50) mean accuracy score: 0.630

Random Forest Score: 0.6296296296296297

MLP mean accuracy mean accuracy: 0.630

MLP Score: 0.6296296296296297

VC mean accuracy: 0.630

VC Score: 0.6296296296296297

Phone 12: 30/70

PCA Number of Variables: 14

Model Results:
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SVM 1 Accuracy (C=1): 0.571 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.926 (+/- 0.01)

SVM 2 Accuracy (C=20): 0.571 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.758 (+/- 0.52)

Random Forest (10) mean accuracy score: 0.587

Random Forest Score: 0.5873015873015873

Random Forest (50) mean accuracy score: 0.635

Random Forest Score: 0.6349206349206349

MLP mean accuracy mean accuracy: 0.667

MLP Score: 0.6666666666666666

VC mean accuracy: 0.651

VC Score: 0.6507936507936508

Phone 13: 80/20

PCA Number of Variables: 23

Model Results:

SVM 1 Accuracy (C=1): 0.862 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.931 (+/- 0.07)

SVM 2 Accuracy (C=20): 0.897 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.906 (+/- 0.14)

Random Forest (10) mean accuracy score: 0.897

Random Forest Score: 0.896551724137931

Random Forest (50) mean accuracy score: 0.862

Random Forest Score: 0.8620689655172413

MLP mean accuracy mean accuracy: 0.862

MLP Score: 0.8620689655172413

VC mean accuracy: 0.897

VC Score: 0.896551724137931
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Phone 13: 70/30

PCA Number of Variables: 21

Model Results:

SVM 1 Accuracy (C=1): 0.909 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.910 (+/- 0.14)

SVM 2 Accuracy (C=20): 0.886 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.901 (+/- 0.18)

Random Forest (10) mean accuracy score: 0.909

Random Forest Score: 0.9090909090909091

Random Forest (50) mean accuracy score: 0.909

Random Forest Score: 0.9090909090909091

MLP mean accuracy mean accuracy: 0.955

MLP Score: 0.9545454545454546

VC mean accuracy: 0.955

VC Score: 0.9545454545454546

Phone 13: 30/70

PCA Number of Variables: 12 Model Results:

SVM 1 Accuracy (C=1): 0.941 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.719 (+/- 0.20)

SVM 2 Accuracy (C=20): 0.882 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.797 (+/- 0.38)

Random Forest (10) mean accuracy score: 0.824

Random Forest Score: 0.8235294117647058

Random Forest (50) mean accuracy score: 0.873

Random Forest Score: 0.8725490196078431

MLP mean accuracy mean accuracy: 0.843

MLP Score: 0.8431372549019608
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VC mean accuracy: 0.931

VC Score: 0.9313725490196079

Phone 14: 80/20

PCA Number of Variables: 32

Model Results:

SVM 1 Accuracy (C=1): 0.879 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.916 (+/- 0.05)

SVM 2 Accuracy (C=20): 0.970 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.879 (+/- 0.19)

Random Forest (10) mean accuracy score: 0.818

Random Forest Score: 0.8181818181818182

Random Forest (50) mean accuracy score: 0.879

Random Forest Score: 0.8787878787878788

MLP mean accuracy mean accuracy: 1.000

MLP Score: 1.0

VC mean accuracy: 0.970

VC Score: 0.9696969696969697

Phone 14: 70/30

PCA Number of Variables: 29

Model Results:

SVM 1 Accuracy (C=1): 0.920 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.930 (+/- 0.03)

SVM 2 Accuracy (C=20): 0.920 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.848 (+/- 0.23)

Random Forest (10) mean accuracy score: 0.840
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Random Forest Score: 0.84

Random Forest (50) mean accuracy score: 0.900

Random Forest Score: 0.9

MLP mean accuracy mean accuracy: 0.960

MLP Score: 0.96

VC mean accuracy: 0.940

VC Score: 0.94

Phone 14: 30/70

PCA Number of Variables: 17

Model Results:

SVM 1 Accuracy (C=1): 0.922 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.917 (+/- 0.08)

SVM 2 Accuracy (C=20): 0.922 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.935 (+/- 0.20)

Random Forest (10) mean accuracy score: 0.878

Random Forest Score: 0.8782608695652174

Random Forest (50) mean accuracy score: 0.887

Random Forest Score: 0.8869565217391304

MLP mean accuracy mean accuracy: 0.913

MLP Score: 0.9130434782608695

VC mean accuracy: 0.904

VC Score: 0.9043478260869565

Phone 15: 80/20

PCA Number of Variables: 21

Model Results:
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SVM 1 Accuracy (C=1): 0.952 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.798 (+/- 0.07)

SVM 2 Accuracy (C=20): 0.952 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.847 (+/- 0.29)

Random Forest (10) mean accuracy score: 0.952

Random Forest Score: 0.9523809523809523

Random Forest (50) mean accuracy score: 0.952

Random Forest Score: 0.9523809523809523

MLP mean accuracy mean accuracy: 0.952

MLP Score: 0.9523809523809523

VC mean accuracy: 0.952

VC Score: 0.9523809523809523

Attack Session Results:

SVM 1 Accuracy (C=1): 0.400 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.798 (+/- 0.12)

SVM 2 Accuracy (C=20): 0.000 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=10): 0.847 (+/- 0.29)

Random Forest (10) mean accuracy score: 0.400

Random Forest Score: 0.4

Random Forest (50) mean accuracy score: 0.400

Random Forest Score: 0.4

MLP mean accuracy mean accuracy: 0.200

MLP Score: 0.2

VC mean accuracy: 0.200

VC Score: 0.2

Phone 15: 70/30
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PCA Number of Variables: 20

Model Results:

SVM 1 Accuracy (C=1): 0.906 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.782 (+/- 0.10)

SVM 2 Accuracy (C=20): 0.938 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.845 (+/- 0.30)

Random Forest (10) mean accuracy score: 0.969

Random Forest Score: 0.96875

Random Forest (50) mean accuracy score: 0.938

Random Forest Score: 0.9375

MLP mean accuracy mean accuracy: 0.938

MLP Score: 0.9375

VC mean accuracy: 0.938

VC Score: 0.9375

Attack Session Results:

SVM 1 Accuracy (C=1): 0.400 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.754 (+/- 0.10)

SVM 2 Accuracy (C=20): 0.000 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=10): 0.845 (+/- 0.30)

Random Forest (10) mean accuracy score: 0.800

Random Forest Score: 0.8

Random Forest (50) mean accuracy score: 0.400

Random Forest Score: 0.8

MLP mean accuracy mean accuracy: 0.000

MLP Score: 0.0

VC mean accuracy: 0.200

VC Score: 0.2
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Phone 15: 30/70

PCA Number of Variables: 12 Model Results:

SVM 1 Accuracy (C=1): 0.595 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.775 (+/- 0.05)

SVM 2 Accuracy (C=20): 0.757 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.800 (+/- 0.37)

Random Forest (10) mean accuracy score: 0.784

Random Forest Score: 0.7837837837837838

Random Forest (50) mean accuracy score: 0.757

Random Forest Score: 0.7567567567567568

MLP mean accuracy mean accuracy: 0.784

MLP Score: 0.7837837837837838

VC mean accuracy: 0.811

VC Score: 0.8108108108108109

Attack Session Results:

SVM 1 Accuracy (C=1): 0.200 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.719 (+/- 0.56)

SVM 2 Accuracy (C=20): 0.400 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=10): 0.800 (+/- 0.37)

Random Forest (10) mean accuracy score: 0.400

Random Forest Score: 0.4

Random Forest (50) mean accuracy score: 0.400

Random Forest Score: 0.4

MLP mean accuracy mean accuracy: 0.400

MLP Score: 0.4

VC mean accuracy: 0.400

VC Score: 0.4
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Phone 16: 80/20

PCA Number of Variables: 34

Model Results:

SVM 1 Accuracy (C=1): 0.818 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.908 (+/- 0.04)

SVM 2 Accuracy (C=20): 0.818 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.929 (+/- 0.18)

Random Forest (10) mean accuracy score: 0.909

Random Forest Score: 0.9090909090909091

Random Forest (50) mean accuracy score: 0.818

Random Forest Score: 0.8181818181818182

MLP mean accuracy mean accuracy: 0.773

MLP Score: 0.7727272727272727

VC mean accuracy: 0.864

VC Score: 0.8636363636363636

Attack Session Results:

SVM 1 Accuracy (C=1): 0.000 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.875 (+/- 0.20)

SVM 2 Accuracy (C=20): 0.000 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=10): 0.929 (+/- 0.18)

Random Forest (10) mean accuracy score: 0.200

Random Forest Score: 0.2

Random Forest (50) mean accuracy score: 0.200

Random Forest Score: 0.2

MLP mean accuracy mean accuracy: 0.000

MLP Score: 0.0

VC mean accuracy: 0.000
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VC Score: 0.0

Phone 16: 70/30

PCA Number of Variables: 32

Model Results:

SVM 1 Accuracy (C=1): 0.758 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.935 (+/- 0.02)

SVM 2 Accuracy (C=20): 0.758 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.971 (+/- 0.11)

Random Forest (10) mean accuracy score: 0.879

Random Forest Score: 0.8787878787878788

Random Forest (50) mean accuracy score: 0.848

Random Forest Score: 0.8484848484848485

MLP mean accuracy mean accuracy: 0.788

MLP Score: 0.7878787878787878

VC mean accuracy: 0.788

VC Score: 0.7878787878787878

Attack Session Results:

SVM 1 Accuracy (C=1): 0.000 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.934 (+/- 0.03)

SVM 2 Accuracy (C=20): 0.000 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=10): 0.971 (+/- 0.11)

Random Forest (10) mean accuracy score: 0.200

Random Forest Score: 0.2

Random Forest (50) mean accuracy score: 0.200

Random Forest Score: 0.2

MLP mean accuracy mean accuracy: 0.000
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MLP Score: 0.0

VC mean accuracy: 0.000

VC Score: 0.0

Phone 16: 30/70

PCA Number of Variables: 19

Model Results:

SVM 1 Accuracy (C=1): 0.883 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.908 (+/- 0.05)

SVM 2 Accuracy (C=20): 0.883 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.975 (+/- 0.15)

Random Forest (10) mean accuracy score: 0.857

Random Forest Score: 0.8571428571428571

Random Forest (50) mean accuracy score: 0.792

Random Forest Score: 0.7922077922077922

MLP mean accuracy mean accuracy: 0.896

MLP Score: 0.8961038961038961

VC mean accuracy: 0.883

VC Score: 0.8831168831168831

Attack Session Results:

SVM 1 Accuracy (C=1): 0.000 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.937 (+/- 0.01)

SVM 2 Accuracy (C=20): 0.000 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=10): 0.975 (+/- 0.15)

Random Forest (10) mean accuracy score: 0.000

Random Forest Score: 0.0

Random Forest (50) mean accuracy score: 0.000
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Random Forest Score: 0.0

MLP mean accuracy mean accuracy: 0.000

MLP Score: 0.0

VC mean accuracy: 0.000

VC Score: 0.0

Phone 17: 80/20

PCA Number of Variables: 33

Model Results:

SVM 1 Accuracy (C=1): 0.973 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.905 (+/- 0.00)

SVM 2 Accuracy (C=20): 1.000 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.911 (+/- 0.14)

Random Forest (10) mean accuracy score: 0.892

Random Forest Score: 0.8918918918918919

Random Forest (50) mean accuracy score: 0.892

Random Forest Score: 0.8918918918918919

MLP mean accuracy mean accuracy: 0.973

MLP Score: 0.972972972972973

VC mean accuracy: 0.946

VC Score: 0.9459459459459459

Phone 17: 70/30

PCA Number of Variables: 30 Model Results:

SVM 1 Accuracy (C=1): 0.964 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.891 (+/- 0.03)

SVM 2 Accuracy (C=20): 0.964 (+/- 0.00)
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SVM 2 Accuracy cross validated (cv=20): 0.913 (+/- 0.13)

Random Forest (10) mean accuracy score: 0.964

Random Forest Score: 0.9642857142857143

Random Forest (50) mean accuracy score: 0.964

Random Forest Score: 0.9642857142857143

MLP mean accuracy mean accuracy: 0.929

MLP Score: 0.9285714285714286

VC mean accuracy: 0.964

VC Score: 0.9642857142857143

Phone 17: 30/70

PCA Number of Variables: 21

Model Results:

SVM 1 Accuracy (C=1): 0.899 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.800 (+/- 0.03)

SVM 2 Accuracy (C=20): 0.899 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.850 (+/- 0.24)

Random Forest (10) mean accuracy score: 0.884

Random Forest Score: 0.8837209302325582

Random Forest (50) mean accuracy score: 0.884

Random Forest Score: 0.8837209302325582

MLP mean accuracy mean accuracy: 0.915

MLP Score: 0.9147286821705426

VC mean accuracy: 0.891

VC Score: 0.8914728682170543

Phone 18: 80/20
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PCA Number of Variables: 32

Model Results:

SVM 1 Accuracy (C=1): 1.000 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.957 (+/- 0.06)

SVM 2 Accuracy (C=20): 1.000 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.979 (+/- 0.05)

Random Forest (10) mean accuracy score: 1.000

Random Forest Score: 1.0

Random Forest (50) mean accuracy score: 1.000

Random Forest Score: 1.0

MLP mean accuracy mean accuracy: 1.000

MLP Score: 1.0

VC mean accuracy: 1.000

VC Score: 1.0

Phone 18: 70/30

PCA Number of Variables: 30

Model Results:

SVM 1 Accuracy (C=1): 0.971 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.938 (+/- 0.02)

SVM 2 Accuracy (C=20): 0.986 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.964 (+/- 0.10)

Random Forest (10) mean accuracy score: 0.986

Random Forest Score: 0.9855072463768116

Random Forest (50) mean accuracy score: 0.986

Random Forest Score: 0.9855072463768116

MLP mean accuracy mean accuracy: 0.986

MLP Score: 0.9855072463768116
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VC mean accuracy: 0.986

VC Score: 0.9855072463768116

Phone 18: 30/70

PCA Number of Variables: 20

Model Results:

SVM 1 Accuracy (C=1): 0.957 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.928 (+/- 0.03)

SVM 2 Accuracy (C=20): 0.957 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.959 (+/- 0.13)

Random Forest (10) mean accuracy score: 0.957

Random Forest Score: 0.9565217391304348

Random Forest (50) mean accuracy score: 0.969

Random Forest Score: 0.968944099378882

MLP mean accuracy mean accuracy: 0.963

MLP Score: 0.9627329192546584

VC mean accuracy: 0.975

VC Score: 0.9751552795031055

Phone 19: 80/20

PCA Number of Variables: 18 Model Results:

SVM 1 Accuracy (C=1): 0.966 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.877 (+/- 0.00)

SVM 2 Accuracy (C=20): 0.931 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.928 (+/- 0.12)

Random Forest (10) mean accuracy score: 0.966

Random Forest Score: 0.9655172413793104
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Random Forest (50) mean accuracy score: 0.931

Random Forest Score: 0.9310344827586207

MLP mean accuracy mean accuracy: 0.897

MLP Score: 0.896551724137931

VC mean accuracy: 0.931

VC Score: 0.9310344827586207

Phone 19: 70/30

PCA Number of Variables: 17

Model Results:

SVM 1 Accuracy (C=1): 0.907 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.840 (+/- 0.04)

SVM 2 Accuracy (C=20): 0.930 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.902 (+/- 0.19)

Random Forest (10) mean accuracy score: 0.860

Random Forest Score: 0.8604651162790697

Random Forest (50) mean accuracy score: 0.907

Random Forest Score: 0.9069767441860465

MLP mean accuracy mean accuracy: 0.860

MLP Score: 0.8604651162790697

VC mean accuracy: 0.860

VC Score: 0.8604651162790697

Phone 19: 30/70

PCA Number of Variables: 10

Model Results:

SVM 1 Accuracy (C=1): 0.861 (+/- 0.00)
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SVM 1 Accuracy cross validated (cv=2): 0.762 (+/- 0.10)

SVM 2 Accuracy (C=20): 0.891 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.758 (+/- 0.30)

Random Forest (10) mean accuracy score: .891

Random Forest Score: 0.8910891089108911

Random Forest (50) mean accuracy score: 0.911

Random Forest Score: 0.9108910891089109

MLP mean accuracy mean accuracy: 0.891

MLP Score: 0.8910891089108911

VC mean accuracy: 0.881

VC Score: 0.8811881188118812

Phone 20: 80/20

PCA Number of Variables: 21

Model Results:

SVM 1 Accuracy (C=1): 1.000 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.973 (+/- 0.01)

SVM 2 Accuracy (C=20): 1.000 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.951 (+/- 0.09)

Random Forest (10) mean accuracy score: 0.957

Random Forest Score: 0.9574468085106383

Random Forest (50) mean accuracy score: 0.957

Random Forest Score: 0.9574468085106383

MLP mean accuracy mean accuracy: 1.000

MLP Score: 1.0

VC mean accuracy: 0.957

VC Score: 0.9574468085106383
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Phone 20: 70/30

PCA Number of Variables: 20

Model Results:

SVM 1 Accuracy (C=1): 0.971 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.975 (+/- 0.03)

SVM 2 Accuracy (C=20): 0.971 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.981 (+/- 0.06)

Random Forest (10) mean accuracy score: 0.957

Random Forest Score: 0.9571428571428572

Random Forest (50) mean accuracy score: 0.957

Random Forest Score: 0.9571428571428572

MLP mean accuracy mean accuracy: 0.957

MLP Score: 0.9571428571428572

VC mean accuracy: 0.957

VC Score: 0.9571428571428572

Phone 20: 30/70

PCA Number of Variables: 11

Model Results:

SVM 1 Accuracy (C=1): 0.963 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.942 (+/- 0.00)

SVM 2 Accuracy (C=20): 0.963 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.936 (+/- 0.22)

Random Forest (10) mean accuracy score: 0.932

Random Forest Score: 0.9320987654320988

Random Forest (50) mean accuracy score: 0.938

Random Forest Score: 0.9382716049382716

MLP mean accuracy mean accuracy: 0.963
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MLP Score: 0.9629629629629629

VC mean accuracy: 0.951

VC Score: 0.9506172839506173

Phone 21: 80/20

PCA Number of Variables: 14

Model Results:

SVM 1 Accuracy (C=1): 0.950 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.934 (+/- 0.03)

SVM 2 Accuracy (C=20): 0.950 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.926 (+/- 0.21)

Random Forest (10) mean accuracy score: 0.950

Random Forest Score: 0.95

Random Forest (50) mean accuracy score: 0.950

Random Forest Score: 0.95

MLP mean accuracy mean accuracy: 0.950

MLP Score: 0.95

VC mean accuracy: 0.950

VC Score: 0.95

Phone 21: 70/30

PCA Number of Variables: 13

Model Results:

SVM 1 Accuracy (C=1): 0.966 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.926 (+/- 0.03)

SVM 2 Accuracy (C=20): 0.966 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.927 (+/- 0.15)
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Random Forest (10) mean accuracy score: 0.966

Random Forest Score: 0.9655172413793104

Random Forest (50) mean accuracy score: 0.966

Random Forest Score: 0.9655172413793104

MLP mean accuracy mean accuracy: 0.966

MLP Score: 0.9655172413793104

VC mean accuracy: 0.966

VC Score: 0.9655172413793104

Phone 21: 30/70

PCA Number of Variables: 5

Model Results:

SVM 1 Accuracy (C=1): 0.926 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.926 (+/- 0.03)

SVM 2 Accuracy (C=20): 0.926 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.926 (+/- 0.15)

Random Forest (10) mean accuracy score: 0.941

Random Forest Score: 0.9411764705882353

Random Forest (50) mean accuracy score: 0.941

Random Forest Score: 0.9411764705882353

MLP mean accuracy mean accuracy: 0.926

MLP Score: 0.9264705882352942

VC mean accuracy: 0.941

VC Score: 0.9411764705882353

Phone 22: 80/20

PCA Number of Variables: 45

Model Results:
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SVM 1 Accuracy (C=1): 0.872 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.923 (+/- 0.00)

SVM 2 Accuracy (C=20): 0.872 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.967 (+/- 0.09)

Random Forest (10) mean accuracy score: 0.897

Random Forest Score: 0.8974358974358975

Random Forest (50) mean accuracy score: 0.923

Random Forest Score: 0.9230769230769231

MLP mean accuracy mean accuracy: 0.923

MLP Score: 0.9230769230769231

VC mean accuracy: 0.949

VC Score: 0.9487179487179487

Phone 22: 70/30

PCA Number of Variables: 45

Model Results:

SVM 1 Accuracy (C=1): 0.932 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.926 (+/- 0.03)

SVM 2 Accuracy (C=20): 0.881 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.947 (+/- 0.07)

Random Forest (10) mean accuracy score: 0.898

Random Forest Score: 0.8983050847457628

Random Forest (50) mean accuracy score: 0.915

Random Forest Score: 0.9152542372881356

MLP mean accuracy mean accuracy: 0.915

MLP Score: 0.9152542372881356

VC mean accuracy: 0.932

VC Score: 0.9322033898305084
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Phone 22: 30/70

PCA Number of Variables: 30

Model Results:

SVM 1 Accuracy (C=1): 0.927 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 1.000 (+/- 0.00)

SVM 2 Accuracy (C=20): 0.927 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.963 (+/- 0.15)

Random Forest (10) mean accuracy score: 0.883

Random Forest Score: 0.8832116788321168

Random Forest (50) mean accuracy score: 0.883

Random Forest Score: 0.8832116788321168

MLP mean accuracy mean accuracy: 0.934

MLP Score: 0.9343065693430657

VC mean accuracy: 0.942

VC Score: 0.9416058394160584

Phone 23: 80/20

PCA Number of Variables: 36

Model Results:

SVM 1 Accuracy (C=1): 0.938 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.872 (+/- 0.06)

SVM 2 Accuracy (C=20): 0.875 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.914 (+/- 0.15)

Random Forest (10) mean accuracy score: 0.844

Random Forest Score: 0.84375

Random Forest (50) mean accuracy score: 0.844

Random Forest Score: 0.84375

MLP mean accuracy mean accuracy: 0.969
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MLP Score: 0.96875

VC mean accuracy: 0.906

VC Score: 0.90625

Phone 23: 70/30

PCA Number of Variables: 34

Model Results:

SVM 1 Accuracy (C=1): 0.958 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.863 (+/- 0.09)

SVM 2 Accuracy (C=20): 0.875 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.873 (+/- 0.20)

Random Forest (10) mean accuracy score: 0.896

Random Forest Score: 0.8958333333333334

Random Forest (50) mean accuracy score: 0.958

Random Forest Score: 0.9583333333333334

MLP mean accuracy mean accuracy: 0.896

MLP Score: 0.8958333333333334

VC mean accuracy: 0.917

VC Score: 0.9166666666666666

Phone 23: 30/70

PCA Number of Variables: 22

Model Results:

SVM 1 Accuracy (C=1): 0.864 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.853 (+/- 0.21)

SVM 2 Accuracy (C=20): 0.864 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.855 (+/- 0.26)
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Random Forest (10) mean accuracy score: 0.864

Random Forest Score: 0.8636363636363636

Random Forest (50) mean accuracy score: 0.864

Random Forest Score: 0.8636363636363636

MLP mean accuracy mean accuracy: 0.918

MLP Score: 0.9181818181818182

VC mean accuracy: 0.873

VC Score: 0.8727272727272727

Phone 24: 80/20

PCA Number of Variables: 33

Model Results:

SVM 1 Accuracy (C=1): 0.944 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.937 (+/- 0.04)

SVM 2 Accuracy (C=20): 0.972 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.924 (+/- 0.10)

Random Forest (10) mean accuracy score: 0.944

Random Forest Score: 0.9444444444444444

Random Forest (50) mean accuracy score: 0.944

Random Forest Score: 0.9444444444444444

MLP mean accuracy mean accuracy: 0.972

MLP Score: 0.9722222222222222

VC mean accuracy: 0.944

VC Score: 0.9444444444444444

Phone 24: 70/30

PCA Number of Variables: 30

Model Results:
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SVM 1 Accuracy (C=1): 0.981 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.952 (+/- 0.00)

SVM 2 Accuracy (C=20): 0.963 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.913 (+/- 0.15)

Random Forest (10) mean accuracy score: 0.944

Random Forest Score: 0.9444444444444444

Random Forest (50) mean accuracy score: 0.963

Random Forest Score: 0.9629629629629629

MLP mean accuracy mean accuracy: 0.944

MLP Score: 0.9444444444444444

VC mean accuracy: 0.963

VC Score: 0.9629629629629629

Phone 24: 30/70

PCA Number of Variables: 16

Model Results:

SVM 1 Accuracy (C=1): 0.960 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.963 (+/- 0.00)

SVM 2 Accuracy (C=20): 0.944 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.986 (+/- 0.09)

Random Forest (10) mean accuracy score: 0.960

Random Forest Score: 0.9603174603174603

Random Forest (50) mean accuracy score: 0.960

Random Forest Score: 0.9603174603174603

MLP mean accuracy mean accuracy: 0.937

MLP Score: 0.9365079365079365

VC mean accuracy: 0.960

VC Score: 0.9603174603174603
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Phone 25: 80/20

PCA Number of Variables: 19

Model Results:

SVM 1 Accuracy (C=1): 0.958 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.935 (+/- 0.04)

SVM 2 Accuracy (C=20): 0.917 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.871 (+/- 0.23)

Random Forest (10) mean accuracy score: 0.958

Random Forest Score: 0.9583333333333334

Random Forest (50) mean accuracy score: 0.958

Random Forest Score: 0.9583333333333334

MLP mean accuracy mean accuracy: 0.917

MLP Score: 0.9166666666666666

VC mean accuracy: 0.958

VC Score: 0.9583333333333334

Phone 25: 70/30

PCA Number of Variables: 18

Model Results:

SVM 1 Accuracy (C=1): 0.972 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.926 (+/- 0.05)

SVM 2 Accuracy (C=20): 0.944 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.922 (+/- 0.26)

Random Forest (10) mean accuracy score: 0.972

Random Forest Score: 0.9722222222222222

Random Forest (50) mean accuracy score: 0.972

Random Forest Score: 0.9722222222222222

MLP mean accuracy mean accuracy: 0.944
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MLP Score: 0.9444444444444444

VC mean accuracy: 0.972

VC Score: 0.9722222222222222

Phone 25: 30/70

PCA Number of Variables:10

Model Results: SVM 1 Accuracy (C=1): 0.963 (+/- 0.00) SVM 1 Accuracy cross

validated (cv=2): 0.963 (+/- 0.02) SVM 2 Accuracy (C=20): 0.963 (+/- 0.00) SVM

2 Accuracy cross validated (cv=20): 0.953 (+/- 0.12) Random Forest (10) mean ac-

curacy score: 0.976 Random Forest Score: 0.975609756097561 Random Forest (50)

mean accuracy score: 0.963 Random Forest Score: 0.9634146341463414 MLP mean

accuracy mean accuracy: 0.963 MLP Score: 0.9634146341463414 VC mean accuracy:

0.963 VC Score: 0.9634146341463414

Phone 26: 80/20

PCA Number of Variables: 17

Model Results:

SVM 1 Accuracy (C=1): 0.933 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.948 (+/- 0.00)

SVM 2 Accuracy (C=20): 0.867 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.920 (+/- 0.15)

Random Forest (10) mean accuracy score: 0.900

Random Forest Score: 0.9

Random Forest (50) mean accuracy score: 0.933

Random Forest Score: 0.9333333333333333

MLP mean accuracy mean accuracy: 0.867

MLP Score: 0.8666666666666667
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VC mean accuracy: 0.900

VC Score: 0.9

Phone 26: 70/30

PCA Number of Variables: 17

Model Results:

SVM 1 Accuracy (C=1): 0.932 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.951 (+/- 0.02)

SVM 2 Accuracy (C=20): 0.932 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.930 (+/- 0.13)

Random Forest (10) mean accuracy score: 0.955

Random Forest Score: 0.9545454545454546

Random Forest (50) mean accuracy score: 0.955

Random Forest Score: 0.9545454545454546

MLP mean accuracy mean accuracy: 0.955

MLP Score: 0.9545454545454546

VC mean accuracy: 0.932

VC Score: 0.9318181818181818

Phone 26: 30/70

PCA Number of Variables: 17

Model Results:

SVM 1 Accuracy (C=1): 0.883 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.953 (+/- 0.00)

SVM 2 Accuracy (C=20): 0.883 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.905 (+/- 0.23)

Random Forest (10) mean accuracy score: 0.816
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Random Forest Score: 0.8155339805825242

Random Forest (50) mean accuracy score: 0.883

Random Forest Score: 0.883495145631068

MLP mean accuracy mean accuracy: 0.903

MLP Score: 0.9029126213592233

VC mean accuracy: 0.864

VC Score: 0.8640776699029126

Phone 27: 80/20

PCA Number of Variables: 31

Model Results:

SVM 1 Accuracy (C=1): 0.880 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.910 (+/- 0.02)

SVM 2 Accuracy (C=20): 0.920 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.851 (+/- 0.17)

Random Forest (10) mean accuracy score: 0.920

Random Forest Score: 0.92

Random Forest (50) mean accuracy score: 0.880

Random Forest Score: 0.88

MLP mean accuracy mean accuracy: 0.960

MLP Score: 0.96

VC mean accuracy: 0.960

VC Score: 0.96

Attack Session Results:

SVM 1 Accuracy (C=1): 0.000 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.860 (+/- 0.03)

SVM 2 Accuracy (C=20): 0.000 (+/- 0.00)
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SVM 2 Accuracy cross validated (cv=10): 0.851 (+/- 0.17)

Random Forest (10) mean accuracy score: 0.400

Random Forest Score: 0.4

Random Forest (50) mean accuracy score: 0.000

Random Forest Score: 0.4

MLP mean accuracy mean accuracy: 0.000

MLP Score: 0.0

VC mean accuracy: 0.000

VC Score: 0.0

Phone 27: 70/30

PCA Number of Variables: 30

Model Results:

SVM 1 Accuracy (C=1): 0.895 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.896 (+/- 0.03)

SVM 2 Accuracy (C=20): 0.789 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.874 (+/- 0.16)

Random Forest (10) mean accuracy score: 0.895

Random Forest Score: 0.8947368421052632

Random Forest (50) mean accuracy score: 0.947

Random Forest Score: 0.9473684210526315

MLP mean accuracy mean accuracy: 0.947

MLP Score: 0.9473684210526315

VC mean accuracy: 0.895

VC Score: 0.8947368421052632

Attack Session Results: SVM 1 Accuracy (C=1): 0.895 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.896 (+/- 0.03)
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SVM 2 Accuracy (C=20): 0.789 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.874 (+/- 0.16)

Random Forest (10) mean accuracy score: 0.895

Random Forest Score: 0.8947368421052632

Random Forest (50) mean accuracy score: 0.947

Random Forest Score: 0.9473684210526315

MLP mean accuracy mean accuracy: 0.947

MLP Score: 0.9473684210526315

VC mean accuracy: 0.895

VC Score: 0.8947368421052632

Phone 27: 30/70

PCA Number of Variables: 16 Model Results:

SVM 1 Accuracy (C=1): 0.932 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.727 (+/- 0.23)

SVM 2 Accuracy (C=20): 0.864 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.758 (+/- 0.42)

Random Forest (10) mean accuracy score: 0.898

Random Forest Score: 0.8977272727272727

Random Forest (50) mean accuracy score: 0.909

Random Forest Score: 0.9090909090909091

MLP mean accuracy mean accuracy: 0.977

MLP Score: 0.9772727272727273

VC mean accuracy: 0.966

VC Score: 0.9659090909090909

Attack Session Results:

SVM 1 Accuracy (C=1): 0.200 (+/- 0.00)
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SVM 1 Accuracy cross validated (cv=2): 0.811 (+/- 0.04)

SVM 2 Accuracy (C=20): 0.000 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=10): 0.758 (+/- 0.42)

Random Forest (10) mean accuracy score: 0.200

Random Forest Score: 0.2

Random Forest (50) mean accuracy score: 0.200

Random Forest Score: 0.2

MLP mean accuracy mean accuracy: 0.200

MLP Score: 0.2

VC mean accuracy: 0.200

VC Score: 0.2

Phone 28: 80/20

PCA Number of Variables: 48 Model Results:

SVM 1 Accuracy (C=1): 0.881 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.898 (+/- 0.04)

SVM 2 Accuracy (C=20): 0.905 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.912 (+/- 0.09)

Random Forest (10) mean accuracy score: 0.929

Random Forest Score: 0.9285714285714286

Random Forest (50) mean accuracy score: 0.905

Random Forest Score: 0.9047619047619048

MLP mean accuracy mean accuracy: 0.905

MLP Score: 0.9047619047619048

VC mean accuracy: 0.952

VC Score: 0.9523809523809523

Phone 28: 70/30
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PCA Number of Variables: 45

Model Results:

SVM 1 Accuracy (C=1): 0.905 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.890 (+/- 0.03)

SVM 2 Accuracy (C=20): 0.905 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.897 (+/- 0.16)

Random Forest (10) mean accuracy score: 0.889

Random Forest Score: 0.8888888888888888

Random Forest (50) mean accuracy score: 0.921

Random Forest Score: 0.9206349206349206

MLP mean accuracy mean accuracy: 0.952

MLP Score: 0.9523809523809523

VC mean accuracy: 0.937

VC Score: 0.9365079365079365

Phone 28: 30/70

PCA Number of Variables: 29

Model Results:

SVM 1 Accuracy (C=1): 0.878 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.872 (+/- 0.06)

SVM 2 Accuracy (C=20): 0.878 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.881 (+/- 0.27)

Random Forest (10) mean accuracy score: 0.844

Random Forest Score: 0.8435374149659864

Random Forest (50) mean accuracy score: 0.850

Random Forest Score: 0.8503401360544217

MLP mean accuracy mean accuracy: 0.939

MLP Score: 0.9387755102040817
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VC mean accuracy: 0.891

VC Score: 0.891156462585034

Phone 29: 80/20

PCA Number of Variables: 34

Model Results:

SVM 1 Accuracy (C=1): 0.906 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.929 (+/- 0.02)

SVM 2 Accuracy (C=20): 0.906 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.922 (+/- 0.20)

Random Forest (10) mean accuracy score: 0.812

Random Forest Score: 0.8125

Random Forest (50) mean accuracy score: 0.844

Random Forest Score: 0.84375

MLP mean accuracy mean accuracy: 0.875

MLP Score: 0.875

VC mean accuracy: 0.875

VC Score: 0.875

Phone 29: 70/30

PCA Number of Variables: 35

Model Results:

SVM 1 Accuracy (C=1): 0.917 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.955 (+/- 0.02)

SVM 2 Accuracy (C=20): 0.938 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.874 (+/- 0.26)

Random Forest (10) mean accuracy score: 0.854
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Random Forest Score: 0.8541666666666666

Random Forest (50) mean accuracy score: 0.875

Random Forest Score: 0.875

MLP mean accuracy mean accuracy: 0.917

MLP Score: 0.9166666666666666

VC mean accuracy: 0.896

VC Score: 0.8958333333333334

Phone 29: 30/70

PCA Number of Variables: 19

Model Results:

SVM 1 Accuracy (C=1): 0.848 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.893 (+/- 0.05)

SVM 2 Accuracy (C=20): 0.777 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.858 (+/- 0.19)

Random Forest (10) mean accuracy score: 0.857

Random Forest Score: 0.8571428571428571

Random Forest (50) mean accuracy score: 0.848

Random Forest Score: 0.8482142857142857

MLP mean accuracy mean accuracy: 0.848

MLP Score: 0.8482142857142857

VC mean accuracy: 0.839

VC Score: 0.8392857142857143

Phone 30: 80/20

PCA Number of Variables: 28

Model Results:
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SVM 1 Accuracy (C=1): 0.880 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.938 (+/- 0.04)

SVM 2 Accuracy (C=20): 0.880 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.814 (+/- 0.18)

Random Forest (10) mean accuracy score: 0.960

Random Forest Score: 0.96

Random Forest (50) mean accuracy score: 0.960

Random Forest Score: 0.96

MLP mean accuracy mean accuracy: 0.960

MLP Score: 0.96

VC mean accuracy: 0.960

VC Score: 0.96

Phone 30: 70/30

PCA Number of Variables: 27

Model Results:

SVM 1 Accuracy (C=1): 0.892 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.941 (+/- 0.02)

SVM 2 Accuracy (C=20): 0.919 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.814 (+/- 0.31)

Random Forest (10) mean accuracy score: 0.973

Random Forest Score: 0.972972972972973

Random Forest (50) mean accuracy score: 0.946

Random Forest Score: 0.9459459459459459

MLP mean accuracy mean accuracy: 0.973

MLP Score: 0.972972972972973

VC mean accuracy: 0.973

VC Score: 0.972972972972973
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Phone 30: 30/70

PCA Number of Variables: 18

Model Results:

SVM 1 Accuracy (C=1): 0.884 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.862 (+/- 0.04)

SVM 2 Accuracy (C=20): 0.884 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.922 (+/- 0.25)

Random Forest (10) mean accuracy score: 0.919

Random Forest Score: 0.9186046511627907

Random Forest (50) mean accuracy score: 0.895

Random Forest Score: 0.8953488372093024

MLP mean accuracy mean accuracy: 0.953

MLP Score: 0.9534883720930233

VC mean accuracy: 0.930

VC Score: 0.9302325581395349

Phone 31: 80/20

PCA Number of Variables: 20

Model Results:

SVM 1 Accuracy (C=1): 0.800 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.874 (+/- 0.02)

SVM 2 Accuracy (C=20): 0.800 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.839 (+/- 0.22)

Random Forest (10) mean accuracy score: 0.867

Random Forest Score: 0.8666666666666667

Random Forest (50) mean accuracy score: 0.767

Random Forest Score: 0.7666666666666667

MLP mean accuracy mean accuracy: 0.867
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MLP Score: 0.8666666666666667

VC mean accuracy: 0.900

VC Score: 0.9

Phone 31: 70/30

PCA Number of Variables: 33

Model Results:

SVM 1 Accuracy (C=1): 0.933 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.856 (+/- 0.10)

SVM 2 Accuracy (C=20): 0.889 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.834 (+/- 0.19)

Random Forest (10) mean accuracy score: 0.911

Random Forest Score: 0.9111111111111111

Random Forest (50) mean accuracy score: 0.867

Random Forest Score: 0.8666666666666667

MLP mean accuracy mean accuracy: 0.911

MLP Score: 0.9111111111111111

VC mean accuracy: 0.911

VC Score: 0.9111111111111111

Phone 31: 30/70

PCA Number of Variables: 19

Model Results:

SVM 1 Accuracy (C=1): 0.838

SVM 1 Accuracy cross validated (cv=2): 0.701 (+/- 0.16)

SVM 2 Accuracy (C=20): 0.848 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.702 (+/- 0.42)
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Random Forest (10) mean accuracy score: 0.790

Random Forest Score: 0.7904761904761904

Random Forest (50) mean accuracy score: 0.810

Random Forest Score: 0.8095238095238095

MLP mean accuracy mean accuracy: 0.886

MLP Score: 0.8857142857142857

VC mean accuracy: 0.857

VC Score: 0.8571428571428571

Phone 32: 80/20

PCA Number of Variables: 40

Model Results:

SVM 1 Accuracy (C=1): 0.944 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.917 (+/- 0.08)

SVM 2 Accuracy (C=20): 0.944 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.931 (+/- 0.10)

Random Forest (10) mean accuracy score: 0.833

Random Forest Score: 0.8333333333333334

Random Forest (50) mean accuracy score: 0.889

Random Forest Score: 0.8888888888888888

MLP mean accuracy mean accuracy: 0.944

MLP Score: 0.9444444444444444

VC mean accuracy: 0.972

VC Score: 0.9722222222222222

Attack Session Results:

SVM 1 Accuracy (C=1): 0.000 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.952 (+/- 0.04)
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SVM 2 Accuracy (C=20): 0.000 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=10): 0.931 (+/- 0.10)

Random Forest (10) mean accuracy score: 0.400

Random Forest Score: 0.4

Random Forest (50) mean accuracy score: 0.200

Random Forest Score: 0.4

MLP mean accuracy mean accuracy: 0.200

MLP Score: 0.2

VC mean accuracy: 0.200

VC Score: 0.2

Phone 32: 70/30

PCA Number of Variables: 40

Model Results:

SVM 1 Accuracy (C=1): 0.870 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.929 (+/- 0.05)

SVM 2 Accuracy (C=20): 0.870 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.928 (+/- 0.14)

Random Forest (10) mean accuracy score: 0.852

Random Forest Score: 0.8518518518518519

Random Forest (50) mean accuracy score: 0.889

Random Forest Score: 0.8888888888888888

MLP mean accuracy mean accuracy: 0.907

MLP Score: 0.9074074074074074

VC mean accuracy: 0.889

VC Score: 0.8888888888888888

Attack Session Results:

SVM 1 Accuracy (C=1): 0.000 (+/- 0.00)
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SVM 1 Accuracy cross validated (cv=2): 0.937 (+/- 0.03)

SVM 2 Accuracy (C=20): 0.000 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=10): 0.928 (+/- 0.14)

Random Forest (10) mean accuracy score: 0.400

Random Forest Score: 0.4

Random Forest (50) mean accuracy score: 0.600

Random Forest Score: 0.4

MLP mean accuracy mean accuracy: 0.200

MLP Score: 0.2

VC mean accuracy: 0.400

VC Score: 0.4

Phone 32: 30/70

PCA Number of Variables: 22

Model Results:

SVM 1 Accuracy (C=1): 0.905 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.944 (+/- 0.11)

SVM 2 Accuracy (C=20): 0.905 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.960 (+/- 0.16)

Random Forest (10) mean accuracy score: 0.881

Random Forest Score: 0.8809523809523809

Random Forest (50) mean accuracy score: 0.905

Random Forest Score: 0.9047619047619048

MLP mean accuracy mean accuracy: 0.944

MLP Score: 0.9444444444444444

VC mean accuracy: 0.921

VC Score: 0.9206349206349206
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Attack Session Results: SVM 1 Accuracy (C=1): 0.000 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.963 (+/- 0.07)

SVM 2 Accuracy (C=20): 0.000 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=10): 0.960 (+/- 0.16)

Random Forest (10) mean accuracy score: 0.400

Random Forest Score: 0.4

Random Forest (50) mean accuracy score: 0.200

Random Forest Score: 0.4

MLP mean accuracy mean accuracy: 0.000

MLP Score: 0.0

VC mean accuracy: 0.000

VC Score: 0.0

Phone 33: 80/20

PCA Number of Variables: 25

Model Results:

SVM 1 Accuracy (C=1): 1.000 (+/- 0.00) SVM 1 Accuracy cross validated (cv=2):

0.936 (+/- 0.02) SVM 2 Accuracy (C=20): 0.964 (+/- 0.00) SVM 2 Accuracy cross

validated (cv=20): 0.945 (+/- 0.15) Random Forest (10) mean accuracy score: 0.964

Random Forest Score: 0.9642857142857143 Random Forest (50) mean accuracy score:

0.964 Random Forest Score: 0.9642857142857143 MLP mean accuracy mean accu-

racy: 0.893 MLP Score: 0.8928571428571429 VC mean accuracy: 0.929 VC Score:

0.9285714285714286

Phone 33: 70/30

PCA Number of Variables: 22

Model Results:

SVM 1 Accuracy (C=1): 0.952 (+/- 0.00)
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SVM 1 Accuracy cross validated (cv=2): 0.969 (+/- 0.02)

SVM 2 Accuracy (C=20): 0.952 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.947 (+/- 0.15)

Random Forest (10) mean accuracy score: 0.952

Random Forest Score: 0.9523809523809523

Random Forest (50) mean accuracy score: 0.929

Random Forest Score: 0.9285714285714286

MLP mean accuracy mean accuracy: 0.976

MLP Score: 0.9761904761904762

VC mean accuracy: 0.952

VC Score: 0.9523809523809523

Phone 33: 30/70

PCA Number of Variables: 19

Model Results:

SVM 1 Accuracy (C=1): 0.959 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.804 (+/- 0.11)

SVM 2 Accuracy (C=20): 0.928 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.830 (+/- 0.42)

Random Forest (10) mean accuracy score: 0.969

Random Forest Score: 0.9690721649484536

Random Forest (50) mean accuracy score: 0.979

Random Forest Score: 0.979381443298969

MLP mean accuracy mean accuracy: 0.928

MLP Score: 0.9278350515463918

VC mean accuracy: 0.969

VC Score: 0.9690721649484536
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Phone 34: 80/20

PCA Number of Variables: 21

Model Results:

SVM 1 Accuracy (C=1): 0.969 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.896 (+/- 0.11)

SVM 2 Accuracy (C=20): 0.906 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.860 (+/- 0.22)

Random Forest (10) mean accuracy score: 1.000

Random Forest Score: 1.0

Random Forest (50) mean accuracy score: 0.969

Random Forest Score: 0.96875

MLP mean accuracy mean accuracy: 1.000

MLP Score: 1.0

VC mean accuracy: 0.969

VC Score: 0.96875

Phone 34: 70/30

PCA Number of Variables: 19

Model Results:

SVM 1 Accuracy (C=1): 1.000 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.863 (+/- 0.05)

SVM 2 Accuracy (C=20): 0.896 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.858 (+/- 0.22)

Random Forest (10) mean accuracy score: 0.979

Random Forest Score: 0.9791666666666666

Random Forest (50) mean accuracy score: 0.979

Random Forest Score: 0.9791666666666666

MLP mean accuracy mean accuracy: 0.979
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MLP Score: 0.9791666666666666

VC mean accuracy: 0.979

VC Score: 0.9791666666666666

Phone 34: 30/70

PCA Number of Variables: 11

Model Results:

SVM 1 Accuracy (C=1): 0.873 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.852 (+/- 0.12)

SVM 2 Accuracy (C=20): 0.873 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.983 (+/- 0.10)

Random Forest (10) mean accuracy score: 0.918

Random Forest Score: 0.9181818181818182

Random Forest (50) mean accuracy score: 0.927

Random Forest Score: 0.9272727272727272

MLP mean accuracy mean accuracy: 0.891

MLP Score: 0.8909090909090909

VC mean accuracy: 0.936

VC Score: 0.9363636363636364

Phone 35: 80/20

PCA Number of Variables: 43

Model Results:

SVM 1 Accuracy (C=1): 0.981 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.944 (+/- 0.04)

SVM 2 Accuracy (C=20): 0.963 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.940 (+/- 0.09)
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Random Forest (10) mean accuracy score: 0.963

Random Forest Score: 0.9629629629629629

Random Forest (50) mean accuracy score: 0.981

Random Forest Score: 0.9814814814814815

MLP mean accuracy mean accuracy: 0.963

MLP Score: 0.9629629629629629

VC mean accuracy: 0.981

VC Score: 0.9814814814814815

Phone 35: 70/30

PCA Number of Variables: 40 Model Results:

SVM 1 Accuracy (C=1): 0.938 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.963 (+/- 0.01)

SVM 2 Accuracy (C=20): 0.951 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.927 (+/- 0.09)

Random Forest (10) mean accuracy score: 0.963

Random Forest Score: 0.9629629629629629

Random Forest (50) mean accuracy score: 0.975

Random Forest Score: 0.9753086419753086

MLP mean accuracy mean accuracy: 0.975

MLP Score: 0.9753086419753086

VC mean accuracy: 0.975

VC Score: 0.9753086419753086

Phone 35: 30/70

PCA Number of Variables: 25

Model Results:
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SVM 1 Accuracy (C=1): 0.968 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.963 (+/- 0.02)

SVM 2 Accuracy (C=20): 0.937 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.872 (+/- 0.29)

Random Forest (10) mean accuracy score: 0.968

Random Forest Score: 0.9682539682539683

Random Forest (50) mean accuracy score: 0.968

Random Forest Score: 0.9682539682539683

MLP mean accuracy mean accuracy: 0.958

MLP Score: 0.9576719576719577

VC mean accuracy: 0.968

VC Score: 0.9682539682539683

Phone 36: 80/20

PCA Number of Variables: 17

Model Results:

SVM 1 Accuracy (C=1): 0.967 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.914 (+/- 0.00)

SVM 2 Accuracy (C=20): 1.000 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.958 (+/- 0.11)

Random Forest (10) mean accuracy score: 0.967

Random Forest Score: 0.9666666666666667

Random Forest (50) mean accuracy score: 1.000

Random Forest Score: 1.0

MLP mean accuracy mean accuracy: 1.000

MLP Score: 1.0

VC mean accuracy: 1.000

VC Score: 1.0
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Phone 36: 70/30

PCA Number of Variables: 17

Model Results:

SVM 1 Accuracy (C=1): 0.977 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.902 (+/- 0.04)

SVM 2 Accuracy (C=20): 0.955 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.932 (+/- 0.09)

Random Forest (10) mean accuracy score: 0.977

Random Forest Score: 0.9772727272727273

Random Forest (50) mean accuracy score: 0.977

Random Forest Score: 0.9772727272727273

MLP mean accuracy mean accuracy: 0.955

MLP Score: 0.9545454545454546

VC mean accuracy: 1.000

VC Score: 1.0

Phone 36: 30/70

PCA Number of Variables: 11

Model Results:

SVM 1 Accuracy (C=1): 0.951 (+/- 0.00)

SVM 1 Accuracy cross validated (cv=2): 0.839 (+/- 0.13)

SVM 2 Accuracy (C=20): 0.942 (+/- 0.00)

SVM 2 Accuracy cross validated (cv=20): 0.875 (+/- 0.27)

Random Forest (10) mean accuracy score: 0.961

Random Forest Score: 0.9611650485436893

Random Forest (50) mean accuracy score: 0.981

Random Forest Score: 0.9805825242718447

MLP mean accuracy mean accuracy: 0.922
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MLP Score: 0.9223300970873787

VC mean accuracy: 0.971

VC Score: 0.970873786407767
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G. ONE-CLASS STATISTICS FOR INDIVIDUAL PHONES

Phone 1: 80/20

Linear test success rate: 2/2

1.0

RBF test success rate: 1/2

0.5

Poly test success rate: 0/2

0.0

Sig test success rate: 2/2

1.0

Phone 1: 70/30

Linear test success rate: 1/3

0.3333333333333333

RBF test success rate: 1/3

0.3333333333333333

Poly test success rate: 1/3

0.3333333333333333

Sig test success rate: 2/3

0.6666666666666666

Phone 1: 30/70

Linear test success rate: 0/7

0.0
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RBF test success rate: 0/7

0.0

Poly test success rate: 2/7

0.2857142857142857

Sig test success rate: 2/7

0.2857142857142857

Phone 3: 80/20

Linear test success rate: 13/25

0.52

RBF test success rate: 13/25

0.52

Poly test success rate: 1/25

0.04

Sig test success rate: 21/25

0.84

Phone 3: 70/30

Linear test success rate: 22/38

0.5789473684210527

RBF test success rate: 22/38

0.5789473684210527

Poly test success rate: 1/38

0.02631578947368421

Sig test success rate: 29/38

0.7631578947368421
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Phone 3: 30/70

Linear test success rate: 70/87

0.8045977011494253

RBF test success rate: 45/87

0.5172413793103449

Poly test success rate: 15/87

0.1724137931034483

Sig test success rate: 78/87

0.896551724137931

Phone 4: 80/20

Linear test success rate: 0/3

0.0

RBF test success rate: 1/3

0.3333333333333333

Poly test success rate: 1/3

0.3333333333333333

Sig test success rate: 3/3

1.0

Attack Session Results:

Linear SVM predictions: [-1 -1 -1 -1 1]

Linear EXP success rate: 1/5

0.2

RBF SVM predictions: [-1 -1 -1 -1 -1]

RBF EXP success rate: 0/5

0.0

Poly SVM predictions: [ 1 -1 1 1 1]
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Poly EXP success rate: 4/5

0.8

Sig SVM predictions: [1 1 1 1 1]

Sig EXP success rate: 5/5

1.0

Phone 4: 70/30

Linear test success rate: 1/4

0.25

RBF test success rate: 1/4

0.25

Poly test success rate: 1/4

0.25

Sig test success rate: 3/4

0.75

Attack Session Results:

Linear SVM predictions: [ 1 -1 1 1 -1]

Linear EXP success rate: 3/5

0.6

RBF SVM predictions: [-1 -1 -1 -1 -1]

RBF EXP success rate: 0/5

0.0

Poly SVM predictions: [-1 -1 -1 -1 -1]

Poly EXP success rate: 0/5

0.0

Sig SVM predictions: [1 1 1 1 1]

Sig EXP success rate: 5/5
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1.0

Phone 4: 30/70

Linear test success rate: 0/8

0.0

RBF test success rate: 0/8

0.0

Poly test success rate: 2/8

0.25

Sig test success rate: 6/8

0.75

Attack Session Results:

Linear SVM predictions: [-1 1 -1 -1 1]

Linear EXP success rate: 2/5

0.4

RBF SVM predictions: [-1 -1 -1 -1 -1]

RBF EXP success rate: 0/5

0.0

Poly SVM predictions: [-1 -1 1 -1 -1]

Poly EXP success rate: 1/5

0.2

Sig SVM predictions: [1 1 1 1 1]

Sig EXP success rate: 5/5

1.0

Phone 5: 80/20
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Linear test success rate: 3/5

0.6

RBF test success rate: 2/5

0.4

Poly test success rate: 1/5

0.2

Sig test success rate: 5/5

1.0

Phone 5: 70/30

Linear test success rate: 0/7

0.0

RBF test success rate: 4/7

0.5714285714285714

Poly test success rate: 0/7

0.0

Sig test success rate: 4/7

0.5714285714285714

Phone 5: 30/70

Linear test success rate: 8/16

0.5

RBF test success rate: 5/16

0.3125

Poly test success rate: 1/16

0.0625

Sig test success rate: 13/16
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0.8125

Phone 6: 80/20

Linear test success rate: 5/5

1.0

RBF test success rate: 0/5

0.0

Poly test success rate: 1/5

0.2

Sig test success rate: 4/5

0.8

Phone 6: 70/30

Linear test success rate: 4/7

0.5714285714285714

RBF test success rate: 1/7

0.14285714285714285

Poly test success rate: 1/7

0.14285714285714285

Sig test success rate: 5/7

0.7142857142857143

Phone 6: 30/70

Linear test success rate: 4/15

0.26666666666666666

RBF test success rate: 4/15



263

0.26666666666666666

Poly test success rate: 3/15

0.2

Sig test success rate: 13/15

0.8666666666666667

Phone 7: 80/20

Linear test success rate: 3/9

0.3333333333333333

RBF test success rate: 4/9

0.4444444444444444

Poly test success rate: 2/9

0.2222222222222222

Sig test success rate: 5/9

0.5555555555555556

Phone 7: 70/30

Linear test success rate: 7/14

0.5

RBF test success rate: 7/14

0.5

Poly test success rate: 2/14

0.14285714285714285

Sig test success rate: 6/14

0.42857142857142855

Phone 7: 30/70



264

Linear test success rate: 16/31

0.5161290322580645

RBF test success rate: 5/31

0.16129032258064516

Poly test success rate: 5/31

0.16129032258064516

Sig test success rate: 22/31

0.7096774193548387

Phone 8: 80/20

Linear test success rate: 5/9

0.5555555555555556

RBF test success rate: 6/9

0.6666666666666666

Poly test success rate: 0/9

0.0

Sig test success rate: 4/9

0.4444444444444444

Phone 8: 70/30

Linear test success rate: 6/13

0.46153846153846156

RBF test success rate: 6/13

0.46153846153846156

Poly test success rate: 2/13

0.15384615384615385

Sig test success rate: 7/13
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0.5384615384615384

Phone 8: 30/70

Linear test success rate: 16/29

0.5517241379310345

RBF test success rate: 9/29

0.3103448275862069

Poly test success rate: 2/29

0.06896551724137931

Sig test success rate: 28/29

0.9655172413793104

Phone 9: 80/20

Linear test success rate: 5/10

0.5

RBF test success rate: 4/10

0.4

Poly test success rate: 2/10

0.2

Sig test success rate: 6/10

0.6

Phone 9: 70/30

Linear test success rate: 12/15

0.8

RBF test success rate: 3/15
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0.2

Poly test success rate: 0/15

0.0

Sig test success rate: 12/15

0.8

Phone 9: 30/70

Linear test success rate: 24/35

0.6857142857142857

RBF test success rate: 4/35

0.11428571428571428

Poly test success rate: 2/35

0.05714285714285714

Sig test success rate: 26/35

0.7428571428571429

Phone 10: 80/20

Linear test success rate: 8/11

0.7272727272727273

RBF test success rate: 5/11

0.45454545454545453

Poly test success rate: 3/11

0.2727272727272727

Sig test success rate: 7/11

0.6363636363636364

Phone 10: 70/30
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Linear test success rate: 9/17

0.5294117647058824

RBF test success rate: 7/17

0.4117647058823529

Poly test success rate: 7/17

0.4117647058823529

Sig test success rate: 11/17

0.6470588235294118

Phone 10: 30/70

Linear test success rate: 20/39

0.5128205128205128

RBF test success rate: 11/39

0.28205128205128205

Poly test success rate: 7/39

0.1794871794871795

Sig test success rate: 25/39

0.6410256410256411

Phone 11: 80/20

Linear test success rate: 0/4

0.0

RBF test success rate: 2/4

0.5

Poly test success rate: 0/4

0.0

Sig test success rate: 2/4
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0.5

Phone 11: 70/30

Linear test success rate: 6/6

1.0

RBF test success rate: 3/6

0.5

Poly test success rate: 0/6

0.0

Sig test success rate: 2/6

0.3333333333333333

Phone 11: 30/70

Linear test success rate: 5/14

0.35714285714285715

RBF test success rate: 0/14

0.0

Poly test success rate: 1/14

0.07142857142857142

Sig test success rate: 9/14

0.6428571428571429

Phone 12: 80/20

Linear test success rate: 3/8

0.375

RBF test success rate: 7/8
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0.875

Poly test success rate: 1/8

0.125

Sig test success rate: 6/8

0.75

Phone 12: 70/30

Linear test success rate: 4/12

0.3333333333333333

RBF test success rate: 7/12

0.5833333333333334

Poly test success rate: 2/12

0.16666666666666666

Sig test success rate: 9/12

0.75

Phone 12: 30/70

Linear test success rate: 16/26

0.6153846153846154

RBF test success rate: 7/26

0.2692307692307692

Poly test success rate: 4/26

0.15384615384615385

Sig test success rate: 14/26

0.5384615384615384

Phone 13: 80/20
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Linear test success rate: 4/7

0.5714285714285714

RBF test success rate: 4/7

0.5714285714285714

Poly test success rate: 0/7

0.0

Sig test success rate: 6/7

0.8571428571428571

Phone 13: 70/30

Linear test success rate: 4/10

0.4

RBF test success rate: 6/10

0.6

Poly test success rate: 0/10

0.0

Sig test success rate: 5/10

0.5

Phone 13: 30/70

Linear test success rate: 9/23

0.391304347826087

RBF test success rate: 6/23

0.2608695652173913

Poly test success rate: 0/23

0.0

Sig test success rate: 20/23
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0.8695652173913043

Phone 14: 80/20

Linear test success rate: 8/10

0.8

RBF test success rate: 3/10

0.3

Poly test success rate: 3/10

0.3

Sig test success rate: 10/10

1.0

Phone 14: 70/30

Linear test success rate: 4/15

0.26666666666666666

RBF test success rate: 5/15

0.3333333333333333

Poly test success rate: 2/15

0.13333333333333333

Sig test success rate: 14/15

0.9333333333333333

Phone 14: 30/70

Linear test success rate: 11/33

0.3333333333333333

RBF test success rate: 3/33
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0.09090909090909091

Poly test success rate: 3/33

0.09090909090909091

Sig test success rate: 29/33

0.8787878787878788

Phone 15: 80/20

Linear test success rate: 5/6

0.8333333333333334

RBF test success rate: 2/6

0.3333333333333333

Poly test success rate: 2/6

0.3333333333333333

Sig test success rate: 5/6

0.8333333333333334

Attack Session Results:

Linear SVM predictions: [ 1 1 -1 1 1]

Linear EXP success rate: 4/5

0.8

RBF SVM predictions: [-1 -1 1 -1 -1]

RBF EXP success rate: 1/5

0.2

Poly SVM predictions: [ 1 1 1 1 -1]

Poly EXP success rate: 4/5

0.8

Sig SVM predictions: [ 1 -1 1 -1 1]

Sig EXP success rate: 3/5
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0.6

Phone 15: 70/30

Linear test success rate: 7/9

0.7777777777777778

RBF test success rate: 3/9

0.3333333333333333

Poly test success rate: 0/9

0.0

Sig test success rate: 8/9

0.8888888888888888

Attack Session Results:

Linear SVM predictions: [ 1 1 -1 1 1]

Linear EXP success rate: 4/5

0.8

RBF SVM predictions: [-1 -1 1 -1 -1]

RBF EXP success rate: 1/5

0.2

Poly SVM predictions: [-1 1 -1 -1 -1]

Poly EXP success rate: 1/5

0.2

Sig SVM predictions: [-1 -1 1 -1 1]

Sig EXP success rate: 2/5

0.4

Phone 15: 30/70
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Linear test success rate: 14/21

0.6666666666666666

RBF test success rate: 6/21

0.2857142857142857

Poly test success rate: 6/21

0.2857142857142857

Sig test success rate: 19/21

0.9047619047619048

Attack Session Results:

Linear SVM predictions: [-1 1 -1 1 1]

Linear EXP success rate: 3/5

0.6

RBF SVM predictions: [-1 -1 -1 -1 -1]

RBF EXP success rate: 0/5

0.0

Poly SVM predictions: [ 1 -1 -1 1 -1]

Poly EXP success rate: 2/5

0.4

Sig SVM predictions: [ 1 1 1 -1 1]

Sig EXP success rate: 4/5

0.8

Phone 16: 80/20

Linear test success rate: 3/8

0.375

RBF test success rate: 4/8

0.5
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Poly test success rate: 4/8

0.5

Sig test success rate: 4/8

0.5

Attack Session Results: Linear SVM predictions: [-1 -1 1 1 1]

Linear EXP success rate: 3/5

0.6

RBF SVM predictions: [ 1 1 1 -1 -1]

RBF EXP success rate: 3/5

0.6

Poly SVM predictions: [-1 -1 -1 -1 -1]

Poly EXP success rate: 0/5

0.0

Sig SVM predictions: [ 1 1 -1 1 1]

Sig EXP success rate: 4/5

0.8

Phone 16: 70/30

Linear test success rate: 4/12

0.3333333333333333

RBF test success rate: 4/12

0.3333333333333333

Poly test success rate: 7/12

0.5833333333333334

Sig test success rate: 4/12

0.3333333333333333
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Attack Session Results:

Linear SVM predictions: [-1 -1 1 1 -1]

Linear EXP success rate: 2/5

0.4

RBF SVM predictions: [ 1 -1 -1 -1 -1]

RBF EXP success rate: 1/5

0.2

Poly SVM predictions: [-1 -1 -1 -1 -1]

Poly EXP success rate: 0/5

0.0

Sig SVM predictions: [ 1 1 -1 1 -1]

Sig EXP success rate: 3/5

0.6

Phone 16: 30/70

Linear test success rate: 16/28

0.5714285714285714

RBF test success rate: 0/28

0.0

Poly test success rate: 3/28

0.10714285714285714

Sig test success rate: 24/28

0.8571428571428571

Attack Session Results:

Linear SVM predictions: [ 1 1 -1 -1 1]

Linear EXP success rate: 3/5

0.6
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RBF SVM predictions: [-1 -1 -1 -1 -1]

RBF EXP success rate: 0/5

0.0

Poly SVM predictions: [-1 -1 1 -1 -1]

Poly EXP success rate: 1/5

0.2

Sig SVM predictions: [-1 1 -1 1 1]

Sig EXP success rate: 3/5

0.6

Phone 17: 80/20

Linear test success rate: 4/6

0.6666666666666666

RBF test success rate: 2/6

0.3333333333333333

Poly test success rate: 1/6

0.16666666666666666

Sig test success rate: 5/6

0.8333333333333334

Phone 17: 70/30

Linear test success rate: 1/9

0.1111111111111111

RBF test success rate: 4/9

0.4444444444444444

Poly test success rate: 2/9

0.2222222222222222
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Sig test success rate: 5/9

0.5555555555555556

Phone 17: 30/70

Linear test success rate: 12/20

0.6

RBF test success rate: 0/20

0.0

Poly test success rate: 2/20

0.1

Sig test success rate: 19/20

0.95

Phone 18: 80/20

Linear test success rate: 0/4

0.0

RBF test success rate: 2/4

0.5

Poly test success rate: 0/4

0.0

Sig test success rate: 1/4

0.25

Phone 18: 70/30

Linear test success rate: 5/6

0.8333333333333334
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RBF test success rate: 1/6

0.16666666666666666

Poly test success rate: 3/6

0.5

Sig test success rate: 2/6

0.3333333333333333

Phone 18: 30/70

Linear test success rate: 9/13

0.6923076923076923

RBF test success rate: 0/13

0.0

Poly test success rate: 6/13

0.46153846153846156

Sig test success rate: 6/13

0.46153846153846156

Phone 19: 80/20

Linear test success rate: 4/5

0.8

RBF test success rate: 1/5

0.2

Poly test success rate: 2/5

0.4

Sig test success rate: 3/5

0.6



280

Phone 19: 70/30

Linear test success rate: 1/7

0.14285714285714285

RBF test success rate: 2/7

0.2857142857142857

Poly test success rate: 2/7

0.2857142857142857

Sig test success rate: 4/7

0.5714285714285714

Phone 19: 30/70

Linear test success rate: 5/15

0.3333333333333333

RBF test success rate: 1/15

0.06666666666666667

Poly test success rate: 4/15

0.26666666666666666

Sig test success rate: 11/15

0.7333333333333333

Phone 20: 80/20

Linear test success rate: 3/4

0.75

RBF test success rate: 2/4

0.5

Poly test success rate: 0/4

0.0
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Sig test success rate: 3/4

0.75

Phone 20: 70/30

Linear test success rate: 2/6

0.3333333333333333

RBF test success rate: 2/6

0.3333333333333333

Poly test success rate: 1/6

0.16666666666666666

Sig test success rate: 3/6

0.5

Phone 20: 30/70

Linear test success rate: 7/12

0.5833333333333334

RBF test success rate: 0/12

0.0

Poly test success rate: 1/12

0.08333333333333333

Sig test success rate: 11/12

0.9166666666666666

Phone 21: 80/20

Linear test success rate: 1/1

1.0
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RBF test success rate: 0/1

0.0

Poly test success rate: 1/1

1.0

Sig test success rate: 0/1

0.0

Phone 21: 70/30

Linear test success rate: 1/2

0.5

RBF test success rate: 0/2

0.0

Poly test success rate: 0/2

0.0

Sig test success rate: 2/2

1.0

Phone 21: 30/70

Linear test success rate: 1/1

1.0

RBF test success rate: 0/1

0.0

Poly test success rate: 0/1

0.0

Sig test success rate: 0/1

0.0
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Phone 22: 80/20

Linear test success rate: 3/4

0.75

RBF test success rate: 1/4

0.25

Poly test success rate: 3/4

0.75

Sig test success rate: 0/4

0.0

Phone 22: 70/30

Linear test success rate: 4/6

0.6666666666666666

RBF test success rate: 1/6

0.16666666666666666

Poly test success rate: 4/6

0.6666666666666666

Sig test success rate: 1/6

0.16666666666666666

Phone 22: 30/70

Linear test success rate: 7/14

0.5

RBF test success rate: 1/14

0.07142857142857142

Poly test success rate: 1/14

0.07142857142857142
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Sig test success rate: 11/14

0.7857142857142857

Phone 23: 80/20

Linear test success rate: 2/5

0.4

RBF test success rate: 0/5

0.0

Poly test success rate: 1/5

0.2

Sig test success rate: 3/5

0.6

Phone 23: 70/30

Linear test success rate: 3/7

0.42857142857142855

RBF test success rate: 1/7

0.14285714285714285

Poly test success rate: 1/7

0.14285714285714285

Sig test success rate: 4/7

0.5714285714285714

Phone 23: 30/70

Linear test success rate: 5/16

0.3125
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RBF test success rate: 1/16

0.0625

Poly test success rate: 5/16

0.3125

Sig test success rate: 8/16

0.5

Phone 24: 80/20

Linear test success rate: 2/2

1.0

RBF test success rate: 0/2

0.0

Poly test success rate: 0/2

0.0

Sig test success rate: 2/2

1.0

Phone 24: 70/30

Linear test success rate: 2/3

0.6666666666666666

RBF test success rate: 0/3

0.0

Poly test success rate: 0/3

0.0

Sig test success rate: 3/3

1.0
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Phone 24: 30/70

Linear test success rate: 0/5

0.0

RBF test success rate: 0/5

0.0

Poly test success rate: 2/5

0.4

Sig test success rate: 2/5

0.4

Phone 25: 80/20

Linear test success rate: 0/1

0.0

RBF test success rate: 0/1

0.0

Poly test success rate: 1/1

1.0

Sig test success rate: 0/1

0.0

Phone 25: 70/30

Linear test success rate: 0/2

0.0

RBF test success rate: 0/2

0.0

Poly test success rate: 1/2

0.5
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Sig test success rate: 1/2

0.5

Phone 25: 30/70

Linear test success rate: 0/1

0.0

RBF test success rate: 0/1

0.0

Poly test success rate: 1/1

1.0

Sig test success rate: 0/1

0.0

Phone 26: 80/20

Linear test success rate: 3/6

0.5

RBF test success rate: 2/6

0.3333333333333333

Poly test success rate: 1/6

0.16666666666666666

Sig test success rate: 3/6

0.5

Phone 26: 70/30

Linear test success rate: 4/9

0.4444444444444444
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RBF test success rate: 2/9

0.2222222222222222

Poly test success rate: 1/9

0.1111111111111111

Sig test success rate: 6/9

0.6666666666666666

Phone 26: 30/70

Linear test success rate: 12/20

0.6

RBF test success rate: 3/20

0.15

Poly test success rate: 2/20

0.1

Sig test success rate: 15/20

0.75

Phone 27: 80/20

Linear test success rate: 1/4

0.25

RBF test success rate: 0/4

0.0

Poly test success rate: 0/4

0.0

Sig test success rate: 4/4

1.0
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Attack Session Results:

Linear SVM predictions: [-1 -1 -1 -1 1]

Linear EXP success rate: 1/5

0.2

RBF SVM predictions: [-1 -1 1 -1 1]

RBF EXP success rate: 2/5

0.4

Poly SVM predictions: [-1 -1 -1 1 -1]

Poly EXP success rate: 1/5

0.2

Sig SVM predictions: [-1 1 1 1 1]

Sig EXP success rate: 4/5

0.8

Phone 27: 70/30

Linear test success rate: 3/6

0.5

RBF test success rate: 1/6

0.16666666666666666

Poly test success rate: 0/6

0.0

Sig test success rate: 5/6

0.8333333333333334

Attack Session Results:

Linear SVM predictions: [ 1 -1 1 1 1]

Linear EXP success rate: 4/5

0.8
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RBF SVM predictions: [-1 -1 1 -1 -1]

RBF EXP success rate: 1/5

0.2

Poly SVM predictions: [ 1 -1 -1 1 -1]

Poly EXP success rate: 2/5

0.4

Sig SVM predictions: [-1 1 1 1 1]

Sig EXP success rate: 4/5

0.8

Phone 27: 30/70

Linear test success rate: 7/13

0.5384615384615384

RBF test success rate: 0/13

0.0

Poly test success rate: 3/13

0.23076923076923078

Sig test success rate: 10/13

0.7692307692307693

Attack Session Results:

Linear SVM predictions: [ 1 -1 -1 -1 -1]

Linear EXP success rate: 1/5

0.2

RBF SVM predictions: [-1 -1 1 -1 -1]

RBF EXP success rate: 1/5

0.2

Poly SVM predictions: [ 1 -1 -1 -1 -1]
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Poly EXP success rate: 1/5

0.2

Sig SVM predictions: [-1 1 1 1 1]

Sig EXP success rate: 4/5

0.8

Phone 28: 80/20

Linear test success rate: 2/6

0.3333333333333333

RBF test success rate: 3/6

0.5

Poly test success rate: 1/6

0.16666666666666666

Sig test success rate: 5/6

0.8333333333333334

Phone 28: 70/30

Linear test success rate: 0/8

0.0

RBF test success rate: 4/8

0.5

Poly test success rate: 2/8

0.25

Sig test success rate: 6/8

0.75

Phone 28: 30/70
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Linear test success rate: 11/19

0.5789473684210527

RBF test success rate: 0/19

0.0

Poly test success rate: 3/19

0.15789473684210525

Sig test success rate: 16/19

0.8421052631578947

Phone 29: 80/20

Linear test success rate: 4/5

0.8

RBF test success rate: 2/5

0.4

Poly test success rate: 1/5

0.2

Sig test success rate: 4/5

0.8

Phone 29: 70/30

Linear test success rate: 1/7

0.14285714285714285

RBF test success rate: 4/7

0.5714285714285714

Poly test success rate: 0/7

0.0

Sig test success rate: 6/7
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0.8571428571428571

Phone 29: 30/70

Linear test success rate: 1/16

0.0625

RBF test success rate: 1/16

0.0625

Poly test success rate: 5/16

0.3125

Sig test success rate: 10/16

0.625

Phone 30: 80/20

Linear test success rate: 1/4

0.25

RBF test success rate: 2/4

0.5

Poly test success rate: 0/4

0.0

Sig test success rate: 3/4

0.75

Phone 30: 70/30

Linear test success rate: 1/6

0.16666666666666666

RBF test success rate: 3/6
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0.5

Poly test success rate: 0/6

0.0

Sig test success rate: 4/6

0.6666666666666666

Phone 30: 30/70

Linear test success rate: 5/14

0.35714285714285715

RBF test success rate: 0/14

0.0

Poly test success rate: 4/14

0.2857142857142857

Sig test success rate: 9/14

0.6428571428571429

Phone 31: 80/20

Linear test success rate: 3/9

0.3333333333333333

RBF test success rate: 4/9

0.4444444444444444

Poly test success rate: 2/9

0.2222222222222222

Sig test success rate: 7/9

0.7777777777777778

Phone 31: 70/30
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Linear test success rate: 8/13

0.6153846153846154

RBF test success rate: 5/13

0.38461538461538464

Poly test success rate: 1/13

0.07692307692307693

Sig test success rate: 12/13

0.9230769230769231

Phone 31: 30/70

Linear test success rate: 16/29

0.5517241379310345

RBF test success rate: 5/29

0.1724137931034483

Poly test success rate: 5/29

0.1724137931034483

Sig test success rate: 17/29

0.5862068965517241

Phone 32: 80/20

Linear test success rate: 4/8

0.5

RBF test success rate: 3/8

0.375

Poly test success rate: 1/8

0.125

Sig test success rate: 7/8
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0.875

Attack Sessions Results:

Linear SVM predictions: [-1 -1 1 -1 1]

Linear EXP success rate: 2/5

0.4

RBF SVM predictions: [-1 -1 -1 1 -1]

RBF EXP success rate: 1/5

0.2

Poly SVM predictions: [-1 -1 -1 -1 -1]

Poly EXP success rate: 0/5

0.0

Sig SVM predictions: [1 1 1 1 1]

Sig EXP success rate: 5/5

1.0

Phone 32: 70/30

Linear test success rate: 5/12

0.4166666666666667

RBF test success rate: 3/12

0.25

Poly test success rate: 2/12

0.16666666666666666

Sig test success rate: 10/12

0.8333333333333334

Attack Session Results:

Linear SVM predictions: [-1 1 -1 -1 -1]
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Linear EXP success rate: 1/5

0.2

RBF SVM predictions: [-1 -1 -1 1 -1]

RBF EXP success rate: 1/5

0.2

Poly SVM predictions: [-1 -1 -1 -1 -1]

Poly EXP success rate: 0/5

0.0

Sig SVM predictions: [1 1 1 1 1]

Sig EXP success rate: 5/5

1.0

Phone 32: 30/70

Linear test success rate: 15/28

0.5357142857142857

RBF test success rate: 3/28

0.10714285714285714

Poly test success rate: 6/28

0.21428571428571427

Sig test success rate: 14/28

0.5

Attack Session Results:

Linear SVM predictions: [ 1 1 -1 1 1]

Linear EXP success rate: 4/5

0.8

RBF SVM predictions: [-1 -1 -1 -1 -1]

RBF EXP success rate: 0/5
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0.0

Poly SVM predictions: [ 1 -1 -1 1 -1]

Poly EXP success rate: 2/5

0.4

Sig SVM predictions: [1 1 1 1 1]

Sig EXP success rate: 5/5

1.0

Phone 33: 80/20

Linear test success rate: 1/2

0.5

RBF test success rate: 0/2

0.0

Poly test success rate: 0/2

0.0

Sig test success rate: 1/2

0.5

Phone 33: 70/30

Linear test success rate: 1/2

0.5

RBF test success rate: 0/2

0.0

Poly test success rate: 0/2

0.0

Sig test success rate: 1/2

0.5
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Phone 33: 30/70

Linear test success rate: 0/5

0.0

RBF test success rate: 0/5

0.0

Poly test success rate: 0/5

0.0

Sig test success rate: 0/5

0.0

Phone 34: 80/20

Linear test success rate: 0/3

0.0

RBF test success rate: 1/3

0.3333333333333333

Poly test success rate: 0/3

0.0

Sig test success rate: 2/3

0.6666666666666666

Phone 34: 70/30

Linear test success rate: 3/5

0.6

RBF test success rate: 0/5

0.0

Poly test success rate: 1/5

0.2
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Sig test success rate: 1/5

0.2

Phone 34: 30/70

Linear test success rate: 2/10

0.2

RBF test success rate: 0/10

0.0

Poly test success rate: 1/10

0.1

Sig test success rate: 9/10

0.9

Phone 35: 80/20

Linear test success rate: 1/2

0.5

RBF test success rate: 0/2

0.0

Poly test success rate: 0/2

0.0

Sig test success rate: 2/2

1.0

Phone 35: 70/30

Linear test success rate: 1/3

0.3333333333333333
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RBF test success rate: 0/3

0.0

Poly test success rate: 0/3

0.0

Sig test success rate: 3/3

1.0

Phone 35: 30/70

Linear test success rate: 0/6

0.0

RBF test success rate: 0/6

0.0

Poly test success rate: 3/6

0.5

Sig test success rate: 3/6

0.5

Phone 36: 80/20

Linear test success rate: 0/2

0.0

RBF test success rate: 1/2

0.5

Poly test success rate: 0/2

0.0

Sig test success rate: 1/2

0.5
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Phone 36: 70/30

Linear test success rate: 1/3

0.3333333333333333

RBF test success rate: 0/3

0.0

Poly test success rate: 1/3

0.3333333333333333

Sig test success rate: 3/3

1.0

Phone 36: 30/70

Linear test success rate: 5/7

0.7142857142857143

RBF test success rate: 0/7

0.0

Poly test success rate: 3/7

0.42857142857142855

Sig test success rate: 6/7

0.8571428571428571


