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ABSTRACT 

Lei, Xiao. M.S., Purdue University, May 2020. Real-time Rendering with Heterogeneous GPUs. 

Major Professor: Dr. Vetria Byrd. 

 

Over the years, the performance demand for graphics applications has been steadily 

increasing. While upgrading the hardware is one direct solution, the emergence of the new low-

level and low-overhead graphics APIs like Vulkan also exposed the possibility of improving 

rendering performance from the bottom of software implementation. 

Most of the recent years’ middle- to high-end personal computers are equipped with both 

integrated and discrete GPUs. However, with previous graphics APIs, it is hard to put these two 

heterogeneous GPUs to work concurrently in the same application without tailored driver support. 

This thesis provides an exploration into the utilization of such heterogeneous GPUs in real-

time rendering with the help of Vulkan API. This paper first demonstrates the design and 

implementation details for the proposed heterogeneous GPUs working model. After that, the paper 

presents the test of two workload offloading strategies: offloading screen space output workload 

to the integrated GPU and offloading asynchronous computation workload to the integrated GPU. 

While this study failed to obtain performance improvement through offloading screen space 

output workload, it is successful in validating that offloading asynchronous computation workload 

from the discrete GPU to the integrated GPU can improve the overall system performance. This 

study proves that it is possible to make use of the integrated and discrete GPUs concurrently in the 

same application with the help of Vulkan. And offloading asynchronous computation workload 

from the discrete GPU to the integrated GPU can provide up to 3-4% performance improvement 

with combinations like UHD Graphics 630 + RTX 2070 Max-Q and HD Graphics 630 + GTX 

1050.   
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1. INTRODUCTION 

1.1 Background 

Modern generation graphics APIs like Vulkan and DirectX 12 have certain characteristics 

in common: low-level and low overhead. For the previous generation of graphics APIs like 

OpenGL and DirectX 11, graphics drivers handle a major part of task scheduling and resource 

management, which are hidden from application developers. With the arrival of modern generation 

APIs, these responsibilities were transferred to application developers. Such change makes the 

application more complex, but it also brings more explicit control to the application level. 

The predecessor of Vulkan, OpenGL, is originally designed for hardware architecture a few 

decades ago. At that time multi-core and parallelism are not major considerations for personal 

computing. But nowadays, multi-core and parallelism are common in personal computing devices, 

which makes the state-machine-based OpenGL less friendly and less efficient towards modern 

hardware architectures. In recent studies like (Dobersberger, 2015) and (Lujan, Baum, Chen, & 

Zong, 2019), it has become evident that the old graphics API’s mechanism - handling higher-level 

tasks in drivers, is causing a visible and unnecessary burden on CPU. 

Comparing with OpenGL, Vulkan has improvements in various ways (Kenwright, 2017): 

more explicit control, multi-threading friendly, discrete state access, bindless graphics, resource 

memory info, resource barrier, and acceleration for applications. All these new features make 

Vulkan based applications capable of doing a whole lot more than previous graphics applications. 

The exposure of low-level command and resource control makes resource and task management 

across vendor-independent graphics hardware become possible, and this inspired the idea of 

utilizing modern personal computers’ heterogeneous GPUs (integrated and discrete) feature to 

obtain potential rendering performance improvement. 

1.2 Problem Statement 

With previous graphics API like OpenGL, an application running on a computer equipped 

with both integrated and discrete GPUs cannot make use of both GPUs without context switching. 

This makes either the integrated or discrete GPU remain idle while the other one is loaded. Such 
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application cannot release the computer’s full potential performance by enabling all available 

hardware. 

This study is not the first to come up with the idea of utilizing both integrated and discrete 

GPUs to improve system performance. A study with similar intention has been carried out for 

HMDs (Peek, Wünsche, & Lutteroth, 2014), in which the researchers utilized integrated GPU to 

do asynchronous image warping. In another experiment (Yeung, 2015), the authors claimed a 

noticeable framerate improvement with the discrete plus integrated GPUs combination in the 

Unreal Engine 4 Elemental demo. However, these studies either did not provide implementation 

details or did not cover comparisons on different hardware combinations. Furthermore, these 

studies are all Direct3D based and none of the public studies to date has addressed how the 

situation would be with Vulkan. There is also the fact that Direct3D is not open and works only 

on Microsoft platforms, while Vulkan is open and cross-platform friendly. 

1.3 Significance of the Problem 

Graphics is an essential component for many practical fields, such as scientific visualization, 

video games, interactive media, and computer-aided design. The performance of the graphics 

rendering stage significantly impacts the overall performance of the entire system. 

Over the years, not only the hardware and developer tools are evolving, but the graphics 

application fields are also continuously increasing their complexities. For instance, the field of 

visualization is rapidly growing in both diversity and dimension and such growth is also posing 

major challenges to visualization tools (Thorvaldsdóttir, Robinson, & Mesirov, 2013). 

Some researchers are already exploring in utilizing Vulkan’s low-level features to improve 

application performance. (Zhang, Chen, Johan, & Erdt, 2018) are utilizing Vulkan’s parallel 

opportunities to achieve higher performance city rendering. In the evaluation study conducted on 

the graphics rendering server (Lujan, Baum, Chen, & Zong, 2019), the results showed that Vulkan 

can save a significant amount of energy while maintaining the same performance. All these works 

have proven that the proper use of Vulkan can bring significant improvement to rendering 

performance.  

Although making integrated GPU to assist discrete GPU would not be expected to bring 

significant improvement to overall performance since the performance of integrated GPU is 
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usually much lower than discrete GPU and there also exist communication overheads, any 

potential performance improvement on existing hardware could be appreciated. 

1.4 Purpose Statement 

The purpose of this study is to identify, design and evaluate the methods that could allow 

the integrated GPU to assist real-time rendering through offloading workloads from the discrete 

GPU with Vulkan implementation. And, to measure and analyze the performance difference 

between the heterogeneous GPUs implementation and the discrete-GPU-only implementation. 

This study aims to answer the following research questions: 

1. Is it possible to make use of the integrated and discrete GPUs concurrently in the same 

graphics application with the help of Vulkan? 

2. What kind of workload offloading strategy can make better use of this heterogeneous 

GPUs solution? 

3. What performance difference can be expected from this solution and what is the possible 

explanation? 

1.5 Definitions 

The following definitions apply to this study. 

1. Vulkan: A low-overhead, cross-platform 3D graphics and computing API released by Khronos 

Group. (Khronos Group, 2019) 

2. Integrated GPU: The GPU that shares system memory and usually resides on the same chip as 

the CPU. (operational definition) 

3. Discrete GPU: The GPU that comes with its own dedicated graphics memory and normally 

exists on a standalone chip. (operational definition) 

4. GPU Performance: The speed that the GPU is able to complete certain computational tasks. It 

is an intrinsic property determined by the hardware. (operational definition) 

5. Rendering Performance: The speed that the application is able to generate correct visual 

contents. (operational definition) 

6. Presentation: The process of GPU communicating with display hardware and outputting results 

to the screen. (operational definition) 
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1.6 Assumptions 

This study is based on several assumptions to reduce variance and narrow down the scope 

of the topic. These assumptions can be categorized as: 

1. Hardware assumptions: 

a) The performance of the integrated GPU is lower than the discrete GPU. By lower, it 

means it would take a longer time to complete the same job on the integrated GPU 

than on the discrete GPU. 

b) There is no architectural optimization on the tested computers. Meaning that none of 

the test computers have any intrinsic advantage of utilizing heterogeneous GPUs. 

c) Potential power consumption increase is acceptable, and performance improvement 

is prior to power conservation and temperature control. 

2. Implementation assumption: 

a) There is no fatal flaw in the design and implementation of the validation program 

that would invert the results. 

3. Test case assumptions: 

a) The test cases are GPU-bound. 

b) The test cases can represent real-life applications to a significant extent. 

1.7 Limitations 

1. This study assumes that the performance of the integrated GPU is significantly lower than 

the discrete GPU. The findings may become invalid if the performance of the integrated 

GPU is close to or higher than the paired discrete GPU. 

2. The test cases used in the study will not be able to fully simulate the complex rendering 

scenario in real industry application, which could make the result over-promising. 

3. This study failed to validate that the integrated GPU can improve rendering performance 

through offloading screen space output workloads from the discrete GPU. 

4. The time analysis involved in this study is coarse-grained and can be affected by system 

environments. 

5. Power consumption, memory consumption, and thermal performance are not monitored 

during the study. 
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6. The possible performance variation with integrated GPU resource being occupied by other 

programs is not measured. 

1.8 Delimitations 

1. This study aims for computers equipped with both integrated and discrete GPUs. It does 

not apply to devices with multiple discrete GPUs. 

2. This study does not focus on the proposal of generic methods that apply to multi-GPU 

rendering. 

3. Due to limited hardware accessibility, the result evaluation only runs on a limited number 

of personal computer types, and no AMD GPU is tested. 

4. The heterogeneous GPUs working model only has an implementation with Vulkan API. 

5. Since there already exist more mature version of best practices of Vulkan API, such as 

(SAMSUNG, 2019) (Subtil, Rusch, & Fedorov, 2019) (Tolo, 2018), this paper would not 

cover much detail in code-level implementation. 

6. This study is not covering comparison with Direct3D or Metal and does not focus on 

parallel or distributed computing. 

1.9 Summary 

This chapter introduced the background of this study and stated the problem that remains to 

be resolved. The significance and purpose of the study were demonstrated. This chapter also listed 

the definitions and assumptions that the study is basing upon while addressing the limitations and 

delimitations of the study. 
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2. REVIEW OF LITERATURE 

 2.1 Methodology 

This study aims to identify, design and evaluate the methods that could allow the integrated 

GPU to assist real-time rendering through offloading workloads from discrete GPU with Vulkan 

implementation. Key concepts include multi-GPU rendering, Vulkan API, and high-performance 

real-time rendering. 

The reviewed articles are coming from multiple sources. Databases include ACM Digital 

Library, IEEE Xplore Library, Eurographics Digital Library, Google Scholar, Journal of Computer 

Graphics Techniques, and Vulkan Specifications. Key terms relating to multi-GPU, integrated and 

discrete, Vulkan, and high-performance rendering are used during the search procedure. ACM 

SIGGRAPH and IEEE Transaction on Visualization and Graphics are the main sources of high-

quality literature. Articles from proposal feedbacks are also included. Reference books include 

Vulkan Cookbook and Game Engine Architecture. 

2.2 Supporting Research Problem 

In an earlier multi-GPU volume rendering research (Stuart, Chen, Ma, & Owens, 2010), the 

researchers showed that their proposed system scales with respect to the number of GPUs if given 

enough work. Similarly, in the recent study of multi-GPU rendering with Vulkan API (Tolo, 2018), 

the author presented that the multi-GPU approach could increase the overall performance by 

reducing the amount of work for each GPU when there are sufficient workloads. In the future work 

section, Tolo mentioned that “performance can be improved by implementing optimizations for 

increasing the GPU utilization” (Tolo, 2018, p. 68). 

In the technical blog (Yeung, 2015) which has a very similar topic with this proposed study, 

the author introduced the multi-adapter feature supported by DirectX 12 and its application with 

integrate plus discrete GPUs system. Although the performance gain is demonstrated in the blog, 

the portion of offloaded postprocessing work is not provided, and whether offloading other 

workloads can further increase overall performance is not discussed. 

Another integrated GPU utilization study was conducted for HMDs (Peek, Wünsche, & 

Lutteroth, 2014). The research employed Direct3D 11 to implement the system that utilized 
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integrated GPU to do asynchronous image warping. Their system can perform a warp in 4.2ms at 

1920×1080 resolution on an Intel HD Graphics 2000 GPU at the cost of a 1.5ms increase in 

application render time. Furthermore, the authors identified that the usage of system resources’ 

impact on the performance should be further investigated. 

In an exploratory study of the Vulkan API (Shiraef, 2016), based on multiple available 

benchmarks, the author concluded that Vulkan does provide performance benefit over OpenGL 

and Vulkan based application is less CPU bound comparing to OpenGL application. However, the 

margin of improvement at the time (2016) was still minimal. 

2.3 Supporting Research Purpose 

A recent study evaluated the performance and energy efficiency of OpenGL ES and Vulkan 

(Lujan, Baum, Chen, & Zong, 2019). The authors not only demonstrated that Vulkan can reduce 

more than 50% of CPU power consumption without degrading performance, but also that when 

power is not a limiting factor, Vulkan is able to achieve 3 times of frame rate than OpenGL ES. 

Although their study is targeted for rendering servers, these findings would still be valid enough 

to show that choosing Vulkan to improve rendering performance is the right direction. 

The multi-GPU rendering study (Tolo, 2018) mentioned in 2.2 Supporting Research 

Problem demonstrated how to implement platform and vendor-independent multi-GPU rendering 

by using Vulkan to send commands explicitly to separate GPUs. Besides, in Tolo’s study, an 

abstraction library that supports multi-GPU application was also provided. This study proves that 

the concept of utilizing Vulkan to combine the use of GPUs from different vendors is viable. 

In an earlier study regarding load-balancing in multi-GPU systems (Chen, Villa, 

Krishnamoorthy, & Gao, 2010), the authors proposed a task-based dynamic load-balancing 

solution for single and multi-GPU systems implemented as task queue scheme, which avoids using 

expensive synchronization locks. On the multi-GPU system, their solution was able to achieve 

“near-linear speedup, load balance, and significant performance improvement over techniques 

based on standard CUDA APIs” (Chen, Villa, Krishnamoorthy, & Gao, 2010, p. 1). Their study 

supports the purpose that specific task distribution strategies could be identified to make better use 

of the heterogeneous GPUs solution. 

Theoretical estimation of the heterogeneous GPUs model performance can be partially 

supported by Amdahl’s Law, which has been restated and improved in many studies like (Hill & 
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Marty, 2008). This law can provide a theoretical speedup estimation model for parallel programs. 

For instance, if 10% of the task can be taken out from discrete GPU and the affected part becomes 

roughly 1.5 times as fast, the overall estimated speedup will be about 3.4%. Such figure may not 

exciting but is anyway an improvement to the device performance. 

Coincidentally, right before this paper finished writing, Intel presented their multi-adapter 

solution with integrated plus discrete GPUs in GDC 2020 (Hux, 2020). In their presentation, the 

integrated GPU is used to speed up the asynchronous computation for nBody particle rendering 

with DirectX 12 backend implementation. Their presentation is a great complement to the topic 

that this paper is focusing on. 

2.4 Supporting Research Methodology 

Vulkan based high-performance application exploration are already emerging.  

In a quantitative visualization research (Mustafin, Almaty, Akhmed-Zaki, & Turar, 2019), 

the researchers developed and presented a prototype of visualizer, in which they proposed a real-

time visualization of large grid models with using of Vulkan API on the typical personal computers. 

For implementation, double buffering for vertex buffer and C++ 11 multithreading for drawing 

and copy commands are adopted. As input data, the results of each 100th iteration of the Jacobi 

method for solving the Poisson equation with 2D and 3D grids were taken. Their results supported 

that the double vertex buffering and multi-threading approach to the visualization of the grid model 

optimized the speed of the application. However, due to the quasi-experimental design nature of 

their study, their results are not rigor. 

In the high-performance city rendering research (Zhang, Chen, Johan, & Erdt, 2018), the 

authors utilized Vulkan’s parallel opportunities to achieve higher rendering performance. In their 

proposed rendering system, three operating parts are running concurrently. These three parts are 

rendering, recording draw commands and streaming texture images respectively. To ensure valid 

synchronization for command buffer recording, double command buffering was employed. Other 

approaches like view culling, texture streaming and texture compressing were also combined. As 

a result, they achieved a relatively high drawing performance under the intensive draw calls and 

massive data situation (“At 1920×1080 resolution, a view submitting 302K, 723K, 5.04M draw 

calls runs at 119FPS, 57FPS, 12FPS respectively.” (Zhang, Chen, Johan, & Erdt, 2018, p. 2)). 
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Also, in 2018, in a research conducted on rendering framework for mobile multimedia 

(Gambhir, Panda, & Basha, 2018), the researchers presented the first Vulkan-based animation and 

effects engine for mobile video rendering. For 4K (3840×2160 resolution) videos playback at 30 

FPS, the study observed “an increase of 30% in frame-rate, a decrease of 30% in memory 

consumption and export time, and a decrease of 20% in power consumption” (Gambhir, Panda, & 

Basha, 2018, p. 2), comparing with OpenGL ES. In their Vulkan based solution, methods that 

helped in contributing to the final performance include precompiled SPIR-V shaders, reusing 

recorded command buffer, staging buffer with device local memory, and avoiding unnecessary 

format conversions. 

In the technical blog (Yeung, 2015) which shares a similar topic with this study, the author 

briefly explained that their solution is offloading some of the post-processing work to the 

integrated GPU and make both GPUs work in parallel. In the showcase examples provided 

alongside with the feature highlight, their discrete plus integrated combination beat the discrete-

only setting by around 10% framerate performance (35.9 FPS vs. 39.7 FPS). 

In the multi-GPU volume rendering research (Stuart, Chen, Ma, & Owens, 2010), the 

researchers suggested that if a GPU during the process is connected to a display, it would be more 

efficient to allow that exact GPU to output the image immediately after completing the final 

composition. Such suggestion is in accordance with the methodology design adopted in this study. 

In the multi-threading evaluation study of Vulkan (Blackert, 2016), according to the results 

produced by the test program implemented both in OpenGL and Vulkan, a performance increase 

ranging from 8% and 69% can be observed depending on whether currently the application is CPU 

bound or GPU bound. This evaluation study demonstrated that if the application is CPU bound, 

using multiple threads for command buffer recording can significantly increase the performance 

of the application. 

2.5 Summary 

This chapter described the methodology that has been used in the review of literature process 

of this study. A list of articles supporting this study from the perspective of problem statement and 

purpose correctness is provided. Following that, several recent research that can either directly or 

indirectly inspire the methodologies that can be adopted in this study is examined. 
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3. METHODOLOGY 

3.1 Research Type 

The research presented in this paper is applied research, containing a mixture of exploratory 

and developmental elements. This research has the intention to establish priorities and provide 

improvement for future research design in the heterogeneous GPUs application field. In the 

meantime, this research holds a major part in proposing and evaluating methods that deal with 

utilizing heterogeneous GPUs in real-time rendering. 

3.2 Development Tools 

Some key development tools involved in this study include: 

1. Vulkan SDK: 

The Vulkan Software Development Kit (SDK) provides the development and runtime 

components for building, running, and debugging Vulkan applications. This 

comprehensive SDK includes the Vulkan loader, Vulkan layers, debugging tools, SPIR‐V 

tools, the Vulkan run time installer, documentation, samples, and demos. (LunarG, 2019) 

2. GLFW: 

GLFW (Graphics Library Framework) is an Open Source, multi-platform library for 

OpenGL, OpenGL ES and Vulkan development on the desktop. It provides a simple API 

for creating windows, contexts, and surfaces, receiving input and events. (The GLFW 

Development Team, 2019) 

3. RenderDoc: 

RenderDoc is a free MIT licensed stand-alone graphics debugger that allows quick and 

easy single-frame capture and detailed introspection of any application using Vulkan, 

D3D11, OpenGL & OpenGL ES or D3D12 across Windows 7 - 10, Linux, Android, Stadia, 

or Nintendo Switch. (Karlsson, 2019) 

4. Visual Studio: 

Visual Studio is an integrated development environment (IDE) from Microsoft. It is used 

to develop computer programs, as well as websites, web apps, web services and mobile 
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apps (Wikipedia, 2019). It also provides basic profiling components for application 

development. 

5. Vulkan Memory Allocator: 

The Vulkan Memory Allocator (VMA) library provides a simple and easy to integrate API 

to help allocating memory for Vulkan buffer and image storage. (GPUOpen, 2019) 

6. SPIRV-Cross: 

SPIRV-Cross is a tool designed for parsing and converting SPIR-V to other shader 

languages. It also provides reflection API to simplify the creation of Vulkan pipeline 

layouts and modify and tweak OpDecorations. (Khronos Group, 2019) 

7. GLM: 

GLM (OpenGL Mathematics) is a header-only C++ mathematics library for graphics 

software based on the OpenGL Shading Language (GLSL) specifications. (G-Truc, 2019) 

 

The 3D models used during the test and validation process were obtained from McGuire 

Computer Graphics Archive (McGuire, 2017),  The Stanford 3D Scanning Repository (Stanford 

Computer Graphics Laboratory, 2014), and Unity-Chan official resources (Unity Technologies 

Japan G.K., 2015). 

3.3 Test Program Design 

A demo real-time rendering program is developed based on OpenGL, Vulkan, and C++ for 

evaluation purposes. This program resembles a pure graphics engine and supports simple and 

complex 3D objects rendering with multiple post-processing techniques. 

For early workflow validation and baseline performance comparison, an OpenGL 

counterpart exists in this implemented benchmark program, as shown in Figure 1. The Vulkan 

implementation and OpenGL implementation are abstracted as two independent drawing devices 

that can be controlled by the upper level of the program, but only one of them is activated at 

runtime. The abstracted drawing devices provide necessary communication interfaces with 

underlying graphics API, while the rendering logic and render resources are managed by renderers 

and upper application. 
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Figure 1. Structure of the demo program developed in this study 

3.4 Communication Between GPUs 

Vulkan has provided the interfaces to query available physical devices and wrap them up as 

ready-to-use logical devices. The integrated GPU (denote as iGPU) and the discrete GPU (denote 

as dGPU) can be encapsulated as two logical devices inside the Vulkan Device implementation, 

as illustrated in Figure 2. 

Because the resources created on different logical devices are not interchangeable, the 

heterogeneous GPUs renderer manages two sets of resources: one set used by the dGPU and the 

other set used by the iGPU. Data from one GPU is transferred to the other GPU through explicit 

buffer copying. 

 

Figure 2. Logical device abstraction and resource management of the two GPUs 
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Two types of heterogeneous GPUs working models are designed and tested in this study. (1) 

The iGPU is directly participating in screen space output. More specifically, the iGPU is offloading 

the post-processing pass workload from the dGPU. (2) The iGPU is opted out of the screen space 

output pipeline and instead works on asynchronous computation. 

The main reason to offload post-processing from dGPU is that the post-processing process 

has a predictable workload and resource consumption. If the iGPU is handling the beginning 

sections of the render process, it would also require allocating identical vertex buffers and possibly 

textures in system memory for every possible object in the scene, which is not desirable. 

For the first type of working model, the data communication schema is demonstrated in 

Figure 3. Under this working type, the read back from graphics memory to system memory is 

enabled through staging buffers, and the iGPU also takes over the presentation responsibility. The 

reason why presentation should be handled by the iGPU is that: since the iGPU is handling the last 

sections of the render process, it should not write results back to dGPU memory as this would 

double the data transfer overhead for almost nothing in return. 

 

 

Figure 3. Integrated GPU directly participates in screen space output 

 

For the second type of working model, the data communication schema is demonstrated in 

Figure 4. Under this working type, the presentation responsibility is returned to dGPU. There will 
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be no read back from the graphics memory as all data transfers are unidirectional from system 

memory to graphics memory. 

 

 

Figure 4. Integrated GPU works on asynchronous computation 

3.5 Synchronization Primitive Selection 

Vulkan has several built-in synchronization primitives: event, semaphore, and fence, each 

corresponding to a different granularity. Event provides synchronization between submitted 

commands in the same queue. Semaphore provides synchronization between commands submitted 

to different queues. Fence provides synchronization between GPU and CPU. 

Fence and semaphore before Vulkan 1.2 in Vulkan core features are binary synchronization 

primitives, meaning that they only have two states: signaled and unsignaled. There are additional 

restrictions on these synchronization primitives making them less favorable to use: both semaphore 

and fence cannot be waited on before it is submitted to the queue, and fence cannot be used 

simultaneously across multiple threads. 

With the arrival of Vulkan 1.2 in early 2020, a new type of semaphore – timeline semaphore 

became part of the core features of Vulkan. The timeline semaphore contains a superset of both 

the original semaphore and fence primitives while eliminating most of the unfavorable restrictions 

on the original primitives. It contains a monotonically increasing 64-bit integer value as its state, 

and both wait-before-submit and use across multiple threads behaviors are supported. 
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The timeline semaphore also has its restrictions and the most obvious one is that it is not 

compatible with window-system, meaning that any synchronization with presentation surface still 

needs to be done with traditional semaphore. Despite such restriction, timeline semaphore is 

widely used in the development process of this study as synchronization primitive. 

 

 

Figure 5. New Model: Timeline Semaphore Primitive. From Introducing Timeline Semaphores, 

by J. Jones, 2019, (Jones, 2019). Copyright 2019 by The Khronos Group Inc. Licensed under CC 

BY 4.0. No modification was made. 

3.6 Render Graph 

A render graph is an acyclic graph that describes the render passes behaviors and organizes 

their dependencies. It is particularly useful for low-level APIs like Vulkan as task scheduling for 

each pass can be easily assigned in parallel. The render graph mechanism implemented in this 

study is a primitive one, similar to the render graph described in (Persson, 2017). The pass 

dependencies still need to be specified explicitly by assigning immediately connecting pass(es), 

and automatic transient resources management as described in (Arntzen, 2017) is not yet 

implemented in this study. 

The basic unit of the render graph is pass node. Each pass node composites of 5 types of 

components: node properties, render context, input resources, output resources and render pass 

function(s). Node properties include information like node identifier. Render context contains data 

such as associated renderer, command pools and list of objects to process. Input and output 

resources contain resources accessed during the pass, including images and buffers. Render pass 

function(s) defines the how operations should be executed during the render pass. 
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Figure 6. Composition of a node in the render graph 

 

This study adopted several non-photorealistic rendering techniques to simulate a real-life 

graphics application, including: Toon Shading with Stylized Control based on (Barla, Thollot, & 

Markosian, 2006) and (Vanderhaeghe, Vergne, Barla, & Baxter, 2011); Surface Feature 

Enhancement based on (Vanderhaeghe, Vergne, Barla, & Baxter, 2011), (Vergne, Pacanowski, 

Barla, Granier, & Schlick, Radiance Scaling for Versatile Surface Enhancement, 2010) and 

(Vergne, Pacanowski, Barla, Granier, & Schlick, Light Warping for Enhanced Surface Depiction, 

2009); Line Drawings via Abstracted Shading based on (Lee, Markosian, Lee, & Hughes, 2007). 

The full render graph constructed in this study is demonstrated in Figure 7. 

 

 

Figure 7. Render graph for single GPU (without asynchronous computation test) 
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The execution priority of the nodes can be determined by render graph traversal. The 

traversal time complexity is O(n), n is the number of nodes in the graph. This process only needs 

to run once at the very beginning, or every time the render graph is modified. The pseudo-code for 

the traversal process is provided below. 

 

Render Graph Traversal 

foreach node in render graph 

    if node has no dependent node 

        add node to starting node list 

    end 

end 

foreach node in starting node list 

    traverse(node) 

end 

 

function traverse(node) 

if node has no dependent node or all dependent node was visited 

    mark node as visited 

    assign priority p to node 

    increase p 

else 

    return 

end 

foreach node’ dependent on node  

    traverse(node’) 

end 

 

After running the traversal on the given render graph, each node’s priority can be derived as 

shown in Figure 7. Note that these priority values do not represent absolute execution sequence. 

The execution sequence would be determined by priority dependencies as depicted in Table 1. 
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Table 1. Node dependencies reflected in priorities 

Priority Dependent Priorities 

0 (none) 

1 (none) 

2 {1, 2} 

3 {2} 

4 {2, 3} 

5 {2, 4} 

6 {0, 2, 5} 

 

For each node that is pending execution, the renderer would first check whether all its 

dependent nodes have finished command recording or have already submitted for execution. The 

recorded command buffer(s) for the node would only be submitted to GPU if the condition is 

satisfied. Applying this mechanism to the render graph shown in Figure 7, the execution sequence 

of nodes with priority 0 and 1 are exchangeable, while the rest are pretty much sequential. 

3.7 Render Graph for Heterogeneous GPUs 

In this study, the render graph design itself does not change under heterogeneous GPUs mode, 

but rather the two GPUs would each own an exclusive render graph as shown in Figure 8 and 

Figure 9. 

The consideration behind such arrangement is that because the two GPUs have non-

interchangeable resources that must be explicitly transferred in the CPU side, there will be little 

benefit from mixing them in the same render graph. More importantly, for post-processing 

offloading as discussed in section 3.4, the integrated GPU would be working under a different 

cycle from the discrete GPU, which is further explained in section 3.10. Having only one render 

graph could not achieve the desired working model. 
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Figure 8. Render graphs of heterogeneous GPUs for offloading post-processing 

 

 

Figure 9. Render graphs of heterogeneous GPUs for offloading asynchronous computation 
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3.8 Multi-threading Design for Single GPU 

One of the valuable features that APIs like Vulkan provide to the graphics developers is the 

improved compatibility with application-level multi-threading. This is also one of the major 

advantages Vulkan has over OpenGL. 

 

 

Figure 10. Multi-threading design for single GPU 

 

 

Figure 11. Multi-threading design for single GPU with asynchronous computation workload 
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With the help of render graph, multi-thread command recording can be easily implemented 

in the existing application. During one frame, each command-recording thread takes one pass node 

from the render graph by priority sequence and executes the pass function. All the command 

recording threads hold individual command buffer pools for command buffer allocation. The 

number of command-recording threads is configurable during renderer setup. 

Two separate threads are utilized to manage command buffer submission and command 

resource recycling on each enabled type of queue. Transfer queue is also enabled when data 

transfer from graphics memory to system memory is involved. Note that the transfer queue only 

exists in dGPU, and on the tested Intel iGPUs there is no separate transfer queue. 

 

 

Figure 12. Command submission sequence is supervised by the renderer (main thread) 

 

As addressed in section 3.5, the recorded command buffers for each render pass need to 

submit in a certain sequence. Since recording with multiple threads, the finished command buffers 

may arrive in any sequence, the renderer running on the main thread / cycle management thread is 

responsible for checking and holding each arrived command buffer and ensuring they are 

submitted in the correct sequence. 

For example, for a render graph shown in Figure 7, four command-recording threads take 

nodes with priority marked with 0-3 (denote by node 0-3) at the beginning. After some time, 

command buffers for nodes 1 and 2 finished recording. The main thread would check the 

dependency generated by the render graph, then determine that the command buffer for node 1 

will be submitted immediately while the command buffer for node 2 should be retained as node 0 

is not finished yet. The two command-recording threads continue to work on the tasks for nodes 4 

and 5. After another while, command buffer for node 0 finished recording, and the main thread 

would then determine to submit command buffers for both node 0 and node 2 together in sequence. 
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3.9 Multi-threading Design for Heterogeneous GPUs 

The multi-threading design for heterogeneous GPUs in this study is basically an extension 

to the design for single GPU case. 

However, for offloading post-processing, there is a major difference between the two designs: 

the discrete GPU’s work cycle would be managed by a dedicated thread other than the main thread. 

The main thread is in synchronization with presentation and thus bounded with integrated GPU. 

A detailed explanation is provided in section 3.10. 

Transfer queue will be enabled to submit commands dealing with coping image outputs to 

staging resources. 

 

 

Figure 13. Multi-threading design for heterogeneous GPUs with offloading post-processing 

 

 

Figure 14. Command submission sequences are separate for two GPUs 
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For offloading asynchronous computation, the design would pretty much be an extended 

version of the single GPU case as illustrated in Figure 15. As the two GPUs work under the same 

cycle. 

 

 

Figure 15. Multi-threading design for heterogeneous GPUs with offloading asynchronous 

computation 

3.10 Work Cycle Design for Heterogeneous GPUs 

Since it would take the iGPU longer time to complete the same task than the dGPU, it would 

be unwise to insert iGPU into dGPU’s workflow directly. 

When iGPU participates in screen space output, the solution adopted in this study is to 

separate two GPUs into two different work cycles, as illustrated in Figure 16. Discrete GPU works 

on a dedicated cycle that only involves rendering the contents from the beginning of a frame to 

everything before post-processing steps. Integrated GPU works on post-processing steps and 

everything involved in presentation. Since the iGPU directly controls when a frame is finally 

presented, the main thread is in synchronization with the iGPU, thus the dGPU would be managed 

through a dedicated cycle management thread. 

The initial workflow is kick-started through enqueuing render tasks of both frame 0 and 

frame 1 to the dGPU. When dGPU finished rendering contents for frame 0, iGPU can continue its 

cycle for post-processing and presenting frame 0, while dGPU continue to work on frame 1. 

When the iGPU works on asynchronous computation, the main thread will be in 

synchronization with the dGPU again. And as the iGPU is expected to complete its job inside the 
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same frame, two GPUs now work under the same cycle as illustrated in Figure 17. Therefore, there 

is no need for a dedicated cycle management thread for the iGPU. 

 

 

Figure 16. Two GPU work cycles with offloading post-processing 

 

 

Figure 17. Two GPUs work under the same cycle when offloading asynchronous computation 

3.11 Test Procedure Design 

Two personal computers with different hardware combinations were used during the test. 

Their detailed specifications are given in Table 2. Theoretical performance data of the discrete 

GPUs was retrieved from the TechPowerUp website (TechPowerUp, 2020) (TechPowerUp, 2020). 
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Theoretical performance data of the integrated GPUs was retrieved from the WikiChip website 

(WikiChip, 2020) (WikiChip, 2020). 

 

Table 2. Specifications of the testing devices 

 Computer A Computer B 

CPU Intel Core i7 9750H Intel Core i5 7300HQ 

Discrete GPU 
NVIDIA GeForce RTX 2070 with 

Max-Q Design 
NVIDIA GeForce GTX 1050 

Discrete GPU 

Theoretical 

Performance 

5.460 TFLOPS 1.911 TFLOPS 

Graphics Memory 

Transfer Rate 
12.0 GB/s 7.0 GB/s 

Integrated GPU Intel UHD Graphics 630 Intel HD Graphics 630 

Integrated GPU 

Theoretical 

Performance 

441.6 GFLOPS 384.0 GFLOPS 

System Memory DDR4 2666 16GB 64-bit × 2 DDR4 2133 8GB 64-bit 

System Memory 

Transfer Rate 
42.66 GB/s 17.05 GB/s 

Bus PCI Express ×16 Gen3 PCI Express ×8 Gen3 

Discrete GPU 

Diver Version 
26.21.14.4236 26.21.14.4236 

Integrated GPU 

Driver Version 
26.20.100.7463 26.20.100.7870 

Vulkan Runtime 1.2.131.2 1.2.131.2 

Operating System Windows 10, 1903 Windows 10, 1903 

 

Both computers were configured to “performance” thermal mode to produce maximal and 

consistent hardware throughput. All background applications except for system services were 

cleared during the test. 
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Figure 18. Test scene for offloading post-processing 

 

 

Figure 19. Test scene for offloading asynchronous computation 

 

For offloading post-processing, a scene with around 588K triangles was used during the test, 

as shown in Figure 18. This scene generates 200 draw calls per frame, and a total of 237.75 MB 

textures were used. The post-processing pass includes a primitive depth of field effect and a screen 

space overlay shadow animation. 

For the offloading asynchronous computation, a scene with around 3.24M triangles was used 

during the test, as shown in Figure 19. This scene contains 512 objects and generates 1547 draw 

calls per frame. In each frame, the positions of all the objects are put into asynchronous update 
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while the original values are used for rendering in the current frame. The position data are written 

and updated as a 32×16 texture in the GPU. 

Performance was measured from both inside and outside the program. From inside the 

program, the total number of frames generated in 20 seconds is used to compute average frame 

time. From outside the program, RenderDoc and Visual Studio Diagnostic Tools were utilized to 

capture and analyze program performance. When measuring performance internally, all the 

external tools were disabled. 

All tests were conducted under 1600×900 resolution with no framerate limit. 

3.12 Summary 

This chapter demonstrated the development tools and test cases used in the study. More 

importantly, this chapter presented feature design and methods adopted in the implementation and 

evaluation process of the study. 
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4. RESULTS AND DISCUSSION 

4.1 Theoretical Analysis 

The upper bound of performance improvement can be calculated by adding up the theoretical 

performance of both GPUs. For Computer A this upper bound would be 8.08%, and for Computer 

B this upper bound would be 20.09%. 

Before performing a theoretical analysis on the optimal throughput of the system, an analysis 

of each pass/step of the rendering process is needed. The data required for the analysis were 

collected through RenderDoc on Computer A with dGPU running the program. The time 

consumption breakdown for each pass is shown in Figure 20 and Figure 21. 

  

 

Figure 20. Time consumption breakdown of each pass for dGPU 

 

 

Figure 21. Time consumption breakdown of each pass for dGPU (continued) 
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From the collected data, it can be estimated that the post-processing step takes up about 12.8% 

of the total render passes time in offloading post-processing test. The asynchronous compute step 

takes up about 12.1% of the total render passes time in the asynchronous computation test. 

When the post-processing pass is offloaded onto the iGPU, a texture data transfer overhead 

must append to the total time consumed by the dGPU. 

The size of an uncompressed 1600×900 texture with RGBA 32-bit float format (the output 

from transparency rendering pass) is about 21.97 MB. On Computer A with optimal system 

memory bandwidth and minimal latency, it would take approximately 0.51ms to copy the texture 

from graphics memory to the system memory. Only one texture’s copy time is calculated because 

optimally the transfer overhead of the other two input textures can be hidden by initiating transfer 

immediately after each pass, then only the last texture has an inevitable transfer overhead. 

On Computer B, the post-processing step takes approximately 2.4ms to complete, while 

transferring the same 1600×900 texture to system memory would ideally take 1.29ms. 

According to Amdahl’s law, the overall speedup of the system can be estimated by: 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑓, 𝑠) =
1

(1 − 𝑓) +
𝑓
𝑠

 

Where f is the fraction of computation that is enhanced, and s is the speedup of that fraction. 

When applying Amdahl’s law in the estimation, the transfer overhead can be treated as the 

remainder of the post-processing pass. For Computer A, the speedup s for the offloaded part would 

be 1.56, and the estimated overall speedup is therefore 1.048. For Computer B, the speedup s for 

the offloaded part would be 1.86, and the estimated overall speedup is therefore 1.063. 

When the asynchronous computation is offloaded onto the iGPU, no transfer is needed from 

graphics memory to system memory. Optimally, the fraction of asynchronous computation can be 

treated as completely taken out from the dGPU and thus the speedup s for the offloaded part would 

be ∞. Then the theoretical overall speedup for Computer A would be 1.08 (upper bounded) and 

for Computer B would be 1.137. 

All the estimation above assumes that the iGPU can complete the offloaded task within the 

time the dGPU completes all tasks in a frame and data transfer between memories can be saturated. 



 

39 

4.2 Baseline Performance of Vulkan Implementation 

Both OpenGL and Vulkan implementations for single discrete GPU were tested on the scene 

shown in Figure 23 and Figure 18. The results are presented in Figure 22 and Table 3. 

 

 

Figure 22. Average frame time with different API implementations 

 

Table 3. Average frame time with different API implementations 

API Computer A Computer B 

OpenGL 6.212ms 23.420ms 

Vulkan 6.338ms 18.875ms 

 

Note that although Computer A has a slightly higher average frame time under Vulkan 

implementation, the observed program CPU usage is also around 60% lower than under OpenGL 

implementation (see appendix B). While on Computer B both API implementations have similar 

CPU usage. Also, note that this is the only test in this study where OpenGL is involved. 
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The results indirectly support that there is no fatal flaw in the Vulkan implementation for the 

discrete-GPU-only situation in the test program. Therefore, the results of heterogeneous GPUs 

implementation and discrete-GPU-only implementation can be directly compared. 

4.3 Offloading Post-Processing 

 

Figure 23. Test scene for offloading post-processing 

 

When offloading post-processing and presentation workload to the iGPU, the performance 

measured on both test computers is presented in Table 4 and Figure 24. 

 

Table 4. Average frame time with offloading post-processing 

 Computer A 
Computer A – with 

simulated pressure 
Computer B 

Discrete GPU 6.338ms 36.324ms 18.875ms 

Integrated GPU 66.624ms N/A 114.725ms 

Heterogeneous GPUs 25.580ms 39.572ms 50.379ms 

Improvement -303.5% -8.9% -166.9% 
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Figure 24. Average frame time with offloading post-processing 

 

Contradictory to the theoretical analysis, a huge performance deterioration occurred with 

heterogeneous GPUs. However, this is not surprising with further analysis. 

In the theoretical analysis section, the optimal bandwidth of system memory was used to do 

the calculation. Such bandwidth, however, is hardly achieved at runtime. As a reference, 

theoretically copying three 21.97 MB buffers inside system memory in Computer A would take 

3.1ms, but in reality, a varying total time consumption between 5ms and 7ms was observed. 

When transferring texture data from dGPU to integrated iGPU, ideally the texture data from 

graphics memory can be written directly into the corresponding texture memory area in system 

memory. However, this is not possible in current implementation as data transfer between different 

logical devices must go through staging buffers. This extra staging step produced an additional 

transfer overhead. Furthermore, the PCIe 3.0 bandwidth also bottlenecked memory transfer rate. 

Besides the data copying overhead, signal latency between CPU and GPU, and latency 

within threads communication were also not considered in the theoretical analysis section. Adding 

up all these unconsidered overheads, the total communication overhead between two GPUs can 
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easily exceed the time consumed by the post-processing pass on dGPU. This effect is illustrated 

in Figure 25. 

 

 

Figure 25. Data transfer overhead exceeds the offloaded workload fraction 

 

 

Figure 26. Time consumption breakdown for heterogeneous GPUs 
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The additional performance analysis from RenderDoc also revealed that the time consumed 

by the iGPU to complete the post-processing pass on Computer A exceeds the total time required 

by the dGPU to complete a full-frame as illustrated in Figure 26. This is the reason why when 

simulated pressure is added to the dGPU on Computer A, the percentage of performance 

deterioration is significantly reduced (pressure simulation is achieved through issuing overdraws 

on dGPU). And it is also the reason why the performance deterioration is less on Computer B since 

it inherently takes longer for the dGPU to complete a full frame. 

After these analyses, it becomes clear that if performance improvement is to be achieved 

when the iGPU is offloading post-processing workload from the dGPU, two conditions must be 

satisfied: 

1. The data transfer overhead between the iGPU and the dGPU must be less than the 

workload fraction taken out from the dGPU. 

2. The iGPU must be able to complete the offloaded task(s) within the time required by the 

dGPU to complete a full frame. 

Unfortunately, condition 1 can hardly be achieved on either Computer A or Computer B. 

Because covering the 5ms data transfer overhead alone would require the fraction of workload 

taken out from the dGPU to be greater than 5ms. According to the measured data, such a fraction 

can be predicted to take more than 50ms to complete on the iGPU. Which means the program 

would be running under at most 18 frames per second. Under such a low frame rate, it would 

hardly be practical to seize a less than 5% performance improvement for rendering only. 
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4.4 Offloading Asynchronous Computation 

 

Figure 27. Test scene for offloading asynchronous computation. 

 

Before diving into the heterogeneous GPUs test, the program was first tested in CPU 

computation mode to ensure that it is necessary to offload the workload from CPU to GPU. And 

the result is displayed in Figure 28, as both computers were running below 10 frames per second. 

 

 

Figure 28. Average frame time with CPU multi-threading  
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When offloading the asynchronous computation to the iGPU/dGPU, the performance 

measured on both devices is presented in Figure 29 and Table 5. The code used to generate 

asynchronous computation content is provided in appendix A. Note that the load increase is not 

proportional to the actual time taken by the GPU to complete the computation. 

This time, the heterogeneous GPUs are showing positive results closer to the prediction in 

theoretical analysis. As under this workload offloading strategy, there is no data transfer overhead 

between the iGPU and the dGPU, and both GPUs would only write the asynchronous compute 

results to the system memory. 

The major overhead that was not included in the theoretical analysis is the extra CPU loads 

for issuing commands for the iGPU, which would delay the command recording for the dGPU. 

But this overhead can be well covered within the fraction taken out from the dGPU’s workloads 

as illustrated in Figure 30. 

 

 

 

Figure 29. Average frame time with offloading asynchronous computation 
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Table 5. Average frame time with offloading asynchronous computation 

 Computer A 
Computer A – 

with extra load 
Computer B 

Computer B – 

with extra load 

Discrete GPU 6.913ms 7.231ms 20.063ms 20.134ms 

Heterogeneous GPUs 6.639ms 9.329ms 19.708ms 19.498ms 

Improvement +4.1% -29.0% +1.8% +3.3% 

 

The performance analysis from RenderDoc partially explained why performance decreased 

on Computer A while performance further improved on Computer B when the computational load 

was increased. 

The original workload would take the iGPU on Computer A around 5ms to complete as 

illustrated in Figure 31, which is within the time required for the dGPU to complete a full frame. 

And as the computational load was increased on the iGPU, the iGPU became the bottleneck in the 

system and the dGPU had to halt and wait for the iGPU, resulting in the performance decrease. 

From the data, it can be inferred that it would now take the iGPU about 8ms to complete the task. 

The iGPU on Computer B only has slightly worse performance than the iGPU on Computer 

A, thus the time required for the iGPU on Computer B to complete the same computational task 

can be expected to be well within 19ms. 

Since the frame rate on Computer B is much lower than the frame rate on Computer A, the 

iGPU on Computer B was less loaded than the iGPU on Computer A as the computational task is 

issued per frame. It is possible that under normal computational load, the iGPU on Computer B 

was working on a lower frequency due to low workload (supported by observed iGPU usage). And 

the iGPU on Computer B was working on a higher frequency when the workload increased, 

resulting in a faster completion speed. 

These observations suggest that when offloading asynchronous computation workload to the 

iGPU, the relative performance of the iGPU and application target frame rate should be carefully 

balanced. 
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Figure 30. The overhead is less than the offloaded workload fraction 

 

 

Figure 31. Time consumption breakdown for heterogeneous GPUs 
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4.5 Conclusion 

With the conducted tests and analyses, although this study failed in obtaining performance 

improvement through offloading post-processing workload from the dGPU to the iGPU, 

performance improvement was successfully observed with offloading asynchronous computation 

from the dGPU to the iGPU. Also, the necessary conditions for improving performance through 

offloading screen space output workload / offloading asynchronous computation workload were 

explored and verified: 

1. The data transfer overhead between the iGPU and the dGPU must be less than the 

workload fraction taken out from the dGPU. 

2. The iGPU must be able to complete the offloaded task within the time required by the 

dGPU to complete a full frame unless the task is not frame-aligned. 

This research proves that it is possible to make use of the integrated and discrete GPUs 

concurrently in the same application with the help of Vulkan. And offloading asynchronous 

computation workload from the discrete GPU to the integrated GPU can provide up to 3-4% 

performance improvement with combinations like UHD Graphics 630 + RTX 2070 Max-Q and 

HD Graphics 630 + GTX 1050. 

4.6 Future Work 

This study can be further improved by: 

1. Try offloading screen space workload with low-end discrete GPU (such as NVIDIA 

GeForce MX150) that has a smaller performance gap from the integrated GPU. 

2. Test and analyze the performance stability of the heterogenous GPUs working model 

when other GPU demanding program is present in the system. 

3. Monitor the system power consumption and component temperature difference. 

4. Test and analyze the sweet spot in the size of data transferred for the offloaded workload. 

In addition, the approach used in this study can be improved by using buffer object to 

perform asynchronous computation directly, so that the buffer-image copy overhead can be 

eliminated. Also, in the case that resource copy command across different logical devices becomes 

supported in the future, speed up times can be expected to be enlarged through reducing the staging 

steps.  
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APPENDIX A. CODE SNIPPET OF ASYNC COMPUTE CONTENT 

float PseudoRand(vec2 co) 
{ 
 return fract(sin(dot(co, vec2(12.9898, 78.233))) * 43758.5453); 
} 
 
vec4 UpdatePosition(vec4 origin, vec2 seed) 
{ 
 vec4 result = origin; 
 
 float coeff = 0.1f * PseudoRand(seed); 
 
 vec4 pressureVal = vec4(0.0); 
 for (int i = 0; i < 5000; i += 2) 
 { 
  pressureVal += 0.001f * vec4( 
   PseudoRand(vec2(cos(PseudoRand(vec2(i, origin.z))) * 
sin(PseudoRand(vec2(i, origin.y))), seed.y)), 
   PseudoRand(vec2(sin(PseudoRand(vec2(i, origin.x))) * 
cos(PseudoRand(vec2(i, origin.z))), seed.y)), 
   PseudoRand(vec2(seed.y, cos(PseudoRand(vec2(i, origin.y))) * 
sin(PseudoRand(vec2(i, origin.x))))), 
   0); 
 } 
 for (int i = 1; i < 5000; i += 2) 
 { 
  pressureVal -= 0.001f * vec4( 
   PseudoRand(vec2(cos(PseudoRand(vec2(i, origin.z))) * 
sin(PseudoRand(vec2(i, origin.y))), seed.y)), 
   PseudoRand(vec2(sin(PseudoRand(vec2(i, origin.x))) * 
cos(PseudoRand(vec2(i, origin.z))), seed.y)), 
   PseudoRand(vec2(seed.y, cos(PseudoRand(vec2(i, origin.y))) * 
sin(PseudoRand(vec2(i, origin.x))))), 
   0); 
 } 
 
 result += coeff * pressureVal; 
 
 return result; 
} 

 

The complete codebase of this study is available from: 

https://github.com/N7RX/CactusEngine/tree/heterogeneous 

https://github.com/N7RX/CactusEngine/tree/heterogeneous
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APPENDIX B. PERFORMANCE DATA COLLECTION 

 

 

Specification CPU GPU 0 GPU 1 RAM Windows GPU 0 Driver GPU 1 Driver Vulkan Runtime GPU 0 Direct Output

Notebook i7 9750H RTX 2070 Max-Q UHD 630 DDR4 2666 Dual Windows 10, 1903 26.21.14.4236 26.20.100.7463 1.2.131.2 Yes

Frametime (ms) 1 2 3 Average GPU 0 1 2 3 Average GPU 1 1 2 3 Average CPU 1 2 3 Average

Base Test

Vulkan 6.25 6.37 6.394 6.338 95% 94% 94% 94% 6% 5% 5% 5%

OpenGL 6.157 6.206 6.272 6.211667 99% 99% 99% 99% 15% 15% 15% 15%

Render Offload Test

Discrete 6.25 6.37 6.394 6.338 95% 94% 94% 94% 6% 5% 5% 5%

Integrated 66.67 66.628 66.573 66.62367 98% 98% 98% 98% 2% 2% 2% 2%

Heterogeneous 25.992 26.031 24.716 25.57967 28% 28% 30% 29% 86% 86% 85% 86% 8% 8% 9% 8%

Discrete - With Pressure 35.917 36.476 36.579 36.324 99% 99% 99% 99% 2% 2% 2% 2%

Heterogeneous - With Pressure 39.38 39.765 39.572 39.57233 97% 97% 97% 97% 74% 76% 76% 75% 7% 6% 6% 6%

Compute Offload Test

CPU 117.176 117.974 119.973 118.3743 32% 32% 30% 31% 51% 51% 52% 51%

Discrete 6.861 6.937 6.94 6.912667 80% 80% 81% 80% 16% 16% 16% 16%

Heterogeneous 6.595 6.687 6.636 6.639333 73% 74% 73% 73% 74% 73% 74% 74% 16% 16% 16% 16%

Discrete - 4x Load 7.131 7.243 7.319 7.231 94% 94% 94% 94% 16% 16% 16% 16%

Heterogeneous 4x Load 9.331 9.324 9.332 9.329 51% 51% 51% 51% 91% 91% 91% 91% 11% 12% 11% 11%

Date: 03/16/2020

Specification CPU GPU 0 GPU 1 RAM Windows GPU 0 Driver GPU 1 Driver Vulkan Runtime GPU 0 Direct Output

Notebook i5 7300HQ GTX 1050 HD 630 DDR4 2133 Windows 10, 1903 26.21.14.4236 26.20.100.7870 1.2.131.2 No

Frametime (ms) 1 2 3 Average GPU 0 1 2 3 Average GPU 1 1 2 3 Average CPU 1 2 3 Average

Base Test

Vulkan 18.881 18.853 18.89 18.87467 96% 96% 96% 96% 8% 7% 7% 7%

OpenGL 23.237 23.356 23.667 23.42 96% 96% 96% 96% 6% 7% 6% 6%

Render Offload Test

Discrete 18.881 18.853 18.89 18.87467 96% 96% 96% 96% 8% 7% 7% 7%

Integrated 114.579 114.796 114.799 114.7247 99% 99% 99% 99% 10% 11% 10% 10%

Heterogeneous 50.359 50.466 50.313 50.37933 43% 43% 43% 43% 74% 74% 74% 74% 25% 24% 25% 25%

Discrete - With Pressure

Heterogeneous - With Pressure

Compute Offload Test

CPU 199.644 196.424 196.453 197.507 93% 91% 90% 91%

Discrete 20.1106 20.02 20.058 20.06287 85% 86% 86% 86% 21% 21% 21% 21%

Heterogeneous 19.634 19.746 19.745 19.70833 85% 84% 85% 85% 33% 33% 33% 33% 20% 19% 19% 19%

Discrete - 4x Load 19.987 20.046 20.369 20.134 92% 93% 91% 92% 20% 21% 20% 20%

Heterogeneous 4x Load 19.485 19.505 19.503 19.49767 85% 85% 84% 85% 73% 72% 73% 73% 19% 19% 19% 19%

Date: 03/16/2020
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