
SCALABLE REPRESENTATION LEARNING WITH INVARIANCES

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Changping Meng

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Jennifer Neville, Co-Chair

Department of Computer Science and Statistics

Dr. Bruno Ribeiro, Co-Chair

Department of Computer Science

Dr. Dan Goldwasser

Department of Computer Science

Dr. Yexiang Xue

Department of Computer Science

Approved by:

Dr. Clifton W Bingham

Head of the Computer Science Graduate Program

iii

ACKNOWLEDGMENTS

First and foremost, I really appreciate my major professors, Professor Jennifer

Neville and Professor Bruno Ribeiro. With their help and advice, I have learned a lot

and accomplished more than I could have imagined. Professor Neville has consistently

instructed me to think independently and work dedicatedly. When encountering frus-

trations, she patiently guided me through the difficulties and filled me with courage.

I have benefited immensely from Professor Bruno Ribeiro’s intelligence, passion and

enthusiasm for research.

I also want to thank my committee members, Professors Dan Goldwasser, Yexiang

Xue. They lent me their expertise to provide context, feedback, and suggestions as I

pursued this research.

I am also grateful to the members of Jen’s lab and Bruno’s lab. Since all of them

provided generous help and support, I want to thank them alphabetically: Leonardo

Cotta, Mahak Goindani, Guilherme Gomes, Jianfei Gao, Mengyue Hang, Mayank

Kakodar, Ryan Murphy, Bala Srinivasan, Leonardo Teixeira, Yi-Yu Lai, Ying-Chun

Lin ,Chandra Mouli, Hogun Park, Jiasen Yang, Giselle Zeno, Yangze Zhou.

I am so grateful to my elder sister Lili Meng for her help and guidance. Her

passion for research inspired me to start and go through this Phd journey. I also

want to thank my parents Shilin Meng and Aichun Tian their unwavering support.

Last but not the least, I want to thank my wife, Ziyun Ding for her love and

support. Marrying her is one of my best decisions made at Purdue University.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . ix

1 INTRODUCTION . 1
1.1 Research Questions . 3
1.2 Main Hypothesis and Proposed Research 4
1.3 Contributions . 5
1.4 Thesis Organization . 7

2 MODELS FOR GRAPH, SET AND SETS-OF-SETS 8
2.1 Definitions . 8
2.2 Related work . 10

2.2.1 Graphs . 10
2.2.2 Sets . 12
2.2.3 Set of Sets . 13

3 SUBGRAPH PATTERN NEURAL NETWORK 15
3.1 Introduction . 15
3.2 Heterogeneous Subgraph Prediction . 17

3.2.1 Relationship with Convolutional Neural Networks 25
3.3 Results . 26

3.3.1 Empirical Results . 26

4 PERMUTATION INVARIANT FUNCTIONS FOR SET 41
4.1 Introduction . 41
4.2 Representation Learning of Variable-size Sets 43

4.2.1 Set Inputs . 43
4.2.2 Set Representation Functions 43

4.3 Invariant Neural Network Architectures 44
4.3.1 Ideal Representation Routing 44

4.4 Better Set Representation Architectures 49
4.4.1 Existing Graph Topologies . 50
4.4.2 Build Computational Graph with Self-attention 50
4.4.3 Graph Node Structure . 51
4.4.4 Stochastic Optimization . 53

v

Page
4.5 Experiments . 55

4.5.1 Arithmetic Tasks on Sequence of Integers 56
4.5.2 Vertex Classification . 58
4.5.3 Natural Language Processing Tasks 60
4.5.4 Point Cloud Classification . 60
4.5.5 Reasoning tasks . 62

5 PERMUTATION INVARIANT FUNCTIONS FOR SET-OF-SETS 64
5.1 Introduction . 64
5.2 Inductive Embeddings of Set-of-Sets . 65

5.2.1 Inductive SoS Embeddings . 66
5.3 Learning Inductive SoS Embeddings . 69

5.3.1 The HATS Architecture . 70
5.3.2 Stochastic Optimization for HATS 75

5.4 Experiments . 77
5.4.1 Simple Arithmetic Tasks . 80
5.4.2 Computing the Adamic/Adar Index 82
5.4.3 Subgraph Hyperlink Prediction 83
5.4.4 Point-Cloud SoS Classification 84

6 SUMMARY AND FUTURE DIRECTIONS 88
6.1 Conclusion . 88
6.2 Future Directions . 90

6.2.1 Subgraph Collective Inference 90
6.2.2 Increase Subgraph Counting Efficiency 90
6.2.3 Random Graph Model for Set 91
6.2.4 Apply the proposed Set model on the Set-of-Sets tasks 91
6.2.5 Temporal Graph Classification with Set of Sets 91

BIBLIOGRAPHY . 91

vi

LIST OF TABLES

Table Page

3.1 Max Area Under Curve (AUC) scores of SPNN against baselines. 37

3.2 Time to sample 1000 examples+training time. 38

3.3 Max Area Under Curve (AUC) scores of SPNN against baselines. 39

3.4 Time to sample 1000 examples + learning time. 40

4.1 Computational graph properties of methods for set with n elements 46

4.2 Diameters and average path length under different prune rate for graph
with 100 nodes. 58

4.3 Number of Ops and Parameters for Arithmetic Tasks Unique Count per
minibatch in one iteration. 59

4.4 MicroF1 score (standard deviations) using different aggregation functions
in a GNN – GraphSAGE. 59

4.5 Accuracy (standard deviations) for two GLUE classification tasks. 60

4.6 Accuracy (standard deviations) on Point Cloud label classification and
label counting. 61

4.7 Accuracy (standard deviations) for subset sum problem: Given a set with
n integers from [−200, 200], decide whether it contains a subset which
sums to 0. 61

5.1 Implementation details for various tasks. 80

5.2 Summary of network dataset statistics. 80

5.3 Prediction accuracies for interactive arithmetic tasks for different member-
set size m. 81

5.4 Accuracies for aggregative tasks with different member-set size m. 82

5.5 Predicting Adamic/Adar-index on Cora. 83

5.6 Subgraph hyperlink prediction accuracies for different subgraph size m. . . 84

5.7 Point-cloud classification results. 87

vii

LIST OF FIGURES

Figure Page

1.1 Examples of datasets which are better modeled as graphs or sets 2

1.2 Examples of variance: (a) Graph Isomorphism and (b) Set Permutations . 2

1.3 Methods to handle invariance. (a) Pool and count subgraphs under same
patterns. (b) Use Janossy Pooling [15] as a wrapper. 4

3.1 (1) Illustration of the training in a citation network with (A)uthors, (T)opics,
(V)enues. At the top is the graph evolution G1 to G2, whose induced sub-
graphs are used as training data to predict the evolution of subgraphs in
G2 to G3; below Y3 shows 3-node subgraph patterns partitioned into two
classes. (2) Labels for subgraph evolution. The appearance of two links
are considered as label y3

1. All other subgraphs are assigned label y3
2. (3)

Features for U = V2. A2, T3 under the patterns (4) SPNN model. 19

3.2 ROC curves (True Pos × False Pos): DBLP and Friendster tasks. 25

3.3 Learning curves (AUC×Training Size) w/shaded 95% confidence intervals. . . . 26

3.4 (DBLP task) Pattern layer weight difference between Class 1 (whether both

dashed links appear at time t+ 1) and Class 2 (everything else) for pattern F�j .

Pattern F�4 , when the author has published in a topic related to the venue,

strongly predicts the appearance of both links. Pattern F�2 , when a co-author

has published at the venue and topic of interest but not the author, strongly

predicts the absence of the joint links. 27

3.5 Sequence Graph Learning curves (AUC×Training Size) compared to lo-
gistic regression and MLP (w/shaded 95% conf. intv.). 31

3.6 ROC curves (True Pos × False Pos): Facebook and WordNet tasks. 31

3.7 Facebook and WordNet Prediction tasks 32

3.8 Learning curves (AUC×Training Size) w/shaded 95% confidence intervals for

dynamic Facebook and WordNet. 33

3.9 Learning curves (AUC×Training Size) of SPNN against competing meth-
ods in Static Graph (w/shaded 95% conf. intv.). 34

3.10 Learning curves comparing SPNN to logistic regression and MLP in Static
Graph. 35

viii

Figure Page

3.11 ROC curves (True Pos × False Pos): Facebook, WordNet tasks in Static
Graph. 35

3.12 ROC curves (True Pos × False Pos): Facebook, WordNet tasks in manu-
ally generated dynamic graphs. 36

4.1 Computational graph examples. 45

4.2 Weighted DAG resulting from the self-attention adjacency matrix G. . . . 52

4.3 Different Types of Hybrid Node can be adopted in the computational graph.52

4.4 Double Count: check duplicates for sequence length n with 1.5×n vocab-
ulary size. 58

4.5 Unique Count: count of unique elements for sequence length n with n
vocabulary size. 58

4.6 Accuracy of Self-Attention GRU when randomly pruning edges of compu-
tational graph at different prune rate. 58

5.1 HATS architecture for SoS inputs. 75

5.2 Visualization of point-cloud tasks. 86

5.3 Anomaly detection accuracies for varying point-cloud size m. 86

5.4 Anomaly detection accuracies for varying k-ary dependency. 86

ix

ABSTRACT

Meng, Changping PhD, Purdue University, May 2020. Scalable Representation Learn-
ing with Invariances . Major Professor: Jennifer Neville, Bruno Ribeiro.

In many complex domains, the input data are often not suited for the typical

vector representations used in deep learning models. For example, in knowledge

representation, relational learning, and some computer vision tasks, the data are

often better represented as graphs or sets. In these cases, a key challenge is to learn

a representation function which is invariant to permutations of set or isomorphism of

graphs.

In order to handle graph isomorphism, this thesis proposes a subgraph pattern

neural network with invariance to graph isomorphisms and varying local neighborhood

sizes. Our key insight is to incorporate the unavoidable dependencies in the train-

ing observations of induced subgraphs into both the input features and the model

architecture itself via high-order dependencies, which are still able to take node/edge

labels into account and facilitate inductive reasoning.

In order to learn permutation-invariant set functions, this thesis shows how the

characteristics of an architecture’s computational graph impact its ability to learn

in contexts with complex set dependencies, and demonstrate limitations of current

methods with respect to one or more of these complexity dimensions. I also propose

a new Self-Attention GRU architecture, with a computation graph that is built au-

tomatically via self-attention to minimize average interaction path lengths between

set elements in the architecture’s computation graph, in order to effectively capture

complex dependencies between set elements.

Besides the typical set problem, a new problem of representing sets-of-sets (SoS)

is proposed. In this problem, multi-level dependence and multi-level permutation in-

x

variance need to be handled jointly. To address this, I propose a hierarchical sequence-

attention framework (HATS) for inductive set-of-sets embeddings, and develop the

stochastic optimization and inference methods required for efficient learning.

1

1 INTRODUCTION

Deep learning has been successfully applied to a myriad of applications, in which the

input data typically involves fixed-length vectors. Examples include image recogni-

tion, video classification, sentiment analysis, among many others. A critical aspect

of vector representations is that the position of elements matters. This ordering is

needed for many classic deep learning tasks. For instance, in image or video recogni-

tion, the ordering in vectors needs to align with the spatial orientation. For NLP or

speech recognition, the ordering in the vector data represents the sequential infoma-

tion from past to future.

However, some complex data are not well-suited for vector representations since

the “ideal” ordering for use in a vector is either non-trivial to compute or does not

exist at all. Examples include social networks, physical networks, LIDAR readings,

and point clouds, as shown in Figure 1.1. These datasets are often better represented

as graphs or sets for a wide range of applications such as recommendations [1, 2],

object detection [3, 4], relational analysis [5, 6, 7, 8, 9], logical reasoning [10, 11],

and scene understanding [8, 12]. As there is no natural ordering to the elements in a

graph or set, any model must jointly learn functions over all the elements in order to

capture relational dependencies.

Initial work on learning neural-network models for heterogeneous inputs often

transformed the data into variable-length sequences [5, 7, 13]. However, these methods

learn models (i.e., embedding functions) that are permutation-sensitive. In other

words, the output of the learned model (i.e., embedding) depends on the order chosen

for the input vector. For sets, the same elements permuted in different orders will

be embedded to different points in space. The same issue also exists in graphs where

isomorphic graphs are embedded in different positions as shown in Figure 1.2.

2

Internet Large Point Cloud Lidar auto vehicles

Figure 1.1.: Examples of datasets which are better modeled as graphs or sets

!⃗ quick, brown, fox

!⃗ fox, brown, quick

Embedding space

Set
Permutation

Graph
Isomorphism

Embedding space!⃗

!⃗()

Figure 1.2.: Examples of variance: (a) Graph Isomorphism and (b) Set Permutations

An invariant (i.e. transformation insensitive) function is a function whose output

remains unchanged when a certain transformation is applied to the input objects.

The transformation can be relabelling of graphs (e.g. to produce isomorphic graphs)

or permutations of sets. For the same examples in Figure 1.2, isomorphism-invariant

functions will embed the isomorphic graphs into the same position in space. Sim-

3

ilarly, the embedding of a set under different permutations should be equal for a

permutation-invariant function.

Recurrent neural networks, which are commonly used in sequence-to-sequence

models, are not invariant to permutations in the input sequence (e.g. f
⇀

() 6= f
⇀

()).

Indeed, [14] showed that the order of the input sequence could significantly affect the

quality of the learned model.

A more principled approach to learning functions is to learn a embedding function

that is invariant to permutation and which could be used to model the input them-

selves directly. More recent work has focused on developing principled approaches to

learning these set representations [4, 14, 15, 16, 17]. The key contribution of these

works has been to provide scalable methods that can learn inductive embeddings

which are provably invariant to the ordering of the input. However, the models pro-

posed in this thesis will provide more accurate predictions through the development

of better architectures that capture high-order dependencies more effectively while

maintaining permutation invariance. I include a more detailed comparison with this

recent work later in the thesis.

Specifically, I propose several ways to handle invariances. For subgraph isomor-

phism, I propose an input pooling method based on Subgraph Patterns. As shown in

Figure 1.3, different isomorphic graphs with the same Subgraph Pattern are counted

together (see details in Chapter 3). For set permutations, I propose to use a Janossy

Pooling [15] wrapper around a permutation-sensitive function, which uses permuta-

tion sampling to compute a permutation invariant function (see details in Chapter

4/5).

1.1 Research Questions

In this work, I propose neural network models with the following properties:

• The model should be invariant to graph isomorphism or set permutation.

4

V2

T1

T3

A1

V2

T1

T3

A1 V2T1

T3
A1

V

TT

A

Count subgraph
 of same pattern

Set: a point cloud
Set of sets:

point cloud scene

Wrapper (Janossy Pooling)

Permutation sensitive
function

Permutation Invariant output

Figure 1.3.: Methods to handle invariance. (a) Pool and count subgraphs under same

patterns. (b) Use Janossy Pooling [15] as a wrapper.

• High-order relationships among the elements within the input should be mod-

eled in order to increase the prediction quality.

• The model should provide inductive embeddings. A model learned from training

data should generalize to unseen test data.

• Optimization methods for the model should scale polynomially to the data size,

in order to be applied to large datasets.

1.2 Main Hypothesis and Proposed Research

The goal of the present research is to verify the following hypothesis. Representa-

tion learning models with invariances to graph isomorphism or set permutations have

better-expressive power than order-sensitive models, and thus will improve prediction

accuracy. Moreover, for the factorial-scale possible isomorphic graphs and permutated

sets, I hypothesize that I can develop polynomial-scale optimization methods to learn

invariant models, through the use of stochastic sampling.

5

Proposed Research

The present works is mainly divided into 3 parts.

• For graph applications, I focus on the task of subgraph evolution prediction.

This thesis presents a subgraph pattern neural network with invariance to graph

isomorphisms and varying local neighborhood sizes. It can take node/edge la-

bels into account and facilitate inductive reasoning. A subgraph-based sampling

method is used to enable the model scale to large datasets.

• For set tasks, I show how the characteristics of an architecture’s computational

graph impact its ability to learn in contexts with complex set dependencies.

Moreover, I analyze existing permutation-invariant functions and demonstrate

limitations of current methods with respect to one or more of these complexity

dimensions. To address this, I propose a new architecture, with a computation

graph that is built automatically via self-attention to minimize average interac-

tion path lengths between set elements in the architecture’s computation graph,

in order to more effectively capture complex dependencies between set elements.

• To move beyond set problems, I define a new problem called sets-of-sets (SoS),

which facilitates logical reasoning and multi-instance learning. In this task,

intra-set and inter-set dependence need to be captured with invariance to intra-

set and inter-set permutations. To address this, I propose a hierarchical se-

quence model with attention mechanisms named HATS. The model is invariant

to two levels of permutations on the input data–within each set and among the

sets. Higher-order relationships with each set and among the sets are captured.

1.3 Contributions

This dissertation develops scalable invariant models for graphs and sets. On the

one hand, these models are invariant to permutations of sets or isomorphism of graphs.

6

On the other hand, these models are scalable to model large-scale datasets with

polynomial runtimes even though there are a factorial number of permutations.

• In Chapter 3, I study subgraph prediction on dynamic graphs.

– I propose induced subgraph patterns as features to model high-order de-

pendence between nodes on the graph.

– I develop a Subgraph Neural Network model SPNN, which is a first step in

the development of more interpretable models, features, and classifiers that

can encode the complex correlations between graph structure and labels.

– I evaluate the problem of predicting induced subgraph evolution in het-

erogeneous graphs and show this generalizes a variety of existing tasks.

Our results show SPNN to consistently achieve better performance than

competing approaches.

• In Chapter 4, I study scalable permutation invariant functions for sets.

– I show that the characteristics of an architecture’s computational graph

impact its ability to learn in contexts with complex set dependencies, and

demonstrate limitations of current methods with respect to one or more of

these complexity dimensions.

– I develop a neural network architecture Self-Attention GRU designed to

better capture both long-range and high-order dependencies.

– I demonstrate Self-Attention GRU achieves improved performance over a

wide range of applications and against state-of-the-art baselines.

• In Chapter 5, I study the problem of sets-of-sets.

– I outline how the properties of inter-set and intra-set dependencies of sets-

of-sets problem can not be modeled by set models.

– I propose a framework for learning permutation-invariant inductive SoS

embeddings with neural networks, and introduce HATS, a hierarchical,

7

bi-directional LSTM with attention, which is designed to better capture

intra-set and inter-set interactions in sets-of-sets while maintaining SoS

permutation-invariance.

– I demonstrate our proposed model HATS achieves superior performance

over a wide range of application tasks involving SoS inputs.

1.4 Thesis Organization

This dissertation is organized as follows:

• In Chapter 2, I provide an overview of the data input and problem definition.

I also review the existing literature on the models for graphs and sets, and

discuss the drawbacks of existing models, which form the basis of our methods

to overcome these limitations.

• Chapter 3, 4, and 5 build the main contributions of this dissertation, which

show how to handle invariance in a scalable way. In Chapter 3, I propose

the subgraph neural network model, which overcomes the invariance of graph

isomorphism and captures high-order relationships on the graph. In Chapter 4,

I show how the characteristics of an architecture’s computational graph impact

its ability to learn in contexts with complex set dependencies and propose a new

model based on our findings. In Chapter 5, I extend the current set problem

to sets-of-sets problems. Besides permutation invariance, I also model inter-set

interactions and intra-set interactions.

• Finally, Chapter 6 concludes with a summary of our contributions and outlines

the future directions.

8

2 MODELS FOR GRAPH, SET AND SETS-OF-SETS

Representation learning with invariances is a challenge that exists in a variety of

problems, with the well-known examples of graph isomorphism and set permutations.

In this chapter, I provide some key definitions which describe our problem and data

input. I also review relevant literature on graph and set models, laying the foundations

for our developments in subsequent chapters. Specifically, in Chapter 3, I study graph

isomorphism. In Chapter 4 and 5, I develop models to handle permutation invariance

for sets and sets of sets.

2.1 Definitions

For our graph task, the input is a Graph Sequence. In order to define a Graph

Sequence, I first define a single graph.

Definition 1 (Graph with labels) Graph Gn = (V,En,Φn,Ψn) is simple (i.e.,

without loops or multiple edges) and heterogeneous (i.e., with labeled (typed) nodes/edges).

I denote the node and edge set of Gn by V (Gn) and E(Gn), respectively. Node and

edge labels of Gn are defined by functions Φn and Ψn, respectively, s.t. Φn : V → 2|A|,

for a set of node classes A, and Ψn : E → 2|R|, for a set of edge types R.

Definition 2 (Graph sequence) A graph sequence is a sequence of graphs with

labels ordered by timestamp, {Gt} with t ∈ [1, T]. The labels mapping Φ,Ψ is con-

sistent across the sequence of graphs. Consecutive graphs have common nodes, i.e.,

V i−1 ∩ V i 6= φ for i ∈ [2, T].

Definition 3 (Graph isomorphism) Graph G and H are isomorphic graphs if

there is a bijection f between the vertex sets of G and H such that any two ver-

9

tices u and v of G are adjacent in G if and only if f(u) and f(v) are adjacent in

H.

Definition 4 Set Input A set of n variables can be represented as a list of vectors.

I denote a set as a matrix X, and Xi ∈ Rd represents the i-th row of the matrix,

where i = 1, 2 . . . , n and d represents the number of dimensions of the variable. With

a slight abuse of notation, I shall use n to denote the number of rows of matrix X.

Definition 5 (Permutation) A permutation is a rearrangement of the elements of

set into a one-to-one correspondence with itself [18]. More specifically, for a set

with n elements, permutation can be denoted as π which is a bijection from integers

[1, 2, ..., n] which indicates the position of set element in the vector. A set X under

permutation π is donated as Xπ where the order of elements are rearranged according

to π . The number of permutations on a set of n elements is n!.

Definition 6 Set of Sets Input A set-of-sets (SoS) is a multiset whose elements are

themselves multisets (which will shall refer to as member sets). The multisets be-

longing to an SoS can have varying sizes. An SoS can be naturally represented as a

list of lists of vectors; in this work, I shall denote an SoS as a n ×m × d tensor X

whose i-th row Xi∗∗ corresponds to the i-th multiset, and Xij∗ denotes the j-th ele-

ment of the i-th multiset, which is itself a d-dimensional vector, d ≥ 1. With a slight

abuse of notation, I shall use n to denote the number of rows of tensor X and m the

number of columns of X. In particular, m is equal to the cardinality of the largest

constituent multiset; for the other multisets I pad their columns with a special null

symbol (e.g., “#”). In order to simplify the notations, if the third dimension of tensor

is ‘*’, it is omitted. For instance, Xi∗ indicates Xi∗∗, and Xij indicates Xij∗.

Definition 7 (Invariant Set Representation) A function f acting on set inputs

(i.e., matrices of variable dimensions) is an inductive set embedding if its output is

invariant under any permutation π of elements. Formally, for any n× d matrix X,

f(X) = f(Xπ), (2.1)

10

where Xπ denotes the n × d matrix with (i)-th entry Xi equal to Xπ(i) and π is a

permutation of the integers {1, . . . , n} (rows of X). f is inductive if it is applicable

to any set input X without any constraints on its dimensions or values.

Definition 8 (Invariant SoS Representation) A function f acting on SoS inputs

(i.e., tensor) is an inductive SoS embedding if its output is invariant under any

permutation φ of the member sets, as well as permutations π1, . . . , πn of the elements

in each member set. Formally, for any n×m× d tensor X,

f(X) = f(Xφ,πφ), (2.2)

where Xφ,πφ denotes the n×m×d tensor with (i, j)-th entry Xi,j,∗ equal to Xφ(i),πφ(i)(j),∗

and φ is a permutation of the integers {1, . . . , n} (rows of X), and {πi}ni=1 are per-

mutations of the integers {1, . . . ,m} (independent permutation of each column of X).

I note that the permutation πi of the columns of the i-row can be restricted to only

permute the non-null elements in each member set Xi∗.

2.2 Related work

2.2.1 Graphs

In what follows I classify the existing literature based on the main obstacles in

designing supervised learning methods for dynamic subgraph heterogeneous tasks:

(a) The varying sizes of the different node neighborhoods, (b) accounting for dis-

tinct nodes and edge labels in the neighborhood; (c) isomorphic-invariance of graph

representations (permutations of nodes in the adjacency matrix should not affect the

representation); (d) the graph evolution; (e) learns from a single graph and includes

the dependence structure of induced subgraphs that share edges and non-edges.

There are no existing approaches that can address all the above challenges. Ex-

isting approaches can be classified in the following categories:

(1) Compute canonical representations of the whole graph (e.g., kernel or em-

beddings). These methods require multiple examples of a whole graph (rather than

11

induced subgraphs). Examples include GraphNN [19], diffusion-convolution neural

networks [20], and graph kernels, such as Orsini et al.[21] and Yanardag and Vish-

wanathan [22, 23], which compare small graphs based on the existence or count of

small substructures such as shortest paths, graphlets, etc.. These whole-graph meth-

ods, however, are designed to classify small independent graphs, and fail to account

for the sample dependencies between multiple induced subgraphs that share edges and

non-edges. These whole-graph classification methods, collectively, address challenges

(a), (b), (c), and (d), but fail to account for (e).

(2) Compute canonical representations of small induced subgraphs of the original

graph, (e.g., PATCHY [24]) offers a convolutional neural network graph kernel that

only addresses challenges (b) and (c), but does not address (d) and (e), and needs

to pad features with zeros or arbitrarily cut neighbors from the feature vector, thus,

not truly addressing (a).

(3) Compute isomorphism-invariant metrics over the graph, such as most graph

kernels methods, various diffusions (e.g., node2vec [25], PCRW [26], PC [27], deep-

walk [28], LINE [29], DSSM [30], and deep convolutional networks for graph-structured

data [31, 32]), which address problems (a) and (c) but not (b), (d) (specially because

of edge labels), and (e).

(4) Perform a tensor factorization, (e.g., RESCAL [33] and extensions [34, 35]),

which addresses problems (a) and (b) but not (c), (d), and (e). These methods are

tailored specifically for the task of link prediction in heterogeneous graphs and are

widely used.

To the best of our knowledge, there does not exist supervised learning methods

designed to predict subgraph evolution. In Chapter 3, I will design a method for this

problem and it can address all the above challenges.

Other classical link prediction methods that can also be adapted to subgraph link

prediction tasks. These methods [36, 37] use a wide variety of edge features, including

pair-wise features such as Adamic-Adar score, or path counts, such as from PCRW.

12

Separately, collective inference procedures [38, 39, 40, 41], although traditionally

evaluated at the node and edge level, can also include SPNN as a baseline predictor

to be readily applied to dynamic subgraph tasks.

2.2.2 Sets

There exists plenty of work on learning set representations [4, 14, 15, 16, 17, 42, 43,

44, 45, 46, 47]. In particular, DeepSets [4] designs a deep neural network architecture

which embeds each element of the set individually, and then performs a simple pooling

operation such as sum/mean/max to aggregate these into an individual embedding,

latter passing the result through upper feedforward layers. Janossy pooling [15] pro-

vides a generalized framework for pooling operations on set. The key idea of Janossy

Pooling is that any permutation-invariant function could be expressed as the average

of a permutation-sensitive function applied to all permutations of the input. Since

any permutation-sensitive function can be applied in this framework, more complex

functions such as LSTM can be used to capture high-order relationship. This frame-

work shows promising results in a large variety of set applications, as well as more

complicated sets-of-sets applications [47]. Set transformer [17] provides a set model

based on self-attention which shows better performance. It aggregated pair-wise in-

teractions calculated based on covariance calculated by self-attention. Later I will

show theoretically and empirically that these models could capture long-range and

high-order dependence at the same time.

Besides proposing new models, there also exist works on evaluating existing mod-

els theoretically. Analysis [48] showed representation for set inputs could only be

achieved with a latent dimension at least the size of the maximum number of input

elements. The number of activation patterns [49] can be used to quantify the expres-

sive power of a model. [50] analyzed detecting the interaction between elements in

neural networks. These works laid a solid foundation to help us evaluating general set

13

models. Furthermore, none of the theoretical work has tapped the connection between

model performance and the computational graph of the neural network architecture.

Learning permutation-invariant functions also have direct impact on other re-

search fields such as graph mining [5, 6, 7, 51], point-cloud modeling [3, 52], natural

language processing [53, 54, 55] and problem reasoning [6]. The purpose of this work is

to offer a general framework to model permutation invariant functions for set-related

applications, instead of outperforming state-of-the-art approaches that are crafted

for specific applications. Our generalized approach provides flexibility and can be

tailored based on needs to adapt to various tasks.

2.2.3 Set of Sets

In many applications, the input examples are actually sets-of-sets, rather than

(plain) sets, and I argue that their hierarchical nature deserves special treatment in

modeling. This motivates us to move beyond (single-level) sequence models to hier-

archical ones when designing the neural network architecture (see Section 5.3 for de-

tails), and our experiments demonstrate that the hierarchical models yield significant

performance gains in practice. I do note that [56] have studied matrix-factorization

models for learning interactions across two sets (users and movies) in the specific

context of recommender systems. However, their Kronecker product–based approach

is transductive rather than inductive and designed for a very specific application,

whereas I are interested in general inductive embedding approaches for set-of-sets.

As with most recent works in the literature, I choose to parametrize the set-of-sets

permutation-invariant function using deep neural networks, thanks to their expres-

siveness as universal function approximators. Regarding the choice of neural network

architectures, I focus on recurrent neural networks (RNNs)—in particular, long short-

term memory (LSTM) networks. The choice is in contrast to that made by e.g., [43],

which focused on convolution-based approaches. As with many other works in the

literature [14, 15], I believe that sequence models are more appropriate for model-

14

ing variable-size inputs. In Section 5.4 I demonstrate empirically that the proposed

LSTM-based models lead to improved performance over the CNN-based model of [43]

across a variety of tasks and the less specialized use of LSTMs in [15]. I further in-

vestigate attention-based mechanisms for hierarchical LSTM models to enhance their

capability of capturing long-range dependencies. I note that similar hierarchical-

attention architectures have been considered for document classification [57] in the

natural language processing literature, but I adapt it to modeling SoS functions in

order to preserve permutation-invariance.

Methods for learning permutation-invariant functions on set structures have direct

implications to relational learning and graph mining (e.g., [5, 6, 7, 51]), point-cloud

modeling (e.g., [3, 52]) and scene understanding [8, 12] in computer vision, among

other applications. While I have conducted experiments on subgraph hyperlink pre-

diction and point-cloud classification tasks to evaluate the performance of our pro-

posed approaches, I emphasize that (as in e.g., [4, 15, 43]) the aim of our work is to

provide a general characterization and framework for modeling functions with sets-of-

sets inputs, rather than outperforming state-of-the-art approaches that are crafted for

specific applications. Importantly, the generality of our proposed approach enables

practitioners the flexibility of tailoring it to their specific tasks at hand.

15

3 SUBGRAPH PATTERN NEURAL NETWORK

3.1 Introduction

Learning predictive models of heterogeneous relational and network data is a fun-

damental task in machine learning and data mining [25, 26, 35, 41, 58]. Much of

the work in heterogeneous networks (graphs with node and edge labels) has focused

on developing methods for label prediction or single link prediction. There has been

relatively little development in methods that make joint predictions over larger sub-

structures (e.g., induced k-node subgraphs). Recent research has shown rich higher-

order organization of such networks [59, 60] and complex subgraph evolution patterns

within larger graphs [61]. Applications range from predicting group activity on so-

cial networks (e.g., online social network ad revenues rely heavily on user activity),

computational social science (e.g., predicting the dynamics of groups and their so-

cial relationships), relational learning (e.g., find missing and predicting future joint

relationships in knowledge graphs).

The main challenge in learning a model to predict the evolution of labeled sub-

graphs is to jointly account for the induced subgraph dependencies that emerge from

subgraphs sharing edges. Unlike node and edge prediction tasks, it is not clear how

to describe an approximate model that can account for these dependencies. A va-

riety of recent methods have developed heuristics to encode joint label and struc-

ture information into low dimensional node or edge embeddings, but it is unclear

how these ad-hoc methods can properly address the induced subgraph dependen-

cies [20, 25, 26, 33, 35, 36, 58, 62]. Our empirical results show that these methods

tend to perform poorly in induced subgraph prediction tasks.

The task of predicting induced subgraph evolution requires an approach that can

take into account higher-order dependencies between the induced subgraphs (due to

16

their shared edges and non-edges1). Our two main contributions are: (1) I target

the evolution of larger graph structures than nodes and edges, which, to the best of

our knowledge, has never been focused before. Traditional link prediction tasks are

simpler special cases of our task.

(2) I incorporate the unavoidable dependencies within the training observations of

induced subgraphs into both the input features and the model architecture itself via

high-order dependencies. I denote our model architecture a Subgraph Pattern Neural

Network (SPNN) and show that its strength is due to a representation that is invari-

ant to isomorphisms and varying local neighborhood sizes, can also take node/edge

labels into account, and which facilitates inductive reasoning.

SPNN is a discriminative feedforward neural network with hidden layers that

represent the dependent subgraph patterns observed in the training data. The input

features of SPNN extend the definition of induced isomorphism density [63] to a

local graph neighborhood in a way that accounts for joint edges and non-edges in

the induced subgraphs. Moreover, SPNN is inductive (it can be applied to unseen

portions of the graph), and is isomorphic-invariant, such the learned model is invariant

to node permutations. I also show that SPNN learns to predict using an interpretable

neural network structure.

SPNN finds a variety of major industrial and scientific applications:

1. Predicting group activity: Facebook’s $9.6 billion-dollar ad revenue in 2017

Q2 depends entirely on user activity. In 4 years, MySpace went from a $12B

company with 300M active users to a $35M price with mostly inactive users in

2011. Users on social media are active because of the activity of their friends

and followers (known as the network effect in economic theory). Our SPNN

model can be used to predict of group activity levels.

1A non-edge marks the absence of an edge

17

2. Computational social sciences: SPNN can also be used to predict the probability

that a group of friends dissolves, and the factors that predict the dissolution.

3. Augment NLP/Vision methods: SPNN can help predict the type of posted

image in social networks (node label), or the topic of a text (edge label) by

looking at it as a group event, rather than each individual user in isolation.

4. Relational learning: SPNN can learn relationships between events. Improve,

fix, and predict dynamics in knowledge graphs.

3.2 Heterogeneous Subgraph Prediction

In what follows I define the heterogeneous pattern prediction task and present a

classification approach that uses a neural network classifier whose structure is based

on connected induced subgraphs. In what follows, to avoid confusion with work on

“learning low dimensional embeddings,” I avoid using the correct-graph theoretic

term graph embeddings [64] in favor of the less standard term induced subgraphs of a

smaller graph pattern into a larger graph.

Definition 3.2.1 (Induced Labeled Subgraphs)

Let F and G be two arbitrary heterogeneous graphs such that |V (F)| ≤ |V (G)|. An

induced subgraph of F into G is an adjacency preserving injective map γF : V (F)→
V (G) s.t. for all pairs of vertices i, j ∈ V (F), the pair (γF (i), γF (j)) ∈ E(G) iff

(i, j) ∈ E(F), and all the corresponding node and edge labels of i and j match,

i.e., Φ(i) = Φ(γF (i)), Φ(j) = Φ(γF (j)), and, if (i, j) ∈ E(F) =⇒ Ψ((i, j)) =

Ψ((γF (i), γF (j))).

In the remainder of the paper, I consider these “F”s as small k-node graphs and refer

to them as subgraph patterns.

Definition 3.2.2 (Task Definition)

Subgraph Patterns of Interest: The k-node subgraph patterns of interest are

18

Fk = {F1, . . . , Fc}, where c ≥ 1, |V (Fi)| = k, ∀i.
Labels: In order to simplify the classification task, I further partition these patterns

into sets with r distinct “classes”, which I denote Yk1 , . . . ,Ykr (as shown in Figure 3.1).

Training data: T k1 and T k2 are the set of all k-node induced subgraphs of patterns

Fk in G1 and G2, respectively, as described in Definition 3.2.1. For each induced

subgraph U ∈ T k1 , I define its label y2(U) by looking at the pattern these same nodes

form in T k2 , where y2(U) = r, if the nodes V (U) form an induced subgraph with

pattern F ∈ Ykr . Note that the patterns in Fk must encompass all possible evolution

of the induced subgraphs in T k1 . The training data is

Dtrain = {(U, y2(U)) : U ∈ T k1 }.

Examples (Figure 3.1, best seen in color): The induced subgraph U ∈ T 3
1 shown

in the blue oval, with vertices V (U) = {V2, T3, A2} (a venue, a topic, an author),

has pattern F = ∈ F3. The label of U is y2(U) = 1 as the vertices V (U) form

pattern F = ∈ Y3
1 in G2. The induced subgraph U ′ ∈ T 3

1 shown in the red oval,

V (U ′) = {V1, T1, A1}, has pattern in G1 and pattern in G2, thus, y2(U ′) = 2.

Prediction Task: Given the induced subgraphs in T k2 , our goal is to predict their

corresponding pattern in G3. These predicted patterns must be in Fk.

Traditional link prediction tasks [65] can be seen as special instances of the task in

Definition 3.2.2, where k = 2 and the target set of patterns Y2
1 consist of edges (i.e.,

2-node connected induced subgraphs) and non-edges Y2
2 . In the single link prediction

case, the focus is on predicting individual links such as friendship links in Facebook,

citation links in DBLP, or links in knowledge bases such as WordNet.

Obtaining Training Data from Large Networks. Let T kt , be all k-node induced

subgraphs with patterns Fk over Gt. Our training data consists of T k1 and the future

patterns of these induced subgraphs in T k2 , both which can be very large even for

moderately small networks. I reduce computational resources needed to generate the

training data by filtering the data of T k1 as follows.

19

V2

V1 T1

T2

A2

G1

T3

V2

V1 T1

A1T2

A2

T3

G2

A1

V2 A2

T3

A1

V2

T1

T3

A1

V2 A2

T3

A1

V2

T2

T3

A1

V2

T1

A2

A1

V2 A2

T3

Contained

Neighbors

�(U, F , G1)
U

�
H

(U, F , G1)�
H

(U, F , G1) �
H

(U, F , G1) �
H

(U, F , G1)

V T

A

V T

AV T

A

V T

A

V T

A

V T

A

V T

A

V T

A

Y3
1

Patterns of Interest

Output: Softmax
outputs class yt+1(U)
of k-node graph
embedding
U 2 T̃ k

t

VV TT

AAAA

VV TT

AATT

. . .

�
H

(U
,F

,G
1)

�
H

(U
,F

,G
1)

�
H

(U
,F

,G
1)

�
H

(U
,F

,G
1)

Pattern Layer: k + � graph patterns
that could have output pattern; adds � vertices to
pattern in top layer

Input features: Pooled local induced
isomorphism densities of
graph embeddings of hidden layer pattern

F F

{

Vi Ti

Ai

U =

(3) Features: Induced Isomorphism Density for

�(U, F , Gt) around node {A2, V2, T3} �(U, F , Gt)

{Gate: �(U, F⇤, Gt) is an indicator function
that is one i↵ there are any k + � embeddings
of pattern F⇤ in Gt containing U

.

{

yt+1(U)

{
(3) Features: Induced Isomorphism Density for

�(U, F , Gt) around node {A2, V2, T3}

(1) Training Data: the evolution from G1 to G2

(2) Training labels: y3
1 and y3

2

(4) SPNN model

Figure 3.1.: (1) Illustration of the training in a citation network with (A)uthors,

(T)opics, (V)enues. At the top is the graph evolution G1 to G2, whose induced

subgraphs are used as training data to predict the evolution of subgraphs in G2 to

G3; below Y3 shows 3-node subgraph patterns partitioned into two classes. (2) Labels

for subgraph evolution. The appearance of two links are considered as label y3
1. All

other subgraphs are assigned label y3
2. (3) Features for U = V2. A2, T3 under the

patterns (4) SPNN model.

I construct a training dataset T̃ k1 ⊆ T k1 such that a k-node induced subgraph

U ∈ T̃ k1 must belong to a larger (k + δ)-node connected induced subgraph in G1,

δ ≥ 1. This constraint facilitates the identification of more relevant disconnected

subgraphs of size k without having to fully enumerate all the possibilities. By relevant,

I mean that those k-node disconnected subgraphs are overwhelmingly more likely to

20

evolve into connected patterns because the k nodes have shortest paths of length up

to (k+ δ− 1) hops in G1. Thus, the choice of δ is not arbitrary: I choose δ such that

most of training examples with the labels I are most interested in predicting (e.g.,

Class 1 in Figure 3.1) are still in T̃ k1 .

This filtering procedure also helps us quickly sample the training data from G1

using a fast connected subgraph sampling method with known sampling bias (such

that the bias can be removed) [66].

(SPNN) Subgraph-Pattern Neural Network

Subgraph-Pattern Neural Network (SPNN) is our proposed classifier. SPNN is

a 3-layer gated neural network with a sparse structure generated from the training

data in a pre-processing step. The second neural network layer, which we call the

Pattern Layer, is interpretable as it represents the (k + δ)-node patterns in G1 that

were found while collecting the training data, described next. The neural network

also has gates to deactivate the backpropagation of errors to the hidden units as we

will describe later.

Pattern Layer. In the example of Figure 3.1, the 3-node training example of in-

duced subgraph U in G1, V (U) = {A2, V2, T3} (blue oval), belongs to a connected

4-node subgraph ({A1, A2, V2, T3}, the dotted oval) that matches the pattern F

represented in Figure 3.1(3). More generally, the set of all such patterns is

F�(k+δ)
t=1 (T kt=1) = {F� : ∀F� ∈ P(k+δ)

(conn) s.t. ∃U ∈ T k1 ,

∃R ∈ Ind(F�, G1), and R ∈ T (k+δ)
1 (U,F�)}, δ ≥ 0

(3.1)

where the square � indicates a connected subgraph pattern (e.g., , . . . ,), P(k+δ)
(conn)

is the set of all (k+ δ)−node connected graph patterns containing all possible node

21

and edge labels, Ind(F,G) denotes the set of induced subgraphs of F into a graph G,

and for U ∈ T̃ k1 we define

T
(k+δ)
1 (U, F�) = {(k + δ)-node induced connected

subgraphs of F� at G1 having all nodes of U}.
(3.2)

For instance, T
(k+δ)
1 (U, F) with V (U) = {V2, A2, T3} in Figure 3.1 (3). In practice,

we also mark the nodes of U ∈ T̃ k1 that appear in the (k + δ)-node patterns with

unique special types, so we can distinguish their structural role in the larger (k + δ)-

node subgraph.

Figure 3.1 (4) illustrates the SPNN architecture using the task illustrated in Fig-

ure 3.1 (1) as an example. For instance, we want to jointly predict whether an author

A will publish at a venue V and in topic T at G2 given such author did not publish

at venue V or topic T at G1.

Pattern Layer & Gates. The hidden layer of SPNN represents F�(k+δ) := {F�1 , F�2 , . . .},
all observed (k + δ)-node patterns in the training data T̃ k1 . This procedure only

eliminates patterns that are not observed in the training data. For example, in the il-

lustration of Figure 3.1, δ = 1, there would be no 4-node patterns of a fully connected

graph in F�(3+1) as there are no fully connected 4-node graphs in G1.

For the training example U ∈ T̃ kt , it may be the case that pattern F� ∈ F�(k+δ)
t

has no induced subgraph on Gt that contains the example U , i.e., T
(k+δ)
t (U, F�) = ∅.

If this happens, we should not backpropagate the error of the hidden unit associ-

ated with F�. For instance, for δ = 1 in the illustration of Figure 3.1, the training

data induced subgraph U ∈ T̃ 3
t with vertices V (U) = {A1, T1, V1} will only back-

propagate the error to the hidden units matching the patterns of induced subgraphs

{A1, T1, V1, V2} and {A1, T1, V1, A2}. We use a gate function

∆(U,F�, Gt) = 1{T (k+δ)
t (U,F�) 6= ∅}, (3.3)

with T
(k+δ)
t as defined in Eq.(3.2). The gate ∆(U, F�, Gt) ensures we are only training

the neural network unit of F� when the induced subgraph example U applies to that

unit.

22

Our pattern layer has an interpretable definition: each pattern neuron represents

a larger subgraph pattern containing the target subgraph. If a specific neuron has a

significant impact activating the output, we know that its corresponding pattern is

important in the predictions.

Input Features. In what follows we define the features given to the input layers

of SPNN . Our features need the definition of a local induced isomorphism density

around the induced subgraph of pattern F� on Gt, with F� ∈ F�(k+δ)
t .

Definition 3.2.3 (Local induced isomorphism density) Let R be a induced sub-

graph of G and let F be a subgraph pattern s.t. |V (G)| > |V (F)| ≥ |V (R)|. The local

induced isomorphism density, tlocal, rooted at R with subgraph pattern F is the pro-

portion of induced subgraphs of F at G in a ball of radius d from the nodes of V (R).

More precisely, tlocal(R,F,G, d) ∝ |LocInd(R,F,G, d)| , where LocInd(R,F,G, d) =

{R′ ∈ Ind(F,G) : |V (R′) ∪ V (R)| − |V (R′) ∩ V (R)|≤d}.

The quantity tlocal is the proportion of induced subgraphs of pattern F at G con-

strained to the set of vertices that are up to d hops away from the set of nodes V (R).

If G has a small diameter, d should be small.

We now use tlocal to define the input features for an example U ∈ T̃ kt . For each

F� ∈ F�(k+δ)
t , there will be a vector φ(U, F�, Gt) of dimension mF� (to be defined

below), where

(φ(U,F�, Gt))i := ΓHi(U,F
�, Gt)

=
∑

R∈T (k+δ)
t (U,F�)

tlocal(R,Hi, Gt, d), Hi ∈ P(k+δ),
(3.4)

where, as before, P(k+δ)
(conn) is the set of all possible (k+δ)-node connected patterns. Each

input feature ΓH is a pooled value of tlocal that counts the density of induced subgraphs

of a (k+δ)-node pattern H around a ball of radius d from the vertices V (R), where R

is a (k+δ)-node connected induced subgraph that contains the example U . Thus, ΓH

sums the densities of induced subgraphs that can have up to d+δ nodes different from

23

U . We only include ΓH in the vector φ(U, F�, Gt) if ∃U ∈ T̃ kt s.t. ΓH(U, F�, Gt) > 0.

As mF� is the number of non-zero values of Γ, then mF� ≤ |P(k+δ)
(conn)|.

To illustrate the Γ metric, consider pattern F illustrated in Figure 3.1 (1) and

the training example U as the induced subgraph {A2, V2, T3} in G1 in Figure 3.1

(3). U is contained in the connected 4-node subgraph with V (R) = {A2, V2, T3, A1}.
The pattern H has Γ

H
(U, F ,Gt) = 1/4 as there is only one induced subgraph

{(T2, V2), (V2, A1), (A1, T1), (T1, V2)} with pattern H out of the 4 induced 4-node

subgraphs that are within a radius of d = 1 of the nodes V (R).

The SPNN Classifier. We now put all the different components together for a

r-class classification task. Consider the class yt+1(U) as a one-of-K encoding vector.

For a k-node induced subgraph U of Gt, the probability nodes V (U) form an induced

subgraph in Gt+1 with a pattern of class i, for 1 ≤ i ≤ r, is

p(yt+1(U);W(1),W(2),b(1),b(2))i

= softmax((W(1)ht(U ;W(2),b(2)) + b(1))i) ,

where b(1) ∈ Rd is the bias of the output layer and W(1) ∈ Rd×|F�(k+δ)
t | are the linear

weights of the pattern layer. The input to the pattern layer is

ht(U ;W(2),b(2)) = (∆(U,F�1 , Gt) · σ(

(W
(2)
1)Tφ(U,F�1 , Gt)),∆(U,F�2 , Gt) · σ(

(W
(2)
2)Tφ(U,F�2 , Gt)), . . .) + b(2) ,

where for each unit associated with F�j , j = 1, 2, . . ., we have b
(2)
j ∈ R as the

bias and W
(2)
j as the classifier weights, and σ is an activation function (our empirical

results use tanh), the feature vector φ(U, F�j , Gt) is as defined in Eq.(3.4), and ∆ is

the 0–1 gate function defined in Eq. (3.3). Our optimization objective is maximizing

the log-likelihood

arg max
W(1),W(2),b(1),b(2)

∑

U∈T̃ kt

(yt+1(U))T log p(yt+1(U);

W(1),W(2),b(1),b(2)).

(3.5)

24

The parameters W(1), W(2), b(1), and b(2) are learned from Eq.(3.5) via stochastic

gradient descent with early stopping. In what follows we show SPNN learns the same

parameters irrespective of graph isomorphisms (see Supplemental Material for proof).

Theorem 3.2.1 SPNN is isomorphic invariant. That is, given two graph sequences

G1, G2 and G′1, G
′
2, where Gn is isomorphic to G′n, then the learned parameters Ŵ(1),

Ŵ(2), b(1), b(2) are exactly the same for the graph sequences (G1, G2) and (G′1, G
′
2)

(assuming the same random seed).

Proof [Proof of Theorem 3.2.1] In this proof I show that SPNN ’s input features, the

training data, and the convolutional architecture all have a canonical representation

invariant to isomorphisms. To this end, I show that: (a) the features of each training

example U ∈ T̃ kt have a canonical representation invariant to isomorphisms; (b)

the training data T̃ kt used in our stochastic gradient descent algorithm also has a

canonical representation; and finally, (c) the neural network structure also has a

canonical representation invariant to isomorphisms.

(a) The features of each training example U ∈ T̃ kt are the vectors φ(U, F�, Gt)

introduced in Eq.(3.4) for different patterns F� ∈ P(k+δ)
(conn) that appear in the train-

ing data. All I need to show is that vector φ has a canonical order invariant to

graph isomorphisms. Observing Eq.(3.4), the i-th element of φ, (φ(U, F�, Gt))i, has a

canonical order as I can impose a canonical order on P(k+δ)
(conn) (e.g., lexicographic on the

edges [67]). The value inside (φ(U, F�, Gt))i is also clearly invariant to isomorphisms

as it is the isomorphism density.

(b) The training data T̃ kt are subgraphs of Gt and, thus, also have a canonical

representation via lexicographical ordering [67].

(c) As P(k+δ)
(conn) has a canonical order, so does the hidden layer of SPNN . Moreover,

the Γ’s are similarly ordered.

The induced subgraphs of the training examples of the two isomorphic graphs G1

and G′1 have the same class labels, as the class labels are by definition isomorphic

invariant. As there are canonical orderings of the data, features, class labels, and

25

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SPNN
EdgeInfo
A/A
PC
PCRW
Node2Vec
Rescal
HolE
Patchy
GraphNN

(a) DBLP

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SPNN
EdgeInfo
A/A
PC
PCRW
Node2Vec
Rescal
HolE
Patchy
GraphNN

(b) Friendster Activity

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SPNN
EdgeInfo
A/A
PC
PCRW
Node2Vec
Rescal
HolE
Patchy
GraphNN

(c) Friendster Structure

Figure 3.2.: ROC curves (True Pos × False Pos): DBLP and Friendster tasks.

model structure that are invariant to isomorphic transformations of the graphs, and

the stochastic gradient descent has the same random seed for all graphs, I conclude

that SPNN must learn the same parameters.

3.2.1 Relationship with Convolutional Neural Networks

Images are lattices, trivial topologies, while general graphs are complex. Funda-

mentally, a CNN computes the output of various filters over local neighborhoods. In

SPNN , the filter is the pattern, which maps the local neighborhood (within d + δ

hops away from the target subgraph) into a single value. The distinct patterns act on

overlapping regions of the neighborhood, but the amount of overlap is nontrivial for

non-lattices. At CNNs, pooling at the upper layers often act as a rotation-invariance

heuristic. SPNN upper layers are isomorphic-invariant by construction and SPNN

performs pooling at the inputs. Moreover, similar to CNNs, SPNN can be aug-

mented by multiple layers of fully connected units between the pattern layer and the

predicted target.

26

100 200 500 1000

0.
2

0.
4

0.
6

0.
8

1.
0

SPNN
EdgeInfo
A/A
PC
PCRW
Node2Vec
Rescal
Hole
Patchy
GraphNN

(a) DBLP

100 500 2000

0.
1

0.
3

0.
5

0.
7

SPNN
EdgeInfo
A/A
PC
PCRW
Node2Vec
Rescal
Hole
Pachy
GraphNN

(b) Friendster Activity

100 500 2000

0.
1

0.
3

0.
5

0.
7

SPNN
EdgeInfo
A/A
PC
PCRW
Node2Vec
Rescal
Hole
Pachy
GraphNN

(c) Friendster Structure

Figure 3.3.: Learning curves (AUC×Training Size) w/shaded 95% confidence intervals.

3.3 Results

In this section we test the efficacy of SPNN , comparing it to other existing

methods in the literature. We adapt these competing methods to the induced dynamic

subgraph prediction task, as they are not designed for such tasks.

Our evaluation shows SPNN outperforms nine state-of-the-art methods in three

real-world dynamic tasks. We show that the learned SPNN model weights can be

used to draw insights into the predictions. We also evaluate SPNN across a variety

of other synthetic dynamic tasks using static graphs (Facebook and WordNet), all

reported in the appendix.

In the appendix, we also show that the architecture of SPNN also outperforms fully

connected neural network layers for small training samples (both using the unique

induced subgraph input features designed for SPNN , which explicitly model the

subgraph dependencies). SPNN and fully connected layers have the same performance

over larger training datasets.

3.3.1 Empirical Results

Datasets. We use two representative heterogeneous graph datasets with temporal

information. DBLP [68] contains scientific papers in four related areas (AI, DB, DM,

IR) with 14,376 papers, 14,475 authors, 8,920 topics, and 20 venues. We organize

27

DBLP Dataset
T

A A

VV T

A T

V T

A A

V T

A T

V T

A T

V T

A T

V T

A V

V T

A A

V T

A A

2.2 1.4
-2.9-1.5

Predicts existence of joint links

missing link observed link

Predicts absence of joint links

Figure 3.4.: (DBLP task) Pattern layer weight difference between Class 1 (whether both

dashed links appear at time t + 1) and Class 2 (everything else) for pattern F�j . Pattern

F�4 , when the author has published in a topic related to the venue, strongly predicts the

appearance of both links. Pattern F�2 , when a co-author has published at the venue and

topic of interest but not the author, strongly predicts the absence of the joint links.

the dataset into authors, venues, and topics. Published papers represent links, for

instance, two authors have a link at Gn if they have co-authored a paper at time step

n.

Friendster is a social network where user can post messages on each other’s home-

pages. This dataset contains 14 millions of nodes and 75 million messages. Directed

edges in this dynamic graph mark users writing on each other’s message walls. The

heterogeneous graph includes hometown, current locations, college, interests, and

messages sent between users.

Subgraph Pattern Prediction Tasks.

(a) DBLP task is to predict the evolution of 3-node subgraphs: whether an author

will publish in a venue and a topic that the author did not publish in the

previous timestamp.

(b) Friendster Activity task predicts the increase in activity in weighted 4-node

subgraphs: whether the total number of messages sent between four users,

which are connected in the current time interval (G2), increases in the next

time interval (G3).

28

(c) Friendster Structure task predicts the evolution of 4-node subgraphs: whether

four friends who were weakly connected by three edges in the previous times-

tamp (G2) will not send any messages in the next time stamp (i.e., be discon-

nected in G3).

To learn a predictive model of subgraph evolution, we divide the data into three

temporal graphs G1, G2, G3. The training set T 3
1 comprises 3-node or 4-node sub-

graphs from G1 with class labels y determined from G2, and the test set T 3
2 comprises

subgraphs from G2 with class labels from G3. Since DBLP is a dynamic network with

timestamps, we construct G1 from the data in 2003–2004, G2 from 2005–2006, and

G3 from 2007–2008. For Friendster, we construct G1 from data in Jan 2007–April

2007. G2 from May 2007–Aug 2007, and G3 from Sep 2007–Dec 2007. We selected

year 2007 because it is the most active time period for Friendster.

Baselines. We compare our approach to the nine methods discussed in Related

Work. Five methods use isomorphic-invariant measures over the graph: (i) AA:

Adamic–Adar score only [69]; (ii) EdgeInfo: Uses all edge features listed in [37]; (iii)

PC: Path counts (a.k.a. metapaths) [27]; (iv) PCRW: Path constrained random walk

[26]; (v) Node2Vec: Node embedding [25]. Two methods perform tensor factoriza-

tions: (vi) Rescal: Rescal embedding [33]; (vii) HolE: Holographic embedding [35].

One method computes canonical representations of small induced subgraphs of the

original graph; (viii) Patchy: Patchy CNN graph kernel [24]; (ix) GraphNN: Em-

bedding Mean-Field Inference [19].

The above baselines, except Patchy and GraphNN, are originally intended to

predict single missing links rather than make joint link predictions. We consider two

different variants of the methods to apply the baselines to our joint link prediction

tasks. The Independent approach trains separate classifiers, one for each link inde-

pendently, and then combines the independent predictions into a joint prediction. The

Joint approach concatenates the features of the multiple links into a single subgraph

feature, then uses a classifier over the subgraph feature to make joint link predictions.

29

Moreover, these baselines, which are not developed for subgraph evolution tasks,

generally achieve very poor predictive performance in a real temporal task that uses

graphs G1 and G2 to predict G3. Consider, for instance, the two distinct embeddings

that Node2Vec, Rescal, and HolE assign to same nodes in G1 and G2 due to

changes in the graph topology between G1 and G2. In order to use Node2Vec,

Rescal, and HolE to predict links in dynamic graphs, we first learn node embeddings

over G1 and train a Multilayer Perceptron to predict links in G2. Using this trained

classifier, we again use the node embeddings of G1 to predict the new links in G3,

and this improves their classification performance.

Implementation. We implement SPNN in Theano. The loss function is the neg-

ative log likelihood plus L1 and L2 regularization penalties over the parameters,

both with regularization penalty 0.001. We train SPNN using stochastic gradi-

ent descent over a maximum of 30000 epochs and learning rate 0.01. 20% of the

training examples are separated as validation for early stopping. All the data has

the same amount of positive and negative examples. Source code is available at

https://github.com/PurdueMINDS/SPNN.

Comparison to Baselines. Figure 3.2a-c shows the ROC curves of SPNN and

baselines to predict balanced classes. We use 1000 induced subgraphs for training

and 2000 induced subgraphs for testing (in all DBLP, Friendster Activity and Friend-

ster Structure tasks). Since the testing sets have the same number of positive and

negative examples, AUC scores are meaninful metrics to compare the models. SPNN

outperforms all baselines in all tasks. Figure 3.3 shows the learning curves where

training set sizes vary from 100 to 2000 subgraphs. Note that SPNN consistently

achieves the best AUC scores. We summarize our results in Table 3.1, where we see

that SPNN has significantly better AUC scores than the baselines over all tasks and

datasets.

Table 3.1 also compares the performance of the Independent and Joint predic-

tion approaches. Most methods show similar performance in both their Independent

30

and Joint variants. This is likely due to the fact that the pair-wise similarity methods

model link formation independently. Thus, the joint representation makes no differ-

ence in the two approaches. For low-rank decomposition methods (such as Rescal and

HolE), we speculate that this is because edges are conditionally independent given

the model, and, thus, they are unable to learn good low-dimensional embeddings for

subgraph tasks where missing edges are dependent given the model.

Finally, Table 3.2 shows the wall-clock execution times of SPNN against the base-

lines HolE, Rescal, and Node2Vec. The server is an Intel E5 2.60GHz CPU with 512

GB of memory. SPNN is orders of magnitude faster than HolE and Rescal and one

order of magnitude faster than Node2Vec in the three tasks. Training SPNN takes

around 90 seconds to sample and construct features for four-node subgraphs in DBLP,

and 9 minutes for five-node subgraphs in Friendster. The significant difference in ex-

ecution time is rooted in how long it takes to collect the induced subgraphs to train

our model. For the relatively small two-year-sliced of DBLP, we enumerate all pos-

sible subgraphs and sample 1000 from them. For Friendster Activity and Friendster

Structure tasks, we use the connected induced subgraph sampling method of Wang

et al. [66] with an added bias to sample induced subgraphs of interest. In the worst

case, learning SPNN takes O(h|Y||A|k|R|k2) time per iteration per training example,

where h = | ∪n Pk+δ
n (T (sample)

n)| is the number of subgraph patterns in the pattern

layer, |Y| is the number of distinct patterns in subgraph classes, |A| is the number of

node classes, and |R| is the number of edge classes.

Interpreting SPNN results. Unlike most link prediction methods, SPNN ’s pa-

rameters are interpretable so that we can easily make sense of the predictions. Fig-

ure 3.4 shows the weight difference W
(2)
1 (j)−W (2)

2 (j) in SPNN ’s pattern layer between

Class 1 and Class 2 for patterns F�j in the DBLP task. Large positive values indi-

cate subgraph patterns that encourage the appearance of both dotted links while

large negative values indicate patterns that discourage the appearance of both dotted

links. Figure 3.4 caption details the examples of patterns F�4 and F�2 .

31

Link prediction on synthetic datasets Besides the datasets with sequential

information like DBLP and Friendster, I also test our proposed method on other

famous heterogeneous datasets.

Facebook is a sample of the Facebook users from one university. The dataset con-

tains 75,000 nodes and 8 million links. The heterogeneous graph includes friendship

connections, user groups, political and religious views. WordNet is a knowledge

100 200 500 1000

0.
3

0.
5

0.
7

0.
9

SPNN
Subgraph+MLP
Subgraph+LR

(a) DBLP

100 200 500 1000

0.
2

0.
4

0.
6

0.
8

1.
0

SPNN
Subgraph+MLP
Subgraph+LR

(b) Facebook

100 200 500 1000

0.
2

0.
4

0.
6

0.
8

1.
0

SPNN
Subgraph+MLP
Subgraph+LR

(c) WordNet

Figure 3.5.: Sequence Graph Learning curves (AUC×Training Size) compared to logistic

regression and MLP (w/shaded 95% conf. intv.).

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SPNN
EdgeInfo
A/A
PC
PCRW
Node2Vec
Rescal
HolE
Patchy
GraphNN

(a) Facebook

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SPNN
EdgeInfo
A/A
PC
PCRW
Node2Vec
Rescal
HolE
Patchy
GraphNN

(b) WordNet

Figure 3.6.: ROC curves (True Pos × False Pos): Facebook and WordNet tasks.

32

graph that groups words into synonyms and provides lexical relationships between

words. The WN18 dataset is a subset of WordNet, containing 40,943 entities, 18

relation types, and 151,442 triplets.

As discussed in Results Section, in order to learn a predictive model of subgraph

evolution, I divide the data into three temporal graphs G1, G2, G3. The Facebook and

WordNet graphs are not dynamic, so I set G3 to be the full network, and then ran-

domly remove the links from 10% of the subgraphs in Figure 3.7 (1)-(2) to construct

G2. Another 10% are removed from G2 to construct G1.

Figure 3.6a-b shows the ROC curves of SPNN and the baselines with 1000 train-

ing induced subgraphs and 2000 test induced subgraphs for Facebook and WordNet.

SPNN outperforms all baselines in all tasks. Figure 3.8 shows the learning curves

where training set sizes vary from 100 to 2000 subgraphs. Note that SPNN con-

sistently achieves the best AUC scores. I summarize our results in first two rows

of Table 3.3, where I see that SPNN has significantly better AUC scores than the

baselines over all tasks and datasets.

P PV

P

FB
Two Persons

become friends,
one forms Political View

WordNet
Three words have_hyponym and
_derivationally_related
_from relationship

_hyponym

(1) (2)

friends hold _derivationally
_related_form

Figure 3.7.: Facebook and WordNet Prediction tasks

Understanding Performance Gains. To measure both the effect of (a) our in-

duced isomorphism density features and (b) our sparse neural network architecture I

compare SPNN against a logistic regression with the same input features as SPNN

. The L2 regularized logistic regression verifies two things: (a) whether the deep ar-

chitecture of SPNN is useful for our prediction task and (b) whether the induced

isomorphism density features are more informative for our tasks than the Node2Vec,

33

100 200 500 1000

0.
2

0.
4

0.
6

0.
8

1.
0

SPNN
EdgeInfo
A/A
PC
PCRW
Node2Vec
Rescal
Hole
Patchy

(a) Facebook

100 200 500 1000

0.
2

0.
4

0.
6

0.
8

1.
0

SPNN
EdgeInfo
A/A
PC
PCRW
Node2Vec
Rescal
Hole
Patchy

(b) WordNet

Figure 3.8.: Learning curves (AUC×Training Size) w/shaded 95% confidence intervals for

dynamic Facebook and WordNet.

PCRW, Path Counts, and Edge features. The learning curves in Figure 3.5 show both

(i) the benefit of one extra layer in the neural network and (ii) the gain in our features

by contrasting the logistic regression against the learning curves of Figure 3.8.

The multi-layer perceptron (MLP) and SPNN differ in that MLP’s input layer

and hidden layer are fully connected. The MLP will help us test whether SPNN ’s

sparse architecture is a good regularizer. The learning curves in Figure 3.5 show that

SPNN outperforms MLP in majority cases with rare cases which have similar but not

worse performance. This shows that the SPNN sparse architecture is indeed a good

regularizer for the joint link prediction problem.

Subgraph prediction in static graphs. The experiments in Results Section has

showed that our proposed method outperforms the state of the art in subgraph predic-

tion on dynamic graphs. Our method can also predict missing links in static graphs

such as Facebook and WordNet datasets without timestamps. 50% of the edges which

belong to the two specified edge types in subgraph tasks shown in Figure 3.7 are re-

moved randomly. To obtain positive examples, I sample or enumerate 4-node induced

34

100 200 500 1000

0.
2

0.
4

0.
6

0.
8

1.
0

SPNN
EdgeInfo
A/A
PC
PCRW
Node2Vec
Rescal
HolE
Patchy

(a) Facebook

100 200 500 1000

0.
2

0.
4

0.
6

0.
8

1.
0

SPNN
EdgeInfo
A/A
PC
PCRW
Node2Vec
Rescal
HolE
Patchy

(b) WordNet

Figure 3.9.: Learning curves (AUC×Training Size) of SPNN against competing meth-

ods in Static Graph (w/shaded 95% conf. intv.).

35

100 500 2000 10000

0.
2

0.
4

0.
6

0.
8

1.
0

SPNN
Subgraph+MLP
Subgraph+LR

(a) Facebook

100 200 500 10000.
90

0.
94

0.
98

SPNN
Subgraph+MLP
Subgraph+LR

(b) WordNet

Figure 3.10.: Learning curves comparing SPNN to logistic regression and MLP in

Static Graph.

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SPNN
EdgeInfo
A/A
PC
PCRW
Node2Vec
Rescal
HolE
Patchy

(a) Facebook

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SPNN
EdgeInfo
A/A
PC
PCRW
Node2Vec
Rescal
HolE
Patchy

(b) WordNet

Figure 3.11.: ROC curves (True Pos × False Pos): Facebook, WordNet tasks in Static

Graph.

subgraphs T �(4)
1 (3) which contains the removed subgraph. Randomly sample same

amount of 4-node subgraphs which do not contain the removed structure as nega-

tive examples. Last two rows of Table 3.3 shows the performance against competing

36

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SPNN
EdgeInfo
A/A
PC
PCRW
Node2Vec
Rescal
HolE
Patchy

(a) Facebook

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SPNN
EdgeInfo
A/A
PC
PCRW
Node2Vec
Rescal
HolE
Patchy

(b) WordNet

Figure 3.12.: ROC curves (True Pos × False Pos): Facebook, WordNet tasks in

manually generated dynamic graphs.

methods to predict subgraphs in static graphs. Figure 3.9 shows the learning curves.

Both of these figures show that our proposed SPNN consistently achieves the best

performance, compared to all other methods. Figure 3.10 shows that our proposed

SPNN sparse architecture is indeed a good regularizer for the joint link prediction

problem in static graphs.

37

T
ab

le
3.

1.
:

M
ax

A
re

a
U

n
d

er
C

u
rv

e
(A

U
C

)
sc

or
es

of
S

P
N

N
ag

ai
n

st
b

as
el

in
es

.

In
d
e
p
e
n
d
e
n
tl
y
T
ra

in
e
d

(S
in

g
le

L
in

k
P

r
e
d

ic
ti

o
n
s)

J
o
in
tl
y
T
ra

in
e
d

M
u
lt
i-
L
in
k
T
a
sk

E
d

ge
In

fo
P

C
R

W
P

C
N

2
V

R
es

ca
l

H
ol

E
E

d
ge

In
fo

P
C

R
W

P
C

N
2V

R
es

ca
l

H
ol

E
P

at
ch

y
G

ra
p

h
N

N
S
P
N
N

D
B

L
P

0
.8

11

±
0
.0

1
2

0.
78

6

±
0
.0

0
7

0.
78

3

±
0
.0

1
2

0
.5

6
7

±
0
.0

0
8

0.
61

1

±
0
.0

2
5

0.
68

1

±
0
.0

2
4

0.
83

0

±
0
.0

0
7

0.
78

2

±
0
.0

0
7

0.
78

8

±
0
.0

1
4

0.
58

2

±
0
.0

0
7

0.
61

1

±
0
.0

2
5

0.
69

0

±
0
.0

2
4

0.
62

7

±
0
.0

0
3

0.
57

1

±
0
.0

2
1

0
.8
4
6

±
0
.0

1
1

F
ri

en
d

st
er

(A
ct

iv
it

y
)

0
.5

30

±
0
.0

8
8

0.
51

6

±
0
.0

0
7

0.
50

9

±
0
.0

0
6

0
.5

1
2

±
0
.0

1
1

0.
52

1

±
0
.0

3
1

0.
51

3

±
0
.0

0
6

0.
50

2

±
0
.0

0
7

0.
51

6

±
0
.0

1
2

0.
51

5

±
0
.0

1
2

0.
52

4

±
0
.0

1
8

0.
50

2

±
0
.0

1
2

0.
50

6

±
0
.0

1
3

0.
51

9

±
0
.0

1
0

0.
52

1

±
0
.0

2
3

0
.6
9
0

±
0
.0

0
8

F
ri

en
d

st
er

(S
tr

u
ct

u
re

)

0
.5

68

±
0
.0

1
1

0.
50

1

±
0
.0

0
2

0.
50

1

±
0
.0

0
2

0
.5

0
1

±
0
.0

0
3

0.
55

8

±
0
.0

0
9

0.
50

1

±
0
.0

0
2

0.
50

1

±
0
.0

0
4

0.
50

2

±
0
.0

0
2

0.
55

2

±
0
.0

1
9

0.
54

0

±
0
.0

1
7

0.
52

1

±
0
.0

1
7

0.
53

0

±
0
.0

2
1

0.
54

7

±
0
.0

2
5

0.
52

3

±
0
.0

1
9

0
.6
0
7

±
0
.0

1
7

38

Table 3.2.: Time to sample 1000 examples+training time.

DBLP Friendster Friendster

Activity Structure

Rescal 47.3min 28h32min 28h33min

HolE 43.5min 26h21min 26h22min

node2vec 2.9min 3h51min 3h51min

SPNN 3.6min 9min 9min

39

T
ab

le
3.

3.
:

M
ax

A
re

a
U

n
d

er
C

u
rv

e
(A

U
C

)
sc

or
es

of
S

P
N

N
ag

ai
n

st
b

as
el

in
es

.

In
d
e
p
e
n
d
e
n
tl
y
T
ra

in
e
d

(T
w
o
S
in
g
le

L
in
k
P
re

d
ic
ti
o
n
s)

J
o
in
tl
y
T
ra

in
e
d

M
u
lt
i-
L
in
k
T
a
sk

E
d

g
eI

n
fo

P
C

R
W

P
C

N
2V

R
es

ca
l

H
ol

E
E

d
ge

In
fo

P
C

R
W

P
C

N
2V

R
es

ca
l

H
ol

e
P

at
ch

y
S

P
N

N

F
ac

eb
o
ok

D
y
n

a
m

ic
0
.7

4
8

(±
0
.0
1
4
)

0
.7

38

(±
0
.0
0
9
)

0.
72

5

(±
0
.0
1
1
)

0.
52

6

(±
0
.0
1
1
)

0.
52

3

(±
0
.0
1
7
)

0.
75

0

(±
0
.0
0
7
)

0.
74

7

(±
0
.0
0
3
)

0.
72

3

(±
0
.0
0
9
)

0.
72

5

(±
0
.0
1
2
)

0.
52

7

(±
0
.0
1
1
)

0.
63

2

(±
0
.0
0
7
)

0.
74

6

(±
0
.0
0
6
)

0.
51

0

(±
0
.0
0
6
)

0
.7
7
4

(±
0
.0
1
5
)

W
o
rd

N
et

D
y
n

am
ic

0
.6

06

(±
0
.0
2
8
)

0.
55

3

(±
0
.0
0
3
)

0
.5

51

(±
0
.0
0
4
)

0.
52

8

(±
0
.0
1
8
)

0.
58

6

(±
0
.0
0
9
)

0.
61

8

(±
0
.0
0
9
)

0.
63

9

(±
0
.0
2
3
)

0.
55

1

(±
0
.0
0
3
)

0.
55

3

(±
0
.0
0
3
)

0.
52

4

(±
0
.0
1
8
)

0.
58

6

(±
0
.0
0
9
)

0.
61

1

(±
0
.0
0
9
)

0.
57

4

(±
0
.0
3
8
)

0
.7
8
6

(±
0
.0
0
6
)

F
ac

eb
o
o
k

S
ta

ti
c

0
.5

78

(±
0
.0
1
4
)

0.
54

3

(±
0
.0
2
0
)

0
.5

68

(±
0
.0
1
1
)

0.
78

1

(±
0
.0
2
1
)

0.
66

5

(±
0
.0
1
7
)

0.
67

4

(±
0
.0
1
6
)

0.
70

3

(±
0
.0
1
1
)

0.
59

2

(±
0
.0
2
8
)

0.
52

1

(±
0
.0
1
8
)

0.
78

1

(±
0
.0
1
1
)

0.
66

4

(±
0
.0
2
1
)

0.
67

2

(±
0
.0
1
7
)

0.
52

2

(±
0
.0
0
6
)

0
.8
6
6

(±
0
.0
0
1
4
)

W
or

d
N

et
S

ta
ti

c
0.

93
6

(±
0
.0
0
6
)

0.
69

5

(±
0
.0
0
7
)

0
.7

98

(±
0
.0
0
5
)

0.
99

7

(±
0
.0
0
2
)

0.
99

7

(±
0
.0
0
1
)

0.
99

6

(±
0
.0
0
1
)

0.
86

1

(±
0
.0
0
7
)

0.
81

6

(±
0
.0
0
3
)

0.
80

3

(±
0
.0
0
3
)

0.
99

6

(±
0
.0
0
1
)

0.
99

2

(±
0
.0
0
1
)

0.
99

6

(±
0
.0
0
1
)

0.
99

0

(±
0
.0
0
1
)

0
.9
9
8

(±
0
.0
0
1
)

40

Table 3.4.: Time to sample 1000 examples + learning time.

DBLP Facebook WordNet

Rescal 47.3min 55h43.2min 2h58.1min

HolE 43.5min 58h32.4min 2h53.3min

node2vec 2.9min 74.0min 10.0min

SPNN 3.6min 3.0min 14.3min

41

4 PERMUTATION INVARIANT FUNCTIONS FOR SET

4.1 Introduction

The increase of data volume and hardware computation power, have unleashed

large neural network models into real-world applications. Input data is usually rep-

resented as fixed-length vectors. The key aspect of vector representations is that the

elements need to have a specific (i.e., canonical) order. However, in key applications—

such as logical reasoning [10, 11], relational learning [5, 6, 7, 8, 9], scene understand-

ing [8, 12], and object detection from LiDAR readings [3, 4]—, the inputs are better

represented as sets. Since sets do not have a natural input order, neural network mod-

els must learn permutation-invariant representations of the input (which is described

as a vector) that can capture complex relational dependencies within set elements.

The effect of input order can have a significant effect on the learned model’s quality

as shown in [14], if the neural network does not take steps to learn representations

that are invariant to input permutations. A more principled approach is, hence,

to directly learn representations that are invariant to permutations of the input.

Recently, there have been several efforts focused on directly learning permutation-

invariant representations [4, 14, 15, 16, 17]. The key contribution of these works has

been to provide methods that can learn representation functions which are provably

invariant to input permutations.

A neural network architecture for domains with set inputs should be permutation

invariant and able to process sets of any size [17]. Unfortunately, as I argue in this

work, these two properties are necessary but not sufficient for large sets. In particular,

the effectiveness of set-based neural network architectures is impacted by their ability

to capture long-range and high-order dependence among the set elements. Long-range

dependence refers to the model’s ability to learn dependencies between elements of

42

the set that are farther apart in its vectorized input. This is influenced by the archi-

tecture’s computation graph, through the interaction paths between input elements.

High-order dependence refers to the model’s ability to learn complex relationships

involving multiple set elements. This is influenced by choice of local functions used in

the architecture, because information needs to be propagated and remembered in or-

der to be combined into higher-order patterns. Since relational patterns are typically

higher-order, this is also a critical concern for real-world applications.

Existing permutation-invariant neural network architectures have not been de-

signed to capture both high-order and long-range dependencies. Simple pooling meth-

ods such as sum/min/max used in DeepSets [4] are limited in their ability to capture

high-order dependencies [48]. Set transformer models [17] capture long-range depen-

dence through self-attention but only capture pairwise relationships, which is not

enough to capture high-order dependencies. Janossy Pooling [15] uses recurrent neu-

ral networks (e.g., GRUs) to model high-order dependencies. However, recurrent

sequence models cannot easily capture long-range dependencies due to the limitation

of the model’s local function, which has O(1) memory.

In this work, I describe how characteristics of the architecture’s computation graph

impact the method’s ability to model high-order dependence and long-range depen-

dence. Specifically, the ability to capture dependence between elements can be an-

alyzed using the length of the interaction path connecting the involved elements in

the architecture. Shorter interaction path lengths indicate there are fewer steps in

information propagation and gradient computation, which leads to better model-

ing interactions between set elements. The ability to model high-order dependencies

mainly depends on the order of functions used to aggregate information from different

input elements and intermediate results.

43

4.2 Representation Learning of Variable-size Sets

This section provides a formal problem definition of inductive set embeddings.

An inductive embedding is a function that takes any set as input and outputs an

embedding that must remain unchanged for any input that represents the same set

(i.e., all permutations). As sets are special cases of multisets, we will use the term

multisets to define set in the next section.

4.2.1 Set Inputs

Set input is defined at Definition 4 in Chapter 2.

In this work, we are interested in functions that yield inductive set representation

functions for large set inputs, and which should satisfy permutation-invariance of

elements. Over X, these representation functions are invariant to permutations of

the rows (not columns, since those are the features). By inductive representation, we

mean that the representation function is learned on a dataset but can be applied to

a different test dataset.

4.2.2 Set Representation Functions

Let Πn denote the set of all permutations on the integers {1, . . . , n}. We shall

adopt the notation in [15] and use a double-bar (as in f) to indicate that a function

is invariant to permutations of the input in the sense of Definition 7. We shall use

an arrow (as in f
⇀

) to denote arbitrary (possibly row-permutation-sensitive) functions

over matrices of variable dimensions. Functions over scalars, vectors, or “simple” sets

whose elements are scalars or vectors, will be denoted without such annotations.

We begin by defining functions that give set representation functions (inductive

embeddings).

Invariant Set Representation Function is defined in Definition 7 in Chapter 2.

44

4.3 Invariant Neural Network Architectures

4.3.1 Ideal Representation Routing

Definition 9 (Computational Graphs) A computational graph G = (V,E) is a

graph with the following properties in nodes V and edges E. where:

1. V is a set of nodes in the computational graph. I divide the nodes into three

types based on the data source and whether processing it. (1) The input node

accepts the input dataset without processing. (2) The process node accepts the

intermediate output from other nodes and processes it. (3) The hybrid node

accepts data and processes it. The data must include the input dataset. The

rest of the data is from the intermediate output from other nodes. Each process

node or hybrid node has a local function to process the input and intermediate

result.

2. E the edges in the computational graph. For each (j, i) ∈ E, j < i in the

topology order.

The computational graphs of some widely-used neural network models are shown

in Figure 4.1. For the DeepSets [4], 2-layer Perceptron, and Self-attention, each input

node accepts one element from the set. The process node accepts output from other

nodes and processes it. The number of input nodes equals the number of elements

in the set. The number of process nodes depends on the hyperparameters of these

architectures. For the LSTM model, it only contains hybrid nodes. Each hybrid node

accepts one element from the input set and processes it. Even though a hybrid node

can be decomposed into one input node and one process node, I prefer to keep it as

one united node which made the number of nodes equals the number of elements in

the set.

Definition 10 (Interaction Path) Given a computational graph, I define P (j, i)

be the shortest path between node j and node i, while ignoring the directions of edges

45

(a) Deepset (d) RNN (LSTM)(b) MLP (c) Self-attention

Input node Process node Hybrid node

Figure 4.1.: Computational graph examples.

46

Table 4.1.: Computational graph properties of methods for set with n elements

DeepSets([4]) LSTM Set Transformer([17]) GNN Target model

Average interaction path p 1 n/2 1 1 1

Order of dependence k 1 n 2 2 n

in the computational graph. P (j, i) = P (i, j). Interaction Path Length is the number

of nodes that has process functions executed along the interaction path.

An interaction path has the following two forms. (a) i and j are connected by a

directed path. P (j, i) can be j −→ ... −→ i. (b) i and j are connected to the same

ancestor. j −→ ... −→ m←− ...←− i.

In the reminder of this section, I show the connections between learning long-

range/high-order dependence and the computational graph.

Definition 11 (l-range dependence) For a set X under a fixed permutation π

denoted as Xπ , suppose Xi, Xj are two arbitrarily selected elements from Xπ. If the

dependence between Xi and Xj can be captured by function f(X) when |i − j| ≤ l.

While interaction between Xi and Xj can not be perfectly captured when |i − j| > l.

The function f(h) can capture at most l-range dependence.

Example of long-range dependence: Given a sequence containing n pictures detect

whether there exists a pair of duplicate pictures. Permuting the sequence in arbi-

trary order, the distance between two duplicated pictures is in the range [1, n − 1].

Considering the worst-case scenario, where the duplicate elements are at the head

and tail of this sequence, this task needs a model capable of capturing (n− 1)-range

dependencies. If using sequence models such as LSTM to encode these n elements,

the embedded state vector hn−1 at step n − 1 contains little information of the first

element due to the limitation of size h. At n-th step, LSTM could hardly identify

whether there is duplicate based on Xn and hn−1.

47

Remark 1 Assume f : Rn×d → Rh, for some h ≥ 1. Shorter interaction path

between two input variables Xi and Xj has lower probability to cause errors when

modeling long range dependence.

Remark 1 has the following justification: To simplify the notation, define g(Xi, Xj) =

f(. . . , Xi, . . . , Xj, . . .). To understand how a long computation path can be an issue

when learning g, consider g(Xi, Xj) = g
⇀

0(gi,1 ◦ · · · ◦ gi,n, gj,1 ◦ · · · ◦ gj,m), with a total

path length of n+m functions connecting the inputs Xi and Xj. Assume each g·,· is

Lipschitz continuous with Lipschitz bound |g·,·(X1)− g·,·(X2)| ≤ K|X1 −X2|. Then,

the composition has Lipschitz bound Kn+m, that is, a small change to Xi can require

an enormous effect in gj,m —the function that takes Xj as input— causing instability

in gradient descent, which in turn leads to optimization (learning) issues. Clearly,

since the interaction path length is n + m, there are n + m gradient computations

needed to backpropagate from the interaction node to the respective inputs Xi and

Xj. More gradient computations can lead to more numerical instability, which again

leads to more optimization issues [70].

Table 4.1 shows a comparison of the computational graph path length of existing

set representation functions. Long short-term memory (LSTM) networks have an

average path length of n/2, which is consistent with the findings [71] that LSTM

suffers when modeling long sequences. DeepSets [4], Set Transformer [17] and Graph

Neural Networks [5] contain average path lengths of one. The ideal model should have

an interaction path length of one since it is easier to model long-range dependencies

in the input.

Taking our duplicate checking task as an example again, a model needs to predict

whether a set contains a pair of duplicate elements. For models with an interaction

length of one, any two elements can be sent to a process function to detect just 1-hop

step. While for LSTM, the information needs to be forwarded through multiple hops,

which may lead to information loss.

Long-range dependence defines the ability to capture the interaction between el-

ements far away from each other in the input sequence. But long-range dependence

48

is not the only factor determining the quality of a permutation-invariant neural net-

work architecture. For instance, both DeepSets [4] and Set Transformer [17] have

interaction path lengths of one, which means every two elements can interact within

1-hop of functions. However, [17] show that Set Transformer has a better ability to

model complex dependencies in a set than DeepSets. Theoretically, this ability to

model k-order dependencies has been described by Janossy Pooling [15], with k-order

dependence is defined as follows:

Definition 12 (k-order dependence [15]) For a set X ∈ Rn×d under one certain

permutation π denoted as Xπ, define ↓k (Xπ) as the first k elements in Xπ and k ≤ n.

The function f
⇀

accepts input of length k. The function f(X) can be decomposed into

the following form f(X) =
∑

π∈Πn
f
⇀

(↓k (Xπ))). The smallest k in the function is

defined as the order of the interaction modeled by function f(X).

Example of high-order dependence: Taking a simple example where a set X con-

tains 3 elements, f(X) = X1 ·X2 ·X3. This 3− order dependence cannot be decom-

posed into a summation of multiple 2-order dependencies α1(X1 ·X2) +α2(X1 ·X3) +

α3(X2 ·X3), with αi ∈ R, i = 1, 2, 3.

Remark 2 For any k ∈ N , define Fk as the functions can be represented by a

function with k-order dependence. Then Fk−1 is a proper subset of Fk. Thus, a

model that can capture higher-order dependence is preferred.

As shown in Murphy et al. [15], a model which can capture k order dependence

could also capture k − 1 order dependence, however, there exists k-order dependen-

cies that cannot be captured by an architecture designed to capture k − 1 order

dependencies.

Table 4.1 compares the dependencies of existing methods: DeepSets [4] models

1-order dependencies, while SetTransformer [17] models 2-order dependencies. Re-

current Neural Network with Janossy Pooling [15] can model n-order dependencies.

In this work, since the target is to model higher-order dependence with n as the opti-

49

mal goal, I will also adopt Recurrent Neural Network (GRU [72]) under the Janossy

Pooling framework as our local function in Self-Attention GRU.

To sum up Remarks 1 and 2, a better permutation-invariant architecture should

have short interaction path lengths while being able to capture high-order dependen-

cies.

4.4 Better Set Representation Architectures

I aim to design a neural network architecture that has a computational graph with

the following properties: Property 1 that is related with long-range dependence of

Remark 1. Property 2 that is related to high-order dependence of Remark 2:

1. Short maximum interaction path lengths. As shown in the previous section, shorter

interaction path lengths indicate easiness of capturing long-range dependence.

2. Use local functions that can model high-order dependencies, including functions

that aggregate the information from different computation nodes in the computa-

tion graph.

Besides these targeted properties, of course, the set representation function should

also be permutation invariant. An arbitrary function f
⇀

could hardly satisfy this

requirement. The inference and back-propagation of f
⇀

is based on the topology

sorted order of the computational graph. Changing the orders of local functions in

the computational graph can result in different results and gradients.

Fortunately, Janossy Pooling [15] shows how to make an arbitrary f
⇀

be permutation-

invariant by summing all possible permutations of the input, as shown in Equation 4.1.

f(X) =
∑

π∈Π

f
⇀

(Xπ) (4.1)

In order to make the resulting model tractable, Janossy Pooling proposes π-SGD to

optimize the model. I use the same approach for our GRU local function.

50

4.4.1 Existing Graph Topologies

In this section, I introduce and compare some famous graph models in graph

theory. Generalized De Bruijn graph (GDBG) is a type of small-world network with

the shortest path length besides the Moore graph, which could not be generalized to

every n. Balanced Tree is one of the most popular topologies.

Definition 13 (Generalized De Bruijn graph(GDBG)) A (n, r) Generalized De

Bruijn Graph is a graph with n nodes numbered from 0 to n−1 and the edges are con-

nected as follows. The r outgoing links of node i are connected to nodes (i×r) mod n

, (i× r + 1) mod n ,..., (i× r + r − 1) mod n, where mod is the modulo operator.

Definition 14 (Balanced Tree) A (n, r) balanced tree is a tree with n nodes num-

bered from 0 to n− 1 and the edges are connected as follows. The r outgoing links of

node i are connected to nodes (i× r + 1) ,(i× r + 2), ..., (i× r + r)

From Graph to the Computational Graph: The graph topology models introduced in

the previous section contain cycles, and some of them are undirected. The computa-

tional graph needs to be a Directed Acyclic Graph (DAG). It is preferred that there is

only one output node in which case the output vector of this node can be represented

as the embedding for the entire computational graph.

In order to guarantee the graph does not have cycles, one simple heuristic is to

change the edge directions of the original Generalized De Bruijn Graph. The edge

only directs from the low-index node to the high-index node. Since no edge is removed

from the original graph, the maximum computational path length is the same as the

original diameter of the undirected graph.

4.4.2 Build Computational Graph with Self-attention

Instead of a pre-defined graph, the graph can also be automatically learned.

This approach builds a graph based on self-attention [73]. Compared to existing

51

approaches, the number of parameters is constant and unrelated to the number of

nodes in the graph. The graph G is then computed by

G = softmax((XW1)× (XW2)T), (4.2)

where X ∈ Rn×d is a feature matrix, and W1,W2 ∈ Rd×h are two weight matrices

used to learn and encode the features matrix X. By computing (XW1)× (XW2)T ,

the covariance between encoded elements are computed, and this learned adjacency

matrix G ∈ Rn×n represents a weighted clique. G = GT . The upper triangular of

the adjacency matrix G can be used to construct the computational graph. In this

graph, there are only edges pointing from lower indexed elements to higher indexed

elements. Hence, this computational graph is a Directed Acyclic Graph(DAG) which

satisfies the requirement of a computational graph, see the example illustrated in

Figure 4.2.

The number of parameters required to build the adjacency matrix G is O(d · h).

Even though the computational cost is O(n2), it can be computed efficiently since it is

a parallel matrix computation. Comparing to other O(n2) GNN methods [74], since

each pair of nodes needs to be computed individually, the number of computational

operations is much lower for our self-attention graph G, which will show tremendous

advantages in our experiment section.

4.4.3 Graph Node Structure

Since I adopted the hybrid node in our computational graph, an arbitrary node i

accepts one element Xi from the original input, as well as several intermediate results.

These data are processed by the local function fi. The process function can be sum

model or GRU, as shown in Figure 4.3. For pre-defined unweighted graph such as

Generalized De Bruijn graph or Balanced Tree, X ′i = Xi +
∑

j∈Child(i) Xj.

52

0 1 2 3
G0,1

G0,2

G0,3

G1,2

G1,3

G2,3

Figure 4.2.: Weighted DAG resulting from the self-attention adjacency matrix G.

GRU Node

GRU

Sum
Pool

GRU Node
on weighted graph

GRU

Sum
Pool

Sum Node
on weighted graph

Sum
Pool

G0,i

Gj,i

G0,i

Gj,i
Xi Xi Xi

hi
hi

hi

…X0 Xj …X0 Xj …X0 Xj

Figure 4.3.: Different Types of Hybrid Node can be adopted in the computational

graph.

On the other hand, for the computational graph generated by self attention, the

input to process node i is X ′i = Xi+
∑

j∈Child(i) Gi,jXj. After the sum pooling, Gated

Recurrent Unit is adopted to model the higher order dependence.

zi = σg(W
(z)X ′i +U (z)hi−1 + b(z))

ri = σg(W
(r)X ′i +U (r)hi−1 + b(r))

hi = zi � hi−1 + (1− zi)�

φh(W
(h)X ′i +U (h)(ri � hi−1) + b(h))

53

The value stored in X ′i is the aggregated input feature to the node i on the

computational graph. hi is the output vector from node i on the computational

graph. zi is update gate vector, while ri is the reset gate vector. W (·), U (·) are

parameter matrices and b(·) is parameter vector, while σg is a sigmoid activation

function, with φh as the hyperbolic tangent activation function.

An attention layer is then used to integrate hi, i ∈ [1, n]

vi = tanh(W hi + b),

where W and b are the weights and bias of another feedforward layer and βi are

importance weights defined as

βi =
exp(vᵀi c)∑
i′ exp(vᵀi′c)

,

where c is a parameter of the model (the context vector). Finally,

f
⇀

(X) =
n∑

i=1

βivi,

where both vi and βi depend on the input X.

Since the above f
⇀

(X) is sensitive to permutations of X, in order to achieve the

permutation invariance promised by Janossy Pooling [15], I use Equation (4.1) to

compute f(X) from f
⇀

(Xπ), over all permutations π ∈ Πn.

4.4.4 Stochastic Optimization

Optimizing the model in Equation (4.1) is computationally prohibitive since it

contains the summation of n! different permutations. To learn our model, I adopt the

stochastic optimization procedure π-SGD of Murphy et al. [15]. The optimization

goal is to learn an function f(·; θ) with parameters θ which minimizes loss on the

training data.

θ∗ = arg min
θ

n∑

s=1

L
(
ys, f(X(s);θ)

)
. (4.3)

54

Instead of summing over all possible permutations, I sample a single permutation

uniformly at random from the space of permutations: π̃ ∼ Uniform(Πn), and compute

the Monte Carlo estimate

f̂(X) = f
⇀

(Xπ̃) . (4.4)

The estimate in Equation (4.4) is unbiased, since:

Eπ̃[f̂(X;θ)] = f(X;θ) .

The details of the optimization are shown in Algorithm 1. The Monte Carlo

estimate can be used to effectively infer Equation (4.1) by performing a forward pass

over the Self-Attention GRU with randomly sampled permutations. The complexity

of gradient computation at each optimization step is the same as if I gave f
⇀

the

original input X rather than Xπ̃.

Algorithm 1: Stochastic optimization for learning Self-Attention GRU.

Input: Labeled set training examples {(X(s), ys)}ns=1;

Input: Self-Attention GRU model f
⇀

(X;θ) with unknown parameters θ;

Input: Loss function L(y, ŷ);

Input: Number of optimization epochs T ;

Input: Mini-batch size B; learning-rate schedule {ηt}Tt=1;

Output: Learned parameters θ for the model f
⇀

(X;θ).

1 Initialize parameters θ(0) ;

2 for t = 1, . . . , T do

3 gt ← 0 ;

4 for s in mini-batch-indices do

5 X̃(s) ← Permute the rows of X(s) ;

6 gt ← gt + 1
B∇θL(ys, f

⇀

(X̃(s);θ)) ;

7 θ(t) ← θ(t−1) − ηtgt ;

8 return θ(T)

55

4.5 Experiments

In this section, I demonstrate the utility of our proposed model by experimenting

on a variety of set tasks ranging from arithmetic tasks, to vertex classification on

real-world graphs, to expanding a bag of words in natural language processing, to

predicting complex point cloud tasks.

Baselines: I evaluate our proposed model against existing set models summarized

below:

DeepSets [4]: A feed-forward neural network model with sum/max pooling to

achieve permutation-invariance.

J-GRU [15]: The vanilla Gated Recurrent Unit with attention layer uses Janossy

pooling [15] to model permutation invariant functions.

SetTransformer [17]: A transformer for set with self-attention.

GNN [74]: Graph Neural Network which models a set as a complete graph and

elements as node on the graph.

TreeGRU: Use the balanced tree to build a computational graph, use GRU as

the aggregation function.

GraphGRU: Use Generalized De Bruijn Graph to build a computational graph,

use GRU as the aggregation function.

Self-Attention [73]: Use 1 layer of Scaled Dot-Product Attention.

Self-Attention GRU: Our proposed model which uses computational graph

generate by self-attention.

Computational complexity: For a set with n elements, the time complexity

of DeepSets, J-GRU, TreeGRU, GraphGRU are proportional to the size of the

input data: O(n). For SetTransformer, Self-Attention and Self-Attention

GRU are O(n2). GNN has the complexity of O(n2k) where k is the number of GNN

iterations needed. I use k = 6 layers following the experimental setting of the original

Xu et al. [74] paper that proposed the approach.

56

For DeepSet [4], J-GRU [15], SetTransformer [17], I adopt the authors’

implementations.1 Details on the models and training procedures are provided in the

Appendix. Our source code to reproduce all of our experiments will be released after

acceptance.

4.5.1 Arithmetic Tasks on Sequence of Integers

Following prior work [4, 15], I start the evaluation of our proposed model on

simple arithmetic tasks. Since an ideal set model should represent both long-range

dependence and high-order dependence, I designed the following two tasks to have an

emphasis on these two requirements.

1. Double count : given a sequence of n integers ranging from 0 to d1.5×ne−1, check

whether there is a duplicate integer. This is a binary classification task with half

positive and half negative labels.

2. Unique count : given a sequence of n integers ranging from 0 to n − 1, count the

number of unique elements. This is a multi-class classification task with the class

label as the number of unique integers.

The double count task emphasizes long-range dependencies, since the distance be-

tween the duplicate integers can be as long as the sequence length. The order of

dependence for double count task is two (order-2) since every possible pair of ele-

ments should be compared in order to detect whether there is a duplicate. Figure 4.4

shows that Self-Attention and Self-Attention GRU get almost 100 percent accu-

racy from set sizes from 10 to 100, since they can capture both order-2 and long-range

dependencies. The accuracy of J-GRU drops significantly after length 30 since the

O(1) memory does not have enough capacity to model long-range dependence. Tree-

1https://github.com/manzilzaheer/DeepSets

https://github.com/juho-lee/set transformer

https://github.com/PurdueMINDS/JanossyPooling

57

GRU and GraphGRU have less significant decay with the increase of set size than

J-GRU, since the shorter interaction path length helps keep longer-range dependence.

The unique count task results are shown in Figure 4.5. The unique count is

a high-order dependence version of the double count task, since I can apply double

count function n times to perform the unique count task. The decay in performance of

J-GRU, TreeGRU and GraphGRU is consistent with the analysis of double count.

In this task, Self-Attention GRU works better than Self-Attention after set size

50 mainly because the GRU of Self-Attention GRU can better capture higher-order

relationships than sum pooling of Self-Attention.

In order to further evaluate the effects of the interaction path length of our pro-

posed model Self-Attention GRU, I randomly prune the edges in the weighted graph

generated by self-attention. The statistics of diameters and average path length under

different prune rates are shown in Table 4.2. As the result shown in Figure 4.6, larger

prune rates, which indicate longer interaction path length will lead to lower accuracy

in the task.

In order to evaluate the efficiency of different models, I measure the number of

parameters of the model and the number of operations in training calculated by

CHOP library2. Taking unique count with n = 100 as an example, the result is

shown in Table 4.3. The number of ops is the number of operations needed to train

a 64-size minibatch in one iteration. As shown in Table 4.3, DeepSet has the

smallest number of parameters and ops since each element is encoded separately and

aggregation method is simple. For J-GRU, Tree-GRU and Graph-GRU, these

three models have the same number of parameters. Since the computational graph

is predefined and no additional parameters are needed. The number of ops is higher

in Tree-GRU and Graph-GRU since they need to aggregate the intermediate

results from multiple incoming nodes. Regarding SetTransformer, since multiple

layers of Self-Attention are stacked together to model higher-order relationships, the

number of parameters and ops are much higher than Self-Attention. For GNN,

2https://github.com/Lyken17/pytorch-OpCounter

58

the number of ops is enormous, mainly because each pair of elements need to be

calculated separately instead of using matrix multiplication to compute in parallel.

The number of parameters of our proposed model Self-Attention GRU is moderate

considering the consistently better accuracy than the baselines.

10 20 30 40 50 60 70 80 90 100
Sequence length

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

DeepSets
J-GRU
TreeGRU

GraphGRU
SetTansformer
GNN

Self-Attention
Self-Attention GRU

Figure 4.4.: Double Count:

check duplicates for sequence

length n with 1.5×n vocabu-

lary size.

10 20 30 40 50 60 70 80 90 100
Sequence length

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

DeepSets
J-GRU
TreeGRU

GraphGRU
SetTansformer
GNN

Self-Attention
Self-Attention GRU

Figure 4.5.: Unique Count:

count of unique elements for

sequence length n with n vo-

cabulary size.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Prune Rate

0.5

0.6

0.7

0.8

0.9

1.0

1.1

A
cc

ur
ac

y

Double Count Unique Count

Figure 4.6.: Accuracy of

Self-Attention GRU when

randomly pruning edges of

computational graph at dif-

ferent prune rate.

Table 4.2.: Diameters and average path length under different prune rate for graph

with 100 nodes.

Prune Rate 0 0.25 0.5 0.75

Diameter 1 2 2 3

Average Path 1 1.25 1.5 1.75

4.5.2 Vertex Classification

I evaluate our proposed model in the task of vertex classification using supervised

graph vertex embedding. I adopt the same experiment setting as [15] which used

59

GraphSAGE [5] framework to perform vertex classification. GraphSAGE contains

an operation to aggregate neighbor information. Since the orders of neighbor nodes

should not affect the representation learning, they can be considered as a permutation-

invariant set of features. Different set models are applied to test their performance.

The statistics of the used dataset Cora and Pubmed are shown in the Appendix.

As the result shown in Table 4.4, The accuracy of Cora stays roughly the same

for different methods mainly since one thousand training examples are not sufficient

to well-train a deep neural model. For Pubmed dataset, J-GRU, TreeGRU and

GraphGRU shows slightly better performance than DeepSet since they can model

higher-order dependence than DeepSet. Our proposed Self-Attention GRU shows

better performance than the rest since it can model higher-order and long-range

dependence at the same time. The advantage of Self-Attention GRU against J-GRU

is moderate since the size of the neighbor set is small, which is within the range

dependence of J-GRU.

Table 4.3.: Number of Ops and Parameters for Arithmetic Tasks Unique Count per

minibatch in one iteration.

DeepSetJ-GRUSetTransformer GNN TreeGRUGraphGRUSelf-AttentionSelf-Attention GRU

Parameter(Million) 0.08 0.09 0.65 0.08 0.09 0.09 0.03 0.59

Total ops(Billion) 0.42 1.55 2659.57 311428.8 4.0 4.1 49.73 621.45

Table 4.4.: MicroF1 score (standard deviations) using different aggregation functions

in a GNN – GraphSAGE.

DeepSet J-GRU SetTransformer GNN TreeGRU GraphGRU Self-AttentionSelf-Attention GRU

Cora 0.860 (0.008)0.860 (0.008) 0.850 (0.009) 0.850 (0.010)0.853 (0.010)0.850 (0.009) 0.855 (0.008) 0.860 (0.008)

Pubmed0.881 (0.011)0.889 (0.010) 0.872 (0.010) 0.883 (0.010)0.892 (0.012)0.889 (0.011) 0.891(0.011) 0.911 (0.010)

60

4.5.3 Natural Language Processing Tasks

Even though Natural Language Processing tasks mainly focus on sequences in-

stead of sets, texts can be processed as a bag of words, which are sets. In this

experiment, I only use text as a set of words to evaluate the performance of differ-

ent set models instead of competing state-of-the-art NLP models. The widely-used

General Language Understanding Evaluation (GLUE) is adopted as benchmark [53].

I select the sentence classification tasks SST-2 and CoLA from GLUE, since others

are question-answer tasks. SST-2 is a movie review dataset with 67k training and

1.8k testing examples. CoLA is a miscellaneous dataset with 8.5k training and 1k

testing examples. Table 4.5 shows our results: The difference in accuracy in CoLA

dataset is not significant, since the dataset is not large enough to train a deep neural

network model. For the SST-2 dataset, our proposed model achieved significantly

better performance than the baselines. It is mainly because high-order dependence

is needed to understand the complex interactions between multiple words; moreover,

long-range dependence is needed to propagate the information to words in different

positions of the randomly-ordered input sequence.

Table 4.5.: Accuracy (standard deviations) for two GLUE classification tasks.

DeepSet J-GRU SetTransformer GNN TreeGRU GraphGRU Self-Attention Self-Attention GRU

CoLA 0.682 (0.007) 0.688 (0.006) 0.689 (0.008) 0.662 (0.005) 0.686 (0.006) 0.678 (0.008) 0.688 (0.008) 0.689 (0.007)

SST-2 0.761 (0.004) 0.765 (0.005) 0.769 (0.007) 0.746 (0.008) 0.771 (0.010) 0.761 (0.007) 0.766 (0.007) 0.782 (0.008)

4.5.4 Point Cloud Classification

Point-clouds (i.e., sets of low-dimensional vectors in Euclidean space) gathers

much more attention with the rise of autonomous driving using LIDAR data [3].

61

Table 4.6.: Accuracy (standard deviations) on Point Cloud label classification and

label counting.

Classification Count unique label

Architecture 100 pts 1000 pts 5000 pts 100 pts 1000 pts 5000 pts

DeepSet(Max pool) 0.82 (0.02) 0.87 (0.01) 0.90 (0.003) 0.79 (0.01) 0.82 (0.01) 0.82 (0.01)

Set Transformer(Max pool) 0.82 (0.01) 0.89 (0.01) 0.90 (0.010) 0.58 (0.03) 0.61 (0.02) 0.63 (0.03)

Set Transformer(PMA) 0.84 (0.01) 0.86 (0.01) 0.87 (0.01) 0.55 (0.03) 0.56 (0.03) 0.57 (0.03)

J-GRU 0.82 (0.01) 0.85 (0.01) 0.86 (0.01) 0.75 (0.01) 0.82 (0.01) 0.82 (0.02)

GNN 0.82 (0.01) 0.84 (0.01) 0.87 (0.01) 0.78 (0.01) 0.84 (0.01) 0.84 (0.02)

TreeGRU 0.82 (0.01) 0.84 (0.01) 0.86 (0.01) 0.76 (0.01) 0.83 (0.01) 0.84 (0.02)

GraphGRU 0.81 (0.01) 0.83 (0.01) 0.85 (0.01) 0.77 (0.01) 0.83 (0.01) 0.84 (0.02)

SelfAttention 0.76 (0.02) 0.83 (0.02) 0.84 (0.01) 0.74 (0.01) 0.77 (0.01) 0.82 (0.02)

Self-Attention GRU 0.84 (0.01) 0.88 (0.01) 0.88 (0.01) 0.81 (0.01) 0.86 (0.01) 0.87 (0.01)

Table 4.7.: Accuracy (standard deviations) for subset sum problem: Given a set with

n integers from [−200, 200], decide whether it contains a subset which sums to 0.

Model DeepSet SetTransformer J-GRU GNN TreeGRU GraphGRU Self-Attention Self-Attention GRU

n = 6 0.662 (0.002) 0.710(0.002) 0.721(0.002) 0.742(0.002) 0.731(0.002) 0.733(0.002) 0.723(0.002) 0.752(0.001)

n = 10 0.710 (0.002) 0.732(0.002) 0.742(0.002) 0.762(0.003) 0.741(0.002) 0.743(0.002) 0.731(0.002) 0.771(0.003)

I evaluated our model on the ModelNet40 [75] dataset. It contains three-dimensional

objects in 40 classes. Each set is a set of n 3-dimensional vectors in R3. The experi-

ments are evaluated with input set size n ∈ {100, 1000, 5000}.
I construct two tasks in order to evaluate the performance of the different neural

network architectures:

Classification: This is the classic ModelNet classification task. Each set is one point

cloud with one among 40 different labels.

Unique-label counting : Each set consists of 10 randomly selected point-clouds from

the database. And mix the point from these 10 point clouds and save in an aggregated

set. The task is to predict the number of unique object types (labels) in the aggre-

62

gated set. This is a harder task that can be applied in self-driving when detecting

multiple mixed objects simultaneously.

The first three columns of Table 4.6 shown the classification accuracy. MAX

pooling shows better performance than pooling in multi-head attention and GRU,

which is the suggested approach for Point Clouds by [3]. For point clouds with

a larger number of points, the accuracy is higher since more points provide more

information to predict the class label.

For Unique-label counting task, the results are shown in the last three columns

of Table 4.6. Self-Attention GRU has significantly better results than competitors.

Compared with DeepSet and SetTransformer, Self-Attention GRU can model

higher-order relationships and thus got higher accuracy. Compared with J-GRU,

TreeGRU, GraphGRU, Self-Attention GRU also got better accuracy because it

can model longer-range dependence since the interaction path length is much shorter.

The accuracy improvement from 100 points to 1000 points is more significant than

the improvement from 1000 points to 5000 points which implies that 1000 elements

in a set provide enough information to count the label.

4.5.5 Reasoning tasks

Besides previous classic set problems, our proposed model can also be used in rea-

soning tasks. For instance, the subset-sum is a critical decision problem in complexity

theory and cryptography with NP-complete complexity [76]. This experiment uses

the same problem setting as [74]. Given a set with n integers uniformly sampled from

integers from between -200 and 200, check whether there exists a subset that sums

to zero. This is also a set task, since the task is input order-invariant, and the target

is a binary classification label. Table 4.7 shows the results. Models with n-order

dependence capability such as J-GRU, TreeGRU, GraphGRU and Self-Attention

GRU perform better than 1−order DeepSet and 2−order SetTransformer. By

iterating 6 times, GNN combined 2−order dependence into higher-order dependence

63

and also achieved compelling performance. But it is not practical for large sets since

log2(n) iterations are needed to capture n-order dependence. Hence, Self-Attention

GRU also has an advantage in this task.

64

5 PERMUTATION INVARIANT FUNCTIONS FOR SET-OF-SETS

5.1 Introduction

While these recent works provide principled approaches to learning over sets, they

are not directly applicable to tasks where the data comprise sets-of-sets (SoS). For

example, subgraph prediction tasks in relational data involve a set of nodes, each of

which has a set of neighbors. In LIDAR scene classification, the data consist of sets

of LIDAR readings, with each reading being a point-cloud. Set-of-sets also arise in

logical reasoning, multi-instance learning, among other applications (see Section 5.4

for a few examples). In these tasks, the embedding function to be learned needs to be

invariant to two levels of permutations on the input data—within each set, and among

the sets. Effective neural network architectures that learn inductive SoS embeddings

need to efficiently take into account both levels of permutation-invariance.

In this work, I formalize the problem of learning inductive embedding functions

over SoS inputs, and explore neural network architectures for learning inductive set-of-

sets embeddings. I shall use the terms set and multisets (sets with repeated elements)

interchangeably, as our techniques work on both scenarios.

I begin by proving that inductive embeddings for sets [4, 15] are not powerful

enough to be used for SoS tasks. I then propose a general framework for learning

inductive SoS embeddings that preserve SoS permutation-invariance by extending the

characterization of sets in [15] to sets-of-sets.

Our proposed framework allows us to apply sequence models to learn inductive

SoS embeddings. Under our framework, I propose HATS, a hierarchical, bidirectional

long short-term memory (LSTM) network with attention mechanisms. A first bidi-

rectional LSTM takes as input a sequence given by a random ordering of the elements

65

in a set. This LSTM is applied to each member set of an SoS (in random order), and

the outputs are fed into a second bidirectional LSTM. The attention mechanism helps

make both LSTMs more robust to input orderings. The HATS architecture uses the

concept of hierarchical attention for sequence models, first introduced in document

classification by [57]. However, unlike the model in [57] (which is permutation-

sensitive), HATS is based on our SoS embedding framework and uses permutation

sampling to perform stochastic optimization. This allows HATS to learn inductive

SoS embeddings that are provably invariant to SoS permutations. At inference time,

I adopt an efficient Monte Carlo procedure that approximately preserves this invari-

ance.

In experiments, I show that HATS significantly outperforms existing approaches

on various predictive tasks involving SoS inputs. While the SoS permutation-invariance

of HATS is only approximate due to our reliance on Monte Carlo sampling for infer-

ence, our experiment results demonstrate that in practice HATS achieves significant

performance-gains over state-of-the-art approaches.

5.2 Inductive Embeddings of Set-of-Sets

In this section, I provide a formal definition of inductive SoS embeddings. An

inductive embedding is a function that takes any set-of-sets as input (including set-of-

sets not observed in the training data) and outputs an embedding that must remain

unchanged for any input that represents the same set-of-sets. This is in contrast

to transductive embedding methods such as matrix and tensor factorizations, which

cannot be directly applied to new data and do not directly consider set-of-sets inputs.

For convenience, henceforth I shall use the term sets to refer to both sets and multisets.

Multisets are sets that may contain duplicate elements [77]. As sets are special cases

of multisets, I will use the term multisets to define set-of-sets in the next section.

Sets-of-Sets input is defined at Definition 6 in Chapter 2.

66

In this work, I shall be interested in functions that yield inductive SoS embeddings

for set-of-sets inputs, and which should satisfy permutation-invariance on two different

levels: (i) element-level : the function should be invariant to permutations of elements

within each member set; and (ii) member-set-level : the function should be invariant

to permutations of the member sets within an SoS. I formalize these notions in the

next section.

5.2.1 Inductive SoS Embeddings

Notation.

Let Πn denote the set of all permutations on the integers {1, . . . , n}. I shall adapt

the notation in [15] and use a double-bar (as in f) to indicate that a function taking

SoS inputs is invariant to permutations in the sense of Definition 8. I shall use an

arrow (as in f
⇀

) to denote arbitrary (possibly permutation-sensitive) functions over

matrices of variable dimensions. Functions over scalars, vectors, or “simple” sets

whose elements are scalars or vectors, will be denoted without such annotations.

Definition and Characterization

I begin by defining functions that give inductive sets-of-sets (SoS) embeddings.

The Inductive Set-of-Sets Embeddings is defined in Definition 8 in Chapter 2.

In what follows I show that set-of-setsinductive embeddings cannot be achieved with

inductive set embeddings proposed in Deep Sets [4] or Janossy pooling [15], which

are the two most general representation learning approaches for sets.

The following proposition shows that the inductive SoS embeddings cannot be

represented simply as a inductive set embedding by any clever transformation of the

input.

Proposition 1 Consider an SoS tensor X and an inductive SoS embedding f of X

satisfying Definition 8. Consider a valid encoding of X into a vector a. Then, there

67

exists a tensor X such that no permutation invariant function g over a gives the same

output as f .

Proof Consider X a tensor with the same d-dimensional elements over all sets. Let

f be a function that returns the maximum number of non-null elements in a row of

X (i.e., the maximum set size). Let a be a vectorization of X. If a does not have

null markings # denoting the end-of-a-set, clearly the number of elements in each set

is unrecoverably lost. If a has null # markings, then the embedding g that returns

the maximum number of non-null elements in a row of X cannot be a set embedding,

because it would need to act equally over all permutations of a, which, again, would

lose information about the set sizes.

Now that I have shown that set embeddings are not powerful enough to represent set-

of-sets, I will propose an alternative representation function motivated by the work

of [15] and the concept of Janossy densities in the theory of point processes [78], I can

characterize any scalar- or vector-valued SoS permutation-invariant function as the

average of another SoS function sensitive to SoS-type permutations over all possible

member-set-level and element-level permutations:

Theorem 1 Given an universal approximator neural network f
⇀

(as that described

by [79]) which is sensitive to permutations in the input, and an n×m× d tensor X

representing a set-of-sets as defined in Definition 6, consider the function

f(X) =
1

n! · (m!)n

∑

φ∈Πn

[∑

π1∈Πm

· · ·
∑

πn∈Πm

f
⇀

(Xφ,π(φ))

]
, (5.1)

where Xφ,π(φ) denotes the tensor with (i, j)-th entry Aφ(i),πφ(i)(j), as given in Defini-

tion 8. Then, f(X) can approximate the most powerful SoS embedding representation

of X arbitrarily well.

Proof It is straightforward to verify that the function f as defined in Equation (5.1)

satisfies the requirement of Definition 8. I show that f(X) can arbitrarily approxi-

mate the most powerful SoS embedding representation of X by contradiction. Assume

68

there is an inductive SoS embedding function f
′
that is not universally approximated

by f(X). Then, there exists a permutation-sensitive function f
⇀′

that adds a term

to f
′
(Xφ,π(φ)) that is permutation-sensitive, which vanishes when averaged over all

such permutations. Thus, the universal approximator f
⇀

of [79] that vectorizes the

input Xφ,π(φ) cannot approximate a permutation-sensitive function f
′
, which contra-

dicts the fact that f
⇀

is an universal approximator of permutation-sensitive functions,

concluding the proof.

Theorem 1 provides critical insight into how an inductive SoS embedding f could

be modeled. In particular, while it is intractable to directly model f , one must

instead focus on tractable approaches to learn f . And because modeling f
⇀

does

not have to obey any permutation-invariance constraints, I are now open to various

permutation-sensitive models. Thus, as long as one has a sufficiently flexible model

for f
⇀

, one could in principle learn any SoS representation f : X 7→ y mapping an SoS

to a target value y (e.g., class label in classification tasks or real-valued response in

regression tasks). Before investigating how to apply Equation (5.1) to learn inductive

SoS embeddings in practice, I first demonstrate the utility of the characterization in

Equation (5.1) with a few examples.

Examples of SoS Embedding Tasks

I discuss several representative examples of inductive SoS embeddings f . In Sec-

tion 5.4, I will demonstrate that these functions could be effectively learned in practice

by exploiting Equation (5.1).

Basic set/multiset operations. Possibly the simplest examples of SoS represen-

tation functions on sets-of-sets are those that involve basic set/multiset operations,

such as set union and intersection. These allow one to compute various population

statistics for an SoS, such as counting or summing-up the (unique) elements in the

union or intersection across all the member sets in an SoS.

69

Adamic/Adar index. In social network analysis, the Adamic/Adar index [80] is a

simple and popular measure of the similarity between any two nodes in a network,

which could be used to predict unseen links between nodes. For a node v in the

network, denote its set of neighbors by Nu, then the Adamic/Adar index between

any two nodes u and v is defined as

g(u, v) =
∑

x∈Nu∩Nv

1

log |Nx|
, (5.2)

where |Nx| gives the degree of node x. Compared to other similarity measures such

as the Jaccard coefficient, the Adamic/Adar index down-weights the importance of

shared neighbors with very large neighborhoods. To see how Equation (5.2) could be

cast in the form of Equation (5.1), let X(u,v) be an SoS consisting of two sets Xu and

Xv, corresponding to the neighborhoods of nodes u and v, respectively. Specifically,

I set Xu = {(x, |Nx|) : x ∈ Nu} (and similarly for Av)—that is, Xu contains both the

identifier and the degree of each neighboring node. Then, it is clear that g(u, v) can

be expressed as an inductive SoS embedding g(X(u,v)).

Multi-instance learning. In multi-instance learning, the training data consists

of not a set of instances, but a set of labeled bags, each containing many instances.

Thus, the learner seeks to learn a function f mapping a set to a class label. In many

applications, such as predicting hyper-links between subgraphs and anomaly detection

with collections of point-clouds (see Section 5.4 for more details on both tasks), each

bag is also a set, and the function to be learned is an inductive SoS embedding that

is invariant to permutations both across bags, and across the instances within each

bag.

5.3 Learning Inductive SoS Embeddings

In this section, I explore approaches to learning inductive SoS embeddings f , as

described in Definition 8, that maps an input set-of-sets to an embedding, a class label

(in classification tasks), or real-valued response (in regression tasks). In particular,

I shall exploit the characterization provided by Equation (5.1): rather than directly

70

modeling f , I seek to learn the function f
⇀

, which gives us the freedom to apply any

flexible family of models without being subject to the constraint of the function being

invariant to inputs that represent the same set-of-sets. Thanks to their expressiveness

and flexibility as universal function approximators, I shall model f
⇀

using deep neural

networks. By applying Equation (5.1) as well as the insights discussed in Section 5.3.2,

I will be able to learn an inductive SoS embedding f for set-of-sets inputs.

Next, I describe the details of our proposed architecture HATS for learning f , and

then discuss other related neural-network architectures for modeling f
⇀

.

5.3.1 The HATS Architecture

In this section I describe HATS as an architecture to learn flexible functions f
⇀

(X;θ)

in Equation (5.1), where θ is a set of learnable parameters. Later I show how ad-

vances in stochastic optimization, combined with Monte Carlo sampling, can be used

as a tractable approach to transform a HATS f
⇀

into a practical inductive SoS embed-

ding. The HATS architecture uses the concept of hierarchical attention for sequence

models, first used in document classification [57] and adds two permutation layers,

which are key ingredients in the tractable optimization and inference of HATS.

Background.

Recurrent neural networks (RNNs) have been shown to be very well-suited for

modeling functions over variable-length sequences. In particular, the use of parameter-

sharing allows RNNs to simultaneously achieve flexibility and expressiveness in cap-

turing complex interactions over variable-length sequences with only a fixed-number

of parameters. In fact, [81] showed that (with exact computations) RNNs are univer-

sal functions in that any function computable by a Turing machine can be computed

by an RNN of finite size. To alleviate the problem of vanishing or exploding gra-

dients associated with capturing long-range dependencies, gated RNNs such as long

short-term memory networks (LSTMs) and gated recurrent units (GRUs) have been

71

proposed, and both have achieved great success in practical applications. I shall focus

on LSTM-based architectures in this work.

I begin the description of HATS by describing a vanilla LSTM model for model-

ing SoS functions, and then propose more sophisticated designs that are tailored to

specific aspects of inductive sets-of-sets embeddings.

LSTM model for sets-of-sets

In our sets-of-sets problem, the input X is a collection of sequences arranged in

some specific (unknown) order. Then, f
⇀

of Equation (5.1) can be a single LSTM

where I can make X into a sequence by concatenating all rows 1, . . . , n into a single

row, collapsing all consecutive null symbols, like ##, ###, into a single null symbol

#. The last long-term memory state (or output state) of the LSTM is then fed into

a multi-layer perceptron to obtain the final embedding value.

H-LSTM: Hierarchical LSTM model for sets-of-sets

By simply concatenating the constituent sequences within each set, the vanilla

LSTM model discussed previously does not take into account the hierarchical nature

of the sets-of-sets problem. In this section, I propose to use a two-level hierarchical

LSTM (H-LSTM) model to capture the structure of sets-of-sets. Hierarchical LSTM

models have been studied in the natural language processing literature (e.g. [82]; see

Section 2.2.3 for a detailed discussion).

Given an input SoS tensor X consisting of n sets (viewed as sequences) Xi,∗, i =

1, . . . , n, with maximum cardinality m, the first layer of the H-LSTM model applies

a bidirectional LSTM to each sequence Xi,∗ Specifically, let

−→
hij =

−−−−→
LSTM1(Xij),

←−
hij =

←−−−−
LSTM1(Xij), j = 1, . . . ,m (5.3)

denote the forward and backward hidden states for the j-th element in Xi,∗ obtained

from the forward and backward LSTMs, respectively. I obtain an annotation for Xij

72

by concatenating the forward and backward hidden states: hij =
[−→
hij,
←−
hij
]
, which

summarizes the information regarding Xij in the set Xi,∗. The last hidden state of

the trained H-LSTM model then provides an embedding of the whole set Xi,∗, which

I denote as hi.

Existing approaches to modeling permutation-invariant functions use various forms

of pooling operations (e.g., max-pooling [3, 4] or Janossy pooling [15]) to aggregate

the embeddings obtained for each element in a set. While these simple approaches are

guaranteed to be invariant to permutations in the input, they do not allow flexibility

to model complex interactions among the elements. Instead, I propose to concatenate

the embeddings hi obtained for each set Xi,∗, and then apply another bidirectional

LSTM to model the dependencies among the set embeddings:

−→yi =
−−−−→
LSTM2(hi),

←−yi =
←−−−−
LSTM2(hi), yi =

[−→yi ,←−yi
]
, i = 1, . . . , n. (5.4)

The last hidden state of this upper-layer LSTM then provides an overall embedding

y of the SoS X that takes into account its hierarchical structure. Finally, the target

output (e.g., class label in classification tasks) can be modeled with a fully connected

layer using a softmax function.

HATS architecture

Capturing long-range dependencies is especially important in modeling functions

over sets. Unlike language models, where adjacent words in a sentence typically (but

not always) provide more information than words that are farther apart, the elements

in a set are typically arranged in random order within a sequence,1 and elements that

appear in the early parts of the sequence contain information that is equally relevant

to the final output embedding as those that are near the end.

Thus, when using a sequence model, such as an LSTM, to model a function over

sets, it is essential to ensure that the model is able to capture both long-range and

1With the exception of domain-specific scenarios where a canonical ordering could be imposed on
the elements in the set; which is typically unavailable in general settings.

73

short-term dependencies. The same argument also applies to the set-level: since there

is typically no canonical ordering for sets within an SoS, the top-level LSTM used in

the H-LSTM model of the previous section should also be able to preserve long-range

information in its final output embedding y.

While LSTMs hypothetically should be able to capture long-range dependencies in

sequences, in practice their performance are often less than ideal. Intuitively, requiring

the last hidden state of an LSTM to encode information from a long input sequence

into a single fixed-length vector also seems too much to ask for. Such inability to

capture long-range dependencies has aroused much concern in the natural language

processing and machine translation communities, and many clever tricks (such as

reversing the order of the input sequence) have been devised to improve their practical

performance. However, when modeling functions over sets, these tricks are typically

ineffective as the elements are arranged in random order in the input sequence.

Rather than attempting to encode a whole input sequence into a single fixed-bit

vector (i.e., the last hidden state), attention mechanisms [83] adaptively compute a

weighted combination of all the hidden states during the decoding phase. By learning

the weights in the attention mechanism, the decoder could then decide on which parts

of the input sequence to focus on. This relieves the burden of having to preserve all

information in the input sequence from the encoder, and allows the RNN to capture

long-range dependencies.

In our context, different elements of a set may possess varying degrees of im-

portance to the task at hand. For instance, when predicting the unique number of

elements in a set (see Section 5.4.1 for more details), elements that occur very fre-

quently may be regarded as less important than rare elements. Similarly, inside an

SoS, smaller sets may contain less information than larger sets (or vice versa). To

capture long-range dependencies on both element-level and set-level, I propose to

adopt a hierarchical attention mechanism in a hierarchical bidirectional LSTM.

Element-level attention. Given an input SoS X comprising the sets Xi,∗, i =

1, . . . , n, let hij denote the annotation for the element Xij in set Xi,∗ obtained by

74

concatenating the forward and backward hidden states of Equation (5.3). I first pass

hij through a feedforward layer with weights W1 and bias term b1 to obtain a hidden

representation of hij:

uij = tanh(W1hij + b1),

then compute the (normalized) similarity of between uij and an element-level context

vector c1 via

αij =
exp(uᵀijc1)∑
j exp(uᵀijc1)

,

which I use as importance weights to obtain the final embedding of the set Xi,∗:

hi =
∑

j

αijhij. (5.5)

Member-set-level attention. I feed the embeddings h1, . . . ,hn obtained from Equa-

tion (5.5) into the upper-level bidirectional LSTM and obtain the set annotations

y1, . . . ,yn via Equation (5.4). Following a similar manner as in element-wise atten-

tion, I compute

vi = tanh(W2 yi + b2),

βi =
exp(vᵀi c2)∑
j exp(vᵀi c2)

,

y =
∑

j

βiyi.

where W2 and b2 are weights and bias of another feedforward layer, c is a set-level

context vector, βi are importance weights, and y is the final embedding for SoS X.

The overall hierarchical attention (HATS) model is illustrated in Figure 5.1. The

LSTM with element-level attention encodes each set into a permutation-invariant em-

bedding; the LSTM with member-set-level attention then computes a final permutation-

invariant embedding for the SoS. The main difference with existing architectures [57]

lies in the two permutation layers. The lower permutation layer performs an intra-set

permutation for each set, while the upper layer performs an inter-set permutation.

These two layers combine to guarantee that the model is SoS permutation-invariant.

75

Member-set-level

attention

����!
hi,m�1

�!
hi,1

 �
hi,1

�!
hi,2

 �
hi,2

 ����
hi,m�1

 ��
hi,m

��!
hi,m

↵i,1 ↵i,2 ↵i,m

h2 hi hn

eXi,2
eXi,1

eXi,m
eXi,m�1

Xi,1 Xi,2 Xi,m�1 Xi,m

 �
h1

 �
h2

 �
hi

 �
hn

�!
hn

�!
hi

�!
h1

�!
h2

+

�1 �2 �i

h1

�n

y

…

…

… …

Element-level
attention

Permutation layer

…

Permutation layer

…

…

…

+ …

↵i,m�1

Figure 5.1.: HATS architecture for SoS inputs.

5.3.2 Stochastic Optimization for HATS

The obvious caveat in applying Equation (5.1) to learn f in practice is that the

(n + 1) summations involved would be computationally prohibitive in all but the

simplest scenarios, especially since each summation is over n! (for φ) or m! (for πi, i =

1, . . . , n) possible permutations and thus, is already intractable for moderate n and m.

76

To learn HATS, I adapt the stochastic optimization procedure (π-SGD) of [15] to set-

of-sets inputs.

For simplicity, I consider a supervised learning task. It is easy to apply these

results to regression tasks. Consider N labeled SoS training examples {(X(s), ys)}Ns=1,

where X(s) is a set-of-sets and ys is its label (class label in classification tasks or real-

valued response for regression tasks). Let ŷ be the predicted label with respect to

SoS input X. Consider a loss function L(y, ŷ) such as squared-loss or cross-entropy

loss. In general, L only needs to be convex in ŷ, but it does not need to be convex

with respect to the neural network parameters θ = (W1, b1,W2, b2,θ1,θ2), where θ1

and θ2 are the parameters of the two bidirectional-LSTMs of HATS.

I wish to learn a function mapping f(· ;θ) : X 7→ y with parameters θ, that

minimizes the empirical risk on the training data:

θ∗ = arg min
θ

N∑

s=1

L
(
ys, f(X(s);θ)

)
. (5.6)

Naturally, f should satisfy Definition 8, since the input set-of-sets are invariant un-

der SoS permutations. Rather than optimizing over the sum of all permutations in

Equation (5.1), I will not minimize Equation (5.6). Rather, I will minimize an upper

bound of the loss
∑N

s=1 L
(
ys, f(X(s);θ)

)
without explicitly evaluating f(X;θ), which

is computationally intractable as it involves summing over all possible permutations.

Our optimization procedure is described in Algorithm 2. Rather than summing

over all possible permutations, I sample all orderings uniformly at random from

the space of all valid permutations. Specifically, I sample φ̃ ∼ Uniform(Πn) and

π̃1, . . . , π̃n ∼ Uniform(Πm), and compute

f̂(X) = f
⇀

(Xφ̃,π̃(φ̃)) . (5.7)

It is easy to see that Equation (5.7) provides an unbiased estimator:

Eφ̃,π̃1,...,π̃n [f̂(X;θ)] = f(X;θ) .

77

For the s-th training example, using the sampled permutations, Algorithm 2 can be

shown to optimize

Eφ̃,π̃1,...,π̃n [L(ys, f̂(X(s);θ))] ,

Since L(ys, ·) is a convex function, by Jensen’s inequality,

Eφ̃,π̃1,...,π̃n [L(ys, f̂(X(s);θ))] ≥ L(ys, f(X(s);θ)) .

Hence, the optimization in Algorithm 2 is a proper surrogate to optimize the original

loss Equation (5.6). In practice, one could also sample multiple permutations and

average over them in Equation (5.7) to reduce the variance of the estimator.

The computational cost of optimizing HATS lies in backpropagating the gradients

through the neural network architecture (cf. Figure 5.1) of the HATS model f
⇀

. Thus,

the overall time complexity of Algorithm 2 is equal to O(mndTB). At inference time,

I perform a Monte Carlo estimate of Equation (5.1) by sampling a few permutations

and performing a forward pass over the HATS neural network. Our experiments

show that in practice five to twenty Monte Carlo samples are sufficient for estimating

Equation (5.1).

5.4 Experiments

I demonstrate the utility of HATS and its approximate stochastic optimization and

Monte Carlo inference by conducting experiments on a variety of SoS tasks spanning

a number of applications—ranging from arithmetic tasks and computing similarity

measures between sets, to predicting hyperlinks across subgraphs in large networks,

to detecting anomalous point-clouds in computer vision.

Models

In the experiments, I evaluate the performance of our proposed models, and com-

pare with several existing approaches in the literature (cf. Section 2.2.3). I summarize

all the models below:

78

Algorithm 2: Stochastic optimization for learning HATS.

Input: Labeled SoS training examples {(X(s), ys)}Ns=1;

Input: HATS model f
⇀

(X;θ) with unknown parameters θ;

Input: Loss function L(y, ŷ);

Input: Number of optimization epochs T ;

Input: Mini-batch size B; learning-rate schedule {ηt}Tt=1;

Output: Learned parameters θ for the model f
⇀

(X;θ).

1 Initialize parameters θ(0) ;

2 for t = 1, . . . , T do

3 gt ← 0 ;

4 for s in mini-batch-indices do

5 X̃
(s) ← Permute the rows of X(s) ;

6 for i = 1, . . . , |X̃(s)| do

7 Permute the entries of X̃
(s)

i∗ ;

8 gt ← gt + 1
B
∇θL(ys, f

⇀

(X̃
(s)

;θ)) ;

9 θ(t) ← θ(t−1) − ηtgt ;

10 return θ(T)

DeepSet [4] : A feedward neural network model with sum-pooling to achieve permutation-

invariance.

MI-CNN [43] : Convolutional network with gated attention mechanisms for permutation-

invariant multi-instance learning.

J-LSTM [15]: The vanilla LSTM model of Section 5.3.1; equivalent to applying the

Janossy pooling method [15] using LSTMs.

H-LSTM : The hierarchical LSTM of Section 5.3.1.

HATS : The hierarchical attention network of Section 5.3.1.

79

Since DeepSet [4], MI-CNN [43], and J-LSTM [15] were originally designed for

set (rather than SoS) inputs, I flatten each SoS by concatenating its member sets into

a single sequence as a preprocessing step. The J-LSTM, H-LSTM, and HATS models

are all trained using the framework described in Algorithm 2. For DeepSet [4], MI-

CNN [43], and J-LSTM [15] I adopt the authors’ implementations.2 Details on the

models and training procedures are provided in next subsection; I will also release

source codes for reproducing all experiment results at github.com/anonymous.

Training Details

All the models are implemented using Python 3.6 with PyTorch 1.0. The LSTM

cells used in J-LSTM [15], H-LSTM, and HATS all have 20-dimensional hidden states.

The mini-batch-size in Algorithm 2 is set to 32 for point-cloud classification tasks,

and 128 for all other tasks. DeepSet [4] was originally proposed to handle (plain)

set-inputs rather than SoS inputs. I use the Adder function in the authors’ code to

aggregate the embedding of all the member sets within an SoS into a single embedding.

For all the LSTM-based models, I use the Adam optimizer [84] with initial

learning-rate 0.001. For each method/task, I use the validation set to select the

best model as follows: during the training process, I retain the model that achieves

the best validation metrics on the validation set and use it for testing. The valida-

tion metrics, as well as hyper-parameter values and loss functions are summarized in

Table 5.1. Following [4, 15], I treat the simple arithmetic task as a regression task

using L1-loss. Since the true values of the arithmetic tasks are integers, I round the

regression outputs to the nearest integers before computing the prediction accuracy.

Table 5.2 summarizes the statistics of the network datasets used in Section 5.4.3.

2https://github.com/manzilzaheer/DeepSets

https://github.com/AMLab-Amsterdam/AttentionDeepMIL

https://github.com/PurdueMINDS/JanossyPooling

80

Table 5.1.: Implementation details for various tasks.

Simple arithmetic Adamic/Adar index Subgraph hyperlink predict Point-cloud classify

Task type Regression Regression Classification Classification

Loss function L1 L1 Cross-entropy Cross-entropy

Max. num. epochs 4000 4000 4000 2000

Validation metric Accuracy L1-loss Accuracy Accuracy

Num. training examples 10,000 1,000 10,000 2,000

Num. validation examples 10,000 1,000 10,000 1,000

Num. test examples 10,000 1,000 10,000 2,000

Table 5.2.: Summary of network dataset statistics.

Dataset |V | |E| #Classes

Cora [85] 2,708 5,429 7

Wiki-vote [86] 7,115 103,689 1

PPI [5] 3,890 76,584 50

5.4.1 Simple Arithmetic Tasks

Similar to [4, 15], I begin by considering simple arithmetic tasks that involve

predicting summary statistics for sets-of-sets containing integers. In our experiments,

each SoS contains n = 4 member multisets, created by drawing m integers from

{0, 1, . . . , 9} with replacement. Given N = 10, 000 SoS training examples, I predict:

∩ Binary : Whether the intersection of all member sets is empty.

∩ Sum : Sum of all elements in the intersection of all member sets.

∪ Sum : Sum of all elements in the union of all member sets.

Unique count : Number of unique elements across all member sets.

Unique sum : Sum of all unique elements across all member sets.

81

Table 5.3.: Prediction accuracies for interactive arithmetic tasks for different member-

set size m.

m = 5 m = 10

Methods ∩ Binary ∩ Sum ∪ Sum ∩ Binary ∩ Sum ∪ Sum

DeepSet [4] 0.742 (0.005) 0.765 (0.003) 0.078 (0.003) 0.900 (0.003) 0.069 (0.003) 0.873 (0.003)

MI-CNN [43] 0.741 (0.007) 0.739 (0.006) 0.425 (0.111) 0.904 (0.001) 0.071 (0.0026) 0.873 (0.071)

J-LSTM [15] 0.729 (0.005) 0.762 (0.003) 0.061 (0.002) 0.271 (0.001) 0.599 (0.006) 0.123 (0.002)

H-LSTM 0.736 (0.003) 0.763 (0.002) 0.963 (0.061) 0.903 (0.002) 0.967 (0.009) 0.893 (0.012)

HATS 0.740 (0.007) 0.765 (0.002) 0.996 (0.005) 0.904 (0.003) 0.998 (0.001) 0.925 (0.012)

Note that the first three tasks (∩Binary, ∩ Sum, and ∪ um) require learning

interactions across the member sets of an SoS, while the last two tasks (Unique count

and Unique sum) are aggregate tasks in that their results would remain unchanged

if one simply flattens all the member sets into a single set and computed the unique

count/sum of its elements.

For each model, I use a validation set containing another 10,000 examples and

evaluate its predictions on a held-out test set with 10,000 examples. For each task,

I also experiment with two different member-set sizes m. For each method, I repeat

for five random trials and report the mean and standard deviations of their test-set

prediction accuracies. The results are shown in Tables 5.3 and 5.4; for each task, I

indicate the highest accuracy values (within two standard errors) in boldface.

I observe that the sequence models (J-LSTM, H-LSTM, HATS) significantly out-

performs MI-CNN and DeepSet on most tasks. This shows that RNNs (learned

with the approximate stochastic optimization) are more suitable for modeling vari-

able length inputs than CNNs or sum-pooling (DeepSet). I also note that H-LSTM

substantially outperforms J-LSTM, which shows that modeling the hierarchical struc-

ture of set-of-sets can better capture and decouple the inter-set and intra-set depen-

dencies. Furthermore, I observe that HATS performs on par with or superior to

H-LSTM, demonstrating the effectiveness of the element-level and set-level attention

mechanisms in capturing higher-range dependencies within and across member sets.

82

SoS improvement over aggregative tasks.

Aggregative tasks are designed as set tasks disguised as SoS tasks, as concatenates

all the member sets into a single set input works for these tasks. Thus, DeepSet, MI-

CNN, and J-LSTM should perform well on these tasks since the hierarchical structure

of SoS’s do not play a role in how the true label was generated. However, from

Table 5.4 I still observe that by modeling what is essentially a set function as an SoS

function, H-LSTM and HATS are still able to produce significant gains over the other

approaches. I believe that this is due to the fact that sequence models (even LSTMs)

still have trouble capturing long-range dependencies—by segmenting a single long

sequence (i.e., the flattened SoS) into a collection of short sequences (i.e., modeling

a set as an SoS), one could improve the models’ capability of capturing dependencies

across elements.

5.4.2 Computing the Adamic/Adar Index

In Section 5.2.1, I showed that the Adamic/Adar (A/A) index [80] between two

nodes in a network could be cast as an SoS function. I perform experiments on the

Table 5.4.: Accuracies for aggregative tasks with different member-set size m.

m = 20 m = 40

Methods Unique count Unique sum Unique count Unique sum

DeepSet [4] 0.432 (0.009) 0.080 (0.002) 0.858 (0.002) 0.872(0.002)

MI-CNN [43] 0.071 (0.003) 0.873 (0.071) 0.860 (0.003) 0.876 (0.002)

J-LSTM [15] 0.431 (0.007) 0.081 (0.001) 0.858 (0.001) 0.872 (0.004)

H-LSTM 0.988 (0.007) 0.991 (0.002) 0.892 (0.007) 0.948 (0.069)

HATS 0.996 (0.006) 0.996 (0.007) 0.938 (0.03) 0.998 (0.002)

83

Table 5.5.: Predicting Adamic/Adar-index on Cora.

Models MAE MSE

LSTM 0.0026 (0.0002) 0.0022 (0.0001)

H-LSTM 0.0023 (0.0002) 0.0013 (0.0008)

HATS 0.0021 (0.0001) 0.0008 (0.0001)

Cora [85] dataset,3 in which I evaluate J-LSTM, H-LSTM, and HATSapproaches for

predicting the Adamic/Adar index between pairs of nodes using their neighbor sets.

More specifically, as described in Section 5.2.1, each input SoS contains two neighbor

sets; an element in each set is a tuple containing the unique identifier of neighboring

node and its degree. Since computing the A/A index requires both node identifier

and degree information, it is not straightforward to transform the SoS inputs into a

single set. Thus, I only evaluate the A/A task over methods that can operate with

native SoS inputs. An added difficulty is the variable number of neighbors of nodes.

I use N = 1,000 training SoS examples (i.e., node-pairs) and another 1,000 ex-

amples for the validation set. Evaluation computes the predicted A/A values for

1,000 held-out test examples and measure the mean-absolute error (MAE) and mean-

squared error (MSE) between the model predictions and the true A/A index. The

results are shown in Table 5.5. I observe that HATS attains the lowest errors, fol-

lowed by H-LSTM and with J-LSTMlast. This may be partly due to the fact that

A/A implicitly requires computing the intersection of two sets, which as our previous

task on Table 5.3 has shown, both HATS and H-LSTM perform well.

5.4.3 Subgraph Hyperlink Prediction

Modeling higher-order structures within a network have recently attracted atten-

tion in relational learning and graph mining (e.g., [87, 88]). Here, our task is to learn

3Table 5.2 summarizes the dataset statistics.

84

SoS embeddings that can help predict the existence of hyperlinks between subgraphs

of a large network. Specifically, a hyperlink exists between two subgraphs if there is

at least one link connecting two nodes from different m-node induced subgraphs in a

larger graph.

I perform experiments on three widely used network datasets: the citation network

Cora [85], the Wikipedia voting network Wiki-vote in [86] and the protein-protein

interaction network PPI in [5]. Table 5.2 in Appendix 5.2 provides a summary of

the network statistics. For each network, I first obtain d = 256-dimensional feature

representations for each node using unsupervised GraphSAGE [5]. Given an SoS

example consisting of the features of every node in each subgraph, the task is to predict

a binary label indicating whether a hyperlink exists between the two subgraphs in

that SoS. For each dataset, I also vary the subgraph size m.

Table 5.6 shows the hyperlink prediction accuracies for each network dataset. I

observe that HATS outperforms the other approaches in almost all tasks, with H-

LSTM only besting HATS once.

Table 5.6.: Subgraph hyperlink prediction accuracies for different subgraph size m.

m = 4 m = 10

Methods Wiki-vote Cora PPI Wiki-vote Cora PPI

DeepSet [4] 0.657 (0.028) 0.676 (0.018) 0.731 (0.031) 0.638 (0.017) 0.661 (0.021) 0.431 (0.027)

MI-CNN [43] 0.832 (0.010) 0.937 (0.002) 0.894 (0.002) 0.675 (0.006) 0.938 (0.001) 0.853 (0.011)

J-LSTM [15] 0.715 (0.045) 0.834 (0.003) 0.782 (0.013) 0.493 (0.034) 0.936 (0.002) 0.5118 (0.031)

H-LSTM 0.932 (0.009) 0.940 (0.004) 0.889 (0.008) 0.783 (0.006) 0.948 (0.004) 0.873 (0.013)

HATS 0.948 (0.008) 0.960 (0.028) 0.901 (0.009) 0.773 (0.006) 0.961 (0.003) 0.872 (0.012)

5.4.4 Point-Cloud SoS Classification

Point-clouds (i.e., sets of low-dimensional vectors in Euclidean space) arise nat-

urally in many computer vision applications using LIDAR data such as self-driving

cars [3]. I perform experiments on the ModelNet40 [75] point-cloud database which

85

contains more than 12,311 point-clouds, each labeled as one of 40 classes (such as

desk, chair, or plane; see Figure 5.3 for some example visualizations) .

In our experiments, each SoS example, representing a point-cloud scene, contains

m = 10 point-clouds, and each point-cloud comprises of 2,000 points. I construct SoS

examples in two different ways to perform two prediction tasks:

Anomaly detection : Among the 10 point-clouds in each SoS, at least 9 of them have

the same class label, but there is a 50% chance that the remaining one has a different

label (i.e., is an anomaly). Given such an SoS, the task is to predict whether this

SoS contains an anomalous point-cloud.

Unique-label counting : Each SoS consists of 10 randomly selected point-clouds from

the database. Given such an SoS, the task is to predict the number of unique object

types (labels) in the SoS.

For each task, I use N = 2,000 SoS examples for training, 1,000 for validation,

and 2,000 ones held-out for testing. Table 5.7 shows the prediction accuracies for

each method on both tasks. Once again, I observe that HATS performs best among

all approaches.

To further gauge the relative performance of the sequence models, Figure 5.3 varies

the size m of each point-cloud (i.e., the number of points it contains), and plot their

accuracies (along with standard errors) for the anomaly detection task in Figure 5.3.

I observe that HATS consistently outperforms H-LSTM and J-LSTM, thanks to its

attention mechanism for capturing long-range dependencies even as m gets to 1,500

elements in the member sets.

For SoS’s whose member sets are rather large (for instance, each point-cloud in-

stance contains m = 2,000 points), one could further speed up the training procedure

of our proposed models by retaining only the first k number of columns of the per-

muted SoS Ã from m to a smaller number k before performing the stochastic gradient

update on line 8 in Algorithm 2. This approach can be viewed as an example of im-

posing k-ary dependency restrictions [15] as a means of promoting computational

86

efficiency. For the point-cloud anomaly detection task, Figure 5.3 investigates how

such k-ary restrictions affect prediction performance. I observe that even with small

values of k, the loss in prediction accuracy remains tolerable, even as k decreases from

the original m = 2, 000 points (Table 5.7) to 50 points.

label = True (there is a plane among the chairs)(a) Anomaly detection

(b) Unique-label counting label = 4 (4 unique types : chair, plane, guitar, and bed)

Figure 5.2.: Visualization of point-cloud tasks.

200 400 600 800 1000 1200 1400 1600
m

0.50

0.55

0.60

0.65

P
re

di
ct

io
n

A
cc

ur
ac

y

J-LSTM H-LSTM HATS

Figure 5.3.: Anomaly detection ac-

curacies for varying point-cloud size

m.

50 100 150 200 250 300
k

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

P
re

di
ct

io
n

A
cc

ur
ac

y

J-LSTM H-LSTM HATS

Figure 5.4.: Anomaly detection ac-

curacies for varying k-ary depen-

dency.

87

Table 5.7.: Point-cloud classification results.

Methods Anomaly detection Unique-label counting

DeepSet [4] 0.553 (0.021) 0.231(0.021)

MI-CNN [43] 0.513 (0.003) 0.356 (0.011)

J-LSTM [15] 0.525 (0.018) 0.369 (0.009)

H-LSTM 0.596 (0.004) 0.357 (0.008)

HATS 0.663 (0.016) 0.388 (0.011)

88

6 SUMMARY AND FUTURE DIRECTIONS

6.1 Conclusion

In this dissertation, I developed scalable invariant methods to learn representations

from graphs, sets, and sets of sets. On the one hand, I proposed methods which are

invariant to graph isomorphism or set permutations. On the other hand, our proposed

method can model high-order relationships which can increase the prediction quality.

In this chapter, I summarize the contributions of this dissertation, and outline several

avenues for future research.

The contributions of this dissertation fall into the following aspects:

Theoretical

• In Chapter 3, I proposed induced subgraph pattern as features to model high-

order dependence between nodes on graph.

• In Chapter 4, I showed the characteristics of an architecture’s computational

graph impact its ability to learn in contexts with complex set dependencies,

and demonstrate limitations of current methods with respect to one or more of

these complexity dimensions.

• In Chapter 5, I proposed the properties of inter-set and intra-set dependencies

of Set-of-Sets problem can not be modeled by set models.

Modeling

• In Chapter 3, I developed a Subgraph Neural Network model SPNN which

is a first step in the development of more interpretable models, features, and

89

classifiers that can encode the complex correlations between graph structure

and labels.

• In Chapter 4, I developed a neural network architecture Self-Attention GRU

designed to better capture both long-range and high-order dependencies.

• In Chapter 5, I proposed a framework for learning permutation-invariant in-

ductive SoS embeddings with neural networks, and introduced HATS, a hier-

archical, bi-directional LSTM with attention, that is designed to better cap-

ture intra-set and inter-set interactions in sets-of-sets while maintaining SoS

permutation-invariance.

Empirical

• In Chapter 3, I evaluated the problem of predicting induced subgraph evolu-

tion in heterogeneous graphs and generalizes a variety of existing tasks. Our

results show SPNN to consistently achieve better performance than competing

approaches.

• In Chapter 4, I demonstrated Self-Attention GRU achieved improved perfor-

mance over a wide range of applications and against state-of-the-art baselines.

• In Chapter 5, I demonstrated our proposed model HATS achieved superior

performance over a wide range of application tasks involving SoS inputs.

Besides the above mentioned theoretical, modeling and empirical contributions, I

also learned the following four properties are essential to representation learning with

invariances: (1) Model should be invariant to graph isomorphism or set permuta-

tions. Subgraph Pattern Pooling and Janossy Pooling [15] can handle the invariances

in representation learning. (2) The learned model should be inductive. In order to

learn more inductive models, subgraph tasks can adopt explicit subgraph counting,

while set and set-of-sets tasks can use a better architecture and use attention mech-

anism. (3) The model should capture high-order relationships. Subgraph tasks can

90

use subgraphs to model multi-node interactions. Set tasks can use high-order process

functions. Set-of-sets tasks can adopt the hierarchical structure to model both intra-

set and inter-set dependence. (4) Models should scale polynomial to the data size

even though possible isomorphic graphs and permutated sets are in factorial-scale.

Subgraph tasks can adopt subgraph random walk [89] to sample subgraphs. Set and

set-of-sets tasks can adopt π-SGD [15] to optimize and inference efficiently.

6.2 Future Directions

6.2.1 Subgraph Collective Inference

Collective inference can be used to further improve the accuracy of subgraph

prediction. The common nodes between neighbouring subgraphs can help to collective

inference the labels of subgraphs. Existing works [7] mainly focus on single node

collective inference. No attention has been paid on high-order subgraph collective

inference. In this case, I can apply collective inference to enhance current subgraph

classification models. Since neighboring subgraph may share common nodes, it is

reasonable that the labels of neighboring subgraphs are correlated. I can develop a

collective classification method to create a joint classifier (e.g., [38, 39]) for SPNN ,

as our approach can be used as a local conditional model for joint prediction.

6.2.2 Increase Subgraph Counting Efficiency

The proposed Subgraph Pattern Neural Network needs to count the induced neigh-

boring subgraphs. Enumerating all the neighbors is time consuming especially for hub

nodes. Facing this issue, the proposed model constrains the search space by consid-

ering 1-hop subgraph neighbors with maximum of 4 nodes. Even though there are

some follow-up works [90] to increase the efficiency of larger subgraph counting, this

problem still worth further attention since it will benefits a larger range of models

besides my proposed model.

91

6.2.3 Random Graph Model for Set

Since adding randomness to the order of input elements by Janossy Pooling [15]

can solve the invariance issues in set models, adding randomness to the model’s

architecture may also achieve the same goal. Using a random graph as the model’s

computational graph and re-generate graph randomly at each epoch may help us learn

permutation-invariant functions. Since adding randomness to models can improve the

prediction quality in image recognition [91], exploring less constrained search spaces

in set problems may achieve competitive prediction results. Among these random

graph models, the random regular graph can provide balanced memory usage for

each local process functions.

6.2.4 Apply the proposed Set model on the Set-of-Sets tasks

The SoS work is finished earlier than the Set architecture work. Studying the

Set-of-sets problem in Chapter 5 provides the intuitions for our proposed model in

Chapter 5. Due to time constraint, I have not applied the model in Chapter 4 in

set-of-sets problems in Chapter 5 yet. Since the proposed model can better model

high-order dependence and long-range dependence, applying it to set-of-sets tasks

should have better performance.

6.2.5 Temporal Graph Classification with Set of Sets

Recent works on node classification using temporal interaction information showed

randomized time steps achieved most of the accuracy gains [92]. This finding implies

temporal graph information may also be permutation-invariant. Since the neighboring

graph nodes can be represented as a set [7], a set of graphs in different timestamps

can be modeled as a set of sets. In this case, applying our SoS models HATSmay

achieve promising results.

92

BIBLIOGRAPHY

[1] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social

networks. J. Assoc. Inf. Sci. Technol., 58(7), 2007.

[2] Daniel Mauricio Romero and Jon Kleinberg. The directed closure process in

hybrid social-information networks, with an analysis of link formation on twitter.

In Fourth International AAAI Conference on Weblogs and Social Media, 2010.

[3] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation. In 2017 Conference

on Computer Vision and Pattern Recognition, 2017.

[4] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan

Salakhutdinov, and Alexander J. Smola. Deep sets. In NeurIPS, 2017.

[5] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learn-

ing on large graphs. In NeurIPS, 2017.

[6] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are

graph neural networks? In ICML, 2019.

[7] John Moore and Jennifer Neville. Deep collective inference. In aaai conference

on artificial intelligence, pages 2364–2372, 2017.

[8] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan

Pascanu, Peter Battaglia, and Timothy Lillicrap. A simple neural network mod-

ule for relational reasoning. In NeurIPS, 2017.

[9] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convo-

lutional neural networks for graphs. In 2016 ICML, 2016.

93

[10] Daniel Selsam, Matthew Lamm, Benedikt Bunz, Percy Liang, Leonardo

de Moura, and David L Dill. Learning a sat solver from single-bit supervision.

2018.

[11] Gil Lederman, Markus N Rabe, Edward A Lee, and Sanjit A Seshia. Learning

heuristics for automated reasoning through reinforcement learning. 2018.

[12] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,

Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo,

Adam Santoro, Ryan Faulkner, et al. Relational inductive biases, deep learning,

and graph networks. 2018.

[13] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for net-

works. In 22nd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, 2016.

[14] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence

to sequence for sets. arXiv preprint arXiv:1511.06391, 2015.

[15] Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno

Ribeiro. Janossy pooling: Learning deep permutation-invariant functions for

variable-size inputs. In ICML, 2019.

[16] Seungil You, David Ding, Kevin Canini, Jan Pfeifer, and Maya Gupta. Deep

lattice networks and partial monotonic functions. In NeurIPS, 2017.

[17] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R Kosiorek, Seungjin Choi, and

Yee Whye Teh. Set transformer. arXiv:1810.00825, 2018.

[18] James Victor Uspensky. Introduction to mathematical probability. 1937.

[19] H. Dai, B. Dai, and L. Song. Discriminative embeddings of latent variable models

for structured data. In ICML, pages 2702–2711, 2016.

94

[20] James Atwood and Don Towsley. Diffusion-convolutional neural networks. In

NIPS, 2016.

[21] Francesco Orsini, Paolo Frasconi, and Luc De Raedt. Graph Invariant Kernels.

In IJCAI, 2015.

[22] Pinar Yanardag and S.V.N. Vishwanathan. A Structural Smoothing Framework

For Robust Graph Comparison. In NIPS, 2015.

[23] Pinar Yanardag and S.V.N. Vishwanathan. Deep Graph Kernels. In KDD, 2015.

[24] M. Niepert, N. Mohamed, and N. Konstantin. Learning Convolutional Neural

Networks for Graphs. In ICML, 2016.

[25] Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning for

Networks. In KDD, 2016.

[26] Ni Lao and William W. Cohen. Relational retrieval using a combination of

path-constrained random walks. Mach. Learn., 81(1), 2010.

[27] Y. Sun, R. Barber, M. Gupt, C. Aggarwal, and J. Han. Co-author relationship

prediction in heterogeneous bibliographic networks. In ASONAM, 2011.

[28] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of

social representations. In KDD. ACM, 2014.

[29] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

Line: Large-scale information network embedding. In WWW. ACM, 2015.

[30] Larry Heck and Hongzhao Huang. Deep learning of knowledge graph embeddings

for semantic parsing of twitter dialogs. In GlobalSIP. IEEE, December 2014.

[31] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral Net-

works and Locally Connected Networks on Graphs. In ICLR, dec 2013.

95

[32] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep Convolutional Networks on

Graph-Structured Data. arXiv:1506.05163v1, jun 2015.

[33] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A Three-Way Model

for Collective Learning on Multi-Relational Data. ICML, 2011.

[34] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A

Review of Relational Machine Learning for Knowledge Graphs. IEEE, mar 2015.

[35] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic embed-

dings of knowledge graphs. In AAAI. AAAI Press, 2016.

[36] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Mur-

phy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: a

web-scale approach to probabilistic knowledge fusion. KDD, 2014.

[37] Ryan N. Lichtenwalter, Jake T. Lussier, and Nitesh V. Chawla. New perspectives

and methods in link prediction. In KDD, 2010.

[38] Matthew Richardson and Pedro Domingos. Markov logic networks. Mach.

Learn., 2006.

[39] J. Neville and D. Jensen. Relational dependency networks. JMLR, 2007.

[40] Cristina Manfredotti. Modeling and inference with relational dynamic bayesian

networks. In Advances in artificial intelligence. Springer, 2009.

[41] Lise Getoor and Lilyana Mihalkova. Learning statistical models from relational

data. In SIGMOD, page 1195. ACM Press, 2011.

[42] Andrew Cotter, Maya Gupta, Heinrich Jiang, James Muller, Taman Narayan,

Serena Wang, and Tao Zhu. Interpretable set functions. 2018.

[43] Maximilian Ilse, Jakub M Tomczak, and Max Welling. Attention-based deep

multiple instance learning. In 2016 ICML, 2018.

96

[44] Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Deep learning with

sets and point clouds. arxiv:1611.04500, 2016.

[45] Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetry and invari-

ant neural networks. 2019.

[46] Yan Zhang, Jonathon Hare, and Adam Prugel-Bennett. Deep set prediction

networks. In Advances in Neural Information Processing Systems, pages 3207–

3217, 2019.

[47] Changping Meng, Jiasen Yang, Bruno Ribeiro, and Jennifer Neville. Hats: A

hierarchical sequence-attention framework for inductive set-of-sets embeddings.

In SIGKDD, 2019.

[48] Edward Wagstaff, Fabian B Fuchs, Martin Engelcke, Ingmar Posner, and Michael

Osborne. On the limitations of representing functions on sets. arXiv preprint

arXiv:1901.09006, 2019.

[49] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl

Dickstein. On the expressive power of deep neural networks. In ICML, 2017.

[50] Michael Tsang, Dehua Cheng, and Yan Liu. Detecting statistical interactions

from neural network weights. arXiv preprint arXiv:1705.04977, 2017.

[51] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-

dergheynst. Geometric deep learning: Going beyond euclidean data. volume 34,

pages 18–42, 2017.

[52] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++:

Deep hierarchical feature learning on point sets in a metric space. In NeurIPS,

2017.

[53] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and

Samuel R Bowman. Glue: A multi-task benchmark and analysis platform for

natural language understanding. arXiv preprint arXiv:1804.07461, 2018.

97

[54] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

[55] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,

and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language

understanding. arXiv preprint arXiv:1906.08237, 2019.

[56] Jason Hartford, Devon R Graham, Kevin Leyton-Brown, and Siamak Ravan-

bakhsh. Deep models of interactions across sets. In 2016 ICML, 2018.

[57] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alexander J. Smola, and

Eduard H. Hovy. Hierarchical attention networks for document classification. In

NAACL-HLT, 2016.

[58] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning

Entity and Relation Embeddings for Knowledge Graph Completion. AAAI, 2015.

[59] Austin R Benson, David F Gleich, and Jure Leskovec. Higher-order organization

of complex networks. Science, 353(6295), 2016.

[60] Jian Xu, Thanuka L. Wickramarathne, and Nitesh V. Chawla. Representing

higher-order dependencies in networks. Science Advances, 2(5), 2016.

[61] Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. Motifs in Temporal

Networks. In WDSM, dec 2017.

[62] Mahmudur Rahman and Mohammad Al Hasan. Link prediction in dynamic

networks using graphlet. In Joint European Conference on Machine Learning

and Knowledge Discovery in Databases, pages 394–409. Springer, 2016.

[63] László Lovász and Balázs Szegedy. Limits of dense graph sequences. J. Comb.

Theory, Ser. B, 2006.

98

[64] C Borgs, J T Chayes, L Lovász, V T Sós, and K Vesztergombi. Convergent Se-

quences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing.

Advances in Mathematics, 2008.

[65] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social

networks. J. Am. Soc. Inf. Sci. Technol., 58(7), May 2007.

[66] Pinghui Wang, John C. S. Lui, Bruno Ribeiro, Don Towsley, Junzhou Zhao, and

Xiaohong Guan. Efficiently Estimating Motif Statistics of Large Networks. ACM

TKDD, 9(2), sep 2014.

[67] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraphs in the

presence of isomorphism. In ICDM. IEEE Comput. Soc, 2003.

[68] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu. PathSim: Meta path-based top-k

similarity search in heterogeneous information networks. PVLDB, 4(11), 2011.

[69] Lada Adamic and Eytan Adar. Friends and neighbors on the web. Social Net-

works, 25(3), July 2003.

[70] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al.

Gradient flow in recurrent nets: the difficulty of learning long-term dependencies,

2001.

[71] Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased lstm: Accelerating

recurrent network training for long or event-based sequences. In Advances in

neural information processing systems, pages 3882–3890, 2016.

[72] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-

sentations using rnn encoder-decoder for statistical machine translation. arXiv

preprint arXiv:1406.1078, 2014.

99

[73] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

In NeurIPS. 2017.

[74] Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi,

and Stefanie Jegelka. What can neural networks reason about? ICLR, 2020.

[75] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou

Tang, and Jianxiong Xiao. 3D Shapenets: A deep representation for volumetric

shapes. In Conference on Computer Vision and Pattern Recognition, 2015.

[76] Richard M Karp. Reducibility among combinatorial problems. In Complexity of

computer computations, pages 85–103. Springer, 1972.

[77] Wayne D. Blizard. Multiset theory. volume 30, 1988.

[78] D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes

(Vol. II). Springer, second edition, 2008.

[79] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward

networks are universal approximators. volume 2, pages 359–366, 1989.

[80] Lada A. Adamic and Eytan Adar. Friends and neighbors on the web. 2001.

[81] Hava T. Siegelmann and Eduardo D. Sontag. Turing computability with neural

nets. Appl. Math. Lett., 4:77–80, 1991.

[82] Duyu Tang, Bing Qin, and Ting Liu. Document modeling with gated recurrent

neural network for sentiment classification. In 2015 Conference on Empirical

Methods on Natural Language Processing, 2015.

[83] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate. 2014.

[84] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

2014.

100

[85] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher,

and Tina Eliassi-Rad. Collective classification in network data. 2008.

[86] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed networks in

social media. In CHI, 2010.

[87] Austin R Benson, Rediet Abebe, Michael T Schaub, Ali Jadbabaie, and Jon

Kleinberg. Simplicial closure and higher-order link prediction. 2018.

[88] Dong Li, Zhiming Xu, Sheng Li, and Xin Sun. Link prediction in social networks

based on hypergraph. In WWW, 2013.

[89] Pinghui Wang, John Lui, Bruno Ribeiro, Don Towsley, Junzhou Zhao, and Xi-

aohong Guan. Efficiently estimating motif statistics of large networks. ACM

TKDD, 9(2), 2014.

[90] Carlos HC Teixeira, Leornado Cotta, Bruno Ribeiro, and Wagner Meira. Graph

pattern mining and learning through user-defined relations. In 2018 IEEE In-

ternational Conference on Data Mining (ICDM), pages 1266–1271. IEEE, 2018.

[91] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring

randomly wired neural networks for image recognition. In Proceedings of the

IEEE International Conference on Computer Vision, pages 1284–1293, 2019.

[92] Hogun Park and Jennifer Neville. Exploiting interaction links for node classifi-

cation with deep graph neural networks. In Proceedings of the 28th International

Joint Conference on Artificial Intelligence, pages 3223–3230. AAAI Press, 2019.

