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ABSTRACT 

The Purdue Agronomy Center for Research and Education (ACRE) has become a hub for 

state-of-the-art research using automated field-based plant phenotyping. Soils are critical in field-

based phenotyping because they vary spatially across a field due to soil forming factors, previous 

land use, and human modifications. The same genotype is likely to express a different phenotype 

in different parts of the same field because of soil variability.  

The current, polygon-based USDA soil survey, while useful, is not detailed enough to 

support field-based phenotyping and precision agriculture. We used digital soil mapping (DSM) 

techniques to accurately predict soil variation across ACRE and produce higher resolution 

continuous soil maps.  

We produced maps of soil organic matter content (OM), cation exchange capacity (CEC), 

natural soil drainage classes, and tile line locations to encompass both chemical and physical 

properties that influence crop growth. A lidar-based digital elevation model (DEM) was used to 

derive terrain attributes that capture topographic variation, the main driver of soil variation at 

ACRE. Some 178 soil samples were collected for OM and CEC determination and 154 locations 

were sampled for natural soil drainage class determination. For each dataset, 70% of the points 

were used for training and 30% were used for evaluation. 

The spatial distributions of OM and CEC were determined by universal kriging (UK), 

Cubist, and random forest (RF) geostatistical models. Similarly, multinomial logistic regression 

(MNLR), C5.0 decision tree, RF, and artificial neural network (ANN) models were used to predict 

natural soil drainage classes.  

All the DSM models produced similar OM, CEC, and soil drainage class predictions. For 

OM, R2 ranged from 0.44 – 0.45, root mean square error (RMSE) ranged from 0.8 – 0.83, 
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concordance ranged from 0.56 – 0.58, and bias ranged from 0 – 0.22. For CEC, R2 ranged from 

0.39 – 0.44, RMSE ranged from 3.62 – 3.74, concordance ranged from 0.55 – 0.57, and bias ranged 

from 0 – 0.17. The overall accuracy of the four predictive DSM models for natural soil drainage 

classes ranged from 66 – 70% and kappa coefficient ranged from 0.53 – 0.59. 

The results of the DSM models were also compared to the USDA Soil Survey Geographic 

(SSURGO) data. For OM and CEC, SSURGO was comparable to the DSM models, but SSURGO 

underestimated or overestimated both soil properties for a few map units. For natural soil drainage 

class predictions, the DSM models slightly outperformed SSURGO with an overall accuracy of 

64% and kappa of 0.52. 

The tile drainage lines map was based on visual interpretation of aerial photographs, 

physical paper maps, electronic as-built maps, and the knowledge of the ACRE superintendent. 

For 27 tile locations determined physically, the mapped locations occurred within ±1.23 m of the 

true tile locations. 
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 GENERAL INTRODUCTION AND MOTIVATION 

With the Purdue Moves Plant Science Initiative, the Agronomy Center for Research and 

Education (ACRE) has become a state-of-the-art center for field-based phenotyping. Even though 

the main focus of plant phenotyping is on plants above ground, soil variability below ground 

cannot be ignored because of its influence on plant growth and development. Understanding soil 

variability is important and perhaps underappreciated in field-based phenotyping. The same 

genotype will likely to show slightly different phenotypic characteristics in different parts of the 

same field due to soil variation. 

Researchers at ACRE currently rely on traditional soil survey maps from the U.S. 

Department of Agriculture, Natural Resources Conservation Service (NRCS). These maps are 

useful but do not provide sufficient spatial resolution to describe soil variability for areas less than 

one ha (Soil Science Division Staff, 2017). Since the traditional soil survey maps delineate soil 

map units as polygons, sharp changes in reported soil properties often occur at the polygon 

boundaries. Therefore, higher resolution and continuous soil maps are needed to capture field scale 

variability and soil functional properties that impact plant responses and hydrological processes. 

This dissertation focuses on digital soil mapping (DSM) techniques for capturing soil spatial 

variability at the scale of an individual farm (570 ha), the Purdue Agronomy Center for Research 

and Education. 

1.1 Research Objectives and Hypothesis 

The overall objective of this study is to explore field scale soil variability and develop 

spatially explicit digital soil class and soil property maps relevant for agronomic research, 
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particularly to supporting field-based phenotyping at ACRE. The information will be then made 

available for use by other projects at ACRE. Specific objectives are: 

1. Develop continuous soil organic matter (OM) and cation exchange capacity (CEC) maps 

using terrain attributes generated from a high-resolution digital elevation model combined 

with data from soil samples collected in the field. 

• Much of the soil variability at ACRE is due to wetness differences. Therefore, terrain 

attributes such as topographic wetness index (TWI), topographic position index (TPI), 

and others that quantify water flow and accumulation will be calculated from the DEM. 

These terrain attributes infer water redistribution by utilizing algorithms to describe 

topography by creating a unique index value for each pixel in the digital elevation 

model. The terrain indices will allow us to make more detailed soil maps. 

2. Develop a soil drainage class map using terrain attributes generated from a high-resolution 

digital elevation model combined with field determinations of natural soil drainage class. 

3. Prepare a map of the location of tile drainage lines based on aerial imagery, expert knowledge, 

available physical paper maps, and, when available, georeferenced, as-installed data. 

• For this research objective, we will assemble all available aerial photographs for ACRE. 

Aerial photos are used for assessing field conditions and detecting soil or crop problems 

that might otherwise go unnoticed at ground level (Reising et al., 1988). Air photos 

acquired at different times are helpful in capturing different features. The light and dark 

patterns of bare ground images often correlate to soil differences. Some of the aerial 

photos show the location of tile lines and areas that pond regularly. We will also use 

the knowledge of the farm manager and physical paper maps to determine the locations 
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of tile lines for areas where the locations of the tiles cannot be determined from aerial 

imagery. 

The main hypothesis of this study is that soil variability at ACRE is the result of topography 

and tile drainage and can be predicted by using terrain analysis and aerial imagery. 

1.2 Organization and Outline 

This dissertation consists of six chapters. Chapter 1 provides a general introduction to soil 

spatial variability, the justification for this study, the objectives, and the hypothesis of the research 

topics. Chapter 2 describes the principles and concepts of soil surveys and digital soil mapping 

and reviews previous studies related to this field of research. Chapters 3, 4 and 5 address objectives 

1, 2 and 3, respectively. The final chapter, Chapter 6, provides information about the utilization 

and delivery of spatially explicit digital soil information. The appendix contains additional 

materials relevant to the study. 
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 LITERATURE REVIEW 

2.1 Predicting and Mapping Soil Spatial Variability 

Soil is a complex and non-renewable natural resource that sustains life on the earth by 

providing essential ecosystem functions. Soils are increasingly under threat. According to the 

European Commission (2002), soils need to be protected from the following eight major threats:  

erosion, organic matter reduction, soil compaction, soil sealing, soil contamination, floods and 

landslides, salinization, and soil biodiversity reduction. Furthermore, climate change and water 

scarcity are other factors that affect the ability of soils to optimally perform their functions. A 

comprehensive understanding of soils and their spatial distribution over a landscape is important 

for the proper use of soil resources and to protect them from degradation. 

Soil surveys document how soils vary across landscapes. A common misconception is that 

a soil survey is equal to, or the same as, a soil map. A soil survey is more than just a soil map 

(Brady and Weil, 2002). Soil surveys describe the characteristics of the soils in a given location, 

classify the soils based on a standard system of taxonomy, delineate the soil boundaries on a map, 

store soil property information in an organized database, and make interpretations about the 

suitability and limitation of each soil for various uses, as well as likely responses to management 

systems (Soil Science Division Staff, 2017). The information assembled in a soil survey can be 

used for land use planning and evaluation of the impact of land use on the environment. The public 

and scientific community can use the information in soil surveys for informed decision making. 

A soil survey has the same basic objective for all kinds of land. However, the number of 

soil mapping units and the spatial detail of the mapping vary based on the needs of end users and 

the complexity of the soil landscapes in a particular survey area. Soil surveys may be conducted 

at various levels of detail, referred to as the order of the soil survey. First order soil surveys provide 
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detailed information, usually over relatively small areas, while fifth order surveys provide 

reconnaissance data over large areas (i.e. regions or continental scale) (Soil Science Division Staff, 

2017). 

The three main phases in soil surveys are assessment, mapping, and interpretation. In the 

assessment phase, soil scientists determine which soil properties are important for that specific 

type of survey and for land evaluation and management recommendations. Soil mapping is the 

most widely recognized phase. Soil scientists delineate the boundaries of soils at a specified map 

scale based on information from soil sampling and/or an earlier research phase. In the 

interpretation stage, soil scientists provide information about land use potential, management 

practices, avoidance of hazards, and economic evaluations of soil data (Dent and Young, 1981; 

Soil Science Division Staff, 2017). 

2.2 Conventional Soil Mapping and its Limitations 

In conventional or traditional soil mapping, soil scientists develop a conceptual, mental 

soil-landscape model through intensive fieldwork (Fig. 2.1). Soil scientists delineate polygons of 

similar soils on aerial photographs based on their knowledge of the distribution of landscape units. 

In addition to aerial photographs, soil surveyors use Landsat images, and geology and topographic 

maps to identify landscape features. They then conduct field observations to verify and refine their 

concepts (USDA-NRCS, 1998; Soil Science Division Staff, 2017). 
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Figure 2.1: Block diagram of soil-landscape model developed by an expert soil scientist for the 

Drummer and Toronto-Millbrook Complex mapping units of Tippecanoe County, Indiana 

(USDA-NCSS, 1998). 

The output and procedure of the conventional mapping approach has its limitations. For 

example, the USDA soil survey maps, while very useful, do not estimate soil variation for areas 

smaller than about one hectare (2.5 acres) (Soil Science Division Staff, 2017). Additionally, soil 

polygons represent soil classes or properties as spatially homogenous within the polygons. This 

often results in sharp transitions to adjacent polygons with different soil classes or properties. This 

method for modeling soil spatial variability does not account for the continuous spatial variation 

of soil. Furthermore, information generated through the conventional approach is qualitative, 

therefore it has a limited use in quantitative studies (Hartemink et al., 2010; Boettinger, 2010). 

Due to advances in computer technologies and various statistical models, it is now possible to 

capture soil variability on a more continuous and quantitative basis. Digital soil mapping (DSM) 
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is an emerging technology that can play a role in overcoming some of the limitations of 

conventional soil mapping (McKenzie and Ryan, 1999; Kempen et al., 2012). 

2.3 Digital Soil Mapping 

There have been a significant number of DSM projects conducted in various parts of the 

world and most of those conducted prior to 2002 are discussed by McBratney et al., (2003). 

Advancement in computer technology and freely available high-resolution data, such as digital 

elevation models and remotely sensed and proximally sensed data, are major reasons for the rapid 

growth of DSM methodologies. Digital soil mapping (DSM) is the creation of digital soil type 

and/or property maps based on spatially explicit environmental variables and measurements made 

in the field and laboratory (McBratney et al., 2003). DSM can be used to develop initial soil survey 

maps, update existing surveys, assess risk, and generate soil interpretations (Carré et al., 2007). 

Conceptually there is no difference between DSM and conventional soil mapping. Both 

methods rely on soil-landscape models to predict soil properties at unobserved locations (Hudson, 

1992). They both need soil and covariate data for model building. The main difference is how the 

models utilize, process, and display the soil information from the input data. Conventional soil 

mapping captures soil-landscape models qualitatively, while DSM quantifies the soil-landscape 

model numerically by establishing relationships between soil forming factors and soils (Kempen 

et al., 2012; Soil Science Division Staff, 2017). 

Each digital soil mapping project is unique, and aspects of each project may vary with 

respect to the goal of the project, the availability of environmental variables, and the method of 

prediction. The stages and processes in producing a soil map, however, should be consistent in all 

digital soil mapping projects. Soil Science Division Staff (2017) provide a complete and detailed 

outline of the various stages and processes in DSM. 
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2.4 The CLORPT and SCORPAN Models 

The properties of soil vary over space and this variation is not random. Jenny (1949) is 

credited with developing the conceptual model that ascribes soil variation (S) on a landscape as 

the result of climate (cl), living organisms (o), topography or relief (r), parent material (p), and 

time (t), mathematically expressed as:  

 S = f (cl, o, r, p, t) [1] 

The CLORPT model has been used in conventional soil mapping, but it is not spatially 

explicit nor quantitative (Soil Science Division Staff, 2017). In order to represent soil and its 

associated environmental variables in a spatial context, McBratney et al. (2003) proposed the 

SCORPAN model. The SCORPAN model is a quantitative and inference-based model that can be 

expressed in two general forms: 

 Sc = f (s, c, o, r, p, a, n) and Sp = f (s, c, o, r, p, a, n) [2] 

In this model Sc refers to a soil class and Sp a soil property, while s represents other soil 

information at that point, c climate, o living organism (vegetation or flora, fauna, and human 

activity), r relief or topography, p parent material, a age or time, n the spatial position, and f the 

soil spatial prediction function. As opposed to the CLORPT model, the SCORPAN model uses 

soil itself as a covariate for soil prediction. McBratney et al. (2003) provide in-depth information 

on the various sources for obtaining the seven SCORPAN covariates for DSM. In the section below, 

we will only discuss the sources for obtaining r, the relief factor. 

2.5 Data Sources for Relief and the Selection of Appropriate Terrain Predictors 

McBratney et al. (2003) reviewed more than 130 papers about DSM and observed that 

among the seven SCORPAN variables, relief (r) was the most extensively used variable in DSM 

studies. Currently, relief, or topographic information, is mainly derived from digital elevation 
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models (DEMs). A DEM provides quantitative information about the continuous variation of the 

Earth’s surface. Remotely sensed elevation data, digitized contour and stream lines data, and point 

measurements of elevation, either from conventional land surveys or vehicle-mounted high-

resolution global positioning system (GPS) receivers, are different sources for acquiring and 

generating elevation data (McBratney et al., 2003).  

Digital terrain analysis is a useful approach for acquiring topographic information from 

DEMs and provides information about elevation, stream networks and other terrain associated 

attributes, along with their geographic position (Moore et al., 1993; Wilson and Gallant, 2000). 

Terrain covariates are calculated from DEMs and have been widely applied in digital soil mapping. 

Terrain covariates can be broadly classified as first order and second order derivatives, also known 

as primary and secondary (or compound) attributes. The first order derivatives are directly 

calculated from a DEM, while second order derivatives result from combinations of first order 

attributes (Moore et al., 1991). Slope, aspect, plan and profile curvatures, and upslope contributing 

area are the major first order derivatives. Stream power index, sediment transport capacity index, 

and topographic wetness index are the major second order derivatives. For a thorough list of terrain 

attributes, see Wilson and Gallant (2002). Landscape classification, which has a strong link to soil 

properties such as organic matter (Pennock et al., 1987), can be easily generated using a DEM 

(MacMillan et al., 2003). The generated landform classes have been used in soil mapping as 

environmental predictors (Smith et al., 2012). 

It is necessary to understand the details and functionality of each terrain attribute before 

generating a DSM. The terrain covariates based on hydrology need to be calculated using 

hydrological units like watersheds (Soil Science Division Staff, 2017). Deriving many terrain 

attributes from a DEM and collecting other ancillary data such as soil legacy data and indices 
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derived from remotely sensed data are relatively inexpensive and easy. Additionally, it is possible 

to use all of these attributes and indices in predictive models. However, selecting appropriate 

covariates is recommended to prevent model uncertainty and overfitting. Additionally, models 

with fewer covariates are easier to interpret and faster to compute (Soil Science Division Staff, 

2017). 

Pedological knowledge and various statistical methods such as: optimal index factor (OIF), 

variance inflation factor (VIF), Pearson’s correlation coefficient (r), principle component analysis 

(PCA), and forward and backward selection, to name a few, can be used to select optimal terrain 

attributes and other ancillary data for DSM. The resulting digital soil map is more accurate when 

it is derived by an expert soil scientist. Therefore, for better DSM outcomes, it is recommended 

that expert soil knowledge be used along with statistical procedures in covariate selections 

(Kempen et al., 2009; Kuhn and Johnson, 2013). 

2.6 Collecting Field Soil Point Observations 

Sampling designs for collecting soil samples play a critical role in soil spatial prediction 

modeling. Different sampling designs result in different soil distributions and ultimately impact 

DSM accuracy (Brus et al., 2006; Van Groenigne et al., 2000; Heim et al., 2009). Taking into 

consideration that soil sampling is time consuming and resource intensive, selecting an efficient 

soil sampling scheme is important. Poor sampling design can introduce significant biases, which 

may result in over or under predictions by models (Congalton, 1991). Four common probabilistic 

sampling designs that are often used in environmental correlation are discussed briefly below. 
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2.6.1 Simple Random Sampling 

Simple random sampling is used in areas where prior soil information is limited. In this 

sampling approach, each sampling location has an equal random chance of being selected. This 

sampling design provides unbiased estimates of the mean and variance but requires a large number 

of samples to reduce prediction errors (Lee et al., 2017; Palmer, 2003). Additionally, this design 

may cause spatial clustering of sample locations and may not provide good geographical coverage 

over a specific area (Avery and Burkhart, 1994; Yang et al., 2016). This method works best in 

small, homogenous areas. Howell et al. (2004) found that models using simple random sampling 

compared to models using purposive or subjective sampling were more accurate in predicting soil 

morphological features. Purposive sampling is typically used in conventional soil surveys when 

soil sampling locations are determined by the intuition of expert soil scientists. The poor 

performance of purposive sampling might be due to the subconscious bias of soil experts (Buol et 

al., 1997; McKenzie and Ryan, 1999). 

2.6.2 Systematic Sampling Design 

Systematic sampling design places a grid of sampling units over the sampling location. 

Squares, triangles and hexagons are commonly applied grid patterns used in systematic sampling 

designs. This sampling design will not be effective in irregularly shaped areas or in areas that have 

periodic distributions (systematic variations) (Brus, 2019). In such case, the collected samples are 

less precise than using a simple random sample design (Lark and Cullis, 2004; Sparks et al., 1996). 

If experts are aware of such periodicity, they can use a systematic sampling design but with higher 

care (Lark and Cullis, 2004). 
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2.6.3 Stratified Random Sample 

In this sampling design, the area to be mapped is spatially sub-divided into different strata 

and a random sample is selected from each stratum. Strata are typically based on landscape 

characteristics such as landform, slope gradient, parent material, or land cover type. It is assumed 

that these strata have strong correlations with the target soil feature(s) (Soil Science Division Staff, 

2017). Generally, a stratified random sample is more efficient than a simple random sample 

(Palmer, 2003). Stratification helps to prevent the spatial clustering of samples (Walvoort et al., 

2010). Several studies (Gessler et al., 1995; McKenzie and Ryan, 1999; Park et al., 2001; Minasny 

and McBratney, 2006) developed various stratified random sampling schemes, all aimed at 

reducing the overall estimation errors by distributing sampling locations in feature and/or 

geographic space. Distributing sampling locations minimizes the spatial dependency among the 

model residuals by covering the multivariate distribution of ancillary data. Gessler et al. (1995) 

utilized a compound topographic index (CTI) to stratify a landscape into equal areas. In order to 

prevent redundant sampling locations, Gessler et al. (1995) developed a CTI variogram to 

determine the extent of spatial dependency or autocorrelation. Samples were randomly assigned 

to each CTI stratum at distances further apart than the extent of spatial autocorrelation. 

2.6.4 Conditioned Latin Hypercube Sampling  

The conditioned Latin hypercube sampling (cLHS) design has been widely used in DSM 

(Minasny and McBratney, 2006). This is a special type of stratified random sampling which uses 

ancillary landscape data for obtaining representative samples. Conditioned Latin hypercube 

sampling is considered an efficient method of soil sampling because it operates based on the 

combined powers of stratification, randomness, and the efficient allocation of samples from 

multivariate distributions (McKay et al., 1979; Minasny and McBratney, 2006; Worsham et al., 
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2012, Silva et al., 2014; Kidd et al., 2015). In a comparative study, Minasny and McBratney (2006) 

found that cLHS is the most effective method for replicating the distribution of soil variables when 

compared to simple random sampling and equal area stratified random sampling methods. 

2.7 Spatial Inference Models 

Since we will discuss and compare several predictive models for soil property and soil class 

maps in subsequent chapters, only general information is provided about various DSM models 

here.  

After selecting the optimal set of SCORPAN variables and collecting training data (Fig. 

2.2), a model is needed to predict the soil classes or properties of interest. Various predictive 

models exist to quantify the relationships between soil data and related environmental factors in a 

spatial context. All models operate based on the equation: S = f(Q) + e; proposed by McBratney 

et al. (2003), where S stands for a soil attribute or soil class, Q represents the SCORPAN auxiliary 

environmental predictors, and e is the error of prediction. These predictive models can be classified 

using three main approaches: (1) soil survey, (2) geostatistical, and (3) data mining. We provide 

general information about each of the approaches in the sections below. 
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Figure 2.2: Principle and workflow of digital soil mapping. 

There is no one unique model that will predict most accurately for any particular DSM 

project because the performance of each prediction model depends on the structure of individual 

datasets and the method used to select the covariates (Soil Science Division Staff, 2017). The most 

appropriate way to find an optimal prediction model is to apply several models and then select the 

one with the highest accuracy. Due to the ease of interpretation, simple models are preferred over 

complex models. Therefore, if the performance of a simple model is comparable to more complex 

models, based on the principle of Ockham’s Razor, the simple model would likely be the one 

selected (Soil Science Division Staff, 2017). 

2.7.1 Soil Survey Approach 

The soil surveyor method is also known as the CLORPT method. This method uses the 

knowledge of expert soil surveyors to build the predictive soil-landscape model. Walter et al., 

(2006) experimented with various methodologies for capturing this expert knowledge. Some of 
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the methodologies used for modeling expert knowledge include, (1) translation of narrative 

modeling into a set of if-then rules (McKenzie and Ryan, 1999; Cole and Boettinger, 2006), (2) 

fuzzy inference systems (Zhu et al., 1996), and (3) conditional probabilities calculated from legacy 

soil maps (Lagacherie et al., 1995). In the next section, we will discuss only the fuzzy inference 

soil survey approach because it is a common method for modeling expert knowledge. 

The Fuzzy Inference System 

The Soil Land Inference Model (SoLIM) developed by Zhu et al., (1996), is a good 

example of using the fuzzy inference or fuzzy logic system for mapping qualitative soil-landscape 

relationships. In qualitative modeling, the fuzzy logic algorithm provides information about a 

soil’s similarity to a particular class. With fuzzy logic, a soil will have partial membership in more 

than one class. The scale of soil membership in a class is set between 1 and 0, where 1 is perfect 

similarity or membership and 0 is no membership. The values of each terrain attribute associated 

with a soil class are used to define the membership function in SoLIM. Libohova (2010) provided 

an example for the Pekin soil map unit that has a slope between 2 – 12%, where a slope of 7% 

would be considered as the optimum membership value. The Pekin soil will have 100% 

membership for a raster pixel identified as having a 7% slope. The membership will decrease to 

50% if the slope decreases to 2% or increases to 12%. The membership will further decrease if the 

slope goes beyond the slope range of the Pekin soil, meaning that environmental conditions are 

less than ideal for this soil. 

Several studies have been conducted and utilized fuzzy set theory for soil-landscape 

modeling (Libohova et al., 2010; Grunwald et al., 2001; Lagacherie et al., 1997; Zhu et al., 1996; 

McBratney and de Gruijter, 1992). The fuzzy inference method of soil mapping, however, has not 
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been widely adopted (Grunwald and Lamsal, 2006). A major reason is the interpretation of the 

output is difficult because there are complexes of fuzzy outputs instead of one map. 

2.7.2 The Geostatistical Approach 

This approach is also known as pedometrics and uses statistical and mathematical 

approaches to predict soil properties of interest. Geostatistics is a data driven method and uses 

georeferenced point observations and gridded covariates to predict soil properties at unvisited 

locations (Hengl and MacMillan, 2019). Universal kriging (UK), which is analogous to regression 

kriging (RK) (Odeh et al., 1995), is a common geostatistical method in DSM, when auxiliary 

variables are spatially exhaustive (McBratney et al., 2003). It predicts soil properties based on 

sums of deterministic trends and the spatially autocorrelated stochastic residuals. The former 

(deterministic trend) is derived from the regression of auxiliary variables, while the interpolated 

residuals along with regression coefficients are derived from soil observations (Heuvelink et al., 

2006).  

In geostatistics, a semivariogram (Fig. 2.3) is used to describe the “law of geography,” 

which indicates that close-by objects are more correlated and alike than more distant ones. In other 

words, a semivariogram shows how data are correlated with distance and it is used to model the 

residuals. Based on McBratney and Pringle (1999), the semivariogram is using the semivariance 

function (Eq. 3), which is the mean variance between two sampling points to measure the spatial 

autocorrelation. The semivariance uses the following equation (Eq. 3) to interpolate the residuals 

(Webster and Oliver, 2007): 

 Υ(h) =
1

2N(h)
∑  [Z(xi) − Z(xi + h)]2N(h)

i=1  [3] 
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where Υ(h) is the semivariance, N(h) represents the number of pairs of observations separated by 

a lag distance h, and Z(xi) and Z(xi + h) are values of regionalized variables at sites  xi and  xi +

h, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Theoretical variogram model. 

After interpolating the residuals through semivariance, UK will use the derived information 

and predict the target properties based on the following equation: 

 Ẑ(x0) =  m̂(x0) +  ê(x0)  =  ∑ β̂k ∗ qk(x0)
p
k=0 + ∑ λi ∗ e(xi)

n
i=1  [4] 

where Ẑ(x0) is the estimated value at an unobserved location and m̂(x0) is the fitted deterministic 

part, which is not constant and varies within the surrounding neighborhoods to represent the local 

drift, ê(x0) is the estimated residual, β̂k  are deterministic model coefficients, λi  are kriging 

weights, and e(xi) is the residual at location (xi). 

Bishop and McBratney (2001) concluded that UK outperformed other statistical and 

geostatistical models. However, Scull et al. (2005) found that UK did not provide better results 
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when compared to multiple linear regression. The main interpretation for such poor performances 

of UK was that soil observations on a landscape are not sampled at distances closer than the 

average range of spatial dependency. 

2.7.3 Data Mining Approach  

The data mining method, which is also known as the machine learning algorithm (MLA), 

hypothesizes that all the required information for a soil prediction is contained within the data 

(Dobos et al., 2006). There are various MLAs that are applied in DSM projects (Brungard et al., 

2015; Heung et al., 2016). Decision tree models are common machine learning algorithms that 

have become increasingly popular methods for DSM. The outcomes of decision tree models are 

easily comprehensible and readily interpretable (Odgers, 2017). Linear regression will fail if no 

linear relationship exists between target and environmental variables, or if an interaction exists 

between the environmental variables. In such conditions, decision tree algorithms are 

recommended for use (Molnar, 2019). Decision tree models, unlike linear models, do not make 

any assumptions about the distribution of residuals (Hastie et al., 2009). One of the main flaws of 

decision tree models is that they are more susceptible to overfitting than linear models (Odgers, 

2017). 

In tree-based modeling, the data is split multiple times based on certain cutoff/threshold 

values of environmental features. This results in different subsets of the dataset. Subsets are either 

intermediate subsets, which are also known as intern nodes, or terminal subsets, which are also 

known as leaf nodes. The average outcome of the training data in a final node is used for prediction 

(Molnar, 2019). Cubist, artificial neural networks, random forest (RF), multinomial logistic 

regression, support vector machine, classification and regression trees (CART), and Quinlans’s 

C5.0 algorithm are tree-based algorithms that have been widely used in DSM (Lacoste et al., 2014; 
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Heung et al., 2016; Junjun et al., 2018; Sharififar et al., 2019). The main differences among these 

algorithms are the structure of the tree (number of splits per node) and the criteria used for making 

the splits and/or when to stop the splitting (Molnar, 2019). 

2.8 Assessing the Quality of Digital Soil Maps 

Due to the quantitative (statistical) nature of predictive models, a digital soil map is not 

perfect and is subject to error. Quality assessment of a digital soil map is critical because the 

generated product will be used in decision making and risk assessment analysis. The quality of a 

soil map can be assessed with calibration and/or validation data. Using calibration or training data 

overestimates the actual accuracy (Refaeilzadeh, 2009). Therefore, it is preferable to evaluate the 

prediction accuracy using independent or validation data. Quality measures are quantified 

differently for soil properties and soil class (categorical) maps.  

Mean square error (MSE), root mean square error (RMSE), and coefficient of 

determination (R2) are common measures used for assessing continuous soil properties maps. MSE 

is a single value and measures the average squared difference between predicted and observed 

values. RMSE is the square root of MSE. Both MSE and RMSE provide information about the 

goodness of fit of the predictive models. The smaller the values of MSE and RMSE, the better the 

fit or more accurate the model. The coefficient of determination (R2) provides information about 

the portion of the data explained by the models. 

Various statistical measures exist to evaluate the quality of soil class or categorical soil 

maps. All of these statistical measures are based on an error or a confusion matrix (Brus et al., 

2011). Overall accuracy or map purity, user’s accuracy, producer’s accuracy, and kappa coefficient 

of agreement are the most important measures for evaluating the quality of categorical soil maps 

(Congalton, 1991). Overall accuracy or map purity is the proportion of the correctly classified 
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observations in a given dataset. User’s accuracy, also known as error of commission, indicates the 

probability that a pixel on the map truly matches the observed soil class on the ground. Producer’s 

accuracy, also known as error of omission, shows the probability that an observed soil class on the 

ground is classified as such on the map (Congalton, 1991). The kappa coefficient of agreement 

measures the difference between the observed and expected agreements. It lies between -1 and 1, 

where 1 is a perfect agreement, 0 is exactly what would be expected by chance, and negative values 

show less agreement than chance (Viera and Garrett, 2005). Table 2.1 shows the scale for kappa 

coefficient agreement of categorical data (Landis and Koch, 1977). 

Table 2.1: Interpretations of kappa values (Landis and Koch, 1977). 

Kappa Value  Degree of Agreement 

<0.00  Poor or less than chance agreement 

0.01 – 0.20  Slight agreement 

0.21 – 0.40  Fair agreement 

0.41 – 0.60  Moderate agreement 

0.61 – 0.80  Substantial agreement 

0.81 – 1.00  Almost perfect agreement 

2.9 Validation Methods for Digital Soil Mapping 

Internal validation, data splitting, cross-validation, and independent validation based on 

additional probability sampling are common validation approaches for assessing the accuracy and 

reliability of a prediction model (Brus et al., 2011; Soil Science Division Staff, 2017). For a true 

and an unbiased evaluation, independent validation is recommended over internal validation 

(Malone et al., 2017). 

The data splitting method of validation, which is also known as the random holdback 

method, splits the data into two parts: calibration data and test data. The test data is held out and 

not used during model building. Typically, 10 to 30 percent of the available data is reserved for 
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validation (McBratney et al., 2003; Soil Science Division Staff, 2017). This type of validation 

avoids overlaps between the calibration and test data, thus improving accuracy estimations. A 

downside of this procedure is that not all of the available data is used for calibration, which is a 

particular concern if the point data is limited. The validation data may be valuable for model 

calibration and if it is held out, the prediction may suffer (Refaeilzadeh, 2009). 

Similar to data splitting, cross-validation data is also divided into two segments (Efron and 

Tibshirani, 1994). The first segment is used to “learn” or train the model, and the second segment 

is used to validate the performance of the model. The main difference between this procedure and 

data splitting is that in cross-validation the data splitting is repeated, thus making cross-validation 

more efficient than data-splitting. K-fold cross-validation is the basic form of cross-validation. In 

k-fold cross-validation, the data is initially divided into k equally sized folds. Afterwards, k 

iterations of training and validation are performed such that each time a different segment or fold 

of the data is held-out for validation while the rest (k-1 folds) are used for model training. Leave-

one-out cross-validation (LOOCV) is the most common form of k-fold cross-validation (Efron and 

Tibshirani, 1994). The LOOCV trains the model with n-1, and tests it with the one observation 

that was omitted. The accuracy estimate gained from LOOCV is almost unbiased but contains a 

high degree of variance (Efron, 1983). Leave-one-out cross-validation is extensively used when 

data are rare. If the initial collected data are biased, then a true prediction will not be captured by 

cross validation (Soil Science Division Staff, 2017). 

Independent validation is the optimal way to capture true prediction accuracy. In order to 

avoid bias, collection of additional independent data based on a probabilistic sampling design is 

recommended (Stehman, 1999; De Gruijter et al., 2006). Similarly, in a review, Brus et al. (2011) 

concluded that validation based on probability sampling is preferred when compared to data 
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splitting (random holdback) and cross-validation because unbiased estimates of soil mapping 

quality are calculated with data that were collected free of model assumptions. Any soil sampling 

design that utilizes some form of random selection is known as a probability soil sampling design. 

Stratified random sampling, systematic sampling, and cLHs are considered probability-based 

sampling designs. 
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 HIGH RESOLUTION DIGITAL SOIL ORGANIC 

MATTER CONTENT AND CATION EXCHANGE CAPACITY MAPS 

Abstract 

Soil organic matter content (OM) and cation exchange capacity (CEC) are important soil 

properties in describing nutrient availability for plant growth. Accurate, high-resolution spatial 

information of OM and CEC are needed for high-resolution farm management (e.g. precision 

agriculture and sustainable land management). The objectives of this study were to: 1) determine 

the spatial distribution of soil OM and CEC in a relatively low relief area using only point 

measurements of OM and CEC and lidar elevation data, and 2) compare the prediction accuracy 

of OM and CEC maps created by universal kriging (UK), Cubist, and random forest (RF). For this 

study, 174 soil samples based on the conditioned Latin hypercube sampling (cLHS) method were 

collected from 0 to 10 cm depth. The topographic wetness index (TWI), topographic position index 

(TPI), multi resolution valley bottom flatness (MrVBF), and multi resolution ridge top flatness 

indices (MrRTF) generated from the lidar data were used as covariates in model predictions. Based 

on an independent evaluation, we found no major differences in the prediction performance of all 

selected models. For OM, the predictive models provide results with R2 (0.44 – 0.45), RMSE (0.8 

– 0.83), bias (0 – 0.22), and concordance (0.56 – 0.58). For CEC, the R2 ranged from 0.39 – 0.44, 

RMSE ranged from 3.62 – 3.74, bias ranged from 0 – 0.17, and concordance ranged from 0.55 – 

0.57. We also compared the results to the USDA Soil Survey Geographic (SSURGO) data. For 

both OM and CEC, SSURGO was comparable with our predictive models, however SSURGO 

overestimated or underestimated the selected properties for a few mapping units. 
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3.1 Introduction 

Detailed and accurate spatial soil information is needed for agricultural and ecological 

decision-making. Conventional, polygon-based soil maps are the main data source for these 

applications. In the United States, the Soil Survey Geographic database (SSURGO) and the State 

Soil Geographic (STATSGO) database maintained by the Natural Resources Conservation Service 

(NRCS) are extensively used for many applications. These polygon-based maps were originally 

developed for land management and may not be suitable for quantitative modeling that needs more 

spatially accurate soil property data (Nauman et al., 2012). Map unit polygons often contain more 

than one major soil component as well as a number of minor soil components, which reduces the 

map unit purity of these conventional maps. For applications like precision crop management and 

high throughput phenomics research, more detailed maps are needed than what is available in the 

SSURGO database. 

 Digital soil mapping (DSM) is an approach for overcoming the limitations of traditional 

soil polygon maps and for improving the accuracy of soil property predictions at a finer resolution 

(McBratney et al., 2003). Digital soil maps are generated using statistical algorithms and stored 

within a geographic information system (GIS), which allows data to be used readily for further 

analysis and interpretation (Minasny et al., 2013). 

 In this study, our goal was to map organic matter content (OM) and cation exchange 

capacity (CEC) on the Purdue University Agronomy Center for Research and Education (ACRE). 

ACRE is a hub of agronomic research for more than 50 researchers conducting about 180 research 

projects (ACRE, 2020) and is a state-of-the-art research facility for automated, high-throughput, 

field-based phenotyping (ICSIC, 2020). Soil organic matter content and CEC are important for 

plant nutrient availability and soil hydraulic properties, (Brady and Weil, 2002) and are properties 
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that influence the phenotypic response and productivity of plants (Havlin et al., 2014; Brady and 

Weil, 2002; Grigal and Vance, 2000). 

Several DSM prediction methods have been used to map soil OM and CEC using point 

samples, remote sensing indices, and terrain attributes derived from a digital elevation model as 

inputs (Lacoste et al., 2014; Grim et al., 2008; Minasny et al., 2006; Simbahan et al., 2006; 

Thompson et al., 2006; Thompson and Kolka, 2005; Hengl et al., 2004; Florinsky et al., 2002; 

McKenzie and Ryan, 1999; Arrouays et al., 1995; McKenzie and Austin, 1993; Moore et al., 1993). 

McKenzie and Austin (1993) predicted CEC based on a generalized linear model using 

environmental variables as prediction covariates. Linear and multiple linear regressions models 

have been widely used for spatial prediction of soil organic carbon due to their simplicity in 

application and ease of interpretation (Thompson et al., 2006; Thompson and Kolka, 2005; 

Florinsky et al., 2002; Arrouays et al., 1995; Moore et al., 1993). Other studies used universal 

kriging (Simbahan et al., 2006), co-kriging (Hengl et al., 2004), generalized linear models 

(McKenzie and Ryan, 1999), and machine learning algorithms such as artificial neural networks 

(Minasny et al., 2006), random forest (Grim et al., 2008), and Cubist (Lacoste et al., 2014) for 

predicting OM. 

Mapping soil variation in low relief areas can be a challenge because soil forming factors, 

especially topography and vegetation, may not co-vary with soil conditions over space to the level 

at which they can be used effectively in DSM (Zhang et al., 2017; Zhu et al., 2010). Terrain 

parameters derived from high-resolution elevation data, however, are capable of capturing local 

soil spatial variation that is caused by the interaction of water flow and topography (Luca et al., 

2017; Roecker, 2013; Moore et al., 1993; Beven and Kirkby, 1979). In this study, we rely on lidar 

elevation data because it is available for the study region and because the relationship between soil 
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distribution and the gentle relief of the study area (section 3.1) is already known. The predictions 

of digital soil mapping are expected to improve as more detailed environmental variables, for 

example, normalized difference vegetation index and enhance vegetation index, are utilized 

(Maynard and Johnson, 2014; Peng et al., 2015). However, use of vegetation-based covariates are 

problematic at our study site where there are many small field plots with heterogeneous 

experiments. 

In this study, we used universal kriging (UK), Cubist, and random forest (RF) to predict 

the spatial trend in OM and CEC for a 570 ha research farm. We hypothesized that on a field scale, 

terrain-driven hydrological flow patterns are the dominant process responsible for soil OM and 

CEC differences in surface soils. 

3.2 Materials and Methods 

3.2.1 The Study Area 

The Purdue Agronomy Center for Research and Education (ACRE) is a 570 ha agronomic 

field research station located in Tippecanoe County Indiana, USA (40° 29' N, 86° 59' W) (Fig. 

3.1). ACRE is located on a low relief, gently undulating Wisconsin age till plain. The soils formed 

in ~50 cm of loess over loamy Wisconsin till and outwash. Most of the soils are poorly and 

somewhat poorly drained. ACRE is located at the transition between the Eastern Hardwood Forests 

to the east and the prairies of the Great Plains to the west. Mollisols occur over most of the study 

area, but Alfisols occur on the southern edge (USDA-NRCS, 1998). Corn and soybean are the 

major crops. Based on 30-year normals for 1981 to 2010, the mean annual temperature is 10° C 

and mean total annual precipitation is 970 mm (MRCC, 2013). The average summer temperature 

(June to August) is 22.2° C and average winter temperature (December to February) is -2.6° C 

(NWS-COOP, 2020). Climatically, the site is in the mesic soil temperature regime and the udic 
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soil moisture regime, but large areas of the study site have soils with an aquic soil moisture regime 

because of the presence of a seasonal high water table (USDA-NRCS, 1998). 

 

 

Figure 3.1: Study area and sampling locations over a lidar-derived hillshade base map. Seventy 

percent of the samples were used for calibration and 30 percent were used for validation. 
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3.2.2 Soil Sampling and Analysis 

One hundred and seventy four (174) soil samples had been collected at ACRE as part of a 

previous, unpublished study. Sampling locations were selected using the conditioned Latin 

hypercube sampling (cLHS) algorithm (Minasny and McBratney, 2006) using the clhs package 

(Roudier, 2011) in R-software 3.5.1 (R Core Team, 2018) to generate the sampling locations. The 

cLHS method is a stratified random procedure that selects sampling locations based on the 

probability distribution of environmental covariates. Environmental covariates for cLHS were 

generated from terrain derivatives derived from a lidar-based digital elevation model. 

Unfortunately, records of the exact combination of environmental covariates used for cLHS 

sampling were lost and exact information about the specific covariates used is not available. 

The samples were collected from 0 – 10 cm, oven-dried at 40° C, crushed, and passed 

through a 2 mm sieve. The samples were analyzed by A&L Great Lakes Laboratories, Inc, Fort 

Wayne, Indiana, following the soil test procedures for the North Central Region (NCR, 1998). 

Briefly, organic matter content (OM) was determined by loss on ignition at 360° C with a base 

factor of 0.97 and OM expressed on a weight percent basis (%), while CEC (cmolc kg-1) was 

measured by sum of cations displaced by 1 M ammonium acetate solution at pH 7.  

For model building and spatial predictions, the data were randomly split, with 70% of the 

samples used for model calibration and 30% used for model evaluation (Fig. 3.1). Descriptive 

statistics are given in Table 3.1. 
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Table 3.1: Summary statistics of soil organic matter content (OM) and cation exchange capacity 

(CEC) data for the study area. 

 

3.2.3 Digital Elevation Model and Terrain Attributes 

Digital Elevation Model 

Digital elevation data for Tippecanoe County, IN acquired in 2013 at 1.5 x 1.5 m pixel 

resolution using lidar was downloaded from the Indiana Spatial Data Portal (http://gis.iu.edu/). 

The DEM was re-projected from the Indiana State Plane West Coordinate System 

(NAD_1983_StatePlane_Indiana_West_FIPS_1302_Feet) which uses dimensions (XY and Z) in 

feet, to the Indiana Geospatial Coordinate System (InGCS) for the Tippecanoe and White Counties 

(NAD_1983_2011_InGCS_Tippecanoe-White_(m)). The XY and Z dimensions in InGCS are in 

meters. The InGCS has lower grid vs. ground distortion (±2.6 ppm) when compared to the State 

Plane Coordinate System (±80 ppm) (INDOT, 2016) and thus is more appropriate for a small area 

such as ACRE. 

Digital elevation models with pixel resolutions on the order of 1 – 2 m are often too 

detailed for modeling soil spatial variability (Smith et al., 2006; Shi et al., 2012; Maynard and 

Johnson, 2014; Lacoste et al., 2014). Winzeler et al. (2008) found that pixel resolutions from 5 – 

10 m are sufficient to capture the topography for digital soil mapping of Northern Indiana’s 

Statistical Index 

OM CEC 

Whole Calibration Evaluation Whole Calibration Evaluation 

--------  %  -------- -------  cmolc kg-1  -------- 

Minimum 1.2 1.9 1.2 9.9 11.1 9.9 

1st Quartile 3.5 3.5 3.2 16.2 16.5 14.9 

Median 4.0 4.0 4.2 20.1 20.1 20.1 

Mean 4.2 4.2 4.0 19.9 20.1 19.5 

3rd Quartile 4.8 4.9 4.6 23.2 23.3 23.0 

Maximum 7.2 7.0 7.2 30.1 30.1 29.3 

Standard Deviation 1.1 1.2 1.1 4.6 4.5 4.9 

Soil Samples (N) 174 123 51 174 123 51 

http://gis.iu.edu/
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glaciated landscapes. Our own initial evaluation showed that within ACRE, anthropogenic micro-

topographic features such roads and field boundaries, that are on average 20 cm higher than the 

cultivated fields, unduly affected the DEM derived indices. We resampled the original 1.5 m DEM 

to 10 m using simple mean aggregation in ArcGIS 10.6 (https://esri.com) in order to smooth out 

most of the anthropogenic features. 

A rectangular buffer that included the entire watershed contributing water to ACRE was 

defined using watershed boundaries and stream channels obtained from the United States 

Geological Survey – National Hydrography Dataset (USGS-NHD) downloaded from the United 

States Department of Agriculture (USDA) Geospatial Data Gateway (GDG) 

(https://datagateway.nrcs.usda.gov/) for Tippecanoe County, IN. The buffer was then used to clip 

the resampled DEM prior to further processing. 

Terrain Attributes 

It is possible to generate many terrain attributes from a DEM, but it is important to limit 

their number to avoid redundancy and model overfitting. We focused on those terrain attributes 

that have a close relationship to water redistribution across a landscape and are commonly used in 

DSM. We calculated the following terrain attributes using SAGA-GIS 2.1.4 (Conrad et al., 2015): 

topographic wetness index (TWI), topographic position index (TPI), multi-resolution valley 

bottom flatness index (MrVBF), multi-resolution ridge top flatness index (MrRTF), profile 

curvature, and plan curvature. Due to the low relief of the study area, both plan and profile 

curvatures displayed high levels of small-scale noise and did not capture field-level topographic 

variations. Thus, they were not included in subsequent calculations. Details of the four terrain 

attributes that were used in subsequent calculations, TWI, TPI, MrVBF, MrRTF (Fig. 3.2), follow. 

https://esri.com/
https://datagateway.nrcs.usda.gov/
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Figure 3.2: Terrain attributes calculated from the digital elevation model. (a) Topographic wetness 

index (TWI), (b) topographic position index (TPI), (c) multi resolution valley bottom flatness 

index (MrVBF), and (d) multi resolution ridge top flatness index (MrRTF). 
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Topographic Wetness Index 

The topographic wetness index (TWI) is used to quantitatively present the relationship 

between topography and hydrological process, mainly surface runoff in a watershed. The SAGA 

multi-flow-direction algorithm of TWI was used in this study.  Higher values of TWI represent 

areas that accumulate water, such as depressions and drainage ways, while lower values represent 

areas that shed water, such as crests and ridges. 

Topographic Position Index 

The topographic position index (TPI) (Weiss, 2001) compares the elevation of a cell (Z0) 

to the average elevation of its surrounding cells (Zα) in a specific area as defined by circles of 

arbitrary radius (TPI = Z0 - Zα). Positive values of TPI represent ridges, and negative values 

represent valleys, while flat areas contain values close to zero. This index is scale dependent, and 

by using different radii it can delineate small hummocks and larger ridges, as well as small 

depressions and larger valleys. We evaluated different radii for our study area. The larger radii 

(150, 200, 300, and 500 m) resulted in smoothing the landscape features, while smaller radii (30 

and 60 m) generated linear artifacts and divided the actual landforms into small pieces. Based on 

visual interpretation and familiarity with the study location, a radius of a 100 m was found to best 

represent the landscape units of the study site. 

Multiresolution Valley Bottom Flatness and Multiresolution Ridge Top Flatness 

The MrVBF algorithm (Gallant and Dowling, 2003), identifies valley bottoms by 

utilizing the lowness and flatness characteristics of them. The lowness parameter is measured by 

ranking elevation with respect to a circular neighborhood area, and the flatness parameter is 

measured using the inverse of slope.  
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The slope threshold is a critical parameter in MrVBF calculations, and it depends on the 

DEM resolution. The suggested slope threshold for a DEM of 250 m resolution is 4%, while for a 

DEM of 25 m it is 16%, and for a DEM of 8 m it is 32%. Slope thresholds of 1.5, 2, 2.5, 3, 3.5, 4, 

4.5, and 16% (the default slope threshold of the algorithm) were compared. Based on our 

familiarity with the area and after generating MrVBF with different slope thresholds and checking 

the resulting terrain attributes in the field, a slope threshold of 2% was found to best represent the 

topography of the landscape. The terrain attribute of MrRTF is a separate index but complementary 

to the MrVBF. It is derived in a similar way to MrVBF, except it identifies the upper parts of the 

landscape. Similar to MrVBF, the same slope threshold value (2%) was selected for MrRTF. 

3.2.4 Data from the Soil Survey Geographic Database (SSURGO) 

For Tippecanoe County, the Soil Survey Geographic (SSURGO) database provides soil 

mapping information at a scale 1:15,840 (USDA-NRCS, 1998). In this study, three values of OM 

(low, representative, and high) and three values of CEC (low, mean, and high) from SSURGO 

(Table 3.2) were compared to the predictions from the DSM models. All of these SSURGO OM 

and CEC values were directly acquired from the Web Soil Survey website (Soil Survey Staff, 

2020), except the mean value of CEC, which was calculated as the average of the low and high 

CEC values. The SSURGO values of soil properties have been derived from a combination of 

laboratory measured data and soil scientist expert knowledge (Libohova et al., 2016). Soil OM was 

determined using the Walkley-Black method and CEC was determined by summation of cations, 

which were displaced by ammonium acetate solution (Franzmeier et al., 1977; Soil Survey Staff, 

2014). There is no universal conversion between Walkley-Black and loss on ignition method. 

Therefore, the loss on ignition OM values used for DSM prediction models are compared with the 

SSURGO OM predictions measured with Walkley-Black method. 
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Table 3.2: The soil survey geographic (SSURGO) organic matter content (OM) and cation 

exchange capacity (CEC) low, representative (Rep.), mean, and high values for 0 – 10 cm based 

on the spline function. Data is for the ACRE study site. 

SSURGO Soil Map Unit 

 OM CEC 

Area Low Rep. High Low Mean High 

% ----- % ----- ----- cmolc kg-1 ----- 

Cm Chalmers silty clay loam 33.90 3.35 4.91 6.46 18.20 28.50 38.80 

CwB2 Crosby-Miami silt loams 0.40 0.99 2.43 3.11 2.47 7.00 12.16 

Du Drummer soils 17.60 3.26 4.86 6.47 22.40 29.23 36.16 

Md Mahalasville-Treaty complex 0.20 3.28 4.83 6.39 18.18 24.22 30.30 

MsC2 Miami silt loam 0.20 1.05 2.14 3.24 4.72 9.24 16.00 

Mu Milford silty clay loam 4.20 3.47 5.72 6.71 25.40 31.10 36.70 

Pg Pella silty clay loam 1.60 4.81 4.65 7.05 22.90 28.90 34.90 

Pk Peotone silty clay loam 0.60 4.31 5.87 7.43 21.20 29.60 38.10 

RcA Raub-Brenton complex 22.10 1.97 2.88 4.24 12.55 17.38 22.26 

RoB Rockfield silt loam 4.60 1.07 1.60 2.14 6.73 12.20 17.60 

SwA Starks-Fincastle complex 3.60 0.95 2.11 2.89 7.10 12.81 18.59 

TfB Throckmorton silt loam 1.40 1.05 2.11 3.19 5.61 11.60 17.60 

TmA Toronto-Millbrook complex 8.70 1.95 2.85 3.77 10.96 16.71 22.46 

Ua Udorthents, loamy 0.90 - - - - - - 

 

The SSURGO data are based on a traditional method of soil sampling, meaning that each 

soil profile is divided into soil horizons based on morphological properties of the soil. A bulk 

sample is taken from each horizon and it is assumed to represent the average value of a soil attribute 

for the depth interval of that horizon. The analysis of samples collected in our study were based 

on 0 – 10 cm depths. We used the mass-preserving splines function (ea_spline) of the ithir package 

(Malone, 2018) in R-software 3.5.1, which predicts continuous soil properties both within the 

observed depths and among the depths where no observations were made (Malone et al., 2017). 

For detailed information and mathematical expression of the spline function, see Ponce-Hernandez 

et al. (1986), Bishop et al. (1999), and Malone et al. (2009). 

Since a map unit may have two or more components, we derived the final values of a map 

unit based on the weighted mean of each component. For instance, CwB2 (Crosby-Miami silt 

loams, 2 to 4 percent slopes, eroded) contains 64% Crosby and 33% Miami and 3% other minor 

components. Based on the spline function for the 0 – 10 cm depth, the OM representative values 
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of Crosby was 2.67% and Miami was 2.18%. The final OM representative value of CwB2 for the 

0 – 10 cm depth was derived as: 

CwB2 mapping unit mean value of OM = (0.64 ∗ 2.67) + (0.33 ∗ 2.18) = 2.43% [1] 

3.2.5 Spatial Prediction Models 

Three different models (universal kriging, Cubist, and random forest) were used to predict 

soil organic matter content and cation exchange capacity. All model training and evaluation was 

performed in R-software 3.5.1 (R Core Team, 2018). 

Universal kriging, also known as regression kriging (Odeh et al., 1995; Hengl et al., 2007), 

is a hybrid approach to modeling, meaning that the prediction of a desired variable is made based 

on deterministic and stochastic components. The deterministic part of the regression relies on the 

covariate information, while the stochastic part relies on the spatial auto-correlation of the residual 

based on a variogram (Malone et al., 2017). We ran backwards stepwise linear models to select 

appropriate covariates for the deterministic part of UK. The gstat package (Gräler et al., 2016) in 

R 3.5.1 environment was used for UK prediction of OM and CEC. 

Cubist is a data mining tool that uses a rule-based regression algorithm for prediction 

(Quinlan, 1992). It operates based on if, then, else statements. If a condition is matched, the next 

step is a prediction of the desired soil property by using ordinary least squares regression from the 

covariates within that subset (Minasny and McBratney, 2008; Peng et al., 2015; Malone et al., 

2017). However, if a condition is not met, then the next node of the tree is defined by the rule and 

the if, then, else sequence is repeated. The interpretation of a Cubist model is easy as it provides 

an explicit model stating the relative importance of the predictors. The Cubist function (Kuhan and 

Quinlan, 2018) in R 3.5.1 environment was used to predict OM and CEC of the study area. 



 

 

55 

The Random Forest (RF) model developed by Breiman (2001), is a type of ensemble 

machine learning algorithm. The RF model predicts the property of interest based on covariates 

by creating multiple decision trees. The outcomes of the decision trees are then aggregated to 

provide the final prediction. A random and independent bootstrap sample of the training data is 

used to train each tree in the forest. From the bootstrap sample, a random subset is selected for 

training and the remaining points, known as “out of bag,” are used for validating the tree. 

Additionally, a random subset of the variables is selected to split the nodes of each tree (Forkuor 

et al., 2017).  In summary, the RF decision trees are developed based on a random selection of data 

(bootstrap sample) and a random selection of variables. Further details about RF and the 

underlying theory can be found in Breiman (2001) and Grimm et al. (2008). The randomForest 

package (Liaw and Wiener, 2002) was used in the R 3.5.1 environment to predict both OM and 

CEC. 

The semi-variogram, which is commonly referred to simply as the “variogram,” is used to 

define the spatial autocorrelation or spatial dependency of the observed sample points. Linear, 

spherical, exponential, and Gaussian are four common variogram models (Malone et al., 2017). 

Kriging of residuals may capture spatial variability that was not estimated by deterministic or 

linear models of UK. For UK, a spherical variogram, and for Cubist and RF, exponential 

variograms were fitted to krige the residual of OM. For kriging the CEC residuals, a spherical 

variogram was fitted for all three predictive models. For residual kriging, we used the gstat 

package (Gräler et al., 2016) in R 3.5.1 environment. The final estimates of OM and CEC were 

derived based on a combination of the kriged residuals and the predicted values from the models. 
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3.2.6 Evaluation of Model Performance 

All the predictive models were first evaluated with the calibration dataset from which they 

were generated (internal evaluation). A second random-hold-back independent evaluation was 

conducted using 30% of the data for testing the prediction performance of each digital soil mapping 

methodology. The prediction quality of the models was evaluated with root mean square error 

(RMSE), mean error (ME) or bias, coefficient of determination (R2), and Lin’s concordance 

correlation coefficient (LCCC), respectively equated as: 

 𝑅𝑀𝑆𝐸 = √(
∑ (𝑜𝑏𝑠𝑖− 𝑝𝑟𝑒𝑑𝑖

𝑛
𝑖=1 )2

𝑛
) [2] 

 𝑀𝐸 (𝑖. 𝑒. 𝑏𝑖𝑎𝑠) =
∑ 𝑜𝑏𝑠𝑖− 𝑝𝑟𝑒𝑑𝑖

𝑛
𝑖=1

𝑛
 [3] 

 𝑟 =
∑ (𝑜𝑏𝑠𝑖− 𝑜𝑏𝑠̅̅ ̅̅ ̅) (𝑝𝑟𝑒𝑑𝑖−𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅)𝑛

𝑖=1

√∑ (𝑜𝑏𝑠𝑖− 𝑜𝑏𝑠̅̅ ̅̅ ̅)2𝑛
𝑖=1  √∑ (𝑝𝑟𝑒𝑑𝑖− 𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅)2𝑛

𝑖=1

 [4] 

 𝐿𝐶𝐶𝐶 =  
2𝜌𝜎𝑜𝑏𝑠𝜌𝜎𝑝𝑟𝑒𝑑

𝜎𝑝𝑟𝑒𝑑
2 + 𝜎𝑜𝑏𝑠

2 +(𝜇𝑝𝑟𝑒𝑑 + 𝜇𝑜𝑏𝑠)2 [5] 

where obsi are the observed values and predi are the predicted values of the soil properties at 

location i, μobs
 is the mean of the observed values, μpred is the mean of the predicted values, σ2

obs is 

the variance of the observed values, σ2
pred is the variance of predicted values, n is the number of 

the sampling locations, and ρ is the correlation coefficient among the observations and predictions 

(Malone et al., 2017). 

The RMSE shows the accuracy of the prediction. Smaller values, which show higher 

accuracy, are preferred. Bias shows the mean error of the prediction and an unbiased prediction 

has a bias of zero. The R2, which is the square of Pearson’s correlation coefficient (r), measures 

the precision of the relationship between the predicted and observed values. The LCCC (Lawrence 

and Lin, 1989), is a single statistic that measures both the precision and the accuracy of the 

relationship. LCCC is also known as the goodness of fit along a 45° line (1:1 line). The value of 
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LCCC falls between -1 and +1. A value of -1 indicates perfect negative agreement, while a value 

of +1 indicates perfect positive agreement between the predicted and observed values. An LCCC 

value of zero shows that there is no agreement at all (Malone et al., 2017; Santra and Panwar, 

2017). The strength of the agreement was evaluated based on the proposed scale from McBride 

(2005). Lin’s concordance correlation coefficient is considered poor (<0.90), moderate (0.90–

0.95), substantial (0.95–0.99) and almost perfect (>0.99). The goof function of the ithir package 

(Malone, 2018) was used in the R 3.5.1 to compute these evaluation indices. 

3.3 Results and Discussion 

3.3.1 Spatial Trend Modeling 

Each model utilized different environmental covariates for OM and CEC predictions. A 

backwards stepwise linear model selection was used for the UK model. Based on the following 

equations (Eq. 6 and 7), the backwards stepwise model selected TWI, TPI, and MrRTF for OM, 

and TPI and MrVBF for CEC predictions. 

 𝑂𝑀 = 3.37 + 0.11 ∗ 𝑇𝑊𝐼– 2.20 ∗ 𝑇𝑃𝐼– 0.09 ∗ 𝑀𝑟𝑅𝑇𝐹 [6] 

 𝐶𝐸𝐶 = 18.41– 9.36 ∗ 𝑇𝑃𝐼 + 1.02 ∗ 𝑀𝑟𝑉𝐵𝐹 [7]  

From a pedological standpoint, Eqs. 6 and 7 reveal meaningful relationships between 

terrain and OM or CEC. Eq. 6 shows that OM is positively correlated to TWI or wet/low-lying 

areas of the landscape, while it is negatively correlated to TPI and MrRTF or higher/steeper areas 

of the landscape. Similarly, CEC (Eq. 7) is negatively correlated with TPI, but positively correlated 

with MrVBF or lower landscape positions. 

Cubist utilized all four covariates for OM, and only TPI and MrVBF for CEC predictions. 

Out of ten models generated by Cubist for OM and CEC predictions (Appendix A and B), we 

selected the models with the lowest prediction error. For example, the OM model (Eq. 8) was only 
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applicable in 113 locations where the average OM was 4.09%. The prediction error of this model 

was 0.70%. The CEC model (Eq. 9) was applied to all 123 training locations which has a mean 

value of 20.12 cmolc kg-1. The predication error of this model is 2.84 (cmolc kg-1). The Cubist 

model provided slightly different models for OM prediction based on the combination of four 

terrain attributes but produced identical models for CEC. Following are examples of Cubist models 

for OM and CEC predictions. 

 𝐼𝑓   𝑇𝑊𝐼 <= 13.76 𝑡ℎ𝑒𝑛 𝑂𝑀 = 3.79 + 0.21 ∗ 𝑀𝑟𝑉𝐵𝐹 – 1.17 ∗ 𝑇𝑃𝐼 –  0.11 ∗ 𝑀𝑟𝑅𝑇𝐹 [8] 

 𝐶𝐸𝐶 = 18.84 – 9.30 ∗ 𝑇𝑃𝐼 + 1.03 ∗ 𝑀𝑟𝑉𝐵𝐹 [9] 

The Cubist model also provided the relative usage and relative importance of the covariates, 

which shows the usage of covariates in multivariate linear models and importance of covariate(s) 

in developing conditions rules (if then else rules). In OM prediction, the relative usage of the four 

terrain attributes was 54 (TPI), 37 (MrRTF), 35 (TWI), and 34 (MrVBF). The Cubist model only 

showed a relative importance of 54% for TWI, meaning that TWI was the only predictor that 

appeared in rule conditions. Therefore, TWI is the best predictor for the Cubist model for OM 

prediction. For CEC, the Cubist model did not provide relative importance for any of the covariates, 

but it provided a relative usage of 100% for both TPI and MrVBF. 

Random forest used all four covariates for predicting both OM and CEC. The varImpPlot 

function in the randomForest package (Liaw and Wiener, 2002) shows the importance of 

covariates in OM and CEC predictions. For the RF predictions the most important covariates were 

TPI and TWI for OM predictions, and TPI and MrVBF for CEC predictions (Fig. 3.3). Overall, 

TPI was the most important variable and MrRTF was the least important variable in all selected 

models. 
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Figure 3.3: Random forest generated importance plots of covariates, a) for organic matter content 

(OM) and b) for cation exchange capacity (CEC) prediction. The %IncMSE shows the mean 

decrease in accuracy. The IncNodePurity shows the decrease in node purity at the end of the tree. 

The higher the %IncMSE and IncNodePurity show that a particular variable is highly important 

and if removed the prediction accuracy and node purity will be affected. 

The CEC prediction equations of the UK (Eq. 7) and Cubist (Eq. 9) models were almost 

identical. Both the UK and Cubist models show that OM and CEC increase as TWI and MrVBF 

increase and decrease as TPI and MrRTF values increase. In other words, CEC and OM have 

positive relation with TWI and MrVBF and negative with TPI and MrRTF. Even though, RF 

utilized all four covariates for OM and CEC predictions, similar to UK and Cubist, TPI and MrVBF 

were the most important variables for CEC predictions in RF. Therefore, as expected, all the 

predictive models produced similar results for CEC prediction (Table 3.3). 
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Table 3.3: Universal kriging (UK), Cubist, and random forest (RF) accuracy assessment for organic matter content (OM) and cation 

exchange capacity (CEC) predictions with calibration and evaluation datasets. 

Prediction Model 

OM  CEC 

R2 Bias RMSE Concordance  R2 Bias RMSE Concordance 

--------------  %  --------------  --------------  cmolc kg-1  -------------- 

UK Calibration 0.50 0.00 0.80 0.60  0.60 0.00 2.80 0.70 

 Evaluation 0.44 0.22 0.83 0.56  0.39 0.05 3.74 0.55 

Cubist Calibration 0.50 0.00 0.80 0.70  0.60 0.00 2.80 0.70 

 Evaluation 0.45 0.17 0.80 0.58  0.41 0.00 3.68 0.57 

RF Calibration 0.90 0.00 0.40 0.90  0.90 0.00 1.40 0.90 

 Evaluation 0.45 0.17 0.80 0.56  0.44 0.17 3.62 0.56 
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3.3.2 Predictive Model Performance 

Based on the four evaluation metrics (Table 3.3) and scatter plots of measured versus 

predicted OM (Fig. 3.4) and CEC (Fig. 3.5), we found no major differences in the prediction 

performance of all three models. 

 

Figure 3.4: Scatter plots of measured vs predicted organic matter content (OM) based on 

calibration and evaluation data. (a) Universal kriging (UK), (b) Cubist, and (c) random forest (RF) 

scatter plots are based on the calibration data and (d) universal kriging (UK), (e) Cubist, and (f) 

random forest (RF) scatter plots are based on the evaluation data. The solid line indicates a line of 

concordance or a 1:1 relationship. The dashed line indicates the line of best fit. 
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Figure 3.5: Scatter plots of measured vs predicted CEC based on the calibration and evaluation 

data. (a) Universal kriging (UK), (b) Cubist, and (c) random forest (RF) scatter plots are based on 

the calibration data and (d) universal kriging (UK), (e) Cubist, and (f) random forest (RF) scatter 

plots are based on the evaluation data. The solid line indicates a line of concordance or a 1:1 

relationship. The dashed line indicates the line of best fit. 

When the performance of the models was tested with the calibration data, RF had lower 

RMSE, lower bias, higher R2, and higher concordance than UK and Cubist for both soil OM and 

CEC predictions. With RF, this was expected due to the ensemble approach, which can result in 

low bias and variance (Nabiollahi et al., 2019). Additionally, RF used all four predictors, which 

may result in overfitting (Nussbaum et al., 2018; Statnikov et al., 2008). For the RF models, 

however, there was a significant change in model performance between calibration and evaluation 

data. For example, for OM predictions, the R2 of the RF prediction were 0.90 for the calibration 

dataset and 0.45 for the evaluation dataset. This significant change between calibration and 
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evaluation performance is strong evidence that the RF models may be over fitted. This highlights 

one of the dangers of RF for DSM: if RF models are not evaluated rigorously (i.e. using 

independent evaluation rather than leave-one-out), model performance estimates may be overly 

optimistic. 

According to the scatter plots for OM (Fig. 3.4 a, b, c) and CEC (Fig. 3.5 a, b, c), all three 

models tended to over predict at low values and under predict at high values. This behavior is less 

pronounced for RF models on the calibration data, but it is apparent for all models on the evaluation 

dataset. This lack of performance may be due to several factors, which are discussed below.  

One reason for this poor correlation may be the due to the study location itself. ACRE 

serves as a research and education facility and consists of many smaller individual fields that are 

managed under highly variable practices (e.g. multiple tillage systems, nutrient application rates, 

and crop rotations). This high variation in management may lead to higher soil variability from 

field to field than expected. Training models using samples from highly variable fields can limit 

their predictive performance outside the sample areas (Thomasson et al., 2001; Rossel et al., 2006).  

To account for the effects of variable management history, we would need to incorporate 

environmental covariates that describe previous management of each field into our modeling 

framework. Further research is needed to identify suitable covariates that describe agriculture 

management history.  

Another possible cause for poor correlations was the relatively small changes in 

environmental covariates across the study area.  The study site is characterized by relative flat 

topography with subtle topographic variation (on average 1% slope based on a 3 x 3 pixel window). 

In many environments, chemical properties of surface soil and OM are highly variable spatially, 

and distinct variations are often found within short distances of meters and/or decimeters 
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(Trangmar et al., 1985; Schöning et al., 2006; Wiesmeier et al., 2009). A further complication is 

that ACRE is crisscrossed by a grid of roads and grassed field boundaries that are on average 20 

cm higher than the adjoining fields, and by a dense network of underground drainage tiles. The 

impact of the roads on terrain attributes is evident as linear features in the covariate maps (Fig. 

3.2).  All of these factors may have diluted the influence of terrain in the distribution of OM and 

CEC and lead to poorer than expected model performance. 

Generally, the values of OM (Fig. 3.4 d, e, f) were closer to the 1:1 line than the CEC 

values (Fig. 3.5 d, e, f). This difference in predictions of OM compared to CEC might be due to 

the existence of higher variation in CEC data, as well as the number and type of predictors selected 

by these models. For instance, UK used three predictors for OM and two for CEC predictions. 

Similarly, Cubist used all four predictors for OM and only TPI and MrVBF for CEC predictions. 

In general, the correlations between terrain attributes and soil properties were fair for all 

models in our study.  Nonetheless, the R2 values in this study were comparable with other studies 

that considered terrain/climatic data only (Mason and Sulaeman, 2016; Forkuor et al., 2017; Pei et 

al., 2010). 

3.3.3 Organic Matter Content and Cation Exchange Capacity Distribution in the 

Landscape 

DSM model predictions of OM (Fig. 3.6) and CEC (Fig. 3.7) were consistent with the 

theoretical, pedological distributions of OM and CEC within the landscape. The maps of predicted 

OM and CEC for all three models indicate higher values for OM and CEC in lower landscape 

positions (i.e. foot and toeslopes), and lower values at higher and steeper landscape positions (i.e. 

shoulders and summits). Lower areas receive more overland flow of nutrients and crop residue 

from the steeper areas leading to an increase in OM and CEC. The steeper regions, due to less 
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vegetative cover, are subjected to erosion and lose of nutrients to the lower parts of the landscape. 

On the other hand, waterlogging in lower areas reduces the rate of OM decomposition and results 

in higher OM and nutrient accumulation (Brady and Weil, 2002; Starr et al., 2000). 

At ACRE, it is not surprising to find vice-versa results, meaning that lower landscape 

positions might have lower OM and CEC values when compared to upper landscape positions. 

This can happen for various reasons. First, the OM content in the depressions is diluted by erosion 

that carries lower OM soil from upslope. In this landscape, it is not unusual to find buried surface 

horizons. Second, prior to the European settlement and the large-scale drainage that took place 

since then, areas that were once ponded for long periods are now much better drained. 
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Figure 3.6: Organic matter content (OM) prediction. a) Universal kriging (UK), b) Cubist, c) 

random forest (RF), and d) soil survey geographic (SSURGO). 
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Figure 3.7: Cation exchange capacity (CEC) prediction. a) Universal kriging (UK), b) Cubist, c) 

random forest (RF), and d) soil survey geographic (SSURGO). 
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3.3.4 Predictive Models versus SSURGO 

When comparing maps of SSURGO OM and CEC to DSM maps, all maps generally show 

a similar trend: high CEC and OM occurred on lower landscape positions (Fig. 3.6 and 3.7).  Where 

these maps differ is in the extent of regions of high CEC and OM.  In SSURGO, the regions of 

high OM and CEC are much larger in extent compared to the DSM maps.  Generally, SSURGO 

overestimates the areas with high OM and CEC. For example, SSURGO representative values had 

a median OM content of 4.9% compared to 4.1 and 4.2% for DSM maps (Table 3.4). Similarly, 

the SSURGO mean values for CEC had a median of 28.5% while DSM maps had a median 

between 19.4 and 20.0% (Table 3.4). Additionally, the standard deviation of SSURGO OM (1.2%) 

and CEC (6.6%) maps are higher compared to DSM Maps, which is less than 0.8% for OM and 

2.8 – 3.3% for CEC (Table 3.4). This means that SSURGO OM and CEC values are more diffuse 

and spread-out when compared to the DSM values.
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Table 3.4: Summary statistics of universal kriging (UK), Cubist, random forest (RF), and soil survey geographic (SSURGO) organic 

matter content (OM) and cation exchange capacity (CEC) maps. 

Statistical Index 

OM  CEC 

UK Cubist RF SSURGO  UK Cubist RF SSURGO 

----------  %  ----------  ----------  cmolc kg-1  ---------- 

Minimum 0.9 1.9 2.4 1.6  1.1 5.2 11.9 7.0 

1st Quartile 3.8 3.8 3.7 2.9  17.7 17.6 17.5 17.4 

Median 4.2 4.2 4.1 4.9  20.0 19.9 19.4 28.5 

Mean 4.2 4.2 4.2 4.0  19.6 19.6 19.7 23.5 

3rd Quartile 4.7 4.6 4.6 4.9  22.0 22.1 21.8 28.5 

Maximum 7.8 7.2 6.5 5.9  28.6 28.1 27.8 31.1 

Standard Deviation 0.7 0.8 0.7 1.2  3.2 3.3 2.8 6.6 
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One interesting area of agreement between SSURGO and DSM maps is for CEC 

predictions in the southern quarter of the study area.  In this area, both SSURGO and DSM models 

predicted the lowest CEC values. Despite the fact that sampling points were not concentrated at 

this part of the study site (Fig. 3.1), DSM models still managed to predict these regions of low 

CEC.  Low DSM-derived CEC predictions likely resulted from the low TPI in the study areas (see 

section 4.1). While SSURGO was not developed using TPI specifically, SSURGO mapping did 

rely heavily on relationships between soils and landscape positions. Agreement between DSM-

predicted CEC and SSURGO maps highlights the importance of soil-landscape relationships in 

soil spatial distributions. 

We compared OM and CEC predicted by DSM techniques to OM and CEC from the 

SSURGO soil map.  Specifically, we compared OM and CEC contents predicted by DSM to the 

OM and CEC contents within each map unit from SSURGO (Fig. 3.8). Both OM and CEC show 

that the three predictive models follow similar prediction trends in each of the SSURGO mapping 

units. The results of our models for OM are consistent with the estimates from eight SSURGO 

mapping units; exceptions were CwB2, McS2, RoB, SwA, TfB, and TmA. SSURGO 

underestimated the OM for these map units while the other models predicted greater concentrations 

of OM. Generally, SSURGO had a wider range in OM and CEC values when compared to the 

prediction models. This was seen particularly for CEC estimates. The prediction of our models for 

CEC is consistent with a few of the SSURGO mapping units see: RcA, RoB, SW, TfB, and TmA. 

However, for most of the mapping units, our models either over- or under-predicted CEC. 
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Figure 3.8: Comparison of predictive performance of DSM models with soil survey geographic 

(SSURGO) organic matter content (OM) and cation exchange capacity (CEC) estimates. The 

boxplots of a), b) and c) show OM and d), e), and f) show CEC prediction based on universal 

kriging (UK), Cubist, and random forest (RF) respectively. Triangles show low values and 

rhombuses show high values. Circles show representative OM and CEC mean values. 

There are several reasons for the inconsistencies of model predictions with SSURGO. First, 

SSURGO has inherent limitations; the soil variability is represented using aggregated polygon 

map units with one to four named components plus inclusions of other soils or non-soils areas that 

do not explicitly capture the underlying spatial variability of soils within polygons (Nauman and 

Thompson, 2014). Thus, these inclusions reduce the purity of the map units and impact 

interpretation and modeling (Geza and McCray, 2008). Second, the procedure for OM analysis 

differed between the datasets. The Walkely-Black method was used for the SSURGO data, while 

the loss-on-ignition (LOI) method was used for our collected data. Due to incomplete digestion of 
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soil organic carbon, the Walkley-Black method usually underestimates OM (De Vos et al., 2007; 

Conyers et al., 2011). Additionally, the SSURGO values might have been impacted by errors 

introduced by the spline interpolation. Third, the SSURGO database was developed based on 

historical soil survey data and may not accurately reflect the current status of soil properties, 

particularly OM and CEC, which are relatively dynamic and altered by various factors such as 

land management, climate change, and wild fires to name a few (Schoonover and Crim, 2015; Bot 

and Benites, 2005; Grigal and Vance, 2000). Additionally, the data were produced on different 

dates and therefore inherit inconsistencies (Nauman et al., 2012). A fourth reason for the 

inconsistency is that the surveyors who collected data for SSURGO may not have had enough soil 

observations for building their mental models of soil formation at this small scale. A fifth reason 

for the inconsistency is that SSURGO values are not purely derived from laboratory analysis, 

instead the data may have resulted from a combination of laboratory measurements and field 

observations of expert soil scientists (Libohova et al., 2016). Due to these shortcomings, using 

SSURGO data in quantitative modeling and/or for monitoring soil carbon stocks sequestration is 

misleading, particularly at the farm scale for highly variable soils in a glaciated landscape. 

3.4 Conclusion 

The prediction performance of all three models (UK, Cubist, and RF) was similar for both 

OM content and CEC estimation. Random forest (RF) and Cubist, however, slightly outperformed 

UK for both OM and CEC properties prediction on an independent evaluation dataset. Universal 

Kriging (UK), however, due to the simplicity, faster computation, and more interpretable forms is 

favored over data mining or machine learning algorithms such as RF and Cubist and is 

recommended for future studies, at least for ACRE.  
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All three predictive models showed similar spatial predicting trends that were comparable 

to the SSURGO map units. Overall SSURGO had a wider range and/or either slightly under or 

over predicted soil properties when compared to the other models. Considering the high variability 

in farm management practices and nutrient application, the prediction accuracies were considered 

reasonable. The results demonstrate that lidar data alone can be used to adequately predict soil OM 

and CEC at the farm scale in this glaciated soil landscape. 
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 SPATIAL PREDICTION OF NATURAL SOIL 

DRAINAGE CLASSES USING DIGITAL SOIL MAPPING 

TECHNIQUES 

Abstract 

Accurate spatial prediction of natural soil drainage condition is not only important for 

agriculture and hydrological modeling but also for installing subsurface drainage and onsite waste 

disposal systems. For this research, 154 sites were selected based on a stratified random sampling 

method. For each site, drainage class was identified based on visual examination of soil cores. A 

digital elevation model developed from lidar data was used to derive seven terrain indices. Terrain 

indices were used to predict drainage class using four prediction models: multinomial logistic 

regression and three machine learning algorithms (random forest, C5.0, and artificial neural 

network). Based on 30% random hold-back validation data, all digital soil mapping (DSM) models 

provided similar results. The overall accuracy ranged between 66 – 70% and kappa coefficient 

ranging between 0.53 and 0.59. The DSM models slightly outperformed SSURGO, which had an 

overall accuracy of 64% and kappa of 0.52. 

4.1 Introduction 

Natural soil drainage class is an important soil property that influences crop growth and 

phenotypic response through aeration, nutrient, and water distribution. It also affects water flow 

and solute transport through soils (Kravchenko et al., 2002). Accurate maps of soil drainage classes 

are needed for soil and land management (i.e. tile drain installation and site selection for onsite 

septic system installation), and hydrological and environmental modeling. 

The Soil Survey Geographic (SSURGO) database (Soil Survey Staff, 2020) currently 

contains the best available information on soil drainage classes for the U.S. The most detailed 
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mapping in the SSURGO database is at a scale of 1:15,840 (Soil Science Division Staff, 2017). 

More detailed maps are, however, needed for sustainable land management, precision agriculture, 

and plant phenotyping. The Purdue University Agronomy Center for Research and Education 

(ACRE) research farm is utilized more than 50 researchers and provides plots for ~180 research 

projects (ACRE, 2019). Since the announcement of the Purdue Plant Science Initiative in 2013 

(Robinson, 2013), ACRE has become the centerpiece for high-tech, field-based phenotyping 

research. Natural soil drainage class has a marked effect on plant growth and phenotypic 

characteristics, therefore, methods to generate explicit, accurate, consistent, spatially realistic, and 

inexpensive soil drainage class maps are needed to support field-based phenotyping studies at 

ACRE. 

There is a strong correlation between natural soil drainage and hillslope hydrological 

processes. Therefore, research scientists utilize numerous analytical methods to map soil drainage 

classes based on terrain attributes derived from digital elevation models (DEMs). Kravchenko et 

al. (2002) applied discriminate analysis and geostatistics to map three soil drainage classes in 

central Illinois, U.S.A. based on topographic and soil electrical conductivity data. Liu et al. (2008) 

used multivariate discriminant analysis to map three soil drainage classes in Ontario, Canada based 

on topographic variables, remotely sensed images, and apparent soil electrical conductivity. 

Cialella et al. (1997) used a decision tree classification method to map five drainage classes for a 

24 km2 area in Howland, Maine, USA based on topographic covariates and remote sensing images. 

Niang et al. (2012) also applied a decision tree model to predict soil drainage classes for a 167 km2 

area in Quebec, Canada, as did Møller et al. (2019) in order to develop a soil drainage class map 

in Denmark. Campling et al. (2002) integrated topographic and vegetation indices to develop a 
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probability map of drainage classes using a logistic model, while Zhao et al. (2013) predicted seven 

soil drainage classes in Nova Scotia, Canada using artificial neural networks (ANN). 

In this study, multinomial logistic regression (MNLR), C5.0 decision tree, random forest 

(RF), and artificial neural network (ANN) models were used to predict natural soil drainage classes 

based on a high-resolution digital elevation model (DEM) derived from light detecting and ranging 

(lidar) data. In many studies utilizing digital soil mapping to map natural soil drainage classes, a 

DEM and terrain attributes are used in conjunction with other covariates (e.g. Bell et al. 1992 & 

1994; Cialella et al. 1997; Lemercier et al. 2012). In this study, we focused on the use of lidar data 

alone for the following reasons. (1) For our study area there are challenges associated with utilizing 

vegetation indices for mapping soil drainage classes because of the many small research fields 

with heterogeneous experiments. Thus, crop and soil reflectance will differ between fields mainly 

due to crop residue management, different crops, and other factors that are not necessarily related 

to soil forming factors. (2) High quality lidar data is available for the area. (3) There is a close 

correlation between landscape position and natural soil drainage class that has been used by soil 

mappers in the area for many years.  

The objective of this study was to predict the spatial distribution of natural soil drainage 

classes across the study area at a greater level of detail than the current SSURGO soil map. The 

specific objectives were to: 1) evaluate the relationship between soil drainage classes and DEM 

derived topographic indices, 2) compare the prediction accuracy of soil drainage class maps 

developed by MNLR and machine learning or decision tree models (C5.0, RF, and ANN), and 3) 

compare the predictive performance of digital soil mapping (DSM) models to the traditional soil 

map (i.e. the SSURGO map). 
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4.2 Materials and Methods 

4.2.1 Study Site Descriptions 

The study site is located at the Purdue Agronomy Center for Research and Education 

(ACRE) in Tippecanoe County, Indiana, USA (Fig. 4.1).  The study site comprises 570 hectares 

and has gently undulating, low relief topography (on average 1% slope based on a 3 x 3 pixel 

window) (ACRE, 2019). Soils at this site are formed in about 50 cm of loess over loamy Wisconsin 

glacial till and outwash. ACRE is located at the transition between the Eastern Hardwood Forests 

and the prairies of the Great Plains, and Alfisols and Mollisols are the two most common soil 

orders (USDA-NRCS, 1998). There are 14 different soil mapping units and 18 soil series at ACRE 

(USDA-NRCS, 1998). For the 30-year period from 1981 – 2010, the mean total annual 

precipitation is 970 mm and the mean annual temperature is 10° C (MRCC, 2013), while the mean 

winter temperature is -2.6° C and mean summer temperature is 22.2° C (NWS-COOP, 2020). The 

area is in the udic soil moisture regime and the mesic soil temperature regime (USDA-NRCS, 

1988). Soil drainage classes range from very poorly drained (VPD) to moderately well drained 

(MW). The major crops at ACRE are corn (Zea mays L.) and soybean (Glycine max (L.) Merr.). 
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Figure 4.1: Geographic location of the study site and field plot layout of the Purdue Agronomy 

Center for Research and Education (ACRE). WQFS: water quality field station. 
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4.2.2 Field Data Collection 

We collected 154 field observations of natural soil drainage class at ACRE (Fig. 4.2). 

Sampling locations were selected using a stratified random sampling design. Stratification was 

based on the drainage class from the SSURGO map, with 40 sampling locations randomly selected 

in each of the drainage classes. Drainage classes in SSURGO included very poorly drained (VPD), 

poorly drained (PD), somewhat poorly drained (SWP), and moderately well drained (MW). Out 

of 160 sampling points, six were in areas of disturbed soil (e.g. buildings or parking lots) and, thus 

they were excluded. The drainage class of each sampling location was determined by visual 

examination of cores obtained with a Dutch auger. We used the criteria (Fig. 4.3) described by 

Franzmeier et al. (2001) to define the drainage class at each sampling location (Fig. 4.4). Once the 

drainage class at a given location was determined by two field experts, the coordinates of the 

location were recorded using a Bad Elf Global Navigation Satellite System (GNSS) Surveyor 

receiver accurate to ±1 m (Bad Elf, 2020). The samples were collected from south to north. Most 

of the MW soils are located in southern part of the study area and thus were collected first. While, 

the rest of the points were collected based on geographic proximity and ease of access. The field 

data were split into training or calibration data (70%) and testing or validation data (30%) based 

on a stratified random split to maintain equal proportions of drainage classes in both datasets 

(Table 4.1). 

Table 4.1: Soil drainage classes and number of collected field samples in the whole dataset, 

calibration dataset, and validation dataset. 

Data Type  Number of soil samples in each drainage class  Total 

VPD PD SWP MW 

Calibration  30 27 35 15  107 

Validation  13 12 15 7  47 

Total  43 39 50 22  154 

 



 

 

8
0
 

 

Figure 4.2: Lidar digital elevation model and derived terrain covariates for the study area. (a) Elevation map with soil drainage class 

sampling locations, (b) topographic wetness index (TWI), (c) topographic position index (TPI), (d) multi resolution valley bottom 

flatness index (MrVBF), (e) relative slope position (RSP), (f) cross sectional curvature (CSC), (g) channel network distance (CND), and 

(h) slope height (SH).
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Figure 4.3: Steps for determining the soil drainage classes in the field. Dark: value ≤ 3 and chroma 

≤ 3.  Gray: hue = any, value ≥ 4 and chroma ≤ 2.  Olive gray: hue = 2.5Y or 5Y, value ≥ 4, and 

chroma ≤ 2 (Adapted from Franzmeier et al. 2001). 
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Figure 4.4: Occurrence of soil drainage classes on the landscape positions of the study site. The 

bottom two lines show soil mapping unit and soil drainage classes, moderately well drained (MW), 

somewhat poorly drained (SWP), poorly drained (PD), and very poorly drained (VPD). Soil 

profiles were obtained from Soil-Web (Beaudette and O’Geen, 2009). 

4.2.3 Environmental Covariate Data 

The 1.5 m pixel resolution lidar-derived digital elevation model acquired in 2013 for 

Tippecanoe County, Indiana was obtained from the Indiana Spatial Data Portal website 

(http://gis.iu.edu/). The DEM was re-projected from the Indiana State Plane West Coordinate 

System to the Indiana Geospatial Coordinate System (InGCS) for Tippecanoe and White Counties 

developed by the Indiana Department of Transportation (INDOT, 2016) using ArcMap 10.6 

(https://esri.com).  
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Initially terrain attributes were calculated based on the original 1.5-m DEM. However, 

roads and field boundaries (Fig. 4.1) that are ~20 cm higher, on average, than the cultivated fields 

interfered with the distribution patterns of the calculated terrain attributes. Fine resolution DEMs 

with pixel sizes on the order of 1 – 2 m are often too detailed and not desirable for mapping soil 

spatial variability (Smith et al., 2006; Winzeler et al., 2008; Shi et al., 2012; Maynard and Johnson, 

2014; Lacoste et al., 2014). To smooth out these anthropogenic features, the original 1.5 m DEM 

was resampled to 10 m based on simple mean aggregation in ArcMap 10.6 (https://esri.com). 

Topographic covariates are impacted by the extent of watershed. Therefore, the United 

States Geological Survey – National Hydrography Dataset (USGS-NHD) was obtained from the 

USDA, NRCS Geospatial Data Gateway (https://datagateway.nrcs.usda.gov/) and used to 

delineate the complete network of watersheds that flowing into and out of ACRE. Based on this 

channel network, a buffer around ACRE was created and the resampled DEM was clipped to the 

buffer.  

The algorithms in SAGA-GIS 2.1.4 (Conrad et al., 2015) were used to generate seven 

terrain attributes or environmental covariates (Fig. 4.2) from the resampled DEM: (1) relative slope 

position (RSP), (2) cross sectional curvature (CSC), (3) channel network distance (CND), (4) slope 

height (SH), (5) topographic wetness index (TWI), (6) topographic position index (TPI), and (7) 

multiresolution valley bottom flatness index (MrVBF). In the section below, we will only discuss 

the first four environmental covariates predictors. Information about the last three covariates (TWI, 

TPI and MrVBF) are presented in Chapter 3. 

Relative Slope Position 

Relative slope position (RSP), which is also known as relative hillslope position (Behrens 

et al., 2010), combines altitude below ridge lines with altitude above channel networks (Bock et 

https://esri.com/
https://datagateway.nrcs.usda.gov/
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al., 2007). In other words, RSP measures the position of a given location relative to the slope of a 

ridge (crest) and valley using the following equation: 

 𝑅𝑆𝑃 =
𝑍𝑖− 𝑍𝑣

𝑍𝑟− 𝑍𝑣
 [1] 

where, 𝑍𝑖 is the elevation of a given location, 𝑍𝑣 is the elevation of the adjacent valley, and 𝑍𝑟 is 

the elevation of the adjacent ridge. The RSP values range between zero (downslope or channel 

lines) and one (upslope or ridge lines) (Conrad et al., 2015). 

Cross Sectional Curvature  

Cross sectional curvature (CSC) shows the divergence and convergence of flow across the 

land surface. This index calculates the curvature perpendicular to the steepest slope direction 

(Pipaud and Lehmkuhl, 2017). A negative value of CSC indicates a concave slope in the cross-

sectional direction where water converges. A positive CSC shows that the slope is convex along 

the cross-sectional direction and represents a ridge where water diverges. CSC values close to zero, 

show planar or flat areas (Ehsani and Malekain, 2011). 

Channel Network Distance 

The behavior of water flow is different in channels than in other areas. Therefore, channel 

network distance (CND), which quantifies the distance of each pixel to the nearest channel or 

stream network, is an important index that provides information about the hydrological 

characteristics of channel and non-channel cells (Olaya, 2004). Lower values of CND are found 

near channels and ground water and, thus, are characterized by water accumulation. In contrast, 

higher values of CND are found on the plateaus (planar uplands) and farther away from channels. 

Medium values of CND show material transfers on slopes (Boehner et al., 2002). 
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Slope Height 

Slope height (SH) is defined as the relative height difference to the immediate nearby ridge 

line. In other words, SH is estimated based on calculating the vertical distance from the lower 

position of the hillslope to the crest of the hillslope (Malone et al., 2018). 

4.2.4 SSURGO Data 

For this study, SSURGO is used as the reference, conventional soil drainage class map. 

The SSURGO data was downloaded from the Web Soil Survey website (Soil Survey Staff, 2020). 

The SSURGO database provides detailed soil survey and mapping information for the Tippecanoe 

County at a predominant scale of 1:15,840 (USDA-NRCS, 1998). Four natural soil drainage 

classes, very poorly, poorly, somewhat poorly, and moderately well drained, occur in the study 

area. For each map unit, the natural soil drainage class of the dominant component was assigned 

as the drainage class for the entire map unit. 

4.2.5 Spatial Inference Mapping Models 

To develop digital soil maps of drainage classes for the study area we tested four prediction 

models: (1) multinomial logistic regression (MNLR), (2) the C5.0 decision tree model, (3) random 

forest (RF), and (4) artificial neural network (ANN). The last three models are considered decision 

tree or machine learning models. Each of the four models relates topographic information to the 

occurrence of soil drainage classes and quantifies the relationship, and spatially predicts drainage 

classes across the landscape. Each model is described briefly below. 
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Multinomial Logistic Regression 

Multinomial logistic regression (MNLR) is a form of a generalized linear model and is 

used to predict response variables containing more than two categories based on a set of multiple 

independent variables (Hosmer and Lemeshow, 1989). The independent variables can be 

continuous, discrete or both. Soil drainage class is a categorical response variable, therefore 

MNLR may be suitable for estimating the occurrence of soil drainage classes from topographic 

covariates. 

Unlike logistic regression that has only one logit or log odds equation, MNLR has multiple 

or N – 1 logit equations (Abdel-Kader, 2011). Logit is a logarithmic function that shows the ratio 

of probability (p) that a given pixel belongs to a specific category/class divided by the probability 

that it is not (1 – p) (Abdel-Kader, 2011) and it is expressed as: 

 𝑙𝑜𝑔𝑖𝑡𝑖 = log (
𝑝𝑖

1−𝑝𝑖
) = 𝛽0 + 𝛽𝑛𝑋𝑛 + ℰ [2] 

where 𝛽0 is a constant (y – intercept), 𝛽𝑛 is regression coefficients with n=1, 2, …, n–1, 𝑋𝑛 is a 

vector of predictor variables, and ℰ is random error. From the above equation we can determine 

the probability that a pixel belongs to a specific class (k) as follows: 

 𝒑(𝑖 = 𝑘) =  
𝑒𝑥𝑝(𝛽0+ 𝛽𝑛𝑋𝑛)

1+∑ 𝑒𝑥𝑝(𝛽0+ 𝛽𝑛𝑋𝑛)𝑘−1
1

+  ℰ [3] 

The logit of one category (typically the first or last, or the value with the highest frequency) 

is not estimated because it is considered as the reference category. However, its probability of 

presence is determined using: 

 𝒑𝑟 =  
1

1+∑ 𝑒𝑥𝑝(𝛽0+ 𝛽𝑛𝑋𝑛)𝑘−1
1

+  ℰ [4] 

Through an exhaustive search, and based on external validation, we tested various 

assemblages of terrain attributes aiming to find a model with a higher accuracy and kappa 
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coefficient. MNLR was carried out in R 3.5.1 environment (R Core Team, 2018), using the 

multinom function of the nnet package (Venables and Ripley, 2002). 

C5.0 Decision Tree Model 

The C5.0 decision tree model also known as See5 is the successor of the C4.5 model and 

is a sophisticated data mining algorithm developed by Quinlan (1993). The C5.0 decision tree 

model (Fig. 4.5) is used to find patterns of categories from organized data, assemble these patterns 

into classifiers and finally make predictions (Quinlan, 1993). The C5.0 model splits the data based 

on the maximum information gain criteria. Therefore, for each node tree, the C5.0 decision tree 

model selects a covariate that results in providing more information to make the decision (Quinlan, 

1993). 
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Figure 4.5: Graphical representation of the C5.0 decision tree model for the current study. MrVBF: multiresolution valley bottom 

flatness index; TPI: topographic position index. In the output layer, n shows the number of observations that is used to determine the 

final drainage class(es) and 1 represents very poorly drained, 2 represents poorly drained, 3 shows somewhat poorly drained, and 4 

shows moderately well drained soil. 
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Pruning is necessary to removing parts of the generated tree that contribute little in 

classification. C5.0 initially generates a fully-grown tree to fit the data and afterwards prunes the 

tree by excluding parts with the highest error rates (Adhikari et al., 2014). The C5.0 package (Kuhn 

and Quinlan, 2018) was used in the R 3.5.1 environment (R Core Team, 2018) to spatially predict 

drainage classes. 

Random Forest 

Random Forest (RF) is an ensemble modeling approach developed by Breiman (2001) as 

an extension of classification and regression trees (CART model) to enhance the prediction 

performance of the model (Wiesmeier et al., 2011). Random Forest has been widely adopted and 

has become a dominant decision tree model in digital soil mapping (Grimm et al., 2008; Stum et 

al., 2010; Wiesmeier et al., 2011; Forkuor et al., 2017; Adhikari et al., 2018). 

RF generates decision trees based on strong predictors and by repeatedly drawing random 

and independent bootstrap samples from the training data (Stum et al., 2010; Forkuor et al., 2017). 

The rest of the data, which is known as out-of-bag, is used for validation of the generated trees. As 

a rule of thumb, for each decision tree RF takes approximately 2/3 of the training data for bootstrap 

sampling and 1/3 for out-of-bag validation (Peters et al. 2007). 

The number of trees (ntree) and the number of covariates (mtry) are important input 

parameters determined by the user. Random forest randomly selects the strongest covariates (mtry) 

to split the nodes of each tree. The results of RF prediction improve by utilizing many predictive 

trees (Adhikari et al., 2018). In this study, we tested the RF performance using different numbers 

of trees (ntree) starting from 500 up to 1500 in increments of 100. While mtry can be manually 

specified, RF automatically attempts to optimize mtry (Malone et al., 2017). The randomForest 
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package (Liaw and Wiener, 2002) was used in the R 3.5.1 environment (R Core Team, 2018) to 

spatially predict drainage classes for the study site. 

Artificial Neural Network 

Artificial neural network (ANN) is a deep-learning technique (a powerful branch of 

machine learning) that mimics the processing of information in human brains (Hewitson and Crane 

1994). ANN finds patterns and classifies new and unknown data based on associations between 

predictor variables and observation or training points (Zell et al., 1998). ANN can handle large 

(Chagas et al., 2013), noisy, and non-linear datasets (Rossel and Behrens, 2010). Additionally, it 

can handle both regression and classification problems. 

In this study, we used a backpropagation neural network method (Rumelhart et al., 1985; 

Günther and Fritsch, 2010). This method reduces the overall learning error through a reverse 

direction (from the output layer to the input layer) (Gallant, 1993). The ANN model that was used 

has three interconnected layers (Fig. 6). First, an input layer that contains the terrain attributes. 

Second, a hidden layer that has three different artificial neurons and connects the input layer with 

the output layer. Similar to Bodaghabadi et al., 2015 and Ghaderi et al., 2019, the performance of 

ANN was evaluated with different numbers of hidden neurons staring from 2 and increasing one 

at a time up to 30. Optimal performance based on overall accuracy and kappa were achieved with 

three hidden layers. Third, an output layer with four neurons, with each neuron estimating a 

drainage class. The output of a neuron is derived from the following function (Eq. 5), which is 

basically a weighted sum of input variables (i.e. terrain attributes) plus the bias weight (Ciaburro 

and Venkateswaran, 2017).  

Output (drainge class) = ∑(weights ∗ inputs or terrain attributes) + bias weight [5]    
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For the ANN model predictions, the neuralnet package (Fritsch et al., 2019) in R 3.5.1 

environment (R Core Team, 2018) was used. 

 

Figure 4.6: Graphical representation of the developed artificial neural network model (ANN) for 

the current study. TPI: topographic position index; MrVBF: multiresolution valley bottom flatness 

index; CND: channel network distance; SH: slope height. The blue lines represent the bias weight. 

In the output layer, VPD represents very poorly drained, PD represents poorly drained, SWP 

represents somewhat poorly drained, and MW represents moderately well drained soils. 

4.2.6 Selection of Predictor Variables 

For MNLR, C5.0, and RF models, the varImp function of the caret package (Kuhn, 2008) 

in R 3.5.1 environment (R Core Team, 2018) was used to determine the importance of each 

variable (Table 4.2). Similar to the varImpPlot function of the randomForest package (Liaw and 

Wiener, 2002), the varImp function determines the importance of a variable based on the Gini 

index (MeanDecreaseGini). The MeanDecreaseGini index shows the average decrease in node 

impurities across overall trees from splitting on the variable. Variables with higher values indicate 

greater importance in the model and if removed, greatly affect the node purity and the predictive 
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power of the model. Generally, the node impurity for decision trees or classification is calculated 

based on the Gini index, while for regression it is calculated based on the residual sum of squares 

(Malone et al., 2017). 

Table 4.2: Terrain attributes and their overall importance. 

Terrain Attributes  Overall Variable Importance 

RF*1  MNLR*2  C5.0  ANN*3 

Topographic Wetness Index  9       

Topographic Position Index  13    59  4813 

Multiresolution Valley Bottom Flatness Index  13  5  100  -3749 

Relative Slope Position  11       

Cross Sectional Curvature  11       

Channel Network Distance  12  26    -2492 

Slope Height  9  1    4566 
*1Random forest (RF), *2multinomial logistic regression (MNLR), *3artificial neural network 

(ANN). 

 

The variable importance for the ANN model (Table 4.2) was determined based on Olden’s 

function in the NeuralNetTools package (Beck, 2018) in R 3.5.1 environment (R Core Team, 2018). 

Olden’s function evaluates the variable importance based on the sum of raw input-hidden and 

hidden-output connection weights between each input and output node or neuron (Olden, 2004). 

The derived importance values for Olden’s algorithm resulted from the summed product of model 

weights, thus they were not rescaled (Beck, 2018). 

4.2.7 Accuracy Assessment of the Predictive Models 

The performance of the predictive models was assessed based on a stratified random-hold 

back independent validation using 30% of the collected field data. The Kappa coefficient (K), 

overall or observed accuracy (Pobs), and user’s and producer’s accuracies were used to assess the 

quality of the developed soil drainage class maps. The statistical indices are generated from the 
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confusion matrices. The goofcat function of the ithir package (Malone, 2018) was used in the R 

3.5.1 environment (R Core Team, 2018) to compute these statistical validation indices. 

 Kappa Coefficient (𝐾) =
𝑃𝑜𝑏𝑠 − 𝑃𝑒𝑥𝑝

1− 𝑃𝑒𝑥𝑝
 [6] 

 Overall or Observed Accuracy (𝑃𝑜𝑏𝑠) =
∑ 𝐸𝑖𝑖

𝑛
𝑖=1

𝑁
 [7] 

 𝑃𝑒𝑥𝑝 =  
∑ 𝑋𝑖𝑗 𝑌𝑖𝑗

𝑛
𝑖=1

𝑁2  [8] 

 User’s Accuracy (𝑈𝑎𝑐) =
𝑋𝑖𝑖

∑ 𝑋𝑖𝑗
𝑛
𝑖=1

 [9] 

 Producer’s Accuracy (𝑃𝑎𝑐) =
𝑋𝑖𝑖

∑ 𝑌𝑖𝑗
𝑛
𝑖=1

  [10] 

where Pobs shows the observed agreement between the prediction and the actual or reference data, 

in other words, Pobs shows the mean of pixels that classified correctly, Pexp shows the probability 

that agreement is due to chance, N is the total number of observations, n is the number of predicted 

soil drainage classes, 𝐸𝑖𝑖 is the sum of diagonal values, 𝑋𝑖𝑖 is the diagonal element of each class, 

𝑋𝑖𝑗 is the sum of values in a row, and 𝑌𝑖𝑗 is the sum of values in a column. 

The Kappa coefficient measures the difference between the observed (actual) and expected 

(by chance) agreement. The value of the Kappa coefficient falls on a -1 to 1 scale, where a value 

of 1 indicates perfect agreement, 0 shows an agreement expected by chance, and negative values 

show less than chance agreements (Malone et al., 2017). The strength of the agreement of the 

predictive model was tested based on the scale proposed by Landis and Koch (1977). The Kappa 

coefficient shows less than chance agreement (K < 0), slight agreement (0.01 – 0.20), fair 

agreement (0.21 – 0.40), moderate agreement (0.41 – 0.60), substantial agreement (0.61 – 0.80), 

and almost perfect agreement (0.81 – 0.99). 
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User’s accuracy is the probability that a predicted drainage class on the map actually 

represents that class in the field. Producer’s accuracy indicates how well the model predicts the 

observed soil drainage class. 

4.3 Results and Discussion 

4.3.1 Important Predictor Variables 

Overall, based on varImp and Olden’s function, MrVBF and TPI were the most important 

predictors. Additionally, MrVBF was utilized by all four models, while TPI was used by three 

models. Taghizadeh-Mehrjardi et al. (2014) also found that MrVBF and wetness index were most 

effective for predicting soil classes, with MrVBF being particularly effective in relatively flat areas. 

One potential reason for the relatively lower importance of TWI in the RF model, and the fact that 

it was not being selected by other models, might be the collinearity (Pearson correlation coefficient 

values – 0.44 to 0.56) of TWI with other covariates (terrain attributes), except for SH and CND. 

From a conceptual soil-landscape standpoint, there is a logical relationship between natural 

soil drainage classes and terrain attributes. For instance, the fitted MNLR equations (Eqs. 11 – 13) 

revealed that SH is negatively correlated to PD and positively correlated to SWP and MW. This 

underlines the fact that higher and steeper slope areas are drier compared to lower slope areas. 

Even though CND showed positive correlation with all soil drainage classes, the weight of 

coefficients was higher for SWP and MW compared to PD (Eqs. 11 – 13). On the other hand, 

MrVBF showed negative correlation with all soil drainage classes, though, strong positive 

correlation was expected with PD and negative correlation with SWP and MW. Nonetheless, the 

coefficient of MrVBF for PD is closer to zero compared to SWP and MW coefficients.  

 

 𝐏𝐃 =  0.04 –  0.29 ∗ MrVBF +  7.1 ∗ CND −  0.03 ∗ SH  [11] 
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 𝐒𝐖𝐏 =  0.35 –  1.29 ∗ MrVBF +  8.95 ∗ CND + 0.28 ∗ SH  [12] 

 𝐌𝐖 =  −1.36 –  3.27 ∗ MrVBF +  9.77 ∗ CND + 0.88 ∗ SH [13] 

Similar patterns between terrain attributes and soil drainage classes were also observed in 

the C5.0 model (Fig. 4.5), meaning that MrVBF has a positive correlation with VPD and PD (i.e. 

node 19), whereas, TPI has a positive relationship with SWP and MW (i.e. node 18). 

4.3.2 Predictive Digital Soil Mapping Models 

The performance of the predictive models is presented in Table 4.3. Based on overall 

accuracy and the Kappa coefficient, there was no great difference in the performances of all four 

models. The overall accuracy for MNLR, C5.0, and RF was 66%, while ANN resulted in a slightly 

higher overall accuracy (70%). The Kappa value of MNLR and RF was 0.53, and it was 0.54 for 

C5.0 and 0.59 for ANN. Even though the numbers of terrain attributes utilized by all models were 

different, some of the variables, particularly the most important variables (MrVBF and TPI), were 

common in all models. The exception to this was the MNLR model that did not utilize TPI. 

Therefore, it was expected that the models would show similar results (based on overall accuracy 

and Kappa coefficient) for the soil drainage class predictions. At the same study site, we found 

that MrVBF and TPI were the most important variables for cation exchange capacity (CEC) 

predictions based on universal kriging, Cubist and RF (see Chapter 3). Therefore, the models show 

similar predictive performances for CEC estimations. Based on overall accuracy and the Kappa 

coefficient it is also clear that the use of greater numbers of terrain attributes in a model does not 

necessarily result in higher accuracy. For instance, RF utilized all seven terrain attributes, while 

C5.0 only used MrVBF and TPI, but C5.0 still provided similar results when compared to RF. 
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Table 4.3: Producer’s, user’s, and overall accuracies, probability of chance agreement, and kappa coefficient of multinomial logistic 

regression (MNLR), C5.0, random forest (RF), artificial neural network (ANN) models and SSURGO database for very poorly drained 

(VPD), poorly drained (PD), somewhat poorly drained (SWP), and moderately well drained (MW) soils. 

Model Type Producer’s Accuracy  User’s Accuracy Overall 

Accuracy 

 Chance 

Agreement 

 Kappa 

VPD PD SWP MW  VPD PD SWP MW 

MNLR 92 42 67 57  63 83 63 67 66  27  0.53 

C5.0 92 33 60 86  52 67 90 75 66  26  0.54 

RF 77 58 67 57  67 58 67 80 66  27  0.53 

ANN 85 50 80 57  69 75 67 80 70  28  0.59 

SSURGO 46 58 67 100  60 50 91 58 64  25  0.52 
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According to the user’s accuracy of the confusion matrix (Table 4.3), SWP is the most 

accurately determined natural soil drainage class with a 90% user’s accuracy, followed by PD with 

84% and MW with 80% user’s accuracy, while VPD had the lowest user’s accuracy of 69%. The 

higher prediction accuracy of SWP by C5.0 might be attributed to the higher numbers of 

observations (35) for the training model. Møller et al. (2019) state that C5.0 decision tree models 

can handle missing values but prefer informative variables. Jafari et al. (2012) found that the 

number of the sampling points relative to the total area played an important role in mapping purity; 

hence smaller numbers of sampling points cause greater uncertainty. 

Even though there were a limited number of training points (15) for MW soils, MW was 

still predicted with relatively high accuracy (67 – 80%) using all models. In contrast, VPD had the 

second highest number of observations (30) but estimated with relatively lower accuracy (53 – 

69%). This high prediction of MW soils and lower prediction of VPD may be due to the soil 

relationship with the terrain attributes; both VPD and MW drainage classes are found in two 

distinct landscape positions. MW soils that evolved in a higher landscape position have a good 

relationship with terrain attributes and vice-versa in the case of VPD. 

According to the producer’s accuracy, all models underpredicted PD and MW soil drainage 

classes, except C5.0, which overpredicted MW. Møller et al. (2019) state that under-prediction of 

a soil class is due to its rarity in the training dataset or is related to the over-prediction of a majority 

class. The majority class contained the most cases of the underpredicted class. In this study, there 

were relatively lower number of training data for PD and MW compared to VPD and SWP soils 

(Table 4.1), however the majority class rule was the primary reason for the under-prediction of PD 

and MW in all models. Both MNLR and RF classified one third of the validation dataset cases of 

PD as VPD, while C5.0 classified two thirds and ANN classified one fourth of PD as VPD (Table 



 

 

98 

4.4). Similarly, almost half of the validation dataset cases of MW were classified as SWP by all 

models except the C5.0 model (Table 4.4). The main reason might be due to the close occurrence 

(both in geographic and feature spaces) of these underpredicted soil classes with their majority 

classes on the landscape. In other words, they are not only found geographically in close proximity, 

but also found on similar terrain. Additionally, ACRE has a relatively flat topography with low 

topographic variation (on average 1% slope based on a 3 x 3 pixel window), it is difficult for the 

models to differentiate between close occurrences of drainage classes. Even during field sampling, 

it was relatively hard to morphologically distinguish between VPD and PD soils. Furthermore, at 

ACRE, drainage class might change over a few meters. Therefore, observations based on a single 

boring may be misleading. It may be best practice to take several borings within a specific distance 

(i.e. 1 m radius) and assign drainage class based on the most common class within the area. 

Location accuracy of the individual samples is an additional source of error, but in our study the 

sampled locations were accurate to ±1 m, which is well below other sources of error. Another 

potential reason for under-predictions of PD by C5.0 might be the lower number of terrain 

attributes (MrVBF and TPI) utilized by C5.0 when compared to other models. The over-prediction 

of VPD by C5.0 might also show a close correlation between VPD and MrVBF, which is the most 

important variable in the C5.0 model. 
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Table 4.4: Confusion matrix for the drainage class determination for the predictive models and the SSURGO database. 

 

 

 Actual or Reference Data 

Multinomial Logistic 

Regression 
 C5.0 Decision Tree  Random Forest  

Artificial Neural 

Network 
 SSURGO 

P
re

d
ic

te
d

   VPD PD SWP MW  VPD PD SWP MW  VPD PD SWP MW  VPD PD SWP MW  VPD PD SWP MW 

 VPD 12 4 3 0  12 8 3 0  10 4 1 0  11 3 2 0  6 4 0 0 

 PD 1 5 0 0  1 4 1 0  2 7 3 0  2 6 0 0  7 7 0 0 

 SWP 0 3 10 3  0 0 9 1  1 1 10 3  0 3 12 3  0 1 10 0 

 MW 0 0 2 4  0 0 2 6  0 0 1 4  0 0 1 4  0 0 5 7 
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The misclassified drainage classes from all models were estimated within ±1 class of their 

actual drainage classes (Table 4.4). The exception to this was four SWP observations that were 

incorrectly estimated as a VPD soil by all models. Based on the DEM and terrain attributes, these 

four observations are in the lower landscape positions, however, the underlying parent material 

might be of glacial outwash that has coarser and sandy texture. In addition to the terrain covariates, 

there is a need for utilizing covariates that reflect underlying geology. Collecting geological data, 

however, is not easy. It is also possible that terrain attributes might predict potholes or depressions 

that were artificially created in the mid-slope positions as VPD instead of SWP. 

Different models showed different strengths. According to the user’s accuracy, ANN and 

RF provided better estimation for VPD and MW, while MNLR provided better results for PD and 

C5.0 provided better estimation for SWP. It is worth mentioning that RF did not predict PD and 

SWP with relatively high accuracies, but the results were consistent for producer and user 

accuracies. Additionally, RF and ANN resulted in similar user accuracies for all drainage classes 

except PD, which is predicted with lower user accuracy by RF when compared to ANN. 

Overall, the performance attained from the prediction models is considered good in 

comparison with other studies predicting drainage classes (Kravchenko et al., 2002; Zhao et al., 

2008). In our study, generally, good correlation was observed between soil drainage classes and 

terrain attributes in all predictive DSM models. The results achieved in this study are purely based 

on terrain covariates. Other studies utilized parent material and a geology layer, texture and/or clay 

and sand content, remote sensing and vegetation indices, land use, and wetlands, in combination 

with terrain attributes (Bell et al., 1992; Cialella et al., 1997; Campling et al., 2002; Peng et al., 

2003; Liu et al., 2008; Zhao et al., 2008; Lemercier et al., 2012; Niang et al., 2012; Zhao et al., 

2013; Møller et al. 2019). While the use of additional covariates proved to be efficient for 
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differentiating the drainage classes for the studies above, in heavily influenced anthropogenic 

landscapes, like ACRE, relationships between covariates and drainage classes may be obscured by 

management.   

4.3.3 Comparison of Digital Soil Maps to SSURGO 

There were similarities and difference between the digital soil map (DSM) and the 

traditional soil survey or a SSURGO map (Fig. 4.7 & 4.8). All DSM models, however, showed 

slightly higher accuracy and Kappa values than did SSURGO (Table 4.3). Additionally, the user 

accuracy of SSURGO for all drainage classes (except SWP) was lower than the DSM models. 

Based on producer accuracy, SSURGO, when compared to the DSM models, underpredicted VPD 

and overpredicted MW. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

102 

Figure 4.7: Prediction of natural soil drainage classes. (a) Multinomial logistic regression 

(MNLR), (b) C5, (c) random forest (RF), and (d) artificial neural network (ANN). The points with 

black rim represent calibration and points with white rim represent validation datasets. 
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Figure 4.8: Prediction of natural soil drainage classes based on conventional soil survey 

(SSURGO data). The points with black rim represent calibration and points with white rim 

represent validation datasets. 

Both DSM algorithms and SSURGO identified the occurrence of four drainage classes in 

the study site. Within the landscape, DSM and SSURGO were consistent with the conceptual 

pedological distribution of soil drainage classes. The predicted maps show that VPD and PD soils 

are found in lower landscape positions (i.e. foot and toe-slope and potholes), while SWP and MW 

(particularly MW) are found at higher and steeper landscape positions (i.e. summit, shoulder, and 

backslope). In chapter 3 we drew a similar conclusion for the organic matter and cation exchange 

capacity distribution within the landscape of this same study site (ACRE). Higher values of organic 

matter and cation exchange capacity were measured in lower landscape positions, while lower 

values occurred on higher and steeper landscape positions. Lower parts of the landscape have a 
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seasonal high-water table that is closer to the surface and receive overland flow, causing 

waterlogged conditions. The steeper and convex areas, due to the higher slope, shed water to the 

lower parts of the landscape. 

The differences between the DSM and SSURGO maps are obvious in predicting the extent 

of VPD and PD soils (Fig. 4.7 & 4.8). SSURGO, when compared to the DSM maps, underpredicted 

the extent of VPD areas and overpredicted the extent of PD soils regions. Both methods, however, 

showed no great differences in the extent of SWP and MW soil regions. As mentioned in Section 

4.2, VPD and PD soils have similar morphological characteristics and are found in similar 

landscape settings thus, it may be hard to differentiate between these drainage classes using terrain 

attributes alone. On the other hand, SWP and MW are relatively easy to differentiate on the 

landscape with SWP found at midslopes positions, while MW is found at upper slope positions. 

4.3.4 Soil Drainage Class Probability Map 

Chang and Burrough (1987) point out that more than one soil class can be found for certain 

landscape combinations, thus mapping uncertainty is necessary. The availability of an uncertainty 

map is important for determining the reliability of the predicted maps. These maps can also provide 

tools to soil surveyors to map the overlapping drainage classes or highly uncertain areas more 

efficiently. 

Both MNLR and ANN algorithms showed similar patterns of uncertainties (Fig. 4.9 & 

4.10). Generally, uncertainty maps following the theoretical positions of soil drainage classes on 

the landscape. For instance, VPD probability maps show lower uncertainty in low lying landscape 

positions and higher uncertainty in higher landscape positions. Similarly, MW probability maps 

show lower uncertainty in upper landscapes and higher uncertainty in depression areas. Higher 

uncertainty is observed in drainage classes that are located in between two other drainage classes. 
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For instance, PD and SWP are more uncertain than VPD and MW. These uncertainty maps show 

that the selected environmental variables are not sufficient to differentiate between closely 

occurrence drainage classes, particularly between VPD and PD soils. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

106 

Figure 4.9: Maximum occurrence probability of soil drainage classes based on multinomial 

logistic regression. (a) Very poorly drained (VPD), (b) poorly drained (PD), (c) somewhat poorly 

drained (SWP), and moderately well drained (MW). 
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Figure 4.10: Maximum occurrence probability of soil drainage classes based on artificial neural 

network. (a) Very poorly drained (VPD), (b) poorly drained (PD), (c) somewhat poorly drained 

(SWP), and moderately well drained (MW). 
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4.3.5 Why Use Digital Soil Maps?  

As described above, there is little difference between the prediction accuracy of DSM and 

conventional soil survey maps (SSURGO). The question may arise, ‘why use DSM 

methodologies?’ The answer to this question is provided in the following paragraphs.  

Various studies have compared the soil class maps generated by DSM with conventional 

soil survey maps in terms of accuracy (Lorenzetti et al., 2015), cost and efficiency (Kempen et al., 

2012; Zeraatpisheh et al., 2017), spatial correspondence and spatial details (Bazaglia Filho et al., 

2013; Roecker et al., 2010). Overall, these studies concluded that DSM maps are more accurate, 

informative, detailed, and cost-efficient. 

The three main limitations that are associated with conventional soil maps are the 

polygonal based product, the manual mapping process itself, and the lack of quantified 

documentation of the soil and landscape model. Due to scale issues (1:15,840), the SSURGO map 

provided information based on aggregated polygon map units (Soil Survey Staff, 2020). The 

smallest polygon in SSURGO is one hectare (Soil Science Division Staff, 2017). The SSURGO 

polygon may have one to four named components and include soils and non-soil areas, but all soils 

within the SSURGO polygon are considered homogenous. For instance, the CwB2 (Crosby-Miami 

silt loams) mapping unit of SSURGO in the study site has 64% Crosby with SWP, 33% Miami 

with MW, and 3% Treaty soils with PD conditions (Soil Survey Staff, 2020). However, SSURGO 

assigned the SWP class for CwB2 based on the dominant condition and/or component (Crosby). 

Additionally, soil variations occur along the boundary of polygons. Thus, the SSURGO maps 

provide simplified depiction of spatial variation of soils across the landscape. On the other hand, 

DSM methods provide continuous, consistent and potentially more realistic results. Additionally, 

DSM approaches (i.e. MNLR and ANN) are capable of providing probability maps that show the 

uncertainty associated with each allocated drainage class (Fig. 4.9 & 4.10). 
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In conventional maps (i.e. SSURGO) soil-landscape relationships are qualitatively 

documented with block diagrams and written descriptions of soil map units. In DSM however, 

soil-landscape relationships are documented in statistical models that use quantifiable digital 

inputs.  Thus, decision criteria for DSM models can be easily documented and updated as more 

information becomes available over time. This has several advantages. First, the quantitative soil-

landscape relationships from DSM is of use for further quantitative studies and models. Secondly, 

by changing the decision criteria or updating DSM models, new maps can be developed or updated.  

Because DSM models quantify the soil-landscape relationship, these updates and changes can be 

easily tracked and monitored. 

4.4 Conclusions 

This study predicted soil drainage classes based on field observations and terrain attributes 

generated from a lidar-based digital elevation model. MrVBF was the most important explanatory 

variable that was utilized by all models. According to the overall accuracy and kappa coefficient 

there is no major difference between MNLR, RF, C5.0, and ANN models. Artificial neural network 

(ANN), however, slightly outperformed MNLR, RF and C5.0 models. Multinomial logistic 

regression (MNLR) and C5.0 models, however, because of their interpretable forms, are preferred 

over RF and ANN models. Additionally, MNLR and C5.0 models are simpler and utilized fewer 

environmental covariates when compared with RF and ANN models. Furthermore, MNLR can 

predict both drainage classes and their associated uncertainties, while RF and C5.0 only predict 

soil drainage classes and ANN only provides the uncertainty maps. The MNLR and C5.0 models 

are recommended for future studies for areas like ACRE. 

All DSM models showed slightly higher prediction performance when compared to the 

SSURGO data. Soil drainage classes predicted by both DSM and SSURGO correspond with the 
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soil and landscape model, meaning that VPD and PD were found in depressions and low-lying 

areas while, SWP and MW were predicted on higher and steeper landscapes. This study 

demonstrated that, on a farm scale that has similar characteristics as ACRE (i.e. gently undulating 

topography and glaciated landscape), the natural soil drainage classes can be adequately mapped 

using a high-resolution lidar DEM. For future studies, including covariates that capture underlying 

geology might improve the results and need to be considered. 
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 MAPPING SUBSURFACE TILE DRAINAGE LINES 

USING AERIAL PHOTO INTERPRETATION, PAPER MAPS, AND 

EXPERT KNOWELDGE 

Abstract 

Accurate maps of subsurface tile drainage lines are needed for agronomic and 

environmental research and the maintenance of current tile drainage systems. In this study, tile 

lines at the Agronomy Center for Research and Education (ACRE) were identified using a 

combination of visual aerial photo interpretation, expert knowledge, and paper construction 

drawings. The mapping accuracy was assessed using 27 points at which tile lines were located 

physically using a tile probe. Tile lines were correctly predicted 89% of the time with an average 

spatial accuracy of ±1.23 m of the true tile locations. This was better than a previous tile line 

locations map prepared by Naz and Bowling (2008) using an automated remote sensing method 

which had an average spatial accuracy of ±2.12 m.  

5.1 Introduction 

The Purdue University Agronomy Center for Research and Education (ACRE) has a long 

history of world-class research. More than 50 research scientists from various departments 

currently conduct research at ACRE (ACRE, 2020). Since the announcement of the Purdue Plant 

Sciences Initiative in 2013 (Robinson, 2013), ACRE has been transformed into a high-tech field 

phenotyping facility with a focus on collecting information at both the canopy and individual plant 

levels. Plants are monitored throughout the growing season using a combination of traditional in-

field data collection, as well as with an array of different sensors mounted on unmanned aerial 

vehicles (UAVs) and on the PhenoRover, a ground-based mobile sensor platform (PU-IPS, 2020). 
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Most of the soils at ACRE are poorly and somewhat poorly drained (USDA-NRCS, 1998) and 

require subsurface drainage to remove excess water to provide better plant growth conditions. 

Subsurface tile drainage prevents crop drown out, minimizes soil erosion, and increases crop yields 

by preventing root damage caused by excess water and by providing better aeration (Fausey et al., 

1987; Franzmeier et al., 2001). Tile drainage also allows farmers to access farmland to conduct 

timely farm operations (Franzmeier et al., 2001). 

The presence of subsurface drainage tiles can greatly impact plant phenotypic respond 

through spatial redistribution of soil moisture, plant nutrients, soil pH, and rooting depth (Ritzema 

et al., 2008; Wang et al., 2006; Mathew et al., 2001; Rhoades et al., 1999). Therefore, accurate 

location of subsurface tile drainage lines is needed to support the above ground plant phenotyping 

research at ACRE. 

Subsurface tile drainage systems are widely used in the Midwestern U.S. In 1985, ~12.5 

million ha in the Midwest contained tile drainage (Pavelis, 1987). Since then, substantial additional 

areas have had subsurface drainage systems installed. Indiana, with approximately 50% artificially 

drained cropland, is the highest in the nation (Pavelis, 1987). Accurate maps of preexisting tile 

lines are not only important for agronomic and environmental research, but also for maintenance 

and repair of current drainage systems, and for reference during installation of new tile lines in 

previously tiled fields. In many cases, however, the locations of exiting tile lines are not known 

exactly because maps of their locations were not made or have been lost. 

Due to the need to accurately locate subsurface tile lines, it is not surprising that much 

research has been conducted, and different approaches have been utilized, to identify existing tile 

lines. Geophysical and remote sensing are the two main methods of locating subsurface tile lines. 

Manual probing, trenching, and ground penetrating radar are common geophysical methods for 
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locating tile lines (Roy, 2014; Allred et al., 2018). Even though geophysical methods can 

accurately locate tile lines they are time consuming, labor intensive, expensive, and tedious, thus 

limiting their application for larger areas (Allred et al., 2004; Ale et al., 2007; Gökkaya et al., 

2017). Ground penetrating radar does not work well for locating tile lines in high clay soils due to 

attenuation of the radar signal (Conyers and Goodman, 1997).  

Various studies have shown that remote sensing, together with Geographic Information 

Systems (GIS), can be an effective approach to precisely mapping buried tile lines (Verma et al., 

1996; Northcott et al., 2000; Varner et al., 2002; Naz and Bowling, 2008). Aerial imagery often 

captures spectral differences between wet and dry soils; thus it plays a critical role in locating tile 

lines using remote sensing. Two to three days after a heavy rain (25 mm within 24 hrs.), soil over 

tile lines often dries faster than soil in between tile lines. This results in higher reflectance of the 

drier soils in the visible and near infrared regions of the electromagnetic spectrum, and this 

difference can be captured by aerial imagery. Soil moisture, soil organic matter, soil texture, crop 

residue, and tillage practices, however, also affect the reflectance and, therefore, the accuracy of 

automated tile mapping using aerial imagery (Naz and Bowling, 2008; Naz et al., 2009, Andrade, 

2013). 

The objective of this research was to accurately map the locations of tile lines at ACRE 

and to develop a detailed attribute table with the type, material, status, and dimeter of the tile lines. 

To do so, we used a combination of visual photo interpretation, expert knowledge, and paper 

construction drawings. Additional objectives were to evaluate the new map against ground 

observations of tile line locations, to compare the new map to the map produced by Naz and 

Bowling (2008) using an automated method, to compare the results of this study with tile maps 



 

 

114 

generated by the tile installation companies, and to deliver this information to research scientists 

in a usable format. 

5.2 Materials and Methods 

5.2.1 Study Site 

The Agronomy Center for Research and Education (ACRE) is located in Tippecanoe 

County, Indiana, USA (40° 28' 12" N, 86° 59' 31" W) (Fig. 5.1). ACRE was established in 1949 

as a field research station for soils and crops research and currently consists of 570 hectares. ACRE 

is located on a low relief, gently undulating Wisconsin age till plain and contains fourteen different 

soil mapping units, with Chalmers (fine-silty, mixed, mesic Typic Hapludalfs), Raub (fine-silty, 

mixed, mesic Aquic Argiudolls), and Drummer (fine-silty, mixed, mesic Typic Haplaquolls) soils 

as the dominant soil types. Most of the soils at ACRE are poorly or somewhat poor drained, but a 

few locations are very poorly drained or moderately well drained (USDA-NRCS, 1998). Corn and 

soybean are the most extensive crops at ACRE. The average annual temperature is 10° C and the 

average total annual precipitation is 970 mm (30-year normals for 1981 to 2010) (MRCC, 2013). 

The mean winter temperature (December to February) is -2.6° C and the mean summer temperature 

(June to August) is 22.2° C (NWS-COOP, 2020). 
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Figure 5.1: Map of the Purdue Agronomy Center for Research and Education (ACRE) showing 

the field boundaries and numbers and the dates of tile drainage installation up to spring 2020. Pre-

ACRE = tiles installed prior to acquisition of the land for ACRE. 
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The tile lines at ACRE were typically installed at 0.9 m (3 ft) depth and on 20 m (66 ft) 

spacings. The lateral tile lines, which carry water from the fields to the larger main or sub-main 

tile lines, are typically 10 cm in diameter. The main tile lines vary from 15 cm to 60 cm in diameter. 

The tile lines were installed in different years (Fig. 5.1) and reflect the order of land acquisition 

and the availability of funds (J. Beaty, personal communication, April 5, 2018). 

In the sections below, we provide information about input data, tile mapping procedure, 

and accuracy assessment. The main steps and methodological procedures of mapping tile lines are 

presented in Fig. 5.2. 

 

 

Figure 5.2: Methodological workflow and main steps in mapping subsurface tile lines at ACRE. 



 

 

117 

5.2.2 Input Data and Information 

We used a combination of aerial imagery, paper and digital maps of planned or as-installed 

tile lines, and expert knowledge to locate the tile drainage lines at ACRE. 

Aerial Imagery and Image Processing  

Historic aerial imagery can provide information on the spatial location of tile lines, 

particularly when other sources of information such as installation drawings are not available. We 

obtained as much aerial imagery as we could find for the study site and ultimately assembled 24 

images of the study area that spanned from 1939 to 2016 (Table 5.1). The 6 oldest datasets from 

1939 through 1976 consisted of aerial photographs either downloaded from the Indiana Geological 

and Water Survey (IGWS) website (https://igws.indiana.edu/), or accessed as printed aerial 

photographs at the USDA Natural Resources Conservation Service, Lafayette Service Center, 

1812 Troxel Dr., Suite C3, Lafayette, IN 47909. The imagery from 1939 and 1963 was available 

from IGWS already scanned, but not georeferenced. The aerial photographs from 1957, 1968, 

1971, and 1976 accessed at the USDA Lafayette Service Center were scanned at 400 dpi (dots per 

inch) and stored as TIFFs (Tag Image File Format). The remaining 18 datasets spanning from 1998 

through 2016 were downloaded from the Indiana Spatial Data Portal (ISDP) (https://gis.iu.edu) 

and were already georeferenced. 
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Table 5.1: Available aerial imagery to map tile lines at ACRE. 

No  Original Dataset Name  Date  Resolution 

(m) 

 Original Datum and 

Projection 

 Source*2 

1  1939 Aerial Imagery  04/13/1939  10  N/A  IGWS 

2  1957 Aerial Imagery  09/04/1957  0.9  N/A  USDA 

3  1963 Aerial Imagery  05/31/1963  5.5  N/A  IGWS 

4  1968 Aerial Imagery  03/04/1968  0.3  N/A  USDA 

5  1971 Aerial Imagery  06/17/1971  0.7  N/A  USDA 

6  1976 Aerial Imagery  03/09/1976  1  N/A  USDA 

7  1998-1999 USGS Digital Ortho Quarter-

quad 

 1998-1999  1  NAD_1983_UTM_Zone_16N  ISDP 

8  2003 National Agriculture Imagery 

Program 

 07/19/2003  1  NAD_1983_UTM_Zone_16N  ISDP 

9  2004 National Agriculture Imagery 

Program 

 07/01/2004 

08/15/2004 

 2  NAD_1983_UTM_Zone_16N  ISDP 

10  2005 IndianaMap Color Infrared Photos  02/26/2005 

05/29/2005 

 1  NAD_1983_UTM_Zone_16N  ISDP 

11  2005 IndianaMap Natural Color Orthos: 

Orthophotography 

 March 2005 

April 2005 

 0.15  NAD_1983_StatePlane_India

na_West_FIPS_1302_Feet 

 ISDP 

12  2005 IndianaMap Natural Color Orthos: 

Quarter quads 

 March 2005 

April 2005 

 1  NAD_1983_UTM_Zone_16N  ISDP 

13  2005 National Agriculture Imagery 

Program 

 07/01/2005 

09/15/2005 

 2  NAD_1983_UTM_Zone_16N  ISDP 

14  2006 IndianaMap Reflight Color Infrared  Spring 2006  1  NAD_1983_UTM_Zone_16N  ISDP 

15  2006 IndianaMap Reflight Natural Color 

Orthophotography 

 Spring 2006  0.15  NAD_1983_StatePlane_India

na_West_FIPS_1302_Feet 

 ISDP 

16  2006 IndianaMap Reflight Natural Color 

Quarter-quads 

 Spring 2006  1  NAD_1983_UTM_Zone_16N  ISDP 

17  2006 National Agriculture Imagery 

Program 

 07/06/2006 

08/16/2006 

 2  NAD_1983_UTM_Zone_16N  ISDP 

18  2007 National Agriculture Imagery 

Program 

 07/02/2007 

08/13/2007 

 2  NAD_1983_UTM_Zone_16N  ISDP 
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Table 5.1: Continued 

No  Original Dataset Name  Date  Resolution 

(m) 

 Original Datum and 

Projection 

 Source*2 

19  2008 National Agriculture Imagery 

Program 

 06/24/2008 

09/01/2008 

 1  NAD_1983_UTM_Zone_16N  ISDP 

20  2010 National Agriculture Imagery 

Program 

 08/16/2010  1  NAD_1983_UTM_Zone_16N  ISDP 

21  2012 National Agriculture Imagery 

Program 

 06/06/2012 

06/19/2012 

 1  NAD_1983_UTM_Zone_16N  ISDP 

22  2013 IndianaMap Data*1  02/14/2013 

04/22/2013 

 0.3  NAD_1983_StatePlane_India

na_West_FIPS_1302_Feet 

 ISDP 

23  2014  NAIP Imagery  2014  1  NAD_1983_UTM_Zone_16N  ISDP 

24  2016  NAIP Imagery  06/12/2016 

 

 0.6  NAD_1983_UTM_Zone_16N  ISDP 

*1 the 2013 imagery was considered the master image and all of the aerial imagery was georeferenced based on this master image.  
*2 IGWS = Indiana Geological and Water Survey, https://igws.indiana.edu; USDA  = USDA Natural Resources Conservation Service, 

Lafayette Service Center, 1812 Troxel Dr., Suite C3, Lafayette, IN 47909, and ISDP = Indiana Spatial Data Portal, https://gis.iu.edu. 
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The 18 datasets that were already georeferenced were in a variety of projections (Table 

5.1). As a common projection, we chose a projection from the Indiana Geospatial Coordinate 

System (InGCS) (INDOT, 2016). The InGCS is a set of low-distortion map projections that 

minimizing the horizontal linear (grid vs. ground) distortion across the design region, typically a 

1-, 2-, or 3-county area within Indiana, and are defined in units of both meters and feet. The average 

grid vs. ground difference in InGCS is 0.014 feet per mile (±2.6 ppm). The average, grid vs. ground 

difference for other commonly used projections is considerably larger. For example, for the 

Indiana State Plane Coordinate System it is 0.42 feet per mile (±80 ppm), while for the Universal 

Transverse Mercator (UTM) Zone 16 North system it is 2.1 feet per mile (±400 ppm) (INDOT, 

2016). Since ACRE is entirely in Tippecanoe County, IN, we used the (InGCS) for Tippecanoe 

and White Counties, which has an average grid vs. ground difference of 0.0159 feet per mile (3 

ppm). In ArcGIS 10.6 software, this projection is listed as 

“NAD_1983_2011_InGCS_Tippecanoe-White_(m)” for units in meters. The Project Raster tool 

was used in ArcMap 10.6 to project all of the georeferenced images into 

“NAD_1983_2011_InGCS_Tippecanoe-White_(m)”. 

Of the available imagery, the 2013 IndianaMap Data image at 0.3 m resolution is 

georeferenced to the highest standard for use as a basemap for state-wide, county, and municipal 

projects. It was selected as the master image for georeferencing images that were obtained from 

USDA and IGWS. The Georeferencing tool in ArcMap 10.6 was used to georeference the USDA 

and IGWS images based on image-to-image registration. 

For accurate georeferencing we used stable and visible benchmarks such as roads, 

intersections, driveways, railroad tracks, culverts, etc. as control points. Sufficient control points 

were added so that the spline transformation could be used. In general, about 15 control points 
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were used for each image. After georeferencing, the Mosaic tool was used to mosaic all the aerial 

photos from a single year into a seamless image that covers the entire study location. 

Physical and Electronic Maps 

Paper maps of tile line locations and the expert knowledge of the farm manager were also 

used to identify the tile lines at ACRE. Generally, these paper maps were large engineering 

drawings of planned tile lines made prior to installation. These maps were not scanned or digitized. 

The information in these maps, however, were used to map tile lines for parts of the farm where 

other data (e.g. aerial imagery and electronic maps) could not be used. The paper maps were also 

useful for determining which main or sub-main a particular lateral tile line was flowing into, and 

for developing the attribute table of tile line sizes and types. 

For the Water Quality Field Station (WQFS) on the north end of the farm (Fig. 5.1), we 

have received a blueprint in pdf format. The quality of the blueprint was enhanced in Adobe 

Photoshop and saved as a TIFF file, which was then imported into ArcMap 10.6 and georeferenced 

to the 2013 master image. 

We also acquired four electronic maps. The tile line map developed by Naz and Bowling 

(2008) was available as a shapefile. The Project tool in ArcMap 10.6 was used to re-project this 

shapefile from the NAD_1983_UTM_Zone_16N projection to the 

NAD_1983_2011_InGCS_Tippecanoe-White_(m) coordinate system. The as-installed maps of 

the tile lines for fields 58-59 and 70 (Fig. 5.1) were provided by the tile installation company 

(Schlatter’s Inc, 16179 W 500 S, Francesville, IN 47946). These as-installed maps were generated 

using a Real-Time Kinematic (RTK) Global Navigation Satellite System (GNSS). The Project tool 

in ArcMap 10.6 was used to re-project these maps from GCS_WGS_1984 into the 

NAD_1983_2011_InGCS_Tippecanoe-White_(m) coordinate system. Finally, a computer aid 
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design (CAD) map of fields 3-16, 21, and 31 was provided by the Purdue University Physical Plant. 

After selecting the tile lines from the CAD file, the Export Data tool in ArcMap 10.6 was used to 

export them as a shapefile and the Define Projection tool was used to georeference the extracted 

shapefile to the NAD_1983_2011_InGCS_Tippecanoe-White_(m) coordinate system. 

5.2.3 Mapping Tile Lines 

While the use of automated and semi-automated remote sensing techniques for identifying 

tile lines would be attractive, we opted to develop the tile lines map using manual photo 

interpretation and manual digitization primarily because for a relatively small area such as ACRE 

(570 ha), development of an automated procedure would likely take longer than manual 

digitization. Automated procedures are likely to be impacted by the presence of other linear 

features in the field that are not tile lines and these features may be mapped as tile lines, and an 

automated model might work for one set of the images, but not for a different one.  

The best aerial imagery to use for tile delineation needs to be taken 2 to 3 days after heavy 

rain (25 mm or greater within 24 hours) (Verma et al., 1996; Northcott et al., 2000; Varner et al., 

2002). In the Midwestern US, April to late May are the best times to clearly see the tile patterns 

with minimal crop residue and crop canopy (ISUST-GISSRF, 2017). Most of the color aerial 

photography that we acquired for this study was taken well into the growing season and could not 

be used for tile delineation. Of the imagery we assembled, the imagery from 1963, 1976, 1998, 

2012, and 2013 showed the locations of tile lines to varying degrees, and of these, the imagery 

from 1963 and 1976 was used most extensively for tile line delineation. All five aerial images have 

1 m pixel resolution, except for 1963 which has 5.5 m pixel resolution, and 2013 which has 0.3 m 

pixel resolution. We could not determine the exact acquisition dates for the 1998, 2012, and 2013 

imagery, but the older imagery contained explicit date stamps which allowed us to determine that 
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the 1963 imagery was acquired on May 31st and the 1976 imagery was acquired on March 9th. 

Table 5.2 shows the precipitation data for the two weeks prior to the acquisition of these two 

images. In 1963, one day of drying after two days of rainfall totaling 8 mm was sufficient to 

produce slightly drier soil with higher reflectance over the tile lines than between the tile lines. In 

1976, three days of rain totaling 49 mm thoroughly wetted the soil and probably resulted in surface 

crusting, but after 2 days of drainage and drying, the soils over the tile lines had dried sufficiently 

that the surface was considerably more reflective than the still-wet soil between the tile lines. 

Table 5.2: Daily precipitation for the two weeks prior to the acquisition of the 1963 and 1976 

aerial imagery. Source: (MRCC, 2013). 

  Date  Precipitation*1 

(mm) 

 Date  Precipitation 

(mm) 

 05-17-1963  1.27  02-24-1976  0.00 

05-18-1963 4.57 02-25-1976 0.00 

05-19-1963 0.00 02-26-1976 0.00 

05-20-1963 3.30 02-27-1976 0.00 

05-21-1963 T*2 02-28-1976 0.00 

05-22-1963 0.00 02-29-1976 0.00 

05-23-1963 0.00 03-01-1976 0.00 

05-24-1963 0.00 03-02-1976 0.00 

05-25-1963 0.00 03-03-1976 23.11 

05-26-1963 0.00 03-04-1976 10.67 

05-27-1963 0.00 03-05-1976 15.49 

05-28-1963 4.57 03-06-1976 0.00 

05-29-1963 3.81 03-07-1976 0.00 

05-30-1963 T 03-08-1976 0.00 

Image  

Acquisition Date 

 
05-31-1963  0.00  03-09-1976  0.00 

*1 Precipitation is for rainfall only. No snow was recorded during these intervals. 

 *2 T: Trace 

The tile drainage network was manually drawn through tracing and heads-up digitizing on 

the aerial imagery using ArcMap 10.6. The tile lines were interpreted to exist in places where both 
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black and white and color aerial imagery clearly followed straight lines. Most of the tile lines on 

black and white aerial images were identified based on the spectral differences of light and dark 

colors of dry and moist soils, respectively (Fig. 5.3-1a). While, tile lines on the 2013 color aerial 

imagery were identified based on disturbed soils from tile trenches and installation (Fig. 5.3-2a). 

Due to the disturbance of topsoils during tile installation, the locations of tile lines are more distinct 

as compare to other features. For WQFS, similar to the aerial imagery, the tile lines were manually 

traced but based on the georeferenced blueprints. 
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 Figure 5.3: Identifying tile lines based on spectral differences and disturbed soils. The black and 

white images show the tile lines based on the spectral difference of light and dark colors due to the 

dry and moist soil condition. While, on the color image, tile lines were identified based on the 

disturb surface soil due to the tile installation. (a) Before locating tile lines (b) after locating tile 

lines. For actual locations of these images see Fig. 5.6. 

As indicated above, where the locations of the tile lines could not be discerned from the 

aerial imagery, we relied on the expert knowledge of the farm manager and available paper maps. 

Large scale (1:3,500) draft paper maps were printed for review by the farm manager. Feedback 

from the farm manager and examination of the paper maps was also helpful in distinguishing tile 
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lines from other linear features such as tillage paths, surface drainage patterns, crop residue, 

grassed ways, and field dividers. In a few data poor locations, the farm manager was able to draw 

several tile lines on the paper maps based on the relative distance from a known or mapped tile or 

a field boundary. For instance, most of the lateral tile lines are placed at a fixed interval of 20.12 

m or 66 ft. In some cases, the farm manager recognized that tile lines that were visible on older 

aerial photography were no longer active (i.e. under buildings) and these were removed from the 

map as well. 

We created a geodatabase to assemble all acquired and generated tile drainage shapefiles 

for a complete tile drainage network of ACRE. We also developed an attribute table for the mapped 

tile lines. This attribute table was developed using original paper maps and the farm manager’s 

knowledge. The attribute table provides information about type, material, status, and diameter of 

the tile lines. For a final approval, the developed tile map and its associated attribute table were 

once more checked by the farm manager. 

5.2.4 Accuracy Assessment 

After all tile lines were manually digitized, they were evaluated for accuracy. We used two 

different approaches to evaluate the accuracy of the mapped tile lines: (1) manually locating the 

tile lines at selected locations and, (2) comparison to the as-installed tile locations as provided by 

the installer. 

For the first approach, we used a tile probe to locate tile lines in the field. A tile probe is a 

stainless steel rod that has a tee handle at one end and a pointed tip at other end (Fig. 5.4). Generally, 

tile probes are 1.2 m long and used for locating buried pipes, tiles, tanks, and utility lines. We went 

to the field without a preplanned design for ground truthing and randomly selected 27 locations 
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for field verification. Fields 41 – 44, however, were used for plant phenotyping research at the 

time of our evaluation, therefore we collected most of our in situ measurements in these fields. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Tile probe and investigating the location of a tile line based on a specific probing 

interval (~7 cm). 
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Of the 27 field locations we investigated, 24 of them were in areas where the tile lines had 

been digitized manually, two of them were in a field (field 70) that had as-built tile line locations 

from the installation contractor, and one point was in a field (field 58 – 59) that had both as-built 

and manually digitized maps. Generally, the ground validation was conducted close to the edges 

of the fields for ease of access and efficiency. Abandoned tile lines or tile lines installed prior to 

the establishment of ACRE were not validated at the field. Only a limited number of sites were 

manually assessed. First, it is difficult and tedious to distinguish tile lines from subsurface rocks, 

particularly in soils formed in glacial till and outwash as those at ACRE. Second, tile probes can 

easily enter corrugated, perforated plastic pipes, making it difficult to confirm the locations of 

these plastic tiles. Third, tile probing can cause corrugated plastic pipe to collapse, causing the tile 

line to cease to function as it should. Allred et al., (2018) noted similar problems associated with 

the use of a tile probe. 

In order to take the tile line maps to the field, the base map and tile line locations were 

loaded into the Soil Explorer app for Apple iPad available in the Apple App Store. The Create 

Map Tile Package tool in ArcGIS 10.6 (https://esri.com) was used to prepare tile packages which 

were then loaded into the Soil Explorer app. When in the field, a dot shows the user’s location on 

the map using the internal global positioning system (GPS) receiver in the iPad. This allowed us 

to determine the location of the tile line within the accuracy of the iPad GPS receiver, which is 

about ±5 m. Since the minimum diameter of a tile line is about 10 cm (4 in), the ground was probed 

with the tile probe at about 7 cm (3 in) intervals perpendicular to the axis as shown on the map on 

the iPad. The resistance increases when tile probe encounters a tile line, particularly a concrete tile. 

In addition to the resistance, the probe will also generate a sound when the tip hits a hard object. 

One can also feel when the probe tip penetrates into the plastic pipe. After locating what appeared 

https://esri.com/
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to be the tile line, we probed along what should be its axis to confirm its identification (Fig. 5.5a). 

Once the location of a tile line was confirmed by two field experts, the coordinates of the tile were 

recorded using a Trimble AgGPS 542 Real-Time Kinematic (RTK) base Global Navigation 

Satellite System (GNSS) receiver (Fig. 5.5b) accurate to ±0.8 cm horizontal and ±1.5 cm vertical. 

 

Figure 5.5: Probing to identify the locations of a tile line in the field (a) Once the first probe line 

located what appeared to be the tile line, the second probe line was used to confirm the 

identification. (b) Recording the confirmed location of a tile line with an RTK GNSS receiver. 

In the second approach, for field 58 – 59, we used the as-installed tile map generated by 

the tile installation company using an RTK GNSS system. In ArcMap 10.6, the as-installed tile 

lines were overlaid on the tile map produced by photo interpretation. The distance between 46 tile 

lines of the two methods were measured using the ArcMap 10.6 distance measure tool to determine 

how close the locations of the photo interpreted tile lines agreed with the as-installed tile line 

locations. 
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5.3 Results and Discussion 

5.3.1 Accuracy Assessment Based on Tile Probing 

The final drainage tile map is shown in Fig. 5.6. Using ground or in situ validation, our 

goal was to answer the following three questions. First, what is the overall prediction accuracy of 

the identified tile lines? In other words, what percent of the mapped tile lines are identified by 

ground validation? Second, how close are the predicted locations of the tile lines to their actual, 

ground validated locations? Third, how useful is the integration of expert knowledge and physical 

paper maps for predicting accurate tile lines?  

The overall prediction accuracy was measured using the following equation: 

Detection or overall prediction accuracy = 
Number of detected tiles with tile probe

Total existing tiles or investigated locations
∗ 100 [1] 

The above equation shows the percentage of predicted tile drains that were located by in 

situ detection. Out of the 27 locations that were investigated, tile lines were detected at 24 locations 

(Fig. 5.6), giving an overall predicted accuracy of 89%. One of the three undetected tile lines was 

in a field containing subsurface gravel and rocks, making it difficult to unambiguously distinguish 

and identify the tile line at this location. The other two locations were in field 70 where the tile 

lines were installed in 2018 and from which we received original, as-built shapefiles from the tile 

installer. This meant that according to the as-built map, these two tiles should be present, but we 

were unable to detect them using a field tile probe. We did not have a more recent image than 2016 

to know exactly whether these two tiles were installed in 2018. It is very likely that these two 

undetected tiles are deeper than 1.2 m and therefore out of reach of the tile probe. Two other 

locations were investigated in the same field (field 70) and these tiles were detected with tile probe. 
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Figure 5.6: Final tile line map for ACRE. The red outline shows the study area with a few meters 

of buffer around the edge so that details near the edges are visible. 
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For the 24 locations where tiles were confirmed, Fig. 5.7 shows the perpendicular distance 

between the axis of the tile line as predicted by our map and the actual location determined with 

the tile probe and recorded by the RTK GNSS. On average, tile lines were predicted within ±1.23 

m spatial accuracy. One third of the mapped tiles were estimated within ±0.5 m of the actual tile 

locations. For 21 tile probe locations we also evaluated the spatial prediction accuracy of the tile 

line map developed by Naz and Bowling (2008) (Fig. 5.8). We found that on average, the tile lines 

base on their automated method were estimated within ±2.12 m and one-fourth of the tiles have 

greater than ±2.5 m spatial prediction accuracy. Using an automated tile identification technique 

and relying on three aerial images from 1976, 1998, and 2002, and not using field expert 

knowledge might be the reasons for lower accuracy of the Naz and Bowling (2008) study. 

Figure 5.7: Prediction accuracy of the mapped tile lines based on tile probing in the field. The 

dashed line represents the average tile prediction accuracy of ±1.23 m. 
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Figure 5.8: Spatial prediction accuracy of tile lines as mapped by Naz and Bowling (2008) based 

on tile probe location. The dashed line shows the average tile prediction accuracy. 

5.3.2 Accuracy Assessment Based on As-Installed Maps 

Out of the 48 tile lines in field 58-59 that were mapped during installation by the tile 

installation company, we identified 43 of them based on the disturbed soil visible in the 2013 aerial 

image. According to the overall accuracy equation (1), this will result in almost 90% overall 

prediction accuracy. The five undetected tiles are sub-mains and they are within 10 m of main tile 

lines. Compared to lateral tile lines, these sub-main and main tiles are located at deeper depths 

where water accumulation is higher and covers the disturb soil, thus making it harder to identify 

tile lines. According to the as-installed tile maps, the tile lines identified by disturbed soil on the 

2013 image were predicted within ±1.02 m spatial accuracy. 
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5.3.3 Locating Tile Lines based on Expert Knowledge and Physical Paper Maps  

As mentioned in section 3.3, the farm manager indicated that most of the tile lines were 

installed at a fixed spacing of 20.12 m (66 ft). In addition, most of the fields at ACRE are the same 

width and tiles from one field are located exactly across from the tiles of an adjacent field. These 

criteria were useful in predicting tiles lines when the locations could not be identified on the 

available aerial images. The distance between tile probe locations were measured in ArcMap 10.6 

with distance measure tool. Based on 15 observations, it was confirmed that the spacing intervals 

between tile lines are 20.12 m or 66 ft. 

5.3.4 Manual Digitization of Tile Mapping 

The results from this study clearly demonstrate the utility of combing visual interpretation, 

expert knowledge, and physical paper maps data as an effective approach to accurately predicting 

tile line locations. This approach also rescues the expert knowledge and paper maps that are at risk 

of being lost or forgotten once the current farm manager retires. The finding of this study is in line 

with the previous study of Andrade (2013) that photo interpretation is a useful method to map 

unknown tile lines and provides better results than remote sensing. 

5.4 Recommendations and Future Work 

This study clearly shows the importance of quality aerial imagery, expert knowledge, and 

traditional tile information for predicting tile drains. However, availability and the accessibility of 

this data is a big challenge. If available, such data needs to be converted into a digital format for 

future use. 

When mapping tile lines based on aerial imagery, acquire all the available aerial imagery 

and do not rely on data from only one year. However, finding quality images is difficult. To 



 

 

135 

overcome the complication of finding the right image for future studies, use one of the following 

reliable approaches for detecting tile lines. Acquire image(s) right after the tiles are installed to 

clearly show the disturbed soils from tile line installation. Conduct thermal infrared UAV surveys 

throughout the year to detect tile lines based on the lower soil heat capacity resulting from the 

reduction of moisture over tile lines (Allred and Rouse, 2018). This method, however, is costly 

and affected by tillage practices (Woo et al., 2009). Acquiring crop growth images and yield maps 

are other useful methods to locate tile lines because most of the time crops over tile lines have 

higher growth and yields in both wet and dry years (Ruark et al., 2009). Since tile drainage provides 

better conditions for plant emergence and early growth, it is expected that crops over tile lines will 

be clearly seen if higher resolution plant images are obtained early in the growing season. 

There are less scientific methods to locate tile lines. For instance, air vent and surface inlets 

and outlets are features associated with tile drainage and are useful in detecting tile lines. Former 

landowner or local governmental agencies such as the Natural Resources Conservation Service 

(NRCS) might have tile maps or other essential information. However, this information needs to 

be ground validated. 

Utilizing a combination approach will results in a higher degree of success in detecting 

subsurface tile lines. Before locating tile lines, it is important to identify tillage and harvesting 

patterns and field dividers, grassed waterways, and other features so that they can be avoided when 

mapping tile lines. After locating tile drains, it is important to generate accurate tile maps and keep 

copies in a secure file system. Modifications to the current drainage network and installation of 

new tile drains should be clearly documented and identified on the generated maps. The product 

of any tile detecting approach, particularly a remote sensing approach, should be matched with 

available paper maps, checked by experts, and ground validated. 
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For optimum utilization, tile drainage maps should be delivered in an easy to use format. 

The outcome of this study will be delivered through the Soil Explorer iOS app. We will also deposit 

the tile line map and other related information in the Purdue University Research Repository 

(PURR). 

5.5 Conclusions 

Locating buried tile drainage lines is important for incorporating the impact of these 

features on agronomic and environmental research. A combination approach of using aerial 

imagery, expert knowledge, and physical paper data was utilized to manually locate tile lines using 

ArcMap 10.6. A wealth of useful information about landforms, human influences, vegetation, and 

soils can be obtained simply by visual examination and interpretation of aerial imagery. Among 

the acquired aerial photographs, the 1976 and 2013 images provided useful information in this 

study, with the 1976 image being the most useful for identifying tile line locations. Tile lines at 

data poor sites were determined based on the ACRE farm manger’s expert knowledge and original 

paper copies. This mapping approach resulted in ±1.23 m spatial accuracy. The results from this 

study are comparable to other studies (Naz and Bowling, 2008; Thompson. 2010). This approach 

not only accurately located buried agriculture tile lines, but also captured the expert knowledge 

and legacy data that otherwise was at risk of being lost. This method is efficient for use in a 

relatively small areas, but for larger soil regions (i.e. multiple-county level) it is likely to be too 

time consuming. 
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 UTILIZATION AND DELIVERY OF SPATIALLY 

EXPLICIT DIGITAL SOIL INFORMATION 

The most important step after generating soil maps is to deliver the information to 

stakeholders for use. With today’s technology it is possible to deliver soils information through a 

variety of user-friendly platforms. These technologies can deliver soils information as easy to use 

maps that can be zoomed, panned, and queried. 

6.1 Using Digital Soil Maps 

With current technology and on-the-go soil sensors, it is possible to precisely apply 

different agriculture inputs such as seed, fertilizer, pesticides, and irrigation to different sections 

of a field in response to different soil types or other variables. Therefore, detailed soil and/or yield 

maps are needed to successfully implement site specific management decisions regarding crop 

input applications. Soil and tile line maps show the location of properties that impact crop growth 

and yield and will be useful tools for analyzing plant phenotypic characteristics and for defining 

management zones and input decisions. 

Most of the time, yield maps are correlated with soil maps and visually, both follow similar 

patterns (Adamchuk and Jasa, 2002; Georgi et al., 2018; Vallentin et al., 2019). This correlation is 

due to the variation in soil properties. The correlation of yield and soil maps often strongly depends 

on the amount of soil moisture available during the growing season. A side-by-side visual 

comparison of maps of deviation from the mean yield for two soybean research fields at ACRE 

and the soil and tile line maps described in previous chapters of this thesis (Fig. 6.1 and Fig. 6.2) 

show that the deviation from mean yield follows the soil property maps. The deviation from the 
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mean yield maps also show linear variations that appear to be due to the underlying tile lines (Fig. 

6.1 b and Fig. 6.2 b). 

In 2013, the higher yielding areas were generally located in lower landscape positions (i.e. 

yellow colors on the left side of field 43, Fig 6.1a), and lower yielding areas were usually found 

on higher landscape positions (i.e. red colors in the upper right corner and left side of field 44, Fig 

6.1a). Similar patterns between yield and soil maps were observed in fields 63 and 64 in 2014 (Fig 

6.2). The yield is generally higher in depression areas (i.e. yellow colors in the central part of field 

63, Fig 6.2 a) with poorly drained soils with high organic matter content, as compared to the higher 

topographic positions (i.e. red colors in left side of field 63, Fig 6.2a) where soils are moderately 

well drained and organic matter contents are lower. The yield patterns also appear to follow the 

location of tile lines (Fig. 6.2b). 

In summary, the maps generated by this research can be utilized for designing experiments, 

adjusting seeding rates and application rates of fertilizers and other crop inputs, and analyzing field 

phenotyping experiments. The maps can also be used to guide soil and plant sampling. Close 

collaboration, however, will be needed between soil scientists, crop scientists, and statisticians in 

order to utilize the soil and tile line maps to their fullest potential. 
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Figure 6.1: Visual comparison between soybean yield and soil maps for fields 43 and 44 at ACRE. (a) Deviation from mean yield of 

soybean in 2013, yellow colors represent higher yielding areas while red colors represent lower yielding areas, (b) deviation from mean 

yield with tile lines overlaid, (c) soil organic matter content, (d) cation exchange capacity, (e) soil drainage classes (VPD = very poorly 

drained, PD = poorly drained, SWP = somewhat poorly drained, and MW = moderately well drained soils), and (f) aerial imagery 

acquired in 2005. The map of deviation from mean yield was provided by Alencar Xavier and Katherine Rainey, Purdue University. 

The colored overlays are on top of a hillshade base map that shows where the high and low spots occur in the fields. 

(a) Deviation from Mean Yield   (b) Deviation from Mean Yield with Tile Lines 

(c) Organic Matter Content (%) (d) Cation Exchange Capacity (cmolc kg-1) 

(e) Natural Soil Drainage Classes (f) Aerial Imagery 2005 
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Figure 6.2: Visual comparison between soybean yield and soil maps for fields 63 and 64 at ACRE. (a) Deviation from mean yield of 

soybean in 2014, yellow colors represent higher yielding areas while red colors represent lower yielding areas, (b) deviation from mean 

yield with tile lines overlaid, (c) soil organic matter content, (d) cation exchange capacity, (e) soil drainage classes (VPD = very poorly 

drained, PD = poorly drained, SWP = somewhat poorly drained, and MW = moderately well drained soils), and (f) aerial imagery 

acquired in 2005. The map of deviation from mean yield was provided by Alencar Xavier and Katherine Rainey, Purdue University. 

The colored overlays are on top of a hillshade base map that shows where the high and low spots occur in the fields.

(a) Deviation from Mean Yield   (b) Deviation from Mean Yield with Tile Lines 

(c) Organic Matter Content (%) (d) Cation Exchange Capacity (cmolc kg-1) 

(e) Natural Soil Drainage Classes (f) Aerial Imagery 2005 
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6.2 Delivery of Digital Soil Maps 

ACRE is a research and teaching facility and there is a high demand for detailed soil maps. 

The outcomes of this research, along with other essential data and information, will be deposited 

in the Purdue University Research Repository (PURR). PURR is a research collaboration and data 

management platform for Purdue University researchers and their collaborators that facilitates 

publishing and archiving of research data. 

Additionally, the maps and their associated products will be made available via the Soil 

Explorer mobile app (Isee Network, 2015-2020). The Soil Explorer app and website were 

developed as part of the Integrating Spatial Educational Experiences (Isee) project to leverage big 

data for teaching and learning. This user-friendly app can deliver soil spatial information on-the-

go and works in both online and offline modes. 
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APPENDIX A. CUBIST MODELS FOR ORGANIC MATTER CONTENT 

PREDICTION 

Model 1: 

 

  Rule 1/1: [123 cases, mean 4.25, range 1.9 to 7, est err 0.78] 

 

 outcome = 3.19 - 2.36 TPI + 0.105 TWI 

 

Model 2: 

 

  Rule 2/1: [113 cases, mean 4.09, range 1.9 to 7, est err 0.70] 

 

    if 

 TWI <= 13.7557 

    then 

 outcome = 3.79 + 0.209 MrVBF - 1.17 TPI - 0.106 MrRTF 

 

  Rule 2/2: [10 cases, mean 6.11, range 5 to 6.9, est err 1.32] 

 

    if 

 TWI > 13.7557 

    then 

 outcome = 7.74 - 0.317 MrRTF + 0.023 MrVBF 

 

Model 3: 

 

  Rule 3/1: [123 cases, mean 4.25, range 1.9 to 7, est err 0.80] 

 

 outcome = 4.21 - 3.55 TPI 

 

Model 4: 

 

  Rule 4/1: [113 cases, mean 4.09, range 1.9 to 7, est err 0.81] 

 

    if 

 TWI <= 13.7557 

    then 

 outcome = 3.54 + 0.031 TWI 

 

  Rule 4/2: [10 cases, mean 6.11, range 5 to 6.9, est err 1.40] 

 

    if 
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 TWI > 13.7557 

    then 

 outcome = 7.65 

 

Model 5: 

 

  Rule 5/1: [123 cases, mean 4.25, range 1.9 to 7, est err 0.86] 

 

 outcome = 4.6 - 5 TPI - 0.152 MrRTF 

 

Model 6: 

 

  Rule 6/1: [113 cases, mean 4.09, range 1.9 to 7, est err 0.82] 

 

    if 

 TWI <= 13.7557 

    then 

 outcome = 3.85 

 

  Rule 6/2: [10 cases, mean 6.11, range 5 to 6.9, est err 1.41] 

 

    if 

 TWI > 13.7557 

    then 

 outcome = 2.94 + 0.277 TWI 

 

Model 7: 

 

  Rule 7/1: [123 cases, mean 4.25, range 1.9 to 7, est err 0.87] 

 

 outcome = 4.59 - 5.24 TPI - 0.146 MrRTF 

 

Model 8: 

 

  Rule 8/1: [113 cases, mean 4.09, range 1.9 to 7, est err 0.82] 

 

    if 

 TWI <= 13.7557 

    then 

 outcome = 3.85 

 

  Rule 8/2: [10 cases, mean 6.11, range 5 to 6.9, est err 1.10] 

 

    if 

 TWI > 13.7557 
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    then 

 outcome = 0.84 + 0.402 TWI 

 

Model 9: 

 

  Rule 9/1: [123 cases, mean 4.25, range 1.9 to 7, est err 0.86] 

 

 outcome = 4.15 - 4.45 TPI - 0.159 MrRTF + 0.199 MrVBF 

 

Model 10: 

 

  Rule 10/1: [113 cases, mean 4.09, range 1.9 to 7, est err 0.85] 

 

    if 

 TWI <= 13.7557 

    then 

 outcome = 2.61 + 0.346 MrVBF + 0.041 TWI 

 

  Rule 10/2: [22 cases, mean 4.15, range 2 to 7, est err 1.46] 

 

    if 

 TWI <= 7.0683 

    then 

 outcome = 4.78 

 

  Rule 10/3: [101 cases, mean 4.28, range 1.9 to 6.9, est err 0.93] 

 

    if 

 TWI > 7.0683 

    then 

 outcome = 0.78 + 0.381 TWI + 0.128 MrVBF 

 

 

Evaluation on training data (123 cases): 

    Average |error|                     0.93 

    Relative |error|                     1.00 

    Correlation coefficient         0.44 

  

Attribute usage: 

     Conds        Model 

       54%           35%    TWI 

                         54%    TPI 

                         37%    MrRTF 

                         34%    MrVBF 
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APPENDIX B. CUBIST MODELS FOR CATION EXCHANGE CAPACITY 

PREDICTION 

Model 1: 

 

  Rule 1/1: [123 cases, mean 20.12, range 11.1 to 30.1, est err 2.84] 

 

 outcome = 18.85 - 9.4 TPI + 1.02 MrVBF 

 

Model 2: 

 

  Rule 2/1: [123 cases, mean 20.12, range 11.1 to 30.1, est err 2.84] 

 

 outcome = 18.84 - 9.3 TPI + 1.03 MrVBF 

 

Model 3: 

 

  Rule 3/1: [123 cases, mean 20.12, range 11.1 to 30.1, est err 2.84] 

 

 outcome = 18.85 - 9.4 TPI + 1.02 MrVBF 

 

Model 4: 

 

  Rule 4/1: [123 cases, mean 20.12, range 11.1 to 30.1, est err 2.84] 

 

 outcome = 18.84 - 9.3 TPI + 1.03 MrVBF 

 

Model 5: 

 

  Rule 5/1: [123 cases, mean 20.12, range 11.1 to 30.1, est err 2.84] 

 

 outcome = 18.85 - 9.4 TPI + 1.02 MrVBF 

 

Model 6: 

 

  Rule 6/1: [123 cases, mean 20.12, range 11.1 to 30.1, est err 2.84] 

 

 outcome = 18.84 - 9.3 TPI + 1.03 MrVBF 

 

Model 7: 

 

  Rule 7/1: [123 cases, mean 20.12, range 11.1 to 30.1, est err 2.84] 
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 outcome = 18.85 - 9.4 TPI + 1.02 MrVBF 

 

Model 8: 

 

  Rule 8/1: [123 cases, mean 20.12, range 11.1 to 30.1, est err 2.84] 

 

 outcome = 18.84 - 9.3 TPI + 1.03 MrVBF 

 

Model 9: 

 

  Rule 9/1: [123 cases, mean 20.12, range 11.1 to 30.1, est err 2.84] 

 

 outcome = 18.85 - 9.4 TPI + 1.02 MrVBF 

 

Model 10: 

 

  Rule 10/1: [123 cases, mean 20.12, range 11.1 to 30.1, est err 2.84] 

 

 outcome = 18.84 - 9.3 TPI + 1.03 MrVBF 

 

 

Evaluation on training data (123 cases): 

    Average |error|  3.25 

    Relative |error|  0.86 

    Correlation coefficient 0.51 

 

 Attribute usage: 

      Conds       Model 

 

                        100%    TPI 

                        100%    MrVBF 
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VITA 

Shams R. Rahmani 

EDUCATION 

Present Purdue University                                           West Lafayette, IN  

PhD candidate, Soil Science 

Advisor: Dr. Darrell G. Schulze  

Dissertation Title: Digital Soil Mapping of the Purdue Agronomy 

Center for Research and Education 

 

December 2014 Purdue University                                           West Lafayette, IN  

MS in Soil Science 

Advisor: Dr. Phillip R. Owens 

Thesis Title: Creating an Initial Digital Soil Properties Map of 

Afghanistan 

 

December 2009 Kabul University                                            Kabul, Afghanistan  

BSc in Agronomy 

Advisors: Dr. Abdul Q. Samin & Professor Ab. Ghani Ayubi 

Concentration: Soil and Water Science 

 

PROFESSIONAL EXPERIENCE 

July 2015 – Present Graduate Research Assistant 

Department of Agronomy, Purdue University, West Lafayette, IN, 

USA 

 

Dec. 2010 – Present Lecturer 

Department of Soil Science and Irrigation, Kabul University, 

Kabul, Afghanistan. 

Courses: Taught Introductory Soil Science, Soil Fertility, and Soil 

and Water Conservation courses. 

Responsibilities: Prepare and conduct indoor labs and field trips; 

proctor and grade exams, lab reports, field reports, and quizzes; hold 

office hours. 

 

Jan. 2020 – Present Graduate Teaching Assistant  

Course: AGRY 270 – Forests Soils.  

Department of Agronomy, Purdue University 
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Responsibilities: Responsible for 12 weekly indoor and 3 outdoor 

labs for one section of the course (19 students). Duties include brief 

introduction and review of lecture concepts, help students make 

connections between the lecture and lab activities, lab preparation, 

teach lab procedures, supervise lab exercises, check the lab hand-

ins, proctor and grade exams and quizzes, hold office hours. Most 

of this course is the same as Introductory Soil Science (AGRY 255), 

but with a focus on forest soils.   

  

Aug. – Dec. 2019 Graduate Teaching Assistant  

Course: AGRY 565 – Soils and Landscapes 

Department of Agronomy, Purdue University 

Responsibilities: Responsible for assisting instructor with all indoor 

and outdoor lab activities, including, lab preparation, supervision of 

lab activities, charging iPads, proctoring and grading exams, lab 

reports, and field trip reports. Number of students: 16. 

 

Aug. – Dec. 2019 Graduate Teaching Assistant 

Course: AGRY 255 – Introductory Soil Science 

Department of Agronomy, Purdue University 

Responsibilities: Same responsibilities as AGRY 270 (Forests 

Soils). Two discussion sections with 16 students each. 

 

Jan. – May. 2019 Graduate Teaching Assistant 

Course: AGRY 255 – Introductory Soil Science 

Department of Agronomy, Purdue University 

Responsibilities: Same responsibilities as AGRY 270 (Forests 

Soils). Two discussion sections with 16 and 14 students each. 

 

Aug. – Dec. 2017 Graduate Teaching Assistant 

Course: AGRY 560 – Soil Physics 

Department of Agronomy, Purdue University 

Responsibilities: Responsible for all indoor and outdoor lab duties, 

including brief introduction and review of lecture concepts and 

drawing connections between lecture and lab activities, lab 

preparation, teaching lab procedures, supervising lab projects, 

grading lab reports; proctoring exams; holding help sessions and 

office hours. Number of students: 12. 

 

Aug. – Dec. 2016 Graduate Teaching Assistant  

Course: AGRY 565 – Soil and Landscape 

Department of Agronomy, Purdue University 

Responsibilities: See above. Number of students: 16. 

 

Aug. – Dec. 2014 Graduate Teaching Assistant 

Course: AGRY 255 – Introductory Soil Science 



 

175 

Department of Agronomy, Purdue University 

Responsibilities: See above. Number of students 10. 

Aug. – Dec. 2014 Graduate Research Assistant 

Department of Agronomy, Purdue University 

 

Mar. 2011 – Apr. 2012 Lecturer in Horticulture Department 

Afghanistan Technical Vocational Institute (ATVI – USAID) 

Courses: Taught Introductory Soil Science, Soil Fertility, and Soil 

and Water Conservation courses. 

Responsibilities: Presented class lectures, prepared and conducted 

indoor labs; proctored and graded exams, lab reports, and quizzes, 

and held office hours. 

 

ORAL PAPERS AND POSTER PRESENTATIONS 

Rahmani, S.R., J.P. Ackerson, Z. Libohova, D.G. Schulze. 2018. Mapping Soil Organic Matter 

(OM) and Cation Exchange Capacity (CEC) to Support Plant Phenotyping Research. 

ASA CSSA SSSA annual meeting, San Diego, California. Five-minute rapid oral plus 

poster presentations. January 6 – 9, 2018. 

Rahmani, S.R., D.G. Schulze. 2018. Mapping Soil Spatial Variability for Site-Specific 

Management. Health and Disease. Science, Technology, Culture and Policy Research 

Poster Session. Purdue University wide poster session to promote interdisciplinary 

collaboration for health and disease research. Purdue University. West Lafayette, Indiana. 

Poster Presentation. March 1, 2018. 

Rahmani, S.R., D.G. Schulze. 2018. Mapping Soil Spatial Variability at the Purdue Agronomy 

Center for Research and Education (ACRE). Indiana Academy of Science (IAS) Annual 

meeting, Indianapolis, Indiana. Oral Presentation. March 24, 2018. 

Rahmani, S.R., M. Ngunjiri, J.O. Minai, P.R. Owens. D.G. Schulze. 2016. Predicting and 

Developing Soil Management Zones Based on Topography. Purdue Plant Science 

Symposium. Purdue University, West Lafayette, Indiana. Oral Presentation. August 4, 

2014. 

Rahmani, S.R., M. Ngunjiri, P.R. Owens, D.G. Schulze. 2016. Optimal Number of Terrain-Based 

Clusters for Knowledge-Based Inference Digital Soil Mapping. ASA CSSA SSSA 

Annual meeting, Phoenix, Arizona. Five-minute rapid oral plus poster presentations. 

November 6 – 9, 2016. 

Rahmani, S.R., M. Ngunjiri, P.R. Owens. 2016. Predicting Spatial Variability of Soil Properties 

Across the Landscape Using Knowledge Based Inference Mapping Approach. Graduate 
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Student Welcome and Networking Event at Purdue University, West Lafayette, Indiana. 

Poster Presentation. September 2, 2016  

Rahmani, S.R., M. Ngunjiri, P.R. Owens. 2016. Predicting and Mapping Soil Organic Carbon 

Using Environmental Covariates. Purdue University Corn Showcase, Beck Agriculture 

Center, West Lafayette, Indiana. Poster Presentation. July 26, 2016. 

Rahmani, S.R., P.R. Owens. J.G. Graveel. 2014. Creating an Initial Digital Soil Map of 

Afghanistan. ASA CSSA SSSA Annual meeting, Long Beach, California. Oral 

Presentation. October 30 – November 6, 2014. 

ACADEMIC HONORS, AWARDS, AND SCHOLARSHIPS 

• Apr. 28, 2020 Outstanding Teaching Award from Purdue University. 

 

• Jan. 09, 2019 First place in the Pedology Division and finalist in the society-wide 

2019 Soil Science Society of America (SSSA) graduate student 

competition. San Diego, CA 

 

• Nov. 01, 2018 Second place in poster presentation at the Purdue GIS Day conference. 

This was a Purdue University wide conference. 

 

• Mar. 01, 2018 First place poster presentation at the Purdue Health Disease: Science, 

Technology, Culture and Policy Research poster session. This was a 

Purdue University wide poster session. 

• Feb. 21, 2018 Bronze award for poster presentation at the Purdue Chapter of Sigma 

Xi Scientific Research Society poster symposium. This was a Purdue 

University wide symposium.    

 

• Feb. 2018 First place in poster presentation at Purdue Agriculture and Biological 

Engineering graduate industrial & research symposium. This was a 

Purdue University Agriculture College wide symposium. 

 

• Apr. 2017 Featured in the Purdue Graduate Student Ag Research Spotlight  

https://ag.purdue.edu/arge/Documents/Spotlights/Grad%20Spotlight%

20-%20Shams%20Rahmani.pdf 

 

• Aug. 2016 First place in poster presentation at the Purdue Plant Science 

Symposium. This was a Purdue University Agriculture College wide 

symposium. 

 

https://ag.purdue.edu/arge/Documents/Spotlights/Grad%20Spotlight%20-%20Shams%20Rahmani.pdf
https://ag.purdue.edu/arge/Documents/Spotlights/Grad%20Spotlight%20-%20Shams%20Rahmani.pdf
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• Aug. 2016 George D. Scarseth Travel Award to attend the annual meetings of the 

American Society of Agronomy. Phoenix, AZ 

 

• Mar. 2016 Best poster award at the Purdue Chapter of Sigma Xi Scientific 

Research Society poster symposium. This was a Purdue University 

wide symposium. 

 

• Aug. 2014 George D. Scarseth Travel Award to attend the annual meetings of 

American Society of Agronomy. Long Beach, CA 

 

• Fall, 2013 Semester honors at Purdue University – Fall semester 

 

• Spring, 2012 Dean’s list at Purdue University – Spring semester 

 

• Spring, 2012 Semester honors at Purdue University – Spring semester 

PROFESSIONAL TRAINING AND CERTIFICATES 

• Nov. –  Jan., 2019 

 

Precision Agriculture Certificate. Purdue University. This was a 12-

week long program covering the following topics: Introduction to 

precision agriculture, global positioning system, differential correction, 

sensors and remote sensing, soil and water spatial variability, nutrient 

spatial variability, crop spatial variability, geographic information 

systems, automation, data analysis, telematics, and economics and 

adoption 

• Sep. 25 – 27, 2018 

 

Scale Up Conference: Effective approaches to scaling up agricultural 

technologies and innovations in the developing world. In this 

conference, I learned about obstacles in large-scale adoption of new 

technology and the driving factors of successful scale up. 

 

• Mar. 09, 2018 Graduate Teaching Certificate (GTC). Purdue University.  

In order to achieve the GTC certificate, I have met the following 

criteria:  

• Taught a minimum of two, semester-long Purdue courses, 

• Participated in campus teaching orientation and micro-teaching 

sessions 

• Completed an additional nine hours of instructional development 

sessions 

• Utilized early feedback and end of semester evaluations 
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• Conducted two teaching observations and was observed while 

teaching 

• Completed written self-analysis of the above listed activities. 

 

• Mar. 22, 2018 Introduction to R for Data Science. This four-week online course was 

developed by Purdue University and was delivered through the Future 

Learn platform. In this course, I learned about managing data with the 

R platform.  

 

• Mar. 13 – 14, 2017 Advanced Phenomics Workshop. Purdue University. In this two-day 

long workshop, I learned about the role of unmanned aerial vehicles 

(UAVs) in phenomics, effective ground truthing of plant phenotypes, 

soil spatial variability and plant phenotyping, and remote sensing for 

phenotyping. 

 

• Nov. 03 – 05, 2016 Soil Science Society of America (SSSA) Desert Pedology Tour from 

Tucson to Phoenix, Arizona. In this two-day scientific tour, I learned 

about soil and water relationships in Sonoran Desert landscapes. 

  

• Jun. 05 – 18, 2016 Borlaug Summer Institute on Global Food Security. Purdue 

University. In this two-week program, graduate students from various 

U.S. and international institutions learned about the challenges 

surrounding global food security. 

 

• May 16 – 27, 2016 Applied Management Principles (Mini – MBA). Krannert School of 

Management. Purdue University. This was a two-week long program 

where I learned about marketing, finance, strategy, negotiation, and 

problem solving. 

 

• Dec. 2014 Certificate of achievement for successful completion of the 

graduate MS program at Purdue University. SAFF/USAID project. 

 

• Apr. 2014 Region 3 Colligate Soil Judging Contest, Missouri. I was a member 

of Purdue University soil judging team. In this one-week program, we 

observed several soil practice pits and on the day of contest we 

competed against other soil judging teams. 

 

• Oct. 30, 2014 –  

   Nov. 01, 2014 

Soil Science Society of America (SSSA) Desert Pedology Tour from 

Las Vegas, Nevada to Long Beach, California. In this two-day 

scientific tour, I learned about desert dust and dune processes, basalt 
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flows, the V master horizon, aeolian deposits on mountains, bio-crusts, 

and soil and water relationships in Mojave Desert landscapes. 

 

• Oct. 2013 Region 3 Colligate Soil Judging Contest, Stevens Point, Wisconsin. 

As a member of the Purdue University soil judging team, I participated 

in this one-week program. After observing several soil practice pits, we 

then competed against other soil judging teams. 

MEMBERSHIP IN PROFESSIONAL, HONORARY, AND SOCIAL SOCITIES  

• American Society of Agronomy (ASA) 

• Soil Science Society of America (SSSA) 

• Crop Science Society of America (CSSA) 

• Golden Key International Honor Society 

• Soil and Water Conservation Society (SWCS) 

• Indiana Academy of Science (IAS) 

• Afghan Student Association of Purdue University (ASAP) 

SERVICE AND LEADERSHIP 

May, 2019 – Dec. 2019 Member, Purdue GIS Day Conference Planning Committee 

The committee invited speakers, developed the online registration 

form, handled space reservation, provided poster printing for the 

presenters, planned lunch and coffee for the participants, and 

arranged the agenda. 
https://www.lib.purdue.edu/gis/gisday/gisday_2019_college_program 

 

Dec. 2018 – Dec. 2019 Treasurer, Afghan Student Association of Purdue University 

Applied for a Purdue University Student Fee Advisory Board 

(SFAB) grant and received $15,000 for the Afghan New Year 

(Nowruz) event. In this event, we provided free Afghan food for 

more than 300 participants. We also invited a well-known Afghan 

musician, Mr. Homayoon Sakhi. 

 

Nov. 4 – 7, 2018 Purdue Agronomy Department hiring table during the 

Agronomy Society of America (ASA)/Crop Science Society of 

America (CSSA) meeting in Baltimore, Maryland. 

I greeted visitors and provided answers to their questions. Based on 

their field of interest, I tried to connect them with the appropriate 

Agronomy professors. 

https://www.lib.purdue.edu/gis/gisday/gisday_2019_college_program
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Jan. 2018 – Aug. 2018 Member, Purdue Graduate Students Plant Science Symposium 

Planning Committee. The symposium was funded by DuPont 

Pioneer under the Future of Food Security theme. We had several 

meetings regarding budgeting, inviting speakers and participants, 

designing the online registration form, providing scholarships to 

non-Purdue students, reserving and decorating the space, providing 

for live broadcast of the event, moderating the program, and 

providing lunch and transportation for the participants.  

 

Dec. 2017 – Dec. 2018 President, Afghan Student Association of Purdue University 

We organized a number of large social events. We applied for a 

Purdue University Student Organization Allocation Grant (SOGA) 

and received $7,800 for the Nowruz event. In this event, we 

provided free Afghan food for 200 participants, Afghan music, live 

performances, and other cultural activities. 

 

Dec. 2016 – Dec. 2017 Vice president, Afghan Student Association of Purdue 

University 

 

Jan. 2016 – Jan. 2017 Purdue Agronomy Graduate Students Representative 

I was one of 6 graduate student representatives. We were 

responsible for organizing a number of social events for 

the Agronomy graduate students throughout the year. 

LANGUAGES SKILLS 

• English 

• Pashto 

• Persian 

SOFTWARE AND COMPUTER SKILLS 

• GIS, Remote Sensing, Geostatistics tools and software: 

ArcGIS, QGIS, SAGA, SoLIM, ERDAS IMAGINE, GRASS GIS, RTK-GPS 

• Statistical analysis packages: R, SAS, SPSS 

• Data mining and machine learning tools: 

Random Forest, Cubist, Regression, Decision Trees, CART 

• Programming language: R 

• Microsoft office suite 


