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ABSTRACT

Lemus, Daniel A., Ph.D., Purdue University, May 2020. Low-rank Approximations
in Quantum Transport Simulations. Major Professors: Tillmann Kubis, Gerhard
Klimeck.

Quantum-mechanical effects play a major role in the performance of modern elec-

tronic devices. In order to predict the behavior of novel devices, quantum effects are

often included using Non-Equilibrium Green’s Function (NEGF) methods in atom-

istic device representations. These quantum effects may include realistic inelastic

scattering caused by device impurities and phonons. With the inclusion of realis-

tic physical phenomena, the computational load of predictive simulations increases

greatly, and a manageable basis through low-rank approximations is desired.

In this work, low-rank approximations are used to reduce the computational load

of atomistic simulations. The benefits of basis reductions on simulation time and

peak memory are assessed. The low-rank approximation method is then extended

to include more realistic physical effects than those modeled today, including exact

calculations of scattering phenomena. The inclusion of these exact calculations are

then contrasted to current methods and approximations.



1

1. INTRODUCTION

Numerical simulations are commonly used in the scientific and engineering world to

model complex physical phenomena in nature. Using well-known theory, the behavior

of state-of-the-art technologies can be predicted through simulations. The design of

electronic devices, such as semiconductor transistors, has taken this route, since the

cost of experimentation and fabrication of devices often greatly outweighs that of

simulations for device behavior prediction.

Today’s state-of-the-art computer chips are fabricated to contain billions of densely

packed transistors, each with dimensions in the nanometer scale. It is well known that

at the nano-scale, where atoms are countable, quantum effects may drastically change

device performance [1–4]. Atomistic models, the simulations of quantum effects at

the subatomic scale, have thus become a requirement for the effective simulation of

novel nano-devices.

The NanoElectronic MOdeling (NEMO5) software suite [5, 6] is an in-house soft-

ware designed by the iNEMO group at Purdue University, and is one of the world’s

most flexible quantum transport software packages. It is currently being used world-

wide by various semiconductor device design companies and academic institutions to

predict the performance of- and design state-of-the-art electronic devices before they

begin to be fabricated. The various methods described in this thesis document have

been implemented into the NEMO5 software and can be used by users of NEMO5.

1.1 How this thesis document is organized

One purpose of this thesis is to describe methods for solving computationally in-

tensive equations involved in atomistic device simulations, the computational burdens

of which will be described in chapter 2 of this thesis document. The first method is
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described in chapter 3, which involves the use of coprocessors to solve large linear sys-

tems of equations for these atomistic models through a high degree of parallelization

through multithreading. In chapter 4, the use of highly parallel and powerful su-

percomputers through multiprocessing and high performance computing is explored.

High performance computing environments and heterogeneous systems with copro-

cessors may be combined to solve quantum transport systems.

In chapter 5 of this document, the solution for solving the complex and computa-

tionally intensive atomistic quantum transport equations is flipped, and the problem

is made smaller instead of using a large amount of computational resources. A low-

rank approximation (LRA) method called the mode space method [7] is introduced,

which allows for the solution of the quantum transport equations with incoherent

scattering with limited resources. In chapter 6, the mode space method is assessed in

terms of its physical correctness and performance improvements which include faster

time to solution and lower peak memory.

One major significance of basis reductions shown in this thesis is the ability to sim-

ulate large devices as well as more complex and more exact physics. In chapter 7, the

mode space method is extended by including the solution of realistic physics through

exact retarded scattering self-energies via the Kramers-Kronig relations. This is nor-

mally a highly computationally intensive process, but with basis reductions can be

done in a reasonable amount of time. This novel method has been included and tested

in NEMO5. Chapter 8 reports on another extension to LRA capabilities, accompa-

nied with an extension [8] to the recursive Green’s function (RGF) [9] algorithm that

provides the capability of accurately solving nonlocality in quantum transport.

Chapter 9 outlines the impact of this PhD work and provides insight to the future

work that may result from this PhD work.
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2. DEVICE MODELING AND COMPUTATIONAL

BURDENS

Atomistic computational models come with the advantage of providing a realistic

model for the nano-scale devices in today’s computer chips, but also with the disad-

vantage of having linear systems with many degrees of freedom and interdependent

differential equations. In this chapter, the many layers of complexity in solving quan-

tum transport in an atomistic system are laid out, as well as their computational

burdens and solutions to these burdens which this thesis document will aim to pro-

vide.

2.1 The Non-equilibrium Green’s function (NEGF) formalism

The characteristic length scale of state-of-the-art logic devices has reached dimen-

sions with a countable number of atoms [8,10]. At this scale, quantum effects such as

tunneling, interference and confinement drastically change device performance [1–4].

Understanding and optimizing these effects almost always requires predictive models.

The non-equilibrium Green’s function (NEGF) formalism is the well-accepted method

of modeling of coherent and incoherent electron transport [11–14] in molecules [15],

carbon nanotubes [16], MOSFETs [17] and many other nano-scale devices. NEGF

has been solved for nanodevices represented in realistic basis sets [18–21]. Important

device parameters such as electron density and current can be calculated using an

interplay of quantum transport and electrostatics through the NEGF and Poisson

equations [11]. Characteristic nanoelectronic device dimensions contain a countable

number of atoms, but a typical transistor contains hundreds to thousands of atoms

in the volume of only a few cubic nanometers. Accurate basis representations such as

the empirical tight binding method [22,23] usually contain tens of matrix elements per
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atom representing atomic orbitals [24]. Solving the NEGF equations in a tight bind-

ing basis can be computationally cumbersome due to the required matrices consisting

of thousands of rows and columns [25,26].

2.2 Computational burdens of atomistic simulations

In the following subsections, the various contributors to computational complexity in

quantum transport are introduced and explained.

2.2.1 Atomistic basis sets

Devices at the nano-scale may have variations that may span the space be-

tween atoms, introducing quantum-mechanical effects that must be captured at sub-

atomic resolutions [19,23]. These variations may be introduced by quantum confine-

ment [27,28], material impurities [29,30], surface and interface roughness [31,32] and

atomic variations of material alloys [33–35]. All effects must be captured in nanoscale

device simulations to maintain physical accuracy. Some semiclassical methods may

be used for modeling nanoscale devices such as the WKB approximation [36], but

these methods may fail to capture some quantum effects [8, 37,38].

In the simplest atomistic cases [39], matrices representative of the device used in

NEGF may contain only hundreds of rows. However, accurate basis representations

such as the empirical tight binding (ETB) model [22, 24] may introduce tens of ma-

trix elements per atom representing atomic orbitals. When introducing spin-orbit

coupling, the degrees of freedom double [24], therefore doubling the rank of matrices.

Although nanoelectronic devices contain a countable number of atoms, a typical tran-

sistor may contain hundreds to thousands of atoms in the volume of only a few cubic

nanometers. For all of the materials mentioned in this thesis, which have either a

zincblende or diamond lattice crystal configuration, the number of atoms in a device

can be determined by
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Natoms =
w1 × w2 × l

a3
× 8, (2.1)

where w1 and w2 are widths of the device cross-section, l is the length and a is the

lattice constant of the material. This value is multiplied by 8 since zincblende and

diamond lattice configurations have 8 atoms per cubic unit cell. This number must

of course be an integer. The total degrees of freedom of the system are thus the

sum of all orbitals of every atom in the system Natoms ×m where m is the number

of orbitals per atom. Solving the NEGF equations in a realistic tight binding (TB)

basis can be computationally cumbersome due to matrices with ranks ranging in the

tens-of-thousands to hundreds-of-thousands [25].

The parameters for atomistic basis sets are provided from prior scientific knowl-

edge by fitting to physical observables and to other parametrization methods [40–42].

Ab initio “first principles” methods also exist, which calculate electronic behavior

starting from fundamental physical parameters [43, 44]. These methods, such as

density functional theory (DFT) [45, 46], can be very computationally expensive for

realistically-sized devices [19,20]. Other atomistic bases include the effective mass ap-

proximation [4, 42] for which each atom is given a single degree of freedom, but only

provides a simplistic parabolic band structure (more details given in section 5.1) and

maximally localized Wannier functions [47,48], which are calculated from first princi-

ples and parameters must therefore be pre-determined before transport calculations

can begin [49–51].

2.2.2 Solving NEGF with the recursive Green’s function (RGF) algo-

rithm

The solution of the NEGF equations, in the simplest case, would involve the solu-

tion of linear systems of equations with dense matrices representative of every atom

and (depending on the basis) electronic orbitals in the device. For Ñ = Natoms × m

where m are the degrees of freedom per atom corresponding to atomic orbitals in
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a tight binding representation, a direct solution to the linear system of equations

involves dense matrix operations that scale on the order O(Ñ3) for time to solution

and O(Ñ2) for system memory. Because Ñ can be as large as tens-of-thousands to

hundreds-of-thousands, only very small devices with simple bases like the effective

mass approximation may be solved by “direct” NEGF [14].

To ease numerical load, the recursive Green’s function method (RGF) [9,52] pro-

vides a block-wise recursive solution for NEGF equations that can be discretized

with block-tridiagonal sparse matrices [53–55]. With RGF, realistically-sized sys-

tems may be solved using a realistic atomistic basis such as empirical tight binding

(ETB) [22,24]. The size of each matrix block for block-row I and block-column J of a

Green’s function matrix depends on the cross-section and size of the tight binding ba-

sis, and results in square blocks of rank N . In the RGF algorithm the goal is to solve

each block GR
I,J and G<

I,J of a block tri-diagonal Green’s function matrix starting from

a block tri-diagonal Hamiltonian H as shown in figure 2.1. The device Hamiltonian

H is a matrix that represents the energy states of the entire device. The algorithm

is divided into two portions, the forward RGF portion where the functions gRI,J and

g<I,J are solved recursively from the upper-left to the bottom-right of the matrix, and

the backward RGF portion where the functions GR
I,J and G<

I,J are solved. Details of

this process can be found in various publications, such as [9, 56, 57]. The method for

solving the RGF algorithm will also be detailed in section 5.4.

With the RGF algorithm, matrices are divided into blocks of rank N . The rank

N of these blocks is determined in zincblende and diamond lattice configurations by

N =
w1 × w2

a2
× 2nl ×m, (2.2)

where nl layers along the device length are used for a block such that N � Ñ . The

number 2 is used since a single atomic layer contains 2 atoms in the zincblende and

diamond lattice configurations. Time to solution of matrix operations on these blocks

scales on the order of O(N3) and memory usage scales on the order of O(N2). Any

number of layers nl can be chosen for a block layer in RGF, so RGF would need to
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Figure 2.1. A block tri-diagonal Hamiltonian of total N × L rows and
columns for L device layers. Each block in this matrix has N rows and
columns

solve fewer recursive iterations when more layers are used, such as a unit cell thickness

nl = 4. However, the RGF method iterates along the length of the device, so length

contributes linearly to the complexity of the RGF solution of the entire device. The

most computationally efficient option would therefore be to keep nl = 1. From this

point forward in this thesis, the solution of Green’s functions with RGF described will

indicate the solution of GR
I,J and G<

I,J of rank N , rather than the Green’s functions

of the entire device which would be of rank N × L for L layers.

2.2.3 Calculation of multiple energies and momentums

The solution of the above must be performed independently on many energies of

interest which, depending on the device material, geometry, temperature, and applied
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voltage, may number in the thousands. In NEMO5 these energies are determined

inhomogeneously using an adaptive energy grid that detects the energies at which

transport occurs based on band structures [8]. This way, energies at which electronic

transmission is unlikely to occur are omitted, while resonant energy ranges have a

dense energy presence. Figure 2.2 shows an example of the energy distribution of 377

energies for an InAs tunneling field-effect transistor (TFET) in its ON-state, where

darker horizontal lines correspond to a higher density of energies. Some devices,

such as ultra-thin body (UTB) devices, must be solved independently for tens to

hundreds of k-points (directly proportional to momentum) in reciprocal space [3, 4].

The number of times the NEGF equations must be solved in parallel depends directly

on the number of (E, k) points being solved. More on this type of device will be

discussed in section 4.3.

2.2.4 Self-energies and incoherent scattering

Simulated nanoelectronic devices such as MOSFETs most often consist of a central

semiconductor device represented as an open system. Contacts on both ends of the

semiconductor device are represented by semi-infinite leads. These leads represent

infinite reservoirs of electrons controlled by an applied potential [4]. Since modeling

infinite contacts is unfeasible, boundary conditions are applied to the semiconductor

device through self-energies, which represent interactions between the device and

external sources. These interactions can represent electrons entering and exiting

the device through the contacts as well as perturbations from finite temperatures

through phonons and device impurities. Incoherent scattering on phonons can thus

be introduced through self-energies, which are included in the quantum transport

model of the NEGF formalism [12,58].

Fabrication of nanoelectronic devices is not perfect, and structure uncertainties

exist in final products. These imperfections may include roughness, alloy disorder,

and geometrical errors. These non-uniformities in the material’s crystalline structure
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Figure 2.2. Conduction and valence band edges and inhomogeneous en-
ergy distribution for a TFET in its ON-state. Darker horizontal lines
correspond to a higher density of energies placed by the NEMO5 adaptive
energy grid

result in scattering centers which may alter an electron’s phase, energy and momen-

tum [8, 27, 29]. An advantage of the NEGF and RGF methods is the ability to in-

troduce incoherent scattering through self-energies, which represent device structure

uncertainties such as roughness, alloy disorder and geometric errors, and temperature

fluctuations through phonons [11, 12, 27, 28, 30, 34, 59–63]. Phonons, quasi-particles

that represent vibrations in the crystal lattice of the device material, contribute to

temperature fluctuations in the device and exchange energy with electrons of the de-

vice. Incoherent scattering due to phonons alters device performance and may not be

ignored in realistic device modeling at finite temperatures [11, 27,28,30,34,60–65].

Two main computational challenges exist when solving the self-energy equations.

The first is the complexity of the integrals involved, which will be explored in sec-
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tion 7.2. The second computational challenge is the communication required between

energies and between momentums. To take advantage of the mostly independent

energies E and momentums k, NEMO5 and other quantum transport simulators use

multiprocessing through MPI to solve (E, k) tuples in parallel. This independence

breaks down by the introduction of scattering, since electrons may be transferred from

one (E, k) to another, and may therefore require communication from one process to

another. Communication may be unpredictable and highly complex due to overlaps

in communication patterns required by each (E, k) tuple, as shown by figure 2.3.a.

Care must be taken when planning communication so that load imbalances may be

minimized and deadlocks may be avoided [8, 25]. This is done in NEMO5 by sort-

ing (E, k) tuples into independent communication groups as depicted in figure 2.3.b.

These tuples are sorted in such a way that as many groups simultaneously solve the

self-energy equations using the required (E, k) tuples from neighboring processes as

possible. This reduces idling by processes, thus improving scaling capabilities [8, 25].

On top of the burden of communication and computation of self-energies, the

introduction of incoherent scattering into the RGF solution introduces yet another

degree of complexity through the self-consistent solution of retarded and lesser Green’s

functions GR,< and the corresponding scattering self-energies ΣR,<.

2.2.5 Self-consistent equations

The solution of the NEGF equations alone does not immediately result in the

solution of measurable quantities of a device. The NEGF equations must be self-

consistently solved with the Poisson equation that represents the electrostatic effects

caused by the quantum mechanical evolution of the system [11,66,67]. This introduces

a degree of complexity to the solution of NEGF, since solving the equations is required

multiple times.
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(a) Overlap of (E, k) tuple communication groups

(b) Communication of tuple groups in NEMO5

Figure 2.3. Depiction of (a) overlap in the complex communication of
scattering calculations required by the (E, k) tuple at the center of each
communication group, and depiction of (b) communication of (E, k) tu-
ples divided into groups which perform communication independently in
NEMO5. Image courtesy of Tillmann Kubis
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The introduction of inelastic scattering into the NEGF solution introduces yet

another degree of complexity through the self-consistent solution of Green’s functions

GR = (E −H − ΣR)−1 (2.3)

G< = GRΣ<GR† (2.4)

which represent electron density of states and occupied electron density respectively,

and the self-energies

Σ< = G<D< (2.5)

ΣR = GRDR +GRD< +G<DR (2.6)

which represent the perturbations of the electrons. H is the Hamiltonian and D is

the sum of environmental Green’s functions with phonon, impurity and roughness in-

formation [12,68]. The self-consistent Born method [69] provides the self-consistency

needed to solve these important equations. Within the self-consistent Born approxi-

mation the scattering self-energies ΣR,< and Green’s functions GR,< are solved itera-

tively to achieve particle number conservation [12,58,70]. When combined, two loops

of self-consistency exist, as depicted in figure 2.4. This interdependence can result in

the solution of dozens of iterations for a single NEGF calculation.

It is worth mentioning that some alternatives to the self-consistent Born approx-

imation of scattering exist, such as low-order approximations [71–73], the Büttiker

probe scattering model [11, 65, 74] and the multi-scale approach of reference [75].

Other layers of self-consistency may also exist, such as in calculations of self-heating,

which may self-consistently couple thermal conduction, quantum dot gain equations

and carrier transport equations [76–78]. Calculations of resistive RAM (RRAM)

devices may include self-consistency between carrier transport and heat conduc-

tion [79,80] as well as ion and electron transport [81,82].
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Figure 2.4. Diagram showing the two levels of self-consistent calculations
required for the solution of incoherent scattering in NEGF. The first layer
consists of the interaction between Green’s functions and self-energies for
the solution of NEGF. The second layer consists of the interactions be-
tween the NEGF solution for quantum mechanical evolution of the system
and Poisson’s equation for electrostatic effects

2.2.6 Calculation of multiple bias points

An important measure of electronic device performance is the response of current

to applied voltage. The shape of the current-voltage (I-V) response curve is often

a central figure of merit in transistor design. The subthreshold slope (SS), which is

inversely proportional to the slope of this curve, demonstrates the speed at which

a transistor switches when a bias is applied to a terminal [3, 83, 84]. Assessment of

current response of the device to a dozen or more applied voltage biases is often needed

to understand device switching performance. Figure 2.5 shows an example of such a

curve, with 14 points calculated independently (This specific I-V curve is shown later

in figure 7.3 for “zero ΣR real part”). Only by calculating this amount of points can

the shape of the I-V curve be determined, therefore all of the aforementioned collection

of expensive computations must be performed >10 times for device engineering.
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Figure 2.5. Current-voltage (I-V) characteristic curve of a 3.64 nm ×
3.64 nm × 30.29 nm InAs TFET device showing the need to solve 14
independent points to determine curve shape

2.2.7 Calculation of various device materials and geometries

Often different materials and device geometries are required to understand the

behavior of a new electronic device design. Modeling of the above simulations may

be needed for multiple devices to properly assess performance behavior. Different

semiconductor materials have a vast range of performance capabilities, such as III-V

semiconductors like InAs and GaSb that are suitable for tunneling devices [26,30,85]

due to inherent material properties that influence a low subthreshold slope but re-

sult in low ON/OFF current ratios [83]. This is as opposed to Si MOSFETS and

TFETs which can achieve higher ON/OFF current ratios at the expense of lower

switching speeds (higher SS) [86, 87]. Geometry variations such as device width also

have an effect on device performance due to confinement having an effect on electron
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mobility [27, 51, 88]. Material orientations may also result in varying device perfor-

mance [24, 89–91]. Since all of these variations in material design have significant

performance effects, having overly-expensive simulations would hinder the ability to

quickly modify device configurations during device design.

2.2.8 Calculation of imperfections

Modeling of imperfections may be required to statistically predict the performance

of a real-world nanoelectronic device that has been manufactured with imperfections.

These imperfections may include surface roughness [27, 61], interface roughness [31,

32,92,93] and alloy disorder [33,34,94]. Statistical analysis to determine the average

performance of a device with these imperfections may require the solution of hundreds

of data points [25,95], therefore all aspects of the complex simulations described above

may need to be performed hundreds of times. The introduction of these imperfections

may not always be explicitly modeled and statistically analyzed, as there also exist

implicit models using incoherent scattering [8, 68] and approximations such as the

virtual crystal approximation (VCA) [96] which implicitly models alloy disorder.

2.3 Solutions to computational burdens

Although including the aforementioned effects into NEGF device simulations can

result in heavy computational burdens, there are multiple solutions to this issue.

2.3.1 Ballistic simulations

Ballistic simulations, which represent the transport of electrons without the inclu-

sion of scattering on phonons, are often used to avoid the computational burden of

scattering calculations as described above. Very small devices are ballistic to a signif-

icant degree, since the mean-free-path of traveling electrons may exceed the channel

length of the semiconductor device [4]. However, realistically, imperfect nano-devices
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in a finite-temperature setting are affected by perturbations which make ballistic

simulations inaccurate [8, 60, 97].

2.3.2 Approximations to scattering simulations

The solution through the NEGF formalism often includes several approximations

to allow for faster system solutions. Details on these approximations can be found

in the assessment by Kubis et. al [12]. One of these approximations, which involves

the removal of a principal value integral from the calculation of retarded scattering

self-energies [8, 68, 97, 98], is discussed in detail in section 7.2. Another significant

approximation, which will be approached in chapter 8 of this thesis report, is the

diagonal self-energy approximation. This approximation allows for a significant de-

crease in complexity, but may result in significant deviations from experiment [12].

2.3.3 Low-rank approximations

Many discretized degrees of freedom are common in atomistic representations, as

well as multiple layers of self-consistency, that result in heavy computational bur-

dens. To ease this burden, incoherent scattering effects are often neglected in NEGF

transport calculations [4, 99–102]. In the case of atomistic representations, even bal-

listic NEGF calculations often yield large computational loads. Such situations have

motivated the introduction of a low-rank approximation (LRA) [103] into NEGF

[54, 59, 100, 104–106] that is often called the mode space approach [26, 53, 99, 107].

Since scattering phenomena are important to retain in quantum transport simula-

tions, the goal of this work is to introduce a LRA that accurately retains scattering

phenomena and remains based on an atomistic device representation. Atomistic bases

may be reduced with matrix transformations through LRA. Some reduction methods

may reduce matrix rank to under 10% of the size of the original system [7, 104, 108].

Some previous methods of LRA have been performed in atomistic simulations: In the

works of references [109–113], the contact block reduction (CBR) method divides the
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device Hamiltonian into inner-device and boundary partitions and a subset of prop-

agating modes are chosen. Similarly, the quantum transmitting boundary method

(QTBM) shown in references [34] and [114] solves transport for propagating modes

while excluding vanishing modes. The work of reference [115] constructs a rectangular

transformation matrix that reduces the device Hamiltonian. This transformation ma-

trix is created by adding columns with spatial and energy information until a residual

is smaller than a chosen tolerance.

Although many methods of LRA such as the aforementioned exist, the princi-

pal method of LRA in this thesis is the mode space method of reference [7], which

Mil’nikov et. al call the “equivalent model.” In reference [104], an effective mass

approximation is used and reduced using eigenvectors corresponding to eigenvalues

in a desired energy range. This range is often from the conduction band edge en-

ergy E0 and several kBT above E0, where kB is the Boltzmann constant and T is

the temperature of the device. Reference [116] shows this mode space method in

an effective mass approximation with scattering. The work of Mil’nikov et. al [7]

expands on the mode space method by introducing it to a tight binding basis, and

includes scattering. This will be further elaborated on in chapter 5. The works of

references [26,53,85,107,108,117] and [118] employ this method.

2.3.4 Highly parallel computing

Due to the high degree of parallelism in the solution of quantum transport in

nanoelectronic devices, parallel solutions of the equations through multiprocessing

and multithreading are often necessary. The availability of powerful supercomputers

with hundreds of thousands of CPUs allows for highly complex problems such as

NEGF to be solved well within our lifetimes, and scaling capabilities of simulations

on these machines determines the capability of simulation models and software to

effectively use this technology. The creators of many scientific software products

make great efforts to make their software as scalable as possible [119–123] to the
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extent that annual competitions such as the Gordon Bell Prize competition [124] exist

to showcase the most highly scalable scientific software. The highly scalable NEMO5

similarly provides the capability of modeling nano-scale devices using atomistic bases

on hundreds of thousands of CPU cores [25]. In the next two chapters, this capability

is explored.
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3. HETEROGENEOUS COMPUTING

As mentioned in section 2.3, the solution of the NEGF equations afford the need

for a high degree of parallelism. However, the parallelism explored in this chapter

will not be of energies or momentums, rather within individual mathematical matrix

operations. The solution of the quantum transmitting boundary method (QTBM) in

NEMO5 for ballistic transport prediction involves the solution of a linear system of

equations in the form of Ax = b. The solution of this linear system of equations was

a candidate for optimization by improving time to solution using the Intel Xeon Phi

coprocessors, which could provide highly parallel solutions. The algorithm used to

solve this linear system of equations was the Compression Algorithm, implemented in

NEMO5 and based on the optimized renormalization method of Boykin et. al [125].

This algorithm involved the solution of a linear system of equations.

3.1 The Intel Xeon Phi coprocessor

The Intel Xeon Phi Knight’s Corner (KNC) was a coprocessor introduced in 2012

that, similarly to a general-purpose GPU (GPGPU), provided computing clusters

with a 61-core alternative to the typical 16-24 core Sandy Bridge CPUs available.

Although Sandy Bridge CPUs were faster and more suited for sequential work, the

Many Integrated Core (MIC) architecture of Xeon Phi KNC coprocessors allowed for

highly parallel computation which was needed by the solution of the NEGF equations.

For each hardware core, the coprocessor had 4 hardware threads, allowing for 244 total

threads for solving parallel tasks such as matrix operations and vectorizable for-loops.
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3.2 Description of linear system

The first software tool that was analyzed was the MKL BLAS GEMM (general

matrix-matrix multiply) functions using MKL Automatic Offload. The solution of

QTBM for ballistic transport simulations requires the solution of a linear system

Ax = b, where A is a block-tridiagonal matrix. x and b are rectangular matrices,

or block “vectors.” The square matrix size of A could range between 50,000 rows

to 500,000 rows, depending on the atomistic basis, cross-section and length of the

device.

An important thing to note is that GEMM functions lie at the core of many linear

solve algorithms [126], and those in NEMO5 are no exception. Due to the abundance

of these BLAS functions in the algorithms, one could use MKL Automatic Offload

or Compiler Assisted Offload to take advantage of the availability of a Xeon Phi

coprocessor card in computing systems such as Stampede2 [127].

3.3 Compression algorithm

The Compression algorithm takes advantage of the linear system in such a way

that the solution is performed in a computationally efficient manner. The reason that

attempts were made to optimize these algorithms was that much of the computation

in a typical NEMO5 simulation was spent within the linear solve. The device be-

ing simulated is divided in slabs, with the block rows of matrix A corresponding to

each slab. The matrix A is mostly hermitian and in some simulation cases, mostly

real. The exceptions to this are the corner matrices (block rows a and i as shown in

figure 3.1), which are complex and non-hermitian. These blocks correspond to the

contact self-energies and prevent us from using the hermitian and potentially real

properties of the matrix interior. By decoupling the interior of the matrix from the

corner blocks, however, we can still use any properties that may be exploited for com-

putational speedup. Decoupling the inner blocks involves applying a renormalization

algorithm [125] that decouples inner layers from its neighbors. One performs renor-
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malization by applying the following operations to each block of matrix A, where i

(not to be confused with the depicted layer i shown in figures 3.1 and 3.2) is the

corresponding atomic layer being operated on:

Âi−1,i+1 = −Ai−1,i(Ai,i)
−1Ai,i+1, (3.1)

Âi+i,i−1 = (Âi−1,i+1)†, (3.2)

Âi−1,i−1 = −Ai−1,i−1 − Ai−1,i(Ai,i)
−1Ai,i−1, (3.3)

Âi+1,i+1 = −Ai+1,i+1 − Ai+1,i(Ai,i)
−1Aii+1 (3.4)

The order of these operations is not from the top-left corner of the block matrix to

the bottom-right corner. Figure 3.2 shows an example of the order in which the layer-

wise operations must be performed, and shows how each layer is modified, e.g. a into

a’. The resulting matrix Â is block-diagonal, as opposed to the block tri-diagonal

matrix A. Â also has properties which allow for obtaining the solution to x in a much

more computationally efficient manner. Solving for x in the aforementioned Ax = b

system involves matrix-vector multiplication with the inverse of Â, as well as a matrix

transformation. However, the bulk of the computation occurs when converting matrix

A to Â.

When decoupling layers of the system, it is important to note that each layer is

dependent of its nearest neighbors, but not any further layer. Since each alternating

layer is independent of the others, renormalization can occur in parallel. NEMO5 is

capable of performing parallelization of the renormalization process using MPI. With

MPI, the workload of the entire matrix is divided among the MPI ranks by block

rows. When parallelized, each process has a nearly equal number of block rows to

perform renormalizations on.

3.4 Automatic offload to Xeon Phi

Like most algorithms that involve the solution of a linear system, BLAS GEMM

functions are called very often in the Compression Algorithm, especially DGEMM,
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(a) Depiction of partitioning in a nanowire device

(b) Block tri-diagonal matrix corresponding to device (a)

Figure 3.1. Nanowire device depiction with (a) atomic layers labeled from
a to i, and corresponding block-tridiagonal matrix (b). This form of block
tri-diagonal matrix is solved using the NEMO5 Compression Algorithm
for the quantum transmitting boundary method (QTBM) model

the real double-precision matrix-matrix multiplication routine. In fact, most of the

algorithm’s execution time is spent in the DGEMM function. This yields the opportu-

nity to use MKL Automatic Offload to improve performance in the presence of a Xeon

Phi coprocessor card. A simple test was performed to measure the performance boost

available through MKL Automatic Offload to a single coprocessor card, in which the

Compression Algorithm was executed with various simulation sizes on a single pro-
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Figure 3.2. A simplified depiction of the order in which the compression
algorithm modifies the blocks of the block tri-diagonal matrix of figure 3.1
using the operations shown in equations 3.1-3.4

cess, single Sandy Bridge core, single OpenMP thread and 240 OpenMP threads on

the coprocessor. The ranks of the matrices ranged from 320 to 2880. MKL workload

between the CPU and MIC was not explicitly set. Resulting execution times for the

offload and no-offload case for each simulation size, shown in figure 3.3, show that

MKL Automatic Offload indeed improves performance in the simplest case, when

only a single process from the host Sandy Bridge, without OpenMP multithreading,

offloads to a single coprocessor with 240 OpenMP threads. As is evident from fig-

ure 3.3, offloads occur only when the offloaded functions use matrices that exceed

a certain size threshold of 2000 rows [128]. This test was performed on the Intel

Endeavour supercomputer.

Since the algorithm contains MPI parallelization capabilities, it may be tempting

to use both MPI and Automatic Offload to further improve performance. One must

be careful when using MPI with Automatic Offload, since this could yield a sharp

decrease in performance when a large number of processes offload large workloads.

The reason for this is oversubscription of resources. When every process attempts

to offload, there are not enough resources on the coprocessor for all offloads to be

executed. This could be because all MIC OpenMP threads are in use by a process

when another process attempts to offload. Another reason could be that memory
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Figure 3.3. Comparison of DGEMM of various matrix sizes in Si unit cells
between automatic offload to a single Intel Xeon Phi KNC coprocessor
and a single process without multithreading. The coprocessor performed
DGEMM operations on 240 OpenMP threads

resources are filled when a certain number of offloads are being performed on the co-

processor. The number of MIC OpenMP threads may vary depending on the number

of coprocessor cards available on the system and the optimal number of threads to

use with BLAS Automatic Offload is (n − 1) × 4 where n is the number of cores on

the coprocessor.

Since figure 3.3 shows only a decrease in compute time when using a single process,

it would remain to be seen whether a coprocessor could compete with a full Sandy

Bridge CPU with 16 cores. To test this, a “realistic” comparison test was performed

with a 16-core Sandy Bridge CPU host with 16 OpenMP threads and 2 coprocessors

with 240 OpenMP threads each. This test was performed on the Purdue RCAC Conte

computing cluster. The largest device from the previous test, a 12 × 12 unit cell (2880

× 2880 matrices) device was used with the compression algorithm. First, 1 to 16 MPI

processes ran in parallel, and only the first two MPI ranks (if only one was available,
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only one offloaded) offloaded automatically to the coprocessors after using the MKL

routine mkl_mic_enable(). This divided the workload between the CPU host and

the coprocessors: while the coprocessors performed parallelized matrix operations, the

remaining host CPUs also performed matrix operations. Since multithreading was

available through OpenMP and all 16 CPU cores were available, the CPU processes

were able to use these threads to parallelize some operations. Secondly, the same test

was run with 1 to 16 MPI processes, but with the offloading capability removed. The

16 OpenMP threads remained. Figure 3.4 shows the results of this comparison. The

results show that for 1 and 2 MPI processes, time to solution is lower when CPUs

simply use host threads to perform parallel work. This may be because of overhead in

sending data to and from the coprocessor. For more than 2 processes, time to solution

closely matches. Due to the lack of improved performance, and because Automatic

Offloads lacked the fine-tuning capability to improve performance further, another

method of manual offloading was turned to: MKL Compiler Assisted Offloading.

3.5 Compiler Assisted Offload

Intel MKL Compiler Assisted Offloading allows the software developer to have

fine-tuned control of how work is sent to the Intel Xeon Phi KNC coprocessor. Fine-

tuning capabilities include limiting the times that memory allocations occur on the

coprocessor, control over which subroutines occur on the coprocessor, and load bal-

ancing between the coprocessor and the host CPUs. Load balancing is an important

factor in improving time to solution performance, since the coprocessors are more

capable than the host of performing large parallel operations and less capable of per-

forming fast sequential work. By balancing the workload such that the coprocessor

is able to complete its task at the same time as the host, idling time at an MPI

barrier can be minimized and resource use can be optimized. Figure 3.5 shows an

example of a load distribution among 6 MPI processes, with the first two offloading

to a many-integrated-core (MIC) coprocessor and the rest performing work on host
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Figure 3.4. Performance test of 16 MPI processes working in parallel, with
the first two processes offloading to a Xeon Phi KNC coprocessor using
MKL Automatic offload. 16 OpenMP threads were available on the host
CPU, so host processes also parallelized matrix operations when cores and
threads were available. This was compared to a CPU-only test with 16
OpenMP threads

cores. The area of each square represents the amount of work needed to be done for

a task. For example, a task could be a single matrix-matrix multiplication through

a BLAS DGEMM routine call, and the area could represent the combined rank of

the matrices. Host-only processes should ideally perform smaller, less parallelizable

operations, but more of them sequentially, while the offloading processes should of-

fload highly parallelizable operations while performing fewer of them. With the ideal

workload distribution, no difference in time to solution occurs and therefore no idling

time occurs on any process. Note that when solving the NEGF equations with the

RGF algorithm, all matrices for a device which does not change in dimensions from

source to drain will have equally-sized block matrices, therefore another method of

efficient load balancing may be achieved by distributing a larger number of energies

to processes which are able to perform mathematical operations more quickly, such

as processes with a coprocessor.
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Figure 3.5. An example of an ideal workload distribution for 6 processes,
two of which are capable of offloading work to a many integrated core
(MIC) coprocessor. Coprocessors are capable of performing highly parallel
computations, so operations such as large matrix multiplications should be
performed there. Since mathematical operations may have a shorter time
to solution on coprocessors, another method of load balancing may be to
distribute a larger amount of tasks, e.g. energies, to offloading processes.
The ideal load distribution would have each process complete its task in
the same amount of time for minimal idling

3.6 Optimized dense matrix multiplication

For all further Intel Xeon Phi KNC tests with Compiler Assisted Offload, oper-

ations were done on the RGF algorithm, which include the dense matrix operations

ZGEMM (complex matrix-matrix multiplication) and ZGESV (complex linear system

of equations). The reason for moving on from tests with the Compression Algorithm

was that the algorithm was used for the quantum transmitting boundary method

(QTBM), which is only valid for ballistic simulations. RGF is a useful tool for its

ability to include scattering effects.
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With the availability of fine-tuned control of offload events, one can use computa-

tional techniques to improve performance by using available resources more efficiently.

One such example is tiling, which uses available resources to perform computation

and memory access simultaneously. In this case, a tiling algorithm was written such

that access to a coprocessor was performed as simultaneously as possible to matrix

multiplication on the coprocessor. This was done using OpenMP multithreading.

Figure 3.6 shows a depiction of a matrix multiplication A×B = C. The first step is

to send n rows of matrix A and n columns of matrix B as rectangular matrices via an

offload operation to the coprocessor. The next step in the process is two-fold: while

the dense matrix multiplication is performed on the coprocessor (The result of this

is an n× n block of matrix C stored on the coprocessor), the host offloads another n

rows of matrix A and n columns of matrix B to the coprocessor simultaneously using

a second OpenMP thread. This process continues until every block of C has been

computed. Alongside this communication/computation overlapping model, offloading

CPUs performed some computation on the host side while waiting for computation

to complete on the coprocessor. This host-side workload was limited to 720 rows

and columns for all matrix sizes. This optimized dense matrix mulitplication method

was implemented into NEMO5 in 2015 with the collaboration of the Intel Parallel

Computing Group (PCL), and replaced BLAS ZGEMM routine calls when using the

RGF algorithm and when Intel Xeon Phi KNC coprocessors were present.

To test the effectiveness of this tiling method, the NEGF equations were solved

on a 20.6 nm Si nanowire of various cross-sections using the RGF algorithm. This

test was performed on the Purdue RCAC Conte computing cluster. The operations

included depend on the number of blocks in the Hamiltonian, which correspond to

the number of atomic layers. For the 20.6 nm Si device, which corresponds to 38 unit

cells of diamond lattice Si with a lattice constant of a = 0.543 nm (the length at which

the crystal lattice repeats), each atomic layer would have a length of a⁄4. Therefore

the block tri-diagonal Hamiltonian and subsequent Green’s functions have l = 152

square diagonal blocks corresponding to atomic layers. The operations performed
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Figure 3.6. Depiction of the custom tiling dense matrix multiplication
method in NEMO5 which overlaps communication (sending matrix data
to a coprocessor) and computation (computing matrix products on the
coprocessor)

in a single RGF calculation are 4l − 1 dense matrix multiplications, 2l − 2 sparse-

dense-sparse matrix multiplications, l matrix inversions (linear system solve), l − 1

sparse-dense matrix multiplications, l diagonal matrix multiplications, l sparse-dense

matrix additions, 3 dense matrix additions, 1 matrix trace, and 2l − 1 dense matrix

shifts. Figure 3.7 visually depicts the distribution of operations in RGF with blocks

of rank 2880.

Figure 3.8 shows the time to solution of the RGF portion of the NEGF calculation

(excluding all other portions of NEGF such as the Poisson equation calculation)

with all dense matrix multiplications performed by the optimized, tiled and offloaded

ZGEMM routine. Operations were performed with 16 MPI processes on either a

16-core CPU with 16 available threads, or as a hybrid model with both 16 cores (16

threads) and 2 coprocessors (480 threads) used to solve the equations. As expected,

the larger block size 2880 × 2880, corresponding to a cross-section of 12 × 12 unit

cells or 6.52 nm × 6.52 nm, obtains the greatest speedup from offloading to the

coprocessor, since these are ideal for a highly parallelizable system. A speedup of
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Figure 3.7. Distribution of mathematical operations in RGF with blocks
of rank 2880

about 2.8 times was obtained for this cross-section. Also expected is the result of

the smallest block size 320 × 320, corresponding to a cross-section of 4 × 4 unit

cells or 2.17 nm × 2.17 nm. This case is too small to benefit from a highly parallel

coprocessor.

3.7 Outcomes of heterogeneous computing work

From the results shown in this chapter, the iNEMO group concluded that the

resulting performance improvements obtained for very specific devices may not be

worth the amount of optimization required to achieve such improvements. At the

time of these tests, the Intel Xeon Phi Knight’s Corner (KNC) coprocessor was rela-

tively new, having only been released a year prior. Many supercomputers migrated

to systems that contained KNC coprocessors, but since 2016 have migrated to less

heterogeneous Knight’s Landing (KNL) systems, which also have a Many Integrated
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Figure 3.8. Intel Xeon Phi Compiler Assisted Offload performance im-
provement for various matrix sizes. The largest speedup obtained was
of about 2.8 times. This speedup was obtained with a highly optimized
dense matrix multiplication routine in collaboration with the Intel Parallel
Computing Lab (PCL)

Core (MIC) architecture, but are often treated as separate nodes from a typical CPU

node. One example is the Stampede2 supercomputer, which hosts 4,200 KNL nodes

and 1,736 Skylake CPU nodes separately [127]. This migration from heterogeneous

Intel Xeon Phi coprocessors may have been prompted by less-than-optimal speedups

from a large amount of work by scientific groups around the world, including the

iNEMO group.

A positive outcome of this research was aiding the Intel Numerical Device Model-

ing group, with whom the iNEMO closely collaborated with, to decide on requesting

a purely homogeneous compute cluster with 30,000 cores rather than a heterogeneous

system with Intel Xeon Phi KNC coprocessors [129].
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4. HIGH PERFORMANCE COMPUTING

The degree of parallelism provided by the NEGF equations allows them to be solved in

a highly parallel computing environment. Supercomputers such as Blue Waters [130]

and Stampede2 [127] provide the computational power to solve these equations using

multiprocessing, multithreading and sometimes heterogeneous computing to solve

these equations on up to hundreds of thousands of CPU cores.

In this chapter, the physics of a realistic UTB device are tested by use of some of

the world’s most powerful supercomputers: Stampede, Blue Waters, Stampede2, and

Tianhe-2. NEMO5’s boundaries of scalability are pushed by simulating this device

on up to 356,352 CPU cores.

4.1 Parallelism in the NEGF equations

The NEGF equations must be solved for many energies and in some cases, many

k-points. The number of energies and k-points depends on device geometry and

electrostatic configuration, but often reaches the range of up to a thousand energies

and hundreds of k-points. With the nanoelectronic modeling software suite NEMO5

[5, 6, 131], each MPI process can solve the NEGF equations for a minimum of a

single energy-k-point ((E, k) point) tuple. For simulations with a single confinement

direction and reciprocal space (k-space) such as those used for modeling UTB devices,

this may mean parallelism of up to hundreds of thousands of processes is available to

a NEMO5 user. Most simulations shown in this thesis were performed on a device

with two confinement directions and no k-space. This type of device is often called

a nanowire. Although a smaller degree of parallelism of under a thousand processes

is available for this type of device, the OpenMP [132] multithreading environment

is available for use in NEMO5. This multithreading environment is most often used
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for mathematical operations on matrices, often through the linear algebra packages

BLAS and LAPACK [133].

Due to the high degree of computational resources needed to solve the NEGF

equations, particularly with incoherent scattering, atomistic simulations in a tight

binding basis (without reductions or approximations) must be solved on a super-

computer with a large number of nodes and memory, such as Blue Waters [130] and

Stampede2 [127]. Efforts have been made in optimizing performance of NEMO5

for high performance computing (HPC). This includes scaling on up to hundreds of

thousands of CPU cores and heterogeneous computing by offloading to coprocessors.

4.2 The Gordon Bell Prize Competition

The Gordon Bell Prize is an annual award presented by the Association for Com-

puting Machinery to the most innovative software application that uses state-of-the-

art parallel computing technology [124]. Its purpose is to keep track of progress in

parallel computing each year. In this competition, various groups from many science

and computing fields compete for a $10,000 prize and, more importantly, recognition.

The Gordon Bell Prize is the most prestigious high performance computing award,

and NEMO5 was entered because winning, being a finalist, or even just competing

in the competition would give NEMO5 visibility in the computing world. Although

NEMO5 is currently known to be one of the few go-to NEGF-based atomistic de-

vice modeling tools, the Gordon Bell Prize competition was an opportunity to show

the HPC world how scalable NEMO5 is when performing complex calculations and

producing scientifically relevant physical predictions. Another reason for submit-

ting NEMO5 to the Gordon Bell Prize competition was proving scalability. When

requesting access to large supercomputers, proof of scalability is requested, and com-

petitively scalable software is the ideal use of highly parallel computing resources.

NEMO5, as shown in chapter 3, is capable of efficient heterogeneous computing, a re-

source available in many of the largest supercomputers through GPUs and Intel Xeon
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Phi Knight’s Corner (KNC) and Knight’s Landing (KNL) coprocessors [127,130]. In

2014, the year prior to the submission of NEMO5, 2 of 5 Gordon Bell finalists used a

heterogeneous supercomputer: Titan with GPUs and Tianhe-2 with Intel Xeon Phi

coprocessors [124].

In 2015, NEMO5 was entered as a submission to the Gordon Bell Prize competi-

tion by simulating incoherent scattering with a large degree of communication [25].

The largest simulation was performed on the Tianhe-2 supercomputer at the National

Supercomputer Center in Guangzhou, China on 356,352 cores. The specific publica-

tion submitted can be found as reference [25]. In this chapter, motivation for the

need for highly parallel supercomputing resources is presented, as well as the high

degree of scalability of NEMO5 in solving the NEGF equations.

4.3 Computational burdens from alloy disorder and k-space

As mentioned in chapter 2, today’s devices feature a countable number of atoms,

therefore simulations must include detailed calculations at a subatomic resolution to

include realistic device physics. At this scale, generalized material properties are in-

sufficient since device imperfections such as alloy disorder [33–35], varying dopant dis-

tributions and roughness are present and affect device performance [31,32]. Phonons

are present at any finite temperature in addition to these these imperfections, and

must also be modeled [11, 12, 27, 28, 30, 34, 59–63]. All of these effects are modeled

in NEGF with scattering by the inclusion of scattering self-energies, which broaden

predictions of energy and momentum of electrons in transport. Reliable predictions

of device performance must include a consistent consideration of these effects.

The device considered for this chapter is a double-gate ultra-thin-body (UTB)

transistor. Figure 4.1 shows an example of this device with a randomized alloy dis-

order. The UTB device used in this work was 28 nm (precisely 28.23 nm) in length

and 3 nm (precisely 3.26 nm) in width. Unlike a nanowire device, UTB devices are

periodic along one of the directions perpendicular to the transport direction. Because
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of this, UTB simulations often have a thickness of a single unit cell which is repeated

periodically along that direction. However, due to the need to keep alloy disorders

as random as possible, device thickness in this work was extended beyond the usual

single unit cell, as thicker devices along the periodic direction more accurately repre-

sent realistic randomness [25]. In the device simulated in this chapter, that thickness

ranged from 6 to 10 Si unit cells, or 3.26 nm to 5.43 nm. This results in a device

similar to a nanowire with a rectangular cross-section with dimensions of 6 × 6 unit

cells to 6 × 10 unit cells, or 3.26 nm × 3.26 nm to 3.26 nm × 5.43 nm. The device

material is made up of 90% Si and 10% Ge, and atom properties are modeled using

the virtual crystal approximation (VCA) [96], which creates fictitious atoms with 90%

Si and 10% Ge properties. The basis of the device was an sp3d5s∗ empirical tight

binding basis, where each atom hosts 10 orbitals. Inelastic optical phonon scattering

and elastic acoustic phonon scattering were included in these simulations, as well as

a self-consistent Poisson equation solution.

As mentioned in section 2.2.5, the inclusion of scattering and the solution of

the Poisson equation means that two layers of self-consistent loops must be solved

until both converge. In addition to the computational burden introduced by self-

consistency, alloy disorder simulations include randomness when the disorder is in-

cluded explicitly (without VCA), so a statistical assessment would need to be per-

formed with the data output from at least 100 cases [25]. In this assessment, only a

single case was run with the VCA approximation, but an ideal design model would

include explicit Ge atoms and over 100 statistical cases. In addition to the alloy dis-

order of the device, the general lead method of reference [34] allows for the inclusion

of alloy disorder in the leads, as well as any other roughness, impurities and contact

shapes. This general lead method was the method of solving the contact self-energies

for the simulations of this chapter. The method involves a recursive RGF-like solution

of many layers of the contact material and results in a single surface Green’s function

for each contact [34].
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Figure 4.1. 3D rendering of a UTB device for which the NEGF equations
are solved in this chapter. The image shows alloy disorder of Ge atoms
in a Si material as well as surface roughness in the inset. Material from:
R. Andrawis, J. D. Bermeo, J. Charles, J. Fang, J. Fonseca, Y. He,
G. Klimeck, Z. Jiang, T. Kubis, D. Mejia, D. Lemus, M. Povolotskyi,
S. A. P. Rubiano, P. Sarangapani, and L. Zeng, ’NEMO5 : Achieving
High-end Internode Communication for Performance Projection Beyond
Moore’s Law,’ 2015 Gordon Bell Prize Submission, 2015.

The solution of a nanowire, with its confinement in all directions perpendicular to

the transport direction, would require several hundred energy points to be solved with

NEGF. When modeling a UTB device the inclusion of periodicity, and therefore a

momentum- or k-space in a direction perpendicular to transport, requires the solution

of all combinations of energies and k-points. This creates a grid of (E, k) tuples that

require solving. In the case of the device of this chapter, up to 16,000 (E, k) tuples

required solving which allowed for 16,000 parallel MPI processes to run in parallel,

thus increasing our need for massively parallel computing systems. Although the

solution of these many (E, k) tuples for UTB devices usually involves the solution

of many small matrices due to their single-unit-cell thickness, alloy disorder calls

for the solution of a larger thickness along the periodic direction, resulting in block
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matrices of a higher rank being solved in the RGF algorithm. This combination of the

requirement to perform math on large matrices and many (E, k) tuples necessitates

a large degree of both local parallelism (multithreading) and MPI parallelism.

4.4 Communication in NEGF equations

Although highly parallel in nature, the solution of the NEGF equations with

scattering could not be labeled “embarrassingly parallel” because of the need for

communication with every inelastic scattering self-energy solution. Due to the pres-

ence of inelastic scattering, electrons may be shifted unpredictably from one energy

to another, requiring communication to occur between processes which must modify

the Green’s functions that describe electron occupancy for specific energies [8,25,68].

NEMO5 determines scattering communication patterns during the solution of the

scattering self-energies. These depend on the unpredictable broadening effects of

electrons scattering on phonons [8, 25]. The resulting communication is therefore

greatly influenced by the type of scattering model and scattering strength. As men-

tioned in section 2.2.4, the complex and overlapping communication patterns of self-

energy calculations must be properly managed in order to avoid excessive idling that

diminishes scaling capabilities. The sorting algorithm described section 2.2.4 and

blocking communication were thus used for these simulations to improve scaling ca-

pabilities. In addition to scattering calculations, the calculation of charge density

requires communication among all processes to add the total charge for all energies.

The communication pattern for this communication event is much more predictable

than scattering communication events, as it involves all processes and occurs only

once per Poisson iteration.

4.5 Scaling results on supercomputers

In HPC, there are two ways of measuring the scalability of software: strong and weak

scaling:
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Strong scaling is defined as the capability of a problem to scale to an increasingly

large degree of resources while maintaining a fixed problem size. For example, for

an embarrassingly parallel problem, the number of processes p would decrease the

time to solution for the number of required tasks n proportionally. In NEGF, these

n tasks would each correspond to a (E, k) tuple, and the time to solution of n fixed

(E, k) tuples would ideally be decreased by a factor of p. Realistically, however, this

is not possible due to existing sequential sections of the algorithm and the need to

communicate at each scattering iteration. Figure 4.2 shows the results of a strong

scaling test that was performed on the Stampede supercomputer on up to 32,768 cores.

The single Intel Xeon Phi KNC coprocessor on each of the nodes of this machine was

also used. The simulation run on Stampede was the 3.26 nm × 5.43 nm UTB device,

and the operation performed was a single scattering iteration.

Weak scaling is defined as the capability of a problem to scale to an increasingly

large degree of resources while also increasing the problem size proportionally. For

an embarrassingly parallel problem, the time to solution would remain identical for

all cases. In NEGF, n tasks would correspond to (E, k) tuples and the ideal time to

solution t for n tasks on p processes would be t(n) = αp where α is constant. Realis-

tically, increasing the parallelism of a problem introduces finite communication time

due to less-than-ideal communication patterns and imperfect load balancing. Fig-

ure 4.3 shows the weak scaling trend on the Tianhe-2 supercomputer. The simulation

run on Tianhe-2 was the 3.26 nm × 3.26 nm UTB device due to walltime limitations,

and the operation performed was a single scattering iteration.

4.6 Outcomes of high performance computing work

The most tangible outcome of the HPC work was the submission of reference [25] to

the Gordon Bell Prize competition of 2015. And although NEMO5 was not nominated

to win the Gordon Bell Prize, an arguably more important outcome was achieved,

which was the gradual optimization and improvement of the parallel capabilites of
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Figure 4.2. Strong scaling of a scattering simulation in NEMO5 on up to
32,768 cores on the Stampede supercomputer

NEMO5. Great improvement was seen in the months of work leading up to the

Gordon Bell Prize submission in 2015, and NEMO5 was proven to be highly scalable

given how complex the communication patterns of inelastic scattering are.
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Figure 4.3. Weak scaling of a scattering simulation in NEMO5 on up to
356,353 cores on the Tianhe-2 supercomputer
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5. LOW-RANK APPROXIMATIONS IN NEGF

Opposite to the method of using a large number of computational resources to solve

the NEGF equations lies the method of reducing the computational burden of these

equations using approximations. Approximations to physics, when properly used, are

capable of reducing matrix sizes in the NEGF equations, therefore reducing the need

for computational resources greatly while maintaining accurate physics.

In this chapter the mode space method is shown from its simplest form to its most

complex form that is capable of incoherent scattering. The recursive Green’s function

method with mode space approximations is detailed, along with modifications to the

scattering self-energies which allow for their calculation in mode space.

5.1 Mode space approach for basis reduction

The dispersion relation of a simulated system represents the available electronic

states for various energy-momentum, (E, k), configurations of the system. The dis-

persion relation, often shown via a band diagram or band structure, represents the

various ways that an electron can propagate along the crystal of devices such as sili-

con nanowires. Often a very complex relation in realistic bases such as tight binding,

in the effective mass approximation, the dispersion relation for semiconductor devices

can be approximated as

E(k) = E0 +
h̄2k2

2m∗
, (5.1)

which is parabolic in nature [134]. Here, h̄ is Planck’s constant and k is the wave

vector such that the momentum p = h̄k. E0 is the band-edge, which corresponds to

the vertex of the parabola of the effective mass approximation. m∗ is the effective
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mass, which is the mass of an electron in a given material. This effective mass is a

material parameter and corresponds to the shape of the band structure.

Due to the simplicity of an effective mass system, methods such as the mode space

method [104, 116] can reduce the available band states of the system, thus reducing

the rank of the system Hamiltonian dramatically by removing states that are unlikely

for an electron to occupy. For example, if a material is known to be more likely to host

electrons within a range of energies, choosing the eigenvectors of the Hamiltonian by

their corresponding energies near the band-edge will provide a transformation matrix

that can be used to reduce the rank of the device Hamiltonian such that

h = ΦT
eigHΦeig (5.2)

where H is the initial device Hamiltonian, Φeig is a rectangular matrix constructed

from the desired eigenvectors, and h is the reduced Hamiltonian. Figure 5.1 offers

a depiction of the chosen eigenvalues Ei, their corresponding eigenvectors φi, and a

transformation from H to h with the resulting transformation matrix.

5.2 Low-rank approximations in atomistic tight binding basis

In a realistic tight-binding basis, using the mode space method directly to reduce

the rank of the system Hamiltonian is not possible due to the appearance of spuri-

ous states that create non-existent electronic band states and cause deviations from

experimental data [7]. An example of spurious states is shown in figure 5.2, where

figure 5.2.a shows the states obtained when using equation 5.2 directly. The method

developed by Mil’nikov et. al. [7] provides a solution for removing these spurious

states. The first step of the method is to obtain the eigenvectors φi from the desired

energy interval [E1, E2], similarly to the traditional mode space approach. The full

basis Hamiltonian H is transformed to a reduced (mode space) basis h using a trans-

formation matrix Φeig constructed from the eigenvectors φi as shown in equation 5.2.

At this stage, the reduced Hamiltonian h yields several unphysical states. A modified
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(a) Chosen eigenvalues Ei and eigenvectors φi

(b) Transformation of Hamiltonian with chosen eigenvectors

Figure 5.1. Depiction of (a) the eigenvalues Ei and corresponding eigen-
vectors φi chosen to represent the reduced basis and (b) a transformation
of a full basis Hamiltonian H to a reduced basis Hamiltonian h

reduced Hamiltonian h̃ is created by adding new orthogonal basis states Φ̃ such that

ΦT Φ̃ = 0 and

h̃ =

∣∣∣∣∣∣ h X

X† HΦ̃Φ̃

∣∣∣∣∣∣ (5.3)

where

X = ΦT
eigHΦ̃. (5.4)

The added states Φ̃ do not deteriorate the basis and have no effect on non-spurious

band states due to the already complete basis of h. The purpose of the new state Φ̃ is

to remove the spurious states, so Φ̃ must be chosen carefully such that it reduces the
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number of states in the band structure. Since adding states to the modified reduced

Hamiltonian h cannot modify correct physical states [7], the correct solution is such

that h̃ generates the fewest band states.

To find this, we first introduce a function of energy

N(E) =

〈
z − Ec
z − E

〉
=

1

2nz

2nz∑
j=1

.
zj − Ec
zj − E

(5.5)

that gives ∼1 for energies within the window of E1 and E2 and�1 otherwise. There-

fore a sum of N(E) for various energies E would give the number of states in a system.

Here, Ec = (E1 +E2)/2 and zj = Ec + ρe
iπ
nz

(j− 1
2). The sum occurs on a complex con-

tour in the complex z plane with 2nz points, center Ec, and radius ρ = (E2 −E1)/2.

This function is used in the functional

F [Φ̃] =

nk∑
i=1

∑
ν

N
(
Eν

(
ki, [Φ̃]

))
=

〈∑
i

Tr

[
1

z − h̃ (ki)

]
(z − Ec)

〉 (5.6)

where h̃ is given by equation 5.3. This functional provides the total number of states

at nk wave numbers ki, which each correspond to a chosen set of values in k-space.

F [Φ̃] is equal to the the original number of states F0 (without Φ̃) plus the change to

the number of states, or cost function ∆F [Φ̃]:

F [Φ̃] = F0 + ∆F [Φ̃]. (5.7)

The next step is to find Φ̃ such that

Φ̃ =
1√
CTC

ΞC (5.8)

and the following cost function ∆F is minimized:
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∆F (C) =
1

2nz

nk∑
i=1

2nz∑
j=1

CTA (ki, zj)C

CTB (ki, zj)C
(zj − Ec) +

(
CTC − 1

)2
(5.9)

where Ξ is obtained by orthogonalizing the columns of the matrix [7, 107]

[(
1− ΦΦT

)
H(k = 0)Φ,

(
1− ΦΦT

)
H(k = π)Φ

]
(5.10)

and obtaining M ′ columns. C is a vector of dimension M ′ which contains the expan-

sion coefficients of Ξ. Matrices A and B are

A(k, z) = IM ′×M ′ + ΞTH(k)Φ[z − h(k)]−2ΦTH(k)Ξ, (5.11)

B(k, z) =zIM ′×M ′ − ΞTH(k)Ξ− ΞTH(k)Φ[z − h(k)]−1ΦTH(k)Ξ. (5.12)

This method is repeated until no new (E, k) states have been added when adding

a state Φ̃ to the basis Φ, signaling that the cost function ∆F has been minimized.

From this point forward in the thesis, the final mode space transformation matrix that

results from the removal of spurious states will be denoted simply as Φ. Figure 5.2

shows the evolution of the mode space band structure, along with the “correct” full

basis tight binding band structure for a 2.17 nm × 2.17 nm sp3d5s∗ device. Note

that E1 = Ec + 0.5 eV and E2 = Ev − 0.5 eV. After 90 iterations, band states match

well within this energy window [E1, E2].

5.3 Generation of basis states in NEMO5

Generation of mode space basis states is provided by the ModeSpace solver in

the NEMO5 software suite [5, 6, 131]. This library-like module of NEMO5 provides

a basis that can be used for matrix transformations which may reduce matrix ranks
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down to 10% of their original size or lower. This has been used in the past to obtain

speedups for ballistic simulations of up to 10,000 times [107, 108]. The ModeSpace

solver uses the method described in section 5.2. The solver interface includes controls

for the lower and upper bounds of the energy window of interest [E1, E2]. It then

attempts to reduce the number of spurious states in the band structure. This process

can typically take a few minutes on devices with small cross-sections, especially when

only a small energy range is required. For cross-sections greater than 5 nm × 5 nm,

however, the process of obtaining a reduced basis with a matching band structure

may take hours, and multiple attempts may be needed to obtain a suitable basis.

Reference [107] details some improvements to the algorithm of reference [7], including

MPI parallelization and a method of detecting spurious states.

5.4 RGF method and LRA application

After the transformation matrix Φ is created, the blocks of the block tri-diagonal

device Hamiltonian H are transformed into a reduced device Hamiltonian h using the

equation

hI,J = ΦTHI,JΦ (5.13)

for block indices I and J . Then the RGF algorithm may be performed on reduced

matrices.

The calculation of the Green’s functions GR using the RGF algorithm [9,135] can

be divided into two main steps: the “forward” calculation in which the blocks of GR

are solved recursively from the top-left block to the bottom-right which results in

a single-block-sized matrix gRL,L for L device layers, and the “backward” calculation

which, from the bottom-right to the top-left recursively creates the resulting matrix

GR.
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Figure 5.2. Evolution of mode space band structure compared to full basis
sp3d5s∗ tight binding of a 2.17 nm × 2.17 nm cross-section Si device.
Energy window was set to a range 0.5 eV above conduction band edge to
0.5 eV below valence band edge
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In the standard block tri-diagonal and local RGF algorithm [9, 135], the forward

Green’s function block gRI,I for device layer and block index I is calculated using the

equation

gRI,I =
(
AI,I + hI,I−1g

R
I−1,IhI−1,I

)−1
(5.14)

where

AI,I =
(
E − hI,I − ΣR

I,I

)−1
. (5.15)

Note that the Hamiltonian h is the reduced version, and has a reduced rank n accord-

ing to the number of modes found by the method shown in section 5.2. The forward

Green’s function for the first layer and block index I = 1 is

gR1,1 = (A1,1)−1 . (5.16)

ΣR is an addition of scattering self-energies and contact self-energies when they ex-

ist at index I. The calculation of the contact self-energies in a reduced basis is

straightforward after a reduction of the Hamiltonian [7], however, calculating the

contact self-energy portion in a reduced basis is not trivial and will be discussed in

section 5.5.

Continuing into the “backward” portion of RGF for L total layers,

GR
L,L = gRL,L (5.17)

and

GR
I,I = gRI,I + gRI,I

(
hI,I+1G

R
I+1,I+1hI+1,I

)
gRI,I . (5.18)

The lower (GR
I+1,I) and upper (GR

I,I+1) offdiagonal blocks must also be calculated,

since they are needed for the calculation of G<:
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GR
I+1,I = −GR

I+1,I+1hI+1,Ig
R
I,I ,

GR
I,I+1 = −gRI,IhI,I+1G

R
I+1,I+1.

(5.19)

The lesser Green’s function G< can similarly be calculated recursively, with g<I,I for

layer and block index I being

g<I,I = gRI,I

[
Σ<
I,I + AI,I−1g

<
I−1,I−1A

†
I−1,I

+Σ<
I,I−1g

A
I−1,I−1A

†
I−1,I + AI,I−1g

R
I−1,I−1Σ<

I−1,I

]
gAI,I

(5.20)

and

g<1,1 = gR1,1Σ<
1,1g

A
1,1 (5.21)

for layer and block index I = 1. “Backward” RGF for G< is then performed with

G<
L,L = g<L,L (5.22)

for the last layer L and

G<
I,I = g<I,I + g<I,IA

†
I,I+1G

A
I+1,I

+ gRI,IΣ
<
I,I+1g

A
I+1,I+1A

†
I+1,IG

A
I,I + gRI,IAI,I+1G

<
I+1,I

(5.23)

for the diagonal blocks. The mode space LRA approach by Mil’nikov et. al. [7]

was applied to tight binding bases, and is included in the NEMO5 software suite

[107,108]. The RGF method [9] with mode-space-reduced tight binding bases shown

in section 5.4 with incoherent scattering is performed in this work, and physics and

performance results will be shown in chapter 6.
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5.5 Expanding low-rank approximations to incoherent scattering simula-

tions

Calculation of scattering self-energies requires real-space information. Real space

is represented by the vectors r and r’ in the lesser scattering self-energy

Σ<(r, r’, E) =
1

(2π)3

∫
dq|Uq|2eiq(r−r’)[nqG

<(r, r’, E − h̄ωq)

+(1 + nq)G
<(r, r’, E + h̄ωq)]

(5.24)

where q are phonon momentums, E is the electron energy, nq is the system’s Bose

distribution, h̄ is Planck’s constant, Uq is a constant scattering potential and ωq is the

phonon frequency. Transformation of Green’s functions to mode space means that

matrices no longer contain position information. One solution to this problem involves

the up-conversion of Green’s functions before the solution of scattering self-energies

like equation 5.24.

5.5.1 The Green’s function upconversion method

After calculating Green’s functions in a reduced mode space basis, the transfor-

mation matrix Φ can be used to upconvert each block at block indices I and J of a

Green’s function

GR,<
I,J,full = ΦGR,<

I,J,MSΦT (5.25)

after which the self-energies ΣR,< are solved in the full (real space) basis by replacing

the Green’s functions of equation 5.24 with GR,<
full, then converted back into mode

space in a block-wise fashion:

ΣR,<
I,J,MS = ΦTΣR,<

I,J,fullΦ. (5.26)

This, however, involves costly transformations that happen for every iteration of
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the self-consistent Born method, the computational cost of which will be shown in

chapter 6, table 6.1. This also means that any improvements in memory footprint

can be completely eliminated since matrices are restored to their original size in the

middle of the calculation.

5.5.2 The form factor transformation method

The way to avoid upconversion of matrices in the middle of the calculation is

through the introduction of a form factor transformation as described in reference [116].

The form factor is a four-dimensional tensor that contains an overlap of all available

modes integrated in real space transverse to the transport direction of the device.

Fi,j,k,l =
∑
ν

φi(ν)φj(ν)φk(ν)φl(ν) (5.27)

where each index i, j, k, l exists for n modes, or columns of the mode space transfor-

mation matrix Φ. The index ν is iterated through to the N rows of Φ. This sum

is equivalent to a real space integral for every possible combination of modes. Each

element of

ΣR,<
acoustic (r, r’, E) =

D2kBT

ρv2
s

δr,r’G
R,<(r, r’, E), (5.28)

Σ<
optical (r, r’, E) =

h̄D2
opkBT

2ρωq
δr,r’

× [nqG
< (r, r’, E − h̄ωq)

+ (1 + nq)G
< (r, r’, E + h̄ωq)]

(5.29)

and
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ΣR
optical(r, r’, E) =

h̄D2
opkBT

2ρωq
δr,r’

×
[

(1 + nq)G
R (r, r’, E − h̄ωq)

+nqG
R (r, r’, E + h̄ωq)

+
1

2
G< (r, r’, E − h̄ωq)

−1

2
G< (r, r’, E + h̄ωq)

]
(5.30)

can be defined as Σi,j and each element of a Green’s function matrix GR,<(r, r’, E) as

Gk,l. r and r’ denote perturbations from position r to r’, which both correspond to

a specific atomic orbital. D is the deformation potential constant, Dop is the optical

deformation potential constant, kB is Boltzmann’s constant, T is temperature, ρ is

the density of the material, vs is the sound velocity in the material, h̄ is Planck’s

constant, ωq is the phonon frequency and nq is the system’s Bose distribution. Note

that equation 5.30 contains an approximation which will be discussed in section 7.2.

For simplicity we define C as the product of all scalar factors involved in each of equa-

tions 5.28-5.30. The form factor elements Fi,j,k,l are applied to the Green’s function

elements Gk,l as follows:

Σi,j =
∑
l

∑
k

CFi,j,k,lGk,l. (5.31)

The transformation described above avoids upconversion of Green’s functions; all

matrices remain in their reduced rank for the duration of the simulation, keeping the

memory footprint low.

5.5.3 Approximation of form factor

Because the tensor Fi,j,k,l is four-dimensional and depends on the dimension n of

the reduced basis, its memory footprint scales rapidly on the order of O(n4), which can

become unwieldy for bases of only over 100 modes. The time for construction of Fi,j,k,l

scales on the order of O(n4N), and time for application scales on the order of O(n4).
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A larger number of modes can easily result in the form factor application taking a

significant amount of time and memory footprint. Similarly to reference [116], it will

be shown in section 6.3 that eliminating offdiagonal elements of the form factor F ,

such that Fi,j,k,l = 0 for i 6= j and k 6= l, provides reasonable physical results. This

approximation corresponds to the lack of interaction between modes. Therefore, no

intra-mode scattering takes place when the form factor is diagonal. This provides

a much more memory-thin form factor that only contains the “diagonal” (in four-

dimensions) elements. Construction complexity of the form factor also is reduced to

approximately O(n2N) and application is reduced to O(n2). In chapter 6, physical

results provided by the approximate form factor are compared to the results of the

full form factor as well as the full basis calculation. Also in chapter 6 the time-to-

solution with the Green’s function upconversion method, full form factor calculation

and approximate form factor will be compared.
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6. ASSESSMENT OF LOW-RANK APPROXIMATIONS

To ensure that the application of low-rank approximations provides a valid basis

for modeling the physics of a nanowire device with incoherent scattering, validation

tests were performed with NEMO5 by comparing current-voltage (I-V) characteristic

curves for sweeping gate bias voltages using both reduced (mode space) and full basis

(tight binding) simulations.

After validation of physics was done, computational performance after basis re-

ductions was assessed and compared to that of the tight binding basis representation.

Baseline computational measurements were performed: time to solution and peak

memory of a single scattering iteration. Since a production simulation includes more

aspects to the solution of the NEGF equations, however, a test with aspects such as

the Poisson equation and density calculation is shown, and from this production scale

simulations can be projected for both tight binding and mode space representations.

6.1 Simulation setup

The device used for both validation and performance tests was a w × w × 20.65 nm

silicon nanowire as shown in figure 6.1, where w is the variable width in nm of the

square cross-section of the device. The device had a 1 nm gate oxide layer surrounding

the central region. The original basis was a 10-orbital sp3d5s∗ tight binding model

using the parameter set of reference [136]. A source-drain bias of 0.2 V was applied

to the device. Note that the applied source-drain bias does not affect the validity of

the presented method, and mode space calculations with higher source-drain voltages

can be found in references [107] and [108]. The device was NIN doped, with the

s = 5.97 nm source and d = 6.66 nm drain regions having a 1020 cm-3 doping density

and the central c = 8.02 nm intrinsic region having a 1015 cm-3 doping density. The
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lengths s, d and c are labeled in figure 6.1. Simulations of Si devices included both

inelastic optical phonon and elastic acoustic phonon deformation potential scattering,

applied to the NEGF equations through self-energies in the self-consistent Born ap-

proximation [8, 60]. The energy grid was generated using an adaptive grid generator

in NEMO5.

Figure 6.1. Schematic of the nanowire devices considered in this work with
a w × w cross-section and a 1 nm gate oxide layer surrounding the center of
the device. s labels the source length, c the channel length and d the drain
length of the device. Material from: ’D. A. Lemus, J. Charles, T. Kubis,
“Mode-space-compatible inelastic scattering in atomistic nonequilibrium
Green’s function implementations,” Journal of Computational Electronics,
submitted 2020, Springer’

6.2 Validation of mode space simulation results

For validation, a silicon nanowire of width w = 3.26 nm was used (see figures 6.1

and 6.2). The mode space simulation had a reduction ratio n/N of 2.8%, transforming

matrix blocks from 2880 × 2880 matrices to 81 × 81 matrices. NEGF was solved

using the scattering-compatible RGF algorithm [60]. Figure 6.3 shows the current-

voltage (I-V) characteristic curves of both the original tight binding basis and mode

space basis for sweeping gate biases ranging from -0.1 V to 0.5 V. The mode space

scattering results of figure 6.3 were obtained using the full form factor as described in

section 5.5.2. The virtually identical results of mode space and tight binding show that

the mode space low-rank approximation provides a valid and highly efficient model
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Figure 6.2. 3.26 nm × 3.26 nm × 20.65 nm silicon nanowire device with
a gate oxide layer surrounding the center of the device, used to compare
physical results for reduced basis simulation with full-basis results. For
performance tests, devices similar in geometry to this, but with varying
cross-sections, were used. Device structure visualization was generated
using the NEMO5 graphical interface NemoViz

for quantum transport simulations with incoherent scattering. Figure 6.4 shows that

the mode space approach with approximate form factors, as discussed in section 5.5.3,

also yields results very close to those of the original basis calculations. To further

justify the use of the approximate form factor, table 6.1 compares its time to solution

and peak memory in a single self-consistent scattering iteration to the full form factor

and Green’s function upconversion method discussed in section 5.5.1. In this table the

form factor rows include the form factor generation and application time as discussed

in section 5.5.2. This test was performed using the w = 3.26 device on 2 MPI

processes, 24 OpenMP threads per process, and a total of 4 energies solved. This

small number of energies was chosen due to the large memory footprint of the Green’s

function upconversion method. The OpenMP threads were used to parallelize the

generation and application of the form factor elements. From this comparison the

benefits of both the full and approximate form factors are immediately evident, as

iteration time and peak memory are an order of magnitude larger when using the

Green’s function upconversion method.
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Figure 6.5 shows a contour plot of the potential profile of the center cross-section of

the device for a tight binding simulation at the applied gate bias of 0.5 V. Contour lines

show the relative absolute error of the mode space potential profile results relative to

the original tight binding data. Note that the mode-space method agrees with NEGF

calculations in the original tight binding representation for many wire cross-sections

as similarly well as those shown in figures 6.3 and 6.4. Similar benchmark data can

be found in references [7], [107] and [108].

Figure 6.3. Current-gate-voltage (I-V) characteristic curve of a 3.26 nm
× 3.26 nm × 20.65 nm silicon nanowire. The agreeing results prove the
mode space approach provides a valid physical model. All simulations
include inelastic scattering on phonons. Material from: ’D. A. Lemus, J.
Charles, T. Kubis, “Mode-space-compatible inelastic scattering in atom-
istic nonequilibrium Green’s function implementations,” Journal of Com-
putational Electronics, submitted 2020, Springer’
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Figure 6.4. I-V curve of the 3.26 nm × 3.26 nm × 20.65 nm silicon
nanowire of Fig. 6.3 with an approximate form factor. The agreeing re-
sults justify the form factor approximation. Material from: ’D. A. Lemus,
J. Charles, T. Kubis, “Mode-space-compatible inelastic scattering in atom-
istic nonequilibrium Green’s function implementations,” Journal of Com-
putational Electronics, submitted 2020, Springer’

6.3 Assessment of computational performance

The device in figure 6.1 was used with varying widths w to measure performance

improvements in NEMO5 time to solution and peak memory. Each width also had

a corresponding mode space transformation matrix with its respective number of

modes. Correspondingly, the reduction ratios n/N in figures 6.6 and 6.10 vary. The

exact width w values simulated were 4, 6, 8, 10 and 12 silicon unit cells and the

respective reduction ratios n/N were 5.6%, 2.8%, 2.9%, 2.8% and 3.0% with a silicon

lattice parameter of 0.543 nm. In other words the widths simulated, in nm, were 2.17
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Table 6.1.
Time to solution and peak memory of three methods for including real-
space information into mode space calculations of scattering self-energies.
For the form factor method, times of generation of the form factor F and
application to Green’s functions are shown. Form factor generation time
is not included in iteration time, since it only occurs once at the beginning
of the simulation. This data corresponds to a basis reduction from a rank
of 2880 to 81

method
iteration

time (s)

FF application

time (s)

FF generation

time (s)

peak

memory (GB)

GR,< upconversion 64.19 N/A N/A 25.23

full form factor 5.69 0.76 12.67 1.42

approx. form factor 4.95 0.05 0.01 1.07

nm, 3.26 nm, 4.34 nm, 5.43 nm and 6.516 nm. All performance simulations were

performed with the same inputs used for validation in section 6.2, with the exception

that a fixed number of 256 energies were simulated. Since results for the approximate

form factor have been shown in figure 6.4 to closely match those of the full form

factor, mode space data for performance comparisons in this section were generated

using the approximate form factor.

6.3.1 Time to solution assessment for a single scattering iteration

The Green’s functions were solved for 256 energies with 1 energy per MPI pro-

cess. Each MPI process was designated a 32-core node on the Blue Waters petascale

supercomputer at the University of Illinois at Urbana-Champaign. Each MPI process

was designated to a 32-core node on the Blue Waters petascale supercomputer at the

University of Illinois at Urbana-Champaign [130]. Each MPI process was assigned

32 OpenMP threads for multithreaded matrix operations, as well as form factor con-

struction and application. Figure 6.6 shows the average time (of 6 iterations) to
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<

Figure 6.5. Potential profile (contour plot) of the center cross-section of
the simulated 3.26 nm × 3.26 nm × 20.65 nm silicon nanowire device in
original tight binding basis. Contour lines represent the relative absolute
error of the potential in mode space compared to tight binding represen-
tation. Material from: ’D. A. Lemus, J. Charles, T. Kubis, “Mode-space-
compatible inelastic scattering in atomistic nonequilibrium Green’s func-
tion implementations,” Journal of Computational Electronics, submitted
2020, Springer’
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Figure 6.6. Time to solution for a single self-consistent Born iteration
(left) and speedup ratio (right) with low-rank approximations for the
20.65 nm silicon nanowire of Fig. 6.1 for various widths w. The tight
binding timing data was extrapolated beyond w = 5.43 nm using a power
fitting function shown as a dashed line. All simulations include inelastic
scattering. Material from: ’D. A. Lemus, J. Charles, T. Kubis, “Mode-
space-compatible inelastic scattering in atomistic nonequilibrium Green’s
function implementations,” Journal of Computational Electronics, sub-
mitted 2020, Springer’

compute a single self-consistent Born iteration. Each self-consistent Born iteration

includes the time to compute the RGF algorithm as well as the time to compute

lesser scattering self-energies Σ< and retarded scattering self-energies ΣR for optical

and acoustic deformation potential inelastic scattering. The calculation of scatter-

ing self-energies involves a large degree of communication between MPI processes as

discussed in reference [8].
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The maximum speedup obtained with low-rank approximations for an iteration

in this work was of 209.5 times. Due to computational limitations, the tight binding

simulation for the point w = 6.52 nm was not assessed, since a single iteration would

have taken about 38,000 seconds according to a power fitting function of the existing

data. By extrapolating the data, the speedup for w = 6.52 nm is predicted to be

of 187.5 times, as is shown in figure 6.6. It can be noted that this is lower than the

speedup of w = 5.43 nm. This is likely due to the fact that the reduction ratio for

w = 6.52 nm is slightly higher at 3.0% than for w = 5.43 nm at 2.8%.

The timing shown in figure 6.6 does not include the calculation of other aspects

of quantum transport such as charge density and potential with Poisson’s equation

and the generation of the adaptive energy grid. The exclusion of these calculations

can be justified since the time to solution of Poisson calculations is negligible when

compared to the solution of NEGF in production scale simulations that include hun-

dreds of energies, dozens of Poisson iterations, and hundreds of scattering iterations.

In production runs, these calculations are performed only a small fraction of times

when compared to the multiple self-consistent Born iterations per Poisson iteration.

6.3.2 Time to solution assessment for NEGF simulation walltime

As a preview of the timing breakdown of a production simulation with many it-

erations, figure 6.7 shows the walltime of the NEMO5 simulations of figure 6.6 from

beginning to end. These simulations, however, do not reflect a full-scale production

simulation, as only 2 Poisson iterations with 3 scattering iterations each were per-

formed. A total of 6 scattering iterations were therefore performed. Along with these

calculations, a ballistic RGF iteration and contact self-energy (using the Sancho Ru-

bio method [137]) calculations were also performed in the reduced mode space basis.

Note that the largest width to complete in a reasonable time for the full tight bind-

ing basis was w = 4.34 nm. The speedup for this largest possible comparison was of

80.52×, and much larger speedups can be expected for devices of larger cross-sections.
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Figure 6.7. Full simulation walltime for the same simulations of figure 6.6
including 6 scattering iterations and all other portions of the NEGF cal-
culation. Note that all 6 iterations could not be completed for the two
largest widths due to the required computational resources. The dashed
lines represent predictions for these two largest widths

Similarly to figure 6.6, a power fitting function was used to predict the simulation

walltimes for the full tight binding basis due to time restrictions.

6.3.3 Timing breakdown of simulations

To analyze the timing breakdown of a full simulation such as those shown in

figure 6.7, the simulation of width w = 3.26 nm was chosen. A NEMO5-internal pro-

filing tool was used to measure and analyze the timing spent on various portions of

the NEGF simulations. This breakdown is shown for both the original tight binding

basis and reduced mode space basis as pie charts in figure 6.8. Note that for the tight



64

binding simulation shown in figure 6.8.a, the majority of the time is spent in the leads

+ 7 RGF portion. This portion of the pie chart includes 6 RGF iterations with scat-

tering, 1 ballistic RGF iteration and contact self-energy calculations. Note that while

RGF with scattering may occur dozens of times per Poisson iteration, the ballistic

RGF and contact self-energy calculations occur only once per Poisson iteration. The

leads + 7 RGF portion of the simulation is greatly reduced in mode space, as shown

by figure 6.8.b. In addition to the leads + 7 RGF portion, the other portions of the

NEGF calculation shown in figure 6.8.b that have been reduced in mode space include

density (MPI) and scattering (MPI). These portions, the calculation of charge density

and scattering self-energies, involve frequent MPI communication [8,25]. Mode space

basis reductions reduce the size of data blocks being communicated via MPI, making

communication more efficient and faster. The output current section of figure 6.8 rep-

resents the output of energy-resolved and slab-resolved current that is written to file

for every scattering iteration. Although this is not necessary to achieve results from

NEGF, it was included in this test because it is a commonly analyzed metric that

exhibits the convergence behavior of the self-consistent Born approximation method.

Note also that mode space reduces the time spent on the slab-resolved current output.

This is because there are fewer device “slabs” in the mode space basis, as well as fewer

elements to sum to obtain current. In the tight binding representation of Si, each unit

cell of the material contains 4 atomic layers, which would be reduced to a single slab

in mode space. Other portions of the NEGF simulation remain virtually unchanged,

including semiclassical which provides an initial potential guess at the beginning of

the simulation, and source/drain bands which provides a bandstructure solution for

the adaptive energy grid. These two tasks are only performed once per simulation,

regardless of the number of energies. The transformation of the Hamiltonian H is

only performed in the mode space version of the simulation, and it is only performed

once per Poisson iteration for each energy.

A breakdown of only 6 iterations, however, does not reflect on the timing break-

down or total time to solution of a production run, since this includes sequential
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code and calculations that are performed only once. Since a production run in a full

tight binding basis would require many compute resources, figure 6.9 shows an ideal

timing projection of the w = 3.25 nm device for a production run on a per-scattering-

iteration basis. This was obtained by using the timing breakdown of figure 6.8 and

multiplying the portions which are repeated in a production run by a typical number

of iterations. For this example, 10 Poisson iterations, with 10 self-consistent Born

scattering iterations per Poisson iteration (total 100 scattering iterations) would be

performed. This timing breakdown assumes that every MPI process solves a single

energy point. The portions semiclassical, source/drain bands, transform H and other

would only be performed once. The portion density (MPI) would only be performed

10 times, once per Poisson iteration. The portion leads + RGF would change accord-

ing to how often the contact self-energy and ballistic calculation would be performed:

10 times, while the scattered RGF portion would be performed 100 times. scatter-

ing (MPI) and output current would be performed 100 times, once per scattering

iteration. The total corresponding walltimes for the full basis and mode space basis

simulations would be 131,414 seconds (36.5 hours) and 2305 seconds (38.4 minutes)

respectively, a speedup of 57×. A similar projection for a 2.17 nm × 2.17 device

results in a predicted production walltime for full basis and mode space of 23,516

seconds (6.5 hours) and 863 seconds (14.4 minutes) respectively, a speedup of 27×.

6.3.4 Memory assessment

The simulations performed for peak memory assessment were the same simulations

of figure 6.6. Figure 6.10 shows that the maximum peak memory reduction was of

7.14×. Similarly to figure 6.6, a power fitting function was used to predict that for a

device of w = 6.52 nm, the speedup would be of 5.67×. Peak memory was assessed

using NEMO5-internal code.
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6.4 Simulating beyond existing capabilities

With the time to solution and memory footprint significantly reduced, the oppor-

tunity to simulate larger devices with complex physical phenomena such as incoherent

scattering of multiple types (phonons, roughness, impurities) is now accessible. Ref-

erence [8] describes the simulation of a circular nanowire, with acoustic and optical

deformation potential scattering and a 10-band tight binding basis. The diameter of

the cross-section of this device was 3 nm, and the device length was 27 nm. Solution

of an I-V characteristic curve took approximately 275 hours on 330 cores on the Blue

Waters petascale supercomputer [130]. The peak memory of a process was 60 GB

per node, close to the maximum node memory of 64 GB. This device therefore ap-

proaches the limit of what can be simulated in a full basis representation such as tight

binding. To demonstrate the capability of solving larger devices in a reduced basis, a

full I-V curve was generated for a square nanowire of figure 6.1 with w = 5.43. Due

to the different cross-sectional geometry this nanowire has over 4 times more atoms

in the cross-section than the circular nanowire of reference [8]. The reduction ratio

n/N for the square nanowire was of 2.8%. Figure 6.11 shows an I-V characteristic

curve for optical and acoustic phonon deformation potential scattering, compared

to that of a ballistic simulation. As expected, the on-current density is reduced by

the inelastic scattering on phonons [8, 68, 97]. The scattered transport simulation of

the w = 5.43 nm device took approximately 160 total hours on 16,384 cores (2.62

million core hours) on the Blue Waters supercomputer. Based on previous perfor-

mance comparisons it can be estimated that the same I-V calculation would take

about 550 million core hours and 168 GB of memory in the original tight binding

basis representation.

6.5 Outcomes of low-rank approximation work

The iNEMO group collaborated with the Taiwan Semiconductor Manufacturing

Company to develop the mode space method with scattering that is available in
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NEMO5 from 2014 to 2017. Publications by TSMC affiliates that used the NEMO5

mode space framework include references [26,53,85,108,117,138].

The inclusion of mode space with scattering in NEMO5 has an impact on industry.

The NEMO5 software, as of 2020, is licensed by Silvaco Inc. for use by semiconductor

manufacturing companies as a commercial tool [139]. The performance improvements

obtained by low-rank approximations were a motivator for Silvaco to choose to include

NEMO5 in its lineup of TCAD products for simulating quantum transport, and these

basis reductions continue to be expanded to include more realistic physics.

Another important outcome of the LRA implementation in NEMO5 is the newly

available capability of performing complex calculations in reduced time and with re-

duced memory footprint. This not only reduces the resources required for existing

quantum transport models, but allows for use of models that were previously realisti-

cally unattainable. In the next two chapters, two computationally expensive models

will be shown, which have been implemented into NEMO5 through an extension of

LRA capabilities.
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(a) Timing breakdown of NEGF in full tight binding basis

(b) Timing breakdown of NEGF in mode space basis

Figure 6.8. Breakdown of the timing in seconds spent on various portions
of the NEGF calculation for a 3.25 nm × 3.25 nm × 20.65 nm device.
These simulations performed 6 scattering iterations in (a) full basis tight
binding, and (b) mode space
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(a) Projected timing breakdown of NEGF in full tight binding basis

(b) Projected timing breakdown of NEGF in mode space basis

Figure 6.9. Projected timing breakdown for a full-scale production run of
a 3.25 nm × 3.25 nm × 20.65 nm Si device in full tight binding basis and
mode space for 10 Poisson iterations and 100 total scattering iterations
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Figure 6.10. Peak memory (left) and memory improvement ratio (right)
with low-rank approximations for 20.65 nm silicon nanowires of figure 6.1
for various widths w. All simulations include inelastic scattering. Material
from: ’D. A. Lemus, J. Charles, T. Kubis, “Mode-space-compatible inelas-
tic scattering in atomistic nonequilibrium Green’s function implementa-
tions,” Journal of Computational Electronics, submitted 2020, Springer’
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Figure 6.11. Comparison of I-V characteristics for a 5.43 nm × 5.43 nm ×
20.65 nm n-type FET device for simulations with and without scattering.
The reduction ratio n/N for this simulation was 2.8%. This device size
significantly exceeds the largest nanowires possible to resolve in a scat-
tered NEGF calculation in the original atomic representation. Material
from: ’D. A. Lemus, J. Charles, T. Kubis, “Mode-space-compatible in-
elastic scattering in atomistic nonequilibrium Green’s function implemen-
tations,” Journal of Computational Electronics, submitted 2020, Springer’
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7. NOVEL AND EXACT IMPLEMENTATION OF

RETARDED SCATTERING SELF-ENERGIES USING

THE KRAMERS-KRONIG RELATIONS IN MODE SPACE

The general form of the retarded scattering self-energy ΣR includes a principal value

integral P of large computational burden [7, 8, 97, 98, 135, 140]. Typically, the real

part of the retarded self-energy is entirely excluded, and although the approxima-

tion often yields reasonable physical results [7, 135], exclusion of the real part causes

deviations. In particular, OFF-state current densities are underestimated in this

approximation [8, 97, 98]. The real part of retarded self-energies shifts resonance en-

ergies and thus influences band edges and threshold voltages [70]. In this chapter,

the exact real parts of the retarded scattering self-energies are obtained using the

Kramers-Kronig relations [141].

7.1 Method for obtaining the real part of retarded scattering self-energies

ΣR(r, r’, E), the retarded self-energy for a perturbation from position r to a po-

sition r’ and energy E, can be obtained by its separate real and imaginary parts [97,

98,135]

Re[ΣR(r, r’, E)] = iP
∫
dE ′

2π

Σ>(r, r’, E ′)− Σ<(r, r’, E ′)

E − E ′

= iP
∫
dE ′

π

Im[ΣR(r, r’, E ′)]

E − E ′
,

(7.1)

Im[ΣR(r, r’, E)] =
1

2
(Σ>(r, r’, E)− Σ<(r, r’, E)). (7.2)

For each matrix element ΣR
i,j(r, r’, E) of a retarded self-energy at row i and column

j, its real part Σ(r, r’, E)Ri,j,real is obtained by applying the Kramers-Kronig relation
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on its imaginary part Σ(r, r’, E)Ri,j,imag. Using a Hilbert transform H, the real part

becomes:

Σ(r, r’, E)Ri,j,real = H(Σ(r, r’, E)Ri,j,imag) (7.3)

which can be obtained with the following operations:

H(Σ(r, r’, E)Ri,j,imag) = F−1
(
−S(m) · F(Σ(r, r’, E)Ri,j,imag)

)
(7.4)

where F is a Fourier transform, F−1 is an inverse Fourier transform, m is the energy

index, and

S(m) =


1 for m = 0,

NE

2

2 for m = 1, 2, 3, ...,
NE

2
− 1

0 for m >
NE

2

(7.5)

for NE total energies [142]. Put simply, this Hilbert transform is performed using

a fast Fourier transform (FFT), a multiplication in the Fourier space, and an inverse

FFT afterwards [143].

7.2 Approximations of retarded scattering self-energies

Note that in chapter 6, scattered NEGF calculations in mode-space did not in-

clude the real part of ΣR, and the same is true for other works with scattering in

mode space [7, 26]. Many publications [8, 9, 12, 25, 30, 97, 98] use an approximation

that removes a principal value integral from the calculation of ΣR, though it is not

the principal value integral shown in equation 7.1. The first step in obtaining this

approximation is by expanding the equation for ΣR so that it only depends on GR

and G< and not G> [8, 12] using the relation

G>(E) = GR(E)−GA(E) +G<(E) (7.6)

where GA(E) is the advanced Green’s function
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GA (E) =
(
GR (E)

)†
. (7.7)

From this expansion, ΣR becomes:

ΣR(r, r’, E) =

∫
dq

(2π)3
eiq(r−r’)|Mq|2·[

(nq + 1)GR(r, r’, E − h̄ωq) + nqG
R(r, r’, E + h̄ωq)

+
1

2

(
G<(r, r’, E − h̄ωq)−G<(r, r’, E + h̄ωq)

)
+ iP

∫
dE ′

2π

G<(r, r’, E − E ′)
E ′ − h̄ωq

− G<(r, r’, E − E ′)
E ′ + h̄ωq

]
(7.8)

where perturbations occur from atom and orbital positions r to r’ and energy E. q

are phonon momentums, nq is the Bose distribution, ωq is the phonon frequency and

Mq are the constants corresponding to the type of scattering. The approximation

is attained by removing the principal value integral in the last line of equation 7.8

and using the resulting ΣR. The removal of the principal value integral makes equa-

tion 7.8 equivalent to equation 5.30 for optical phonon scattering. Transport with

this approximated ΣR which includes a non-zero real part is compared to a ΣR with

the real part completely removed, as well as transport with an exactly calculated real

part of ΣR in references [8, 97, 98]. These show differences in the current output of a

nanowire, including underestimations of OFF-current.

To show that the real part of ΣR cannot be used in mode space, a test was

conducted using a 20 nm n-type Si nanowire with a 2.2 nm × 2.2 nm cross-section.

The initial tight binding basis was a 5-band sp3s∗. From figure 6.1, the device had

an n-type s = d = 6 nm source and drain region, doped at 1020 cm-3, and a c = 8 nm

central intrinsic region. A source-drain bias VDS of 0.2 V was applied to the drain

and a gate bias VG of 0.7 V was applied. For the mode space reduction, matrices were

reduced from a rank of 640 to 149. This test compared transport in three different

cases in the original TB basis and mode space basis for a total of six cases:
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1. Zero real ΣR, in full TB basis

2. Zero real ΣR, in mode space

3. Non-zero real and approximate ΣR, in full TB basis

4. Non-zero real and approximate ΣR, in mode space

5. Non-zero real and exact ΣR from Kramers-Kronig relations, in full TB basis

6. Non-zero real and exact ΣR from Kramers-Kronig relations, in mode space

Figure 7.1 shows the result of the six above cases and several observations can

be made. First, it is evident that the mode space approximations closely match the

results of the full TB basis when no zero real part of ΣR is included. Second, when the

approximate non-zero real part of ΣR is included, the full basis density results differ

slightly from the zero real part results. However, it is evident that when using this

approximation, the mode space results do not match the full basis results, especially

in the drain section of the device. Lastly, the results with an exact real ΣR match

closely for mode space and full basis, proving that this method of obtaining an exact

ΣR works in a reduced mode space basis. Although it has been proven that the non-

zero ΣR approximation does not work with mode space basis reductions, mode space

reductions allow us to perform computationally expensive operations such as Hilbert

transforms on greatly reduced matrices, negating the need for approximations.

7.3 Assessment of the real part of retarded scattering self-energies on a

TFET device

To assess the scattering effects of the real part of the retarded self-energies ΣR

on a real device, full I-V characteristic curves were obtained for TFET devices. The

material of the transistor in figure 6.1 was chosen to be InAs, with two tested device

widths w = 2.42 nm and w = 3.63 nm. Both devices had an s = 5.97 nm p-type

source doped at 5 × 1019 cm-3, an n-type d = 9.66 nm drain doped at 2 × 1019 cm-3
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and a c = 14.66 nm central undoped region. A source-drain bias of 0.3 V was ap-

plied. Since TFETs require the occupation of both electrons and holes, the method

of reference [7] was applied to obtain modes for a wide energy window that included

bands near the conduction and valence band edges. The inclusion of holes also neces-

sitated a proper definition of electrons and holes as states tunnel from valence band

to conduction band in the TFET. An interpolation method was applied as defined

by reference [8] to avoid sharp transitions from holes to electrons or vice versa. Sim-

ulations included optical phonon, acoustic phonon and polar optical phonon (POP)

scattering [144] to represent the polar nature of InAs. Due to the non-local nature of

polar optical phonon scattering, such a calculation would be very expensive even in a

reduced basis [30]. To avoid this, a local scattering calculation was performed using

a cross-section-dependent compensation factor defined in reference [30]. With this

compensation, scattering operations can be treated as local. Compensating scaling

factors of 30.0 and 26.56 were used in the calculation of polar optical phonon scat-

tering for the w = 2.42 nm and w = 3.63 nm devices respectively. Note, the diagonal

form factor approximation as described in section 5.5.3 was not performed in this

case.

The 2-norms of the real and imaginary parts of the retarded self-energy ΣR can

show the amplitude of their relative contributions. Comparing the 2-norms of fully

charge-self-consistent calculations is misleading, however, since scattering impacts the

density of states: The Poisson potential would compensate some of the density of state

differences to accommodate the device’s doping profile. Therefore, for this comparison

only, scattering self-energies and Green’s functions were solved self-consistently with

a fixed Poisson potential. That potential was deduced from a converged ballistic

transport solution of the same device. The calculations were performed for the ON-

state bias of 0.4 V. Table 7.1 shows the 2-norm values of the real and imaginary parts

of the ΣR when the Kramers-Kronig relation is observed and when the real part is set

to 0. In both of the simulated cross-sections, the norm of the real part is comparable

to the norm of the imaginary part.
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Table 7.1.
2-norms of the retarded scattering self-energies ΣR solved in NEGF sim-
ulations of two InAs TFETs with a width w and an applied gate bias of
0.4 V. The norm of the real part, calculated using the Kramers-Kronig
relations, is comparable to the norm of the imaginary part, and must have
a similar significance to simulation results

width w (nm) zero real ΣR Kramers-Kronig

real imag. real imag.

2.42 0 0.1184 0.0965 0.1130

3.64 0 0.1080 0.0920 0.1104

Figures 7.2 and 7.3 show the I-V characteristics of the w = 2.42 nm and w = 3.64 nm

devices respectively. Both figures show the differences of the two scattering models

(with and without the real part of ΣR) when compared to ballistic transport. Inco-

herent scattering increases the OFF-current density due to scattering-supported gate

leakage and decreases the ON-current density due to stronger back-scattering. This

is in agreement with findings in literature [8, 57,58,97,135].

The impact of the real part of ΣR becomes more apparent in situations with

larger scattering strengths, e.g. when higher temperatures, impurity scattering, or

surface roughness scattering are present. Figure 7.4 shows the I-V characteristics of

the device in figure 7.3 solved with NEGF when all electron-phonon scattering self-

energies are multiplied by 2. More significant gate leakage and back-scattering effects

can be observed than that shown in figure 7.3. More importantly, however, figure 7.4

shows that the exact ΣR with a non-zero real part provides even higher scattering

strengths than the approximate, zero real part case.

7.4 Performance of a TFET simulation with Hilbert transforms

Similarly to section 6.3.3, a NEGF simulation was run to measure the time to

solution of the various portions of the NEGF calculation on a TFET with Hilbert
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transforms. The device used was the same as that of section 7.2, and like in sec-

tion 6.3.3, 6 iterations were run and included various other portions of the NEGF

calculation. This simulation, however, was run on 48 MPI processes, each with 2

OpenMP threads, on the RCAC Brown cluster [145] at Purdue University. 240 ener-

gies were simulated on these 48 processes.

These TFET simulations include three major performance differences to the per-

formance tests of chapter 6: The first is that they do not include the diagonal form

factor approximation of section 5.5.2. Because of this, the form factor generation

and application to Green’s functions shown in equation 5.31 can take a significant

amount of time. Figure 7.5 shows that the pie chart portions generate FF and apply

FF, which correspond to form factor generation and application to Green’s functions

respectively, can take a much more significant amount of time than when the ap-

proximation of 5.5.2 is applied. Fortunately, the form factor generation must only

be performed a single time per mode space basis, per simulation. The form factor

application, however, must be performed for every self-consistent scattering iteration

and for every energy, and is thus needed for the entirety of the calculation of the

NEGF equations.

The second major performance difference to the tests of chapter 6 is of course the

inclusion of Hilbert transforms, which must be performed for the retarded scattering

self-energy calculation of every scattering iteration. This is shown in figure 7.5 in the

pie chart portion labeled Hilbert transform.

The third performance difference is the increased time spent in the scattering

calculation as shown by the scattering (MPI) section when compared to that of fig-

ure 6.3.3. The reason for this is the inclusion of polar optical phonon scattering.

Although the scalar compensation factor approximation of reference [30] reduces com-

munication greatly, self-energies in mode space are block-dense and thus require large

blocks to be communicated for each scattering self-energy calculated.

The rest of the pie chart portions in figure 7.5 show a similar time to solution

distribution as figure 6.8.b, with the exception that these portions of the NEGF
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solution were performed faster, despite the mode space basis for this TFET having

101 modes as opposed to the 81 mode basis of the w = 3.26 nm device of chapter 6.

The reason for this could be a combination of newer hardware being used and a

better hybrid distribution of MPI processes and OpenMP threads. Figure 7.6 shows

a smaller w = 2.42 nm device, for which a full basis comparison can be seen.

7.5 Outcomes of exact retarded scattering self-energies in mode space

The most important outcome of the work shown in this chapter is the inclusion

of an exactly calculated real part of retarded scattering self-energies ΣR. Although

this would be most conveniently used in a reduced basis due to large computational

burdens in a full basis, it is now available to all users of NEMO5. The approximation

shown in references [8, 12, 97, 98] may be valid for many device simulations, but the

availability of exact calculations of the real part of ΣR in NEMO5 should negate the

need for this approximation for any future scattering simulations.
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(b) Plot of (a) zoomed in on correctly matching mode space results

Figure 7.1. One-dimensional charge density along the center of a 20 nm
× 2.2 nm × 2.2 nm Si nanowire. Three cases are tested in the full TB
basis and mode space: With a zero real part of ΣR, a non-zero real part
of ΣR calculated via an approximation, and the real part of ΣR calculated
with the Kramers-Kronig relations
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Figure 7.2. I-V characteristics for a 2.42 nm × 2.42 nm × 30.29 nm
InAs TFET device solved in NEGF including incoherent scattering on
polar optical phonons, acoustic phonons and optical deformation potential
phonons. Scattering, even without a real part of ΣR, increases the OFF-
current densities and lowers ON-current densities. When the real part of
the retarded self-energy ΣR is included, the Kramers-Kronig relations are
obeyed and scattering shows an even larger impact. The insets zoom into
the first two and the last two points of the curves. Material from: ’D. A.
Lemus, J. Charles, T. Kubis, “Mode-space-compatible inelastic scattering
in atomistic nonequilibrium Green’s function implementations,” Journal
of Computational Electronics, submitted 2020, Springer’
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Figure 7.3. Similar to figure 7.2, I-V characteristics of a 3.64 nm× 3.64 nm
× 30.29 nm InAs TFET device. The effects of scattering with and without
a real part of ΣR are larger than in the smaller wire of figure 7.2. Material
from: ’D. A. Lemus, J. Charles, T. Kubis, “Mode-space-compatible in-
elastic scattering in atomistic nonequilibrium Green’s function implemen-
tations,” Journal of Computational Electronics, submitted 2020, Springer’
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Figure 7.4. Similar to figure 7.3, I-V characteristics of a 3.64 nm× 3.64 nm
× 30.29 nm InAs TFET device, but with scattering self-energies multiplied
by 2. Material from: ’D. A. Lemus, J. Charles, T. Kubis, “Mode-space-
compatible inelastic scattering in atomistic nonequilibrium Green’s func-
tion implementations,” Journal of Computational Electronics, submitted
2020, Springer’
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Figure 7.5. Breakdown of the timing spent on various portions of the
NEGF calculation for a 3.64 nm × 3.64 nm × 30.29 nm TFET in mode
space basis with the real part of scattering self-energies calculated using
Kramers-Kronig relations
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(a) Timing breakdown of NEGF in full tight binding basis

(b) Timing breakdown of NEGF in mode space basis

Figure 7.6. Breakdown of the timing in seconds spent on various portions
of the NEGF calculation with the inclusion of Hilbert transforms and full
form factor calculations for a 2.42 nm × 2.42 nm × 30.29 nm device.
These simulations performed 6 scattering iterations in (a) full basis tight
binding, and (b) mode space
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8. EXTENDING LOW-RANK APPROXIMATIONS TO

NONLOCAL SCATTERING

Various types of electron-on-phonon scattering such as elastic acoustic deformation

potential scattering and optical phonon scattering shown in chapter 6 can be approx-

imated and treated as local [12] to reduce computational complexity and communica-

tion. However, some types of scattering such as polar optical phonon scattering must

often be treated as nonlocal in nature [12, 30, 57]. An exception to the rule is when

an approximation such as that of section 7.2 is introduced, which allows for a local

scattering environment and applies a scalar compensation factor to the polar optical

phonon scattering self-energies to compensate. The scalar compensation factor, de-

tailed in reference [30], is the result of the ratio of the nonlocal scattering rate and

local scattering rate calculated using Fermi’s Golden Rule. Other types of nonlocal

scattering include roughness scattering due to device imperfections [31,32]. Nonlocal

scattering in NEGF presents a computational challenge due to its high requirement

of computational resources and high time to solution.

8.1 Computational burden of nonlocal scattering calculations

Existing solutions of incoherent scattering in NEGF use some approximations, one

of them being the use of diagonal self-energies [12]. Although this allows for lower

computational complexity, predictions with local scattering may deviate from exper-

imental results [12, 146]. Figure 8.1 shows that a numerical calculation of nonlocal

scattering provides a scattering rate prediction closer to theoretical predictions via

Fermi’s Golden Rule when polar optical phonon scattering is included [146].

Implementation of nonlocal scattering through the newly developed nonlocal RGF

algorithm has been completed in NEMO5 [57]. It extends the recursive Green’s
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Figure 8.1. Scattering rate for local and nonlocal scattering simulations
compared to analytical solution via Fermi’s Golden Rule. Image courtesy
of Prasad Sarangapani [146]

function algorithm [9, 52] and allows for the calculation of offdiagonal blocks of the

Green’s functions for the entire device. Therefore, instead of being block tridiagonal,

Green’s functions, and by extension self-energies, may have any number of offdiagonal

blocks. The algorithm can be found in detail in reference [57]. Figure 8.2 shows a

timing comparison for local and nonlocal RGF calculations for a variable nonlocality

range in nm. The range of 1.9 nm, for example, would correspond to 14 nonzero

offdiagonal blocks in Green’s functions and self-energies. The significant ratio of up

to 150 times for the longest nonlocality tested shows that these calculations have an

unreasonably long time to solution for realistically sized devices. Figure 8.3 shows a

memory comparison. The largest ratio is of almost 8 times, which places an easily

reached limitation on what can be modeled with nonlocal RGF. These tests were
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performed on a 2.17 nm× 2.17 nm× 20.63 nm silicon device in a 10-orbital sp3d5s∗

tight binding basis.

Figure 8.2. Time to solution for a nonlocal RGF calculation with vari-
able nonlocality range (in black) and timing ratio (in blue) when com-
pared to the local calculation (shown as a star). Image courtesy of James
Charles [57]

By expanding the methods of basis reduction detailed in section 5.5, modeling

of nonlocal scattering in nanoelectronic devices becomes more feasible than existing

full-basis solutions. The computational requirements of nonlocal RGF with scattering

make it unusable in a full atomistic basis for the simulation of anything but the

smallest devices, like the 2.17 nm× 2.17 nm× 20.63 nm device described. Low-rank

approximations are required for reduced matrix sizes so that computation is feasible.
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Figure 8.3. Peak memory for a nonlocal RGF calculation with variable
nonlocality range (in black) and timing ratio (in blue) when compared to
the local calculation (shown as a star). Image by James Charles [57]

8.2 Nonlocal RGF method and LRA application

The traditional block tridiagonal RGF algorithm with mode space basis reduc-

tions was shown in section 5.4. Similarly to the block tridiagonal Green’s function,

the device Hamiltonian H must be reduced to the mode space Hamiltonian h using

equation 5.13 so that

(
GR
)−1

= E − h− ΣR. (8.1)

Derived in reference [57], an extension to the RGF algorithm capable of solving any
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number of off-diagonal blocks is shown now for block indices I and J . To begin with

the nonlocal RGF algorithm we first define the equations

DI,I =
(
GR
I,I

)−1 −
I−1∑
K=0

LI,KDK,K (LI,K)T , (8.2)

LI,J =

[(
GR
I,J

)−1 −
J−1∑
K=0

LI,KDK,K (LJ,K)T
]
D−1
J,J (8.3)

which correspond to the LDL decomposition (GR)−1 = LDLT . T is the transpose

operator. We then define

gRI,I =

[
AI,I −

I−1∑
K=I−1−Nl

L̃I,Kg
R
K,K

(
L̃I,K

)T]−1

(8.4)

where Nl is the total number of layers in the device and

L̃I,K = AI,K −
K−1∑

K′=I−1−Nl

L̃I,K′gRK′,K′

(
L̃K,K′

)T
(8.5)

with

L̃I,J = LI,Jg
R
I,J . (8.6)

g<I,J can be calculated for the diagonal blocks when I = J :

g<I,I = gRI,I

I−1∑
K=I−Nl

L̃I,K
(
−g<I,K

)†
+ gRI,I

I−1∑
K=I−Nl

Σ<
I,K

I−1∑
M=K

gAK,M L̃M,Ig
A
I,I + gRI,IΣ

<
I,Ig

A
I,I

(8.7)

and for the offdiagonal blocks when I < J :

g<I,J = gRI,I

I−1∑
K=I−Nl

L̃I,Kg
<
K,J + gRI,I

J−1∑
K=I−Nl

Σ<
I,Kg

A
K,J + gRI,IΣ

<
I,Jg

A
J,J (8.8)
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where

gAI,J =
(
gRI,J
)†
. (8.9)

GR is calculated in the “backward” RGF portion as follows for the diagonal blocks:

GR
I,I = gRI,I − gRI,I

I+1+Nl∑
K=I+1

L̃I,KG
R
K,I (8.10)

and the offdiagonal blocks when I < J

GR
I,J = −gRI,I

I+1+Nl∑
K=I+1

L̃I,KG
R
K,J . (8.11)

Lastly, the blocks of G< are calculated in “backward” RGF for the diagonal blocks:

G<
I,I = g<I,I + gRI,I

I+1+Nl∑
K=I+1

LTI,KG
<
K,I

+

I+1+Nl∑
K=I+1

g<I,K

I+1+Nl∑
l=I+1

L†K,lG
A
l,I +

I+1+Nl∑
K=I+1

gRI,K

K+1+Nl∑
l=K+1

Σ<
K,lG

A
l,I

(8.12)

and the off-diagonal blocks when I < J :

G<
I,J = g<I,J + gRI,I

I+1+Nl∑
K=I+1

LTI,KG
<
K,J

+
J∑

K=I−Nl

g<I,K

J+1+Nl∑
l=J+1

L†K,lG
A
l,I +

I∑
K=I−Nl

gRI,K

J+1+Nl∑
M=J+1

Σ<
K,MG

A
M,I

(8.13)

where the advanced Green’s function blocks

GA
I,J =

(
GR
I,J

)†
. (8.14)
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The above equations can be used to calculate any upper-diagonal block of GR and

G<, and can be chosen by the user to calculate up to a given nonlocality range.

After the Hamiltonian is reduced, Green’s function calculations are performed in

a reduced basis using equations 8.2- 8.14. As was shown in section 5.5, complications

enter when using self-energies ΣR,< in mode space. To calculate and apply a form

factor as shown in section 5.5.2, equations 5.27 and 5.31 no longer apply with nonlocal

scattering. These equations correspond to local scattering, and a generalized form

factor must therefore be constructed which corresponds to the overlap of modes in a

nonlocality range |r’− r|:

Fi,j,k,l(r, r’) =
∑
v

φi(ν, r)φj(ν, r’)φk(ν, r)φl(ν, r’). (8.15)

The corresponding form factor application is performed on the Green’s function ele-

ments as follows:

Σi,j(r, r’) =
∑
l

∑
k

CFi,j,k,l(r, r’)Gk,l(r, r’). (8.16)

For a basis reduction from rank N to rank n the generation and application times

would greatly increase, becoming O(n6N) and O(n6) respectively. Memory scaling

would become O(n6). It is possible that using the approximation of section 5.5.3,

time to solution and memory would decrease significantly, but that approximation

relies on the lack of intra-mode overlap. This is not the case for nonlocal scattering,

where modes must interact between layers and self-energies and Green’s functions are

not diagonal. Because of these difficulties, all scattering self-energies in this chapter

were solved using the Green’s function upconversion method of section 5.5.1 with

equations 5.25 and 5.26.
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8.3 Assessment of results

The simplest test to assess physical result correctness of nonlocal RGF with scat-

tering in a reduced mode space basis is the use of a homogeneous nanowire with the

use of a scalar applied to Green’s functions to obtain scattering self-energies. A GaSb

device of dimensions 2.42 nm × 2.42 nm × 6.05 nm in a mode-space-reduced 5-band

sp3s∗ basis and 16 homogeneous energy points was used for this test. The device

was completely homogeneous, having a uniform 5 × 1019 cm-3 n-type doping, and

no biases were applied to the terminals. A constant scalar factor λ was applied to

Green’s functions to generate the scattering self-energies such that ΣR,< = λ · GR,<.

Two scattering iterations were performed with a nonlocality of up to two offdiagonal

blocks. This corresponds to two unit cells of nonlocality, or a 1.22 nm nonlocality

range. After calculations had been performed in mode space, the reduced Green’s

functions were upconverted using the same mode space basis transformation to com-

pare to the full basis Green’s functions. Figure 8.4 shows the diagonal elements of

the resulting G< matrix after 2 iterations, and figure 8.5 shows the diagonal elements

of the second offdiagonal blocks, or the diagonal shifted upward by 1280 rows. The

figures show that a very close agreement was obtained from nonlocal implementation

of mode space transformations in NEMO5, as they both show an average relative

error of less than 1%.

The next step after this simple test was to test nonlocal RGF in mode space

on an inhomogeneous nanowire with an applied bias and realistic scattering. The

device chosen for this was an InAs nanowire of dimensions 2.42 nm × 2.42 nm ×

9.69 nm with, according to figure 6.1, s = c = d = 3.23 nm. The source and drain

were n-type doped at 5 × 1019 and the central region was intrinsic InAs. A VDS =

0.3 V was applied to the drain, and VG = 0 V was applied to the gate terminal.

The original basis was a 5-orbital sp3s∗. The types of scattering included were elastic

acoustic phonon scattering, inelastic optical phonon scattering, and most importantly,

nonlocal polar optical phonon (POP) scattering. Unlike the polar optical phonon
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(a) Diagonal values of G<

(b) Relative error of diagonal values of G<

Figure 8.4. (a) Diagonal values of G< compared in full TB basis and mode
space after two λ ·G< scattering iterations and after upconversion of mode
space G<. (b) The relative error of these values
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calculations of chapter 7, this case did not include the scalar compensation factor

of reference [30], and rather calculated the nonlocal scattering self-energies directly.

Like the previous homogeneous device, two offdiagonal blocks were included in the

nonlocal RGF calculation, corresponding to a 1.21 nm nonlocality range. Figure 8.6

shows the sparsity pattern of a G< matrix with 2 offdiagonal blocks. For this test, the

viability of nonlocal RGF in mode space was tested, with the resulting current being

tested for up to 3 scattering iterations. Figure 8.7 shows the resulting currents for

mode space and full basis tight binding. An error of under 10% shows the viability

of mode space for nonlocal RGF and nonlocal scattering calculations.

Another important factor to compare is the speedup factor obtained from basis

reductions down to 110 modes from 640 degrees of freedom in sp3s∗. Table 8.1

shows the timing results from this basis reduction. Basis reductions tend to be more

significant (under 90% reductions) when the initial basis is a 10-orbital basis, so larger

speedups can be expected then. The decrease in speedups between the ballistic and

scattering iterations can easily be explained by the inclusion of scattering, which now

includes the more complex nonlocal polar optical phonon.

Table 8.1.
Single-iteration time to solution results in mode space and full basis of
nonlocal RGF with 2 offdiagonal blocks, acoustic phonon scattering, op-
tical phonon scattering, and nonlocal polar optical phonon scattering

MS time (s) full basis time (s) speedup

ballistic 58.83 1553.88 26.41

scattering 378.43 1785 4.72
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8.4 Outcomes of low-rank approximations in nonlocal scattering

The outcome of the inclusion of basis reductions to nonlocal RGF is the availability

for future work that includes nonlocal scattering which would otherwise be infeasible

in a full atomistic basis. The inclusion of basis reductions opens the possibility to

simulate scattering effects such as explicit roughness and device impurities and paves

the way for device engineering that includes these realistic effects.
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(a) Diagonal values of second offdiagonal block of G<

(b) Relative error of diagonal values of second offdiagonal block of G<

Figure 8.5. (a) Diagonal values of the second offdiagonal block (upwards
shift of 1280 rows) of G< compared in full TB basis and mode space after
two λ ·G< scattering iterations and upconversion of mode space G<. (b)
The relative error of these values
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Figure 8.6. Sparsity pattern of G< matrices with 2 offdiagonal blocks in
a 2.42 nm × 2.42 nm × 9.69 nm InAs nanowire device after upconversion
from mode space
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Figure 8.7. Differences of current for an nanowire device with nonlocal
RGF and nonlocal scattering in mode space and full basis tight binding
for various scattering iterations, with 0 being the ballistic iteration. Error
under 10% shows that mode space reductions are viable even for nonlocal
calculations
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9. CONCLUSION AND IMPACT OF THIS WORK

The overarching message of this thesis is that complex and computationally intensive

simulations may be solved in one of two ways: brute force as shown in chapters 3 and

4 through highly parallel heterogeneous computing and supercomputer simulations

that scale up to hundreds of thousands of CPU cores, and by reducing problems to a

more manageable size through low-rank approximations that maintain device physics

as shown in chapters 5 and 6 by the mode space basis reduction method.

These two ways do not have to be mutually exclusive, however, as basis reductions

allow for a more effective use of highly parallel systems for solving realistic physical

phenomena. In this thesis, this includes the exact solution of retarded scattering self-

energies and nonlocal scattering through the nonlocal RGF algorithm in a reduced

basis, which may be used for future device engineering with reasonable computational

expense.

9.1 Summary of PhD impact

Along with these features which are newly available to device engineers that use

NEMO5 for TCAD simulations, the accomplishments and impact of the PhD work

outlined in this thesis document can be summarized in the following points:

• Contributed to the development and upkeep of the atomistic electronic device

modeling code NEMO5, including compilation issues, memory leaks and per-

formance improvements

• Led the porting of NEMO5 to many environment configurations, including the

supercomputers Blue Waters and Stampede2, and portable Ubuntu builds
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• Introduced heterogeneous computing capabilities to NEMO5, which include In-

tel Xeon Phi coprocessors and general-purpose GPUs

• Tested the limits of Intel Xeon Phi capabilities and contributed to the decision

by the Intel Numerical Device Modeling group to request a homogeneous CPU-

only compute cluster in 2014 [129]

• Submitted NEMO5 scaling capabilities with scattering to the Gordon Bell Prize

competition of 2015

• Contributed to the mode space scattering implementation in NEMO5 that is

used in references [26,53,85,108,117,138]

• Supported Silvaco Inc. in porting NEMO5 to Victory Atomistic as a commercial

tool [139]

• Introduced to NEMO5 a novel implementation of the exact solution of retarded

scattering self-energies using the Kramers-Kronig relations in a reduced basis

• Introduced to NEMO5 a novel expansion of low-rank approximation capabilities

to include the nonlocal RGF method of reference [57]

• Filed patent “Method of modeling many particle systems” with T. Kubis and

J. Charles, publication number 2020-0104442, 2020

• Filed patent “System architecture and methods of determining device behav-

ior,” with T. Kubis and J. Charles, application number 16/588,046, 2020

9.2 Future work

The addition of the Kramers-Kronig relations to mode space calculations allows

for the solution of realistically-sized devices without approximations to the solution

of scattering self-energies. This will allow for modeling of scattering phenomena in

a manner more consistent with experimental results, and will be useful for testing
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devices and physics that would otherwise be too computationally intensive to model.

The extension of mode space capabilities to nonlocal scattering will also grant the

ability to simulate very computationally intensive physical phenomena that involve

long range scattering on phonons and device roughness. The new ability to per-

form these calculations should be used for device simulations with realistic physics.

The low-rank approximation framework in NEMO5 is also potentially generalizable

to a vast number of methods and models, including other basis sets and transport

of particles other than electrons, and should be used in future work to reduce the

computational burden of any otherwise impractical simulation model.
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[15] A. R. Rocha, V. M. Garćıa-Suárez, S. W. Bailey, C. J. Lambert, J. Ferrer, and
S. Sanvito, “Towards molecular spintronics.” Nature materials, vol. 4, no. 4, pp.
335–9, apr 2005.

[16] J. Guo, S. Datta, and M. Lundstrom, “Toward Multiscale Modeling of Carbon
Nanotube Transistors,” International Journal for Multiscale Computational En-
gineering, vol. 2, no. 2, pp. 257–276, 2004.

[17] S. Jin, Y. J. Park, and H. S. Min, “A three-dimensional simulation of quan-
tum transport in silicon nanowire transistor in the presence of electron-phonon
interactions,” Journal of Applied Physics, vol. 99, no. 12, pp. 1–10, 2006.

[18] D. Valencia, E. Wilson, P. Sarangapani, G. A. Valencia-Zapata, G. Klimeck,
M. Povolotskyi, and Z. Jiang, “Grain boundary resistance in nanoscale cop-
per interconnections,” in Simulation of Semiconductor Processes and Devices
(SISPAD), 2016 International Conference on. IEEE, 2016, pp. 105–108.

[19] K. C. Wang, T. K. Stanev, D. Valencia, J. Charles, A. Henning, V. K. Sangwan,
A. Lahiri, D. Mejia, P. Sarangapani, M. Povolotskyi, A. Afzalian, J. Maassen,
G. Klimeck, M. C. Hersam, L. J. Lauhon, N. P. Stern, and T. Kubis, “Control
of interlayer physics in 2H transition metal dichalcogenides,” Journal of Applied
Physics, vol. 122, no. 22, 2017.

[20] H. Ilatikhameneh, Y. Tan, B. Novakovic, G. Klimeck, R. Rahman, and J. Ap-
penzeller, “Tunnel field-effect transistors in 2-d transition metal dichalcogenide
materials,” IEEE Journal on Exploratory Solid-State Computational Devices
and Circuits, vol. 1, pp. 12–18, 2015.

[21] F. W. Chen, M. Manfra, G. Klimeck, and T. Kubis, “Nemo5: Why must we
treat topological insulator nanowires atomically?” in Proc. IWCE, 2015.

[22] T. B. Boykin, J. P. Van der Wagt, and J. S. Harris Jr, “Tight-binding model
for gaas/alas resonant-tunneling diodes,” Physical Review B, vol. 43, no. 6, p.
4777, 1991.

[23] Y. P. Tan, M. Povolotskyi, T. Kubis, T. B. Boykin, and G. Klimeck, “Tight-
binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function
resolution,” Physical Review B - Condensed Matter and Materials Physics,
vol. 92, no. 8, pp. 1–11, 2015.

[24] M. Luisier, A. Schenk, W. Fichtner, and G. Klimeck, “Atomistic simulation of
nanowires in the s p 3 d 5 s* tight-binding formalism: From boundary conditions
to strain calculations,” Physical Review B, vol. 74, no. 20, p. 205323, 2006.

[25] R. Andrawis, J. D. Bermeo, J. Charles, J. Fang, J. Fonseca, Y. He, G. Klimeck,
Z. Jiang, T. Kubis, D. Mejia, D. Lemus, M. Povolotskyi, S. A. P. Rubiano,
P. Sarangapani, and L. Zeng, “NEMO5: Achieving High-end Internode
Communication for Performance Projection Beyond Moore’s Law,” oct 2015.
[Online]. Available: http://arxiv.org/abs/1510.04686

http://arxiv.org/abs/1510.04686


105

[26] A. Afzalian, J. Huang, H. Ilatikhameneh, J. Charles, D. Lemus, J. B. Lopez,
S. P. Rubiano, T. Kubis, M. Povolotskyi, G. Klimeck et al., “Mode space
tight binding model for ultra-fast simulations of iii-v nanowire mosfets and het-
erojunction tfets,” in Computational Electronics (IWCE), 2015 International
Workshop on. IEEE, 2015, pp. 1–3.

[27] E. B. Ramayya, D. Vasileska, S. M. Goodnick, and I. Knezevic, “Electron trans-
port in silicon nanowires: The role of acoustic phonon confinement and surface
roughness scattering,” Journal of Applied Physics, vol. 104, no. 6, 2008.

[28] W. Zhang, C. Delerue, Y. M. Niquet, G. Allan, and E. Wang, “Atomistic mod-
eling of electron-phonon coupling and transport properties in n -type [110] sili-
con nanowires,” Physical Review B - Condensed Matter and Materials Physics,
vol. 82, no. 11, pp. 2–8, 2010.

[29] E. Conwell and V. F. Weisskopf, “Theory of impurity scattering in semiconduc-
tors,” Physical Review, vol. 77, no. 3, pp. 388–390, 1950.

[30] P. Sarangapani, Y. Chu, J. Charles, G. Klimeck, and T. Kubis, “Band-tail
Formation and Band-gap Narrowing Driven by Polar Optical Phonons and
Charged Impurities in Atomically Resolved III-V Semiconductors and Nanode-
vices,” Physical Review Applied, vol. 12, no. 4, p. 1, 2019.

[31] S. M. Goodnick, D. K. Ferry, C. W. Wilmsen, Z. Liliental, D. Fathy, and O. L.
Krivanek, “Surface roughness at the Si(100)-SiO2 interface,” Physical Review
B, vol. 32, no. 12, pp. 8171–8186, 1985.

[32] R. Lake, G. Klimeck, R. C. Bowen, C. Fernando, T. Moise, Y. C. Kao, and
M. Leng, “Interface roughness, polar optical phonons, and the valley current of
a resonant tunneling diode,” Superlattices and Microstructures, vol. 20, no. 3,
pp. 279–285, 1996.

[33] J. W. Harrison and J. R. Hauser, “Alloy scattering in ternary III-V compounds,”
Physical Review B, vol. 13, no. 12, pp. 5347–5350, 1976.

[34] Y. He, T. Kubis, M. Povolotskyi, J. Fonseca, and G. Klimeck, “Quantum trans-
port in NEMO5: Algorithm improvements and high performance implementa-
tion,” International Conference on Simulation of Semiconductor Processes and
Devices, SISPAD, no. 13, pp. 361–364, 2014.

[35] T. A. Ameen, H. Ilatikhameneh, P. Fay, A. Seabaugh, R. Rahman, and
G. Klimeck, “Alloy engineered nitride tunneling field-effect transistor: A solu-
tion for the challenge of heterojunction tfets,” IEEE Transactions on Electron
Devices, vol. 66, no. 1, pp. 736–742, 2019.

[36] D. J. Griffiths and D. F. Schroeter, Introduction to Quantum Mechanics, 3rd ed.
Cambridge University Press, 2018.

[37] M. Luisier and G. Klimeck, “Simulation of nanowire tunneling transistors: From
the Wentzel-Kramers- Brillouin approximation to full-band phonon-assisted
tunneling,” Journal of Applied Physics, vol. 107, no. 8, 2010.

[38] H. Ilatikhameneh, G. Klimeck, and R. Rahman, “Can Homojunction Tunnel
FETs Scale below 10 nm?” IEEE Electron Device Letters, vol. 37, no. 1, pp.
115–118, 2016.



106

[39] M. A. Lampert, “Mobile and immobile effective-mass-particle complexes in non-
metallic solids,” Physical Review Letters, vol. 1, no. 12, pp. 450–453, 1958.

[40] G. Klimeck, R. C. Bowen, T. B. Boykin, C. Salazar-Lazaro, T. A. Cwik, and
A. Stoica, “Si tight-binding parameters from genetic algorithm fitting,” Super-
lattices and Microstructures, vol. 27, no. 2, pp. 77–88, 2000.

[41] D. M. York and W. Yang, “A chemical potential equalization method for molec-
ular simulations,” The Journal of Chemical Physics, vol. 104, no. 1, p. 159,
1996.

[42] T. B. Boykin, G. Klimeck, R. C. Bowen, and R. Lake, “Effective-mass repro-
ducibility of the nearest-neighbor sp3s* models: Analytic results,” Physical Re-
view B - Condensed Matter and Materials Physics, vol. 56, no. 7, pp. 4102–4107,
1997.

[43] W. J. Hehre, “Ab Initio Molecular Orbital Theory,” Accounts of Chemical Re-
search, vol. 9, no. 11, pp. 399–406, 1976.

[44] S. Kuzmin and W. W. Duley, “Ab initio Calculations of Some Electronic and
Vibrational Properties of Molecules Based on Multi-Layered Stacks of Cyclic
C 6,” Fullerenes, Nanotubes and Carbon Nanostructures, vol. 20, no. 8, pp.
730–736, nov 2012.

[45] M. Shin, W. J. Jeong, J. Lee, and J. Seo, “First principles based NEGF simu-
lations of Si nanowire FETs,” International Conference on Simulation of Semi-
conductor Processes and Devices, SISPAD, pp. 217–219, 2016.

[46] P. Itskowitz and M. L. Berkowitz, “Chemical potential equalization principle:
Direct approach from density functional theory,” Journal of Physical Chemistry
A, vol. 101, no. 31, pp. 5687–5691, 1997.

[47] N. Marzari and D. Vanderbilt, “Maximally localized generalized Wannier func-
tions for composite energy bands,” Physical Review B, vol. 56, no. 20, pp.
12 847–12 865, nov 1997.

[48] I. Souza, N. Marzari, and D. Vanderbilt, “Maximally localized Wannier func-
tions for entangled energy bands,” Physical Review B, vol. 65, no. 3, p. 035109,
2001.
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