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ABSTRACT

Gohil, Karan N. M.S., Purdue University, May 2020. Reduced-order Modeling And
Design Optimization Of Metal-PCM Composite Heat Exchangers. Major Professor:
Neera Jain, School of Mechanical Engineering.

Thermal energy storage (TES) modules are specifically designed to respond to

transient thermal loading. Their dynamic response depends on the overall structure

of the module, including module geometry and dimensions, the internal spatial dis-

tribution of phase change material (PCM) and conductive heat-spreading elements,

and the thermophysical properties of the different materials composing the module.

However, due to the complexity of analyzing a system’s dynamic thermal response to

transient input signals, optimal design of a TES module for a particular application

is challenging. Conventional design approaches are limited by (1) the computational

cost associated with high fidelity simulation of heat transfer in nonlinear systems

undergoing a phase transition and (2) the lack of model integration with robust opti-

mization tools. To overcome these challenges, I derive reduced-order dynamic models

of two different metal-PCM composite TES modules and validate them against a high

fidelity CFD model. Through simulation and validation of both turbulent and lami-

nar flow cases, I demonstrate the accuracy of the reduced-order models in predicting,

both spatially and temporally, the evolution of the dynamic model states and other

system variables of interest, such as PCM melt fraction. The validated models are

used to conduct univariate and bivariate parametric studies to understand the effects

of various design parameters on different performance metrics. Finally, a case study

is presented in which the models are used to conduct detailed design optimization for

the two HX geometries.
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1. INTRODUCTION

Transient heating in high power electronic and optical systems results in ephemeral

temperature rises which can damage components. Given that a cooling system’s size

and complexity generally scales with the required heat rejection rate, thermal energy

storage (TES) heat exchangers (HX), or modules, which commonly utilize phase

change materials (PCMs) to absorb heat due to the latent heat of melting, offer

a compact and efficient alternative to buffer thermal transients. TES modules are

specifically designed to operate during thermal transients, where the dynamic thermal

response of the module under a transient thermal load is of primary interest. This

dynamic response depends on the overall structure of the module, including module

geometry and dimensions, the internal spatial distribution of PCM and conductive

heat-spreading elements, and the thermophysical properties of the different materials

composing the module. These structural attributes interact with a transient heat

pulse and affect the dynamic thermal response of the module. However, due to

the complexity of analyzing a system’s dynamic thermal response to transient input

signals, optimal design of a TES module for a particular application is challenging.

Traditional approaches to design are limited by (1) the computational cost associated

with high fidelity simulation of heat transfer in nonlinear systems undergoing a phase

transition and by (2) the lack of model integration with robust optimization tools.

1.1 Literature Review

Several researchers have modeled TES modules with integrated PCM using CFD

software [1–4], while others have used reduced-order modeling techniques [5–11]. Ta-
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ble 1.1 summarizes work on metal heat exchangers with embedded or integrated PCM,

to be referred to as composite phase change material (CPCM) TES modules from here

onward. The authors of [5] present a reduced-order model for a cylindrical tube type

heat exchanger having a layer of pure PCM (without any metal fins in the layer)

surrounding the fluid channel. The authors use a grid of 51 × 19 (length × axial

direction) to simulate the reduced-order model and present a parametric study where

they assess the effects of the outer radius of the PCM layer, the mass flow rate of the

working fluid, and the inlet temperature of the working fluid on performance metrics

including the energy stored in the PCM layer, the working fluid outlet temperature,

the rate of heat transfer between the working fluid and the PCM layer, and the melt

fraction of PCM. The theoretical model is used to predict the transient behavior of

the cylindrical tube HX by taking into account the effect of natural convection of

the melt layer of the PCM. However, the authors do not discuss the use of numerical

optimization techniques for design optimization using their model. Similarly, the au-

thors of [8] develop a reduced-order model for a cylindrical tube heat exchanger with

a pure PCM layer surrounding the fluid channel. They simulate the reduced-order

model using a grid of 100 × 40 and study the effects of fluid temperature and fluid

inlet mass flow rate on the PCM melting time. In [9], the authors develop a CFD

model of a flat plate metal-PCM heat exchanger and assume a uniform heat flux

condition to study the effect of melt convection on the thermal performance of the

heat exchanger. The authors consider a grid of size 5 × 23 for the PCM section and a

grid of 3 × 23 for the metal fin. Similarly, the authors of [11] develop a reduced-order

model for a PCM-based pin fin heat sink. They also use a uniform heat flux condi-

tion and perform a design optimization that maximizes the heat sink operation time

using the reduced-order model. One limitation of these models is that integration of

the TES fluid channel in a system-level simulation may not necessarily result in a
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uniform heat flux across the fluid-metal interface, thereby precluding the model from

being readily integrated with other thermal-fluid components and architectures. The

authors of [3] develop a CFD model for a pin fin matrix heat sink and train a neural

network to find input-output correlations between the design parameters and the per-

formance metrics. The performance metrics considered in the paper are charging and

discharging time of the heat sink. However, one limitation of this work is that using

a neural network to find an optimal solution does not guarantee a global optimum.

Moreover, they use a constant power supply to melt the CPCM layer; in other words,

the dynamics of the heat transfer between the fluid channel and metal separator are

not modeled.

In summary, little work has been done to consider a reduced-order model of a

metal-PCM heat exchanger for a system-level integration in a dynamic optimization

problem that optimizes component design for dynamic performance metrics. Simi-

larly, no work considers spatial variation of metal fraction within the CPCM layer as

a parameter for a dynamic optimization problem.

1.2 Research Contribution

In this thesis, I derive and validate a reduced-order dynamic model of a thermal

energy storage module for the purpose of design optimization with potential for inte-

gration into larger thermal system architectures. I specifically model a heat exchanger

with PCM embedded between closely spaced metal fins, and adapt the model for two

common HX geometries—an extended flat plate HX and a cylindrical tube HX. The

validation is conducted against high-fidelity CFD models created in ANSYS Fluent

for the same geometries. I explicitly assess the validity of each approximation that

was made in the reduced-order model to improve overall computational efficiency,

through a series of comparative validation runs. Through simulation and validation
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of both turbulent and laminar flow cases, I demonstrate the accuracy of the reduced-

order model in predicting, both spatially and temporally, the evolution of the dynamic

model states and other system variables of interest, such as critical heat fluxes. The

validated models are then exercised for the purpose of module design, both through a

set of parametric studies as well as numerical optimization considering several design

variables at once.

Table 1.1. : Literature review summary

Experimental
Validation

CFD
Model

Reduced
Order Model

System Level
Integration

Dynamic
Optimization

Spatial Variation
of Metal Fraction

Lacroix et al. (1993) [5] X X X
Trp et al. (2006) [6] X X X
Nagose et al. (2008) [7] X X
Wang et al. (2008) [1] X X
Medrano et al. (2009) [12] X
Tao and He (2011) [8] X X
Saha and Dutta (2011) [9] X X
Hosseinizadeh et al. (2011) [2] X X X
Tao et al. (2014) [10] X X
Srikanth et al. (2015) [3] X X X
Pakrouh et al. (2015) [11] X X X
Srivatsa et al. (2016) [4] X X X
Srikanth and Balaji (2017) [13] X X

1.3 Organisation of Thesis

The remainder of the thesis is organized as follows. In Section 2, I present the

governing equations of the reduced-order CPCM HX model. In Section 3, I discuss

the high fidelity model used as a benchmark for validation and present validation

results for both laminar and turbulent flow regimes for both the geometries. In

Section 4, I present a parametric study using the reduced-order model to explore the

effect of individual design variables on performance metrics of interest. In Section 5,

I demonstrate the use of the model component design optimization using numerical

optimization techniques. Then, I conclude the thesis in Section 6.



5

2. REDUCED-ORDER MODEL

A reduced-order model for two different geometries of metal-PCM heat exchangers

are derived in this chapter.

2.1 System Description

Here, two heat exchanger geometries are considered: cylindrical tube and extended

plate. Both heat exchangers (HXs) include a heat-transfer fluid channel surrounded

by a CPCM layer. The cylindrical heat exchanger geometry consists of a single

cylindrical fluid channel surrounded by a metal wall, which is in turn surrounded by

a composite metal fin/PCM material structure in a cylindrical configuration, as shown

in Figure 2.1. The metal fins, of constant thickness, extend perpendicular towards

the axial direction of the fluid channel, separating channels of PCM material.

Figure 2.1. : Cylindrical tube simulation geometry with metal fins and PCM embed-
ded between the metal fins.

The extended flat-plate heat exchanger geometry consists of a flat rectangular

channel projecting infinitely out of the plane, between two flat metal walls, which are

in turn surrounded by two flat slabs of composite metal fin/PCM material structures
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as shown in Figure 2.2. Both heat exchangers have a single inlet and outlet for

carrying the working fluid, which is assumed to be water in this thesis. The pipe and

plate walls are composed of aluminum. The CPCM layer is composed of aluminum

fins fused to either the cylindrical tube or the flat plate for the appropriate geometry

with PCM material filling the space between adjacent fins. The effective volume

fraction of PCM in the CPCM layer is calculated as the ratio of the axial thickness

of each PCM layer, to the axial pitch (length from the edge of an aluminum fin to

the identical edge of the next aluminum fin).

Figure 2.2. : Extended plate simulation geometry showing metal fins and PCM em-
bedded between the metal fins.

2.2 Modeling Approximations

The following approximations were made while deriving the dynamic reduced-

order model for the two heat exchanger geometries.

1. Use of empirical heat transfer correlations. Heat transfer between the

fluid channels and the metal wall or tube can be derived from empirical heat

transfer correlations, given knowledge of the fluid flow conditions and channel

geometry.

2. Use of effective composites properties. Rather than treat the composite

PCM layer (which is composed of closely inter-spaced metal fins and PCM lay-

ers) as two separate materials, with heat transfer from one to the other, I adopt

an ‘effective medium approximation’ and derive material properties from the
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volume fraction of the phases present. This approximation has previously been

demonstrated to hold well if the spacing between the conductive components is

below a critical length scale (< 1 mm) [14].

3. Control volume discretization. The properties and states of a given control

volume are constant spatially within that control volume (i.e. lumped) and the

entire control volume can be described by a point at the center of that control

volume. The selection of the appropriate number of vertical and axial control

volumes represents a trade-off between computational complexity and model

accuracy.

4. Negligible gravitational effects in PCM layer. There is no convective

heat transfer within the liquid PCM due to buoyancy-driven convection (i.e.,

gravitational effects are ignored). This approximation generally holds when: 1)

the rate of conductive heat transfer is high, due to the large volume fraction of

conductive metal, and 2) convection within the fluid volume is constrained due

to the close spacing of the lamellar fins [15].

In addition to these four major approximations, I assume that the fluid is incom-

pressible and that the outer boundary layer of the heat exchanger volume is perfectly

adiabatic.

2.3 Governing Equations

For the extended plate heat exchanger, the plane through the axis of the fluid

channel parallel to the flow, and into the plane (of page), divides the geometry into

two symmetrical halves as shown in Figure 2.3. The plane is assumed to be an

adiabatic boundary and using the finite volume method, the problem is defined using

the geometry shown in Figure 2.4.
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fluid 

channel

PCM

metal fin

modeled system

Figure 2.3. : Extended plate simulation geometry showing the geometry considered
to develop a reduced-order model using the finite volume method.

fluid channel

CPCM layer

metal plate

hot 
fluid

cold 
fluid

adiabatic boundary condition

ℎ𝑓

ℎ𝑝

ℎ𝑐

𝐿

adiabatic boundary condition

Figure 2.4. : Reduced-order modeling schematic of the flat plate heat exchanger
showing the control volumes of the fluid channel, the metal plate and the CPCM
layer.

For the cylindrical tube HX, the finite volume method is used to divide the geom-

etry into different sections of the tube along the fluid flow and to divide the CPCM

layer geometry into different sub-layers stacked on each other as shown in Figure 2.5.



9

adiabatic boundary condition
CPCM sub-layers

metal tube

fluid channel

hot fluid

cold 
fluid

L

𝑟𝑓

𝑟𝑝 𝑟𝑐

Figure 2.5. : Reduced-order modeling schematic of the cylindrical tube heat exchanger
showing the control volumes of the fluid channel, the metal tube and the CPCM layer.

2.3.1 Model Derivation

The governing equations for the reduced-order model for the two geometries are

derived by applying mass and energy conservation to each control volume. The model

equations are of the same form for the two geometries, with the only exception being

the way in which the different thermal resistance values are calculated. Therefore,

the model equations derived below are valid for both the geometries, the extended

flat plate geometry and the cylindrical tube geometry.

Equation 2.1 describes the rate of change of energy contained within the fluid

flowing through the fluid channel as shown in Figure 2.6. Here, Q̇f
j represents the

rate of change of energy contained within the jth control volume of the fluid, Q̇p→f
j

represents the rate of energy flow from the metal plate/tube to the fluid control

volume and Q̇flow
j represents the rate of energy flow to the fluid control volume due

to the mass transfer.
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𝑅𝑓,𝑗
𝑟

𝑅𝑝,𝑗
𝑟

𝑗𝑡ℎ control 
volume of 
fluid

(𝑗 − 1)𝑡ℎ

control volume 
of fluid

𝑗𝑡ℎ control volume 
of metal plate

adiabatic boundary condition

𝐴𝑓
𝐿

𝐴𝑝
𝐿

𝐴𝑟

Figure 2.6. : Conductive and convective heat transfer between the fluid and the metal
plate/tube control volumes.

Q̇f
j = Q̇p→f

j + Q̇flow
j =⇒ mfc

f
p

dT f
j

dt
= Q̇p→f

j + Q̇flow
j (2.1)

Each term is expanded in Equation 2.2. The heat flux through the interface

between the fluid and the metal plate/tube depends on the value of the convective

heat transfer coefficient which is calculated using existing Nusselt number correlations

for different types of flow regimes. For the first control volume of the fluid, T f
j−1 will

be equal to T f
inlet. For the last control volume of the fluid, T f

j+1 will be equal to T f
j as

there is no heat transfer process between the last control volume of the fluid in the

fluid channel and the fluid outside the outlet of the fluid channel.

mfc
f
p

dT f
j

dt
=

1

Rr
f,j +Rr

p−,j
(T p

j − T
f
j ) + ṁfc

f
p(T f

j−1 − T
f
j ) (2.2)

The thermal resistance Rr
f,j is a function of the convection coefficient αf,j for the

jth control volume of the fluid and the area of contact between the fluid control

volume and the metal plate/tube control volume Ar
f,p. The length Lchar in Equation

2.3 is the characteristic length of the fluid channel.

Rr
f,j =

1

αf,jAr
f,p

, αf,j = Nuj
kf
Lchar

(2.3)
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The thermal resistance Rr
p−,j, given by equation 2.4, is a function of the height

of the metal plate/tube hp, the conduction coefficient of the metal plate/tube krp and

the area of the surface parallel to the fluid-plate/tube interface Ar
p− at a distance

hp/4 from the fluid-plate/tube interface, defined away from the fluid flow axis.

Rr
p−,j =

hp
2krpA

r
p−

(2.4)

The convective heat transfer coefficient is calculated using the Nusselt number,

as shown in Equation 2.8, which in turn is calculated using existing Nusselt number

correlations for different types of flow regimes [16]. The Nusselt number correlation

for laminar flow is shown in Equation 2.5 where Nu0 is equal to 5.39 for the extended

plate geometry and is equal to 3.66 for the cylindrical tube geometry. The Nusselt

number correlation for turbulent flow is shown in Equation 2.6. The friction factor

f is used to calculate the Nusselt number for turbulent flow as shown in Equation

2.7 [17].

Nu = Nu0 +
0.0668

(
D
L

)
ReDPr

1 + 0.04
((

D
L

)
ReDPr

)2/3 (2.5)

Nu =

(
f
8

)
(ReD − 1000)Pr

1 + 12.7
(
f
8

) 1
2

(
Pr

2
3 − 1

) (2.6)

f = 8

( 8

Re

)12

+
1((

−2.2113 ln
(

7
Re

))16
+
(
37530
Re

)16)1.5


1/12

(2.7)

αf,j = Nuj
kf
Lchar

(2.8)

Equation 2.9 describes the rate of change of energy contained within the metal

plate/tube as shown in Figure 2.7, which is expanded as shown in Equation 2.10. The



12

rate of change of energy contained within the metal plate/tube is a function of the

heat transferred from the fluid to the metal plate/tube and of the heat transferred

from the metal plate/tube to the first sub-layer of the PCM.

𝑅𝑓,𝑗
𝑟

𝑅𝑝,𝑗
𝑟

𝑗𝑡ℎ control 
volume of fluid

adiabatic boundary condition

𝐴𝑝
𝐿

𝐴𝑟

𝑅𝑝,𝑗
𝑟

𝑅𝑝,𝑗
𝐿

𝑅𝑝,𝑗
𝐿

𝑅𝑝,𝑗+1
𝐿𝑅𝑝,𝑗−1

𝐿

𝑅𝑐1,𝑗
𝑟

𝐴𝑐1
𝐿

(𝑗 + 1)𝑡ℎ

control volume 
of metal plate

𝑗𝑡ℎ control volume 
of CPCM layer 1

(𝑗 − 1)𝑡ℎ

control volume 
of metal plate

Figure 2.7. : Conductive and convective heat transfer between the metal plate/tube
and the fluid and between the metal plate/tube and the CPCM sub-layer 1.

mpc
p
p

dT p
j

dt
= Q̇f→p

j + Q̇c1→p
j + Q̇p

j−1→j + Q̇p
j+1→j (2.9)

mpc
p
p

dT p
j

dt
=

1

Rr
f,j +Rr

p−,j
(T f

j − T
p
j ) +

1

Rr
p+,j +Rr

c1−,j
(T c1

j − T
p
j )

+
1

RL
p,j−1 +RL

p,j

(T p
j−1 − T

p
j ) +

1

RL
p,j +RL

p,j+1

(T p
j+1 − T

p
j ) (2.10)

I assume adiabatic boundaries on the left and right side of the metal plate/tube.

The thermal resistance RL
p,j is a function of the length of the jth control volume of

the metal plate/tube l, the thermal conductivity of the jth control volume of the

metal plate/tube kLp and the area of contact between the jth control volume of metal

plate/tube and its neighbouring control volumes AL
p . The thermal resistance RL

p,j−1
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for j = 1 and the thermal resistance RL
p,j+1 for j = nL, nL being the total number of

metal plate/tube control volumes, are taken to be infinitely large because there is no

heat exchange through the outer boundaries of the two HX geometries.

RL
p,j =

l

2kLpA
L
p

(2.11)

The thermal resistance Rr
p+,j, shown in Equation 2.12, is a function of the height

of the metal plate/tube hp, the conduction coefficient of the metal plate/tube krp and

the area of the surface parallel to the fluid-plate/tube interface at a distance of hp/4

from the center of the plate/tube Ar
p+, away from the fluid flow axis.

Rr
p+,j =

hp
2krpA

r
p+

(2.12)

Similarly, Rr
c1−,j, shown in Equation 2.13 is a function of the height of the first

CPCM sub-layer hc1, the conduction coefficient of the CPCM sub-layer krc1,j, and the

area of the surface parallel to the fluid-plate/tube interface at a distance of hc1/4

from the plate-CPCM layer interface Ar
c1−, away from the fluid flow axis.

Rr
c1−,j =

hc1
2krc1,jA

r
c1−

(2.13)

To be consistent with the geometry and fin configuration depicted in Figure 2.2,

the equivalent thermal conductivity for vertical and lateral heat transfer are calculated

using Equations 2.14 and 2.15, respectively. Here, φ is the volume fraction of metal

in the CPCM layer.

krci = φkmetal + (1− φ)kpcm (2.14)

kLci =
1

φ/kmetal + (1− φ)/kpcm
(2.15)
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The rate of change of energy contained within the first sub-layer of the CPCM is

given by Equation 2.16. Each term is expanded as shown in Equation 2.17. This is

similar to Equation 2.10 in that it also assumes an adiabatic boundary condition on

both the ends.

𝑗𝑡ℎ control volume 
of metal plate

𝐴𝑝
𝐿

𝑅𝑝,𝑗
𝑟

𝑅𝑐1,𝑗
𝑟

𝐴𝑐1
𝐿

(𝑗 + 1)𝑡ℎ

control volume 
of CPCM layer 1

𝑗𝑡ℎ control volume 
of CPCM layer 2

(𝑗 − 1)𝑡ℎ control 
volume of CPCM 

layer 1

𝑅𝑐1,𝑗
𝑟

𝑅𝑐1,𝑗
𝐿

𝑅𝑐1,𝑗
𝐿

𝑅𝑐1,𝑗+1
𝐿𝑅𝑐1,𝑗−1

𝐿

𝑅𝑐2,𝑗
𝑟𝐴𝑐2

𝐿

𝐴𝑟

Figure 2.8. : Conductive heat transfer between metal plate/tube and the CPCM
sub-layer 1 and between the CPCM sub-layer 1 and sub-layer 2.

mc1c
c1
p,j

dT c1
j

dt
= Q̇p→c1

j + Q̇c2→c1
j + Q̇c1

j−1→j + Q̇c1
j+1→j (2.16)

mc1c
c1
p,j

dT c1
j

dt
=

1

Rr
p+,j +Rr

c1−,j
(T p

j − T c1
j ) +

1

Rr
c1+,j +Rr

c2−,j
(T c2

j − T c1
j )

+
1

RL
c1,j−1 +RL

c1,j

(T c1
j−1 − T c1

j ) +
1

RL
c1,j +RL

c1,j+1

(T c1
j+1 − T c1

j ) (2.17)

The thermal resistance RL
c1,j, shown in Equation 2.18, is a function of the length

of the jth control volume of the CPCM sub-layer 1 l, the thermal conductivity of the

jth control volume of CPCM sub-layer 1 kLc1,j and the area of contact between the

jth control volume of CPCM sub-layer 1 and its neighbouring control volumes AL
c1.
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RL
c1,j =

l

2kLc1,jA
L
c1

(2.18)

The thermal resistance Rr
c1+,j, given by Equation 2.19, is a function of the height

of the first CPCM sub-layer hc1, the conduction coefficient of CPCM sub-layer krc1,j

and the area of the surface parallel to the fluid-plate/tube interface at a distance of

hc1/4 from the center of CPCM sub-layer 1 Ar
c1+, away from the fluid flow axis.

Rr
c1+,j =

hc1
2krc1,jA

r
c1+

(2.19)

Similarly, Rr
c2−,j, given by Equation 2.20, is a function of the height of CPCM

sub-layer 2 hc2, the conduction coefficient of CPCM sub-layer krc2,j, and the area of

the surface parallel to the fluid-plate/tube interface at a distance of hc2/4 from the

interface between CPCM sub-layers 1 and 2 Ar
c2−, away from the fluid flow axis.

Rr
c2−,j =

hc2
2krc2,jA

r
c2−

(2.20)

Similarly, Equation 2.21 is expanded into Equation 2.22 and describes the rate of

change of energy contained within the second sub-layer of the CPCM. This equation

will be repeated nr − 2 times, nr being the total number of the CPCM sub-layers,

and is a function of the heat transfer from two layers directly in contact with layer in

consideration.
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𝑗𝑡ℎ control volume of 
CPCM layer 1

𝐴𝑐1
𝐿

𝑅𝑐1,𝑗
𝑟

𝑅𝑐2,𝑗
𝑟

𝐴𝑐2
𝐿

(𝑗 + 1)𝑡ℎ control 
volume of CPCM 
layer 2

𝑗𝑡ℎ control volume of 
CPCM layer 3

(𝑗 − 1)𝑡ℎ

control volume 
of CPCM layer 2

𝑅𝑐2,𝑗
𝑟

𝑅𝑐2,𝑗
𝐿

𝑅𝑐2,𝑗
𝐿

𝑅𝑐2,𝑗+1
𝐿𝑅𝑐2,𝑗−1

𝐿

𝑅𝑐3,𝑗
𝑟

𝐴𝑐3
𝐿

𝐴𝑟

Figure 2.9. : Conductive heat transfer between CPCM sub-layer 1 and 2 and between
CPCM sub-layer 2 and 3.

mc2c
c2
p,j

dT c2
j

dt
= Q̇c1→c2

j + Q̇c3→c2
j + Q̇c2

j−1→j + Q̇c2
j+1→j (2.21)

mc2c
c2
p,j

dT c2
j

dt
=

1

Rr
c1+,j +Rr

c2−,j
(T c1

j − T c2
j ) +

1

Rr
c2+,j +Rr

c3−,j
(T c3

j − T c2
j )

+
1

RL
c2,j−1 +RL

c2,j

(T c2
j−1 − T c2

j ) +
1

RL
c2,j +RL

c2,j+1

(T c2
j+1 − T c2

j ) (2.22)

The thermal resistance RL
c2,j, given by Equation 2.23, is a function of the length

of the jth control volume of the CPCM sub-layer 2 l, the thermal conductivity of the

jth control volume of CPCM sub-layer 2 kLc2,j and the area of contact between the

jth control volume of CPCM sub-layer 2 and its neighbouring control volumes AL
c2.

RL
c2,j =

l

2kLc2,jA
L
c2

(2.23)
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The thermal resistance Rr
c2+,j, given by Equation 2.24, is a function of the height

of CPCM sub-layer 2 hc2, the conduction coefficient of the CPCM sub-layer krc2,j and

the area of the surface parallel to the fluid-plate/tube interface at a distance of hc2/4

from the center of CPCM sub-layer 2 Ar
c2+, away from the fluid flow axis.

Rr
c2+,j =

hc2
2krc2,jA

r
c2+

(2.24)

Similarly, Rr
c3−,j, given by Equation 2.25, is a function of the height of CPCM

sub-layer 3 hc3, the conduction coefficient of the CPCM sub-layer krc3,j and the area

of the surface parallel to the fluid-plate/tube interface at a distance of hc3/4 from the

interface between CPCM sub-layers 2 and 3 Ar
c3−, away from the fluid flow axis.

Rr
c3−,j =

hc3
2krc3,jA

r
c3−

(2.25)

The model equations for the 3rd to the (nL − 1)th sub-layer of the CPCM will

be similar to that of the 2nd sub-layer because the rate of change of the energy

contained within any of these sub-layers will be a function of the heat transfer from

the neighbouring sub-layers of the CPCM.
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𝑗𝑡ℎ control volume of 
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𝐿
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Figure 2.10. : Conductive heat transfer between the CPCM sub-layer k-1 and layer
k and between the CPCM sub-layer k and sub-layer k+1.

mckc
ck
p,j

dT ck
j

dt
= Q̇

c(k−1)→ck
j + Q̇

c(k+1)→ck
j + Q̇ck

j−1→j + Q̇ck
j+1→j (2.26)

mckc
ck
p,j

dT ck
j

dt
=

1

Rr
c(k−1)+,j +Rr

ck−,j
(T

c(k−1)
j −T ck

j )+
1

Rr
ck+,j +Rr

c(k+1)−,j
(T

c(k+1)
j −T ck

j )

+
1

RL
ck,j−1 +RL

ck,j

(T ck
j−1 − T ck

j ) +
1

RL
ck,j +RL

ck,j+1

(T ck
j+1 − T ck

j ) (2.27)

The thermal resistance RL
ck,j, given by Equation 2.28, is a function of the length of

the jth control volume of the CPCM sub-layer k, the thermal conductivity of the jth

control volume of the CPCM sub-layer k (kLck,j) and the area of contact between the

jth control volume of the CPCM sub-layer k and its neighbouring control volumes

AL
ck.

RL
ck,j =

l

2kLck,jA
L
ck

(2.28)



19

The thermal resistance Rr
ck+,j, given by Equation 2.29, is a function of the height

of the CPCM sub-layer k (hck), the conduction coefficient of the CPCM sub-layer

krck,j and the area of the surface parallel to the fluid-plate/tube interface at a distance

of hck/4 from the center of the CPCM sub-layer k (Ar
ck+), away from the fluid flow

axis.

Rr
ck+,j =

hck
2krck,jA

r
ck+

(2.29)

Similarly, Rr
c(k+1)−,j, given by Equation 2.30, is a function of the height of the

CPCM sub-layer k+1 (hc(k+1)), the conduction coefficient of that CPCM sub-layer

krc(k+1),j and the area of the surface parallel to the fluid-plate/tube interface at a

distance of hc(k+1)/4 from the interface between the CPCM sub-layers k and k+1

(Ar
c(k+1)−), away from the fluid flow axis.

Rr
c(k+1)−,j =

hc(k+1)

2krc(k+1),jA
r
c(k+1)−

(2.30)

Equation 2.31 describes the rate of change of energy contained within the nrth

sub-layer of the CPCM, which is expanded into Equation 2.32. It is a function of the

heat transfer from the previous layer only as the boundary above the nrth layer is

assumed to be adiabatic.
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𝑅𝑐𝑛𝑟,𝑗
𝑟
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adiabatic boundary condition

Figure 2.11. : Conductive heat transfer between the CPCM sub-layer nr-1 and nr.

mcnrc
cnr
p,j

dT cnr
j

dt
= Q̇

c(nr−1)→cnr

j + Q̇cnr
j−1→j + Q̇cnr

j+1→j (2.31)

mcnrc
cnr
p,j

dT cnr
j

dt
=

1

Rr
c(nr−1)+,j +Rr

cnr−,j
(T

c(nr−1)
j − T cnr

j )

+
1

RL
cnr,j−1 +RL

cnr,j

(T cnr
j−1 − T

cnr
j ) +

1

RL
cnr,j

+RL
cnr,j+1

(T cnr
j+1 − T

cnr
j ) (2.32)

The thermal resistance RL
cnr,j, given by Equation 2.33, is a function of the length of

the jth control volume of the CPCM sub-layer nr, the thermal conductivity of the jth

control volume of the CPCM sub-layer nr (kLcnr,j) and the area of contact between the

jth control volume of the CPCM sub-layer nr and its neighbouring control volumes

AL
cnr

.

RL
cnr,j =

l

2kLcnr,j
AL

cnr

(2.33)
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2.3.2 Matrix Formulation

Equations 2.2 through 2.33 are derived using the mass and energy balance equa-

tions for a jth control volume of the fluid, the metal plate/tube and the CPCM layer.

Now, I combine the equations for j = 1, 2, 3..., nL, thus eliminating the subscript j

used for tracking the control volume location in the horizontal direction. Equation

2.34 defines the mass matrix for the fluid, the plate/tube and the different sub-layers

of the CPCM.

Mi =



mi 0 0 . . . 0

0 mi 0 . . . 0

0 0 mi . . . 0

...
...

...
. . .

...

0 0 0 . . . mi


, i = f, p, c1, c2, . . . , cnr (2.34)

Equation 2.35 defines the specific heat matrix for the fluid, the plate/tube and

the different sub-layers of the CPCM.

Ci
P =



cip,1 0 0 . . . 0

0 cip,2 0 . . . 0

0 0 cip,3 . . . 0

...
...

...
. . .

...

0 0 0 . . . cip,nL


, i = f, p, c1, c2, . . . , cnr (2.35)

Equation 2.36 defines the temperature vector for the fluid, the plate/tube and the

different sub-layers of the CPCM.
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Ti =



T i
1

T i
2

T i
3

...

T i
nL


, i = f, p, c1, c2, . . . , cnr (2.36)

Equation 2.37 defines the matrix containing all the coefficients of the term (T p
j −

T f
j ) in Equation 2.2 for j = 1, 2, 3..., nL.

Zr
f =



1
Rr

f,1+Rr
p−,1

0 0 . . . 0

0 1
Rr

f,2+Rr
p−,2

0 . . . 0

0 0 1
Rr

f,3+Rr
p−,3

. . . 0

...
...

...
. . .

...

0 0 0 . . . 1
Rr

f,nL
+Rr

p−,nL


(2.37)

Equation 2.38 defines the matrix containing all the coefficients of the term (T c1
j −

T p
j ) in Equation 2.10 for j = 1, 2, 3..., nL.

Zr
p =



1
Rr

p+,1+Rr
c1−,1

0 0 . . . 0

0 1
Rr

p+,2+Rr
c1−,2

0 . . . 0

0 0 1
Rr

p+,3+Rr
c1−,3

. . . 0

...
...

...
...

. . .
...

0 0 0 . . . 1
Rr

p+,nL
+Rr

c1−,nL


(2.38)

Equation 2.39 defines the matrix containing the coefficients of the term (T p
j−1−T

p
j )

in Equation 2.10 for j = 1, 2, 3..., nL.
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ZL
p− =



1
RL

p,0+RL
p,1

0 0 . . . 0

0 1
RL

p,1+RL
p,2

0 . . . 0

0 0 1
RL

p,2+RL
p,3

. . . 0

...
...

...
. . .

...

0 0 0 . . . 1
RL

p,nL−1+RL
p,nL


(2.39)

Equation 2.40 defines the matrix containing all the coefficients of the term (T p
j+1−

T p
j ) in Equation 2.10 for j = 1, 2, 3..., nL.

ZL
p+ =



1
RL

p,1+RL
p,2

0 0 . . . 0

0 1
RL

p,2+RL
p,3

0 . . . 0

0 0 1
RL

p,3+RL
p,4

. . . 0

...
...

...
. . .

...

0 0 0 . . . 1
RL

p,nL
+RL

p,nL+1


(2.40)

Equation 2.41 defines the matrix containing all the coefficients of the term (T c2
j −

T c1
j ) in Equation 2.17 for j = 1, 2, 3..., nL.

Zr
c1 =



1
Rr

c1+,1+Rr
c2−,1

0 0 . . . 0

0 1
Rr

c1+,2+Rr
c2−,2

0 . . . 0

0 0 1
Rr

c1+,3+Rr
c2−,3

. . . 0

...
...

...
. . .

...

0 0 0 . . . 1
Rr

c1+,nL
+Rr

c2−,nL


(2.41)

Equation 2.42 defines the matrix containing all the coefficients of the term (T c1
j−1−

T c1
j ) in Equation 2.17 for j = 1, 2, 3..., nL.
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ZL
c1− =



1
RL

c1,0+RL
c1,1

0 0 . . . 0

0 1
RL

c1,1+RL
c1,2

0 . . . 0

0 0 1
RL

c1,2+RL
c1,3

. . . 0

...
...

...
. . .

...

0 0 0 . . . 1
RL

c1,nL−1+RL
c1,nL


(2.42)

Equation 2.43 defines the matrix containing all the coefficients of the term (T c1
j+1−

T c1
j ) in Equation 2.10 for j = 1, 2, 3..., nL.

ZL
c1+ =



1
RL

c1,1+RL
c1,2

0 0 . . . 0

0 1
RL

c1,2+RL
c1,3

0 . . . 0

0 0 1
RL

c1,3+RL
c1,4

. . . 0

...
...

...
. . .

...

0 0 0 . . . 1
RL

c1,nL
+RL

c1,nL+1


(2.43)

Similarly, matrices Zr
c2, ZL

c2−, ZL
c2+ and so on can be defined for all the sub-layers

of the CPCM.

The matrices defined using Equations 2.34 through 2.43 are contained in <nL×nL .

Using matrices D−, D+ and D defined in Equation 2.44, the rate of change of the

energy contained within the working fluid is given by Equation 2.45. The matrix I is

an identity matrix of size nL × nL.
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D− =



0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0

...
...

. . .
...

...

0 0 . . . 1 0


,D+ =



0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1

0 0 0 . . . 0


,D =



1 0 0 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . 0


(2.44)

MfCf
P

dTf

dt
= Zr

fT
p +

(
− Zr

f + ṀfCf
P (D− − I)

)
Tf + ṀfCf

PDT
f
in (2.45)

Equation 2.46 describes the rate of change of heat energy contained within the

metal plate/tube, which includes all the control volumes of metal plate/tube.

MpCp
P

dTp

dt
= Zr

fTf +
(
− Zr

f + ZL
p (D− + D+ − 2I) − Zr

p

)
Tp + Zr

pTc1 (2.46)

Equation 2.47 describes the rate of change of heat energy contained within the

1st sub-layer of the CPCM, which includes all the control volumes of that layer.

Mc1Cc1
P

dTc1

dt
= Zr

pTp +
(
− Zr

p + ZL
c1(D− + D+ − 2I) − Zr

c1

)
Tc1 + Zr

c1Tc2 (2.47)

Equation 2.48 describes the rate of change of heat energy contained within the

2nd sub-layer of the CPCM, which includes all the control volumes of that layer.
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Mc2Cc2
P

dTc2

dt
= Zr

c1Tc1 +
(
− Zr

c1 + ZL
c2(D− + D+ − 2I) − Zr

c2

)
Tc2 + Zr

c2Tc3 (2.48)

Equation describing the rate of change of heat energy contained within the 3rd

to the nr − 1 sub-layer of the CPCM will be similar to Equation 2.48. Equation 2.49

describes the rate of change of heat energy contained within the nr sub-layer of the

CPCM, which includes all the control volumes of that layer.

McnrCcnr
P

dTcnr

dt
= Zr

c(nr−1)T
c(nr−1) +

(
−Zr

c(nr−1) +ZL
cnr

(D−+D+− 2I)
)
Tcnr (2.49)

2.3.3 Overall System Formulation

Equations 2.45 through 2.49 can further be combined to form a single ordinary

differential equation (ODE) as shown in Equation 2.50. The first order differentiation

of a variable x with respect to time is written as ẋ.

AOṪO = BOTO + CO (2.50)

The matrix AO ∈ <(2+nr)nL×(2+nr)nL , shown in Equation 2.51, is the overall system

matrix with all the diagonal entries as the product of the mass matrices and the

specific heat matrices defined in Subsection 2.3.2.
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AO =



MfCf
P 0 0 . . . 0

0 MpCp
P 0 . . . 0

0 0 Mc1Cc1
P . . . 0

...
...

...
. . .

...

0 0 0 . . . McnrCcnr
P


(2.51)

The matrix BO ∈ <(2+nr)nL×(2+nr)nL , shown in Equation 2.52, is the overall system

matrix with different entries as the coefficients of the temperature vector of the fluid,

the metal plate/tube and the different CPCM sub-layers. Each term is expanded and

tabulated in Table 2.1.

BO =



B1,1 B1,2 0 . . . 0

B2,1 B2,2 B2,3 . . . 0

0 B3,2 B3,3 . . . 0

...
...

...
. . .

...

0 0 0 . . . Bnr+2,nr+2


(2.52)

The matrix CO ∈ <(2+nr)nL×(2+nr)nL is defined in Equation 2.53. The inlet tem-

perature of the fluid is defined as T f
in.

CO =



ṀfCf
PD0 0 0 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . 0


T f
in (2.53)

The vector TO ∈ <(2+nr)nL is a vector containing the temperature variables of all

the controls volumes of the system. It is shown in Equation 2.54.
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Table 2.1. : Values of entries of the matrix BO

Entry Value

B1,1 ZL
f (D− + D+ − 2I)− Zr

f + ṀfCf
P (D− − I)

B1,2 Zr
f

B2,1 Zr
f

B2,2 −Zr
f + ZL

p (D− + D+ − 2I)− Zr
p

B2,3 Zr
p

B3,2 Zr
p

B3,3 −Zr
p + ZL

c1(D− + D+ − 2I)− Zr
c1

B3,4 Zr
c1

B4,3 Zr
c1

B4,4 −Zr
c1 + ZL

c2(D− + D+ − 2I)− Zr
c2

...
...

Bnr+1,nr+2 Zr
c(nr−1)

Bnr+2,nr+1 Zr
c(nr−1)

Bnr+2,nr+2 −Zr
c(nr−1) + ZL

cnr
(D− + D+ − 2I)
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TO =

[
Tf Tp Tc1 . . . Tcnr

]T
(2.54)

2.4 Numerical Solution

The model is coded and simulated in the Python programming environment. To

solve the model equations, I use the backward Euler method (an implicit solution

method) to discretize the ODE shown in 2.50. Using a time-step of ∆t, I derive

the approximate model in Equation 2.55. The temperature TO(p) represents the

temperature value at the pth iteration.

AO
TO(p)− TO(p− 1)

∆t
= BOTO(p) + CO (2.55)

Rearranging Equation 2.55, such that the temperature at a current iteration p is

a function of the temperature at the previous iteration p − 1, gives Equation 2.56

which can be solved in an iterative manner for a known initial condition.

TO(p) = (AO −∆tBO)−1(AOTO(p− 1) + ∆tCO) (2.56)

Furthermore, to simulate the melting of PCM, we use the algorithm shown in

Figure 2.12. Here, E is the net energy transferred into a control volume of composite

PCM during an iteration, Emelt is the energy required to completely melt a control

volume of composite PCM, p is the current iteration, ifinal is the total number of

iterations, and m is the melt fraction of a control volume of the CPCM at any given

time. Once a CPCM control volume starts melting, the properties of that control

volume are calculated by taking a weighted average of solid PCM properties and

liquid PCM properties using the melt fraction of that control volume. Properties are
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updated after every iteration based on the extent of melting or solidification that has

occurred.

start

check 
𝑇𝑐𝑝𝑐𝑚 ≥ 𝑇𝑚𝑒𝑙𝑡 &𝑚 < 1

false

calculate 
𝐸 = 𝑓𝑢𝑛𝑐(𝑇𝑐𝑝𝑐𝑚 − 𝑇𝑚𝑒𝑙𝑡)

true

update m using 
𝐸/𝐸𝑚𝑒𝑙𝑡

fix 
𝑇𝑐𝑝𝑐𝑚 = 𝑇𝑚𝑒𝑙𝑡

use 𝐸 − 𝐸𝑚𝑒𝑙𝑡

to update 𝑇𝑐𝑝𝑐𝑚

𝑚 ≥ 1𝑚 < 1

update properties 
using 𝑚

next 
iteration

check 
𝑝 = 𝑖𝑓𝑖𝑛𝑎𝑙

stop

true

false

Figure 2.12. : Flow chart describing the algorithm for the melting of each composite
PCM layer control volume in the reduced-order model.
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3. MODEL VALIDATION

In this chapter, I compare the predictions of the reduced-order model against those of

a high fidelity CFD model of the same geometry developed in the modeling package

ANSYS Fluent. I first describe the ANSYS Fluent model and then present and discuss

comparative plots between that and the proposed reduced-order model. The CFD

model was developed by Michael Deckard at Texas A&M University.

3.1 ANSYS Fluent Model

Detailed simulations of melting within the extended flat plate heat exchanger and

the cylindrical tube heat exchanger are completed within ANSYS Fluent, following

these six steps: 1) system definition, 2) mesh generation, 3) definition of boundary

and initial conditions, 4) definition of relevant physics, 5) setting of the solver condi-

tions, and 6) execution of the model simulation. The simulated geometries used were

described in Section 2.1. Within ANSYS, the extended flat plate geometry is repre-

sented as a 2D geometry with a mirror symmetry boundary to reduce the simulation

complexity. The cylindrical geometry is treated as a 2D geometry that is assumed

to have radial symmetry, instead of a mirror symmetry boundary. All non-fluid flow

(outside) boundaries (top, bottom, left, right) are treated as adiabatic boundaries.

Material properties for all materials in the simulation are given in Table 3.1.
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Table 3.1. : Material properties of the fluid, the metal and the PCM used to simulate
the CFD models of the two HXs in ANSYS Fluent.

Metal
(Al)

Solid PCM
(LiNO3·3H2O)

Liquid PCM
(LiNO3·3H2O)

Fluid
(H2O)

Density, kg/m3 2719 1575 1425 998.2
Specific heat
capacity, J/kg·K 871 1730 2760 4182

Thermal conductivity
coefficient, W/m·K 202.4 0.82 0.584 0.6

Latent heat of
fusion, J/kg

- 287000 287000 -

Viscosity, µPa·s - - 17.2 79.8
Melting temperature, K - 303.3 303.3 -

3.1.1 Mesh Generation

The mesh created in ANSYS is generated automatically by following mesh setup

specifications. The fluid channel is meshed to a finer size than the remainder of the

simulation geometry due to the fidelity required in Fluent for accurately simulating

the fluid flow. The element sizing used is 0.0379 mm square grid spacing for the

channel, and 0.165 mm square grid spacing for the remaining regions. A close-up of

the resulting mesh is shown in Figure 3.1.



33

Figure 3.1. : Close-up view of mesh in ANSYS Fluent.

3.1.2 Boundary and Initial Conditions

A velocity boundary condition was applied to the inlet of each geometry with a

specified flow rate and a temperature corresponding to the desired simulation. In

order to minimize the length of the channel through which the velocity profile “de-

veloped”, a brief simulation was run, and the resulting velocity profile at the outlet

was used as the new velocity profile at the inlet. This process was repeated until the

velocity profile no longer changed, and the resulting velocity profile was chosen as the

velocity profile for the inlet boundary condition. This process was used for both the

laminar and turbulent cases. A pressure outlet condition of zero gauge pressure was

set at the outlet of the fluid channel for each geometry.

Heat transfer across the solid/liquid interfaces (e.g., aluminum-water interface)

within ANSYS results from the coupled solution of the conductive heat transfer equa-

tions for the solid state and the Navier-Stokes equations for the adjacent fluid domain.

Thus, the temperature and the heat transfer coefficients at the fluid-solid interface

are determined by a local energy balance, rather than deriving from an empirical heat

transfer correlation. The contact thermal resistance values at any of the interfaces
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are set to be zero. After the initialization of the simulation, the initial temperature

was set to 303.3 K uniformly throughout the entire simulated volume so as to be

equal to the PCM melting temperature. This restricts the simulations to be single-

phase, which simplifies simulation and interpretation. In addition, at the beginning of

each simulation, the fluid channel does not contain hot fluid which allows for a more

realistic simulation of hot fluid entering the fluid channel as the simulation starts.

3.1.3 Problem Physics

Depending on the simulation, either the laminar or Spalart-Allmaras viscous mod-

els were used to simulate the fluid flow [18]. The energy model was included, as well as

solidification and melting physics. The energy model activated equations and calcu-

lations for heat transfer within ANSYS. The solidification and melting physics in the

model utilizes the enthalpy method with a single melting point [19]. This suppresses

temperature changes in a given element while the element changes phase. The PCM

has temperature-dependent density, and a discontinuity in density between the solid

and the liquid phases. Gravity is disabled and thus no buoyancy-driven convection is

present in either the liquid PCM volumes, or in the fluid channel. The excess PCM

volume within the simulated space is removed by ANSYS during expansion, but this

amount is negligible in comparison to the total PCM volume for both geometries.

3.1.4 Solver Conditions

The default values are used for under-relaxation, including 0.9 for liquid frac-

tion update and 1 for energy under-relaxation. The scheme of Pressure-Implicit with

Splitting of Operators is used for pressure-velocity coupling, and second order dis-

cretization is used for pressure, momentum, turbulent viscosity (when appropriate),
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energy and transient formulation. Fixed time steps of 1 s were used for both ge-

ometries for the laminar condition, and fixed time steps of 0.01 s were used for both

geometries for the turbulent condition.

3.2 Validation Results

Here I present a temporal and spatial validation of the two heat exchanger geome-

tries with the integrated PCM for both laminar and turbulent flow. These results

reflect the combined effect of all the modeling assumptions made in deriving the

reduced-order model. The material properties of fluid, metal and PCM are tabulated

in Table 3.2. In the validation results that follow, the ANSYS Fluent model is re-

ferred to as the high fidelity (HF) model, and the reduced-order model is referred to

as the low fidelity (LF) model. The low fidelity model prediction at the ith spatial

validation location is referred as ’LF i ’ and the high fidelity model prediction at the

same location is referred as ’HF i ’, for i ranging from 1 to 10. Note that validation

results for i=2,4,6,8 are omitted to improve the readability of Figures 3.2 through

3.17.

Table 3.2. : Material properties of the fluid, the metal and the PCM used to simulated
the reduced-order models of the two HXs.

Metal
(Al)

Solid PCM
(LiNO3·3H2O)

Liquid PCM
(LiNO3·3H2O)

Fluid
(H2O)

Density, kg/m3 2719 1500 1500 998.2
Specific heat
capacity, J/kg·K 871 1730 2760 4182

Thermal conductivity
coefficient, W/m·K 202.4 0.82 0.584 0.6

Latent heat of
fusion, J/kg

- 287000 287000 -

Viscosity, µPa·s - - - -
Melting temperature, K - 303.3 303.3 -
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3.2.1 Extended Flat Plate Geometry

First I consider the laminar fluid flow results for the extended flat plate geometry

and then I move to the turbulent fluid flow case. The height of the fluid channel, the

height of the metal plate, the height of the CPCM layer and the length of the HX for

laminar and turbulent cases are 0.5 mm, 1 mm, 1 cm and 10 cm, respectively.

Laminar Flow

In the case of laminar flow, the reduced-order model as well as the CFD ANSYS

Fluent model were simulated for 200 seconds with a fluid velocity of 0.1 m/s. The

number of fluid control volumes nL considered in the reduced-order model was 70,

and the number of CPCM sub-layers nr considered was 50.

Figure 3.2 shows a comparison of the fluid temperature predicted by each model,

both spatially and temporally. The transient fluid temperature trajectories predicted

by the LF model generally match those predicted by the HF model, with a normalized

root mean square error (NRMSE) of 1.9% in the magnitude of the average fluid

temperature, shown by Figure 3.2(b), between the two models. All NRMSE values

listed in this chapter are calculated based upon averaged signals for the temperature,

the melt fraction or the heat flux evolution for different geometries with laminar and

turbulent fluid flow. More specifically, the ten time-varying signals for each variable of

interest (representing different locations along the length of the fluid channel in each

geometry) are averaged, and then the NRMSE is calculated based upon this averaged

signal. The NRMSE is calculated using Equation 3.1, where Ẑi is the estimated

variable and Zi is the true variable, and S is the sample size.

NRMSE =

∑S
i=1

√(
Ẑi − Zi

)2
/S

Zi,max − Zi,min

(3.1)
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(a) The fluid temperature at different locations plotted as a func-
tion of time.
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(b) The average fluid temperature plotted as a function of time.

Figure 3.2. : Temporal and spatial comparison of the fluid temperature for laminar
flow in the extended flat plate geometry.

Figure 3.3 and Figure 3.4 compare the metal plate temperature and melt fraction

of PCM, respectively, as predicted by each model. The NRMSE in the magnitude of

the metal plate temperature as predicted by each model is 3.5%. Furthermore, there

is a NRMSE of 2.8% in the magnitude of the melt fraction across the CPCM layer.
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(a) The metal plate temperature at different locations plotted as
a function of time.
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(b) The average metal plate temperature plotted as a function of
time.

Figure 3.3. : Temporal and spatial comparison of the metal plate temperature for
laminar flow in the extended flat plate geometry.
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(a) The melt fraction of PCM at different locations plotted as a
function of time.
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(b) The average melt fraction of PCM plotted as a function of
time.

Figure 3.4. : Temporal and spatial comparison of the melt fraction of PCM for laminar
flow in the extended flat plate geometry.

Finally, there is a NRMSE of 7% in the magnitude of heat flux, through the fluid-

metal plate interface, between the two models. The heat flux across the fluid-metal

plate interface predicted by the LF model is initially higher than that predicted by

the HF model, as shown in Figure 3.5. This is consistent with the fluid temperature

comparison shown in Figure 3.2, where the initial temperature of fluid as predicted by

the LF model is lower than that predicted by the HF model, and with the melt fraction

comparison shown in Figure 3.4, where the melt fraction of PCM as predicted by the
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LF model is higher than that predicted by the HF model. I attribute the discrepancy

to the lumped parameter assumption applied to the LF model which precludes the

model from considering viscosity gradients within individual control volumes. This

assumption may be less accurate when large temperature differences exist between

the fluid and the metal plate. A viscosity gradient would affect the velocity profile,

which in turn affects the temperature profile and heat transfer rate. Nevertheless,

these results demonstrate good agreement temporally and spatially between the two

models for the laminar flow case.
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(a) The heat flux through the fluid-metal plate interface at differ-
ent locations plotted as a function of time.
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(b) The average heat flux through the fluid-metal plate interface
plotted as a function of time.

Figure 3.5. : Temporal and spatial comparison of the heat flux through the fluid-metal
plate interface for laminar flow in the extended flat plate geometry.

Turbulent Flow

In the case of turbulent flow, both models were simulated for 20 seconds and a fluid

velocity of 4 meters per second. The number of fluid control volumes nL considered

in the LF model was 70, and the number of PCM layers nr considered was 50.

Figure 3.6 compares the fluid temperature predicted by each model. The NRMSE

across the length of the fluid channel was calculated to be 0.4%.
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(a) The fluid temperature at different locations plotted as a func-
tion of time.
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(b) The average fluid temperature plotted as a function of time.

Figure 3.6. : Temporal and spatial comparison of the fluid temperature for turbulent
flow in the extended flat plate geometry.

Figure 3.7 compares the temperature of the metal plate as predicted by each

model, where the NRMSE is 2.4%. Figure 3.8 compares the melt fraction of PCM

within the CPCM layer as predicted by each model. The NRMSE in the magnitude

of the melt fraction across the CPCM layer is 6.4%.
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(a) The metal plate temperature at different locations plotted as
a function of time.
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(b) The average metal plate temperature plotted as a function of
time.

Figure 3.7. : Temporal and spatial comparison of the metal plate temperature for
turbulent flow in the extended flat plate geometry.
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(a) The melt fraction of PCM at different locations plotted as a
function of time.
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(b) The average melt fraction of PCM plotted as a function of
time.

Figure 3.8. : Temporal and spatial comparison of the melt fraction of PCM for tur-
bulent flow in the extended flat plate geometry.

Finally, as shown in Figure 3.9, the heat flux as predicted by the LF model is

higher than that predicted by the HF model initially, with a NRMSE of 7%. Due to

the higher heat flux, the PCM in the CPCM layer melts quicker as predicted by the

LF model, as shown in Figure 3.8. Also, the initial fluid temperature as predicted by

the LF model is lower than that predicted by the HF model, as shown in Figure 3.6.

This may be a result of the turbulent heat transfer correlation lacking entry length

considerations, which equates to the LF model treating the entry length as having a
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fully developed thermal profile. Nevertheless, as was the case for laminar flow, we see

that the transient behavior predicted by the LF model largely matches that of the

HF model.
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(a) The heat flux through fluid-metal plate interface at different
locations plotted as a function of time.
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(b) The average heat flux through fluid-metal plate interface plot-
ted as a function of time.

Figure 3.9. : Temporal and spatial comparison of the heat flux through the fluid-metal
plate interface for turbulent flow in the extended flat plate geometry.

3.2.2 Cylindrical Tube Geometry

Here, I start by considering the laminar flow case for the cylindrical tube geometry

and then move to the turbulent flow case. The radius of the fluid channel, the
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thickness of the metal plate, the thickness of the CPCM layer and the length of

the HX for laminar and turbulent flow cases are 0.5 mm, 1 mm, 1 cm and 10 cm,

respectively.

Laminar Flow

In the case of laminar flow, the reduced-order model as well as the CFD ANSYS

Fluent model were simulated for 200 seconds with a fluid velocity of 0.1 m/s. The

number of fluid control volumes nL considered in the reduced-order model was 70,

and the number of CPCM sub-layers nr considered was 50.

Figure 3.10 shows a comparison of the fluid temperature predicted by each model,

both spatially and temporally. The transient fluid temperature trajectories predicted

by the LF model generally match those predicted by the HF model, with a NRMSE

of 3.5% in the magnitude of the fluid temperature between the two models.
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(a) The fluid temperature at different locations plotted as a func-
tion of time.

0 50 100 150 200
time [sec]

303

313

323

333

343

353

te
m

pe
ra

tu
re

 [K
]

LFavg
HFavg

(b) The average fluid temperature plotted as a function of time.

Figure 3.10. : Temporal and spatial comparison of the fluid temperature for laminar
flow in the cylindrical tube geometry.

Figure 3.11 and Figure 3.12 compare the metal plate temperature and the melt

fraction of the PCM, respectively, as predicted by each model. The NRMSE in

the magnitude of the metal plate temperature as predicted by each model is 2%.

Furthermore, there is a NRMSE of 11% in the magnitude of the melt fraction across

the CPCM layer.
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(a) The metal plate temperature at different locations plotted as
a function of time.
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(b) The average metal plate temperature plotted as a function of
time.

Figure 3.11. : Temporal and spatial comparison of the metal plate temperature for
laminar flow in the cylindrical tube geometry.
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(a) The melt fraction of PCM at different locations plotted as a
function of time.
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(b) The average melt fraction of PCM plotted as a function of
time.

Figure 3.12. : Temporal and spatial comparison of the melt fraction of PCM for
laminar flow in the cylindrical tube geometry.

Finally, there is an NRMSE of 9% in the magnitude of the heat flux, through the

fluid-metal tube interface, between the two models. The heat flux across the fluid-

metal plate interface predicted by the LF model is slightly higher than that predicted

by the HF model, as shown in Figure 3.13. This is consistent with the melt fraction

comparison shown in Figure 3.12, where the melt fraction of PCM as predicted by

the LF model is higher than that predicted by the HF model which shows that the
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heat absorbed by CPCM layer was higher in case of the LF model as compared to

the HF model.
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(a) The heat flux through the fluid-metal tube interface at differ-
ent locations plotted as a function of time.
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(b) The average heat flux through the fluid-metal tube interface
plotted as a function of time.

Figure 3.13. : Temporal and spatial comparison of the heat flux through the fluid-
metal tube interface for laminar flow in the cylindrical tube geometry.

Turbulent Flow

In the case of turbulent flow, both the models were simulated for 20 seconds and

a fluid velocity of 4 meters per second. The number of fluid control volumes nL
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considered in the LF model was 70, and the number of PCM layers nr considered was

50.

Figure 3.14 compares the fluid temperature predicted by each model. The NRMSE

across the length of the fluid channel was calculated to be 0.8%.
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(a) The fluid temperature at different locations plotted as a func-
tion of time.
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(b) The average fluid temperature plotted as a function of time.

Figure 3.14. : Temporal and spatial comparison of the fluid temperature for turbulent
flow in the cylindrical tube geometry.

Figure 3.15 compares the temperature of the metal plate as predicted by each

model, where the NRMSE is 7.7%. Figure 3.16 compares the melt fraction of PCM
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within the CPCM layer as predicted by each model. The NRMSE in the magnitude

of the melt fraction across the CPCM layer is 0.5%.
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(a) The metal plate temperature at different locations plotted as
a function of time.
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(b) The average metal plate temperature plotted as a function of
time.

Figure 3.15. : Temporal and spatial comparison of the metal plate temperature for
turbulent flow in the cylindrical tube geometry.
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(a) The melt fraction of PCM at different locations plotted as a
function of time.
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(b) The average melt fraction of PCM plotted as a function of
time.

Figure 3.16. : Temporal and spatial comparison of the melt fraction of PCM for
turbulent flow in the cylindrical tube geometry.

Finally, as shown in Figure 3.17, the heat flux as predicted by the LF model is

consistently higher than that predicted by the HF model, with a NRMSE of 11%.

Similar to the case of turbulent flow in the extended plate HX, this may be a result

of the turbulent heat transfer correlation lacking entry length considerations, which

equates to the LF model treating the entry length as having a fully developed thermal

profile. Nevertheless, as was the case for laminar flow, I see that the transient behavior

predicted by the LF model largely matches that of the HF model.
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(a) The heat flux through fluid-metal tube interface at different
locations plotted as a function of time.
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(b) The average heat flux through fluid-metal tube interface plot-
ted as a function of time.

Figure 3.17. : Temporal and spatial comparison of heat flux through the fluid-metal
tube interface for turbulent flow in the cylindrical tube geometry.

Table 3.3. : Summary of model validation - NRMSE values for laminar and turbulent
fluid flow in both geometries.

State
Plate

(Laminar)
Plate

(Turbulent)
Tube

(Laminar)
Tube

(Turbulent)
Fluid temperature 1.9% 0.4% 3.5% 0.8%
Metal temperature 3.5% 2.4% 2% 7.7%

Melt fraction 2.8% 6.4% 11% 0.5%
Heat flux 7% 7% 9% 11%
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Table 3.3 summarizes the validation results for both geometries under both turbu-

lent and laminar flow regimes. The NRMSE values reported were calculated using the

average temperature, the average melt fraction and the average heat flux evolution

plots.

The reduced-order models were simulated using an Intel i5-8350U CPU with 16

GB memory (RAM) while the CFD models were simulated using an Intel i7-7700 CPU

with 16 GB memory. The benchmark performance of the two CPU is similar and

hence the simulation time using using the two CPU could be directly compared. The

reduced-order model simulation takes up to 60 min, while the CFD model developed

in ANSYS Fluent takes 12 hours. This shows that the reduced-order model is 12

times faster than the CFD model for the given choice of spatial discretization and

time-step in reduced-order model simulation.

The model validation results presented in this chapter demonstrated the accuracy

of the low fidelity model in predicting, both spatially and temporally, the evolution

of different variables of interest such as the temperature of the fluid, the temperature

of the metal separator, the melt fraction of PCM within the CPCM layer and the

heat flux through the fluid-metal interface. The transient trajectories of the fluid

temperature for the two models generally match with NRMSE error of less than

2% for the extended plate geometry and with NRMSE error of less than 4% for the

cylindrical tube geometry. It should be noted that the total number of control volumes

considered in each of these cases may be too large for some applications. Therefore,

future work should explore the tradeoff between model accuracy and dynamic order.
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4. PARAMETRIC STUDY

A parametric study can be used to understand the effects of a design parameter, or

a combination of different design parameters, on any performance metric of interest.

A list of possible design parameters and performance metrics that could be analyzed

are listed in Table 4.1 and Table 4.2, respectively. In this chapter, I conduct such

a study for the extended flat plate geometry to evaluate the effect of three design

parameters—height of the CPCM layer, length of the HX, and volume fraction of

metal in the CPCM layer—on the energy stored in the CPCM layer as well as energy

stored in the CPCM layer per unit volume of the HX. I conduct an analogous study

for the cylindrical tube geometry with the only difference being that height of the

CPCM layer is replaced with thickness. I focus specifically on these three design

parameters because they directly affect the amount of PCM present in the CPCM

layer and hence the latent heat energy storage capacity of the HX. I fix the fluid

channel height/radius as well as the height/thickness of the metal separator for each

geometry, but these could be optimized in the future, subject to manufacturability

or other design constraints. In fact, any of the other design variables or performance

metrics listed in Tables 4.1 and 4.2, respectively, could be studied in the future.
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Table 4.1. : List of design parameters that could be considered in a parametric study
for the TES module.

Design Parameters
Length of the HX

Height/Radius of the metal plate
Height/Radius of the fluid channel
Height/Radius of the CPCM layer

Metal fraction by volume
Number of extended plate HXs stacked

Width of the extended plate HX

Table 4.2. : List of example performance metrics that could be considered in a para-
metric study for the TES module.

Performance Metrics
Power stored in the CPCM layer

Power per unit mass
Energy stored in the CPCM layer

Energy per unit volume
Energy per unit mass

Fluid exit temperature
Melt fraction of PCM

4.1 Extended Plate HX

Here, I conduct the parametric study for the extended plate HX. The fixed model

parameters used in the study for this geometry are listed in Table 4.4.
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Table 4.3. : List of fixed model parameters used in the parametric study.

Parameter Value
simulated time (tf ) 10 s

time step (dt) 0.1 s
nL 30
nr 9
vf 4 m/s
Tin 313.3 K
T (0) 303.3 K
Tm 303.3 K
hp 1 mm
hf 0.5 mm
d 20 cm

4.1.1 Single Variable Parametric Study

Here I conduct a parametric study of module geometry, specifically the height of

the CPCM layer hc and the length of the HX L and the metal fraction by volume

within the CPCM layer φ on the energy stored in the CPCM layer Ec as well as

energy stored per unit volume in the CPCM layer Uc over a fixed time period and

with fixed fluid inlet temperature. These particular performance metrics of are of

practical interest for applications involving TES modules. The material property

values used for model simulation are the same as were presented in Table 3.2.

I first consider the effect of CPCM layer height on Ec and Uc; these results are

summarized in Figure 4.1 and Figure 4.2, respectively. To generate the Parametric

curves shown, φ = 0.5 and L = 30 cm. Figure 4.1 shows that as the height of the

CPCM layer increases, the energy stored in the CPCM layer increases but saturates

at a CPCM layer height of approximately 5 mm. Increasing the CPCM layer height

further would add mass and volume to the module without any contribution to its

performance.
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Figure 4.1. : Parametric plot showing the evolution of energy stored in the CPCM
layer as a function of the height of the CPCM layer of the extended plate HX.

Figure 4.2 shows that as the height of the CPCM layer increases, the energy density

also increases but reaches a maximum at a CPCM layer height of approximately 3 mm

and then decreases in value. Increasing the height of the CPCM layer increases the

heat storage capacity of the HX but that does not necessarily result in more energy

stored. The rate of heat transfer from the working fluid to the CPCM layer depends

on a number of factors, and Parametric curves such as these help in determining the

upper limit of the total energy that can be extracted from a working fluid and the

height of the CPCM layer at which the energy density is maximized.
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Figure 4.2. : Parametric plot showing evolution of energy density as a function of the
height of the CPCM layer of the extended plate HX.

Next I consider the effect of variations in the HX length on the performance metrics

of interest. For these simulations, φ = 0.5 and hc = 1 cm. Figure 4.3 shows that the

energy stored in the CPCM layer does not scale linearly with the length of the HX.

This is expected because as the fluid flows away from the inlet, the temperature of

the fluid drops and hence, the heat transfer rate between the fluid and the CPCM

layer decreases.
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Figure 4.3. : Parametric plot showing evolution of energy stored in the CPCM layer
as a function of the length of the extended plate HX.

The energy per unit volume decreases with an increase in the length of the HX,

as shown in Figure 4.4. The total energy stored in the CPCM layer increases with

increase in the length of the HX as shown in Figure 4.3 but the rate of increase in Ec

is smaller than the rate of increase in the volume of the HX. This shows that there is a

trade-off between the total energy stored in the CPCM layer and the volume density

of that energy. For a different fluid inlet temperature, the Parametric curve for the

energy density could attain a maximum and then start to decrease. Such a trend

will occur when the rate of heat transfer from the working fluid to the CPCM layer

increases faster than the rate at which the volume of the HX increases with increase

in length. In summary, the Parametric curves show that similar to the height of

the CPCM layer, the length of the HX helps to increase the total energy storage

capacity of a HX, but the energy storage density decreases after a certain value of

the parameter L.
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Figure 4.4. : Parametric plot showing evolution of energy per unit volume as a function
of the length of the CPCM layer of the extended plate HX.

Finally, I vary the volume fraction of metal within the CPCM layer φ and quantify

its effect on the energy stored in the CPCM layer Ec as well as the energy stored per

unit volume in the CPCM layer Uc over a fixed period of time. The energy stored

in the CPCM layer increases initially, attains a maximum at a metal fraction of

approximately 0.5, and then starts to decrease, as shown in Figure 4.5. The initial

increase in the energy stored is due to an increase in the effective thermal conductivity

of the CPCM layer due to a higher metal fraction value. The increase in metal fraction

also results in a decrease in the amount of PCM near the metal plate where melting

occurs quickly because of the high heat transfer rate through the metal plate. In

turn, the latent heat storage capacity of the CPCM layer decreases. Hence, there is

a trade-off between the rate of heat transfer from the working fluid to the CPCM

layer and the latent heat storage capacity of the CPCM layer. The effects of metal

volume fraction on the energy storage density will be identical to the effects on the

total energy stored because varying the metal fraction does not change the volume of

the HX.
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Figure 4.5. : Parametric plot showing the evolution of energy stored in the CPCM
layer as a function of the metal fraction in the CPCM layer of the extended plate HX.

4.1.2 Multivariate Parametric Study

Here I consider the same design parameters as before, but evaluate their effect

on the performance metrics of interest when varied two at a time. I first fix the HX

length to be 30 cm and vary the CPCM layer height and metal volume fraction.

Figure 4.6 shows that the maximum energy density is achieved at a height of ap-

proximately 3 mm and at 0.3 volume fraction of metal in the CPCM layer, but a metal

volume fraction of 0.3 does not result in optimal energy density for a different height

of the CPCM layer. Thus, the optimal design configuration cannot be determined by

optimizing individual parameters at a time and hence, multivariate parametric analy-

sis should be used when optimizing multiple design parameters. The optimal CPCM

layer height for achieving a maximum energy density increases with an increase in

the volume fraction of metal. When the volume fraction of metal is increased, the

volume of PCM in the CPCM layer decreases, and hence the latent heat energy stor-

age capacity of the CPCM layer decreases. This decrease in the latent heat energy
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storage capacity of the CPCM layer can be compensated by increasing the height of

the CPCM layer thus, increasing the total volume of the PCM.
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Figure 4.6. : Parametric plot showing evolution of energy density as a function of
the height of the CPCM layer for different volume fraction values of metal within the
CPCM layer of the extended plate HX.

Next I fix the metal volume fraction to be 0.5. Figure 4.7 shows that the maximum

energy per unit volume is achieved at a CPCM layer height of 5 mm and HX length

of 10 cm. The energy density for the HX with length 10 cm is expected to be higher

than that for a HX with length more than 10 cm because the rate of increase in

Ec with length is slower than the rate at which the volume of the HX increases.

The optimal CPCM layer height decreases with an increase in the length of the HX.

This is because as the HX length increases, the rate of increase in volume of the HX

is reduced by decreasing the height of the CPCM layer. Since the energy density

is inversely proportional to the volume of the HX, reducing the rate of increase in

volume will help in achieving a higher energy density value.
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Figure 4.7. : Parametric plot showing evolution of energy per unit volume as a function
of the height of the CPCM layer for different lengths of the extended plate HX.

Finally, I fix the CPCM layer height to be 1 cm. Figure 4.8 shows that the optimal

energy density at any length of the HX is achieved when the volume fraction of metal

is 0.6. The effective horizontal heat transfer coefficient of the CPCM layer is much

smaller than the effective vertical heat transfer coefficient of the section of the CPCM

layer because the thermal resistors of the PCM and the metal fins are in series for

the horizontal direction heat transfer, while the thermal resistors of the PCM and

metal fins are in parallel for the vertical direction heat transfer. Due to this, the rate

of heat transfer in the direction of fluid flow within the CPCM layer is very small

as compared to that from the working fluid to the CPCM layer. Now, as shown

in Figure 4.6, the total volume of PCM in the CPCM layer decreases with increase

in the value of φ and hence, the latent heat storage capacity of the CPCM layer

decreases. But the increase in volume fraction of metal in the CPCM layer results

in higher effective thermal conductivity of the CPCM layer. Due to this, the rate of

heat transfer from the working fluid to the CPCM layer increases. Hence, there is

a trade-off between the latent heat energy storage capacity of the CPCM layer and
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the effective thermal conductivity of the CPCM layer when varying the metal volume

fraction within the CPCM layer. The temperature difference between the fluid and

the CPCM layer is highest near the inlet of the fluid channel and hence, it is important

that CPCM near the inlet of the fluid channel have an optimal metal volume fraction

so that both the effective thermal conductivity from the working fluid into the CPCM

layer (effective vertical thermal conductivity) and the latent heat storage capacity

are optimized. Since the metal is distributed uniformly within the CPCM layer for

the parametric studies, the optimal metal volume fraction within the CPCM layer

is primarily determined by the optimal metal volume fraction required within the

section of the CPCM layer near the inlet of the fluid channel for an optimal rate of

heat transfer near the inlet and is not very sensitive to the total length of the HX.

The effects of the trade-off between the latent heat storage capacity of the CPCM

layer and the effective vertical thermal conductivity of the CPCM layer can be ob-

served when the curves for φ = 0.3 and φ = 0.8 are analyzed. For a HX with length

10 cm, the case with φ = 0.3 has a higher energy density as compared to the case with

φ = 0.8. But, at a HX length of 100 cm, the case with φ = 0.8 has a slightly higher

energy density as compared to the case with φ = 0.3. This is because for φ = 0.8 and

L =10 cm, the latent heat storage capacity of the CPCM layer is low as compared

to the case when φ = 0.3 and L =10 cm. Hence, there is less PCM in the volume to

melt and store energy in form of latent heat energy. So the energy density is higher

for the HX with φ = 0.3 and L =10 cm. However, when the length of the HX is 1

m, both HXs, with φ = 0.3 and with φ = 0.8, have enough volume of PCM to melt

and store the heat extracted from the working fluid in the form of latent heat energy.

Therefore, the case with a higher effective thermal conductivity of the CPCM layer

has slightly better energy storage density.
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Figure 4.8. : Parametric plot showing evolution of energy per unit volume as a function
of the length of the HX for different volume fraction values of metal within the CPCM
layer of the extended plate HX.

4.2 Cylindrical Tube HX

Here, I conduct the parametric study for the cylindrical tube HX. The list of

fixed model parameters used in the parametric studies for the cylindrical tube HX

are shown in Table 4.4.

Table 4.4. : List of fixed model parameters used in the parametric studies.

Parameter Value
simulated time (tf ) 100 s

time step (dt) 0.5 s
nL 30
nr 10
vf 4 m/s
Tin 313.3 K
T (0) 303.3 K
Tm 303.3 K
tp 1 mm
rf 0.5 mm
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4.2.1 Single Variable Parametric Study

Here, I conduct a parametric study of the cylindrical tube module geometry,

specifically the thickness of the CPCM layer tc, the length of the HX L and the metal

fraction by volume within the CPCM layer φ on the energy stored in the CPCM layer

Ec as well as energy stored per unit volume in the CPCM layer Uc over a fixed time

period and with fixed fluid inlet temperature. The material property values used for

this analysis are the same as were presented in Table 3.2.

I first consider the effects of CPCM layer thickness on Ec and Uc; these results are

summarized in Figure 4.9 and Figure 4.10, respectively. To generate the Parametric

curves shown, I let φ = 0.5 and L = 30 cm. Figure 4.9 shows that as the thickness of

the CPCM layer increases, the energy stored in the CPCM layer increases but satu-

rates at a CPCM layer thickness of approximately 7 mm. Increasing the CPCM layer

thickness further would add mass and volume to the module without any contribution

to its performance.
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Figure 4.9. : Parametric plot showing the evolution of energy stored in the CPCM
layer as a function of the thickness of the CPCM layer of the cylindrical tube HX.
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Figure 4.10 shows that as the thickness of the CPCM layer increases, the energy

density also increases but reaches a maximum at a CPCM layer thickness of approx-

imately 3 mm and then decreases in value. The effects of the CPCM thickness on

the cylindrical tube HX are similar to the effects of the CPCM layer height on the

extended plate HX. Increasing the CPCM layer thickness increases the heat storage

capacity of the layer but it does not necessarily result in a higher heat energy stored

because the total heat that could be extracted from the working fluid depends on

many other factors including the fluid inlet temperature. The increase in thickness of

the CPCM layer after Ec reaches saturation would be useful if the inlet temperature

of the fluid increases which in turn increases the rate of heat transfer from the working

fluid to the CPCM layer.
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Figure 4.10. : Parametric plot showing evolution of energy per unit volume as a
function of the thickness of the CPCM layer of the cylindrical tube HX.

Next I consider the effect of varying HX length on the performance metrics of

interest. For these simulations, φ = 0.5 and tc = 1 cm. Figure 4.11 shows that the

energy stored in the CPCM layer does not scale linearly with the length of the HX.

This is expected because as the fluid flows away from the inlet, the temperature of the
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fluid drops and hence, the heat transfer rate between the fluid and the CPCM layer

decreases. Note that the length of the HX is varied up to 150 cm for this parametric

study to show the length at which Ec starts to saturate. Elsewhere I vary the HX

length up to L = 100 cm.
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Figure 4.11. : Parametric plot showing evolution of energy stored in the CPCM layer
as a function of the length of the CPCM layer of the cylindrical tube HX.

The energy density decreases with an increase in the HX length, as shown in

Figure 4.12. Similarly, the total energy stored in the CPCM layer increases with

increasing HX length as shown in Figure 4.11, but the rate of increase in Ec is lower

than the rate of increase in the volume of the HX. The effects of the length of the

HX on the performance metrics for the cylindrical tube HX are again similar to that

observed in the extended flat plate geometry. There is a trade-off between the total

energy stored in the CPCM layer and the volume density of that energy. As seen in

Figure 4.8 for the extended plate geometry, the trade-off between energy stored and

energy storage density can be overcome by decreasing the thickness of the CPCM

layer when the length is increased so as to keep the total volume of the HX low. This

will be discussed in detail in Section 4.2.2.
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Figure 4.12. : Parametric plot showing evolution of energy per unit volume as a
function of the length of the CPCM layer of the cylindrical tube HX.

Finally, I vary the volume fraction of metal within the CPCM layer and quantify

its effects on the energy stored in the CPCM layer, Ec, as well as the energy density,

Uc, over a fixed period of time. The energy stored in the CPCM layer increases

initially, attains a maximum at around φ = 0.7, and then starts to decrease, as shown

in Figure 4.13. Again, the reason for this behavior is the same as that explained for

the Parametric curve shown in Figure 4.5, for the extended plate geometry. Due to

the trade-off between the rate of heat transfer from the working fluid to the CPCM

layer and the latent heat energy storage capacity of the CPCM layer, the energy

density curve is concave with a unique global maximum.
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Figure 4.13. : Parametric plot showing the evolution of energy stored in the CPCM
layer as a function of the metal fraction in the CPCM layer of the cylindrical tube
HX.

4.2.2 Multivariate Parametric Study

Here I consider the same design parameters as before, but evaluate their effects

on the performance metrics when varied two at a time. I first fix the HX length to

be 30 cm and vary the CPCM layer thickness and metal volume fraction. Figure

4.14 shows that the maximum energy density is achieved at a CPCM layer thickness

of approximately 3 mm and at 0.1 volume fraction of metal in the CPCM layer.

However, a metal volume fraction of 0.1 does not result in optimal energy density for

a different thickness of the CPCM layer. The optimal CPCM layer thickness increases

with increase in the value of φ. The reason for this behavior for the cylindrical tube

geometry is same as that for the extended plate geometry which is described in

Subsection 4.1.2.
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Figure 4.14. : Parametric plot showing evolution of energy per unit volume as a
function of the thickness of the CPCM layer for different volume fraction of metal
within the CPCM layer of the cylindrical tube HX.

Next I fix the metal volume fraction to be 0.5. Figure 4.15 shows that the max-

imum energy per unit volume is achieved at a CPCM layer thickness of 5 mm with

a HX length of 10 cm. The energy density for the HX with a length of 10 cm is

expected to be higher than that for a HX with length more than 10 cm because the

rate of increase in Ec as a function of length is less than the rate at which the volume

of the HX increases. The optimal CPCM layer thickness decreases with increase in

the length of the HX. This is because the rate of increase in volume of the HX, due

to increase in the length of the HX, decreases with decrease in the thickness of the

CPCM layer which is favourable for optimizing the energy density because the energy

density is inversely proportional to the volume of the HX.
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Figure 4.15. : Parametric plot showing evolution of energy per unit volume as a
function of the thickness of the CPCM layer for different lengths of the cylindrical
tube HX.

Finally I fix the CPCM layer thickness to 1 cm and vary the length of the HX as

well as the metal volume fraction within the CPCM layer. Figure 4.16 shows that the

optimal energy density at any HX length is achieved at φ = 0.7. The optimal metal

volume fraction does not change with the length of the HX due to the same reason

as explained in Section 4.1.2, for the Parametric curve shown in Figure 4.8. It can be

observed from the Parametric curve that for the energy density at HX length of 10

cm, the HX with φ = 0.2 has a higher Uc value as compared to the HX with φ = 0.8.

But for the HX length of 20 cm or higher, the HX with φ = 0.8 has a slightly higher

energy density value as compared to the HX with φ = 0.2. Again, the reason for this

is the same as that explained in Subsection 4.1.2 for the extended plate HX.
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Figure 4.16. : Parametric plot showing evolution of energy per unit volume as a
function of the length of the HX for different volume fraction values of metal within
the CPCM layer of the cylindrical tube HX.

4.3 Summary

The single variable parametric study results for the extended plate geometry show

that the energy stored in the CPCM layer increases with an increase in the length of

the HX or in the height of the CPCM layer. The value of Ec increases initially, attains

a maximum, and then starts to decrease as the metal volume fraction increases. The

increase in the energy storage density is not directly proportional to the increase in the

module dimensions considered in the study due to which, the energy density does not

increase consistently with an increase in length of the HX or the height of the CPCM

layer. The trends in the results for the cylindrical tube HX are identical to those

in the results for the extended plate geometry. The multivariate parametric study

results for both geometries show that the optimal energy density is achieved when

the total volume of PCM melted within the CPCM layer is maximized. The total

volume of PCM that melts during an operation depends on the trade-off between the

effective thermal conductivity of the CPCM layer and the amount of PCM available
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to quickly melt near the metal separator. The optimal value of the volume of the

PCM required to achieve an optimal energy density depends on factors such as the

fluid inlet temperature, metal separator thickness, and the simulated time period,

which were not varied here but should be considered in future work.

Parametric studies like those conducted here are are useful in determining an

optimal design configuration when the number of design parameters to be optimized

is relatively small (e.g. one to three). This method quickly becomes very complicated

as the number of design parameters increases. An alternative approach is to use

numerical optimization to find optimal module designs with a large number of design

variables. In the next chapter, I present design optimization case studies in which

up to 21 design parameters are optimized simultaneously to find a configuration that

maximizes a particular performance metric for a given HX geometry.
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5. MODULE DESIGN OPTIMIZATION

One of the primary reasons for developing a reduced-order model is to enable rapid

optimization of system designs to meet various performance criteria. In this chapter

I demonstrate this through a case study for each of the two geometries considered in

this thesis. The specific design problem under consideration for both geometries is

the maximization of the rate of heat extracted from the working fluid per unit mass

of the module.

5.1 Extended Plate HX Geometry

In the case of the extended plate geometry, I consider four design variables: volume

fraction of metal in the CPCM layer, φ, distributed spatially across the CPCM layer as

shown in Figure 5.1, the height of the CPCM layer, hc, the number of heat exchangers

stacked on each other, N , and the depth of the module d. To model a non-uniform

distribution of metal fraction within the CPCM layer, I consider 18 volumes, each

with its own metal fraction φi, as shown in Figure 5.1. Note that these 18 volumes

are not identical to the control volumes defined within the model for the purpose of

simulating the dynamics of the HX.
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Figure 5.1. : Extended plate HX with 18 volumes defined within the CPCM layer to
be optimized.

All of the fixed parameters used to simulate the model at each iteration of the

optimization are given in Table 5.1. The design optimization problem is defined in

Equation 5.1 where xd =

[
φ1 φ2 . . . hc N

]T
, and u =

[
vf T f

in T (0)

]T
.
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min
xd

J (xd) = −
(∑nrnL

i=1 mc,icp,i (Tc,i (tf )− Tc,i(0)) + (
∑nrnL

i=1 mc,i)Lfus

NLd (ρchc + ρfhf + ρphp) tf

)
s.t. NLd (hc + hp + hf ) = 4× 10−3m3

0.01 ≤ φi ≤ 0.99

1mm ≤ hc ≤ 15mm

1 ≤ N ≤ 20

ẋ = f(xd, u)

(5.1)

Table 5.1. : List of fixed parameters used in the optimization case study.

Parameter Value
simulated time (tf ) 10 s

time step (dt) 0.1 s
L 30 cm
nL 30
nr 9
vf 4 m/s
Tin 313.3 K
T (0) 303.3 K
Tm 303.3 K
hp 1 mm
hf 0.5 mm
d 20 cm

The optimization problem is solved using the nonlinear optimization algorithm

sequential quadratic programming (SQP) with multi-start [20]. SQP solves a se-

quence of optimization problems by optimizing the quadratic approximation of the

cost function, subject to the linearized approximation of the constraints, to find a

local optimum. The reduced-order model is wrapped in a function which takes as

an input the vector of decision variables under consideration. The function returns
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an array containing the cost function and constraints. The SQP algorithm calls this

function iteratively until it converges to an optimum value based upon a user-defined

convergence tolerance of 10−5 W/kg on the cost function. It should be noted that the

number of heat exchangers, N , stacked to form a module must be an even integer.

However, defining N as an integer in the optimization problem would require the use

of mixed-integer programming. To avoid this additional complexity, the following

procedure is used to make sure that N is an even integer:

1. Find an optimal design assuming N as a Real number (design vector xd =[
φ1 φ2 . . . hc N

]T
).

2. Find the closest even integer to the optimal N by first dividing N by 2, rounding

the value to the nearest integer, and then multiplying that value by 2.

3. Redefine the optimization problem using the reduced design vector xd,red =[
φ1 φ2 . . . hc

]T
that now excludes N , and find a new optimal design.

In order to quantify the benefit of a non-uniform spatial distribution of metal

within the CPCM layer, I compare results of the non-uniform spatial distribution

case against a case when the TES module is optimized with a uniform distribution of

metal. The optimal number of HXs, the optimal height of the CPCM layer and the

optimal value of average metal fraction by volume in the CPCM layer for the two cases

are given in Table 5.2. The average metal volume fraction within the CPCM layer

is denoted by φ̄. The exact distribution of metal fraction by volume in percentage

within the composite PCM layer for the case with non-uniform metal distribution is

shown in Figure 5.2. The optimal distribution of metal fraction by volume within

the CPCM layer is such that the CPCM sub-layer directly in contact with the metal

separator has a higher metal fraction as compared to the second and the third CPCM

sub-layers, and the second CPCM sub-layer has a higher metal fraction as compared
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to the third sub-layer. The energy stored in the CPCM layer is maximized when the

melt fraction of PCM within the CPCM layer is maximized because the PCM has a

high latent heat storage capacity. In order for the melt fraction of the PCM within

the CPCM layer to be as large as possible for the given simulation parameters, the

rate of heat transfer in the direction perpendicular to the fluid flow should be high

so that the PCM in the CPCM sub-layers away from the hot fluid starts to melt.

This is achieved when the rate of heat transfer from the first CPCM sub-layer to

the second sub-layer is high which can be achieved by having a higher metal fraction

by volume in the first CPCM sub-layer as compared to the second and the third

sub-layer. Similarly, the metal fraction by volume should be higher in the second

sub-layer as compared to the third sub-layer.

9.3
7.2
4.1

9.5
7.4
4.2

9.7
7.5
4.2

9.9
7.7
4.4

10.1
7.9
4.5

9.1
7.1
4

CPCM layer

Fluid Layer
Metal Separator

Figure 5.2. : Optimal metal distribution (in percent metal by volume) within the
CPCM layer to maximize the power per unit volume performance measure.
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Table 5.2. : Optimization results for uniform and non-uniform distribution of metal
fraction by volume within the CPCM layer.

Variable Optimal Value
(Uniform Distribution)

Optimal Value
(Non-uniform Distribution)

N 8 8
hc 6.83 mm 6.83 mm

φ or φ̄ φ =7.7 % φ̄ =7.1 %
P/m 2.09 kW/kg 2.12 kW/kg
P 14183.8 W 14281.5 W
m 6.772 kg 6.479 kg

Thus, by allowing for non-uniform spatial variation of the metal composition

within the CPCM layer, the power per unit mass increased by 1.24% while the mass

of the system decreased by 0.4%, as compared to the case with metal distributed

uniformly throughout the CPCM.

An important question is how sensitive the optimization results are to the level

of spatial discretization considered in the design problem. To examine this, the opti-

mization problem was solved for 6 different cases. Let the number of sections in the

direction of fluid flow be indicated by sx and the number of sub-layers of the CPCM

layer be indicated by ly. The first case considered to generate the Pareto curve shown

in Figure 5.3 was with sx = 1 and ly = 1, resulting in 1 volume considered within

the CPCM layer. The second case was with sx = 4 and ly = 2, resulting in 8 total

volumes considered within the CPCM layer. The third case was with sx = 5 and

ly = 3, resulting in 15 total volumes within the CPCM layer. The fourth case was

with sx = 6 and ly = 3, resulting in 18 total volumes within the CPCM layer. The

fifth case had sx = 8 and ly = 4, resulting in 32 volumes within the CPCM layer.

The last case had sx = 9 and ly = 4, resulting in 36 volumes within the CPCM

layer. The results are summarized using a Pareto curve that characterizes the change

in the power per unit mass as a function of the level of spatial discretization of the

metal within the CPCM layer, as shown in Figure 5.3. It is clear that as the spa-
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tial discretization increases, the power per unit mass also increases initially and then

starts to saturate. This shows that the performance metric would start to saturate

at a certain number of volumes considered within the CPCM layer, with independent

metal volume fraction φi, and increasing the spatial discretization further would not

improve the performance metric. Increasing the spatial discretization further would

add complexity to the design problem without any contribution to the performance.
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Figure 5.3. : Pareto curve showing the relationship between spatial discretization of
the CPCM layer and the performance metric power per unit mass of the module for
the extended plate HX.

5.2 Cylindrical Tube HX Geometry

In case of the cylindrical tube geometry, I consider three design variables: volume

fraction of metal in the CPCM layer, φ, distributed spatially across the CPCM layer

as shown in Figure 5.4, the thickness of the CPCM layer, tc, and the length of the HX,

L. To model a non-uniform distribution of metal fraction within the CPCM layer, I

consider 18 volumes within the CPCM layer, each with its own metal fraction φi, as

shown in Figure 5.4.
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Figure 5.4. : Cylindrical tube HX with 18 volumes defined within the CPCM layer
to be optimized.

All of the fixed parameters used to simulate the model at each iteration of the

optimization are given in Table 5.3. The design optimization problem is defined in

Equation 5.2 where xd =

[
φ1 φ2 . . . hc N

]T
and u =

[
vf T f

in T (0)

]T
.

min
xd

J (xd) = −
∑nrnL

i=1 mc,icp,i (Tc,i (tf )− Tc,i(0)) + (
∑nrnL

i=1 mc,i)Lfus

πL
(
ρc
(
r2c − r2p

)
+ ρfr2f + ρp

(
r2p − r2f

))
tf

s.t. πLr2c = 5× 10−4m3

0.01 ≤ φi ≤ 0.99

1 mm ≤ tc ≤ 15 mm

10 cm ≤ L ≤ 100 cm

ẋ = f(xd, u)

(5.2)
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Table 5.3. : List of fixed parameters used in the optimization case study.

Parameter Value
simulated time (tf ) 10 s

time step (dt) 0.1 s
nL 30
nr 9
vf 4 m/s
Tin 313.3 K
T (0) 303.3 K
Tm 303.3 K
tp 1 mm
rf 0.5 mm

The optimization problem is solved using the nonlinear optimization algorithm

sequential quadratic programming (SQP) with multi-start, the same algorithm used

in Section 5.1. The convergence tolerance on the cost function is 10−5 W/kg.

Again, similar to that in case of the extended plate HX, I quantify the benefit of

a non-uniform spatial distribution of metal within the CPCM layer by comparing the

results for the non-uniform case against the results of the case when the TES module

is optimized with a uniform distribution of metal.

The optimal thickness of the CPCM layer, the optimal length of the HX, and

the optimal value of average metal fraction by volume in the CPCM layer for the

two cases are given in Table 5.4. The exact distribution of metal fraction by volume

in percentage within the composite PCM layer for the case with non-uniform metal

distribution is shown in Figure 5.5. The optimal distribution of metal fraction by

volume within the CPCM layer is similar to that in case of the extended plate HX in

the sense that, the first CPCM sub-layer has the highest metal fraction by volume, the

second sub-layer has the second highest metal fraction by volume and the the third

sub-layer has the least amount of metal. This is to maximize the rate of heat transfer

in the radial direction away from the fluid flow to melt a large amount of PCM and
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maximize the latent heat stored in the CPCM layer. The optimal distribution of

metal fraction by volume within the CPCM layer for the cylindrical tube HX also

shows that most of the metal is concentrated in the first sub-layer of the CPCM layer

and the metal volume fraction in most of the volumes of the second sub-layer and in

all the volumes of the third sub-layer is 0.01 which is the lower limit of the variable

φi in the optimization problem. Since the area of contact between the first sub-layer

and the second sub-layer of CPCM is lower than that between the second and the

third sub-layers and the thermal conductivity is directly proportional to the area of

contact, the optimal distribution of metal fraction is such that the effective thermal

conductivity of the first sub-layer of CPCM is maximized as a results of a high volume

fraction of metal in that layer.

15.5
1
1

15.1
1
1

15
1
1

14.9
1
1

14.8
1
1

15.4
1.6
1

Figure 5.5. : Optimal metal distribution (in percent metal by volume) within the
CPCM layer to maximize the power per unit volume performance measure.
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Table 5.4. : Optimization results for uniform and non-uniform distribution of metal
fraction by volume within the CPCM layer.

Variable Optimal Value
(Uniform Distribution)

Optimal Value
(Non-uniform Distribution)

tc 11.12 mm 11.12 mm
L 100 cm 100 cm

φ or φ̄ φ =6.4 % φ̄ =5.7 %
P/m 155.29 W/kg 162.89 W/kg
P 123.56 W 126.55 W
m 795.6 g 776.9 g

Thus, by allowing for non-uniform spatial variation of the metal composition

within the CPCM layer, the power per unit mass increased by 4.9% while the mass of

the HX decreased by 1.5%, as compared to the case with metal distributed uniformly

throughout the CPCM layer.

To check the sensitivity of the optimization results to the level of spatial dis-

cretization considered in the design problem, the optimization problem was solved

for the same 6 cases used to create the Pareto curve in Section 5.1. The results are

summarized in Figure 5.6 which characterizes the change in power per unit mass as a

function of the level of spatial discretization of the metal within the CPCM layer. It

is clear that the increase in spatial discretization increases the power per unit mass

initially, but that the power per unit mass starts to saturate. Similar to the case of

the extended plate HX, the Pareto curve shows that the performance metric starts

to saturate at a certain number of volumes considered within the CPCM layer, and

increasing the spatial discretization further would not improve the performance met-

ric. Increasing the spatial discretization further would add complexity to the design

problem without any contribution to the performance.
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Figure 5.6. : Pareto curve showing the relationship between spatial discretization of
the CPCM layer and the performance metric power per unit mass of the cylindrical
tube HX.

The results of the design optimization case studies highlight the value of the

reduced-order dynamic model for the purpose of design optimization. However, the

specific numerical improvement in power per unit mass observed in the case studies

may not necessarily be seen when the optimally designed modules are simulated and

compared using a CFD software, due to the presence of error between the reduced-

order model and the CFD model as discussed in Chapter 3. Moreover, the optimal

metal volume fraction obtained in the case studies is below 10% which is difficult

to manufacture while satisfying the assumption of metal fin spacing (< 1 mm). To

that end, future design exploration must consider manufacturability constraints in

the optimization itself. Nevertheless, the case studies presented here provide quali-

tative insight on the design process by suggesting that the effects of a non-uniform

distribution of metal within the CPCM layer of a module are promising.
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6. CONCLUSION

6.1 Summary of Research Contributions

In this thesis, I derived reduced-order (low fidelity) dynamic models for two geo-

metric configurations of a metal-PCM composite HX. The reduced-order models were

based on a finite-volume discretization approach with a lumped-parameter assump-

tion applied to individual control volumes. The models were validated against a high

fidelity CFD model developed in ANSYS Fluent for both laminar and turbulent flow

regimes. I demonstrated the accuracy of the low fidelity models in predicting, both

spatially and temporally, the evolution of the dynamic model states and other system

variables of interest, such as PCM melt fraction. I then demonstrate parametric stud-

ies for both the extended plate HX and the cylindrical tube HX. The parametric case

studies provided valuable insight as to the effects of the individual design variables on

specific performance metrics of interest, but it is not a convenient method to conduct

design optimization if the number of design parameters to be optimized is larger than

3. I then demonstrated how the reduced-order models could be used for the purposes

of design optimization, with a large number of design parameters optimized simulta-

neously, by presenting case studies in which I maximized the power per unit mass of

the overall TES module subject to a constraint on the volume occupied by the TES

modules in a specified time interval. In the case of the extended plate HX geometry,

the results showed that by allowing for non-uniform spatial variation of the metal

within the CPCM layer, an optimal design was found that could achieve a 1.24%

increase in performance with 0.4% less mass as compared to the case when the metal

was uniformly distributed within the PCM layer. In the case of the cylindrical tube
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HX, a 4.9% increase in performance with 1.5% less mass was achieved as compared

to the case when the metal was uniformly distributed in these HXs. Importantly, the

reduced-order models are suitable for design optimization of TES modules with any

number of decision variables and a broad range of objective functions.

6.2 Future Work

There are several potential areas for future work that build on the contributions

of this thesis. With respect to the module itself, a comprehensive uncertainty quan-

tification between the reduced-order model and the high fidelity CFD model could

be conducted to better understand the contribution of factors like Nusselt number

correlations, spatial discretization of the module, and the effective composite proper-

ties assumption, among others, to the prediction error between the two models. To

further quantify the accuracy of the reduced-order model, experimental data should

be used to conduct a detailed validation. The proposed models could also be used to

conduct a more comprehensive sensitivity study to quantify the effect of every design

variable on performance metrics of interest, including varying the characteristics of

the phase change material itself. A second area of future work concerns the manufac-

turability of the metal-PCM layer. The tradeoff between the increased manufacturing

complexity of a module with spatial variation of metal within the PCM, versus the

potential gains in performance, should be explored. Manufacturing methods, includ-

ing additive manufacturing approaches, could also be studied in order to fabricate the

types of modules proposed in this thesis. Finally, future work could consider the inte-

gration of the proposed TES module into a larger thermal-fluid system architecture.

This would enable quantification of the performance benefits of the individual module

in meeting system-level performance requirements. For integration with two-phase
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cooling systems, future work will require revisions to the proposed models to consider

two-phase flow through the fluid channel.
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