
ACCELERATION OF PDE-BASED BIOLOGICAL SIMULATION THROUGH

THE DEVELOPMENT OF NEURAL NETWORK METAMODELS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Lukasz Burzawa

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF THESIS APPROVAL

Dr. David Umulis, Co-Chair

Department of Biomedical Engineering

Dr. Charles Bouman, Co-Chair

Department of Electrical and Computer Engineering

Dr. Edward Delp

Department of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

Head of the Department Graduate Program

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . iv

LIST OF FIGURES . v

ABSTRACT . vi

1 INTRODUCTION . 1

2 BACKGROUND . 3

2.1 Mathematical modeling in developmental biology 3

2.2 Machine learning . 4

2.3 Deep learning . 4

2.4 Applications of machine learning to mathematical modeling 6

3 METHODS . 10

3.1 PDE model of reaction-diffusion . 10

3.2 PDE acceleration through neural networks 11

4 RESULTS . 16

4.1 Evaluation of neural network metamodels 16

4.2 Evaluation in context of multi-objective optimization 22

5 CONCLUSION . 29

REFERENCES . 31

iv

LIST OF TABLES

Table Page

3.1 Variable parameters in the PDE model. 12

3.2 Mutations . 13

4.1 Comparing MLP models . 17

4.2 Comparing LSTM models . 17

4.3 Comparing results by number of data samples used during training process 18

4.4 Relative error by mutation . 18

v

LIST OF FIGURES

Figure Page

1.1 Schematic of proposed changes . 2

2.1 Example RNN diagram . 6

3.1 MLP model architecture . 14

3.2 LSTM model architecture . 15

4.1 Training plot . 19

4.2 Comparison of protein distributions obtained by PDE simulation and MLP
metamodel . 20

4.3 Comparison of protein distributions obtained by PDE simulation and
LSTM metamodel . 21

4.4 Comparison of NRMSE values obtained by simulation and neural network
metamodel for WT data . 24

4.5 Comparison of NRMSE values obtained by simulation and neural network
metamodel for CLF data . 25

4.6 Comparison of multi-objective plots between simulation and NN consid-
ering only WT and CLF mutation data . 26

4.7 Comparison of multi-objective plots between simulation and NN if all mu-
tation NRMSE values are less than 0.2 . 27

4.8 Comparison of Pareto frontiers . 28

vi

ABSTRACT

Burzawa, Lukasz M.S., Purdue University, May 2020. Acceleration of PDE-based Bi-
ological Simulation through the development of Neural Network metamodels. Major
Professors: David Umulis, Charles Bouman.

PDE models are a major tool used in quantitative modeling of biological and

scientific phenomena. Their major shortcoming is the high computational complexity

of solving each model. When scaling up to millions of simulations needed to find

their optimal parameters we frequently have to wait days or weeks for results to come

back. To cope with that we propose a neural network approach that can produce

comparable results to a PDE model while being about 1000x faster. We quantitatively

and qualitatively show the neural network metamodels are accurate and demonstrate

their potential for multi-objective optimization in biology. We hope this approach

can speed up scientific research and discovery in biology and beyond.

1

1. INTRODUCTION

Solving PDE models is a very computationally intensive task. One of the major

tasks when working with PDE simulations is to find parameters that allow a given

PDE model to give outputs that closely match experimental data. That is usually

done through random search which involves running millions of PDE simulations.

Assuming each one takes about a second the computational costs quickly add up to

days and weeks of waiting for results to come back. That is a major inefficiency

in building accurate PDE models. To remedy this we propose to use neural network

proxies instead of PDE simulations for parameter search. A neural network proxy can

give results that are very close to those of a PDE model while providing significant

speedups from the order of seconds to milliseconds.

Here we focus on a specific one-dimensional PDE system of reaction-diffusion that

models zebrafish development. Such models help us understand how complex patterns

emerge in organisms and are an important tool in developmental biology.

Our contribution is to train a neural network to emulate a PDE model of reaction-

diffusion in zebrafish development. We show it offers significant advantages for ran-

dom parameter search and multi-objective optimization.

2

Fig. 1.1. Schematic of proposed changes

3

2. BACKGROUND

2.1 Mathematical modeling in developmental biology

One of the fundamental problems in developmental biology is how complex pat-

terns in organisms emerge from a group of nearly identical cells. A major tool in

understanding such complex pattern emergence is to use reaction-diffusion math-

ematical models which model how molecular organization changes over space and

time [1]. Three major components of reaction-diffusion models are molecular trans-

port, production and clearance. The reaction-diffusion models involve many variable

parameters, for example diffusion rate, production rate and decay rate of each protein.

Those depend on a system being analyzed and are determined by matching simula-

tions to experimental data. Frequently we want to find parameters that optimize the

system for multiple different species or mutations in which case multi-objective or

Pareto optimization is used.

One of very important proteins that accounts for pattern formation in tissues is

Bone morphogenetic protein (BMP) [2]. To understand its impact we look at its

concentration gradient that forms between the ventral (frontal) part of the cell and

dorsal (back) part. Changes in BMP gradient can be described as:

Change in BMP gradient over time = Diffusion+Advection+Reaction+Production

Diffusion accounts for movement of BMP through extracellular space. Advection

refers to transport of BMP through bulk motion, an example could be cell movement

due to expanding tissue. Reaction term involves interaction of BMP with extracellular

regulators. Production is simply rate of BMP production. The impact of regulators

on BMP reaction-diffusion can be more clearly presented in mathematical terms as:

∂B

∂t
= D

∂2B

∂x2
− kbindingB ×R + kunbindingBR

4

∂BR

∂t
= kbindingB ×R− kunbindingBR

where B is BMP concentration, R is regulator concentration, BR is BMP-regulator

compound concentration, D is the BMP diffusion coefficient and k represents the

binding and unbinding rates of BMP and regulator.

2.2 Machine learning

Machine learning is a class of algorithms where a given task can be learned through

implicit pattern recognition rather than by relying on explicit instructions. It can be

split into subcategories like supervised learning, unsupervised learning and reinforce-

ment learning. Supervised learning involves fitting a function between inputs and

outputs where the outputs have clearly defined labels that are to be exactly predicted

by a machine learning model. It can be done either in form of classification or re-

gression. Some popular examples of methods used in supervised learning are Support

Vector Machines (SVM), Naive Bayes classifiers, Gaussian Processes and Neural Net-

works. Unsupervised learning involves finding patterns in data that does not have any

labels. It can be done with k-means clustering, Gaussian Mixture Models (GMM)

or also with Neural Networks. Reinforcement learning (RL) involves an agent ex-

ploring an environment and attempting to find a sequence of actions that leads it to

obtaining a highest reward based on reward function that was crafted by a human.

Popular approaches to RL include policy gradient [3] and Q-learning [4] and usually

use Neural Networks.

2.3 Deep learning

In recent years a subfield of machine learning called deep learning [5] has been

gaining popularity due to advances in big data and massively parallel computer hard-

ware [6]. Deep learning involves training neural networks with many layers. The

networks are trained through backpropagation [7] and stochastic gradient descent

5

(SGD) optimization. Some common SGD algorithms which implement an adaptive

learning rate include Adagrad [8], RMSprop [9] and Adam [10]. The simplest neu-

ral network architecture is a Multilayer Perceptron (MLP) where all nodes are fully

connected. If the data involves sequences then usually Recurrent Neural Networks

(RNN) [11] are used. A generic RNN diagram is shown in figure 2.1. As seem on

the diagram input x(t) is combined with previous hidden state h(t-1) to give current

hidden state h(t). Hidden state h(t) can optionally be passed through another linear

layer to give output y(t). In form of an equation RNN can be summarized as:

ht = tanh(Wihxt + bih +Whhht−1 + bhh)

where Wih and bih are weights and biases of a linear layer that processes input xt and

Whh and bhh are weights and biases of a linear layer that processes previous hidden

state ht−1. Training RNNs is a bit more complex since it involves backpropagation

through time where gradients are summed up for all time steps. Standard RNNs

struggle with long sequences as gradients start to vanish if they are backpropagated

though a long graph. To deal with Long Short-Term Memory Networks (LSTM) [12]

were proposed where some gradients are allowed to be passed almost undisturbed.

The LSTM equations are:

it = sigmoid(Wiixt + bii +Whiht−1 + bhi)

ft = sigmoid(Wifxt + bif +Whfht−1 + bhf)

gt = tanh(Wigxt + big +Whght−1 + bhg)

ot = sigmoid(Wioxt + bio +Whoht−1 + bho)

ct = ft ◦ ct−1 + it ◦ gt

ht = ot ◦ tanh(ct)

where it is the input gate, ft the forget gate, gt the cell gate, ot the output gate, ct

the cell state, ht the hidden state and ◦ represents element-wise multiplication. Cell

state and hidden state are the outputs of the LSTM that get passed to the next layer

6

in the neural network and/or to the next time step. By inspecting the equations we

can see there are 8 different linear layers in one LSTM module which makes them

pretty computationally expensive. Gated Recurrent Units (GRU) [13] were proposed

to alleviate the computational costs as they include 6 linear layers in one module. If

the data involves 1D or 2D correlations to be explored like in speech signal or images

then Convolutional Neural Networks (CNN) [14] are used. Unlike in MLP, nodes of

a CNN are sparsely connected to focus on spatial interdependencies.

Fig. 2.1. Example RNN diagram

2.4 Applications of machine learning to mathematical modeling

A major advantage of neural network models is that they are built mostly on

basic linear algebra operations like matrix multiplications and convolutions which

are highly parallelizable and run on the order of milliseconds unlike many scientific

simulation which take seconds or minutes. Hence if a neural network could emulate a

given mathematical model running on a computer then it could offer major advantages

7

in terms of speed. Such use of neural networks has been seen in materials science,

chemistry, physics, robotics and recently biology. We summarize it next.

Schrodinger Equation is a fundamental tool in quantum mechanics. Yet exact

solutions are only possible for the smallest systems and otherwise expensive numerical

approximations have to be used. To deal with it, [15] uses a sum of weighted Gaussians

to predict molecular energy based on distance between molecules. The regression

coefficients are found through kernel ridge regression. They generate data using

Density Functional Theory (DFT) approximations. The efficiency of the machine

learning approach paves the way for large scale exploration of chemical compounds

and their energies.

Simulators are a common way to conduct robotics research and development.

However the rigid body dynamics models they employ very time consuming due to

complex nature of physics they are trying to capture. In [16] authors use experimental

data to train MLP and RNN to predict motion and sensory outputs of a robot based

on its current positioning and kinematics. That increases effectiveness of building

robust control system for robots.

In [17] an MLP is used to predict a potential energy of a molecular system based

on DFT calculations. What’s notable is the authors carefully crafted a molecular

representation as an input to MLP. They took into account that the representation

needs to be compact while maximizing resolution of local atomic environment and

covering all the relevant space molecule takes. They termed the resulting input as

Atomic Environment Vector (AEV). That is in line with other work in deep learning

that shows that input representation matters. For example [18] shows they are able

to narrow the gap in 3D object detection between stereo and LIDAR vision data by

generating a pseudo-LIDAR representation from stereo data.

One of major problems within materials discovery is to be able to identify stable

compositions of chemical compounds. It is mostly done through expensive DFT

calculations. In [19] they train an MLP to predict formation energy of a crystal

8

based on Pauling electronegativity and ionic radius of species. They achieve very

accurate results on garnets and perovskites.

Another crucial yet very computationally costly problem in science is a three-body

problem. In [20] the authors train an MLP to predict location of particles 1 and 2

given input of time t and initial location of particle 2. Location of particle 3 follows

from problem symmetry. To acquire data they use Brutus numerical integrator. The

time saved by using a neural network is at the order of 100 million. Such fast and

accurate three-body solver has major implications for research into areas like black-

hole systems and core collapse in star clusters.

In [21] machine learning is applied to find exciton dynamics normally computed

with costly time-dependent DFT calculations. The particular molecules studied are

bacteriochlorophylls in Fenna-Matthews-Olsen complex. MLP is trained to predict

their excited state energies from Coulomb matrices which describe electrostatic inter-

action between nuclei. The neural network is able to reproduce quantum mechanical

results with less than 1% error.

Most related to our project is the work of [22] that applies neural networks to a

mechanistic PDE model of pattern formation in bacteria. They train an LSTM to

predict spatial distribution of a molecule based on PDE parameters like cell growth

rate, cell motility and kinetics of gene expression. The data is generated by a PDE

solver. Their neural network achieves R2 of around 0.99 and provides speedup of

about 30,000x. That carries great potential for efficiently exploring the parameters

space of the PDE model and finding spatial distributions not easily seen before.

Most of the above work uses deep learning which scales better with increasing

data sizes than more traditional machine learning approach like SVMs and Gaussian

Processes. That is good choice considering the data here comes from simulation and

is automatically labeled. Since it does not require strenuous manual annotation like

vision, speech and text data, there is little limit on how much data can be generated

from those simulations and deep learning is a good choice of framework to be applied

to it. In some cases where data is sequential we can see authors use RNNs to solve the

9

problem. That is conceptually correct but we need to also consider that RNNs operate

in sequences and involve multiple linear layers in a single module which considerably

slows them down compared to standard MLPs. Since inference latency is a crucial

concern when emulating scientific simulations with neural networks, this disparity

between MLP and RNN has to be taken into account.

10

3. METHODS

3.1 PDE model of reaction-diffusion

We consider a PDE model of reaction-diffusion in zebrafish development that is

represented by equations below. There are six proteins: BMP, Chordin, Noggin,

BMP-Chordin, BMP-Noggin and Sizzled that interact with each other.

∂B

∂t
= DB

∂2B

∂x2
+ φB(x) + λtBC

1

1 + S
kit

+ C+BC
kmt

BC + λaBC
1

1 + S
kia

+ C+BC
kma

BC

−konCB × C + koffCBC − konCB ×N + koffNBN − decBB

∂C

∂t
= DC

∂2C

∂x2
+ φC(x) + λtC

1

1 + S
kit

+ C+BC
kmt

C + λaC
1

1 + S
kia

+ C+BC
kma

C

−konCB × C + koffNBC − decCC

∂N

∂t
= DN

∂2N

∂x2
+ φN(x)− konNB ×N + koffNBN − decNN

∂BC

∂t
= DBC

∂2BC

∂x2
+ λtBC

1

1 + S
kit

+ C+BC
kmt

BC + λaBC
1

1 + S
kia

+ C+BC
kma

BC

+konCB × C − koffNBC − decBCBC

∂BN

∂t
= DBN

∂2BN

∂x2
+ konNB ×N − koffNBN − decBNBN

∂S

∂t
= DS

∂2S

∂x2
+

Vs ×Bn

Kn +Bn
− decSS

The model has variable parameters that are describing in Table 3.1. For each

set of parameters there are seven mutations described in Table 3.2, each involving

11

solving a separate set of PDEs. Most of the variable parameters have to be randomly

searched according to their ranges so that the outputs of the simulation match the

experimental data. The fitness of the parameters is determined by Normalized Root

Mean Square Error (NRMSE) between the final BMP distribution from the simulation

and the experimental values. The values of Smax that are used to find appropriate

kit and kia ranges are determined based on other simulation not discussed here. The

value of k is determined from maximum value of BMP coming out of corresponding

Chordin loss function simulation for which k is not needed yet. You can think of k

as being indirectly derived from the other parameters. The value of Vs is 100 except

for Sizzled loss function simulation where it’s 0.

3.2 PDE acceleration through neural networks

The inputs to our neural network are the PDE model parameters that are gener-

ated randomly according to ranges in Table 3.1. The output is the final distribution of

BMP concentration over 36 points in 1D space. Both inputs and outputs are normal-

ized by taking a logarithm of base 10 of all the values and then dividing the resulting

values by 10. Also any value less than 10−8, including 0, is approximated to 10−8.

This way we ignore concentrations too small to be significant and avoid taking a loga-

rithm of zero. To collect data for neural network training we run 100,000 simulations,

each consisting of 7 different mutations for a total of 700,000 unique simulation data

points. 90% of data is used for validation and 10% is used for validation.

We consider two neural network architectures: MLP and LSTM. In MLP model,

shown in Figure 3.1, the PDE parameters are passed through a sequence of linear

layers, each followed by Rectified Linear Unit (ReLU) activation function. The output

layer gives the whole distribution of BMP concentrations at once. That is in contrast

to an LSTM model, shown in Figure 3.2, where the BMP concentrations are output

in a sequence, one by one. Here the PDE parameters are passed first through a linear

layer that gives a higher dimensional parameter embedding. Then the parameter

12

Table 3.1.
Variable parameters in the PDE model.

Parameter Symbol Min Max

BMP Production Rate φB 10−3 10−1

Chordin Production Rate φC 10−2 101

Noggin Production Rate φN 10−2 102

Noggin Decay Rate decN 10−5 10−1

Sizzled Decay Rate decS 10−5 10−1

BMP-Chordin Decay Rate decBC 10−5 10−3

BMP-Noggin Decay Rate decBN 10−5 10−3

Chordin Diffusivity DC 0.5 50

Noggin Diffusivity DN 10−2 102

BMP-Chordin Diffusivity DBC 10−2 102

BMP-Noggin Diffusivity DBN 10−2 102

Binding Rate for BMP and Chordin konC 10−4 100

Binding Rate for BMP and Noggin konN 10−4 100

BMP-Chordin Degradation by Tolloid λtBC 10−4 100

Chordin Degradation by Tolloid λtC 10−4 100

BMP-Chordin Degradation by Bmp1a λaBC 10−4 100

Chordin Degradation by Bmp1a λaC 10−4 100

Michaelis Constant of Tolloid kmt 100 102

Michaelis Constant of Bmp1a kma 100 102

Sizzled Inhibitor Constant with Tolloid kit 0.1× Smax 10× Smax

Sizzled Inhibitor Constant with Bmp1a kia 0.1× Smax 10× Smax

Hill Function Parameter k N/A N/A

Max of Sizzled expression Vs 100 100

13

Table 3.2.
Mutations

Mutation Change in parameters

Wild type (WT, no mutation) None

Chordin loss of function (CLF) φC = 0

Noggin loss of function (NLF) φN = 0

Bmp1a loss of function (ALF) λaBC = 0, λaC = 0

Tolloid loss of function (TLF) λtBC = 0, λtC = 0

Bmp1a and Tolloid loss of function (TALF) λaBC = 0, λaC = 0, λtBC = 0, λtC = 0

Sizzled loss of function (SLF) Vs = 0

embedding is concatenated with an LSTM output at a previous step in sequence and

passed to an LSTM module which outputs the BMP concentration at the current

point in sequence. A BMP concentration of 0 (-0.8 after normalization) is given as

a dummy input at the first step of a sequence. The sequence length of LSTM is 36

since there are 36 points in space for the PDE model.

To match neural network outputs with actual PDE outputs an L1 loss is calcu-

lated between the two. It is then backpropagated through the neural network to

calculate gradient at each weight of the neural network. Then the weights are opti-

mized through Adam algorithm with an initial learning rate of 0.001. The training is

run for 100 epochs.

Except for L1 loss we consider two other metrics to evaluate how well our neural

network metamodel is doing. First is Coefficient of Determination R2 calculated from

normalized values. The other is relative error between NRMSE of PDE system and

NRMSE of the neural network model calculated as shown below.

Error = 100%× |NRMSENN −NRMSEPDE|
NRMSEPDE

14

Fig. 3.1. MLP model architecture

This metric allows us to directly evaluate how a neural network would do during

parameter search as compared to the original PDE model.

15

Fig. 3.2. LSTM model architecture

16

4. RESULTS

4.1 Evaluation of neural network metamodels

Tables 4.1 and 4.2 show the validation set results of training different MLP and

LSTM models. The MLPs are grouped in format MLP-number of layers-number of

units. For example MLP-3-256 means the model has 3 layers, first with 256 outputs,

second with 256 outputs and third with 36 outputs. MLP-4-256 would have one more

layer with 256 outputs. For LSTMs we consider modules with output sizes of 256 and

512. In addition to accuracy metrics like R2 and relative error we also consider number

parameters and computational cost metrics like number of floating point operations

(FLOPs), latency on a standard Intel CPU and latency on Titan X Pascal GPU.

Among MLP models, MLP-4-1024 has the best accuracy while among LSTM models

it is LSTM-512. We can also see that LSTMs models slightly outpeform MLP models

in accuracy. For example LSTM-512 has the same number of learnable parameters

as MLP-4-1024 with a relative error lower by over 1%. That is due to LSTM’s ability

to understand sequences. However that also comes with a bigger computational cost.

All of FLOPs, CPU latency and GPU latency are more than 10x larger for LSTM-

512 than for MLP-4-1024. From here on we only consider the best MLP and LSTM

models hence we refer to the MLP-4-1024 model as MLP and to the LSTM-512 model

as LSTM.

Next we investigate how the neural network model responds to the amount of data

it is fed and how its error changes as training progresses. We only consider the MLP

model here since the LSTM model is expected to give very similar trends. Table 4.3

shows how results of MLP model vary depending on different data sizes used. As

expected the accuracy improves as more samples are used. Using 100,000 samples

gives satisfactory results. Results are acceptable for 10,000 samples and not good for

17

Table 4.1.
Comparing MLP models

MLP-3-256 MLP-3-1024 MLP-4-256 MLP-4-1024

Parameters 0.0812M 1.11M 0.147M 2.16M

FLOPs 0.162M 2.22M 0.294M 4.32M

CPU latency 0.092ms 0.120ms 0.125ms 0.319ms

GPU latency 0.187ms 0.189ms 0.237ms 0.237ms

R2 0.9969 0.9982 0.9984 0.9989

Rel. error 12.19% 9.57% 8.34% 6.99%

Table 4.2.
Comparing LSTM models

LSTM-256 LSTM-512

Parameters 0.533M 2.11M

FLOPs 37.9M 151M

CPU latency 5.96ms 12.4ms

GPU latency 5.51ms 5.67ms

R2 0.9994 0.9996

Rel. error 7.67% 5.74%

1000 samples. Such differences in accuracy based on number of samples are quite

standard compared to other deep learning application where usually 10,000 training

samples are needed. This table also shows importance of our relative error metric.

For 1000 samples we get a high relative error while still a respectable R2. That is

because R2 is calculated on normalized log values since calculating it on actual values

would make those of larger magnitude dominate which we do not want. However just

using log values might not tell the whole story and that is why we find the relative

18

error metric very useful. It uses actual, not normalized, outputs and gives a deviation

from the result we actually want to reproduce for PDE parameter optimization which

is the NRMSE between experimental data and simulation.

Table 4.3.
Comparing results by number of data samples used during training process

1k 10k 100k

R2 0.9675 0.9955 0.9989

Rel. error 68.17% 16.70% 6.99%

Figure 4.1 shows how validation error changes as training progresses on 100,000

samples. We can clearly see that neural network is learning and error decreases from

above 50% at the start of training to under 10% at the end of training.

Table 4.4 shows the relative error by mutation for the best MLP model, MLP-4-

1024, and the best LSTM model, LSTM-512. We can see that the results are generally

consistent across all mutations.

Table 4.4.
Relative error by mutation

MLP LSTM

Mean error 6.99% 5.74%

WT error 6.58% 5.57%

CLF error 7.38% 5.96%

NFL error 7.64% 7.02%

ALF error 8.14% 5.50%

TLF error 5.28% 4.21%

TALF error 6.54% 4.37%

SLF error 7.46% 7.74%

19

Fig. 4.1. Training plot

Figures 4.2 and 4.3 show how MLP and LSTM model respectively reproduce

the PDE outputs on seven randomly chosen samples, one for each mutation. The

mutation plots are not of the same wild-type sample so that we can see a greater

diversity of results. We can see that generally the neural networks give final BMP

distribution that is very similar to the one given by a PDE simulation. Since LSTM

gives outputs in form of a sequence, one by one, we would expect that its plots would

generally be smoother than those of MLP. That is generally true in the plots we see.

Figures 4.2(c), 4.2(e) and 4.2(f) have some irregularities that disappear or smooth

out when looking at Figures 4.3(c), 4.3(e) and 4.3(f).

20

(a) Example WT distribution (b) Example CLF distribution

(c) Example NLF distribution (d) Example ALF distribution

(e) Example TLF distribution (f) Example TALF distribution

Fig. 4.2. Comparison of protein distributions obtained by PDE sim-
ulation and MLP metamodel

21

(a) Example WT distribution (b) Example CLF distribution

(c) Example NLF distribution (d) Example ALF distribution

(e) Example TLF distribution (f) Example TALF distribution

Fig. 4.3. Comparison of protein distributions obtained by PDE sim-
ulation and LSTM metamodel

22

Figures 4.4 and 4.5 are density plots that show how the NRMSE results compare

between a neural network metamodel and a PDE simulation on validation data. The

black line symbolizes the best fit line calculated from the points. On WT data the

best fit line is y = 0.981x + 0.005 for MLP and y = 0.996x + 0.0009 for LSTM. On

CLF data the best file line is y = 0.984x + 0.003 for MLP and 1.005x + 0.002 for

LSTM. A perfect match would be a straight line y = x. In case of both WT and

CLF data the LSTM slightly outperforms the MLP in giving slopes closer to 1 and

y-axis intercepts closer to 0. Visually, LSTM model also seems to give less outliers on

CLF data than MLP model. Since these are density plots we can see some circular

yellow hotspots on the plots. These are irrelevant, they just show where most points

fall coming out of PDE simulations. More important is the yellow to light blue line

that forms and shows most points indeed fall on y=x.

Both quantitative and qualitative evaluations slightly favor the LSTM model.

It gives higher R2, lower relative error, produces smoother BMP distributions and

reproduces the mutation data with less variation. However those improvement come

at significantly higher computational cost of at least 20x. Since we would like to use

the neural network metamodel for rapid exploration of PDE parameter space that is

considerable. Hence for practical purposes we consider the MLP model to be superior

than LSTM model.

4.2 Evaluation in context of multi-objective optimization

As already mentioned, multi-objective optimization is an important tool for quati-

tative biology. Here we consider multi-objective optimization in terms of balancing

error obtained between simulation and experiment for different mutations. We show

how accurately can the MLP model reproduce results obtained from PDE simulations.

Figures 4.6(a) and 4.6(b) show how a multi-objective plot of WT NRMSE vs CLF

NRMSE compares between a neural network and a PDE simulation. We can see the

regions with highest density are almost the same for both PDE model and a neural

23

network. Similarly figures 4.7(a) and 4.7(b) compare the two while assuming all the

points present have NRMSE less 0.2 for every other mutation, so for NLF, ALF, TLF,

TALF and SLF. The comparison between PDE model and neural network also looks

promising, points on both plots occupy the same region.

Figure 4.8 shows the Pareto frontiers found based on data in figure 4.7. Pareto

frontier is generated by finding all points that are not dominated by any other points.

This means there is no other point that has both WT NRMSE and CLF NRMSE lower

than any of the points on the plot. We can see simulation and neural network produce

similar frontiers. The largest deviation is observed for the points in lower right part

which have the lowest CLF NRMSE. However after looking at their exact values we

can see the difference is about 10% which is consistent with relative error results

from Table 4.4. We acknowledge this Pareto frontier occupies a relatively small area

from figure 4.7 and is hence quite simpler that Pareto frontiers usually encountered.

This is more of a demonstration of how neural networks could be applied to Pareto

optimization in biology. A more interesting example could be a frontier between two

different species like zebrafish and fruit fly.

To generate discussed pareto frontier we used 70000 points, since our validation set

has 10000 samples and there are 7 mutations per sample. Running 70000 simulations

using our PDE system would take about 20 hours assuming each simulation takes

about 1 second. On the other hand the neural network metamodel would only need

about 1 minute to get the results back. That is why using neural networks for multi-

objective optimization has great potential.

24

(a) MLP

(b) LSTM

Fig. 4.4. Comparison of NRMSE values obtained by simulation and
neural network metamodel for WT data

25

(a) MLP

(b) LSTM

Fig. 4.5. Comparison of NRMSE values obtained by simulation and
neural network metamodel for CLF data

26

(a) Simulation

(b) Neural network

Fig. 4.6. Comparison of multi-objective plots between simulation and
NN considering only WT and CLF mutation data

27

(a) Simulation

(b) Neural network

Fig. 4.7. Comparison of multi-objective plots between simulation and
NN if all mutation NRMSE values are less than 0.2

28

Fig. 4.8. Comparison of Pareto frontiers

29

5. CONCLUSION

We show that neural network metamodels are an effective tool to accelerate biological

simulations. They offer speedups of about 1000x while preserving accuracy with

R2 above 0.99 and relative NRMSE error under 10%. We consider a specific PDE

model from zebrafish development but the neural network models discussed here can

be applied to any other PDE system. Compared to [22] we train both LSTM and

MLP model and show that MLP offers advantages in speed without sacrificing much

accuracy. We also show the potential of using neural network metamodels for multi-

objective optimization in biology.

Future work could involve applying the neural network approach to more com-

plex PDE system that model 2D or 3D dynamics. The multi-objective optimization

described here for mutations could also be extended for multiple species, for example

zebrafish and fruit fly. Another important area of contribution to PDE modeling could

be in solving an inverse problem. In the inverse problem the goal is to find parame-

ters that match the PDE outputs to experimental data. This could be simply done

by replacing PDE solvers with neural network and conducting an accelerated random

search as implied by this work. However neural networks also offer a unique advantage

for gradient descent approaches to parameter search as they are fully differentiable.

This means gradient descent could use faster and more accurate backpropagation

instead of numerical gradient approximations. Finally neural network and machine

learning could also contribute to inverse problem by employing reinforcement learning

to find optimal parameters. The actions from RL could be the parameters searched

and reward could be the inverse of error between PDE simulation or NN metamodel

and experiment. In a similar fashion reinforcement learning has already been used in

Neural Architecture Search (NAS) [23].

30

We hope our work serves as a useful tool for scientists and engineers who work

with complex physical simulations and enhances scientific research and discovery in

biology and beyond.

REFERENCES

31

REFERENCES

[1] M. Thompson, H. Othmer, and D. Umulis, “A primer on reaction-diffusion mod-
els in embryonic development,” Encyclopedia of Life Sciences, 2018.

[2] J. Zinski, Y. Bu, X. Wang, W. Dou, D. Umulis, and M. C. Mullins, “Systems
biology derived source-sink mechanism of bmp gradient formation,” eLife, 2017.

[3] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Machine Learning, 1992.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, and et al, “Human-level control through
deep reinforcement learning,” Nature, 2015.

[5] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, 2015.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” NIPS, 2012.

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, 1986.

[8] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization,” JMLR, 2011.

[9] G. Hinton, “Overview of mini-batch gradient descent,” 2012.

[10] D. P. Kingma and J. L. Ba, “Adam: a method for stochastic optimization,”
ICLR, 2015.

[11] A. Karpathy, “The unreasonable effectiveness of recurrent neural networks,”
2015.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Compu-
tation, 1997.

[13] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn encoder-
decoder for statistical machine translation,” EMNLP, 2014.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-
plied to document recognition,” Proceedings of the IEEE, 1998.

[15] M. Rupp, A. Tkatchenko, K.-R. Muller, and O. A. von Lilienfeld, “Fast and
accurate modeling of molecular atomization energies with machine learning,”
Physical Review Letters, 2012.

32

[16] C. J. Pretorius, M. C. du Plessis, and C. B. Cilliers, “Simulating robots with-
out conventional physics: A neural network approach,” Journal of Intelligent &
Robotic Systems, 2013.

[17] J. S. Smith, O. Isayev, and A. E. Roitberg, “Ani-1: an extensible neural network
potential with dft accuracy at force field computational cost,” Chemical Science,
2017.

[18] Y. Wang, W.-L. Chao, D. Garg, B. Hariharan, M. Campbell, and K. Q. Wein-
berger, “Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object
detection for autonomous driving,” CVPR, 2019.

[19] W. Ye, C. Chen, Z. Wang, I.-H. Chu, and S. P. Ong, “Deep neural networks for
accurate predictions of crystal stability,” Nature Communications, 2018.

[20] P. G. Breen, C. N. Foley, T. Boekholt, and S. P. Zwart, “Newton vs the machine:
solving the chaotic three-body problem using deep neural networks,” MNRAS,
2019.

[21] F. Hase, S. Valleau, E. Pyzer-Knapp, and A. Aspuru-Guzik, “Machine learning
exciton dynamics,” Chemical Science, 2016.

[22] S. Wang, K. Fan, N. Luo, Y. Cao, F. Wu, C. Zhang, K. A. Heller, and
L. You, “Massive computational acceleration by using neural networks to emulate
mechanism-based biological models,” Nature Communications, 2019.

[23] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable archi-
tectures for scalable image recognition,” CVPR, 2018.

