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ABSTRACT 

For a long time, the collection of data through sensors and other means was seen as inconsequential. 

However, with the somewhat recent developments in the areas of machine learning, data science, 

and statistical analysis, as well as in the rapid growth of computational power being allotted by the 

ever-expanding computer industry, data is not just being seen as secondhand information anymore. 

Data collection is showing that it currently is and will continue to be a major driving force in many 

applications, as the predictive power it can provide is invaluable. One such area that could benefit 

dramatically from the use of predictive techniques is the steel industry. This thesis applied several 

machine learning techniques to predict steel deformation issues collectively known as the hook 

index problem [1]. 

 

The first machine learning technique utilized in this endeavor was neural networking. The neural 

networks built and tested in this research saw the use of classification and regression prediction 

models. They also implemented the algorithms of gradient descent and adaptive moment 

estimation. Through the employment of these networks and learning strategies, as well as through 

the line process data, regression-based networks made predictions with average percent error 

ranging from 106-114%. In similar performance to the regression-based networks, classification-

based networks made predictions with average accuracy percentage ranges of 38-40%. 

 

To remedy the problems relating to neural networks, Bayesian networking techniques were 

implemented. The main method that was used as a model for these networks was the Naïve 

Bayesian framework. Also, variable optimization techniques were utilized to create well-

performing network structures. In the same vein as the neural networks, Bayesian networks used 

line process data to make predictions. The classification-based networks made predictions with 

average accuracy ranges of 64-65%. Because of the increased accuracy results and their ability to 

draw causal reasoning from data, Bayesian networking was the preferred machine learning 

technique for this research application.  
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 INTRODUCTION 

One of the first steps often taken in understanding an unknown or undocumented process is the 

measurement of certain aspects and features relating to the not yet understood process itself. 

However, measurements taken in this fashion are sometimes only seen as supplementary 

information to be called upon in a reactionary manner when the process starts to defy expectations, 

or when it is not apparent for what the measurements could be used in order to improve the given 

process. This thesis strives to reevaluate these thought processes by suggesting that data should be 

used for proactive implementations like prediction algorithms. 

 

In this day and age, it is very easy and affordable to use measurement and sensor technology to 

gain data and insight. Moreover, with the current advancements in computational technologies, as 

well as in the advancements of machine learning, statistical analysis, and data science theories, 

there is no better time to start using predictive algorithms than right now. These ideas can be used 

to not only enhance things like manufacturing processes but also to foresee and correct potential 

problems that have yet to occur. This was the basis behind the idea of using different machine 

learning techniques in the steel rolling process at ArcelorMittal. 

 

The steel rolling and manufacturing process at ArcelorMittal has seen the implementation of many 

different sensors that collect information and data on the steel and tools used to roll the steel. 

Currently, this data is being used for other critical processes, but it has yet to address an issue in 

the steel rolling process dubbed by representatives from ArcelorMittal as the hook index problem 

[1]. The hook index problem that rolls of steel can encounter during the line process is described 

as an irregular elongation of the ends of the steel that, when rolled into coils at the end of the 

process, jut from the center of the donut-like shape of the coil. These jutting ends and irregular 

coil shapes make steel storage, transportation, and other process difficult to manage. 

 

The solutions that are currently in practice by ArcelorMittal require reprocessing time and waste 

money and resources. This waste of valuable resources could ultimately be saved if measures could 

be put in place that could predict when steel rolls are likely to experience hook indexes. That is 
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the gap that this research has sent out to fill through the use of different machine learning 

techniques and other data science theory implementations. 

 

Detailed in this thesis are the steps taken to approach and subsequently provide information for 

potential solution implementations for the hook index problem [1]. The two major machine 

learning techniques evaluated during this research were neural networks and Naïve Bayesian 

networks. These techniques use data provided by ArcelorMittal and set a value representing the 

hook index as the output to be predicted by these network structures. The findings, results, and 

suggestions collected from this research are detailed in the later chapters. The actual layout and 

chapter structure of the thesis after this introductory chapter is explained thusly. Chapter 2 contains 

a comprehensive review of the ideas and previous works studied in preparation of this thesis. 

Chapter 3 covers the methods that went into implementing and testing the different network 

structures. Chapter 4 puts forward the results received from the tested networks. Chapter 5 

discusses the aforementioned results, presents future work ideas and potential solutions, and draws 

final conclusions. 
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 LITERATURE REVIEW 

In an effort to gain background knowledge on the topics covered in this thesis, as well as view 

what kinds of machine learning techniques have been implemented in similar applications to this 

research, different literature pieces and topics were referenced and reviewed. More specifically, 

topics referring to machine learning in steel applications and explanations of machine learning 

techniques were researched. 

 

Several literary works were reviewed for machine learning applications in the steel industry. The 

topics that were covered by these papers were the optimizations of amount of steel produced by 

the manufacturing process of a mill [2] and the quality assurance and control of steel being 

manufactured [3]. The machine learning processes that were used in these reviewed works are the 

basis of discussions in the following paragraphs. 

 

Starting with the first mentioned topic, researchers trying to optimize and increase steel production 

did so using a multitude of different machine learning techniques. To be more specific about the 

techniques covered in that particular research, the techniques that were covered were random forest 

methods, artificial neural networks, support vector machines, and dynamic evolving neuro-fuzzy 

inference systems [2]. All of these techniques worked in such a way to which they took in inputs 

from the process that they were measuring and predicted a single output through the use of a 

regression-based learning method. Moreover, these techniques all used mean squared error, 

absolute percent error, and mean absolute percent error cost functions to train the given machine 

learning techniques. The particular methods behind each machine learning technique will be 

discussed for each technique individually. 

 

For the random forest method, the process is described as an implementation of multiple decision 

tree methods working with different input data subsections [2, 4]. The groups of variables used in 

the subsection of each tree is determined randomly and gets trained to improve by a training set of 

data. Each tree grows by using a version of the method known as classification and regression tree 

method. The basis for this method comes in the form of making binary decisions at each node in 

the tree structure until a leaf node is reached [4, 5]. However, in the random forest method, each 



 
 

13 

tree implements elements of randomness into the tree building and data feature selection process. 

The collection of these random trees is what makes this method a random forest implementation. 

In the reviewed literature, the researchers used a random forest of one hundred trees and split input 

variables in groups of three [2]. 

 

The next method to be discussed is the artificial neural network technique. In the literature, the 

method utilizes multiple layers of a network that move input data through the network in a forward 

propagation process [2, 6]. The gradient descent method of learning is the most widely used, but 

other types were implemented in the research as well. These other algorithms were the quasi-

Newton, scaled conjugate gradient, and Levenberg–Marquardt (LM) algorithms [6-9]. The quasi-

Newton method converges to network minimum points more quickly than the other methods but 

does not take network accuracy into account as well as the other methods. The scaled conjugate 

gradient method is described in an inverse fashion to the quasi-Newton method, in that it considers 

network accuracy more carefully but reaches local or global minimum points more slowly. To 

balance these two training ideals, the LM method was introduced into the research to attain better 

network accuracies and converge to error minimums more quickly [2]. 

 

Dynamic evolving neuro-fuzzy inference systems are a combination of neural networking 

techniques and fuzzy systems [2, 10]. These have five layers. The first layer is the data input layer, 

the second is the fuzzy input layer, the third is the rule-based layer, the forth is the fuzzy output 

layer, and the fifth and final layer is the output prediction layer. The method is trainable in both 

online and offline circumstances. The online version implements a maximum distance-based 

clustering method to change the parameters of the membership function of the network, while the 

offline version uses a constrained version of this algorithm. The rule layer implements a Takagi–

Sugeno–Kang fuzzy inference engine, and the output in the output layer is the weighted average 

of the outputs of the rule layer [2, 11]. 

 

The final machine learning method discussed in the cited research is the support vector machines 

technique. It is a comprehensive algorithm for optimizing models based on both regression and 

classification learning techniques [2, 12]. The classification support vector machines are detailed 

to work in two steps. The first step has the input data to the method reassigned to a larger-ordered 
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data space, while the second has the learning algorithm segment hyperplanes in the larger-ordered 

data space. Regression support vector machines work in largely the same way, but they try to 

achieve an optimal regression of the data on a space that has a maximum flat property and a 

minimum error property [13]. 

 

The team conducting the research in this literary work concluded that support vector regression 

was the best method for optimizing steel output processes [2]. They detailed that it was 

computationally faster than the dynamic evolving neuro-fuzzy inference systems method, and it 

provided relationship explanations between data inputs and prediction outputs, which were 

something that artificial neural networks and random forest methods could not do. 

 

Moving to the second steel application topic, the objective over the research in this literature work 

was to enhance quality control measures through the implementations of machine learning 

techniques [3]. This was achieved by using several different learning techniques. The techniques 

detailed in this research are linear regression, ridge regression, lasso regression, elastic net, support 

vector machines, kernel ridge regression, K-nearest neighbors, random forest, gradient boosting 

decision tree, light gradient boosting machine, and extreme gradient boosting. 

 

This literary work does not detail the inner workings of the machine learning processes used, but 

it does list a process called ensemble learning in which multiple techniques are combined in order 

to create a more powerful prediction method [3, 14]. This method is said to work in two different 

cases. The first case, known as the averaging ensemble model, links the support vector machine, 

kernel ridge regression, gradient boosting decision tree, and extreme gradient boosting techniques 

together through an averaging process. The second case, known as the stacking ensemble method, 

links the support vector machine, kernel ridge regression, light gradient boosting machine, and 

extreme gradient boosting techniques together through a technique stacking process [3, 14-17]. 

 

The results received from each method were gauged on a few criteria. One of the criteria was the 

use of the R-Square expression to quantify the prediction capabilities of a method [3, 18]. Another 

was to use the root mean square error expression to find a standard deviation of the error received 
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from each tested method [3, 19]. The ultimate findings of the research were that the averaging 

ensemble method performed best in the application that is was used for. 

 

When comparing the research this thesis has done to previous works, some similarities can be seen 

in the methods applied to solve the problem at hand. One such similarity is the fact that some 

previous works were shown to use artificial neural networking techniques in their applications. 

Delving deeper into this similarity, previous works used neural networks that were trained from 

regression-based learning techniques in order to reach a single output prediction. Other, more 

general, similarities can be drawn in the fact that many previous works used both regression and 

classification techniques to predict the application-specific issue. 

 

Not all of the research done in this thesis has seen implementations elsewhere. One of the first 

diverging factors between this thesis and previous works is that the problem this research aims to 

solve is a specific steel deformity issue [1]. Most previous works reviewed for the purposes of this 

research aimed to apply machine learning techniques to larger-scale problems and processes [2, 

3]. Another deviation that this research achieved is the use and development of Bayesian learning 

techniques to enhance steel making processes. To explain further, this thesis put into practice the 

ideas of brute force and survival variable testing to select input variables that are well suited for 

the specific problem at hand. All of the methods applied in this thesis are detailed in Chapter 3. 
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 METHODS 

This chapter will cover in detail the theory and overall methodology used to test, train, and 

complete the different machine learning processes that were used throughout the duration of the 

research. The two main machine learning areas that were implemented extensively were neural 

networking and Bayesian networking. Neural networking, and the theory and applications that 

surround it, are explained in Section 3.1. Bayesian networking, and the theory and applications 

that surround it, are presented in Section 3.2. 

3.1 Neural Networking 

Neural networking can be succinctly summarized as a mathematical regression theory that 

revolves around the interconnections between the nodes or neurons of a network [20]. The 

distinction of calling the nodes of an interconnected network neurons has roots in the study of 

human brain functions. The physical neurons in the human brain form firing patterns with other 

neurons in the spaces around them [21]. These firing patterns act as ways to communicate 

information like thoughts, actions, and behaviors. As these neural patterns or pathways are used 

more often, the connections between neurons becomes stronger, which directly correlates to 

learned behaviors in humans. In that regard, it should be no secret that the mathematical process 

of neural networking functions similarly to the physical process of learning in humans [22]. Having 

this view in mind is helpful in understanding the topics that will be covered in the coming sections. 

The coverage will include the topics of forward propagation, backward propagation, network 

configurations, types of trained networks, data models, and the limitations of neural networking. 

3.1.1 Forward Propagation 

To provide some background information and a large scale view of the theory for the sake of 

clarity, forward propagation is the process by which a neural network processes data that has been 

input through the input layer of a network [23]. This input information is then manipulated as it 

travels through the hidden layers, the neurons, and the pathways between the neurons. A graphical 

depiction of the process being discussed can be seen in Figure 3.1 [24] to help better illustrate the 

terminology. 
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Figure 3.1 Overarching structure of neural networks. 
 

Upon passing through the output layer, the previously input data has now been transformed, 

through the neural network works equations, into a prediction of a specific network output. 

Weight Initialization Techniques 

To understand how a neural network calculates and predicts anything, the forward propagation 

process has to be divided into more elementary operations. To begin, a network will initialize the 

values it uses for neuron pathway weights and neuron biases [25, 26]. These weight initializations 

are achieved through the use of a random number generation process that pulls numbers from the 

standard normal distribution curve for each weight. This process can be optimized beyond the 

random sampling of the standard normal distribution curve, depending on the type of activation 

function that is used for neuron activations. 

 

Activation functions are a topic that is discussed later, but the two used in this thesis were the 

logistic sigmoid and rectified linear unit (ReLU) functions. The formulas associated with 

optimizing the weight values for the sigmoid and ReLU functions are known as the Xavier and He 

initialization techniques [23, 27]. The formulas for the Xavier and He initializations are 
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𝐖𝐖𝑗𝑗 = 𝐑𝐑𝑗𝑗�
1

𝑛𝑛𝑗𝑗−1𝑛𝑛𝑗𝑗
(Equation 3.1) 

and 

𝐖𝐖𝑗𝑗 = 𝐑𝐑𝑗𝑗�
2

𝑛𝑛𝑗𝑗−1𝑛𝑛𝑗𝑗
(Equation 3.2) 

 

respectively, where 𝑗𝑗 = 1,2, … ,𝑚𝑚, and is the index of the given set of weights that are entering the 

current network layer, 𝑚𝑚 represents the total number of sets of weights that the network contains 

in its structure, 𝐖𝐖𝑗𝑗 is a matrix of all the weight values entering the current network layer that were 

scaled from the random normal distribution weight value matrix, represented by 𝐑𝐑𝑗𝑗, and 𝑛𝑛 is the 

total number of neurons in the indexed network layer. The multiplication of the number of neurons 

in the previous and current layers of the network aids in providing the equation calculations with 

the number of weight connections going into the current layer. With the implementation of these 

initialization techniques for either of the respective activations functions, the weight values of a 

network should ideally have a mean value of zero and a standard deviation value of one, instead 

of exploding into large numbers or vanishing into small numbers. 

Linear Neuron Outputs 

After the weight and bias initialization process, a network will pull in data from its inputs to be 

used in later calculations. The next of the operations that will be discussed is the equation by which 

individual neurons calculate linear or intermediary outputs. The intermediary output equation of a 

network neuron is 

 

𝑧𝑧𝑖𝑖 = 𝐰𝐰𝑖𝑖
T𝐱𝐱 + 𝑏𝑏, (Equation 3.3) 

 

where 𝑖𝑖 = 1,2,3, … ,𝑛𝑛 , and is an indicator of which neuron in the current layer is being 

manipulated, 𝑛𝑛 is representative of the total number of neurons in the current layer, 𝑧𝑧𝑖𝑖 represents 

an individual intermediary or linear output of one specific neuron in the current layer, 𝑏𝑏 represents 

the bias value of the given neuron whose output is being calculated, and 𝐰𝐰𝑖𝑖 and 𝐱𝐱 represent column 

vectors of size one by the number of neurons in the previous layer [4]. Each vector is filled with 
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the individual weights or outputs of the neurons in the previous layer to the neuron being 

manipulated in the current layer. Equation 3.3 can be reduced if an addition weight value and an 

addition leading one are added to 𝐰𝐰𝑖𝑖 and 𝐱𝐱, respectively. The resulting expression is [28] 

 

𝑧𝑧𝑖𝑖 = 𝐰𝐰𝑖𝑖
T𝐱𝐱. (Equation 3.4) 

Activation Functions 

Once the linear output calculation process is completed, the output is fed into another equation 

called an activation function. This final neuron output equation is 

 

𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝑧𝑧𝑖𝑖), (Equation 3.5) 

 

where 𝑓𝑓(𝑧𝑧𝑖𝑖) represents the linear output being input into an activation function to calculate the 

final output of the forward propagation pass of any non-input network neuron, which in this case 

is represented by 𝑦𝑦𝑖𝑖. An activation function serves as a method of adding non-linearity into the 

structure of a network. This is ultimately done to allow for a neural network to be able to create a 

pseudo, higher-order polynomial or prediction function. This in turn allows a network to learn and 

predict data much better than any strictly linear function or regression ever could. The whole output 

calculation process of a neuron can be seen graphically in Figure 3.2 [29]. 

 

 
Figure 3.2 Output calculation of a network neuron. 
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Activation functions are non-linear functions that give neural networks more complexity in order 

produce better prediction results. However, different activation functions perform different non-

linear equations, yielding sometimes vastly different neuron outputs and network firing patterns. 

Two of the most common activation functions used in network configurations are the logistic 

sigmoid function and the rectified linear unit (ReLU) function. These functions are 

 

𝑦𝑦𝑖𝑖 =
1

1 + 𝑒𝑒−𝑧𝑧𝑖𝑖
(Equation 3.6) 

and 

𝑦𝑦𝑖𝑖 = 𝑚𝑚𝑚𝑚 𝑥𝑥(0, 𝑧𝑧𝑖𝑖) , (Equation 3.7) 

 

where Equation 3.6 represents sigmoid activation and Equation 3.7 represents ReLU activation 

[30, 31]. The two activation functions take in the linearly defined output from the current neuron 

and transform it into a non-linear output. The graphs in Figure 3.3 and Figure 3.4 illustrate how 

the output ranges of the logistic sigmoid and the rectified linear unit functions are defined, 

respectively. 

 

 
Figure 3.3 Graph of the logistic sigmoid function. 
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Figure 3.4 Graph of the rectified linear unit (ReLU) function. 

 

Out of the two functions, the logistic sigmoid has been used in many older machine learning and 

neural network examples because it tended to yield faster network learning rates than some of the 

other proposed activation functions of that earlier time period [20]. The concept of the logistic 

sigmoid has also been used in creating the softmax activation function, which can be used as a 

classifier function in a classification neural network model. The ReLU function was later 

introduced into the neural network setting as a way to combat some of the shortcomings of the 

sigmoid function [31]. One such shortcoming is the fact that the sigmoid activation function can 

produce what is known as a vanishing gradient. The gradient learning method is covered in a later 

section of this thesis, but this problem can essentially halt the learning process of a neural network 

due to the fact that the derivative of the sigmoid function will often times calculate values that are 

close to zero [32]. The ReLU function sidesteps this issue by have a much simpler gradient 

derivation that is more well defined on the positive x-axis, as well as by creating more sparse 

network paths since negative outputs can never be activated in a neuron due to the nature of the 

function definition. This leads to overall better defined neuron patterns without the introduction of 

more superfluous pathways between neurons. 
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The Total Network Cost Function 

When information travels through a neural network and becomes an output network prediction, 

the validity of the prediction is called into question. This questioning, or validation process, is 

done through the use of an error, or cost, function. Error functions are implemented in neural 

networks, as well as in other machine learning applications, because the use thereof allows for a 

network to starting learning from the mistakes it makes [20]. How this works is that a set of data 

will be input into a network to create an output prediction. The network prediction will then be 

compared to the actual recorded output of a given training data segment. The output that the 

network predicts is input into an error function to compare against the actual training output. This 

allows for the neural network to quantify how well or poorly it is predicting outputs. This is done 

in an effort to help a network correct its inaccurate output predictions. 

 

The error or cost function that was used in this research was the mean squared error function. The 

mathematic expression used to implement the function into network configurations is 

 

𝐽𝐽(𝑦𝑦𝑖𝑖) =
1
𝑛𝑛
�(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

, (Equation 3.8) 

 

where 𝑦𝑦𝑖𝑖 is the predicted output value of each neuron in the output layer, and 𝑦𝑦�𝑖𝑖 is the already 

known output value of each neuron in the output layer from the dataset for comparison [33]. The 

function takes the squared error value calculated from the predicted and actual outputs of each 

neuron, performs a summation on all of the squared error values, and divides by the number of 

neurons in the output layer of the network. This is done to produce a mean value of the squared 

errors of the entire output layer, and subsequently, the network as a whole. With a way for the 

network to gauge how well it is performing, it can now develop methods of improvement through 

the use of backward propagation. 

3.1.2 Backward Propagation 

In the same way that a neural network can pass data from inputs to calculate some defined system 

output, a neural network can also pass error information back through the system to augment 
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pathway weight values in order to try to minimize output error. A network achieves these error 

minimizations by using a technique known as gradient descent. To explain the process of how a 

neural network uses gradient descent to minimize output error in a simplistic sense, a network 

performs relatively small steps along the slope of its cost function with respect to network weight 

values until the error value of the whole dataset from which the network is pulling data reaches a 

minimum point [34]. This process is portrayed graphically in Figure 3.5 [35]. 

 

 
Figure 3.5 The idealized process of the gradient descent algorithm. 

The Standard Gradient Descent Algorithm 

To dive deeper into the mathematical derivation of the gradient descent algorithm used in network 

calculations, the concept of a gradient requires elaboration. A gradient is a generalized way of 

differentiating or finding the slope of a function with respect to multiple dimensions or axes [36]. 

The idea behind using gradients in the scope of neural network calculations is to relate the error to 

all of the weights of the network [28]. This is done to directly control and reduce the error that a 

network produces by manipulating the individual weights of the network. 

 

To start the backward propagation process, the output layer cost to weight gradient function must 

be derived. This is achieved by first taking the derivative of the network error or cost function with 

respect to the network output. This derivation changes depending on the use of the specific cost 



 
 

24 

function that was chosen for the network. The mean squared error cost function was chosen for 

network implementations in this research, thereby solving as the basis for the further detailed 

derivatives. The derivative of the mean squared error function with respect to the output of the 

network is [33] 

 

𝜕𝜕𝐽𝐽
𝜕𝜕𝑦𝑦𝑖𝑖

=
2
𝑛𝑛
�(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

. (Equation 3.9) 

 

As described before, 𝑦𝑦𝑖𝑖 and 𝑦𝑦�𝑖𝑖 are the predicted and actual output related to each neuron in the 

output layer of the neural network respectively, and 𝑛𝑛 is the total number of output neurons in the 

current layer of the network. The numerical calculation of this derivative results in the mean 

doubled error of the system. 

 

The next step in the process of relating the gradient of the total cost function of the system to the 

gradient of the weights coming into the output layer is to calculate the derivative of the non-linear 

output of a neuron with respect to the linear output of the same neuron. In a similar fashion to the 

error function, this derivative also changes based on the activation function that was used to 

calculate the non-linear output. The expressions relating to the sigmoid and ReLU activation 

functions are 

 
𝜕𝜕𝑦𝑦𝑖𝑖
𝜕𝜕𝑧𝑧𝑖𝑖

= �
1

1 + 𝑒𝑒−𝑧𝑧𝑖𝑖� �
1 −

1
1 + 𝑒𝑒−𝑧𝑧𝑖𝑖�

(Equation 3.10) 

and 
𝜕𝜕𝑦𝑦𝑖𝑖
𝜕𝜕𝑧𝑧𝑖𝑖

= �1, 𝑧𝑧𝑖𝑖 > 0
0, 𝑧𝑧𝑖𝑖 ≤ 0 , (Equation 3.11) 

 

respectively [30, 31]. As previously detailed, 𝑧𝑧𝑖𝑖 is the linear or intermediary output of a neuron, 

and 𝑦𝑦𝑖𝑖 is the non-linear output of the same neuron. 

 

Continuing onto the next step of the derivation, the derivative of the linear output of a neuron with 

respect to the weights going into said neuron must be expressed. This expression is [37] 
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𝜕𝜕𝑧𝑧𝑖𝑖
𝜕𝜕𝐰𝐰𝑖𝑖

= 𝐱𝐱. (Equation 3.12) 

 

Like before, 𝐱𝐱 represents a column vector of size one by the number of neurons in the previous 

layer plus one additional element to account for the bias term of the current neuron. The vector is 

filled with the output values of the neurons from the previous network layer and an additional 

leading one. Similarly, 𝐰𝐰𝑖𝑖 represents a column vector of size one by the number of neurons in the 

previous layer plus one additional element to account for the bias term of the current neuron. The 

vector is filled with the weight values of the neurons from the previous network layer and the 

leading element containing the bias value of the current neuron. 

 

The final step in relating the cost function to the weights coming into each neuron in the output 

layer is to apply the chain rule to all of the previously calculated derivatives to produce the final 

relationship expression. This expression is [37] 

 
𝜕𝜕𝐽𝐽
𝜕𝜕𝐰𝐰𝑖𝑖

=
𝜕𝜕𝐽𝐽
𝜕𝜕𝑦𝑦𝑖𝑖

𝜕𝜕𝑦𝑦𝑖𝑖
𝜕𝜕𝑧𝑧𝑖𝑖

𝜕𝜕𝑧𝑧𝑖𝑖
𝜕𝜕𝐰𝐰𝑖𝑖

. (Equation 3.13) 

 

This equation only applies to all of the weight pathways entering the output layer of the network. 

In fact, applying the chain rule for usage in calculations for the neural network can be easily 

accomplished by multiplying the values found at each equation step in the derivation process. 

 

Further derivations for layers earlier on in the network can be found by repeating the previously 

mentioned process. However, to access layers beyond the output layer, one final derivation is 

required. This derivation is the derivative of the linear output of a neuron with respect to the input 

vector of the output of each neuron in the previous layer. The operation explaining this process is 

[37] 

 
𝜕𝜕𝑧𝑧𝑖𝑖
𝜕𝜕𝐱𝐱

= 𝐰𝐰𝑖𝑖 . (Equation 3.14) 
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After implementing this calculation, the process is to treat 𝐱 in the current layer as all of the output 

values of the neurons in the previous layer. Then, repeat either Equation 3.10 or 3.11, depending 

on which activation function is being used, and then use Equation 3.14 if going back another layer 

is required or use Equation 3.13 to find the derivative of the cost function with respect to the 

weights of the current network layer at the time. The equation is [37] 

 

𝜕𝐽
𝜕𝐖

𝜕𝐽
𝜕𝐲

𝜕𝐲
𝜕𝐳

𝜕𝐳
𝜕𝐲

𝜕𝐲
𝜕𝐳

𝜕𝐳
𝜕𝐖

. Equation 3.15  

 

To thoroughly explain the mathematical process expressed in Equation 3.15, 𝑗 is the current set of 

network weights that are being indexed, 𝑚 represents the index of the last set of weights in the 

neural network and the total number of sets of weights in the network as a whole, and 𝑙 represents 

the index of the set of weights that is being related to the cost function of the network. To give an 

example, if 𝑙 was equal to 𝑚, the set of weights being related to the cost function would be the 

weights that were entering the output layer of the network. If 𝑙 was equal to one, the set of weights 

being related to the cost function would be the weights that were entering the first hidden layer of 

the network. Next, 𝐳  and 𝐲  are vectors of all of the linear and non-linear outputs relating to all 

indexable layers, and 𝐖  represents a matrix containing all of the weights associated with all of 

the pathways entering the layer indexed by 𝑙. 

 

With Equation 3.15 defined, a further generalization can be made to finally represent the gradient 

of the total cost function with respect to the weights of the neural network. This generalized 

expression is [38] 

 

𝛻𝐽 𝐖
𝜕𝐽

𝜕𝐖
,

𝜕𝐽
𝜕𝐖

, … ,
𝜕𝐽

𝜕𝐖
. Equation 3.16  

 

Equation 3.16 contains the expression that allows for each relation between the error function of 

the network and the set of weights entering a given layer in the network to be vectorized into a 

gradient vector. 𝐖 is used to represent a matrix that contains every single weight contained in the 

network. The gradient described in Equation 3.16 can finally be used to manipulate the weights of 
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the neural network through the use of a simple subtraction and gain value. This operation results 

in the equation [38] 

 

𝐖𝐖 = 𝐖𝐖− 𝛼𝛼𝛻𝛻𝐽𝐽(𝐖𝐖). (Equation 3.17) 

 

The operation detailed in Equation 3.17 shows how the error function minimization stepping 

process works. 𝛻𝛻𝐽𝐽(𝐖𝐖) represents the gradient of the error function with respect to the network 

weights, and 𝛼𝛼 represents a preset gain known as the learning rate. The gradient matrix is scaled 

by the learning rate to effectively control the step size of all the network weights as a whole. This 

approach to implementing how weight step sizes are scaled is seen as the standard or classical way 

of manipulating the weights of a network. 

 

While the classical concept and implementation of the gradient descent method of changing 

network weights is revolutionary, it does not come without flaws of its own. The most glaring flaw 

with this method is the issue of a one size fits all learning rate [39]. In brief, this issue stems from 

the fact that scaling and stepping all weights by the same gain factor usually results in less than 

optimal network performances. This idea is solidified through an explanation of picking a learning 

rate for a network in the standard gradient descent method. If the learning rate chosen was too 

large for the process, suboptimal minimum points might be found for most of the total cost to 

weight curves that have been established. In a worst case scenario, networks could even train to 

be more error prone due to the fact that the weights ended up stepping up the total cost to weight 

curves instead of down to reach local minima points. In the reverse case, if learning rates were 

chosen to be small enough to accommodate all weight step sizes well enough, the learning process 

could end up taking a much longer period of time to reach an acceptable level of error. 

The Adaptive Moment Estimation (ADAM) Algorithm 

In attempt to counteract the flaws of the standard gradient descent algorithm, more advanced 

methods have since been developed. One such method is Adaptive Moment Estimation (ADAM), 

which is a process by which network learning and scaling rates are changed adaptively as the 

learning process of a network progresses [40]. This is done in an effort to set individual and moving 

learning rates for all of the network weights. 
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The essential crux of this method is to keep running averages of the gradient function and the 

squared gradient function in order to scale weight steps as the network continues through its 

training iterations. The operations that detail these gradient and squared gradient moments can be 

seen in the equations 

 

𝐌𝐌𝑘𝑘 = 𝛽𝛽1𝐌𝐌𝑘𝑘−1 + (1 − 𝛽𝛽1)𝛻𝛻𝐽𝐽(𝐖𝐖)𝑘𝑘 (Equation 3.18) 

and 

𝐕𝐕𝑘𝑘 = 𝛽𝛽2𝐕𝐕𝑘𝑘−1 + (1 − 𝛽𝛽2)(𝛻𝛻𝐽𝐽(𝐖𝐖)𝑘𝑘)2, (Equation 3.19) 

 

where 𝑘𝑘 = 1,2, … ,𝐾𝐾 [40]. 𝑘𝑘 represents the current learning iteration index that the network has 

reached in the training process, 𝐾𝐾  represents the total number of iterations that the network 

performs the training process for, 𝐌𝐌𝑘𝑘 is the predicted first order moment of the gradient of the 

total cost function with respect to the weights of the system at a specific training iteration index, 

and 𝐕𝐕𝑘𝑘 is the predicted second order moment of the gradient of the total cost function with respect 

to the weights of the system at a specific training iteration index. Moreover, 𝛽𝛽1 and 𝛽𝛽2 are scalar 

gain values used to control the rate at which the first and second order moments decay or shrink. 

The scalar decay gain values for the first order and second order moments are respectively 0.9 and 

0.999 by default when using the ADAM method. In the case of the first iteration of the training 

process, the values of the first and second order moments, 𝐌𝐌0 and 𝐕𝐕0, are set to contain matrices 

of all zeros. 

 

Because of this starting position, the resulting moment matrices tend to have a zero value bias. To 

account for the zero moment bias, the moment matrices are scaled depending on the training 

iteration index of the network learning process. The bias handling expressions for the first and 

second order moments are 

 

𝐌𝐌�𝑘𝑘 =
𝐌𝐌𝑘𝑘

1 − 𝛽𝛽1𝑘𝑘
(Equation 3.20) 

and 

𝐕𝐕�𝑘𝑘 =
𝐕𝐕𝑘𝑘

1 − 𝛽𝛽2𝑘𝑘
, (Equation 3.21) 
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respectively [40]. In Equation 3.20 and Equation 3.21, 𝐌𝐌�𝑘𝑘 and 𝐕𝐕�𝑘𝑘 are the resulting scaled first and 

second order moment matrices per iteration of the neural network training process. The equations 

show the process by which the moment matrices are scaled based on the shrink rate values. The 

shrink rate values are scaled per training iteration by taking the rate value to the power of the 

current training iteration index. 

 

After the scaled first and second order moment matrices are found, the final weight stepping 

expression can be realized. The expression that represents the manipulation of the network weight 

matrix is [40] 

 

𝐖𝐖𝑘𝑘+1 = 𝐖𝐖𝑘𝑘 −
𝛼𝛼𝐌𝐌�𝑘𝑘

�𝐕𝐕�𝑘𝑘 + 𝜀𝜀
. (Equation 3.22) 

 

The only new information in Equation 3.22 is 𝜀𝜀, which is a preventative measure incorporated into 

the equation in order to prevent a possible division by zero situation. As a result, 𝜀𝜀 is set to some 

small value as to not affect the process of the weight stepping manipulation. In the default case of 

the ADAM method, this value is 10−8. Once the process by which a neural network learns has 

been detailed extensively, the concept of a trained neural network is then evaluated. 

3.1.3 Network Configurations, Types of Trained Networks, and Data Models 

While the training algorithm of the usage of forward and backward propagation in tandem is 

certainly important and functions as a sort of metaphorical backbone to the theory of neural 

networking, without a definite network configuration and end goal in mind, the predictions output 

by a network do not mean much. This is why the concepts of network configurations and prediction 

types and models are important. Instead of looking deep into the lower level portions of the 

learning process, which involve the implementations of the complex mathematics driving the core 

calculations of a neural network, a higher level approach will be taken in order to adequately 

describe the aforementioned network configurations and prediction types. 
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Higher Level Learning Structures 

To begin, neural networks usually fall into two general types of learning structures. Those two 

structures are either unsupervised learning or supervised learning. For the sake of completion, 

unsupervised learning will be briefly discussed, but it was not the learning structure that ended up 

being used in this research. 

 

The driving force behind the concept of unsupervised learning is that a network is not given any 

training output information for determining its predictions [41]. Instead of working like a complex 

function interpolation tool, a network that is designed for an unsupervised learning purpose is 

given some input information and makes predictions and changes in any way that it sees fit to do 

so. To give an example for better context, data clustering is a type of unsupervised learning 

process. A simple example of how data clustering is used as an unsupervised learning process can 

be seen in Figure 3.6 [42]. 

 

 
Figure 3.6 Example of clustering as an unsupervised learning process. 

 

With the explanation of unsupervised learning addressed, the concept of supervised learning will 

now be discussed. Supervised learning was the main learning type that was used during the course 

of this research. To reiterate the definition of supervised learning, it is the type of learning that 

takes place when a network or machine learning process is given an example output of what it is 

trying to predict to consequently learn [43]. The supervised learning technique can be seen as a 

higher level explanation of the previously described forward and backward propagation process of 
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a neural network. The overarching idea of supervised learning can also be divided further into 

smaller concepts. These smaller concepts are known as regression-based learning and 

classification-based learning. The implementation of these subtopics of supervised learning are 

dictated by the type of data that is being used for training a network. 

Regression 

The regression-based learning type is implemented when the data that is used to train networks or 

machine learning processes is continuous in nature [43]. Since the training data used to train the 

network is continuous in the case of regression, the prediction the network calculates will also be 

continuous. This creates a scenario in which a network is treated like a complex, non-linear, 

interpolating function that that tries to predict a singular output value through its calculations. In 

theory, the regression-based learning method could be used to predict any value of an output given 

some input data. However, in practice, predictions of continuous function ranges are often difficult 

to compensate. This is because continuous values between both input and output variables can 

vary widely in terms of their scope and features. 

 

To counteract the aforementioned issues, many regression algorithms implement data scaling 

measures in order to level the information that a network uses for training and predicting. One 

such algorithm calculates the minimum and maximum values of a range of data and uses that 

information to scale variables to a new range. This operation is expressed as [44] 

 

𝐱𝐱new =
(𝐱𝐱old − 𝑥𝑥𝑜𝑜𝑚𝑚𝑖𝑖𝑛𝑛)(𝑥𝑥𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑛𝑛𝑚𝑚𝑖𝑖𝑛𝑛)

(𝑥𝑥𝑜𝑜𝑚𝑚𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑜𝑜𝑚𝑚𝑖𝑖𝑛𝑛) + 𝑥𝑥𝑛𝑛𝑚𝑚𝑖𝑖𝑛𝑛. (Equation 3.23) 

 

As shown in Equation 3.23, 𝐱𝐱new is a vector containing the newly scaled data of a given variable. 

This scaling process is done by first finding the absolute minimum value in the original vector of 

data, represented by 𝑥𝑥𝑜𝑜𝑚𝑚𝑖𝑖𝑛𝑛, and subtracting that value from every element in the original data 

vector, represented by 𝐱𝐱old. Then, the original vector of data is multiplied and divided by the new 

and old ranges of the data being scaled, respectively. The original data range is calculated by 

subtracting the absolute minimum value of the original data from the absolute maximum value of 

the original data, represented by 𝑥𝑥𝑜𝑜𝑚𝑚𝑛𝑛𝑛𝑛 . The new data range is calculated in the same way. 
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However, the new minimum and maximum values of the range are chosen rather than found. The 

values of the absolute minimum and maximum points of the new scaled data vector are represented 

by 𝑥𝑥𝑛𝑛𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑥𝑥𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛, respectively. These new range values can be chosen as anything, but in most 

cases, the minimum and maximum values are set to zero and one, respectively. This can cause 

issues in algorithms that calculate the absolute percent error between regression predicted values, 

so in those cases, other data scaling ranges are used instead to avoid division by zero calculation 

errors. To complete the scaling algorithm, the minimum of the new data range is added to every 

element of the now changed old data vector to transform it into the newly scaled data vector. One 

final process to make note of for regression-based predictions is that if a network prediction is 

scaled when exiting the network, it must be rescaled back to its original data range in order to 

preserve the meaning of the output being predicted. This can be achieved by performing the 

process detailed in Equation 3.23 in reverse. 

Classification 

The classification-based learning type is implemented when the data that is used to train networks 

or machine learning processes is discrete in nature [43]. Since the training data used to train the 

network is discrete in the case of classification, the prediction the network calculates will also be 

discrete. This creates a scenario in which a network is treated like a state or category estimator that 

tries to predict the given output through the use of multiple output nodes that are treated as the 

individual states an output can occupy at any given time. The goal of the network then becomes to 

activate the output node that represents the correct output category without activating any of the 

other nodes in the output layer. This idea is illustrated in Figure 3.7 [45]. 
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Figure 3.7 Example of classification networks in pixel detection. 

 

While the simplified prediction method that classification networks use is generally well off in 

terms of making accurate output predictions, this structure comes with the caveat of requiring 

discrete datasets [46]. This stipulation can at times provide challenges of its own as most data 

retrieved from sensory measurement devices is continuous in nature. In the case of this research, 

as well as in other classification application cases, the input data is required to be categorized. 

While methods exist for categorizing continuous data algorithmically, in this research, all of the 

data was evaluated, and manual data category enumerations were made in order to utilize the 

classification learning structure. 

 

In a lot of cases, networks that use the classification learning structure have a comparably easier 

time of making correct output predictions than networks that use the regression learning structure 

[43]. This is because the discrete datasets used for classification only have a finite amount of 

predictable output states, and input data can be more easily generalized into the available states. 

In contrast, continuous datasets have infinite variability in the values that they can produce. This 

concept makes output predictions harder to consider accurate without tolerance definitions. In an 

effort to test multiple prediction techniques, both of these subtopics of supervised learning were 

used to make predictions. 
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Network Configurations 

Diving deeper into the theory behind network configurations, this idea is what helps scope and 

build the actual framework into which neural networks are formed. This building process usually 

starts at the input layer of the network. The choice of inputs and the amount of inputs used in a 

neural network are prime first subjects for building optimal neural network configurations. This is 

usually where some outside guidance from an expert is required in picking the right inputs for the 

type of prediction that is to be made. A common practice in seeing how potential network inputs 

or variables relate to each other is by performing a cross-correlation evaluation between the 

potential inputs and the output that is trying to be predicted. The actual formula for the cross-

correlation process is [47] 

 

𝑟𝑟 =
∑ �(𝑥𝑥𝑖𝑖 − 𝑚𝑚𝑥𝑥)(𝑦𝑦𝑖𝑖 − 𝑚𝑚𝑦𝑦)�𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖 − 𝑚𝑚𝑥𝑥)2𝑛𝑛
𝑖𝑖=1 �∑ (𝑦𝑦𝑖𝑖 − 𝑚𝑚𝑦𝑦)2𝑛𝑛

𝑖𝑖=1
. (Equation 3.24) 

 

In the cross-correlation expression, 𝑟𝑟 represents a value on the range of negative one to one. This 

value is a quantified association measurement between two different system variables. To provide 

an example case for clarity, if 𝑟𝑟 is positive, there exists a general direct trend in the slopes of the 

data when comparing both variables. If 𝑟𝑟 is negative, there exists a general inverse trend in the 

slopes of the data when comparing both variables. When performing a cross-correlation between 

two system variables, the data corresponding to both variables can be vectorized as 𝐱𝐱 and 𝐲𝐲. As 

such, 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 would then represent individual data elements being pulled from each respective 

data vector. Also, 𝑚𝑚𝑥𝑥  and 𝑚𝑚𝑦𝑦 are the respective mean values for each data vector. After the 

performance of the cross-correlation algorithm on each input with respect to the chosen system 

output, the input variables can be chosen to reflect the neuron in the input layer of the neural 

network. In the case of this thesis, variables that had relatively high absolute correlation values 

with respect to the system output were chosen as inputs to be used in the neural network. 

 

The next portion of putting together neural network configurations is seeing the number of hidden 

layers and the number of neurons in each hidden layer that should be used to maximize network 

efficiency and accuracy. To first cover the number of hidden layers to be used, this concept varies 

depending on what is ultimately desired most from a neural network. Generally, adding more 
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hidden layers to a neural network increases the ability of the network to pull out specific data 

features and patterns [48]. These concepts of data feature and pattern extraction through the use of 

multiple network layers are illustrated graphically in Figure 3.8 [49]. 

 

 
Figure 3.8 Example of feature extraction in a deep learning network. 

 

This multilayer extraction process is known as deep learning due to a network having the ability 

to learn beyond surface level data, and the network structure itself being deeper than just one or 

two layers [48]. For usage in this research, neural networks were built using three hidden layers to 

allow for more complex feature extraction. Going back to an optimized number of neurons in each 

hidden layer, this selection process is less concrete. A common guideline suggests selecting the 

number of neurons in the hidden layers to be between the number of input neurons and number of 

output neurons of the given network [48]. While this guideline provides a range of neurons to start 

from, this process ultimately comes down to trial and error. In the networks built for this research, 

the number of neurons selected for each hidden layer was chosen to be half of the number of input 

neurons. This value seemed to provide favorable network configurations as a whole. 
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The last portion of the network configuration or architecture that has yet to be fully discussed is 

the output layer. The output layer of a neural network is usually defined by the type of learning 

process chosen for the network. If the process is regression-based, the output layer of the given 

network will usually contain one neuron for each output used to train the network [43]. In the case 

of this research, only one output was used to train the regression-based networks, and it was 

decided by steel expert knowledge and usefulness in generalizing the overarching problem of the 

hook index as a whole [1]. If the process is classification-based, the output layer of the given 

network will contain neurons pertaining to the number of states that the output variable can occupy 

[43]. In the case of this research, the number of output states is determined to be three, meaning 

that the output layer of the network would contain three neurons. 

Data Models 

One final topic to cover when discussing how neural networks are trained and utilized is about the 

data models that are used to prepare them for output prediction processes. When choosing a data 

model to train a network, it is best suited that the selected model has an abundant amount of data. 

Ideally, this data should detail a variety of different states and conditions that the variables recorded 

within the data occupy [50]. This is because a neural network has a much easier time predicting a 

condition that it has already come across in training previously or at least close to a condition that 

it has encountered in training. In addition, data models that contain the absolute minimum and 

maximum values a variable could ever achieve are almost always necessities. This is because 

values outside of this absolute range no longer adhere to the pseudo high order function range that 

a network has trained to have. When this occurs, output predictions will tend to be inaccurate for 

any input data point falling outside of the defined network function range. 

 

Another important facet about the use of data models in training neural networks is how the data 

is divided to accommodate for the purposes of training and testing the network. As a general rule 

of thumb, a large amount of data is required to train a network. As such, it is good practice to use 

eighty percent of the data available for training a network and the remaining twenty percent to test 

how well the trained network will function on data it has not yet encountered [51]. In the 

classification network case, the remaining twenty percent test data was then sampled to obtain 

equal amounts of each hook index state for use in normalizing the accuracy rate of each network 
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that was built. This structure is used to prove that a trained network will be applicable to data that 

it has not specifically seen before. 

 

Often times, networks are not only tested on data that they have not seen before but also on data 

that they have seen before. This testing schema will pull a portion of the data that a network has 

already trained on and test it as well to make sure the network will be useful in many different 

situations [51]. The training dataset, also known as the validation set, was also sampled to evenly 

obtain equal amounts of each output state in the terms of a classification network. This resulted in 

another normalized accuracy rate for each classification network problem. 

3.1.4 The Limitations of Neural Networking 

Neural networks are an incredibly powerful tool for predicting outcomes when only certain types 

of data and information are provided. They have their uses in many different applications that 

require the use of complex data feature extractions and precise amounts of output accuracy. 

However, neural networks do have limitations and shortcomings. In terms of this research, some 

limitations are the fact that they are usually far more computationally expensive than other, more 

simplistic algorithms, they require large datasets in order to make accurate predictions, and they 

have a black box nature that prevents the understanding of the underlying process that gets used 

when they make predictions [52]. 

 

To cover the most minor shortcoming more thoroughly, for the purposes of this thesis, the neural 

networks that were built did have some time-based issues. To be more specific, all of the neural 

networks built for this project required large amounts of time to train effectively. The amount of 

time required to train the three layer networks that were implemented could be excessively long, 

depending on the number of input variables and the supervised learning processes that were chosen 

for the network. These long training periods worked directly against the implementation and 

testing of different network configurations, as to see whether a network change was beneficial, so 

a significant amount of time had to be spent letting networks train for comparisons. To briefly 

compare the time-based performances of the neural networks that were built to the much simpler 

Naïve Bayesian networks that were built, the Naïve Bayesian networks trained and tested input 

data much faster than the aforementioned neural network configurations. As stated previously, this 
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is only a minor shortcoming, as when the neural networks were finished training, output 

predictions were able to be made at fast speeds with no issues. 

 

The next, more substantial shortcoming that neural networks experienced during the duration of 

the project was the lack of diverse data. While a dataset was provided by ArcelorMittal for network 

development, the dataset was almost entirely comprised of data that was not diverse enough to pull 

meaningful distinctions for outlier hook index cases [1]. This means that most of the data points 

provided coincided with the most optimal hook index state and neglected the outlier states. 

Naturally, the data shortcoming issue implies the fact that most of the networks had difficulties 

differentiating between data points enough to make accurate predictions about the hook index 

cases. This fact ultimately led to networks that could predict the average hook index cases 

marginally well but struggled to predict the problem outlier cases. As another direct comparison 

to the Naïve Bayesian networks, the Naïve networks were able to make more accurate predictions 

about the output states than the neural network counterparts. 

 

The final, most substantial shortcoming that neural networks experienced was the inability to have 

a direct understanding of the underlying prediction processes that the networks had made. This is 

also referred to as the black box problem [52]. This shortcoming ended up affecting the neural 

networks the most because a future implementation idea of the project is to be able to predict when 

a poor hook index value or state will happen and effectively implement countermeasures to prevent 

the outlier hook index cases from occurring. This is simply something that cannot be done with 

any of the current neural network configuration models. Once again, the Naïve Bayesian networks 

outperform the neural networks because ultimately, the Naïve networks can draw statistical 

causality between the inputs that a network accepts and the output prediction that it produces [53]. 

This shortcoming alone is what spurred the research towards a Bayesian statistics approach, as the 

algorithms are simpler to calculate, not as much varied data is required to make accurate output 

predictions, and statistical causality can be drawn from network inputs to validate why a certain 

output prediction occurred. 
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3.2 Bayesian Networking 

While not directly comparable to some biological process, Bayesian networks are still powerful in 

terms of prediction capabilities. These networks work as large scale implementations of Bayesian 

probability theory and statistics. This is what yields these processes quite a few strengths in the 

context of this research. The most prominent of these strengths is the ability for a Bayesian network 

to use evidence-based reasoning to provide quantifiable values from which to draw and update 

predictions [53]. Other benefits of these types of networks are that often times they have the ability 

to work with smaller, less diverse datasets, and they are generally more computationally efficient 

than some other machine learning techniques [54]. Keeping these concepts and ideas in mind will 

be useful for understanding the coming sections when discussing certain aspects of Bayesian 

networking theory. The coverage of the upcoming sections will include the topics of Naïve 

Bayesian networks, data sampling methods, the brute force testing method, and the survival testing 

method. 

3.2.1 Naïve Bayesian Networks 

To firstly give some background information on the theory of Naïve Bayesian networks, the two 

major concepts on which the theory of the networks is based are the concepts of conditional 

probabilities and statistical independence between all input or attribute network random variables 

[55]. Using these concepts, a network structure can be formed by providing attribute variables 

from which to draw output or class variable predictions. These predictions are found by inputting 

data into a system of conditional probability equations that calculate the evidence-based chance of 

a class variable state occurring given the input information with which a network has been 

provided. The actual structure of a formed network is arranged in such a way to depict that all of 

the input or attribute variables are statistically independent from each other and thus the output or 

class variable is dependent on all of the inputs variables provided. For visual clarity, a graphical 

illustration of the network structure is viewable in Figure 3.9 [56]. 
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Figure 3.9 Structure of a Naïve Bayesian network. 

 

When all of the attribute data is run through the system of conditional probabilities, the previously 

input data has now been transformed into a prediction of a class variable state that the network was 

set to try to predict. 

Description of Variable Dependency Types 

To understand how and why the random variables of a Naïve Bayesian network are arranged, the 

ideas of statistical dependency and independency must first be described. First, both statistical 

dependence and independence are not the same as deterministic dependence and independence. 

The statistical approach to dependency types is rooted in the fact that data that is being evaluated 

can have some level of correspondence between other data that is also being evaluated [57]. A 

good example of this is the description that was given for cross-correlations between variables 

addressed earlier in this thesis. Variables can have a quantifiable level of correlation regardless of 

being physically related. In contrast, deterministic dependency types are required to be verifiably 

intertwined in some physical or scientific process. Data that has a deterministic dependency type 

will also share the statistical dependency type of the same nature. However, the reverse case of 

this situation is not always true, as some statistical correlations are purely coincidental. 

 

The actual descriptions of both statistical dependence types are rather straight forward if the 

thought process mentioned in the previous paragraph is followed. Statistical dependence can be 

explained as a relation that some number of variables or datasets share in that, when one aspect of 
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a variable or dataset changes, the other sects of data that are statistically dependent on the variable 

or dataset that changed will also be changed in some traceable way [57, 58]. Statistical dependence 

can be directly related to the correlation value that two variables share. If the correlation value 

between the two variables is relatively larger or smaller than zero, an argument can be made for 

the statistical dependence of the two variables being evaluated [47]. 

 

In a similar fashion, statistical independence can be explained as a relation that some number of 

variables or datasets share in that when one aspect of a variable or dataset changes, the other sects 

of data that are statistically independent on the variable or dataset that changed will not be changed 

in some traceable way. Statistical independence can also be directly related to the correlation value 

that two variables share. If the correlation value between the two variables is close to zero, an 

argument can be made for the statistical independence of the two variables being evaluated [47]. 

 

Relating these concepts back to the Naïve Bayesian networks that were constructed for this 

research, all of the attributes in the dataset provided by ArcelorMittal were evaluated to see how 

they correlated to the class variable. In some network building methods, the highest absolute value 

correlations were used to pick variables that were shown to have strong statistical dependence on 

the output variable being tested. When these and all of the other Naïve Bayesian networks were 

tested, the statistical independence of the input variables chosen was assumed, as this is one of the 

main conditions to use when implementing Naïve Bayesian classifiers. 

Categorical Variable Distributions 

Since the Naïve Bayesian networks implemented used classification-based prediction models, the 

dataset with which they were provided needed to be categorical or discrete in nature [46]. The 

process by which all of the network variables were categorized was handled manually. This was 

done by viewing how the data of each variable was distributed and by creating enumerated 

subdivisions for each variable in the dataset. 

 

The discretization or categorization of the variables used in the Naïve Bayesian networks allows 

the first major process in using these kinds of networks to take place. This is the process of 

probability assignments to the variables used in building the networks. This probability assignment 



 
 

42 

process is handled by what is known as a probability density function. A probability density 

function essentially pulls information about the distribution of data that represents a certain random 

variable and assigns probabilities to each individual category or state that a variable can take [59]. 

This probability assignment process is based on the likelihood of appearance of the states or 

categories a variable can occupy in the dataset provided. 

 

Different data distributions require different probability density functions. Since the dataset that 

was used for Bayesian networking was previously categorized, the categorical probability density 

function was used in the assignment process of variable category probabilities. The equation of 

the categorical probability density function is 

 

𝑃𝑃(𝑥𝑥𝑖𝑖 = 𝑡𝑡 | 𝑦𝑦 = 𝑐𝑐;𝛼𝛼) =
𝑁𝑁𝑡𝑡𝑖𝑖𝑡𝑡 + 𝛼𝛼
𝑁𝑁𝑡𝑡 + 𝛼𝛼𝑛𝑛𝑖𝑖

, (Equation 3.25) 

 

where 𝑖𝑖 = 1,2, … ,𝑚𝑚  [60]. To explain more thoroughly, 𝑃𝑃(𝑥𝑥𝑖𝑖 = 𝑡𝑡 | 𝑦𝑦 = 𝑐𝑐;𝛼𝛼)  is a symbolic 

representation of the probability of 𝑥𝑥𝑖𝑖, which is an attribute in the given dataset, being equal to 𝑡𝑡, 

which is a category of the attribute being evaluated, given that 𝑦𝑦, which is the class variable of the 

network, is equal to 𝑐𝑐, which is a category the class variable can occupy, while using 𝛼𝛼, which is 

the Laplacian smoothing value used to account for datasets that do not contain certain attribute or 

class categories. The value of Laplacian smoothing was set to one as a default value for building 

networks. 𝑁𝑁𝑡𝑡𝑖𝑖𝑡𝑡 is the number of times the category being evaluated appears in the dataset, and 𝑁𝑁𝑡𝑡 

is the total number of data samples in the dataset. Then, 𝑛𝑛𝑖𝑖 represents the total number of categories 

the current attribute has, 𝑖𝑖 is the index of the current attribute being evaluated, and 𝑚𝑚 is the total 

number of attributes in the network. Through the use of Equation 3.25, all of the categories defined 

in the network were assigned probabilities for use in network class predictions. 

Class Probability Calculations 

Using the previously calculated category probabilities from the categorical probability density 

function, the probabilities of class categories can be calculated in order to choose which class 

category is more likely given the input data provided to the network. The formula that calculates 

the class category probabilities given the input data of a network does so by cascading the 
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probabilities of all the current input variable states together. This operation is shown 

mathematically as [60] 

 

𝑃𝑃(𝑦𝑦 = 𝑐𝑐 | 𝑥𝑥1 = 𝑡𝑡, 𝑥𝑥2 = 𝑡𝑡, … , 𝑥𝑥𝑚𝑚 = 𝑡𝑡) = �𝑃𝑃(𝑥𝑥𝑖𝑖 = 𝑡𝑡 | 𝑦𝑦 = 𝑐𝑐;𝛼𝛼)
𝑚𝑚

𝑖𝑖=1

. (Equation 3.26) 

 

To detail the operations shown in Equation 3.26, 𝑃𝑃(𝑦𝑦 = 𝑐𝑐 | 𝑥𝑥1 = 𝑡𝑡, 𝑥𝑥2 = 𝑡𝑡, … , 𝑥𝑥𝑚𝑚 = 𝑡𝑡) represents 

the probability of the given class variable being equal to the some category, the class variable can 

be given that all of the system attributes are equal to one of the respective categories that they can 

be. When this equation is solved using the given data input that was provided to the system for all 

of the possible class category probabilities, the class category with the highest probability is chosen 

as the output prediction of the network. 

3.2.2 Data Sampling Methods 

While the process by which a Naïve Bayesian network makes an output or class variable prediction 

is relatively simplistic in terms of the computational steps it takes to complete, it is quite powerful 

in the accuracy of predictions it can make. However, the accuracy of the predictions that are made 

are still dependent on the initial dataset used to calculate the attribute variable category 

probabilities. In some cases, like in the case of this research, the dataset provided for attribute 

category probability calculations is heavily skewed to only have one class category represented. If 

such a dataset was then used to calculate the different attribute category probabilities, the values 

received for those probabilities would be intrinsically skewed to favor the most common class 

category when making predictions with new data that the network had never before encountered. 

To address this issue, different sampling methods can be used to create a dataset that is more 

uniform in its distribution of class categories. 

 

Sampling methods are algorithms that review datasets and try to compensate for overrepresented 

and underrepresented categories present in the data [61]. When implementing a sampling 

algorithm, a single variable must be chosen for which to determine the category representation 

bias of the whole dataset. In the case of datasets that are used to train different machine learning 



 
 

44 

techniques, the variable that is chosen to determine category bias is usually the output or class 

variable of a network. Once a bias-checking variable has been chosen, the sampling algorithm will 

add or remove copies of data that are already found in a dataset to make the representation of the 

categories of the bias checking variable more uniform. 

 

Many different data sampling methods exist to correct for the previously explained dataset issues. 

Some of them are simplistic in the way that they sample the data to add more samples of different 

class categories. Others use complex clustering methods to try to include the most valuable 

information samples relating to the underrepresented or overrepresented class categories [61, 62]. 

In this research, different data sampling methods were tested, those methods tested being random 

undersampling, random oversampling, Tomek Links undersampling, ENN undersampling, cluster 

centroids undersampling, SMOTE oversampling, SMOTE Tomek sampling, and SMOTE ENN 

sampling, but only one sampling method truly worked well with the given data. That sampling 

method was the random oversampling method. This data sampling algorithm works by choosing 

the output or class variable of the dataset to check for category biases in the data [61]. Then, data 

points pertaining to the underrepresented categories are randomly sampled and placed back into 

the dataset. This process continues until all of the class categories are represented evenly 

throughout the whole modified dataset. While the implementation of the random oversampling 

method did help in increasing the accuracy of the predicted class variable categories, other network 

methods were implemented to help further increase the accuracy of the Naïve Bayesian networks. 

3.2.3 The Brute Force Testing Method 

Even with the methods of determining variable correlation values discussed in previous sections 

of this report, more needed to be done in finding which variables were useful in raising the 

accuracy of the predictions of the Naïve Bayesian networks. One method that could be 

implemented that would achieve this purpose is the brute force network building and testing 

method. 

 

This method was developed for specific usage in this research. What this method aimed to 

accomplish is the building of every possible network configuration by using every possible 

combination of input or attribute variables. To prepare the data for use in this algorithm, the 
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original dataset must be split into randomly assorted portions making up eighty percent and twenty 

percent of the total dataset. These datasets that were created from the split are called the training 

and test data, respectively. Then, the training, test, and validation sets of data must be sampled by 

using the random oversampling method and by choosing the class variable as the way of 

determining category biases in the data. This is done to give all of the datasets uniform category 

distributions, so that network accuracy calculations are not heavily skewed in favor of the class 

variable category that occurs most often. The training dataset will be used to calculate attribute 

category probabilities, while the test dataset will be used for network accuracy calculations. 

 

To explain the network building section of the algorithm, a network is built following the outputs 

a binary number counter. A binary counter was used to act as a switch for allowing each available 

network variable to be used in the network building process. Each bit of the counter represented 

an input or attribute variable in the dataset. The counter would count decimally from one to two to 

the power of however many inputs were in the dataset. A mathematical expression of how many 

networks would need to be created to exhaust all possible input combinations is 

 

𝑚𝑚 = 2𝑛𝑛. (Equation 3.27) 

 

Where, 𝑚𝑚 is the total amount of networks that need to be built in order to try every network input 

combination and 𝑛𝑛 represents the total number of inputs included in the dataset. As the decimal 

counting process progressed, each variable would either be included or not included in the network 

being built at the current algorithm iteration. 

 

After each network is built, the accuracy values it calculated from the predictions that it made will 

be compared to the previous network that was built to see if the accuracy of the current network 

in the algorithm was better than the last. If the accuracy of the current network is better than the 

accuracy of the previous network, both the accuracy value of the current network and the attributes 

of the current network will be saved for comparisons against the networks that will be built as the 

algorithm progresses. 

  



 
 

46 

Upon reaching the end of the algorithm, all network combinations are exhausted, and the best 

possible network configuration is therefore found for the given dataset that was used. Of course, 

there is one glaring flaw to this algorithm. The amount of networks that need to be built grows 

exponentially as more and more data attributes are included in a dataset. For smaller datasets, this 

algorithm could complete without any issues. However, for this algorithm to completely exhaust 

all possible network configurations while using the dataset that was provided for this research, 

299, or roughly six hundred and thirty-three octillion Naïve Bayesian networks would need to be 

built and tested. Clearly, this would take far too long to ever complete on any computer, so another 

algorithm had to be created in order to effectively test different network configurations. This new 

algorithm also had to abide by the added stipulation of keeping network sizes small enough to use 

for causal reasoning purposes and to minimize calculation times. 

3.2.4 The Survival Testing Method 

In an attempt to alleviate the previously discussed issues with the brute force testing method, the 

survival testing method was created. The survival method can be thought of as a modified brute 

force method, except that the amount of attribute variables that a given Naïve Bayesian network 

uses is much smaller than the number of total attribute variables in the dataset used to train the 

Naïve Bayesian networks. This is due to of the way the survival method operates. The method acts 

as a variable reduction algorithm that reduces the total number of attributes in a network. The 

algorithm works on a survival of the fittest mentality in which less useful input variables are cut 

from the data in order to reduce network sizes and produce better network accuracy results. 

 

To begin using the survival testing algorithm, a dataset containing all of the network attributes and 

one class variable used for network prediction purposes must be provided. The original dataset 

must be split into randomly assorted portions making up eighty percent and twenty percent of the 

total dataset. These datasets that were created from the split are called the training dataset and the 

test dataset, respectively. After this split of the original dataset occurs, the training dataset must 

have twenty percent of its contents randomly sampled out from it and copied to a new dataset. This 

new data created from the training data is known as the validation dataset. Then, the training, test, 

and validation sets of data must be sampled by using the random oversampling method and by 

choosing the class variable as the way of determining category biases in the datasets. This is done 
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to give all of the datasets uniform category distributions so that network accuracy calculations are 

not heavily skewed in favor of the class variable category that occurs most often. The training data 

is used to calculate attribute category probabilities, while the validation and test datasets are used 

for network accuracy calculations. 

 

To start the network building process of the algorithm, the attributes from all of the datasets must 

be randomized and placed into group sizes of a certain number. For use in this research, the input 

variables were split into groups of ten. Once the input variables were split into randomized groups, 

the groups were all treated like new datasets, and the brute force method was used to test every 

attribute combination of network possible from each of the groupings. As each of the different 

attribute groupings went through and exhausted the combinations of networks, accuracy 

calculations were being made. In contrast to the brute force method, accuracy calculations were 

run on both the test data and validation data in order to see how the networks were performing on 

data that they both had and had not encountered. These accuracy values were then average together 

to yield accuracy results that do not favor one dataset over the other. After this, the network 

configuration that produced the best averaged accuracy calculations had its accuracy values and 

attributes saved. 

 

After each attribute grouping completely exhausts all of its Naïve Bayesian network 

configurations, the top three network configurations and average accuracy scores are recorded into 

data for later comparisons, and any attribute that does not appear in the best network configuration 

of an attribute grouping is deleted from the training, test, and validation data. After this point in 

the algorithm, the attributes are rerandomized into groupings, and this process continues to whittle 

down the available attribute variables that can be used in potential network configurations. The 

algorithm continues until only a certain number of attributes remains. In relation to this project, 

the algorithm was chosen to stop once fifteen attributes remained in the data. Once this attribute 

threshold is reached, all of the remaining attributes are used to build all possible network 

configurations using the brute force method. As the process takes place, the averaged dataset 

accuracies are calculated. Once all possible network configurations are exhausted, the top three 

network configurations are compared to the running top three configurations up to this point, and 

a final top three best network list is created from this comparison. 
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As previously stated, the completion of the survival algorithm yields three reduced network 

structures that perform relatively well. Every time the algorithm was run, it created networks that 

performed much better than a Naïve Bayesian network that was built using all of the attributes 

available in the provided dataset. However, this algorithm has shortcomings of its own. For one, 

it runs off the assumption that the attribute groupings that are formed as the method runs are 

sufficiently large enough to show whether or not a variable is useful to the structure of a network 

configuration. As stated before, in the case of this research, the variable grouping size was chosen 

to be include ten input variables for network calculations, and the threshold for the algorithm to 

stop at was chosen to be fifteen variables. If these numbers were increased, the algorithm could 

perform better, but it would take longer to finish. As it was explained in the brute force method 

section, this is because the number of network configurations that need to be tried increases 

exponentially as more potential attributes are allowed for network calculations. 

 

Another shortcoming of the survival method is that sometimes groupings of attributes may not 

always contain the predefined amount of attributes that the program was originally set up for. This 

is because as the data loses variables, groupings of predefined sizes cannot always be formed, as 

the number of variables that remain in the data is not always going to be evenly divisible by the 

predefined grouping size. This can result in groupings of small sizes to be formed, which then fails 

that assumption that the network structures remain large enough to determine whether or not the 

attributes in them are useful. 

  



 
 

49 

 RESULTS 

Now that the all of the underlying methods that were used to formulate neural networks and 

Bayesian networks have been explained thoroughly, the results that were received from the 

networking processes will be presented. This chapter will detail the data that was received from 

the implementations of the machine learning processes. To aid in the visualization and 

understanding of this data, the machine learning process results will be displayed tabularly. The 

presentation of these findings will be expressed in three parts. The first section documents the 

process behind how network input variables were selected for use in either neural networking or 

Bayesian networking applications. The second section presents all of the results that were received 

from the implementation of the neural networking processes. The third section covers all of the 

results that were received from the implementation of the Bayesian networking processes. An 

explanation of all of the results will be given in Chapter 5 of the report. 

4.1 Data Variable Selection 

Since more than one machine learning tactic was used to acquire data and results for this research, 

there will be two different subsections showing the methods used to determine how inputs were 

chosen for the network construction of both networking types. The first section is dedicated to 

neural networks and how their respective data variables were chosen. Similarly, the second section 

is dedicated to Naïve Bayesian networks and how their attributes and classes were chosen. 

4.1.1 Neural Network Variable Selection 

The process by which neural network inputs were chosen for usage in the network structures was 

by the implementation of the cross-correlation function. To be able to implement the cross-

correlation algorithm, a network output variable had to first be chosen. After an output variable 

was chosen, the cross-correlations between the dataset inputs and the output variable could be 

calculated. To gauge the best overall relation between the inputs and network output, the absolute 

value of all of the cross-correlation values was taken. The table that depicts the absolute value 

cross-correlation information that was used in selection of the neural network variables can be seen 

in Table 4.1. 
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Table 4.1 Top 20 neural network absolute cross-correlation values. 

Neural Network Cross-Correlation Values 
Input Variable 

Representations 
Relational Value to 

Output Variable 
1 0.0641 
2 0.0607 
3 0.0602 
4 0.0588 
5 0.0572 
6 0.0559 
7 0.0558 
8 0.0557 
9 0.0557 
10 0.0555 
11 0.0552 
12 0.0548 
13 0.0510 
14 0.0510 
15 0.0510 
16 0.0505 
17 0.0502 
18 0.0496 
19 0.0493 
20 0.0490 

 

As the information in Table 4.1 shows, the absolute value cross-correlation values for the top 

twenty most correlated neural network inputs to the network output were low. This fact is assumed 

to have negatively affected the performance of the neural networks that were built from these 

inputs. This configuration of network variables was used in the building process of all of the neural 

network types that were implemented in this thesis. To draw comparison between the accuracy 

data received from the neural networks built in this way, all network types were tested while also 

using all available network inputs. 

4.1.2 Naïve Bayesian Network Variable Selection 

The process by which Naïve Bayesian network attributes were chosen for usage in the network 

structures was through the use of two different methods. One was the implementation of the cross-
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correlation function, while the other method was through the use of the survival algorithm 

described in Chapter 3.2.4. 

 

Similar to the neural network application, to be able to implement the cross-correlation algorithm, 

a network class variable had to be chosen. Moreover, the class variable was included in cross-

correlations calculations with every data attribute. Then, the absolute value of each correlational 

value was taken to determine which attributes were most related to the class. However, this time 

the data was oversampled with respect to the class categories in order to normalize the 

representation of each category. The results of these aforementioned calculations can be seen in 

Table 4.2 

 

Table 4.2 Top 20 Naïve Bayesian network absolute cross-correlation values. 

Naïve Bayesian Network Cross-Correlation Values 
Attribute Variable 

Representations 
Relational Value to 

Class Variable 
1 0.2673 
2 0.2566 
3 0.2542 
4 0.2255 
5 0.2056 
6 0.2037 
7 0.2026 
8 0.2005 
9 0.1880 
10 0.1861 
11 0.1817 
12 0.1790 
13 0.1737 
14 0.1578 
15 0.1539 
16 0.1534 
17 0.1469 
18 0.1441 
19 0.1428 
20 0.1422 
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As the information in Table 4.2 shows, the absolute value cross-correlation values for the top 

twenty most correlated Naïve Bayesian network attributes to the network class were marginally 

higher than the values calculated for the neural networks shown in Table 4.1. This is due to the 

fact that the dataset was oversampled before the cross-correlation calculation was done on each of 

the variables. As such, the cross-correlation calculation was able to catch more variation in the 

dataset, as the data was no longer biased toward a specific hook index category. This configuration 

of network variables was used in the building process of one Naïve Bayesian network. For 

comparison, a network was also built using every available variable in the dataset. In addition, a 

network was built using the variables received from the completion of the survival testing method. 

Through the completion of this method, an even further reduced network structure was created 

using only eleven of the best performing attributes, according to the survival method. Now that 

the selection process of all of the variables has been covered, the actual accuracy results from the 

built networks will be presented. 

4.2 Neural Networking Results 

The results collected from all of the different neural network types will also be presented in two 

subsections. The first will cover the regression-based prediction algorithm, while the second will 

cover the classification-based algorithm. 

4.2.1 Regression-Based Neural Network Percent Error Results 

The presentation of the results for both the standard gradient descent and sigmoid training 

algorithm and the ADAM and ReLU training algorithm will be broken into two separate headings. 

The standard gradient descent and sigmoid method is tabulated first, while the ADAM and ReLU 

method appears second. 

The Standard Gradient Descent and Sigmoid Method Percent Error Results 

To begin the presentation of the results of the regression neural networks, the standard gradient 

descent and sigmoid method percent error values of the validation dataset are displayed in Table 

4.3.  
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Table 4.3 Validation percent error results from the standard gradient and sigmoid method. 

Standard Gradient and Sigmoid Method Validation Percent Error Results 
(all values are percentages) All 

States 
Negative 

Hook Index 
Optimal Hook 

Index 
Positive 

Hook Index 
All Variable Network 86.2294 94.2719 61.8924 102.5238 
Top 20 Corr. Variable 

Network 
83.3196 89.4863 60.7812 99.6914 

 

Next, the standard gradient descent and sigmoid method percent error values of the test dataset are 

displayed in Table 4.4. 

 

Table 4.4 Test percent error results from the standard gradient and sigmoid method. 

Standard Gradient and Sigmoid Method Test Percent Error Results 
(all values are percentages) All 

States 
Negative 

Hook Index 
Optimal Hook 

Index 
Positive 

Hook Index 
All Variable Network 142.1127 170.8423 101.2546 154.2413 
Top 20 Corr. Variable 

Network 
135.0495 156.9521 98.5547 149.6418 

 

Finally, the standard gradient descent and sigmoid method percent error values between the two 

datasets were averaged and are displayed in Table 4.5. 

 

Table 4.5 Averaged percent error results from the standard gradient and sigmoid method. 

Standard Gradient and Sigmoid Method Averaged Percent Error Results 
(all values are percentages) All States Negative 

Hook Index 
Optimal Hook 

Index 
Positive 

Hook Index 
All Variable Network 114.1711 132.5571 81.5735 128.3826 
Top 20 Corr. Variable 

Network 
109.1846 123.2192 79.6680 124.6666 

 

Now that all of the results relating to the standard gradient descent and sigmoid method have be 

displayed, the ADAM and ReLU method percent error results will be covered. 
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The Adaptive Moment Estimation (ADAM) and ReLU Method Percent Error Results 

To continue the presentation of the results of the regression neural networks, the ADAM and ReLU 

method percent error values of the validation dataset are displayed in Table 4.6. 

 

Table 4.6 Validation percent error results from the ADAM and ReLU method. 

ADAM and ReLU Method Validation Percent Error Results 
(all values are percentages) All 

States 
Negative 

Hook Index 
Optimal Hook 

Index 
Positive 

Hook Index 
All Variable Network 84.1472 88.7164 63.5276 100.1975 
Top 20 Corr. Variable 

Network 
80.4378 85.2198 58.6347 97.4589 

 

Next, the ADAM and ReLU method percent error values of the test dataset are displayed in Table 

4.7. 

 
Table 4.7 Test percent error results from the ADAM and ReLU method. 

ADAM and ReLU Method Test Percent Error Results 
(all values are percentages) All States Negative 

Hook Index 
Optimal Hook 

Index 
Positive 

Hook Index 
All Variable Network 136.8505 159.9487 97.2948 153.3081 
Top 20 Corr. Variable 

Network 
133.3109 157.0364 95.7905 147.1058 

 

Finally, the ADAM and ReLU method percent error values between the two datasets were 

averaged and are displayed in Table 4.8. 

 

Table 4.8 Averaged percent error results from the ADAM and ReLU method. 

ADAM and ReLU Method Averaged Percent Error Results 
(all values are percentages) All States Negative 

Hook Index 
Optimal Hook 

Index 
Positive 

Hook Index 
All Variable Network 110.4989 124.3326 80.4112 126.7528 
Top 20 Corr. Variable 

Network 
106.8744 121.1281 77.2126 122.2824 

 

Now that all of the results relating to the ADAM and ReLU method have be displayed, the results 

of the classification-based neural networks will be presented. 
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4.2.2 Classification-Based Neural Network Accuracy Results 

The presentation of the results for both the standard gradient descent and sigmoid training 

algorithm and the ADAM and ReLU training algorithm will be broken into two separate headings. 

The standard gradient descent and sigmoid method is displayed first. Afterwards, the ADAM and 

ReLU method is covered. 

The Standard Gradient Descent and Sigmoid Method Accuracy Results 

To begin the presentation of the results of the classification neural networks, the standard gradient 

descent and sigmoid method accuracy values of the validation dataset are displayed in Table 4.9. 

 

Table 4.9 Validation accuracy results from the standard gradient and sigmoid method. 

Standard Gradient and Sigmoid Method Validation Accuracy Results 
(all values are percentages) All 

States 
Negative 

Hook Index 
Optimal Hook 

Index 
Positive 

Hook Index 
All Variable Network 44.6182 25.8634 90.7421 17.2491 
Top 20 Corr. Variable 

Network 
43.0708 27.5923 82.1395 19.4807 

 

Next, the standard gradient descent and sigmoid method accuracy values of the test dataset are 

displayed in Table 4.10. 

 

Table 4.10 Test accuracy results from the standard gradient and sigmoid method. 

Standard Gradient and Sigmoid Method Test Accuracy Results 
(all values are percentages) All 

States 
Negative 

Hook Index 
Optimal Hook 

Index 
Positive 

Hook Index 
All Variable Network 32.5572 4.2871 91.8123 1.5723 
Top 20 Corr. Variable 

Network 
33.4311 7.0648 89.6254 3.6031 

 

Finally, the standard gradient descent and sigmoid method accuracy values between the two 

datasets were averaged and are displayed in Table 4.11.  
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Table 4.11 Averaged accuracy results from the standard gradient and sigmoid method. 

Standard Gradient and Sigmoid Method Averaged Accuracy Results 
(all values are percentages) All 

States 
Negative 

Hook Index 
Optimal Hook 

Index 
Positive 

Hook Index 
All Variable Network 38.5877 15.0753 91.2772 9.4107 
Top 20 Corr. Variable 

Network 
38.2510 17.3286 85.8825 11.5419 

 

Now that all of the results relating to the standard gradient descent and sigmoid method have been 

presented, the ADAM and ReLU method accuracy results will be shown. 

The Adaptive Moment Estimation (ADAM) and ReLU Method Accuracy Results 

To continue the presentation of the results of the classification neural networks, the ADAM and 

ReLU method accuracy values of the validation dataset are displayed in Table 4.12. 

 

Table 4.12 Validation accuracy results from the ADAM and ReLU method. 

ADAM and ReLU Method Validation Accuracy Results 
(all values are percentages) All 

States 
Negative 

Hook Index 
Optimal Hook 

Index 
Positive 

Hook Index 
All Variable Network 46.1005 27.5849 92.6375 18.0792 
Top 20 Corr. Variable 

Network 
44.0924 28.4023 83.7102 20.1648 

 

Next, the ADAM and ReLU method accuracy values of the test dataset are displayed in Table 4.13. 

 

Table 4.13 Test accuracy results from the ADAM and ReLU method. 

ADAM and ReLU Method Test Accuracy Results 
(all values are percentages) All 

States 
Negative 

Hook Index 
Optimal Hook 

Index 
Positive 

Hook Index 
All Variable Network 33.3700 5.4397 92.7061 1.9641 
Top 20 Corr. Variable 

Network 
34.4125 8.1059 91.0042 4.1274 

 

Finally, the ADAM and ReLU method accuracy values between the two datasets were averaged 

and are displayed in Table 4.14. 
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Table 4.14 Averaged accuracy results from the ADAM and ReLU method. 

ADAM and ReLU Method Averaged Accuracy Results 
(all values are percentages) All 

States 
Negative 

Hook Index 
Optimal Hook 

Index 
Positive 

Hook Index 
All Variable Network 39.7353 16.5123 92.6718 10.0217 
Top 20 Corr. Variable 

Network 
39.2525 18.2541 87.3572 12.1461 

 

Now that all of the results relating to the ADAM and ReLU method have be displayed, the results 

of the Naïve Bayesian networks will be presented. 

4.3 Naïve Bayesian Networking Results 

The results collected from all of the different Naïve Bayesian network types will be presented in 

this section of the report. The section will cover the results of the all variables network, the cross-

correlation variables network, and the survival variables network. 

 

To begin the presentation of the results of the classification Naïve Bayesian networks, the accuracy 

values of the validation dataset are displayed in Table 4.15. 

 

Table 4.15 Validation accuracy results from the Naïve Bayesian network method. 

Naïve Bayes Classifier Validation Accuracy Results 
(all values are percentages) All 

States 
Negative 

Hook Index 
Optimal Hook 

Index 
Positive 

Hook Index 
All Variable Network 62.1547 51.6209 89.4561 45.3872 
Top 20 Corr. Variable 

Network 
64.0164 56.0234 81.0601 54.9657 

Survival Variable Network 68.9191 60.7823 59.6504 86.3247 
 

Next, accuracy values of the test dataset are displayed in Table 4.16. 
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Table 4.16 Test accuracy results from the Naïve Bayesian network method. 

Naïve Bayes Classifier Test Accuracy Results 
(all values are percentages) All 

States 
Negative 

Hook Index 
Optimal Hook 

Index 
Positive 

Hook Index 
All Variable Network 48.5638 27.3614 92.8501 25.4798 
Top 20 Corr. Variable 

Network 
51.1332 37.1861 82.4927 33.7208 

Survival Variable Network 60.0933 53.3633 52.5162 74.4005 
 

Finally, the accuracy values between the two datasets were averaged and are displayed in Table 

4.17. 

 

Table 4.17 Averaged accuracy results from the Naïve Bayesian network method. 

Naïve Bayes Classifier Averaged Accuracy Results 
(all values are percentages) All 

States 
Negative 

Hook Index 
Optimal Hook 

Index 
Positive 

Hook Index 
All Variable Network 55.3593 39.4912 91.1531 35.4335 
Top 20 Corr. Variable 

Network 
57.5748 46.6048 81.7764 44.3433 

Survival Variable Network 64.5062 57.0728 56.0833 80.3626 
 

All of these results will be explained and discussed in Chapter 5.  
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 DISCUSSION AND CONCLUSION 

With the coverage of the results being detailed in the previous chapter of this thesis, this chapter 

aims to draw necessary conclusions on the presentations of the results and provide suggestions on 

topics to implement for future work on this research subject. With that being said, the first section 

of this chapter will cover the discussion of the results received from the neural and Naïve Bayesian 

networking techniques. The second section will detail suggestions for future work and possible 

solution implementations for the hook index problem. The last section will explain final thoughts 

about the research that was done for this thesis. 

5.1 Discussion of the Results 

To segment the discussion of the results to the sake of clarity, the results will be discussed in the 

order in which they were received. In other words, the neural network implementations will be 

discussed in one subsection, and the Naïve Bayesian network implementations will be discussed 

in another. 

5.1.1 Discussion of the Neural Network Results 

The implementations of the neutral networking algorithms were the beginning phases of seeing if 

any predictive influence could be drawn from the dataset that was provided for this research. In 

these first attempts at using neural networks, regression-based learning methods were tested 

because they were the most idealistic approach to the problem. This is because if predictions could 

be made correctly, the value of the output variable representing the hook index could be known at 

all times within an acceptable degree of error. However, as seen in the results listed in Tables 4.4 

through 4.9, the regression neural networks were unable to predict the output variable with 

acceptable levels of accuracy. The results received from this style of network were not accurate 

for any set of data that was tested on it either. Normally, networks can at least perform well on sets 

of data that they have encountered before, but even validation results in this case were inaccurate. 

Table 4.6 and Table 4.9 show that on average, output values calculated by the network for the most 

common output state, the optimal hook index state, were just under two times greater or less than 
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the actual output value that was used as a reference, and this was the best performance of the 

regression networks. 

 

As can be seen in the aforementioned results tables, different variable configurations were tested, 

and the ADAM gradient descent algorithm paired with the ReLU neuron activation function was 

used as well. This was done in an attempt to improve the results over the standard gradient descent, 

sigmoid, and all input variables networks. The idea behind using fewer data input variables that 

were more correlated to the output was that networks were possibly having hard times discerning 

features from the sheer amount of data being input into them. While the network accuracy results 

did increase due to this change, it was not by much. A similar situation can be seen in the use of 

the ADAM method with ReLU neuron activations. This method was able to better train networks 

it was implemented in the same amount of training iterations, but ultimately it was only by a small 

amount. After seeing how regression neural networks performed, classification neural networks 

were tested on the dataset. 

 

While classification-based neural networks performed marginally better than their regression-

based counterparts, many of the same problems that plagued the regression networks still echoed 

in the classification network implementations. Reviewing the results presented in Tables 4.10 

through 4.15, it is shown that the classification networks were actually able to predict the most 

common state of the output, the optimal hook index state, quite well. However, this is not 

necessarily indicative of the prediction capabilities of the implemented networks, since the data 

was heavily skewed in favor of the optimal hook index state. This means that the classification 

networks ended up simply guessing the most likely output state, and they ultimately did not 

provide much in the way of outlier state predictions. 

 

As they were implemented with the regression networks, the top twenty most correlated input 

variables and the ADAM algorithm with the use of ReLU neuron activation were applied in an 

attempt to increase network prediction scores. Again, both network configuration changes mostly 

aided in the increasing of the accuracy scores. However, one statistic to mention was the decrease 

in the accuracy values of the most common output state, and adversely, the increase in accuracy 

predictions of the outlier output states. An explanation of this can be described by the fact that 
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input variables gained discernable features in the calculations of the classification networks when 

the different input variable configuration was chosen. This resulted in some predictions being 

directed toward outlier output states rather than being toward the most common output state, as 

now features that helped predict outlier states could be better seen in the data. 

 

While the neural network techniques seemed to underperform in this application, it is not a very 

surprising development. The most likely factor of the poor performances of the networks is the 

dataset that was used for training. This data was heavily skewed in favor of the optimal hook index 

state of the output variable. While the biased nature of the dataset could have been combated by 

the implementation of a data sampling algorithm, it was ultimately viewed as unimportant due to 

the fact that the neural networking techniques would not be able to overcome one major flaw. As 

described earlier in the thesis, the types of neural networks implemented in this research did not 

have any capabilities in drawing statistical causation between input variable changes and output 

variable changes. This fact alone is what led to the research of Bayesian networking techniques. 

5.1.2 Discussion of the Naïve Bayesian Network Results 

The implementations of Naïve Bayesian networking techniques came from a development that 

was learned about the hook index problem through the use of neural networks. That development 

was the need to draw causation relationships between network inputs and outputs. Network 

causation must be knowable because a direct way of controlling the hook index is what is required 

to be able to ultimately solve the problem. 

 

Through the use of network probability search queries, a topic brought up in the next subsection, 

this problem can be alleviated when using Bayesian network structures. As a brief aside, search 

queries were not applied in the network techniques used in this research, but the insight that could 

be gained from them is invaluable. These search queries went unimplemented because before any 

information can be gathered from a Bayesian network, it must be making correct predictions a 

large portion of the time. As seen by the results found in Tables 4.16 through 4.18, even 

underperforming Naïve Bayesian networks calculated accuracy results better than the best 

performing classification neural networks. However, their predictions cannot be seen as concrete 
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information as of yet. This is because even in the best case network scenario, Naïve Bayesian 

networks did not perform above a good enough accuracy threshold. 

 

The improvement in accuracies that the Naïve Bayesian networks did see cannot be understated. 

With just the implementation of a random data oversampling method, these simplistic networks 

were able to outperform all of the neural networking techniques. The importance of the random 

sampling method can be seen in Table 4.2, as the cross-correlation values between the attributes 

and the class variable increased quite a bit. Moreover, the survival algorithm was able to select 

high performing network variables and make a network structure that performed better with less 

variable information as a whole. Seeing as the Naïve Bayesian networking model is the most 

simplistic in nature in terms of the Bayesian networking techniques, there theoretically should be 

significant room for improvement in prediction calculations from here, especially if data sampling 

methods and the survival algorithm are used to optimize network structures. 

5.2 Future Work Suggestions 

While the results shown from this research show promise, there is always room for improvement. 

As such, there are quite a few steps that could be taken in an effort to push this research even 

further. The tactics that will be discussed are the implementations of more complex Bayesian 

networking techniques, the creation of a probability query algorithm that can suggest Bayesian 

network input values to change to prevent a potentially bad hook index steel roll from being made, 

a more complex or algorithmic way of creating categorical random variables, and the research and 

implementation of casual neural network techniques. 

 

The lowest hanging fruit out of these future work implementations is the use of a more complex 

Bayesian network algorithm to improve results. If this were to be implemented, there is a chance 

that accuracy results from Bayesian networks would be able to reach a suitable threshold to which 

causal inferences would start to be meaningful for steel line process implementations. Some 

potential more complex algorithms to implement would be the Tree Bayes and Hill Climbing 

algorithms [63]. 
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This is being classified as low hanging fruit, as the only thing required to implement this is to use 

a different Bayesian network technique in tandem with the survival network variable optimization 

method. In fact, preexisting tools to implement more complex methods exist in Bayesian learning 

packages available for the R programming language. The package with these tools is known as 

bnlearn [64]. However, the problem is that the algorithm was implemented through the use of 

Python code in this research. There are methods of intermingling Python and R scripts, and 

methods for doing so were briefly explored for use in this thesis, but ultimately, a rewriting of the 

code in R syntax would most likely be required to get this working. Alternatively, more complex 

Bayesian networking techniques could be implemented from scratch in whatever language was 

necessary, but again this would be a time and research intensive task. 

 

The next suggestion to be made is the creation and use of a probability search query algorithm to 

find input variables to change in order to prevent poor hook index incidents during the steel making 

process [63]. As discussed before, an algorithm like this would first require that the Bayesian 

network in question was actually able to predict hook index issues within a determined acceptable 

accuracy threshold. Also, in order to reduce complexity of the algorithm and the subsequent 

implementation of the algorithm into the steel making process, the network implementing the 

theoretical algorithm would need to not have too many input variables or attributes. This is because 

the inclusion of more variables would make actual algorithm calculations more complex, and it 

could potentially be too overbearing of a process to control by a steel line operator who would 

need to change these values manually. Alternatively, if such an algorithm were to go into practice, 

an electronic control system could be set up in order to automate the input variable control process. 

 

In terms of actually implementing the algorithm itself, a suggestion can be made for it to function 

similarly to how the brute force algorithm functions, in that it would run off a counter of some 

kind that assigned a digit to the state of each input variable category. Then, the probabilities of 

each category would be multiplied together to calculate the probability of the hook index being in 

a certain state. This process would try every category combination and output the suggested input 

variable categories that provide the best chance of making steel with acceptable hook index values. 

Like with the advanced Bayesian networking techniques, the tools for a speedier development of 

such an algorithm exist in the R package known as bnlearn [64]. 
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Another potential method to increase accuracy results of the research would be to use a more 

complex means of categorizing the input dataset. Not very much else can be said on this topic 

other than a K-means clustering algorithm was used early on in an attempt to categorize the data, 

but the categories received from it ultimately did not perform as well as the manually created 

categories [62]. However, a suggestion is being made to find a data categorization algorithm 

because there were a few times over the course of this research in which certain variables had their 

data recategorized, and the accuracy results of the classification networks would increase each 

time. 

 

The final suggestion that can be made is to perform research on and try to implement a kind of 

neural network that is able to derive some kind of causal relationship between its inputs and outputs 

[65]. The only direction that can be given in this application is the fact that a paper was reviewed 

during the process of this research stating that a potential casual neural network structure was 

possible to implement, but this would require more research into the topic for a better 

understanding of the application use cases of such a network structure. 

5.3 Final Thoughts 

Over the course of this research, different machine learning techniques were applied to try to 

predict the hook index a given roll of steel will experience as it is formed in the steel manufacturing 

process. The first attempt at prediction of the given hook index of a roll of steel was through the 

use of use of regression-based neural networks. Even when more sophisticated networking 

techniques were implemented, regression networks did not make themselves out to be a viable 

choice for this specific application. After this fact was discovered, classification techniques were 

put into use. While classification neural networks have the potential to be able to predict hook 

index states, ultimately, they fall short in their abilities due to their black box calculation processes. 

As such research was done to implement Naïve Bayesian networks, seeing as how these networks 

types are among the simplest in Bayesian networking theory, the accuracy results received from 

their processes can be seen as very successful, as they were able to outperform more sophisticated 

machine learning algorithms. In fact, if more complex Bayesian algorithms were enacted on the 

dataset provided, the accuracy results would likely become even better. If research was done on 

this problem in the future, the suggestion of this thesis would be to continue looking into Bayesian 
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algorithms to aid in the solution of the hook index issues. With that said, future work into the hook 

index problem shows great promise, and this research is successful because of the results that were 

provided.  
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APPENDIX A. NEURAL NETWORK CODE IMPLEMENTATION 

The Main MATLAB Code for Testing Networks 

 

clear all; clc; close all; 

 

nl=input('Enter the number of desired hidden layers: ')+2; 

nnpl=zeros(1,nl); 

for i=2:nl-1 

    nnpl(i)=input(['Enter the number of desired neurons in Hidden Layer ' num2str(i-1) ': ']); 

end 

 

alpha=0.00001; 

val=0.2; 

 

addpath(strcat('.', filesep, 'data')); 

 

csvread('G:\\Thesis_new - Copy\\CSV 

Files\\hookData_2019_no_tons_slope_NULL_cat2_osamp.csv',1,3,[1,3,432879,101]); 

output_data=csvread('G:\\Thesis_new - Copy\\CSV 

Files\\hookData_2019_no_tons_slope_NULL_cat2_osamp.csv',1,102,[1,102,432879,108]); 

[num,txt,raw]=xlsread('third_Hook3.csv','A1:C13236'); 

 

% randomly select val% of the data rows for verification 

% all other rows will be used for training 

numrows=size(output_data,1); 

rows=randperm(numrows); 

trainrows=rows(1:floor((1-val)*numrows)); 

valrows=rows(floor((1-val)*numrows)+1:end); 

nbt=size(input_data(trainrows,:),1); 

nbv=size(input_data(valrows,:),1); 
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maxinnew=1; 

mininnew=0; 

maxoutnew=1; 

minoutnew=0; 

 

% 

[scaled_input_data_t,mininnew,mininold,inoldr,innewr]=data_scaling(input_data(trainrows,:),ma

xinnew,mininnew,0); 

% 

[scaled_input_data_v]=data_scaling(input_data(valrows,:),maxinnew,mininnew,1,mininold,inold

r,innewr); 

%[scaled_output_data_t,minoutnew,minoutold,outoldr,outnewr]=data_scaling(output_data(trainr

ows,:),maxoutnew,minoutnew,0); 

 

%[scaled_input_data,mininnew,mininold,inoldr,innewr]=data_scaling(input_data,maxinnew,min

innew,0); 

%[scaled_input_data_v,mininnew,mininold,inoldr,innewr]=data_scaling(input_data,maxinnew,

mininnew,0); 

%[scaled_output_data_t,minoutnew,minoutold,outoldr,outnewr]=data_scaling(output_data,maxo

utnew,minoutnew,0); 

 

nnpl(1)=size(input_data,2); 

nnpl(nl)=size(output_data,2); 

 

% weights 

nn=0; 

w=randn(sum(nnpl(2:nl)),max(nnpl)+1); 

for i=2:nl 

    for j=1:nnpl(i) 

        w(nn+j,1:nnpl(i-1)+1)=w(nn+j,1:nnpl(i-1)+1)*sqrt(2/(nnpl(i-1)*nnpl(i))); 

    end 
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    nn=nn+nnpl(i); 

end 

dw=zeros(size(w)); 

y=zeros(nl-1,max(nnpl(2:end))); 

u=ones(nl,max(nnpl)+1); 

def=zeros(size(y)); 

sumef=0; 

l=0; 

it=1000; 

mean=0; 

var=0; 

MAE=zeros(1,it+1); 

 

for k=1:it 

    

[MAE,w,mean,var]=error_calc_wtraining_ADAM(scaled_input_data(trainrows),discrete_output

_data(trainrows),minoutold,minoutnew,outoldr,outnewr,y,u,w,dw,def,sumef,nl,nnpl,nb,l,mean,va

r,alpha,it,MAE); 

    %[MSE,w]=error_calc_wtraining_scaled(scaled_input_data_t,scaled_output_data_t,y,u,w,dw,

def,sumef,nl,nnpl,nbt,l,alpha,k,MSE); 

end 

 

plot(MAE(1:k)) 

xlabel('Epotches');ylabel('MAPE'); 

 

[MAE]=error_calc_wotraining_new(scaled_input_data_v,output_data(valrows,:),minoutold,min

outnew,outoldr,outnewr,y,u,w,nl,nnpl,nbv,k+1,MAE,[raw(1,:);raw(valrows+1,:)]); 

 

disp('Training error'); 

disp(MAE(:,k)); 

disp('Validation error'); 
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disp(MAE(:,k+1)); 

 

The MATLAB Code for Data Scaling 

 

function [scaled_data,minnew,minold,oldr,newr] = 

data_scaling(data,maxnew,minnew,typescale,minold,oldr,newr) 

 

scaled_data=zeros(size(data)); 

if(typescale==0) 

    maxold=zeros(1,size(data,2)); 

    minold=zeros(1,size(data,2)); 

    oldr=zeros(1,size(data,2)); 

    newr=maxnew-minnew; 

    for i=1:size(data,2) 

        maxold(i)=max(data(:,i)); 

        minold(i)=min(data(:,i)); 

        oldr(i)=maxold(i)-minold(i); 

        scaled_data(:,i)=(((data(:,i)-minold(i))*newr)/oldr(i))+minnew; 

    end 

else 

    for i=1:size(data,2) 

        scaled_data(:,i)=(((data(:,i)-minold(i))*newr)/oldr(i))+minnew; 

    end 

end 

 

The MATLAB Code for Training Networks Using the Standard Gradient Descent Method 

 

function [MSE,w] = 

error_calc_wtraining_scaled(input_data,output_data,y,u,w,dw,def,sumef,nl,nnpl,nb,l,alpha,it,MS

E) 
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for i=1:nb 

    u(1,2:nnpl(1)+1)=input_data(i,:); 

    %[u,nn]=forward_prop_sig(u,y,w,nl,nnpl); 

    [u,nn]=forward_prop_sig_lin(u,y,w,nl,nnpl); 

    %[u,nn]=forward_prop_ReLU_lin(u,y,w,nl,nnpl); 

    %[u,nn]=forward_prop_ReLU(u,y,w,nl,nnpl); 

    e=u(nl,2:nnpl(nl)+1)-output_data(i,:); 

    %[dw]=back_prop_sig(e,u,w,dw,def,sumef,nl,nnpl,nn,l); 

    [dw]=back_prop_sig_lin(e,u,w,dw,def,sumef,nl,nnpl,nn,l); 

    %[dw]=back_prop_ReLU_lin(e,u,w,dw,def,sumef,nl,nnpl,nn,l); 

    %[dw]=back_prop_ReLU(e,u,w,dw,def,sumef,nl,nnpl,nn,l); 

    w=w-(alpha*dw); 

    %de=e./output_data(i,:); 

    %ape=abs(de)*100; 

    %tape=sum(ape); 

    %tape=te^2; 

    e2=e.^2; 

    MSE(:,it)=MSE(:,it)+e2'; 

end 

MSE(:,it)=MSE(:,it)/nb; 

 

The MATLAB Code for Training Networks Using the ADAM Gradient Descent Method 

 

function [MAE,w,mean,var] = 

error_calc_wtraining_ADAM(input_data,output_data,minoutold,minoutnew,outoldr,outnewr,y,u,

w,dw,def,sumef,nl,nnpl,nb,l,mean,var,alpha,it,MAE) 

 

for i=1:nb 

    u(1,2:nnpl(1)+1)=input_data(i,:); 

    %[u,nn]=forward_prop_sig(u,y,w,nl,nnpl); 

    %[u,nn]=forward_prop_sig_lin(u,y,w,nl,nnpl); 



 
 

71 

    %[u,nn]=forward_prop_ReLU_lin(u,y,w,nl,nnpl); 

    [u,nn]=forward_prop_ReLU(u,y,w,nl,nnpl); 

    e=((((u(nl,2:nnpl(nl)+1)-minoutnew).*outoldr)./outnewr)+minoutold)-output_data(i,:); 

    %[dw]=back_prop_sig(e,u,w,dw,def,sumef,nl,nnpl,nn,l); 

    %[dw]=back_prop_sig_lin(e,u,w,dw,def,sumef,nl,nnpl,nn,l); 

    %[dw]=back_prop_ReLU_lin(e,u,w,dw,def,sumef,nl,nnpl,nn,l); 

    [dw]=back_prop_ReLU(e,u,w,dw,def,sumef,nl,nnpl,nn,l); 

    dw2=dw.^2; 

    [mean]=rec_dec_avg(mean,dw,0.9,((it-1)*nb)+i); 

    [var]=rec_dec_avg(var,dw2,0.999,((it-1)*nb)+i); 

    [dw]=ADAM(mean,var,alpha,1e-8); 

    w=w-dw; 

    %de=e./output_data(i,:); 

    %ape=abs(de)*100; 

    %tape=sum(ape); 

    %tape=te^2; 

    e2=e.^2; 

    %ae=abs(e); 

    mae=sum(e2)/length(e); 

    MAE(:,it)=MAE(:,it)+mae; 

end 

MAE(:,it)=MAE(:,it)/nb; 

MAE=[MAE MAE(:,it)]; 

 

The MATLAB Code for Performing Forward Propagation Using Sigmoid Activation 

Functions 

 

function [u,nn] = forward_prop_sig(u,y,w,nl,nnpl) 

 

nn=0; 

for j=2:nl 
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    for k=1:nnpl(j) 

        y(j-1,k)=w(nn+k,1:nnpl(j-1)+1)*u(j-1,1:nnpl(j-1)+1)'; 

    end 

    u(j,2:k+1)=1./(1+exp(-y(j-1,1:k))); 

    nn=nn+nnpl(j); 

end 

 

The MATLAB Code for Performing Forward Propagation Using Sigmoid and Linear 

Activation Functions 

 

function [u,nn] = forward_prop_sig_lin(u,y,w,nl,nnpl) 

 

nn=0; 

for j=2:nl 

    for k=1:nnpl(j) 

        y(j-1,k)=w(nn+k,1:nnpl(j-1)+1)*u(j-1,1:nnpl(j-1)+1)'; 

    end 

    if (j~=nl) 

        u(j,2:k+1)=1./(1+exp(-y(j-1,1:k))); 

    else 

        u(j,2:k+1)=y(j-1,1:k); 

    end 

    nn=nn+nnpl(j); 

end 

 

The MATLAB Code for Performing Forward Propagation Using ReLU Activation 

Functions 

 

function [u,nn] = forward_prop_ReLU(u,y,w,nl,nnpl) 

 

nn=0; 
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for j=2:nl 

    for k=1:nnpl(j) 

        y(j-1,k)=w(nn+k,1:nnpl(j-1)+1)*u(j-1,1:nnpl(j-1)+1)'; 

    end 

    u(j,2:k+1)=max([zeros(j-1,k); y(j-1,1:k)]); 

    nn=nn+nnpl(j); 

end 

 

The MATLAB Code for Performing Forward Propagation Using ReLU and Linear 

Activation Functions 

 

function [u,nn] = forward_prop_ReLU_lin(u,y,w,nl,nnpl) 

 

nn=0; 

for j=2:nl 

    for k=1:nnpl(j) 

        y(j-1,k)=w(nn+k,1:nnpl(j-1)+1)*u(j-1,1:nnpl(j-1)+1)'; 

    end 

    if (j~=nl) 

        u(j,2:k+1)=max([zeros(j-1,k); y(j-1,1:k)]); 

    else 

        u(j,2:k+1)=y(j-1,1:k); 

    end 

    nn=nn+nnpl(j); 

end 

 

The MATLAB Code for Performing Backward Propagation Using Sigmoid Activation 

Functions 

 

function [dw] = back_prop_sig(e,u,w,dw,def,sumef,nl,nnpl,nn,l) 
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% def(nl+1,1:no)=(-e./((output_data.^2).*abs(e))); 

def(nl-1,1:nnpl(nl))=2*e; 

for i=nl-1:-1:2 

    for j=nnpl(i):-1:1 

        for k=nnpl(i+1):-1:1 

            sumef=sumef+(def(i,k)*(u(i+1,k+1)*(1-u(i+1,k+1)))*(w(nn-l,j+1))); 

            l=l+1; 

        end 

        def(i-1,j)=sumef; 

        sumef=0; 

        l=0; 

    end 

    nn=nn-nnpl(i+1); 

end 

nn=0; 

for i=2:nl 

    dw(nn+1:nn+nnpl(i),1:nnpl(i-1)+1)=(def(i-1,1:nnpl(i)).*u(i,2:nnpl(i)+1).*(1-

u(i,2:nnpl(i)+1)))'*u(i-1,1:nnpl(i-1)+1); 

    nn=nn+nnpl(i); 

end 

 

The MATLAB Code for Performing Backward Propagation Using Sigmoid and Linear 

Activation Functions 

 

function [dw] = back_prop_sig_lin(e,u,w,dw,def,sumef,nl,nnpl,nn,l) 

 

% def(nl+1,1:no)=(-e./((output_data.^2).*abs(e))); 

def(nl-1,1:nnpl(nl))=2*e; 

for i=nl-1:-1:2 

    for j=nnpl(i):-1:1 

        for k=nnpl(i+1):-1:1 
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            if (i~=nl-1) 

                sumef=sumef+(def(i,k)*(u(i+1,k+1)*(1-u(i+1,k+1)))*(w(nn-l,j+1))); 

            else 

                sumef=sumef+(def(i,k)*(w(nn-l,j+1))); 

            end 

            l=l+1; 

        end 

        def(i-1,j)=sumef; 

        sumef=0; 

        l=0; 

    end 

    nn=nn-nnpl(i+1); 

end 

nn=0; 

for i=2:nl 

    if (i~=nl) 

        dw(nn+1:nn+nnpl(i),1:nnpl(i-1)+1)=(def(i-1,1:nnpl(i)).*u(i,2:nnpl(i)+1).*(1-

u(i,2:nnpl(i)+1)))'*u(i-1,1:nnpl(i-1)+1); 

    else 

        for j=1:nnpl(i) 

            dw(nn+j,1:nnpl(i-1)+1)=def(i-1,j)*u(i-1,1:nnpl(i-1)+1); 

        end 

    end 

    nn=nn+nnpl(i); 

end 

 

The MATLAB Code for Performing Backward Propagation Using ReLU Activation 

Functions 

 

function [dw] = back_prop_ReLU(e,u,w,dw,def,sumef,nl,nnpl,nn,l) 
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% def(nl+1,1:no)=(-e./((output_data.^2).*abs(e))); 

def(nl-1,1:nnpl(nl))=2*e; 

for i=nl-1:-1:2 

    for j=nnpl(i):-1:1 

        for k=nnpl(i+1):-1:1 

            if (u(i+1,k+1)>0) 

                sumef=sumef+(def(i,k)*(w(nn-l,j+1))); 

            end 

            l=l+1; 

        end 

        def(i-1,j)=sumef; 

        sumef=0; 

        l=0; 

    end 

    nn=nn-nnpl(i+1); 

end 

nn=0; 

for i=2:nl 

    for j=1:nnpl(i) 

        if (u(i,j+1)>0) 

            dw(nn+j,1:nnpl(i-1)+1)=def(i-1,j)*u(i-1,1:nnpl(i-1)+1); 

        end 

    end 

    nn=nn+nnpl(i); 

end 

 

The MATLAB Code for Performing Backward Propagation Using ReLU and Linear 

Activation Functions 

 

function [dw] = back_prop_ReLU_lin(e,u,w,dw,def,sumef,nl,nnpl,nn,l) 
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% def(nl+1,1:no)=(-e./((output_data.^2).*abs(e))); 

def(nl-1,1:nnpl(nl))=2*e; 

for i=nl-1:-1:2 

    for j=nnpl(i):-1:1 

        for k=nnpl(i+1):-1:1 

            if (i~=nl-1) 

                if (u(i+1,k+1)>0) 

                    sumef=sumef+(def(i,k)*(w(nn-l,j+1))); 

                end 

            else 

                sumef=sumef+(def(i,k)*(w(nn-l,j+1))); 

            end 

            l=l+1; 

        end 

        def(i-1,j)=sumef; 

        sumef=0; 

        l=0; 

    end 

    nn=nn-nnpl(i+1); 

end 

nn=0; 

for i=2:nl 

    if (i~=nl) 

        for j=1:nnpl(i) 

            if (u(i,j+1)>0) 

                dw(nn+j,1:nnpl(i-1)+1)=def(i-1,j)*u(i-1,1:nnpl(i-1)+1); 

            end 

        end 

    else 

        for j=1:nnpl(i) 

            dw(nn+j,1:nnpl(i-1)+1)=def(i-1,j)*u(i-1,1:nnpl(i-1)+1); 
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        end 

    end 

    nn=nn+nnpl(i); 

end 

 

The MATLAB Code for Calculating the Decaying Gradient Averages in the ADAM 

Method 

 

function [avg] = rec_dec_avg(avg,val,c,it) 

 

avg=(c*avg)+(1-c)*val; 

avg=avg/(1-(c^it)); 

 

The MATLAB Code for Updating the Network Gradient Values in the ADAM Method 

 

function [dw] = ADAM(mean,var,alpha,epsilon) 

 

dw=(alpha./((var.^(1/2))+epsilon)).*mean; 

 

end 

 

The MATLAB Code for Performing Predictions on Test Data 

 

function [MAE] = 

error_calc_wotraining_new(input_data,output_data,minoutold,minoutnew,outoldr,outnewr,y,u,w

,nl,nnpl,nb,it,MAE,labels) 

 

varnam={}; 

for i=1:nnpl(nl) 

    varnam=[varnam ['Actual Output ' num2str(i)] ['Predicted Output ' num2str(i)] ['Absolute 

Error ' num2str(i)] ['Percent Error ' num2str(i)]]; 
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end 

CSV=zeros(nb,4*nnpl(nl)); 

for i=1:nb 

    u(1,2:nnpl(1)+1)=input_data(i,:); 

    [u]=forward_prop_sig(u,y,w,nl,nnpl); 

    %[u]=forward_prop_sig_lin(u,y,w,nl,nnpl); 

    %[u]=forward_prop_ReLU_lin(u,y,w,nl,nnpl); 

    %[u]=forward_prop_ReLU(u,y,w,nl,nnpl); 

    e=((((u(nl,2:nnpl(nl)+1)-minoutnew).*outoldr)./outnewr)+minoutold)-output_data(i,:); 

    ae=abs(e); 

    de=e./output_data(i,:); 

    ape=abs(de)*100; 

    %tape=sum(ape); 

    %tape=te^2; 

    %e2=e.^2; 

    MAE(:,it)=MAE(:,it)+ae'; 

    k=1; 

    for j=0:4:3*nnpl(nl) 

        CSV(i,j+1:j+4)=[output_data(i,k) ((((u(nl,k+1)-

minoutnew)*outoldr(k))/outnewr)+minoutold(k)) ae(k) ape(k)]; 

        k=k+1; 

    end 

end 

CSV_c=[varnam; num2cell(CSV)]; 

data=[labels CSV_c]; 

writetable(cell2table(data),'test.csv','writevariablenames',0); 

MAE(:,it)=MAE(:,it)/nb; 
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APPENDIX B. BAYESIAN NETWORK CODE IMPLEMENTATION 

The Main Python Code for Testing Individual Networks 

 

import functions as func 

import pandas as pd 

import numpy as np 

 

from sklearn.model_selection import train_test_split 

from sklearn.naive_bayes import CategoricalNB 

from sklearn.naive_bayes import GaussianNB 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import log_loss 

 

dual_data=False 

 

if dual_data==True: 

    X_train,y_train=func.data_init(data_file='D:\\R Thesis Files\\test.csv') 

    X_test,y_test=func.data_init(data_file='D:\\R Thesis Files\\Jan_feb_2020Data_test.csv') 

 

else: 

    X,y=func.data_init(data_file='D:\\R Thesis Files\\csv\\all_data_cat.csv',output='Asym_Cld') 

    X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2) 

 

 

X_train_samp,y_train_samp=func.data_samp(X_train,y_train,samp_type='Random 

Oversampling') 

X_not,X_val,y_not,y_val=train_test_split(X_train,y_train,test_size=0.2) 

X_val_samp,y_val_samp=func.data_samp(X_val,y_val,samp_type='Random Oversampling') 

X_test_samp,y_test_samp=func.data_samp(X_test,y_test,samp_type='Random Oversampling') 

clf=GaussianNB() 
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nb=clf.fit(X_train_samp,y_train_samp) 

 

y_predv=nb.predict(X_val_samp) 

y_predvp=nb.predict_proba(X_val_samp) 

#y_predv=nb.predict(X_val) 

cm_val=confusion_matrix(y_val_samp,y_predv) 

lessacc_val,betweenacc_val,greatacc_val,totalacc_val=func.accuracy(cm_val,y_val_samp,y_pre

dv) 

logv=log_loss(y_val_samp,y_predvp,eps=1e-15) 

 

y_predt=nb.predict(X_test_samp) 

y_predtp=nb.predict_proba(X_test_samp) 

#y_predt=nb.predict(X_test) 

cm_test=confusion_matrix(y_test_samp,y_predt) 

lessacc_test,betweenacc_test,greatacc_test,totalacc_test=func.accuracy(cm_test,y_test_samp,y_p

redt) 

logt=log_loss(y_test_samp,y_predtp,eps=1e-15) 

 

The Python Code Containing the Functions Used for Data Initialization, Data Sampling, 

and Accuracy Calculations 

 

import pandas as pd 

import numpy as np 

import imblearn.under_sampling as und_samp 

import imblearn.over_sampling as ov_samp 

import imblearn.combine as com_samp 

 

from sklearn.metrics import accuracy_score 
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def data_init(data_file='G:\\Thesis_new - Copy\\CSV 

Files\\test_Asym_Cld.csv',limits_file='G:\\Thesis_new - Copy\\CSV Files\\Category 

Limits.csv',output='Asym_Cld',categorize=False,csv_write=False): 

     

    df=pd.read_csv(data_file,header=None,low_memory=False).to_numpy() 

    size_df=df.shape 

    num_df_rows=size_df[0] 

    num_df_columns=size_df[1] 

    data=df[1:num_df_rows,3:num_df_columns] 

    size_data=data.shape 

    num_data_rows=size_data[0] 

    num_data_columns=size_data[1] 

    num_data_outputs=7 

    num_data_inputs=size_data[1]-num_data_outputs 

 

    if categorize==False: 

        X=data[:,0:num_data_inputs] 

        out=data[:,num_data_inputs:num_data_inputs+num_data_outputs] 

 

    else: 

        limits=pd.read_csv(limits_file).to_numpy() 

        size_limits=limits.shape 

        num_limit_rows=size_limits[0] 

        num_limit_columns=size_limits[1] 

        num_limit_inputs=size_limits[1]-num_data_outputs 

         

        X=data[:,0].reshape(num_data_rows,1) 

        temp=data[:,1:num_data_columns] 

        for j in range(num_limit_columns): 

            for i in range(num_data_rows): 

                if j!=0 and j!=1: 
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                    x=float(temp[i,j]) 

                else: 

                    x=temp[i,j] 

                for k in range(num_limit_rows): 

                    if limits[k][j]!='': 

                        if eval(limits[k][j]): 

                            if j!=0: 

                                temp[i,j]=k + 1 

                            else: 

                                split=[char for char in x] 

                                split[0]=str(k) 

                                temp_str="" 

                                temp[i,j]=int(temp_str.join(split)) 

                            break 

                    else: 

                        break 

 

        cat_inputs=temp[:,0:num_limit_inputs] 

        X=np.append(X,cat_inputs,1) 

        out=temp[:,num_limit_inputs:num_limit_inputs+num_data_outputs] 

 

    if csv_write==True: 

        input_headers=df[0,3:num_data_inputs+3].reshape(1,num_data_inputs) 

        X_df=np.append(input_headers,X,0) 

        

output_headers=df[0,num_data_inputs+3:num_data_inputs+num_data_outputs+3].reshape(1,nu

m_data_outputs) 

        out_df=np.append(output_headers,out,0) 

        CSV_df=df[:,0:3] 

        CSV_df=np.append(CSV_df,X_df,1) 

        CSV_df=np.append(CSV_df,out_df,1) 
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        pd.DataFrame(CSV_df).to_csv(path_or_buf='G:\\Thesis_new - Copy\\CSV 

Files\\test.csv',header=False,index=False) 

 

    if output=='Asym_Cld': 

        y=out[:,0] 

 

    elif output=='CLD': 

        y=out[:,1] 

 

    elif output=='ASYM': 

        y=out[:,2] 

 

    elif output=='F7_hook_Index_1': 

        y=out[:,3] 

 

    elif output=='F7_hook_Index_2': 

        y=out[:,4] 

 

    elif output=='F7_hook_Index_3': 

        y=out[:,5] 

 

    elif output=='F7_hook_Index': 

        y=out[:,6] 

 

    return X.astype(np.int),y.astype(np.int) 

    #return X.astype(np.float),y.astype(np.float) 

 

def data_samp(X,y,samp_type='None'): 

 

    if samp_type=='None': 

        X_samp=X 
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        y_samp=y 

     

    elif samp_type=='Random Undersampling': 

        sm=und_samp.RandomUnderSampler(sampling_strategy='majority') 

        X_samp,y_samp=sm.fit_resample(X,y) 

 

    elif samp_type=='Random Oversampling': 

        sm=ov_samp.RandomOverSampler() 

        X_samp,y_samp=sm.fit_sample(X,y) 

 

    elif samp_type=='Tomek Links Undersampling': 

        sm=und_samp.TomekLinks(sampling_strategy='majority') 

        X_samp,y_samp=sm.fit_resample(X,y) 

 

    elif samp_type=='ENN Undersampling': 

        sm=und_samp.EditedNearestNeighbours(sampling_strategy='majority') 

        X_samp,y_samp=sm.fit_resample(X,y) 

 

    elif samp_type=='Cluster Centroids Undersampling': 

        sm=und_samp.ClusterCentroids(sampling_strategy='majority') 

        X_samp,y_samp=sm.fit_resample(X,y) 

 

    elif samp_type=='SMOTE Oversampling': 

        sm=ov_samp.SMOTE(k_neighbors=8) 

        X_samp,y_samp=sm.fit_sample(X,y) 

 

    elif samp_type=='SMOTE Tomek Sampling': 

        sm=com_samp.SMOTETomek() 

        X_samp,y_samp=sm.fit_sample(X,y) 

 

    elif samp_type=='SMOTE ENN Sampling': 
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sm=com_samp.SMOTEENN(enn=und_samp.EditedNearestNeighbours(sampling_strategy='maj

ority',kind_sel='mode')) 

        X_samp,y_samp=sm.fit_sample(X,y) 

         

    return X_samp,y_samp 

 

def accuracy(cm,y,y_pred): 

 

    less=cm[0][0]+cm[0][1]+cm[0][2] 

    between=cm[1][0]+cm[1][1]+cm[1][2] 

    great=cm[2][0]+cm[2][1]+cm[2][2] 

    lessacc=cm[0][0]/less 

    betweenacc=cm[1][1]/between 

    greatacc=cm[2][2]/great 

    totalacc=accuracy_score(y,y_pred) 

     

    return lessacc,betweenacc,greatacc,totalacc 

 

The Python Code for Using the Brute Force Testing Method 

 

import functions as func 

import pandas as pd 

import numpy as np 

import math 

 

from sklearn.naive_bayes import CategoricalNB 

from sklearn.metrics import confusion_matrix 

 

X_train,y_train=func.data_init(data_file='D:\\R Thesis Files\\csv\\train10.csv') 

X_test,y_test=func.data_init(data_file='D:\\R Thesis Files\\csv\\test10.csv') 

#X_train=np.ones([10,3]) 
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#y_train=np.array([0,1,2,0,1,2,0,1,2,0]) 

#X_test=np.ones([10,3]) 

#y_test=np.array([0,0,0,1,1,1,2,2,2,2]) 

clf=CategoricalNB() 

 

i=1 

top3_index=np.zeros([3,X_train.shape[1]]) 

top3_acc=np.zeros([3,4]) 

acc_mat=np.zeros([4]) 

index_mat=np.zeros([X_train.shape[1]]) 

 

while i<2**X_train.shape[1]: 

    num_bits=int(math.floor(math.log2(i))+1) 

    bits=[(i >> bit) & 1 for bit in range(num_bits - 1, -1, -1)] 

    bits.reverse() 

    result=np.where(np.array(bits) == 1) 

    index_mat[0:result[0].shape[0]]=result[0] 

    nb=clf.fit(X_train[:,result[0]],y_train) 

    y_predt=nb.predict(X_test[:,result[0]]) 

    cm_test=confusion_matrix(y_test,y_predt) 

    acc_mat[1],acc_mat[2],acc_mat[3],acc_mat[0]=func.accuracy(cm_test,y_test,y_predt) 

    if acc_mat[0]>=top3_acc[2,0]: 

        top3_acc[2,:]=acc_mat 

        top3_index[2,:]=index_mat 

        for j in range(1,-1,-1): 

            if acc_mat[0]>=top3_acc[j,0]: 

                top3_acc[j+1,:]=top3_acc[j,:] 

                top3_index[j+1,:]=top3_index[j,:] 

                top3_acc[j,:]=acc_mat 

                top3_index[j,:]=index_mat 

            else: 
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                break 

    i+=1 

    index_mat=np.zeros([X_train.shape[1]]) 

 

pd.DataFrame(top3_acc).to_csv(path_or_buf='D:\\R Thesis 

Files\\top3_acc.csv',header=False,index=False) 

pd.DataFrame(top3_index).to_csv(path_or_buf='D:\\R Thesis 

Files\\top3_index.csv',header=False,index=False) 

 

The Python Code for Using the Survival Testing Method 

 

import functions as func 

import pandas as pd 

import numpy as np 

import math 

import random 

 

from sklearn.naive_bayes import CategoricalNB 

from sklearn.metrics import confusion_matrix 

from sklearn.model_selection import train_test_split 

 

X,y=func.data_init(data_file='D:\\R Thesis Files\\csv\\all_data_cat.csv',output='Asym_Cld') 

df_labels=pd.read_csv('D:\\R Thesis 

Files\\csv\\all_data_cat.csv',header=None,low_memory=False).to_numpy() 

labels=np.empty([1,df_labels[0,3:102].shape[0]],'O') 

labels[0,:]=df_labels[0,3:102] 

 

X_train_ns,X_test_ns,y_train_ns,y_test_ns=train_test_split(X,y,test_size=0.2) 

X_not,X_val_ns,y_not,y_val_ns=train_test_split(X_train_ns,y_train_ns,test_size=0.2) 

 

X_train_nl,y_train=func.data_samp(X_train_ns,y_train_ns,samp_type='Random Oversampling') 
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X_val_nl,y_val=func.data_samp(X_val_ns,y_val_ns,samp_type='Random Oversampling') 

X_test_nl,y_test=func.data_samp(X_test_ns,y_test_ns,samp_type='Random Oversampling') 

 

clf=CategoricalNB() 

net_max_size=10 

num_runs=30 

top3total_index=np.empty([3,net_max_size+5],'O') 

top3total_acc=np.zeros([3,4]) 

 

for cnt in range(num_runs): 

    top3_index=np.empty([3,net_max_size+5],'O') 

    top3_acc=np.zeros([3,4]) 

    X_train=np.append(labels.astype(np.dtype('O')),X_train_nl.astype(np.dtype('O')),0) 

    X_val=np.append(labels.astype(np.dtype('O')),X_val_nl.astype(np.dtype('O')),0) 

    X_test=np.append(labels.astype(np.dtype('O')),X_test_nl.astype(np.dtype('O')),0) 

    while X_train.shape[1]>net_max_size+5: 

        ins=np.array([range(X_train.shape[1])]) 

        X_train_copy=np.array(X_train) 

        X_val_copy=np.array(X_val) 

        X_test_copy=np.array(X_test) 

        np.random.shuffle(np.transpose(ins)) 

        num_nets=math.ceil(ins.shape[1]/net_max_size) 

        for j in range(num_nets): 

            if j!=num_nets-1: 

                net_ins=ins[0,j*net_max_size:((j+1)*net_max_size)] 

                X_train_temp_labels=X_train_copy[0,net_ins] 

                X_train_temp_data=X_train_copy[1:X_train_copy.shape[0],net_ins].astype(np.int) 

                X_val_temp_data=X_val_copy[1:X_val_copy.shape[0],net_ins].astype(np.int) 

                X_test_temp_data=X_test_copy[1:X_test_copy.shape[0],net_ins].astype(np.int) 

                topminor_acc=np.zeros([4]) 

                topminor_index=np.empty([net_max_size],'O') 
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                acc_mat=np.zeros([4]) 

                index_mat=np.empty([net_max_size],'O') 

                i=1 

                while i<2**X_train_temp_data.shape[1]: 

                    num_bits=int(math.floor(math.log2(i))+1) 

                    bits=[(i >> bit) & 1 for bit in range(num_bits - 1, -1, -1)] 

                    bits.reverse() 

                    result=np.where(np.array(bits) == 1) 

                    index_mat[result[0]]=X_train_temp_labels[result[0]] 

                    nb=clf.fit(X_train_temp_data[:,result[0]],y_train) 

                    y_predv=nb.predict(X_val_temp_data[:,result[0]]) 

                    y_predt=nb.predict(X_test_temp_data[:,result[0]]) 

                    cm_val=confusion_matrix(y_val,y_predv) 

                    cm_test=confusion_matrix(y_test,y_predt) 

                    

lessacc_val,betweenacc_val,greatacc_val,totalacc_val=func.accuracy(cm_val,y_val,y_predv) 

                    

lessacc_test,betweenacc_test,greatacc_test,totalacc_test=func.accuracy(cm_test,y_test,y_predt) 

                    

#acc_mat[1],acc_mat[2],acc_mat[3],acc_mat[0]=func.accuracy(cm_test,y_test,y_predt) 

                    acc_mat[0]=(totalacc_val+totalacc_test)/2 

                    acc_mat[1]=(lessacc_val+lessacc_test)/2 

                    acc_mat[2]=(betweenacc_val+betweenacc_test)/2 

                    acc_mat[3]=(greatacc_val+greatacc_test)/2 

                    if acc_mat[0]>topminor_acc[0]: 

                        topminor_acc[:]=acc_mat[:] 

                        topminor_index[:]=np.empty([net_max_size],'O') 

                        topminor_index[:]=index_mat[:] 

                    i+=1 

                    index_mat=np.empty([net_max_size],'O') 

                if topminor_acc[0]>top3_acc[2,0]: 
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                    top3_acc[2,:]=topminor_acc[:] 

                    top3_index[2,:]=np.empty([net_max_size+5],'O') 

                    top3_index[2,0:topminor_index.shape[0]]=topminor_index[:] 

                    for j in range(1,-1,-1): 

                        if topminor_acc[0]>top3_acc[j,0]: 

                            top3_acc[j+1,:]=top3_acc[j,:] 

                            top3_index[j+1,:]=np.empty([net_max_size+5],'O') 

                            top3_index[j+1,:]=top3_index[j,:] 

                            top3_acc[j,:]=topminor_acc[:] 

                            top3_index[j,:]=np.empty([net_max_size+5],'O') 

                            top3_index[j,0:topminor_index.shape[0]]=topminor_index[:] 

                        else: 

                            break 

                delete=np.where(X_train_temp_labels != topminor_index) 

                X_train=np.delete(X_train,net_ins[delete[0]],1) 

                X_val=np.delete(X_val,net_ins[delete[0]],1) 

                X_test=np.delete(X_test,net_ins[delete[0]],1) 

            else: 

                net_ins=ins[0,j*net_max_size:ins.shape[1]] 

                X_train_temp_labels=X_train_copy[0,net_ins] 

                X_train_temp_data=X_train_copy[1:X_train_copy.shape[0],net_ins].astype(np.int) 

                X_val_temp_data=X_val_copy[1:X_val_copy.shape[0],net_ins].astype(np.int) 

                X_test_temp_data=X_test_copy[1:X_test_copy.shape[0],net_ins].astype(np.int) 

                topminor_acc=np.zeros([4]) 

                topminor_index=np.empty([net_max_size],'O') 

                acc_mat=np.zeros([4]) 

                index_mat=np.empty([net_max_size],'O') 

                i=1 

                while i<2**X_train_temp_data.shape[1]: 

                    num_bits=int(math.floor(math.log2(i))+1) 

                    bits=[(i >> bit) & 1 for bit in range(num_bits - 1, -1, -1)] 
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                    bits.reverse() 

                    result=np.where(np.array(bits) == 1) 

                    index_mat[result[0]]=X_train_temp_labels[result[0]] 

                    nb=clf.fit(X_train_temp_data[:,result[0]],y_train) 

                    y_predv=nb.predict(X_val_temp_data[:,result[0]]) 

                    y_predt=nb.predict(X_test_temp_data[:,result[0]]) 

                    cm_val=confusion_matrix(y_val,y_predv) 

                    cm_test=confusion_matrix(y_test,y_predt) 

                    

lessacc_val,betweenacc_val,greatacc_val,totalacc_val=func.accuracy(cm_val,y_val,y_predv) 

                    

lessacc_test,betweenacc_test,greatacc_test,totalacc_test=func.accuracy(cm_test,y_test,y_predt) 

                    

#acc_mat[1],acc_mat[2],acc_mat[3],acc_mat[0]=func.accuracy(cm_test,y_test,y_predt) 

                    acc_mat[0]=(totalacc_val+totalacc_test)/2 

                    acc_mat[1]=(lessacc_val+lessacc_test)/2 

                    acc_mat[2]=(betweenacc_val+betweenacc_test)/2 

                    acc_mat[3]=(greatacc_val+greatacc_test)/2 

                    if acc_mat[0]>topminor_acc[0]: 

                        topminor_acc[:]=acc_mat[:] 

                        topminor_index[:]=np.empty([net_max_size],'O') 

                        topminor_index[:]=index_mat[:] 

                    i+=1 

                    index_mat=np.empty([net_max_size],'O') 

                if topminor_acc[0]>top3_acc[2,0]: 

                    top3_acc[2,:]=topminor_acc[:] 

                    top3_index[2,:]=np.empty([net_max_size+5],'O') 

                    top3_index[2,0:topminor_index.shape[0]]=topminor_index[:] 

                    for j in range(1,-1,-1): 

                        if topminor_acc[0]>top3_acc[j,0]: 

                            top3_acc[j+1,:]=top3_acc[j,:] 
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                            top3_index[j+1,:]=np.empty([net_max_size+5],'O') 

                            top3_index[j+1,:]=top3_index[j,:] 

                            top3_acc[j,:]=topminor_acc[:] 

                            top3_index[j,:]=np.empty([net_max_size+5],'O') 

                            top3_index[j,0:topminor_index.shape[0]]=topminor_index[:] 

                        else: 

                            break 

                delete=np.where(X_train_temp_labels != 

topminor_index[0:X_train_temp_labels.shape[0]]) 

                X_train=np.delete(X_train,net_ins[delete[0]],1) 

                X_val=np.delete(X_val,net_ins[delete[0]],1) 

                X_test=np.delete(X_test,net_ins[delete[0]],1) 

 

    X_train_temp_labels=X_train[0,:] 

    X_train_temp_data=X_train[1:X_train.shape[0],:].astype(np.int) 

    X_val_temp_data=X_val[1:X_val.shape[0],:].astype(np.int) 

    X_test_temp_data=X_test[1:X_test.shape[0],:].astype(np.int) 

    acc_mat=np.zeros([4]) 

    index_mat=np.empty([X_train.shape[1]],'O') 

    i=1 

 

    while i<2**X_train.shape[1]: 

        num_bits=int(math.floor(math.log2(i))+1) 

        bits=[(i >> bit) & 1 for bit in range(num_bits - 1, -1, -1)] 

        bits.reverse() 

        result=np.where(np.array(bits) == 1) 

        index_mat[result[0]]=X_train_temp_labels[result[0]] 

        nb=clf.fit(X_train_temp_data[:,result[0]],y_train) 

        y_predv=nb.predict(X_val_temp_data[:,result[0]]) 

        y_predt=nb.predict(X_test_temp_data[:,result[0]]) 

        cm_val=confusion_matrix(y_val,y_predv) 
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        cm_test=confusion_matrix(y_test,y_predt) 

        

lessacc_val,betweenacc_val,greatacc_val,totalacc_val=func.accuracy(cm_val,y_val,y_predv) 

        

lessacc_test,betweenacc_test,greatacc_test,totalacc_test=func.accuracy(cm_test,y_test,y_predt) 

        #acc_mat[1],acc_mat[2],acc_mat[3],acc_mat[0]=func.accuracy(cm_test,y_test,y_predt) 

        acc_mat[0]=(totalacc_val+totalacc_test)/2 

        acc_mat[1]=(lessacc_val+lessacc_test)/2 

        acc_mat[2]=(betweenacc_val+betweenacc_test)/2 

        acc_mat[3]=(greatacc_val+greatacc_test)/2 

        if acc_mat[0]>top3_acc[2,0]: 

            top3_acc[2,:]=acc_mat[:] 

            top3_index[2,:]=np.empty([net_max_size+5],'O') 

            top3_index[2,0:index_mat.shape[0]]=index_mat[:] 

            for j in range(1,-1,-1): 

                if acc_mat[0]>top3_acc[j,0]: 

                    top3_acc[j+1,:]=top3_acc[j,:] 

                    top3_index[j+1,:]=np.empty([net_max_size+5],'O') 

                    top3_index[j+1,:]=top3_index[j,:] 

                    top3_acc[j,:]=acc_mat[:] 

                    top3_index[j,:]=np.empty([net_max_size+5],'O') 

                    top3_index[j,0:index_mat.shape[0]]=index_mat[:] 

                else: 

                    break 

        i+=1 

        index_mat=np.empty([X_train.shape[1]],'O') 

    for u in range(top3_acc.shape[0]): 

        if top3_acc[u,0]>top3total_acc[2,0]: 

            top3total_acc[2,:]=top3_acc[u,:] 

            top3total_index[2,:]=np.empty([net_max_size+5],'O') 

            top3total_index[2,0:top3_index[u,:].shape[0]]=top3_index[u,:] 
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            for j in range(1,-1,-1): 

                if top3_acc[u,0]>top3total_acc[j,0]: 

                    top3total_acc[j+1,:]=top3total_acc[j,:] 

                    top3total_index[j+1,:]=np.empty([net_max_size+5],'O') 

                    top3total_index[j+1,:]=top3total_index[j,:] 

                    top3total_acc[j,:]=top3_acc[u,:] 

                    top3total_index[j,:]=np.empty([net_max_size+5],'O') 

                    top3total_index[j,0:top3_index[u,:].shape[0]]=top3_index[u,:] 

                else: 

                    break 

        else: 

            break 

 

pd.DataFrame(top3_acc).to_csv(path_or_buf='D:\\R Thesis 

Files\\top3_acc.csv',header=False,index=False) 

pd.DataFrame(top3_index).to_csv(path_or_buf='D:\\R Thesis 

Files\\top3_index.csv',header=False,index=False) 

 

  



 
 

96 

REFERENCES 

[1] Bathla, R. (2019). Personal interview. 

[2] Laha, D., Ren, Y., & Suganthan, P. N. (2015). Modeling of steelmaking process with effective 

machine learning techniques. Expert systems with applications, 42(10), 4687-4696. 

[3] Li, F., Wu, J., Dong, F., Lin, J., Sun, G., Chen, H., & Shen, J. (2018). Ensemble Machine 

Learning Systems for the Estimation of Steel Quality Control. In 2018 IEEE International 

Conference on Big Data (Big Data) (pp. 2245-2252). IEEE. 

[4] Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. 

[5] Genuer, R., Poggi, J. -M., & Tuleau-Malot, C. (2008). Random forests: Some methodological 

insights. arXiv: 0811.3619. 

[6] Jalali-Heravi, M., Asadollahi-Baboli, M., & Shahbazikhah, P. (2008). QSAR study of 

Heparanase inhibitors activity using artificial neural networks and Levenberg– Marquardt 

algorithm. European Journal of Medicinal Chemistry, 43, 548–556. 

[7] Marquardt, D. W. (1963). An algorithm for least-squares estimation of non-linear parameters. 

Journal Society Industrial Applied Mathematics, 11, 431–441. 

[8] Haykin, S. (2009). Neural networks and learning machines. Pearson Education Inc. 

[9] Hagan, M. T., & Menhaj, M. B. (1994). Training feed forward networks with the Marquardt 

algorithm. IEEE Transactions on Neural Networks, 5, 989–993. 

[10] Kasabov, N., & Song, Q. (2002). DENFIS: Dynamic evolving neural-fuzzy inference system 

and its application for time-series prediction. IEEE Transactions on Fuzzy Systems, 10, 

144–154. 

[11] Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to 

modeling and control. IEEE Transactions on Systems, Man, Cybernetics, 15, 116–132. 

[12] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–

297. 

[13] Basak, D., Pal, S., & Patranabis, D. C. (2007). Support vector regression. Neural Information 

Processing Letters and Reviews, 11(10), 203–224. 

[14] Zhou, Z. H. (2009). Ensemble Learning. Encyclopedia of biometrics, 1, 411-416. 

[15] Zhou, Z. H. (2012). Ensemble methods: foundations and algorithms. CRC press. 



 
 

97 

[16] Zhou, Z. H., Wu, J., & Tang, W. (2002). Ensembling neural networks: many could be better 

than all. Artificial intelligence, 137(1-2), 239-263. 

[17] Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation, and active 

learning. In Advances in neural information processing systems (pp. 231-238). 

[18] Draper, N. R.; Smith, H. (1998). Applied Regression Analysis. Wiley-Interscience. 

[19] Hyndman, Rob J.; Koehler, Anne B. (2006). "Another look at measures of forecast 

accuracy". International Journal of Forecasting. 22 (4): 679–688. 

[20] Gurney, Kevin (1997). An introduction to neural networks. UCL Press. 

[21] Stocco, Andrea; Lebiere, Christian; Anderson, John R. (2010). "Conditional Routing of 

Information to the Cortex: A Model of the Basal Ganglia's Role in Cognitive 

Coordination". Psychological Review. 

[22] McCulloch, Warren; Walter Pitts (1943). "A Logical Calculus of Ideas Immanent in Nervous 

Activity". Bulletin of Mathematical Biophysics. 

[23] Glorot, X. & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward 

neural networks. Proceedings of the Thirteenth International Conference on Artificial 

Intelligence and Statistics, in PMLR 9:249-256 

[24] Bre, Facundo & Gimenez, Juan & Fachinotti, Víctor. (2017). Prediction of wind pressure 

coefficients on building surfaces using Artificial Neural Networks. Energy and Buildings. 

158. 10.1016/j.enbuild.2017.11.045. 

[25] Zell, Andreas (2003). "Chapter 5.2". Simulation of Neural Networks (1st ed.). Addison-

Wesley. 

[26] Dawson, Christian W (1998). "An artificial neural network approach to rainfall-runoff 

modelling". Hydrological Sciences Journal. 43 (1): 47–66. 

[27] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving Deep into Rectifiers: Surpassing 

Human-Level Performance on ImageNet Classification. 2015 IEEE International 

Conference on Computer Vision (ICCV). doi:10.1109/iccv.2015.123 

[28] Haykin, S. (1999). Neural networks: a comprehensive foundation. Prentice Hall. 

[29] Ioannou, Yani. (2017). Structural Priors in Deep Neural Networks. 10.17863/CAM.26357. 

[30] Cybenko, G. (1989) “Approximations by superpositions of sigmoidal 

functions”, Mathematics of Control, Signals, and Systems, 2 (4), 303-314 



 
 

98 

[31] Nair, V., & Hinton, G.E. (2010). Rectified Linear Units Improve Restricted Boltzmann 

Machines. ICML. 

[32] Hochreiter, S., Bengio, Y., Frasconi, P. & Schmidhuber, J. (2001). Gradient flow in recurrent 

nets: the difficulty of learning long-term dependencies. In S. C. Kremer & J. F. Kolen 

(ed.), A Field Guide to Dynamical Recurrent Neural Networks, IEEE Press. 

[33] Lehmann, E. L.; Casella, George (1998). Theory of Point Estimation (2nd ed.). New York: 

Springer. 

[34] Lemaréchal, C. (2012). "Cauchy and the Gradient Method". Doc Math Extra: 251–254. 

[35] Bhattarai, S. (2018). What is Gradient Descent in machine learning? 

[36] Bachman, David (2007), Advanced Calculus Demystified, New York: McGraw-Hill 

[37] Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). "6.5 Back-Propagation and Other 

Differentiation Algorithms". Deep Learning. MIT Press. pp. 200–220. 

[38] Nielsen, Michael A. (2015). "Chapter 2: How the backpropagation algorithm works". Neural 

Networks and Deep Learning. Determination Press. 

[39] Li, Y.; Fu, Y.; Li, H.; Zhang, S. W. (2009). The Improved Training Algorithm of Back 

Propagation Neural Network with Self-adaptive Learning Rate. 2009 International 

Conference on Computational Intelligence and Natural Computing. 1. pp. 73–76.  

[40] Kingma, D. P., & Ba, J. L. (2015). “Adam: A Method for Stochastic Optimization.” 

International Conference on Learning Representations, 1–13. 

[41] Hinton, Geoffrey; Sejnowski, Terrence (1999). Unsupervised Learning: Foundations of 

Neural Computation. MIT Press. 

[42] Vaseekaran, G. (2018). Machine Learning: Supervised Learning vs Unsupervised Learning. 

[43] Ojha, Varun Kumar; Abraham, Ajith; Snášel, Václav (2017). "Metaheuristic design of 

feedforward neural networks: A review of two decades of research". Engineering 

Applications of Artificial Intelligence. 60: 97–116. 

[44] Ioffe, Sergey; Christian Szegedy (2015). "Batch Normalization: Accelerating Deep Network 

Training by Reducing Internal Covariate Shift". 

[45] Refsgaard, A. (2019). Looking inside neural nets. 

[46] Han, Jiawei; Kamber, Micheline; Pei, Jian (2011). "Data Transformation and Data 

Discretization". Data Mining: Concepts and Techniques. Elsevier. 



 
 

99 

[47] Derrick, T.R. and Thomas, J.M. (2004). “Time-Series Analysis: The Cross-Correlation 

function”. Innovative Analyses of Human Movement, Human Kinetics Publishers, 

Champaign, Illinois, 189-205. 

[48] Hinton, G. E.; Osindero, S.; Teh, Y. W. (2006). “A Fast Learning Algorithm for Deep Belief 

Nets”. Neural Computation. 18 (7): 1527–1554. 

[49] Nie, Yali. (2018). A Multi-stage Convolution Machine with Scaling and Dilation for Human 

Pose Estimation 사람 자세 추정을 위한 스케일링 및 확장 기반 다단 콘볼루션 머신. 

10.13140/RG.2.2.34552.96002. 

[50] Ripley, B.D. (1996) Pattern Recognition and Neural Networks, Cambridge: Cambridge 

University Press. 

[51] Bishop, C.M. (1995), Neural Networks for Pattern Recognition, Oxford: Oxford University 

Press. 

[52] Dumitru, C., & Maria, V. (2013). Advantages and Disadvantages of Using Neural Networks 

for Predictions. Ovidius University Annals, Series Economic Sciences, 13(1). 

[53] Pearl, Judea (2000). Causality: Models, Reasoning, and Inference. Cambridge University 

Press. 

[54] Piryonesi S. Madeh; El-Diraby Tamer E. (2020). "Role of Data Analytics in Infrastructure 

Asset Management: Overcoming Data Size and Quality Problems". Journal of 

Transportation Engineering, Part B: Pavements. 146 (2): 04020022.  

[55] Rish, Irina (2001). An empirical study of the naive Bayes classifier. IJCAI Workshop on 

Empirical Methods in AI. 

[56] Ali, Waleed & Shamsuddin, Siti Mariyam & Ismail, Abdul Samad. (2012). Intelligent Naïve 

Bayes-based approaches for Web proxy caching. Knowledge-Based Systems. 31. 162–175. 

10.1016/j.knosys.2012.02.015. 

[57] Cox, D.R. & Wermuth, N. (1996). Multivariate Dependencies - Models, Analysis and 

Interpretation. Chapman & Hall, London. 

[58] Dekking, F.M. (Frederik Michel), 1946- (2005). A modern introduction to probability and 

statistics: understanding why and how. Springer. 

[59] Grinstead, Charles M.; Snell, J. Laurie (2009). "Conditional Probability - Discrete 

Conditional". Grinstead & Snell's Introduction to Probability. Orange Grove Texts. 



 
 

100 

[60] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & 

Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. the Journal of machine 

Learning research, 12, 2825-2830. 

[61] Lemaître, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A python toolbox to 

tackle the curse of imbalanced datasets in machine learning. The Journal of Machine 

Learning Research, 18(1), 559-563. 

[62] Wagstaff, K., Cardie, C., Rogers, S., & Schrödl, S. (2001). Constrained k-means clustering 

with background knowledge. In Icml (Vol. 1, pp. 577-584). 

[63] Marco Scutari, Jean-Baptiste Denis. (2014) Bayesian Networks with Examples in R. 

Chapman and Hall, Boca Raton. 

[64] Marco Scutari (2010). “Learning Bayesian Networks with the bnlearn R Package”. Journal 

of Statistical Software, 35(3), 1-22. 

[65] Chattopadhyay, A., Manupriya, P., Sarkar, A., & Balasubramanian, V. N. (2019). Neural 

network attributions: A causal perspective. arXiv preprint arXiv:1902.02302. 


	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. METHODS
	3.1 Neural Networking
	3.1.1 Forward Propagation
	Weight Initialization Techniques
	Linear Neuron Outputs
	Activation Functions
	The Total Network Cost Function

	3.1.2 Backward Propagation
	The Standard Gradient Descent Algorithm
	The Adaptive Moment Estimation (ADAM) Algorithm

	3.1.3 Network Configurations, Types of Trained Networks, and Data Models
	Higher Level Learning Structures
	Regression
	Classification

	Network Configurations
	Data Models

	3.1.4 The Limitations of Neural Networking

	3.2 Bayesian Networking
	3.2.1 Naïve Bayesian Networks
	Description of Variable Dependency Types
	Categorical Variable Distributions
	Class Probability Calculations

	3.2.2 Data Sampling Methods
	3.2.3 The Brute Force Testing Method
	3.2.4 The Survival Testing Method


	4. RESULTS
	4.1 Data Variable Selection
	4.1.1 Neural Network Variable Selection
	4.1.2 Naïve Bayesian Network Variable Selection

	4.2 Neural Networking Results
	4.2.1 Regression-Based Neural Network Percent Error Results
	The Standard Gradient Descent and Sigmoid Method Percent Error Results
	The Adaptive Moment Estimation (ADAM) and ReLU Method Percent Error Results

	4.2.2 Classification-Based Neural Network Accuracy Results
	The Standard Gradient Descent and Sigmoid Method Accuracy Results
	The Adaptive Moment Estimation (ADAM) and ReLU Method Accuracy Results


	4.3 Naïve Bayesian Networking Results

	5. DISCUSSION AND CONCLUSION
	5.1 Discussion of the Results
	5.1.1 Discussion of the Neural Network Results
	5.1.2 Discussion of the Naïve Bayesian Network Results

	5.2 Future Work Suggestions
	5.3 Final Thoughts

	APPENDIX A. NEURAL NETWORK CODE IMPLEMENTATION
	APPENDIX B. BAYESIAN NETWORK CODE IMPLEMENTATION
	REFERENCES

