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ABSTRACT

Stinson, Derek L. M.S.E.C.E., Purdue University, May 2020. Deep Learning with
Go. Major Professor: Zina Ben Miled.

Current research in deep learning is primarily focused on using Python as a sup-

port language. Go, an emerging language, that has many benefits including native

support for concurrency has seen a rise in adoption over the past few years. How-

ever, this language is not widely used to develop learning models due to the lack of

supporting libraries and frameworks for model development. In this thesis, the use of

Go for the development of neural network models in general and convolution neural

networks is explored. The proposed study is based on a Go-CUDA implementation

of neural network models called GoCuNets. This implementation is then compared

to a Go-CPU deep learning implementation that takes advantage of Go’s built in

concurrency called ConvNetGo. A comparison of these two implementations shows a

significant performance gain when using GoCuNets compared to ConvNetGo.



1

1. INTRODUCTION

In late 2007 at Google, Robert Griesemer, Rob Pike and Ken Thompson began work-

ing on a new computer language. They were frustrated with the excessive complexity

and lack of safe and efficient multiprocessor features in the languages they used to

develop server software. When looking at all the available languages, they concluded

that in picking a language you had to choose at most two out of three options. These

are efficient compilation, efficient execution, or ease of programming [1].

Their solution was the creation of Go. Go attempts to address these issues by

being a statically typed, compiled language. Go has built in concurrency, a garbage

collector, rigid dependency specification (no codependent packages) [1], and tools

used to compile, link, test, format, import and document Go code [2].

There are several frameworks used in deep learning. These include TensorFlow [3],

PyTorch [4], Keras [5], MXNet [6] and Chainer [7]. TensorFlow contains APIs for

Python, c, Java, and Go. MXNet also has multiple APIs that are in Python, C++,

Clojure, Java, Julia, Perl, R, and Scala. PyTorch API uses Python, but it has bindings

in C++. Keras and Chainer only use Python. Out of the above mentioned deep

learning frameworks, only TensorFlow has a Go API. However, this API is mostly

used for running models in a Go application that were developed with Python.

There is growing support for the use of Go in data science and computer vision

with packages like Gonum [8] and GoCV [9]. However, there is still a demand for deep

learning tools in Go. In response to this demand, ConvNetGo [10], GoCudnn [11] [12],

HipGo [13] [14], MIOpenGo [15] [16], and GoCuNets [17] were developed.

GPU computation is used heavily in deep learning in order to accelerate execution

time. There are 3rd party open source packages for Nvidia’s CUDA such as cuda5 [18],

gorgonia/cu [19], and cuda [20]. These packages have their strengths and weaknesses.

GoCudnn was developed to overcome those weaknesses. GoCudnn started out as
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bindings for cuDNN [11]. It includes bindings for some of the other libraries that

are found in the CUDA [21] API. These libraries include nvJPEG, CUDA Runtime,

CUDA Driver, NPP, and NVRTC. There are also kernels that were developed outside

of cuDNN that are helpful for computer vision and deep learning.

This thesis proposes a Go-Cuda implementation to support the development of

neural network models including convolutional neural networks called GoCuNets. To

compare the performance of GoCuNets, a CPU implementation of neural network

models called ConvNetGo was also developed. Chapter 2 includes a review of pre-

vious related work and in particular previous Go-Cuda implementations. Chapter 3

discusses the methodology used in the design of the convolutional neural networks un-

der both GoCuNets and ConvNetGo. The performance of these implementations are

compared in Chapter 4. Chapter 5 provides a summary of the benefits and limitations

of the proposed GoCuNets frameworks and offers direction of future work.
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2. RELATED WORK

Go is a new language. Go 1.0 was released in March 2012 [22]. The focus of this thesis

is to integrate GPU computation with the Go language for the purpose of developing

deep learning models. This chapter includes a review of some of the packages that

were developed for GPU computation with Go, the applications that use them, and

other deep learning frameworks.

2.1 Go and Cuda

Cuda5 [18] is the first binding package for CUDA. It is a highly flexible package

that has one huge limitation. It handles errors by panicking. Gorgonia/cu [19] takes

Cuda5 and gets rid of this issue by having the function return an error interface and

by adding cuBLAS, NVRTC, and some of cuDNN.

Another binding that is available on Github is unixpickle/cuda [20]. It is a light

weight package with a few functions that interface with the cuda driver. It contains

sub-packages for cuBLAS and cuRAND. The best feature of this package is the use

of Go’s garbage collector to handle memory management in the GPU.

2.2 Deep Learning Frameworks

TensorFlow [3] is probably the most known deep learning framework. TensorFlow

was originally developed by the Google Brain team. It is now an open source platform.

TensorFlow has stable Python and C++ APIs. There are APIs in other languages,

including Go, but they are not supported with the same level of maturity.

Caffe [23] is another widely known deep learning framework. It was developed

at Berkeley by Yangqing Jia. It is an open source project. Caffe’s official API is in
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C++. In 2017, Caffe2 was announced by Facebook [24]. In 2018 it was integrated

with another Facebook project called PyTorch [4]. Pytorch has APIs in Python and

C++.

ConvNetjs [25] is an open source deep learning framework that uses javascript and

is ran in an internet browser. It was developed by Andrej Karpathy. It has visual

demos of a few types of neural networks. The demo includes images of the tensors

that are used in different layers of the network.

Gorgonia [26] is an open source deep learning API that uses Go. It uses the

Gorgonia/cu Go bindings for CUDA. The goal of Gorgonia is to provide a machine

learning/graph computation based library. Using Gorgonia should feel familiar to

other Python learning APIs like TensorFlow or Keras. However, as a deep learning

API on Go, Gorgonia might not be the right fit for developers that have never used

Python.
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3. METHODOLOGY

Neural networks consist of layers of neurons. These networks include an input layer,

one or more hidden layers, and an output layer. The neurons accept a set of inputs

which are multiplied by weights and processed through an activation function. The

output of the neuron in one layer propagates to the input of a neuron in a subsequent

layer until reaching the output layer.

This architecture is at the foundation of most current networks. The key to

developing a successful network is:

• Determining the value of the weights of the links between neurons, a process

which is referred to as training, and

• Defining a suitable architecture for the network including the number of layers,

the number of neurons in each layer, and the activation used at the output of

each neuron.

In this chapter, the implementation or the proposed neural network is described

starting from a simple neural network to the target convolutional neural network.

3.1 Neural Networks

Figure 3.1(a) shows a fully connected neural network [27] with one single hidden

layer. In this figure, the input and output of the network are represented by rectan-

gular boxes. The neurons are represented by circles and the weights are depicted by

the links between the neurons. Bias nodes are a constant input of one. The neurons

will have a bias weight that is summed with the other links. These are indicated by

shaded circles in Figure 3.1(a).
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(a) Neural network architecture.

(b) Matrix representation of the network.

Fig. 3.1. Fully connected network with one input layer, one hidden layer
and one output layer.

A fully connected layer can be viewed as a matrix multiplication between a 1xN

input matrix and an NxM weights matrix. The result is a 1xM matrix. The bias 1xM

matrix is then added to the previous result. This process is shown in Figure 3.1(b).

The main two operations associated with the network are forward propagation and

backward propagation. These two operations are used during training to update the

weights. Once the weights of the network are determined, the forward propagation is

used on a new input to generate the estimated output.

3.1.1 Forward Propagation

In the forward propagation process, the output of each layer is generated by using

Equation (3.1)

Y
(t)
(1,M) = X

(t)
(1,N) ∗W

(t)
(N,M) +B

(t)
(1,M) (3.1)
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Where, X(1,N) is the input vector with N elements, W(N,M) is the weight matrix,

and B(1,M) is the bias vector for the layer. The bias values in Equation (3.1) are

added to the weighted term X(1xN) ∗W(NxM) resulting in an output vector with M

elements, Y(1,M).

Equation (3.1) is implemented in Algorithm 1.

Algorithm 1 Forward Propagation in a Fully Connected Layer

Input: X, W, B Matrix

Output: Y Matrix

1: function ForwadPropagationFullyConnected(X, Y, W, B)

2: for n = 0 to len(Y) do

3: for m = 0 to len(X) do

4: sum← sum+W [n][m] ∗X[m]

5: Y [n]← sum+B[n]

3.1.2 Backward Propagation

Backward Propagation [28] is used to train the network. It consists of three

functions:

• The first function takes the output error it receives from the next layer and uses

it to calculate the errors associated with the input it received from the previous

layer (Equation 3.2a),

• The second function accumulates the errors for the weights of each neuron

(Equation 3.2b), and

• The third function evaluates the error for the bias vector (Equation 3.2c).
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∆X
(t)
(1xN) = ∆Y

(t)
(1xM) ∗ (W (t))T(MxN) (3.2a)

∆W
(t)
(NxM) = (X(t))T(Nx1) ∗∆Y

(t)
(1xM) (3.2b)

∆B
(t)
(1xN) = ∆Y

(t)
(1xN) (3.2c)

Where, ∆X
(t)
(1xN) is the vector that holds the error due to the output ∆Y

(t)
(1xM)

propagated back from the previous layer. ∆W
(t)
(NxM) represents the error matrix for

the weights of the current layer. It will be used to adjust the current layer’s weights

during training. ∆B
(t)
(1xM) is the error vector for the bias vector. It is used to adjust

the bias vector during training. X
(t)
(1xM) is the input and W

(t)
(NxM) is the weight matrix

of the current layer from the previous iteration of the algorithm. Equation (3.2) is

implemented in Algorithm 2.

Algorithm 2 Fully Connected Back Propagation

Input: dY, X, W Matrix

Output: dX, dW, dB Matrix

1: function FCBackProp(dY, dW, dB, X, W, dX)

2: SetToZero(dX)

3: for n = 0 to len(dY) do

4: for m = 0 to len(dX) do

5: dX[m]← dX[m] +W [n][m] ∗ dY [n]

6: dW [m][n]← X[m] ∗ dY [n]

7: dB[n]← dY [n]

3.2 Convolution Layer

The convolution layer [29] is very similar to the fully connected layer. However,

instead of each neuron having a weight for each input, and only one output. Each neu-

ron will have a volume of weights that step through the input in multiple dimensions

with each step returning an output value.
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A typical architecture for a convolution layer receives a 4D input volume called a

tensor with a format of NHWC or NCHW [30]. NHWC represents a tensor’s ordering

by batch, height, width, and channel, respectively. For example, a NHWC tensor of

bytes with the dimensions [20,320,240,4] is used to process a batch of 20 images with

a height of 320 and width of 240. The 32 bit color information is represented as 4

byte color vector. Under NCHW, the dimensions would look like [20,4,320,240] with

the pixels separated out into 4 feature maps, with a height of 320 and a width of 240.

Performance can vary depending on the tensor format. For example, Intel rec-

ommends NCHW for their newer processors [31], and Nvidia recommends NHWC in

order to take advantage of the tensor core in their new architectures [32]. In this

thesis NCHW is adopted, because it is easier to visualize.

The input, weights, and output should be in the same format. A convolution

layer will contain a 4D tensor of weights. Under the adopted NCHW tensor format,

N represents a batch of ”neurons” as opposed to a batch of inputs. The values stored

in each CHW are the feature weights of N . These feature weights are also called

kernels. The number of kernels is C, with a height of H and a width of W . For

each neuron in W.N , there will be the same number of kernels (W.C) as there are

feature maps from the input (X.C). The output tensor batch size is the same as

the input’s batch size (i.e., N). The result of a neuron’s convolution of the input

will be an output feature map with size HW . The number of neurons in the weights

will determine the number of output feature maps. The size of the output channel

dimension (Y.C) is determined by the number of neurons in the weights (W.N). The

sizes of HW are determined by the properties of the convolution between the input

and weights. An illustration of the 4D tensors in a convolutional neural network is

shown in Figure 3.2.

There are a few convolutional processing steps that are used in accessing the data

being held by the input tensor. These are performed in the H and W dimensions

and consist of padding, stride, and dilation. The properties of these data processing
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Fig. 3.2. Schematic representation of 4D tensors. Each column is a tensor.

steps will affect the size of the output tensor. A visualization of the convolutional

processing steps can be seen in Figure (3.3).

Padding (p) adds zeros around the H and W dimensions of the input tensor x.

The size of the padding should be less than the size of the weights. If the padding is

greater than or equal to the weights (w) then the output edges will be zeros.

Stride (s) corresponds to the step of the window over the input tensor in the H

and W dimensions. Larger strides will reduce the size of the output.

Dilation (d) spreads the weights apart in the H and W dimensions giving them

extended coverage without additional parameters.

As implied by the above three transformations, the shape of the output tensor is

dependent on the parameters used to process the data. Equation (3.3) shows the size
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of the output tensor based on the padding, stride, dilation. Not all parameter values

can be used since some choices of p, w, s, d may lead to a non-integer size y for the

output tensor. Therefore, best practice starts by fixing the size y of the output tensor

and then deriving the size x of the input tensor using Equation (3.4).

Fig. 3.3. A visualization of padding stride and dilation with an input of
(4,4) and weights of (3,3).

y =
x+ 2p− ((w − 1) ∗ d+ 1)

s
+ 1 (3.3)

x = (y − 1) ∗ s− 2p+ ((w − 1) ∗ d+ 1) (3.4)

3.2.1 Forward Propagation

The values of the output tensor are calculated using Equation (3.5).

Y
(t)
n,k,yh,yw = Bk +

W.C−1∑
c=0

W.H−1∑
i=0

W.W−1∑
j=0

W
(t)
k,c,i,j ∗X

(t)
n,c,xh,xw (3.5)
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Where X represents the input tensor. W are the filter weights with k, c, i, j

representing the output channel size, input channel size, height position, and width

position, respectively. Bk is a bias array. The size of the bias array is the same as

the size of the output channel k.

Padding is realized with Equation (3.6), where the values n, c, xh, and xw, are

the batch size, channel size, height position, and width position, respectively. The

height and width positions are calculated by using xh and xw as shown in Equation

(3.7). In turn, xh and xw are calculated with respect to the output tensor position

yh, yw, slide (s), weight positions i, j, dilation (d), and padding offset (p).

Xn,c,xh,xw =

Xn,c,xh,xw if 0 ≤ xh < X.H and 0 ≤ xw < X.W

0 otherwise

(3.6)

xh = yh ∗ s+ i ∗ d− p, xw = yw ∗ s+ j ∗ d− p (3.7)

The forward propagation function is executed into two steps. The first step is the

sliding weight window over the input. This function returns the summation of the

individual window as depicted in Algorithm 3. The second step stores the output of

the previous layer as shown in Algorithm 4.



13

Algorithm 3 Convolution Forward Window - Equation(3.5).

Input: X, W Tensor

x input offset

n,k batch and neuron index

d dilation size

Returns: sum summation of W*X window

1: function ConvForwardWin(X,W,x,n,k,d)

2: sum← 0

3: for c = 0 to W.C do

4: for i = 0 to W.H do

5: xh← x.h+ i ∗ d.h . add dilation height offset for X

6: if xh ≥ 0 and xh < X.W then

7: for j = 0 to W.W do

8: xw ← x.w + j ∗ d.w . add dilation width offset for X

9: if xw ≥ 0 and xw < X.H then

10: sum← sum+W [k][c][i][j] ∗X[n][c][xh][xw]
return sum
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Algorithm 4 Convolution Forward Propagation

Input: X, W, B Tensor

p, s, d Padding, stride and dilation sizes

Output: Y Tensor

1: function ConvForward( )

2: for n = 0 to Y.N do

3: for k = 0 to Y.C do

4: x.h← −p.h . set -padding height offset for X

5: for yh = 0 to Y.H do

6: x.w ← −p.w . set -padding width offset for X

7: x.h← x.h+ yh ∗ s.h . add stride height offset for X

8: for yw = 0 to Y.W do

9: x.w ← x.w + yw ∗ s.w . add stride width offset for X

10: sum← ConvForwardWin(X,W, n, x, k, d)

11: Y [n][k][yh][yw]← B[k] + sum
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3.2.2 Back Propagation

As in the case of a regular neural network, errors in a CNN are passed backward

from the next layer. Each output error value is accumulated into two different tensors.

The first is for the input tensor which is scaled according to the weights of each output

as shown below.

∆X
(t)
n,c,xh,xw =

W.C−1∑
c=0

W.H−1∑
i=0

W.W−1∑
j=0

W
(t)
k,c,i,j ∗∆Y

(t)
n,k,yh,yw (3.8)

Where, ∆X(t) is the tensor that holds the errors for X(t), W (t) is the weight tensor

for the layer, and ∆Y (t) is the errors received for Y (t). Equation (3.8) is implemented

in Algorithm 5.

Algorithm 5 Convolution Backward Data Window - Equation (3.8)

Input: W Weight tensor

dy gradient

x input offset value

n,k batch and neuron index

d dilation size

Output: dX Input error tensor

1: function ConvInputGrad(dX, W, dy, x, n, k, d)

2: for c = 0 to W.C do

3: for i = 0 to W.H do

4: xh← x.h+ i ∗ d.h

5: if xh ≥ 0 and xh < X.W then

6: for j = 0 to W.W do

7: xw ← x.w + j ∗ d.w

8: if xw ≥ 0 and xw < X.H then

9: dX[n][c][xh][xw]← dX[n][c][xh][xw] +W [k][c][i][j] ∗ dy
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The second tensor is an accumulation of errors used to update the weights. It

is obtained by multiplying the input values by the corresponding output errors as

shown below:

∆W
(t)
k,c,i,j =

W.C−1∑
c=0

W.H−1∑
i=0

W.W−1∑
j=0

X
(t)
n,c,xh,xw ∗∆Y

(t)
n,k,yh,yw (3.9)

Where ∆W (t) is the tensor that holds the errors for the weights, X(t) is the input

tensor for the layer, and ∆Y (t) represents the corresponding errors from the output.

Equation (3.9) is implemented in Algorithm 6.

Algorithm 6 Convolution Backward Weight Window - Equation (3.9)

Input: X Input tensor

dy gradient

x input offset value

n,k batch and neuron index

d dilation size

Output: dW Weight update tensor

1: function ConvWeightGrad(dW, X, dy, x, n, k, d)

2: for c = 0 to W.C do

3: for i = 0 to W.H do

4: xh← x.h+ i ∗ d.h

5: if xh ≥ 0 and xh < X.W then

6: for j = 0 to W.W do

7: xw ← x.w + j ∗ d.w

8: if xw ≥ 0 and xw < X.H then

9: dW [k][c][i][j]← dW [k][c][i][j] +X[n][c][xh][xw] ∗ dy
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The error for the bias neurons is the summation of the output errors for that

neuron as shown below.

∆B
(t)
k =

Y.N−1∑
n=0

Y.H−1∑
yh=0

Y.W−1∑
yw=0

∆Y
(t)
n,k,yh,yw (3.10)

Where ∆B(t) is the tensor that holds the errors for the Bias, and ∆Y (t) is the

output error.

Algorithm 7 Convolution Back Propagation

Input: X, W, dY input, weight and output error tensors

p, s, d padding, stride and dilation sizes

Output: dX, dW, dB input, weight and bias update tensors

1: function ConvBackward(X, dX, W, dW, dB, dY, p, s, d)

2: ZeroAll(dX)

3: for n = 0 to Y.N do

4: for k = 0 to Y.C do

5: x.h← −p.h

6: for yh = 0 to Y.H do

7: x.w ← −p.w

8: x.h← x.h+ yh ∗ s.h

9: for yw = 0 to Y.W do

10: x.w ← x.w + yw ∗ s.w

11: dy ← dY [n][k][yh][yw]

12: ConvInputGrad(dX,W, dy, n, x, k, d) . Algorithm 5

13: ConvWeightGrad(dW,X, dy, n, x, k, d) . Algorithm 6

14: dB[k]← dB[k] + dy
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3.3 Activation Layer

The activation layer introduces non-linearity to a neural network. This operation

is performed element-wise. During forward propagation, the activation function is

applied to the output of the previous layer. Some of the common activation functions

include logistic ( 1
1+e−x ), rectified linear unit (Relu, if x ≤ 0 f(x) = 0, otherwise,

f(x) = x), and the leaky rectified linear unit (leaky, if x ≤ 0 f(x) = 0.01, otherwise,

f(x) = x).

3.4 Weight Optimization

The weights in the network are updated at every training iteration. Several,

approaches can be used to perform this update. Moreover, some of these approaches

are guided by hyper-parameters that are either defined before training or adjusted

during training. The choice of the hyper-parameters may dictate the ability of the

network to converge. A summary of the main weight optimization approaches is

provided next.

3.4.1 Gradient Descent

The simplest way to minimize the loss function at the output of the network is to

update the weight in the direction of the gradient descent [33] as shown below.

W (t) = W (t−1) − ε ∗∆W (t) (3.11)

Where, W (t) is the updated weight value at iteration t, W (t−1) is the weight value at

iteration t−1, and ∆W (t) is the weight error tensor. The hyper-parameter, ε, is called

the learning rate and indicates the rate at which the updates are being performed.
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3.4.2 Momentum Update

Compared to gradient descent, momentum update [28] takes into consideration

the weight adjustment in the previous iterations as shown below:

M (t) = α ∗M (t−1) − ε ∗∆W (t) (3.12)

W (t) = W (t−1) +M (t) (3.13)

Where, M (t) is the momentum at iteration t, M (t−1) is the momentum at the

previous iteration, α is the momentum rate, ε is the learning rate, W (t) is the updated

weight, W (t−1) is the weight at the previous iteration, and ∆W (t) is the weight error

tensor. The hyper-parameters for this approach are ε and α.

3.4.3 Adagrad

Adagrad [34] stores the sum of the squares of the gradient for each individual

parameter as shown in Equation (3.14). This value is then used to scale the gradient

as shown in Equation (3.15). The hyper-parameter β in the Adagrad approach is

used to prevent a divide by zero.

S(t) = S(t−1) + (∆W (t))2 (3.14)

W (t) = W (t−1) +
−ε ∗∆W (t)

√
S(t) + β

(3.15)

Where, S(t) is the sum of the squares of the gradients at iteration t, S(t−1) is the

squares of the gradients at iteration t−1, ∆W (t) is the weight error tensor, W (t) is the

updated weight, W (t−1) is the weight value at the previous iteration, ε is the learning

rate, and β is a meta parameter.

3.4.4 Adam

Adam [35] is a weight update approach that uses a large number of hyper-

parameters and therefore, may require extensive tuning.
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Ω
(t)
1 = β1 ∗ Ω

(t−1)
1 + (1− β1) ∗∆W (t) (3.16)

Ω
(t)
1 temp =

Ω
(t)
1

1− βC+1
1

(3.17)

Ω
(t)
2 = β2 ∗ Ω

(t−1)
2 + (1− β2) ∗ (∆W (t))2 (3.18)

Ω
(t)
2 temp =

Ω
(t)
2

1− βC+1
2

(3.19)

W (t) = W (t−1) +
−(ε ∗ Ω

(t)
1 temp)√

Ω
(t)
2 temp + α

(3.20)

C(t) = C(t−1) + 1 (3.21)

Where β1, β2, α, and ε are meta parameters, Ω
(t)
1 and Ω

(t)
2 are accumulated values

that are updated during every iteration, C is a counter, ∆W (t) is the weight error

tensor, W (t) is the weight tensor for the current iteration, and W (t−1) is the weight

tensor from the previous iteration.

3.5 Implementation

The CNN was initially implemented in Go and executed on a regular CPU. The

advantage of Go is that it has built-in concurrency and is supported by several APIs

for image processing. Unfortunately, the performance of this implementation was

not practical. In order to increase performance, the compute intensive section of the

algorithm was migrated to a GPU implementation using CUDA.

The Go language has a pseudo-package ”CGO” [36] which was used to allow the

front end of the application to call C functions including libraries that are compatible

with GCC. This was necessary as an intermediary step. CUDA is based on CPP

with few extensions. CUDA code is not directly compiled with GCC. CUDA code is

compiled using NVCC. Therefore, CUDA kernels cannot be directly accessed using

the CGO driver.
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This limitation can be addressed in three ways. The first approach consists of

creating a static or shared library of the kernels made for the GPU. This approach

was not ideal since it entails making changes to the CUDA kernels.

The second approach consists of pre-compiling kernels into a .ptx file using the ptx

option in NVCC. PTX code is similar to assembly language code and is compatible

with different NVIDIA GPU architectures.

The third approach would use directly the NVRTC library. This approach creates

a run time library. This third approach is similar to the second approach but with

added flexibility. CUDA code can be compiled into a ptx format during runtime. In

fact, the compiler can directly use the NVRTC library.

After evaluation, the second approach was used, because of a feature involving

CUDA Contexts made using NVRTC inconsistent.

In order to access the functions that are in ptx form, the Driver API needs to

be used. Specifically, a module needs to be made. Modules are dynamically loaded

packages. A module can be created using NewModuleData() found in sub-package

of GoCudnn called cuda. MakeKernel() will return a *Kernel that uses the method

(*Kernel)Launch() to execute the kernel with the name passed in MakeKernel().

In order to allocate memory to the GPU. The Malloc() function of the cudart sub-

package is an option. This function allocates memory to the GPU and this memory is

managed by Go’s garbage collector. In addition, Memcpy() is used to copy memory

to or from the GPU.

Code examples can be seen in Appendices A, B, and C. Appendix A exposes a

few lower level deep learning functions using the CPU. Appendix C exposes the lower

level bindings that are used to execute kernels on a GPU. Appendix B exposes code

that is used to build deep learning models for execution on a GPU.
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4. RESULTS

In order to test the results two different CNNs were built. One is using ConvNetGo,

and the other is using GoCuNets. They are both based on the model seen in Figure

(4.1). This model was chosen because it implements dilation, strides, and padding

for each layer. The data being used is stored in a tensor with the dims of [N,1,28,28].

Each convolution has a filter with spacial dims [4,4], stride [2,2], and dilation [3,3].

The input Padding for the first convolution was set at [6,6] to make the output spacial

dims [16,16]. The next two convolutions have a padding of [4,4]. The spatial dims

of the output is half the size of the input. This convolution network is tested on

an application that classifies hand-written digits. The final classification layer uses

the input of the convolution layer and selects the digit that corresponds to the input

image. This last layer consists of a fully connected layer with 10 neurons and 320

weights each. The digit image used to test the CNN implementation are extracted

Fig. 4.1. The layers of the CNN used to test the proposed framework.

from the MNIST [37] database. MNIST is a good benchmarking database for testing

CNN models because it converges quickly. It consists of 60,000 training samples and

10,000 testing samples of hand written arabic numerals. Each sample has a size of 28

by 28. The target classification labels are stored as a byte of 0-9. Since, the model

uses a softmax classifier, the output needs to be represented using one-hot encoding.

An example is shown in Table (4.1).
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Table 4.1.
Samples taken from the MNIST database with the corresponding one-hot
encoding of their labels.

Input Target

[0,0,0,0,0,0,0,1,0,0]

[0,0,1,0,0,0,0,0,0,0]

[0,1,0,0,0,0,0,0,0,0]

[1,0,0,0,0,0,0,0,0,0]

Each network will run for 8 epochs. The average time it takes each epoch to

complete is recorded along with the batch size. The ConvNetGo model is executed

on a dual socket motherboard with two e5-2680v2 for a total of 20 cores and 40

threads. Each CPU has a 2.8 GHz clock with a boost clock of 3.6 GHz.

GoCuNets is executed on a GTX 1080ti GPU with a e5-2696v2 12 core / 24 thread

CPU. The CPU has a 2.5 GHz base clock with a 3.3 GHz boost clock. The GPU has

a base clock of 1.5 GHz and a boost of 1.6 GHz. Moreover, the GPU has 28 streaming

multiprocessors with 128 CUDA cores each.

The execution times of the ConvNetGo and GoCuNets CNN classification models

when applied to the MNIST database using different batches sizes are shown in Table

4.2. When the batch is set at 5, the model GoCuNes is twice as fast as ConvNetGo.

When the batch increases to 5000, GoCuNets performs 57 times faster than Con-

vNetGo. The execution times for the two CNNs are plotted against the batch size in

Figure(4.2).
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Table 4.2.
Execution time (in seconds) per epoch for each batch size for the Con-
vNetGo (CPU implementation) and GoCuNets (GPU implementation).

Batch Size ConvNetGo GoCuNets CPU/GPU

5 124.97 47.23 2.11

10 61.97 25.94 1.91

20 60.67 13.77 3.52

40 39.02 7.09 4.40

50 45.68 5.58 6.55

100 38.05 2.81 10.83

200 28.95 1.65 14.03

400 27.13 0.98 22.15

500 27.46 0.81 27.12

1000 27.51 0.56 39.30

2000 27.92 0.43 51.95

5000 27.08 0.38 57.02

Table 4.3 shows the training time for the GoCuNets CNN with varying batch

sizes. The training time is measured based on the same convergence criteria across

all experiments. Each epoch consists of training and testing runs. The number of runs

were determined by the size of the data-set divided by the batch size. The weights

were trained during the training runs using the training data. The classification was

then performed on the testing runs using the testing data. Training was complete

when the average loss across the MNIST testing data-set is less than 0.01.
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Fig. 4.2. Execution time per epoch for CoCuNets (GPU implementation)
and ConvNetGo (CPU implementation) with increasing batch size.

4.1 Code Samples

Appendix A contains a few functions from ConvNetGo. These examples imple-

ment some of the algorithms shown in this chapter. Appendix A.1 is an example

of the data structure of a Tensor. Some methods and functions include Convolution

Forward (Appendices A.2.2 and A.2.3), Fully Connected Forward (Appendix A.3.3),

and Leaky Relu (Appendix A.3.2).

Appendix B contains a few functions from GoCuNets. It mostly covers the meth-

ods that type Builder (Appendix B.2) uses. Builder is used to build deep learning

models on a GPU. It contains methods such as ConvolutionLayer() (Appendix B.2.2)

and Activation() (Appendix B.2.4) to create layers. These layers can be used to create

structures that implement the Module Interface (Appendix B.3), like VanillaModule

(Appendix B.3.1) and SimpleModuleNetwork (Appendix B.3.2).
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Table 4.3.
Number of epochs, training time for each batch size when executing the
GoCuNets (GPU) model. Convergence was decided when the average loss
for the testing data was less than 0.01.

BatchSize N Epochs Learn Time (s)

5 8 377.84

10 7 181.58

20 6 82.62

40 9 63.81

50 9 50.22

100 11 30.91

200 15 24.75

400 22 21.56

500 25 20.25

1000 39 21.84

2000 62 26.66

5000 122 46.36

Appendix C contains a few samples taken from GoCudnn such as memory al-

location on the GPU (Appendix C.7) and memory copy (Appendix C.8). The Ap-

pendix also includes sample GPU io.Reader and io.Writer interfaces (Appendix C.9

and C.10). In addition, Appendix C shows the use of ConcatEX (Appendix C.6) to

execute a concat kernel (Appendix C.3) using (*Kernel)Launch() (Appendix C.5).
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5. CONCLUSION

The proposed GoCuNets shows that deep learning can be implemented using Go and

GPUs. In fact, GoCuNets was able to achieve fast learning times. For instance, for

the number digit classification application, the network converges in 25 epochs to an

average loss less than .01. The total execution time for all epochs is 20.25 seconds with

a batch size equal to 500. Assuming, ConvNetGo takes the same number of epochs to

converge, a smaller batch size of 40 would require 5 minutes and 51 seconds. By using

GPUs, GoCuNets makes developing deep learning models in Go a practical option.

5.1 Challenges

Creating and using custom kernels is not very intuitive. Using NVCC to generate

a ptx file for custom kernels, and copying the contents of the ptx file into a constant

string literal in a Go package makes creating GPU kernels challenging.

Launching a GPU kernel also requires several setup steps. These steps include

allocating CPU and GPU memory, assigning values to the CPU memory, and then

copying the values from CPU to GPU. Except for single value constants, this process

has to be done for every value passed to a kernel. Moreover, when launching a kernel,

the user must specify the number of blocks per grid and the number of threads per

block. Finally, in order to evaluate a returned value on the CPU, the corresponding

memory needs to be copied from the GPU back to the CPU.
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5.2 Future Work

There are several directions for future work. Even though a large speed-up was

achieved using a GPU, additional speed-up can be achieved by using multiple GPUs

in parallel.

Moreover, the only GPUs currently supported under GoCuNets are Nvidia’s. Ei-

ther integrating AMD GPUs into GoCuNets or creating a new framework that sup-

ports both Nvidia and AMD GPUs would make deep learning using Go more widely

available.

5.3 GoCuNets

GoCuNets is a GPU centric deep learning framework written in Go. It is available

at www.github.com/dereklstinson/gocunets.

GoCudnn are bindings for Cuda. These bindings are used in GoCuNets. The

package is available at www.github.com/dereklstinson/gocudnn.

ConvNetGo is a CPU centric deep learning framework written in Go. It uses Go’s

built in concurrency to execute deep learning models. It is available at

www.github.com/dereklstinson/convnetgo.
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A. CONVNETGO

A.1 Tensor

1 type Tensor s t r u c t {

2 dims [ ] i n t

3 s t r i d e [ ] i n t

4 f32data [ ] f l o a t 3 2

5 nhwc bool

6 }

A.2 Convolution

A.2.1 Convolution Struct

1 //Convolut ion conta ins the parameters

2 // t ha t are used to do a convo lu t i on

3 type Convolution s t r u c t {

4 padding , d i l a t i on , s t r i d e [ ] i n t

5 s e t bool

6 nhwc bool

7 }



33

A.2.2 Convolution Forward Algorithm

1 func ( c ∗Convolution ) convnhwc4dwithwindow (x , w, wb, y ∗Tensor ) {

2 var wg sync .WaitGroup

3 f o r yn := 0 ; yn < x . dims [ 0 ] ; yn++ {

4 wg .Add(1) //Add to wai t group

5 go func ( yn i n t ) { // concurrent execu t i on

6 sh := −c . padding [ 0 ]

7 f o r yh := 0 ; yh < y . dims [ 1 ] ; yh++ {

8 sw := −c . padding [ 1 ]

9 f o r yw := 0 ; yw < y . dims [ 2 ] ; yw++ {

10 f o r yc := 0 ; yc < y . dims [ 3 ] ; yc++ {

11 dh , dw := c . d i l a t i o n [ 0 ] , c . d i l a t i o n [ 1 ]

12 adder := c . fwdwinnhwc4d (x , w,

13 sh , sw , dh , dw, yn , yc )

14 adder += wb. f32data [wn ] //add the b i a s

15 y . Set ( adder , [ ] i n t {yn , yh , yw , yc })

16 }

17 sw += c . s t r i d e [ 1 ]

18 }

19 sh += c . s t r i d e [ 0 ]

20 }

21 wg . Done ( ) // g i v e done s i g n a l

22 }( yn ) //end o f concurrent f unc t i on

23 }

24 wg .Wait ( ) //Wait f o r th reads to f i n i s h .

25 }
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A.2.3 Convolution Forward Window

1 func ( c ∗Convolution ) fwdwinnhwc4d (

2 x , w ∗Tensor ,

3 sh , sw , dh , dw int ,

4 xn , wn in t ) ( adder f l o a t 3 2 ) {

5

6 f o r wh := 0 ; wh < w. dims [ 1 ] ; wh++ {

7 xh := sh + (wh ∗ dh)

8 i f xh >= 0 && xh < x . dims [ 1 ] {

9 f o r ww := 0 ; ww < w. dims [ 2 ] ; ww++ {

10 xw := sw + (ww ∗ dw)

11 i f xw >= 0 && xw < x . dims [ 2 ] {

12 f o r wc := 0 ; wc < w. dims [ 3 ] ; wc++ {

13 adder += x . f32data [ ( x . s t r i d e [ 0 ] ∗ xn)+

14 (x . s t r i d e [ 1 ] ∗ xh)+

15 (x . s t r i d e [ 2 ] ∗xw)+

16 (x . s t r i d e [ 3 ] ∗wc ) ] ∗

17 w. f32data [ (w. s t r i d e [ 0 ] ∗wn)+

18 (w. s t r i d e [ 1 ] ∗wh)+

19 (w. s t r i d e [ 2 ] ∗ww)+

20 (w. s t r i d e [ 3 ] ∗wc ) ]

21 }

22 }

23 }

24 }

25 }

26 return adder

27 }
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A.3 Leaky

A.3.1 Leaky Struct

1 //LeakyRelu i s a s t r u c t t h a t ho l d s the neg and pos coe f

2 type LeakyRelu s t r u c t {

3 negcoef , po s coe f f l o a t 3 2

4 }

A.3.2 Leaky Forward

1 func ( l ∗LeakyRelu ) Forward (x , y ∗Tensor ) ( e r r e r r o r ) {

2 nbatches := x . dims [ 0 ]

3 nbatchelements := x . s t r i d e [ 0 ]

4 var wg sync .WaitGroup

5 f o r i := 0 ; i < nbatches ; i++ {

6 wg .Add(1)

7 b a t c h o f f s e t := i ∗ nbatchelements

8 go func ( ba t cho f f s e t , nbatchelements i n t ) {

9 f o r j := 0 ; j < nbatchelements ; j++ {

10 i f x . f32data [ b a t c h o f f s e t+j ] < 0 {

11 y . f32data [ b a t c h o f f s e t+j ] =

12 x . f32data [ b a t c h o f f s e t+j ] ∗ l . negcoe f

13 } e l s e {

14 y . f32data [ b a t c h o f f s e t+j ] =

15 x . f32data [ b a t c h o f f s e t+j ] ∗ l . po s coe f

16 }

17 }

18 wg . Done ( )

19 }( ba t cho f f s e t , nbatchelements )

20 }

21 wg .Wait ( )

22 re turn n i l

23 }
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A.3.3 Fully Connected

1 func FullyConnectedForward (x , w, b , y ∗Tensor ) e r r o r {

2 nvol := findvolume (w. dims [ 1 : ] )

3 xba t ch s t r i d e := x . s t r i d e [ 0 ]

4 yba t ch s t r i d e := y . s t r i d e [ 0 ]

5 neurons := w. dims [ 0 ]

6 var wg sync .WaitGroup

7 f o r i := 0 ; i < x . dims [ 0 ] ; i++ {

8 wg .Add(1)

9 go func ( i i n t ) {

10 y o f f s e t := ybat ch s t r i d e ∗ i

11 xbo f f s e t := xbat ch s t r i d e ∗ i

12 f o r j := 0 ; j < neurons ; j++ {

13 neu rono f f s e t := w. s t r i d e [ 0 ] ∗ j

14 var adder f l o a t 3 2

15 f o r k := 0 ; k < xba t ch s t r i d e ; k++ {

16 adder += w. f32data [ n eu r ono f f s e t+k ]

17 ∗ x . f32data [ x b o f f s e t+k ]

18 }

19 y . f32data [ y o f f s e t+j ] = adder + b . f32data [ j ]

20 }

21 wg . Done ( )

22 }( i )

23 }

24 wg .Wait ( )

25 re turn n i l

26 }
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B. GOCUNETS

B.1 Tensor

1 type Tensor s t r u c t {

2 ∗ l a y e r s . Tensor

3 id in t64

4 to , from Module

5 }

1 //Layer i s a l a y e r i n s i d e a network i t ho l d s inpu t s and ou tpu t s

2 type Layer s t r u c t {

3 id in t64

4 name s t r i n g

5 h ∗Handle

6 op Operation

7 workspacefwd ∗ nv id ia . Malloced

8 workspacebwd ∗ nv id ia . Malloced

9 workspacebwf ∗ nv id ia . Malloced

10 x , dx , y , dy ∗Tensor

11 }



38

B.2 Builder

B.2.1 Builder Data Structure

1 // Bui lder w i l l c r ea t e l a y e r s wi th the f l a g s s e t w i th in the s t r u c t

2 type Bui lder s t r u c t {

3 h ∗Handle

4 gpurng ∗ curand . Generator

5 Frmt TensorFormat

6 Dtype DataType

7 Cmode ConvolutionMode

8 Mtype MathType

9 Pmode PoolingMode

10 AMode ActivationMode

11 BNMode BatchNormMode

12 Nan NanProp

13 curngtype curand . RngType

14 }
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B.2.2 Builder Method Convolution Layer

1 //Convolut ionLayer c r ea t e s a convo lu t i on l a y e r

2 func ( l ∗Bui lder ) ConvolutionLayer (

3 id int64 , groupcount int32 ,

4 w, dw, b , db ∗Tensor ,

5 pad , s t r i d e , d i l a t i o n [ ] i n t32 ) ( conv ∗Layer , e r r e r r o r ) {

6 c layer , e r r := cnn . SetupBasic (

7 l . h . Handler ,

8 l . Frmt . TensorFormat ,

9 l . Dtype . DataType ,

10 l . Mtype .MathType ,

11 groupcount ,

12 w. Tensor , dw . Tensor , b . Tensor , db . Tensor ,

13 l .Cmode . ConvolutionMode ,

14 pad ,

15 s t r i d e ,

16 d i l a t i o n )

17 i f e r r != n i l {

18 return n i l , e r r

19 }

20 conv , e r r = c r e a t e l a y e r ( id , l . h , c l a y e r )

21 i f e r r != n i l {

22 return n i l , e r r

23 }

24 return conv , n i l

25 }
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B.2.3 Builder Method Convolution Weights

1 //CreateConvolut ionWeights c r ea t e s the we i gh t s and

2 // d e l t a we i gh t s o f a convo lu t i on l a y e r

3 func ( l ∗Bui lder ) CreateConvolutionWeights ( dims [ ] in t32 ) (

4 w, dw, b , db ∗Tensor , e r r e r r o r ) {

5 w, e r r = l . CreateTensor ( dims )

6 i f e r r != n i l {

7 return n i l , n i l , n i l , n i l , e r r

8 }

9 dw, e r r = l . CreateTensor ( dims )

10 i f e r r != n i l {

11 return n i l , n i l , n i l , n i l , e r r

12 }

13 b , e r r = l . CreateBiasTensor ( dims )

14 i f e r r != n i l {

15 return n i l , n i l , n i l , n i l , e r r

16 }

17 db , e r r = l . CreateBiasTensor ( dims )

18 i f e r r != n i l {

19 return n i l , n i l , n i l , n i l , e r r

20 }

21 return w, dw, b , db , n i l

22 }
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B.2.4 Builder Method Activation Layer

1 // Ac t i va t i on c r ea t e s an a c t i v a t i o n l a y e r

2 func ( l ∗Bui lder ) Act ivat ion ( id in t64 ) ( a ∗Layer , e r r e r r o r ) {

3 var act ∗ a c t i v a t i o n . Layer

4 a f l g := l .AMode

5 switch l .AMode {

6 case a f l g . Leaky ( ) :

7 act , e r r = a c t i v a t i o n . Leaky ( l . h . Handler , l . Dtype . DataType )

8 case a f l g . ClippedRelu ( ) :

9 act , e r r = a c t i v a t i o n . ClippedRelu ( l . h . Handler ,

10 l . Dtype . DataType )

11 case a f l g . Relu ( ) :

12 act , e r r = a c t i v a t i o n . Relu ( l . h . Handler , l . Dtype . DataType )

13 case a f l g . Elu ( ) :

14 act , e r r = a c t i v a t i o n . Elu ( l . h . Handler , l . Dtype . DataType )

15 case a f l g . Sigmoid ( ) :

16 act , e r r = a c t i v a t i o n . Sigmoid ( l . h . Handler , l . Dtype . DataType )

17 case a f l g . Tanh ( ) :

18 act , e r r = a c t i v a t i o n . Tanh( l . h . Handler , l . Dtype . DataType )

19 d e f au l t :

20 re turn n i l , e r r o r s .New( ”AppendActivation : ”+

21 ”Not supported Act ivat ion Layer” )

22 }

23 i f e r r != n i l {

24 return n i l , e r r

25 }

26 a , e r r = c r e a t e l a y e r ( id , l . h , act )

27

28 re turn a , e r r

29 }
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B.3 Module Interface

1 //Module i s a wrapper around

2 //a neura l network or s e t o f opera t i ons

3 type Module i n t e r f a c e {

4 ID ( ) in t64

5 Forward ( ) e r r o r

6 Backward ( ) e r r o r

7 FindOutputDims ( ) ( [ ] int32 , e r r o r )

8 I n f e r en c e ( ) e r r o r

9 In i tHiddenLayers ( ) ( e r r e r r o r )

10 InitWorkspace ( ) ( e r r e r r o r )

11 GetTensorX ( ) (x ∗Tensor )

12 GetTensorDX ( ) (dx ∗Tensor )

13 GetTensorY ( ) (y ∗Tensor )

14 GetTensorDY ( ) (dy ∗Tensor )

15 SetTensorX (x ∗Tensor )

16 SetTensorDX (dx ∗Tensor )

17 SetTensorY (y ∗Tensor )

18 SetTensorDY (dy ∗Tensor )

19 }
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B.3.1 VanillaModule

1 //Vani l laModule has a convo lu t i on and an a c t i v a t i o n

2 type Vanil laModule s t r u c t {

3 id in t64

4 b ∗Bui lder

5 conv ∗Layer

6 act ∗Layer

7 }

1 //Forward s a t i s f i e s module i n t e r f a c e

2 func (m ∗Vanil laModule ) Forward ( ) e r r o r {

3 e r r := m. conv . Forward ( )

4 i f e r r != n i l {

5 return e r r

6 }

7 return m. act . Forward ( )

8 }
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B.3.2 ModuleNetwork

1 //SimpleModuleNetwork i s a s imple module network

2 type SimpleModuleNetwork s t r u c t {

3 id in t64

4 Modules [ ] Module

5 Output ∗OutputModule

6 C l a s s i f i e r ∗Cla s s i f i e rModu l e

7 b ∗Bui lder

8 }

1 //Forward performs the forward opera t ion

2 // o f the s imple module network

3 //Forward s a t a s i f i e s the Module I n t e r f a c e .

4 func (m ∗SimpleModuleNetwork ) Forward ( ) ( e r r e r r o r ) {

5 f o r ,mod := range m. Modules {

6 e r r = mod . Forward ( )

7 i f e r r != n i l {

8 return e r r

9 }

10 }

11 i f m. Output != n i l {

12 e r r = m. Output . Forward ( )

13 i f e r r != n i l {

14 return e r r

15 }

16 }

17 i f m. C l a s s i f i e r != n i l {

18 return m. C l a s s i f i e r . PerformError ( )

19 }

20 return n i l

21 }
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C. GOCUDNN

C.1 Linking Cuda to Go

1 package cuda

2 /∗

3 #cgo LDFLAGS:−L/usr / l o c a l /cuda/ l i b 6 4 −l cuda

4 #cgo CFLAGS: −I / usr / l o c a l /cuda/ inc l ude /

5 ∗/

6 import ”C”

C.2 NewModuleData

1 //NewModuleData t a k e s a io . Reader and c r ea t e s a Module wi th i t .

2 func NewModuleData ( r i o . Reader ) (∗Module , e r r o r ) {

3 ptxbytes , e r r := i o u t i l . ReadAll ( r )

4 i f e r r != n i l {

5 return n i l , e r r

6 }

7 var mod C. CUmodule

8 cptx := C. CString ( s t r i n g ( ptxbytes ) )

9 d e f e r C. f r e e ( ( unsa fe . Po inter ) ( cptx ) )

10 e r r = s ta tu s (C. cuModuleLoadData(&mod,

11 ( unsa fe . Po inter ) ( cptx ) ) ) . e r r o r ( ”NewModuleData” )

12 re turn &Module{

13 m: mod,

14 loaded : true ,

15 } , e r r

16 }
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C.3 Cuda Concat Kernel

1 extern ”C”

2 g l o b a l void ConcatNCHWEX( const i n t XThreads ,

3 const i n t Batches ,

4 const i n t DestBatchVol ,

5 const i n t DestChannelOffset ,

6 f l o a t ∗ src ,

7 const f l o a t alpha ,

8 const i n t SrcBatchVol ,

9 f l o a t ∗dest ,

10 const f l o a t beta ,

11 bool forward ){

12 f o r ( i n t i =0; i<Batches ; i++){

13 GRID AXIS LOOP( idX , XThreads , x ){

14 i n t d e s t s t r i d e = ( i ∗DestBatchVol )+(DestChannelOffset+idX ) ;

15 i n t s r c s t r i d e = ( i ∗SrcBatchVol )+( idX ) ;

16 i f ( forward ){

17 dest [ d e s t s t r i d e ]= s r c [ s r c s t r i d e ]∗ alpha + dest [ d e s t s t r i d e ]∗ beta ;

18 } e l s e {

19 s r c [ s r c s t r i d e ]= dest [ d e s t s t r i d e ]∗ alpha + s r c [ s r c s t r i d e ]∗ beta ;

20 }}}}
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C.4 MakeKernel

1 //MakeKernel makes a k e rne l .

2 //kname i s the k e rn e l s name tha t was wr i t t en in cuda .

3 func MakeKernel (kname s t r i ng , m ∗Module ) (

4 k ∗Kernel , e r r e r r o r ) {

5 var kern C. CUfunction

6 i f m. loaded == f a l s e {

7 return n i l , e r r o r s .New( ”MakeKernel : Module Not Loaded” )

8 }

9 name := C. CString (kname)

10 de f e r C. f r e e ( ( unsa fe . Po inter ) ( name ) )

11 e r r = s ta tu s (

12 C. cuModuleGetFunction(&kern , m.m, name ) ) . e r r o r ( ”MakeKernel” )

13 i f e r r != n i l {

14 return n i l , e r r

15 }

16 k = &Kernel {

17 name : kname ,

18 m: m,

19 f : kern ,

20 }

21 //Give k to Go ’ s Garbage Co l l e c t o r

22 runtime . S e tF i n a l i z e r (k , de s t roycudakerne l )

23 re turn k , n i l

24 }
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C.5 (k *Kernel) Launch()

1 //Launch w i l l launch a kerna l t h a t ’ s been ass i gned to i t .

2 func (k ∗Kernel ) Launch ( gx , gy , gz , bx , by , bz ,

3 shared uint32 , stream gocu . Streamer ,

4 args . . . i n t e r f a c e {}) e r r o r {

5 var sho ld unsa fe . Po inter

6 i f stream != n i l {

7 sho ld = stream . Ptr ( )

8 }

9 cargs := makelaunchargs ( l en ( args ) )

10 e r r := k . i f a c e t oun sa f e c omp l e t e ( args , ca rgs )

11 i f e r r != n i l {

12 return e r r

13 }

14 return s t a tu s (C. cuLaunchKernel ( k . f ,

15 C. u int ( gx ) , C. u int ( gy ) , C. u int ( gz ) ,

16 C. u int (bx ) , C. u int (by ) , C. u int ( bz ) ,

17 C. u int ( shared ) ,

18 (C. CUstream ) ( sho ld ) ,

19 &cargs . args [ 0 ] , C. vo iddptrnu l l ,

20 ) ) . e r r o r ( ” (k ∗Kernel ) Launch ( ) ” )

21

22 }
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C.6 Concat Kernel Launch

1 func ( c ∗ConcatEx ) op (h ∗Handle ,

2 s r c s [ ] ∗ gocudnn . TensorD , srcsmem [ ] c u t i l .Mem,

3 alpha f l oa t64 ,

4 des t ∗gocudnn . TensorD , destmem c u t i l .Mem,

5 beta f l oa t64 , forward bool ) e r r o r {

6 dfrmt , ddtype , ddims , , := dest . Get ( )

7 batches := ddims [ 0 ]

8 des tbatchvo l := f i ndvo l ( ddims [ 1 : ] )

9 var s r c c h an o f f s e t in t32

10

11 f o r i := range s r c s {

12 srcdims := s r c s [ i ] . Dims ( )

13 s r cba t chvo l := f i ndvo l ( srcdims [ 1 : ] )

14 a := f l o a t 3 2 ( alpha )

15 b := f l o a t 3 2 ( beta )

16 c on f i g := h . LaunchConfig ( s r cba t chvo l )

17 e r r = c . fp32 . nchw . Launch (

18 c on f i g . BlockCount , 1 , 1 , // g r i d parameters

19 c on f i g . ThreadPerBlock , 1 , 1 , // b l o c k parameters

20 0 , c . streams [ i ] , // shared memory , stream

21 // r e s t are arguments

22 c on f i g . Elements , batches ,

23 destbatchvo l , s r c chano f f s e t ,

24 srcsmem [ i ] ,

25 a , s rcbatchvo l ,

26 destmem , b , forward )

27 i f e r r != n i l {

28 return e r r

29 }

30 s r c c h an o f f s e t += srcba t chvo l

31 }

32 }
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C.7 MallocManagedGlobalEx

1 //MallocManagedGlobalEx a l l o c a t e s memory to

2 // dev i c e a s s o c i a t e d wi th w.

3 // I f w i s n i l then i t w i l l

4 // behave l i k e MallocManagedGlobal

5 func MallocManagedGlobalEx (w ∗gocu .Worker ,

6 mem c u t i l .Mem, s i z e u int ) e r r o r {

7 var e r r e r r o r

8 i f w != n i l {

9 e r r = w.Work( func ( ) e r r o r {

10 e r r = s ta tu s (C. cudaMallocManaged (

11 mem. DPtr ( ) , C. s i z e t ( s i z e ) ,

12 C. cudaMemAttachGlobal ) ) . e r r o r ( ”MallocManagedGlobalEx” )

13 i f e r r != n i l {

14 return e r r

15 }

16 return Memset (mem, 0 , ( s i z e ) )

17 })

18 } e l s e {

19 e r r = s ta tu s (C. cudaMallocManaged (mem. DPtr ( ) , C. s i z e t ( s i z e ) ,

20 C. cudaMemAttachGlobal ) ) . e r r o r ( ”MallocManagedGlobalEx” )

21 i f e r r != n i l {

22 return e r r

23 }

24 e r r = Memset (mem, 0 , ( s i z e ) )

25 }

26 i f e r r != n i l {

27 return e r r

28 }

29 //Put Go Garbage Co l l e c t o r in charge o f CUDA memory .

30 runtime . S e tF i n a l i z e r (mem, devicefreemem )

31 return n i l

32 }
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C.8 Copy Memory

1 //Memcpy cop i e s some memory from src to de s t .

2 // I f d e f a u l t i s s e l e c t e d and i f the system suppor t s

3 // un i f i e d v i r t u a l addre s s ing then the t r an s f e r i s i n f e r r e d .

4 func Memcpy( dest , s r c c u t i l . Pointer , s i z e t uint ,

5 kind MemcpyKind) e r r o r {

6 return s t a tu s (C. cudaMemcpy( dest . Ptr ( ) , s r c . Ptr ( ) ,

7 C. s i z e t ( s i z e t ) , kind . c ( ) ) ) . e r r o r ( ”Memcpy” )

8 }
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C.9 Interface io.Reader

1 //Read s a t i s f i e s the io . Reader i n t e r f a c e

2 func ( r ∗ReadWriter ) Read (b [ ] byte ) (n int , e r r e r r o r ) {

3 i f r . i >= r . s i z e {

4 r . Reset ( )

5 re turn 0 , i o .EOF

6 }

7 i f l en (b) == 0 {

8 return 0 , n i l

9 }

10 var s i z e = r . s i z e − r . i

11 i f u int ( l en (b ) ) < s i z e {

12 s i z e = uint ( l en (b ) )

13 }

14 bwrap , := c u t i l .WrapGoMem(b) //don ’ t need to check error ,

15 // because [ ] by t e i s supported by func t i on .

16 i f r . s != n i l {

17 e r r = cudart .MemcpyAsync(bwrap , c u t i l . O f f s e t ( r , r . i ) ,

18 s i z e , r . cp f l g , r . s )

19 } e l s e {

20 e r r = cudart .Memcpy(bwrap , c u t i l . O f f s e t ( r , r . i ) ,

21 s i z e , r . c p f l g )

22 }

23 i f e r r != n i l {

24 return 0 , n i l

25 }

26 r . i += s i z e

27 n = in t ( s i z e )

28 re turn n , n i l

29 }
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C.10 Interface io.Writer

1 //Write s a t i s f i e s the io . Writer i n t e r f a c e

2 func ( r ∗ReadWriter ) Write (b [ ] byte ) (n int , e r r e r r o r ) {

3 i f r . i >= r . s i z e {

4 r . Reset ( )

5 re turn 0 , e r r o r s .New( ” ( r ∗ReadWriter ) Write ( ) ” +

6 ”Write Locat ion Out o f Memory” )

7 }

8 i f l en (b) == 0 {

9 return 0 , n i l

10 }

11 var s i z e = r . s i z e − r . i

12 i f u int ( l en (b ) ) < s i z e {

13 s i z e = uint ( l en (b ) )

14 }

15 bwrap , := c u t i l .WrapGoMem(b ) ) //don ’ t need to check error ,

16 // because [ ] by t e i s supported by func t i on .

17 i f r . s != n i l {

18 e r r = cudart .MemcpyAsync( c u t i l . O f f s e t ( r , r . i ) , bwrap ,

19 s i z e , r . cpy f lg , r . s )

20 } e l s e {

21 e r r = cudart .Memcpy( c u t i l . O f f s e t ( r , r . i ) , bwrap ,

22 s i z e , r . c p t f l g )

23 }

24 r . i += s i z e

25 n = in t ( s i z e )

26 re turn n , e r r

27 }


