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ABSTRACT

Koo, Minsuk Ph.D., Purdue University, May 2020. Energy Efficient Neuromorphic
Computing: Circuits, Interconnects and Architecture. Major Professor: Roy K.
Professor.

Neuromorphic computing has gained tremendous interest because of its ability to

overcome the limitations of traditional signal processing algorithms in data intensive

applications such as image recognition, video analytics, or language translation. The

new computing paradigm is built with the goal of achieving high energy efficiency,

comparable to biological systems. To achieve such energy efficiency, there is a need

to explore new neuro-mimetic devices, circuits, and architecture, along with new

learning algorithms. To that effect, we propose two main approaches:

First, we explore an energy-efficient hardware implementation of a bio-plausible

Spiking Neural Network (SNN). The key highlights of our proposed system for SNNs

are 1) addressing connectivity issues arising from Network On Chip (NOC)-based

SNNs, and 2) proposing stochastic CMOS binary SNNs using biased random number

generator (BRNG). On-chip Power Line Communication (PLC) is proposed to address

the connectivity issues in NOC-based SNNs. PLC can use the on-chip power lines

augmented with low-overhead receiver and transmitter to communicate data between

neurons that are spatially far apart. We also propose a CMOS ‘stochastic-bit’ with

on-chip stochastic Spike Timing Dependent Plasticity (sSTDP) based learning for

memory-compressed binary SNNs. A chip was fabricated in 90 nm CMOS process to

demonstrate memory-efficient reconfigurable on-chip learning using sSTDP training.

Second, we explored coupled oscillatory systems for distance computation and

convolution operation. Recent research on nano-oscillators has shown the possibility

of using coupled oscillator networks as a core computing primitive for analog/non-
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Boolean computations. Spin-torque oscillator (STO) can be an attractive candi-

date for such oscillators because it is CMOS compatible, highly integratable, scal-

able, and frequency/phase tunable. Based on these promising features, we propose a

new coupled-oscillator based architecture for hybrid spintronic/CMOS hardware that

computes multi-dimensional norm. The hybrid system composed of an array of four

injection-locked STOs and a CMOS detector is experimentally demonstrated. Energy

and scaling analysis shows that the proposed STO-based coupled oscillatory system

has higher energy efficiency compared to the CMOS-based system, and an order of

magnitude faster computation speed in distance computation for high dimensional

input vectors.
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1. INTRODUCTION

Even with unprecedented success driven by device scaling, solutions to optimization,

recognition, and classification problems based on Von-Neumann architecture turn out

to be very inefficient. Moreover, the scaling-down of CMOS technology is approaching

its fundamental limit. Hence, researchers are exploring new possibilities from novel

devices to non von-Neumann like architectures to achieve performance beyond CMOS

scaling as shown in Fig. 1.1.

Fig. 1.1. Categories of emerging computing architectures (2016 IRDS) [1]

Neuromorphic computing that attempts to solve the problems in a “preferred way

of nature” has acquired tremendous interest because of its ability to overcome the lim-

itations of von-Neumann systems in data intensive applications. The key inspiration
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behind the development of such neuro-inspired computing systems comes from its

high computing and energy efficiency to be comparable to biological systems. Hence,

emerging devices that can mimic neurons and synapses, neuromorphic algorithms,

and new architectures need to be explored individually and collectively to obtain

such high energy efficiency.

Spiking Neural Networks (SNNs) offer a promising solution towards realizing

energy-efficient neuromorphic systems. SNNs consider the presence and timing of

spikes as the means of communication and neural computation. On account of spike-

based event-driven computing capability and localized learning using Spike Timing

Dependent Plasticity (STDP), SNNs are regarded as the third generation neural net-

work [2]. However, the proper algorithm and architecture for SNNs still remain to be

explored. This motivates us to investigate energy efficiency of the system for SNNs

in terms of circuits, interconnects and architecture.

On the other hand, the paradigm of ‘let physics do the computing’ has also mo-

tivated researchers to look at alternative computing models that explore the use of

emerging devices as functional units for better energy efficiency and speed. One such

alternative model is based on the coupled oscillator network in which the oscillator

array is used to compute (say) “similarity” between two multi-dimensional vectors.

Such coupled oscillatory networks are widely found in nature such as pendulum clocks

on a wall [3], flashing fireflies [4], animal flocking [5], coupled oscillations in the human

heart and brain [6,7]. Spin-torque oscillator (STO) is an attractive candidate for such

alternative computing models because it is CMOS compatible, highly integratable,

scalable, and frequency/phase tunable. Based on these promising features, we are

motivated to investigate a new coupled-oscillator based computing architecture that

computes multi-dimensional norm.

The thesis also explores how emerging technologies like memristors [8–10] and

memristive cross-bars (to do efficient dot-products, a core computing primitive for

neuromorphic computing), and deeply scaled CMOS technologies can be used in novel

computing architectures for efficient learning and inference.
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The rest of the dissertation is organized as follows. In chapter 2, we focused on

connectivity issues arising from Network On Chip (NOC)-based SNNs. The brain-

like connectivity requires modification to typical NoC architectures. While NOCs

can provide very high throughput, they suffer from high power and area requirements

and lacks the connectivity required for neural computing. We propose augmenting

local connectivity of NoC computing units with Power Line Communication (PLC)

to communicate data between computing units that are spatially further apart. The

intrinsic broadcast based communication in PLC not only brings in higher connectiv-

ity but also enables energy efficient communication, where data sent over power line

can be transmitted to multiple neurons in a single cycle.

In chapter 3, we propose stochastic bit enabled binary SNN with on-chip STDP

learning for memory-compressed neuromorphic computing. The binary SNN com-

posed of stochastic neurons and binary synapses are programmed stochastically dur-

ing training. We present an energy-efficient realization of the binary SNN using Bi-

ased Random Number Generator (BRNG) based ‘stochastic bits’ fabricated in 90nm

CMOS process for on-chip pattern recognition. The proposed BRNG enabled binary

SNN, with high power efficiency of 89.49 TOPS/Watt for two-layer fully-connected

SNN of 400 neurons, offers a potential solution for energy-efficient edge computing

with on-chip intelligence.

In chapter 4, we experimentally demonstrated a distance computing primitive

based on a STO-based coupled oscillator array. We have shown that the combination

of injection locking scheme and its interference with a reference signal can realize the

Euclidean distance computation unit. The performance of the system as an L22 unit

was measured by applying randomly generated test input vectors as bias current to

the STOs. The characteristic curve from the experiment approximates an L22 norm

which, in turn, is used as input to simulations that demonstrate the hybrid system

as both a distance metric and a convolution computational primitive for image pro-

cessing applications. Energy and scaling analyses show that the STO-based coupled

oscillatory system has higher efficiency than the CMOS-based system with an order of



4

magnitude faster computation speed in distance computation for high dimensional in-

put vectors. Modest improvements in STO critical currents and magneto-resistance

(through the use of magnetic tunnel junctions) can make oscillator-based systems

even more attractive.

Finally, chapter 5 summarizes the thesis and discusses the future work.
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2. POWERLINE COMMUNICATION FOR ENHANCED

CONNECTIVITY IN NEUROMORPHIC SYSTEMS

Neuromorphic Computing (NC) has acquired tremendous interest because of its abil-

ity to overcome the limitations of von-Neumann systems in data intensive appli-

cations. NC systems are inspired from the human brain, which combines storage

(synapse) and compute (neuron) to circumvent the memory bottlenecks in von-

Neumann computing. Note, human brain consists of densely connected neurons,

where each neuron can connect to 1000s of synapses [11]. Such dense connectivity

is the key to obtaining high classification accuracies in NC systems such as the Spik-

ing Neural Networks (SNNs), as connectivity enables hierarchical learning with large

number of features in each hierarchy.

Past research has focused on many-core architectures which implement synapses

with memristive crossbars to overcome the memory bottlenecks and enable efficient

compute. However, mimicking brain-like connectivity poses significant challenges.

This is because typical computation cores in a many-core architecture are connected

with a Network On Chip (NOC). While NOCs can provide very high throughput,

they suffer from high power and area requirements which decimates the benefits

of efficient synapse implementation with memristive crossbars. In this chapter, we

propose a Power Line Communication (PLC) based architecture built with memristive

crossbars for SNNs.

PLC can use the on-chip power lines augmented with low-overhead receiver and

transmitter to communicate data between neurons. This removes the high area over-

head due to channels and routers present in an NOC. Further, the intrinsic broadcast

based communication in PLC enables energy efficient communication, where data

sent over power line can be transmitted to multiple neurons in a single cycle. Hence,

PLC can enable dense connectivity required in SNNs, while preserving the efficiency



6

of memristive crossbars. We perform evaluations of SNNs ranging in scale from 1M -

10M synapses to demonstrate the efficiency of PLC based system. Also, we propose a

hybrid PLC - NOC based design which can achieve high throughput along with area

and energy efficiency.

2.1 Introduction

Deep Neural Networks (DNN) are a class of machine learning algorithms and are

extensively deployed in several learning tasks such as computer vision [12], speech and

language processing [13], medical imaging [14], robotics [15] and gameplay [16].

DNNs are motivated from human brain and consist of densely connected neurons

and synapses organized in a hierarchical fashion. This hierarchical nature and dense

connectivity enable feature extraction from an input and its subsequent classification.

The key feature that has enabled DNNs to achieve unprecedented performance in

complex tasks is the ability to design and train large scale (in terms of neurons,

synapses and layers) models. For example, in 1998, LeCun et al. used a model with

less than ∼1M synapses for simple digit recognition tasks [17]. In 2012, Krizhevsky

et al. proposed AlexNet with ∼60M synapses to recognize complex natural images

[18]. Recently, Karpathy et al. proposed a DNN to convert image to natural language

using ∼230M synapses [19].

Despite the success of DNN, their execution on von-Neumann systems suffer from

extremely high energy consumption. This has motivated research in energy-efficient

design of DNNs using various algorithmic and hardware techniques [20–22]. One of

the promising pathways is design of biologically plausible algorithms namely Spiking

Neural Networks (SNN) [2, 11, 23]. Unlike artificial neural networks (ANNs) which

use real-valued inputs, SNNs communicate data in the from of spikes (0/1). The spike

based inputs simplify the computations to simple add and accumulation instead of

multiply-add and accumulate in ANN. Further, the resulting input sparsity in data
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enables event-driven computations which alleviate unnecessary memory accesses and

computations to bolster the energy benefits.

To this end, past work have looked into deep SNN designs in different application

domains and achieved near DNN classification accuracies [24–27]. However, their

acceleration on von-Neumann machines built with CMOS technology suffers from

memory bottlenecks. This is because SNNs are data-intensive applications with sim-

pler compute requirements. Consequently, the frequent movement of data between

memory and compute units on von-Neumann systems results in high data access en-

ergy and latency. Also, the ever growing model size increases the memory demands for

storing the synapses. As a result, researchers have focused on designing application-

specific accelerators based on CMOS technology to enable energy-efficient execution

of SNNs [11, 23]. However, the inherent mismatch between CMOS technology and

compute primitives required in SNNs (neurons and synapses) limits their benefits.

For instance, a CMOS implementation of synapse requires more than a dozen of

transistors [20].

To this effect, researchers have focused on post-CMOS technology based neuro-

morphic computing. Consequently, memristive crossbars have been proposed which

can store synapses and perform dot-product computations in a single time step. A

memristive crossbar is comprised of memristors at each cross-point that can encode

a multi-bit value using one device. Upon applying an input voltage on the crossbar’s

row, the resulting output current on a column is equal to the weighted summation of

input and synapse on the column. Subsequently, several past works [20,28–32] have

utilized the intrinsic suitability of memristive crossbars to design DNN accelerators.

Typical memristive crossbars based accelerators use array of Processing Engines

(PE) connected together with a Network On Chip (NOC). The PEs are built with

crossbars to enable synaptic storage and weighted summation computations. An

NOC connects these PEs to realize the connectivity structure in DNNs. However,

typical NOCs have significantly higher area and power consumption, thereby reducing

the storage and compute benefits that can be harnessed from memristive crossbars.
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Further, data transfer in typical NOC requires several hops between routers which

increases the latency and energy consumption. Consequently, this either restricts

the algorithm designers to use under-performing SNNs, or incur high energy-latency

costs.

To address these limitations, we propose a Power Line Communication (PLC)

based approach to enable efficient data transfer between PEs in a spatial architec-

ture. PLC uses the on-chip power lines augmented with low overhead receiver and

transmitter to enable communication between PEs. The minimal hardware overhead

incurred, preserves the benefits from memristive crossbars. Further, the inherent

broadcast based nature of PLC, where a data on power line is received by all PEs

on the chip maximizes the input reuse pattern common to DNNs. However, the

data transfer throughput obtained from PLC is lower than typical NOCs. Hence, we

also propose a hybrid PLC-NOC based memristive crossbar architecture to maximize

throughput and boost connectivity. A high throughput NOC enables fast communi-

cation between a cluster of PEs located over short-distance. On the other hand, the

PLC network enables long-distance communication to boost the overall connectivity

between PEs.

In summary, we make the following contributions:

• powerline based communication approach to enhance the connectivity for

achieving higher classification accuracy in neuromorphic systems.

• hybrid PLC-NOC based memristive architecture for obtaining high through-

put and energy efficient acceleration of SNNs.

• evaluate the design over a wide range of image recognition applications to

study the energy and performance benefits.
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2.2 Background

2.2.1 Spiking Neural Network

SNN is regarded as the third generation neural network [2]. It is a more bio-

plausible version of classical neural networks and involves spike based communication

between neurons. Each input to an SNN is encoded as a Poisson spike train, where

the spike frequency represents pixel intensity. At a particular instant, each spike

is propagated through the layers of the network while the neurons accumulate the

spikes over time as its membrane potential. A neuron spikes when the membrane

potential exceeds a threshold. Subsequently, the output spike is sent to the neurons

in the next layer of SNN. The deep SNN topologies used in this work are Multi Layer

Perceptrons (MLP) and Convolutional Neural Networks (CNN). An MLP, shown in

Fig. 2.1(a), is a multi-layered SNN in which all neurons in a layer are connected

to all neurons in the previous layer. A CNN, shown in Fig. 2.1(b), is also a multi-

layered SNN composed of alternating convolution and sub-sampling layers. As shown

in Fig. 2.1(c), a typical spiking neuron does an accumulation operation followed by

thresholding operation. The spiking neuron model used in this work is the Integrate-

and-Fire (IF) model. Note that, our work focuses on the testing/computation of the

SNN and assumes that the memristive crossbars have already been programmed with
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the trained weights. Hence, we do not consider energy or latency associated with

writing the memristors.

2.2.2 Memristive Crossbar and Past Work

Fig. 2.2(a) shows a 2-layer fully connected SNN. Fig. 2.2(b) shows the connectivity

structure/matrix (from Fig. 2(a)) mapped onto a memristive crossbar. The memris-

tive devices at its cross-points encode the synaptic weights of the SNN. A memristive

crossbar receives voltage inputs at its rows and the resulting current output at any

column is the weighted summation of the encoded weights at that column and the

input voltage. This is a direct consequence of the Kirchhoff’s law as the current

output into a column from any cross-point will be the product of the conductance at

that cross-point and the voltage across it. Thus, a memristive crossbar is an analog

“dot-product” computation unit. Further, each crossbar is interfaced with neurons

that receive the input current and accumulate membrane voltage over time.

Several previous works have explored memristive crossbar based architectures for

accelerating DNNs. ISAAC [29] designs digital computation units with ReRAM
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crossbars for accelerating CNNs. PRIME [30] proposes a crossbar based design for

CNNs, where a crossbar is logically partitioned to be used for regular memory storage

and computations. RESPARC [20] proposes a hierarchical architecture built with

crossbars for executing SNNs. Further, TIME [31] and PipeLayer [32] focus on

training DNNs using memristive crossbars. This chapter complements the previous

works by enabling efficient communication between processing units to enhance the

utility and efficiency of crossbar based architectures.

2.3 Power Line Communication

2.3.1 Motivation

Spatial many-core architectures built with emerging post-CMOS technologies have

been extensively explored for DNNs, owing to their ability to exploit data parallel

nature of multi-layered neural networks [20, 29–32]. However, the NOC size scales

linearly with the number of cores, which leads to high energy consumption in com-

munication between distantly located cores. As a result, researchers have explored

techniques for efficient multi-hop communication to optimize the high latency and

power consumption involved in moving data between two far apart cores in a many-

core architecture.

For conventional NOCs, different ways to improve channel utilization such as vir-

tual channels, bypass routers, and the novel topologies have been studied [33], [34].

On the other hand, using new materials rather than metal wires have been stud-

ied, such as three-dimensional integration, nanophotonic communication and on-chip

wireless links [35–37]. We propose PLC as a new channel that uses metal wires

not only for delivering power but also for carrying data to different nodes in a chip.

Further, PLC enables single hop links, thanks to the inherent broadcast nature of

on-chip powerlines. PLC has lower data rate compared to typical interconnects such

as, conventional NOCs and wireless links. However, the low latency and low power

consumption for long distance communication along with with small area penalty
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make PLC an attractive solution especially in many-core neuromorphic systems. Re-

cent works have shown the use of PLC at integrated-circuit level for the purpose of

design for testability (DFT) on CMOS microprocessors [38, 39].

2.3.2 Challenges

PLC mainly draws advantages from 1) dual usage, and 2) ubiquitous accessibility

of Power Distribution Network (PDN). Since PLC uses the existing power supply line,

it does not cost extra to obtain an additional channel for communication. Further,

every circuit at any node connects to the power line and can receive data from it,

thereby enabling data broadcast. Despite the apparent advantages of PLC, there

are challenges that limit its applicability. First, loading data on top of power line,

which works like a noise to PDN, is conflicting to the goal of a robust PDN design.

Second, PLC channel suffers from simultaneous switching noise (SSN) resulting from

the large current drawn by the switching devices. Third, ubiquitous accessibility to

any internal nodes based on wide area network costs large power consumption to load

data on top of the huge PDN.

2.3.3 PLC based neuromorphic system design

Neuromorphic algorithm such as SNNs are inherently error resilient and can har-

ness the advantages from PLC with little or no accuracy loss [40]. Recall, typical

neural network accuracy increases with network size, thereby increasing the connec-

tivity requirements for their on-chip deployment [22]. Additionally, typical SNNs

have high data sparsity and input sharing which enable low data rates and enhance

the benefits of broadcast based interconnects. Thus, PLC based neuromorphic system

design can enable the needed connectivity to enable large scale SNN acceleration in

an efficient way. Next we discuss the two components of our PLC design namely 1)

transceiver, and 2) PDN.
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Transceiver

Transceiver facilitates the send and receive of data between different processing

engines (PEs) in a neuromorphic architecture (discussed in Section 2.4). Depending

on the data to be sent, the transmitter (Tx) induces small glitches on the powerline

by drawing current. This mechanism of loading data is similar to the way SSN gets

added to a powerline. To distinguish the data from noise at the receiver side, glitches

caused by data should be larger than the ones caused by SSN. In other words, a

more noisy powerline would require larger amount of current (and power) for data

transmission. Hence, keeping the powerline quiet is beneficial for PLC to achieve low-

power communication. We achieve this by separating the powerline for noisy/clocked
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blocks, for example, control unit, peripherals etc. from the non-noisy blocks like

neurons and crossbars. In other words, the powerline used in communication connects

to SSN free asynchronous components.

At the receiver side, a level shifter lowers the dc level of the signal to around half

of the supply voltage (shown in Fig. 2.3). The circuit is a common source amplifier

with a diode-connected load. In contrast to a typical amplifier, the power supply

rejection ratio (PSRR) of level shifter is set to be small, in order to acquire the

data from the signal on powerline [39]. Next, the level shifted signal is applied to

a differential amplifier, in which one of the inputs is connected to an RC low pass

filter for alleviating the dc offset voltage. Finally, the amplified signal goes into a

differential Schmitt trigger for restoring the original data.
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Power distribution network

We design a PDN comprised of power supply source, Printed Circuit Board (PCB),

and on-chip power grid that accurately models the channel for PLC. The PCB and

package parasitics are considered as a lumped model. However, a lumped model for

on-chip power grid is not sufficient to estimate the desired characteristics of delay and

attenuation at different locations of the PDN. Therefore, a distributed RLC model

for on-chip power grid has been designed (shown in Fig. 2.4). Here, VDD, R and

L0 are power supply source, the resistive impedance, and the inductance of Voltage

Regulator Module (VRM) respectively. The parasitics of R,L and C are modeled for

on chip power grid using Equations 2.1, 2.2, and 2.3 [41]. Rs, µ, and ε are sheet

resistance, permeability, and permittivity respectively, where l, w, t, and h are length,

width, thickness, and height from substrate.

R = Rs(
l

w
) (2.1)

L =
µ

2π
ln (

8h

w
+
w

4h
) (2.2)

C = ε[(
w

h
) + 0.77 + 1.06(

w

h
)0.25 + 1.06(

t

h
)0.5] (2.3)

2.4 Hybrid PLC-NOC based Architecture

We implement a hierarchical architecture using memristive crossbars as shown in

Fig. 2.5. As shown in past works, a hierarchical architecture can efficiently exploit

the available data-parallelism in SNNs [20]. Our novelty lies in proposing a hybrid

PLC-NOC based technique to enable efficient communication between PEs in a tile.

Fig. 2.5(a) shows the organization of a Processing Engine (PE). A PE consists

of multiple memristive crossbars, each interfaced with an input memory (InMem),

neuron block (Neuron) and output memory (OutMem). Data received by a PE can
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be stored in one or multiple InMem depending on the input sharing between crossbars

in a PE. For instance, crossbars on a PE mapped to different output neurons within an

SNN layer will share inputs. Additionally, multiple crossbars in a PE can accumulate

their outputs on different neuron blocks in a PE to produce final outputs. Lastly,

outputs are sent to PEs mapped to the next layer of SNN.

Fig. 2.5(b) shows the architecture with multiple PEs connected through hybrid

PLC-NOC. An SNN is partitioned to map the weights in different layers on different

PEs. Further, within an SNN layer, weights are mapped across multiple crossbars on

one or more PEs. This is because, typical crossbar sizes are an order of magnitude

smaller than SNN layer sizes. Crossbar sizes can be limited by parasitic effects,

sneak paths and peripheral overheads [20, 42]. Consequently, an SNN execution on

memristive crossbar architecture can be subdivided into three operations 1) crossbar

computation, 2) intra-layer data transfer , and 3) inter-layer data transfer

(illustrated in Fig. 2.6).

We propose a hybrid PLC-NOC based architecture that leverages PLC and NOC

for inter-layer and intra-layer communication, respectively. An NOC-only design con-

sumes significant energy consumption (≥ ∼60% of the total energy) due to inter-layer
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Fig. 2.6. SNN execution on multiple PEs showing intra-layer and
inter-layer data transfers. Each PE can implement a 4×4 size layer.

transfers (shown in Sec. 2.6.4). To overcome this limitation of NOC-only design, PLC

enables efficient inter-layer communication. PLC based broadcast provides a natural

fit for one-to-many nature of inter-layer data transfers. Further, NOC provides a high

throughput communication medium for intra-layer data transfers. Thus, the hybrid

approach preserves inference latency while reducing the energy consumption.

Inter-layer data transfers implement SNN execution by propagating input through

multiple layers to compute the classification output. Such transfers are one-to-many

in nature where a PE mapped to previous layer sends its output data to multiple PEs

mapping the next layer (shown in Fig. 2.6, Layer 2). This is because typical SNNs

have input sharing where, neurons in the next layer share the outputs produced by

the previous layer. PLC enables harnessing this input reuse in SNNs by broadcasting

output data over power lines, which is received by next layer PEs in a single time

step. On the contrary, an NOC based inter-layer data transfer will require multiple

data transfers of same input data, where each transfer sends data to one PE in the

next layer. This leads to increased energy consumption. Further, data transfer over

NOC typically incurs multiple hops, owing to the large number of PEs (typically
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100s) required to map any given layer. This leads to increased latency and energy

consumption.

Intra-layer data transfers occur when neuron fan-in exceeds the crossbar size.

Crossbars in multiple PEs compute partial products, which are aggregated through

intra-layer data transfers to compute final outputs. These transfers are one-to-one,

and occur between closely located PEs (typically 4-8). Further, multiple intra-layer

transfers occur in parallel to compute multiple output neurons concurrently. Hence,

PLC is not suitable for intra-layer communication as only one data can be transmitted

over powerline at any given time. However, NOC based intra-layer transfers enable

parallel communication (one-to-one) and are energy efficient owing to the closely

located PEs.

2.5 Experimental Methodology

2.5.1 Neuromorphic architecture

The RLC parameters for modelling the on-chip PDN are taken from IBM 45nm

process, which uses some fitting parameters in addition to the Equations 2.1, 2.2 and

2.3 in Section 2.3. A set of typical values for the PCB board and package parasitics

is provided in [43]. A 1960µm× 1960µm power grid is estimated to cover a 13×13

array of PEs.

We modeled PDNs using different metal layers and analyzed the channel loss

and the phase response, which are represented by the magnitude and the phase of

S21, respectively (Fig. 2.7). Higher metal layers have higher metal thickness and

less parasitic resistance. Thus, powerline is typically designed with the highest metal

layer in order to minimize the voltage drop between power nodes. It can be observed

that PDN modeling using 9th and 10th metal layers (out of 11 layers) shows the lowest

channel loss. However, the 9th metal layer is 10× thicker than the 1st metal layer,

which makes it unsuitable for low-power requirements. Therefore, in this work, we

use the 6th and the 7th metal layers, which are 2× thicker than the 1st metal layer.
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The PDN model is designed as rectangular power grid meshes, and it surrounds a PE

(in the PE-array) of size 0.34 mm2. Further, each PE has a transceiver (area ≤ 0.001

mm2) located at the center of its power grid mesh.

The overall PE design was adopted from RESPARC [20]. Cycle-level NOC sim-

ulations were performed with Booksim2 [44] and Orion2 [45] was used for power

measurements.

2.5.2 PLC channel quality

In contrast to digital data links in an NOC, PLC based communication is analog

in nature. Therefore, channel’s robustness needs to be guaranteed in terms of Bit

Error Rate (BER), that depends on channel noise, signal attenuation between the

communicating nodes, PDN modeling parameters, the size of decoupling capacitors

etc. Effectively, the PLC channel should satisfy a level of BER (≤ 10−5), which does

not degrade output quality (SNN classification accuracy), irrespective of the distance

between any two PEs considered for communication. BER primarily depends on the

level of power supply noise (primarily SSN). Hence, the required transmitter power is

determined by the amplitude of the noise on the powerline. Recall, our proposed PLC

channel provides power to non-synchronous (non-clocked) components only, namely

crossbar arrays and neurons. Thus, PLC will get affected when the neurons produce

an output spike. However, for the worst case analysis, we assumed that the SSN

noise has same frequency as the data bandwidth, because in-band noise degrades the

channel quality significantly. Subsequently, for estimating the signal power required

for a given noise level, we add an ideal current source to every line segment, such that

its switching frequency matches the PLC bandwidth.

Typically, decoupling capacitors are added to counter the effect of switching noise.

However, in our design, we purposely generate the switching noise to use it in PLC.

Thus, the channel bandwidth is also affected by the decoupling capacitance. Each PE

consumes an average power of 3mA and 20pF of decoupling capacitance is assumed
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Fig. 2.7. (a) Channel loss, and (b) phase of the PDN channel for the
longest path in 13x13 array of PEs using different metal layers

at the center of every PE. Considering the aforementioned requirements, we use a

1Gbps data rate for PLC for our simulations.

2.5.3 Benchmarks

We construct MLP and CNN based SNNs for three popular image recognition

datasets - MNIST [46], CIFAR-10 [47] and SVHN [48]. The SNNs were trained

using supervised learning approach proposed in [24], wherein an ANN is trained using

error back-propagation followed by its conversion to SNN [24]. Table 2.1 details the

evaluated SNN benchmarks. We use 4-bit precision for inputs and weights, which

obtains high classification accuracy on the SNN benchmarks [20].

2.6 Results

This section discusses the Tx power requirements for PLC. Further, the energy and

latency of hybrid PLC-NOC based neuromorphic architecture is analyzed compared

to PLC-only and NOC-only systems. Our analysis focuses on the inference or testing
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Table 2.1.
SNN benchmarks

Application Dataset Layers Neurons Synapses

Digit recognition MLP0 3 2378 1902400
CNN0 3 66778 1484288

House recognition MLP1 3 2778 2778000
CNN1 3 124570 2941952

Object classification MLP2 4 3778 3778000
CNN2 3 231066 5524480
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phase as edge devices are typically used for deployment of inference applications

whereas, training is performed in the cloud [22].
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2.6.1 Tx power requirements

Fig. 2.8(a) shows that the power required to maintain the same level of BER

increases with increasing distance between the communicating PEs. The required

BER level is decided based on the classification accuracy degradation for different

BERs. Consequently, we use BER of ≤ 10−5 which suffices for SNN applications.

Since signal attenuation increases with increasing distance between PEs, the largest

attenuation occurs when the center PE transmits and the outermost PE receive. This

enables us to estimate the minimum Tx power required for robust communication

between PEs located at any distance. Subsequently, we analyzed the BER versus Tx

power dependence for varying noise levels (Vnoise) which is shown in Fig 2.8(b). The

Tx power thus obtained are used in system-level simulations and are discussed in the

following subsections.

2.6.2 Impact on classification accuracy

Fig.s 2.9(a), (b), and (c) show the impact of BER incurred in data transmission

due to PLC on SNN classification accuracy. It is evident that BERs in range of

≤ 10−5 can ensure accurate SNN inference, which also justifies the choice of BERs

used in Section 2.6.1. The applicability of relatively higher BER than typical require-

ments of (10-10) is enabled by the error-resilient nature of neural network applications.
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This error-resiliency comes from the use of non-linear functions (for instance sigmoid,

clamped ReLU), which squash the output of matrix transformation layer to a small

output range (typically 0 – 1) thereby suppressing errors resulting from small per-

turbations in input. It can also be seen that complex datasets such as CIFAR10 and

SVHN have more constrained BER requirements than simpler datasets for achieving

ideal classification accuracy (obtained for ideal PLC with no error i.e. BER 0.0).

2.6.3 Overall power consumption

Fig. 2.10 compares the power consumption of the neuromorphic architecture (dis-

cussed in Section 2.4) with PLC-only interconnect to a NOC-only architecture

(baseline). Compute (synapse and neuron operations within PEs) constitutes only

∼15.17% of power consumption in the NOC-only architecture. This is because of

the simple computation nature of SNNs, which consists of accumulations only, com-

pared to multiplication and accumulation in ANNs. Efficient dot-product operation

in memristive crossbars further reduce the PE power consumption.

A PLC-only architecture uses low-power on-chip interconnection network enabled

by power lines and low overhead receiver and transmitter per PE. Thus, PLC-only

system enables overall power reductions of ∼51.34% compared to NOC-only system

for SNN acceleration. Low power is extremely valuable in power-constrained edge

devices and battery-powered systems. Note that, while a PLC-only system has sig-
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Fig. 2.11. Inference energy (batchsize = 1)

nificantly higher latency cost (discussed in Section 2.6.5), the power benefits can be

useful in latency insensitive (or latency tolerant) applications.

2.6.4 Inference energy

Fig. 2.11 shows the inference energy consumption of six SNN applications on neu-

romorphic architectures built with three different interconnection namely (1) NOC-

only, (2) PLC-only, and (3) hybrid PLC-NOC (discussed in Section 2.4). MLPs have

inter-layer data transfers with high input sharing (within an inference) because of their

fully-connected design. Recall, all outputs produced by the previous layer are used by

all the next layer neurons. This results in large number of inter-layer communications

for transferring input data to multiple PEs mapping the next layer, in an NOC-only

system. Further, each data transfer requires multiple hops due to the large distance

between PEs mapping the successive layers. A PLC-only system harnesses the high

input-sharing in fully connected NNs (one-to-many) to reduce the energy consumed

in inter-layer communication. However, intra-layer communication are more efficient

in the NOC-only system compared to the PLC-only system. This is because of the
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one-to-one nature of intra-layer communication, wherein no input sharing exists be-

tween the data-transfers. Consequently, the hybrid PLC-NOC architecture enables

efficient inter-layer communication (PLC) and intra-layer communication (NOC) to

achieve ∼42.75%– ∼65.04% reductions in energy consumption for MLPs.

Typical CNNs have smaller receptive fields than MLPs, thereby reducing the

number of receiver PEs per input data packet. Thus, CNNs have lesser input sharing

compared to MLPs, which reduces the benefits obtained from PLC for inter-layer data

transfer. Consequently, the hybrid PLC-NOC system achieves lower energy benefits

for CNNs ( ∼15.76%– ∼33.74%).

2.6.5 Inference latency

Fig. 2.12 compares inference latency of the three architectures for SNN applica-

tions. PLC achieves comparable latency with respect to NOC for inter-layer com-

munication due to the one-to-many communication nature. Here, PLC benefits from

its broadcast nature, while NOC benefits from the parallel one-to-one data transfers.

However, PLC incurs significant latency costs for intra-layer communication. This is

because of the sequential nature of data transfer in PLC, where only one data can

reside on the powerline at any given time. Consequently, while a hybrid PLC-NOC

system can achieve comparable latency to an NOC-only based system, the latency of

PLC-only system can be ∼5.46× higher than NOC-only system.

2.7 Conclusions

Low power and energy-efficient inference has become extremely important as more

and more machine learning applications are being deployed in the edge devices. Fur-

ther, the number of edge devices used per person have continuously increased over

the past decade with majority of the devices being battery powered. This has mo-

tivated the design of neuromorphic systems to enable data processing capabilities at

the edge devices. Both low-power computation units and energy-efficient interconnect
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Fig. 2.12. Inference latency (batchsize = 1)

are fundamental to efficient neuromorphic system design. In this chapter, we propose

a hybrid PLC-NOC based neuromorphic architecture built with memristive cross-

bars to enable efficient ML inference. Our hybrid interconnect harnesses the different

data-transfer patterns in typical many-core architecture to optimize energy expended

in data communication. Additionally, memristive crossbar based PEs achieve low

energy consumption for neuromorphic computations. Our experiments over a wide

range of spiking neural network benchmarks show average energy improvements of

∼39.32% at comparable latency.
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3. SBSNN: STOCHASTIC-BITS ENABLED BINARY

SPIKING NEURAL NETWORK WITH ON-CHIP

LEARNING FOR ENERGY EFFICIENT

NEUROMORPHIC COMPUTING AT THE EDGE

In this section, we propose stochastic Binary Spiking Neural Network (sBSNN) com-

posed of stochastic spiking neurons and binary synapses (stochastic only during train-

ing) that computes probabilistically with one-bit precision for power-efficient and

memory-compressed neuromorphic computing. We present an energy-efficient imple-

mentation of the proposed sBSNN using ‘stochastic bit’ as the core computational

primitive to realize the stochastic neurons and synapses, which are fabricated in 90nm

CMOS process, to achieve efficient on-chip training and inference for image recogni-

tion tasks. The measured data shows that the ‘stochastic bit’ can be programmed to

mimic spiking neurons, and stochastic Spike Timing Dependent Plasticity (or sSTDP)

rule for training the binary synaptic weights without expensive random number gen-

erators. Our results indicate that the proposed sBSNN realization offers possibility

of up to 32× neuronal and synaptic memory compression compared to full precision

(32-bit) SNN and energy efficiency of 89.49 TOPS/Watt for two-layer fully-connected

SNN.

3.1 Introduction

In the current era of ubiquitous autonomous intelligence, there is a growing need

for moving Artificial Intelligence (AI) to the edge to cope with the ever increasing

demand for autonomous systems like drones, self-driving cars, and smart wearable

devices. Energy-efficient neuromorphic systems are henceforth necessary to process

the massive amount of data generated by the resource-constrained battery-powered
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edge devices. Furthermore, it is highly desirable to embed on-chip intelligence using

low-complexity learning rules, which enable the edge devices to learn from real-time

inputs. Real-time on-chip learning capability precludes the need for offline training

in the cloud, which can otherwise lead to higher latency and security concerns for

real-time applications.

Spiking Neural Networks (SNNs), on the account of event-driven computing capa-

bility and hardware-friendly local learning using Spike Timing Dependent Plasticity

(STDP), offer a promising solution for realizing energy-efficient neuromorphic sys-

tems with on-chip intelligence. In fact, researchers in [49] demonstrated that SNN

running on event-driven neuromorphic hardware like Intel Loihi [23] incurs the min-

imum energy per inference relative to similarly sized analog neural network executed

on CPU/GPU while providing equivalent inference accuracy for a latency-critical

keyword spotting task. Recent works on deep SNNs indicate that energy efficiency

significantly increases with network depth due to exponential drop in the spiking

activity across successive SNN layers [50, 51]. In this regard, prior works proposed

energy-efficient implementations of SNN using CMOS [11,23,52] and emerging device

technologies such as Resistive Random Access Memory (RRAM) [53,54], Conductive

Bridge RAM (CBRAM) [55], and Magnetic Tunnel Junctions (MTJs) [56]. However,

SNNs composed of deterministic neuronal and synaptic models require multi-bit preci-

sion to store the parameters governing their dynamics. As a result, the computational

complexity and neuronal/synaptic memory requirements increase with network size,

leading to reduction in the overall power- and area-efficiency.

We propose and implement ‘stochastic bits’ enabled binary SNN (sBSNN) that

computes probabilistically with one-bit precision for energy- and memory-efficient

neuromorphic computing at the edge. The core building block of the sBSNN is a

‘stochastic bit’, which switches between its logic low and high states with a probabil-

ity that varies in a sigmoidal manner based on the input. We realize the stochastic

neurons, referred to as sNeurons, and synapses (stochastic only during training) using

the proposed ‘stochastic bit’ as explained below. The sNeuron receives the weighted



29

sum of the input spikes with the synaptic weights, and spikes probabilistically de-

pending on the weighted input sum. The firing probability of the sNeurons, similar

to the switching dynamics of the ‘stochastic bit’, has sigmoidal relationship with the

weighted input sum. The binary synapse interconnecting a pair of input (pre) and

output (post) neurons is similarly emulated using the ‘stochastic bit’ during training.

The binary synaptic weight is trained using the stochastic-STDP (sSTDP) algorithm

presented in [57], where the synaptic weight is potentiated/depressed with a proba-

bility that depends on the degree of correlation between the spike times of the pre-

and post-neurons. The trained binary synaptic weights are then used determinis-

tically during inference to predict the class of a test input. The proposed sBSNN,

with event-driven computing capability enabled by state-less sNeurons and memory-

efficient on-chip learning capability enabled by the hardware-friendly localized sSTDP

rule, offers a promising solution for building the next generation of autonomous in-

telligent systems.

To that effect, we propose an energy-efficient realization of sBSNN, fabricated in

90nm CMOS technology, to achieve on-chip training and inference for visual image

recognition tasks. The proposed ‘stochastic bit’ is composed of a cross-coupled in-

verter with PMOS header and NMOS footer transistors for obtaining the sigmoidal

switching probability characteristics. We interface the CMOS ‘stochastic bit’ with

the appropriate peripheral circuitry to realize the sNeurons and synapses. The en-

ergy and memory efficiency of the proposed implementation stems from three key

factors. First, the power consumed by the sNeuron for generating a spike is com-

parable to that consumed in a single transition of a cross-coupled inverter, which is

typically in the order of few µW . In addition, the ‘stochastic bit’ design also leverages

power gating technique [58] with header and footer transistors between the supply

and ground rails for reducing the leakage power consumption. Second, the spiking

dynamics of the sNeuron depend only on the current input and not on the integrated

sum of the current and past inputs, which precludes the need for storing the neuron
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state (typically known as the membrane potential) as is common in deterministic

spiking neurons like the leaky integrate-and-fire neuron. Further, the synapses need

only one-bit storage to record the respective binary states. Last, the weighted sum

of the inputs with the synaptic weights, which is typically a series of multiply and

accumulate (MAC) operations in analog neural networks, is transformed to AND

operations followed by pulse count in the proposed sBSNN, thereby reducing the

computational energy significantly. Our analysis using a two-layer fully-connected

SNN of 400 neurons indicates that the proposed realization offers high energy effi-

ciency of 89.49 TOPS/Watt, which renders it a potential candidate for enabling the

next generation of intelligent devices.

In summary, we make the following contributions:

• We proposed the ‘stochastic bit’ as the core computational primitive to realize

the stochastic neurons and binary synapses, which are implemented in 90nm

CMOS process.

• We proposed and evaluated the ‘stochastic bit’ enabled sBSNN that computes

probabilistically with one-bit precision for power-efficient and memory-compressed

neuromorphic computing.

• We proposed and demonstrated one of the first works on all-CMOS realization

of stochastic SNNs. Our proposal provides reconfigurable on-chip learning that

is suitable for the real-time and resource constrained edge devices.

3.2 Background

3.2.1 Stochastic Binary Spiking Neural Network (sBSNN)

The core building block of the proposed sBSNN is a set of input (pre) neurons

connected to an output (post) neuron via binary weights. The input neurons, which

represent the image pixels for a visual object recognition task, generate Poisson-

distributed spikes at a rate proportional to the corresponding pixel intensities. At
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Fig. 3.1. (a) SNN composed of stochastic input and output neu-
rons interconnected via binary synaptic weights. (b) Stochastic-STDP
learning rule for binary synaptic weights

any given time, the input pre-spikes get modulated by the interconnecting synaptic

weights to produce resultant current into the output neuron. Several previous works

have explored the hardware implementations for these core building blocks of stochas-

tic SNNs, using emerging technologies like CBRAMs and MTJs [57, 59] and built-in

blocks in FPGA board [60]. We proposed a ‘stochastic bit’ as the core building
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block for neuron and synapse (training) to achieve on-chip learning with compressed

memory. We model the output neuron using the ‘stochastic bit’, which spikes proba-

bilistically based on the input current (or weighted input sum) during both training

and inference. The spiking probability of the output sNeuron has sigmoidal depen-

dence on the input current as illustrated in Fig. 3.1(a). It is important to note that

the sNeuron is state-less since the stochastic spiking dynamics depend only on the

instantaneous input current and not on the integrated sum of current and past input

currents as is typical in deterministic neuron models, thereby eliminating the multi-bit

precision requirement for the neuron state (or membrane potential). The stochastic

synapses (stochastic only during training) are similarly emulated using the ‘stochastic

bit’, where the synaptic switching probability depends on the time difference between

the pre- and post-spikes as explained in the following section 3.2.2.

3.2.2 Stochastic-STDP (sSTDP)

Spike Timing Dependent Plasticity (STDP) is a bio-inspired local learning mechan-

sim, which has been experimentally observed in the rat hippocampus [61]. STDP

postulates that the change in the weight of a multi-level synapse interconnecting

a pair of pre- and post-neurons depends on the correlation between the respective

spike times. If the pre-neuron spikes before the post-neuron, the synaptic weight

increases (synaptic potentiation), while it decreases if the pre-neuron spikes after

the post-neuron (synaptic depression). Binary synapses, on the contrary, require a

probabilistic learning rule to prevent rapid switching of the weights between the high

and low levels, which would otherwise render the synapses memory-less. We use the

sSTDP learning algorithm proposed in [57] to train the binary synaptic weights,



33

where the synaptic switching probability has exponential dependence on spike timing

difference as illustrated in Fig. 3.1(b) and described by

PL−→H = γpot · e
−∆t
τpotwhere ∆t = tpost − tpre > 0 (3.1)

PH−→L = γdep · e
∆t
τdepwhere ∆t = tpost − tpre < 0 (3.2)

where PL−→H and PH−→L are the probability of potentiation and depression, respec-

tively. In other words, the weight of a synapse changes based on the temporal corre-

lation between the spike time of pre- and post-neurons. For example, if a pre- (post-)

neuron fires before a post- (pre-) neuron does, it is positively (negatively) correlated

with the input pattern [62]. Consequently, potentiation (depression) occurs proba-

bilistically in the positive (negative) timing window of the sSTDP algorithm. The

corresponding switching probability is determined by the spike timing difference be-

tween pre and post spikes as described in the above equations. The peak switching

probability and time constant for potentiation (γpot, τpot) and depression (γdep, τdep)

determine the synaptic learning efficacy. The sSTDP hyperparameters have to be cho-

sen carefully to ensure right balance between the potentiation and depression weight

updates, and achieve efficient learning. Once the training is complete, the learnt

binary weights are used deterministically during inference. The presented sBSNN

requires only one-bit precision for the neurons and synapses, leading to visual image

recognition with compressed memory requirement.

3.3 sBSNN Design and Implementation

In this section, we first detail the design and implementation of the proposed

‘stochastic bit’, which is the core computing primitive of the sBSNN. We then present

the design of sNeuron and synapse (stochastic only during training). Finally, we

detail the system-level realization of two-layer fully-connected sBSNN for visual image

recognition.
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Fig. 3.2. (a) Schematic of 6-bit ‘stochastic bit’ core. (b) Illustration
of the pre-charge and evaluation modes of operation of the ‘stochastic
bit’. (c) Timing diagram illustrating the operation of the ‘stochastic
bit’.
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3.3.1 CMOS ‘Stochastic bit’ Design

As mentioned in section 3.1, controllable stochastic behavior is the central charac-

teristic of the ‘stochastic bit’. In CMOS-based designs, stochastic behavior is largely

dependent on the characteristics of the random noise source. Thermal noise is one of

the commonly used entropy sources in CMOS process, which stems from the channel

fluctuations induced by random Brownian motion of electrons. The power spectral

density of thermal noise across a resistor is given by V 2 = 4kTR, where k is the

Boltzman constant, T is the temperature in Kelvin, and R is the resistance in ohms.

Accordingly, thermal noise induced stochasticity is only affected by the device re-

sistance and operating temperature. Thermal noise has been used as the source of

randomness in many True Random Number Generator (TRNG) designs [63,64]. Also,

metastability-based TRNG designs using cross-coupled inverters have been reported

to achieve high operating frequency and power efficiency [65]. This motivated us to

investigate the possibility of harnessing the metastable behavior of bi-stable circuits

to implement the ‘stochastic bit’.

The proposed ‘stochastic bit’ is realized using cross-coupled inverter with PMOS

header transistors and NMOS footer transistors as depicted in Fig. 3.2(a). The op-

eration of the ‘stochastic bit’ is divided into two different modes, namely, pre-charge

and evaluation, which are gated by the ‘EN’ (enable) signal as shown in Fig. 3.2(b).

In the pre-charge mode (when ‘EN’ is low), the cross-coupled nodes A and B are

pre-charged to the same voltage by leakage current, while the header and the footer

transistors are turned off. Note that, the inherent power gating enabled by the PMOS

header transistors and the NMOS footer transistors causes the leakage current of the

proposed design to be lower than the gate leakage current of a 6T SRAM bitcell [58].

The switching probability depends on asymmetry in the effective strength of left- and

right-wing PMOS transistors, which can be modulated using the input that is rep-

resented as 6-bit code in our implementation and activates different binary weighted

PMOS switch transistors. The NMOS footer transistors connected to ground are
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controlled symmetrically in strength using the same input code, which is represented

with 3-bit precision in our implementation, to modulate the shape of the probability

curve. The shape of the switching probability versus the PMOS digital code is sig-

moidal as will be shown in the results section 3.4. The shape and the covered range

of probability is programmable and can be reconfigured on-chip. It is worth noting

that, the ‘stochastic bit’ consumes only leakage power during the pre-charge mode,

and charging/discharging power for nodes A and B during the evaluation mode. In

addition, the speed of operation is based on the speed of ‘EN’ signal. Therefore, the

proposed design becomes more power efficient and faster as CMOS process scales.

Also, the PMOS and NMOS sizing, and bit-precision for the respective codes can be

tuned based on the application requirements.

3.3.2 Stochastic Neuron (sNeuron)

We now describe how the ‘stochastic bit’ is used to realize stochastic input and

output neurons forming the sBSNN. The input neurons map the image pixel intensi-

ties to spike trains, where each neuron fires probabilistically at a rate proportional to

the corresponding pixel intensity. The ‘stochastic bit’ can inherently realize an input

sNeuron by mapping the pixel intensity to PMOS code that controls its switching

probability. On the contrary, the ‘stochastic bit’ is interfaced with counter and mod-

ulator circuit (shown in Fig. 3.3(a)), which generates and modulates the weighted

input, for realizing the output sNeuron that spikes with the desired probability. Also,

the spiking activity of the sNeuron can be suppressed by masking the ‘EN’ signal of

the ‘stochastic bit’, which is used for implementing lateral inhibition that facilitates

competitive learning as will be explained in section 3.3.4. The generated spikes from

the input and the output sNeuron (PRE and POST) are applied to the stochastic

binary synapses for synaptic updates as explained below.
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Fig. 3.3. Design of ‘Stochastic bit’ enabled (a) spiking neuron, and (b)
binary synapse (stochastic during training and deterministic during
inference).

3.3.3 Stochastic Binary Synapse

The stochastic binary synapse (during training) is realized by interfacing the

‘stochastic bit’ with 6T SRAM as depicted in Fig. 3.3(b). Based on the sign of the

spike timing difference, tpost− tpre, the synaptic weight update event is determined as

potentiation (depression) when the sign is positive (negative). Then, the spike timing

difference, measured as the number of clock pulses using time to digital converter

(TDC), feeds the ‘stochastic bit’ to selectively turn on the PMOS header transistors,
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effectively causing it to produce an output pulse with the appropriate probability

depending on spike timing. Note that TDC can be realized using a counter for po-

tentiation (depression) that resets when PRE (POST) is high. TDC is shared by

stochastic synapses that are activated by the same PRE/POST signal. The gener-

ated pulse activates the wordline of the 6T SRAM cell while the bitline is driven to

VDD (ground) for synaptic potentiation (depression) update. Once the stochastic

training process is complete, the ‘stochastic bit’ is powered off and the learnt binary

weight stored in the corresponding SRAM cell is deterministically used during infer-

ence as shown in Fig. 3.3(b). Note that, during both training and inference, the

computation of the weighted input sum reduces to AND operations followed by pulse

count since both the inputs and synaptic weights are binary. Hence, the sBSNN pro-

vides much higher computational energy efficiency relative to analog neural networks

with real-valued (32-bit) inputs and synaptic weights, which require MAC (multiply-

and-accumulate) units, and SNNs with real-valued weights and binary inputs that

need accumulators for computing the weighted input sum.

3.3.4 sBSNN System-level Implementation

On-chip training: We demonstrate the efficacy of the proposed sNeuron and

synapse using a two-layer fully-connected sBSNN depicted in Fig. 3.4. Fig. 3.5 illus-

trates the system-level implementation of the two-layer sBSNN. The input sNeurons

representing the image pixels are fully-connected via binary weights to output (post)

sNeurons. At every time-step, the weighted sum of the input spikes with the synaptic

weights are modulated and fed to the ‘stochastic bit’ in the respective post-neurons,

causing them to fire probabilistically. The weighted sum received by each post-neuron

is calculated by counting the number of pulses from the output of the AND gates in

the corresponding column of synapses as depicted in Fig. 3.5. The pulses are only

generated when both inputs of the AND gate are high. Accordingly, power is only

dissipated when there are transitions in the AND gate. As a result, the weighted in-
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put sum computation in sBSNN consumes significantly lower power compared to full

precision (32-bit) SNN. In the event of a post-spike, the spiking neuron inhibits the

remaining post-neurons, as illustrated in Fig.3.4, by masking the respective enable

(EN) inputs as explained in section 3.3.2 to uniquely learn the presented pattern. The

synapses connecting the input to the spiking post-neuron are probabilistically poten-

tiated based on spike timing. The spike timing difference, tpost−tpre (tpre−tpost) in the

number of clock pulses, is measured using the POT (DEP) counter shown in Fig. 3.5,

which is reset at every pre-spike (post-spike) and decremented by unity at successive

time-steps. The elapsed count of POT (DEP) counter is sampled upon a post-spike

(pre-spike) for potentiation (depression) weight update. The spike timing difference

is fed to the ‘stochastic bit’ in the synapses (depicted in Fig. 3.3(b)), which in turn

probabilistically programs the SRAM as detailed in section 3.3.3. The sSTDP-based

probabilistic weight updates enable each excitatory neuron to learn a complete rep-

Input&Image&&
(Pre.neurons)&

Excitatory 

Connections!

Excitatory&Layer&
(Post.neurons)&

Inhibitory!
Connec.ons!

Excitatory!
Connec.ons!

Fig. 3.4. Architecture of two-layer fully-connected sBSNN, with lat-
eral inhibition, for object recognition.
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resentation of the input pattern in the input to excitatory synaptic weights. In order

to ensure that each excitatory neuron learns unique input representations, we divided

the excitatory neurons into different clusters and trained each cluster of neurons on

a distinct class of input patterns as proposed in [57]. Fig. 3.6 shows the MNIST

Fig. 3.5. System-level realization of two-layer fully-connected sBSNN
with lateral inhibition.



41

Fig. 3.6. MNIST digit representations (28×28 in dimension) learnt
by a two-layer fully-connected sBSNN of 400 excitatory neurons (or-
ganized in 20×20 grid).

digit representations learnt by a two-layer fully-connected sBSNN of 400 excitatory

neurons using the sSTDP-based training methodology.

On-chip inference: At the end of training, each post-neuron learns to spike

for a unique input class by encoding a general input representation in the input to

output synaptic weights as shown in Fig. 3.6. Once training is completed, we disable

the clock signal of the ‘stochastic bit’ in the synapses, thereby fixing the weights for

the inference phase. The learnt binary weights, stored in the SRAM cells, are used

deterministically during inference. A test pattern is predicted to belong to the class

learnt by the group of neurons with the highest average spike count over the time

period for which the test input is presented. The proposed sBSNN implementation,

by virtue of using simpler weighted input sum computation and state-less stochastic

neurons, can provide high energy efficiency during inference as will be shown in section

3.4.
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3.4 Results

In this section, we first present the measured results of the sNeuron and synapse,

which are fabricated in 90nm CMOS process. We subsequently show the simulation

results of our sBSNN implementation (detailed in section 3.3.4) using the measured

neuronal and synaptic dynamics on the MNIST dataset.

3.4.1 ‘Stochastic bit’ Characterization

Fig. 3.7(a) illustrates the setup for characterizing the CMOS ‘stochastic bit’ design

(detailed in section 3.3). The on-chip timing controller generates sufficient number

of enable (EN) pulses, which is set to 768 in our experiments, for obtaining reason-

able estimate of the ‘stochastic bit’ switching probability for a specific configuration

of PMOS and NMOS codes. The number of resultant output pulses at OA (refer

to Fig. 3.2(a)) is recorded by a 15-bit on-chip counter to determine the switching

probability for the chosen PMOS and NMOS codes. For every set of input codes,

we performed the switching probability measurement 1000 times. Fig. 3.7(b) shows

that the switching probability of the ‘stochastic bit’ varies roughly in a sigmoidal

manner with the PMOS code. In each box, the central mark shows the median, the

ends of the vertical blue boxes indicate the 25th and 75th percentiles, respectively,

and the lines indicate the min and max values. The measured switching probability

ranges from 11.6% to 90.1% with less than 5% standard deviation at a supply volt-

age of 1.4V . In addition, we varied the NMOS code and found that it controls the

shape of the switching probability curve as illustrated in Fig. 3.7(c). The variation

in the switching probability dynamics with the NMOS code can be attributed to the

change in the respective transistor sizes relative to the PMOS transistor sizes. Note

that, the ratio of minimum to maximum switching probability is determined by the

bit-precision of the PMOS code and the relative sizing (widths) of the PMOS and

NMOS transistors, which need to be fixed at design-time based on the application

requirements.
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Fig. 3.7. (a) Measurement setup for the ‘stochastic bit’ design, which
is interfaced with a FPGA board (b) The measured box plots of
switching probability versus the input (PMOS) digital code, and its
standard deviation, σ (refer to the inset). (c) Switching probability
dynamics for different 3-bit NMOS codes.
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Fig. 3.8. (a) Measurement setup for the sSTDP dynamics needed to
train a stochastic binary synapse, which is interfaced with an FPGA
board for generating the clock and inputs (spike timing, TIME IN),
and monitoring the outputs (state of SRAM cell). (b) The measured
sSTDP curve for different NMOS codes.

3.4.2 Stochastic Binary Synapse

The sSTDP dynamics required for training a binary synaptic weight are obtained

by feeding the spike timing difference to the on-chip pulse generator, which generates

the pre- and post-spikes as shown in Fig. 3.8(a). The Time-to-Digital Converter
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(TDC) measures the spike timing difference and produces the PMOS code for the

‘stochastic bit’, which probabilistically activates the SRAM wordline. The SRAM cell

is then probed for potentiation (depression) event to estimate the sSTDP characteris-

tics for the positive (negative) timing window. We adopted a methodology similar to

that used for the ‘stochastic bit’ characterization for measuring the sSTDP dynam-

ics as explained below. For every value of spike timing within the sSTDP window,

TIME IN in Fig. 3.8(a), we generated sufficient number of enable pulses (set to 768

as explained in section 3.4.1) for the ‘stochastic bit’ constituting the binary synapse.

We then probed the 6T SRAM for a change in the cell state to determine the corre-

sponding switching probability. We repeated the switching probability measurement

1000 times for every value of spike timing. Fig. 3.8(b) shows the measured sSTDP

dynamics, where the synaptic switching probability has roughly exponential depen-

dence on spike timing, which conforms to the sSTDP rule depicted in Fig. 3.1(b). The

sSTDP dynamics can be tuned on-chip by programming the NMOS code controlling

the footer transistor sizes in the ‘stochastic bit’ as explained in section 3.3.1. Note

that the Time-to-Digital Converter (TDC in Fig. 3.8(a)) and pulse generators are

used only for measurements. The binary synapse is composed of only the 6T-SRAM

and the ‘stochastic bit’ during training, where the pre- and post-spikes are generated

by the input and output sNeurons, respectively, constituting the sBSNN. Also, the

spike timing difference is estimated using a counter per pre-/post-neuron as described

in section 3.3.4.

3.4.3 sBSNN for MNIST Digit Recognition

The sBSNN implementation was functionally trained and evaluated using the mea-

sured neuronal and synaptic dynamics shown in Figs. 3.7(b) and 3.8(b), respectively,

on the MNIST digit recognition dataset. The accuracy on the test dataset is 65.88%

for an SNN of 400 excitatory neurons trained on 900 MNIST digit patterns, which

was sufficient for all the neurons to learn general input representations as depicted
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Table 3.1.
Comparison with related works.

This Work 2016 VLSI [66]
2015

IEDM [67]

2017 VLSI

Report [68]

2015

TCAS II [69]

Learning

Rules

Stochastic

STDP

Stochastic

STDP
STDP

Modulated

STDP [70]
STDP

STDP

Timing Window

267ns

(10 time steps)

@37.5MHz

10ms 100us N/A 3.5us

Stochastic

deviation
<5% N/A N/A N/A N/A

On-chip

reconfigurable
YES N/A YES YES YES

Energy

/spike/neuron

8.4pJ*

/1.84pJ**
N/A N/A 11.9 µW***

9.3pJ

/3.6pJ***

System

Configuration

Stochastic

Neuron/Synapse

RRAM Synapse

IF neuron

PCM Synapse

LIF neuron

Stochastic

Neuron/Synapse

RRAM Synapse

IF neuron

Accuracy

92.30%

(784 × 400 × 10)

Trained on 60k

MNIST digits

86%

(784 × 10)

Trained on 50k

MNIST digits

N/A

≈ 88%

(784 × 500 × 10)

Trained on 50k

MNIST digits

N/A

Technology 90nm Non-CMOS Non-CMOS Non-CMOS 180nm
* Measured power: ‘stochastic bit’ + 15b counter + etc. = 226µA*1.4V*26.7ns = 8.4pJ
** Estimated neuron power: 226µA * (33.3/153.2)*1.4V*26.7ns = 1.84pJ
(Post-layout simulated current: 153.2µ = ‘stochastic bit’[33.3µ]+ others[119.9µ])
*** Peak power with a single spike duration of ≈ 10 µs
**** Normalized power [71] from 180nm to 90nm: 9.3pJ *(90/180)*1.4/1.8=3.61pJ
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in Fig. 3.6. Any more increase in the number of training patterns could deteriorate

the learnt representations, leading to further loss in accuracy. The accuracy can be

improved by increasing the number of excitatory neurons and/or by incorporating

an additional fully-connected classification layer trained on a larger fraction of the

dataset. We augmented the SNN with a softmax readout layer of 10 neurons corre-

sponding to the 10 classes in the MNIST handwritten digit recognition task, where

each readout neuron is fully-connected to all the excitatory neurons. For a given in-

put pattern, the spike count of the excitatory neurons are estimated using the sSTDP

trained sBSNN, and subsequently fed to the softmax readout layer, which predicts

the test pattern to belong to the category represented by the readout neuron with

the highest activation. We trained the readout layer on the entire training dataset

using the Adam optimizer [72], which is a popular gradient-based supervised training

algorithm, and cross-entropy loss function with learning rate of 0.001 for 8 epochs.

We obtained higher accuracy of 92.30% on the entire MNIST test dataset of 10,000

images.

sBSNN offers possibility of up to 32× neuronal and synaptic memory compression

relative to similarly sized full precision (32-bit) SNN with accuracy loss that can be

minimized for larger SNNs. The energy of the sNeuron with the measurement blocks

(refer to the sNeuron measurement setup in Fig. 3.7) is measured to be 8.4pJ/spike.

The standalone neuronal energy is estimated to be 1.84pJ/spike as detailed in Table

4.1. In addition, Table 4.1 also indicates that the proposed implementation offers

lower neuronal energy consumption compared to related works in 90nm CMOS pro-

cess.

3.4.4 Energy efficiency

Finally, we estimate the energy efficiency of the two-layer sBSNN implementation

composed of 784 input and 400 output sNeurons in terms of Tera-operations (TOPS)

per Watt. Our functional simulations indicated that the average number of transitions
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Fig. 3.9. (a) Die photo of the ‘stochastic bit’ and its layout (refer to
the inset). (b) Die photo of the stochastic binary synapse composed of
the ‘stochastic bit’ and 6T-SRAM bitcell. (c) Test chip measurement
setup using FPGA.
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in the AND gate of stochastic synapses is ∼700 out of 784×400 total possible transi-

tions. The average power consumed by the AND gate per transition in 90nm CMOS

process is estimated as 0.80µW , which totals to 0.56mW per time step. Every output

sNeuron requires a 10-bit ones counter for accumulating the maximum weighted input

sum of 784, and the ‘stochastic bit’ to spike probabilistically. The average weighted

input sum received by the output sNeurons is functionally determined to be 21. The

average power consumed by the 10-bit ones counter is estimated to be 0.558mW per

sNeuron while that of the ‘stochastic bit’ is measured to be 0.033mW per sNeuron.

The total output neuronal power is 236mW (0.558mW+0.033mW ×400) while that of

the input neurons is 25.87mW (0.033mW×784). The proposed implementation per-

forms 23.52 TOPS (784×400×2×37.5MHz) while consuming 262.8mW, leading to

energy efficiency of 89.49TOPS/Watt. The high energy efficiency can be attributed

to binary dot product computations and the inherent sparsity in the neuronal spiking

activity offered by SNNs. Figs. 3.9(a)-(b) show the die shot of the sNeuron, synapse,

and the layout of the ‘stochastic bit’ core (inset of Fig. 3.9(a)). For measurements,

we interfaced an FPGA to the QFN packaged chip on a custom PCB as depicted in

Fig. 3.9(c).

3.4.5 Process and temperature variation

Fig. 3.10(a) shows the simulated switching probability curves affected by process

and temperature variations. The black solid line represents the baseline of our design

and the other lines represent variations caused by the different combinations of process

corners (FF, TT, SS, FS, SF) and temperatures (-55◦C, 27◦C, 125◦C). The (SS, -

55◦C) corner shows less than 10% change in probability due to decreased temperature

and current, decreasing noise or the source of the randomness. The variations can be

easily compensated by having variable size of M1 and M2 transistors of Fig. 3.2(b)

in the same way we size M3 and M4 transistors. The size ratio between M1/M2

transistors and Ml1x/Mr1x transistors determines the unit step change of probability
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Fig. 3.10. (a) The switching probability curves with process (FF, TT,
SS, FS, SF) and temperatures (-55 ◦C, 27 ◦C, 125 ◦C) variations.
(b) The compensated switching probability curves for all corners pre-
sented in (a).

and thus, the slope of the probability curve. Fig. 3.10(b) shows the compensated

switching probability curves from all corners presented in Fig. 3.10(a). In addition

to the variation compensation, this approach also allows us to control the shape and
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slope of the probability curve at the cost of area required for sizing M1 and M2

transistors. Further, the probability range can also be controlled through the NMOS

codes applied to M3 and M4 transistors as shown in Fig. 3.7(c).

3.5 Conclusions

In this chapter, we proposed stochastic binary SNN that requires only one-bit

precision for the constituting neurons and synapses for memory-compressed neuro-

morphic computing. We presented an energy-efficient implementation of the binary

SNN using Biased Random Number Generated (BRNG) as ‘stochastic bit’ to real-

ize the stochastic neurons and synapses (during training) fabricated in 90nm CMOS

process. We demonstrated high energy efficiency of 89.49 TOPS/Watt for two-layer

SNN, which renders the proposed realization amenable for IoT/edge devices with

on-chip intelligence.
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4. COUPLED SPIN-TORQUE-OSCILLATOR BASED

DISTANCE COMPUTATION: APPLICATION TO IMAGE

PROCESSING

Recent research on nano-oscillators has shown the possibility of using coupled os-

cillator network as a core computing primitive for non-Boolean computation. The

spin-torque oscillator (STO) is an attractive candidate because it is CMOS com-

patible, highly integrable, scalable, and frequency/phase tunable. Based on these

promising features, we propose a new coupled-oscillator based architecture for hy-

brid spintronic/CMOS hardware that computes multi-dimensional norm. The hybrid

system, composed of an array of four injection-locked STOs and a CMOS detector,

is experimentally demonstrated. The measured performance is then used as input

to simulations that demonstrate the hybrid system as both a distance metric and a

convolution computational primitive for image processing applications. Energy and

scaling analysis shows that the STO-based coupled oscillatory system has higher effi-

ciency than the CMOS-based system with an order of magnitude faster computation

speed in distance computation for high dimensional input vectors.

4.1 Introduction

Distance computation between multi-dimensional vectors is used in numerous ap-

plications, particularly for data and workload intensive problems such as combinato-

rial optimization, recognition, and classification. In order to process massive amount

of data effectively in real time, it is desirable to realize an energy efficient hardware

for the distance computation that utilizes parallelism. The computation of the Eu-

clidean distance (L2 norm) requires expensive operations in hardware for squaring

compared to that of the Manhattan distance (L1 norm) [73,74]. Since it is inefficient
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to implement such expensive operators in digital CMOS circuits, analog computation

based approaches that use device physics to directly compute complex functions such

as squaring [75–79]. Such analog computations obtain better energy efficacy at the

cost of tolerable errors, and is beneficial for applications where an approximate result

is sufficient instead of exact result. The paradigm of ‘let physics do the computing’

has motivated researchers to look at “alternative computing models” that explore

the use of non-CMOS devices as functional units for better energy efficiency and

speed. One of those alternative models is based on the coupled oscillator network in

which the oscillator array is used to compute (say) ”similarity” between two multi-

dimensional vectors. The similarity can be defined in terms of the distance between

the two vectors. [80–87].

Such coupled oscillatory networks are widely found in nature such as pendulum

clocks on a wall [3], flashing fireflies [4], animal flocking [5], coupled oscillations in the

human heart and brain [6, 7]. Inspired by such systems, researchers have proposed

coupled oscillator systems to solve image or pattern recognition problems [81,84,88–

93] in a “preferred way of nature”. With the development of emerging oscillators such

as Spin-Torque Oscillator (STO) and vanadium dioxide (VO2), recent research has

demonstrated fabricated oscillators [94–97]. However, they use external capacitors or

bonding wires for coupling, making it difficult to couple large number of oscillators

or to build high-density networks.

Nanoscale oscillators such as spin-torque oscillators (STOs) STOs are attractive

for implementing the large number of coupled oscillator network for computation be-

cause they provide potential scalability of the functional units to smaller dimensions,

along with faster computation time and less energy consumption compared to stan-

dard digital or analog CMOS implementations [75–77,79,86,94,98,99]. In this work,

we focus our attention on STO-based coupled oscillatory system for approximate Eu-

clidean distance (ED) computation. Such a hybrid nano-oscillatory system comes

with multiple challenges that must be overcome to be practically implemented and

adopted. First, the system has to be CMOS compatible (in terms of the fabrication
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processes, operating currents and voltages) and scalable. Second, the system should

perform computations in parallel for better energy efficiency, taking advantage of the

properties of nano-oscillators. STOs are back-end process compatible with CMOS,

and their oscillating amplitudes are also CMOS compatible. Moreover, STOs offer

tunable frequency and phase, and generate microwave RF oscillating signals that en-

able fast computation. These features motivated us to explore STOs with the injection

locking scheme for the coupling as the primitive for a distance computing architec-

ture. We experimentally demonstrate a system composed of giant magnetoresistance

(GMR)-based STO devices [100–102] and a CMOS detector as the core computing

primitive for distance computation. In addition, we theoretically show that phase

dynamics of the system inherently introduces non-linearity that makes the system

appropriate for measuring the L2 distance between two multi-dimensional vectors.

The hybrid system is used to measure the distance between two input vectors whose

output follows the L22 norm. Our experimental results on 4 coupled system along

with CMOS peripherals for distance measurement is used to parameterize larger-scale

simulations of coupled oscillatory system. The hardware for L22 distance calculation

is also used to compute approximate convolution, which in turn has been used for an

edge detection task.

4.2 Coupled Spin Torque Oscillator array

Before we explain how the proposed system can be used to compute the ED

between two multi-dimensional input vectors, it is important to explore the device

characteristics of STOs, the core computation unit of our injection-locked coupled

oscillator array. STOs are compact RF oscillators based on magnetic spin valves that

consist of a fixed and a free magnetic layer separated by an insulating spacer layer.

The sustained magnetization precessions of the free layer is induced by injecting

DC current through the device and the resultant oscillating resistance leads to an

alternating voltage across the device. The precession frequency changes as the charge
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current through the oscillators changes. Therefore, STOs work as current controlled

oscillators.

Fig. 4.1. (a) schematic of RF signal conditioning board for the spin
torque oscillator array. (b) Free-running response from single device.
(c) Injection locking response of similar device.

The device array is shown in Fig. 4.1(a). The proposed STO devices are giant

magneto-resistive (GMR) nano-contact devices consisting of a CoFe reference layer

and CoFe/Ni multilayered free layer (see Methods section for fabrication details),

chosen for the simplicity of their magnetic structure that minimizes variations due

to patterning. To operate in the target band of 5 GHz to 10 GHz, the STOs are

contacted by tapered coplanar waveguide (CPW) lines connected to pads at the edge

of the chip. To ensure that each STO receives an injection signal of similar amplitude

and phase, the STOs are patterned 3µm apart. Scanning electron micrograph of RF

microstrip and CPW device lines shown in upper left. Red lines are stitched grounded

CPW lines (20 GHz bandwidths).
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A DC current flowing through the nano-contact produces an anti-damping torque

on the free layer, causing the free layer to precess about the net effective field. Increas-

ing the current changes the net effective field (primarily by changing the demagnetiz-

ing field via the cone of precession), thereby changing the precession frequency [103].

A typical free-running individual device spectral response is shown in Fig. 4.1(b). As

seen in Fig. 4.1(c), the device frequency pulls to the injected signal and phase locks.

The degree of locking—that is, the fraction of the time the device is phase-stable rel-

ative to the injected signal—increases as the STO frequency approaches the injection

frequency. By measuring the amount of power outside of the injection signal and

comparing it to the free running power, we can estimate the degree of locking of the

device. For the devices in the measured array, we restrict our operation to regions

where the estimated degree of locking is greater than 95%.

The injection signal is delivered to the STOs via a 1 µm wide microstrip patterned

over the devices (see Fig. 4.1(a)), producing an ac magnetic field at the devices of

approximately 0.4 mT for the data presented here. This ac field is transverse to the

0.379 T field applied at 5◦ to the surface normal, which is to place the oscillation

frequency near 7 GHz. Both the amplitude and the phase of an injection locked

oscillator change across the locking range. For STOs, the phase has been shown to

shift from -π/2 at the fosc < finj range, to +π/2 for fosc > finj range. [104] Thus,

the shape of the response curve across the locking range is adjusted by changing the

amplitude and phase of the net reference.

Fig. 4.2(a) shows the signal at f = finj across the locking range for a single

oscillator for different values of the reference phase. The bottom panel of Fig. 4.2(b)

shows the calculated response for those phase angles, based on a STO model whose

amplitude and phase at finj vary as shown in the top panel. We choose a reference

phase and amplitude shift such that the curve has a maximum near the center of the

locking range.

Based on these observed features, STOs can be used to encode input information

as the frequency in the free-running mode or as the phase in the injection-locking
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Fig. 4.2. (a) Voltage from microwave diode across locking range for
two different values of microwave phase reference. (b) Top panel:
Inputs for amplitude and phase of STO signal for Phasor model below.
Bottom panel: Phasor model of expect signal at f = finj, for different
values of reference phase.

mode. The latter is the case and STOs are used as current to phase converters. The

relative phase of STOs to the injected signal represents input information mapped to

the bias current of STOs. Note that the injected signal plays another significant role

in addition to enabling the coupling of oscillators in our distance computing system.

The injected signal (referred as the reference signal hereafter) also provides better

approximation of the ED computing as explained in the next section.

4.3 Coupled Oscillator-based Distance Computation System

In this section, we first describe the functional configuration of the oscillator-based

computing system, and explain how our system computes the distance between two

input vectors by exploiting the device characteristics described above. We analyze the

system with the derived equations to show the relationship between the input phase
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information and the corresponding output signal amplitude. Finally, the impact of

noise from the device is considered for the operation of the system.

Fig. 4.3. (a) Block diagrams of coupled oscillator based L22 unit for a
distance computing primitive (b) The cases showing the same A with
different ED when the amplitude of reference signal is same as that
of the STO signal.

In our system, the coupled STOs are injection-locked in frequency by an AC

magnetic field. Locked STOs emit the same frequency as the injection signal but

can have different phases depending on their input currents. We choose the input

currents to be proportional to the difference between the two input vectors, such that

the coupled spin-torque oscillator network maps input information into phases of the

oscillatory signals produced by the GMR-STOs. As depicted in 4.3(a), each injection-

locked oscillator is biased with a current corresponding to an element-wise difference

between two vectors of an input. The output signals of the STOs are merged through

a summing element (denoted as
∑

in Fig. 4.3(a)) before presenting to the Detector

Unit. Different techniques such as resistive coupling [105] and capacitive coupling [84]

have been used to sum incoming signals from the oscillators. In our implementation

(described in the next section) we use Wilkinson coherent power combiners to avoid

additional phase and amplitude offsets. The output signal from the summing unit

exhibits different amplitude as a function of the relative phases to the reference signal.
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The Detector Unit measures this amplitude, and returns a digitized code that is

proportional to the squared ED between input vectors as described below.

We analyze how the oscillator network converts input information into the ampli-

tude of the combined signal and how the non-linear distance metric can be obtained.

Free-running STOs are frequency-tunable with current. When injection-locked, STOs

emit a constant frequency as a function of current, but change phase monotonically

across the locking range as explained in the previous section [104,106,107]. Here, the

combined signal of the oscillator array can be expressed as
∑n

i=1Aicos(ωt+ δref + δi),

where ω is the reference signal frequency, Ai is the amplitude of STO i at ω, n is

the number of STOs (i.e., the dimension of the input vector), δref is the phase of the

reference signal, and δi is the phase relative to that of the reference signal. Using

harmonic addition theorem [108], this signal can be rewritten as Acos(ωt+ δ), where

the amplitude and phase are defined as

A2 =
n∑
i=1

n∑
j=1

AiAjcos (δi − δj) (4.1)

δ = tan−1

∑n
i=1Aisinδi∑n
i=1Aicosδi

(4.2)

In addition to the signals of n oscillators, we have the injected reference signal

that has the frequency of ω and provides the reference phase, δref , to the oscillators.

Therefore, we have the amplitude of the combined signal as

A2 =
n∑
i=1

n∑
j=1

AiAjcos (δi − δj) + 2Aref

n∑
j=1

Ajcos (δj) + A2
ref (4.3)

We can expand equation (4.3) with the approximation of cosθ ≈ 1− θ2/2, where the

approximation error is less than 5% when |θ| is less than π/3. The amplitude of the

combined signal can be expressed as (see Supplementary Information for details)

A2 = (A0n+ Aref )2 − ((n− 1)A2
0 + ArefA0)

n∑
i=1

δ2i + A2
0((

n∑
i=1

δi)
2 −

n∑
i=1

δ2i ) (4.4)
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where A0 is the amplitude of n oscillators. The first term of the equation (4.4) is

constant with respect to δ, and the second term is proportional to the ED square of n-

dimensional vector [δ1, δ2, ..., δn]. We call the third term as the error term since we can

obtain the approximated ED if the error term is small enough. The maximum of the

error can be derived by using Chebyshev’s sum inequality, (
∑n

i=1 δi)
2 ≤ n(

∑n
i=1 δ

2
i ).

The error term can be expressed as

A2
0((

n∑
i=1

δi)
2 −

n∑
i=1

δ2i ) ≤ A2
0(n− 1)(

n∑
i=1

δ2i ) (4.5)

where the equality holds if all δis are identical. Therefore, the error is maximized

when the phases of n oscillators are the same. Here, the role of the reference signal

becomes important to reduce the contribution of the error term to A. For example,

let us assume that our system has 4 STOs and 1 reference signal, where the amplitude

of the reference signal is the same as that of STOs (A0 = Aref ). Under this condition,

the reference signal works as another single STO whose phase is δref or ‘0’ relative

phase. To exhibit the combination of the input vectors into a single axis, ED has been

used as an x-axis component. For instance, once the phase of the four input signals

are expressed as [1,1,1,1], then the x-axis component becomes
√

(12 + 12 + 12 + 12)

= 2. Fig. 4.3(b) shows the relative phase information for 4 STOs, which can be

represented as [0, 0, 0,1] and [1, 1, 1, 1], where the ED of the two cases are 1 and

2, respectively. The two cases can be considered as 5 STOs with phase information

[0, 0, 0, 0, 1] and [0, 1, 1, 1, 1]. Therefore, from equation (4.3), we see that both

of these cases result in the same amplitude of the combined signals, although their

ED is different. A strong reference signal resolves this problem by increasing the

contribution of the second term in equation (4.4), thereby reducing the error term.

Fig. 4.4 shows the normalized amplitude of the combined signal from n oscillators

(n=4, 25, and 100) compared to the expected L2 output. The experiment considers

an additional reference signal of phase equal to the phase of the injection signal. The

output obtained when the n-oscillators have n random phases is shown in blue points,
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Fig. 4.4. The normalized amplitude, A, versus ED for n = 4, 25, and
100 with different Aref = A0, nA0, 3nA0, and 5nA0.

whereas the red points show the output when the n-oscillators have equal phase. For

a given L2, the amplitudes of all blue points are less than the amplitude of red point,

showing the aforementioned claim that A has maximum error when the phases of n

oscillators are the same. When the reference signal has the same amplitude as the

STOs, the system shows a broad, noisy, quadratic dependence on L2. With the aid of

a stronger reference signal, the output shows a clear quadratic dependence on L2 by

reducing the contribution of the error term as described above. We can also observe

that the quadratic dependence on L2 becomes less noisy as n increases for the same

strength of the reference signal. This is because the variance of the error term for

the case of n independent random variables (δi) linearly increases with increasing n,

whereas that of the amplitude (A) increases as
√
n. In other words, a clearer quadratic

dependence on L2 can be obtained for a fixed strength of the reference signal as the
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number of dimension increases if the input phases are randomly distributed in the

locking range.

The signals from the STO devices have small amplitude (≈ −59 dBm, see section

4.4). Thus, the amplitude variations in the combined signal from the oscillator array,

occurring due to the phase differences between STO signals, are even smaller. Con-

sequently, the amplitude of the combined signal needs to be detected using CMOS

circuitry for further processing. The key challenge for the CMOS detector circuit is

to differentiate the small amplitude differences in the incoming signal. Rather than

measuring the exact amplitude based on the complex analogue circuitry [109, 110],

we propose a simple but adjustable integrator that is able to represent the relative

amplitude difference of the inputs for a wide range of amplitudes. The integrator only

tracks the region of our interest, which is the small amplitude change in the incoming

sinusoidal signal around the peak value. Thresholding the signal around its peaks

enables the integrator to easily detect the change in signal amplitude.

Fig. 4.5. The integration of a thresholded sinusoidal signal (The en-
closed yellow area is proportional to the output voltage of the inte-
grator).

The integrator outputs a voltage proportional to the definite integral of a thresh-

olded sinusoidal signal, which represents the enclosed area between the threshold level
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(VTH) and the oscillatory signal as shown in Fig. 4.5. In a given integration time

TINT , the area is a function (fint) of the amplitude of the sinusoidal signal A and

VTH , written as

fint (A) ∼=
TINT
π
·
√
A2 − VTH2 (4.6)

where TINT is long enough compared to the period of the sinusoidal signal 2π/ω.

Thus, for a ≈7 GHz signal from the STOs, an integration time of a few nanoseconds

is sufficient.

Fig. 4.6. The overall system equations. (a) The amplitude of the com-
bined signal of the oscillator array, A(x). (b) The detector unit output
voltage, fint. (c) The system output, OUT(x) is the composition of
the two functions (A(x) and fint).

As shown in Fig. 4.6, the overall system can be expressed as equation (4.7)

by replacing A in equation (4.6) with an arbitrary second order polynomial, A =

ax2 + bx+ c, where x is set to the L2 norm:

OUT (x) = fint (A (x)) =
TINT
π
·
√

(ax2 + bx+ c))2 − VTH2 (4.7)

This representation of the integrated value, OUT (x) (= OUT (L2)), is a quadratic

function of L2, thereby illustrating that the proposed system can perform approximate

distance computation (L22 norm).
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Fig. 4.7. The effect of phase (10◦, 20◦) and amplitude variations
(10%,20 %). (a) Aref = nA0, and (b) Aref = 3nA0 (n = 25).
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For real devices, the phase and amplitude of the oscillating signals from STOs

deviate from the expected values due to process variations and noise. Based on the

measured results [104, 111], the effect of phase (10◦, 20◦) and amplitude variations

(10%, 20%) vs. L2 are shown in Fig. 4.7(a), and (b) for different amplitudes of

the reference signal Aref = nA0, and 3nA0, respectively. Note that the quadratic

dependence on L2 is still maintained even with process variations and device noise.

4.4 Implementation and results

In this section, the implementations of the coupled STO network and CMOS

detector are discussed. Fig. 4.8(a) and (b) show a block diagram of the entire hybrid

system and its hardware implementation, respectively. For the chosen computation

architecture of Fig. 4.3(a), first the STOs must couple to the injection signal, which

works as a phase reference. Subsequently, the individual oscillator output signals must

be combined with equal phase and amplitude. The STOs are arranged in a bank of

4 oscillators excited by a common microstrip field line. Each STO is contacted by

a coplanar waveguide enabling independent current biasing. The injected signal,

referred as the reference signal, couples parasitically to the STO output lines (≈ 35

dB isolation), resulting in a signal with amplitude (-31 dBm) much larger than the

STO (≈ -59 dBm). This parasitic is at a fixed phase relative to the locked STO signal,

and thus coherently mixes with the STO signal at the power detector, providing an

effective phase reference. The reference signal enables the detection of this locking

curve directly without spectrally resolving the STO output. If the combined signal

is sent to the detector, when the STO phase locks, the resulting homodyne signal

proportional to ASTO · Aref (see equation (4.1)) is much larger than the STO signal

itself. For the measurements, in this research, Aref is set to be about 660ASTO, and

locking is easily detectable as a change in the detector output voltage.

Once the signal is presented to the CMOS module, additional amplification stages

are used inside the CMOS detector (Fig. 4.8(c)). The first two stages are a low-noise
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Fig. 4.8. The system implementation. (a) Block diagram for entire
system, and (b) its implementation. (c) The expected signals at dif-
ferent nodes in the CMOS detector module.

amplifier (LNA) and a differential amplifier to make the signal compatible with CMOS

circuits. Inverter-based amplifiers are used to amplify only the portion of interest—

the peak of the incoming signal—based on the threshold of the inverter. Consequently,

the signal at the input to the integrator behaves like the fourth waveform shown in

Fig. 4.8(c) (INV2 amp.) where the signal normally stays at the VDD level, and

only goes below when the INV1 amp signal exceeds the threshold level of the second
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inverter (VTH2). The amplitude of the incoming signal Vamp determines the depth

of the dip in voltage from the VDD level, and thus the amount of current is stored

onto the capacitor. Accordingly, the voltage across the capacitor rises during the

integration time. Finally, the integrator output voltage is converted into a digital

code at the analog to digital converter (ADC) stage for further image processing.

The CMOS detector is fabricated in 90nm CMOS process.

Fig. 4.9. (a) The fitted response of all devices, showing overlap at
7 GHz operating point. (b) Response curves for all devices. Arrows
indicate the reference bias points. (c) Distribution of diode response
for each device, 5000 test ∆ I points. Box plots of response of 4 device
array for test vectors within ∆I < 230 µA, (d) with CMOS detector
and (e) with Diode detector plotted vs. ED (defined as mA/10−4

mA). (f) The fitted curve from (e) with normal distributed noise (σ
of 2 LSB ADC code).
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We first measured the response of each individual STO device in an array of four

STOs to characterize the coupled oscillator network. The responses from the four

different devices are shown in Fig. 4.9(a). The variations in the frequency and am-

plitude vs. current (i.e. the spectral response) from device-to-device are one of the

most challenging aspects of creating arrays of oscillators with STOs. The devices in

the array have sufficient overlap near 7 GHz to allow injection locking of all devices

simultaneously. The locking response for each device in the array is shown in Fig.

4.9(b). The difference in shapes of the locking curves for a given reference signal

amplitude and phase occurs due to a combination of extrinsic device differences (in-

jection locking phase at a given STO, effective microwave path lengths) and intrinsic

differences (STO locking dynamics). From the locking response, a reference current

I0j for each device is chosen, and a random set of test points mapped as current de-

viations from I0j are applied. The resulting distribution is shown in Fig. 4.9(c) (see

Methods section for details of this analysis). As the test current moves away from

the reference point, the detected signal shown in Fig. 4.9(c) decreases monotonically,

albeit with significant noise. The noise on the detected voltage at a given test current

is a combination of electrical noise (primarily due to the large gain needed to detect

the small GMR signals) and the asymmetry in the response curve for Ij = I0j ±∆I.

Phase noise of the injection-locked STO can also add to noise. However, our mea-

surements of the close-in power spectral density across the locking range do not show

significant fluctuations out of the locking band.

Finally, the response curve of the four devices, which are simultaneously pro-

grammed based on ED of their currents ([I1, .., I4]) from the reference point I0j, is

shown in Fig. 4.9(d) and 4.9(e) using the CMOS detector and the diode detector,

respectively. Approximately 400 randomly generated input vectors are applied to the

STOs and the corresponding output voltage from the system is measured. On each

box, the central mark indicates the median, the ends of the vertical blue boxes indi-

cate the 25th and 75th percentiles, respectively, and the lines indicate the min and

max values. The diode response remains monotonic with |∆I| and it is similar to the
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curve calculated from the individual response curves in Fig. 4.9(c). This is typical

for non-interacting devices with amplitudes much less than the reference signal. The

response of the CMOS detector approximately follows that of the microwave diode

detector, suggesting that the two detectors introduce similar non-linearities into the

signal path. The output voltage of CMOS detector is sampled with 5-bit resolution

ADC implemented in the detector for measurement. Note that the output analog

voltage can be post-processed with ADC with different resolution. For the case of

Aref = 5nA0 and n = 4 in Fig. 4.4, the standard deviations (σ) from the fitted curve

are 0.32 and 1.98 LSB (5-bit ADC) for the case of no variation and 20◦ phase and

20% amplitude variation, respectively. The σ of the measured average CMOS detec-

tor response from the fitted curve is 2.67 LSB, which is larger than the σ obtained

for 20◦ phase and 20% amplitude variation. Based on the power spectral density

across the locking range, we believe that the measured noise comes mainly from the

gain amplification stages which could be reduced or removed if the system is built

on a single chip. Fig. 4.9(f) shows the second order fitting curve from Fig. 4.9(d)

with normal distributed noise (σ for the 2 LSBs of 5-bit ADC code). We utilized

the fitted curve from the measured results with normal distributed noise for approx-

imate distance computation targeting image processing applications as described in

the following section 4.5.

4.5 Applications using an STO-based L22 norm

To check the feasibility of using the proposed L22 unit for distance computation

and convolution, we have parameterized the simulations using the experimentally-

obtained response functions (Fig. 4.9(f)) to perform a facial recognition task and an

edge detection task using Gabor filtering [113]. For facial recognition, 40 images from

AT&T face database [112] are compared to each other and L22 calculated as shown

in Fig. 4.10(a). The images with 92 x 112 pixels are converted to 5-bit grayscale.

Each STO is biased to an amount of current corresponding the pixel-wise differences
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Fig. 4.10. (a) L22 distance computation with AT&T face database
[112]. (b) The Ideal case (left) calculated mathematically and the
approximate case (right) are shown using the fitting curve from the
measured CMOS detector (Fig. 4.9(d)), with normal distributed noise
(σ of 2 LSB ADC code) is shown.

between the reference image and the template image. As a result, squared ED (degree

of match) between two images are calculated and shown for 40x40 cases. The distance

is mapped on to a gray scale from white (similar) to dark (dissimilar) and plotted

as a matrix in Fig. 4.10(b) for both the ideal and STO-based L22 calculation. It is

possible to observe the similarity of response of the oscillator-based L22 to the ideal

result.

In addition to computing the ED betweenA = (a1, a2, ..., an) andB = (b1, b2, ..., bn),

the L22 distance units (outlined in blue in Fig. 4.3(a)) can also be used to estimate

convolution of two input vectors, A and B. Let us consider three L22 units having in-
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Fig. 4.11. Block diagrams for a convolution computing primitive based
on ref. [105,114].

puts of (A−B), A, andB as shown in Fig. 4.11. The output of L22(A−B)− L22(A)− L22(B)

can be represented as α
∑n

i=1(an · bn), which is proportional to the dot product of A

and B (or convolution) [105, 114]. The computing block for convolution was used in

edge detection of images to determine the efficacy of the proposed coupled oscillatory

network.

Edge detection using a 2x2 kernel (using the Gabor filter [115] (Fig. 4.12(a)))

was performed through the following process: First, the image was converted to 5-bit

grayscale and convolved with Gabor filter kernel of size 2x2. The Gabor filter kernels

have been generated based on the model in ref. [114]. For an image fragment I and the

filter kernel F , the pixel-wise differences I −F , I − 0, and F − 0 were calculated, and

the corresponding bias currents was applied to three L22 units, shown in Fig. 4.11.

The system outputs a level proportional to convolution, thus generating a single pixel

of the output edge map. The entire edge map is obtained by sequentially sliding

the image fragment window across the image. Note that 5-bit quantization has been

applied for a pixel intensity of the image and the Gabor filter kernel. Edge detection

results from the ideal convolution and approximate convolution based on our system

are shown in Fig. 4.12(b) for different levels of system noise. Despite the additional
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Fig. 4.12. (a) Edge detection on image (4.1.04 from SIPI database
[115]) with the proposed computing primitive. (b) The edge map re-
sults from simulation (Ideal), experiment with the fitting curve (Ap-
proximate), and experiment with the fitting curve in addition to σ of
1 and 2 LSB noise. (c) The difference of the edge map between the
ideal case and the approximation in addition to σ of 2 LSB noise.

noise, the images clearly show the edges present in the image, particularly when the

noise is confined to the least-significant bit (LSB). The difference between the ideal

edge map and approximate one with normal distributed noise (σ = 2 LSB) is plotted

in Fig. 4.12(c), where the variance of the difference is 7.9%.

The energy consumption for distance computing has been estimated to project

the efficiency of the proposed system. Specifically, we compare our system with

CMOS based analog distance calculation circuits (DCCs) as a separate block. Note

that the power consumption of our hybrid system is dominated by the LNA (See

Fig. 4.13) needed to amplify the STO outputs to CMOS levels, a consequence of the

GMR STOs used in the system. If higher magneto-resistance STOs are used, both
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Fig. 4.13. The power breakdown of hybrid system for 4-dimensional case.

Table 4.1.
Comparison with CMOS distance computation circuits

Ref. No. inputs
Power
[mW]

fs
[MHz]

Energy/dimension
[pJ]

[76] 4x5 14.95 1 747.50
[79] 16x16 0.7 0.33 8.29
[116] 2x1 0.733 20 18.33
[77] 3x1 0.085 10 2.83

This work
4x1 10.87 250 10.87
16x1 16.75 250 4.19

This work +
projection [94]

4x1 8.92 357 6.25
16x1 8.93 357 1.56

amplifier and STO power consumption (through lower operating currents) could be

reduced. However, even without considering such devices, our current hybrid system

with GMR-STOs becomes more power efficient as the number of dimension increases

and shows comparable or better energy efficiency to CMOS analog DCCs with at

least an order of magnitude faster computation speed (Table 1).
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When n increases, the increase in total power consumption is only due to the

power consumed by the STOs. In our system, each STO consumes 490 µW, which

can be improved via the use of higher magneto-resistive materials, tunneling magneto-

resistive (TMR) structures, or spin-orbit excitation (see Supplementary Information).

The power consumed by STOs is only 18% of the total power in our system and is

less than 1% when we assume the per-STO power consumption as 1µW [94, 117].

Therefore, power per dimension of our system decreases and converges to the power

consumption of a single STO as n increases. As mentioned in section 4.3, we need

a stronger reference signal as n increases to obtain more accurate distance measure.

However, a stronger reference signal makes the contribution of the second term in

equation (4.4) smaller and more vulnerable to noise. Hence, it is desirable to have

higher resolution ADC or to have more amplification with low noise at the cost of

using the stronger reference signal. We experimentally succeeded in the detection of

the ED with 660 times stronger reference signal, which is sufficiently large enough to

be 5n times stronger reference signal for more than 100 STOs.

4.6 Materials and Methods

4.6.1 STO Fabrication.

The nanocontact STOs used in this work have a pseudospin valve magnetic het-

erostructure of the form (thicknesses in nm):

Ta2/Cu(N)12/Ta3/Cu3/CoFe5/Cu4/[CoFe0.33/Ni0.37]x4/CoFe0.33/Cu2/Ta4 grown

by sputter deposition. The Cu(N) layer is sputter-deposited in an Ar:N gas, which

produces a smoother underlayer. The multilayer CoFe/Ni free layer has an effec-

tive in-plane magnetization Meff = 0.15 T due to the surface anisotropy of the Ni

interfaces. [118,119]

The nanocontacts are formed via a self-aligned process. Electron-beam lithogra-

phy is used to define the ≈ 70 nm diameter resist pillar on the film stack using a

negative tone resist, and a 50 nm SiNx conformal layer then deposited. Mechanical
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polishing shears off the SiNx/resist asperity, and after an O2 plasma ash, results in

a 70 nm nanocontact through the SiNx. A Ta3/Au100 lead forming the center con-

ductor of a coplanar waveguide contacts this nanocontact to bias and read out the

STO. 50 nm of SiNx is then deposited over this structure, upon which the microwave

microstrip is patterned to deliver the RF injection magnetic field. To accomplish

a high bandwidth, symmetric injection-locking scheme consisting of an STO device

chip and RF signal conditioning board was fabricated as shown in Fig. 4.8(b) (see

Supplementary Information for details).

4.6.2 RF conditioning board.

The RF delivery and signal combining board uses grounded CPW lines to deliver

the injection signal and read out the STO dynamics (see Supplementary Information

Fig. 4.15 for schematic). These ground-stitched CPWs have an effective bandwidth

of > 20 GHz. The different CPW path length to each STO are compensated on the

signal conditioning board when combining the STO signals. The Wilkinson power

combiners/splitters used have an insertion loss of 4 dB, and a typical imbalance in

phase of 2.3◦ and amplitude of 0.1 dB. The two amplifiers used each have a gain of 20

dB, and a cutoff frequency of 8 GHz. To adjust the amplitude and phase of the coupled

reference signal, the injection signal is first split on the signal conditioning board by

a coherent power divider, adjusted in amplitude and phase by a digital attenuator

(0.5 dB steps) and phase shifter (5.625◦ steps), and then coherently combined with

the summed STO signals, producing a ”net” reference signal. The CPWs terminate

in Cu spring fingers at a chip pocket, which make contact to edge pads on the STO

chip. These contacts have minimal insertion loss, and enable more efficient testing of

multiple STO arrays and chips. The board was constructed of nonmagnetic elements,

to allow usage in the gap of an electromagnet.
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4.6.3 Distribution analysis.

The distributions shown in Fig. 4.9 are formed with 5000 trials, a measurement

which took 20 min due to the laboratory equipment used. Due to the phase sensitive

nature of the measurement, the zero point of the measurement drifted over this time,

likely due to small temperature changes in the board. This drift was on the order

of the device signal over the course of the measurement. A low-frequency smoothing

procedure was applied to the data to “de-trend” the data, and is described in the

Supplementary Information.

4.7 Supplementary Information

4.7.1 Distribution detrending

A series of bias currents are applied to the STO to determine the distribution of the

detector response. A time trace of the output of a single device is shown in Fig. 4.14(a)

for both the diode and CMOS detectors. Since these are applied at random, with a

Gaussian distribution around zero (equivalently, a Gaussian distribution of currents

around the center current were applied to the device). These traces should be flat with

time, and the slow variations observed are due to small changes in the phase condition

of the reference. These variations are slow, and are significant only due to the slow

current sources used in this test (roughly 2 Hz data rate). These variations are a

significant fraction of the device signal, and can thus mask the desired response. To

remove these slow variations, a smoothing function was applied to the data (Savitsky-

Golay second-order smoothing with 200 points) and subtracted. The diode detector

is a standard microwave diode detector, sampled with a digital multimeter with ≈6

Hz bandwidth. The CMOS detector, on the other hand, is controlled via an field-

programmable gate array (FPGA) board, which is queried once per current bias.

Each query returns a value that is the average of 5000 samples of the detector itself

(the FPGA code was also modified to measure the RMS error on these samples
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Fig. 4.14. Response of detectors to phase locking of a single STO
device for both diode and CMOS detectors.(a) shows response as a
function of time, for which random offsets are applied to the device.
(b) shows the resultant response vs. current.

was measured separately.) The banding evident in the CMOS detector response in

Fig. 4.9(b) is due to the bit depth of the analog-to-digital converter (ADC) on the

detector. Note that the two detector traces are taken essentially at the same time, so

that the slow time variations of the two signals are similar but not identical. There

is a slow quasi-periodic oscillation (possibly due to temperature variations) visible

in both, while an even slower variation is also evident in the diode detection. It is

unknown what the source of this additional variation is, but could be due to the larger

bandwidth of the diode detector. The resulting response functions are shown as a
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Fig. 4.15. Layout of microwave signal conditioning board.

function of bias current difference in Fig. 4.14(b), showing a proper peaked response

of the device signal suitable for the distance computation. Use of faster measurement

times, and possibly a self-referencing algorithm that dynamically accounts for phase

drift, would remove the need for this additional step.

4.7.2 Signal conditioning board

The microwave signal conditioning board was constructed as shown in Fig. 4.15

to permit the introduction and measurement of microwave (5-10 GHz) signals to a

separately fabricated STO chip. The STO chip has coplanar waveguide traces that

are contacted by the board using spring-finger contacts with effective bandwidths

> 10 GHz. The traces on the board are grounded, stitched, coplanar waveguides

(bandwidths > 20 GHz), which connect microwave ICs for power combining, phase

shifting, amplitude trimming, and amplification.
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4.7.3 Addition of sinusoids at the same frequency but different phase

Addition of sinusoids at the same frequency but different phase can be expanded

ϕ =
n∑
i=1

Aicos(ωt− δi) =
n∑
i=1

Ai[cos(ωt)cos(δi) + sin(ωt)sin(δi)]

= cos(ωt) ·
n∑
i=1

Aicos(δi) + sin(ωt) ·
n∑
i=1

Aisin(δi)

(4.8)

Defining Acosδ =
∑n

i=1Aicos(δi) and Asinδ =
∑n

i=1Aisin(δi), (1) becomes

ϕ = Acos(ωt) · cos(δ) + Asin(ωt) · sin(δ) = Acos(ωt− δ), (4.9)

where

A2 =
n∑
i=1

n∑
j=1

AiAjcos(δi − δj)

δ = tan−1

∑n
i=1Aicos(δi)∑n
i=1Aicos(δi)

(4.10)

Note that the amplitude A is a function of δi, which are the variables from which

we will calculate distance. If we define the last element of the sum as the reference

signal An = Aref , δn = δref , then the amplitude A2 can be written as

A2 =
n∑
i=1

n∑
j=1

AiAjcos (δi − δj) + 2Aref

n∑
j=1

Ajcos (δj) + A2
ref (4.11)

We expand equation (4.11) with the approximation of cosθ ≈ 1− θ2/2 as below.
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A2 =
n∑
i=1

n∑
j=1

AiAjcos (δi − δj) + 2Aref

n∑
j=1

Ajcos (δj) + A2
ref

∼=
n∑
i=1

n∑
j=1

AiAj(1−
(δi − δj)2

2
) + 2Aref

n∑
j=1

Aj(1−
δ2j
2

) + A2
ref

= (A0n+ Aref )
2 − A2

0

2

n∑
i=1

n∑
j=1

(δi − δj)2 − ArefA0

n∑
j=1

δ2j

= (A0n+ Aref )
2 − A2

0

2

n∑
i=1

n∑
j=1

(δ2i + δ2j ) + A2
0

n∑
i=1

n∑
j=1

δiδj − ArefA0

n∑
j=1

δ2j

= (A0n+ Aref )
2 − (nA2

0 + ArefA0)
n∑
j=1

δ2j + A2
0

n∑
i=1

n∑
j=1

δiδj

= (A0n+ Aref )
2 − ((n− 1)A2

0 + ArefA0)
n∑
i=1

δ2i + A2
0((

n∑
i=1

δi)
2 −

n∑
i=1

δ2i )

(4.12)

, where A0 is the amplitude of n oscillators.

The amplitude of the combined signal can be approximated to Euclidean distance

square as shown above. The first term of the last equation in (4.12) is constant with

respect to δ, and the second term is proportional to Euclidean distance square of

n-dimensional vector [δ1, δ2, ..., δn]. We call the third term as the error term since we

can obtain the approximated Euclidean distance if the error term is small enough to

be tolerable.

4.8 Summary

We have experimentally demonstrated a core distance computing primitive based

on an STO-based coupled oscillator array. Starting from the theoretical background

of obtaining an L22 norm from a coupled oscillator array, we have shown that the

combination of injection locking of the oscillators and their interference with a ref-

erence signal can be efficiently used to realize the distance computation unit. The

performance of the system as an L22 unit was examined by applying randomly gen-
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erated test input vectors as bias current to the STOs and generating corresponding

output digital codes from the CMOS detector. The characteristic curve from the

experiment approximates an L22 norm which, in turn, is used to determine the fea-

sibility of the STO-based coupled system for image processing applications. The

approximate distance and convolution output based on our system shows reasonable

accuracy as compared to the ideal results. Energy and scaling analysis shows that

GMR-based STOs for distance computation have higher efficiency than CMOS-based

DCCs for high dimensional input vectors. Modest improvements in STO critical

currents and magneto-resistance (through the use of magnetic tunnel junctions) can

make oscillator-based systems even more attractive.
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5. CONCLUSIONS

Low power and energy-efficient computing have become extremely important as more

and more data-centric applications are being deployed in the edge devices. Further,

the number of edge devices used per person has continuously increased over the past

decade with majority of the devices being battery powered. This has motivated the

design of neuromorphic systems to enable data processing capabilities at the edge

devices by looking into alternative computing models across the design stack: device,

circuit, algorithm, and architecture.

In this research, we proposed energy efficient circuit, interconnect, and architec-

ture for energy efficient neuromorphic computing. First, we propose a hybrid Power

Line Communication (PLC)- Network On Chip (NOC) based neuromorphic architec-

ture built with memristive crossbars to enable efficient multi-layer inference for for

Spiking Neural Networks (SNNs). Both low-power computation units and energy-

efficient interconnect are fundamental to efficient neuromorphic system design. Our

hybrid interconnect harnesses the different data-transfer patterns in typical many-

core architecture to optimize energy expended in data communication. Additionally,

memristive crossbar based PEs achieve low energy consumption for neuromorphic

computations. Our experiments over a wide range of spiking neural network bench-

marks show average energy improvements of ∼39.32% at comparable latency.

In chapter 3, we proposed stochastic binary SNN that requires only one-bit preci-

sion for the constituting neurons and synapses for memory-compressed neuromorphic

computing. We presented an energy-efficient implementation of the binary SNN using

Biased Random Number Generated (BRNG) as ‘stochastic bit’ to realize the stochas-

tic neurons and synapses (during training) fabricated in 90nm CMOS process. We

demonstrated high energy efficiency of 89.49 TOPS/Watt for two-layer SNN, which



83

renders the proposed realization amenable for IoT/edge devices with on-chip intelli-

gence.

Finally, we proposed and demonstrated coupled oscillator based distance compu-

tation system using giant magnetoresistance (GMR)-based Spin Torque Oscillators

(STOs). By exploiting inejction locking of the oscillators, we successfully realize an

Euclidean distance computation unit (L22 unit). The L22 unit can act as a core dis-

tance computing primitive to perform a facial recognition and edge detection tasks.

Energy and scaling analyses show that GMR-based STOs for distance computation

have higher efficiency than CMOS-based distance computation circuits for high di-

mensional input vectors. We expect a TMR based device would further enhance the

energy improvements.
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