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PREFACE

This dissertation is divided into chapters that describe drug discovery and design

at different scales of development. Below is an overview of these topics that weave

these chapters into an overall narrative that takes the reader from proteome–scale

drug discovery in Chapter 1 to the proton in Chapter 6.

Drug discovery and design is a relatively new field when compared to that of other

physical and life sciences. For its approximately 100 year existence, this field has been

guided by a dogma which can be described as ’single-target’ therapeutic drug design.

In this approach, a single biological target (such as a misbehaving protein or RNA)

is identified to cause a given indication and a compound is developed to selectively

inhibit the action of this single target. Although this dogma has been applied to

create a large portion of the drugs available on the market today, around 95% of the

drugs created using this approach fail to pass the clinical trails created by the US

FDA. There are several causes of these failures, many of which are a direct result

of the ’single-target’ approach. For example, multiple biological species may be the

cause of a given disorder and if one does not inhibit all the critical species, then drug

resistance and other issues may arise. Therefore, alternatives to this approach are

currently being investigated and new techniques are being applied to improve upon

single-target drug design.

The major alternative to single-target drug design is multi-target drug design

which attempts to develop a single compound that interacts with multiple biologi-

cal targets. The advantage of this approach is that it relaxes the assumption that

only a single target is responsible for an indication. A perceived disadvantage to this

approach is that inhibiting multiple targets leads to toxicity, but all drugs interact
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with multiple targets. This concept can be extended to the design of compounds

where interactions with an entire proteome are considered. Unfortunately, it is dif-

ficult to design new compounds to target the correct set of targets as one needs to

tune structures to be selective to multiple biological species at the same time (e.g.

proteins, RNA, etc). Modern drug discovery efforts around the development of kinase

inhibitors and anti–depressants have already embraced this design principal. These

efforts, however, are in their infancy and additional computational tools are required

to address drug design at the proteome level. Such tools are introduced in Chapter

1 and are directly applied to the repurposing of psychoactive compounds for mental

health indications. This chapter serves to be the chapter on proteome scale drug

discovery.

Although this tool is useful for the repurposing of existing drugs, they give little

guidance for the creation of novel drugs using a multi–target paradigm. To close this

gap, one must consider the purpose of a drug at the biological level where its purpose

is to alter the function of a cell (as opposed to a protein in the traditional paradigm

of drug discovery). Here, one must understand biology as a series of pathways where

multiple proteins contribute to an overall cellular function, such as cancer growth as

a result of the androgen receptor signaling pathway. Since multiple protein pathways

may lead to this function, one must inhibit all of the potential proteins in this pathway

to achieve a desired outcome. Unfortunately, few tools exist for the mining of the

proteome, so the creation of Lemon, a tool to mine data from the protein data bank,

will be introduced in Chapter 2.1. These actions are described in detail in Chapter 2

where a new methodology for targeting a specific cell line is described in Chapter 2.4.

This is the first chapter to introduce the concept of machine learning, which will be

explored in depth in later chapters. Additionally, a formal introduction to machine

learning is given in appendix A.

While the creation of novel drugs is a noble and important goal, it is not the

only goal of drug discovery at the cell–scale. Another important goal at this scale

is the identification of differing cell response using analytical chemistry techniques.
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In this work, there are two examples of this, one which uses a combination of RNA

sequencing and BioDynamic imaging to classify a biopsy as sensitive or resistant to

chemotherapy (chapter 2.3), and a second which uses tandem mass spectrometry to

determine deferentially expresses protein, lipids, and metabolites.

Computational chemistry plays several important roles in traditional drug design.

Some examples include virtual screening, Quantitative Structure Activity Relation-

ships (QSAR), and small-molecule docking. All of these techniques explore chemistry

at the ’protein–level’. The models presented in Chapter 2 is dependant on the ability

to calculate the interactions between a small molecule and a protein. This introduces

drug discovery at the protein level where the implementation and benchmarking of

a docking algorithm in Chapter 3 is discussed. At this scale, one analyzes the inter-

actions a small–molecule has in the binding pocket of a protein, something that is

paramount to such a algorithm. Therefore, docking is an essential tool for studying

the interactions at the protein scale.

These interactions would not be possible unless the small molecule involved is

known to be pure and posses the functional groups and overall structure which leads

to the proper interactions with target proteins. The analysis of these functional groups

using machine learning is introduced in Chapters 4 and 5 which serve to discuss drug

discovery at the small–molecule scale. Here, small–molecules are discussed in terms

of how they gain function through groupings of atoms and how these groupings can

be studied through analytical chemistry.

Finally, the creation of small–molecules is performed through chemical reactions

which involve chemistry at the proton level. The elucidation of one such reaction

is given in Chapter 6 where a novel reaction between imines and carboxylic acids

is discussed using a combination of quantum mechanics and machine learning. The

next Chapter (Chapter 7) introduces a virtual reality platform for visualizing small

molecules in protein binding pockets and the final chapter gives an outlook for drug

discovery at all scales.
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3.14 Correlations between score and the RMSD of a pose from the crystal pose
for rigid protein (a), semi-flexible protein (b), and fully flexible proteins
(c). The remaining plots (d-i) are of the RMC15 score of all poses produced
by CANDOCK for selected proteins in CASF-2016 versus the RMSD of
the pose. In these plots, the RMSD ranges from 1 Å to 15 Å The poses
were obtained using the semi flexible method at a Top Seed Percent value
equal to 20%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
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measured pKi. Plots of pKi vs RMC15 score are given in (c) and (d) for
the worst crystal pose selector (RCC11) and the best crystal pose selector
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as the selector and RMC15 as the ranker. . . . . . . . . . . . . . . . . . 133



xxviii

Figure Page

3.19 Relationship between the RMSD rank of docked poses and the overall
Pearson correlation between the RMR6 (blue) and RMC15 (green) scores
for CASF–2016 binding affinity of 285 protein–ligand complexes is shown
in (a). An inset is used to highlight the correlation between RMC15 and
binding affinity around the 750th pose as ranked by the RMSD between the
pose and the native pose. The class-wise correlation between the RMC15
score of a pose selected by the best RMR6 score and the lowest RMSD is
shown in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
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bottom. (c) The average degeneracy for all poses and poses near the crys-
tal pose for all RMSD cutoff values. For the 2.0 Åcutoff, the class-specific
degeneracy averages are provided in a similar manner to (b). . . . . . . 141

3.23 Advantage of class specific machine learning (a) Success rate for the various
machine learning methods employed in this work. The success rates for a
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4.2 Overview of the MLP methodology for the classification of functional
groups using FTIR and MS data. FTIR spectra are processed as to nor-
malize the transmittance of the spectra and discretize the wavenumber
numbers (creating wavenumber bins), thereby standardizing the wavenum-
bers for all FTIR spectra. Missing wavenumber bins in each spectrum are
interpolated using B–Splines. A similar process is used for mass spectra
data with the exception that no interpolation is performed. The nor-
malized transmittance in all bins is encoded into a latent space by an
autoencoder network and This latent space this then used to predict the
functional group of a molecule. . . . . . . . . . . . . . . . . . . . . . . . 151

4.3 (a) The distribution of various functional groups in the NIST database.
(b) The distribution of molecular masses present in the NIST database. 155

4.4 The left-hand side of the figure depicts the ground truth functional groups
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MS spectra. Sample calculations for functional group F1, MF1, and MPR
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Both methods were trained on the FTIR spectra only and no hyperparam-
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5-fold cross-validation, and the error bars indicate the standard deviation
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this is apparent for amides, acyl halides, amines, alkyl halides, ketones,
and esters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.6 ROC plots for the model trained on both FTIR and MS spectra. (a)
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tional group which maximizes the F1 score for that functional group. . . 160



xxx

Figure Page

4.7 (a) The molecular F1 score for training and validation over the 5 folds
is shown for both the optimized IR only and IR+MS models. The error
bars indicate the standard deviation over the folds. (b) The molecular
perfection for training and validation over 5 folds is shown for both the
optimized IR only and IR+MS models. (c) The F1 score of the optimized
IR only model plotted against the number of occurrences of that functional
group. (d) The F1 score of the optimized IR+MS model plotted against
the number of occurrences of that functional group. . . . . . . . . . . . 161

4.8 (a) Per functional group performance for an MLP model trained only
on MS data shows that the model trained only FTIR data outperforms
the model trained only on MS data during K-Fold validation. Also, the
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spectra are introduced in addition to FTIR data. . . . . . . . . . . . . . 162
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functional group. The plot of molecular perfection rate in (d) compares
the performance of the machine learning model to a synthetic model to
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number of functional groups increases. . . . . . . . . . . . . . . . . . . . 167
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4.13 A synthetic scheme proposed in our lab is presented along with the func-
tional groups which change in the given reactions (a). The colors of the
arrows indicate which reaction has occurred. The IR spectra of each mem-
ber of the reaction scheme is given in (b). The reaction network for the
actual compounds is represented as the changing of functional groups in
(c) and the predicted reaction network obtained from our model is given
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5.6 Decision tree for the 40% cutoff model. This model shares some similarities
to the 70% cutoff model presented in the main text in that it uses the
presence of a sulfoxide group and a N-oxide group as the primary features
for the prediction of whether a compound forms a diagnostic addition
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7.6 A detailed look at the input and output processing pipeline of MINT. (A)
MINT interprets the PDB file’s textual atomic records line by line and
(B) transfers the information into data arrays in Molecule data classes)
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E.3 (a) Receiver Operator Curve for the first round of machine learning. The
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ABSTRACT

Fine, Jonathan A. Ph.D., Purdue University, May 2020. Proton to Proteome: a
Multi–scale Investigation of Drug Discovery. Major Professor: Gaurav Chopra.

Chemical science spans multiple scales, from protons to the proteins that make

up a proteome. Throughout my graduate research career, I have developed statistical

and machine learning (ML) models to better understand chemistry at these different

scales, including predicting molecular properties of molecules in analytical and syn-

thetic chemistry to integrating experiments with chemo-proteomic models for drug

design. Starting with the proteome, I will discuss repurposing compounds for mental

health indications and visualizing the relationships between indications. Moving to

the cellular level, I will introduce Lemon, a data mining framework, and the use of

ML to classify cancer resistance, use existing methods developed for the negative bi-

nomial distribution to develop a new bioinformatics methodology to find biomarkers

of cellular response using data collected by mass spectrometry, and use ML to select

potent, non-toxic, small molecules for the treatment of castration resistant prostate

cancer. For the protein scale, I will introduce CANDOCK, a docking method to

rapidly and accurately dock small molecules. Next, I will showcase a deep learning

model to determine small-molecule functional groups using FTIR and MS spectra,

followed by a similar approach used to identify if a small molecule will undergo a diag-

nostic reaction using mass spectrometry using a chemically interpretable graph-based

ML method. Finally, I will examine chemistry at the proton level and how quantum

mechanics combined with ML can be used to elucidate chemical reactions. In sum-

mary, ML models have the potential to accelerate several aspects of drug discovery

including discovery, process, and analytical chemistry.
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1. PROTEOME SCALE DRUG DISCOVERY

This chapter is available as
Fine, J., Lackner, R., Samudrala, R., Chopra G. Computational chemoproteomics

to understand the role of selected psychoactives in treating mental health indications.
Sci Rep 9, 13155 (2019).
https://doi.org/10.1038/s41598-019-49515-0

It has been reproduced under a Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/) and minor changes to the orig-
inal text have been made to format the original article as a thesis chapter. The Future
Works section is not part of this publication.

1.1 Abstract

We have developed the Computational Analysis of Novel Drug Opportunities

(CANDO) platform to infer homology of drug behavior at a proteomic level by con-

structing and analyzing structural compound-proteome interaction signatures of 3,733

compounds with 48,278 proteins in a shotgun manner. We applied the CANDO plat-

form to predict putative therapeutic properties of 428 psychoactive compounds that

belong to the phenylethylamine, tryptamine, and cannabinoid chemical classes for

treating mental health indications. Our findings indicate that these 428 psychoac-

tives are among the top-ranked predictions for a significant fraction of mental health

indications, demonstrating a significant preference for treating such indications over

non–mental health indications, relative to randomized controls. Also, we analyzed

the use of specific tryptamines for the treatment of sleeping disorders, bupropion for

substance abuse disorders, and cannabinoids for epilepsy. Our innovative use of the
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CANDO platform may guide the identification and development of novel therapies

for mental health indications and provide an understanding of their causal basis on

a detailed mechanistic level. These predictions can be used to provide new leads for

preclinical drug development for mental health and other neurological disorders.

1.2 Introduction

Drug discovery traditionally revolves around single biological targets and focuses

on a limited set of relationships between a protein target and small molecules of in-

terest. The goal of this approach is to change the biological function of a protein

responsible for pathogenesis and subsequently determine the toxicity and side effect

profile of a compound to make it a suitable clinical candidate. The expected result

of this approach is a compound that modulates the single protein that it targets. Al-

though this traditional approach has been successfully applied to develop the major-

ity of approved drugs, it has been questioned in recent years as the number of newly

approved drugs continues to decrease (currently down to 30 according to fda.gov).

Additionally, many new drugs are analogs to already known drugs or reformulated

to improve efficacy and filed as new patents. According to the Tufts Center for the

Study of Drug Development (csdd.tufts.edu), the average cost to bring a new drug to

market can be as large as $ 2.6 billion. Therefore, there exists a shortage of novel drug

development because the current approach is both time and cost prohibitive [1–4].

One methodology to combat the rising cost and time commitment of novel drug

development is to re–purpose already approved drugs that are known to have few dele-

terious side effects [3,5–11]. Competitiveness in the pharmaceutical industry hinders

the systematic exploration of potential repurposing opportunities, but computational

approaches enable a workaround. Using computational multi–target docking with

dynamics, we developed a drug repurposing approach for malaria and have since
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validated our models numerous times experimentally [3, 8, 9, 12–17]. To expand the

applicability of our work, we have developed a shotgun approach to evaluate all po-

tential drug repurposing opportunities simultaneously by evaluating the relationships

of compounds with entire proteomes (chemoproteome) in an indication–specific man-

ner [8, 14]. Here, we describe the application of our platform to identify possible

therapeutic uses of phenethylamines, tryptamines, and cannabinoids in treating men-

tal health indications.

1.2.1 Leveraging computational chemoproteomics for drug discovery

Natural products have a profound impact on drug discovery. Many of these prod-

ucts come from plant sources, [18–20] where 60% of drugs approved by the FDA circa

the 1990s came from these sources [21]. While this percentage has decreased to about

40% in recent years, it is clear that natural products have an important impact on

drug discovery [22]. Since plants, animals, and other organisms have evolved together,

we hypothesize that multiple modes of action are responsible for a small molecule to

become a drug. We have thus developed a platform which relies on a "signature

of interactions" (a row of binary or real numbers) to represent the interactions of

compounds with a set of protein structures that are selected to represent the known

structural universe. Our hypothesis requires that similar chemoproteome signatures

indicate similar functional behaviors while non–similar signatures (or regions thereof)

indicate off and anti–target (side) effects as these signatures infer proteomic homology

of compound or drug behavior. We can use these chemoproteomic signatures to rank

how well a compound can be repurposed for given indication and provide a set of

protein interactions responsible for this ranking to obtain an understanding of drug

mechanisms at the level of atomic interactions.
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1.2.2 CANDO: A shotgun computational chemoproteomics platform for

drug repurposing and discovery

Biologically active molecules, such as proteins and drugs, do not function in iso-

lation. The absorption, dispersion, metabolism, and excretion (ADME) and effec-

tiveness of a drug are dependent on the interactions of the drug with a system of

proteins expressed at different sites in an organism. The Computational Analysis of

Novel Drug Opportunities (CANDO) platform works at the proteomic level by lever-

aging the interaction signature of a compound to all proteins in a generic structural

library. It compares the signatures of candidate compounds/drugs to those approved

for particular indications to make drug repurposing predictions in a shotgun manner

(here meaning an all versus all compound–proteome signature comparison).

Figure 1.1. Schematic of computational chemoproteomics pipeline
to identify psychoactives for mental–health indications using the
CANDO platform.

The first version of the CANDO platform (CANDO v1) shown in Fig. 1.1 pre-

dicts interactions between 3,733 FDA approved drugs and a variety of other human in-

gestible compounds (including supplements and illegal substances) and 48,278 protein

structures from multiple species (46,784 of which are used in this study and this pro-
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tein list is provided in the GitHub data repository) either taken from the Protein Data

Bank (PDB) [23] or representing high confidence homology models [24] constructed

using protein structure prediction methods described previously [15,25]. Specifically,

the proteins structures include solved and modeled proteins obtained from eukaryotic,

prokaryotic, archaea and viral organismal proteomes, including 14,595 human proteins

(8,841 of these are high–confidence models), a set of 24,958 non–redundant solved pro-

tein structures in the PDB, in addition to the remaining solved and modeled structures

from Mycobacterium tuberculosis, Pseudomonas aeruginosa, viral proteomes, and so

on. We consider different conformations of protein structures by separately includ-

ing multiple domains (chains) and isoforms of proteins for calculating all compound

proteins interactions. As an example, for the experimental structures considered for

the human proteome, we use a mapping between PDB chains and UniProtKB/Swis-

sProt codes [26] in the human proteome. We also treat all such protein–compound

interactions equally as proteins from different biological classes affect benchmarking

accuracy results to predict putative repurposable drugs for diseases [15]. We employ

our bioinformatic docking approach to construct a 3,733 by 46,784 compound–protein

interaction matrix (see Compound–Proteome Interaction Signature section [15]) that

is analyzed to determine similarity in drug behavior [15, 25]. No special methods

were used for different protein classes (e.g., kinases and GPCRs) so that scores of

two proteins from different classes could be compared directly. To generate a pose

we used a hierarchical fragment–based docking with dynamics algorithm [27] using

knowledge–based potentials [28] as done previously for the Ebola proteome [29]. We

have previously shown that all–atom dynamics is necessary for accurate prediction

of binding energies [30] and demonstrated all–atom knowledge–based force fields are

more accurate than physics–based approaches for both protein structure prediction

and docking [17, 30–35]. Furthermore, we have shown that multi–targeted docking
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with dynamics leads to improved hit rates for finding inhibitors of pathogens relative

to conventional approaches [7,8]. It should be noted that the interaction score stored

in this matrix does not represent whether a given target will be inhibited or activated,

only that the compound and target interact. As a result, the CANDO platform can

be used for both inhibitors and agonists with the caveat that the predicted effect of

a compound may be unknown until verified experimentally. For example, CANDO

could predict cocaine for the treatment of cocaine–related disorders. Therefore, spe-

cial care needs to be used when examining these predictions since dose selection is

not part of the current model.

Once the interaction matrix is constructed, our methods compare the compound–

proteome interaction signatures where the similarity of two signatures can be cal-

culated using various metrics as simple as root mean squared deviations (RMSD)

to sophisticated graph theory based comparisons that can take underlying protein–

protein interactions (compiled from public sources [24,36–38]) into account. Similar-

ities between (regions of) interaction signatures indicate a relationship in functional

behavior. However, the differences between two signatures are difficult to understand

without further knowledge as it may indicate a more potent drug, a possible side ef-

fect, or no effect whatsoever. In addition to predicting a ranked list of putative drugs

that are most likely to function similarly to other drugs approved for a particular

indication, the signature comparison and ranking helps to analyze compound behav-

ior in biologically relevant pathways [36–39]. Our CANDO platform is successful for

prospectively validating putative leads for several indications [15, 25,29].

1.2.3 Mental health indications and interventions

A large number of diseases and disorders have mental health implications as cat-

aloged by the American Psychiatric Association (APA) [40].These indications affect
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people in all age groups, social classes, and races [41–45]. The treatments for these

indications mostly consist of small molecule therapeutics, varying individually for

specific diseases, disorders, or conditions. According to a report published by the

World Health Organization in 2011 [46], the number of United States (US) citizens

taking medication to treat mental health has increased to over two million US citizens

since 2001. Anxiety disorders make up the largest category of mental illness in the US

affecting a total of 42 million people. The second largest category is major depression

disorder affecting 14.8 million US citizens on any given day. Approximately 2.4 mil-

lion US citizens have schizophrenia where no effective treatment or cure is currently

available as schizophrenia medication typically results in metabolic issues leading to

weight gain and type 2 diabetes [47]. Collectively mental health indications/disor-

ders cost the US economy $192.3 billion each year and result in high morbidity, with

suicide being the tenth largest cause of death [48, 49]. Unfortunately, adolescents

are susceptible to depression and suicide, and the effectiveness of antidepressants for

these individuals remains uncertain [50].

1.2.4 Human use of psychoactive substances

We define psychoactives as compounds that cross the blood–brain barrier, target

proteins expressed in the brain as their primary modes of action, and thereby per-

turb human mental states. Although proteins expressed in the brain are paramount

for the prediction of compounds as potential therapies for mental health disorders,

synergistic effects may occur due to interactions in the periphery. For example, it has

been shown that the gut microbiome plays an important role in the central nervous

system [51] and multiple links between the peripheral mechanisms and depression

have been found previously [52, 53]. We have also benchmarked CANDO to show

that best drug repurposing accuracies are obtained when all protein structures are
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used for interaction signature comparisons to determine compound similarity, sug-

gesting the role of multiple networks working together in biology to achieve a certain

phenotype/function, instead of specific proteins as used traditionally for drug discov-

ery [15, 25]. This approach makes CANDO different than other methods that are

focused towards single target inhibitor discovery vs drug discovery. Therefore, we

believe that the study of proteome–wide interaction signature for repurposing psy-

choactive compounds is suitable in the context of mental health indications.

Since the time of the earliest records, humans have been ingesting psychoactive

substances for religious and spiritual purposes (for example, dimethyltryptamine in

Ayahuasca, mescaline in Peyote), for medicinal purposes (opium), and for recreation

(caffeine, nicotine, alcohol) [54]. The vast majority of pyschoactives are considered

taboo for a variety of reasons and, with few exceptions, are not investigated for

potential medicinal properties. In this study, we focus on the phenylethylamine and

tryptamine classes of psychoactives described by Alexander Shulgin [55,56] as well as

additional cannabinoids.

Due to recent changes in legislation, a few of these compounds are available as

approved drugs in some jurisdictions (for example amphetamine for diet control and

attention deficit hyperactive disorder, and tetrahydrocannabinol for anxiety). The

action of these compounds is thought to affect human physiology by their structural

similarity/mimicry to neurotransmitters (for example, psilocybin and lysergic acid

diethylamide both mimic the compound serotonin). There is an increasing amount

of evidence for cannabinoids having the ability to treat epilepsy and epilepsy–related

indications [57,58], but its legal status is still diffuse as cannabinoids remain classified

as Schedule I by the United States Federal Government (a classification possessing

no medicinal use). Similarly, psilocybin and ketamine have been shown to treat

depression via a mechanism not targeted by current antidepressants [59,60].
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These examples are the tip of a proverbial iceberg, and recent reinvestigations

into the clinical relevance of illicit psychoactive compounds suggest further investiga-

tion into the potential of these compounds in treating mental health indications [61].

This clear disconnect between current research and current legislation warrants a

more comprehensive investigation for the use of these psychoactive compounds for

medicinal purposes but in vitro and in vivo verification is currently difficult given

their scheduling status. The CANDO shotgun drug discovery and repurposing plat-

form is therefore uniquely suited to conduct such an investigation to make a case for

experimental verification.

While other classifications of psychoactives could be utilized (for example, all

compounds known to cross the blood–brain barrier), our goal in this study was to

see if any of the selected psychoactive compounds, primarily known without any

therapeutic utility, are predicted to treat mental health indications. Our work also

demonstrates the more general utility of the CANDO platform in assessing the effect

of drug classes on this specific class of indications.

1.2.5 Analyzing the role of psychoactives in mental health indications

using CANDO

Most of our selected psychoactive compounds are illegal to synthesize and thus

difficult to study in vitro (much less in vivo). Cannabinoids are in the process of

being legalized for medicinal uses in some jurisdictions, and this serves as a justifica-

tion for studying these drugs further. The cause of many mental health indications

is not characterized by one protein, but by several proteins in several different cate-

gories [62–66]. Thus, the traditional high throughput screening methodology of test-

ing one compound against one protein is not a suitable approach for mental health

drug discovery. The CANDO platform allows for evaluation of all selected psychoac-
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tives across a large library of protein structures, providing a logical and reasonable

method to develop leads for medications that may be suitable for treating mental

health indications. Our goal here is to study, analyze, and characterize these psy-

choactive compounds using the CANDO platform so that the potential medicinal

properties of these compounds can be assessed and evaluated in further bench and

clinical studies. The outcomes for this study are not necessarily to predict mental

health therapies but rather to generate hypotheses if the predicted psychoactives serve

as the most promising leads for different mental health indications based on similar

chemoproteomics perspective.

1.3 Results

We describe our results based on two approaches of examining the relationships be-

tween the selected psychoactives and mental health indications using the top–ranked

predictions by the CANDO platform. An example of these predictions is given in

Table 1.1, where we are careful to list potential issues with the predicted psychoac-

tive. At the outset, we examined the distributions of percentages of psychoactive

compounds (relative to total compounds) in the top–ranked predictions for mental

health indications. Conversely, we can compare the distributions of percentages of

mental health indications selected by the psychoactive compounds in the top–ranked

predictions. We further analyze the latter distributions broken down by psychoactive

classes and the distributions of mental health indications. We conclude with three

case studies illustrating the application and utility of the CANDO platform in discov-

ering psychoactive therapeutics to treat mental health indications. We again caution

that applying these predictions for the development of new therapeutics must be done

judiciously.
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Table 1.1.
Predictions which represent hypotheses of novel putative therapeutic
leads for various indications.

Psychoactive Prediction
3,4–dimethylmethcathinone Anxiety Disorders (known for abuse)
3,4–dimethylmethcathinone Depressive Disorder, Major (known for abuse)

dextromethorphan ADHD (OTC antitussive)
dexfenfluramine Autistic Disorder(known cardiac issues)

3–fluoroamphetamine Bipolar Disorder
2–fluoroamphetamine Cataplexy

metamfepramone Delirium
bupropion Depressive Disorder (depression treatment)

metamfepramone Tourette Syndrome
ergoline Erectile Dysfunction (migraine treatment)

α–pyrrolidinopentiophenone Learning Disorders (Stimulant)
2–fluoroamphetamine Narcolepsy
isopropylamphetamine Obessive–compulsive disorder
3–fluoroamphetamine Personality Disorders

pyrovalerone Phobic Disorders (US Schedule V drug)
dextromethorphan Psychotic Disorders (OTC antitussive)

3,4–dimethylmethcathinone Restless Legs Syndrome
pyrovalerone Schizophrenia (US Schedule V drug)
pyrovalerone PTSD (US Schedule V drug)

α–pyrrolidinope Tobacco Use Disorder (US Schedule V drug)
isopropylamphetamine Panic Disorder

3,4–dimethylmethcathinone Cocaine–Related Disorder (known for abuse)
3–fluoroamphetamine Binge–Eating Disorder

1.3.1 Putative psychoactives for mental health indications

The results showing the distributions of percentages of psychoactives for mental

health indications are given in Fig. 1.2. This figure shows that the difference in the

random and non–random distributions. Since these distributions are statistically dif-

ferent, we conclude the selected psychoactive compounds are better at treating mental

health indications on average than non–psychoactive compounds selected at random.

As the number of compounds considered increases, the normal and randomized dis-

tributions become more alike. This result is expected as there are a larger number of
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non–psychoactive compounds than the selected psychoactive ones and, therefore, the

addition of a new compound is more likely to be non– psychoactive than psychoactive.

Therefore, as the number of compounds in the result list increases the percentage of

psychoactives predicted for any indication will decrease (see Fig. 1.2).
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Figure 1.2. Normalized indication rank for all indications. The green
line shows the results of randomizing the predicted compounds and
the straight–line segment indicates the mean of the randomized dis-
tribution. The circled indications are SAD, CRSD, and JLS.
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1.3.2 Selection of mental health indications by selected psychoactives

The distributions for the selection of mental health indications by selected psy-

choactives relative to all indications are shown in Fig. 1.3. The greater the percentage

of mental health indications, the more selective the psychoactive. Furthermore, the

indications selected by psychoactives using the CANDO platform yield a high per-

centage of mental health indications relative to random controls, illustrating that

these psychoactives are more likely than non–psychoactives to be effective at treating

mental health indications.

1.3.3 Comparison of randomized compound and indication distributions

The two randomized distributions in Fig. 1.3 (shown in green and blue) are

distinct. The distribution representing randomized compounds is less uniform and

has a larger average percentage (p–value less than 2×10−16 from a one–tailed student

t–test for all four plots) than the randomized indication distribution. These data show

that a single drug is more likely to treat multiple indications than a single indication

is to be treated by multiple drugs. This has been shown previously by the ability to

repurpose drugs [67–69] and is an important feature of the CANDO platform. The

ability to repurpose previously approved compounds is increasingly important [70].

This result highlights the utility of the CANDO platform for drug repurposing.

1.3.4 Comparison of different psychoactive classes

Fig. 1.4 differentiates the psychoactives by compound class: amphetamines,

cannabinoids, cathinones, phenethylamines, and tryptamines. Given the proteomic

signature comparison approach used by CANDO to makes these predictions, this indi-

cates that psychoactives from one category are predicted to bind to the same proteins
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Figure 1.3. Normalized indication rank for all indications. The green
line shows the results of randomizing the predicted compounds and
the straight–line segment indicates the mean of the randomized dis-
tribution. The circled indications are SAD, CRSD, and JLS.

as psychoactives from a different category, resulting in a constant percent occurrence

for all compounds predicted to treat an indication. Thus, the Top10 rankings provide

the most specificity for analyzing the effect of a psychoactive class on selecting men-

tal health indications. These figures and tables illustrate that the classification of a

compound has an impact on which indications it is predicted to treat. Therefore, we

will continue the discussion based on psychoactive compound–classes.
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the distribution of indications per class becomes increasingly similar.
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sonal Affective Disorder, Jet Lag Syndrome, sleep disorders and Broca
Aphasia; orange is Binge–Eating Disorder, Narcolepsy, and Anorexia
Nervosa; purple is Heroin Dependence, Substance–Related Disorders,
and Epilepsy.

1.3.5 Relationships between mental health indications

Our predictions for indication–indication associations are shown in Fig. 1.5. In-

terestingly, some indication relationships have been verified clinically. These include:

Epilepsy with Seizure, Cocaine–related disorders with depression, [71] Seizures with

Substance Withdrawal Syndrome, [72] Depression with Anxiety, [73] and possibly

relating binge–eating and personality disorder [74]. The ability of our repurposing



16

platform to reproduce known indication relationships suggests that our chemopro-

teomic signatures can capture key biological interactions. In addition, the number

of overlapping psychoactive compound predictions strongly relate multiple mental

health indications (width of the chords in Fig. 1.5). These psychoactives interact

with multiple proteins (similar chemo–proteome signatures) suggesting common bio-

chemical pathways. We are confident that our method may be useful to discover

new disease pathways relating these indications. Identifying and validating these new

pathways are beyond the scope of this work.
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1.4 Discussion

The Top10, Top25, and Top40 predictions in Fig. 1.2 for three mental health indi-

cations, Seasonal Affective Disorder, Circadian Rhythm Sleep Disorders, and Jet Lag

Syndrome, consist only of psychoactives belonging to the tryptamine class (indication

rank of 100%). The only compound known to treat all these indications is melatonin

(also a tryptamine) [75–77], indicating that its proteomic interaction signature is

most similar to the interaction signatures for these predicted psychoactives. This

result demonstrates that the proteomic shotgun drug repurposing approach adopted

by the CANDO platform makes sensible predictions of related compounds based on

their similarly of interaction signature with all proteins, compared to traditional single

target approaches. Studies by an Israeli pharmaceutical company give experimental

evidence demonstrating that some of these tryptamine psychoactives are indeed likely

to treat the aforementioned three indications [78]. These studies provide corrobora-

tive evidence for the efficacy of the CANDO platform and highlight its potential of

finding new drugs for treating any indication that has at least one approved drug.

1.4.1 Comparison between predicted drugs and the literature

The remainder of this discussion will be used to highlight case studies which are

verified in the literature. For a complete list of psychoactive predictions, please see

appendix B.

The indication with the largest number of high ranking psychoactives in the top–

ranked predictions is cocaine–related disorders belonging to the cathinone class of

stimulants, a summary of which is given in Table 1.2. The similarity between the

effects of cathinone and cocaine on behavior has been previously established as part

of a similar pathway [79]. We are aware that some of these predictions are unlikely
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to have any potential for the development of new therapeutics for cocaine–related

disorders due to their associated toxicity [80,81]. A cathinone of interest is the anti–

depressant bupropion, which is well known for promoting smoking cessation and has

also been proposed for the treatment of methamphetamine and cocaine substance

abuse disorders [82, 83]. These findings and related uses further showcase the abil-

ity of CANDO platform to accurately associate compounds/drugs and indications.

While this example is successful in showcasing CANDO’s ability to find the relation-

ship between compounds and mental health disorders, one needs to be cautious as

these predictions may mimic cocaine and lead to adverse reactions depending on the

dose. For example, Bupropion is perceived as a stimulant to those with a history

of cocaine use [84, 85]. Further, the effects of dextromethorphan may be due to its

stimulant properties [86]. However, in some cases we can obtain therapeutic benefit

from potentially problematic compounds, example given methadone is an approved

treatment for opioid abuse, but is known to have several opioid–related effects when

given in high enough dosages [87].

Table 1.2.
The top predictions for these indications belong to the cathinone class.

Psychoactive Known effects and legal status
flephedrone Toxicity not well established
buphedrone Illegal for human consumption
ethcathinone Illegal due to similarities to mephedrone
mephedrone High potential for abuse

methcathinone Causes euphoria. Highly addictive
3,4–dimethylmethcathinone Stimulant with a high potential for abuse

bupropion Prescription anti–depressant
dextromethorphan Over the counter antitussive

alpha–pyrrolidinopropiophenone Stimulant
NPIM Serious source of addiction

n,n–dibutyltryptamine Hallucinogenic research chemical
isopropylamphetamine Stimulant
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The highest–ranking phenethylamine predicted to treat cocaine–related disorders

is the antitussive drug, dextromethorphan. This compound, generally available over

the counter, is known for its hallucinogenic side effects at high doses, which is re-

flected both in the predictions by CANDO and is reinforced in the literature [88–92].

The use of the CANDO platform for making predictions to treat specific mental

health indications is strengthened by the accurate identification of bupropion and

dextromethorphan (both selected psychoactives) in treating cocaine–related disor-

ders.

The two psychoactive cannabinoids, tetrahydrocannabinol and cannabinol are pre-

dicted to treat Epilepsy and Absence Epilepsy by the CANDO platform, and cannabi-

nol is also predicted to treat Status Epilepticus. While the cannabinoids are not the

highest ranked compounds relative to other psychoactives for these indications, our

findings are validated by recently published studies for the use of cannabinoids to treat

epilepsy–related indications [57, 58]. The non–psychoactive cannabinoid (cannabid-

iol) is not predicted to treat any epilepsy–related indications, leading to an intriguing

hypothesis concerning the likelihood of a cannabinoid treating epilepsy correspond-

ing to its psychoactivity. However, given the limited data available, further study

is warranted to verify this hypothesis. Our work illustrates the recovery of known

corroborative associations between cannabinoids and epilepsy but also demonstrates

how predictions made by the CANDO platform can be used to develop hypotheses

on the biology of diseases for experimental investigation.

1.5 Methods

Here, we describe the approach used to analyze the data generated by this platform

to characterize the role of the selected psychoactives in mental health indications.
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1.5.1 Selection of phenethylamines, tryptamines, and cannabinoids

We collected a total of 428 compounds to be investigated using CANDO and cate-

gorized them into 291 phenethylamines and 109 tryptamines described by Alexander

Shulgin [55,56], and 6 cannabinoids (cannabinol, cannabidiol, and tetrahydrocannabi-

nol) using a subgraph based search methodology based on the structure of the par-

ent molecule. An additional 22 compounds are not strictly classified as phenethy-

lamines but have structural similarity to the phenethylamine class are included as

unclassified. We further subdivided the 291 phenethylamine compounds into 149

amphetamines and 20 cathinones, the remaining 122 phenethylamines are simply re-

ferred to as phenethylamines. The CANDO v1 compound library includes these 428

psychoactives and their proteomic interactions signatures to repurpose psychoactives

for indications/diseases [9]. Most of these psychoactives are classified as Schedule I

substances by the United States Drug Enforcement Agency, indicating they have no

known medicinal use, no accepted standards for safety, or have a high potential for

abuse. Thus, when such a substance is discussed, the potential pitfalls are presented

along with that substance. We selected this set of compounds as almost all of them

are known to affect mental physiology upon ingestion [55,56,93]. A notable exception

in the compounds evaluated is cannabidiol which is not strictly psychoactive [93] but

is structurally similar to other cannabinoids and therefore warrants an investigation

into its potential therapeutic value.

The CANDO v1 compound–proteome interaction signature (see Supporting Meth-

ods) includes all associations of treatment and side effects caused for each compound

via the proteomic signature as this is composed of all target, anti–target, and off–

targets proteins for each indication/disease. The compound proteomic interaction

signature similarity yields therapeutic predictions by considering similarity to known

drug signatures for each disease. It should be noted that this methodology can also
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match a psychoactive to a compound known to worsen a given indication in addition

to predicting a compound known to ameliorate the same indication. Therefore, the

set of compounds that were used as therapy for a given indication did not include

any of the aforementioned psychoactive compounds given that the nature of these

compounds as treatments is still controversial. As a result, the ability of the platform

to predict a psychoactive from another psychoactive compound–proteome signature

is not investigated in this work. Most importantly, all predictions are made based

on similarity to an approved non–psychoactive drug for a mental health indication,

without any knowledge of therapeutic target associations for making predictions for

psychoactive compounds. Therefore, no association between an indication and a pro-

tein target is used to weight the similarity between two compounds. For example, the

interaction score of a psychoactive and the dopamine receptor is not given a special

weight for Schizophrenia.

1.5.2 Selection of mental health indications

The Medical Subject Headings (MeSH) vocabulary is used to specify the diseases,

disorders, and conditions that are classified as mental health indications. The United

States National Laboratory of Medicine division of the National Institutes of Health

(www.nlm.nih.gov) includes the latest version of the MeSH database. It should be

noted that this database is compiled at the clinical level and does not consider the

underlying biology leading to a specific indication. Therefore, some spurious and

non–traditional indications may be included as mental health indications. Since a bi-

ological mechanism study is beyond the scope of this paper, we used all the indications

suggested by MeSH.

The MeSH database is divided into tree structures with a specific tree (F03) de-

noted for Mental Disorders. The specific branches of the Mental Disorder Tree used in
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this study are Anxiety Disorders (F03.080), Dissociative Disorders (F03.300), Feeding

and Eating Disorders (F03.400), Neurocognitive Disorders (F03.615), Somatoform

Disorders (F03.875), Conduct Disorders (F03.250), Neurodevelopmental Disorders

(F03.625), Mood Disorders (F03.600), Neurotic Disorders (F03.650), Personality Dis-

orders (F03.675), Schizophrenia Spectrum Disorders (F03.700), Sleep–Wake Disorders

(F03.870), and Substance–Related Disorders (F03.900). All the indications listed

in these branches were used along with Dyspareunia, Erectile Dysfunction, Para-

philias, Fetishism, and Paedophilia from the Sexual Dysfunctions (F03.835) branch

yielding a total of 108 mental health indications that are analyzed in this work.

A separate MeSH identification paradigm was done for epilepsy–related indications

as these indications are placed in a separate MeSH tree because they are neuro-

logical disorders, not psychiatric disorders. The MeSH tree evaluated for epilepsy

is C10.228.140.490 which includes Drug–Resistant Epilepsy, Myoclonic Epilepsies,

Partial Epilepsies, Benign Neonatal Epilepsy, Generalized Epilepsy, Post–Traumatic

Epilepsy, Reflex Epilepsy, Landau–Kleffner Syndrome, Lennox–Gastaut Syndrome,

Seizures, and Febrile Seizures. A total of 29 additional epilepsy–related indications

are presented in this work.

1.5.3 Calculation

Ranking the importance of predicted psychoactives for mental health in-

dications

We generated Top10, Top25, Top40, and Top100 ranked compound lists for all

indications (mental health related and otherwise) using the CANDO v1 platform for

each indication and counted the number of times a compound prediction is present in
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each of the ranked lists. A compound may be predicted to treat an indication several

times if there are numerous known drugs for that indication.

For example, 65 known drugs are used clinically for schizophrenia and are in-

cluded in the CANDO platform. Therefore, a set of 65 chemoproteomic signature

similarities are used to predict an uncharacterized compound for schizophrenia. It

is possible that the same uncharacterized compound may be predicted at most 65

times for schizophrenia. The number of times such a compound is predicted for a

given indication is termed as the ’consensus count,’ which is normalized as the percent

occurrence. We compute percent occurrence as the ratio of consensus count to the

maximum number of times a compound could be predicted for an indication using

signature similarity (for example the number of known treatments for the indication).

We hypothesized that the higher the number of times a compound is predicted to

treat a given indication, the greater the confidence in the prediction made because

different drugs treat indications due to different biological pathways on the proteomic

level. The combination of proteomic similarity implicitly includes a combination of all

pathways to yield efficacy and is denoted by the frequency of compounds predicted for

each indication. To investigate the general role of psychoactives for mental health,

we took the frequency of psychoactive compounds predicted as putative drugs for

each indication as a percentage of all compounds predicted for the given indication.

The ratio of psychoactive to all compounds for a given indication is referred to as

the normalized indication rank and quantifies the overall performance of psychoactive

compounds versus non–psychoactive for a given indication.

A similar procedure is used to measure the propensity of a compound to be pre-

dicted for mental health indications and is used to ask the question: how many times

an indication is (or percentage of mental health and non–mental health indications)

listed either as a prediction for treatment by each psychoactive compound and is
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referred to as the normalized compound rank. This measure allows us to express

the preference of a given compound towards mental health indications. To illustrate

metrics of normalized compound rank, and normalized indication rank, we consider

a simple example where a psychoactive compound ergoline and a non–psychoactive

compound aspirin are only predicted for the mental health indication Pica (an eating

disorder) and Stomach pain (non–mental health indication). Now consider ergoline

that is predicted seven times for Pica, and three times for Stomach pain based on

the similarity of chemo–proteome analyzis while the non–psychoactive drug aspirin

is predicted to treat Pica four times and Stomach pain six times. The normalized

compound rank for this simple example will be 70% [100 ∗ 7/(7 + 3)] for ergoline and

40% [100 ∗ 4/(4 + 6)] for aspirin. Using the above example, we can also determine the

normalized indication rank for Pica and Stomach pain. Since seven psychoactives and

four non–psychoactive compounds were predicted for Pica, the normalized indication

rank is 64% [100 ∗ 7/(4 + 7)] for Pica and similar calculation yields an indication

rank of 33% for Stomach pain. Together these metrics suggest the importance of psy-

choactive compounds and their preference for mental health compared to non–mental

health indications.

Computational randomized controls

To further ensure that our results were not arrived at by chance, the order of

the predicted compounds is randomized, and the above procedures repeated. All

compounds predicted to treat an indication are randomized regardless of whether

the indication is categorized as a mental health indication. Thus, a compound not

predicted initially to treat a mental health indication may, due to random chance, be

predicted to treat a mental health indication in the randomized data set. If a random

compound replaces a predicted compound multiple times for a single indication, the
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random compound replaces the original (non–random) compound for every prediction.

This randomization process is repeated 1000 times, and the compound and indication

ranks for all the randomized searches are averaged.

A second random control is performed in addition to the one described above

where the indications (mental health or otherwise) are randomly rearranged. Thus,

a non–mental health indication may be classified as a mental health indication by

chance (and vice versa). This procedure provides a second control that allows us

to assess whether selected psychoactives are more likely to be predicted for mental

health indications than non–mental health indications.

Determination of relationships between mental health indications

We relate two mental health indications when at least two different psychoac-

tive compounds are predicted for both indications. The frequency of prediction for

common psychoactive compound predictions is termed as indication–indication

association counts. Next, to strongly relate the two indications, we also calculated

the consensus count for all psychoactives predicted for each mental health indi-

cation. Note that a predicted psychoactive could have a different consensus count

for each indication. For example, 1–naphthyl(1–pentyl–1H–indole–3–yl) methanone

(NPIM) is predicted 10 times for seizures and 8 times for sleep initiation and main-

tenance disorders (SIMD). Therefore, the consensus count of NPIM for seizures is 10

and 8 for SIMD. Another compound, 2–(5–methoxy–2–methyl–1H–indole–3yl)–n,n–

dimethyl ethanamine has consensus count of 3 for seizures and 2 for SIMD. Since two

different compounds are common predictions for the two indications, the indication–

indication association count for these two indications is 2. To strongly relate the

indications in Top lists and limit a large number of associations, we selected indica-

tion pairs with predicted psychoactive compound consensus count as follows: ≥ 2 for
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the Top10 set, ≥ 3 for the Top25 set, ≥ 4 for the Top40 set, and ≥ 6 for the Top100

set.

Tests for statistical significance

A one–tailed Kolmogorov–Smirnov test [94] was used to compare the distributions

of psychoactives in the randomized and non–random distributions as this statistical

test is typically used to show two distributions are dissimilar. For all statistical tests

performed in this work, we formulated the null hypothesis to be that the distribution

of psychoactives predicted to treat mental health disorders can be obtained by chance.

Our alternative hypothesis is that the true distribution of psychoactives is greater than

the randomized control (hence a one–tailed test). We also performed a one–tailed

paired T–test to ensure that the mean of the differences between the test distribution

and the randomized distribution is greater than zero.

1.6 Conclusions

Traditional drug discovery is limited by its narrow focus on one or a few targets.

Drugs approved for one indication interact with multiple proteins and thereby work

across multiple indications. The CANDO platform improves upon the traditional

approach by examining all interactions between a compound and a universal pro-

teome. This novel approach enables the study of drugs in a holistic chemoproteomic

manner that is especially relevant for the development of compounds intended for

treating mental health indications as these complex disorders are mediated by multi-

ple proteins and pathways. In this study, we investigated the compounds previously

described by Alexander Shulgin along with additional cannabinoids to identify po-

tential therapies for mental health indications. The results of this study indicate the
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selected psychoactive compounds perform better than compounds selected at random

for mental health indications.

Conversely, the percentage of mental health indications selected by psychoactives

is better than randomly selected compounds. This shows that psychoactives may

represent promising leads for the development of therapeutics for the treatment of

mental health indications. Specifically, the set shows promising results for sleep–

related disorders, binge eating disorders, seasonal affective disorder, and cocaine sub-

stance abuse disorder. In addition, the other non–psychoactive compounds predicted

by the CANDO platform present in the top–ranked predictions may also represent

putative repurposable therapies for mental health indications, which will be explored

in future studies. In a broader context, our work illustrates the advantages of using

a computational chemoproteomics approach for drug discovery and repurposing by

providing mechanistic information on which proteins are involved in the mediation of

the therapeutic effect.

1.7 Future work

One of the major conclusions of this work is that relationships between mental

health indications can be discovered using the repurposed drugs for a given indication.

It remains a future work to generalize this concept to all indications in the general

sense and potentially uncover interesting relationships at the protein network level.

An attempt to do so is presented below, but work still needs to be done to formalize

these concepts in a concrete and statistically significant manner.

The first step is to define a term to represent the number of times a given com-

pound is predicted for the same indication and relate it statistically to the number

of know treatments for a given indication. This term in the above work is consensus

count of the prediction. If the number of known treatments is 1, then the consen-
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sus count can be 0 or 1. Similarly, if the number of known treatments is 2, the the

consensus count can be 0, 1, or 2. To normalize for the total number of known treat-

ments, the consensus count is divided by the number of known indications to yield

the consensus percentage; a quantity that has a natural relationship with the function

1
x
. Additionally, the consensus percentage increases as the top number of compounds

increases. These relationships are shown in Fig 1.6.
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With the consensus term defined and examined for all predictions for a given

compound and/or indication, the spread of these consensus values can shown as Fig

1.7 below. This result shows that the consensus count for a given compound predicted

for an indication is typically 1, even when multiple compounds are known to treat that

indication. This again reinforces the idea that as one includes additional compounds,

the consensus count will also increase, but also indicates that the number of new

compound indication predictions increases as well. A good future work will take this

result to help tease out the proper statistics to use for determining how well two

indications are related.

Figure 1.7. The consensus count for the Top 10, Top 25, Top 40, and
Top 100 prediction counts.

With this result in mind, it is interesting to note how the number of unique

compounds predicted for a given indication grows vs the total number of predicted

compound for that indication. This relation, along with the inverse relation where
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one examines the unique number of indications predicted for a compound vs the total

number of predictions for that compound is given in Fig 1.8. Ideally, in a future work,

one can create a statistical model to determine whether a prediction is true using these

relationships and later use this result to determine the relationships between different

indications.
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Now that the concept of consensus count has been explored for the pairing of

a single compound and a single indication, we can begin to understand how two

compounds can be used to relate two different indications to each other. This con-

cept is codified as the indication overlap between the two indications. Initially, we

can explore how known treatments can be used to define this overlap frequency and

slowly increase the number of compounds predicted to see how the indication overlap
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Figure 1.9. The indication overlap for known treatments, Top 10
predictions, Top 25 predictions, Top 40 predictions, and Top 100 pre-
dictions shown with both the histogram and cumulative distribution
function.

changes as more compounds are added. In Fig 1.9, it can be seen that the indication

overlap from known compounds is similar to those obtained from the Top predicted

compounds.
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2. CELL–BASED DRUG DESIGN

The portions of this chapter on the use of BioDynamic Imaging for the prediction of
cancer resistance and the use of machine learning to find leads for castration–resistant
prostate cancer are not published.

2.1 Mining structural information from the Protein Data Bank

This chapter section is available as

Fine, J., Chopra G. Lemon: a framework for rapidly mining structural information

from the Protein Data Bank. Bioinformatics, Volume 35, Issue 20, 15 October 2019,

Pages 4165–4167.

https://doi.org/10.1093/bioinformatics/btz178

It has been reproduced under a Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/) and minor changes to the orig-

inal text have been made to format the original article as a thesis chapter.

2.1.1 Abstract

Motivation

The Protein Data Bank (PDB) currently holds over 140 000 biomolecular struc-

tures and continues to release new structures on a weekly basis. The PDB is an es-

sential resource to the structural bioinformatics community to develop software that

mine, use, categorize and analyze such data. New computational biology methods are
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evaluated using custom benchmarking sets derived as subsets of 3D experimentally

determined structures and structural features from the PDB. Currently, such bench-

marking features are manually curated with custom scripts in a non-standardized

manner that results in slow distribution and updates with new experimental struc-

tures. Finally, there is a scarcity of standardized tools to rapidly query 3D descriptors

of the entire PDB.

Results

Our solution is the Lemon framework, a C++11 library with Python bindings,

which provides a consistent workflow methodology for selecting biomolecular inter-

actions based on user criterion and computing desired 3D structural features. This

framework can parse and characterize the entire PDB in < 10 min on modern, multi-

threaded hardware. The speed in parsing is obtained by using the recently developed

MacroMolecule Transmission Format to reduce the computational cost of reading

text–based PDB files. The use of C++ lambda functions and Python bindings pro-

vide extensive flexibility for analysis and categorization of the PDB by allowing the

user to write custom functions to suite their objective. We think Lemon will become

a one-stop-shop to quickly mine the entire PDB to generate desired structural biology

features.

Availability and implementation

The Lemon software is available as a C++ header library along with a PyPI

package and example functions at https://github.com/chopralab/lemon.
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2.1.2 Introduction

Experimental structures deposited in the Protein Data Bank (PDB) [95] have

resulted in several advances for structural and computational biology scientific and

education communities. Several software packages have been developed using and

applying data available in the PDB. Computational structural biology methods are

evaluated using several benchmarking datasets mined from the PDB. As one exam-

ple, for protein-ligand docking, the Astex [96], PDBbind [97] and DUD–E [98] sets

have been used to predict the 3D coordinates of ligands, rank target activity and

discriminate binders from non-binders.

Additionally, the knowledge–based forcefields for protein structure refinement [99]

and scoring functions used to evaluate ligand poses in a protein binding site [28]

require extensive feature mining of the PDB. The process for developing these bench-

marking sets, structural features for knowledge-based forcefields and scoring functions

are non–standard, time–consuming and computationally challenging as it requires

significant computational resources to mine different 3D descriptors in the PDB. De-

velopment of software for mining these 3D features and use of them for machine

learning methods is challenging due to the increase in individual entry size as a sig-

nificant computational cost is needed to parse large text–based formats.

The Macro Molecular Transmission Format (MMTF) [100] was recently introduced

to significantly reduce the time required to parse text-based formats traditionally used

to store crystallographic data. MMTF requires a fraction of the computation time

to read multiple files into computer memory as it uses an encoding format tailored

specifically to protein and nucleic acid coordinate data and topology. Specifically,

MMTF stores connectivity and chemical grouping data not captured in the PDB and

mmCIF formats that are leveraged by Lemon’s data extraction framework. Lemon

uses the entire PDB as Hadoop sequence files that are packaged as 578 independent
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subsets for all MMTF entries and used for the development of highly parallel work-

flows (Fig 2.1). Lemon is the only C++11 software package to our knowledge to parse

the Hadoop sequence files natively.

2.1.3 Materials and methods

The Lemon framework uses a paradigm similar to MapReduce developed by

Google for mining ’Big Data’ [101]. The user provides a ’worker’ function that accepts

two arguments: an object that represents the structure(s) of the chemical entities,

and a string representing the four-letter PDBID. Lemon evaluates this function for all

macromolecule entries in a multithreaded manner (Fig 2.1a), allowing one to perform

any calculation on the structural information encoded by the MMTF file.

The MMTF object given to the user contains biomolecular data at the atomic,

chemical group and molecular levels. This includes the position, name, element type

and charge of the biomolecular atoms as well as the name, chain, biologic assembly,

chemical links and composition type of chemical groups (e.g. protein residues). These

features are examples that can be used to create workflows to select and extract

desired 3D interactions.

Since a primary goal of the Lemon framework is to create standardized workflows,

we have represented an example workflow pictorially (Fig 2.2). A workflow calculation

is performed on the entire PDB database that is stored in its entirety on the user’s

local machine. However, users can also choose to pre-filter the database using a query

generated on the RCSB website.

The workflow examples (Listings) are divided into ’simple,’ ’distance-based,’ and

’complex’ categories based on the computational complexity of the workflow in ap-

pendix C. First, the user ’selects’ chemical groups present in the PDB entry using

functions in Lemon for selecting small-molecules, metals, nucleic acids, amino acids,



36

Main
execution
thread.

MMTF MMTF MMTF MMTF

User

options

MMTF

sequence

files

Workflow Thread
Collection of

workflow output

400

800

1600

3200

6400

12800

1 2 4 8 16 24
Number of cores

Distance workflow example
Complex workflow example

Simple workflow example

Async Sync Python(sync)Python(async)

To
ta
lr
un
tim

e
fo
re

nt
ire

PD
B
(s
)

C++ vs Python workflows

a

b

Map

Reduce

Figure 2.1. Workflow for Lemon. (a) The overall work follows for
the Lemon framework is given. The user provides C++ or Python
API Lambda functions which use pre-defined functions to query in-
formation about each complex to filter the PDB into a desired subset.
(b) A comparison between the C++ and Python benchmarking sets,
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Figure 2.2. Diagram showing the recommended Lemon workflow. The
workflow begins with selection when the user provides criterion on
which chemical groups, they wish to perform calculations on. In
this example, the purple groups represent small molecules, the red
groups represent water, the cyan groups represent metals, and the
boxed groups represent amino acids. Here, the user has selected small-
molecules and metal ions. The next step is pruning of the selected
residues. Here, the user has decided to remove the small molecules
which do not contain rings and remove small molecules which are
not within proximity of a metal ion. Finally, the user can perform a
calculation on their selected pairs.

etc. These functions work on the group level by querying the group’s size and compo-

sition type. Additionally, it can also include the selection of topological information.

Examples for these selectors are given in Listings 1–6 in appendix C.

After obtaining a list of groups, the user can further divide (’prune’) these groups

based on 3D environment, biologic relevance or frequency in the PDB. Lemon provides

functions to find biologically identical groups, common groups and interacting groups

via spatial relationships in 3D. Example lambda functions for ’pruning’ groups are

given in Listings 7–12 in appendix C.

Finally, a workflow will calculate a feature of interest. For example, a user may

perform structural alignment to a reference protein (Listing 13), calculate a docking

score (Listing 14) or output statistics on geometries of bonded entities (Listings 15–18

in appendix C). To show case the Python version of Lemon, three example workflows

were ported to Python (Listings 19–21 in appendix C). The information obtained
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from these workflows can then be directly used in machine learning approaches and

the development of new structural biology methods.

Lemon also implements two different threading models based on the specifications

of the C++ standard library. The first is a traditional (synchronous, ’sync’) threading

approach which divides the PDB into 578 subsets and launches a user-defined number

of threads to handle an equal portion of these 578 subsets (e.g. if the user selects two

threads each thread will handle 289 subsets). The second is an asynchronous (’async’)

model that schedules 578 threads and executes a given number of them in parallel.

Specifically, for async, the next queued thread executes when a thread completes,

compared to the ’sync’ model that requires all threads to complete.

Benchmarking Lemon

All Lemon benchmarks were run on the Brown high performance computing clus-

ter. The nodes that comprise this cluster have 96 Gb of memory and two Sky Lake

CPUs clocked at 2.60GHz, resulting in a total of 24 cores. Further details about this

compute cluster can be found at https://www.rcac.purdue.edu/compute/brown.

The calculation of the timings for individual workflows versus the overall runtime

was done by using the LEMON_BENCHMARK flag during compilation. These

timings include decompression of the MMTF file using the Gzip algorithm but include

neither the time required to read the compressed MMTF from the Hadoop sequence

file into memory, nor the time required to output the results. These timings are

printed to STDERR after the workflow completes for a single entry.

This procedure was performed three times using different compilation settings

to understand the difference between these settings and overall workflow runtime.

The three settings are (1) using the Intel C++ Compiler 17.0.1.132 with traditional

(synchronous) threading enabled, (2) GNU C++ Compiler 6.3.0 with traditional
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threading, and (3) GNU C++ Compiler 6.3.0 with asynchronous (async) threading

enabled.

Lemon jobs were submitted to the cluster’s using the following script when dif-

ferent processor counts where supplied during submission. All benchmarking was

performed on a single node unless otherwise specified.

#!/ usr / b in /env bash
#PBS −d .
#PBS − l wa l l t ime =04:00:00

i f [ [ −z $LEMON_PROG ] ]
then

echo "You␣must␣ s p e c i f y ␣ the ␣LEMON_PROG␣ va r i ab l e "
exit 1

f i

PPN=$ (wc − l $PBS_NODEFILE | cut −f 1 −d ’ ’ )

# /dev/shm i s the l o c a t i o n o f shared memory
# on RedHat systems .
# you may need to change t h i s l o c a t i o n !
ta r −xf f u l l . t a r −C /dev/shm/

SECONDS=0
time lemon/build_${ compi le r }/ bin / lemon/$LEMON_PROG \

−w /dev/shm/ f u l l −n $PPN > ${LEMON_PROG} . l og

echo "$LEMON_PROG␣$PPN␣ $compi ler ␣$SECONDS"

rm − f r /dev/shm/ f u l l

Obtaining Lemon

The Python version of Lemon is available on the PyPI package repository and can

be installed on Windows, MacOS and Linux using the following command. Note that
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this only installs the Python version of Lemon and does provide access to the C++

API.

python3 -m pip install —-user candiy–lemon

The lemon benchmarking framework is written in C++11. Its only dependencies

are a C++11 compiler, the CMake tools, and the Chemfiles library. Note that the

Chemfiles library will be automatically installed by the lemon install scripts if it is

not already installed your system. Note that Lemon itself is a ’header-only’ library,

but users will also need a copy of the Chemfiles library to include it in their projects.

There are two threading methodologies that can be used by Lemon. The default is

based on std::thread provided by the C++11 standard and should compile with any

C++11 compiler. A second methodology uses a thread pool which uses std::async

and requires C++14 features.

Lemon has been freely released on GitHub. To obtain the software, complete the

following steps:

g i t c l one https : // github . com/ chopralab /lemon . g i t
cd lemon/
mkdir bu i ld /
cd bu i ld
cmake . . −DCMAKE_BUILD_TYPE=Release
make

The example binaries will be created in the ’progs’ subdirectory of ’build’. It

is recommended that you supply the ’make’ command with an additional argument

’-j NUM’ where ’NUM’ is the number of physical cores on your machine. To use

the std::async version of Lemon, add -DLEMON_TEST_ASYNC=ON to the cmake

configuration line. To build documentation, add -DLEMON_BUILD_DOCs=ON to

the configuration line. An online version of this documentation is available at

https://chopralab.github.io/lemon/latest/.
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2.1.4 Results and discussion

Querying the PDB takes minutes

To measure Lemon’s execution time, we ran all example listings provided for

different levels of multithreading and compiler architectures. The calculations were

performed on a community cluster with each node consisting of two 12-core Intel

Xeon Gold ’Sky Lake’ processors. There are differences in computational time for a

’simple,’ ’distance-based,’ and ’complex’ workflow (Listings 6, 10 and 18) including

the time to decompress and parse the MMTF files (Fig. 2.3). The average runtime

for all workflows with ’async’ threading on eight cores (commodity hardware) takes

∼8 min to complete. The Lemon outputs for these queries are shown in appendix C.

Workflow runtime influences threading efficiency

Asynchronous threading is more efficient for ’complex’ workflows compared to

sync threading (Fig 2.1b). Theoretically, the sync threading time should be more

than async because it needs to wait for other threads to complete. However, the async

and sync runtimes are similar for ’simple’ and ’distance-based’ workflows (Listings 6

and 10) but differ for complex workflow (Listing 18) for 2 and 4 cores (Fig 2.4). The

runtime reduces with an increase in the number of cores (see 1, 2 and 4 cores in Fig

2.5). However, for some simple and distance-based workflows runtime increased from

4 to 8 cores (Fig 2.5). This result may be due to increased performance penalty for

atomic (thread locking) operations after completion of each thread. This hypothesis

is supported by the continued increase in performance for ’complex’ operations as

they are less likely to become bound.
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Figure 2.3. Timings for individual workflows are given as examples
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from a single core launch to ensure that each timing was as inde-
pendent of other calculations. These results indicate there is little
difference between the ’simple’ and ’distance-based’ calculations, a
potential result of the reduced computational cost due to carefully
’selecting’ and ’pruning’ chemical groups before performing the dis-
tance calculation.
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Figure 2.5. Benchmarking results for the Lemon workflows listed pre-
viously in this document. Here, we have divided these workflows by
their relative complexity. We ran the benchmarking set for the en-
tire PDB with (left column) and without the three largest size PDB
entries, 3J3Q, 3J3Y, and 5Y6P (right column). These entries have a
processing time at least 3 times greater than the remaining entries.
Note that runtimes given in the Y-axis are plotted logarithmically.
These plots show that 4 cores provide the optimal run time for ’sim-
ple’ and ’distance-based’ operations. Additional cores do improve
runtime for ’complex’ operations, however, indicating the possibility
of an Input-Output bottleneck on fast calculations.
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Large biomolecules do not affect runtime

Fig 2.5 shows that removal of the largest size PDBs (3J3Q, 3J3Y, 5Y6P) does

not significantly reduce the overall runtime for most workflows when compared to

the entire PDB (left column in the figure). An exception is the calculation of small-

molecule/peptide interactions that requires distance calculations between millions of

atoms for large complexes (see Peptides in Fig 2.5). Hence, Lemon workflows scale

with the size PDB entries. This is a significant result given the increase in the amount

of large structures in the PDB (RCSB stats page).

Compiler choice significantly impacts runtime

The selection of the C++ compiler dramatically affects the performance of Lemon

(Fig 2.6). However, the timings shown in Fig 2.6 indicate that there is only a marginal

difference between the ’sync’ and ’async’ models averaged over all workflows. The

GNU Compiler Collection (GCC) version 6.3.0 with ’sync’ threading compilation

outperforms the Intel compiler version 17.0.1.132 with sync threading (Fig 2.6, green

and blue bars). This discrepancy could be a result of GCC’s use of a modern version

of the C++ standard library or the specific optimizations performed by this compiler

are better for Lemon. Further profiling is beyond the scope of this work and may be

addressed in future publications.

Python is slower than C++ for complex workflows

The data shown in Fig 2.1b indicates that the Python bindings are just as fast as

the C++ version for ’simple’ and ’distance-based’ workflows. Complex calculations

scale poorly with the number of cores, a result due to the Python global interpreter
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the ’complex’ calculations.

lock. This underlines the importance of development in the C++ language, poten-

tially after prototyping a complex workflow in Python.
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Code availability

Lemon is hosted on GitHub (see ’Obtaining Lemon’) along with C++ and Python

API documentation on the GitHub page repository. File input and output are pro-

vided by the Chemfiles [102] library. A link to the Lemon GitHub repository has been

added to the official MMTF webpage on mmtf.rcsb.org.

2.2 Identification of differing cell populations through the measurement

of biological species

While the ability to identify to model cells using protein coordinates is important,

so is the ability to identify the state of the cell through its expressed lipids, proteins,

and metabolites (a biological specie). A technique utilizing MS/MS has been devel-

oped to measure the expression of these species. However, the measurement of these

species is noisy and it can be difficult to determine statistical significance given the

amount of noise. The analytical technique produces an ion count for each specie,

but this number can be measured for blank and control samples. Fortunately, these

ion counts follow a negative–bioomial distribution which allows it to be modeled us-

ing techniques similar to those used for RNA–seq. Using these details, the following

statistical technique has been developed and applied to several biological samples.

All statistics determined for the comparisons between cells treated with a condition

versus a control were calculated using the edgeR package [103]. Here, the ion count

for a given biomarker (i.e. protein, lipid, or metabolite) will be referred to using

the subscript s for the sample (cell replicate for a class of analyte) and b for the

specific biomarker (i.e. a single lipid). An additional ’intercept’ sample is added

to model the experimental blank performed using just the injection media to ensure

that all comparisons are significant with respect to this control. The edgeR package
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fits a generalized linear model to the following log–linear relationship for the mean–

variance: log µbs = XT
b βg+logNs for each biomarker b in sample s where the sum of all

ion intensity for sample s sums to Ns. This allows for the calculation of the coefficient

of variation (CV) for the ion count for a biomarker in a sample (ybs) using the following

relationship CV 2(ybs) = 1/µbs + Φb where Φb is the dispersion of the biomarker. This

dispersion term is estimated using the common dispersion method [104]. These values

are used to calculate the associated log–fold change between treated and non-treated

cells along with the p-values are obtained using the likelihood ratio test. These p–

values are then adjusted for multiple testing using the BH method to obtain false

discovery rates [105].

An example project with Priya Prakash using primary microglia is shown below

for cells treated with amyloid–beta compared to a control group. As can be seen

from the principal component analysis plots in Fig 2.7, this technique can be used to

identify significantly different metabolites in these samples.
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2.3 Combining Biodynamic Imaging and RNA-sequencing yields an im-

proved machine-learning model for predicting resistance to chemo-

therapy in canine lymphoma

This section is currently under preparation for submission to a peer–reviewed jour-

nal as a brief application note. It contains contributions from Deepika Dhawan, Sagar

Utturkar, Phillip San Miguel, Gaurav Chopra, John Turek, David Nolte, Michael

Childress, and Nadia Lanman.

2.3.1 Abstract

Diffuse large B-cell lymphoma (DLBCL) is a common, aggressive cancer diagnosed

in approximately 25,000 patients each year, 1/3 of whom will die from the disease.

Challenges in predicting those patients whose cancers will respond well to a given

therapy is a major reason for this lack of success. A novel method to predict the

effectiveness of therapy for individual patients is desperately needed. Recently, dogs

with naturally-occurring DLBCL have been proposed as a valuable model in which to

develop novel personalized medicine strategies for humans with this cancer. In this

study, Biodynamic Imaging and RNA-seq data were collected on tumor samples from

pet dogs with spontaneous DLBCL, before and after chemotherapy treatment. Dogs

were classified as sensitive or resistant to chemotherapy and data were integrated to

build a machine learning model which is a perfect classifier for predicting sensitiv-

ity versus resistance to chemotherapy from pre-chemotherapy data alone. Together,

these data show that BDI and RNA-Seq data, with careful feature selection can be

generalizable predictors of chemotherapy response in a disease that is notoriously dif-

ficult to treat in part due to the heterogeneity observed in response to standard of

care therapies.
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2.3.2 Introduction

Diffuse large B-cell lymphoma (DLBCL) is characterized by marked molecular

and biochemical heterogeneity that have confounded the use of targeted drugs to

improve cure rates from conventional chemoimmunotherapy [106]. Genetic analysis

alone is insufficient to predict the response of individual cases of DLCBL to drug

therapy [107]. Here, we close this predictive gap with a novel technique termed

biodynamic imaging (BDI) [108–113], an optical imaging technology that records

phenotypic responses of fresh, three-dimensional tumor tissues to chemotherapeutic

drugs in the ex vivo setting. These responses are identified via Doppler spectroscopy,

the data from which has been statistically associated with clinical outcomes such

as objective tumor response or survival time. Although preliminary results show

that BDI predicts chemosensitivity of naturally-occurring DLBCL in dogs [112], the

relationship of BDI data to molecular processes underlying a tumor’s phenotypic drug

response has yet to be defined. We show that combined with gene expression and BDI

data create a perfect classifier of clinical chemotherapy response in canine DLBCL.

Due to the success of machine learning applications across chemistry and biology

[114–116], we explore multiple machine learning methodologies for this classifier and

discuss the implications of this model’s predictions for the biology of these tumors.

2.3.3 Methods

In this study, biodynamic Imaging (BDI) was performed on nineteen dog tumors

(see Table 2.3.3 for full information). Details for the collection, culturing, and imag-

ing of these dogs are given in the supporting information under BioDynamic Imaging

(BDI) and Analysis. This analysis yielded a total of 81 features from 5 chemotherapy

treatments tested on these ex vivo tumor samples. Of these tumors, 6 patients were
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later categorized as resistant to chemotherapeutics (progression-free survival time

< 100 days) and the remaining 13 patients were considered sensitive to chemother-

apy (progression-free survival time > 200 days). In addition to BDI, gene expression

was measured using RNA-seq and analyzed using a standard RNA-seq pipeline. De-

tails for the quality control, alignment, and differential expression analyses of the

RNA-Seq data are given in the supporting information under Details for RNA-Seq

analysis. RNA-seq was performed both before and after chemotherapy, yielding a pre

and post-treatment set of genes for analysis. A total of 37 statistically significant

differentially expressed genes identified by two independent differential expression

analysis packages in sensitive vs resistant samples were combined to ensure complete

coverage of the relevant transcriptomic landscape [103, 117, 118]. RNA-seq and BDI

features were combined to yield a total input feature space of 119 features which can

be used to predict the sensitivity of the lymphomas. Given that the split between the

number of resistant and sensitive lymphomas is uneven, we decided to use the Cohen

Kappa Statistic [119] to determine the success of the models where the resistant tu-

mor samples were taken to be the positive case and the sensitive tumor samples were

taken to be the negative case. The Caret machine learning software package [120]

was used to train all models where the train control was set to "Leave one out cross–

validation" (LOOCV) for hyperparameter tuning. This technique trains the model

on all but one patient tumor (training set) and evaluates the resulting model on the

tumor not used for training (validation set) to find the methodology and parameters

which generalize best for the input features. Typically, these parameters are used to

train a final model that is tested against patients not used for LOOCV (a test set),

but due to the lack of data available for training, each patient samples were iteratively

left out for LOOCV to enable testing of the final model on the left out patient. This

process is repeated in a similar manner to that of LOOCV. The full description for
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this training, validation, and testing paradigm is given in Appendix A and referred

to as ’Leave one out Testing’ (LOOT). The code required to perform this validation

technique can be found at github.com/pccr/bdi_rna_seq_for_lymphoma.

2.3.4 Results and Discussion

Regularized logistic regression is an established machine learning technique that

is known to generalize well to data not seen in its training or validation sets [121,122].

A regularized logistic regression model trained solely on all 81 BDI variables yielded

a Kappa statistic of 0.11 when validated using LOOCV, likely due to overfitting

resulting from too many input variables. To address this, we ranked all BDI variables

based on their Area Under the Precision Recall Curve (AUPRC, Tables 2.3) and their

Area Under the Receiver Operator Curve (AUROC, Table 2.4) and empirically found

that the following 3 BDI variables (SDIP1dox, LOF0chop, and ALLF1pred) yielded

the best model with a Kappa statistic of 0.42. A second model trained on only the 37

RNA-seq variables identified as statistically significant either in the pre- or the post-

treatment tumor samples yield a validation Kappa value of 0.46. It was hypothesized

that a combination of these two variable types would yield a more generalizable model

than one trained on only one type of variable. Hyper parameter details are given in

Appendix D.

Simply combining the All 81 BDI and 37 RNA variables resulted in a Kappa statis-

tic of 0.20 but using the best 3 BDI variables and 37 RNA variables yielded a Kappa of

0.46. Therefore, we decided to reduce the number of RNA variables as well and sim-

ply used all the significant variables in the pre-treatment (ENSCAFG0000011225 and

ENSCAFG00000004237 or KIAA1217) and the top three RNA variables as per their

AUPRC (Table 2.3.4, ENSCAFG00000004237 KIAA1217, ENSCAFG00000005330

or SHD4A, ENSCAFG00000016518 or FGFR4) for a total of 4 new variables as
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Table 2.1.
Details on the nineteen canines evaluated in this study. Each patient
is assigned a unique sample ID for pre and post chemotherapy and
a tumor sample barcode to represent the dog both before and after
treatment. Since the post treatment RNA-seq data is only used to
identify additional genes and not used for the creation of any models,
the Dog Identifier is used in all future figures and tables.

Sample RNA Condition Dog Identifier Clinical Outcome
12BDI Pre LY05 Sensitive
31BDI Post LY04 Sensitive
100BDI Pre LY04 Sensitive
80BDI Pre Ly43BD Sensitive
RL84BD Post Ly58BD Resistant
RL60BD Pre Ly58BD Resistant
95BDI Pre Ly51CL Sensitive
21BDI Post LY03 Sensitive
RL52CC Pre LY03 Sensitive
LY12CW Post case782-104 Sensitive
75BDI Pre case782-104 Sensitive
16BDI Post LY02 Resistant
42BDI Pre LY02 Resistant
RL06CJ Post Ly42GJ Sensitive
LY54CJ Pre Ly42GJ Sensitive
RL46JD Post LY08 Sensitive
LY11JD Pre LY08 Sensitive
LY29JW Post LY01 Resistant
LY16JW Pre LY01 Resistant
96BDI Post LY06 Resistant
RL10KM Pre LY06 Resistant
RL82KG Post case785-528 Sensitive
RL69KG Pre case785-528 Sensitive
RL89LB Post case786-844 Resistant
LY99LB Pre case786-844 Resistant
LY72MS Post Ly83MS Sensitive
43BDI Pre Ly83MS Sensitive
LY79SM Post LY10 Sensitive
LY54SM Pre LY10 Sensitive
LY49SP Post LY09 Resistant
37BDI Pre LY09 Resistant
LY17TT Post LY07 Sensitive
94BDI Pre LY07 Sensitive
RL02YB Pre Ly01YB Sensitive
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Table 2.2.
The AUPRC for each of the differentially expressed genes in both pre-
and post-condition.

ENSEMBL id AUPRC external gene name
ENSCAFG00000004237 0.978016 KIAA1217
ENSCAFG00000005330 0.959124 SH2D4A
ENSCAFG00000016518 0.954301 FGFR4
ENSCAFG00000023923 0.911471 VSIG10L
ENSCAFG00000001316 0.89246 DAPK1
ENSCAFG00000028669 0.886733 FAM171B
ENSCAFG00000011158 0.88414 CFAP46
ENSCAFG00000019071 0.840163 TRARG1
ENSCAFG00000001672 0.832966 LEP
ENSCAFG00000005023 0.748777 HRH1
ENSCAFG00000030137 0.687407 RGS13
ENSCAFG00000010274 0.648399 CHI3L1
ENSCAFG00000006735 0.642685 GZMA
ENSCAFG00000000408 0.63348 IFNG
ENSCAFG00000023928 0.63312 CCL8
ENSCAFG00000018470 0.628268 PLD6
ENSCAFG00000003665 0.626614 SLC17A7
ENSCAFG00000025287 0.625136 GZMB
ENSCAFG00000001835 0.618981 ABCB1
ENSCAFG00000000257 0.612058 IL20RA
ENSCAFG00000013940 0.611059 CLEC4E
ENSCAFG00000025299 0.596955 AOX2
ENSCAFG00000006240 0.593768 MCF2L
ENSCAFG00000012762 0.592697 COCH
ENSCAFG00000011225 0.58571
ENSCAFG00000001635 0.572127 MLLT3
ENSCAFG00000015883 0.571482 NRG3
ENSCAFG00000008523 0.571264 P2RY14
ENSCAFG00000009569 0.570568 SPP1
ENSCAFG00000005056 0.568922 SCN10A
ENSCAFG00000011168 0.565751 NRGN
ENSCAFG00000007621 0.555166 C1H19orf12
ENSCAFG00000014860 0.55239 CASP4
ENSCAFG00000005835 0.54928 ZIC2
ENSCAFG00000002835 0.526799 CTNNAL1
ENSCAFG00000004855 0.523287 EPB41L5
ENSCAFG00000017656 0.52102 PSTPIP2
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Table 2.3.
The AUPRC for each of the BDI biomarkers. This value is calculated
where the ’sensitive’ class is taken to be the control value and the
’resistant’ class is taken to be the comparison value. These values are
calculated independently of each other and represent how well each
biomarker can be used to predict the clinical outcome of a patient.

BDI Variable AUPRC BDI Variable AUPRC BDI Variable AUPRC
ALLF1_pred 0.93056 LOF0_chop 0.92794 SDIP1_dox 0.89674
HI1_cyclop 0.89043 ALLF0_chop 0.88747 LOF0_pred 0.87307
LOF1_cyclop 0.87300 MID0_chop 0.87291 SDIP2_chop 0.87247
HI1_pred 0.87191 ALLF1_cyclop 0.87103 LOF0_dox 0.86012
DSF_cyclop 0.85813 CDIP1_dox 0.84696 SDIP2_vinc 0.84020
LOF1_pred 0.83219 MID2_cyclop 0.83093 ALLF2_cyclop 0.82473
CDIP2_cyclop 0.82369 HI2_dox 0.82110 MID1_cyclop 0.81612
MID2_dox 0.81430 DNSD_cyclop 0.81130 LOF1_vinc 0.80992
DNY_cyclop 0.80770 ALLF2_dox 0.80303 CDIP2_vinc 0.80138
DBSB_dox 0.80081 DNY_pred 0.77775 LOF0_cyclop 0.76925
DDR_cyclop 0.76669 SDIP2_pred 0.76622 DSF_pred 0.76269
MID1_pred 0.74951 LOF2_pred 0.74792 ALLF1_vinc 0.74631
ALLF1_dox 0.74140 HI1_chop 0.74085 CDIP0_dox 0.73929
DSF_dox 0.73407 DDR_dox 0.73114 ALLF0_dox 0.73004
DDR_pred 0.72820 DBSB_vinc 0.72749 LOF0_vinc 0.71543
DHW_dox 0.71345 DDR_chop 0.71088 ALLF2_chop 0.70642
HI1_vinc 0.70440 DDR_vinc 0.68787 CDIP2_chop 0.68486
CDIP0_chop 0.67647 DNY_vinc 0.67431 DHW_cyclop 0.66812
DSF_vinc 0.66756 ALLF2_vinc 0.66078 DHW_pred 0.65882
MID0_dox 0.65515 CDIP1_pred 0.65308 DSF_chop 0.64619
DNY_dox 0.61599 SDIP1_pred 0.60346 CDIP0_cyclop 0.59756
CDIP2_pred 0.58986 CDIP0_vinc 0.58612 LOF2_vinc 0.58452
LOF2_chop 0.58039 CDIP0_pred 0.57298 SDIP0_vinc 0.56466
SDIP0_dox 0.55826 LOF1_dox 0.55717 HI0_vinc 0.55512
SDIP1_cyclop 0.55475 SDIP0_chop 0.54384 HI0_dox 0.54278
DNSD_dox 0.54139 DHW_vinc 0.53620 SDIP1_vinc 0.53178
CDIP1_vinc 0.53056 SDIP0_pred 0.52287 CDIP1_cyclop 0.49202
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Table 2.4.
The AUROC for each of the BDI biomarkers. The AUROC is calcu-
lated where the ’sensitive’ class is taken to be the control value and
the ’resistant’ class is taken to be the comparison value. These val-
ues are calculated independently of each other and represent how well
each biomarker can be used to predict the clinical outcome of a dog.

BDI Variable AUROC BDI Variable AUROC BDI Variabl AUROC
LOF0_chop 0.83333 ALLF1_pred 0.82692 LOF0_pred 0.80128
LOF1_cyclop 0.79487 SDIP1_dox 0.75 LOF1_pred 0.74359
LOF1_vinc 0.73077 DSF_cyclop 0.71795 ALLF1_cyclop 0.71795
ALLF0_chop 0.71795 HI1_cyclop 0.71795 DBSB_dox 0.70513
MID0_chop 0.69872 HI1_pred 0.69872 SDIP2_chop 0.69231
MID1_pred 0.69231 SDIP2_vinc 0.68590 DNY_cyclop 0.66667
CDIP1_dox 0.66026 DDR_pred 0.66026 LOF0_dox 0.64744
DNSD_cyclop 0.64103 CDIP2_vinc 0.64103 MID2_dox 0.62180
MID1_cyclop 0.61538 CDIP2_cyclop 0.61538 HI2_dox 0.61538
DBSB_vinc 0.60897 MID2_cyclop 0.60897 DNY_pred 0.60256
LOF0_vinc 0.58974 DDR_dox 0.58333 ALLF1_vinc 0.58333
DSF_pred 0.57692 DDR_cyclop 0.57692 ALLF2_cyclop 0.56410
CDIP0_chop 0.55769 DDR_vinc 0.55128 ALLF2_dox 0.55128
CDIP1_pred 0.55128 DHW_pred 0.55128 ALLF2_vinc 0.55128
DSF_dox 0.53846 LOF0_cyclop 0.53205 CDIP0_dox 0.53205
DSF_chop 0.52564 DHW_dox 0.52564 CDIP2_chop 0.51282
DDR_chop 0.51282 ALLF0_dox 0.51282 SDIP2_pred 0.51282
MID0_dox 0.5 DSF_vinc 0.5 HI1_vinc 0.5
HI1_chop 0.48077 DNY_vinc 0.47436 ALLF1_dox 0.47436
LOF2_pred 0.46154 DHW_cyclop 0.45513 CDIP2_pred 0.41026
ALLF2_chop 0.40385 SDIP1_pred 0.39744 CDIP0_vinc 0.38462
LOF2_vinc 0.36538 CDIP0_pred 0.35897 CDIP0_cyclop 0.35256
DNY_dox 0.33974 LOF2_chop 0.33974 SDIP0_vinc 0.30769
HI0_vinc 0.30769 SDIP1_cyclop 0.30128 LOF1_dox 0.28205
DNSD_dox 0.26923 HI0_dox 0.25641 SDIP1_vinc 0.25641
CDIP1_vinc 0.24359 DHW_vinc 0.24359 SDIP0_chop 0.20513
SDIP0_pred 0.20513 SDIP0_dox 0.15384 CDIP1_cyclop 0.11538

KIAA1217 is repeated. We checked the correlation between these RNA values and

the BDI variables to ensure that there was no significant correlation (Fig 2.8a) and

that these 7 variables could be used to separate the 19 patients (see the Principal
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Component Analysis in Fig 2.8b) where additional correlation and PCA plots are

given in the supporting information (Fig. 2.9). A logistic regression model obtained

for a model trained on these 7 variables yielded a validation kappa of 0.88. These

results show that the selected variables are apt for predicting the resistance of a given

patient lymphoma. Details for the models are in Appendix D.
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Figure 2.8. Correlations between the top 20 BDI variables and sta-
tistically significant RNA-seq variables are given in (a) where green
boxes show the decision tree selected variables used to build the lo-
gistic regression model. A principal component analysis plot is given
in (b) to show how the selected variables separate the resistant ver-
sus sensitive lymphoma tumors. Additional correlation plots for the
Spearman and Kendall correlations are provided in the supporting
information.

To rigorously ensure that our model performs better than the other possible mod-

els, we perform Leave One Out Testing (LOOT) on the All BDI, Best 3 BDI, All RNA,

and combined BDI and RNA models (Table 2.5). These results show that the com-

bined model with full variable normalization (row 5) outperforms the models trained

on only one type of variable (rows 1 and 2). However, we were concerned about the
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Figure 2.9. Correlation plot for BDI variables and RNA-seq vari-
ables. For these correlations, the Kendall tau (a) and Spearman rho
(b) correlation is used to calculate the ordinal relationships between
the variables. All nineteen dogs are used to calculate these correla-
tions. The variables used to create the final model are highlighted
with green. The Principal component analysis (PCA) plot for the
RNA and BDI variables are shown to represent the difficulty in sep-
arating the resistant from sensitive dogs using only RNA (c) or only
BDI (d) variables.

normalization of the BDI variables as this leads to a dependence on the original mean

and standard deviation of the 19 patients. To address this, we wished to remove this

normalization from the model and we observed that the test set Kappa improved

(final row of Table 2.5). We believe this is a result contributes to the stability of the

BDI variables in their use of predicting canine lymphomas.
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2.4 Protein–target identification from computationally designed small–

molecles for castration resistant prostate cancer treatment

2.4.1 Abstract

Drug resistance is a widespread problem in cancer therapy due to the heteroge-

netic nature of cancer signaling pathways and networks. Traditional cancer therapies

are developed through a single target approach. . This single-target therapy can get

rid of the major mass of the tumor by targeting a particular receptor dominant clone.

However, it will let the minor populations continue to grow and become resistant to

the treatment. The ideal resolution to this problem is to develop a multi-target drug

which can inhibit all survival pathways of cancer. Unfortunately, the development of

multitarget inhibitors is difficult because, to our knowledge, no method exists to pre-

dict the efficacy of a small molecule using multiple targets in a given protein network

and identify the interactions responsible for its efficacy. In this work, we have pre-

sented an iterative machine learning method to predict the efficacy of small molecules

against castration-resistant prostate cancer (CRPC) and identify their mechanisms

of action. After a set of in vitro biological testing, our approach has yielded a novel

drug candidate, GCL.2, for CRPC treatment. GCL.2 has shown to successfully inhibit

multiple interactions of a protein network complex of RORG, AKR1C4, CYP17A1,

SHBG, and AR, which are crucial for CRPC clones. Furthermore, in vivo patient-

derived models has shown that GCL.2 significantly inhibited tumor growth. With

these results, we believe that our machine learning method can become essentially

helpful on designing multi-target drug candidates for complex diseases as cancers.
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2.4.2 Introduction

Multitarget drug design

The major alternative to single target drug design championed by our group is that

of multitarget drug design [9,15,25,29,123,124]. The central hypothesis behind these

works is that molecules which become drugs have multiple modes of action and do not

function in isolation, a typical assumption in the traditional single-target approach.

Using this hypothesis, we developed the Computational Analytics for Novel Drug Op-

portunities (CANDO) platform for repurposing drugs to utilize all the interactions

between a drug and 46,784 proteins. We calculated proteome-wide interactions for

3733 human ingestible compounds and compared the signatures of these compounds

to those of known treatments to postulate relationships in functional behavior. Com-

pounds with similar signatures are presumed to be surrogates for each another in a

disease-specific context. While this approach has seen wide success in the repurposing

of known therapeutic [7,8], it is not applicable to the design of novel compounds. To

fill this gap, we propose a new pipeline which combines traditional Computer Aided

Drug Design (CADD) techniques with in vitro validation and machine learning to ra-

tionally design novel, multitarget, and nontoxic compounds for a specific disease. To

do so, we have selected Castration-Resistant Prostate Cancer as a model disease for

a multitargeted approach as it is traditionally associated with multiple, single-target

therapies [125–129].

CRPC is a multitarget disease

Prostate cancer is the most common solid cancer and the second leading cause of

death from cancer in men. In 2019, 174,650 new cases and 31,620 deaths are estimated

in the US [130]. Although, 5-year survival rate of overall patients is 98%, the rate



62

dramatically declines when the progression stage is higher. Metastatic castration-

resistant prostate cancer (mCRPC) is the main cause of death for prostate cancer pa-

tients. Only one-third of the metastasized prostate cancer patient will survive after 5-

year of diagnosis. The median survival from CRPC diagnosis is only 14 months [131].

CRPC is defined as a stage that patients have a rising Prostate-Specific Antigen

(PSA) in spite of medical or surgical castration [132]. For non-metastatic CRPC

patients, the standard treatment is Apalutamide or Enzalutamide with continued an-

drogen deprivation [132]. Both drugs specifically target Androgen Receptor (AR) and

inhibit AR signaling, consequently, they can prevent the transcription of tumor genes.

As the gold standard, both drugs have shown a significant increase of metastasis-free

survival and time to PSA progression compared to a placebo group. However, half of

the patients who received Enzalutamide developed resistance to the treatment within

37.2 months for PSA progression and progressed to mCRPC within 39.6 months after

the treatment [133]. Likewise, the median metastasis-free period was 40.5 months for

the patients who received Apalutamide.18 Furthermore, 24% and 10% of the patients

did not respond to Enzalutamide or Apalutamide, respectively [132,133]. These data

suggest that the single inhibition of AR activity is not sufficient to stop CRPC pro-

gression. There must be other players or mechanisms significantly involving in the

resistance mechanisms aside from AR. For example, retinoic acid receptor-related or-

phan receptor gamma (ROR-γ), Sex hormone-binding globulin (SHBG), Cytochrome

P17a1 (CYP17a1) and AR-V7 are widely known as the activators of AR expression

and signaling in CRPC [125,129,134]. Therefore, CRPC is an apt disease to approach

from a multitargeting perspective, especially given current opinion has suggested a

combination therapy of several single target drugs to receive the maximum additive

effects [135]. However, dose adjustment and side effects are the biggest concern for

this approach. Therefore, developing a multi–target drug to interrupt the major
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network proteins of CRPC progression seems to be the better strategy to cure this

complex disease.

Traditional CADD

Modern drug design strategies often employ the use of computers to aid in the

prediction and characterization of interactions a small molecule has on a biological

target [136]. Of these techniques, docking is of particular interest as it can reproduce

the 3D conformation of a small molecule in a binding pocket, predict the binding

affinity of a small molecule, and serve as a method to virtually screen for active

compounds against a single target [134, 137–143]. Given the success of docking for

obtaining the interactions in the single target paradigm, we have employed it in the

use of calculating the interactions a small molecule has with multiple proteins, yielding

multiple interaction scores, referred to as an interaction signature.

Machine learning in chemistry

The integration of popular machine learning architectures into the drug design

pipeline has seen wide spread adoption [144–146]. Chemists have applied Support

Vector Machine [147–149], Random Forest [150–152], Multiple Layer Perception [153–

155], Generalized Adversarial Networks [156–160], Recurrent Neural Networks [97,

161, 162], and one-shot learning techniques [163] to predict molecular properties and

determine the characteristic features responsible for these classifications. Since the

interactions between a small-molecule and protein targets are paramount in our ap-

proach, we choose the input feature space to reflect such interaction. Herein, we

use docking scores as a surrogate for small-molecule protein interactions and train

machine learning models to predict experimental results. Finally, analysis of these
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models provides us with the targets responsible for compound activity which are ver-

ified in vitro to validate our hypothesis that the development of CRPC compounds

is best tackled through a multitargeted approach. An overview of this work is shown

in Fig 2.10.
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Figure 2.10. (a) Initial leads obtained from the CANDO platform are
tested in vitro for both potency and toxicity on numerous human cell
lines. Results of these tests label the compounds as either active (or-
ange) or inactive (grey). (b) The interaction profiles of all compounds
(both active and inactive) and additional "synthetic" compounds are
calculated with targets of interest using CANDOCK (see Chapter3).
These profiles are used as features in a SVM model to predict the
activity of the untested molecules (shown as circles). Molecules pre-
dicted to be active are synthesized and test in vitro, resulting in ad-
ditional active and inactive compounds to be used as training data
in future SVM models. (c) The models generated from iterative ma-
chine learning (the combination of a and c) are analyzed to create
compound-disease specific networks that identify which protein tar-
gets each compound interacts with to achieve its potency.
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2.4.3 Results and discussion

CANDO yields initial compounds for prospective testing

We utilized the CANDO platform [9,15,25,29,123,124] to bootstrap our investiga-

tion of novel CRPC therapies as this platform provides a multitargeted approach to

repurposing human ingestible compounds for any given disease. In the CANDO plat-

form, there are 72 known treatments for Prostatic Neoplasms which are matched to

3733 other compounds present in the platform. To select potential new therapies for

CRPC, we counted the number of times each of these ’other’ compounds was predicted

in the Top 100 compounds to treat Prostatic Neoplasms. The underlying theory be-

hind this methodology is to select potential compounds which interact with multiple

prostate cancer pathways because inhibiting more pathways yields a better potential

for treating CRPC, a more aggressive form of the disease. Of all the predicted com-

pounds for this disease, cinnarizine was predicted 31 times for prostatic neoplasms,

the most out of any compound in the CANDO platform. The remaining compounds

were filtered so that only compounds predicted more than 5 times remained, filtering

the predictions down to 482 compounds and the compounds tibolone, norethisterone,

levonorgestrel, cinnarizine, buspirone, talampicillin, azaperone, didanosine, pipam-

perone, and cetraxate were selected for further study. Of these compounds, tibolone,

norethisterone, and levonorgestrel are steroids with minor structural differences as

only the location of a double bond and the location of a methyl group in the steroid

change between these compounds. These 10 drugs are our initial leads for developing

new CRPC therapeutics using a multi–targeted approach.
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Experimental in vitro testing of 10 compounds yields three active com-

pounds

We tested all ten drugs discussed in the previous section using in vitro in both

LNCaP and C4–2 cells to see their growth inhibition effect to identify which of these

drugs were potential leads for CRPC. LNCaP and C4–2 cell lines were chosen to

represent androgen-sensitive and androgen-independent prostate cancer cells, respec-

tively. . In this experiment, both the LNCaP and C4–2 cells were treated for 6 days,

and cellular proliferation was measured using Cell Titer-Blue Cell Viability Assay

(Promega, Madison, WI). Among these ten predicted drugs, tibolone, norethisterone

and levonorgestrel displayed promising growth inhibition with an IC50 of 24.86, 32.52

and 181.0 nM respectively in LNCaP cells and 3.12, 7.04 and 41.78 nM in C4–2 cells

while for the other drugs this IC50 value was more than 5.0 µM (Fig 2.11a, Table

E.1). Given the significant inhibition of C4–2 cell proliferation by these three drugs,

we wished to ensure that these compounds were non-toxic using the standard MTT

assay of RWPE-1 cells. The cytotoxicity IC50 of TIB, NOR and LEV were found

to be 23.29, 86.30 and 59.70 µM respectively (Fig 2.11b). We investigated whether

these initial leads reduce the amount of AR translated into the nucleus for LNCaP

and C4–2 cells as translocation of this nuclear hormone receptor is known to cause

proliferation in these cells. To measure whole cell expression of AR, we performed

western blot analysis of LNCaP and C4–2 cells’ lysates after the cells were treated

with the three compounds. Fig 2.11c-d reveals that these compounds reduce the

amount of AR in LNCaP cells by 25–45 % and by 15–25 % in C4–2 cells as com-

pared to vehicle treatment. Given how the mechanism of AR proliferation is tied

to the concentration of AR in the nucleus, we measured the amount of nuclear AR

expression. To understand this, we performed anti-AR immunofluorescent staining

of the LNCaP and C4–2 cells after fixation and permeabilization with Triton X-100,
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followed by probing with monoclonal antibodies to AR(Fig 2.11e-f). Both norethis-

terone and levonorgestrel treatments lead to a respective 60 % and 30 % decrease in

nuclear AR level in LNCaP and C4–2 cells. Using the growth inhibition profile of

LNCaP and C4–2 cells, cytotoxicity profile of normal human RWPE-1 cells, western

blot and immunofluorescence findings, we have identified TIB, NOR and LEV as the

initial active leads for CRPC. Therefore, the CANDO approach has a prospective

accuracy of 30% (3 active compounds out of 10) and we decided that this approach

is not suitable for the development of new compounds.

Rational design and docking used to predict 6 additional compounds for

testing prospectively

All three active compounds (tibolone, norethisterone, and levonorgestrel) are

steroidal with similar scaffolds as all three compounds have a carbonyl group at the 3

position of the steroid ring and a methyl or ethyl groups at the 13 position, therefore

we decided to use an approach which is specific to the chemical space of the active

compounds. Using this approach, we created 50 novel designs (Table E.5) using the

following medicinal chemistry principals: (i) hydroxyl group bio–isostere replacement

(1, 3, 5-8, 28 and 35), (ii) carbonyl group bio isostere replacement (12-20, 30-32,

40 and 42), (iii) ethynyl group isostere replacement (21-27), (iv) carbon-carbon dou-

ble bond isomerization (2, 11, 29, 33, 34 and 50), and (v) methyl and ethyl group

isomerization (4, 9, 10, 36-39, 41 and 43-49). Since the number of drugs devel-

oped using this strategy is too large to test individually, we wished to use the activity

results obtained from the 10 CANDO compounds to predict which designs would be

active in a multitarget fashion. To do so, we decided to investigate the interactions

these compounds have with multiple proteins instead of a single compound as is done

in traditional drug design. We selected 18 targets which are known to play a role in
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Figure 2.11. (a) Cell viability IC50 plots for the predicted drugs
azaperone, buspirone, cinnarizine, talampicillin, pipamperone, cetrax-
ate, didanosine, tibolone, norethisterone and levonorgestrel in human
prostate cancer LNCaP and CRPC C4-2 cells. (b) IC50 graphs of
the active drugs tibolone, norethisterone and levonorgestrel in nor-
mal human prostate epithelial RWPE-1 cell line. (c) Effect of the
initial leads on the reduction of AR expression in LNCaP and C4-2
cells. Cells were treated with 1 µM concentrations of the indicated
drugs/compounds or DMSO-growth media as vehicle control for 24
h and the expression of AR protein was analyzed from their lysates
by western blot. Protein expression was normalized to β-actin (load-
ing control) and densitometry was calculated using ImageJ Software.
(d) AR expression in both LNCaP and C4-2 cells quantified from the
western blots of (c). (e) Immunofluorescent staining of LNCaP and
C4-2 cells for AR target after 24 h treatment with 1 µM of the in-
dicated compounds. (f) Nuclear AR expression in both LNCaP and
C4-2 cells quantified from the images of (e). Tibolone, norethisterone
and levonorgestrel were newly identified as active and non – toxic
initial leads for CRPC.
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the proliferation of prostatic neoplasms (Table E.2, Fig 2.12a) and verified their role

in the androgen pathway. Then, we docked all 60 compounds (10 CANDO compounds

plus 50 designs) using our in–house docking software, CANDOCK v0.2.0 [143]. We

have previously shown that our software provides accurate interaction scores for mul-

tiple small molecules which interact with multiple proteins [17]. The docked pose of

the three active compounds with AR is shown along with corresponding CANDOCK

binding scores in Fig 2.12b (all scores available in Tables E.3 and E.4). Using CAN-

DOCK, we obtained the interaction scores for the 10 CANDO compounds (active

shown in orange and inactive shown in grey in Fig 2.12c) and the 50 novel designs

(Fig 2.12d) with the 18 protein targets, yielding an 18 protein target interaction

signature for these compounds. Given the wide success of Support Vector Machine

(SVM) classification in drug discovery and chemistry [149,164], we applied this tech-

nique to predict which designs would be active given an interaction signature and

the known activity of the 10 CANDO compounds. The number of predicted active

compounds is quite large when using traditional SVM cut off values because all the

compounds are steroidal and therefore have similar signatures as compared to non-

steroidal compounds. This initial model performs well for separating the active and

inactive CANDO compounds (Fig E.3, Table E.5), with the interesting exception of

didanosine, which is typically predicted as active. To address this limitation and

reduce the number of compounds required for synthesis and testing, we calculated

a more restrictive cut off based on the decision values obtained from SVM learning

(see Figure E.2) using the 90th quantile of the decision values. Our methodology

designated six designs, 2, 4, 11, 29, 40, and 42, as potentially active against CRPC

cell lines (signatures displayed in Fig 2.12e). These predicted compounds and their

relationship to the parent scaffold are given in Fig 2.12f.
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Figure 2.12. (a) List of CRPC targets used to create docking profiles
for all compounds presented in this paper. (b) Docking pose of the
initial leads in AR with their respective docking scores. (c) Dock-
ing profiles for all initial predictions used for training data (providing
both positive and negative data in the form of active and inactive
compounds respectively) in the prediction of new leads from isomeric
designs. The docking scores for AR are highlighted in blue to demon-
strate that this value alone is unable to produce a model capable of
predicting activity against CRPC. (d) Docking profiles for novel de-
signs. (e) Machine learning selection of profiles that match the profiles
of the initial leads, leading to a new set of predictions for experimen-
tal verification. (f) Predicted actives after the first round of machine
learning represented as modification of the original scaffold.
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Prospective validation shows 4 out of 6 compounds are activeWe synthe-

sized five putative active designs: 2, 11, 29, 40, and 42 using the scheme shown in

Fig 2.13a. Design 4 is ethisterone, a commercially available drug used to gynecological

disorders. We measured the growth of LNCaP and C4–2 cells after treatment with all

six of these compounds with CellTiter-Blue Cell Viability Assay (Promega, Madison,

WI) or MTT (3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay

(Promega, Madison, WI). . Designs 2, 4, 40 and 42 all inhibited the proliferation

of LNCaP cells with an IC50 of 5.6, 21.05, 62.08 and 62.83 nM, respectively, and

C4–2 cells with an IC50 of 0.72, 11.01, 52.83 and 79.52 nM, respectively. However,

the IC50 values of 11 and 29 are greater than 5.0 µM in both cell lines (Fig 2.13b).

Given these results, we deemed designs 2, 4, 40, and 42 as active and designs 11

and 29 as inactive. The cytotoxicity IC50 of these molecules was found to be 54.67,

7.31, 7.05, 5.59, 13.88 and 21.36 µM in RWPE-1 cells for 2, 4, 11, 29, 40 and 42,

respectively (Fig 2.13c and S12c). Consequently, our initial machine learning model

has a prospective precision of 0.67, an impressive result given the limited amount of

training data available to the model. The receiver operator characteristic (ROC) and

precision recall values plots are given in Fig E.3 and indicate that the model performs

well as the area under the ROC curve is greater than 0.9 and the F1 score is greater

than 0.8 (assuming a recall of 1.0). One explanation for this precision value is that

the chemical space is limited to a that of a steroid with a limited number of modi-

fied functionalities. We plan to address the limitations of this approach in a future

publication to allow for more complex molecules which allow for increased chemical

diversity.

We were also interested to see the potency of our most potent lead 2 against

the current CRPC drugs abiraterone (potent CYP17A1 inhibitor) and enzalutamide

(potent AR antagonist). Since these drugs target two different proteins, we also tested
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Figure 2.13. (a) Synthetic scheme for 2, 4, 40 and 42 from the initial
leads. (b) IC50 plots of 2, 4, 40, 42, ABI, ENZ and ABI+ENZ against
LNCaP and C4-2 cancer cell lines. (c) IC50 graph of 2, 4, 40, 42, ABI,
ENZ and ABI+ENZ against RWPE-1 normal cell line. (d) and (e)
Western blot analysis for AR and β-actin (loading control) in LNCaP
and C4-2 cells treated with Vehicle and 1 µM concentration of the
indicated compounds for 24h. Protein expression was normalized to
β-actin and densitometry was calculated using ImageJ Softwar. (f)
Nuclear AR expression in LNCaP and C4-2 cells after treated with the
indicated drugs/compounds. (g) and (h) are respective Immunofluo-
rescent staining of of nucleus (DAPI and AR in LNCaP and C4-2 cells
treated with Vehicle and 1 µM concentration of the indicated com-
pounds for 24h. (i) and (j) are respective migration speed and wound
closure rate in both LNCaP and C4-2 cells in presence of the 2, 4,
40 and 42 designs. Synthetic lead 2 was found to be more potent in
inhibiting the viability of LNCaP and C4-2 cells, less toxic in normal
human epithelial RWPE-1 cells than the other leads as well as known
CRPC drugs.
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a combination of both to see if a single compound can be potent than a combination.

A proliferation assay of LNCaP and C4–2 cells was performed in presence of design 2,

abiraterone, enzalutamide, and a 1:1 combination of abiraterone and enzalutamide.

The proliferation IC50 of design 2 (5.65 nM) was found to be significantly less than

that of the individual CRPC drugs abiraterone (6166.0 nM) and enzalutamide (>

10000.0 nM) as well as their 1:1 combination treatment (> 7566.0 nM) in LNCaP

cells. Additionally, the proliferation IC50 of design 2 (0.72 nM) was found to be less

than that of the individual CRPC drugs abiraterone (291.0 nM) and enzalutamide

(4922.0 nM) as well as their 1:1 combination treatment (782.1 nM) in C4–2 cells.

The cytotoxicity IC50 of design 2 (Please add IC50 here) was found to be higher

than abiraterone (3.80 µM) and enzalutamide (50.89 µM) and 1:1 combination of

abiraterone and enzalutamide (9.42 µM) in RWPE-1 cells. These results clearly

indicated not only the enhanced potency of 2 as compared to the known CRPC drugs

but also its differential targeting action (CYP17A1 inhibition and AR antagonistic

effect).

With the new active and inactive designs, we ensured that none of the 50 de-

signed compounds would be predicted as active after including these findings in a

new machine learning model. A retrained machine learning model with 16 observa-

tions instead of the original 10 produced similar decision values for the 34 untested

compounds (Fig E.4a). Using the 90th quantile indicated that none of the remain-

ing compounds need to be tested (Fig E.4b) and we therefore concluded that no

additional compounds needed to be tested for activity in LNCaP and C4–2 cell lines.

Machine learning used to identify targets

After identifying 2 as most potent and non-toxic synthetic lead for CRPC, we in-

vestigated its mechanism of action to ensure that it is active against multiple CRPC
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targets. Since the AR signaling pathway is known to be paramount for CRPC pro-

gression, we treated androgen independent human prostate cancer PC–3 cells and

other human cancer cells such as non-small cell lung cancer H460 cells, neuroblas-

toma SHSY–5Y cells and bladder cancer HTB-9 cells with the four active designs

2, 4, 40, and 42. None of these desings displayed activity (IC50 > µM) on the

androgen independent cell lines, indicating that these designs are specific to cell lines

which are androgen dependant, specifically LNCap and C4–2. Since the designs are

more potent than a known AR inhibitor(ENZ), a known CYP17A1 inhibitor (ABI)

and a combination of the two (AR+CYP17A1), we wished to identify any additional

targets inhibited by our designs. In order to identify other proteins, we performed

computational studies of these synthetic leads against the 18 targets used to build the

SVM model. Due to the success of SVM classification for resolving active vs inactive

relationships, we began this analysis by creating a new SVM model using active and

inactive steroidal compounds previously identified in this work. We hypothesized that

the feature independence in the steroidal SVM model is paramount for determining

the importance of a given feature in the disease network. To test this, we calculated

the correlation between all 18 features used to create the SVM model and used these

correlations to determine to most independent features of our model. The ranked

order of all features is shown in Fig 2.14a (detailed calculations are given in Fig E.5).

Now that we have obtained a ranked list of features, we created SVM models that

only consider a subset of the original 18 features while producing the same result as

the complete model. The predictive capability of these smaller models, as compared

to the larger 18 feature model, is maintained because they only contain features

important for activity against CRPC. Although AR activity is generally considered

paramount for treat CRPC, it is not the most important feature for classifying a

compound as active or inactive. Instead, RORG, AKR1C4, and CYP17A1 are the
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Figure 2.14. (a) Features ranked in the order of increasing indepen-
dence (top to bottom) as calculated from the correlation matrix from
the second round of machine learning. (b) Compound specific net-
works created from using the most independent features and keep-
ing the prediction value of its compound paramount during the re-
modeling process. (c) Relative expression of AR, RORG, SHBG and
CYP17A1 in both LNCaP and C4-2 cells. (d). Computational data
showing differential targeting (RORG, SHBG, CYP17A1, AKR1C4
and AR) network proteins for the potent lead 2. (e) and (f) Respec-
tive immunofluorescent staining of LNCaP and C4-2 cells for RORG,
SHBG and CYP17A1 proteome targets after 24 h treatment with
1 µM of the indicated compounds. (g) Expression of AR, RORG,
SHBG and CYP17A1 in both LNCaP and C4-2 cells after treated
with potent lead 2.
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most important features for determining the activity of our compounds because these

features are both the most independent features from machine learning and are all

required in our smaller networks to properly predict activity (Figs E.6, E, E, E, E, E,

and E,). Therefore, we hypothesised that activity against these targets is important

for activity against CRPC.

Validation of predicted targets

After identifying a compound specific network for AR signaling pathway (Fig

2.14b) for compound 2, we investigated RORG, SHBG and CYP17A1 targets for

network validation by immunofluorescence assay (Fig 2.14e-d). To investigate the

effect of other synthetic leads on the expression of RORG, SHBG and CYP17A1, we

performed immunofluorescence staining of the LNCaP and C4–2 cells after treated

with the indicated compounds/drugs (Fig 2.15). All the treatments led to a decrease

in nuclear RORG level in both the LNCaP and C4–2 cells to an extent of 10-40% and 2

was found to be most potent (approximate 40% reduction of RORG expression) than

the other treatment and known drugs. We also observed that, all these treatments

displayed 10-25% reduction of whole cell SHBG level in both the cells and 2 was

most potent among them as displayed by approximate 25% decrease. Similarly, all

these treatments reduced 10-45% level of CYP17A1 in both the cells and 2 was found

to moderately degrade CYP17A1. Thus, our immunofluorescence assays not only

validated the four targets (AR, RORG, SHBG and CYP17A1) out of the five-target

network identified for these leads, but also revealed 2 as the most potent lead among

the synthetic compounds for CRPC. Also, lead 2 was found to be more potent as

compared to that of the parent leads TIB, NOR and LEV which showed only 10-20%

reduction of the identified network proteins (RORG, SHBG, CYP17A1 and AR). To

investigate the enhanced potency of our synthetic lead 2 in CRPC C4–2 cells (0.72
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nM) as compared to that of the normal prostate cancer LNCaP cells (5.65 nM),

we analyzed relative expression of the network proteins in C4–2 and LNCaP cells by

immunofluorescence assay. We observed 1.5 to 2.5 fold more expression of the network

proteins (RORG, SHBG and AR) in C4–2 as compared to that of LNCaP cells. Thus,

the enhanced potency of our synthetic lead 2 in C4–2 over LNCaP cells (5.65 nM)

could be attributed due to the more expression of the network targeted proteins in

former than the latter cells. Thus, we demonstrated an exciting application of our

well-developed computational methods to identify a potent disease specific network

for our leads and validated that identified network by experimental findings.

Tumor growth inhibitory effect of Candidate 2 on patient – derived xeno-

graft mouse model

After investigating the effects of all candidates to human cell lines, we found that

Candidate 2 was the most potent molecule to reduce the expression of all network

proteins related to CRPC. Then, we studied tumor growth inhibitory effect of Candi-

date 2 (10 mg/kg) on an animal model. To mimic human prostate cancer progression,

LuCaP35 xenograft mouse model was used. The drug treatment group showed sig-

nificant inhibitory effect on the tumor growth compared to vehicle control group (Fig

2.16a). At the end of the treatment period, Candidate 2 suppressed tumor growth

by 50.22%. In the meantime, Candidate 2 did not cause significant change on body

weight profile (Fig 2.16b). The isolated tumors of Candidate 2 group were smaller

in size (Fig 2.16c). and had 57.79% lower mass (Fig 2.16d) compared to the control

group. In addition, Candidate 2 treatment did not cause any changes in vital organ

mass (Fig 2.16e). The data suggested that 10 mg/kg of Candidate 2 significantly

inhibited tumor growth on LuCaP35 xenograft mouse model without any signs of

toxicity. The efficiency of this candidate was more than 50% suppression of both
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Figure 2.15. (a) and (b) are respective Immunofluorescent staining
of LNCaP and C4-2 cells for RORG, SHBG and CYP17A1 proteome
targets after 24 h treatment with 1 µM of the indicated compounds.
(c) and (d) are respective expression of RORG, SHBG and CYP17A1
in both LNCaP and C4-2 cells. Synthetic lead 2 was most effective in
degrading the network proteins in both LNCaP and C4-2 cells.

tumor volume and mass. This confirmed our hypothesis on the prediction by our

machine learning model as well as the above in vitro experiments.

2.4.4 Conclusion

In this work, we have demonstrated that the multi–targeted hypothesis can be

applied to design novel compounds against CRPC. Using the measured activity of

compounds against this disease and the docking scores of these molecules with 18
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Figure 2.16. Tumor inhibitory effect of Candidate 2 compared to
vehicle control on in vivo LuCaP xenograft model. (A) Tumor growth
profile and (B) body weight profile of daily (M-F) oral administration
of vehicle control (black) or of 10 mg/kg of Candidate 2 (red). After
that, the mice were sacrificed. (C) Isolated tumors of vehicle control
group (black frame) and Candidate 2 group (red frame). Mass of
(D) the isolated tumors and (E) isolated major internal organs of
the vehicle control group (black) and the control group (red). The
data were shown as mean ± SEM. The statistical significance was
indicated as *: p < 0.05 and ***: p < 0.001 between two groups.
Credit: Asarasin Adulnirath

known CRPC targets, we have developed a machine learning model to select similar

steroidal designs for potency against CRPC with a prospective accuracy of 66%. The

compounds predicted by this model are more potent than a combination of known

prostate cancer therapeutics which target proteins in the AR signaling pathway, in-

dicating that these compounds target additional proteins in this pathway. We used

our machine learning model to identify which proteins contribute to whether a com-

pound will be active against CRPC and verified these proteins experimentally. The

methods described in this work indicate that drug discovery can be performed in a
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multi–targeted manner, opening a way for this paradigm to be further embraced in

future studies.

2.5 Application to cells with unknown pathways

While the above methodology will work for cells with known pathways, there

is no methodology known to target cellular function without target information. An

example of such a cell type is myeloid-derived suppressor cells with no lineage defining

transcription factor to target. Details of this approach can be found in the Ph.D.

dissertation of Dr. Erin Kischuk, but they will be repeated in brief here. An overview

of this approach can be found in Fig 2.17.
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Figure 2.17. Overview of the approach used to develop new com-
pounds for changing the function of cells where the pathways are
unknown.

This process involves the iterative creation of models using novel compounds which

are predicted by the previous model. This is shown in Fig 2.18. Each time the model

was trained with 2987 proteins and their interactions with the training molecules. The

molecules predicted to be active are then tested in vivo and the model is retrained.
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Figure 2.18. Iterative training and validation of cell specific models.

After each retraining, the accuracy of the model improves as more data is given for

training.
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3. SMALL-MOLECULE INTERACTIONS WITH A PROTEIN

Reprinted with permission from Jonathan Fine, Janez Konc, Ram Samudrala, and
Gaurav Chopra. CANDOCK: Chemical Atomic Network-Based Hierarchical Flexible
Docking Algorithm Using Generalized Statistical Potentials. Journal of Chemical In-
formation and Modeling 2020 60 (3), 1509-1527. Copyright 2020 American Chemical
Society.
DOI: 10.1021/acs.jcim.9b00686

Note that the text and some figures have been modified to suit the formatting of
this document and the future work section is not part of the JCIM publication.

3.1 Abstract

Small–molecule docking has proven to be invaluable for drug design and discovery.

However, existing docking methods have several limitations such as improper treat-

ment of the interactions of essential components in the chemical environment of the

binding pocket (e.g., cofactors, metal ions, etc.), incomplete sampling of chemically

relevant ligand conformational space, and the inability to consistently correlate dock-

ing scores of the best binding pose with experimental binding affinities. We present

CANDOCK, a novel docking algorithm, that utilizes a hierarchical approach to re-

construct ligands from an atomic grid using graph theory and generalized statistical

potential functions to sample biologically relevant ligand conformations. Our algo-

rithm accounts for protein flexibility, solvent, metal ions, and cofactor interactions in

the binding pocket that are traditionally ignored by current methods. We evaluate the

algorithm on the PDBbind, Astex, and PINC proteins to show its ability to reproduce

the binding mode of the ligands that is independent of the initial ligand conformation
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in these benchmarks. Finally, we identify the best selector and ranker potential func-

tions such that the statistical score of the best selected docked pose correlates with

the experimental binding affinities of the ligands for any given protein target. Our

results indicate that CANDOCK is a generalized flexible docking method that ad-

dresses several limitations of current docking methods by considering all interactions

in the chemical environment of a binding pocket for correlating the best-docked pose

with biological activity. CANDOCK along with all structures and scripts used for

benchmarking is available at https://github.com/chopralab/candock_benchmark.

Figure 3.1. Table of contents figure for the online publication

3.2 Introduction

Computational docking provides a means to predict and assess interactions be-

tween ligands and proteins with relatively little investment. Docking refers to physi-

cal three-dimensional (3D) structural interactions between a receptor (typically pro-

teins, DNA, RNA, etc.) and a ligand (small molecules, proteins, peptides, etc.)

[3, 7, 8, 14, 136, 165–174]. Docking methods are evaluated by predicting the correct

pose/binding mode (evaluated using root-mean-square deviation (RMSD) or TM-

Score of the coordinates of the atoms) or by measuring predicted binding affini-

ties [8,166,170,171,175]. Application to protein targets involved in disease holds the

promise of discovering new therapeutics using traditional single target approaches or

by virtually measuring the interactions of a compound with the proteins from multi–

organism proteomes [9, 15, 25, 29]. The resulting chemoproteome interactions can be
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interrogated to study polypharmacology [25] and investigate the effect that drugs

and agents have on protein classes in a disease-specific context [25, 123]. In previous

works, we have used the algorithm presented herein to combat Ebola [29], determine

the toxicity of potential diabetes therapeutics [17], and rank the affinity of kinase

inhibitors for the treatment of acute myeloid leukemia [16].

More than 20 molecular docking software tools, such as Autodock Vina [176],

Gold [177], MedusaDock [178–180], and Glide [165], are currently in use for pharma-

ceutical research. However, after decades of method development and application, the

promise to computationally determine new therapeutics has not been fully realized

and computational methods for drug discovery are still in its infancy [181,182]. The

CANDOCK algorithm confronts several outstanding technical and practical problems

in computational docking. For example, one significant problem is assessing goodness-

of-fit or the likelihood that the given pose is the most physically realistic (native-like)

pose among many unrealistic binding poses. Another significant limitation is the lack

of full protein flexibility in the docking methods used today. The induced fit is a widely

recognized challenge in computational drug screening [141, 179, 180], where the pro-

tein and the ligand undergo conformational changes upon ligand binding. Therefore,

the traditional treatment of proteins as rigid structures may be insufficient and often

misleading for structure-guided drug screening and design, as shown by us and others

previously [30]. Docking ligands to their protein targets is particularly challenging

when attempting to reproduce the binding mode of small molecules to ligand- free

or alternative ligand-bound protein structures, which invariably occurs for practical

application of any docking method. Specifically, docking with ligand-bound (holo)

protein structures typically leads to an accuracy of 60–80%, whereas ligand–free (apo)

structures yield a docking accuracy of merely 20–40% [138,173,183–185].
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Several methods have been implemented to account for protein and ligand flex-

ibilities, including multiple experimentally derived structures from X-ray crystallog-

raphy [186], nuclear magnetic resonance [186], rotamer libraries [179, 187], Monte

Carlo [176, 188], and molecular mechanics [99, 189–193]. The same principle limits

the use of multiple experimentally derived protein structures or side-chain rotamer

libraries: binding a ligand to a protein can cause conformational changes in either

molecule that are not captured by these methods [194]. The sampling problem is com-

pounded by the fact that the protein main–chain torsion angles are also frequently

altered from their ligand-free conformations, which these methods fail to capture.

Molecular mechanics is well suited for capturing fine detail side–chain and main–chain

motions and rearrangements through energy minimization. However, molecular me-

chanics is limited in that adequate sampling of all degrees of freedom between the

protein and ligand–rotation, translation, and torsion angle – is frequently computa-

tionally intractable. Further, the use of unrestrained molecular dynamics has been

shown to disrupt the ligand from its native pose [139].

Modern docking methods address these issues by employing algorithms such as

the genetic algorithm [141,177,195,196], to flexibly sample the conformational space.

However, it has been shown that these methods do not consistently produce poses that

rank the biological activity of the ligand well [196, 197], and that the ability of these

methods to produce a correct pose is dependent on the starting conformation of the

ligand [198, 199]. Some methodologies use a fragment-based approach to docking to

sample the conformational space for a given ligand efficiently [200]. These fragment-

based methods have reported a greater ability to rank activity between the given

ligands [201, 202]. Therefore, we believe that further innovation in fragment-based

methods is an appropriate way to improve docking methods.
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We have developed the CANDOCK algorithm around new protocol for hierar-

chical (atoms to fragments to molecules) docking with iterative dynamics during

molecule reconstruction to "grow" the ligand in the binding pocket. The docking

protocol is based on two guiding principles: (i) binding sites possess regions of both

very high and very low structural stabilities [203] and (ii) a tandem sequence of small

protein motions is generally sufficient to predict the correct binding mode of protein–

ligand interactions [194]. The hierarchical nature of this method is derived from

an "atoms-to-fragments", "fragments-to-ligands" approach that generates chemically

relevant poses given the ligand and surrounding any chemical environment (e.g., pro-

tein, RNA, DNA binding sites, or interfaces). For any flexible ligand, the expectation

is that at least one or a few fragment conformations assembled using ligand–receptor

atomic interactions in the binding pocket will bind to a structurally stable region of

the receptor. Following identification of such a binding mode, subtle conformational

changes of the receptor are necessary for reconstructing the ligand using these frag-

ments as "seeds" to generate accurate receptor–ligand binding modes (poses). We

show that CANDOCK can accurately reproduce the binding mode of ligands and

rank the activity of these ligands in such poses using a generalized statistically de-

rived force field, demonstrating the potential to overcome traditional challenges with

induced-fit docking methods.

3.3 Materials and methods

We first introduce our generalized statistical scoring function and then provide

details of the CANDOCK algorithm and selection of benchmarking data sets for

evaluating pose election and receptor–ligand affinity ranking.
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3.3.1 Generalized Statistical Scoring Function

A generalized statistical scoring potential is used to account for varying chemical

environments, such as metal ions, cofactors, and water molecules, and have shown

great promise for selecting correct poses in both small-molecule and protein–protein

docking [204]. The scoring function employed by the CANDOCK algorithm is a

pairwise atomic scoring function that is based on our previous work [28]. Here, we re-

produce the fundamental equations to clarify the terminology used in our manuscript.

The scoring function calculates the potential between two atoms based on the dis-

tance between atoms i and j with atom types a and b and takes four input terms

that determine the method by which the score is calculated. The possible terms are

"functional", "reference", "composition", and "cutoff", which define the probability

function P given in equation 3.1.

S
(
rijab
)

= −
∑
ij

ln
P (rijab ∨ c)
P (Rij)

(3.1)

The "functional" term determines the numerator of equation 3.1 and can be de-

fined as a "normalized frequency" function f(r) in equation 3.2 where Ns is the

number of observed atoms found at a given distance. Alternatively, it can be de-

scribed as a "radial" distribution function g(r) where Ns is divided by the volume of

the sphere Vs(r) which is described in equation 3.3. To distinguish between these two

functions, "radial" scoring functions start with "R", while "normalized frequency"

functions start with "F".

P (rijab ∨ c) = f(rab) =
Ns(rab)∑
rNs(rab)

(3.2)

P (rijab ∨ c) = g(rab) =

Ns(rab)
Vs(r)∑

rNs(rab)
(3.3)
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The "reference" term determines the denominator of the scoring function. It can

be defined either as "mean", in which case it is calculated as a sum of all atom-type

pairs divided by the number of atom types, or as the "cumulative" sum of all atom-

type pairs. The mean term can be used with either "normalized frequency" equation

3.4 or "radial" equation 3.5. The "cumulative" option can be used together with

"normalized frequency" to equation 3.6 and "radial" to equation 3.7.

P (r) = f(r) =

∑
ab f(rab)

n
(3.4)

P (r) = g(r) =

∑
ab g(rab)

n
(3.5)

P (r) = f(r) =

∑
abNs(rab)∑

r

∑
abNs(rab)

(3.6)

P (r) = g(r) =

∑
ab

Ns(rab)
Vs(r)∑

r

∑
ab

Ns(rab)
Vs(r)

(3.7)

Scoring functions compiled with the "mean" option are denoted as "M", while

those compiled with the "cumulative" are denoted as "C". The third term defines

the composition of the scoring function. This term controls the number of unique

atom pairs used for compiling the scoring function. The "complete" option will result

in the scoring function compiled from all possible atom-type pairs, while the "re-

duced" option will only use the atom types present in either the protein (including

cofactors, waters, and post-translational modifications) and ligand. The letter "C"

is used to denote a complete scoring function, while "R" is used to denote a scoring

function that is compiled with the "reduced" option. A total of eight scoring function

families can be created with these three options (RMR, RMC, RCR, RCC, FMR,
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FMC, FCR, FCC). The fourth and final term used to compile the scoring function

is the "cutoff", which controls the maximum distance at which the interactions will

be calculated, with possible values ranging from 4 to 15 Å. With all four options,

there are a total of 96 possible scoring functions (8 × 12) to account for generalized

parameters for identifying native poses and activity across a diverse set of biomolecu-

lar interactions in varying chemical environments (proteins, nucleic acids, interfaces,

cofactors, etc.). Example scoring functions are "radial-mean-reduced-6" (RMR6),

"normalized frequency-cumulative-complete-8" (FCC8), and so on, as denoted in the

manuscript. It should be noted that not all 96 scoring functions are intended to be

used for all docking simulation, and the selection of the appropriate scoring function

for a given goal will be discussed in later sections.

3.3.2 Phase I: Structure Preparation.

The CANDOCK algorithm’s input is a set of compounds to be docked, a query

protein structure, and a set of binding sites on the query protein structure. In a three-

phase protocol (Fig 3.2), it performs semi– or fully flexible docking of compounds to

the protein and outputs docked and minimized protein–compound complex structures

together with their predicted scores.

Parse Receptor and Compounds.

The inputs to the algorithm are the 3D coordinates and topology of a query

receptor (e.g., protein structure) consisting of single or multiple chains, which may

also contain cofactors and post-translation modifications in the protein data bank

(PDB) format and compounds in the MOL2 format. Compounds are processed in
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Figure 3.2. Overview of the CANDOCK docking algorithm. Phase I
consists of processing the input protein (a) and the ligand (b). During
Phase I, an atomic grid is created in the protein binding site, with
scores of all possible atom types at each point in the binding site
grid. Simultaneously, the input ligand(s) are fragmented along the
rotatable bonds present in the ligand. The grid is used to recreate
the rigid fragments in the binding pocket. Phase II constructs the
rigid ligand fragments in the binding site grid producing "seeds" that
can be grown into the full ligand (c). Phase III identifies potential
ligand poses using maximum clique algorithm (d), clusters and links
these poses using A* algorithm (e), and minimizes the poses into the
binding site (f).
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batches of size 10 to enable reading of large molecular files that do not fit in computer

memory. An example of a ligand is given in Fig 3.3a.
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Figure 3.3. Atom–type assignment and fragmentation procedure in
CANDOCK. The procedure begins with the topology and 3D coordi-
nates of the ligand (a). Using these data, the IDATM type is assigned
to each atom in the ligand using a previously described algorithm [205]
(b). This yields the hybridization state of all atoms, allowing for the
assignment of bond orders for all atoms (c). The bond orders and
topologies are used to assign a rotatable flag for each bond in the
ligand using rules derived from the DOCK 6 program [206]. The rigid
fragments identified using this method are boxed (d).

Compute Atom Types.

To compute atom types for proteins, cofactors, and compounds, we implemented

the IDATM algorithm [205] (results given in Fig 3.3b). We also implemented an

algorithm [207, 208], to assign AMBER general force field (GAFF) atom types to

cofactors, ligands, and post–translational modifications, while GAFF types for pro-

teins are obtained from the AMBER10 topology file available as part of the OpenMM

package [209].
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Assignment of Bond Orders.

Using the hybridization information provided by the newly assigned IDATM atom

types, several potential bond order states can be generated as to fit with the expected

number of bonds (valence) for each ligand atom. These potential bond order assign-

ments are evaluated in a trial-and-error fashion to determine whether they form a

valid molecule using valence state rules derived for all atom types. The bond order

set that satisfies the set of valence states with the lowest sum of atomic penalty scores

over all atoms (see Fig 3.3c) is used to assign GAFF bond orders of the ligand.

Fragment Compounds.

Rotatable bonds are first identified in each compound using the extended list of

rotatable bonds adapted from the UCSF DOCK 6 software [206]. Next, structurally

rigid fragments consisting of atoms between the rotatable bonds are identified. Bond

vectors for rotatable bonds are retained for each rigid fragment to be used during the

reconstruction of docked fragments. Fragments consisting of more than four atoms, in

which at least two atoms are rigid (connected by a nonrotatable bond), are considered

as seed fragments. These are subsequently rigidly docked into the protein binding

site. All other nonseed fragments are considered as linking fragments during the

compound reconstruction process. This result is shown in Fig 3.3d.

Assignment of Force Field Atom Types.

Using the computed GAFF atom types, the bonded forces of the AMBER force

field are generated for the protein and the docked compounds. Protein–compound

interactions are scored using the knowledge-based radial-mean-reduced (RMR) dis-

criminatory function defined previously [28] with a 6 Å cutoff. This function calculates
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a fitness score for each compound’s or fragment’s atom in a protein by considering

all protein atoms within a 6 Å radius of that atom. It is an atomic level radial distri-

bution function with mean reference state that averages over all pairwise atom types

from a reduced atom-type composition (protein’s and compound’s atom types), us-

ing experimentally determined intermolecular complexes in the Cambridge Structural

Database (CSD) [210] and in the Protein Data Bank (PDB) [95] as the information

sources. The objective function that is used for the minimization of the protein–

compound interactions is computed using the RMC scoring function with a 15 Å

cutoff as follows: for each possible pair of atom types present in the protein–ligand

complex, the RMC function is sampled at discrete 0.1 Å intervals and is smoothed

using B-spline interpolation. Potential energy values and their first derivatives are

calculated at 0.01 Å intervals over the [0, 15] Å interval for the smoothed function.

The objective function is implemented as a custom knowledge-based force object in

OpenMM [209], which is used as a library from the CANDOCK source code.

Prepare Protein for Molecular Mechanics.

The N- and C-terminal residues are renamed according to the AMBER topology

specification, e.g., ALA to NALA or CALA; disulfide bonds are added to the protein

by connection of SG atoms that are closer than 2.5 Å, and inter-residue bonds are

also added by connection of main-chain C and N atoms that are closer than 1.4 Å.

3.3.3 Phase II: Rigid Fragment Docking.

Compute Rotations of Seeds.

For each seed fragment, we compute its rotational transformations about the ge-

ometric center, which is fixed at the coordinate origin. Accordingly, we first compute
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uniformly distributed unit vectors around the coordinate origin. Then, the seed frag-

ment is rotated by 10◦ increments around the axis formed by each unit vector. To

speed up the subsequent step of rigid fragment docking, the rotated fragment atoms’

coordinates are mapped on a hexagonal close-packed (HCP) grid of 0.375 Å resolu-

tion. This mapping enables efficient docking of fragments to a protein binding site

since their rotational transformations need to be computed only once. The fragment’s

clashes with the protein and the fragment’s RMR6 scores are determined by transla-

tions of the rotational fragment grid over the compatible HCP binding site grid using

fast integer arithmetic.

Generate Binding Site Grid.

A binding site location for docking is specified using one or more centroids, each

consisting of the Cartesian coordinate of its center and its radius. We generate a

grid that covers the space of all centroids that represent the binding site (Fig 3.4a).

We use an HCP grid that provides maximal packing efficiency, covering the same

volumetric space of a simple cubic grid with approximately 40% fewer grid points to

achieve the same maximal interstitial spacing. The grid points are in a distance range

of 0.8 < d < 8 Å from any protein atom. We use a grid spacing of 0.375 Å with a

maximal interstitial spacing of 0.22 Å to densely represent the protein binding sites

(Fig 3.4b).

Dock and Cluster Rigid Fragments.

Intermolecular geometric and chemical complementarity between a protein and a

ligand is essential for binding. Energetically preferred positions of ligand atom types

can be captured using a discriminatory function (Fig 3.4c). Docking of seed frag-
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Figure 3.4. Detailed overview of the hierarchical relationship between
the atomic grid and ligand fragments. The protein binding site is sup-
plied as a series of centroids to form the binding pocket (a). Regions
of this volume that do not clash with receptor atoms are filled with
an HCP grid (b). The RMR6 score of all atom types present in the
ligand is calculated. (c). Ligand fragments from the previous step
are translated and rotated within this grid (d). This collection of lig-
and fragments is clustered using a greedy clustering algorithm using
RMSD fragment similarity. If two fragments are within 2.0 Å RMSD
of each other, the fragment with a higher RMR6 score is deleted and
remaining docked fragments are kept as seeds (e). The exponential
score distribution of a typical seed is given in (f).

ments to the binding site grid is performed by moving the seed’s rotational grid over

the binding site grid points. Docked fragment poses that are in a steric clash with
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the protein are rejected (Fig 3.4d). A steric clash is considered if any interatomic

distance between the fragment and the protein falls within nine-tenths of the atoms’

respective van der Waals sum. Each fragment translation and rotation that passes

this initial filter is then evaluated with the RMR6 discriminatory function [28]. Fi-

nally, greedy clustering of docked and scored fragment poses in the root-mean-square

deviation (RMSD) space computed based on their heavy atoms at 2 Å cluster cutoff

is performed, resulting in a uniform distribution of locally best-scoring docked seed

fragments covering the entire protein binding site (Fig 3.4e).

3.3.4 Phase III: Flexible Docking with Iterative Minimization

Generate Partial Compound Conformations

For each compound to be docked, a user-specified percentage of each of its best–

scoring rigidly docked seed fragment poses is considered. Among these, we search

for such compatible pairs of docked seeds that are at appropriate distances, that is,

the distance between them is less than the maximum of their known bond distance.

The maximum possible distance between a pair of seeds is calculated by traversing

the path between the fragments in the original compound and summing up the dis-

tances between the end points of each rigid fragment on the path. We construct

an undirected graph in which vertices represent seed fragments, and edges indicate

that the corresponding pair of seed fragments is linkable. Using the MaxCliqueDyn

algorithm [211], we then find all fully connected subgraphs consisting of k vertices

(k-cliques) in this graph, where the default value of k is set to three or to the number

of seed fragments, whichever value is less. Each k-clique corresponds to a possible

partial conformation of the docked seed fragments, in which these fragments are ap-

propriately distanced so that they may be linked into the original compound. The
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maximal clique algorithm of Bron and Kerbosch [212], which was previously used for

pose matching [213], differs significantly from our maximum clique algorithm [211].

While a maximal search covers all cliques that are not subgraphs of another clique,

maximum clique algorithms only search for the clique with the maximum number of

vertices. Consequently, although both address an NP-hard problem, finding a maxi-

mum clique requires an order of magnitude less computing time. The possible partial

conformations are then clustered using a greedy clustering algorithm at an RMSD

cutoff of 2 Å, where the best-scored cluster representatives are retained. The partial

conformations sorted by their RMR6 scores from the best- to the worst-scored are

used as an input to the next step of compound reconstruction.

Reconstruct Compound with Protein Flexibility.

Each identified partial conformation of the docked seed fragments is gradually

grown into the original ligand by the addition of nonseed fragments using the A*

search algorithm. This can be done at different levels of protein flexibility. Protein

minimization may be performed at each step of the linking process or only at the

end when the compound has been reconstructed. Each seed fragment is linked to

adjoining fragments according to the connectivity of the original compound. Each

added nonseed fragment is rotated 360◦ about the bond vector at 60◦ increments. If

the user has specified full protein flexibility, the resulting conformation of the partial

compound and the protein is subjected to knowledge-based energy minimization using

the RMC15 scoring function as for intermolecular forces. Simultaneously, bonds,

angles, and torsions of the partial compound and the protein are minimized using the

standard AMBER molecular mechanics energy minimization. This procedure uses the

popular OpenMM software package, specifically its implementation of the L-BFGS

minimization algorithm [214]. With each round of minimization, the RMR6 score
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is calculated for the protein–compound interactions and the scored conformation is

added to the priority queue, which consists of the growing compound conformations

in the order from the best-scored to the worst-scored.

At each subsequent step of reconstruction, the A* search algorithm chooses the

best-scored conformation from this priority queue and attempts to extend it. This

conformation must meet an additional condition, which is that its attachment atoms

that are to be connected by rotatable bonds to fragments not yet added need to be at

appropriate distances from the attachment atoms on the remaining seed fragments.

The algorithm iterates until the priority queue is empty, in which case the compound

has been completely reconstructed and is in a local minimum energy state. Alter-

natively, if the specified maximum number of steps was exceeded (1000 by default),

then the reconstruction failed. The A* search is repeated for each partial conforma-

tion of docked seed fragments until all have been considered for reconstruction into

a differently docked conformation of the original compound. A final energy mini-

mization procedure is performed on the protein–ligand complex treating the protein

as fully flexible (side chain and backbone) to remove steric clashes in the process of

growing the ligand into the binding site. In addition to knowledge-based and molecu-

lar mechanics energy minimization, the fragment reconstruction process intrinsically

accounts for ligand flexibility in the docking process. The described protocol results

in a ranked list of docked and minimized protein–compound complexes. These steps

are summarized in the flow chart shown in Fig 3.5.

3.3.5 Benchmarking the CANDOCK Algorithm.

Throughout the paper, we evaluated different scoring functions for their ability

to "select" the crystal-like ligand pose (i.e., a pose within 2.0 Å of the crystal ligand

pose) as the most negatively scored pose (best-ranked pose) and termed them as
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rithm begins with a set of ligand fragments docked into the binding
site of the protein (termed as seeds), which are selected based on their
RMR6 score. The number of seeds is determined by the Top Seed
Percent parameter. These fragments are joined together into ligand
templates using the maximum clique algorithm, and the potential lig-
and templates are clustered using a greedy clustering algorithm, which
remove ligand fragments within an RMSD of 2.0 Å from each other.
The remaining ligand templates are joined using the A* algorithm,
which determines whether a seed can be added to the growing ligand
template. If the seed cannot be added, the template is rejected, and
the pair is added to a list of failed pairs. If the seed can be added, then
it is added to the ligand template. Once all seeds have been added to
the ligand template, the template is accepted and energy-minimized
in the binding pocket. The algorithm ends once all templates have
been added or rejected.
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"selectors" henceforth. Here, we define the selection rate as the fraction of the best-

ranked poses (most negatively scored) within 2.0 Å of the crystal ligand pose. We

calculated this selection rate for each scoring function at different radius cutoff values

(4–15 Å) to identify the best selectors. This metric should not be confused with the

success rate, which is simply the algorithm’s ability to produce a crystal-like pose.

Benchmarking Sets of Choice.

There are a wide variety of benchmarking sets to evaluate docking programs

to evaluate docking methods, most of which are derived from the Protein Data

Bank [215]. We evaluated the CANDOCK hierarchical docking algorithm using a

benchmarking set (1) to determine whether the algorithm can reproduce the crystal

binding pose of the ligand in the binding site of the protein and (2) to correlate the

scores of the three-dimensional (3D) docked poses of the ligand to the measured Kd/Ki

values of the ligand binding with the protein. The PDBbind benchmark [97, 216] is

very well suited for this analysis because, for each protein in this set, it provides 3D

coordinates and corresponding activity values for five protein–ligand complexes. In

the CASF-2016 benchmarking set (also referred to as the PDBBind Core set v2016),

there are a total of 285 such complexes for 57 proteins of interest to the medicinal

chemistry community. This benchmarking set includes decoy poses, which are used

to validate our scoring functions independently of the CANDOCK algorithm. The

number of fragments present in a given ligand range from a single fragment to ligands

consisting of 13 fragments, enabling an evaluation of our method on both rigid and

flexible ligands.

In addition to CASF–2016, we have also benchmarked our method against the

Astex Diverse set [96] as several protein–ligand complexes in this set include metal

ions and other cofactors, allowing us to showcase these examples and assess how our
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algorithm handles these particular cases. We obtained each structure from the Astex

set from the Protein Data Bank directly and only considered the biological assembly

used to create the original benchmark. Additionally, to ensure that CANDOCK can

generate native-like poses when not given the crystallographic coordinates of a ligand

as input, we generated the 3D structure of each ligand from its SMILES string using

Molconverter [217] and compared these results to those obtained when the original

crystallographic coordinates were used.

To evaluate the performance of CANDOCK against noncognate protein struc-

tures, we have included benchmarking examples for the PINC is Not Cognate (PINC)

benchmarking set [218]. From this set, we have chosen six target cases to evaluate

CANDOCK: β-secretase1, carbonic anhydrase II, cyclin-dependent kinase 2, map

kinase 14, PTP1b, and PPARγ. For this benchmarking set, multiple ligands with

known crystallographic poses are supplied for a given target along with five example

proteins crystallized with different ligands. The goal of this benchmark is to obtain

the crystal pose of the supplied ligands in these noncognate protein crystal structures.

Input Preparation.

The binding site for both benchmarking sets is defined by spheres with a radius of

4.5 Å centered around each atom of crystal ligand. We did not remove any cofactors,

solvent molecules, ions, or glycans when preparing our docking runs. The provided

reference ligand was used to generate fragments and seeds for docking. The Astex

benchmark was run again using input ligand coordinates generated using only the

SMILES representation of the molecule and the Molconverter package from Chemaxon

[217].
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Parameters Chosen for Benchmarking.

The most important parameter present in CANDOCK for linking seeds into lig-

ands is the Top Seed Percent parameter as it is crucial to select the number of seeds

used to generate potential conformations via the maximum clique algorithm [211].

If this number is too small, then there will not be enough potential conformations

generated to sample the conformational space of the ligand properly. In fact, there

is a possibility that no conformations are generated during the linking step, causing

CANDOCK to fail to produce any conformations. If the Top Seed Percent is too

large, then the conformational search space is too large, and CANDOCK will become

computationally inefficient (especially in the case of fully flexible protein docking).

Therefore, we wanted to sample the potential Top Seed Percent values to determine

how well our method does at various levels of conformational space sampling. The

values chosen for this parameter are 0.5, 1.0, 2.0, 5.0, 10, 20, 50, and 100%. Similar to

the conformational space sampled, we also investigated the effect of protein flexibility

on the ability of the CANDOCK algorithm to reproduce the binding pose of a ligand.

Accordingly, we used the algorithm in three modes: no protein flexibility (no energy

minimization performed, maximum final iterations set to zero), with semiflexible pro-

tein (final energy minimization only, default options), and with a fully flexible protein

(iterative energy minimization performed, iterative flag turned on). The RMSDs for

all poses generated from all Top Seed Percent values and all flexibility modes are cal-

culated with respect to the experimental crystal pose using a symmetry-independent

method.

Finally, we determined the best-scoring function to select the pose from all gener-

ated poses that best reproduces the crystal ligand pose (the "selector" scoring func-

tion) and potentially differentiate it from another scoring function used to rank the

activity of a given ligand to the protein target of interest (the "ranker" scoring func-
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tion). To do this, we calculated the score of all poses generated for CASF-2016

using all scoring functions described previously. We then evaluated the ability of

each scoring function to select the crystal pose of a ligand from all poses, as well as

the correlation between the score assigned to the selected pose and the experimental

binding affinity. As there are 96 scoring functions, there are 9216 (96 ways to select by

96 ways to rank) different methods to rank the affinity of the ligands in CASF–2016.

An overview of this benchmarking process for activity prediction is given in Fig 3.6.
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Figure 3.6. CANDOCK activity evaluation pipeline. Sampling is
performed using the RMR6 scoring function to generate thousands of
ligand poses. The best pose is selected with a selector scoring function
to represent the protein–ligand complex. Only this selected pose is
rescored using the ranker scoring function, which is used to assign a
new score to the complex. The best ranker score on the selected pose
is used to rank the protein–ligand complex based on correlation with
pKd/pKi data.

3.4 Results and discussion

We discuss the performance of the CANDOCK algorithm in reproducing the crys-

tal pose of a ligand via sampling the conformational space of the ligand in the binding

pocket (including the entire chemical environment with cofactors, metal ions, crystal

waters, and so on) modeled with different levels of protein flexibility for two bench-

marking sets. In addition, we evaluate the ability of the algorithm to discriminate

the crystal pose from all poses generated by the algorithm and the ability to rank the

activity of the ligands against the protein targets of interest.
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3.4.1 Knowledge-Based Scoring Functions Perform Well on the Decoys

present in the CASF-2016 Benchmark

Before evaluating the ability of the CANDOCK algorithm to reproduce the crystal

pose of a ligand in the binding pocket of a protein as measured by success rate, we first

show that the scoring functions perform well at selecting a crystal-like pose from the

decoy poses provided by the CASF–2016 benchmark set [216]. First, we evaluated our

96 scoring functions on the "docking power" test provided by the CASF–2016 bench-

mark. Docking power is the ability for a scoring function to select a pose within 2.0

Å of the crystal pose and is synonymous with selection rate with the exception that

docking power is measured on poses not generated by CANDOCK. Our results show

that the RMR5 and the RMR6 scoring functions outperform all of the others with

success rates of 87 and 86%, respectively, when the crystal pose is not included with

the decoys. When the crystal pose is included, the docking powers increase to 95 and

94%, respectively. These values outperform all other scoring functions in the original

CASF–2016 paper [216]. Moreover, our best–performing scoring functions (RMR5

and RMR6) also outperform a machine-learning-based scoring function, recently in-

troduced to improve its performance [219]. It should be noted that the performance

of the scoring functions is within the statistical error of both RMR5 and RMR6 (com-

pare the first three columns of Tables 1 and S4—S9 published for the CASF–2016

benchmark [216]), suggesting that our scoring functions perform at least as good as

the best-scoring functions benchmarked in the original work.

Using the selector/ranker methodology described in Fig 3.6, we used both RMR5

and RMR6 as selectors and 12 other scoring functions (RMC10, RMC11, RMC12,

RMC13, RMC14, RMC15, FMC10, FMC11, FMC12, FMC13, FMC14, and FMC15)

as rankers for the scoring power and ranking power tests for binding affinity, as

described in the original CASF-2016 paper [216]. Additionally, the RMSD of the
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provided decoy pose is used as a selector to test whether knowledge of the crystal pose

is needed for adequate ranking and scoring. The corresponding Pearson and Spearman

correlation coefficients are given in Table 3.1. The best selector ranker pair for the

proved decoys is RMR5/ RMC13 with a Pearson correlation of 0.626 (confidence

interval of [0.566–0.6779]). This result places this correlation within statistical error

of the best published nonmachine learning scoring functions [216,219]. For the ranker

test, the best combination is RMR5/RMC14 with a Spearman correlation of 0.5964

(confidence interval of [0.49–0.675]), a result which places our scoring functions within

the top 10 nonmachine learning scoring functions and within statistical error of the

best-scoring function. It should be noted that all of the selectors chosen for this

analysis (see Table 3.1) perform within the statistical error of each other, indicating

that the family of scoring function with large cutoffs, using mean reference state, and

complete reference for the protein–ligand complex is well suited for ranking ligand

affinities.

3.4.2 Ligand Conformational Sampling Is Enhanced by Fragment Dock-

ing and Protein Flexibility.

An important feature of any receptor–ligand docking methodology is its ability to

generate docked crystal-like ligand poses within 2.0 Å RMSD of the experimentally

determined pose of the native ligand [220, 221]. Using the CASF-2016 benchmark-

ing set, we validated the ability of CANDOCK to generate crystal-like poses among

the docked poses. We plotted the cumulative frequencies of all docked poses with the

RMSDs from their corresponding crystal ligand’s poses for all Top Seed Percent values

and for varying degrees of protein flexibility using the RMR6 scoring function (Fig

3.7, left-hand-side panels). Expectedly, these plots indicate that the use of larger

(> 20%) Top Seed Percent values generated significantly more poses within 2.0 Å
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Figure 3.7. Cumulative frequencies of the best RMSD pose generated
for rigid (flexible ligand only with no energy minimization of protein–
ligand complex), semiflexible (energy minimization of protein–ligand
complex at the end), and fully flexible (iterative energy minimization
during the linking procedure) CANDOCK docking results for the 285
proteins in CASF-2016 using the RMR6 scoring function are given in
(a), (c), and (e) respectively. The selection rate, i.e., the portion of
the best-scored docked poses within 2.0 Å of the crystal pose, is given
for different scoring functions employed in (b), (d), and (f).
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Table 3.1.
Statistics Shown for the Docking Power (Selector Only), Scoring
Power (Pearson Correlation between the Ranker and Binding Affin-
ity), and Ranking Power (Spearman Correlation between the Ranker
and Binding Affinity) Tests. The RMSD of the decoy is an additional
selector to show that the RMSD is not required to achieve the best
correlation.

Selector Native Docking Ranker Scoring Ranking
RMR5 no 84.0–90.0 RMC13 0.5660–0.6779 0.4804–0.6625

yes 92.0–96.0 RMC14 0.5642–0.6755 0.4900–0.6750
RMC15 0.5577–0.6712 0.4696–0.6661
FMC13 0.5637–0.6764 0.4875–0.6679
FMC14 0.5624–0.6742 0.4857–0.6714
FMC15 0.5565–0.6692 0.4696–0.6661

RMR6 no 83.0–90.0 RMC13 0.5637–0.6745 0.4643–0.6446
yes 92.0–96.0 RMC14 0.5618–0.6721 0.4732–0.6589

RMC15 0.5553–0.6678 0.4500–0.6411
FMC13 0.5590–0.6716 0.4696–0.6500
FMC14 0.5600–0.6713 0.4696–0.6518
FMC15 0.5533–0.6661 0.4500–0.6429

RMSD RMC13 0.5634–0.6680 0.3405–0.5214
RMC14 0.5560–0.6624 0.3429–0.5179
RMC15 0.5502–0.6569 0.3357–0.5125
FMC13 0.5622–0.6668 0.3482–0.5232
FMC14 0.5558–0.6613 0.3393–0.5161
FMC15 0.5496–0.6557 0.3339–0.5143

than lower (< 10%) Top Seed Percent values. For the semiflexible (Fig 3.7c) method,

the Top Seed Percent value of 20% yielded the highest number of poses within 2.0

Å of the crystal pose, with the corresponding cumulative frequency of 91%, com-

pared to independent benchmark of the best-performing methods resulting in an 80%

success rate to generate the pose [185]. The semiflexible method thus outperformed

the rigid protein (Fig 3.7a) and the fully flexible (Fig 3.7e) methods for the larger

Top Seed Percent values that correlate with a higher sampling of the ligand confor-

mational space during fragment docking. However, the fully flexible protein method
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outperformed the semiflexible (Fig 3.7c) and the rigid protein (Fig 3.7a) methods for

smaller Top Seed Percent values such as 5 and 10%. In addition, the Boltzmann-like

distributions in the RMSD plots (Fig 3.8) indicate that the CANDOCK algorithm

adequately sampled the ligand conformations both far and close to the crystal ligand

pose in CASF–2016. This suggests that the prediction of energetically favorable lig-

and con- formations is dependent on near-native protein flexibility during the linking

of docked fragments. There are only 17 cocrystal structures (out of 285), where the

semiflexible algorithm failed to find a single crystal-like pose for the native ligand

(1H22, 1H23, 1NVQ, 1U1B, 1YDT, 2P15, 2QNQ, 3AG9, 3BV9, 3KWA, 3O9I, 3PRS,

3UEU, 3URI, 3ZSO, 4EA2, 5C2H) for any Top Seed Percent value. An additional

nine complexes (2C3I, 2CET, 2W66, 2WCA, 3ARU, 3BGZ, 3OZT, 3RR4, 3UEX)

failed to find a crystal-like pose when the semiflexible algorithm was used with a Top

Seed Percent value of 20%. Two of these complexes (3BV9, 3URI) contain a pep-

tide ligand with a protein, a situation generally treated differently in other docking

studies. 37 When fully flexible docking is considered, CANDOCK fails on a total

of 10 complexes, out of 285, resulting in an overall success rate of 96% to generate

crystal-like poses. Specifically, CANDOCK generates successful (crystal-like) poses

for 7 complexes out of 17 failures from semiflexible docking (3O9I, 2QNQ, 1YDT,

3ZSO, 5C2H, 3UEU, and 4EA2), and 2P15 becomes a near-hit with an RMSD of

2.04 Å. These results indicate that the hierarchical generation of the ligand poses

with the protein flexibility considered after fragment docking and ligand reconstruc-

tion is a successful strategy for enhanced sampling of the conformational space of

ligands in protein–ligand complexes.
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3.4.3 Radial-Mean-Reduced (RMR) Scoring Function Family Generates

Best-Docked Ligand Poses

The RMR family of scoring function at a cutoff radius value of 6 Å from each

atom of the ligand (RMR6) performed best for the semiflexible protein method (Fig

3.7, right-hand-side panels). The best selector scoring functions for the rigid protein
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method were RMR8 and RMR5 for the fully flexible protein method. This shows

that the RMR scoring function family is the best selector among eight other general-

ized families of scoring functions. Conversely, the radial cumulative complete (RCC)

scoring function family performed the worst in selecting the crystal pose from the

generated poses with the RCC11 scoring function being the overall worst selector.

To elucidate the rationale behind the good performance of RMR6 in selecting a

crystal-like pose, we plotted the RMR6 score of the docked ligands with the lowest

RMSD from the crystal pose against the RMR6 score of the crystal pose (Fig 3.9).

For Top Seed Percent values > 10%, there is a clear separation between the successful

poses within 2.0 Å (blue points) and the failed poses far from the crystal ligand pose

(red points). Moreover, these failed poses cluster above the diagonal line, indicating

that RMR scores of failed complexes have higher energy value (as expected) than

the crystal pose during sampling for Top Seed Percent values > 10% (Fig 3.9). The

number of failed poses decrease to lower numbers with increasing "Top Seed Percent,"

from 244 for 0.5%, 218 for 1.0%, 178 for 2.0%, 97 for 5.0%, 46 for 10%, 26 for 20%,

30 for 50%, and 32 for 100%. These data suggest that a Top Seed Percent of 20%

yields the highest number of poses within 2.0 Å of the crystal pose (previous section;

Fig 3.7, left-hand-side panels) and the number of failed cases are rare and clearly

discriminated from both the crystal pose and the successful near-native docked poses

(blue points) by using the RMR6 scores. Therefore, RMR6 can discriminate native

and near- native interactions from a set of incorrect conformations generated by our

docking method. Furthermore, RMR6 scoring function is a decent selector as the

top pose selection rate of 41% for semiflexible docking at a Top Seed Percent of

20% (Fig 3.7, right-hand center panels) and is comparable to the state-of-the-art

independent benchmarks [185]. Clearly, for these successful cases, the best (most

negative) RMR6 score corresponds to a pose within 2.0 Å RMSD of the crystal pose
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(Fig 3.10). However, RMR6 has a bias toward incorrectly scoring a noncrystal-like

pose better than the experimental crystal pose for both successful and failed cases

(see scoring function correlation to pose deviations in appendix F).

If we include predicted poses other than the best-scored pose, then we get a much

higher selection success rate of 55% when top 2 poses are selected, 69% when top 5

poses are selected, and 76% when top 10 poses are selected. While the RMR6 scoring

function is a decent selector, more work is needed to enhance the selection success

rate, perhaps in combination with other scoring functions at different cutoffs along

using machine learning methods [151, 222]. However, it is good to note that, with-

out any machine learning, our generalized RMR6 scoring function is comparable to

successfully selecting a pose to a recently published neural-network-based scoring se-

lection [223] with a selection rate of 50% for the top pose and 65% for the top 5 poses.

This suggests that a reduced composition over all pairwise protein’s and compound’s

specific atom types with mean reference state improves discriminatory accuracy by

giving "context" to the specific pose by solely including atom-type interactions that

are possible between the receptor and the ligand.

3.4.4 Docking Long Aliphatic Chains Needs Enhanced Sampling.

We identified six complexes (1H22, 1H23, 3AG9, 3KWA, 3UEU, and 4EA2) out of

17 failed cases with CANDOCK semiflexible algorithm with ligands that contain long

aliphatic carbon chains (greater than 4 atoms). The remaining 11 complexes that fail

are 3URI (8-mer peptide), 3O9I, 1U1B, 2QNQ, 3BV9 (6-mer peptide), 3PRS (14

fragments), 1YDT, 1NVQ, 2P15, 5C2H, and 3ZSO. If fully flexible protein docking is

considered, we get 4 complexes out of 10 failed cases that contain long aliphatic car-

bon chains (1H22, 1H23, 3AG9, 3KWA). CANDOCK does not consider an aliphatic

chain consisting of three carbon atoms (sp3-hybridized carbon; C3) as fragments for
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docking. Instead, the A* search algorithm determines the docked positions by ro-

tating them around the bond vectors of the growing chain at 60◦ increments. We

hypothesize that this discrete sampling of conformational space, and not the poten-

tial functions in CANDOCK, is the cause for the poor performance of the algorithm

on these compounds with many rotatable bonds. To test our hypothesis for the six

failed long aliphatic carbon chain complexes (1H22, 1H23, 3AG9, 3KWA, 3UEU, and

4EA2), we scored the decoys provided by the CASF benchmarking set [216] that

included at least one pose within 2.0 Å RMSD. In all six cases, the RMR6 scoring

function selected a pose within 2.0 Å RMSD of the crystal ligand, indicating that

our generalized scoring function does not account for failure to identify crystal-like

conformations (see the sheep plot in scoring function correlation to pose deviations

of appendix F). We plan to address this issue in detail in future versions of the al-

gorithm by implementing a new sampling method or a ligand-class-specific scoring

function, similar to what was done for the support of carbohydrates in Autodock

Vina separately [224].

3.4.5 Protein Flexibility Improves Docking Ligands with Many Rotatable

Bonds.

The number of rotatable bonds in a ligand significantly influences the ability

of docking algorithms to generate docked crystal-like ligand poses [185]. To study

the effect of rotatable bonds on the performance of the algorithm, we compute the

selection rate of the RMR6 scoring function against the number of fragments in a

ligand (Fig 3.11). Due to the hierarchical fragment-based nature of the CANDOCK

algorithm, the number of ligand fragments is used instead of the number of rotatable

bonds to measure CANDOCK’s performance. By comparing the fully flexible protein

method (Fig 3.11c) to the rigid protein method (Fig 3.11a) and to the semiflexible
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method (Fig 3.11b), we show that the selection rate for flexible ligands increases with

including protein flexibility during docking. Here, we define a flexible ligand with

greater than 4 total fragments as the average number of fragments is 3.8 and the

median is 3 fragments in the CASF-2016 data set. Specifically, for the 216 ligands

with 4 or fewer fragments, the semiflexible (Fig 3.11b) and the fully flexible (Fig

3.11c) methods performed equally well. The rigid, semiflexible, and fully flexible

methods have respective selection rates of 50 ± 3.5, 66 ± 3.2, and 65 ± 3.2% for the

top pose; 65 ± 3.3, 76 ± 2.9, and 77 ± 2.9% when top 2 poses are selected; 74 ± 3.0,

83± 2.6, and 86± 2.4% when top 5 poses are selected; and 79± 2.8%, 88± 2.2%, and

91±2.0% when top 10 poses are selected. Thus, full protein flexibility is not essential

for ligands with less than 5 fragments as there is little difference in the selection

rate between semiflexible and fully flexible docking (Fig 3.11b,c). In contrast, for

69 ligands with greater than 4 fragments, the rigid, semiflexible, and fully flexible

methods have respective mean selection rates of 29± 5.6, 54± 5.9, and 54± 6.0% for

the top pose; 35±5.8, 64±5.7, and 68±5.7% when top 2 poses are selected; 47±6.0,

75 ± 5.2, and 79 ± 4.9% when top 5 poses are selected; and 53 ± 6.1, 77 ± 5.1, and

87 ± 4.1% when top 10 poses are selected. Better performance of flexible methods

versus the rigid method for larger ligands is most likely caused by the plateauing and

even slight decline in the number of poses generated for ligands with > 5 fragments

for Top Seed Percent values > 10% (see the number of poses generated in timing

section of appendix F). This suggests that there is an upper limit to the sampling

space possible for a given binding site and for a given ligand, and once this limit is

reached, the algorithm is no longer able to produce more docked ligand poses. From

the values given, it is clear that the semiflexible and fully flexible methods are superior

to the rigid method. However, while it is difficult to determine a direct superiority

of the fully flexible method over the semiflexible method for the top pose through
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the top 5 poses, the fully flexible method outperforms the semiflexible method when

considering the top 10 poses. Therefore, we conclude that protein flexibility is an

important feature of the CANDOCK algorithm.

3.4.6 Inclusion of Chemical Environment and Cofactor Interaction in

Binding Sites Lead to Accurate Crystal-like Ligand Pose Gener-

ation.

The Astex diverse set [96] is a widely used benchmarking set for measuring a dock-

ing program’s ability to predict the native pose of a ligand. One important feature

of this set, compared to CASF–2016 [216], is the inclusion of several cofactors and

metal ions such as zinc ions and heme groups in the binding sites. Traditionally, with

docking methods, the cofactors in the binding pockets have been ignored or treated as

nonphysical models with improper representations that affected performance [216].

As an example, for heme groups, we used a previously published extension to the

GAFF force field to ensure proper representation of this cofactor during the mini-

mization procedure [225], compared to other methods treating it as a hydrogen bond

donor [176]. We hypothesize that, to perform well on this benchmarking set, the

docking algorithm must properly sample ligand conformations interacting with metal

ions and doing so requires an adequate representation of metal–ligand interaction po-

tentials at the atomic scale. A generalized potential function can include all relevant

cofactors, metal ions, etc. in the binding pocket as separate interactions (Fig 3.12)

compared to one metal-ion type used by others [176,216]. To highlight the ability of

our scoring function to characterize such interactions in a pairwise fashion, we plotted

various atom pair interactions of interest to medicinal chemists (Fig 3.12).

The number of complexes in this benchmarking set, where the CANDOCK al-

gorithm produces a ligand pose within 2.0 Å RMSD of the crystal pose, is given in
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Figure 3.11. Selection rates for the RMR6 scoring function with rigid
(a), semiflexible (b), and fully flexible (c) CANDOCK docking ar-
ranged by the number of ligand fragments in CASF–2016. For frag-
ment counts greater than 13, no poses within 2.0 of the crystal pose
was generated.
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Table 3.2. CANDOCK successfully generates a crystal pose for 97.6% of the As-

tex benchmarking set (83 of the 85 complexes). We attribute this success to the

ability of our algorithm to properly sample the conformational space of a ligand in

the binding pocket while considering all interactions of the ligand within the binding

pocket, including cofactors, metal ions, etc. In a recent comparison using Astex data

set [141], the success rates for FlexAID [141], Autodock Vina [176], FlexX [226], and

rDock [195] are 66.7, 81.8, 78.8, and 89.4%, respectively, when all 85 complexes are

considered. When 16 complexes containing a metal ion were removed (1GKC, 1HP0,

1HQ2, 1HWW, 1JD0, 1JJE, 1LRH, 1MZC, 1OQ5, 1R1H, 1R55, 1R58, 1UML, 1XM6,

1XOQ, 1YQY), the success rates of these methods increased to 72.1, 83.6, 79.7, and

91.3%, respectively [141]. CANDOCK outperforms these methods without removing

metal-ion complexes from the benchmarking set, supporting the hypothesis of ade-

quate sampling and included proper representation of interactions within the binding

site. The two complexes where CANDOCK nearly missed to generate a crystal pose

using the semiflexible method are 1HP0 (lowest RMSD of 2.08) and 1W1P (lowest

RMSD of 2.734). Additionally, when the protein is considered as a rigid body (rigid

docking), CANDOCK failed to find crystal poses for 1Y6B and 1MZC as well (81 of

85 complexes in Table 3.2). The algorithm also performs well on complexes that failed

by using other popular docking methodologies for the Astex diverse set. According

to a previous study, [141] there are four complexes (1G9V, 1GM8, 1JD0, and 1MEH)

where Autodock Vina [176], rDock [195], FlexX [226], and FlexAID [141] all have

difficulty reproducing the crystal-like pose of the ligand but CANDOCK successfully

generated a crystal-like pose. CANDOCK is able to select a crystal-like pose 52% of

the time for the top-scored pose, 60% of the time for the top 2 poses, 66% of the time

in the top 3 poses, 75% of the time in the top 5 poses, and 79% of the time in the

top 10 poses.
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Table 3.2.
Number of Successes in the Astex Diverse Set for all TSP Values.
OpenBabel [227] was used to change ligand conformation of the crystal
pose for AutoDock Vina.

CANDOCK
TSP Rigid Semiflexible
0.5% 7 7
1.0% 14 15
2.0% 28 33
5.0% 57 60
10% 67 74
20% 77 79
50% 79 82
100% 78 81
All% 81 83

AutoDock Vina
Native input Non-native input

79 68

When CANDOCK was given starting coordinates generated from the SMILES

string of the Astex ligands using Molconverter [228], it produced a crystal-like pose

for 77 of the 85 complexes. As compared to running CANDOCK with 20% of the

docked seeds and the crystallographic coordinates as input, there are three additional

failures: 1M2Z, 1XM6, and 1XOZ. Conversely, 1MCZ was docked successfully when

using coordinates generated from a SMILES string; however, the best RMSD score

when using crystallographic input ligand was a near-hit with a value of 2.15 Å. These

three complexes all have large ring structures, which cause fewer than 100 seeds to

be created after fragment docking. Decreasing the clustering radius for the clustering

step of the linking phase resulted in crystal-like poses for all three complexes, and

a similar strategy yielded a crystal-like pose when applied to 1HP0. Therefore, we

conclude that the CANDOCK algorithm performs equally well when given noncrys-

tallographic coordinates provided that large rings are accommodated in the clustering
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step of the linking phase. CANDOCK’s performance with non-native ligand inputs

is in contrast to that of Vina, where the use of non-native coordinates yields only

a crystal pose for 68 of the 85 poses as compared to 79/85 when crystallographic

coordinates are used (Table 3.2).

The interactions of the ligand with cofactors in the binding pocket for these com-

plexes are shown in Fig 3.12. Specifically, 1G9V has cation–π interaction and 1GM8

has π−π interactions between an aromatic ring and the surrounding protein environ-

ment. Similarly, 1MEH contains a π− π stacking interaction between the ligand and

a cofactor. 1JD0 has an interaction between the zinc ion and a sulfonyl group. These

complexes showcase the success of our hierarchical docking method over previously

published works.

We also consider specific cases where CANDOCK successfully reproduced the

crystal pose of ligands, which interact with a cofactor (Fig 3.13). Specifically, in Fig

3.13a,b, for oxygen–zinc interactions in 1HWW and 1R55 during docking, the energy

minimization procedure moved the location of the Zn2+ ion in the binding pocket (2.4

and 1.5 Å, respectively) as there are no constraints to restrict its movement within

the binding pocket. This movement does not prevent the algorithm from generating

a ligand pose within 2.0 Å RMSD of the native structure. For 1OQ5 and 1JD0, the

docked poses of ligands interact with a zinc ion through a sulfonyl amide group (Fig

3.13c,d), and it is interesting to note that the zinc ion moved much less in these cases

(0.5 and 0.6 Å). For the ligand in 1OQ5 (Fig 3.13c), the orientation of the sulfonyl

amide aligns perfectly with the reference crystal pose, suggesting that the interactions

with the sulfonyl amide group caused the zinc ion to stay in place. For the ligand in

1JD0 (Fig 3.13d), the docked pose of the same group does not align with its reference;

however, the overall pose still is within 2.0 Å of this reference. Therefore, the ability
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of the algorithm to produce a pose within 2.0 Å of the reference is not dependent on

correctly predicting the orientation of all functional groups in a given molecule.

b 1R55

g 1SG0 h 1XM6

f 1R9Oe 1P2Y

a 1HWW

d 1JD0c 1OQ5

Figure 3.13. The reference pose is given in white and the lowest RMSD
pose predicted by CANDOCK with a Top Seed Percent value of 20%
using the semiflexible method is given in green. Panels (a) and (b)
were selected due to the presence of oxygen–zinc interactions. The
zinc ions before and after energy minimization are given in gray and
cyan, respectively. The complexes in (c) and (d) show the interactions
between sulfonylamide groups and a zinc ion. The interaction of a
compound with a heme group via a nitrogen lone pair is shown in (e),
and the interaction of an aromatic carbon with a heme group is given
in (f). Finally, panels (g) and (h) show the interactions of compounds
with other cofactors, such as a π − π interaction of a compound with
flavin–adenine dinucleotide and interaction of a compound with zinc
and magnesium in a binding pocket.
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We selected a larger organic cofactor (heme group) in the binding site of the

protein–ligand complexes, 1P2Y and 1R9O (Fig 3.13e–h). The heme group is present

in several liver enzymes [229–231]; therefore, predicting the location of a ligand rel-

ative to this group is important for medicinal chemistry. For 1P2Y, CANDOCK

predicts the pose of a compound relative to the heme group when the nitrogen of the

compound is interacting with the iron atom of this group (Fig 3.13e). Similarly, for

1R9O, a successful pose is generated including the interaction between an aromatic

carbon and the iron atom (Fig 3.13f) indicating that proper representation of the

heme group is essential to capture such interactions to generate the binding pose. We

also demonstrate that generating a crystal- like docked ligand pose in the presence

of a large cofactor is independent of the size of the cofactor itself. This is shown for

the 1SG0 complex containing the flavin–adenine dinucleotide cofactor (Fig 3.13g),

where the dominant interaction between the ligand and the cofactor is π − π stack-

ing. A crystal-like pose was also reproduced when the type of interaction changed

dramatically, as shown in 1XM6 for the binuclear metal center formed by zinc and

magnesium ions (Fig 3.13h). These interactions are important for developing phos-

phodiesterase inhibitors [232]; therefore, it is encouraging to observe CANDOCK’s

ability to reproduce a crystal pose in these cases. We conclude that the algorithm

is able to generate a crystal-like docking pose by including interactions with diverse

cofactors in the binding pocket.

3.4.7 Radial Mean Complete (RMC) Scoring Function at 15 Å Cutoff Is

Best for Energy Minimization

A potential or scoring function, used for energy minimization of a protein and

a ligand, should correlate quantitatively with the RMSD between the docked ligand

and the crystal ligand so that a decrease in score corresponds to a decrease in RMSD.
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Figure 3.14. Correlations between score and the RMSD of a pose from
the crystal pose for rigid protein (a), semi-flexible protein (b), and
fully flexible proteins (c). The remaining plots (d-i) are of the RMC15
score of all poses produced by CANDOCK for selected proteins in
CASF-2016 versus the RMSD of the pose. In these plots, the RMSD
ranges from 1 Å to 15 Å The poses were obtained using the semi
flexible method at a Top Seed Percent value equal to 20%.

Therefore, to determine the best minimization function, we calculated these correla-

tions expressed as the average and the median Pearson correlation coefficients for all

of the scoring functions evaluated over CASF-2016. Fig 3.14a-c shows that the RMC

and FMC scoring function families have the largest correlation with RMSD (aver-

age across all cutoffs is 0.30 units greater than averages for other scoring functions).
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Moreover, with an increase in the cutoff value for RMC and FMC scoring functions,

the correlation also increased from an average of 0.36 at 4 Å to an average of 0.56

at 15 Å, suggesting that including long-range interactions is essential. We also show

that the median and the average of these correlation values for the RMC and FMC

scoring function families are relatively similar, indicating that the distribution of cor-

relation values is not biased toward high or low correlations for any given protein in

the CASF-2016 set. In addition, the RMC15 score of the experimental crystal pose

has a strong correlation with the RMC15 score of the lowest RMSD pose (Fig 3.15,

r2 > 0.99). Finally, the pose with the lowest RMC15 score correlates well with the

RMC15 score of the crystal pose (r2 > 0.95). Taken together, we conclude that, using

the RMC15 scoring function in the CANDOCK algorithm to calculate intermolecular

forces and energies during crystal, the energy minimization of the docked protein–

ligand complexes correlates well with the RMSD from ligand pose (few example cases

of RMSD vs RMC15 score plots are shown in Fig 3.14d-i).

3.4.8 CANDOCK Can Reproduce the Binding Pose of a Ligand in a

Noncognate Crystal Form.

To assess CANDOCK’s ability to reproduce the crystal pose of a small molecule

in a holoprotein bound to a different ligand (a noncognate protein form), we bench-

marked CANDOCK against the PINC Is Not Cognate benchmarking set. This bench-

mark is divided into 12 protein targets, each having 5 crystal structures bound to a

ligand and an additional set of ligands with known crystal poses in the target pro-

tein. The goal of the benchmark is to reproduce the crystal pose of the provided

ligands using the five noncognate protein structures. From the 12 protein targets, we

focused on the following 6 targets as they were previously identified as being diffi-

cult to dock [218]: β-secretase 1, carbonic anhydrase II, CDK2, MAPK14, PTP1b,
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and PPARγ. The cumulative distributions of the best pose produced by CANDOCK

are provided for each of these targets in Fig 3.17. To compare with an established

docking procedure, we have also produced quantification of these results for both

CANDOCK and AutoDOCK Vina [176] (cumulative distribution given in appendix

F) in Table 3.3. For each protein in all targets, CANDOCK is able to produce more

crystal-like proteins than Vina with the exception of proteins 1 and 2 for β-secretase

1 and protein 1 for carbonic anhydrase II. In each of the exceptions, Vina only pro-

duces a crystal-like pose for a single noncognate ligand more than CANDOCK. When

CANDOCK outperforms Vina, it typically produces twice as many crystal-like poses

as compared to Vina, and in one case, it produces 5 times as many poses as Vina

(see Protein 2 of PTB1b in Table 3.3). When considering all five proteins for each

target, CANDOCK reproduces the crystal pose for all proteins more frequently than

AutoDock Vina, with the notable exception of MAPK14 where Vina is only able to

produce two more crystal–like poses than CANDOCK.

A possible explanation for CANDOCK’s ability to outperform Vina on the PINC

benchmark is that the poses generated by CANDOCK do not depend on the input

conformation of the ligand. The input ligand is fragmented and reassembled in the

binding pocket, thereby removing any input conformational bias from the ligand. This

allows CANDOCK to create a wide variety of ligand poses (see Fig 3.8). Conversely,

Vina is dependent on the starting conformation of the ligand. For example, when we

did the Astex benchmark, Vina produced a crystal pose in 93% of the target ligands

when it was provided the binding pose, but only 80% when the ligand is minimized

before being used as input to Vina. Therefore, we can conclude that CANDOCK is

superior to Vina for generating poses in the binding site.
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3.4.9 Correlation between Docking Score and Binding Affinity Is Not

Influenced by the Deviation of the Scored Pose from the Native

Pose.

Another critical aspect of the scoring function is the ability to accurately rank the

relative binding affinities of known binders to the same protein target. A stringent
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Figure 3.17. Cumulative distributions for the best pose produced by
CANDOCK on the PINC benchmarking set using the top 20% of all
seeds.
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criterion for testing the ranking ability of a scoring function is by docking the com-

pounds to the targets and comparing them to experimental binding affinities, i.e.,

without knowing the crystal pose of the ligand. CASF-2016 provides experimental

binding affinities (pKi/pKd) and three- dimensional coordinates of 57 protein targets

with 5 compounds each for a total of 285 pKi/pKd values for protein–ligand com-

plexes. We determined the overall correlation between the 285 experimental binding

affinities (pKi/pKd) with docking scores for 285 docked poses selected using each of

the generalized scoring functions (docking with 20% Top Seed Percent value using

CANDOCK). We found that RMR6, our best selector scoring function for selecting

the crystal-like pose, does not correlate with the pKi/pKd values supplied by CASF-

2016 with an overall Pearson correlation of −0.275 and a Spearman correlation of

−0.349. When these correlations are calculated separately over 57 protein targets

(each with 5 compounds) and then averaged, we get an average Pearson correlation

of −0.38 and an average Spearman correlation of −0.431. This suggests a need for

a different scoring function for scoring the crystal-like selected pose. Therefore, we

developed a procedure (Fig 3.6) to first select the representative docked pose of a

complex using a scoring function (selector) and then rank using another scoring func-

tion (ranker) to correlate with the pKi/pKd values. The best ranker scoring functions

are RMC15 and FMC15 (Fig 3.18a,b) that were selected based on both Pearson and

Spearman correlations between all 96× 96 selector and ranker scoring function com-

binations with the experimental pKi/pKd data in CASF–2016. The overall Pearson

and Spearman correlations for RMR6 as selector and RMC15 as ranker are −0.343

and −0.464 (correlations are −0.43 and −0.418, respectively, when averaged over 57

protein targets). It is important to note that the RMC15 score of weak binders in

CASF-2016 (pKi/pKd < 2.5) does not correlate similar to other binders (Fig 3.18c,d)

as removal of these weak binders improved the correlation between the RMC15 score
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and binding affinity to an overall Pearson and Spearman correlation of −0.584 and

−0.593, respectively.

Next, we show that there was little difference between the worst crystal pose se-

lector (RCC11 that selects top pose 22% of the time, Fig 3.18c) and the best selector

(RMR6 that selects top pose 43% of the time, Fig 3.18d) to correlate with binding

affinity. The difference in the Pearson correlation for the worst (RCC11) and the best

(RMR6) selectors in combination with the best ranker (RMC15) score is 0.024. Fur-

thermore, the correlation between the RMC15 score (best ranker) and the pKi/pKd

data for all 96 possible selectors (shown in Fig 3.18e) has a small deviation (standard

deviation of 0.0829 for the average Pearson correlation). This suggests that the selec-

tion of the pose has a minor impact on ranking the activity of the ligand. This result

is further supported by the section Correlation between score and binding affinity for

each protein in CASF-2016 in appendix F. The results in Fig 13.19b shows that, on

a class-wise basis, there is little difference between the correlations for poses selected

by the lowest RMSD and the pose selected by RMR6. We find that either of these

selectors does not improve the ability of the best ranker (RMC15) scoring function

to rank the pKi/pKd data of compounds binding to the same protein. Additionally,

there is little difference in the overall Pearson and Spearman correlations (0.001 and

0.004, respectively) for the lowest RMSD pose vs the best-scored RMR6 pose (selec-

tors) that is rescored with RMC15 (ranker). While these findings are encouraging as

they suggest removing the burden of finding the crystal pose of the ligand, a more

detailed study with an additional benchmarking set, such as the Directory of Useful

Decoys (DUD-E) [98], is required to determine the proper choice of scoring function

or combinations to rank protein–ligand complexes.

To further illustrate that other docked poses in addition to the crystal-like pose

contribute toward binding affinity, we calculated the correlation between the RMC15
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Figure 3.18. Pearson (a) and Spearman (b) correlation coefficients be-
tween all pairs of selector and ranker scoring functions (arranged by
family) and the experimental pKi of any complexes in CASF–2016.
Note that a negative correlation between score and pKi/pKd is ex-
pected as the "p" operator introduces a negative sign to the affinity
(the smaller the Ki, the larger the pKi). The RMC and FMC (high-
lighted in yellow) families perform best, and there is a general trend
where an increase in cutoff (from left to right) results in improved per-
formance in ranking complexes in order of their measured pKi. Plots
of pKi vs RMC15 score are given in (c) and (d) for the worst crystal
pose selector (RCC11) and the best crystal pose selector (RMR6), re-
spectively. The lack of major differences between these two selectors
with the same ranker indicates the lack of importance in selecting
the correct binding pose for ranking the pKi of a protein–ligand com-
plex. (e) Distribution of all correlations, regardless of selector, for the
RMC15 scoring function. (f) Correlations for other docking methods
with RMR6 as the selector and RMC15 as the ranker.
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score and binding affinity while varying the RMSD rank used to select the pose for

scoring. First, only the best RMSD pose for each of the 285 protein targets is scored

using RMC15, and the correlation between this score and the binding affinity is

measured. This is repeated for the second-best RMSD pose of each complex and then

continued similarly for all docked poses ranked in the ascending order of RMSD from

the crystal ligand. If fewer docked poses are available for any protein target than the

RMSD rank, the worst RMSD pose is used. Results of this procedure for the RMR6

and RMC15 scoring functions are given in Fig 3.19a and indicate that the lowest

RMSD rank does not always yield the best correlation with binding affinity for the

RMC15 scoring function. In fact, the best correlation is achieved around the 750th

pose as ranked by RMSD (Fig 3.19a, green line and yellow inset) and other RMSD

ranks also produce a similar correlation. In contrast, the RMR6 scoring function is

dependent on the RMSD of the pose (Fig 3.19a, blue line) but does not correlate with

binding affinity. Finally, as mentioned previously, there is no difference in correlation

between the RMC15 score and the binding affinity for different protein classes using

both the best RMR6 scored pose and the lowest RMSD selected pose (Fig 3.19b),

suggesting that the knowledge of the crystal pose is not necessary for predicting

binding affinity. We would like to stress that further investigation into these patterns

is required and will be addressed in future works.

Similar to the selector used, the flexibility mode (rigid, semiflexible, fully flexible)

used to generate ligand poses does not have a significant impact on the correlation be-

tween score and binding affinity (see Fig 3.18f). While the fully flexible methodology

has a significant advantage for the kinases such as ABL1, JAK2, and CHK1, there

are many other examples of protein–ligand complexes where the semiflexible method

provides a clear advantage over the fully flexible and rigid methodologies. This is

significant because the semiflexible method is less computationally demanding than
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the fully flexible method and can be used efficiently in a virtual screening pipeline.

Moreover, there is a large variation in Pearson and Spearman correlations between

the scores, and pKi/pKd data have variability based on the type of protein varying

from −1.0 (best) to +1.0 (worst), as shown in Fig 3.19b. For example, the nuclear

hormone receptors ER and AR have positive correlation values instead of the ex-

pected negative ones; the best selector/ranker pair for HIV proteases in CASF-2016

is RMC15/RMR6, which is the opposite of what was found for other test cases of

CASF–2016, in general. Therefore, the use of different scoring functions for differ-

ent protein classes may be advantageous in ranking the relative binding affinity of

the ligands to the protein targets but extensive benchmarking is needed to obtain

class–specific biases.

3.5 Conclusions

We present the CANDOCK algorithm, our hierarchical atomic network-based

docking algorithm that accounts for protein flexibility and ligand interactions with all

cofactors, metal ions, etc. in the binding pocket using generalized statistical scoring

functions. We demonstrated that these scoring functions worked very well to generate

a crystal-like pose for 94% of the CASF-2016 data set consisting of 285 protein–ligand

complexes. There were 17 (of 285) failures in total with semiflexible docking, which

were reduced to 10 failures with fully flexible, including 4 (of 10) failures that contain

long aliphatic chains. We found that the RMR6 scoring function was the best at

selecting a crystal-like ligand pose and RMC15 scoring function scored the selected

poses to rank ligands according to their measured binding affinities. Our algorithm

only requires a final energy minimization of the protein and the ligand (semiflexible)

to generate crystal-like ligand poses for ligands consisting of less than 6 fragments,

compared to fully flexible methods needed for larger ligands. CANDOCK was devel-
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oped to provide proper representations of ligand, receptor, and all cofactors in the

binding pocket. It performs well by including ligand and cofactor interactions in the

binding pocket using the generalized statistical potential and without the need for

parameterization. CANDOCK successfully generates a crystal pose for 97.6% of the

Astex benchmarking set (83 of the 85 complexes) that includes generating crystal-

like poses for cases that failed with all popular docking methods (e.g., containing

metal–organic interactions). We show that the RMR6 scoring function using a short

distance cutoff and reduced atom-type set is adequate for selecting the crystal pose

of the ligand. However, a longer distance cutoff and complete atom-type set used

in the RMC15 scoring function are essential to achieve a reasonable correlation be-

tween the docking score and the RMSD of a docked ligand from the crystal ligand,

which justifies the use of RMC15 as the minimization function. The RMC15 scoring

function was also the best at reproducing reasonable correlations between scores and

ligand binding affinities. We believe that the release of the CANDOCK algorithm will

give the community a valuable freely available tool for generating chemically relevant

ligand poses for use in drug discovery efforts. The hierarchical nature of our method

presents a powerful and flexible tool to perform proteome-wide docking studies effi-

ciently, yielding an improved drug discovery and design pipelines. We have placed

all of the scripts and input protein and ligand structures required to reproduce our

results at github.com/chopralab/candockbenchmark.

3.6 Future work

A major future work of this project is improving the success rate and correlation

with binding affinity of the scoring function. A potential strategy for achieving these

improvements is to partition the scoring of different related proteins together. To do

this, one can partition the PDBBind benchmark into 27 different classes and using a
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machine learning model trained to select crystal poses for each of these proteins. An

overview of this procedure is given in Fig 3.20. The selection of a machine learning

model should be done carefully as to take advantage of properties of docking as the

majority of machine learning based scoring functions used generic ML methods and do

not offer substantial improvements in this field. An introduction to machine learning

methods is provided in appendix A.

Upon doing so, one can notice that different protein classes have different per-

formances when using a different scoring functions (Fig 3.21. Additionally, ligands

consisting of 4–7 fragments produce the most number of poses and Factor XA pro-

duces the highest number of conformations while GPCRs produce a significantly

fewer number of poses. The selection rate, is dependant on both the conformation

search space and the class of protein. For example, our method performs very well on

oligopeptide binders, but poorly on carbonic anhydrase. Finally, if the search space

is too small, then too few poses are present for ranking. After a search space of 5%,

there is no significant increase in the success rate. These results show that different

protein classes have significant differences in how they should be scored.

Next, we decided to investigate which scoring functions would work best for a

given protein class. Previously (and in this chapter), we determined that the RMR6

scoring function is best at selecting a pose overall. As can be expected from the

previous result, the ability of scoring function to select a pose is dependant on the

protein class (Fig 3.22b).

Given these findings, we suspected that the properties of alike conformations can

be used to improve the selection rate of a scoring function. For simplicity, we simply

decided to cluster the docking results of completed CANDOCK jobs, but a future

work should integrate these steps into the CANDOCK algorithm itself. This cluster-

ing yields the number of alike conformations for a given pose and has been labeled
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Figure 3.20. Overview of the docking methodology presented in this
work. (a) Protein classification is performed on the target protein
to assign it to a single class out of 27 possibilities using the Enzyme
Classification (EC) and the Gene Ontology (GO). (b) Clustering to
identify conformationally degenerate poses (c) as to calculate the con-
formational entropy for all poses. (d) The knowledge-based score and
the conformational entropy are used as features in a machine learning
based selection procedure.
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Selection rate Selection rate

Figure 3.21. Importance of class dependent docking. (a) Number of
poses generated for each protein class (b) Effect of protein class on
the number of conformations generated. (c) Effect of Top percent on
success rate. (d) Effect of protein class on selection rate.

conformational entropy. The average conforational energy is in fact dependant on the

protein class as shown in Fig 3.22d. Since the crystal pose appears to be somewhat

related to the conformational entropy of the pose, we decided to include it as a feature

in future ML models.

Table 3.4.
Success rates resulting from the test–set benchmarks for various meth-
ods of selecting the crystal pose.

No classification Classification
Scoring Function 34.3 % 42.8 %

Neural-Network Methods 41.1 % 53.6 %
Random Forest and SVM Methods 41.1 % 52.7 %

Machine Learning Overall 41.1 % 57.0 %
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Figure 3.22. (a) The average value for the given scoring functions is
shown for all poses and poses with 2.0Åof the crystal pose. (b) Ligand-
protein scores calculated using the RMR6 scoring function, averaged
in a class specific manner. The plot is arranged so the difference in
the average for all poses versus poses near the crystal pose is decreases
from the top of the figure to the bottom. (c) The average degeneracy
for all poses and poses near the crystal pose for all RMSD cutoff
values. For the 2.0 Åcutoff, the class-specific degeneracy averages are
provided in a similar manner to (b).

The results of training various machine learning models are shown in Fig 3.23.

In Fig 3.23a, these results are shown for various different methodologies as shown

with various colors. The training of these methods was done using four different

methodologies: (blue) using all poses from all Top Percent docking runs with indi-

vidual models created for each class, (green) using poses only generated with the

best Top Percent value select for the given class with individual models created for

each class, (red) all poses used similar to (blue), but a single model is created for all

classes, (yellow) poses are selected in a manner similar to (green), but a single model
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is created for all classes. However, each of these methods have different success rate

for different protein classes, which should be expected given the conclusions of the

previous figures. This allows method to select the proper machine learning model for

a given class, an yield a selection rate of 57% (Table 3.4). Unfortunately, this number

is still comparable to the best docking scoring functions and further work is needed

to boost it further.

Representative docking poses for oligopeptide binders is shown in Fig 3.24(a)-(c)

with the top five single scoring function selected poses in blue and the crystal pose

given in green. These poses indicate that the binding site for this class of proteins

in quite small and fits around the ligand in manner that few poses other than the

crystal pose are possible. Therefore, if a pose is generated then it is highly likely to

be the pose in question. Thus, it is reasonable that a single scoring function is able

to perfectly select the correct pose. What is interesting, however, is that the machine

learning based pose selection method performs worse than the scoring function alone,

which can attributed to training error due to the fact that the new selection model

will not be perfectly able to reproduce the results from the single scoring function.

Fig 3.24(d)-(f) The presence of a Zinc ion commonly present in the acetyl transferase

class causes the single scoring function method to not place a ligand in the proper

location with respect the ion. This causes out models to not predict the proper

location of the ligand and shifts the ligand away from its proper binding location.

The combination of other scoring functions allows the machine learning based pose

selection method to select the pose where the distance between the ion and ligand

is correct. Fig 3.24(g)-(i) The ligand poses selected by the single scoring function

method for the CN hydrolase class are flipped from the crystal ligand pose. It is

interesting to note that ligands near the crystal pose for the CN Hydrolase class have

higher degeneracy values than those far from the crystal pose. This indicates that
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Figure 3.23. Advantage of class specific machine learning (a) Success
rate for the various machine learning methods employed in this work.
The success rates for a single scoring function are given in grey for
reference. (b) Success rates are shown for the methods that perform
best on a given class.
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Figure 3.24. Representative docking poses are shown for oligopep-
tides, Carbonic anhydrases, and CN hydrolases.

the binding of ligand for this class are dependent on multiple conformations being

present for binding to occur.
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4. SMALL-MOLECULE DESIGN: DETERMINATION OF FUNCTIONAL

GROUPS

This chapter is available as
Fine, J., Rasjashekar, A., Jetheva, K,. Chopra G. Spectral Deep Learning for

Prediction and Prospective Validation of Functional Groups.Chemical Science, 2020,
Advance Article. DOI: 10.1039/C9SC06240H

It has been reproduced under a Creative Commons Attribution 3.0 Unported Li-
cense (http://creativecommons.org/licenses/by/3.0/) and minor changes to the orig-
inal text have been made to format the original article as a thesis chapter and the
future work section is unique to this work.

4.1 Abstract

State–of–the–art identification of the functional groups present in an unknown

chemical entity requires the expertise of a skilled spectroscopist to analyze and inter-

pret Fourier Transform Infra-Red (FTIR), Mass Spectroscopy (MS) and/or Nuclear

Magnetic Resonance (NMR) data. This process can be time-consuming and error-

prone, especially for complex chemical entities that poorly characterized in the litera-

ture, or inefficient to use with synthetic robots producing molecules at an accelerated

rate. Herein, we introduce a fast, multi-label deep neural network for accurately iden-

tifying all the functional groups of unknown compounds using a combination of FTIR

and MS spectra. We do not use any database, pre–established rules, procedures, or

peak-matching methods. Our trained neural network reveals patterns typically used

by human chemists to identify standard groups. Finally, we experimentally validated

our neural network, trained on single compounds, to predict functional groups in
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compound mixtures. Our methodology showcases practical utility for future use in

autonomous analytical detection.

FTIR Spectra MS Spectra

-OH

Figure 4.1. Table of contents figure for the online publication

4.2 Introduction

The arrangement of atoms within a molecule dictates its physical, chemical, and

spectral properties. Small discrete, or large repeating arrangements of atoms which

give rise to measurable changes in a molecule’s reactivity [233–235], boiling point [236,

237], melting point [238, 239], and other characteristics are called functional groups.
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Given the structural formula of a molecule, a chemist can identify functional groups

present (e.g. aldehyde, carboxylic acid, alcohol, etc.) and can postulate characteristic

reactivity and physical properties for a given molecule based on the presence of these

groups. Therefore, the identification of functional groups present within an unknown

compound is a key step in qualitative organic synthesis and structure elucidation; it

is routinely practiced by chemists to validate the synthesis of novel small molecules or

identify unknown structures in complex mixtures. Techniques for assigning functional

groups based on "rules of thumb" or by matching profiles from known databases are

commonly applied in organic chemistry [240], metabolomics [241, 242], and forensic

sciences [243–245]. Furthermore, monitoring of functional group changes can be used

to determine the progress of a reaction [246], and can even be used to identify the

components of complex mixtures for a reaction coordinate.

Chemists often rely on spectroscopic techniques like Fourier Transform Infrared

(FTIR) spectroscopy, Mass Spectroscopy (MS), and Nuclear Magnetic Resonance

(NMR) spectroscopy for the assignment of functional groups. FTIR utilizes the fre-

quencies associated with the bonds in a molecule, which typically vibrate around

4000cm−1 to 400cm−1, known as the Infrared region of the electromagnetic spec-

trum [240]. This region is associated with specific frequencies that change the oscil-

lating patterns of chemical bonds in the analyte, resulting in an FTIR spectrum [247].

Typically, a spectroscopist manually analyzes this spectrum to identify patterns cor-

responding to a given functional group using previously established rules and prin-

cipals [240], a time-consuming process subject to human bias and interpretation.

Alternatively, if the compound has previously been characterized, the spectroscopist

can use software to match the peaks of the analyte to a database of known compounds

for identification [248].
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Mass spectroscopy (MS) is another technique commonly used by chemists for the

identification of unknown compounds [240]. One of the first, and still a popular MS

ionization technique is electron ionization (EI–MS) [249], a method performed by

bombarding the analyte in the gas phase with high energy electrons ( 70 eV) for

molecular ionization. The resulting cationic radicals are energetically unstable and

break apart, resulting in smaller charged particle fragments that are specific to the

analyte. Such fragmentation patterns are dependent on molecular functional groups

and their arrangements with other functional groups and motifs. The abundance of

fragments with a given mass to charge ratio (m/z) is recorded and reported as the

mass spectrum. These spectra are used to search through a database of MS peaks

of known compounds, but large-scale automated identification of unknown molecules

is still a major challenge [241, 250–252]. In addition, a popular tandem mass spec-

trometry (MS/MS) method, namely collision-activated dissociation (CAD) has been

extensively used for the characterization of complex mixtures [253, 254]. For CAD,

the analyte ions are accelerated and allowed to collide with an inert gas for fragmenta-

tion and subsequent MS/MS analysis. Furthermore, in addition to EI–MS and CAD

based fragmentation soft ionization techniques such as electrospray ionization mass

spectrometry (ESI–MS) have been developed. For ESI–MS, the analyte is sprayed

through a spray needle into a carrier gas chamber where an electric field is applied to

charge the analyte. This is then passed into a heated capillary which desolvates the

analyte, forcing it into the gas phase. Since ESI–MS is a soft ionization method, it is

possible to perform repeated charging of the analyte with no fragmentation due to ion-

ization. With repeated charging, the (m/z) values of the resulting ions become lower

and detectable. This has been used to determine biomolecular structures, atomic

interactions, post-translation modifications, protein sequence information, and has

been extended to inorganic, organic, and metal–organic complexes [255]. However,
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high-performance liquid chromatography is typically used for molecular fractionation

prior to mass–spectrometric analysis to identify the structure of unknown constituents

in complex sample mixtures [255].

Human intervention to analyze FTIR or MS spectrum is useful but achieving

the next generation of autonomous instrumentation for reaction screening requires

a completely automated method for determining whether a reaction occurred. The

current approaches to automating functional group identification are similar to those

applied by humans, using a set of rules and pattern (peak) matching to map spectra

to a functional group [251,256]. Such methods typically utilize only selected spectral

regions to identify functional groups, and often afford relatively low confidence pre-

dictions owing to a limited database of known compounds18. Furthermore, to our

knowledge, these methods can only incorporate data from a single spectral technique

(i.e., either FTIR or MS) and ignore relationships between different spectral data

for identification. Hence, there is a need for automated and accurate methods ca-

pable of multiple-spectra integration without the use of pre-established patterns on

known databases. Such methods will need minimal-to-no human intervention, pro-

gressing chemistry towards the realization of automated synthetic robots that screen

functional groups and combine spectral data to validate each step during reaction

screening and multi-step automated synthesis [257]. The state-of-the-art robot for

automated reaction detection currently employs different techniques to determine the

presence of a reaction [258], but only predefined compounds can be identified. It

is a major challenge to develop fully automated robots to discover new reactions

that produce unexpected products. Our goal is to extend the capabilities of these

automated synthetic robots by developing a fast, automated methodology for func-

tional group determination that can be used in real-time, thereby enabling reaction
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screening through the identification of functional group changes in a database-free

manner.

Machine Learning (ML) is a set of techniques used by computers to perform a

specific task without an explicit set of instructions provided by the user. ML tech-

niques have been successfully applied to multiple chemical problems in recent years,

and still show promise for the advancement of several areas of chemistry. Popular

machine learning architectures, such as Random Forest [150–152], Multiple Layer

Perception [153–155], Generalized Adversarial Networks [156–160], and Recurrent

Neural Networks [161, 162, 259] have been used on chemical data for small-molecule

design [144, 145], metabolism [260, 261], toxicology [163, 260], photo-electric proper-

ties, solubility, and retrosynthesis [162, 259]. It has been shown that direct molecule

as a subgraph of groups of atoms (i.e., functional groups) has distinct advantages

over fingerprinting methods [262, 263]. The representation of a molecule or dataset

can be reduced to a lower-dimensional latent space by using an autoencoder [145].

Here, we also used an encoder to create a corresponding latent space based on spec-

tra to predict functional groups which may also be useful to design molecules for

specific spectral properties. A few ML techniques to analyze spectra has been used

previously [264–268] but such attempts for function group prediction used only one

type of spectral data, the training data was specific to the application, and classi-

fied groups separately as a multiple binary classification problem [267, 268]. Binary

classifiers are not optimal for a large number of classes and are sensitive to class im-

balances during training resulting in problems identifying all functional groups in a

molecule or mixtures [261,269]. In this work, we present the first ML method, to our

knowledge, that integrates FTIR and MS data to obtain a combined set of features

as a multi-class, multi-label classification methodology. Our method predicts multi-

ple functional groups for a given molecule in a database-free manner, as compared to
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identifying a molecule through peak matching or only identifying the major functional

group in the molecule (Fig 4.2). In this work, we have also outlined a framework to

measure the success of such a multi-label neural network by introducing molecular

F1 score and molecular perfection rate metrics. We hope that others will build-upon

our suggested framework and methodology to catalyze further development of func-

tional group identification methods for accurate and autonomous molecular structure

elucidation.
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Figure 4.2. Overview of the MLP methodology for the classification
of functional groups using FTIR and MS data. FTIR spectra are pro-
cessed as to normalize the transmittance of the spectra and discretize
the wavenumber numbers (creating wavenumber bins), thereby stan-
dardizing the wavenumbers for all FTIR spectra. Missing wavenum-
ber bins in each spectrum are interpolated using B–Splines. A similar
process is used for mass spectra data with the exception that no in-
terpolation is performed. The normalized transmittance in all bins is
encoded into a latent space by an autoencoder network and This latent
space this then used to predict the functional group of a molecule.
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4.3 Methods

4.3.1 Collection of training data

We obtained both FTIR and MS spectra from standard reference spectra pub-

lished by the United States National Institute for Science and Technology [270] for

7,393 compounds and standardized these spectra using the procedure described in the

supporting information under Standardization of FTIR spectra and Standardization

of MS spectra.

4.3.2 Training of Neural Networks

We used a 3 layered Multi-layered Perceptron (MLP) network using binary cross

entropy as the loss function to allow for multi-label prediction of functional groups.

The ReLU activation function was used to introduce non-linearity between layers of

the network along with dropout regularization and batch normalization to combat

overfitting. To train the weights of the model, we applied the Adam optimizer. We

applied Five-fold cross validation was used to ensure a model without overfitting and

with minimal bias to training data. All reported validation metrics are averaged over

5 folds and the best hyperparameters were chosen based on these validation metrics.

For the autoencoder, a linear autoencoder with an embedding layer of 256 dimensions

was used to encode the spectra. Learned encodings were then given as input to the

neural network. Autoencoder helps in removing redundant information and noise

from data. Additional details on training and optimization of the neural networks

presented in this work are mentioned in supporting information section titled Training

and testing of neural networks.
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4.3.3 Assignment of functional groups

We obtained IUPAC InChI strings for all compounds of interest by resolving the

CAS number associated with the molecule using the PubChem API [271]. Then,

RDKit [272] performed substructure matching on each string via SMARTS strings to

identify the presence of a predefined molecular topology. If a match for a functional

group’s SMARTS was found, then the compound was deemed a member of the given

functional group, and each SMARTS string was tested independently. Therefore, mul-

tiple functional groups could be assigned to a single molecule. Initially, we picked func-

tional groups common between those discussed in the previous works [264, 267, 268].

These functional groups were chosen to mirror those typically identified using FTIR

such that the machine learning model can be analyzed to gain insights from learned

chemical patterns, as traditionally done by human chemists. However, it should be

noted that more abstract definitions of functional groups can be used in future works.

After training our initial model and analyzing the results (see Compounds that fail

to be appropriately predicted show chemical patterns), we decided to add more func-

tional groups to our model to attempt to improve our results. The SMARTS strings

used for both models discussed in this work are shown in Table 4.3.3 and the distri-

bution of functional groups are given in Fig 4.3.

4.3.4 Calculation of a Molecular F1 metric

Since correct assignment of all functional groups in a single molecule is paramount

to the analysis of organic reactions, we have devised a single metric to quantify the

predictive capability of our models versus the performance on individual functional

groups. Therefore, the focus of our optimization methodology is to create a model that

maximizes this overall accuracy measure as opposed to the accuracies of individual



154

Table 4.1.
SMARTS strings used to identify the presence of a functional group
given the 2D topology of a molecule.

Functional group Smarts String
Alkanea [CX4]
Alkene [$([CX2]=[X2])]
Alkyne [$([CX2]#C)]
Arene [c]
Ketone [#6][CX3](=O)[#6]
Ester [#6][CX3](=O)[OX2H0][#6]
Amide [NX3][CX3](=[OX1])[#6]
Carboxylic acid [CX3](=O)[OX2H1]
Alcohol [CHX4][OX2H]
Amine [NX3;H2,H1;!$(NC=O)]
Nitrile [NX1]#[CX2]
Akyl halide [CX4][F,Cl,Br,I]
Acyl halide [CX3](=[OX1])[F,Cl,Br,I]
Etherb [OD2]([#6])[#6]
Nitrob [$([NX3](=O)=O),$([NX3+](=O)[O-])][!#8]
Methylb [CH3X4]
Alkaneb [CX4;H0,H1,H2]
a The definition of alkane changed between functional group sets
due to the introduction of the methyl FG.

b not present in the original set of functional groups.

functional groups. Similar to the concept of an F1 measure, this metric normalizes

the performance when the classes (functional groups) are unbalanced. Hence, we

have termed this metric as the ’Molecular F1 score’ as it describes the success of

the model on the whole molecule. This number is calculated for each molecule in

the validation set by calculating a ’Molecular Precision’ and ’Molecular Recall’ value

for the functional groups predicted for a given molecule. Precision is the number of

functional groups predicted correctly (true positives) divided by the total number of

functional groups predicted to be present (the sum true positives and false positives).

Molecular recall is the number of functional groups predicted correctly divided by
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Figure 4.3. (a) The distribution of various functional groups in the
NIST database. (b) The distribution of molecular masses present in
the NIST database.

the total number of actual functional groups present in the molecule (the sum of true

positives and false negatives). Similar to the calculation of an F1 score for given

functional groups, the Molecular F1 is the harmonic mean of the Molecular Precision

and Molecular Recall. The overall Molecular F1 score for a given validation set is the

arithmetic mean of all Molecular F1 scores. The difference between the Molecular F1

and Functional Group F1 is illustrated in Fig 4.4.
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Figure 4.4. The left-hand side of the figure depicts the ground truth
functional groups present in the example molecules, and the right-
hand side are example predictions of the predicted functional groups
given only their FTIR and MS spectra. Sample calculations for func-
tional group F1, MF1, and MPR score are given in the figure.
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4.3.5 Calculation of a Molecular Perfection Rate metric

While the knowledge of overall Molecular F1 score is useful for comparing mod-

els to one another, it does not represent the more stringent criterion of whether a

given method produces all functional groups within a given molecule without error.

Therefore, we have devised a second metric termed ’Molecular Perfection Rate’ to rig-

orously measure the accuracy of our model on a per molecule basis. To calculate this

metric, we compare the known functional groups to the predicted functional groups.

If the predicted functional groups perfectly match the defined functional groups of the

target molecule, then the molecule prediction pair is assigned a Molecular Perfection

of 1; otherwise, it is assigned a Molecular Perfection of 0. The ’Molecular Perfection

Rate’ for each validation set is calculated as the sum of all individual ’Perfections’

values divided by the total number of molecules. This metric can also represent the

percentage of all molecules with a Molecular F1 score of 1.0, as shown in Fig 4.4.

4.3.6 Creation of synthetic models

A control was developed for the addition of new functional groups and termed as

’synthetic models’. They are created using a predefined accuracy to assign functional

groups. To generate a synthetic model, one takes the original functional group matrix

(where columns are functional groups and rows are molecules) and predicts each

functional group for every molecule individually based on random numbers. The

accuracy of each synthetic model is fixed, and the predictions are randomly assigned

as correct or incorrect to obtain the specified accuracy. Unlike a truly random model,

the synthetic model has access to the original functional group assignment matrix and

the predictions of the matrix are not randomly assigned but are instead ’purposefully’

correct or incorrect based on a uniform random distribution. For example, consider a
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synthetic model that has an accuracy of 50% and is being generated for 4 functional

groups. It is given a molecule where only the first 2 functional groups are present

([1,1,0,0]). Four random numbers are generated using a uniform distribution, e.g.:

0.25, 0.75, 0.85, and 0.10. Since the second and third random numbers are greater

than the assigned accuracy (0.50), they are deemed incorrect and the model will

predict ([1,0,1,0]). This example has a molecular recall of 0.5, a molecular precision

of 0.5 and molecular perfection of 0.

Synthetic models with accuracies of 99, 95, and 90% are given below showing a

decrease in MPR with an increase in the number of functional group predictions.

4.4 Results and Discussion

4.4.1 Multi-layer perceptron neural networks outperform Random Forest

classifiers.

We performed an initial computational experiment to determine the choice of a

machine learning method with the best performance to identify functional groups

without doing extensive model optimization. We selected Random Forest (RF) and

Multi-layered Perceptron (MLP) to test on FTIR spectra to determine if there was a

need for using neural networks (MLP) as compared to ensemble methods (RF). An

unoptimized MLP consistently outperformed RF models (Fig 4.5) with an average

functional group F1-score of 0.771 for the MLP model compared to 0.650 for RF. We

trained the MLP to predict all functional groups simultaneously as one multi-label

classifier. In order to evaluate the effect of transfer learning that has been previously

done for MLP [260,261,269], we also evaluated 13 binary classifiers in addition to the 1

multi-label network. The binary classifier approach did not improve the performance

of the MLP model significantly as these models only produced an improvement in
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functional group F1 score of 0.006 over the multi-label model, suggesting that transfer

learning is not a significant factor in the multi-label network.
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Figure 4.5. The comparison of Random Forest and Multi-Layered Per-
ception validation set performance for the selected functional groups
indicates that the MLP methodology outperforms RF for the majority
of functional groups. Both methods were trained on the FTIR spectra
only and no hyperparameters were used to optimize the model. Each
bar represents the mean of a 5-fold cross-validation, and the error
bars indicate the standard deviation over the 5-folds. Here, the MLP
model outperforms random forest and this is apparent for amides,
acyl halides, amines, alkyl halides, ketones, and esters.
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4.4.2 Multiple functional groups prediction in a single compound present

a second optimization problem.

Analysis of the receiver operator characteristic (ROC) plots (Fig 4.6) shows that

at 1% of the false-positive rate, the model identifies over 80% of the true positive

functional groups. Therefore, we used a dynamic threshold for each functional group

to determine the presence of a functional group in the molecule. This threshold is

calculated to maximize the functional group F1 score for the training set after training

is complete. While the ability of the model to predict the presence of a particular

functional group is important for evaluating the performance of the model, a metric

better suited for the study of chemistry and essential for autonomous instrumentation

will be to measure the performance to prediction all functional groups in a given

molecule. Therefore, we have introduced new metrics, such as the ’Molecular F1

score (MF1)’ and the ’Molecular Perfection Rate (MPR)’ (see Fig 4.4 and the methods

section for more details) and optimized our models for the FTIR and FTIR+MS data.

After optimization, the FTIR+MS model was able to perform on par or better than

the optimized combined IR for the majority of functional groups (Fig 4.7). The

resulting models have comparable average MPRs (72.5 vs 74.9%) and MF1s (0.923 vs

0.931) for FTIR and FTIR+MS respectively. The hyperparameters for these models

are given in the supporting information under Details of the neural networks.

4.4.3 MS data addition improves the prediction of specific functional

groups.

Our optimized MLP model trained on FTIR data performs well on alkanes, ke-

tones, arenes, carboxylic acids, and esters (average validation F1-score of 0.926) but

it did not perform at par to predict nitriles, amines, amides, and acyl halides with an
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Figure 4.6. ROC plots for the model trained on both FTIR and MS
spectra. (a) performance for carbonyl functional groups, (b) groups
consisting of only carbon and hydrogen, and (c)the remaining func-
tional groups. The underperformance of amides and nitriles can be
discerned from these plots. These plots also allow us to select the
best threshold value for each functional group which maximizes the
F1 score for that functional group.

average validation F1-score of 0.663 (Fig 4.73c). We included the chemical features

captured by mass spectrometry (MS) to augment the MLP-FTIR model (Fig 4.7d) to

address these problematic functional groups. First, we trained an MLP model only on

MS data to investigate its predictive capacity for functional groups (Fig 4.8a). The

difference between the F1 scores of the training set compared to the validation set

indicates that MS data needs other models to generalize for consistent performance

compared to FTIR data using an MLP architecture. Similar to the MLP-FTIR model,

the MLP-MS model performed well with more data for a given functional group (e.g.

alkanes, arenes, alkyl halides), and poorly when fewer data were available (e.g. acyl

halides, amides, and amines). An additional concern is the low resolution of the

MS data with 1 (m/z) resolution that was used for training the model since it this

resolution may not adequate in distinguishing some structures from each other.

Next, we investigated if combining FTIR and MS data could improve de novo pre-

diction of functional groups by concatenating spectral data features into an FTIR+MS

model (see experimental section). The improvement of the FTIR+MS model over the

FTIR model is presented as Fig 4.8b, and the direct F1 scores are shown in Fig 4.7d
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(b) The molecular perfection for training and validation over 5 folds
is shown for both the optimized IR only and IR+MS models. (c) The
F1 score of the optimized IR only model plotted against the number
of occurrences of that functional group. (d) The F1 score of the
optimized IR+MS model plotted against the number of occurrences
of that functional group.

with an average improvement of 0.024 overall functional groups. However, combining

FTIR and MS data results in a substantial increase in validation F1 scores for the

nitrile, alkene, and alkyl halide functional groups with improvements of 0.124, 0.048,

and 0.061 respectively. The amide functional group remains unchanged as the F1

score of 0.563 is the as the MLP-FTIR model. The improvement of alkyl halides

(Fig 4.84b) may appear to match chemical intuition given the distinct pattern of
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halogen isotopes observed with MS. However, this conclusion is not supported by the

architecture of an MLP model as each input neuron is independent. Future work

incorporating the differences in abundance peaks instead of raw values may improve

the performance of the MS only model.

4.4.4 Guided backpropagation of the MLP model shows known FTIR and

chemical patterns.

We performed guided backpropagation on the optimized MLP-FTIR model for

molecules that were both predicted with an MPR of 1 and has the greatest activation

in the neuron corresponding to the respective functional group (Fig 4.9). Several

backpropagation plots reveal a known chemical association between peaks in FTIR

spectroscopy and functional group assignment. This is encouraging as the model was
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trained without any ’expert’ or chemical information about the location of the peaks

corresponding to each functional group. Specifically, we discuss several functional

group cases for our selected set of molecules. The alkane functional group backpropa-

gation shows the use of peaks near 3000cm−1, matching the known location of alkane

CH peaks tabulated in the literature. The remaining peaks, however, do not provide

any additional chemical intuition with regards to the alkane functional group. Aro-

matic compounds are identified by a peak between 1400-1600 cm-1, and the model

selected peaks within this region. In addition, the model was able to identify the

alkene bending motion around 900cm−1. A C-O stretch is typically observed around

1150cm−1, and the backpropagation plots for carboxylic acids, alcohols, and esters

indicate a peak in this region is used by our model for each of these functional groups.

Additionally, a strong C=O peak is typically observed for carbonyl compounds near

1600cm−1, but the model only placed importance on this peak for the amide func-

tional group. The example alcohol compound contained both an alcohol group and a

carboxylic acid, and the model ignored the C=O in the prediction of the alcohol, in-

stead placing importance on peaks corresponding to the O-H stretch near 3500cm−1.

These results show that the model reproduces the ’known chemistry’ of functional

group features without explicit input of peak to functional group relationships.

However, from our chosen set of molecules with MPR of 1, none of the backprop-

agation plots revealed any chemically significant characteristics for alkynes, amines,

ketones, alkyl halides, and acyl halides. Instead, it appears that these functional

groups are identified by the lack of sharp peaks in various regions of the spectra.

This observation is interesting as the functional group F1 for these groups are rela-

tively high. While nitrile groups have the lowest performance, the model was able

to identify the 2210-2260 cm-1 band that is characteristic of this functional group.

For the amine functional group, the model places high importance on a peak around
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Figure 4.9. Backpropagation analysis for all 13 functional groups was
performed to identify the regions of the spectra responsible for the
result given. These plots are listed above in order of decreasing F1
score for the optimized FTIR+MS model.
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1550-1640 cm-1. Although this may appear to indicate learned chemistry since the

known N-H bending in this region, it also conflicts with the N-O bend of a nitro

group. This observation may explain the reason our model misclassifies many nitro

compounds as amides. Fortunately, there is a second N-O bend present which may

rectify this issue if we include nitro groups to the model separately.

Next, we investigated the compounds with at least one incorrect functional group

prediction (MPR = 0) provided in Listing S1. There are noticeable patterns of func-

tional group types present in the set of failures. One example is nitro groups, which

appear over 20 times in the failed compounds. This group is of interest as it is charac-

terized by two strong bands which overlap with bending modes in alkane and amides

functional groups. Many of these nitro compounds are misclassified as amides or alka-

nes and this observation partially explains the poor performance of amide functional

groups shown in Fig 4.7a-b. Although it is discouraging to note that the model was

unable to ’ignore’ these peaks, the low count of amides present in the dataset may

attribute to this poor performance.

4.4.5 Additional functional groups classification does not affect model

performance of the original definitions.

In the previous section, we show that some functional groups explicitly trained in

the MLP model were incorrectly classified due to overlapping peaks belonging to func-

tional groups that were not included in our original set of functional group types. We

hypothesized that the separate classification of the "overlapping" functional groups

could affect the performance of our model. To test this hypothesis, we introduced the

’nitro,’ ’ether,’ and ’aldehyde’ groups to the model. The ’nitro’ group has significant

overlap with the nitrile group (see the previous section), while the ’ether’ group did

not have peak values which overlapped with other functional groups in our previous
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definition. Another limitation of our model is the inability to distinguish methyl

groups from other alkane functional groups. We propose that this is possible due to

the lack of a C-C stretch in methyl groups and methyl groups contain characteristic

peaks not present in other alkane groups (i.e. the CH3 bend). In the NIST dataset

many alkyl halides are present which do not contain any C-H bonds as all hydrogens

in the molecule have been halogenated. Due to the large size of the alkane functional

group in the training set, we hypothesize that splitting the alkane group into methyl

and ’other’ alkanes will not result in a large decrease in performance. Therefore, we

decided to subdivide the ’alkane’ group into ’methyl,’ and ’other’ alkanes as these

groups performed the best out of all other groups in the original model.

Fig 4.10a-c show the results of these two hypotheses. The relatively high F1 scores

for the ’methyl’ (0.932) and ’other’ alkane (0.936) groups support our hypothesis that

sub–division of the original alkane definition does not decrease performance. Fig

4.10a-b also suggest that our hypothesis to improve low performance of functional

groups by the introduction of new functional groups for both FTIR and FTIR+MS

MLP model is incorrect. Although the nitrile and amide groups do not show im-

provement after the introduction of the nitro and ether groups as the F1 score for

nitriles decreased by 0.019 and amides increased by 0.032, the new groups perform

well as compared to the original problematic groups (0.932 for nitro groups and 0.923

for ethers). This suggests that the addition of new functional groups does not cause

a significant loss in F1 score for other groups. Therefore, we speculate that more

complex groups could be added to the model to provide detailed structural informa-

tion, such as a model to identify heterocyclic aromatic rings from rings comprised

of only carbon. While further subdivision of functional groups is beyond the scope

of this work, they present a potential extension of this work towards realization of

autonomous instrumentation that results in minimal manual intervention.
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Figure 4.10. The bar plots given in (a) – (b) compare the functional
group F1 scores for the original definitions of functional groups to
the new definitions (see Table 4.3.3) showing that the addition of
new additional functional groups does not have a significant impact
on the previous functional groups. The line plot in (c) shows that
the accuracy only decreases for the redefined functional group. The
plot of molecular perfection rate in (d) compares the performance of
the machine learning model to a synthetic model to show that the
decrease in molecular perfection rate is expected as the number of
functional groups increases.

4.4.6 Number of functional group predictions affects molecular perfection

rate.

We hypothesized that our stringent metric of MPR was affected by the increase in

the number of functional group predictions for a given model. To test this hypothesis,
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we have created synthetic models based on the accuracies of each functional group

from the trained FTIR+MS model (see Synthetic Models in the methods section).

The machine learning model outperforms these synthetic models (Fig 4.10d and S5d),

indicating that increasing the number of functional groups does not decrease this

metric more than what would be expected from the inclusion of additional functional

groups alone. The overall conclusion of this section is encouraging as it suggests that

more functional groups can be added to our model without hurting the model’s ability

to predict other functional groups. Values for the MPR and MF1 scores for the new

functional group definitions are 64.0335% and 0.909212 for the model trained on only

FTIR data, and 65.2510% and 0.912017 for the model trained on both FTIR and MS

data.

We were also interested in the performance of our model on molecules with a dif-

fering number of functional groups. To do so, we calculated the molecular perfection

rate for compounds with one through six functional groups, for the original set of

functional groups and the new set of functional groups (results shown in Fig 4.11).

Unfortunately, no definite conclusions can be made from this data as the original

versus new functional group definitions follow very different patterns. However, the

original set of functional groups outperforms the new set of definitions. This obser-

vation is likely due to the reduced accuracy of the new alkane due to the split into

methyl and non-methyl groups as both have accuracies of 91% where the previous

model had an accuracy of 95% (Fig 4.10c).

4.4.7 Encoding spectra data in latent space retains functional group pre-

diction performance.

Given the success of our MLP model in predicting functional groups using com-

plete standardized spectra, we wished to investigate the ability of an autoencoder to
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reduce the spectra into a latent space. This approach is different than that employed

to create the SPLASH keys [273] for mass spectra. Unlike SPLASH hashed keys, a

latent space of spectral data can be uniquely ’decoded’ back to the original spectra

without the use of any external database or additional information. We trained a

simple linear model for encoding the FTIR and MS spectra into a 256-length vector

and decoding this vector back to the original spectra used to create the vector (see

Fig 4.2). The 256-length vector was used to train a second network for multi-task

functional group prediction. For individual functional groups, the autoencoder model

performs similar to that of the original MLP model. The molecular performance of

the autoencoder model is similar to that of the original MLP model (Fig 4.12) as the

MPR for the autoencoder model is 62.6% and the MF1 score is 0.905 as compared to

65.2% and 0.912 for the original model. This reveals that the original spectra contain

redundant features that relate FTIR and mass spectra. We plan to explore the use
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of this latent space for inverse design of molecules with combined spectral properties

in future works.
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4.4.8 Deep learning model trained on single compounds predicts func-

tional groups in mixtures.

The ability to identify all the functional groups in a mixture of compounds expands

the applicability of our methodology. To our knowledge, we are the first group to

report the ability of machine learning methods to classify mixtures of compounds

using a model trained on single compounds. To validate our method on compound

mixtures, we obtained the FTIR spectra of three different mixtures of molecules

(raw spectra given in Appendix G) and predicted all the functional groups of the

compounds in the mixture using our MLP-FTIR machine learning model (see Table

4.2). For this test set, we have not included MS data since only a minor improvement

was gained from addition of MS spectra based on training. In future works, we

plan on improving the performance of functional group prediction by addition of MS

data using more advanced machine learning architectures and molecular features.

We stress the point that these spectra are obtained in our lab, are not part of the

NIST dataset, and are obtained from instruments different than those used by the

NIST as it is essential to validate a machine learning method for practical use in

different laboratories. Since these spectra are external to the NIST webbook data,

they constitute a ’test set’ for our model. The compound mixtures were prepared by

mixing two solid compounds and each mixture contained a different set of functional

groups. Performance metrics, such as molecular F1 score etc., described previously

for single molecules are applied to a mixture of molecules by considering the set of

all functional groups (a union of all functional groups present in the mixture). For

mixture 1, our FTIR-only method correctly predicted 2 out of the 4 functional groups

present in the mixture, and predicted an additional functional group not present in

the mixture, yielding an MF1 score of 0.65 (Table 2). Given the resolution of spectral

data, the lack of an O-H peak above 3500cm−1 could also lead a human chemist to



172

conclude that no carboxylic acid is present in the mixture. Additionally, the presence

of a peak near 2940cm−1 may lead a human to conclude that a methyl group is present

in the mixture. For mixture 2, we obtain an MF1 score for the mixture of 0.80 as

we correctly predict 2 out of the three functional groups present in the mixture and

do not predict any additional functional groups. The only missed functional group is

the amide group, which is known to be problematic in our model (functional group

F1 score < 0.60) and the lack of a strong peak near 1650cm−1 may contribute to

a human’s inability to identify this functional group. For mixture 3, our method

correctly predicts 3 out of the 6 functional groups in the mixture and does not predict

any additional groups in the mixture, yielding a molecular F1 score of 0.67. The model

was not able to identify a methyl group and a human may make the same mistake

given the lack a peak near 2940cm−1. The model also failed to predict the presence of

a nitro group and the presence of an ether, potentially due to the peaks corresponding

to these groups overlapping with other peaks in the aromatic region of the spectra.

Our results show that the deep learning model trained on single compound spectra can

give reasonable performance to predict functional groups for mixtures of compounds.

Future work entails training on compound mixture spectral data along with using

other deep learning architectures, such as Generative Adversarial Networks. This

is essential for correctly estimating the limitations of machine learning models for

adoption in industry for autonomous instrumentation.

4.4.9 Reaction networks allow one to verify that a reaction has occurred

in an automated fashion.

One of the most important applications of machine learning for functional group

prediction is the ability to automate the analysis for determining whether a given

reaction has occurred by predicting the functional groups of the reactants and prod-
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ucts [274]. As the final case study for this work, we present the prediction of a

’reaction network’ using the combined IR+MS model (Fig 4.13). We selected the syn-

thetic scheme for small-molecule inhibitor for Programmed Cell Death-1/Programmed

Death-Ligand 1 (PD–1/PD–L1) Interaction[ref]. The commercially available starting

material 3–Bromo–2–methyl benzoic acid was used to synthesize a final compound

(designated as kpgc01s94) in the multi-step process. Firstly, 3–Bromo–2–methyl

benzoic acid was reduced to aryl methanol (kpgc01s02) using Borane tetrahydro-

furan complex solution, and then C–C bond formation was achieved using Suzuki-

coupling reaction between kpgc01s02 and phenyl boronic acid to get kpgc01s05.

Next, kpgc01s05 and 4–hydroxy–2,6–dimethoxybenzaldehyde were reacted under Mit-

sunobu reaction condition to prepare ether linkage in kpgc01s37. Further, reductive

amination yielded kpgc01s94. However, based on IR+MS spectra, a chemist needs

to identify the correct functional group to predict the desired product formation, but

such a task is difficult due to functional group region overlaps of the FTIR spec-

trum. For example, the frequency of the carbonyl group is dependent on which type

of functional group is present (ketone, aldehyde, ester etc.) as well as the presence

of extended conjugation (aliphatic or aromatic compound). Thus, FTIR+MS model

would be beneficial to predict functional groups in the compound. Considering these

aspects, for each compound shown in the reaction scheme of Fig 4.13a, the FTIR+MS

model was used to predict the functional groups present in the compound using both

its IR and MS spectra (Fig 4.13b). The change in these functional groups throughout

this reaction scheme are shown in Fig 4.13d while Fig 4.7c gives the true changes

in functional groups obtained from the known compounds in the reaction scheme.

The model predicted 3–Bromo–2–methyl benzoic acid as both a halide and an alkene

(incorrect), but did not predict any aromatic or carboxylic acid functional groups.

While the inability of the model to predict any carboxylic acid has been investigated
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in previously in this work (see the previous section), the inability of the model to

predict aromatic functionality is concerning given that this functional group has the

greatest F1 score of all functional groups presented in this work. The incorrect pre-

diction of an alkene can be explained by the presence of peaks in the alkene region of

the IR spectra (1640–1680 cm−1). For the next compound in the scheme, kpgc01s02,

the model incorrectly predicted the lack of a halide group while correctly predicting

the presence of an alcohol and aromatic groups. As a result, the reaction network

generated by our model suggests that the alkene and halide groups transform into an

aromatic group and an alcohol group instead of a simple reduction from a carboxylic

acid to an alcohol. The model predicts the same functional groups for kpgc01s05 as it

does for kpgc01s02, therefore there is no change in the reaction network for this step

to correspond with the disappearance of the halide group in the the actual reaction

network (orange arrow in Fig 4.13c). This failure to predict a change in functional

groups represents the greatest failure of our model as it would predict no reaction

has occurred while, in reality, a reaction did occur. For kpgc01s37 and kpgc01s94,

the model incorrectly predicts that both compounds contain a halide group, result-

ing in the incorrect addition of this halide group in the predicted reaction network.

The model also failed to predict the presence of an ether functional group for both

kpgc01s37 and kpgc01s94, therefore it is not present in the predicted reaction network.

A ketone functional group is predicted instead of an aldehyde group for kpgc01s37,

a mistake which a human can make given that these two functional groups share the

same region of the IR spectrum. The model correctly predicts the presence of an

amine group in kpgc01s94 and thus obtains the correct edge connecting a carbonyl

group to an amine in the final step of the reaction. However, the model fails to pre-

dict the presence of a carbonyl group in the final compound of the scheme, but this is

expected given the model’s prior failures in predicting this functional group. Overall,
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these results indicate that the model is capable of determining whether a reaction

has occurred by identifying changes in functional groups for the given molecule, but

is unable to determine the exact functional group changes which are present in these

reactions. We plan on addressing these issues in future works by developing novel

ANN models for detecting the presence of a reaction in a given reaction network,

possibly by the inclusion of NMR data.
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a Synthetic reaction scheme used by our group

b IR spectra recorded for the compounds in the scheme

c Reaction network obtained via functional groups d Reaction network obtained from our model

Figure 4.13. A synthetic scheme proposed in our lab is presented
along with the functional groups which change in the given reactions
(a). The colors of the arrows indicate which reaction has occurred.
The IR spectra of each member of the reaction scheme is given in
(b). The reaction network for the actual compounds is represented
as the changing of functional groups in (c) and the predicted reaction
network obtained from our model is given in (d).

4.5 Conclusion

We present a machine learning method for de novo prediction of functional groups

using a combination of FTIR and MS data. We introduce two new metrics apart from
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functional group F1 score, namely, molecular F1-score and molecular perfection rate

for practical use of our models. Our results show that, in general, the FTIR data is

more consistent for predicting functional groups than MS data, a conclusion backed

by chemical intuition. However, several functional group predictions benefit from the

inclusion of MS data. Additionally, our model architecture is more optimal for analy-

sis of FTIR data due to the continuous nature of these spectra, and the mathematical

structure of an MLP model. Our model’s performance is not affected by the number

of functional groups present in the training data and it predicted all the functional

groups consistently across all metrics. Moreover, several known chemical patterns in

the spectra were identified as features for the model to identify common functional

groups without any expert training of the system. We conclude that a multi–class,

multi–label perspective is apt for further studies which may combine differing spec-

troscopic data types that may reveal unknown features useful for the identification of

compounds. We show that our approach for functional group predictions is flexible

as it can be extended to introduce new or sub-divide existing functional groups with-

out affecting the performance of original functional group definitions. Furthermore,

reducing chemical spectral data in a latent space does affect model performance to

predict functional groups but can be used for inverse design of molecules based on

a combination of spectral properties. Finally, we have verified that our model also

produces reasonable results for a mixture of compounds containing multiple, different

functional groups. Therefore, our machine learning model can be used for database-

free identification of functional groups in pure and complex mixtures of compounds.

We believe that these accomplishments are significant advancements in the devel-

opment of algorithms and methods for the autonomous identification of functional

groups. We hope that the continued development of future spectral learning methods

builds upon our work and will adopt or improve upon the molecular F1 score and
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molecular perfection rate metrics to assess their models to predict multiple functional

groups for molecular structure elucidation.

4.6 Future work

This work is only preliminary and much remains to be done. The first and imme-

diate next step is to remove the manual assignment of functional groups by using a

graph–based method to determine the environments of atoms. An example would be

using the Morgan fingerprining algorithm to assign environments to atoms and then

predicting the presence of atoms using their FTIR spectra. A major drawback to this

approach is that FTIR spectra are a function of bonds in a molecule, not necessarily

the atoms. Therefore, the success of such a method is highly dependant on the ability

of this algorithm to capture these bond details. An alternative approach would be to

develop a specialized fingerprinting algorithm that determines the presence of bonds

instead of atoms. This method, however, would be inferior to a method developed to

encode edge features in graph (similar to a graph neural network, see appendix A).

Unfortunately, This maybe the limit of the limit of this technique for structure de-

termination. However, it is interesting to note that one can use it to analyze spectra

over time, as shown in Fig 4.14.

Figure 4.14. A potential model for predicting FTIR spectra over time.
This model can be integrated into the work shown in this chapter in
the near future.
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Conversely, there is a lot more work that can be done for the prediction of func-

tional groups using MS data. However, this can only be done using a novel ML

model more suited for the analysis of MS data. For example, a model which takes

advantage of mass differences and a unique architecture could be used to take this

problem. For example, one could use a graph convolutional neural network [275] as a

canvas for predicting functional groups and re-weight this canvas using the predicted

atoms and functional groups. Another approach could make use of an autoencoder to

encode graph properties along with spectral properties and decode this latent space

into functional groups in the molecule. This second model is detailed in Fig 4.15.

These works mark the next steps in this emerging field.
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Graph
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Figure 4.15. A new model for incorporating MS data into functional
group prediction.
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5. IDENTIFYING THE FUNCTIONAL GROUPS OF SMALL MOLECULES

USING ION–MOLECULE REACTIONS

This chapter is available as
Fine, J., Liu J., Beck A., Alzarieni K., Ma X., Boulos V., Kenttämaa., Chopra G.

Graph Based Machine Learning Interprets Diagnostic Isomer-Selective Ion-Molecule
Reactions in Tandem Mass Spectrometry. ChemRxiv (2019).
https://doi.org/10.26434/chemrxiv.11466183.v1

It has been reproduced under a Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/) and minor changes to original
text have been made to format the original article as a thesis chapter.

5.1 Abstract

Diagnostic ion-molecule reactions using tandem mass spectrometry can differen-

tiate between isomeric compounds unlike a popular collision-activated dissociation

methodology for the identification of previously unknown mixtures. Selected neutral

reagents, such as 2–methoxypropene (MOP) are introduced into an ion trap mass

spectrometer and react with protonated analytes to produce product ions diagnos-

tic of the functional groups present in the analyte. However, the interpretation and

understanding of specific reactions are challenging and time-consuming for chemical

characterization. Here, we introduce a first bootstrapped decision tree model trained

on 36 known ion-molecule reactions with MOP using graph-based connectivity of an

analyte’s functional groups as input. A Cohen Kappa statistic of 0.72 was achieved,

suggesting substantial intermodel reliability on limited training data. Prospective di-

agnostic product predictions were made and validated for 14 previously unpublished
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Figure 5.1. Table of contents figure for the online publication

analytes . Chemical reactivity flowcharts were introduced to understand the decisions

made by the machine learning method that will be useful for chemists.

5.2 Introduction

Tandem mass spectrometry (MS/MS) is a powerful analytical tool that is ex-

tensively used for the characterization of complex mixtures in many fields, such as

proteomics, petroleomics, and drug discovery [276–279]. Currently, the most com-

monly used MS/MS technique to obtain structural information for ionized and iso-

lated mixture components is collision-activated dissociation (CAD) [253, 254]. In

these experiments, the analyte ions are accelerated and allowed to collide with an

inert gas, such as helium. Upon the collisions, part of the kinetic energy of the ions

is converted into their internal energy, resulting in fragmentation. This approach is

limited by the fact that isomeric ions often generate identical fragmentation patterns,

making identification of compounds via CAD mass spectra unreliable [279, 280]. To

address this issue, a MS/MS approach based on diagnostic, reliable and predictable

gas-phase ion-molecule reactions has been developed [280–284]. This approach can

be used to identify specific functional groups or their combinations in ionized and

isolated mixture components to thereby facilitate the differentiation of isomeric ions,

often without the need for reference compounds.
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One of the neutral reagents used previously to differentiate two isomeric drug

metabolites is 2-methoxypropene (MOP) [280]. In these experiments, protonation of

the analytes was achieved through atmospheric pressure chemical ionization (APCI)

in a linear quadrupole ion trap (LQIT) mass spectrometer. The protonated analytes

were transferred into the ion trap, isolated and allowed to react with MOP that was

continuously introduced into the ion trap (Fig 5.2). Formation of a diagnostic, stable

addition product, proton transfer to MOP, or no reaction with MOP was monitored.

The diagnostic addition product ions were only observed for the protonated sulfoxide

drug metabolite and not for its keto–isomer (Fig 5.3). This was verified via studies

of several protonated model compounds [281].

Figure 5.2. Schematic diagram of a linear quadrupole ion trap mass
spectrometer equipped with an APCI source and an external reagent
mixing manifold (bottom) [283, 285]. This instrument can be used
to detect diagnostic ions formed between analytes protonated upon
APCI and a neutral reagent (introduced using the reagent mixing
manifold) in MS/MS experiments occurring in the ion trap.

Interpretation of the data obtained for complex mixtures in the above experiments

is challenging and time-consuming due to the large amount of data. In order to fa-

cilitate this process, we decided to develop a chemical graph based interpretable
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Figure 5.3. The diagnostic utility of employing neutral reagents, such
as MOP, to identify functional groups in protonated metabolites of a
drug. After the metabolites were (a) protonated and isolated, (b) they
were allowed to react with MOP and (c) the formation of a diagnostic
addition product (DP) as opposed to proton transfer (PT) no reaction
was monitored. Only the protonated sulfoxide metabolite generated
the diagnostic addition product ion (DP) with MOP.

machine learning methodology to facilitate data interpretation and prediction of

whether a given protonated analyte will form a diagnostic product ion upon reactions

with MOP. Multi-Layer Perceptron (MLP) [145,155,286], Long-Short Term Memory

(LSTM) [97,287], and Graph Convolution Networks (GCN) [262,288–290] approaches

have been demonstrated to be suitable for predicting reaction outcomes when a large

number of known reactions are available. Unfortunately, due to the specificity of the
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diagnostic ion-molecule reactions of interest here, only a relatively small set of known

reactions exist. Additionally, these models are difficult to understand and yield no

additional chemical insight. Although one-shot and few-shot learning has proven use-

ful in the literature for systems with a small number of observations [31,163,291,292],

these models are typically difficult to interpret and only limited information can be

obtained about the reactions. Therefore, a ma-chine learning methodology that can

be interpreted by humans is developed in this work.

Previously, the proton affinity (PA) of an analyte was used to predict whether a

protonated analyte would undergo diagnostic product formation, proton transfer or

no reactions with MOP [281]. If the PA of the analyte is lower than that of MOP,

proton transfer usually dominates. On the other hand, if the PA of the analyte is

greater than that of MOP, a diagnostic adduct may be formed. However, accurate

predictions between formation of the diagnostic adduct and no reactions were not pos-

sible. Nevertheless, PA values may be used as a baseline for benchmarking potential

machine learning methods or as a source for additional input features.

5.3 Results and discussion

5.3.1 Choice of the Machine Learning Model.

Given the sparsity of data available for training a machine learning model, tradi-

tional architectures known to perform well with small amounts of data were evaluated.

These machine learning architectures include regularized logistic regression [149,293],

decision tree models [294, 295], partial least squares [296], generalized linear mod-

els [297], and k-Nearest Neighbor [298]. Each of these models solves classification

problems in a very different manner. For example, logistic regression attempts to

assign numeric weights to an input vector. This vector is then used to linearly trans-
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form the input into two probabilities for assignment of the input as a given class. On

the other hand, decision trees (when trained for classification) attempt to reduce the

Shannon Entropy of the predicted class by splitting the data using a set of Boolean

operations. This yields a flowchart of logical decisions that one can use to evaluate

the decisions made by the model (see the methods section for details of this proce-

dure). The major advantage of decision tree models, with analytes represented as

an input bit vector of functional groups, is that the resulting flow chart diagram can

be interpreted by chemists to gain a deeper understanding of the chemistry result-

ing in a reaction taking place. This procedure is widely used in both biology [295]

and chemistry [164, 299] to identify and interpret how input features (in this case

the collection of functional groups) correlate with a property of interest (reactivity

toward MOP in this case). Recently, similar techniques have been applied to reaction

chemistry [150] to understand how various chemical moieties are related to the reac-

tivity of a molecule. Here, we used bootstrapping of several decision tree models to

ensure robustness of our model for prospective experimental validations. Moreover,

a comparison of the performance of decision trees to other machine learning models

was also performed to ensure that efficacy was not compromised for the sole sake of

interpretability.

To develop a chemically interpretable machine learning model, the presence or

lack of a topology of a collection of atoms (referred to as functional groups) was re-

lated to predicted reactivity. The Morgan Fingerprint algorithm [300, 301] was used

to represent such functional groups. It avoids the use of manually created functional

groups subject to human bias and interpretation. Additionally, previous work indi-

cates that the use of Morgan Fingerprints in machine learning is an effective approach

across chemical disciplines [302–304]. Briefly, this algorithm functions by finding all

subgraphs of a molecular graph (i.e. the connectivity of the atoms in the molecule)



186

and assigns a number to these subgraphs calculated via a set of hashing functions

applied to each atom and its respective neighborhood. This yields an integer which

can be used as a surrogate for the functional group. The size of these subgraphs was

determined by a radius parameter that is supplied by the user a priori. Application

of a small radius in machine learning has been shown to avoid the potential for the

same integer to represent the same functional group, a phenomenon known as a bit

collision [305]. In this work, the ability of models trained on different radii were also

com-pared to ensure that the selection of fingerprint radius is optimal for the task at

hand.

5.3.2 Cutoff Assignments for the Machine Learning Model.

Since the experimental outcome of a given analysis was either proton transfer/no

reaction, or the formation of a diagnostic addition product ion (see Fig 5.3), and

a limited amount of data was available for training, a binary classifier is preferable

to other supervised machine learning models. The training set for this classifier

included a set of 36 protonated analytes whose reactions with MOP have been studied

along with their product branching ratios [281, 306, 307] (see Table 5.1 for all MOP

reactions). The distribution of product branching ratios measured for the diagnostic

addition reaction (see Fig 5.4a) shows a large gap between 65 to 83% as no compounds

have a diagnostic product branching ratio between this percentage gap. This gap

indicates that a cutoff of 70% or greater for the branching ratio should be used in

this binary classifier to determine whether a given analyte will undergo the diagnostic

addition reaction with MOP.



187

Table 5.1.: The 36 known reactions used for training
the machine learning models.

Protonated analyte for training DPBR a
PA (DFT)
Reference
PA experimentb

1a

N

O

H

N

O

O

O

+

H
H 85%

220.2 d

Ammonia

1b

N

O

O

+
Incorrect
protonation

HH

188.2

Methanol

2a N

N

O

O

N

N

O

O

H O

O

+

H H

11%
206.7

Ammonia

2b N

N
O

O

O

+
Incorrect
protonation

H

H

177.0

Methanol

3
N O N O

O

O

+

H

99%
221.4 d

Methanol

4

N

O

N

O O

O

+

H 86%
226.2 d

Methanol

5
N

O

N

O O

O

+

H 66% c
224.7 d

Methanol

6

N

O
H

N

O

O

O

+

50% c
212.6

Methanol
continued on next page



188

Table 5.1.: continued

Protonated analyte for training DPBR a
PA (DFT)
Reference
PA experimentb

7a
N

O

N

O

N

O

N

O

H H

O

+

O
H

H
H

84%
236.0 d

Ammonia

7b N

O

N

O

H

O

+
Incorrect
protonation

H

H

194.0

Ammonia

8a
N

O

N

OH

H

H O

+
H

+
O
H

3%
204.2

Ammonia

8b
N
OH

O

+ Incorrect
protonation

H

H

175.8

Methanol

9a
N

O

N
OH H

O

+

H

H +
O
H

27%
213.9

Ammonia

9b
N
OH

O

+ Incorrect
protonation

H

H 182.1

Methanol

10a

N
O

N
O

H
H O

+

H

H
+

O
H

13%
205.8

Ammonia

10b

N
O

H
O

+
Incorrect
protonation

H

H

204.9

Methanol
continued on next page
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Table 5.1.: continued

Protonated analyte for training DPBR a
PA (DFT)
Reference
PA experimentb

11a

N
O

N
O

H
H O

+

H H

+ O
H

25%
214.3

Ammonia

11b

N
O

H
O

+
Incorrect
protonation

H

H

184.7

Ammonia

12a
O N

O

O
H

H O

+ Incorrect
protonation

H 189.2

Ammonia

12b

O N

O

O

H O

+

H

O N

O

O

H

O

H H 23%
205.2

Methanol

13a
N

O

O
H

H O

+ Incorrect
protonation

H

195.8

Ammonia

13b

N

O

O

H O

+ N

O

O

H

O
H

H H 12%
209.7

Methanol

14

O

O
H

O

O

O

O

+

H
H 0%

196.2
196.2
Methanol

15

O
H

O

O

O

+

2%
211.3
210.9
Methanol

continued on next page
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Table 5.1.: continued

Protonated analyte for training DPBR a
PA (DFT)
Reference
PA experimentb

16
O O

H
O

O

+

0%
194.4
194.0
Methanol

17
O

O

15
O

O

15

H
O

O

+

0%
207.9

Methanol

18
N N

O

H
H

H

HH

O

+

2%
220.0 d

220.2
Ammonia

19
N

N O

H
H

H

HH

O

+

0%
209.6
210.9
Ammonia

20
O
H

H

O

H

O
O

+

0%
188.0
188.6
Methanol

21a O
H

O

+

H
H

O
H

H
H

O

2%
194.0
195.3
Benzene

21b
O
H

H

O

+
Incorrect
protonation 178.0

Methanol

22

S

O

S

O

O
H

O

+

37%
220.9 d

Methanol

23
S

O

H

O

S

O O OO

+

0%
199.7

Methanol
continued on next page
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Table 5.1.: continued

Protonated analyte for training DPBR a
PA (DFT)
Reference
PA experimentb

24

S

O

H

O

S

O O

O

O

+

0%
205.2

Methanol

25

S

O
H

O S

O

O

O

O

+

0%
195.5

Methanol

26

O

O S

O

F

O

O

O

O
S

O

F

O

H

O

+

H H

15%
200.8

Methanol

27

S

O
S

O

H O

O
O

O

+

1%
202.0

Methanol

28
S

O

S

O

H O

O
O

O

+

1%
196.9

Methanol

29

S

O

N

S

O
N

H

OO

O

O O

H

H
O

+

H
H

2%
195.2

Methanol

30
S

O

S

O
H

O

O O

O

+

1%
200.8

Methanol
continued on next page
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Table 5.1.: continued

Protonated analyte for training DPBR a
PA (DFT)
Reference
PA experimentb

31 S

O

S

O
H O

O

+ 99%
223.9 d

Methanol

32

S

O

S

O

H
O

O

+
99%

223.2 d

Methanol

33

S

O
S

O

H
O

O

+

54 c%
221.1 d

Methanol

34

S

O
S

O

H

O

O

+

50 c%
222.9 d

Methanol

35

O

O
S

O

F

H

O

O S

O

F

O

O

+

H

H

97%
222.0 d

Methanol

36
S

O

S

O

H O

10 10

O

+

98%
222.8 d

Methanol
a Diagnostic product branching ratio [281,282,285,306–308].
b Experimental value for the proton affinity [309].
c Reactivity change from the 67th to 78th quantile. See Cutoff Assignments for Machine
Learning Model and Fig 5.4 for details.

d Value greater than the proton affinity of MOP (214.42 kcal/mol) as calculated using
Density Functional Theory, see section Calculation of proton affinities in methods for
details.
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The selection of the above cutoff resulted in 8 protonated analytes being classified

as forming a diagnostic addition product ion with MOP and 28 protonated analytes

being considered as non-diagnostic. Since this split was unbalanced (i.e. more non-

diagnostic reactions than diagnostic), the Cohen Kappa Statistic [119] (see appendix

A) was used to compare the success of different models. A Kappa statistic of zero

indicates that the model performs at random and a value of positive 1 indicates a

perfect classifier (see Methods section for details). To further investigate the effects

of this cutoff value, models created with a 70% cutoff were compared to those created

with 10, 20, 30, 40, 50, 60, and 90% cutoffs to ensure that this choice was logical with

respect to how the models performed for reactions not used to train the model. Note

that a cutoff of 80% was not considered as it produced the same set of analytes that

underwent the diagnostic reaction as the 70% cutoff.

A potential alternative to the 70% cutoff is 40% as this represents the second-

largest gap in the distribution of diagnostic product branching ratios (see Fig 5.4a).

This value is approx-imately at the 67th quantile of the data and resulted in a split of

13 analytes that underwent the diagnostic addition reaction, compared to 23 analytes

that did not. When considering the result of the binary classifier with different cutoffs,

70% and 40%, the model classified four analytes, TEMPO (an N-oxide radical), 5,5–

dimethyl–1–pyrroline N-oxide, methyl phenyl sulfoxide, and (ethenesulfinyl)benzene

(a sulfoxide) (see Fig 5.4b) differently. Conversely, with both cutoffs, the model

classified all sulfones, alcohols, and amines to undergo proton transfer or no reaction

instead of forming a diagnostic addition product ion. The similarities and differences

between the 70 and 40% cut-offs could be used to further understand how the model

per-forms and assigns classifications.

To ensure that a decision tree model will perform well prospectively, 14 compounds

that were not present in the training set (i.e., test set) were evaluated using a boot-
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Figure 5.4. (a) The distribution of diagnostic product branching ratios
for the initial training set of 36 reactions. (b) Structures for represen-
tative analytes with diagnostic product branching ratios between 40
and 70%.

strapped set of models trained with different diagnostic branching ratio cutoffs. In

addition, models were trained using different fingerprint radii to ensure that a radius

of 1 is appropriate (see Introduction for details). These 14 compounds (Table 5.3.2)

were selected from an in-house library of available compounds and the model was
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prospectively tested using ion-molecule reactions with MOP. These 14 compounds

were selected based on a criterion that either their functional groups were not present

in the compounds of the training set or all bootstrapped decision tree models resulted

in the prediction of formation of a diagnostic addition product with MOP. The results

are shown in Table 5.3 and appendix H. The probabilities of the analytes to form a

diagnostic product as assigned by the radius 1 decision tree models are given in Table

5.3.2 and for other radii in appendix H. These tables show that the 60 and 70%

cutoffs produced the models best suited for the external test set with a kappa value

(0.72) that is greater than for the other cutoff values. The prediction prob-abilities for

the analytes that underwent no diagnostic reaction (#3, #6, #7, and #9) were zero

in the 70% cutoff model but above 30% in the 60% cutoff model. Therefore, the 70%

cutoff was superior to 60% as it produced lower probabilities of diagnostic addition

product formation for analytes that predominantly reacted via proton transfer or not

at all. Additionally, other machine learning methods, including regularized logistic

regression, k-Nearest Neighbor, and partial least squares classification (Tables S4-S7),

were evaluated. None of these methods outperformed the 70% decision tree model

trained with a fingerprint radius of 1. Finally, the proton affinity model achieved a

kappa value of 0.44, indicating that the decision tree model significantly outperformed

the manual approach of identifying reactions based on proton affinities. One should

note that the proton affinities relevant to test reactions #1 and #9 and the calculated

proton affinity of MOP are all within 0.1 kcal/mol of each other. Therefore, the cor-

rect ordering of these proton affinity values may not have real significance. Moreover,

using the experimental value for the MOP proton affinity instead of the calculated

value results in a kappa value of 0.31, further demonstrating the superiority of the

decision tree model (kappa = 0.72) over that of proton affinity calculations.
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Table 5.2.: The probability for assignment of a correct
reaction for all decision tree models.

# DPa 20% 30% 40% 50% 60% 70% PA
1 Yes 51% 54% 50% 47% 100% 100% 214.43b

2 No 0% 8% 0% 0% 0% 0% 225.23b

3 No 0% 8% 0% 0% 33% 0% 229.51b

4 Yes 100% 100% 100% 100% 100% 100% 206.80
5 No 0% 0% 0% 0% 0% 0% 188.57
6 No 59% 58% 50% 44% 4% 0% 222.71b

7 No 0% 0% 0% 0% 33% 0% 195.01
8 Yes 100% 100% 100% 94% 100% 100% 224.15b

9 No 0% 0% 0% 0% 33% 0% 214.36
10 No 100% 100% 100% 100% 100% 100% 213.07
11 Yes 100% 100% 100% 100% 100% 100% 222.83b

12 No 100% 100% 100% 94% 100% 100% 205.64
13 Yes 100% 100% 100% 88% 100% 100% 226.38b

14 Yes 100% 100% 100% 100% 100% 100% 232.58b

κ 0.59 0.59 0.59 0.57 0.72 0.72 0.44
a See appendix H for assignment of diagnostic production formation.
b Value greater than the proton affinity of MOP (214.42 kcal/mol) as
calculated using Density Functional Theory, see section Calculation
of proton affinities in methods for details

Table 5.3.: Additional details for the calculation of PA
for the test set reactions.

Test Set Reaction # Proton affinity
kcal/mol Reference

1a
N

N

S

O

N

O
N H

O

N
N

S

O

N

O
N

O+

214.43 a Ammonia

1b
N

N
S

O

N
O N

O

+
H

Incorrect
protonation

170.12 Methanol

2a

N

N H

OO

O No

Reaction
+

225.23 a Ammonia
continued on next page
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Table 5.3.: continued

Test Set Reaction # Proton affinity
kcal/mol Reference

2b

N

N
OO

O Incorrect
protonation

+

H 199.46 Methanol

3a
N

N

N

O

H

H

O

S

H

O
O

+

229.51 a Ammonia

3b N

N

N

O

H

H

O

S

O
+

H

Incorrect
protonation 190.26 Methanol

4a

S

O

O

O

N

HH
H

H

O

S

O

O

O

NH

H

++ O

H

206.80 Ammonia

4b

S

O

O

O

N

HH

H

O
+

H

Incorrect protonation
site as determined
by experiment

223.68 b Methanol

5

S

O

O

O

H

H

O
O+

188.57 Methanol

6a

+
N

O

H

I I

O

O

O No

Reaction

222.71 a Methanol

6b

+
N

O

I I

O

O

O

H

Incorrect
protonation

165.34 Methanol
continued on next page
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Table 5.3.: continued

Test Set Reaction # Proton affinity
kcal/mol Reference

7

O

O

H

H

O O

+

195.01 Methanol

8

N

O

H

O N

O O

+

224.15 a Methanol

9

C

O

H

O
O+

214.36 Methanol

10a

N

O

N

H

O O

O
O+

213.07 Methanol

10b

N

O

N
O O

O
+

H

Incorrect
protonation

186.45 Methanol

11
S

O

H

11

O

S

O

11

O

+

222.83 a Methanol

12a

N

O

N

O O

H

O
O+

205.64 Methanol

12b

N

O

N

O O

O
O+

H

179.97 Methanol
continued on next page
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Table 5.3.: continued

Test Set Reaction # Proton affinity
kcal/mol Reference

13

N

O

H

O
+

N

O O

226.38 a Methanol

14a 232.58 a Methanol

14b

S

O

N

N

N

O

OH

H

O+ Incorrect
protonation

H 223.44 a Ammonia
a Value greater than the proton affinity of MOP (214.42 kcal/mol) as calculated using
Density Functional Theory, see section Calculation of proton affinities in methods for
details

b Although the proton affinity of the sulfoxide is greater than that of the amine, the
MS/MS validation for this reaction shown in appendix H indicates that the amine
is protonated as the diagnostic product formed from this reaction has a mass of
M+H+MOP-MeOH instead of M+H+MOP. The mechanism for this loss of methanol
requires the amine to be protonated and is not observed when a sulfoxide is protonated
and the result of this experiment requires further study which is beyond the scope of
this work. We have assigned this as an incorrect prediction for the PA model as a
result.

Given the straightforward interpretability of decision tree models, we introduce a

chemical reactivity flowchart to rationalize the logic behind the 70% model used here

to make predictions. The decision tree flow chart for the 70% cutoff and the fingerprint

radius of 1 atom is given in Fig 5.5 and a chart for the 40% cutoff is provided in Fig

5.6. The logic begins by checking for the presence of a sulfoxide functionality with at

least one aliphatic carbon atom bound to it in the analyte and if found, the analyte
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is assigned as "reactive" (see Fig 5.5d). Then, the model checks for the presence of a

nitrogen atom with three substituents in a heteroaromatic ring (note that dashed lines

indicate an aromatic bond) and assigns the analyte as "reactive" if such an atom is

present. If neither functional group is present, the model checks for a junction between

sp2 hybridized atoms and assigns analyte containing this group as "reactive". If this

group is not present, the model checks for a sulfoxide group located next to one or

more aromatic rings and assigns the analyte as "reactive" if the sulfoxide group is

between two aromatic rings. After this, the model checks for a terminal carbon bound

to any atom and as-signs all analytes lacking this functionality as "unreactive". Those

analytes that contain this functionality are checked for terminal oxygens or carbonyl

groups and compounds lacking these functionalities are checked for a hydroxylamino

group for final "reactivity" assignment. It should be noted that these features are

identified by the trained decision tree model and that they make chemical sense in

several cases, such as that com-pounds containing sulfoxide group with at least one

aliphatic carbon atom bound to it (feature) generating the diagnostic product with

MOP (Fig 5.5).

All cutoff models correctly predicted the three test sulfoxide compounds (#4,

#11, and #14 in Table 5.3.2) to be "reactive" to-wards MOP with 100% certainty;

a result which can be ex-plained by the fact that all protonated sulfoxides in the

training set, except for one, had a reaction efficiency greater than 40%. Therefore,

this result reflects the true experimental conclusion regarding sulfoxide compounds.

This concept was reflected by the presence of a sulfoxide group as the paramount

feature in the model (at the top of Fig 5.5a-c). Similarly, all the models predicted

that analytes containing an N-oxide functionality are "reactive" (#8, #10, #12, and

#13). However, experiment results show that compounds containing nitro groups

(#12 and #10) are "unreactive" (do not undergo a diagnostic addition reaction).
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These two compounds represented the only two errors made by the 70% cutoff model

and these failures may be due to a nitro group not being present in compounds in

the training set. The proton affinity model, however, correctly predicted these two

nitro compounds as "unreactive" towards MOP, suggesting that when new functional

groups are added into the model, a proton affinity verification step could be used

to ensure that the new reaction predictions are correct. Since proton affinity model

in-correctly predicted that compounds #2, #3, and #6 will form diagnostic addition

products and that compound #1 will not, and none of these compounds contain

functional groups present in the training set, it is best to apply this verification only
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if the compound contains functional groups not present in compounds in the original

training set.

5.3.3 Retraining the decision tree model on new reactions.

To en-sure that the introduction of new data does not cause extensive changes to

the decision tree model, a new model was trained with the addition of 14 analytes to

the initial 36 analytes in the training set. The new model obtained by training with all

these 50 analytes is shown in Fig 5.7. The minimal changes in the chemical features

seen in this model indicate that the new model does not have many logical changes as

compared to the previous model shown in Fig 5.5. The first three comparisons were

the same between both the original 36-analyte model and the new 50-analyte model

and the new model only introduced four additional functional groups. Three of these

new functional groups were related to the nitro group present in the compounds in the

new training set: 4–nitropyridine N–oxide and 4–nitro–quinoline N-oxide. Therefore,

one can deduce that the model has added an additional comparison to prevent these

com-pounds from being predicted as "reactive". As more protonated analytes with

known reactivities towards MOP are identified, this model can be retrained to incor-

porate these new analytes, yielding improved predictions in the future while retaining

baseline performance and simplicity.

5.4 Conclusions

The work presented here demonstrated that a combination of machine learning and

tandem mass spectrometry experiments based on diagnostic ion-molecule reactions

can be used to identify analytes in a semiautomated fashion while generating results

in a manner readily understandable to chemists. This ma-chine learning methodology
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combined an automated functional group identification method (Morgan Fingerprint-

ing) with a decision tree model trained on only 36 analytes and was prospectively

validated using 14 external analytes of unknown experimental outcomes. The model

correctly predicted reactivity for 12 of the 14 analytes present in the test set without

any additional proton affinity-based QM calculations, and 14 of 14 analytes when an

additional QM filter based on the relevant proton affinities was applied. In addition

to outperforming other traditional machine learning models, the decision tree model

is easily interpretable by humans using the chemical reactivity flowcharts shown in

this work. Additionally, the inclusion of new data resulted in only minor changes to

the model as op-posed to the creation of an entirely new model, which suggests a

robust selection of chemical features.

The methodologies presented herein will pave the way for expanding the above

MS/MS method to include new diagnostic reactions for the identification of many

different functionalities in, for example, drug metabolites in an easy, accurate, and

automated manner. The ultimate goal of this research is to develop methodology for

the fast determination of unknown isomeric metabolites of medicinal compounds via

the identification of diagnostic product ions formed with selected neutral reagents.

In the future, a fully automated pipeline for mixture component identification in-

corporating multiple models similar to the one presented here will be showcased

along with how this methodology can be used to aid in the development of new

therapeutics. The detailed output of all machine learning models is given in the

Supporting Information along with the MS/MS spectra measured for all MOP re-

actions not previously reported in the literature. Additionally, all computer code,

machine learning inputs, and other relevant scripts are provided on our GitHub page:

https : //www.github.com/chopralab/mop_reactivity_analysis.
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5.5 Methods

5.5.1 Mass Spectrometry

All experiments were performed using a Thermo Scientific linear quadrupole ion

trap mass spectrometer (LQIT) equipped with an atmospheric pressure chemical ion-

ization (APCI) source and operated in positive ion mode. Sample solutions were

prepared at concentrations ranging from 0.01 to 1 mg/mL with methanol as the sol-

vent. The solutions were injected into the APCI source through a syringe pump at a

rate of 15 µL/min by using a 500µL Hamilton syringe. In the APCI source, typical

flow rates for sheath and auxiliary gases (N2) were 30 and 10 (arbitrary units), respec-

tively. The vaporizer and capillary temperatures were 300 and 275 ◦C, respectively.

The ions generated upon APCI were transferred into the ion trap. The voltages

applied to the ion optics were optimized for each protonated analyte via the tune

feature of the LTQ Tune Plus interface. The neutral reagent, MOP, was introduced

into helium buffer gas line of an external reagent mixing manifold via a syringe pump

operating at a rate of 5µL/h [285, 310]. The surrounding areas of the syringe port

were heated to about 120 ◦C to ensure that MOP evaporated completely. MOP was

then diluted and directed into the ion trap by a constant flow of helium gas, controlled

by a leak valve. Protonated analytes were isolated using an isolation width of 2 m/z

units and a q value of 0.25, and then allowed to react with MOP in the ion trap for

up to 10,000 ms. After this, all ions were detected using external electron multipliers.

The MS/MS results for the test sets used in this paper are given in appendix H.

5.5.2 Creation and evaluation of the Decision Tree models.

The prediction of adduct formation of a protonated analyte with MOP is possi-

ble through a combination of fingerprinting techniques and corresponding machine
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learning techniques. For each reaction, the protonated analyte and adduct were writ-

ten as a stoichiometrically-balanced reaction-SMILES string. The field for the name

of the reaction is annotated with the diagnostic product ratio as shown in Table

5.1. This reaction was then converted to a Morgan fingerprint [300] using the RDkit

software package [272] with a radius of one, two, and three atoms and a bit length

of 2048 bits. For the sample case presented herein, 36 reactions (training set) of

known protonated analytes with the MOP reagent were examined [281, 306, 307] in

the decision tree model and each reaction was assigned a binary response of "no-hit"

or "hit" based on the branching ratios of the products. The deci-sion tree mod-

els were created using, the Julia implementation of Decision Tree, DecisionTree.jl

(https : //github.com/bensadeghi/DecisionTree.jl) using a minimum leaf size of 2

to reduce over-fitting to a single analyte. Details of this methodology can be found

in appendix A.

A bootstrapping technique was used to address the fact that the creation of an

individual decision tree model relies on the selection of random input features to

be used as splits. Through this technique, 10,000 decision tree models were created

for each radius and cutoff value and the frequency of each functional group used by

the models was measured along with the number of times a given test analyte was

predicted to be "reactive" toward MOP. The frequencies of the functional groups were

used to create the chemical reactivity flowcharts shown in Fig 5.5 and Fig 5.7 and

Fig 5.6.

For the logistic regression [293], partial least squares [296], generalized linear mod-

els [297], and k-Nearest Neighbor predictions [298], the Caret software package [311]

was utilized to create and evaluate the models. A simple grid search was performed to

obtain a set of optimal hyperparameters. The input features were the Morgan Finger-
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print bit-vectors and the output was the binary out-come of whether the protonated

analyte would be "reactive" to-ward MOP.

5.5.3 Calculation of proton affinities

All quantum chemical calculations were performed using Gaussian16 revision

B.01 [312] and the M06–2x density functional [313]. The 6-311++G(d,p) basis set was

employed for all compounds except for 3,5–diiodo–4-pyridone–1–acetic acid that was

calculated using the D-Gauss Double Zeta Valence Polarized basis-set (DGDZVP) to

account for the iodine atoms [314]. The three-dimensional structures for all analytes

were constructed using the Clean Structure in 3D feature as implemented in MarvinS-

ketch [228]. Then, GaussView [315] was used to add protons to generate protonated

molecules (see Table 5.3 for the location of the additional proton). The resulting struc-

tures were optimized and the difference between the electronic energies for the neu-

tral and the protonated molecules was determined and compared to the known proton

affinity of a simple reference compound used in an isodesmic reaction. Here, methanol

was used when the proton affinity was calculated for an oxygen atom, ammonia was

used when the proton affinity was calculated for a nitrogen atom, and 2–methyl

propene is used for MOP. See Table 5.3 for individual proton affinity values and the as-

sociated content on https : //www.github.com/chopralab/mop_reactivity_analysis

for the Gaussian16 input and output files respective to the aforementioned calcula-

tions.
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5.6 Future work

5.6.1 Inclusion of additional functional groups

The next immediate steps of this research is to add additional neutral reagents to

the prediction pipeline. While the methodology presented in this chapter can be used

on a per neutral reagent level, it is not recommended as this approach cannot take

advantage of cross–learning. Ideally, the next step steps will we a more sophisticated

approach than a simple binary classifier and not rely on fingerprinting to accomplish

its tasks. The next method may need to incorporate additionally QM calculations

as inputs to the model. Once a model (or models) is created, additional algorithms

can be used to systematically determine the functional groups in a given analyte.

Unfortunately, it is difficult to gain full structural elucidation from this method, but

achieving the goal of determining a metabolite can easily be achieved within the next

few years. In the final chapter, a potential solution to this issue is suggested using

more advanced machine learning architectures.

5.6.2 Development of a novel method for storing and analyzing molecular

data

In this chapter, molecules are treated as graph structures and machine learning is

used to associate sub-graphs of these molecules with their reactivity towards MOP.

While this treatment is useful in this context, it does not capture the 3–D infor-

mation of the molecule. These features can lead to different reactivities and other

phenomenon. Therefore, an intriguing improvement to these methods should add

these additional features. Unfortunately, there is no standard method to store this

type of data. To address this, the Chemical Index for Properties based on Hierarchical

Extendable Representation (CIPHER) is introduced below:
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N1  CFF A 40.0 25.9 19.0
C2  CFF A 40.0 24.8 17.6
C10 CFF A 41.2 25.3 16.9
C2  CFF A 42.2 24.3 16.5
N3  CFF A 39.8 23.9 17.0
O11 CFF A 39.6 23.2 15.5
O12 CFF A 39.4 23.8 15.5
C4  CFF A 39.6 21.8 15.0
N9  CFF A 42.0 27.9 15.8
O13 CFF A 42.9 27.3 14.3
N7  CFF A 43.9 26.2 13.7
C8  CFF A 42.6 28.6 16.3
C6  CFF A 41.8 28.6 18.6
OW  HOH A 43.2 30.6 18.3
OW  HOH A 44.2 31.6 19.3
OW  HOH B 45.2 32.6 20.3
OW  HOH B 46.2 33.6 21.3

{ 
  "msSpectrum": <compressed_data>,
  "macroGroups": [1, 2, 2, 2, 2],
  "macroGroupProp": [
    {
      "commonName": "caffiene",
      "water_solv": 0.23,
    },{
      "role": "solvent"
    }
  ],
  "groupList": [
   {
     "atomNameList": ["N1", "C2", "C10"...],
     "connectivity": "InChI=1S/C8H18N4O2/H..."
   },{
     "groupName": "HOH",
     "atomNameList": ["OW"],
     "connectivity": "InChI=1S/O1H2/H...."
   }
  ],
  "groupMember" : [1, 2, 2, 2, 2],
  "groupIdList": [1, 1, 1, ... 2, 3, 4, 5],
  "xCoordList": [40.0, 40.0, 41.2, ... 43.2],
  "yCoordList": [25.9, 24.8, 25.3, ... 33.6],
  "zCoordList": [19.0, 17.6, 16.9, ... 21.3],
}
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Figure 5.8. A graphical description of the cipher format

The purpose of this format is to include multiple different types of information into

a single format. This information can come from patents, PubChem, the literature,

etc. Relationships between these sources are then represented as a knowledge graph

(see Fig 5.9). Machine learning architectures can then be used to reduce this knowl-

edge graphs into a chemical latent space which relates various chemical properties

into a single compressed representation.
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Figure 5.9. Create of knowledge graphs and the create of a latent space

After the knowledge graph for a molecule has been created, it can be associated

with the graph structure of the molecule in a hierarchy. This representation can be

matched with information obtained from chemical simulations obtained at various
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Figure 5.10. Use of knowledge graphs to optimize a molecular input
towards a desired set of molecular properties

scales (quantum mechanics, statistical simulations, physical simulations, etc) and the

relation ships between these simulations and the encoded property can be used to

optimize a given molecular input and shift it towards a desired set of properties.

There are many machine learning architectures that can be used to accomplish this

task, such a Generative Adversarial Network (GAN) or policy based network.
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6. DRUG DISCOVERY AT THE PROTON LEVEL – UNDERSTANDING

REACTIONS AND REACTIVITY

This chapter is available as
Jethava, K., Fine, J., Chen, Y., Hossain, A., Chopra, G. Accelerated Reactivity

Mechanism and Interpretable Machine Learning Model of N-Sulfonylimines Towards
Fast Multicomponent Reactions. ChemRxiv (2020).
https://doi.org/10.26434/chemrxiv.12116163.v1

It has been reproduced under a Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/) and minor changes to the orig-
inal text have been made to format the original article as a thesis chapter.

6.1 Abstract

Predicting the outcome of chemical reactions using machine learning models has

emerged as a promising research area in chemical science. However, the use of such

models to prospectively test new reactions by interpreting chemical reactivity is

limited. We have developed a new fast and one–pot multi–component reaction of

N–sulfonylimines with heterogeneous reactivity. Fast reaction times (< 5 min) for

both acyclic and cyclic sulfonylimine encouraged us to investigate plausible reac-

tion mechanisms using quantum mechanics to identify intermediates and transition

states. The heterogeneous reactivity of N–sulfonylimine lead us to develop a human-

interpretable machine learning model using positive and negative reaction profiles.

We introduce chemical reactivity flowcharts to help chemists interpret the decisions

made by the machine learning model for understanding heterogeneous reactivity of

N–sulfonylimines. The model learns chemical patterns to accurately predict the re-
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activity of N–sulfonylimine with different carboxylic acids and can be used to sug-

gest new reactions to elucidate the substrate scope of the reaction. We believe our

human-interpretable machine learning approach is a general strategy that is useful to

understand chemical reactivity of components for any multi–component reaction to

enhance the synthesis of drug–like libraries.

Mechanism Validation

Density Functional Theory

CH2Cl2, -10 oC

Interpretable Machine Learning
?
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CNNPPh3

OPPh3

N
S
OO
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N N
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Multicomponent
Reaction

Chemical Reactivity Flowchart

Figure 6.1. Table of contents figure for the online publication

6.2 Introduction

Computer-assisted organic chemistry has a huge potential for predicting chemical

reaction conditions and for automating synthetic chemistry [258, 304, 316]. In recent

years, machine learning (ML) based approaches have been successfully applied to

screen libraries of drug–like molecules [317, 318], for quantitative structure–activity

relationships (QSAR) [153], for retrosynthetic planning [319], and for reaction condi-
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tion prediction. Reactivity prediction is a hard problem that often requires specific

experimental datasets to train ML models [289, 320]. Traditionally, creating such

experimental databases requires a large number of manual experiments to check the

feasibility of available starting materials to react together. However, with careful

training of ML models using both positive and negative reaction data, it is possible

to train on smaller datasets to test specific synthetic objectives. The results from

ML models are helpful in building a chemical library that is otherwise tedious to ex-

plore by screening each reaction to check substrate feasibility under certain reaction

conditions. To date, there is limited literature precedence for prospective prediction

of desired chemical reactions and interpreting its reactivity using machine learning

methods [150, 321]. We provide a first report, to the best of our knowledge, of a

fast and one-pot multi–component reaction to explore heterogeneous reactivity of

N–sulfonylimines by training a human–interpretable machine learning model that

identifies chemical patterns of reactivity to predict and test new reactions prospec-

tively.

We selected N–sulfonylimines as our model substrate because N–sulfonylimines

are one of the important synthons in organic chemistry that are being used for a vari-

ety of chemical transformations. N-sulfonylimine is a good source of an electrophilic

carbon for radical12 [322] and nucleophilic addition [323] reactions. There are several

reports available for N–sulfonylimines reactions where a carbon–nitrogen double bond

is exploited [324]. Notably, the use of sulfamidate [325], a cyclic N-sulfonylimine, has

been used to prepare interesting heterocyclic scaffolds. Sulfamidate is transformed

into a fused heterocycle using Michael addition [326], cycloaddition [327–332], ary-

lation [333–335], alkenylation [336–338], or alkynylation [336] strategy by leveraging

electrophilicity of cyclic N–sulfonylimines (Scheme 6.2).
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Figure 6.2. Strategy to explore N–sulfonylimine reactivity towards
multi–component reaction

However, among reported synthetic strategies, direct C-C bond connection be-

tween the imine carbon and the (het)aromatic partner is underrepresented in the

literature. Specifically, a synthetic strategy for the direct C-C bond linkage between

sulfamidate and oxadiazole has not been explored till date. The oxadiazole scaffold

finds a unique presence in many biologically active compounds [339,340], pharmaceu-

tical agents and considered as a privileged scaffold in material science [341]. Among

different types of five–membered heterocycles, 1,3,4–oxadiazole plays important in

organic synthesis and medicinal chemistry representing broad spectrum bioactivities

including anticancer, antimicrobial, antiviral, and antifungal pharmacological activ-

ities [342, 343] (Fig 6.3). For example, the recently discovered CA-170 contains a

1,3,4-oxadiazole moiety and is a promising immune checkpoint inhibitor in the tu-

mor microenvironment as a dual antagonist of Programmable death ligand-1 and

V-domain Ig suppressor of T-cell activation. Although the structure of CA-170 is not

disclosed, a speculated structure is shown in Fig 6.3 [344]. Conventional approaches
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to synthesize 1,3,4–oxadiazole is a multistep procedure that includes transformation

of carboxylic acid into acyl chloride. Then a nucleophilic substitution reaction with

hydrazide to produce an amide bond followed by cyclization step to get a 1,3,4–

oxadiazole [345].

Figure 6.3. Showing compounds with presence of 1,3,4–oxadiazole in
medicinal chemistry.

Multi–component reactions (MCRs) that reduce the number of synthetic steps

have been attractive as they combine two or more building blocks to generate di-

verse chemical libraries including new heterocyclic chemical structures that are useful

in medicinal chemistry [346–349]. Ramazani et al [350] reported a four-component

reaction yielding 1,3,4–oxadiazole scaffold using aromatic aldehyde, benzoic acid, N–

isocyano triphenylphosphorane (Pinc), and secondary amine as reaction partners.

The formation of 1,3,4–oxadiazole involves an essential reactant, Pinc which is the

nucleophilic partner that reacts with the imine. This species is generated in situ from
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the amine and aldehyde and reacts with a carboxylic acid followed by cyclization to

yield 1,3,4-oxadiazole. A similar strategy was extended by Yudin et al. [351, 352] to

perform an intramolecular reaction for the synthesis of oxadiazole containing cyclic

peptide or macrocycle where two end terminals are stapled to form oxadiazole ring.

This strategy also relies upon in situ imine formation from an aldehyde, a secondary

amine, and an additional amine group. It is noteworthy that in situ formations of

imines are not always favorable as it is highly dependent upon its starting materials

– an aldehyde and an amine, potentially limiting the use of these approaches. To ad-

dress this issue, we provide the first report to use N–sulfonylimine as a substrate for

a fast and single–step approach to synthesize sulfamidate embedded 1,3,4–oxadiazole

using an MCR.

6.3 Results and discussion

We started our investigation with the idea that several types of cyclic N–sulfonyl-

imines (aldimines or ketimines), acyclic N–sulfonylimines, and aromatic imines can

be synthesized. To determine the reactivity pattern of various imines with carboxylic

acids, we used Fukui reaction parameters calculated using Density Functional Theory

(DFT) [353] and identified the most suitable imines using the electrophilicity of the

carbon atom (Fig 6.5). Both cyclic and acyclic N–sulfonylimines are highly susceptible

Figure 6.4. Synthesis of 1,3,4–oxadiazole using cyclic imine with ben-
zoic acid under optimized reaction conditions.
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toward nucleophilic attack of carboxylic acids. Therefore, we started using the model

substrate cyclic N–sulfonylimine (sulfamidate) 1a, which can be easily synthesized

from substituted salicylaldehydes. We initially selected benzoic acid as the reaction

partner because of its moderate nucleophilic tendency (Fig 6.5) and the selection

of optimized conditions for future use with a chemically diverse range of carboxylic

acids. Further, the synthesis of other derivatives with the optimized condition would

serve as a training dataset to develop a machine learning model.
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Having a synthetic and computational strategy in mind, we performed an op-

timization study using sulfamidate (1a) and benzoic acid (2a) to form the desired

product 3a. Reaction conditions from the literature for similar MCRs resulted in

a messy TLC and trace product formation as identified using HPLC–MS (entry 1
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in Table 6.1). The replacement of a mixture of solvents with only dichloroethane

(DCE) and room temperature conditions gave trace amounts of product as detected

by HPLC–MS (entry 2). Next, replacing dichloroethane with dichloromethane (DCM)

afforded a detectable quantity of desired product 3a (entry 3). While doing a time-

point study with a 30 minutes interval, we observed that the desired product was

formed within 30 minutes (entry 4). However, TLC analysis shows multiple prod-

ucts, so we decreased the reaction temperature. At 0◦C the desired product formed

within 5 minutes (entry 5) as determined by a 5 minute time-point study. In all the

above attempts, benzoic acid was added slowly. At −10◦C, an additional experiment

where DCM is added at the end increased the yield significantly (entry 6 vs 7) –

suggesting that sulfamidate has high reactivity.

Table 6.1.: Optimization of the synthesis of sulfamidate–
oxadiazolea(Scheme 6.4).

# Solvent Temp. (◦C) Time (min) Yield (%)e

1b DCE:MeCN 50 120 Messy TLC
2 DCE 25 120 Trace
3 DCM 25 120 <5
4 DCM 25 30 to 120 <5
5 DCM Ice-bath 5 to 30 25
6c DCM 0 5 ∼40
7d DCM -10 5 67
a Reactions are at 0.1 mmol scale
b Reaction condition followed as per literature [351]
c benzoic acid added at the end
d solid components taken together with solvent added last
e isolated yield

6.3.1 Mechanism of the cyclic and acyclic N–sulfonylimines

Next, we applied the optimized reaction condition to the acyclic imine selected

using DFT calculations (Fig 6.5)) as it was the second most reactive imine. Inter-
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Figure 6.6. Synthesis of 1,3,4–oxadiazole using acyclic imine with
benzoic acid under optimized reaction conditions.

estingly, the reaction afforded the desired product with good yield, but with longer

reaction time (10 mins) for the complete conversion as compared to sulfamidate (< 5

min). This led us to investigate the mechanism and the energy profile of various

plausible intermediates formed in this reaction.

To gain mechanistic insights of the chemical reactions, we conduct-ed DFT cal-

culations using a polarized continuum model for DCM solvation at −10◦C to iden-

tify transition states and intermediates for acyclic and cyclic N–sulfonylimines (Fig

6.7, 6.8). The nucleophilic attack by negatively charged carbon atom of Pinc on

the electrophilic center of N–sulfonylimine yields Intermediate-1. The subsequent

Intermediate–2 is formed by a nucleophilic attack of benzoic acid. Next, intramolecu-

lar cyclization at the carbonyl carbon and subsequent removal of triphenylphosphine

oxide yields the desired 1,3,4–oxadiazole containing the product. Both imines have

the same rate-limiting step where the Pinc reagent attacks the carbonyl carbon and

both steps have small activation energies (12.6 kcal/mol and 16.3 kcal/mol for the

cyclic and acyclic imines respectively), suggesting both reactions will occur quickly.

The mechanisms of multi–component reaction shown in the main text using an

acyclic N-sulfonylimine (Fig 6.7) and a cyclic N–sulfonylimine (Fig 6.8) show many

similarities and differences that match chemical intuition to determine the relative

reactivity of the two imines. After the formation of Intermediate–2, the mechanisms

for both cyclic and acyclic N-sulfonylimine reactions become very similar. The differ-
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ence between the changes in energy between the two mechanisms for the same step

are all within 2 kcal/mol of each other as shown in Table 6.2.

Table 6.2.
Difference between the changes in energy between the two mechanisms

Event Acyclic Cyclic
Formation of Intermediate–2 27.7 kcal/mol 27.8 kcal/mol
∆Gbarrier of TS-3 6.2 kcal/mol 7.9 kcal/mol
Formation of Intermediate–3 4.7 kcal/mol 3.3 kcal/mol
Oxazaphosphetane Intermediate formation 10.8 kcal/mol 9.0 kcal/mol
∆Gbarrier of TS–4 2.6 kcal/mol 2.2 kcal/mol
Formation of the products 44.3 kcal/mol 45.1 kcal/mol

This similarity is expected given the proposed mechanisms as this portion of the

mechanisms corresponds to the formation of the oxadiazole ring and the atoms of this

ring come from only the Pinc reagent and carboxylic acid. None of the oxadiazole

atoms originate from the N–sulfonylimine and therefore it is expected that this half

of the mechanism would not be highly dependent on the imine.

The first half of the reaction, however, does involve the chemistry of the imine

and is more dependent on whether it is cyclic or acyclic. In both cases, the rate

limiting step is the attack of the PINC regent onto the imine with a ∆Gbarrier of

16.3 and 12.6 for the acyclic and cyclic imines respectively. Therefore, it is expected

that the cyclic imine would be faster than the acyclic imine, which has been shown

experimentally. The majority of this difference is due to the stabilization of the PINC-

imine interaction which is much greater for the acyclic imine versus the cyclic imine.

This is likely explained by the higher degree of freedom in the acyclic compound and

its ability to form better interactions with Pinc before it attacks. These interactions

are shown in Fig 6.9.
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Figure 6.9. The minimized structure for the acyclic (left) and cyclic
(right) imines. The increased number of interactions that the acyclic
imine has with the Pinc reagent causes is a probable reason that the
energy difference between this step and the following transition state
is larger than for the cyclic imine.

However, these steps do not explain the difference in reactivity for the carboxylic

acids as this reagent has not yet been introduced into the mechanism. The difference

in energy between intermediate 1 and its interaction with the benzoic acid is negative

for the acyclic imine reaction and positive for the cyclic imine reaction. This is

again explained by the increased degree of freedom present in the acyclic imine and

the interactions formed between the two aromatic rings present in this imine (see

following Fig 6.10). The cyclic imine cannot form these interactions and therefore the

interaction complex between intermediate 1 and benzoic acid is not as energetically

favorable. Differences in this step may explain the increased reactivity of acyclic

imines, but further work is needed to elucidate how changes in the carboxylic acid

will change this reactivity.

After this step, the two mechanisms converge as discussed previously. The in-

trinsic reaction coordinates for the acyclic and cyclic reaction are given on the fol-

lowing pages, Fig 6.11, 6.12. The plots match the relative energy differences of

the full mechanisms shown in the main text and they confirm that the transition

states are correct for the preceding and following intermediates. All the transi-
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Figure 6.10. Interaction between intermediate 1 and benzoic acid for
the acyclic mechanism (left) and the cyclic mechanism (right).

tion states shown have a single negative frequency and all intermediates and in-

teraction structures have zero negative frequencies. These can all be visualized at

https : //chopralab.github.io/n_sulfonylimine_reactions.

6.3.2 Investigation of substrate scope

Using the optimized conditions, we started investigating various sulfamidates and

carboxylic acid derivatives. The reaction of the diethylamine containing sulfamidate

(1b) with benzoic acid afforded the desired product 3b in 46% yield. The reac-

tion of sulfamidate 1b with p–toluic acid (2b) also formed product 3c but in low

yield (17%). Further, reaction of methoxy substituted sulfamidate 1c with benzoic

acid (2a) formed expected product 3c in moderate yield (52%). However, naphthyl

sulfamidate (1d) did not react effectively giving 1,3,4–oxadiazole 3e in poor yield.

Notably, bromo derivatives of sulfamidate 1e with benzoic acid (2a) did not afford the

desired product (3f). Nonetheless, when sulfamidate 1c was reacted with pyridine

carboxylic acid 2c, it formed the expected product with inseparable isomer in poor

yield. Further, 4–hydroxybenzoic acid (2d) did not react with sulfamidate 1c to form
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desire product 3h. Next, we also sought to study the reactivity of other carboxylic

acids with sulfamidates. So, apart from the products shown in Scheme 6.13, we also

attempted other reactions to study reactivity of sulfamidate with other carboxylic

acids (Scheme 6.14). For example, difluoro arylacetic acid, pyrimidine–2–carboxylic

acid, terephthalic acid etc. – did not react well with sulfamidates. This observation

intrigued us to study the reactivity of acyclic N–sulfonylimines with carboxylic acids

after successful model reaction shown in Scheme 6.6.

Figure 6.13. Substrate scope for representative cyclic N–sulfonylimine
with various carboxylic acids.

As shown in Scheme 6.15, acyclic N–sulfonylimine substrates were reacted with

benzoic acids. Unlike halogenated sulfamidates, the reaction of halogenated acyclic

N–sulfonylimine 4b reacted well with benzoic acid (2a) and 4–bromo–2–methyl ben-

zoic acid (2b), giving desired products 5b and 5c in 53% and 37% yields, respectively.

Further, the synthesis of 5d and 5e were achieved success-fully using trimethoxy sub-
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Figure 6.14. Attempted synthesis of 1,3,4–oxadiazole using sulfami-
dates and other carboxylic acids.
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stituted N-sulfonylimine (4c), and 4–hydroxy 3–nitro substituted N–sulfonylimine

(4e), and they were well tolerated to afford desired products 5d and 5e (70% and

64% yields, respectively).

Figure 6.15. Substrate scope for representative acyclic N–sulfonyl-
imine with various carboxylic acids.

Considering heterogeneous reactivity of cyclic and acyclic sulfonylimines, moti-

vated us to develop a machine learning model using the successful and unsuccessful

reactions. We trained decision tree [294] using the Extended Connectivity Finger-

prints (ECFPs) [301] of both the carboxylic acid and imine (Fig 6.18A-D) as separate

16384 bit fingerprints with a atom radius of 3 atoms. We used bootstrapping of several

decision tree models to ensure the robustness of our model for predicting prospective

experimental outcomes.
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Table 6.3.: Reactions used to train the machine learning

model

Reaction ID Reaction Works
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continued on next page
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Table 6.3.: continued

Reaction ID Reaction Works
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Table 6.3.: continued

Reaction ID Reaction Works
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Machine Learning models were trained using the individual ECFP fingerprints

[301] of the imine and acid with a bit length of 16384 using RDkit. For a fingerprint
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radius of 0 through 3, no bit collisions were observed. Each reaction is assigned

a reaction ID and a binary condition (’Worked’ in the above Table) to represent

whether a reaction occurs between the N-sulfonylimine and carboxylic acid. The goal

of the decision tree models is to predict the ’Worked’ response using the fingerprints.

Due to the limited amount of reactions available for training (20 reactions), multiple

fingerprint features may represent the same split in the decision. To address this

issue, the validation of the decision trees was performed 1000 times to sample the

different possible models that can be created for a given fingerprint radius (shown in

Figs 6.16 and 6.17).
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Figure 6.16. The Cohen Kappa (left-hand side) and accuracy (right-
side side) value obtained from bootstrapping the decision tree model
using different fingerprinting radii. These results show that a finger-
print radius of 3 yields the best decision tree models.

The bootstrapping results show that a fingerprint radius of 3 yields the best de-

cision tree models. The maximum kappa value for fingerprint radii of 0, 1, 2, and

3 are 0.158, 0.286, 0.510, and 0.706 respectively, and the maximum accuracies are

0.60, 0.65, 0.75, and 0.85 respectively (Fig 6.16). However, the models generated

with a radius of 3 also have the largest spread of kappa values, indicating that a

proper selection of features is required to ensure that the model performs well. To do

so, the incorrect predictions obtained from the validation scheme were also examined
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Figure 6.17. The distribution of reactions which are incorrectly pre-
dicted during bootstrapping. The y-axis shows the number xyz in the
reaction ID KPGC02Sxyz.

(Fig 6.17). The models generated using a radius of 0 made consistent mispredictions

for reactions 198, 201, 202, 203, 208, 213, 228, and 229. This indicates that this

model does not have a large enough input space to make accurate predictions. A

similar argument can be made for a radius of 1 as it consistently mispredicts 197,

198, 199, 213, 228, and 229. The results for radii of 2 and 3 are less consistent but

showcase that the selection of features is paramount for obtaining a performant final

model. To do so, a model trained on all reactions was created 1000 times and the

features which appeared multiple times were measured. The depth of the feature is
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used to assign importance to each feature in the tree and these importance values

are summed for all 1000 trees. This methodology yields Fig 6.18 and can be used

to identify additional reactions that need to be investigated to ensure the model is

predictive while maintaining interpretability. These reactions are shown in Scheme

6.19 are used to elucidate that final decision of the model as this rule is supported

by the least important features available to the model and the fact that two different

features could be used to differentiate reactions.
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237

We have high confidence in this model as all, but one of the final decisions are

supported by multiple reactions (Fig 6.18E-H). The decision made with a single reac-

tion is Fig 6.18H, and we wished to elucidate whether the use of p–toluic acid or the

amine substitution is responsible for the positive reaction condition indicated with a

green box in Fig 6.18D.

All decisions made by the ML model were highly confident except for the final de-

cision (green box in Figure 6.18). This decision is only supported by a single reaction

and that reaction is identified by either para–toluic acid or an amine substitution.

Therefore, the model is unable to distinguish between specific features that resulted

in a successful reaction. To elucidate the chemistry at this step, we tested the re-

action between 1c (imine without an amine substitution) and 2b (para–toluic acid)

and noted that the reaction occurred. Conversely, the reaction between 1b (imine

with an amine substitution) and 2d (4–hydroxy benzoic acid) did not occur. These

results show that the final decision should check for para–toluic acid and not an amine

substation. Finally, we tested 2d with the acyclic imine 4a to see if this rule applied

to acyclic amines and noted that the reaction does occur. These reactions are shown

in Scheme 6.19 and show how our ML strategy can be used to better understand

and expand the substrate scope of an MCR. The additional reactions clarify this rule

as they show that a para–methyl substitution is responsible for reactivity and that

a para hydroxy substitution leads to decreased reactivity for cyclic amines. It also

clarifies that acyclic imines are more reactive as they also react with para–hydroxy

benzoic acid.

6.4 Conclusion

In summary, we have developed a fast MCR of acyclic or cyclic N–sulfonylimines

that was used as a representative reaction type to develop ML models for predicting
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Figure 6.19. Reactions performed to test the ML model.

reaction outcomes in a blind prospective manner. The fast and peculiar reactiv-

ity mechanism of N–sulfonylimines was explained using DFT calculation to under-

stand the critical role of transition states and intermediates. Boot–strapped decision

tree–based ML models resulted in a chemical reactivity flowchart that explained the

choices made by the model to predict reaction outcomes. The human interpretable

ML approach can be extended to explore any MCR or any chemical reaction used to

synthesize a library of compounds in a quick and efficient manner. This work provides

a framework for developing fast MCRs, understanding the underlying reaction mech-

anism and identifying chemical features for predicting the reactivity of components

that results in successful reactions to save valuable time for chemists to not chase

dead-end leads.
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6.5 Future Work

While the work presented in this chapter details how to validate a machine learn-

ing model based limited to the substrate scope of a single reaction, it does not address

the development of a machine learning model to find new reaction conditions for an

existing reaction. Work performed by Coley et al. has attempted to solve this prob-

lem through the use of a multitask neural network [354] and a similar fingerprinting

methodology. Similar work has been done to guide solvent choice in organic chemistry

reactions (manuscript currently in progress). These predictions can be verified both

experimentally and using QM methods. An example of such a validation is given in

Fig 6.20. A lot remains to be done in the area of reaction optimization and these are

just first steps.
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7. VISUALIZING PROTEIN–SMALL MOLECULE INTERACTIONS

This chapter is available as
Zhang W., Fine, J., Sculley C., McGraw J., Chopra G.Molecular Interactions Us-

ing New Technology: A Virtual Reality Gaming Platform to Visualize and Manipulate
Molecules. ChemRxiv (2019). https://doi.org/10.26434/chemrxiv.9889994.v1

It has been reproduced under a Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/) and minor changes to the orig-
inal text have been made to format the original article as a thesis chapter.

7.1 Abstract

The representation of complex biomolecular structures and interactions is a diffi-

cult challenge across life sciences. Researchers and students use unintuitive 2D repre-

sentations to gain an intuitive understanding of 3D space and molecular interactions.

Since this is cumbersome for complex structures, such as protein-ligand interactions,

several solutions have been proposed to help elucidate the 3D space. However, these

representations are often static or do not fully leverage the interactivity that modern

computing systems can provide. Our solution, Molecular Interaction using New Tech-

nology (MINT), is the first gaming platform to effectively represent and manipulate

structures in 3D space using virtual reality while simultaneously scoring biomolecular

interactions in real-time. Utilizing this combination of manipulation and real-time

feedback, MINT provides scientists with an intuitive and effective method for drug

discovery. We hope the combination of an intuitive interface with a powerful chem-
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istry backend will expand molecular understanding and drug discovery for scientists

and non-scientists.

7.2 Introduction

In 1966, Cyrus Levinthal published Molecular Model-building by Computer along

with the first interactive display for visualization and manipulation of molecular struc-

tures [355] that revolutionized the field of molecular visualization. Before the in-

troduction of more advanced virtual systems, physical ball and stick models were

developed and used by several scientists, such as Watson and Crick to investigate

the structure of DNA and John Kendrew to solve the first crystal structure of pro-

tein [356]. As the capabilities for creating virtual 3D environments advanced, the

use of physical models decreased, and the physical ball and stick models have been

replaced by a mouse, keyboard, and computer monitor. The current way of chemical

structure modification along with 3D position and orientation involves the scripting

of computer programs or the use of complex graphical user interfaces where inputs

are given by a mouse and keyboard [357–362]. Manipulation of molecules through

such methods is complicated as it often requires extensive knowledge of programming

or a deep understanding of the user interface. Such systems lag behind the state–of–

the–art tools developed for human-computer interaction. Relatively simple actions

such as positioning molecules are only mastered after a steep learning curve as the

many nuances required are difficult to understand for both professional researchers

and students [363].

Although the current software packages afford a great deal of flexibility in repre-

sentation and visualization styles, they lack intuitive manipulations because of their

reliance on a mouse and keyboard. The proper representation of biomolecules in a

3D space is crucial to the understanding of various intermolecular interactions [364].
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However, 2D displays can misrepresent the understanding of such interactions in 3D

and the steep learning curve to manipulate structures is a bottleneck for widespread

use of tools beyond scientists [365]. Conversely, physical models avoid these pitfalls by

offering an environment where users can manipulate objects intuitively [366] whereby

anyone can manipulate physical model by bending angles, breaking bonds, adding

new atoms and functional groups, and changing positions of multiple atoms by rota-

tion around one or more bonds. However, the physical models for larger complexes

are expensive to make, hard to maintain, and lack real-time feedback to understand

molecular interactions. We believe that the intuitive nature of physical models needs

to be incorporated into in silico 3D modeling software; a feature that can be accom-

plished with the application of Virtual Reality (VR) hardware.

Currently, there are numerous platforms offering visualization and manipulation

of molecular structures [360–362], and several more that have the capability to vi-

sualize molecules within a VR environment [367–370]. Noteworthy examples include

Molecule Viewer [371] which allows for protein visualization and UnityMol [372] which

provides an immersive environment for exploring molecules. Neither platform allows

the user to edit and manipulate the chemical environment, a shortcoming addressed

by Nanome, a collaborative VR environment implemented with a wide variety of

molecular manipulation functionalities, and ChimeraX VR [373], an application uti-

lizing UCSF Chimera and the SteamVR toolkit to enable molecular data analysis

and manipulation through simple controller–based input commonly seen in VR ap-

plications. While these new tools offer visualization and manipulation capabilities,

they are unable to provide insight into the underlying chemical significance of these

interactions. Simply porting this functionality from conventional 2D molecular visu-

alization systems, such as PyMol or Jmol, into VR does not exploit the full potential

of the new technology for learning and adoption by scientists and layman alike. Ad-
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ditionally, these tools lack the collaborative nature and scalability to be effectively

applied in the classroom. The motivation for utilizing virtual reality for molecule

visualization over conventional 2D displays lies in the inherent intuitiveness and 3D

nature of virtual reality, which in turn promotes interaction with the molecule. We

believe that interactions between the user and the molecular structure via a feedback-

driven system is a key aspect of molecular visualization because the synergy of these

features empowers a viewer’s natural curiosity to further explore, study, and research

chemistry and biochemistry in a unique and rewarding manner.

To address the lack of chemical insight provided by current VR implementations,

we have developed the Molecular Interactions using New Technology (MINT), a vir-

tual reality biomolecular visualization platform. Our implementation serves to lift

biomolecular visualization to the forefront of the technological frontier and foster

a mainstream understanding of the biomolecular research that accompanies drug

discovery. We seek to provide an easy-to-use, intuitive, and powerful platform to

simultaneously visualize and manipulate molecular structures, allowing any user, re-

gardless of scientific training, to optimize molecular structures and receive real-time

visual feedback through MINT’s comprehensive virtual toolkit. MINT introduces ad-

ditional new features not present in the visualization platforms mentioned previously:

1. it is integrated with a backend computational chemistry platform our lab to

efficiently compute scoring functions to monitor how manipulation behaviors

change the chemical environment

2. it gamifies the process of molecular optimization, fostering a playful relationship

between user and molecule as well as competition between users for the creation

of optimal structures
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3. it is scalable across multiple devices from smartphones to workstations. Herein,

we present MINT’s features that allow for intuitive manipulation and visualiza-

tion of molecules, followed by a discussion on how these features lead to gamifi-

cation and the creation of a platform intended for the instruction of chemistry.

7.3 Results and Discussion

7.3.1 MINT provides an intuitive interface to chemistry

MINT utilizes intuitive controls and an immersive environment to allow for a

unique visualization and manipulation environment. MINT’s workflow is a 4-step pro-

cedure consisting of input, visualization, manipulation and output (Fig 7.1). MINT

starts by interpreting binary files that contain molecule structure information (Fig

7.1A). With the molecular structures obtained from the input files, MINT generates

and displays a 3D model and presents this model through a VR headset such as the

HTC Vive. The 3D models are fully interactable, allowing users to reposition and

manipulate the entire molecule by working with a menu interface consisting of three

different panels: Manipulation, Visualization, and Utilities. This interface groups the

essential elements found on many conventional molecule editors into one simplistic

and VR centric format (Fig 7.2A).

The Chemical Algorithms for Network–based Decisions on Interactions for mod-

eling reactivitY (CANDIY) software suite is integrated into MINT to bridge the

manipulations performed by the user and the underlying chemistry of the VR rep-

resentation. CANDIY aids the scientific community in their efforts to model how

molecules interact with their environment by providing a platform for the develop-

ment of algorithms and procedures tailored for specific purposes. The role of MINT

in this software suite is to allow for user manipulation in an intuitive manner, opening
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Figure 7.1. Overview of MINT’s workflow cycle. PDB and Mol2 files,
containing molecule data, are interpreted in MINT and transformed
into visualization in a virtual reality environment. User can manip-
ulate molecule structures using MINT’s manipulation interface and
output new molecule data files.

the use of this software to the layman. After each manipulation performed by the

user, CANDIY validates the user input and provides feedback through a combination

of haptic and visual interfaces. This creates a relationship which ensures the chemical

legitimacy of each operation without the need to instruct the user in advanced scien-

tific concepts. Currently, the CANDOCK [143] package is the most integrated into

MINT, but we plan on integrating other packages and machine learning methods that

we are developing, such as our biomolecular structure searching software, Lemon, in

the near future [215].

CANDIY provides the ability to interpret 3D coordinates and molecular topology

obtained from molecular file formats [102] (Fig 7.1A). The molecular information is

passed onto MINT for visualization, where it is processed and rendered. CANDIY

calculates the interaction between biomolecules, such as a ligand and a protein, in

real-time by using a generalized statistical potential function [28]. When a user

manipulates the ligand or protein in the VR environment, the changes in the 3D

conformation of the molecule and protein are communicated to CANDIY which in



246

Figure 7.2. (A) An overview of MINT’s menu interface (pre-release)
consisting of three different panels: Manipulation panel for changing
interaction types between user and molecule, Visualization panel for
changing visualization types and Utilities panel for functionalities like
inputting/outputting molecular data. (B) A side by side comparison
between the physical product model of HTC Vive’s hand controller
(Left) and the virtual model of MINT’s hand controller (right) in VR.
MINT’s controller is a custom-made virtual representation of HTC
Vive’s handheld controller that is meant for replacing hand presence
in the virtual environment. This virtual controller copies the button
layout of Vive’s physical model and defines these components as: (1)
The pointer tip part of the controller. The user uses this tip to touch
and interact with the visualization and user interface. (2) A small
display panel to indicate the manipulation type that is currently being
used. (3) A button to open and close the menu interface. (4) A
button on the side of each controller to help the user navigate in
the virtual environment through transforming camera position and
scaling viewport size.

turn returns a numeric score to the user. This process is key to the gamification

concepts presented later in this work.

7.3.2 MINT provides multiple visualization and manipulation modes

The visualization of molecular structures in 3D is a necessary component of the

MINT workflow. MINT’s VR interface embraces a range of visualization techniques

to improve the understanding of a 3D environment, e.g., the binding of a drug to a

protein, in a versatile and robust way (Fig 7.3). Protein structures can be rendered
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via a surface model with dynamic lighting and shadow effects (Fig 7.3A) where dif-

ferent atom types are represented by different colors on the surface. In MINT, this is

the default rendering mode for large molecules due to its intuitive demonstration of a

molecule’s size and spatial information. Fig 7.3B, 7.3C and 7.3D show a ligand struc-

ture rendered in various forms and forge the basis of most molecular manipulations

performed by the user. Fig 7.3E and 7.3F depict protein structure in ribbon form

and a specialized rendering of the backbone, respectively. Both visualization options

allow the user to develop a more holistic comprehension of the biomolecular structure.

The user can dynamically tailor the virtualization using visualization panel, giving

them the freedom to mix and match different options to create unique and complex

visualizations.

Fig 7.4 shows a comparison between a visualization provided by PyMol, a standard

molecule visualization program, and a visualization provided by MINT. While both

programs offer specular textured surfaces and ball and stick representations, MINT

does not require complex scripting like PyMol to represent the binding site tunnel.

Instead, MINT helps the user achieve these actions via the VR interface. MINT

allows its users to perform several different manipulations using the toolkit depicted

in Fig 7.5. By linking these simple manipulations together, users can quickly perform

complex maneuvers in a short time as compared to traditional methods of interaction,

such as scripting or 2D graphical user interfaces.

• Hand tool (Fig 7.5A), maneuver the ligand as if it was a rigid object.

• Bond rotate tool (Fig 7.5B), rotate a portion of the molecule via an axis of

rotation. To define this axis, the user selects two atoms to create a vector

pointing from the first atom to the second). This movement is directly inspired

by physical models which allowed for different configurations to be created by

quick twists and turns.
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Figure 7.3. Molecule visualization options using MINT and the com-
bination of these options to make complex and interactive rendering of
3D molecule models. (A) Surface model of a molecule structure; (B),
(C) and (D) Molecule structures rendered as the stick, CPK, and ball-
and-stick models; (E) and (F) Protein structure rendered in ribbon
diagram and its backbone representation. (G) A combination of the
options above, in which the surface model is rendered in transparency.

• Bond tool (Fig 7.5C), make and break bonds by clicking on two different atoms

simultaneously. This action is monitored by the backend program CANDIY

that prevents the creation of invalid molecules.

• Selection tool (Fig 7.5D), select specific atoms to manipulate instead of working

with the whole entity.

• Surface trekking (Fig 7.5E), a quick way to navigate in the environment by

walking on a surface model.
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• By linking these simple manipulations together, users can quickly perform com-

plex maneuvers in an exponentially shorter time than traditional methods of

interaction like scripting or 2D graphical user interfaces.

Figure 7.4. Side by side visualization comparison between (A) PyMol
and (B) MINT. (C) Zoom-in view of the binding site, showing MINT’s
ability to perform binding site tunnel traversal.

To illustrate the MINT workflow, we have detailed out each step of the workflow for

PDBID 4XUF in Fig 7.6. MINT begins by interpreting the PDB input file (Fig 7.7A)

and converts the textual atomic records into atom data arrays that form a complete

representation of the molecule in working memory (Fig 7.6B). MINT produces an

intuitive VR visualization using these coordinates which the user can interact with

to optimize the docking score of the ligand (Fig 7.6C). Once a user has performed a

manipulation on the ligand such as rotation or translation, the change is reflected in

working memory (Fig 7.6B). Finally, MINT outputs the modified data as a PDB file

that can be used in other applications or reopened in MINT for further analysis (Fig

7.6E).

The driving force of such workflow is MINT’s ability to consolidate every manipu-

lation made by the user into a numeric ’score’ which represents the chemical validity

of these actions. A detailed description of this score is given in the section entitled
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Figure 7.5. (A-E) Five basic types of molecule manipulation using
MINT interface. For example, for Hand tool (A), snapshot on the
left of (A) shows the state of molecule structure before Hand tool
manipulation is operated, and snapshot on the right of (A) shows the
state after Hand tool manipulation is operated. The hand tool is used
for moving molecular clusters in the VR environment.

Scoring of Player’s ligand conformations. In Fig 7.7, PDB 4XUF, a protein-ligand

complex, has a score of 331 in its initial state (Fig 7.7A). The user then performs a

bond rotation on the ligand structure through the VR controllers and interface (Fig

7.7B). This action results in the score increasing to 333 in real-time, and indication

that the user has improved the potential effectiveness of the ligand towards the target

protein.
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Figure 7.6. A detailed look at the input and output processing pipeline
of MINT. (A) MINT interprets the PDB file’s textual atomic records
line by line and (B) transfers the information into data arrays in
Molecule data classes) which Unity Engine can understand and further
passes down to Unity’s rendering pipeline. (C) MINT renders receptor
atoms in surface form and ligand atoms in colored ball and stick form.
(D) A rotation operation is performed on the ligand atoms, altering
its angular conformation This action modifies the atom data in the
memory. (E) All of the atom data arrays are written out as a new PDB
file with the modified atomic records reflecting the rotation operation
that is performed in (D).

7.3.3 Gamification of molecular interactions is an integral component in

MINT

The influence of video games on contemporary culture is immeasurable and the

practice of utilizing factors that involve game mechanics like challenges, tasks, and lev-

els into the design of non-game consumer software has surged in recent years [374,375].
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Figure 7.7. Demonstration of the score feedback feature in MINT.
(A) shows the visualization of the structure 4XUF that contains both
a receptor protein and a ligand molecule. 331 is the original score
this structure possesses, which relatively indicates its energy level be-
tween the receptor target and the ligand. After going through the
manipulation in (B), the score updates to 333. These two scores are
calculated through CANDIY’s scoring functions in real-time.

The notion of a serious game [376], for example, is a practice parallel to gamifica-

tion and is often categorized by its emphasis on training the player for a specific

real-world task or completion of non-entertainment objectives through specially ori-

ented gameplay. The incentive of incorporating gamification into non-game software

amplifies the user’s engagement with the experience and stimulates motivation and

curiosity to further facilitate accomplishing an objective regardless of whether it is

learning, training or simulation. The benefits of gamification have been explored in

many studies [377–380].

One excellent example that combines biochemistry, protein folding, and gamifica-

tion is Foldit [381], a platform which presents a multiplayer puzzle game to help solve

protein folding questions. This ’game’ takes each protein structure as a challenge or

a level for the player to conquer by using the intuitive folding tools provided by the

application and leverages the crowdsourcing nature of gameplay to unite all players
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and further facilitate biochemistry experimentation and research. The Foldit player

base has achieved remarkable accomplishments including helping decipher the crystal

structure of a monomeric retroviral protease linked to HIV/AIDS [382]. In a similar

manner, we aim to incorporate gamification elements like player collaboration/com-

petition, challenges, scores, and a playful user interface into the design of MINT and

to excel at being intuitive and engaging with the help of VR.

The scoring feature in MINT (Fig 7.7) functions as an indicator of the interac-

tion energy between two structures such as a protein receptor and a small molecule

ligand, or as a method for players to self-validate their in-game actions. Given the

importance of score for the gamification of a given objective, we present this inter-

action score as the core mechanism for gamification in MINT. A receptor and ligand

complex obtained from the protein databank (PDB) [23] is imported into MINT to

produce a level or a quest, where players can compete against each other to find the

optimal score (provided by CANDIY). To do so, the players must manipulate the

conformation and topology of the ligand, yielding a drug discovery platform which is

naturally crowdsourced. One can further extend this pipeline to rank scores obtained

from different players on the same complex on a leaderboard in order to encourage

competition between players. Such practice can be achieved through a backend server

that collects players’ gameplay data, providing an implementation for crowdsourced

drug design.

A series of playful aesthetics are utilized by the MINT user interface to instill a

game–like theme throughout the gameplay experience. For example, the coloration of

each element in the program, including the menu interface (Fig 7.2A), the controllers

(Fig 7.2B) and the 3D models rendered in MINT (Fig 7.3), tend to fall on the brighter

sides of the color spectrum, and are selected to have a high contrast with one another.

The menu interface takes the form of a virtual clipboard that the user can hold using
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the controller and the textual elements such as tooltips on the interface are pixelated

and 2D image icons are used for representing each functional item on the menu.

Furthermore, the toon shading technique (cel shading) developed by Luque is used in

the program for rendering a surface model of macromolecules to give them an outline

on the edges and produce simple lighting visual effects, yielding an environment which

imitates a comic book drawing.

Haptic feedback [383] is the sensorial mechanism used to simulate a sense of touch

and is used to convey the application of motion or forces, the difference between the

weight of virtual objects, or the textural feeling of geometry or surface. HTC Vive’s

hand controller (Fig 7.2B) has a built–in haptic feedback mechanism which vibrates to

simulate a sense of weight and friction. MINT exploits this feature to make the overall

user interface responsive and lively. The variation of vibration depends on both its

duration and its strength and adjusting these two factors opens different dialogs with

user: For example, clicking a button on the menu interface generates short and mild

vibration that imitates the sense of pressing a mechanical button, while clashing a

protein and a ligand by dragging them together produces long and strong vibration

to indicates the physical collision of such a clash. Similarly, rotating angular bonds

between atoms returns a consecutive and blunt vibration in short intervals on to

resembles the sense of turning a crank.

Another important feature for immersive gameplay is the use of gesture–based

and motion–based interaction, therefore a major component of MINT’s manipulation

system is performed using intuitive gestures and motions. For example, breaking a

bond is performed by pulling two atoms apart from each other instead of having users

simply click on two connected atoms with a computer mouse. This motion can be

augmented with the gradation of vibration on Vive’s hand controllers to express the

energy cost associated with the operation. We have implemented these features in
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MINT to add complexity and a sense of skill to gameplay, ultimately contributing to

the gamification of molecular manipulation.

7.3.4 Scalability for collaboration and education

While gamification is a defining difference between MINT and conventional molec-

ular visualization and manipulation software, it is only one of the several factors that

improve the scalability of MINT as a collaborative project over competitors. Edu-

cation, research, and entertainment are the three pillars guiding the developmental

roadmap of MINT and applying the molecular visualization and manipulation capa-

bility of MINT in education and research spans the gambit from classroom teaching

to drug design prototyping. Since the number of active VR users worldwide is increas-

ingly rapidly [384], a large potential user base is anticipated to become participants

in this project, benefiting drug design and discovery. Therefore, we want to catalyze

the popularity of MINT by introducing mobile versions and multiplayer gameplay

features. Due to our use of the Steam VR toolkit and the Unity3D engine, our visual-

ization platform can run on multiple hardware platforms. Although we targeted the

HTC Vive due to its superior support for human-computer interaction, the Oculus

Rift is also a potential target for our platform as others have attempted to use this

platform to target drug design [385]. However, we believe that our program is both

more intuitive and scalable than these approaches due to the better human-computer

interface offered by the Vive.

Molecular data representation in memory space is a crucial component of the

processing workflow for scalability to create vivid and intuitive graphics in VR. To

manage different sections of the workflow, MINT has a hierarchy of data classes and

helper classes that are dedicated to representing and managing molecular data re-

ceiving from CANDIY. All the entries in the PDB file that describe atoms are used
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to generate atom data arrays, which are stored within the molecule data class. From

a single molecule data object, various in-game representations can be generated (Fig

7.8). First, MINT’s algorithm generates a molecule representation base from the atom

data arrays, which connects the molecular data with its in-game representation, be-

cause a single molecule often possesses many different types of molecule representation

forms. Next, MINT uses the marching cube algorithm [386] to generate a mesh that

simulates the protein’s surface and uses native features in the Unity game engine such

as game object instantiation and line renderers to simulate atoms and bonds for ball-

and-stick representation. The molecule representation base forms the basis for atom

manipulation and interaction with the user by enabling collision detection with the

user’s VR controller. Physical collision provides the player with useful feedback about

the position and orientation of the molecule. The changes that the user makes on

the molecular structure, such as transformation, making/breaking bonds and angular

bond rotation, update the molecule and atom data which then go through CAN-

DOCK for error checking, automatic optimization, and most importantly, validation

of these VR operations to ensure the scientific accuracy. Finally, CANDIY updates

the molecule data, which is then returned to the user through visualization via the

molecule representation in Unity.

We have released a version of MINT on the Google Play Store that targets the An-

droid Platform (MINT Mobile). This version is compatible with Google Cardboard,

a low-cost head-mounted VR platform developed by Google for smartphones. Cur-

rently, the mobile version only supports molecular visualization and is equipped with

a user interface that is tailored towards smartphones, taking into consideration of

smartphone’s limited computational power and the lack of physical controllers when

compared to PC. In this version, the user can load molecule structures as different

visualization on the fly and study the visualization using tools like surface trekking
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Figure 7.8. A more in-depth look at the B, C and D sections from
Fig 7.6. Molecule data class, containing a list of atom data arrays,
generates Molecule representation base class, in which visualization
representation of molecules are diverged into different forms. The
manipulation input on these 3D visualizations from the user is sent
to CANDIY to be furthered processed. Finally, CANDIY returns the
modification upon Molecule data class.

and camera orbiting. Additionally, MINT mobile includes the environment grid guide

(Fig 7.9A), which is intended to help offer the reference of camera orientation and

position in the virtual environment.

To enable collaboration of molecular exploration at real-time, we have developed a

multiplayer version of MINT which allows for multiple users to cooperate in the same

virtual space (Fig 7.9B). In the multiplayer mode, one user hosts a virtual environment

using the HTC Vive headset and controllers, allowing them to manipulate and modify

molecular structures. Other users can enter the hosted environment as guests through

the use of the mobile version of MINT and spectate the host user’s actions in real-

time. Guest users can walk around in the virtual environment, observe the structures

from different perspectives, and suggest manipulations to the host.
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Figure 7.9. (A) shows a mobile version of MINT that runs on the
Android platform using Google Cardboard. (B) shows the multiplayer
gameplay in MINT, in which one user is the operator of molecular
manipulation and the others as spectators in VR.

7.3.5 Conclusion

MINT is a VR platform that challenges the conventional molecular visualization

and manipulation tools used in a 3D environment. Equipped with an intuitive inter-

face and a variety of features in visualization, MINT brings ease of use and better

comprehension to biochemistry research and study. Due to its use of CANDIY, our

program pipeline is user-friendly because it allows for input and output compatibility

with conventional chemical file formats and is responsive towards user actions while

keeping a chemically accurate simulation. Users do not need to possess specialized

programming or scripting knowledge to perform complex manipulations in MINT.

Instead, a few quick movements with a VR controller can surpass what many lines of

codes can do in other molecular visualization software and in an exponentially shorter

time.
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The concept of gamification is ingrained into every component of MINT, from the

design of interaction between molecule and user, to the aesthetics of interface and

the feedback of each action that happened in VR. A fun and enjoyable user experi-

ence is born through the utilization of such elements and ultimately yields a more

scalable software that can reach a broader audience through the implementation of

an intuitive interface for molecular manipulations. These features along with tight

integration of our platform with the CANDIY suite for evaluating the molecular in-

teractions of small molecules, provide a unique functionality equivalent to traditional

molecular visualization packages like PyMol and Jmol while offering a unique expe-

rience that is immersive and interactive due to the power of VR. MINT allows users

to develop visual comprehension of molecular structures while making it easier to

manipulate the structures in a short period of time. Finally, MINT will be released

as an open-source project which welcomes collaborative efforts from all members of

the VR and chemistry community. Decades have passed since Levinthal’s system was

first introduced, revolutionizing the way we perceive the microscopic world and we

hope MINT can be part of the next revolution by incorporating modern technology

and other advancements previously unavailable.

7.4 Methods

7.4.1 Surface Generation

Surface generation utilizes a modified version of the marching cubes algorithm

[386] specifically tailored towards Unity, which results in a continuous, dough-like

surface. While this algorithm is especially useful for generating protein surfaces, it

can be exceedingly costly as well. Limits upon the number of faces a procedural mesh

can contain in Unity requires certain models to be generated and pieced together
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in smaller parts. Generation speed and stability of the surface depend heavily upon

thresholds set by the player and the size of the datasets. To optimize performance, the

existing serial density field code was modified to run in parallel on multiple threads.

To accomplish this, a collection of work threads is generated and assigned a group of

cells. This code is structured analogous to SIMD systems, as each cell’s final density

is independent of the surrounding cells.

7.4.2 Molecule Input/output

To generate and further manipulate a 3D molecular model, MINT requires preset

data input that defines the molecule’s structural formation. MINT’s visualization

and manipulation pipeline is focused on the atomic records and bonding records that

exist in the PDB file. Each atomic record is a line of text that starts with the

label "ATOM" or "HETATM", followed by the atom’s index number, element type

and other information along with its 3D coordinates. Some PDB files contain both

receptor atomic records and ligand atomic records. MINT’s interpretation of the

input PDB file starts by delegating file reading to CANDIY. The various column-

aligned parameters are read and interpreted by CANDIY according to standard PDB

file protocol, which then transforms textural data into memory space and sends them

back to MINT. After receiving the data returned by CANDIY, MINT puts them

into data arrays in Molecule Data class which the Unity Engine can understand and

further passes them down to the graphics rendering pipeline. The structural changes

associated with this operation update the arrays in the memory space. Finally, the

atom data arrays existing in the memory space are written out as a new PDB file with

the modified atomic records reflecting the various manipulations that the user enacted.

The new PDB file generated from MINT can be passed down to other visualization

platforms to create display renderings of the new 3D molecule model that reflect the
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structural modifications from MINT or enter another round of MINT’s input/output

cycle to be further studied on in VR. In addition, MINT has a PDB-fetching VR

panel that searches and fetches PDBs when users input the name of the PDB to the

interface. MINT communicates with RCSB cloud backend to retrieve PDBs in-app

so there is no need for the user to take off the VR headset and download resources

manually.

7.4.3 VR Interaction

The hand tool is used to grab the ligand. In this mode, the ligand will follow

the orientation and position of the player’s hand in 3D space when the user activates

the trigger button. Haptic feedback on the controllers is provided to give the player

a feeling of weight and resistance, as well as a signal when ligand molecules are

brushing against the protein’s surface model. Players are also given the ability to

freely rotate atoms along with their bonds by using the rotate tool, a method of

interaction is directly inspired by molecular modeling kits. To perform this action,

players must first grab an atom that they wish to act as an "anchor" with their

offhand. Next, players use their primary hand to select an atom that determines

their axis of rotation. This atom is referred to as the directional atom. An axis of

rotation is defined from the vector pointing from the center of the anchor atom to

the center of the directional atom. Several steps are required to calculate the angle

of rotation. First, a perpendicular plane is formed using the vector between the two

key atoms. Next, the position of the player’s primary hand is then projected onto

the plane. This point in space always lies upon the plane that is perpendicular to

the axis of rotation. This new local space can be conceptualized as a 2D plane,

where the (x,y) position of the two atoms are located precisely at (0,0). Every frame,

an angle in degrees is calculated between the center of this space and the projected
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coordinate of the primary controller. The current angle is compared with that of the

previous frame and a delta is calculated. The anchor atom is then rotated by this

delta angle to produce a rotation that mimics the rotation of the hand around the

axis of rotation.Also, bonds between two atoms may be created or destroyed with

the ’Make ’n Break’ tool. This works very similarly to the rotate tool, by creating or

destroying a bond once the user has selected two atoms.

Players are also allowed to scale themselves around the atom they are interact-

ing with, enabling the player to resize themselves in the atomic world. Currently,

the method of scaling requires the player to perform a pinch–zoom gesture with both

controllers to allow for fine control of scale when the player’s hands are spaced farther

apart. In addition, the world is also simultaneously translated about the vector be-

tween the two controllers. This is done to make the scale tool feel much more natural

to use. MINT also supports a trekking feature which allows players to navigate the

surface of the protein molecule as if they were walking inside a cavern. Trekking is a

special form of teleportation that allows the player to move to points of the surface

while keeping the relative local space unaltered. When the trekking tool is enabled,

the player points their offhand at any point along the surface of the receptor. A

transparent disk is shown at the point of contact, along with a perpendicular pole

that shows where the player’s up vector will point after the move. Upon pressing the

designated button on their controller, the player is quickly warped to the new loca-

tion. Also, the scale of the world is increased dramatically, inspiring the impression

that they are standing on a surface of titanic proportions. To reduce simulator sick-

ness, the screen is blurred slightly, and their position is quickly linearly interpolated

between their origin and destination. Any additional change in rotational orientation

is performed instantly to avoid nausea.
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7.4.4 Scoring of Player ligand positions

The CANDIY uses a generalized statistical potential function derived from the

Cambridge Structural Database (CSD) [210]. This scoring function is applicable to

a variety of chemical environments including small molecules, proteins, RNA com-

plexes, metal ions, cofactors, water molecules, etc. The score of a given molecular

pose is calculated as the sum of all pair-wise interactions occurring between the small

molecule and the biomolecule of interest within a cutoff of 15 angstroms. The inter-

action between two atoms with distance r is defined by the ratio of a functional term

by a reference term, given below.

S
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)
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∑
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ln
g
(
rijab
)

g (rij)

Here, rijab is the distance between atom i of type a and atom j of type b. The numer-

ator (functional term) is defined below, which is derived from the radial distribution

function:
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Here, Ns is the number of times an atom of type b is found within a given dis-

tance from an atom of type a and Vs is the volume of a sphere with radius r. The

denominator (reference term) is defined as follows:
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7.4.5 Automatic optimization of user-created molecules

One of MINT’s important features is the relevance of chemistry presented to

players during the VR experience. Since we cannot expect all players to be experts

in chemistry, we have included an energy minimization functionality to help players

correct potential mistakes such as bad bond lengths, stretches, angles, and contacts.

This functionality is optional but highly recommended for ensuring proper chemistry

is incorporated into the game. CANDIY provides this functionality via the use of the

OpenMM toolkit [209]. Bonded forces are calculated using the Amber Forcefield [387]

and non–bonded forces are calculated using the aforementioned scoring function.

7.4.6 Compatibility on mobile devices

Molecular visualization and manipulation can be costly computational wise, es-

pecially for proteins, as it oftentimes deals with a large quantity of atomic data. We

have found that for mobile platform surface model generation and rendering of a pro-

tein takes approximately 5 to 6 times more duration to complete than for the desktop

version. Plus, virtual reality display, compared to conventional 2D display, is innately

more expensive due to its requirement from hardware to render an image twice, one

for the left eye and the other for the right eye. To combat the above limitation and

to improve the overall user experience, we have been looking into optimizing the pro-

gram via multi-threading processing and GPU processing. Also, as MINT is built

using Unity3D game engine, Unity’s recent engine update in 2018, which improves

its support for developers to build a high-performance application, will contribute to

the optimization of MINT as well.
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7.5 Future work - continued development of the Spear library

Note that the current version of Spear is in an alpha stage and therefore many

names and features mentioned in this document could change or be reworked. The

overall design of Spear is not likely to change, however.

Spear is a library for the creation of software packages that require comprehensive

graph theory and 3D coordinate support. Similar to RDKit, it is backed by the

Boost Graph Library, which is currently the fastest graph available for C++, and

the OpenMM software package for molecular dynamics. Using the Spear interface,

users can perform an operation on the topology of a molecule, use the topological

descriptors generated from their method to perform an MD simulation, and pass

the trajectory of the simulation to a Neural Network for analysis. Currently, Spear

provides abstract classes for the creation of custom atomtypes, forcefields, charge

schemes, and fingerprinting algorithms which can be extended in C++. Eventually,

support for extending these classes in Python is planned. Finally, integration with

Psi4 for quantum chemistry calculations and libTorch or TensorFlow for machine

learning is also planned.

Using Spear, one can create packages to score ligand poses, simulate advanced en-

vironments using charges calculated from a QM backend, and fingerprint a molecule.

Unlike other toolkits which attempt to implement all features ’in-house’, Spear relies

on other packages for core functionality. All packages used by Spear are available

under the BSD license, allowing Spear to also be published under this license. The

only exception is PSI4 (under the LGPL), therefore these integrations are built as an

extension to Spear instead of being included in the core library. These integrations

set Spear apart from other packages because they greatly expand the feature set

available to Spear without the direct need to implement thousands of features into

the core library itself.
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Figure 7.10. Graphical description of Spear

The first rung of Spear is dedicated to its ability to integrate with other softwares

for processing large amounts of data (for example, an interfacing with Lemon in 2.1)

and advanced storage formats such as CIPHER (see future work of Chapter 5. The

next rung represents the graph algorithm capabilities of Spear and through these

features such as atom typing and partial charge assignment. The penultimate rung



267

represents 3D coordinate abilities such as the implementation of scoring functions

and molecular dynamics (through OpenMM). The final rung represents the ability to

integrate Spear into machine learning libraries.

7.5.1 Reasons to create Spear instead of existing software packages

1. OpenEye: This software package is proprietary and an OSS license is preferable

as it allows others to integrate Spear into their packages with little issue.

2. Indigo: similar to OpenEye, but under the GPL3 license. Additionally, it has

not been developed for a few years and many of its classes are not actually

implemented, so they do nothing.

3. OpenBabel: Although this software is both popular and available under an

OSS license, the GPL license prevents easy integration of this software into

other packages. Additionally, the major focus of this library is on converting

chemical file formats - making it an odd choice for developing software packages.

4. RDKit: While this package is under a free license (BSD) and is quite popular

in the machine learning community, it is not written in modern C++ and is

difficult to contribute to as a result. Additionally, it does not support molecular

dynamics outside of UFF and MMFF and does not support file-formats designed

for these applications. Therefore, RDKit is not used for many applications

outside of fingerprinting methods. However, its graph–based capabilities are

numerous and powerful and the BSD license allows one to take portions of their

code and rework them into a new and better library that does not have over

a decade’s worth of crust. Several different packages and features have been

added to RDKit over the years, but these features are not well supported (IE

you can build a neural network directly in RDKit, but not a well supported
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one). In contrast, Spear is designed to work with other libraries and not have

all solutions built into the library itself.

5. chemkit: This package is the closest to the goals outlined by Spear, but appears

to no longer be developed. From a software design perspective, however, chemkit

is superbly thorough and its overarching design principles can be taken from this

package, such as the use of abstract classes to provide a data-driven architecture.

Unfortunately, it is dependant on Qt for some of its core features, which is not

ideal for the creation of other libraries as this library is large and should be

avoided when creating command-line tools.

7.5.2 Class design

Molecule class

The center class of Spear is the Molecule class and its design reflects the overall

design of the Spear library. It contains two major components: (1) an std::vector

constraining the 3D location of all atoms in the molecule and (2) an undirected graph

structure which will be described in greater details in the following paragraph. The

Molecule implements methods for addition, removal, and swapping of atoms and

bonds. Random access iterators are available for going through all atoms and all

bonds and are implemented through the underlying graph structure. All-atom and

bond properties are stored in a ’data-driven’ manner (IE in a vector or matrix).

The most complex component of the Molecule class is the graph structure used

to store the topology of the molecule. It is an undirected unweighted adjacency list

graph which uses a vector to store node components and a set to store the edge

components. These container types are chosen so that vertex index can be one-to-

one with the std::vector used to contain the atom positions and other properties
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stored in the Molecule (for example the charge on an atom). Each node/vertex is

given a name, which is an unsigned integer corresponding to the atomic number of the

element. Similarly, each bond is given a bond name, corresponding to the order of the

bond (single, double, triple, quadruple, amide, or aromatic). Unlike other packages,

Spear relies on its data-driven structures to store atom and bond properties instead

of storing points to class objects as the node/vertex, allowing for the use of default

graph matching algorithms (see Functional Group).

In order to simplify the data-driven paradigm used by the Molecule class, con-

venience classes called AtomVertex and BondEdge are available and are returned by

the members of the Molecule class. BondEdge provides access to the bond prop-

erties source and target, order, and index of a bond where both source and target

return AtomVertex objects. The AtomVertex allows one to query information about

the atom, and iterate over the atoms neighbors. Internally, AtomVertex is implicitly

convertible to a vector index which allows it to quickly look up data in its parent

Molecule. Some AtomVertex properties require the use of an AtomType, which can

be implemented by sub-classing the AtomType class. Querying the number of implicit

hydrogens, formal charge, aromaticity, and planarity of an atom is done through this

class, which is described in a later section.

Functional groups

The PartialCharge class is an abstract class that allows one to implement partial

charge schemes to implemented and stored in the Molecule class. It is privatetly

derived from an std::vector<double>, which allows charges to be accessed easily in

the ’data-driven’ model of the Molecule class. This internal vector is kept congruent

with the parent molecule’s size.
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Atomtype class

Since many features in Spear are built upon the assignment of hybridization and

aromaticity, the user is given the ability to provide custom definitions of these con-

cepts. This is done through sub-classing the AtomType class; a process which requires

the implementation of a method to retrieve the hybridization, aromaticity, and pla-

narity of each atom. Additionally, this class must be iterated over so that algorithms

that depend on atomtype can access the data in a modern C++ fashion. Internally,

each atomtype class must store an unsigned integer vector which is congruent with

the parent molecule’s size. This vector represents the atomtypes and can be converted

to strings (and back) using template methods.

By Default, this class is added to a Molecule during construction. The internal

atom type is simply the atomic number of the element and hybridization/planarity

are determined through querying the bond orders of the atom. The aromaticity of

the atom is defined using the RDKit aromaticity model.

Fingerprint class

Fingerprinting algorithms can be implemented by sub-classing the Fingerprint

class. These implementations are graph–based algorithms which take the topology of

a Molecule and produce a vector of counts, which are typically reduced to a vector of

bits.

Scoring Functions

Given the ability to define atomtypes in Spear and the ability to perform matrix

calculations with the Eigen library, it is easy to implement various scoring functions in

Spear. This is done by sub-classing the ScoringFunction class and implementing the
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score virtual function. One can implement knowledge–based, empirical, or physical

scoring functions in this manner.

Force-field classes

Spear interfaces with OpenMM, a package from SimTK designed to perform

molecular dynamics and minimization. The C++ interface to this library is fairly

low-level and it requires the user to input all bonded, non-bonded, and external

forces for each atom in the system. The Spear MD interface is built off of the one

used by OpenMM and many of the implementation details which follow reflect this

relationship.

The heart of the SpearMD interface is the Simulation class. Internally, it handles

operates on the OpenMM classes System, Context, and Platform. When a Molecule

is added to the Simulation class, the masses of the Molecule atoms are passed to

the OpenMM. A BondedForceField class must be added in addition to the molecule,

which in turn adds any bonded forces to the System and provide the masses of each

atom added. After all molecules have been added to the system, a user may add

an unlimited number of NonBondedForceField classes, which operate on all added

molecules simultaneously (unlike the BondedForceField class). Once all forces have

been added to the Simulation, the user may create the appropriate contexts and call

the corresponding minimize and step member functions. The System is immutable

at this point and must be reinitialized if any underlying changes are to be made.

BondedForceField is an abstract class with two pure virtual methods, masses(

Molecule) and add_forces(Molecule mol, OpenMM::System ). The first returns the

mass of each atom in the Molecule as per the force-field definitions and the second

adds all bonded forces in the Molecule to the OpenMM::System. Since these classes

are virtual, all underlying functionality must be implemented on a per force field
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basis. Currently, classes are available to read the FFMXL format and create a Bond-

edForceField from the definitions in the file. Only the AMBER and GAFF forcefields

have been tested thoroughly, however.

NonBondedForceField is an abstract class with one pure virtual method, add-

_forces (MoleculeVector vector, OpenMM::System system). This method must be

called after the addition of all Molecule objects, as per the requirements of OpenMM.

The first argument contains all Molecule objects added to a Simulation which are

used to populate the second argument with forces that act on the entire system.

Since BondedForceField and NonBondedForceField are both pure virtual classes,

they can be combined in a multi-inheritance manner. This is done for force-field

definitions which contain both bonded and non-bonded forces.

7.5.3 Integration with other languages and internal projects

Spearmint

Spear is used as the backend of the Molecular Interaction using New Technology

MINT. This virtual reality ’game’. This interface is built as a small C++ library

(which links to Spear for all the heavy-lifting) that exports a C Application Bi-

nary Interface (ABI). Since this library is developed to support the development of

MINT, its feature-set is geared towards the scoring of ligand poses, adding/removing

atoms/bonds, and performing energy minimization/dynamics. The ABI supported by

Spearmint is data-driven to match both Spear and the rendering pipeline developed

by the MINT team.
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StarMix

Integration with the remainder of the CANDIY-suite is provided through the

StarMix project where it integrates with Lemon (see Chapter 2.1). Currently, one

can create Lemon workflows which incorporate Spear features (such as scoring).

Python (planned)

A Python interface created through the use of PyBind11 is planned. This will

resemble the one provided by Lemon. It will likely be developed outside of the main

Spear development branch (as is done by chemfiles). This should prevent the creation

of Python centric wrappers being built into the C++ library (as is done by RDKit

and presumably OpenEye). An interface to Julia could also be created in a similar

manner (it is required by the Julia community for this to be a separate project).

Other language interfaces can be built using the C interface.
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8. OUTLOOK

While each chapter has given a future works section to describe what immediate steps
should be taken at each of these scales, I have included my outlooks for these different
scales in this final chapter. These are developments that I believe will occur in the
next 10-50 years and are not realizable today, but I hope that the work shown in this
dissertation will help pave the way for these developments.

8.1 The future of proteome scale drug design

8.1.1 Addressing the issue of reverse design

In the upcoming years, proteome scale drug design will only grow in popularity.

Recent works show that the consideration of proteome wide effects can be used to

measure the toxicity of a compound [17]. Unfortunately, these works only apply

these techniques to known molecules closer to the end of the drug design pipeline. A

major road block to the adoption of these techniques is likely due to a lack of high

quality, fast, accurate, and widely available tools. While the CANDO platform is

useful for tackling this issue, it is difficult to use it to design new drugs as it is unable

to give topological or structural insights for a given repurposing prediction. Recent

work for incorporating small molecule fingerprints into the CANDO matrix may yield

some insights, but lack of 3D information cripples its ability to be used for design

principals. Although it may be tempting to use a technique such as docking to add

this vital information, a notion that helped to inspire the development of CANDOCK,

these techniques offer few design opportunities that can be applied across 10,000s of
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proteins. However, the rise of GAN methodologies offer a glimpse into the future of

what can be done to optimize a potential molecule to fit a chemeoproteomic profile.

Such techniques have already been applied at the protein scale (see the respective

section below) and the ever increasing computational power and parallelism will allow

these techniques to be applied to a greater number of proteins. Additionally, newer

techniques such as conditional generation (see Fig 8.1) can be used to generate a new

molecule directly from a chemeoproteomic signature. Therefore, we can conclude that

the issue of generating drugs using proteome scale interactions will be solved within

the decade.

SELFIE
Tokens

Gated Recurrent Unit
Variational Encoding

Transformer encoder

Inputs

H

H

K

A

H

H

K

A
Positional
embedding

Attn +

Attn +

μ Z

Z

Z

σ

μσ
Standard
deviation
vector

Mean
vector

Transformed
latent space Condition

Z-score
vector

x

+En
co
di
ng

D
ec
od

in
g

Tr
ai
ni
ng

Tn

Z T1 T2 Tn-1

Tn

Context

CNF

0
t

ω

c

ω c

ω

c

Z

Te
st
in
g

CNF

0
t

SELFIE
Token

Numeric
operation
or function

Sinusoidal
function

Random
number
from normal
distribution

Figure 8.1. Compound generation via a conditional neural network.

8.1.2 Improvements to the accuracy of chemeoproteomic signatures

The generation of a chemeoproteomic signature is computationally demanding

and therefore many approximations are used to determine the small–molecule pro-

tein interactions that make up this signature. Using current technology, Lawrence
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Livermore National Lab has calculated these interactions using molecular dynam-

ics [388]. While this is a noble effort, molecular dynamics is an approach that is too

slow to be applied for drug design. Current and future work on the calculation of

these interactions using solely the topology of a molecule and the sequence of a protein

may prove to address this issue, especially if the affinities between more compounds

and non-target proteins are measured. Therefore, it is the lack of known proteome

wide interactions that limit the development of more accurate methods for this task.

These issues will be discussed more in the section on the future of small–molecule

scale drug design, but it is worth noting this as one of the most important issues in

proteome scale design.

8.2 The future of cell scale drug design

8.2.1 Prediction of cell response to a compound

The majority of issues facing proteome scale design are also problems for cell scale

design. However, many pharmaceutical companies have begun to adopt a paradigm

for kinase inhibitors that takes into consideration a specific set of kinases that are

related to a specific cancer. A major influence in the increased interest of industry in

this area is the rise of resistance to cancer treatments. Additionally, it is currently fea-

sible for modern technology to screen a single molecule against many known targets,

leaving the analysis of these results as the only major concern. As shown in Chapter 2,

the use of traditional machine learning techniques can be used to create models from

this data. Therefore, there will be a rise in the coupling between automated testing

on multiple proteins and machine learning models used to predict cellular response to

the compound. The pharmaceutical industry is especially poised to take advantage

of these developments and will likely incorporate them into their medicinal chemistry
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pipelines. Similar generational techniques can be used as the ones mentioned for

proteome scale, the major difference being context used to generate the molecules

will be derived from data collected from high–throughput instrumentation instead

of theoretical scores obtained from docking studies. The reasons for this decline of

docking will be detailed in the respective section on small molecule design.

Since a large amount of training data is not available for training cell specific mod-

els, especially when given a constrained chemical space, one shot learning approaches

will be deployed more in this field. One example of such a model is the contrastive

loss model shown below. This model allows for multiple single measures for a given

compound to be combined and used to compare the molecule against a molecule with

known activity. The result of applying this method is similar to dynamic ’clustering’

method that ’learns’ how to reduce the distance between similar compounds.

8.2.2 The future of cell differentiation detection

The ability to distinguish differing cell types through analytical techniques will

likely not be a huge issue in the upcoming years. Current advances in tandem MS

and the associated statistical tools will continue to be honed in upcoming years. The

types of cells being identified will, however, change as the focus in biology slowly

shifts toward the immune system and related cells. Instead, new techniques will

be developed to measure the fate of a cell and its response to certain stimuli such

as treatment with a given compound, activation of a signaling pathway, or another

related event. This prediction is based on the belief that biology is not static and,

although the current state of a cell is important, being able to predict how it will

change over time using its current state will prove to be paramount. The current use

of Multiple Reaction Monitoring (MRMs) for the identification of lipids, proteins, and

(in the near future) metabolites will continue to grow. These techniques will not be
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used in isolation but will be instead combined with other techniques such as machine

learning.

8.3 The future of protein scale drug design

8.3.1 Combination of docking with machine learning

Machine learning based scoring functions are growing in popularity [216,389,390],

but still do not offer the vast improvements in the ability to predict relative bind-

ing affinities for a single protein target. In the near term, and even now, docking

methodologies are being combined with machine learning architectures. One exam-
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ple is the fusion of CANDOCK (see chapter 3) and graph neural networks (GNNs)

to target PD-1/PD-L1. This work is the beginning of the future of docking, but

once pure graph methodologies are developed for these targets, docking will begin

to decline. This is not to say that molecular topologies contain all the information

needed for predicting these interactions, but newer methods will be able to incorpo-

rate environmental factors in ways that compensate for the information supplied by

docking.

8.3.2 The decline of docking

There are currently dozens of docking methods and counting and very few of these

methods are used outside of academia to design new molecules. The few that are

used provide scores that do not correlate well with binding affinity. As the number of

docking methodologies increase, so do the number of machine learning methods that

can provide insight into how well a compound will bind to a given receptor. These

methods will become both faster and more accurate than what mainstream docking

methodologies provide. Currently, they cannot be used to model the interactions

a molecule has in a 3D environment, but new techniques such as normalizing flow

may be able to address this issue. A recent work suggested that compounds can be

generated using only binding site interactions [391], so it is reasonable to predict a

similar method can be used to position a graph topology in a binding site. Once these

methods are fully developed, docking in its current form will decrease in popularity

as it is replaced with faster and more accurate methods. This will be partially aided

by improvements in automated synthesis and testing.
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8.3.3 The rise of autonomous instrumentation

Combinatorial synthesis has proven as an apt methodology to create large libraries

of compounds quickly and effectively and continued advancements in this field will

have important impacts on protein scale synthesis. It is currently assumed in many

docking benchmarks that a single compound will always interact with a single tar-

get, but hopefully the increased testing of small molecules with additional targets

will prove to the community that this notion is false. This will further the decline

of docking methods and show that machine learning methods mentioned in the last

section are superior to docking. Therefore, the rise of increased automation will lessen

the importance of docking in the drug design community and a harmony between in-

creased automation for high–throughput synthesis and machine learning based design

will be the final nail in the docking coffin.

8.4 The future of small–molecule scale drug design

The rise of autonomous instrumentation has not been paralleled with advances in

the ability to access how well a given synthesis has been carried out. The chapters

on machine learning applications in analytical chemistry shows some progress in this

area, but there is still a lot of work to be done in elucidating full structure from spectra.

Within the next few decades, these issues will be solved using a combination of spectra

(IR, MS, NMR) and knowledge of the starting material of a reaction. At this time, the

need for additional analytical techniques is probably not needed to realize this goal,

instead an increased amount of public data for existing techniques is required. These

advancements will be made on top of the advancements made for the identification

of functional groups and will likely incorporate expert–based methods in addition to

those derived from machine learning methods. The development of algorithms which
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can stitch together desperate functional groups into a complete molecule will likely be

a fundamental improvement to functional groups derived from spectra using machine

learning. These algorithms may (and probably will) incorporate aspects of ML to

make these connections and it can be envisioned that they resemble the automated

synthesis algorithms of today. These advancements will be mostly applied to the

identification of natural products as improvements in functional group prediction will

be substantial enough on their own to revolutionize automated synthesis in their own

right.

The goal of full structure elucidation in an automated manner will require addi-

tional advances in the field of machine learning applied to analytical chemistry. One

solution may be to use compression graphs to generate large portions of a molecule

(multiple moieties, see Fig 8.3). Such a methodology, in combination with storing

chemical data in a hierarchy, will yield large advances in the field. This work has

already been seen in the creation of junction tree variational autoencoders [291], but

future developments are needed to generate new moieties not present at training.

The identification of these ’compressed’ graphs can be done using a one–shot

learning approach. These approaches will be necessary until enough training data

is available to create more generalized models. An example of such an approach is

shown in the following figure.

8.5 The future of proton scale drug design

It is clear that ML methods have had a large impact on the development of new

reactions and these advancements will continue over the next decades. What will

be more important and powerful is the combination of improvements in automated

synthesis along with the ability to accurately predict functional groups de novo will

enable completely automated reaction screening. This will allow autonomous robots
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Figure 8.3. Compression graph of a molecule to combine multiple
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termined by the location of rotatable bonds.

to find new reactions and associated conditions, revolutionizing how new reactions

are found and verified. These reactions will still be verified using techniques such as

DFT, but this field will be changed greatly in its own right by techniques that allow

for quick energy calculations. These techniques are already developed, but at this

time are not accurate enough to be used in transition state identification. Once this

bridge is crossed, the direct use of QM will decline and these new methods will be

used in increasing popularity. This will happen naturally over time, especially since

QM properties can be calculated en masse and these calculations have already been

shown to yield massive improvements throughout the world of molecular simulations

[392,393].
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A. INTRODUCTION TO SUPERVISED MACHINE LEARNING

Since machine learning (ML) plays a pivotal role throughout the works presented

in this document, it is important to outline the exact definition used in my works.

Additionally, one must provide a succinct mathematical foundation written with a

physical chemist in mind. Herein, a description of supervised machine learning is

given for supervised machine learning. Or, more simply, a form of ML where there is

an explicit set of input features and a desire to predict an outcome.

A.1 Expert-based solutions

To start, we frame any given prediction problem as simply mapping a ’feature space’

(~x) to a desired outcome which we wish to model (y). Traditionally, one attempts to

find a relationship such that y = f(~x) where the function f can be arbitrary as long

as it can predict y given x. A simple example is an application of the Beer-Lambert

law where one can predict the absorbance (A, also our y) of a solution given the

concentration of a species C, its molar extinction coefficient ε, and the length of the

container holding the solution b. Here, C, ε, and b are all input features (our ~x). We

know from the Beer-Lambert law that:

A = y = f(b, C, ε) = b · C · ε

This is an example of an expert-based method where the relationship between y

and x is known and one can program a simple algorithm to compute A given the
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proper inputs. While a simple equation works great for this problem, such a simple

solution does not typically work for more complex problems which may depend on

hundreds to thousands of features. Additionally, it may be difficult to impossible

to create an exact mathematical expression which relate these variables. To address

this, mathematicians and computer scientists, among others, have created powerful

generic algorithms which attempt to find the function f from just y and ~x.

A.2 Defining a machine learning problem

As opposed to an expert–based model, supervised ML methods attempt to define

the function f(~x) using a set of known outcomes (y) with a set of known features (~x).

Before this can be done, the nature of the outcome variable (y) must be determined.

The first question that must be asked is whether y is numeric (e.g. absorbance,

retention time, cLogP) or a category (e.g. its functional group classification, does it

react with a set of reagents). If y is the former, then the problem is defined as a

regression problem. If y is the latter, then it is a classification problem. Additionally,

if y can only be one of two categories (e.g. resistant or sensitive to chemotherapy,

reacts or does not react), then the problem is that of binary classification. Once the

nature of y is determined, one must select an appropriate loss function (`) which fits

the problem one wishes to solve.

A.2.1 Loss functions for regression

For the case of regression, several loss functions (`) are available, which will be

described in no particular order. The true measured value that we wish to predict is

referred to as the ground truth (ŷ). The Mean Absolute Error (MAE) is one such `

that is commonly used and is described below.
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MAE(y, ŷ) =
n∑
i=1

|yi − ŷi|
n

A popular alternative is that of Root Mean-Squared Deviation (MSE), which is

defined below. The major difference between MAE and MSE is that MSE places

a greater penalty on values farther from the ground truth than MAE due to the

quadratic growth in the numerator of the sum. Related to MSE is the root mean-

squared deviation (RMSD), which is the square root of the MSE.

MSE(y, ŷ) =
n∑
i=1

(yi − ŷi)2

n

RMSD(y, ŷ) =

√√√√ n∑
i=i

(yi − ŷi)2

n

The RMSD is similar to the Cartesian distance (Dw) which is the following:

Dw(y, ŷ) =

√√√√ n∑
i=i

(yi − ŷi)2

An alternative to these measures of error, one can measure the dissimilarity be-

tween the prediction and ground truth. A common way of commuting dissimilarity

is to calculate the similarity of the prediction and ground truth and subtracting the

value from 1. An example of such a similarity measure is the cosine similarity:

cosθ(y, ŷ) =
y · ŷ
||y|| ||ŷ||

=

∑n
i=1 yiŷi√∑n

i=1 yi
√∑n

i=1 ŷi

This measure is similar to that of the Pearson correlation which is defined below

and is used to measure the linear correlation of two values.
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r(y, ŷ) =

∑n
i=1(yi − ȳ)(ŷi − ¯̂y)√∑n

i=1(yi − ȳ)
√∑n

i=1(ŷi − ¯̂y)

Unlike MAE, MSE, RMSD, Dw, the cosθ and r similarity metrics are required

to be between [−1, 1]. We can build similarity metrics from these distance functions to

create custom and more complex similarity functions. These functions are typically

used to compare the outputs of two different networks (as opposed to the ground

truth directly). One such example is a Siamese neural network. These applications

are important for one-shot learning, which is mentioned in the outlook chapter. For

now, we will give one example of such a loss function, called the contrastive loss

function defined below. This function takes two arguments, the distance between two

vectors (d, as calculated by a distance metric) and a label which designates whether

or not the two vectors describe the same outcome (s). It also takes a parameter called

the margin (m) to control the penalty assigned to cases where y is zero (dissimilarity).

`C(d, s;m) = s · d2 + (1− s)max(m− d, 0)2

This function is interesting as it bridges regressive loss functions through the d

argument and classification loss functions through the s argument.

A.2.2 Loss functions for classification

Shannon entropy and entropic models

For classification, one typically uses a metric derived from Shannon entropy (H,

which is eta), which is defined below for an event X. This event is a discrete value (i.e.

a category) can be any value in the set {x0, x1, x2, ..., xn}. This yields the following

definition for H:
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H(X) = −
n∑
i=0

P (Xi) lnP (Xi)

This is in turn named for the Boltzmann-H theorem which describes the kinetic

energy (E) of a molecule at time t as this integral has a similar concept where a

function is multiplied by its logarithm.

H(t) =

∫ t

0

f(E, t) ln

(
f(E, t)√

E
− 1

)
dE

One can also define the Shannon entropy for a set given a previous event (Y )

where p(xi, yi) is probability that X = xi and Y = yi.

H(X|Y ) = −
n∑
i,j

p(xi, yj)
ln p(xi, yj)

p(xi)

These definitions allow us to define the information gain of a given feature fi from

the feature set F :

IG(X, f) = H(X)−H(X|f)

The maximization of IG is typically performed directly by a machine learning

model referred to as a decision tree (DT). This model depends on this metric explicitly

and attempts to maximize it for a given feature set ~X. The major disadvantage for

the use of IG is that it only considers the binary condition that feature fi is true

or false and does not treat fi as numeric. This causes DTs to typically over train

to a given training set, but is typically useful for creating models which are easily

understood by humans (see chapters 5 and 6).

Random forest (RF) attempts to overcome these over–training issues by training

multiple DTs using a subset of the data and then uses the individual DT models to
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predict the result through a process called ’voting’. Here, if a majority of the DT

models agree on a given classification, then the RF model predicts that class for the

input. During training, the RF algorithm selects subsets of the entire training to

use for training a given DT in a process called bagging. Bagging results in multiple

trees trained on small portions of the data. While each tree may be over–trained, the

ensemble of all trees typically is not over–trained. RF models are used throughout

chemistry and data science as a quick and easy go to solution. In recent years,

eXtreme Gradient Boosting (XBG) has begun to replace RF in this regard, but a

detailed difference between these methods is beyond this simple introduction.

Application of entropy to binary classification given a probability produced

by a model

A major alternative to this loss function is the cross entropy loss function which

is defined for a ground truth of 0 or 1 (the binary classifier case, referred to as ŷ)

and the probability that the ground truth is 1 (called p). Typically, the probability

p is produced by the classifier and is similar in concept to the value y produced by a

regression model, a relationship that will be explored in the later section on logistic

regression. The cross entropy is defined as:

CE(p, ŷ) = −ŷ ln(p)− (1− ŷ) ln(1− p)

This formulation is reminiscent of contrastive loss as noted in the previous section

(note that historically CE came first). When used with more than two conditions

(the multi–class case), the CE is written as the following where n is the number of

classes:

CE(~p, ŷ) = −
n∑
i=1

ŷi ln pi
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If the ground truth can only be a single category (e.g. is an atom an element

as the atom can only be carbon or sulfur or nitrogen, etc), then this function is

typically combined with the softmax function (SM) to form the categorical cross-

entropy function (CCE). Softmax can be thought of as a way to normalize the

vector ~p in a manner that considers all values of the vector. This idea is useful as the

single–label case (but multi–class problem) only has one value in the ground truth

which is 1 and the rest are zero. These functions are as follows where pi is the value

in the prediction vector which corresponds to the non-zero value in the ground truth

vector.

SM(pi) =
epi∑n
j e

pj

CCE(~p, ŷ) = CE(SM(~p), ŷ) = − ln

(
epp∑n
j e

pj

)
While categorical cross entropy can be used for multi–class models, it is typically

not used for the multi–label case where a single observation could be in multiple

classes (e.g. all the functional groups in a single molecule). An alternative to CCE is

binary cross-entropy (BCE) and this type of loss is created through the combination

of the sigmoid function (σ) and cross-entropy. The use of the sigmoid function is

logical because it normalizes each value of a vector independently and the ground

truth vector may have multiple non-zero values. These functions are defined below:

σ(pi) =
1

1 + e−pi

BCE(~p, ŷ) = CE(σ(~p), ŷ)
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This has the effect of creating a binary classifier for each possible case in the

ground truth vector, making it useful for multi–label classification.

Evaluating the performance of a classifier

Unlike a regression model, a classifier is typically not measured by its loss function

(which is in turn only used for training). Instead, it is measured by other metrics

based on criterion based solely on whether the classifier is correct or incorrect, thereby

ignoring the actual prediction value. If the classifier is correct, then the prediction is

’true’, otherwise it is ’false’. If the ground truth is the positive case, then the result

is ’positive’, otherwise it is ’negative’. This creates four cases defined in the table

below.

Ground Truth Prediction Abbreviation Full name

Positive Positive TP True positive

Positive Negative FP False positive

Negative Positive FN False negative

Negative Negative TN True negative

These can be used to define the following:

Recall/sensitivity/true positive rate (RE)

TP

TP + FN

Selectivity/specificity/true negative rate

TN

TN + FP
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Precision/positive prediction value (PR)

TP

TP + FP

Negative prediction value
TN

TN + FN

Accuracy (AC)
TN + TP

TN + TP + FN + FP

F1 score
2 · PR · RE
PR + RE

Cohen κ

1 − 1 − AC

1 − 1
N2

∑
k nk1nk2

The concept of F1 score and κ are referenced many times in this document, so

their formal definition here is important, especially with regards to Chapters 2, 4, 5,

and 6. These values allow one to determine how well a classifier is able to model a

given problem.

A.3 Understanding logistic regression as a sample classifier

Logistic regression (LR) is an important classifier for the understanding of how

other classifiers such as neural networks are built. It is built on the simple premise

that the input features (~x) have a linear relationship to the probability of the outcome

(y) being positive or negative. We call the result of this linear transformation the

discriminator (D) and it is defined as the following where ~W is a weighting vector

and β is a scalar bias term:
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D = ~x · ~W + β

If D > 0 then the prediction for ~x is positive, otherwise it the prediction is

negative. The crucial next step for developing a logistic classifier is to assume that

the probability of the model being positive (p(~x)) follows a logistic curve. This yields

the following relationship:

ln

(
p(~x)

1− p(~x)

)
= ~x · ~W + β

Rearranging yields:

p(~x; ~W ; β) =
1

1 + e−β+ ~W ·~x

If one sets the bias term to zero, this equation becomes reminiscent of the Boltz-

mann distribution function for a system with two states. Here, the positive state is

the higher energy state and the negative state is the lower energy term. The weighting

vector is similar to the energy difference between the two states and the feature space

is similar to the temperature. This analogy to fundamentals of physical chemistry

should provide a clear picture of what machine learning attempts to accomplish and

how it goes about solving the classification problem from a similar starting point.

Given the probability of an observation being active given its feature space, one

must now determine the weighting vector and bias term. To do so, we start with

the likelihood function calculated for all observations ( ~X with an individual feature

component xi:

`( ~X, ŷ; ~W, β) =
n∏
i=0

p(xi; ~W, β)ŷi(1− p(xi; ~W, β)1−ŷi)

Then, the negative logarithm of this function is taken:
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− ln `( ~X, ŷ; ~W, β) =
n∑
i=0

[
ŷi ln p(xi; ~W, β) + (1− ŷi) ln(1− p(xi; ~W, β))

]

This final function is equivalent to the cross-entropy loss function (CE) defined

previously and therefore forms the basis of classification methodology for most neural

networks. Since we wish to minimize this loss function, we will take its derivative for

a single weight in the weight vector ~W to yield the following:

∂CE

∂wj
= −

n∑
i=1

(
ŷi − ln p(xi, ~W, β)

)
xij

Unfortunately, it is not possible to solve the case where the above equation be-

comes zero, so numerical methods are used to find the values of ~W such that the CE

function is minimized.

A.3.1 Regularization of machine learning models

In the previous section, the loss function is derived solely from the weights and

biases in the model. Unfortunately, this formulation of the loss function can lead to

optimization scenarios where a single weight dominates the expression, which prevents

the model from performing well on data not used for training the model. To address

this, one can add the values of the weights directly to the loss function. This technique

is call regularization and it typically comes in two forms: Least Absolute Selection

and Shrinkage Operator (LASSO) and Tikhonov/Ridge. They are also referred to

as L1 and L2 regularization, respectively, due to the value of the exponent used in

their expressions (given below). They are scaled by a factor called λ which adjusts

the amount the network is penalized by the regularization method.
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L1 −→ λ
∑
i=1

|Wi|

L2 −→ λ
∑
i=1

W 2
i

A.3.2 Expanding logistic regression to the multi–layer perceptron

With the mathematical formalism for logistic regression (LR) laid out, the next

step in building up a machine learning model is to increase the number of model

’layers’ to create a ’multi–layer perceptron’ (MLP) network. The LR model can be

considered to be an MLP model with only 2 layers, an input (our original ~X) and

an output layer (the scalar p). The relationship is the multiplication of ~X and the

weighting vector ~W . When one introduces an additional layer between ~X and p (what

is referred to as a hidden layer), the weighting vector becomes the weighting matrix

W(l) where l denotes the location of the transformation in the network. If an MLP

has 1 hidden layer, there will be two weighting matrices, W(1)
MN with rows M and

columns N where N is equal to the length of ~X, and W
(2)
PN where P is equal to the

length of the output layer ŷ. Additionally, there will be a biasing vector β(i) which is

added to the product of W(1)
MN and X̂ to form an intermediate vector ~h(1). A similar

procedure can be done for the final output layer. The element–wise (for element j)

calculation of ~h(l) is given below. This value is referred to as an activation.

h
(l)
j =

∑
k=1

w
(l)
jka

(l−1)
k + b

(l)
j

Since an intermediate vector ~h(l) is introduced, additional transformations can be

introduced to improve the MLP. One such transformation is called batch normaliza-

tion. This procedure normalizes these layers using the other values produced in subset
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of the training set (also referred to as a batch). This technique, developed by Sergey

Ioffe and Christian Szegedy at Google in 2015, is designed to reduce the variations in

the activation values during training (called the covarience shift) to allow for better

generalization and decreased training times. To define batch normalization, let the

size of the batch be the integer value m and the mean and variance of an activation

in a batch to be defined as follows:

µ
(l)
j,B

([
h
(l)
j,1, h

(l)
j,2, h

(l)
j,3, ..., h

(l)
j,m

])
=

1

m

m∑
i=1

h
(l)
j,i

σ
(l)2

j,B

([
h
(l)
j,1, h

(l)
j,2, h

(l)
j,3, ..., h

(l)
j,m

])
=

1

m

m∑
i=1

(h
(l)
j,i − µ

(l)
B )2

Now, one can normalize the original activation similar to how one would calculate

a z–score. Here, an additional scaling parameter γ and shifting parameter β are

introduced are learned along with the W(l) matrix. The final expression is written as

the following:

z
(l)
j = γ

(l)
k

(
h
(l)
j − µ

(l)
j,B

σ
(l)2

j,B

)
+ β

(l)
k

In addition to batch normalization, scalar operations can be introduced per layer

and are referred to as activation functions, written here as h(x), to produce an vector

~a(l). The purpose of an activation function is to add non-linearity to the MLP model

and several functions can be selected to fill the role of h(X), such as the sigmoidal

function, the hyperbolic tangent, or the rectified linear unit (ReLU) function. The

latter is defined as ReLU(x) = max(0, x) and is a popular choice given its computa-

tional efficiency. The scalar h(x) function is calculated for element j as:

a
(l)
j = h(Z

(l)
j )
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Finally, to increase the ability of the model to generalize to data not included

during training, random activations are set to zero with a preset probability. This

feature is called ’dropout’ and is only applied during the training of the network. It

cannot be used on the final output layer as this would randomly force the model to

incorrect in a manner that would not be beneficial to training.

With the additional features of the MLP defined, the derivative of the network

can be calculated. To do so, we define the error of a single activation as the following:

δ
(l)
j =

∂`

∂a
(l)
j

For the final layer of the model L, we can compute this value via the chain rule:

δ
(L)
j =

δC

δa
(L)
j

σ′(z(L)j )

This expression can be rewritten as the following for a matrix operation:

δL = ∇aC � σ′(z(L))

Once the derivative of the final layer is obtained, the derivative of the penultimate

layer can be calculated as follows:

δl =
((

Wl+1
)T
δl+1

)
� σ′(zl)

One can continue to ‘backpropagate’ this derivative until the derivative of the first

layer is calculated. Now that δ(l)j can be calculated for all layers, the derivative of the

total cost function with respect to a bias term can be written as

δC

δb
(l)
j

= δ
(l)
j
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Additionally, the following for the weighting terms:

δC

δW
(l)
jk

= a
(l−1)
k δ

(l)

j

Note that the derivation of the derivatives for γ and β are left out for brevity.

A.3.3 Applications to graphs

With the mathematical background described for an MLP network, the founda-

tions for Graph Neural Networks (GNNs) can be discussed. First, let a graph G be

defined as a set of nodes and edges. Since we are interested in molecules, one can

think of these nodes as atoms and the edges as bonds. In a GNN, nodes can send

’messages’ to their neighbors in each layer of the network. At the first, or zeroth layer

(l = 0), each node simply passes a message to itself which contains its element, hy-

bridization, charge, and other useful information. The next layer, ` = 1, is calculated

by adding in the messages from the N neighboring atoms. This process is repeated

for all the layers in the network and can be expressed using the following equation

for atom i with neighbors j:

X
(`+1)
i = X(l) +

N∑
j=1

f
(
X

(l)
i

)
For the final layer (as determined by the hyper–parameter called radius), the final

~y output is calculated from all the M atoms using the following equation:

~y =
M∑
i=1

X
(L)
i

As for the MLP network, the errors for each weight in the network can be obtained

using the chain rule (backpropogation). This description is for a simple GNN, but

various graph filters can be used as well to create a graph convolutional neural network



330

(GCN). A great application of the GCN network is that the topology of the graph

does not change during training, allowing one to recolor (re-weight) the graph and

obtain node properties. However, such a discussion is beyond the work presented

herein.

A.4 Evaluating how well a machine learning model performs

A.4.1 The training, validation, and test sets and cross–validation

When evaluating the performance of a model, one needs to split the known data

into three different steps: training (observations used to explicitly train the model),

validation (observations used to evaluate model performance given a set of hyper–

parameters and tune them accordingly), and testing (observations never used to train

or tune the model and used as a final test for the model). Typically, the test set

observations are known before training begins, however, in the works presented in this

work, the test set used is experimentally measured after the model has been trained

(so they are referred to as prospective test sets). In many cases, the validation of

the model (done with a training set and validation set) is done multiple times and

the training and validation sets are varied in a method called cross-validation. The

simplest, and most exhaustive, methodology is referred to as Leave-One Out Cross-

Validation (LOOCV). In this method, the validation set is a single observation and the

training set is the remaining observations. The model is trained on this training set

and evaluated on the single validation observation. Then, the validation observation

is swapped with an observation in the training set and the process is repeated until

all points have been used as the validation observation. Various evaluation criteria

(F1 score, Cohen Kappa, etc) are calculated on the evaluated results. This validation

methodology is expensive as the number of models created is equal to the number of

observations used for the training and validation sets. An alternative to LOOCV is k-
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fold validation where the training data is partitioned into ’k’ different folds (typically

without duplication) and the model is trained on (k − 1) folds and evaluated on the

held–out fold (the validation set in this case). This process is repeated until all folds

have been used as the validation set. In both LOOCV and k-fold validation, a final

model is trained on all the available data and this final model is evaluated using the

test set (which has been held out during the entire procedure).

A.4.2 Leave One Out Testing (LOOT)

B C D E
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C D E B
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Figure A.1. Visual representation of Leave One Out Testing (LOOT)
for five observations. Here, each observation is removed, and the
remaining four observations are used to create a hyper-trained model
through Leave One Out Cross-Validation (LOOCV).

Traditionally, evaluating a machine learning model requires one to partition their

data into three parts: a training set, a validation set, and a testing set. The training

set is directly introduced into the machine learning model and the weights and other
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parameters of the model are identified from this set. This model is then applied to

predict the results of the validation set and the model is allowed to be retrained mul-

tiple times using different training parameters (called hyper parameters) to optimize

its performance on this set. Once an optimal set of hyperparameters has been found,

a final model is created using a combination of the training and validation sets. The

final model is then used to predict the results of the test set to obtain final statistics

for the performance of the model. This scheme is typically used when a large amount

of data is available to train and evaluate the model but is too stringent and open

to bias for use in cases where a small amount of data is available. To address this,

we have created a novel evaluation paradigm called Leave One Out Testing (LOOT).

LOOT is similar in spirit to Leave One Out Cross-Validation (LOOCV) where a single

observation is held out and the remaining observations are used to validate a potential

model through LOOCV or other cross-validation methodology. The cross-validated

model (hyper trained) obtained from the remaining observations is then used to pre-

dict the held-out member. This process is then repeated for all observations, allowing

statistics to be calculated for the entire dataset that includes the effects of hyperpa-

rameter optimization. A visual diagram of this process for 5 observations is given in

the above Figure where A, B, C, D, and E are the observations.
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B. ADDITIONAL DATA FOR CHAPTER 1

Table B.1.: Indication ranks for mental health indications
calculated for all top selections.

MESH Drug count Top10 Top25 Top40 Top100
D016574 1 100.00 100.00 100.00 67.68
D020178 1 100.00 100.00 100.00 67.68
D020179 1 100.00 100.00 100.00 67.68
D056912 2 83.33 75.00 73.08 68.18
D001039 1 44.44 58.33 69.23 56.57
D009290 7 40.74 38.89 42.31 44.11
D020186 3 40.74 33.33 28.21 24.24
D001308 1 33.33 54.17 56.41 57.58
D012148 10 33.33 39.58 40.00 35.96
D000856 3 29.63 25.00 23.93 25.93
D002385 12 25.93 23.61 24.57 25.17
D004831 12 25.56 25.83 23.85 21.72
D013981 5 25.00 16.67 17.31 16.16
D010842 4 22.22 22.92 22.44 22.73
D020922 1 22.22 8.33 5.13 4.04
D019958 5 19.44 21.88 30.13 29.04
D001289 22 17.28 16.67 17.66 19.14
D052018 4 16.67 17.71 21.15 25.00
D019263 6 16.67 15.28 14.10 16.16
D007172 26 16.34 14.46 15.69 16.64
D009771 13 16.16 15.15 15.62 19.93
D019964 14 14.44 12.92 12.56 17.27
D000647 44 14.38 16.05 17.72 19.55
D001321 32 12.26 13.65 15.47 17.55
D010554 30 11.56 13.50 13.64 14.75
D019973 3 11.11 20.83 23.08 17.68
D002658 4 11.11 13.54 16.03 21.21
D003072 26 11.11 13.29 14.04 15.34
D000379 5 11.11 12.50 12.31 14.14

continued on next page



334

Table B.1.: continued

MESH Drug count Top10 Top25 Top40 Top100
D020774 1 11.11 12.50 10.26 11.11
D001068 3 11.11 6.94 10.26 15.49
D003865 43 10.84 13.72 14.95 16.21
D007859 26 10.58 13.10 14.41 14.57
D001008 46 10.56 12.19 14.10 15.73
D019969 27 10.26 10.58 10.85 11.97
D019955 15 10.19 10.42 11.97 12.96
D019970 75 10.14 13.16 13.71 14.27
D016584 19 9.80 9.56 11.16 16.22
D003693 8 9.72 13.02 16.35 17.80
D012640 94 8.58 9.76 10.91 12.71
D017029 14 8.33 10.07 9.62 11.62
D002659 5 8.33 7.29 12.82 15.40
D004827 38 7.94 9.05 9.52 10.62
D001714 42 7.94 7.74 8.21 10.42
D000341 9 7.94 7.74 8.06 8.08
D019956 16 7.64 9.11 8.81 10.16
D019966 11 7.41 6.48 7.98 8.98
D019305 4 7.41 4.17 5.13 6.40
D013226 29 7.25 8.15 8.47 9.27
D003866 65 6.97 7.35 8.55 10.58
D006556 11 6.67 11.67 12.05 12.53
D013375 48 6.61 8.63 9.52 11.52
D000430 8 6.35 8.33 10.99 9.38
D005879 15 5.93 9.17 9.57 13.13
D020190 3 5.56 12.50 15.38 30.30
D015140 2 5.56 10.42 15.38 28.28
D013064 2 5.56 10.42 15.38 18.69
D004414 2 5.56 10.42 6.41 19.19
D000544 32 5.56 9.46 12.43 15.31
D014029 10 5.56 7.29 7.69 13.76
D003704 13 5.56 5.83 7.18 12.53
D007319 27 5.09 8.16 10.47 9.05
D002653 14 5.05 4.55 7.23 9.46
D009293 10 4.94 9.26 11.97 14.14
D003244 9 4.94 7.87 14.25 16.84
D004830 20 4.86 5.73 5.61 6.57
D004832 12 4.63 6.94 7.91 10.94
D011618 47 4.50 4.62 6.58 8.54
D011605 14 4.44 8.75 11.54 14.14

continued on next page
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Table B.1.: continued

MESH Drug count Top10 Top25 Top40 Top100
D012559 65 4.00 4.75 5.33 6.26
D010698 7 3.70 5.56 5.13 4.71
D004833 11 3.70 4.63 4.84 7.86
D000435 3 3.70 4.17 2.56 3.37
D012893 14 3.42 3.85 6.11 8.00
D003294 8 3.17 1.79 2.20 4.47
D004829 7 3.17 1.79 2.20 3.03
D020018 11 3.03 4.17 3.73 7.35
D020324 4 2.78 10.42 16.03 19.44
D013313 21 2.78 4.17 5.77 7.89
D006970 5 2.22 6.67 8.72 12.32
D004828 19 2.08 3.39 3.21 5.30
D012563 22 1.75 1.75 2.43 3.72
D000437 17 1.48 3.89 4.27 5.59
D006816 10 1.11 4.58 6.67 12.63
D005715 1 0.00 12.50 15.38 40.40
D009497 3 0.00 8.33 14.53 15.49
D012734 1 0.00 8.33 5.13 2.02
D015161 1 0.00 4.17 7.69 10.10
D019052 1 0.00 4.17 7.69 4.04
D020195 2 0.00 4.17 2.56 3.03
D009021 5 0.00 3.13 1.92 2.27
D006998 2 0.00 2.08 3.85 6.06
D013036 8 0.00 1.79 1.47 1.30
D007174 8 0.00 1.39 5.56 8.92
D004775 7 0.00 1.39 1.28 5.72
D053206 4 0.00 1.04 5.13 8.08
D020270 4 0.00 1.04 2.56 6.57
D019957 1 0.00 0.00 10.26 17.17
D001883 4 0.00 0.00 2.56 3.03
D011604 1 0.00 0.00 2.56 2.02
D014256 1 0.00 0.00 2.56 2.02
D012560 5 0.00 0.00 1.92 2.53
D020187 2 0.00 0.00 1.28 2.53
D005329 1 0.00 0.00 0.00 3.03
D010262 3 0.00 0.00 0.00 2.53
D012561 2 0.00 0.00 0.00 2.53
D020961 2 0.00 0.00 0.00 2.53
D012562 2 0.00 0.00 0.00 2.02
D008607 2 0.00 0.00 0.00 1.52

continued on next page



336

Table B.1.: continued

MESH Drug count Top10 Top25 Top40 Top100
D020191 3 0.00 0.00 0.00 1.52
D020817 2 0.00 0.00 0.00 1.52
D019967 4 0.00 0.00 0.00 1.35
D003130 1 0.00 0.00 0.00 1.01
D012569 2 0.00 0.00 0.00 1.01
D012892 2 0.00 0.00 0.00 1.01
D014899 1 0.00 0.00 0.00 1.01
D057180 2 0.00 0.00 0.00 1.01
D009357 2 0.00 0.00 0.00 0.51
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Indication Category Top
10

Top
25

Top
40

Top
100

Jet Lag Syndrome Tryptamine 100 100 100 63.6
Seasonal Affective Disorder Tryptamine 100 100 100 63.6
Sleep Disorders, Circadian
Rhythm Tryptamine 100 100 100 63.6

Binge-Eating Disorder Amphetamine 93.8 100 100 77.0
Aphasia, Broca Tryptamine 44.4 58.3 69.2 55.6
Narcolepsy Amphetamine 35.6 39.8 45.6 58.3
Anorexia Nervosa Amphetamine 29.6 22.2 19.7 18.5
Auditory Perceptual Disorders Cathinone 22.2 16.7 18.0 9.09
Sleep-Wake Transition Disorders Other 22.2 8.33 5.13 2.02
Epilepsies, Myoclonic Amphetamine 20.0 24.4 21.0 19.2
Pica Cathinone 19.4 10.4 6.41 3.08
Sleep Bruxism Amphetamine 18.5 22.1 18.4 17.3
Sleep Bruxism Tryptamine 18.5 8.82 5.50 3.46
Cataplexy Amphetamine 17.0 17.3 19.0 23.7
Restless Legs Syndrome Tryptamine 16.7 22.1 24.4 25.4
Dysthymic Disorder Cathinone 14.8 8.46 5.50 4.13
Tic Disorders Tryptamine 13.9 7.29 7.05 6.19
Bulimia Nervosa Cathinone 12.1 6.98 6.67 4.97
ADHD Tryptamine 11.1 14.6 17.3 15.4
Pick Disease of the Brain Cathinone 11.1 8.33 7.69 4.04
Alcohol-Related Disorders Cathinone 11.1 8.33 6.58 5.78
Auditory Perceptual Disorders Other 11.1 8.33 5.13 5.05
ADHD Tryptamine 10.8 11.8 14.9 20.5
Conduct Disorder Amphetamine 9.89 10.7 12.1 13.2
Mood Disorders Cathinone 9.88 6.12 5.26 3.59
Obsessive-Compulsive Disorder Amphetamine 9.78 10.6 11.6 18.85
Restless Legs Syndrome Cathinone 9.52 5.88 5.06 3.41
Personality Disorders Amphetamine 8.84 9.87 10.4 15.4
Panic Disorder Amphetamine 8.18 10.5 12.2 21.4
Depressive Disorder, Major Amphetamine 7.42 11.8 15.1 23.9
Alcohol Withdrawal Delirium Tryptamine 7.41 10.3 12.4 11.7
Eating Disorders Cathinone 7.41 5.56 5.98 5.54
Restless Legs Syndrome Amphetamine 7.14 13.2 14.6 18.3
SIMD Tryptamine 6.80 10.0 13.0 13.8
Narcolepsy Cathinone 6.67 4.85 6.71 14.2
Agoraphobia Cathinone 6.67 3.57 3.45 2.69
Cataplexy Tryptamine 6.38 5.00 4.91 7.68
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Indication Category Top
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Top
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Child Development Disorders,
Pervasive Amphetamine 6.25 5.88 9.29 9.91

Epilepsy, Complex Partial Amphetamine 6.12 7.98 7.31 11.5
Amnesia Amphetamine 5.95 7.87 9.27 17.3
Autistic Disorder Tryptamine 5.91 8.42 11.3 15.8
Depressive Disorder, Major Cathinone 5.86 4.29 4.22 5.45
Erectile Dysfunction Tryptamine 5.80 4.28 3.89 5.83
Delirium Cathinone 5.63 3.76 4.56 2.82
Dementia, Vascular Amphetamine 5.56 6.25 5.13 12.1
Dyspareunia Cathinone 5.56 6.25 3.85 4.04
ADHD Amphetamine 5.56 5.21 8.33 8.23
Myoclonic Epilepsy, Juvenile Cathinone 5.56 4.17 6.76 4.44
Speech Disorders Phenethylamine 5.56 4.17 2.56 2.02
Developmental Disabilities Other 5.56 3.26 4.08 2.69
Tic Disorders Other 5.56 3.13 5.13 3.35
Epilepsy Amphetamine 5.42 6.57 7.44 11.4
Cognition Disorders Tryptamine 5.41 6.03 6.41 10.1
Affective Disorders, Psychotic Amphetamine 5.17 3.68 3.88 4.10
Learning Disorders Tryptamine 5.08 7.92 10.54 14.8
Bipolar Disorder Amphetamine 5.08 6.10 6.03 10.6
Depressive Disorder Tryptamine 5.02 4.99 6.44 10.9
Autistic Disorder Amphetamine 5.00 6.11 6.61 16.2
Anxiety Disorders Amphetamine 4.94 7.06 9.55 20.3
Stereotypic Movement Disorder Tryptamine 4.80 4.21 5.13 6.50
Seizures Amphetamine 4.59 8.31 11.24 22.3
Panic Disorder Cathinone 4.55 2.94 4.17 5.01
Narcolepsy Other 4.44 2.91 4.03 5.21
Epilepsy, Tonic-Clonic Amphetamine 4.42 6.87 6.65 7.74
Cocaine-Related Disorders Cathinone 4.39 3.67 3.50 5.19
Erectile Dysfunction Phenethylamine 4.35 4.28 3.69 5.10
Obsessive-Compulsive Disorder Cathinone 4.35 2.75 3.45 4.83
Amphetamine Disorders Tryptamine 4.21 5.62 5.98 10.4
Cocaine-Related Disorders Amphetamine 4.17 8.02 9.98 18.96
Phobic Disorders Cathinone 4.00 2.61 2.33 3.07
Heroin Dependence Cathinone 3.90 3.55 3.26 3.63
ADHD Other 3.85 4.30 5.38 5.59
Anxiety Disorders Tryptamine 3.80 5.16 8.10 11.6
Anxiety Disorders Cathinone 3.80 3.44 3.99 5.33
Epilepsies, Myoclonic Tryptamine 3.75 3.98 2.85 2.99
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Amphetamine Disorders Cathinone 3.74 2.92 2.91 3.00
Epilepsy, Rolandic Phenethylamine 3.70 2.82 1.83 1.55
Alcoholic Intoxication Cathinone 3.70 2.78 1.71 1.56
Sleep Bruxism Cathinone 3.70 1.47 3.67 2.69
Epilepsy, Rolandic Amphetamine 3.70 1.41 0.92 0.78
Eating Disorders Amphetamine 3.70 1.39 1.71 7.01
Depressive Disorder Amphetamine 3.68 4.99 7.13 14.3
Erectile Dysfunction Amphetamine 3.62 4.89 8.20 12.7
Tourette Syndrome Cathinone 3.54 3.17 3.60 2.64
Tobacco Use Disorder Cathinone 3.45 2.58 2.58 3.26
Tobacco Use Disorder Other 3.45 1.94 2.15 2.65
Amnesia Tryptamine 3.35 5.03 6.29 11.0
Personality Disorders Cathinone 3.31 2.78 3.24 3.91
Sexual Dysfunctions,
Psychological Cannabinoid 3.30 1.32 0.84 0.39

Cognition Disorders Cathinone 3.24 2.68 2.50 2.21
Cataplexy Other 3.19 3.18 3.68 3.84
Child Development Disorders,
Pervasive Other 3.13 1.18 2.14 2.10

Schizophrenia Amphetamine 3.10 3.60 4.27 7.11
ADHD Phenethylamine 3.08 2.51 2.20 2.93
Cocaine-Related Disorders Tryptamine 3.07 6.90 10.24 20.8
Seizures Tryptamine 3.06 2.93 4.33 12.6
Bulimia Nervosa Amphetamine 3.03 9.30 11.85 18.2
Bulimia Nervosa Phenethylamine 3.03 3.49 2.22 3.31
Amnesia Phenethylamine 2.97 4.86 6.86 9.56
Amnesia Cathinone 2.97 2.68 2.86 4.20
Opioid-Related Disorders Cathinone 2.94 3.28 2.72 3.17
Opioid-Related Disorders Other 2.94 2.73 2.38 2.06
Dementia Amphetamine 2.90 3.83 2.69 7.81
Erectile Dysfunction Cathinone 2.90 3.67 3.69 3.23
Dementia Cathinone 2.90 1.64 1.35 1.65
Learning Disorders Cathinone 2.82 2.48 2.17 2.19
Pica Amphetamine 2.78 10.42 12.8 11.3
Developmental Disabilities Cathinone 2.78 6.52 6.12 5.69
Tic Disorders Cathinone 2.78 4.17 3.85 3.09
Developmental Disabilities Amphetamine 2.78 3.26 2.72 11.68
Amnesia, Anterograde Phenethylamine 2.78 3.19 3.47 3.64
Tic Disorders Phenethylamine 2.78 2.08 1.28 0.52
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ADHD Other 2.78 1.04 1.92 2.06
Bipolar Disorder Tryptamine 2.73 2.15 3.85 8.06
SWS Amphetamine 2.73 4.57 5.24 11.47
Status Epilepticus Amphetamine 2.69 3.99 5.32 9.79
Tourette Syndrome Cannabinoid 2.65 1.06 0.90 0.74
Consciousness Disorders Amphetamine 2.60 3.28 6.01 7.17
Heroin Dependence Other 2.60 2.54 2.28 1.74
Substance-Related Disorders Cathinone 2.56 2.09 2.05 2.19
Substance-Related Disorders Other 2.56 1.57 2.05 1.72
Epilepsies, Myoclonic Phenethylamine 2.50 2.84 4.27 3.58
Psychoses, Substance-Induced Cathinone 2.47 1.96 2.61 1.49
Mood Disorders Phenethylamine 2.47 1.53 1.75 4.27
Mood Disorders Other 2.47 1.53 1.05 1.71
Restless Legs Syndrome Phenethylamine 2.38 3.43 3.80 6.51
Psychotic Disorders Amphetamine 2.34 2.47 3.82 6.65
ADHD Cathinone 2.31 3.94 3.67 5.46
Autistic Disorder Other 2.27 1.68 2.64 2.56
Narcolepsy Phenethylamine 2.22 6.80 10.07 8.68
Agoraphobia Amphetamine 2.22 5.36 6.32 11.02
Disorders of Excessive
Somnolence Phenethylamine 2.22 3.54 2.33 1.98

Agoraphobia Phenethylamine 2.22 2.68 1.72 1.88
Seizures, Febrile Phenethylamine 2.22 1.72 1.13 1.06
Seizures, Febrile Amphetamine 2.22 0.86 0.56 0.80
Obsessive-Compulsive Disorder Other 2.17 2.29 3.45 3.74
Cognition Disorders Amphetamine 2.16 3.57 5.16 9.67
Child Behavior Disorders Amphetamine 2.15 2.20 3.78 5.33
Status Epilepticus Phenethylamine 2.15 2.11 1.99 2.95
Child Behavior Disorders Phenethylamine 2.15 1.32 1.16 2.02
Cataplexy Phenethylamine 2.13 3.18 4.60 4.15
SWS Other 2.12 2.29 2.30 2.56
Epilepsy Phenethylamine 2.08 4.50 5.18 7.76
Epilepsy, Absence Tryptamine 2.06 2.13 1.62 3.98
Epilepsy, Complex Partial Cathinone 2.04 1.41 2.99 2.50
Depressive Disorder Cathinone 2.01 1.77 2.30 3.07
Alzheimer Disease Other 1.90 1.73 1.54 1.56
Alzheimer Disease Cathinone 1.90 1.35 1.41 1.34
Dysthymic Disorder Amphetamine 1.85 6.92 9.50 9.63
Alcoholism Cathinone 1.77 1.06 0.71 1.01
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PTSD Cathinone 1.74 1.22 1.12 1.17
Affective Disorders, Psychotic Phenethylamine 1.72 2.94 1.94 3.13
Affective Disorders, Psychotic Cathinone 1.72 1.47 1.46 1.20
Schizophrenia, Paranoid Amphetamine 1.71 1.19 1.68 2.23
Learning Disorders Amphetamine 1.69 2.48 2.84 5.93
Epilepsy, Generalized Phenethylamine 1.69 1.42 0.97 0.91
Epilepsy, Generalized Amphetamine 1.69 0.71 0.49 0.45
Personality Disorders Phenethylamine 1.66 5.06 4.95 6.09
Status Epilepticus Tryptamine 1.61 1.64 1.50 2.85
Stereotypic Movement Disorder Phenethylamine 1.60 1.62 1.71 1.92
Stereotypic Movement Disorder Cathinone 1.60 1.29 1.07 1.60
ADHD Amphetamine 1.54 3.23 4.16 10.9
Seizures Other 1.53 2.15 3.26 4.79
Anxiety Disorders Other 1.52 2.07 2.66 4.21
Erectile Dysfunction Other 1.45 0.92 1.84 2.08
Dementia Other 1.45 0.55 0.34 0.75
Delirium Amphetamine 1.41 4.30 4.21 6.80
Delirium Other 1.41 2.15 2.46 1.82
Delirium Phenethylamine 1.41 1.08 1.75 2.65
Amphetamine Disorders Amphetamine 1.40 3.60 5.82 8.12
Psychotic Disorders Tryptamine 1.40 2.47 4.46 12.11
Psychotic Disorders Phenethylamine 1.40 2.02 1.75 3.28
Amphetamine Disorders Phenethylamine 1.40 1.80 1.94 3.71
Schizophrenia Tryptamine 1.38 2.70 4.00 9.50
Autistic Disorder Cathinone 1.36 2.53 3.52 5.04
Seizures Cathinone 1.34 2.54 3.19 5.59
Epilepsy, Temporal Lobe Phenethylamine 1.33 3.49 2.53 3.11
Epilepsy, Temporal Lobe Cathinone 1.33 1.16 2.11 1.86
Epilepsy, Temporal Lobe Amphetamine 1.33 1.16 0.84 4.97
Cocaine-Related Disorders Other 1.32 2.90 3.67 4.44
Consciousness Disorders Phenethylamine 1.30 1.64 1.77 2.80
Consciousness Disorders Other 1.30 1.09 2.12 2.02
Heroin Dependence Cannabinoid 1.30 0.51 1.30 1.02
Substance-Related Disorders Amphetamine 1.28 0.52 1.03 2.82
Substance-Related Disorders Cannabinoid 1.28 0.52 1.03 0.47
Epilepsies, Myoclonic Other 1.25 2.84 2.49 2.39
Epilepsy Cathinone 1.25 1.31 1.86 2.48
Epilepsies, Myoclonic Cathinone 1.25 1.14 2.49 3.88
Epilepsy Cannabinoid 1.25 0.56 0.53 0.47
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Mood Disorders Amphetamine 1.23 5.61 7.72 12.8
Psychoses, Substance-Induced Other 1.23 1.47 2.61 1.64
Psychoses, Substance-Induced Phenethylamine 1.23 0.98 1.31 2.08
SWS Cathinone 1.21 1.43 2.30 3.47
Seizures Phenethylamine 1.15 2.15 3.49 7.61
Huntington Disease Phenethylamine 1.14 1.34 1.12 1.59
Learning Disorders Other 1.13 2.48 2.51 2.37
Amnesia Other 1.12 1.51 1.49 2.31
Conduct Disorder Cathinone 1.10 1.46 2.30 3.59
Conduct Disorder Other 1.10 0.98 1.64 2.77
Obsessive-Compulsive Disorder Phenethylamine 1.09 2.75 2.19 3.27
Sleep Disorders Tryptamine 1.09 1.49 3.62 7.42
Sleep Disorders Other 1.09 1.49 3.29 3.87
Sleep Disorders Phenethylamine 1.09 1.49 1.64 1.94
Sleep Disorders Amphetamine 1.09 1.00 0.99 2.26
Status Epilepticus Other 1.08 1.41 1.99 1.81
Child Behavior Disorders Other 1.08 0.44 1.74 1.87
Cataplexy Cathinone 1.06 2.27 3.07 6.45
Epilepsy, Absence Amphetamine 1.03 2.98 4.05 6.80
Epilepsy, Absence Cathinone 1.03 0.85 1.35 1.16
Epilepsy, Absence Other 1.03 0.43 1.08 1.03
Epilepsy, Complex Partial Phenethylamine 1.02 3.76 2.99 4.51
Alzheimer Disease Tryptamine 0.95 3.85 6.94 13.1
Alzheimer Disease Amphetamine 0.95 2.50 3.60 7.94
Psychotic Disorders Other 0.93 1.35 3.66 4.37
Psychotic Disorders Cathinone 0.93 0.90 1.43 2.09
Panic Disorder Phenethylamine 0.91 2.52 2.08 4.86
SWS Phenethylamine 0.91 1.86 2.41 4.59
Tourette Syndrome Other 0.88 1.41 1.57 1.48
Epilepsy, Tonic-Clonic Other 0.88 1.29 1.21 2.17
Epilepsy, Tonic-Clonic Cathinone 0.88 0.43 1.51 1.55
PTSD Phenethylamine 0.87 2.44 1.68 3.22
PTSD Amphetamine 0.87 1.22 1.12 2.34
Schizophrenia, Paranoid Phenethylamine 0.85 1.58 1.12 1.93
Stereotypic Movement Disorder Amphetamine 0.80 2.91 2.78 5.97
Depressive Disorder, Major Tryptamine 0.78 3.17 6.40 12.6
Epilepsies, Partial Phenethylamine 0.78 3.03 2.07 2.52
Depressive Disorder, Major Other 0.78 2.80 3.27 4.01
Epilepsies, Partial Cathinone 0.78 1.14 1.55 1.59
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Bipolar Disorder Other 0.78 1.08 1.15 1.96
Epilepsies, Partial Amphetamine 0.78 0.76 0.52 3.45
Bipolar Disorder Cathinone 0.78 0.54 1.54 2.64
Schizophrenia Other 0.69 1.62 2.67 2.80
Schizophrenia Cathinone 0.69 0.72 0.93 2.64
SIMD Other 0.68 2.51 3.99 3.20
Cocaine-Related Disorders Phenethylamine 0.66 2.67 3.75 6.28
Learning Disorders Phenethylamine 0.56 0.99 1.67 2.28
Personality Disorders Other 0.55 1.27 1.37 2.36
Cognition Disorders Other 0.54 2.46 2.66 1.87
Status Epilepticus Cathinone 0.54 1.41 1.83 2.57
Alzheimer Disease Phenethylamine 0.47 1.92 2.70 5.05
Amphetamine Disorders Other 0.47 0.90 1.13 1.77
Epilepsy Other 0.42 0.94 1.59 2.48
Depressive Disorder, Major Phenethylamine 0.39 2.99 3.13 6.57
Bipolar Disorder Phenethylamine 0.39 1.80 1.79 3.84
Depressive Disorder, Major Cannabinoid 0.39 0.19 0.41 0.24
Anxiety Disorders Phenethylamine 0.38 2.41 2.30 5.41
Schizophrenia Phenethylamine 0.34 1.62 2.00 2.64
SWS Tryptamine 0.30 2.14 3.77 8.98
SWS Cannabinoid 0.30 0.14 0.31 0.33
Cocaine-Related Disorders Cannabinoid 0.22 0.11 0.34 0.58
Auditory Perceptual Disorders Amphetamine 0.00 29.17 28.21 37.5
Binge-Eating Disorder Phenethylamine 0.00 12.50 22.73 13.5
Gambling Amphetamine 0.00 12.50 7.69 26.3
Disorders of Sex Development Other 0.00 8.33 5.13 2.02
Speech Disorders Tryptamine 0.00 6.25 11.54 15.2
Alcohol-Related Disorders Other 0.00 6.25 6.58 4.05
Amnesia, Anterograde Tryptamine 0.00 5.32 9.03 15.2
Heroin Dependence Tryptamine 0.00 4.57 5.86 6.68
Alcohol-Related Disorders Tryptamine 0.00 4.17 9.21 8.09
Depression, Postpartum Other 0.00 4.17 7.69 3.03
Myoclonic Epilepsy, Juvenile Amphetamine 0.00 4.17 5.41 16.1
Dementia, Vascular Phenethylamine 0.00 4.17 5.13 4.55
Neurotic Disorders Tryptamine 0.00 4.17 5.13 2.87
Myoclonic Epilepsy, Juvenile Phenethylamine 0.00 4.17 4.05 7.22
Dyspareunia Amphetamine 0.00 4.17 2.56 5.05
Dementia, Multi-Infarct Tryptamine 0.00 4.17 2.56 4.04
Epilepsy, Reflex Cathinone 0.00 4.17 2.56 3.03
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Pick Disease of the Brain Amphetamine 0.00 4.17 2.56 3.03
Psychoses, Substance-Induced Amphetamine 0.00 3.43 3.59 6.10
Morphine Dependence Phenethylamine 0.00 3.37 2.48 1.65
Tourette Syndrome Amphetamine 0.00 3.17 2.92 6.86
Neurotic Disorders Cathinone 0.00 2.78 2.56 2.51
Consciousness Disorders Tryptamine 0.00 2.73 6.36 8.72
Opioid-Related Disorders Tryptamine 0.00 2.73 5.78 7.61
Disorders of Excessive
Somnolence Tryptamine 0.00 2.65 5.81 10.6

Substance-Related Disorders Tryptamine 0.00 2.62 2.74 4.70
Phobic Disorders Other 0.00 2.61 2.91 2.45
Spasms, Infantile Phenethylamine 0.00 2.59 1.76 0.80
Psychoses, Substance-Induced Tryptamine 0.00 2.45 4.25 9.08
Delirium Tryptamine 0.00 2.15 4.91 9.12
Amnesia, Anterograde Other 0.00 2.13 3.47 1.52
Epilepsy, Absence Phenethylamine 0.00 2.13 1.62 3.47
Alcoholism Phenethylamine 0.00 2.12 1.42 2.53
Hypochondriasis Tryptamine 0.00 2.08 2.56 4.04
Alcohol-Related Disorders Amphetamine 0.00 2.08 1.32 2.31
Heroin Dependence Phenethylamine 0.00 2.03 1.30 1.31
Restless Legs Syndrome Other 0.00 1.96 1.58 1.55
Tobacco Use Disorder Tryptamine 0.00 1.94 2.58 8.35
Agoraphobia Other 0.00 1.79 1.72 1.61
Huntington Disease Amphetamine 0.00 1.79 1.40 5.16
Depressive Disorder Phenethylamine 0.00 1.77 1.84 5.52
PTSD Other 0.00 1.63 3.35 3.36
Personality Disorders Tryptamine 0.00 1.52 2.73 5.36
Affective Disorders, Psychotic Other 0.00 1.47 2.91 2.41
Sleep Bruxism Phenethylamine 0.00 1.47 1.83 3.46
Sleep Bruxism Other 0.00 1.47 0.92 0.77
Conduct Disorder Phenethylamine 0.00 1.46 2.30 2.28
Tourette Syndrome Tryptamine 0.00 1.41 2.02 6.12
Tourette Syndrome Phenethylamine 0.00 1.41 1.57 2.75
Neurotic Disorders Amphetamine 0.00 1.39 5.13 7.53
Anorexia Nervosa Phenethylamine 0.00 1.39 1.71 3.03
Anorexia Nervosa Other 0.00 1.39 0.85 1.01
Alcoholic Intoxication Phenethylamine 0.00 1.39 0.85 0.78
Huntington Disease Tryptamine 0.00 1.34 3.35 7.94
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Sexual Dysfunctions,
Psychological Phenethylamine 0.00 1.32 1.12 1.44

Sexual Dysfunctions,
Psychological Amphetamine 0.00 1.32 0.84 3.66

Stereotypic Movement Disorder Other 0.00 1.29 1.07 1.07
Tobacco Use Disorder Amphetamine 0.00 1.29 1.72 6.11
Tobacco Use Disorder Phenethylamine 0.00 1.29 0.86 1.02
Autistic Disorder Phenethylamine 0.00 1.26 1.62 3.25
SIMD Cathinone 0.00 1.25 1.26 1.17
Nocturnal Enuresis Amphetamine 0.00 1.23 2.99 3.26
Child Development Disorders,
Pervasive Cathinone 0.00 1.18 2.86 3.00

Dementia Tryptamine 0.00 1.09 3.03 6.31
Opioid-Related Disorders Amphetamine 0.00 1.09 2.38 5.23
Opioid-Related Disorders Phenethylamine 0.00 1.09 0.68 1.27
Developmental Disabilities Phenethylamine 0.00 1.09 2.04 1.50
Alcoholism Tryptamine 0.00 1.06 1.89 3.54
ADHD Cathinone 0.00 1.04 2.56 2.57
Alcohol Withdrawal Seizures Amphetamine 0.00 1.04 1.32 1.65
Pica Tryptamine 0.00 1.04 1.28 4.36
Pica Other 0.00 1.04 0.64 0.77
Mood Disorders Tryptamine 0.00 1.02 1.40 6.84
Heroin Dependence Amphetamine 0.00 1.02 1.30 3.63
Depressive Disorder Other 0.00 0.97 1.84 3.42
Enuresis Amphetamine 0.00 0.93 1.16 2.63
Enuresis Phenethylamine 0.00 0.93 0.58 0.48
Disorders of Excessive
Somnolence Other 0.00 0.88 1.74 0.99

Sexual Dysfunctions,
Psychological Tryptamine 0.00 0.88 1.68 4.06

Child Behavior Disorders Tryptamine 0.00 0.88 1.16 3.75
Phobic Disorders Amphetamine 0.00 0.87 0.58 0.92
Phobic Disorders Phenethylamine 0.00 0.87 0.58 0.31
Epilepsy, Tonic-Clonic Phenethylamine 0.00 0.86 0.91 2.48
Dysthymic Disorder Phenethylamine 0.00 0.77 1.00 2.75
Dysthymic Disorder Other 0.00 0.77 0.50 1.83
Impulse Control Disorders Tryptamine 0.00 0.76 4.35 7.93
Impulse Control Disorders Other 0.00 0.76 0.97 0.63
Alcoholism Cannabinoid 0.00 0.71 0.71 0.76
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SIMD Amphetamine 0.00 0.63 1.68 2.99
Dementia Phenethylamine 0.00 0.55 1.68 1.80
Consciousness Disorders Cathinone 0.00 0.55 1.41 2.49
Sleep Disorders Cathinone 0.00 0.50 0.66 1.13
Epilepsy, Complex Partial Other 0.00 0.47 1.33 1.84
Huntington Disease Other 0.00 0.45 1.40 1.19
Child Behavior Disorders Cathinone 0.00 0.44 1.16 1.87
Panic Disorder Other 0.00 0.42 2.08 3.95
Schizophrenia, Paranoid Other 0.00 0.40 1.68 2.52
Epilepsy Tryptamine 0.00 0.38 0.66 3.96
SIMD Phenethylamine 0.00 0.31 0.63 1.81
Cognition Disorders Phenethylamine 0.00 0.22 1.25 3.05
Motor Skills Disorders Phenethylamine 0.00 0.00 5.13 13.1
Dementia, Vascular Tryptamine 0.00 0.00 5.13 10.6
Gambling Tryptamine 0.00 0.00 5.13 7.07
Auditory Perceptual Disorders Phenethylamine 0.00 0.00 5.13 6.06
Motor Skills Disorders Amphetamine 0.00 0.00 5.13 3.03
Binge-Eating Disorder Other 0.00 0.00 4.55 2.38
Borderline Personality Disorder Other 0.00 0.00 3.53 2.13
Nocturnal Enuresis Tryptamine 0.00 0.00 2.99 3.56
Bulimia Nervosa Tryptamine 0.00 0.00 2.96 4.64
PTSD Tryptamine 0.00 0.00 2.79 8.19
Gambling Phenethylamine 0.00 0.00 2.56 4.04
Dementia, Multi-Infarct Other 0.00 0.00 2.56 3.03
Dementia, Multi-Infarct Amphetamine 0.00 0.00 2.56 2.02
Trichotillomania Tryptamine 0.00 0.00 2.56 2.02
Psychoses, Alcoholic Cathinone 0.00 0.00 2.56 1.01
Binge-Eating Disorder Cathinone 0.00 0.00 2.27 11.90
Schizophrenia, Catatonic Other 0.00 0.00 2.13 1.38
Developmental Disabilities Tryptamine 0.00 0.00 2.04 3.59
Epilepsy, Rolandic Other 0.00 0.00 1.83 2.33
Anorexia Nervosa Cathinone 0.00 0.00 1.71 3.03
Eating Disorders Phenethylamine 0.00 0.00 1.71 1.48
Panic Disorder Tryptamine 0.00 0.00 1.49 6.22
Amnesia, Anterograde Amphetamine 0.00 0.00 1.39 2.73
Alcohol Withdrawal Delirium Other 0.00 0.00 1.38 1.49
REM Sleep Behavior Disorder Other 0.00 0.00 1.30 2.86
Hypochondriasis Cannabinoid 0.00 0.00 1.28 1.01
Speech Disorders Other 0.00 0.00 1.28 0.51

continued on next page
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Table B.3.: continued

Indication Category Top
10

Top
25

Top
40

Top
100

Epilepsy, Temporal Lobe Other 0.00 0.00 1.27 2.07
Alcoholism Other 0.00 0.00 1.18 1.39
Seizures, Febrile Other 0.00 0.00 1.13 2.93
Epilepsy, Generalized Other 0.00 0.00 0.97 1.59
Epilepsy, Rolandic Tryptamine 0.00 0.00 0.92 2.71
Neurotic Disorders Phenethylamine 0.00 0.00 0.85 2.51
Eating Disorders Other 0.00 0.00 0.85 1.11
Neurotic Disorders Other 0.00 0.00 0.85 1.08
Epilepsies, Partial Other 0.00 0.00 0.78 1.46
Bulimia Nervosa Other 0.00 0.00 0.74 1.66
Substance-Related Disorders Phenethylamine 0.00 0.00 0.68 0.63
Alcohol Withdrawal Seizures Tryptamine 0.00 0.00 0.66 2.75
Alcohol Withdrawal Seizures Cathinone 0.00 0.00 0.66 0.83
Pica Phenethylamine 0.00 0.00 0.64 3.08
Pica Cannabinoid 0.00 0.00 0.64 0.51
Spasms, Infantile Other 0.00 0.00 0.59 1.59
Phobic Disorders Tryptamine 0.00 0.00 0.58 1.84
Agoraphobia Tryptamine 0.00 0.00 0.57 1.61
Seizures, Febrile Tryptamine 0.00 0.00 0.56 3.19
Affective Disorders, Psychotic Tryptamine 0.00 0.00 0.49 2.65
Epilepsy, Generalized Tryptamine 0.00 0.00 0.49 1.59
Impulse Control Disorders Cannabinoid 0.00 0.00 0.48 0.63
Impulse Control Disorders Amphetamine 0.00 0.00 0.48 0.42
Tobacco Use Disorder Cannabinoid 0.00 0.00 0.43 0.81
Epilepsy, Temporal Lobe Tryptamine 0.00 0.00 0.42 2.48
Opioid-Related Disorders Cannabinoid 0.00 0.00 0.34 0.63
Dementia Cannabinoid 0.00 0.00 0.34 0.30
Epilepsy, Complex Partial Tryptamine 0.00 0.00 0.33 2.67
Psychoses, Substance-Induced Cannabinoid 0.00 0.00 0.33 0.45
Obsessive-Compulsive Disorder Tryptamine 0.00 0.00 0.31 3.12
Epilepsy, Tonic-Clonic Tryptamine 0.00 0.00 0.30 2.17
Schizophrenia, Paranoid Tryptamine 0.00 0.00 0.28 2.97
Schizophrenia, Paranoid Cathinone 0.00 0.00 0.28 0.74
Epilepsy, Absence Cannabinoid 0.00 0.00 0.27 0.26
Epilepsies, Partial Tryptamine 0.00 0.00 0.26 2.12
Amnesia Cannabinoid 0.00 0.00 0.11 0.20
Dyspareunia Phenethylamine 0.00 0.00 0.00 6.57
Myoclonic Epilepsy, Juvenile Tryptamine 0.00 0.00 0.00 5.00
Narcolepsy Tryptamine 0.00 0.00 0.00 4.51

continued on next page
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Table B.3.: continued

Indication Category Top
10

Top
25

Top
40

Top
100

Enuresis Tryptamine 0.00 0.00 0.00 3.83
Dysthymic Disorder Tryptamine 0.00 0.00 0.00 3.67
Tic Disorders Amphetamine 0.00 0.00 0.00 3.35
Conduct Disorder Tryptamine 0.00 0.00 0.00 3.26
Gambling Cathinone 0.00 0.00 0.00 3.03
Pick Disease of the Brain Tryptamine 0.00 0.00 0.00 3.03
Borderline Personality Disorder Tryptamine 0.00 0.00 0.00 2.66
Binge-Eating Disorder Tryptamine 0.00 0.00 0.00 2.38
Schizophrenia, Childhood Tryptamine 0.00 0.00 0.00 2.06
Paraphilias Tryptamine 0.00 0.00 0.00 2.04
Lewy Body Disease Tryptamine 0.00 0.00 0.00 2.03
Dyspareunia Other 0.00 0.00 0.00 2.02
Fetishism (Psychiatric) Phenethylamine 0.00 0.00 0.00 2.02
Jet Lag Syndrome Phenethylamine 0.00 0.00 0.00 2.02
Seasonal Affective Disorder Phenethylamine 0.00 0.00 0.00 2.02
Sleep Disorders, Circadian
Rhythm Phenethylamine 0.00 0.00 0.00 2.02

Sleep-Wake Transition Disorders Tryptamine 0.00 0.00 0.00 2.02
Eating Disorders Tryptamine 0.00 0.00 0.00 1.85
Child Development Disorders,
Pervasive Tryptamine 0.00 0.00 0.00 1.80

Schizophrenia, Catatonic Tryptamine 0.00 0.00 0.00 1.72
Morphine Dependence Tryptamine 0.00 0.00 0.00 1.65
Dyspareunia Tryptamine 0.00 0.00 0.00 1.52
Child Development Disorders,
Pervasive Phenethylamine 0.00 0.00 0.00 1.50

Impulse Control Disorders Phenethylamine 0.00 0.00 0.00 1.46
ADHD Phenethylamine 0.00 0.00 0.00 1.29
Alcoholism Amphetamine 0.00 0.00 0.00 1.27
Nocturnal Enuresis Other 0.00 0.00 0.00 1.19
Alcoholic Intoxication Amphetamine 0.00 0.00 0.00 1.17
Schizophrenia, Disorganized Phenethylamine 0.00 0.00 0.00 1.16
Alcohol Withdrawal Seizures Phenethylamine 0.00 0.00 0.00 1.10
Myoclonic Epilepsies,
Progressive Other 0.00 0.00 0.00 1.03

Aphasia, Broca Other 0.00 0.00 0.00 1.01
Combat Disorders Phenethylamine 0.00 0.00 0.00 1.01
Dementia, Multi-Infarct Phenethylamine 0.00 0.00 0.00 1.01
Dementia, Vascular Cathinone 0.00 0.00 0.00 1.01

continued on next page
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Table B.3.: continued

Indication Category Top
10

Top
25

Top
40

Top
100

Depression, Postpartum Tryptamine 0.00 0.00 0.00 1.01
Fetishism (Psychiatric) Tryptamine 0.00 0.00 0.00 1.01
Jet Lag Syndrome Amphetamine 0.00 0.00 0.00 1.01
Jet Lag Syndrome Other 0.00 0.00 0.00 1.01
Motor Skills Disorders Tryptamine 0.00 0.00 0.00 1.01
Pick Disease of the Brain Other 0.00 0.00 0.00 1.01
Psychoses, Alcoholic Phenethylamine 0.00 0.00 0.00 1.01
Schizotypal Personality Other 0.00 0.00 0.00 1.01
Seasonal Affective Disorder Amphetamine 0.00 0.00 0.00 1.01
Seasonal Affective Disorder Other 0.00 0.00 0.00 1.01
Sleep Deprivation Other 0.00 0.00 0.00 1.01
Sleep Disorders, Circadian
Rhythm Amphetamine 0.00 0.00 0.00 1.01

Sleep Disorders, Circadian
Rhythm Other 0.00 0.00 0.00 1.01

Speech Disorders Amphetamine 0.00 0.00 0.00 1.01
Wernicke Encephalopathy Phenethylamine 0.00 0.00 0.00 1.01
Enuresis Other 0.00 0.00 0.00 0.96
Schizophrenia and
Psychotic Disorder Phenethylamine 0.00 0.00 0.00 0.94

Nocturnal Enuresis Phenethylamine 0.00 0.00 0.00 0.89
Alcohol Withdrawal Seizures Other 0.00 0.00 0.00 0.83
Disorders of Excessive
Somnolence Cathinone 0.00 0.00 0.00 0.74

Asperger Syndrome Amphetamine 0.00 0.00 0.00 0.67
Asperger Syndrome Phenethylamine 0.00 0.00 0.00 0.67
Asperger Syndrome Tryptamine 0.00 0.00 0.00 0.67
Intellectual Disability Amphetamine 0.00 0.00 0.00 0.67
Intellectual Disability Phenethylamine 0.00 0.00 0.00 0.67
Intellectual Disability Tryptamine 0.00 0.00 0.00 0.67
Huntington Disease Cathinone 0.00 0.00 0.00 0.66
Nocturnal Enuresis Cathinone 0.00 0.00 0.00 0.59
Schizophrenia, Disorganized Amphetamine 0.00 0.00 0.00 0.58
Schizophrenia, Disorganized Cathinone 0.00 0.00 0.00 0.58
Myoclonic Epilepsy, Juvenile Other 0.00 0.00 0.00 0.56
Sexual Dysfunctions,
Psychological Cathinone 0.00 0.00 0.00 0.52

Schizophrenia, Childhood Other 0.00 0.00 0.00 0.52
continued on next page



367

Table B.3.: continued

Indication Category Top
10

Top
25

Top
40

Top
100

Myoclonic Epilepsies,
Progressive Cathinone 0.00 0.00 0.00 0.51

Paraphilias Other 0.00 0.00 0.00 0.51
Lewy Body Disease Other 0.00 0.00 0.00 0.51
Frontotemporal Dementia Phenethylamine 0.00 0.00 0.00 0.51
Frontotemporal Dementia Tryptamine 0.00 0.00 0.00 0.51
Hypochondriasis Amphetamine 0.00 0.00 0.00 0.51
Hypochondriasis Phenethylamine 0.00 0.00 0.00 0.51
Neonatal Abstinence Syndrome Tryptamine 0.00 0.00 0.00 0.51
Disorders of Excessive
Somnolence Amphetamine 0.00 0.00 0.00 0.50

Schizophrenia and
Psychotic Disorder Amphetamine 0.00 0.00 0.00 0.47

Schizophrenia and
Psychotic Disorder Tryptamine 0.00 0.00 0.00 0.47

Alcohol Withdrawal Delirium Phenethylamine 0.00 0.00 0.00 0.43
Morphine Dependence Cannabinoid 0.00 0.00 0.00 0.41
Sexual Dysfunctions,
Psychological Other 0.00 0.00 0.00 0.39

Alcoholic Intoxication Other 0.00 0.00 0.00 0.39
Schizophrenia, Catatonic Phenethylamine 0.00 0.00 0.00 0.34
Anorexia Nervosa Tryptamine 0.00 0.00 0.00 0.34
Amnesia, Anterograde Cannabinoid 0.00 0.00 0.00 0.30
Seizures, Febrile Cathinone 0.00 0.00 0.00 0.27
Disorders of Excessive
Somnolence Cannabinoid 0.00 0.00 0.00 0.25

Enuresis Cathinone 0.00 0.00 0.00 0.24
Epilepsy, Generalized Cathinone 0.00 0.00 0.00 0.23
Alzheimer Disease Cannabinoid 0.00 0.00 0.00 0.22
Alcohol Withdrawal Delirium Cathinone 0.00 0.00 0.00 0.21
Erectile Dysfunction Cannabinoid 0.00 0.00 0.00 0.21
Amphetamine Disorders Cannabinoid 0.00 0.00 0.00 0.18
Autistic Disorder Cannabinoid 0.00 0.00 0.00 0.17
Cognition Disorders Cannabinoid 0.00 0.00 0.00 0.17
Delirium Cannabinoid 0.00 0.00 0.00 0.17
Consciousness Disorders Cannabinoid 0.00 0.00 0.00 0.16
Cataplexy Cannabinoid 0.00 0.00 0.00 0.15
Stereotypic Movement Disorder Cannabinoid 0.00 0.00 0.00 0.11
Status Epilepticus Cannabinoid 0.00 0.00 0.00 0.10

continued on next page
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Table B.4.
One-tailed KS-Test p-values for the statistical tests. The alternative
hypothesis for all tests that the distribution tested has a greater cu-
mulative distribution function than the randomized distributions.

Top
10

Top
25

Top
40 Top100

Normalized indication rank against
randomized indications 1.622e-14 7.392e-11 4.030e-10 4.449e-08

Normalized indication rank against
randomized compounds 1.805e-35 1.805e-35 1.694e-29 8.553e-21

Normalized compound rank against
randomized indications 1.960e-06 6.955e-10 2.445e-15 8.796e-13

Normalized compound rank against
randomized compounds 1.504e-07 7.772e-17 1.476e-23 4.665e-26

Table B.3.: continued

Indication Category Top
10

Top
25

Top
40

Top
100

Learning Disorders Cannabinoid 0.00 0.00 0.00 0.09
Schizophrenia Cannabinoid 0.00 0.00 0.00 0.08
Bipolar Disorder Cannabinoid 0.00 0.00 0.00 0.08

Table B.5.
One-tailed paired T-Test p-values for the statistical tests introduced
in Fig 1.2. The alternative hypothesis for all tests that the distribu-
tion tested has a greater cumulative distribution function than the
randomized distributions.

Top
10

Top
25

Top
40 Top100

Normalized compound rank against
randomized indications 7.846e-12 3.121e-18 2.250e-21 8.811e-37

Normalized compound rank against
randomized compounds 1.397e-08 1.345e-10 1.904e-08 8.247e-16
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Table B.6.
Indication-Indication association counts for the Top10 predictions.

Indication 1 Indication 2 Association
Depressive Disorder, Major Binge-Eating Disorder 2

Personality Disorders Binge-Eating
Disorder 2

Depressive Disorder, Major Bipolar Disorder 2

Epilepsies, Myoclonic Bipolar
Disorder 2

Amnesia Cataplexy 3

Depressive Disorder, Major Cocaine-Related
Disorders 5

Restless Legs Syndrome Cocaine-Related Disorders 3

Seizures Cocaine-Related
Disorders 2

Anxiety Disorders Depressive Disorder, Major 2

Epilepsies, Myoclonic Depressive
Disorder, Major 2

Amnesia Epilepsy 2
Amnesia Narcolepsy 2
Cataplexy Narcolepsy 2
Epilepsies, Myoclonic Narcolepsy 2
Bipolar Disorder Personality Disorders 4

Depressive Disorder, Major Personality
Disorders 3

Epilepsies, Myoclonic Personality Disorders 2
Depressive Disorder, Major Seizures 2
Epilepsies, Myoclonic Seizures 2

Cocaine-Related Disorders Substance
Withdrawal Syndrome 3
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Table B.7.
Indication-Indication association counts for the Top25 predictions

Indication 1 Indication 2 Assoc.
Amnesia Anxiety Disorders 2

Depressive Disorder, Major Anxiety
Disorders 2

Cocaine-Related Disorders ADHD 2

Depressive Disorder, Major Cocaine-Related
Disorders 10

Epilepsies, Myoclonic Cocaine-Related Disorders 7

Narcolepsy Cocaine-Related
Disorders 2

Seizures Cocaine-Related Disorders 9

Depressive Disorder, Major Epilepsies,
Myoclonic 7

Depressive Disorder, Major Narcolepsy 3
Epilepsies, Myoclonic Narcolepsy 3
Depressive Disorder, Major Seizures 8
Epilepsies, Myoclonic Seizures 10
Narcolepsy Seizures 2
Seizures SIMD 2
Substance Withdrawal Syndrome SIMD 2

Cocaine-Related Disorders Substance
Withdrawal Syndrome 3

Seizures Substance Withdrawal Syndrome 4
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Table B.8.
Indication-Indication association counts for the Top40 predictions

Indication 1 Indication 2 Assoc.
Cocaine-Related Disorders Alzheimer Disease 2

Seizures Anxiety
Disorders 2

Cocaine-Related Disorders ADHD 2

Anxiety Disorders Cocaine-Related
Disorders 2

Depressive Disorder, Major Cocaine-Related Disorders 10

Seizures Cocaine-Related
Disorders 13

Anxiety Disorders Depressive Disorder, Major 4

Seizures Depressive
Disorder, Major 9

Cocaine-Related Disorders Learning Disorders 3

Seizures Learning
Disorders 3

Substance Withdrawal Syndrome Learning Disorders 3
Depressive Disorder, Major Narcolepsy 2
Cocaine-Related Disorders Psychotic Disorders 3

Depressive Disorder, Major Psychotic
Disorders 2

Seizures Psychotic Disorders 2
Anxiety Disorders Schizophrenia 2
Cocaine-Related Disorders Schizophrenia 2
Depressive Disorder, Major Schizophrenia 2
Psychotic Disorders Schizophrenia 2
Seizures Schizophrenia 2
SIMDs Schizophrenia 2
Cocaine-Related Disorders SIMD 2
Depressive Disorder, Major SIMD 2
Psychotic Disorders SIMD 2
Seizures SIMD 2
Cocaine-Related Disorders Substance Withdrawal Syndrome 5
Depressive Disorder, Major Substance Withdrawal Syndrome 2
Psychotic Disorders Substance Withdrawal Syndrome 2
Schizophrenia Substance Withdrawal Syndrome 2
Seizures Substance Withdrawal Syndrome 5
SIMDs Substance Withdrawal Syndrome 2
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Table B.9.: Indication-Indication association counts for
the Top1000 predictions

Indication 1 Indication 2 Assoc.
Amnesia Alzheimer Disease 2

Cocaine-Related Disorders Alzheimer
Disease 3

Seizures Alzheimer Disease 2
Cocaine-Related Disorders Amnesia 4
Amnesia Anxiety Disorders 2

Cocaine-Related Disorders Anxiety
Disorders 11

Psychotic Disorders Anxiety Disorders 2
Cocaine-Related Disorders ADHD 5
Seizures ADHD 3

Amnesia Autistic
Disorder 3

Anxiety Disorders Autistic Disorder 4

Cocaine-Related Disorders Autistic
Disorder 8

Anxiety Disorders Depressive Disorder 2

Cocaine-Related Disorders Depressive
Disorder 4

Depressive Disorder, Major Depressive Disorder 2

Psychotic Disorders Depressive
Disorder 2

Schizophrenia Depressive Disorder 2

Seizures Depressive
Disorder 4

Substance Withdrawal Syndrome Depressive Disorder 2

Anxiety Disorders Depressive
Disorder, Major 7

Autistic Disorder Depressive Disorder, Major 2

Cocaine-Related Disorders Depressive
Disorder, Major 12

Psychotic Disorders Depressive Disorder, Major 2

Seizures Depressive
Disorder, Major 6

Cocaine-Related Disorders Psychotic Disorders 7
Anxiety Disorders Schizophrenia 3
ADHD Schizophrenia 2
Cocaine-Related Disorders Schizophrenia 5

continued on next page
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Table B.9.: continued

Indication 1 Indication 2 Assoc.
Psychotic Disorders Schizophrenia 3
Seizures Schizophrenia 4
Amnesia Seizures 7
Anxiety Disorders Seizures 9
Autistic Disorder Seizures 6
Cocaine-Related Disorders Seizures 23
Psychotic Disorders Seizures 5
Anxiety Disorders Sleep Disorders 2
Cocaine-Related Disorders Sleep Disorders 2
Depressive Disorder Sleep Disorders 2
Psychotic Disorders Sleep Disorders 2
Schizophrenia Sleep Disorders 2
Seizures Sleep Disorders 2
SIMD Sleep Disorders 2
Anxiety Disorders SIMDs 2
Cocaine-Related Disorders SIMD 2
Depressive Disorder SIMDs 2
Psychotic Disorders SIMD 2
Schizophrenia SIMD 2
Seizures SIMD 2
Cocaine-Related Disorders Substance Withdrawal Syndrome 5
Depressive Disorder, Major Substance Withdrawal Syndrome 2
Psychotic Disorders Substance Withdrawal Syndrome 2
Schizophrenia Substance Withdrawal Syndrome 2
Seizures Substance Withdrawal Syndrome 5
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C. ADDITIONAL FIGURES AND LISTINGS FOR CHAPTER 2.1

C.1 Results of Lemon Workflows

Histogram of chemical group count in the PDB

Chemical group count
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Figure C.1. Histogram showing the frequency of a given chemical
group count (maximum of 250). The X-axis is the chemical group
count. This count is independent of chemical environment is deter-
mined from the three-letter code given to chemical groups in the PDB.
For example, if the residue ’CFF’ occurs once in PDBID 142N and
thrice in PDBID 1L59, and occurs nowhere else in the PDB, then
it has a count of 4. The Y-axis gives the frequency for all chemical
group counts in the PDB. From this data we can conclude that the
majority of chemical groups occur only once in throughout the entire
PDB.
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Figure C.2. Histogram showing the frequency of bioassemblies (as
defined by the depositor of a PDB file) throughout the PDB.
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Figure C.3. Histograms of various geometries centered around the
peptide bond. These plots illustrate Lemon’s ability to mine geomet-
rical data from the PDB.
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C.2 Lemon Program Listings

C.2.1 Simple Workflows

Listing 1

C++ Lambda function to count the number of biological assemblies in the PDB.
This example illustrates how to obtain information about a residue/group property (in
this case symmetry) which could be used to determine if the user wishes to continue
calculation.

int main ( int argc , char∗ argv [ ] ) {
lemon : : Options o ( argc , argv ) ;
auto worker = [ ] ( ch emf i l e s : : Frame entry ,

const std : : s t r i n g& pdbid ) {
// Desired i n f o i s ob ta ined d i r e c t l y , no pruning
auto r e s u l t =

lemon : : count : : res idue_property ( entry ,
" assembly" ) ;

// Output phase
return pdbid + "␣" + std : : to_str ing ( r e s u l t ) + "\n" ;

} ;

auto c o l l e c t o r = lemon : : print_combine ( std : : cout ) ;
return lemon : : launch (o , worker , c o l l e c t o r ) ;

}

Listing 2

C++ Lambda function to determine the number of alternative atom locations in
all PDB entries. This example illustrates the use of an atomic property to potentially
screen entries which do not contain alternative locations.

int main ( int argc , char∗ argv [ ] ) {
lemon : : Options o ( argc , argv ) ;
auto worker = [ ] ( ch emf i l e s : : Frame entry ,

const std : : s t r i n g& pdbid ) {
// Desired i n f o i s ob ta ined d i r e c t l y
auto r e s u l t =

lemon : : count : : atom_property ( entry , " a l t l o c " ) ;

// Output phase
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return pdbid + "␣" + std : : to_str ing ( r e s u l t ) + "\n" ;
} ;

auto c o l l e c t o r = lemon : : print_combine ( std : : cout ) ;
return lemon : : launch (o , worker , c o l l e c t o r ) ;

}

Listing 3

C++ Lambda function to select metal ions in the PDB. This workflow shows how
the selection phase of a Lemon workflow works by filling a generic STL container with
the desired residue ids. The output is the pdbid followed by all the metal ions found
in the corresponding entry.

int main ( int argc , char∗ argv [ ] ) {
lemon : : Options o ( argc , argv ) ;
auto worker = [ ] ( ch emf i l e s : : Frame entry ,

const std : : s t r i n g& pdbid ) {

// Se l e c t i o n phase
std : : l i s t <size_t> metal_ids ;
lemon : : s e l e c t : : metal_ions ( entry , metal_ids ) ;

// No pruning , s t r a i g h t to output phase
return pdbid +

lemon : : count : : print_residue_names ( entry ,
metal_ids ) ;

} ;

auto c o l l e c t o r = lemon : : print_combine ( std : : cout ) ;
return lemon : : launch (o , worker , c o l l e c t o r ) ;

}

Listing 4

C++ Lambda function to determine the occurrence of all residues in the PDB.
The purpose of this workflow is to show that one can return more than strings from
a C++ lambda function as long they use a different ‘combine’ function object to
handle this return value. The concept of ‘combine’ functions is detailed in the online
documentation along with this example to illustrate it. It outputs all three-letter
residue names and the number of times each is found throughout all entries in the
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PDB. Note that residues may occur multiple times in a single entry and this is reflected
in this lambda.

int main ( int argc , char∗ argv [ ] ) {
lemon : : Options o ( argc , argv ) ;

auto worker = [ ] ( ch emf i l e s : : Frame entry ,
const std : : s t r i n g&) {

// Desired i n f o i s c a l c u l a t e d d i r e c t l y , no pruning ,
// output i s done l a t e r
lemon : : ResidueNameCount rnc ;
lemon : : count : : r e s i du e s ( entry , rnc ) ;
return rnc ;

} ;

lemon : : ResidueNameCount re sn_tota l ;
auto c o l l e c t o r =

lemon : : map_combine<lemon : : ResidueNameCount>
( resn_tota l ) ;

lemon : : launch (o , worker , c o l l e c t o r ) ;

for (auto i : r e sn_tota l ) {
std : : cout << i . f i r s t << "\ t " << i . second << "\n" ;

}
}

Listing 5

This example workflow combines concepts from the past two workflows to show
that ‘selection’ can be combined with other workflow concepts via the separate func-
tionality. Separate allows one to create a subset of an entry and perform further
calculations on just the subset. This workflow is similar to above listing, but only
prints residues with peptide linkage.

int main ( int argc , char∗ argv [ ] ) {
lemon : : Options o ( argc , argv ) ;
auto worker = [ ] ( ch emf i l e s : : Frame entry ,

const std : : s t r i n g&) {
lemon : : ResidueNameCount rnc ;
// Se l e c t i o n phase
ch emf i l e s : : Frame prote in_only ;
auto pept ide s = lemon : : s e l e c t : : p ept ide s ( entry ) ;

i f ( pept ide s . s i z e ( ) == 0) {
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return rnc ;
}
lemon : : s epara t e : : r e s i du e s ( entry ,

pept ides , prote in_only ) ;
// Output phase
lemon : : count : : r e s i du e s ( protein_only , rnc ) ;
return rnc ;

} ;
lemon : : ResidueNameCount re sn_tota l ;
auto c o l l e c t o r =

lemon : : map_combine<lemon : : ResidueNameCount>
( resn_tota l ) ;

lemon : : launch (o , worker , c o l l e c t o r ) ;
for (auto i : r e sn_tota l ) {

std : : cout << i . f i r s t << "\ t " << i . second << "\n" ;
}

}

Listing 6

This workflow is designed to introduce pruning to the user. In this specific exam-
ple, selected small molecules are pruned by removing common cofactors and common
fatty acids. No detailed calculations are performed yet, but such calculations will be
introduced in the next workflows.

int main ( int argc , char∗ argv [ ] ) {
lemon : : Options o ( argc , argv ) ;

auto worker = [ ] ( ch emf i l e s : : Frame entry ,
const std : : s t r i n g& pdbid ) {

// Se l e c t i o n phase
std : : l i s t <size_t> smallm ;
i f ( lemon : : s e l e c t : : smal l_molecules ( entry ,

smallm ) == 0) {
return std : : s t r i n g ( "" ) ;

}

// Pruning phase
lemon : : prune : : i d e n t i c a l_ r e s i du e s ( entry , smallm ) ;
lemon : : prune : : c o f a c t o r s ( entry , smallm ,

lemon : : common_cofactors ) ;
lemon : : prune : : c o f a c t o r s ( entry , smallm ,
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lemon : : common_fatty_acids ) ;

// Output phase
return pdbid +

lemon : : count : : print_residue_names ( entry ,
smallm ) ;

} ;

auto c o l l e c t o r = lemon : : print_combine ( std : : cout ) ;
return lemon : : launch (o , worker , c o l l e c t o r ) ;

}

C.2.2 Distance–Based Workflows

Listing 7

C++ Lambda function to determine the number of small molecules which interact
with a metal ion within a distance cutoff. This workflow is designed to show how to
select two different groups and perform a distance-based pruning operation on the
two groups. It also introduces the concept of obtaining command-line arguments.

int main ( int argc , char∗ argv [ ] ) {
lemon : : Options o ;
auto d i s t ance = 6 . 0 ;
o . add_option ( "−−di s tance ,−d" , d i s tance ,

" Largest ␣ d i s t anc e " ) ;
o . parse_command_line ( argc , argv ) ;
auto worker = [ d i s t anc e ] ( ch emf i l e s : : Frame entry ,

const std : : s t r i n g& pdbid ) {
// Se l e c t i o n phase
auto metals = lemon : : s e l e c t : : metal_ions ( entry ) ;
auto smallm = lemon : : s e l e c t : : smal l_molecules ( entry ) ;
// Pruning phase
lemon : : prune : : i d e n t i c a l_ r e s i du e s ( entry , smallm ) ;
lemon : : prune : : c o f a c t o r s ( entry , smallm ,

lemon : : common_cofactors ) ;
lemon : : prune : : c o f a c t o r s ( entry , smallm ,

lemon : : common_fatty_acids ) ;
lemon : : prune : : keep_inte rac t i ons ( entry , smallm ,

metals , d i s t anc e ) ;
// Output phase
return pdbid +

lemon : : count : : print_residue_names ( entry ,
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smallm ) ;
} ;
auto c o l l e c t o r = lemon : : print_combine ( std : : cout ) ;
return lemon : : launch (o , worker , c o l l e c t o r ) ;

}

Listing 8

C++ Lambda function to determine the number of small molecules which interact
with a Heme group within a distance cutoff. This is similar to the last workflow and
illustrates how selectors can be used to find cofactors instead of metal ion.

int main ( int argc , char∗ argv [ ] ) {
lemon : : Options o ;
auto d i s t ance = 6 . 0 ;
o . add_option ( "−−di s tance ,−d" , d i s tance ,

" Largest ␣ d i s t anc e " ) ;
o . parse_command_line ( argc , argv ) ;
auto worker = [ d i s t anc e ] ( ch emf i l e s : : Frame entry ,

const std : : s t r i n g& pdbid ) {
// Se l e c t i o n phase
auto hemegs = lemon : : s e l e c t : : s p e c i f i c_ r e s i d u e s (

entry , {"HEM" , "HEA" , "HEB" , "HEC" } ) ;
auto smallm = lemon : : s e l e c t : : smal l_molecules ( entry ) ;
// Pruning phase
lemon : : prune : : i d e n t i c a l_ r e s i du e s ( entry , smallm ) ;
lemon : : prune : : c o f a c t o r s ( entry , smallm ,

lemon : : common_cofactors ) ;
lemon : : prune : : c o f a c t o r s ( entry , smallm ,

lemon : : common_fatty_acids ) ;
lemon : : prune : : keep_inte rac t i ons ( entry , smallm ,

hemegs , d i s t ance ) ;
// Output phase
return pdbid +

lemon : : count : : print_residue_names ( entry ,
smallm ) ;

} ;
auto c o l l e c t o r = lemon : : print_combine ( std : : cout ) ;
return lemon : : launch (o , worker , c o l l e c t o r ) ;

}
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Listing 9

C++ Lambda function to determine the number of small molecules which interact
with a SAM molecule within a distance cutoff. This workflow is similar in spirit to
the previous one. It was written by request of a user interested in the interaction of
ligands with this cofactor.

int main ( int argc , char∗ argv [ ] ) {
lemon : : Options o ;
auto d i s t ance = 6 . 0 ;
o . add_option ( "−−di s tance ,−d" , d i s tance ,

" Largest ␣ d i s t anc e " ) ;
o . parse_command_line ( argc , argv ) ;
auto worker = [ d i s t anc e ] ( ch emf i l e s : : Frame entry ,

const std : : s t r i n g& pdbid ) {
// Se l e c t i o n phase
auto sam =

lemon : : s e l e c t : : s p e c i f i c_ r e s i d u e s ( entry ,
{"SAM" } ) ;

auto smallm = lemon : : s e l e c t : : smal l_molecules ( entry ) ;
// Pruning phase
lemon : : prune : : i d e n t i c a l_ r e s i du e s ( entry , smallm ) ;
lemon : : prune : : c o f a c t o r s ( entry , smallm ,

lemon : : common_cofactors ) ;
lemon : : prune : : c o f a c t o r s ( entry , smallm ,

lemon : : common_fatty_acids ) ;
lemon : : prune : : keep_inte rac t i ons ( entry , smallm ,

sam , d i s t anc e ) ;
// Output phase
return pdbid +

lemon : : count : : print_residue_names ( entry ,
smallm ) ;

} ;

auto c o l l e c t o r = lemon : : print_combine ( std : : cout ) ;
return lemon : : launch (o , worker , c o l l e c t o r ) ;

}

Listing 10

C++ Lambda function to find small molecules which do not interact with any
water molecules within a distance cutoff. Water is an important consideration when
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predicting the pose of a ligand in a binding site and therefore many users may wish
to find ligands which are within a given proximity to water.

int main ( int argc , char∗ argv [ ] ) {
lemon : : Options o ;
auto d i s t ance = 6 . 0 ;
o . add_option ( "−−di s tance ,−d" , d i s tance ,

" Largest ␣ d i s t anc e " ) ;
o . parse_command_line ( argc , argv ) ;

auto worker = [ d i s t anc e ] ( ch emf i l e s : : Frame entry ,
const std : : s t r i n g& pdbid ) {

// Se l e c t i o n phase
auto waters =

lemon : : s e l e c t : : s p e c i f i c_ r e s i d u e s ( entry , {"HOH" } ) ;
auto smallm = lemon : : s e l e c t : : smal l_molecules ( entry ) ;
// Pruning phase
lemon : : prune : : i d e n t i c a l_ r e s i du e s ( entry , smallm ) ;
lemon : : prune : : c o f a c t o r s ( entry , smallm ,

lemon : : common_cofactors ) ;
lemon : : prune : : c o f a c t o r s ( entry , smallm ,

lemon : : common_fatty_acids ) ;
lemon : : prune : : remove_interact ions ( entry , smallm ,

waters , d i s t anc e ) ;
// Output phase
return pdbid +

lemon : : count : : print_residue_names ( entry ,
smallm ) ;

} ;
auto c o l l e c t o r = lemon : : print_combine ( std : : cout ) ;
return lemon : : launch (o , worker , c o l l e c t o r ) ;

}

Listing 11

C++ Lambda function to find small molecules which interact with an amino
acid chemical group. These interactions are crucial to developing small-molecule
therapeutics and are thus of great important to the medicinal chemistry community.

int main ( int argc , char∗ argv [ ] ) {
lemon : : Options o ;
auto d i s t ance = 6 . 0 ;
o . add_option ( "−−di s tance ,−d" , d i s tance ,

" Largest ␣ d i s t anc e " ) ;
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o . parse_command_line ( argc , argv ) ;
auto worker = [ d i s t anc e ] ( ch emf i l e s : : Frame entry ,

const std : : s t r i n g& pdbid ) {
// Se l e c t i o n phase
auto pept ide s = lemon : : s e l e c t : : p ept ide s ( entry ) ;
auto smallm = lemon : : s e l e c t : : smal l_molecules ( entry ) ;
// Pruning phase
lemon : : prune : : i d e n t i c a l_ r e s i du e s ( entry , smallm ) ;
lemon : : prune : : c o f a c t o r s ( entry , smallm ,

lemon : : common_cofactors ) ;
lemon : : prune : : c o f a c t o r s ( entry , smallm ,

lemon : : common_fatty_acids ) ;
lemon : : prune : : keep_inte rac t i ons ( entry , smallm ,

pept ides , d i s t anc e ) ;
// Output phase
return pdbid +

lemon : : count : : print_residue_names ( entry ,
smallm ) ;

} ;

auto c o l l e c t o r = lemon : : print_combine ( std : : cout ) ;
return lemon : : launch (o , worker , c o l l e c t o r ) ;

}

Listing 12

C++ Lambda function to find small molecules which interact with a nucleic acid
chemical group. This example was written by request from a user wishing to study
the interactions between RNA and small-molecules.

int main ( int argc , char∗ argv [ ] ) {
lemon : : Options o ;
auto d i s t ance = 6 . 0 ;
o . add_option ( "−−di s tance ,−d" , d i s tance ,

" Largest ␣ d i s t anc e " ) ;
o . parse_command_line ( argc , argv ) ;
auto worker = [ d i s t anc e ] ( ch emf i l e s : : Frame entry ,

const std : : s t r i n g& pdbid ) {
// Se l e c t i o n phase
auto nuc l e i c_ac id s =

lemon : : s e l e c t : : nuc l e i c_ac id s ( entry ) ;
auto smallm = lemon : : s e l e c t : : smal l_molecules ( entry ) ;
// Pruning phase
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lemon : : prune : : i d e n t i c a l_ r e s i du e s ( entry , smallm ) ;
lemon : : prune : : c o f a c t o r s ( entry , smallm ,

lemon : : common_cofactors ) ;
lemon : : prune : : c o f a c t o r s ( entry , smallm ,

lemon : : common_fatty_acids ) ;
lemon : : prune : : keep_inte rac t i ons ( entry , smallm ,

nuc le i c_ac ids ,
d i s t ance ) ;

// Output phase
return pdbid +

lemon : : count : : print_residue_names ( entry ,
smallm ) ;

} ;
auto c o l l e c t o r = lemon : : print_combine ( std : : cout ) ;
return lemon : : launch (o , worker , c o l l e c t o r ) ;

}

C.2.3 Complex Workflows

Listing 13

Lemon C++ Workflow to align all structures to a given reference structure using
the TMalign algorithm and print the corresponding scores.

int main ( int argc , char∗ argv [ ] ) {
lemon : : Options o ;
auto r e f e r e n c e = std : : s t r i n g ( " r e f e r e n c e . pdb" ) ;
o . add_option ( "−−r e f e r en c e ,− r " , r e f e r en c e ,

" Prote in ␣ or ␣DNA␣ to ␣ a l i g n ␣ to . ")−>
check (CLI : : Ex i s t i n gF i l e ) ;

o . parse_command_line ( argc , argv ) ;
ch emf i l e s : : Tra j ec tory t r a j ( r e f e r e n c e ) ;
ch emf i l e s : : Frame nat ive = t r a j . read ( ) ;
auto worker = [& nat ive ] ( ch emf i l e s : : Frame entry ,

const std : : s t r i n g& pdbid ) {
std : : vector<chemf i l e s : : Vector3D> junk ;
auto tm = lemon : : tmal ign : : TMscore ( entry ,

nat ive , junk ) ;
return pdbid + "\ t " +

std : : to_str ing (tm . s co r e ) + "\ t " +
std : : to_str ing (tm . rmsd ) + "\ t " +
std : : to_str ing (tm . a l i gned ) + "\n" ;



386

} ;
auto c o l l e c t o r = lemon : : print_combine ( std : : cout ) ;
return lemon : : launch (o , worker , c o l l e c t o r ) ;

}

Listing 14

Lemon C++ Workflow to calculate the docking score of all small-molecules with
the surrounding environment using the scoring function published with AutoDOCK
Vina.

int main ( int argc , char∗ argv [ ] ) {
lemon : : Options o ( argc , argv ) ;
auto worker = [ ] ( ch emf i l e s : : Frame entry ,

const std : : s t r i n g& pdbid ) {
// Se l e c t i o n phase
std : : l i s t <size_t> smallm ;
i f ( lemon : : s e l e c t : : smal l_molecules ( entry ,

smallm ) == 0) {
return std : : s t r i n g ( "" ) ;

}
// Pruning phase
lemon : : prune : : i d e n t i c a l_ r e s i du e s ( entry , smallm ) ;
lemon : : prune : : c o f a c t o r s ( entry , smallm ,

lemon : : common_cofactors ) ;
lemon : : prune : : c o f a c t o r s ( entry , smallm ,

lemon : : common_fatty_acids ) ;
// Output phase
const auto& re s i du e s = entry . topo logy ( ) . r e s i du e s ( ) ;
s td : : l i s t <size_t> pro t e i n s ;
for ( s i ze_t i = 0 ;

i < entry . topology ( ) . r e s i du e s ( ) . s i z e ( ) ;
++i ) {
p r o t e i n s . push_back ( i ) ;

}
std : : s t r i n g r e s u l t ;
for (auto smallm_id : smallm ) {

auto prot_copy = pro t e i n s ;
lemon : : prune : : keep_inte rac t i ons ( entry , smallm ,

prot_copy , 8 . 0 ) ;
prot_copy . e r a s e ( std : : remove ( prot_copy . begin ( ) ,

prot_copy . end ( ) ,
smallm_id ) ) ;
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auto vscore =
lemon : : x score : : v ina_score ( entry , smallm_id ,

prot_copy ) ;
r e s u l t += pdbid + "\ t " +

r e s i du e s [ smallm_id ] . name ( ) + "\ t " +
std : : to_str ing ( vscore . g1 ) + "\ t " +
std : : to_str ing ( vscore . g2 ) + "\ t " +
std : : to_str ing ( vscore . hydrogen ) + "\ t " +
std : : to_str ing ( vscore . hydrophobic ) + "\ t " +
std : : to_str ing ( vscore . rep ) + "\n" ;

}
return r e s u l t ;

} ;
auto c o l l e c t o r = lemon : : print_combine ( std : : cout ) ;
return lemon : : launch (o , worker , c o l l e c t o r ) ;

}

Listing 15

C++ Lambda function to calculate all bond distances in the PDB.

// t y p ed e f s f o r binned data
typedef std : : pa ir<std : : s t r i ng , s ize_t> BondStretchBin ;
typedef std : : map<BondStretchBin , s ize_t> StretchCounts ;

using lemon : : geometry : : p ro t e i n : : bond_name ;

int main ( int argc , char∗ argv [ ] ) {
lemon : : Options o ;
auto bin_size = 0 . 0 1 ;
o . add_option ( "−−bin_size ,−b" , bin_size ,

" S i z e ␣ o f ␣ the ␣ l ength ( s t r e t c h ) ␣bin . " ) ;
o . parse_command_line ( argc , argv ) ;

auto worker = [ b in_s ize ] ( ch emf i l e s : : Frame entry ,
const std : : s t r i n g& pdbid ) {

StretchCounts b ins ;
// Se l e c t i o n phase
ch emf i l e s : : Frame prote in_only ;
std : : l i s t <size_t> pept ide s ;
i f ( lemon : : s e l e c t : : s p e c i f i c_ r e s i d u e s (

entry , pept ides ,
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lemon : : common_peptides ) == 0) {
return bins ;

}
lemon : : s epara t e : : r e s i du e s ( entry , pept ides ,

prote in_only ) ;
const auto& bonds = prote in_only . topology ( ) . bonds ( ) ;
for ( const auto& bond : bonds ) {

std : : s t r i n g bondnm ;
try {

bondnm = bond_name( protein_only , bond ) ;
}
catch ( lemon : : geometry : : geometry_error& e ) {

auto msg = pdbid + " : ␣" + e . what ( ) + ’ \n ’ ;
s td : : c e r r << msg ;

}
auto d i s t ance = prote in_only . d i s t anc e ( bond [ 0 ] ,

bond [ 1 ] ) ;
s i z e_t bin = static_cast<size_t >(

std : : f l o o r ( d i s t ance /
b in_s ize ) ) ;

BondStretchBin sb in = {bondnm , bin } ;
auto b in_i t e ra to r = bins . f i nd ( sb in ) ;
i f ( b in_i t e ra to r == bins . end ( ) ) {

b ins [ sb in ] = 1 ;
continue ;

}
++(b in_ite rator−>second ) ;

}
return bins ;

} ;
StretchCounts sc_tota l ;
auto c o l l e c t o r =

lemon : : map_combine<StretchCounts >( sc_tota l ) ;
lemon : : launch (o , worker , c o l l e c t o r ) ;
for ( const auto& i : sc_tota l ) {

std : : cout << i . f i r s t . f i r s t << "\ t "
<< static_cast<double>( i . f i r s t . second ) ∗

bin_size << "\ t "
<< i . second << "\n" ;

}
return 0 ;

}
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Listing 16

C++ Lambda function to calculate all bond angles in the PDB.

// t y p ed e f s f o r binned data
typedef std : : pa ir<std : : s t r i ng , s ize_t> BondAngleBin ;
typedef std : : map<BondAngleBin , s ize_t> AngleCounts ;

using lemon : : geometry : : p ro t e i n : : angle_name ;

int main ( int argc , char∗ argv [ ] ) {
lemon : : Options o ;
auto bin_size = 0 . 0 1 ;
o . add_option ( "−−bin_size ,−b" , bin_size ,

" S i z e ␣ o f ␣ the ␣ ang le ␣bin . " ) ;
o . parse_command_line ( argc , argv ) ;
auto worker = [ b in_s ize ] ( ch emf i l e s : : Frame entry ,

const std : : s t r i n g& pdbid ) {
AngleCounts b ins ;
// Se l e c t i o n phase
ch emf i l e s : : Frame prote in_only ;
std : : l i s t <size_t> pept ide s ;
i f ( lemon : : s e l e c t : : s p e c i f i c_ r e s i d u e s (

entry , pept ides ,
lemon : : common_peptides ) == 0) {

return bins ;
}
lemon : : s epara t e : : r e s i du e s ( entry , pept ides ,

prote in_only ) ;
const auto& ang l e s =

prote in_only . topology ( ) . ang l e s ( ) ;
for ( const auto& angle : ang l e s ) {

std : : s t r i n g anglenm ;
try {

anglenm = angle_name ( protein_only , ang le ) ;
}
catch ( lemon : : geometry : : geometry_error& e ) {

auto msg = pdbid + " : ␣" + e . what ( ) + ’ \n ’ ;
s td : : c e r r << msg ;

}
auto theta = prote in_only . ang le ( ang le [ 0 ] ,

ang le [ 1 ] ,
ang le [ 2 ] ) ;
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s i ze_t bin = static_cast<size_t>
( std : : f l o o r ( theta / bin_s ize ) ) ;

BondAngleBin sb in = {anglenm , bin } ;
auto b in_i t e ra to r = bins . f i nd ( sb in ) ;
i f ( b in_i t e ra to r == bins . end ( ) ) {

b ins [ sb in ] = 1 ;
continue ;

}
++(b in_ite rator−>second ) ;

}
return bins ;

} ;
AngleCounts sc_tota l ;
auto c o l l e c t o r =

lemon : : map_combine<AngleCounts>( sc_tota l ) ;
lemon : : launch (o , worker , c o l l e c t o r ) ;
for ( const auto& i : sc_tota l ) {

std : : cout << i . f i r s t . f i r s t << "\ t "
<< static_cast<double>( i . f i r s t . second ) ∗

bin_size << "\ t "
<< i . second << "\n" ;

}
return 0 ;

}

Listing 17

C++ Lambda function to calculate all bond improper dihedrals in the PDB.

// t y p ed e f s f o r binned data
typedef std : : pa ir<std : : s t r i ng , int> BondImproperBin ;
typedef std : : map<BondImproperBin , s ize_t> ImproperCounts ;

using lemon : : geometry : : p ro t e i n : : improper_name ;

int main ( int argc , char∗ argv [ ] ) {
lemon : : Options o ;
auto bin_size = 0 . 0 1 ;
o . add_option ( "−−bin_size ,−b" , bin_size ,

" S i z e ␣ o f ␣ the ␣ improper−d ihed ra l ␣ bin . " ) ;
o . parse_command_line ( argc , argv ) ;
auto worker = [ b in_s ize ] ( ch emf i l e s : : Frame entry ,

const std : : s t r i n g& pdbid ) {
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ImproperCounts b ins ;
// Se l e c t i o n phase
ch emf i l e s : : Frame prote in_only ;
std : : l i s t <size_t> pept ide s ;
i f ( lemon : : s e l e c t : : s p e c i f i c_ r e s i d u e s (

entry , pept ides ,
lemon : : common_peptides ) == 0) {

return bins ;
}
lemon : : s epara t e : : r e s i du e s ( entry , pept ides ,

prote in_only ) ;
prote in_only . s e t_c e l l ( entry . c e l l ( ) ) ;
const auto& impropers =

prote in_only . topology ( ) . impropers ( ) ;
for ( const auto& improper : impropers ) {

std : : s t r i n g impropernm ;
try {

impropernm = improper_name ( protein_only ,
improper ) ;

}
catch ( lemon : : geometry : : geometry_error& e ) {

auto msg = pdbid + " : ␣" + e . what ( ) + ’ \n ’ ;
s td : : c e r r << msg ;

}
auto theta = prote in_only . out_of_plane (

improper [ 0 ] ,
improper [ 1 ] ,
improper [ 2 ] ,
improper [ 3 ] ) ;

int bin = static_cast<int>
( std : : f l o o r ( theta / bin_s ize ) ) ;

BondImproperBin sb in = {impropernm , bin } ;
auto b in_i t e ra to r = bins . f i nd ( sb in ) ;
i f ( b in_i t e ra to r == bins . end ( ) ) {

b ins [ sb in ] = 1 ;
continue ;

}
++(b in_ite rator−>second ) ;

}
return bins ;

} ;
ImproperCounts sc_tota l ;
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auto c o l l e c t o r =
lemon : : map_combine<ImproperCounts>( sc_tota l ) ;

lemon : : launch (o , worker , c o l l e c t o r ) ;
for ( const auto& i : sc_tota l ) {

std : : cout << i . f i r s t . f i r s t << "\ t "
<< static_cast<double>( i . f i r s t . second ) ∗

bin_size << "\ t "
<< i . second << "\n" ;

}
return 0 ;

}

Listing 18

C++ Lambda function to calculate all bond dihedrals in the PDB.

// t y p ed e f s f o r binned data
typedef std : : pa ir<std : : s t r i ng , int> BondDihedralBin ;
typedef std : : map<BondDihedralBin , s ize_t> DihedralCounts ;

using lemon : : geometry : : p ro t e i n : : dihedral_name ;

int main ( int argc , char∗ argv [ ] ) {
lemon : : Options o ;
auto bin_size = 0 . 0 1 ;
o . add_option ( "−−bin_size ,−b" , bin_size ,

" S i z e ␣ o f ␣ the ␣ d ihed ra l ␣ bin . " ) ;
o . parse_command_line ( argc , argv ) ;
auto worker = [ b in_s ize ] ( ch emf i l e s : : Frame entry ,

const std : : s t r i n g& pdbid ) {
DihedralCounts b ins ;

// Se l e c t i o n phase
ch emf i l e s : : Frame prote in_only ;
std : : l i s t <size_t> pept ide s ;
i f ( lemon : : s e l e c t : : s p e c i f i c_ r e s i d u e s (

entry , pept ides ,
lemon : : common_peptides ) == 0) {

return bins ;
}
lemon : : s epara t e : : r e s i du e s (

entry , pept ides , prote in_only ) ;
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prote in_only . s e t_c e l l ( entry . c e l l ( ) ) ;

const auto& d ih ed r a l s =
prote in_only . topology ( ) . d i h ed r a l s ( ) ;

for ( const auto& dihed ra l : d i h ed r a l s ) {
std : : s t r i n g dihedralnm ;
try {

dihedralnm = dihedral_name ( protein_only ,
d ih ed ra l ) ;

}
catch ( lemon : : geometry : : geometry_error& e ) {

auto msg = pdbid + " : ␣" + e . what ( ) + ’ \n ’ ;
s td : : c e r r << msg ;

}
auto theta = prote in_only . d ih ed ra l ( d ih ed ra l [ 0 ] ,

d i h ed ra l [ 1 ] ,
d i h ed ra l [ 2 ] ,
d i h ed ra l [ 3 ] ) ;

int bin = static_cast<int>
( std : : f l o o r ( theta / bin_s ize ) ) ;

BondDihedralBin sb in = {dihedralnm , bin } ;
auto b in_i t e ra to r = bins . f i nd ( sb in ) ;
i f ( b in_i t e ra to r == bins . end ( ) ) {

b ins [ sb in ] = 1 ;
continue ;

}
++(b in_ite rator−>second ) ;

}
return bins ;

} ;
DihedralCounts sc_tota l ;
auto c o l l e c t o r = lemon : : map_combine<DihedralCounts>

( sc_tota l ) ;
lemon : : launch (o , worker , c o l l e c t o r ) ;
for ( const auto& i : sc_tota l ) {

std : : cout << i . f i r s t . f i r s t << "\ t "
<< static_cast<double>( i . f i r s t . second ) ∗

bin_size << "\ t "
<< i . second << "\n" ;
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}
return 0 ;

}

C.2.4 Workflows written in Python

Listing 19

This workflow is a port of Listing 6 and is an example of a ‘simple’ workflow
that includes the ‘selection’ and ‘pruning’ of chemical groups. It illustrates how easy
converting between Python and C++ implementations of lemon can be if one follows
the recommend workflow development pipeline.

import lemon

class MyWorkflow( lemon . Workflow ) :
def worker ( s e l f , entry , pdbid ) :

import lemon
smallm = lemon . se l ec t_smal l_molecu les (

entry , lemon . small_molecule_types , 10)

# Pruning phase
lemon . prune_ident i ca l_res idues ( entry , smallm )
lemon . prune_cofactors ( entry , smallm ,

lemon . common_cofactors )
lemon . prune_cofactors ( entry , smallm ,

lemon . common_fatty_acids )

# Output phase
return pdbid +

lemon . count_print_residue_names ( entry ,
smallm )

Listing 20

This workflow is a Python port of Listing 10 and again illustrates the similarities
shared between the C++ and Python APIs.

import lemon

class MyWorkflow( lemon . Workflow ) :
def worker ( s e l f , entry , pdbid ) :

import lemon
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wat_name = lemon . ResidueNameSet ( )
wat_name . append ( lemon . ResidueName ( "HOH" ) )
waters = lemon . s e l e c t_ sp e c i f i c_ r e s i d u e s ( entry ,

wat_name)
smallm = lemon . se l ec t_smal l_molecu les (

entry , lemon . small_molecule_types , 10)

# Pruning phase
lemon . prune_ident i ca l_res idues ( entry , smallm )
lemon . prune_cofactors ( entry , smallm ,

lemon . common_cofactors )
lemon . prune_cofactors ( entry , smallm ,

lemon . common_fatty_acids )
lemon . keep_inte rac t i ons ( entry , smallm , waters , 6 . 0 )

# Output phase
return pdbid +

lemon . count_print_residue_names ( entry ,
smallm ) +

’ \n ’

Listing 21

This workflow is a Python port of Listing 17 and is an example of a ‘complex’
workflow implemented in Python. It is also an example of how to implement more
functionality in the Python derived subclass.

from __future__ import pr int_funct ion
import lemon

class MyWorkflow( lemon . Workflow ) :
def __init__( s e l f ) :

import lemon

# This l i n e i s very important !
lemon . Workflow . __init__( s e l f )
s e l f . d ihedra l_d ic t = {}

def worker ( s e l f , entry , pdbid ) :
import lemon
import math

prote in_only = lemon . Frame ( )
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pept ide s = lemon . ResidueIDs ( )
i f ( lemon . s e l e c t_ sp e c i f i c_ r e s i d u e s (

entry , pept ides ,
lemon . common_peptides ) == 0 ) :

return ""

lemon . s epara te_res idues ( entry , pept ides ,
prote in_only )

d i h ed r a l s = prote in_only . topology ( ) . d i h ed r a l s ( )
for d ihed ra l in d ih ed r a l s :

dihedralnm = ""
try :

dihedralnm = lemon . protein_dihedral_name (
protein_only , d ihedra l ,
lemon . p ro l i n e_re s )

except lemon . GeometryError as e r r o r :
return pdbid + " : ␣" + ’ e r r o r ’ + ’ \n ’

theta = prote in_only . d ih ed ra l ( d ih ed ra l [ 0 ] ,
d i h ed ra l [ 1 ] ,
d i h ed ra l [ 2 ] ,
d i h ed ra l [ 3 ] )

dbin = int (math . f l o o r ( theta / 0 . 0 1 ) )
sb in = ( dihedralnm , dbin )
i f sb in in s e l f . d ihedra l_d ic t :

s e l f . d ihedra l_d ic t [ sb in ] =
s e l f . d ihedra l_d ic t [ sb in ] + 1

else :
s e l f . d ihedra l_d ic t [ sb in ] = 1

return ""
def f i n a l i z e ( s e l f ) :

for sbin , count in s e l f . d ihedra l_d ic t . i tems ( ) :
print ( sb in [ 0 ] , ’ \ t ’ , sb in [ 1 ] , ’ \ t ’ , count )
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D. ADDITIONAL TABLES FOR CHAPTER 2.2

D.1 Additional tables for LR model results

On the following pages, the Leave-one out cross-validation (LOOCV) results will be

give for all the logistic regression (LR) models trained on on differing input features

(BDI, RNA-seq, and subsets and combinations thereof). The hyper–parameters used

below are the cost used for training the LR model, the type of regularization used

and the epsilon value used for minimizing the loss function. The accuracy and Cohen-

kappa values for the LOOCV validation of each model is given.
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Table D.1.
LOOCV results for regularized logistic regression models trained using
various hyper–parameters trained only using the BDI variables.

Cost Loss Epsilon Accuracy Kappa
0.5 L1 0.001 0.5789 -0.0704
0.5 L1 0.01 0.5789 0.0256
0.5 L1 0.1 0.5263 -0.2667
0.5 L2_dual 0.001 0.5789 0.0256
0.5 L2_dual 0.01 0.5789 0.0256
0.5 L2_dual 0.1 0.5789 0.0256
0.5 L2_primal 0.001 0.5789 0.0256
0.5 L2_primal 0.01 0.5789 0.0256
0.5 L2_primal 0.1 0.5789 0.0256
1 L1 0.001 0.5789 -0.0704
1 L1 0.01 0.5789 -0.0704
1 L1 0.1 0.5789 -0.0704
1 L2_dual 0.001 0.5789 0.0256
1 L2_dual 0.01 0.5789 0.0256
1 L2_dual 0.1 0.5789 0.0256
1 L2_primal 0.001 0.5789 0.0256
1 L2_primal 0.01 0.5789 0.0256
1 L2_primal 0.1 0.5789 0.0256
2 L1 0.001 0.6316 0.1074
2 L1 0.01 0.6316 0.1074
2 L1 0.1 0.5263 -0.1477
2 L2_dual 0.001 0.5789 0.0256
2 L2_dual 0.01 0.5789 0.0256
2 L2_dual 0.1 0.5789 0.0256
2 L2_primal 0.001 0.5789 0.0256
2 L2_primal 0.01 0.5789 0.0256
2 L2_primal 0.1 0.5789 0.0256



399

Table D.2.
LOOCV results for regularized logistic regression models trained using
various hyper–parameters trained only using the Best 3 BDI variables.

Cost Loss Epsilon Accuracy Kappa
0.5 L1 0.001 0.6842 0.2692
0.5 L1 0.01 0.6842 0.2692
0.5 L1 0.1 0.6316 0.1074
0.5 L2_dual 0.001 0.7368 0.4172
0.5 L2_dual 0.01 0.7368 0.4172
0.5 L2_dual 0.1 0.7368 0.4172
0.5 L2_primal 0.001 0.7368 0.4172
0.5 L2_primal 0.01 0.7368 0.4172
0.5 L2_primal 0.1 0.7368 0.4172
1 L1 0.001 0.6842 0.2692
1 L1 0.01 0.6842 0.2692
1 L1 0.1 0.6842 0.2692
1 L2_dual 0.001 0.7368 0.4172
1 L2_dual 0.01 0.7368 0.4172
1 L2_dual 0.1 0.7368 0.4172
1 L2_primal 0.001 0.7368 0.4172
1 L2_primal 0.01 0.7368 0.4172
1 L2_primal 0.1 0.7368 0.4172
2 L1 0.001 0.6842 0.2692
2 L1 0.01 0.6842 0.2692
2 L1 0.1 0.6842 0.2692
2 L2_dual 0.001 0.7368 0.4172
2 L2_dual 0.01 0.7368 0.4172
2 L2_dual 0.1 0.7368 0.4172
2 L2_primal 0.001 0.7368 0.4172
2 L2_primal 0.01 0.7368 0.4172
2 L2_primal 0.1 0.7368 0.4172
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Table D.3.
LOOCV results for regularized logistic regression models trained using
various hyper–parameters trained only using the RNA-seq variables.

Cost Loss Epsilon Accuracy Kappa
0.5 L1 0.001 0.6842 0.1972
0.5 L1 0.01 0.6316 0.0148
0.5 L1 0.1 0.6316 0.0148
0.5 L2_dual 0.001 0.7895 0.4062
0.5 L2_dual 0.01 0.7895 0.4062
0.5 L2_dual 0.1 0.7895 0.4062
0.5 L2_primal 0.001 0.7895 0.4062
0.5 L2_primal 0.01 0.7895 0.4062
0.5 L2_primal 0.1 0.7895 0.4062
1.0 L1 0.001 0.7895 0.4648
1.0 L1 0.01 0.7368 0.2963
1.0 L1 0.1 0.7895 0.4648
1.0 L2_dual 0.001 0.7895 0.4062
1.0 L2_dual 0.01 0.7895 0.4062
1.0 L2_dual 0.1 0.7895 0.4062
1.0 L2_primal 0.001 0.7895 0.4062
1.0 L2_primal 0.01 0.7895 0.4062
1.0 L2_primal 0.1 0.7895 0.4062
2.0 L1 0.001 0.6316 0.1074
2.0 L1 0.01 0.6842 0.1972
2.0 L1 0.1 0.7368 0.3624
2.0 L2_dual 0.001 0.7895 0.4062
2.0 L2_dual 0.01 0.7895 0.4062
2.0 L2_dual 0.1 0.7895 0.4062
2.0 L2_primal 0.001 0.7895 0.4062
2.0 L2_primal 0.01 0.7895 0.4062
2.0 L2_primal 0.1 0.7895 0.4062
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D.2 Additional tables for combined variable models

Table D.4.
LOOCV results for regularized logistic regression models trained using
various hyper–parameters trained using both the BDI and RNA-seq
variables without selection.

Cost Loss Epsilon Accuracy Kappa
0.5 L1 0.001 0.4737 -0.2179
0.5 L1 0.01 0.4737 -0.2179
0.5 L1 0.1 0.5263 -0.1477
0.5 L2_dual 0.001 0.6842 0.1972
0.5 L2_dual 0.01 0.6842 0.1972
0.5 L2_dual 0.1 0.6842 0.1972
0.5 L2_primal 0.001 0.6842 0.1972
0.5 L2_primal 0.01 0.6842 0.1972
0.5 L2_primal 0.1 0.6842 0.1972
1.0 L1 0.001 0.5789 0.1059
1.0 L1 0.01 0.5789 0.1059
1.0 L1 0.1 0.6316 0.1074
1.0 L2_dual 0.001 0.6842 0.1972
1.0 L2_dual 0.01 0.6842 0.1972
1.0 L2_dual 0.1 0.6842 0.1972
1.0 L2_primal 0.001 0.6842 0.1972
1.0 L2_primal 0.01 0.6842 0.1972
1.0 L2_primal 0.1 0.6842 0.1972
2.0 L1 0.001 0.5789 0.1059
2.0 L1 0.01 0.6316 0.1074
2.0 L1 0.1 0.6842 0.1972
2.0 L2_dual 0.001 0.6842 0.1972
2.0 L2_dual 0.01 0.6842 0.1972
2.0 L2_dual 0.1 0.6842 0.1972
2.0 L2_primal 0.001 0.6842 0.1972
2.0 L2_primal 0.01 0.6842 0.1972
2.0 L2_primal 0.1 0.6842 0.1972
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Table D.5.
LOOCV results for regularized logistic regression models trained using
various hyper–parameters trained using both the best 3 BDI biomark-
ers and the RNA-seq variables without selection.

Cost Loss Epsilon Accuracy Kappa
0.5 L1 0.001 0.4737 -0.1176
0.5 L1 0.01 0.5263 -0.0491
0.5 L1 0.1 0.5263 -0.0491
0.5 L2_dual 0.001 0.7895 0.4062
0.5 L2_dual 0.01 0.7895 0.4062
0.5 L2_dual 0.1 0.7895 0.4062
0.5 L2_primal 0.001 0.7895 0.4062
0.5 L2_primal 0.01 0.7895 0.4062
0.5 L2_primal 0.1 0.7895 0.4062
1.0 L1 0.001 0.6316 0.1840
1.0 L1 0.01 0.6842 0.2692
1.0 L1 0.1 0.7895 0.4648
1.0 L2_dual 0.001 0.7895 0.4062
1.0 L2_dual 0.01 0.7895 0.4062
1.0 L2_dual 0.1 0.7895 0.4062
1.0 L2_primal 0.001 0.7895 0.4062
1.0 L2_primal 0.01 0.7895 0.4062
1.0 L2_primal 0.1 0.7895 0.4062
2.0 L1 0.001 0.7368 0.4172
2.0 L1 0.01 0.7368 0.4172
2.0 L1 0.1 0.7895 0.4648
2.0 L2_dual 0.001 0.7895 0.4062
2.0 L2_dual 0.01 0.7895 0.4062
2.0 L2_dual 0.1 0.7895 0.4062
2.0 L2_primal 0.001 0.7895 0.4062
2.0 L2_primal 0.01 0.7895 0.4062
2.0 L2_primal 0.1 0.7895 0.4062
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Table D.6.
LOOCV results for regularized logistic regression models trained us-
ing various hyper–parameters trained using both the BDI and RNA-
seq variables with only the seven variables ALLF1pred, SDIP1dox,
LOF0chop, ENSCAFG00000011225, SH2D4A, KIAA1217, FGFR4.

Cost Loss Epsilon Accuracy Kappa
0.5 L1 0.001 0.736842 0.463277
0.5 L1 0.01 0.736842 0.463277
0.5 L1 0.1 0.736842 0.463277
0.5 L2_dual 0.001 0.894737 0.776471
0.5 L2_dual 0.01 0.894737 0.776471
0.5 L2_dual 0.1 0.894737 0.776471
0.5 L2_primal 0.001 0.894737 0.776471
0.5 L2_primal 0.01 0.894737 0.776471
0.5 L2_primal 0.1 0.894737 0.776471
1.0 L1 0.001 0.894737 0.776471
1.0 L1 0.01 0.894737 0.776471
1.0 L1 0.1 0.894737 0.776471
1.0 L2_dual 0.001 0.894737 0.776471
1.0 L2_dual 0.01 0.894737 0.776471
1.0 L2_dual 0.1 0.894737 0.776471
1.0 L2_primal 0.001 0.894737 0.776471
1.0 L2_primal 0.01 0.894737 0.776471
1.0 L2_primal 0.1 0.894737 0.776471
2.0 L1 0.001 0.894737 0.776471
2.0 L1 0.01 0.894737 0.776471
2.0 L1 0.1 0.894737 0.776471
2.0 L2_dual 0.001 0.947368 0.883436
2.0 L2_dual 0.01 0.947368 0.883436
2.0 L2_dual 0.1 0.947368 0.883436
2.0 L2_primal 0.001 0.947368 0.883436
2.0 L2_primal 0.01 0.947368 0.883436
2.0 L2_primal 0.1 0.947368 0.883436
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D.3 LOOT Results

For the following tables, the prediction column gives the predicted sensitive of the

’removed’ dog and the ground truth is the actual outcome of the ’removed’ dog. The

self score gives how well the model is able to predict the dogs used to train it and the

validation kappa is the kappa value obtained from cross validation of the model.

Table D.7.
LOOT performed for all patent samples with the BDI biomarkers

Prediction Ground truth ’Removed’ patient ID Self-score Validation kappa
Sensitive Resistant LY09 18 0.0526
Sensitive Resistant case786-844 18 0.2603
Resistant Resistant LY02 17 0.0526
Sensitive Resistant LY06 18 0.1692
Resistant Resistant Ly58BD 18 0.0137
Sensitive Resistant LY01 18 0.5068
Sensitive Sensitive LY05 18 0.1600
Resistant Sensitive Ly42GJ 18 0.5385
Sensitive Sensitive Ly51CL 17 0.0870
Sensitive Sensitive LY04 18 0.0870
Sensitive Sensitive LY03 16 0.1600
Sensitive Sensitive LY07 18 0.2500
Resistant Sensitive LY08 16 0.2500
Sensitive Sensitive Ly43BD 18 0.3478
Sensitive Sensitive case785-528 17 0.0000
Sensitive Sensitive Ly83MS 18 0.0769
Sensitive Sensitive case782-104 17 0.2500
Resistant Sensitive Ly01YB 18 0.2500
Sensitive Sensitive LY10 17 0.0870
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Table D.8.
LOOT performed for all patent samples (see the methods section in
the main text for a description of this technique) with the RNA-seq
variables.

Prediction Ground truth ’Removed’ patient ID Self-score Validation kappa
Sensitive Sensitive LY04 18 0.4000
Sensitive Sensitive LY05 18 0.4000
Resistant Resistant LY09 18 0.0526
Resistant Resistant LY02 18 0.2653
Sensitive Sensitive Ly83MS 18 0.3478
Sensitive Sensitive case782-104 18 0.4545
Sensitive Sensitive Ly43BD 18 0.2857
Sensitive Sensitive LY07 18 0.4545
Sensitive Sensitive Ly51CL 18 0.4545
Sensitive Sensitive LY08 18 0.4545
Sensitive Resistant LY01 17 0.4906
Sensitive Sensitive Ly42GJ 18 0.4000
Sensitive Sensitive LY10 18 0.4545
Sensitive Resistant case786-844 18 0.3684
Sensitive Sensitive Ly01YB 18 0.4545
Sensitive Resistant LY06 16 0.3684
Resistant Sensitive LY03 17 0.7273
Sensitive Resistant Ly58BD 18 0.3684
Sensitive Sensitive case785-528 18 0.4000
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Table D.9.
LOOT performed for all patent samples with the best 3 BDI biomarkers.

Prediction Ground truth ’Removed’ patient ID Self-score Validation kappa
Sensitive Sensitive case782-104 15 0.4000
Resistant Sensitive case785-528 17 0.6400
Resistant Resistant case786-844 14 0.1692
Sensitive Resistant LY01 15 0.5068
Resistant Sensitive Ly01YB 17 0.7692
Sensitive Resistant LY02 15 0.3478
Sensitive Sensitive LY03 15 0.4000
Sensitive Sensitive LY04 14 0.4000
Sensitive Sensitive LY05 14 0.4000
Resistant Resistant LY06 14 0.3478
Sensitive Sensitive LY07 15 0.4000
Sensitive Sensitive LY08 15 0.4000
Resistant Resistant LY09 14 0.3478
Sensitive Sensitive LY10 15 0.4000
Resistant Sensitive Ly42GJ 15 0.6400
Sensitive Sensitive Ly43BD 15 0.4000
Sensitive Sensitive Ly51CL 15 0.4000
Resistant Resistant Ly58BD 14 0.3478
Sensitive Sensitive Ly83MS 14 0.4000
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Table D.10.
LOOT performed for all patent samples with both the top 4 RNA-seq
and the best 3 unnormalized BDI biomarkers (seven feature model).

Prediction Ground truth ’Removed’ patient ID Self-score Validation kappa
Sensitive Sensitive case782-104 18 0.8800
Sensitive Sensitive case785-528 18 1.0000
Resistant Resistant case786-844 18 0.7231
Resistant Resistant LY01 18 0.8696
Sensitive Sensitive Ly01YB 18 0.8800
Resistant Resistant LY02 18 0.8696
Resistant Sensitive LY03 18 1.0000
Sensitive Sensitive LY04 18 0.8800
Sensitive Sensitive LY05 18 0.8800
Resistant Resistant LY06 18 0.8696
Sensitive Sensitive LY07 18 0.8800
Sensitive Sensitive LY08 17 0.8800
Resistant Resistant LY09 18 0.8696
Sensitive Sensitive LY10 18 0.8800
Sensitive Sensitive Ly42GJ 18 0.8800
Sensitive Sensitive Ly43BD 18 0.8800
Sensitive Sensitive Ly51CL 18 0.8800
Resistant Resistant Ly58BD 18 0.7231
Sensitive Sensitive Ly83MS 18 0.8800
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E. ADDITIONAL FIGURES AND LISTINGS FOR CHAPTER 2.4

E.1 Additional computational details

E.1.1 Docking of CANDO predictions to selected CRPC targets

We retrieved the structures for all FDA compounds using the ’Name-to-Structure’

feature available in ChemAxon’s MarvinSketch and these structures were prepared for

docking using the ’Clean in 3D’ feature. All ten molecules are saved in their 3D form

as separate structures in the TRIPOS MOL2 format and submitted to CANDOCK

v0.4.3’s prep_fragrments module, resulting in 27 unique rigid fragments.

The eighteen targets can be obtained from the Protein Data Bank (see Table E.2).

Binding sites for all targets were predicted using the find centroids module available

in CANDOCK and saved to corresponding centroid files. For all targets, we used the

default CANDOCK parameters to perform rigid fragment docking and linking. We

used the radial-mean-reduced objective function with a cutoff of 6.0Å for scoring and

employed iterative linking for linking fragments.

An independent docking calculation job was launched for each protein target,

and the highest ranked scored pose in the binding pocket was extracted for further

calculations. The name of the target and the compound docked to it are saved in

long CSV format along with the score of best-docked pose, and the results from all

targets were concatenated into one file. If CANDOCK predicted a compound to be a

non-binder, a score of 10000 was inserted. The interactions of all CANDO predicted

compounds is given in Table E.3.
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E.1.2 Docking of designed compounds to selected CRPC targets

Each additional design was drawn using MarvinSketch, and the 3D coordinates

were assigned using the clean in a 3D feature available in this software package.

We reused the binding sites predicted for the original ten compounds and the same

docking procedure was employed to obtain docking scores for all new designs and the

selected CRPC targets. A separate CSV file was created from this docking data.

E.1.3 Classification of active compounds using Support Vector Machine

The CSV file created from the docking the experimentally tested was loaded in

R v3.3.2 using the read_csv function, and the spread function was used to create a

matrix representation of the data. An additional ’activity’ column was appended

to the matrix to contain the experimental cell assay result where a value of ’A’

was used to indicate a compound as active, and a value of ‘I’ was used to indicate

inactive compounds. Support Vector Machine C–Classification implemented via the

e1071 package along with a radial basis function was used to create a model with all

ten compounds where the activity column is the dependent on all eighteen features

produced by the docking.

We created a feature matrix from the new designs was obtained similarly to the

one used to create the training feature matrix. Using the SVM model created from the

active and inactive compounds, we classified these new designs as being in the active

or inactive class. To avoid synthesizing and experimentally verifying the multitude of

compounds predicted as active, we extracted the SVM decision values calculated using

this model and preferred compound that are significantly more likely to be active than

other compounds in the distribution. Therefore, we only considered decision values

greater than one standard devotion than the mean. Nine compounds are greater

than this cut off, three are the compounds used to train the SVM model, and seven
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are new compounds with unknown activity in the treatment of CRPC. These seven

compounds, termed 2, 4, 11, 29, 40, and 42 were used in a second round of cell

assays to verify that these compounds are indeed active.

Cell assays revealed that 2, 4, 40, and 42 are active compounds in treating CRPC.

Thus, the performance of the initial training is 67% with a recall of 100% yielding

an F1-Score of 60%. After the second round of in vitro testing, we wished to ensure

the new experimental results did not lead to additional compounds being classified

as active. To accomplish this, we created a second SVM model using the ten original

compounds and the seven-compounds identified by the first network. We then used

this network to predict the activities of all compounds presented in this paper to

check if any other compounds may now be classified as active. See that this was not

the case, i.e. no new compounds were identified by the new model.

E.1.4 Identification of a unique protein network

We want to narrow down the long list of targets we examined (eighteen) to a

smaller set of targets that can be used to model the more extensive system. To do so,

we used all steroidal compounds (both experimentally active and inactive) to create

a third SVM model using all eighteen features. Then, we calculated the correlation

between these eighteen features by multiplying the transpose of the support vector

matrix by the support vector matrix to obtain a matrix representing how each feature

correlations in any other feature. We then took the mean correlation each feature has

(i.e. the mean of each row of the matrix) to determine how independent each feature

is from the other features. The features with the highest degree of independence were

selected one by one to create new SVM models until the smaller network produced

the same result as the network containing all possible features. The smallest feature

set created with this method was then tested on all compounds to ensure no new

compounds are predicted to be active with this smaller feature set.



411

Proteome
C
om

po
un
ds

LEV

TIB

NO
R

a b

O

OH

O

OH

O

OH

NH

O

N
H

O

OH

O

HO

OH
O

O

N

O

HN

O

OHO

OH

OH

OH

OH

OH

OH

HO

CANDO platform
Pr
ed
ic
te
d

K
no
w
n

BU
S

C
IN

TAL
PIP

CET

AZA

DI
D

Active

Inactive

Figure E.1. Prediction of initial leads using the CANDO platform. (a)
Proteome wide signatures for all known prostate cancer therapeutics
(blue) and initial leads compounds (grey and orange). The signatures
of the unknown compounds are compared to the known signatures
to produce the initial leads presented in this paper. The orange sig-
natures are for the active initial leads while the grey signatures are
of inactive initial leads. (b) Chord diagram showing relationship be-
tween known prostate cancer drugs and the initial lead, the connec-
tions between the initial predictions and the known prostate cancer
therapies.

New models were created using features from the most independent to the most

correlated. If the predictive capability of the model improved, then the feature was

accepted and added to the increasing model. If it does not improve the model, the

feature is rejected. To create a disease specific network, only the ability of the model

to classify a compound as active vs inactive was considered in ranking a model. For

compound specific networks, an additional criterion of increasing the rank of a given

compound was included, thus the new model must increase the number of predicted

actives, or, if the number of predicted actives did not change, then the model must

improve the rank of a compound in question.
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Table E.1.
Viability IC50 values of the predicted drugs in different cancer cell lines.

Name Structure LNCaP cell C4-2 cell

Azaperone (AZA) N

F
O

N

N

>10.0 µM >10.0 µM

Buspirone (BUS)

N N
N

N
O

O >10.0 µM 5.25 µM

Cinnarizine (CIN)
N

N >10.0 µM 9.12 µM

Pipamperone (PIP)

H
N

O

H2N
N

O

SH

O

O

O

O >10.0 µM >10.0 µM

Didanosine (DID)
NF

O N

NH2

O

>10.0 µM >10.0 µM

Cetraxate (CET)
O

HO
N N

N
HN O

>10.0 µM >10.0 µM

Talampicillin (TAL) O

O

H2N

OH

O

>10.0 µM >10.0 µM

Tibolone (TIB) O

H H

H

H3C

CH3

OH
C CH

24.86 nM 3.12 nM

Norethisterone (NOR) O

H H

H

H3C
OH
C CH

H

32.52 nM 7.04 nM

Levonorgestrel (LEV) O

H H

H

OH
C CH

H

H3C

181.0 nM 41.78 nM
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Table E.2.: Target selection for the initial active leads.

UniProt Gene Protein name Association with CRPC
P14061 HSD17B1* Estradiol 17-beta-

dehydrogenase 1
Involved in the androgen synthe-
sis such as testosterone biosynthe-
sis from cholesterol

P51449 RORG* Nuclear receptor
ROR-gamma

Drives AR expression through re-
cruitment of coactivators (SRC-
1/3) and binding to AR-ROR re-
sponse elements on DNA

P04278 SHBG* Sex hormone-binding
globulin

Involved in transportation of an-
drogens such as testosterone from
blood stream to cancer cells

P28845 HSD11B1* Corticosteroid 11-
beta-dehydrogenase
isozyme 1

Involved in the androgen synthe-
sis such as testosterone biosynthe-
sis from cholesterol

P03372 ESR1* Estrogen receptor Known to involve in the develop-
ment and progression of prostate
cancer

P06401 PGR* Progesterone receptor Involved in the activation of AR-
dimerization and its translocation
in nucleus.

P08235 MCR* Mineralocorticoid re-
ceptor

Involved in the activation of AR-
dimerization and its translocation
in nucleus.

P08185 CBG* Corticosteroid-
binding globulin

The major carrier of the hormone
such as androgens and cortisol

P10275 AR* Androgen receptor Upon activation or mutation
drives contact independent
growth of prostate cancer cells

O75469 NR1I2* Nuclear receptor sub-
family 1 group I mem-
ber 2 (PXR)

Shown to interact with AR and
repress AR-regulated transcrip-
tion in the presence of AR antag-
onists.

P49888 SULT1E1* Estrogen sulfotrans-
ferase

Associated in outcomes of abi-
raterone Acetate therapies in men
with mCRPC.

O60218 AKR1B10* Aldo-keto reductase
family 1 member B10

Involved in the synthesis of active
form of androgen such as DHT
from testosterone.

P52895 AKR1C2 Aldo-keto reductase
family 1 member C2

Functions as a DHT reductase.

continued on next page
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Table E.2.: continued

UniProt Gene Protein name Association with CRPC
P04150 GR Glucocorticoid recep-

tor
Transcription factor resulting in
multiple signaling pathway inhi-
bition and tumor suppression.

P42330 AKR1C3 Aldo-keto reductase
family 1 member C3

Involved in the synthesis of an-
drogens (such as testosterone)
from cholesterol.

P18405 SRD5A1 3-oxo-5-alpha-steroid
4-dehydrogenase 1

Catalyses the conversion of
testosterone to DHT.

P17516 AKR1C4 Aldo-keto reductase
family 1 member C4

Liver-specific metabolic enzyme
which catalyzes the reduction of
5α-pregnane-3,20-dione to yield
3α-hydroxy-5α-pregnane-20-one,
a precursor of androsterone and
thus it plays a critical role in the
“backdoor pathway” of androgen
synthesis in prostate cancer.

P05093 CYP17A1 Steroid 17-alpha-
hydroxylase/17,20
lyase

Involved in the synthesis of an-
drogens (such as testosterone)
from cholesterol.
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Table E.4.
Protein-compound interaction scores for experimentally active compounds.

PDBID UniProt 2 4 40 42 LEV NOR TIB
4xo6 P52895 -26.48 -24.37 -33.93 -33.41 -28.50 -26.07 -27.03
4ga8 O60218 -28.35 -25.87 -36.74 -35.91 -22.93 -29.97 -29.77
4xve P42330 -24.68 -29.93 -38.14 -38.65 -39.34 -36.45 -30.93
2fvl P17516 -40.97 -38.31 -40.10 -39.50 -40.59 -36.58 -43.84
4oha P10275 -27.70 -24.52 -27.33 -27.30 -25.70 -22.68 -22.86
4c41 P08185 -10.88 -16.19 -16.61 -18.26 -15.62 -17.33 -11.17
4nkw P05093 -36.88 -38.33 -38.03 -39.20 -40.88 -40.54 -38.33
5kct P03372 -20.61 -25.69 -33.22 -33.98 -27.93 -30.86 -41.54
4udd P04150 -37.13 -39.88 -44.94 -44.83 -44.24 -43.29 -36.21
4c7k P28845 -41.49 -41.44 -43.81 -45.31 -42.24 -41.30 -42.32
1jtv P14061 -35.83 -38.21 -40.16 -37.55 -36.30 -41.66 -32.88
4pf3 P08235 -28.08 -24.57 -26.91 -27.79 -26.02 -23.26 -23.77
4xhd O75469 -34.02 -35.11 -37.93 -37.96 -33.43 -31.95 -37.64
1sqn P06401 -39.24 -34.56 -48.50 -47.52 -36.10 -34.20 -24.00
5ayg P51449 -37.76 -37.20 -38.79 -38.48 -38.15 -37.11 -42.78
1d2s P04278 -34.04 -28.60 -36.47 -38.23 -29.75 -24.21 -28.84
Modeled P18405 -23.94 -22.83 -24.60 -24.79 -24.99 -22.20 -24.60
1hy3 P49888 -36.45 -37.33 -37.95 -38.30 -40.30 -36.56 -38.43
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Table E.5.: List of the designed molecules using the com-
mon scaffold and groups/fragments of the initial leads
including decision values obtained after the first round of
machine learning:

Common initial lead scaffold O

OH
C CH

Common initial lead FGs

OH

O

C

CH

Iso-stereo and isomer based designs
Code Structure SVM distance

01 O

H H

H

SH
C

H

CH

-0.156873513

02 O

H H

H

OH
C

H

CH

-0.881368758

03 O

H H

H

NH2
C

H

CH

-0.533115698
continued on next page
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Code Structure SVM distance

04 O

H H

H

OH
C CH

-1.010892492

05 O

H H

H

NH2
C

H

CH

-0.047654449

06 O

H H

H

NO
C

H

CH

-0.354780662

07 O

H H

H

NO
C CH

-0.427391831

08 O

H H

H

NO
C

H

CH

-0.614704024

09 O

OH
C CH

H H

H

-0.218538216
continued on next page
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Code Structure SVM distance

10 O

OH
C CH

H H

H

-0.188698997

11 O

OH
C CH

H

H

H

H

-0.852335189

12

OH
C CH

O

H

H

H

H

0.215775616

13

OH
C CH

O

H

HH

H

0.136362802

14

OH
C CH

O

H

H

H

H

0.421769484
continued on next page



420

Code Structure SVM distance

15 S

OH
C CH

H

H

H

H

0.01972264

16
H
N

H

H

H

H

0.078050193

17 S

OH
C CH

H

H

H

H

-0.148133161

18
H
N

OH
C CH

H

H

H

H

0.37967144

19 N

OH
C CH

H

H

H

H

0.35951977
continued on next page
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Code Structure SVM distance

20 N

OH
C CH

H

H

H

H

0.18039821

21 O

H H

H

OH
C C CH3

-0.13211674

22 O

H H

H

OH
C

H

C CH3

0.49061446

23

OH

H

O

N

H H

-0.014083785

24 O

H H

H

OH
N

0.49061445

25

OH

H

O

NCS

H H

0.045484673
continued on next page
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Code Structure SVM distance

26

OH

H

O

NCS

H H

H

0.082019865

27

OH

H

O

NCS

H H

H

-0.067820763

28 O

H H

H

SH
C

H

CH

-0.504004393

29 O

OH
C CH

H

H

H

H

-0.97760207

30 H2C

OH
C CH

H

H

H

H

0.323527962
continued on next page
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Code Structure SVM distance

31

OH
C CH

O

H

H

H

H

0.315092791

32 H2C

OH
C CH

H

HH

H

0.078039826

33

O

H H

H

OH
C

H

CH

CH2 -0.29541342

34

O

H H

H

OH
C

H

CH

CH2 -0.371547573

35 O

H H

H

NH2
C

H

CH

-0.251111223
continued on next page
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Code Structure SVM distance

36 O

OH
C CH

H

H

H

-0.579352455

37 O

OH
C CH

H

H

H

H

-0.276284051

38 O

OH
C CH

H

H

H

H

-0.085681749

39 O

OH
C CH

H

H

H

-0.321823682

40 N

H H

H

OH
C

H

CH

HO
-0.734332919

41 O

OH
C CH

H

H

H

-0.421222024
continued on next page
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Code Structure SVM distance

42 N

H H

H

OH
C

H

CH

HO
-0.676726886

43
O

OH
C CH

CH3

H

H

H

H

-0.058029637

44
O

OH
C CH

H H

H H

0.180398212

45
O

OH
C CH

H

H

H

H

0.021217893

46
O

OH
C CH

H

H

H

H

-0.201125913
continued on next page
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Code Structure SVM distance

47 O

OH
C CH

H

H

H

H

-0.116213968

48 O

OH
C CH

H

H

H

H

0.038055715

49 O

OH
C CH

H

H

H

-0.520016982

50 O

OH
C CH

H

H

H

H

-0.294051197

LEV O

H H

H

OH
C CH

H

H3C

-1.000120655
continued on next page
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Code Structure SVM distance

NOR O

H H

H

H3C
OH
C CH

H

-0.978720295

TIB
O

H H

H

H3C

CH3

OH
C CH

-0.929651231

DID
NF

O N

NH2

O

-0.062700102

CIN

N

N 0.834403191

AZA
N

F
O

N

N

0.92903296

CET

O

HO
N N

N
HN O

0.999765416

BUS

N N
N

N
O

O 1.000249382
continued on next page
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Code Structure SVM distance

PIP

H
N

O

H2N
N

O

SH

O

O

O

O 1.078020185

TAL
O

O

H2N

OH

O

1.181821863

1
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Figure E.2. CANDOCK machine learning for designing new leads.
(a) CANDOCK machine learning score for the all designed molecules
1-50 shown in Table S2 along with the training data. Molecules having
score less than -0.64 were selected to synthesise and named as 2, 4,
11, 29, 40, 42. (b) Distribution of decision values for the training and
prediction set with the selected cut off.
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a b

Figure E.3. (a) Receiver Operator Curve for the first round of machine
learning. The AUROC is 0.9048, suggesting a highly successful ma-
chine learning model. (b) Precision vs Recall plot for the first machine
learning. These plots include information gathered from testing the
initial predictions from A and B. The F1 score is 0.875 This confirms
that the selection of 18 targets is valid.
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Figure E.4. (a) CANDOCKmachine learning score given all molecules
(designed and from the original experimental predictions) from the
second round of machine learning (2, 4, 40, 41 are included as active,
and 11, 29 are included as inactive). These data suggest that no
new compounds need to be tested experimentally because it does not
predict any new active compounds.
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Figure E.5. (a) Ranking of the correlation matrix to obtain the most
independent features (bottom is most independent, top is least in-
dependent). (b) Chord diagram representation of the independence
interactions shown in (a).
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Figure E.6. (a) Chord diagram representation for all compounds over
laid on top of one another. (b) Network representation of all fea-
tures with nodes representing features and edges representing the in-
dependence between the nodes they connect. Shading represents the
independence value of a given feature or between two features.
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F. ADDITIONAL INFORMATION FOR CHAPTER 3

F.1 Timing and pose generation benchmarking
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Figure F.1. Median number of poses generated for ligands containing
1-13 fragments divided by the ‘Top Seed Percent’ parameter.
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F.2 Scoring Function atom types

Table F.1.: Atom types considered by the IDATM algo-
rithm implemented in CANDOCK.

Name Geometry Expected
Bonds Description

Car Planar 3 aromatic carbon

C3 Tetrahedral 4 sp3-hybridized
carbon

C2 Planar 3 sp2-hybridized
carbon

C1 Linear 2 sp-hybridized carbon
bonded to 2 other atoms

C1- Linear 1 sp-hybridized carbon
bonded to 1 other atom

Cac Planar 3 carboxylate carbon

N3+ Tetrahedral 4 sp3-hybridized
nitrogen

N3 Tetrahedral 3 sp3-hybridized
nitrogen

Npl Planar 3 sp2-hybridized
nitrogen

N2+ Planar 3 sp2-hybridized
nitrogen

N2 Planar 2 sp2-hybridized
nitrogen

N1+ Linear 2 sp-hybridized
nitrogen bonded to 2 other atoms

N1 Linear 1 sp-hybridized
nitrogen bonded to 1 other atom

Ntr Planar 3 nitro nitrogen
Nox Tetrahedral 4 N-oxide amine
Ng+ Planar 3 guanidinium/amidinium nitrogen

O3 Tetrahedral 2 sp3-hybridized
oxygen

O3- Tetrahedral 1
phosphate or sulfate
oxygen sharing formal
negative charge

Oar Planar 2 aromatic oxygen
Oar+ Planar 2 aromatic oxygen

O2 Planar 1 sp2-hybridized
oxygen

continued on next page
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Table F.1.: continued

Name Geometry Expected
Bonds Description

O2- Planar 1
carboxylate oxygen
sharing formal negative charge
nitro group oxygen

O1 Linear 1 sp-hybridized oxygen
O1+ Linear 1 sp-hybridized oxygen

S3+ Tetrahedral 3 sp3-hybridized
sulfur

S3 Tetrahedral 2 sp3-hybridized
sulfur

S3- Tetrahedral 1 thiophosphate sulfur

S2 Planar 1 sp2-hybridized
sulfur

Sar Planar 2 aromatic sulfur
Sac Tetrahedral 4 sulfate
Son Tetrahedral 4 sulfone sulfur
Sxd Tetrahedral 3 sulfoxide sulfur
S Tetrahedral 4 other sulfur
Pac Tetrahedral 4 phosphate phosphorus
Pox Tetrahedral 4 P-oxide phosphorus

P3+ Tetrahedral 4 sp3-hybridized
phosphorus

P Trigonal Bipyramidal 5 other phosphorus

HC Single 1 hydrogen bonded to
carbon

H Single 1 other hydrogen

DC Single 1 deuterium bonded to
carbon

D Single 1 other deuterium
F Single 1 fluoride
Cl Single 1 chloride
Br Single 1 bromide
I Single 1 iodide
Si Tetrahedral 4 silicon
Mg Ion 0 magnesium
Mn Ion 0 manganese
Zn Ion 0 zinc
Ca Ion 0 calcium
Na Ion 0 sodium
K Ion 0 potassium

continued on next page
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Table F.1.: continued

Name Geometry Expected
Bonds Description

Fe Ion 0 iron
Co Ion 0 cobalt
Cu Ion 0 copper
Ni Ion 0 nickel

F.3 Scoring function correlation to pose deviations

Table F.2.: Correlations between score and small
molecule RMSD calculated and summarized over the en-
tire CASF-2016 benchmarking set. Results are provided
for poses generated from the top 20% of seeds.

SF Rigid protein Semi-flexible protein Fully-flexible protein
Average Median Average Median Average Median

rmr4 0.095 0.049 0.140035 0.079644 0.140 0.080
rmr5 0.145 0.102 0.179655 0.112795 0.180 0.113
rmr6 0.176 0.115 0.18871 0.130094 0.189 0.130
rmr7 0.178 0.112 0.207084 0.139238 0.207 0.139
rmr8 0.190 0.112 0.211746 0.165313 0.212 0.165
rmr9 0.189 0.123 0.214307 0.18227 0.214 0.182
rmr10 0.203 0.141 0.236163 0.212437 0.236 0.212
rmr11 0.216 0.149 0.252629 0.230083 0.253 0.230
rmr12 0.225 0.165 0.262296 0.246224 0.262 0.246
rmr13 0.222 0.181 0.261284 0.256056 0.261 0.256
rmr14 0.210 0.169 0.248759 0.235548 0.249 0.236
rmr15 0.183 0.121 0.217107 0.195525 0.217 0.196
rmc4 0.307 0.279 0.361189 0.359725 0.361 0.360
rmc5 0.413 0.416 0.424266 0.425995 0.424 0.426
rmc6 0.459 0.473 0.462102 0.470914 0.462 0.471
rmc7 0.476 0.501 0.494936 0.497759 0.495 0.498
rmc8 0.498 0.519 0.517914 0.528137 0.518 0.528
rmc9 0.523 0.542 0.537665 0.555256 0.538 0.555
rmc10 0.537 0.560 0.550387 0.558608 0.550 0.559
rmc11 0.539 0.562 0.554441 0.564875 0.554 0.565
rmc12 0.546 0.571 0.561478 0.579258 0.561 0.579
rmc13 0.546 0.576 0.562225 0.584367 0.562 0.584
rmc14 0.556 0.587 0.56007 0.586941 0.560 0.587
rmc15 0.559 0.581 0.558598 0.58669 0.559 0.587
fmr4 0.081 0.027 0.120917 0.070754 0.121 0.071

continued on next page
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Table F.2.: continued

SF Rigid protein Semi-flexible protein Fully-flexible protein
Average Median Average Median Average Median

fmr5 0.107 0.063 0.14436 0.094075 0.144 0.094
fmr6 0.125 0.064 0.154699 0.106345 0.155 0.106
fmr7 0.132 0.069 0.165974 0.108041 0.166 0.108
fmr8 0.152 0.079 0.176905 0.101773 0.177 0.102
fmr9 0.149 0.078 0.183293 0.112085 0.183 0.112
fmr10 0.149 0.070 0.182985 0.11354 0.183 0.114
fmr11 0.146 0.075 0.178826 0.118613 0.179 0.119
fmr12 0.135 0.062 0.164336 0.114359 0.164 0.114
fmr13 0.116 0.048 0.140079 0.083963 0.140 0.084
fmr14 0.093 0.023 0.110206 0.053444 0.110 0.053
fmr15 0.062 -0.014 0.070699 0.008513 0.071 0.009
fmc4 0.307 0.270 0.359536 0.353402 0.360 0.353
fmc5 0.424 0.427 0.428663 0.429932 0.429 0.430
fmc6 0.468 0.480 0.468468 0.480115 0.468 0.480
fmc7 0.486 0.510 0.501306 0.508722 0.501 0.509
fmc8 0.505 0.527 0.523356 0.530233 0.523 0.530
fmc9 0.535 0.549 0.541273 0.563213 0.541 0.563
fmc10 0.539 0.560 0.551955 0.563304 0.552 0.563
fmc11 0.539 0.562 0.553678 0.569521 0.554 0.570
fmc12 0.545 0.569 0.560537 0.581049 0.561 0.581
fmc13 0.546 0.580 0.561942 0.582873 0.562 0.583
fmc14 0.556 0.587 0.558451 0.586431 0.558 0.586
fmc15 0.559 0.582 0.556559 0.583299 0.557 0.583
rcr4 0.050 -0.015 0.115444 0.052879 0.115 0.053
rcr5 0.053 -0.015 0.103434 0.042769 0.103 0.043
rcr6 0.056 -0.016 0.095697 0.036087 0.096 0.036
rcr7 0.047 -0.018 0.08391 0.02515 0.084 0.025
rcr8 0.057 -0.010 0.090313 0.022349 0.090 0.022
rcr9 0.053 -0.013 0.084556 0.032991 0.085 0.033
rcr10 0.039 -0.025 0.06555 0.00743 0.066 0.007
rcr11 0.031 -0.035 0.055276 0.009913 0.055 0.010
rcr12 0.031 -0.034 0.054034 0.007386 0.054 0.007
rcr13 0.038 -0.031 0.064184 0.023671 0.064 0.024
rcr14 0.057 -0.017 0.088855 0.036508 0.089 0.037
rcr15 0.081 -0.006 0.119669 0.068518 0.120 0.069
rcc4 0.067 0.001 0.118727 0.047455 0.119 0.047
rcc5 0.075 0.007 0.112314 0.046986 0.112 0.047
rcc6 0.073 0.013 0.099047 0.039596 0.099 0.040
rcc7 0.056 -0.005 0.078413 0.021166 0.078 0.021

continued on next page
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Table F.2.: continued

SF Rigid protein Semi-flexible protein Fully-flexible protein
Average Median Average Median Average Median

rcc8 0.051 -0.012 0.066573 -1.97E-04 0.067 0.000
rcc9 0.036 -0.028 0.047623 -0.0104 0.048 -0.010
rcc10 0.020 -0.053 0.024173 -0.02832 0.024 -0.028
rcc11 0.011 -0.073 0.013487 -0.04264 0.013 -0.043
rcc12 0.013 -0.072 0.013389 -0.04284 0.013 -0.043
rcc13 0.021 -0.061 0.02453 -0.03049 0.025 -0.030
rcc14 0.040 -0.044 0.049441 -0.00867 0.049 -0.009
rcc15 0.065 -0.010 0.080644 0.019915 0.081 0.020
fcr4 0.050 -0.015 0.114892 0.061528 0.115 0.062
fcr5 0.062 -0.002 0.1126 0.060021 0.113 0.060
fcr6 0.071 -0.001 0.116733 0.055982 0.117 0.056
fcr7 0.074 0.003 0.122048 0.056749 0.122 0.057
fcr8 0.084 0.014 0.129655 0.070466 0.130 0.070
fcr9 0.086 0.007 0.131851 0.072608 0.132 0.073
fcr10 0.091 0.011 0.137708 0.071559 0.138 0.072
fcr11 0.102 0.033 0.153892 0.105595 0.154 0.106
fcr12 0.116 0.047 0.171489 0.114962 0.171 0.115
fcr13 0.133 0.063 0.193219 0.14408 0.193 0.144
fcr14 0.157 0.091 0.221047 0.180568 0.221 0.181
fcr15 0.177 0.116 0.243947 0.208698 0.244 0.209
fcc4 0.063 -0.006 0.112292 0.05447 0.112 0.054
fcc5 0.075 0.002 0.110992 0.055188 0.111 0.055
fcc6 0.084 0.019 0.116043 0.056761 0.116 0.057
fcc7 0.088 0.026 0.12244 0.058866 0.122 0.059
fcc8 0.098 0.021 0.130706 0.063725 0.131 0.064
fcc9 0.101 0.029 0.134228 0.069798 0.134 0.070
fcc10 0.105 0.036 0.140838 0.075632 0.141 0.076
fcc11 0.117 0.053 0.157337 0.100401 0.157 0.100
fcc12 0.132 0.071 0.175309 0.121073 0.175 0.121
fcc13 0.146 0.086 0.192998 0.13832 0.193 0.138
fcc14 0.163 0.107 0.214633 0.165242 0.215 0.165
fcc15 0.179 0.126 0.232661 0.192197 0.233 0.192

F.4 Correlation between score and binding affinity for each protein in
CASF-2016
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Figure F.2. The lowest RMR6 score obtained for each cocrystal is
plotted against the RMR6 score of the crystal pose. Poses within
2.0 Å of the crystal pose are shown in blue (success) while poses with
RMSD > 2.0 Å are shown in red. The majority of points on this graph
cluster below the y=x line, indicating that the RMR6 scoring function
incorrectly scores several poses more favorably than the crystal pose,
regardless of if the pose is close to the crystal pose. Therefore, there
are potential improvements to be made for this scoring function.



441

0

100

200

2 4 6 8

R
M
R
6
Sc
or
e

1H22

0

100

200

2.5 5.0 7.5 10.0

R
M
R
6
Sc
or
e

1H23

0

100

200

300

2.5 5.0 7.5 10.0

RMSD (Å)

R
M
R
6
Sc
or
e

3AG9

0

20

40

60

2 3 4 5 6

R
M
R
6
Sc
or
e

3KWA

−25

0

25

50

2 4 6 8

R
M
R
6
Sc
or
e

3UEU

0

40

80

2 4 6 8

R
M
R
6
Sc
or
e

4EA2

RMSD (Å)

RMSD (Å)RMSD (Å)

RMSD (Å)RMSD (Å)

a b

c d

e f

Figure F.3. Sheep plots for the 6 failure cases detailed in the results
and discussion section. In each plot, the RMSD of a CASF-2016 decoy
pose is plotted against its RMR6 score where the pose with the lowest
RMR6 score is shown in red.
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Table F.3.: Pearson correlations for all ligands in CASF-
2016 using various scoring functions to select the repre-
sentative pose for the protein-ligand complex and rank
the activity of the ligand versus other ligands for the
same protein. Here, the poses are generated by CAN-
DOCK and not supplied by the benchmark. Results are
provided for poses generated from the top 20% of seeds.

Selector: RMSD RMR6 RMC15
Ranker RMR6 RMC15 RMR6 RMC15 RMR6 RMC15
3-DEHYDROQUINATE
DEHYDRATASE -0.716 -0.876 -0.852 -0.875 0.591 -0.874

ACETYLCHOLINE
RECEPTOR 0.335 0.339 0.476 0.350 0.772 0.326

ACETYLCHOLINE
BINDING PROTEIN 0.482 -0.193 -0.004 -0.195 0.554 -0.212

ACHE -0.269 -0.664 -0.474 -0.688 -0.300 -0.652
FUCO2 -0.692 -0.372 -0.606 -0.307 -0.666 -0.304
MA2A1 -0.271 -0.581 0.575 -0.580 0.855 -0.599
AR -0.919 0.734 -0.738 0.730 -0.776 0.736
TrpD 0.652 -0.905 -0.328 -0.832 0.539 -0.920
β-GLUCOSIDASE A 0.751 0.140 -0.337 0.119 -0.953 0.147
β-LACTAMASE -0.495 -0.894 -0.681 -0.908 0.835 -0.886
β-LACTOGLOBULIN -0.981 -0.991 -0.978 -0.997 -0.959 -0.993
β-SECRETASE 1 0.695 -0.116 -0.210 -0.370 0.673 -0.121
BRD4 -0.644 -0.981 -0.579 -0.988 0.393 -0.955
KAP0 0.696 -0.905 -0.619 -0.996 0.785 -0.864
CAII -0.694 -0.883 0.770 -0.770 0.976 -0.856
COMT -0.858 -0.870 -0.749 -0.839 -0.687 -0.781
CELL DIVISION
PROTEIN KINASE 2 -0.800 -0.899 0.713 -0.918 0.969 -0.879

P53 -0.739 -0.719 0.796 -0.719 0.925 -0.648
PDE5A -0.649 0.052 -0.138 0.103 -0.711 0.074
CHITINASE A -0.915 -0.725 -0.833 -0.725 -0.704 -0.682
FACTOR XA -0.963 -0.753 -0.992 -0.671 0.560 -0.596
FACTOR XI -0.805 -0.916 -0.864 -0.885 0.989 -0.887
DEHYDROSQUALENE
SYNTHASE -0.353 -0.439 -0.727 -0.468 0.173 -0.432

ENDOTHIAPEPSIN -0.975 -0.993 -0.903 -0.992 0.971 -0.989
ER -0.843 0.764 0.501 0.764 -0.293 0.761
GRIA2 -0.814 -0.457 -0.741 -0.458 -0.854 -0.454
GRIK2 -0.977 -0.646 -0.702 -0.632 0.872 -0.577

continued on next page
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Table F.3.: continued

Selector: RMSD RMR6 RMC15
Ranker RMR6 RMC15 RMR6 RMC15 RMR6 RMC15
GLYCOGEN
PHOSPHORYLASE 0.716 0.383 -0.186 0.407 -0.833 0.341

HSP82 -0.418 0.112 -0.574 0.105 -0.771 0.166
HSP90-ALPHA -0.728 -0.879 -0.832 -0.882 0.778 -0.873
HIV-1 INTEGRASE -0.843 -0.954 -0.954 -0.960 0.935 -0.952
HIV-1 PROTEASE -0.916 -0.573 -0.907 -0.468 -0.926 -0.541
(MMP-1) -0.680 -0.815 -0.801 -0.808 0.966 -0.796
MK14 -0.680 -0.902 -0.691 -0.903 0.916 -0.900
SAH NUCLEOSIDASE 0.601 0.203 0.601 0.203 0.657 0.206
O-GLCNACASE -0.974 -0.128 -0.471 -0.129 -0.392 -0.074
PANTOTHENATE
SYNTHETASE -0.873 -0.960 -0.764 -0.961 0.835 -0.962

PPARG -0.974 -0.992 -0.971 -0.989 0.902 -0.983
PROTEIN-TYROSINE
PHOSPHATASE 1B 0.304 -0.947 -0.080 -0.805 0.759 -0.874

QTRT2 -0.875 -0.697 -0.875 -0.697 -0.676 -0.703
RIBONUCLEASE A -0.701 -0.842 -0.908 -0.849 0.708 -0.836
RNA-DIRECTED
RNA POLYMERASE -0.794 -0.831 -0.740 -0.828 0.981 -0.856

SERINE/THREONINE
PROTEIN KINASE 6 -0.093 -0.706 0.091 -0.885 -0.603 -0.619

CHK1 0.509 0.545 -0.204 0.637 0.963 0.386
PIM-1 0.656 0.447 0.423 0.436 -0.568 0.424
TANKYRASE-2 -0.918 -0.854 -0.970 -0.881 0.491 -0.825
THERMOLYSIN -0.610 0.178 -0.546 -0.272 -0.700 0.149
THROMBIN -0.798 0.154 0.473 0.188 0.562 0.155
TRANSCRIPTION
POLYPEPTIDE 2 0.789 -0.772 0.784 -0.756 0.908 -0.770

TRANSPORTER -0.376 0.497 -0.284 0.509 -0.352 0.510
TRYPSIN BETA -0.905 -0.805 -0.927 -0.804 0.653 -0.769
ABL1 0.929 -0.119 0.187 0.093 0.847 -0.221
ITK/TSK 0.879 0.749 0.183 0.747 -0.786 0.755
JAK1 -0.552 -0.093 -0.292 -0.154 0.234 -0.079
JAK2 -0.653 -0.883 -0.718 -0.876 0.759 -0.931
UROKINASE-TYPE
ACTIVATOR -0.909 -0.927 -0.908 -0.922 0.882 -0.924

F.5 AutoDOCK Vina results for the PINC Benchmark



444

3',5'-CGMPase

CHITINASE A

BRD4

STK6

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

PPARG

TCEB2

AnPRT

Grik1

CHK1

PIM-1

ITK/TSK

uPA

MMP12
MAP3K14

QTRT

AR

HSP82

PTP1B

JAK2

JAK1
ABL1

COMT

HSP90

PKA

3-DHQD

AChR

CDK2

CrtM

RNA Polymerase

p53

PanC

Factor Xa

CAH2

Glycogen phosphorylase
ER

HIV-1 Integrase
Endothiapepsin

AChR

Trypsin

Beta-Lactoglobulin

Tankyrase-2

Beta-Lactamase

Glutamate receptor 2

Ribonuclease A
HIV-1 Protease

Acetylcholinesterase

O-Glcnacase
Factor XI

Alpha-Mannosidase II
MTA/SAH Nucleosidase

Thermolysin

Beta-Secretase 1

Beta-Glucosidase
Thrombin

Alpha-L-Fucosidase

Transpose

Pearson correlation Spearman correlation

Top RMR6 score
Best RMSD

Figure F.4. Rigid protein docking correlations between the RMC15
score and the measured pKd/pKi of the compounds in CASF-2016
for each protein target. A negative correlation is expected as a de-
crease in score (an estimation of free energy change) should result in
an increase in the negative log of the binding coefficient. The repre-
sentative docked ligand pose for ranking was selected with either the
lowest RMSD or the best RMR6 score criterion. Results are provided
for poses generated from the top 20% of seeds.
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3',5'-CGMPase
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Figure F.5. Semi-flexible protein docking correlations between the
RMC15 score and the measured pKd/pKi of the compounds in CASF-
2016 for each protein target. The representative docked ligand pose
for ranking was selected with either the lowest RMSD or the best
RMR6 score criterion. Results are provided for poses generated from
the top 20% of seeds.
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Figure F.6. Fully flexible protein docking correlations between the
RMC15 score and the measured pKd/pKi of the compounds in CASF-
2016 for each protein target. The representative docked ligand pose
for ranking was selected with either the lowest RMSD or the best
RMR6 score criterion. Results are provided for poses generated from
the top 20% of seeds.
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Figure F.7. . Cumulative distributions for the best pose produced by
AutoDOCK Vina on the PINC benchmarking set using the top 20%
of all seeds.
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G. ADDITIONAL INFORMATION FOR CHAPTER 4

G.1 Details of neural networks

Table G.1.
The final optimization parameters for the IR+MS model

Layer size Dropout
237 0.457866692938781
170 0.26437107014663824
Batch size 178

Table G.2.
For the IR model

Layer size Dropout
240 0.3820803111613069
200 0.38822353533309584
131 0.008815281710900874
Batch size 153
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Figure G.1. IR Spectra for Mixture 1

G.2 IR Spectra for testing the model
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Figure G.3. IR Spectra for Mixture 3
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G.3 Performance details

Table G.3.
Functional group F-1 scores for the random forest model.

Functional Group Fold 1 Fold2 Fold 3 Fold 4 Fold 5
Alkane 0.979 0.976 0.975 0.978 0.982
Alkene 0.648 0.616 0.578 0.634 0.689
Alkyne 0.367 0.629 0.509 0.458 0.676
Alcohols 0.902 0.900 0.919 0.922 0.924
Amines 0.647 0.695 0.692 0.695 0.696
Nitriles 0.246 0.222 0.181 0.200 0.172
Aromatics 0.957 0.958 0.959 0.965 0.966
Alkyl halides 0.679 0.701 0.723 0.665 0.667
Esters 0.805 0.842 0.860 0.816 0.855
Ketones 0.757 0.720 0.736 0.725 0.704
Carboxylic acids 0.931 0.944 0.928 0.921 0.961
Acyl halides 0.222 0.105 0.100 0.400 0.111
Amides 0.050 0.258 0.071 0.303 0.148

Table G.4.
Functional group F-1 scores for the neural network model trained on
only IR spectra

Functional Group Training set F1 Validation set F1
Alkane 0.983057 0.962597
Alkene 0.866956 0.771962
Alkyne 0.891495 0.824410
Alcohols 0.978567 0.946291
Amines 0.916645 0.829724
Nitriles 0.682049 0.493131
Aromatics 0.987723 0.971455
Alkyl halides 0.883381 0.794842
Esters 0.945287 0.906326
Ketones 0.933960 0.851401
Carboxylic acids 0.970379 0.938528
Acyl halides 0.901172 0.767982
Amides 0.726499 0.562125
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Table G.5.
Functional group F-1 scores for the neural network model trained on
only MS spectra

Functional Group Training set F1 Validation set F1
Alkane 0.999203 0.988438
Alkene 0.854542 0.629076
Alkyne 0.823007 0.586774
Alcohols 0.944003 0.738918
Amines 0.940923 0.686877
Nitriles 0.821942 0.431075
Aromatics 0.999599 0.990165
Alkyl halides 0.990067 0.916458
Esters 0.844197 0.561388
Ketones 0.843226 0.565298
Carboxylic acids 0.981144 0.574958
Acyl halides 0.589059 0.210796
Amides 0.701243 0.282036

Table G.6.
Functional group F-1 scores for the neural network model trained on
both IR and MS spectra

Functional Group Training set F1 Validation set F1
Alkane 0.992912 0.969812
Alkene 0.934595 0.820889
Alkyne 0.928958 0.833759
Alcohols 0.982569 0.943450
Amines 0.964915 0.867276
Nitriles 0.846275 0.617405
Aromatics 0.993621 0.979649
Alkyl halides 0.950192 0.855821
Esters 0.974097 0.913863
Ketones 0.956765 0.855171
Carboxylic acids 0.985346 0.932786
Acyl halides 0.938061 0.778668
Amides 0.813684 0.563190
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Table G.7.
Functional group F-1 scores for single neural networks trained on both
IR and MS spectra

Functional Group Fold1 Fold2 Fold3 Fold4 Fold5
Alkane 0.975 0.974 0.977 0.984 0.971
Alkene 0.820 0.796 0.813 0.782 0.833
Alkyne 0.818 0.852 0.857 0.900 0.707
Alcohols 0.951 0.931 0.932 0.931 0.929
Amines 0.879 0.879 0.879 0.853 0.861
Nitriles 0.647 0.715 0.533 0.637 0.632
Aromatics 0.979 0.982 0.978 0.984 0.982
Alkyl halides 0.871 0.849 0.878 0.881 0.875
Esters 0.929 0.900 0.914 0.924 0.923
Ketones 0.853 0.892 0.817 0.881 0.828
Carboxylic acids 0.920 0.900 0.955 0.940 0.897
Acyl halides 0.785 0.857 0.833 0.838 0.709
Amides 0.612 0.640 0.478 0.612 0.690

Table G.8.
MPR and MF1 values for a multitask model trained on only IR spectra

Molecular Perfection Rate Molecular F-1
Training set 85.2767% 0.963177
Validation set 72.5011% 0.923357

Table G.9.
MPR and MF1 values for a multitask model trained on IR and MS spectra

Molecular Perfection Rate Molecular F-1
Training set 92.5571% 0.982041
Validation set 74.9085% 0.931506

Table G.10.
MPR and MF1 values for a multitask model trained on only IR spectra
with the new definitions of functional groups

Molecular Perfection Rate Molecular F-1
Training set 79.1323% 0.955077
Validation set 64.0335% 0.909212
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Table G.11.
MPR and MF1 values for a multitask model trained on IR and MS spectra

Molecular Perfection Rate Molecular F-1
Training set 87.8871% 0.975642
Validation set 65.2510% 0.912017

Table G.12.
Functional group F-1 scores for a model trained on only IR with the
new definitions of functional groups

Functional Group Training set F1 Validation set F1
Alkanes 0.966563 0.932969
Alkenes 0.898341 0.823709
Alkynes 0.946598 0.847545
Alcohols 0.981538 0.957765
Amines 0.948083 0.877436
Aitriles 0.739183 0.525128
Aromatics 0.991503 0.976025
Alkyl halides 0.907264 0.825761
Esters 0.978914 0.933366
Ketones 0.952114 0.882585
Aldehydes 0.982074 0.927797
Carboxylic acids 0.974353 0.944752
Acyl halides 0.936764 0.822867
Amides 0.783791 0.620740
Methyl 0.962598 0.928545
Ether 0.977310 0.935875
Nitro 0.986419 0.953173
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Table G.13.
Functional group F-1 scores for a model trained on IR and MS spectra
with the new definitions of functional groups

Functional Group Training set F1 Validation set F1
Alkane 0.983110 0.935748
Alkene 0.951914 0.825343
Alkyne 0.966157 0.869274
Alcohols 0.985552 0.935951
Amines 0.969121 0.873207
Nitriles 0.887506 0.598101
Aromatics 0.997007 0.981913
Alkyl halides 0.966182 0.865727
Esters 0.970721 0.912860
Ketones 0.965129 0.867477
Aldehydes 0.979790 0.903850
Carboxylic acids 0.977540 0.930756
Acyl halides 0.945896 0.788083
Amides 0.832065 0.595560
Methyls 0.977781 0.932062
Ethers 0.984980 0.923053
Nitros 0.990951 0.931536

Table G.14.
MPR and MF1 values for a model trained using an autoencoder on
only IR and with the new definitions of functional groups

Molecular Perfection
Rate Molecular F-1

Training set 78.8955% 0.955907
Validation set 62.5593% 0.904820

Table G.15.
MPR and MF1 values for a model trained using an autoencoder on
IR and MS and with the new definitions of functional groups

Molecular Perfection
Rate Molecular F-1

Training set 86.8895% 0.973454
Validation set 62.5726% 0.905013
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Table G.16.
Functional group F-1 scores for a model trained using an autoencoder
on only IR with the new definitions of functional groups

Functional Group Training set F1 Validation set F1
Alkane 0.968777 0.93169
Alkene 0.907346 0.812864
Alkyne 0.945042 0.851205
Alcohols 0.97892 0.944236
Amines 0.946405 0.852841
Nitriles 0.717182 0.488428
Aromatics 0.992644 0.974879
Alkyl halides 0.907742 0.810426
Esters 0.979923 0.922709
Ketones 0.951888 0.867387
Aldehydes 0.976048 0.918015
Carboxylic acids 0.971139 0.941297
Acyl halides 0.920298 0.791876
Amides 0.788451 0.597016
Methysl 0.963815 0.932059
Ethers 0.973455 0.923417
Nitros 0.98336 0.946973
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Table G.17.
Functional group F-1 scores for a model trained using an autoencoder
on IR and MS with the new definitions of functional groups

Functional Group Training set F1 Validation set F1
Alkane 0.984136 0.932257
Alkene 0.947195 0.819603
Alkyne 0.958650 0.848086
Alcohols 0.978334 0.910960
Amines 0.960173 0.852991
Nitriles 0.854644 0.553305
Aromatics 0.996893 0.982649
Alkyl halides 0.963728 0.855594
Esters 0.969606 0.913754
Ketones 0.964384 0.857152
Aldehydes 0.979850 0.866663
Carboxylic acids 0.979510 0.917079
Acyl halides 0.952464 0.736802
Amides 0.844232 0.557778
Methyls 0.978014 0.930977
Ethers 0.980859 0.919104
Nitros 0.987188 0.933380
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H. ADDITIONAL INFORMATION FOR CHAPTER 5

H.1 Addition machine learning model results

Table H.1.: Additional diagnostic product branching ra-
tio cutoffs and fingerprint radii for the decision tree
model. Here, radius refers to the radius parameter of
the Morgan algorithm.

Compound Radius 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9
01 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50
02 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00
03 1.00 1.00 0.50 0.00 0.00 0.00 0.00 0.00
04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50
07 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
08 1.00 1.00 1.00 1.00 0.84 0.84 0.66 0.33
09 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50
11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50
13 1.00 1.00 1.00 1.00 0.84 0.84 0.66 0.33
14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
κ 0.22 0.46 0.59 0.59 0.59 0.59 0.59 0.53
01 1 0.50 0.51 0.54 0.50 0.47 1.00 1.00 0.50
02 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00
03 0.11 0.00 0.08 0.00 0.00 0.33 0.00 0.00
04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
06 0.52 0.59 0.58 0.50 0.44 0.04 0.00 0.00
07 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00
08 1.00 1.00 1.00 1.00 0.94 1.00 1.00 0.50
09 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50
continued on next page
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Table H.1.: continued

Compound Radius 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9
11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
12 1.00 1.00 1.00 1.00 0.94 1.00 1.00 0.50
13 1.00 1.00 1.00 1.00 0.88 1.00 1.00 0.50
14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
κ 0.44 0.59 0.59 0.59 0.57 0.72 0.72 0.53
01 2 0.50 0.51 0.50 0.50 0.47 1.00 1.00 0.25
02 0.00 0.00 0.67 0.00 0.00 0.00 0.00 0.00
03 0.11 0.00 0.00 0.00 0.00 0.35 0.00 0.00
04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
06 0.52 0.59 0.50 0.50 0.44 0.04 0.00 0.00
07 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00
08 1.00 1.00 1.00 1.00 0.94 1.00 1.00 0.25
09 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.25
11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
12 1.00 1.00 1.00 1.00 0.94 1.00 1.00 0.25
13 1.00 1.00 1.00 1.00 0.88 1.00 1.00 0.25
14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
κ 0.44 0.59 0.46 0.59 0.57 0.72 0.72 0.53
01 3 0.50 0.49 0.49 0.50 1.00 1.00 1.00 0.25
02 0.57 0.50 1.00 0.50 0.42 0.39 0.38 0.40
03 0.67 0.00 0.28 0.48 0.67 0.68 0.33 0.13
04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
06 1.00 0.66 0.49 0.50 0.00 0.00 0.00 0.13
07 0.50 0.00 0.00 0.95 1.00 1.00 0.67 0.00
08 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.25
09 0.00 0.00 0.00 0.95 1.00 1.00 0.67 0.00
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.25
11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.25
13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.25
14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
κ 0.22 0.44 0.44 0.31 0.34 0.34 0.46 0.53
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Table H.2.: Regularized logistic regression results for var-
ious cutoffs and fingerprint radii. Here, radius refers to
the radius parameter of the Morgan algorithm.

Compound Radius 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9
01 0 0.63 0.44 0.55 0.69 0.77 0.33 0.27 0.21
02 0.82 0.41 0.38 0.22 0.67 0.33 0.27 0.11
03 0.89 0.37 0.21 0.19 0.23 0.28 0.27 0.03
04 0.44 0.81 0.72 0.81 0.80 0.29 0.33 0.39
05 0.13 0.12 0.10 0.15 0.10 0.28 0.27 0.03
06 0.78 0.64 0.56 0.71 0.65 0.28 0.27 0.18
07 0.36 0.34 0.21 0.19 0.12 0.28 0.27 0.03
08 0.79 0.70 0.75 0.75 0.65 0.33 0.27 0.11
09 0.36 0.34 0.21 0.19 0.12 0.28 0.27 0.03
10 0.90 0.70 0.75 0.75 0.93 0.33 0.27 0.17
11 0.81 0.85 0.86 0.84 0.80 0.34 0.33 0.70
12 0.90 0.70 0.75 0.75 0.93 0.33 0.27 0.17
13 0.79 0.70 0.75 0.75 0.65 0.33 0.27 0.11
14 0.98 0.79 0.72 0.81 0.90 0.29 0.33 0.14
κ 0.19 0.44 0.59 0.59 0.46 0.00 0.00 0.19
01 1 0.56 0.48 0.10 0.36 0.56 0.33 0.27 0.20
02 0.65 0.48 0.44 0.22 0.22 0.33 0.27 0.08
03 0.65 0.37 0.06 0.18 0.08 0.28 0.27 0.02
04 0.79 0.71 0.62 0.80 0.69 0.29 0.33 0.55
05 0.13 0.10 0.04 0.16 0.08 0.28 0.27 0.02
06 0.62 0.41 0.12 0.36 0.26 0.28 0.27 0.18
07 0.33 0.17 0.10 0.18 0.08 0.28 0.27 0.04
08 0.83 0.67 0.83 0.75 0.74 0.33 0.27 0.12
09 0.29 0.17 0.10 0.18 0.08 0.28 0.27 0.03
10 0.86 0.74 0.89 0.75 0.82 0.33 0.27 0.15
11 0.83 0.80 0.91 0.84 0.82 0.34 0.33 0.77
12 0.86 0.72 0.89 0.75 0.82 0.33 0.27 0.31
13 0.84 0.68 0.83 0.75 0.74 0.33 0.27 0.24
14 0.95 0.79 0.55 0.80 0.60 0.29 0.33 0.18
κ 0.34 0.57 0.57 0.57 0.72 0.00 0.00 0.36
01 2 0.53 0.48 0.25 0.39 0.23 0.33 0.27 0.18
02 0.63 0.49 0.43 0.22 0.21 0.33 0.27 0.18
03 0.64 0.36 0.21 0.18 0.10 0.28 0.27 0.17
04 0.82 0.72 0.67 0.80 0.67 0.29 0.33 0.32
05 0.12 0.10 0.08 0.16 0.07 0.28 0.27 0.15
06 0.56 0.42 0.25 0.39 0.11 0.28 0.27 0.17
07 0.26 0.16 0.21 0.18 0.08 0.28 0.27 0.17
continued on next page
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Table H.2.: continued

Compound Radius 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9
08 0.81 0.67 0.74 0.75 0.75 0.33 0.27 0.17
09 0.19 0.13 0.20 0.18 0.08 0.28 0.27 0.15
10 0.87 0.76 0.74 0.75 0.80 0.33 0.27 0.17
11 0.84 0.81 0.85 0.84 0.84 0.34 0.33 0.35
12 0.85 0.74 0.75 0.75 0.80 0.33 0.27 0.18
13 0.82 0.69 0.75 0.75 0.75 0.33 0.27 0.18
14 0.94 0.78 0.68 0.80 0.67 0.29 0.33 0.32
κ 0.34 0.57 0.57 0.57 0.57 0.00 0.00 0.00
01 3 0.60 0.49 0.25 0.32 0.32 0.42 0.52 0.23
02 0.85 0.75 0.58 0.49 0.54 0.60 0.46 0.39
03 0.49 0.31 0.29 0.27 0.31 0.35 0.26 0.17
04 0.87 0.91 0.84 0.87 0.75 0.76 0.68 0.62
05 0.26 0.12 0.08 0.13 0.10 0.01 0.02 0.07
06 0.76 0.73 0.38 0.45 0.36 0.56 0.26 0.18
07 0.50 0.38 0.35 0.29 0.33 0.35 0.26 0.18
08 0.71 0.68 0.75 0.75 0.59 0.81 0.75 0.09
09 0.43 0.31 0.21 0.20 0.17 0.06 0.06 0.07
10 0.57 0.53 0.51 0.75 0.49 0.64 0.52 0.09
11 0.80 0.85 0.88 0.87 0.83 0.87 0.95 0.68
12 0.76 0.68 0.75 0.75 0.59 0.82 0.76 0.23
13 0.76 0.68 0.75 0.75 0.59 0.81 0.75 0.23
14 0.86 0.81 0.80 0.85 0.73 0.76 0.68 0.60
κ 0.46 0.31 0.44 0.57 0.57 0.31 0.72 0.53

Table H.3.: Generalized Linear Model (GLM) results for
various cutoffs and fingerprint radii. Here, radius refers
to the radius parameter of the Morgan algorithm.

Compound Radius 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9
01 0 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
03 0.00 0.98 1.00 1.00 1.00 0.00 0.00 0.00
04 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
06 0.00 0.20 1.00 1.00 1.00 1.00 1.00 0.00
07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
08 0.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
continued on next page
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Table H.3.: continued

Compound Radius 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9
12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
13 0.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
14 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
κ -0.22 0.31 0.34 0.34 0.34 0.16 0.16 0.53
01 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
02 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
08 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
κ 0.16 0.16 0.16 0.16 0.29 0.29 0.29 0.42
01 2 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
02 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
03 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
κ 0.31 0.31 0.31 0.31 0.42 0.42 0.42 0.55
01 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
02 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
03 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
04 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
06 0.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
continued on next page
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Table H.3.: continued

Compound Radius 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9
07 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
08 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
14 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
κ 0.31 0.19 0.19 0.19 0.13 0.39 0.39 0.39

Table H.4.: Partial Least Squares (PLS) results for var-
ious cutoffs and fingerprint radii. Here, radius refers to
the radius parameter of the Morgan algorithm.

Compound Radius 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9
01 0 0.60 0.42 0.47 0.51 0.59 0.65 0.38 0.38
02 0.68 0.53 0.60 0.51 0.60 0.59 0.43 0.30
03 0.77 0.62 0.49 0.36 0.49 0.50 0.44 0.31
04 0.41 0.56 0.52 0.53 0.50 0.46 0.54 0.60
05 0.21 0.14 0.17 0.26 0.14 0.14 0.24 0.19
06 0.66 0.56 0.53 0.48 0.52 0.61 0.46 0.41
07 0.33 0.35 0.40 0.40 0.32 0.26 0.35 0.24
08 0.64 0.63 0.69 0.66 0.66 0.60 0.46 0.32
09 0.33 0.35 0.40 0.40 0.32 0.26 0.35 0.24
10 0.79 0.68 0.70 0.62 0.73 0.73 0.46 0.35
11 0.68 0.74 0.71 0.69 0.71 0.64 0.62 0.68
12 0.79 0.68 0.70 0.62 0.73 0.73 0.46 0.35
13 0.64 0.63 0.69 0.66 0.66 0.60 0.46 0.32
14 0.91 0.85 0.74 0.54 0.74 0.70 0.59 0.58
κ 0.19 0.19 0.31 0.59 0.31 0.19 0.53 0.53
01 1 0.55 0.50 0.48 0.46 0.45 0.57 0.60 0.33
02 0.58 0.47 0.55 0.48 0.48 0.42 0.48 0.33
03 0.57 0.50 0.38 0.37 0.38 0.38 0.37 0.28
04 0.61 0.67 0.57 0.60 0.58 0.57 0.57 0.58
05 0.27 0.18 0.23 0.25 0.22 0.21 0.23 0.23
06 0.49 0.43 0.39 0.40 0.37 0.44 0.43 0.35
07 0.30 0.22 0.32 0.35 0.29 0.23 0.24 0.29
08 0.71 0.64 0.69 0.65 0.69 0.67 0.67 0.41
09 0.30 0.23 0.32 0.34 0.31 0.23 0.22 0.28
10 0.78 0.70 0.72 0.63 0.72 0.77 0.80 0.41
continued on next page
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Table H.4.: continued

Compound Radius 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9
11 0.70 0.75 0.69 0.73 0.72 0.72 0.69 0.68
12 0.75 0.67 0.68 0.61 0.67 0.74 0.75 0.45
13 0.71 0.64 0.68 0.64 0.66 0.67 0.66 0.44
14 0.83 0.81 0.68 0.65 0.66 0.61 0.61 0.54
κ 0.46 0.44 0.44 0.57 0.57 0.72 0.72 0.53
01 2 0.50 0.45 0.47 0.46 0.42 0.40 0.40 0.31
02 0.54 0.51 0.52 0.50 0.46 0.39 0.45 0.30
03 0.55 0.43 0.34 0.36 0.36 0.39 0.34 0.31
04 0.66 0.65 0.58 0.59 0.56 0.52 0.54 0.47
05 0.27 0.22 0.25 0.24 0.23 0.22 0.22 0.26
06 0.50 0.45 0.38 0.37 0.35 0.37 0.34 0.34
07 0.33 0.29 0.31 0.30 0.30 0.29 0.27 0.31
08 0.69 0.65 0.68 0.67 0.65 0.52 0.59 0.33
09 0.30 0.27 0.30 0.30 0.29 0.27 0.25 0.28
10 0.75 0.69 0.71 0.67 0.65 0.50 0.63 0.30
11 0.71 0.68 0.70 0.72 0.74 0.70 0.74 0.59
12 0.70 0.65 0.65 0.63 0.61 0.50 0.58 0.35
13 0.67 0.64 0.64 0.64 0.61 0.52 0.54 0.36
14 0.78 0.72 0.61 0.61 0.60 0.55 0.56 0.44
κ 0.31 0.44 0.44 0.57 0.57 0.57 0.57 0.19
01 3 0.51 0.48 0.50 0.48 0.45 0.44 0.47 0.34
02 0.55 0.57 0.56 0.56 0.52 0.42 0.51 0.33
03 0.57 0.49 0.45 0.42 0.41 0.43 0.35 0.33
04 0.67 0.67 0.68 0.62 0.60 0.53 0.61 0.48
05 0.26 0.22 0.24 0.25 0.24 0.22 0.26 0.26
06 0.56 0.53 0.51 0.44 0.44 0.42 0.44 0.35
07 0.47 0.40 0.42 0.38 0.38 0.35 0.41 0.33
08 0.64 0.63 0.65 0.66 0.63 0.50 0.60 0.34
09 0.33 0.27 0.32 0.31 0.30 0.26 0.32 0.29
10 0.64 0.61 0.59 0.59 0.57 0.46 0.58 0.30
11 0.71 0.70 0.74 0.74 0.78 0.72 0.73 0.62
12 0.63 0.63 0.64 0.61 0.59 0.49 0.61 0.36
13 0.64 0.64 0.64 0.63 0.61 0.53 0.59 0.38
14 0.75 0.72 0.70 0.64 0.62 0.55 0.54 0.43
κ 0.34 0.31 0.31 0.44 0.44 0.85 0.44 0.19
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Table H.5.: K-Nearest Neighbor (KNN) results for var-
ious cutoffs and fingerprint radii. Here, radius refers to
the radius parameter of the Morgan algorithm.

Compound Radius 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9
01 0 0.33 0.33 0.33 0.33 0.33 0.33 0.25 0.17
02 0.45 0.36 0.36 0.36 0.36 0.27 0.27 0.18
03 0.56 0.22 0.11 0.11 0.11 0.11 0.11 0.00
04 0.42 0.38 0.38 0.38 0.42 0.33 0.33 0.25
05 0.40 0.20 0.20 0.20 0.20 0.20 0.20 0.10
06 0.55 0.43 0.29 0.29 0.27 0.27 0.27 0.18
07 0.42 0.14 0.14 0.14 0.25 0.17 0.17 0.08
08 0.56 0.56 0.56 0.56 0.56 0.44 0.33 0.22
09 0.42 0.14 0.14 0.14 0.25 0.17 0.17 0.08
10 0.45 0.36 0.36 0.36 0.36 0.27 0.27 0.18
11 0.33 0.33 0.33 0.33 0.33 0.22 0.22 0.22
12 0.45 0.36 0.36 0.36 0.36 0.27 0.27 0.18
13 0.56 0.56 0.56 0.56 0.56 0.44 0.33 0.22
14 0.71 0.57 0.43 0.43 0.43 0.36 0.36 0.29
κ 0.26 0.53 0.36 0.36 0.36 0.00 0.00 0.00
01 1 0.33 0.33 0.40 0.27 0.20 0.20 0.20 0.13
02 0.45 0.36 0.40 0.36 0.36 0.27 0.27 0.18
03 0.33 0.11 0.00 0.00 0.00 0.00 0.00 0.00
04 0.40 0.40 0.40 0.40 0.40 0.30 0.30 0.20
05 0.25 0.08 0.00 0.08 0.08 0.08 0.08 0.08
06 0.50 0.30 0.20 0.30 0.30 0.30 0.30 0.20
07 0.40 0.20 0.00 0.20 0.20 0.10 0.10 0.10
08 0.40 0.40 0.50 0.40 0.40 0.30 0.30 0.20
09 0.40 0.20 0.00 0.20 0.20 0.10 0.10 0.10
10 0.45 0.36 0.50 0.36 0.36 0.27 0.27 0.18
11 0.40 0.40 0.40 0.40 0.40 0.30 0.30 0.20
12 0.45 0.36 0.50 0.36 0.36 0.27 0.27 0.18
13 0.33 0.33 0.50 0.33 0.33 0.25 0.25 0.17
14 0.55 0.45 0.80 0.36 0.36 0.27 0.27 0.27
κ 0.19 0.00 0.19 0.00 0.00 0.00 0.00 0.00
01 2 0.30 0.20 0.20 0.20 0.20 0.20 0.20 0.10
02 0.33 0.14 0.14 0.14 0.33 0.33 0.33 0.22
03 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.00
04 0.50 0.40 0.40 0.40 0.40 0.30 0.30 0.20
05 0.22 0.00 0.00 0.00 0.11 0.11 0.11 0.11
06 0.42 0.20 0.20 0.20 0.25 0.25 0.25 0.17
07 0.33 0.00 0.00 0.00 0.17 0.08 0.08 0.08
continued on next page
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Table H.5.: continued

Compound Radius 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9
08 0.36 0.36 0.36 0.36 0.36 0.27 0.27 0.18
09 0.40 0.00 0.00 0.00 0.20 0.10 0.10 0.10
10 0.38 0.43 0.43 0.43 0.31 0.23 0.23 0.15
11 0.30 0.40 0.40 0.40 0.30 0.30 0.30 0.20
12 0.30 0.33 0.33 0.33 0.30 0.30 0.30 0.20
13 0.33 0.29 0.29 0.29 0.33 0.25 0.25 0.17
14 0.38 0.50 0.50 0.50 0.38 0.31 0.31 0.23
κ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
01 3 0.40 0.56 0.44 0.40 0.33 0.33 0.33 0.22
02 0.20 0.40 0.40 0.20 0.40 0.30 0.30 0.30
03 0.40 0.36 0.29 0.40 0.27 0.27 0.27 0.18
04 0.56 0.56 0.44 0.44 0.44 0.44 0.44 0.33
05 0.00 0.10 0.00 0.00 0.10 0.10 0.10 0.10
06 0.29 0.36 0.29 0.29 0.27 0.27 0.27 0.18
07 0.17 0.22 0.11 0.17 0.11 0.11 0.11 0.11
08 0.40 0.33 0.33 0.40 0.33 0.22 0.22 0.22
09 0.40 0.22 0.22 0.20 0.22 0.11 0.11 0.11
10 0.40 0.33 0.43 0.40 0.33 0.33 0.33 0.22
11 0.50 0.40 0.38 0.50 0.40 0.40 0.40 0.30
12 0.40 0.42 0.38 0.40 0.25 0.25 0.25 0.17
13 0.43 0.44 0.29 0.29 0.33 0.33 0.33 0.22
14 0.50 0.56 0.44 0.50 0.44 0.33 0.33 0.22
κ 0.19 0.53 0.00 0.00 0.00 0.00 0.00 0.00

H.2 MS validation of test set analytes



467

Figure H.1. MS/MS spectrum measured after 3,000 ms reaction of
protonated dodecyl methyl sulfoxide with MOP, indicating the for-
mation of a diagnostic addition product (M+H+MOP). Credit: Judy
Liu

Figure H.2. MS/MS spectrum measured after 3,000 ms reaction of
protonated sulfonyl dimidazole with MOP, indicating the formation
of a diagnostic addition product. Credit: Judy Liu
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Figure H.3. MS/MS spectrum measured after 10,000 ms reaction
of protonated picoline N-oxide with MOP, indicating the formation
of a diagnostic addition product. No proton transfer product was
observed. Credit: Judy Liu

Figure H.4. MS/MS spectrum measured after 10,000 ms reaction of
protonated ricobendazole with MOP, indicating the formation of a di-
agnostic addition product. No proton transfer product was observed.
Credit: Judy Liu
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Figure H.5. MS/MS spectrum measured after 10,000 ms reaction of
protonated 8-nitroquinolone with MOP, indicating that no diagnostic
addition product was formed. No proton transfer product was formed,
either. Credit: Judy Liu

Figure H.6. MS/MS spectrum measured after 10,000 ms reaction of
protonated methionine sulfoxide with MOP, indicating the formation
of a diagnostic addition product. No proton transfer product was
formed. Credit: Judy Liu
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Figure H.7. MS/MS spectrum measured after 3,000 ms reaction of
protonated benzene sulfonic acid with MOP, indicating that a diag-
nostic addition product was not formed. Instead, a proton transfer
product was observed (MOP+H). Credit: Judy Liu

Figure H.8. MS/MS spectrum measured after 10,000 ms reaction
of protonated albendazole with MOP, indicating that a diagnostic
addition product was not formed. No proton transfer product was
observed, either. Credit: Judy Liu
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Figure H.9. MS/MS spectrum measured after 3,000 ms reaction of
protonated 4–nitroquinoline N-oxide with MOP. Although evidence
of a diagnostic addition product is seen, the presence of a major pro-
ton transfer product indicates that this reaction is not suitable for
diagnostic applications. Credit: Judy Liu

Figure H.10. MS/MS spectrum measured after 3,000 ms reaction of
protonated 3–methylbenzophenone with MOP, indicating that a di-
agnostic addition product was not formed. Instead, a proton transfer
product was observed. Credit: Judy Liu
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Figure H.11. MS/MS spectrum measured after 3,000 ms reaction of
protonated 4–nitropyridine N–oxide with MOP, indicating that a di-
agnostic addition product was not formed. Instead, a proton transfer
product was observed. Credit: Judy Liu

Figure H.12. MS/MS spectrum measured after 10,000 ms reaction of
protonated 3,5-diiodo-4-pyridine-1-acetic acid with MOP, indicating
that a diagnostic addition product was not formed. No proton transfer
product was observed, either. Credit: Judy Liu
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Figure H.13. MS/MS spectrum measured after 30 ms reaction of pro-
tonated 3-methylbenzoic acid with MOP, indicating that a diagnostic
addition product was not formed. Instead, a proton transfer product
was observed. Credit: Judy Liu
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• Molecule Sciences Software Institute workshop on Machine Learning in Chem-

istry 11/17/2019

• Merck Rising Stars in Analytical Chemistry and Materials Science Symposia

11/22/2019

Workshops Instructed

• CIGP Workshop on Molecular Dynamics

• Docking in Medicinal Chemistry

Mentoring

Brandon Stewart, Undergraduate Student, Developed a GPU implementation of

the statistical forcefield used for scoring in the CANDOCK software

Jean-Michael Diei, Undergraduate Student, Implemented a neuronal fingerprint

machine learning architecture for the prediction of reaction sites in small molecules

Anand Rasjashekar, Undergraduate Student, Produced an MLP neural network

to identify functional groups in Infrared Spectroscopy and a Recurrent Neural

Network to calculate the molecular mass of a compound in Mass Spectroscopy

Armen Beck, Graduate Student, Improved a machine learning network that predicts

solvent reaction conditions given the topology of a reaction

Prageeth Rajitha, Graduate Student, Initiated a new machine learning architec-

ture that combines graph and docking features of molecule to predict its binding

towards PDL-1
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Connor Beveridge, Graduate Student, Mentored a new graduate student by helping

him create a variational autoencoder to identify fingerprint features in tandem

mass spectra

Dawood Mohideen, Graduate Student, Oversaw the creation of a Generative Ad-

versarial Network for the creation of new drug-like molecules

Leadership

• ΦΣK President

Created a $50,000 micro-grant program for the Troy Mount Ida community

• CHM 125 Course Supervisor

Oversaw other CHM 125 Teaching Assistants, planned laboratory experiments

and exams

• Graduate Student Advisory Board Representative

Represented the interests of physical chemistry graduate students

• Mental Health Committee Chair

Arranged events and support groups to help students understand mental health

issues amongst graduate students


