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ABSTRACT

Thakur, Sanskar S. M.S.M.E., Purdue University, May 2020. Towards Development of
Smart Nanosensor System to Detect of Hypoglycemia from Breath. Major Professor:
Mangilal Agarwal.

The link between volatile organic compounds (VOCs) from breath and various

diseases and specific conditions has been identified since long by the researchers. Ca-

nine studies and breath sample analysis on Gas chromatography/ Mass Spectroscopy

has proven that there are VOCs in the breath that can detect and potentially predict

hypoglycemia. This project aims at developing a smart nanosensor system to de-

tect hypoglycemia from human breath. The sensor system comprises of 1-Mercapto-

(triethylene glycol) methyl ether functionalized goldnanoparticle (EGNPs) sensors

coated with polyetherimide (PEI) and poly(vinylidene fluoride -hexafluoropropylene)

(PVDF-HFP) and polymer composite sensor made from PVDF-HFP-Carbon Black

(PVDF-HFP/CB), an interface circuit that performs signal conditioning and am-

plification, and a microcontroller with Bluetooth Low Energy (BLE) to control the

interface circuit and communicate with an external personal digital assistant. The

sensors were fabricated and tested with 5 VOCs in dry air and simulated breath

(mixture of air, small portion of acetone, ethanol at high humidity) to investigate

sensitivity and selectivity. The name of the VOCs is not disclosed herein but these

VOCs have been identified in breath and are identified as potential biomarkers for

other diseases as well.

The sensor hydrophobicity has been studied using contact angle measurement.

The GNPs size was verified using Ultra-Violent-Visible (UV-VIS) Spectroscopy. Field

Emission Scanning Electron Microscope (FESEM) image is used to show GNPs em-

bedded in the polymer film. The sensors sensitivity increases by more than 400% in

an environment with relative humidity (RH) of 93% and the sensors show selectivity
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towards VOCs of interest. The interface circuit was designed on Eagle PCB and

was fabricated using a two-layer PCB. The fabricated interface circuit was simulated

with variable resistance and was verified with experiments. The system is also tested

at different power source voltages and it was found that the system performance is

optimum at more than 5 volts. The sensor fabrication, testing methods, and re-

sults are presented and discussed along with interface circuit design, fabrication, and

characterization.
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1. INTRODUCTION

1.1 Objective

Hypoglycemia (low blood sugar) is a transient condition that can leads to com-

plications such as dizziness, fainting, to fatal nerve damage, coma and in worst cases

death [1]. It is very important for people with diabetes who are susceptible to hypo-

glycemia (all people with type 1 diabetes(T1D) and some with type 2 diabetes) to

monitor and maintain their blood glucose (BG) level to avoid a hypoglycemic attack.

Most traditional glucose monitoring methods for T1D require glucose measurement

from blood samples (glucometers) or interstitial fluids (continuous glucose monitors

or CGMs). These methods are invasive, can be mentally and physically stressful for

patients. In addition, CGMs have 20 minutes lag to actual blood glucose values [2].

The current thesis describes research towards a novel system for monitoring blood

glucose through chemiresistive sensors specifically tuned to detect volatile organic

compounds (VOCs) that are produced during hypoglycemia. The research described

includes chemical and statistical analysis for identifying VOCs of interest from breath

samples acquired from children and adults with T1D. Here, breath samples were an-

alyzed by gas chromatography-mass spectrometry. The research continues with a

description of chemiresistive sensors that are specific to the VOCs of hypoglycemia.

Functionalized gold nanoparticles and conductive polymer composites have been seen

to have better control over selectivity, sensitivity, lower operating temperatures and

response time over other chemiresistive materials like carbon nanotubes (CNTs) and

graphene [3] [4] [5]. Finally, the research includes incorporation of these sensors into

a smart and connected system comprised of 1) an array of gas sensors specifically

designed to detect VOCs of hypoglycemia, 2) an interface circuit that performs the

signal conditioning and amplification, and 3) signal processing unit that uses artifi-
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cial intelligence (AI) to perform data analysis and extract features. In this way, the

research is a significant advance over nonspecific collections of gas arrays that process

VOCs and which are commonly known as electronic nose (eNose) systems. The re-

search builds on other work at IUPUI towards identifying and validating biomarkers

for hypoglycemia, and preliminary sensor elements fabricated and newly incorporated

into the current smart and connected system [6]. In this way, the research presents

significant steps toward a portable sensor system to detect and potentially predict

hypoglycemia.

1.1.1 Research Approach

The construction of the thesis is elaborated here. The objective and outline are

described in Chapter 1. A literature review is presented in chapter 2, where the im-

portance of noninvasive biomarker detection is explained. It also briefs about research

done in the field of biomarker discovery and detection, technologies and analytical

tools used to detect VOCs to compare and implement the best suitable technology.

Chapter 3 explains the materials and methods that are used to fabricate sensors and

the sensor interface circuit. This chapter will also describe the fabrication of inter-

digitated electrodes (IDEs), synthesis and fabrication of sensing material over IDEs,

fabrication of sensors, as well as design and fabrication of an electrical interface circuit

and packaging for the sensor system. Chapter 4 describes material characterization

results that include contact angle measurement, Field Emission Scanning Electron

Microscope (FESEM), Ultra-violet Visible Spectroscopy (UV/VIS), and profilometer

measurement of fabricated films. The sensors fabricated using poly(vinylidene fluo-

ride -hexafluoropropylene) (PVDF-HFP) composite with carbon black (PVDF-HFP-

CB), 1-Mercapto-(triethylene glycol) methyl ether functionalized GNPs (EGNP) with

polyetherimide (PEI) and a PVDF-HFP layer are tested with multiple VOCs and with

simulated breath and the results are presented in Chapter 4. The characterization

of the interface circuit and sensor integration results with interface circuit are is also
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presented in chapter 4. Chapter 5 presents the conclusion made regarding sensor

response towards VOCs and also describes future work related to the nanosensor

system.
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2. LITERATURE REVIEW

2.1 VOC Analysis for Noninvasive Disease Detection

T1D is an autoimmune disease that causes the body to fail to produce insulin.

Insulin is a hormone that is required to carry glucose from the bloodstream into

the cells. T1D develops when the body’s immune system attacks pancreatic beta

cells which are responsible for insulin production [7]. Around 1.25 million Americans

have T1D and around 40,000 people are newly diagnosed with T1D every year in the

United States [8]. Out of these 1.25 million, about 200,000 are less than 20 years

old [9]. Patients with T1D need to control their glucose levels by using external in-

sulin and measured food intake. Diabetes patients who take insulin are susceptible

to hypoglycemic events or episodes due to excess insulin. Hypoglycemic events can

occur at any time and can have no symptoms at the beginning which makes it more

dangerous. According to the American Diabetes Association, ADA, an average num-

ber of episodes for an average patient is two per week, not including the lows without

symptoms. Hypoglycemic episodes during the night have also been cited as a cause of

death [1]. It is one of the most feared complications of T1D and can lead patients to

have an inadequate intake of insulin [10]. Therefore, blood glucose levels are required

to be monitored frequently to avoid critical situations. A clinical study involving

16,000 patients with T1D, conducted over two years, showed that 75% of children

and youth (ages 7 to 21) were unable to maintain proper glycemic control [11].

Several studies have shown that dogs can detect hypoglycemia and alert the sub-

ject with or without training [12] [13] [14] [15] [16]. Diabetic alert dogs (DADs) have

been implemented to alert patients and researchers have studied dog’s ability to sniff

other diseases such as cancer [13] . This method utilizes canine’s ultrasensitive nose

and ability to differentiate slight changes in breath, urine, sweat, or saliva composi-



5

tion. Dogs have up to 300 million olfactory receptors in their nose while humans have

only about 5 million. Studies have shown improved well-being and fewer paramedic

visits for patients with DADs [17] [18]. Though it is an effective way to alert patients

with hypoglycemia, canines are expensive and require time-consuming/continuous

training. Also, DADs may not perform their trained behavior even after detecting

the odor due to external or behavioral factors.

Biomarkers are defined as “a substance, structure or process that can be measured

in the body or its products and influence or predict the incidence of outcome or

disease” [19] [20]. Biomarker discovery involves the measurement of macromolecules,

cells, or other processes that can describe the biological abnormality of an organism

[21]. There has been considerable research on the identification of breath biomarkers

for various diseases like lung cancer [22] [23], breast cancer [24] [24], colon cancer [25],

prostate cancer [25], Alzheimer’s [26], Parkinson’s [26] , hyperglycemia [27] , and

diabetes [6] [27] [28] [29] [30] [31]. One breath study on the oral glucose tolerance

test (OGTT) found a relation between breath biomarker and gestational diabetes but

were unable to correlate it without the OGTT [32]. Clinical studies for hyperglycemia

have found VOCs that can predict high blood sugar after calibration [27] [33]. A

few research groups found a relation of acetone and isoprene with hypoglycemia as

potential biomarkers but these volatiles have also been seen during exercise [30] [34]

. All these studies indicate that it is possible to find a panel of VOC biomarkers to

detect hypoglycemia. Researchers are currently searching for noninvasive methods for

monitoring glucose from saliva, tears, and sweat [35]. One such recently developed

method involves canines (DADs) trained to sniff hypoglycemia from saliva [36] [37], or

breath samples [38]. This method does not involve monitoring blood glucose levels but

relies on the detection of changes in volatiles (or VOCs). The disease or condition

can alter the metabolism of the body which affects the VOC concentration in the

blood, this blood interacts with alveolar air in the lungs and the VOCs are exhaled

with the breath. Since VOCs are a result of changes in the metabolic process, VOC

analysis can be used to predict a condition affecting the metabolic process before the
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actual symptoms are seen. Researchers have studied the trend in VOCs during the

progression of a disease to see if a disease can be predicted/detected in early stages.

To avoid the physical and mental stress caused due to invasive diagnosis tech-

niques such as biopsy and blood sample testing which can result in false detection,

researchers are looking for various non-invasive techniques to diagnose diseases includ-

ing prostate cancer, ovarian cancer, lung cancer and even Alzheimer’s. The primary

sample matrices for such non-invasive techniques are body fluids like urine, saliva,

and sweat and exhaled breath.

2.2 Analytical Tools for VOCs Detection

Exhaled breath can be used to evaluate the health of a subject in regard to a

disease or specific conditions. Biological breath samples consist of ambient air mixed

with gases produced endogenously including VOCs and CO2, coupled with water and

small amount of non-volatiles including cytokines [39]. Researchers have explored

the metabolic processes linked to diabetes by microanalysis of breath samples using

mass spectrometry (MS) [27], magnetic resonance spectroscopy (MRI) and nuclear

magnetic resonance (NMR) [40]. Commonly used techniques for analyzing samples

of breath to identify endogenous VOCs can be divided into three major groups:

1) Laser – absorption spectroscopic techniques

2) Mass spectrometric techniques

3) Electronic noses (eNoses)

2.2.1 Laser – Absorption Spectroscopic Techniques

Laser Spectroscopy uses a laser beam to inspect analytes in the gas phase inside a

cell. The gas molecules absorb very specific wavelengths of electromagnetic radiation

and can be detected by identifying unique fingerprints. The technique has a very

high resolution and can detect ultra-low ( 10 ppb) concentrations of NO [41]. This

technique has been used to detect aldehydes (biomarkers for lung cancer and breast
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cancer) [42]. The low sensitivity, high noise and drift between two consecutive read-

ings is major concern with this technique for breath analysis. Due to this reasons,

the method is not preferred.

2.2.2 Mass Spectrometric Techniques

GC- flame ionization detector (GC-FID) is another commonly used method for

organic compound detection but not identification. It has high sensitivity, linear

response, and low noise. The organic compounds are burnt in FID to produce ions

and electrons. The electric potential through these ions is used for quantification [43].

Ion Mobility Spectrometry, IMS, separates VOCs based on the mobility of ions

through the purified gas in an electric field. Factors like drift length, temperature,

drift gas type and atmospheric pressure can account for determining total travel time

for ions. Proton transfer reaction- mass spectrometry (PTR-MS) is suited for on-line,

multiple measurements. The analyte is ionized by PTR with primary ion H 3 O+ [44].

It does not require preprocessing and the compounds with high abundance do not

interfere with target compound detection. Selected Ion Flow Tube MS, SIFT-MS,

combines fast-flow tube technique to MS, giving real-time quantification for various

VOCs [45] [46] [47]. Here the VOCs react with precursor ions inside the flow tube at

a controlled rate and the ions are analyzed quantitatively by MS. It has been used to

quantify isoprene in breath samples of 29 healthy volunteers over 6 months [48].

Gas chromatography-mass spectrometry (GC-MS) is the most common methods

used for breath analysis of VOCs. GC-MS is a combination of two microanalytical

techniques: gas chromatography allows the separation of various components of the

sample in time while mass spectrometry allows identification of the components based

on the fragmentation pattern induced by ionization following elution from the column.

GC-MS not only separates the components in the sample and provides qualitative data

based on the spectra, but also provides quantitative data for the same components

[49]. Elevated pressure is required for separation of components in GC and greatly
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reduced pressure is used in MS to separate the ion of various mass to charge ratios

(m/z). It is the most commonly used technique to detect volatiles in healthcare,

medical, forensics, food safety, environmental science, and many other industries.

Solid-phase microextraction (SPME) is usually used to extract and preconcentrate

VOCs prior to GC-MS analysis. SPME uses a fiber coated with an extracting phase

(liquid or solid) that can bind different VOCs with varying affinity. After extraction,

the fiber is then injected into the GC inlet where the volatiles thermally desorb and

enter the chromatographic column to be separated, identified and quantified. Raw

GC-MS data from biological samples needs to be deconvoluted and spectrally aligned

as it contains overlapping peaks and noise.

A study on breath odor compounds for liver patients using GC-MS found that it

is possible to discriminate patients with hepatic pathologies [50]. Another study on

human breath using SPME- GC-MS found hydrocarbons, ethers, esters, ketones, alde-

hydes and alcohols in healthy human breath [51]. Breath analysis has also been used

to detect lung cancer [52] [53]. It has been previously demonstrated that it is possible

to detect and discriminate between lung, breast, colorectal, and prostate cancer from

healthy via GC-MS analysis of breath [25]. It has also been used to analyze biomark-

ers for T1D, hyperglycemia, hypoglycemia [27] [54]. Siegel et al. have shown that

GC-MS can be used to analyze breath samples and identify a hypoglycemic-specific

signature which could differentiate between hypoglycemic and normal (euglycemic)

samples with high accuracy [6].A study on mouse urine using GC-MS has also shown

that the data can discriminate between metastatic and local models of breast can-

cer [55].

2.2.3 Electronic Noses (eNoses)

GC-MS has been a golden standard for VOC analysis, however, it is costly and

time-consuming. GC-MS also requires trained personnel and is not suitable for the

desired point of care application. An alternative to the GC-MS is the eNose, a small-
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Figure 2.1. Schematics of Gas Chromatography Mass Spectroscopy instrument

portable devices that use a variety of gas sensing technologies to identify various

gases from a mixture. An eNose can detect and discriminate VOC patterns from

a complex gaseous mixture like biological breath samples. The basic eNose system

has a multisensory array to detect the VOCs and generate a signal, transducer that

converts sensor signal into readable value, software for recording the data, an artificial

neural network (ANN) to perform pattern recognition and statistical analysis. eNose

is ideal for noninvasive, real-time diagnosis due to its ability to characterize and

discriminate between clinical samples based on VOCs [56] [57] [58] [59]. Researchers

have shown its ability to detect cancer, malaria, asthma, and other diseases [60]

[61] [62] [63] [64]. It is unique due to its ability to characterize and discriminate

between clinical samples based on the sensors response to the VOCs [56] [57] [59]

[58] using AI. The eNose is comprised of 1) an array of gas sensors to detect the

different gas molecules, 2) an interface circuit that performs the signal conditioning

and amplification on the sensory signal, and 3) signal processing unit that uses AI

to perform data analysis and extract features. The eNoses can comprise of other

components based on specifications and features like communication and interfacing.

Most commonly used sensors in eNose systems are chemiresistors due to ease of
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integration and signal conditioning. However, due to its bulky nature and black box

approach, eNoses have limited application and need lot of samples to train the system

to detect a specific signature as it is hard to detect specific biomarkers.

2.3 Gas Sensing Technologies

Gas sensing technologies that are commonly used to detect volatiles are discussed

here. Brief introduction to the technology and its application in the volatile sensing

are described.

Figure 2.2. Types of Gas Sensing Technologies

2.3.1 Optical Sensing

Colorimetric sensors and infrared sensors both give optical results with fast re-

sponse and high sensitivity and selectivity. Colorimetric sensors are composed of

chemically sensitive dyes that respond to the analytes based on the reactivity of the

VOCs. The compounds are detected based on a change in the color of dyes in the sen-

sor array. Eaidkong et al. have successfully distinguished 18 VOCs (toluene, benzene,

pentene and others) using a three polydiacetylene paper-based photodiode array of

sensors [65]. Another research group reported a pre-oxidation technique to improve

detection and identification of 20 indoor VOC pollutants including acetone, toluene,
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p-xylene and isopropanol [66]. infrared or IR sensors, on the other hand, discriminate

volatiles based on the absorption of a specific wavelength of light. Researchers have

detected benzene, acetic acid, ethanol, toluene and dimethylamine using optical fiber

sensors with sensing layer of polyvinyl pyrrolidone, PVP, at low concentrations (1 to

10 ppb) [67].

Figure 2.3. Colorimetric Sensor

2.3.2 Surface Acoustic Sensing

Acoustic sensors detect gas molecules based on a change in wave amplitude and

velocity due to change in sensing film. These sensors have a low detection limit,

fast response time and low fabrication cost. The selectivity and sensitivity of surface

acoustic wave sensor (SAWS) depend on the nature of sensing film. Generally, a very

thin and homogeneous layer of sensing material is desired for high signal to noise ratio

and short response time. SAWS were introduced for chemical sensing application by

Wohltjen and Dessy in 1979 [68]. Many researchers have used this technology for

VOC detection in recent studies. Viespe and Grigoriu used this principle to detect

low concentrations of methanol, ethanol, and toluene using a thin layer of SiO2 /Si

nanoparticles and multi-walled carbon nanotubes (MWCNTs) embedded on polymer

layer [69] [70].
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Figure 2.4. Surface Acoustic Sensing Principle

2.3.3 Mass Sensitive (Bulk Acoustic) Sensing

Mass sensitive sensors measure the change in mass occurring due to adsorption of

gas molecules on the sensing surface. The majority of the mass sensors are based on

piezoelectric bulk oscillators, but sometimes vibrating beams are also used for detec-

tion [71]. The commonly used oscillators are quartz crystal oscillators/microbalance

(QCM), it has been used to detect p-xylene[73], toluene, ethanol, 1-octanol, acetic

acid and acetone [72]. QCM sensors have shown good sensitivity towards aromatic

compounds, alcohols, amines, and ketones [73] [74] [23].

2.3.4 Electrochemical Sensing

Electrochemical sensors are based on reduction/oxidation (redox) reactions pro-

ceeding at the electrodes. The electrolyte solution interacts with analyte VOCs. The

reaction at the working electrode which is polarized based on the reference electrode

generates a signal in the form of change in either current (amperometric sensors),

voltage (potentiometric sensors) or admittance (conductometric sensors) [75] [76].
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This type of sensors is used commercially to detect toxic compounds in the air [77].

These sensors are not preferred for breath analysis application as it needs electrolyte

that can be hazardous if exposed to human breath.

Figure 2.5. Electrochemical Sensing Principle

2.3.5 Chemiresistive Sensing

These sensors detect and quantify the concentration of different gases based on

a change in the resistance of sensors due to the variation in the molecular structure

of the sensing material. The molecular structure of the sensing element changes

as the gas molecules are introduced to the system. The sensing material is coated

between two or more IDEs, the initial resistance between these electrodes is measured

before and after the exposure to the analyte. Similar to SAWS, the sensor properties

depend on the thickness, uniformity and composition of the sensing layer. These are

the most commonly used sensors for eNose and portable applications. Chemirersistive

sensors have widely been used in enoses for detecting different VOCs and diseases.

These sensors can be either selective or non-selective and can be used with pattern
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recognition techniques to detect a condition based on the different patterns generated

by samples from healthy and unhealthy volunteers. Metal oxide semiconductors,

graphene, functionalized graphene, graphene oxide, functionalized GNPs (f-GNPs),

CNTs, functionalized CNTs, and conductive polymer composites (CPCs), have been

used as sensing materials by researchers to detect VOCs and biomarkers [76] [78] [79]

[80] [81] [82] [83] [84] [85] [86] [87]. These materials have been previously explored for

detection of volatiles.

Figure 2.6. Types of Chemiresistors

Metal Oxide Semiconductor Sensors (MOS)

Based on the type of metal used, MOS devices are divided into transition and non-

transition sensors. These are mostly used in indoor air monitors and fire or smoke

detectors and other applications due to their low cost and high sensitivity. The

MOS platform has been used to detect low concentrations (mid part per billion or

ppb) of naphthalene, benzene, ethanol and benzaldehyde at high temperatures (300-

500°C) [88] [89]. The poor selectivity, low stability and reproducibility are among

the challenges that impact performance of MOS sensors for VOC detection in high

humidity environments such as human breath.
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Graphene Based Sensors

Graphene and graphene oxide are widely used in wearable and sensor technology

due to their robust mechanical and electrical properties. The use of reduced graphene

oxide to detect hazardous gases like NO2, H2 S, SO2 and NH3 has been reported by

Sign et al. and Lu et al. [90] [91]. The drawbacks with these sensors are that pure

graphene is difficult to synthesize and the sensors show low selectivity at smaller con-

centrations compared to graphene oxide. However, the high sensitivity of graph oxide

to water vapor limit its application in detecting VOCs in human breath. Decoration

of graphene with nanoparticles and functionalizing the nanosheet has been used to

enhance the sensitivity and selectivity of the graphene-based sensors.

Carbon Nanotube based Sensors

CNTs are popular components of sensing application due to their electronic prop-

erties and ability to respond to different analytes based on chemical structure and

functionalization. CNTs can be either single walled (SWCNTs) or MWCNTs. SWC-

NTs have a simple cylinder like structure and have three basic designs known as

armchair, chiral, and zigzag. MWCNTs can either have a Parchment model (like a

scrolled up graphene sheet) or russian model (multiple CNTs one over the other).

While both types of CNTs have similar properties, MWCNTs are difficult to manu-

facture, MWCNTs have complicated mechanism behind response to gas adsorption

and have shown high sensitivity to specific gases. Both types of CNTs have been

previously used for VOC detection [92] [93]. It has been used to detect non-polar

and polar analytes by Chatterjee et al. and Zilberman et al [94] [95]. VOCs such

as hexane, decane, and dimethyl benzene have been detected using CNTs by Peng

et al [96] These sensors, though they show promising future, currently are hindered

by low response and slow desorption rate. CNT sensors presents an extremely high

recovery time (near 12 hours) which limits its application for the detection of hypo-

glycemia [93].
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Gold Nanoparticle-based Sensor

The use of GNPs as a sensing material was first published by Wohltjen and Snow

in 1998 [97]. GNPs have very fast response and high sensitivity for low concentration

of gases which makes this platform ideal for VOC detection [98]. The properties of

these sensors can be modified by changing their shape [99], size of the core [100],

length of tail group [101] and functionalized group caoting. The sensing mechanism

can be explained by the effect of electron tunneling. The polymeric sensing element

changes volume when they come in contact with the analyte gas due to adsorption,

leading to changes in the gaps at the polymer-nanoparticle interface. This makes

electron flow more difficult and thus changes the resistance of the sensor [102]. GNPs

are very widely researched for VOC and chemical vapor detection by researchers and

are typically decorated with different functional groups to selectively bind different

VOC analytes of interest [99].

Polymer based Sensors

Polymer based sensors are low cost, low power and have varying selectivity and

sensitivity based on the chemical composition of the polymer layer. The analyte

interacts with the polymer layer based on either hydrogen bonds, dipole/dipole in-

teraction or diploe/induced dipole interaction. These are very useful for low concen-

tration VOCs that cannot be detected using MOS sensors as the polymer film can be

functionalized for the specific VOCs. The two-basic type of polymer based sensors

are:

1. Intrinsically Conducting Polymers (ICPs): ICPs are polymers with pi bond-

ing that makes these polymers conductive. Generally do not have high sensitivity

and also suffer from low lifespan and temperature stability. Jiang et al [102] have

tested Poly(3,4-ethylene-dioxythiophene)- poly poly(styrene sulfonate) nanowires sen-

sors to detect ketones, alcohols, alkanes and aromatic compounds. Even polymers like
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polyaniline/polypyrrole composite and Polyipphene have been reviewed for sensing

application with a reasonable explanation for sensing mechanism [103].

2. Conducting Polymer Composites (CPCs): Because there are not many conduc-

tive polymers available for sensor fabrication, non-conducting polymers can be used

by synthesizing composites through a solvent and a conducting material. Overall,

composite materials give good conductivity as well as high selectivity and sensitiv-

ity. Researchers have reported a number of CPCs including polycarbonate or PC in

CB and CNTs, MWCNTs in poly(vinylidene fluoride)(PVDF), amine functionalized

polyaniline, and O-phenyl diamine or OPD for the detection of gases like toluene,

cyclohenexe, acetone, acetaldehyde, formaldehyde, ethanol, and methanol [104] [105]

[106] [107]. Polyetheramide or PEI is another polymer that can be used to detect

aldehydes [87]. However, Very few researchers like Aberici et al and Deng et al have

worked on PEI sensors [108] [109]. Instead, common use of PEI has been VOC and

gas removal from mixture [110] [111] [112].

2.4 Sensor Fabrication

Chemiresistive sensors are fabricated by depositing a thin layer of functional ma-

terial like metal oxides, polymer composites, GNPs, and others. The substrate with

interdigitated electrodes is commonly manufactured using the process of photolithog-

raphy.

2.4.1 Photolithography

Photolithography is a process in which an arbitrary pattern is transferred onto

a substrate following a series of steps. The conventional process uses ultraviolet

(UV) radiation to transfer the pattern from an opaque and transparent mask onto a

substrate covered with UV sensitive polymer called photoresist. The process is very

accurate and reproducible, making it the most commonly used device fabrication

method for semiconductor devices like integrated circuits, microprocessor chips and
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electrodes for sensors [87] [113] [114]. The conventional process of photolithography

is described below. The substrate on which the pattern needs to be transferred is

cleaned and coated with photoresist. There are wet and dry photoresists available

and a suitable photoresist must be used considering factors like type of substrate,

accuracy, and precision required. Researchers are working on innovating new methods

for photoresist deposition and photoresist synthesis [115] [116] [117]. The material is

exposed to UV light through a mask made up of opaque and transparent areas forming

a pattern that is to be transferred. The resolution and precision can also be altered

based on type of contact between the mask, substrate and the UV source [118] [119].

After exposure, the substrate is washed to dissolve UV affected photoresist. The

photoresist protects the pattern while etching, after etching the protective layer of

photoresist is removed to obtain the desired pattern. The etch time is a critical

parameter and needs to be optimized for any given pattern in order to achieve the

desired accuracy.

Synthesis of a thin sensing layer of polymer over interdigitated electrodes is re-

quired to fabricate sensors and the sensing properties often vary based on the thickness

of the film due to chemical changes that occur when chemical deposition of liquid ma-

terial undergoes solidification. GNPs are generally drop cast since the randomness of

drop casting improves the sensitivity of the sensing film.

2.4.2 Thin Film Fabrication

Most commonly used thin-film fabrication techniques are presented and discussed.

Each thin film fabrication method has its advantages and disadvantages based on the

critical parameters which are also mentioned below.

Dip Coating

This traditional film fabrication technique uses a simple process of dipping the

substrate into a chemical solution. There are three steps in the processes, which
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Figure 2.7. Steps Involved in Photolithography

are (1) immersion into the chemical solution for a certain time (2) pulling out the

substrate at a uniform speed, letting the excess drip down (3) evaporating the pre-

cursor from the solution to form a thin layer on the surface of the substrate. The

film thickness depends on factors including immersion speed, dwell time, solution

concentration, evaporation environment and other parameters.

Langmuir-Blogdett (LB)

Here the substrate is dipped into a clear liquid, with high surface tension, contain-

ing a monolayer of an insoluble material is transferred to the substrate or the surface

of the liquid. The material adsorbs onto the substrate due to the attraction between
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the substrate and the hydrophobic monolayer tail being more than the attraction

between hydrophilic head and surface of a liquid. Only insoluble polymer layers can

be formed with this method. A sophisticated setup and calculations are required for

using this technique.

Blade coating

This method uses a simple technique of moving a thin-edged knife over a substrate

after putting a drop of precursor to be coated over the substrate. A thin uniform layer

forms over the substrate and the film thickness depends on the distance between knife

and substrate, knife speed, viscosity, density, and other properties of the chemical.

Chemical Vapor Deposition

In this process, the heated substrate is exposed to precursor gas in a vacuum

environment. A catalyst can be used to enhance the process. A thin layer of a

precursor is formed over the substrate as it cools down. Gas flow is also used inside

the vacuum chamber to carry out the by-products of the process. This results in a

very thin layer (few nanometers) over the substrate.

Spin Coating

Here the substrate is fixed on a rotating chuck and is covered in excess coating

material, before rotating it slowly to spread the material evenly, and then at high

speed to form a thin layer. Various factors like material properties, spin speed, and

spin time affect the thickness and uniformity of the film. The simplicity, ease of

set-up, and uniformity achieved make it more suitable for polymer layer formation.

It is a benchmark for process for thin film fabrication in industry and in academia.

The thickness is inversely proportional to the square root of spin speed or angular

velocity.



21

2.5 Sensor Integration System Development

Sensors are generally tested in the laboratory using a semiconductor characteri-

zation instrument. However, in order to implement the sensors in the desired appli-

cation, a sophisticated sensor interface circuit is required to convert the sensor signal

into useful data by signal processing. For gas sensors, the system should be able

to filter, amplify and read the sensor signal to detect the concentration of the gas

in the sample and then communicate the results. The eNoses commonly uses these

interface circuits for signal conditioning and amplification. Most of these systems are

for general purposes and can perform a variety of different analyses on a variety of

different compounds. These are low cost and fast solutions for many situations but

due to their limited capability, they are not suited for application in disease diagnosis

and biomarker detection. Researchers are currently developing more targeted and

specialized systems for applications including emission control, leak detection, food

quality analysis, plant health detection and others. Rapid progress in nanomaterial

synthesis, fabrication technologies, and electronic systems is enabling the develop-

ment of targeted systems. These devices commonly use a single type of transduction

mechanism and are very bulky and have a very long processing time. The signal from

the gas sensors is usually a change in resistance that can either be processed as a

voltage (digital or analog), frequency, or pulse width. The pulse width modulated

(PWM) signal is generated based on resistor-capacitor charge-discharge delay occur-

ring due to a change in sensor resistance. PWM based interface circuit is more suitable

for metal-oxide-semiconductor sensors as it is convenient to combine with a heater

circuit for temperature control that is necessary for MOS sensors [120] [121] [122].

Converting signal into PWM is complicated, limits the sensitivity and resolution by

digitalizing large baseline value, and requires complex circuitry [123]. Conversion to

voltage can be achieved using a voltage divider or a Wheatstone bridge. Sometimes

the differential voltage is converted from analog to digital, this limits the dynamic

range of the system and increases power consumption due to more number of com-
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ponents used [124]. Digitalizing the signal also makes the system unstable due to

bit-fluctuation with noise created by chemiresistors [125]. While voltage divider or a

half-bridge is very simple, it can be affected by temperature and are not very sensitive

to small changes, the figure 2.8 describes how voltage divider works [126]. The voltage

divider also shows a non-linear response when the driving voltage is constant [127].

Wheatstone bridge eliminates the effects of change in temperature and power source

parameters due to its symmetry [128]. Wheatstone bridge has been a popular method

since its discovery, researchers have used it for chemiresistors before [125] [129] [130].

The sensitivity of the wheatsone bridge circuit is given by 2.1 where R and δ R are

sensor resistance and change in sensor resistance respectively and Vin and Vout are

voltage input and voltage output.

Sensitivity =
Vout/Vin
∆R/R0

(2.1)

If all four arms of the wheatstone bridge are different then the voltage output of

the bridge is given by 2.2

Vout = Vin ×
R3

R1
− R4

R2

(1 + R3

R1
)(1 + R4

R2
)

(2.2)

Figure 2.8. Circuit Schematics for Voltage Divider
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Figure 2.9. Circuit Schematics for Wheatstone Bridge

The portable sensor system also consists of a communication module that can

communicate the sensor results with external devices like smartphones and computers.

The commonly used wireless communication tools for sensor systems are Bluetooth,

ZigBee, and Bluetooth Low Energy (BLE). The use of Bluetooth is not preferred in

portable systems due to its high power consumption. ZigBee requires less power but

the communication over ZigBee is not secured. BLE, on the other hand, is secured

and it uses low power, making it an ideal communication tool for this project.

2.6 Multivariate Statistical Analysis for Identifying Breath VOCs

Weather the samples are analyzed by GC-MS or using a sensor, the data needs

to be statistically filtered and analyzed to make a conclusion. Multivariate analysis

targets multiple features, as opposed to univariate analysis that targets single feature,

from the data that can best classify the sample classes (healthy from diseased). The

most common unsupervised and supervised methods used for multivariate statistical

analysis of breath data are described below.
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2.6.1 Principle Component Analysis (PCA)

PCA is an unsupervised multivariate statistical analysis method that transforms

the original data into orthogonal dimensions where the new data presents maxi-

mum variation within all samples across the new dimensions. This is mostly im-

plemented as a preliminary analysis that is used to validate the data, identify out-

liers, and delineate classes. PCA has also been used to reduce the dimensionality

of the data by ignoring the data with small variation in the new dimensions. The

axes with maximum separation are selected as PC1. For plotting purposes, two

or three components/axes are used while cross-validation is required to determine

the number of axes for data modeling [131]. Researchers have used PCA with GC-

MS data to illustrate separation between breath samples from diseased patients and

healthy controls for colorectal cancer, head, and neck cancer, lung cancer, and type

2 diabetes [132] [133] [134] [135] [136]. PCA has also been implemented on eNose

data for wine classification, tea quality identification, and vinegar sample discrimina-

tion [137] [138] [139].

Consider a data matrix X of n x p dimensions, for a dataset of p numerical

variables and n entities for each variable. PCA seeks a linear combination of the

variables of matrixX that has maximum variations (expressed in equation (2.3)) [140].

p∑
j=1

aj Xj = Xa (2.3)

var(Xa) = aTSa (2.4)

Where a is a constant vector. The variance is given as equation (2.4) with S being

the sample covariance matrix for the dataset. In simpler terms, find p-dimenstional

vector a that maximizes aTSa. This can be reduced to 2.5. That implies that a is an

eigenvector with eigen values λ for covariance matrix S [140].

Sa − λa = 0 ⇐⇒ Sa = λa (2.5)

Xak =

p∑
j=1

ajk Xj (2.6)
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Using the Lagrange multipliers approach and applying the condition of orthogonality,

the equation (2.3) can be transformed to 2.6 [140]. The solution Xak (linear combina-

tions of ak) are known as principle components and the elements of these components

are known as PC scores. The theory is described in detail by Ian T. Jolliffe, Jorge

Cadima [140].

2.6.2 Linear Discriminant Analysis (LDA)

LDA is similar to PCA, but LDA is supervised and transforms the data to maxi-

mize the distance between means of two identified classes and minimize the scatter.

Supervised methods such as LDA take into consideration the class labels (control,

diseased, and other). It is widely used for dimensionality reduction in biometrics,

chemistry and other fields that require the proper handling of big data. There are

three steps in LDA, first one is to calculate the separability (between class variance),

second one is to calculate scatter (within class variance) and third step is to formu-

late a lower dimensional space [141]. LDA has been used on GC-MS and eNose data

for multiple applications like cigarette smoker breath sample discrimination, hypo-

glycemia detection from breath sample, lung cancer tissue analysis, chinese liquor

classification, and coffee classification [6] [142] [143] [144] [145].

In summary, LDA projects the data onto a lower dimensional space by calculating

and maximizing between class variance and within class variance. Between class

variance is calculated using 2.7 [141] where mi is the projection of the ith class mean,

m is the total mean projection, W is the transformation matrix, and µi and µ are

actual ith mean and total mean. Within Class variance (Swi) is calculated using 2.9.

Where xij is the ith sample of jth class, dj is the centering data for jth class. The

total within class variance is the sum of all within class variance (equation 2.9) [141].

(mi − m)2 = (W Tµi − W Tµ)2 = W T (µi − µ)(µi − µ)TW (2.7)
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∑
j=1

(W Txi − mj)
2 =

∑
j=1

W TSWjW (2.8)

SW =
3∑

j=1

SW i (2.9)

The lower dimensional space is constructed using Fischer’s criterion and is de-

scribed in eqYY3, the eigenvalues for the transformation matrix W are represented

by λ. The solution is obtained by formulating the eigenvalues [141].

SW W = λ SB W (2.10)

The literature review suggests that the currently available devices for detection of hy-

poglycemia are mostly invasive and mentally stressful. The VOC research is promising

and suggests that there are VOC biomarkers available in breath for noninvasive detec-

tion of hypoglycemia. Though the eNose technology is promising, it is not portable

and uses the black box approach. Additionally, the sensing technology available is

inefficient to detect the VOCs in breath due to the high humidity and the system is

not customised for medical use. This serves as a motivation for this research project,

to design and develop a portable sensor system for noninvasive detection of hypo-

glycemia.
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3. MATERTIALS AND METHODS

Material and methods used for fabrication and development of nanosensor array are

presented. This includes synthesis of sensing material, fabrication of interdigitated

electrodes (IDEs), fabrication of sensor array, fabrication of signal conditioning cir-

cuit, and experimental testing methods are described. Statistical analysis used to de-

termine and validate the biomarkers of hypoglycemia is presented in Section 3.1. The

material used for the development of the sensors and the electrical interface circuit is

provided in Section 3.2. Fabrication of sensors and the sensor array are described in

Section 3.3. Design, fabrication and the development of the electrical interface circuit

(signal conditioning circuit) is presented in Section 3.4. The experimental testing set

up and the sensing mechanism of the proposed sensors are described in Section 3.5.

3.1 Statistical Analysis of the Breath data Analyzed via GC-MS

Five Adult patients with type 1 diabetes were recruited through the IU Health Sys-

tem according to a process approved by the Indiana University Institutional Review

Board for the stepped hypoglycemic glucose clamp procedure. The patients donated

breath bags were analyzed by GC-MS (Agilent 5975C mass spectrometer,City, Coun-

try) using Siloxane fiber (Superlco, Bellefonte, PA, USA). Raw data obtained from

GC-MS was deconvoluted with help of Automated Mass spectral Deconvolution and

Identification System or AMDIS software [146] and spectral alignment was performed

using the SpectConnect server at Georgia Institute of Technology, which identifies the

components automatically [147]. The output from SpectConnect were two matrices

containing spectrally aligned components with integrated signal (IS) value and Re-

tention time (RT) value. The data was screened for components that were obviously

exogenous, had bad retention time, and were not present in 50% of the sample set.
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An iterative LDA method was implemented to identify a small panel of VOCs that

relates to hypoglycemia. The details for this simple computational feature selection

are described elsewhere [6]: it first determines the specificity, sensitivity, and area

under the curve (AUC) of a receiver operating characteristic (ROC) curve for a com-

bination of three VOCs. Next, using the pre-generated IS matrix, all possible combi-

nations of three VOCs are tested to identify the group that presents the highest AUC.

These three VOCs are used for iteratively trying combinations of four and then five

VOCs, and the process is repeated, until a best combination is obtained for the speci-

ficity, sensitivity, and AUC. To check the model for overfitting, results are subjected

to cross-validation, deterioration of cross validated results is an indication for over-

fitting. This leads to an identification of the simplest combination of metabolomics

biomarkers or VOCs that provides strong predictive outcomes. Cross-validation of re-

sults were obtained using with MATLAB classifier app, specifically, 10-fold validation

with linear analysis. The method is described in detail elsewhere [148].

3.2 Materials

Silicon wafers coated with Silicon Dioxide (SiO2 - 300 nm), Chromium (Cr-5 nm),

and Gold (Au- 90 nm) respectively were procured from Hionix Inc (San Jose, Cali-

fornia, USA ) for making the interdigitated electrodes for the sensors. S1813 positive

photoresist (MicroChem Laboratory, Round Rock, Texas, USA) and an adhesion

promoter MCC Primer (80/20) (MicroChem Laboratory, Round Rock, Texas, USA)

were obtained for photolithography. For development, microposit MF-321 developer

(Rohm and Haas Electronic Materials LLC, Marlborough, Massachusetts, USA) was

used. Gold etchant and Chromium etchant was procured from Sigma Aldrich (St.

Louis, Missouri, USA). The f-GNPs were purchased from Sigma Aldrich (St. Louis,

Missouri, USA), along with PEI, 1-Methyl- 2-pyrrolidinone (NMP), polyethylene ox-

ide (PEO), and other reagents. Carbon black (Black pearl 2000) was obtained from

Cabot Corporation (Boston, Massachusetts, USA). PVDF-HFP (FLEX 2801 PVDF)
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was obtained from Arkema Group (Colombes Cedex, France). Diethylene carbonate

(DEC) was procured from Novolyte Technologies (Zachary, Louisiana, USA). Dry

medical air and Pure Nitrogen was purchased from Praixair (Danbury, Connecticut,

USA). The components used for the interface circuit were purchased from DigiKey

(Thief River Falls, Minnesota, USA). All the resistors are surface mounted or SMDs

with size specification 1206 (120mils length by 60mils width). The microcontroller

used is Arduino Bluno nano (SKU DFR0296, purchased from Digikey) with onboard

BLE from DFROBOT (Bluno).

3.3 Fabrication of Sensor Array

3.3.1 Synthesis of Sensing Material

PEI: PEI comes in small pallet form and are clear-yellow in color. To remove the

moisture, the polymer was stored in vacuum for 48 hours. This PEI was then dissolved

in NMP in a ratio of 1:3 by stirring the mixture at 800C for at least 48 hours.

PVDF-HFP: The solution was made in similar way by adding PVDF-HFP powder in

NMP (1:5). 2% glycerol (w/w) was added to this solution to enhance the composite

uniformity.

PVDF-HFP/CB: The solution was made with PVDF-HFP powder in NMP (1:5).

5% Carbon black (CB) was added to this solution that makes the polymer layer

conductive. The concentration of carbon black was optimized to get better sensitivity.

PEO/DEC: PEO and DEC were sonicated to get mixture of PEO and DEC (4:1%

w/w) that was used for modifying properties of sensing film.

3.3.2 Fabrication of Interdigitated Electrodes (IDEs)

IDEs were fabricated over gold and chromium coated Si/SiO2 substrate using a

traditional photolithography process with the help of OAI series 200 Mask Aligner

and Exposure system. The figure 3.1 shows the picture of the instrument. The mask
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for photolithography was designed on Coventor Ware 2012 and was procured from

Louisiana Tech University, printed on a glass substrate. The design in shown in 3.1.

As seen in the figure, the mask design is printed on glass with high-resolution printers.

It is important to make sure that the mask is manufactured without defects as the

defects can be reflected in all the products.

Figure 3.1. Picture of Mask Design Printed on Glass

Photolithography Process

The Si/SiO2 substrate was cleaned thoroughly with acetone, ethanol, isopropanol

(IPA) and then with high pressure DI water to remove any dust particles or residues.

To evaporate any solvents left after cleaning, the substrate was dried with medical air

and then heated 90°C for 5 minutes. The surface was then spin coated with adhesion

promoter MCC Primer 80/20 at 500 rpm with spread time of 5 s and at 3000 rpm
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with spin time of 40 s. The primer helps in adhesion of photoresist to the gold

surface of substrate. Various factors like spin speed, spin time viscosity ofphotoresist

are responsible for thickness of photoresist film over substrate. The photoresist S1813

was coated at 3500 rpm for 40 s. The substrate is soft baked at 90°C for 15 s. The

higher temperature or longer exposure to heat can cause cross linking or decomposing

of photoresist. The exposure time was optimized to 4.6 s for the 5µm-8µm electrode

gap.

After exposure the mask was developed with Miroposit MF-321 for 1 minute while

Figure 3.2. OAI Series 200 Mask Alignment and Exposure System

shaking. The over exposure or under-exposure can cause damage to the pattern.

After development the substrate was cleaned with water and hard baked at 90°C for

10 minutes. The optical inspection was performed using optical microscope to make

sure the pattern was developed properly. The substrate was then etched with gold

etchant for 30s in glass. The substrate was then cleaned and washed with water

and air to remove etchant residues since it reacts with chromium etchant used in
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next step. Similar process was followed for chromium etchant with etch time of 20s.

To remove the layer of photoresist, the substrate is cleaned with acetone, ethanol,

and IPA. Final inspection for defects, impurities and dimensions was performed to

optimize the process. A fabricated IDE and the mask used for its development are

shown in the figure 3.3. The average gap between the electrodes is measured to be

between 8 µm which is shown in inset of figure 3.3

Figure 3.3. IDEs from Mask on Left Compared to IDEs After Etching
on Right with Inset Showing Gap Between the Electrodes

3.3.3 Fabrication

An array of sensors was fabricated over three separate substrate of containing

IDEs of gold patterned over Si/SiO2 substrate. The sensor array were composed

of sensors of polymer/f-GNPs and polymer/CB. More specifically, sensors of PEI-

EGNP (4 sensors), PVDF-HFP-EGNP (4 sensors) and PVDF-HFP/CB(4 sensors)

were successfully fabricated and tested with the targeting VOCs.
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Fabrication of Polymer/f-GNP Sensors

The drop casting method was used to fabricate both E-GNP sensors over IDEs

with a 5-8 µm gap. The sensors were dried in vacuum for 48 hours. The method is

known to give better sensitivity due to the non-uniform distribution of GNPs. The

sensors were then coated with a thin polymer layer using a spin coating fabrication

method.

A thin layer of PEI and PVDF-HFP were formed over E-GNP sensors giving two

sensor arrays. PEI layer was formed using spin coating at 6000 rpm for 1 min after

spread speed. The substrate was heated at 800C for 150 seconds to evaporate the

excess solvent and for a thin polymer layer. The sensors were stored in a vacuum for

next 48 hours before testing. A thin layer of PVDF-HFP was spin coated at 4000 rpm

for 1 min. The film was then stored in a vacuum for drying without heat treatment.

Fabrication of PVDF-HFP/CB Sensors

The sensor was fabricated by spin coating polymer layer directly over the IDEs.

The speed of 3500rpm was used for 55 s to get uniform film thickness. The sensor was

dried at room temperature for 18-24 hours before removing the excess solvent and

glycerol through a water bath procedure. The sensor was then stored in a vacuum for

over 24 hours before testing. The sensor was sensitivity and selectivity was enhanced

by treating the polymer composite using PEO and PEO/DEC layer deposition (drop

casting) [86].

3.4 Experimental Setup and Sensing Mechanism

The sensors were tested in four different ways, first with individual VOCs, then

with multiple VOCs (combinations of 2 and 3 VOCs), and with Simulated breath. For

these tests, a dedicated sensor testing setup was built. Dry medical air (76.5%-80.5%

Nitrogen, 19.5%-23.5% Oxygen) was used as a carrier gas for experiments to avoid any
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interactions from the atmosphere. Mass flow controllers (Alicat scientific, Marana,

Arizona, USA) were used to bubble controlled flow of air through liquid VOC and

get VOC vapors in the carrier gas. The sensor was sealed inside a testing chamber

with 300 cc volume to avoid any interaction with atmosphere. The carrier gas along

with VOCs was introduced for a fixed time into the chamber after letting the sensors

get stable to the dry air. To test the sensors at different concentrations, the flow

rate was varied. The total flow was kept constant to 400 standard cubic centimeters

per minute (SCCM) for individual and multiple VOCs. The flow was kept at 1000

SCCM for simulated breath. The average flow for human breath when asked to

blow into the bag is around 0.2 liter/second i.e. 1200 SCCM . The sensor results

with standard deviation errors are presented in the results Section. The sensors are

tested with VOC1, VOC2, VOC3, VOC4 to check sensitivity and selectivity. The

sensor is tested with simulated breath at 93% relative humidity (RH) for 30s cycles.

Simulated breath refers to a mixture of high humidity with dry air, VOC of interest

and a small amount of acetone and ethanol.

Figure 3.4. Experimental Setup Used for Testing the Sensor Arrray
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The experiments were conducted at room temperature (21°C- 25°C). The tem-

perature for simulated breath was adjusted to 35°C to match with human breath. RH

was validated using a commercial humidity sensor (CO2 meter, City, state, Country).

The concentration of VOCs in parts per million (ppm) was calculated based on the

following 3.1 The resistance and change in resistance were measured fusing Keithley

2701 Digital Multimeter/ Data Acquisition/ Data Logging system (Beaverton, OR,

USA). The data was logged using Keithley KickStart software on a computer with

RS232 interface. The logged data was stored in excel file and was analyzed using

Microsoft Excel.

Concentration (ppm) = 106 × V apor Pressure V OC (mmHg)

760
× MFC V OC

MFC total

(3.1)

Sensing Mechanism

There is literature available describing the sensing mechanism of the f-GNPs based

on the quantum tunneling effect [57], [149]. The VOC analytes interact with f-GNPs

and alter the network formed, affecting the electron tunneling that transports the

electrons between electrodes [150]. The electron tunneling resistance (Rt) is given

as [151] [152]:

Rt ∝ exp(βL)× exp(EA

kT
) (3.2)

Where,

L= average separation gap between nanoparticles,

β = electron tunneling decay constant (depends on thiol matrix),

EA = activation barrier energy,

k = Boltzmann constant,

and T = temperature

When the analyte molecules interact with thiols (adsorbed on sensor surface), it

causes swelling of thiols that changes the gap between GNPs and causes change in

resistance. So the relative change can be given as:

δR

R0

=
R(L+ δL)−R(L)

R(L)
= exp(βδL)− 1 (3.3)
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As the equations suggest, particle size and surface characterization plays an impor-

tant role in sensing. The presence of double bonded oxygen makes the EGNP more

sensitive towards hydrogen donor compounds like alcohols, aldehydes and alkanes.

The lone pair from double bonded oxygen initiates the hydrogen bonding with var-

ious gases. The polymer film was deposited over it to modify the selectivity and

sensitivity of the sensors and enhances the sensor stability in harsh environment such

as human breath. The structure of these GNPs is shown in figure 3.5.

Figure 3.5. Structure of 1-Mercapto-(triethylene glycol) methyl ether
functionalized gold nanoparticle

For the polymer composites, the sensing mechanism can be explained with the

help of a phenomenon known as percolation theory. The polymer matrix, in this

case PVDF-HFP matrix is non-conductive. Carbon black, a conductive material is

infused inside the polymer matrix to make the polymer conductive. When there is

just enough conductive material inside the polymer matrix, the polymer can transfer

electrons with small resistance. When this CPC matrix interacts with VOCs, the

polymer expands and the distance between the conductive particles increases, causing

the resistance to increase. The ratio of materials is very crucial as the percentage of

conductive material inside the matrix translate into sensitivity.

3.5 Fabrication of Sensor System

The interface circuit was designed on Autodesk Eagle PCB Design Software, ana-

lyzed on OrCAD PsPice Simulation, and fabricated on a printed circuit board (PCB).
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Figure 3.6. Percolation Theory of CPCs

3.5.1 Interface Circuit Design Considerations

The interface circuit is required to connect the sensor to the microprocessor as

a microprocessor is mostly incapable of processing direct sensor output. The circuit

was designed in three parts: A multiplexing unit that is able to select an input from

number of inputs based on received signal from a processor, a signal conditioning

unit to convert the change in resistance of the sensor into analog voltage value and

amplify the signal to readable value for further processing, and a microprocessor that

can control these components and process the signal for conclusion.

3.5.2 Design of Interface Circuit on Eagle PCB

The initial prototype was built on a breadboard and then on a general-purpose

board to test for functionality.

Multiplexing Unit

Dual 4-channel analog multiplexer/demultiplexer 74HC4052D (Nexperia USA inc)

(MUX) is used to switch between sensors periodically and connect each sensor to

the signal conditioning and amplification unit based on digital inputs from onboard

microcontroller, Bluno. S0 and S1 are digital signal inputs that are used to select the

output (Z) from available 4 inputs (Y0, Y1, Y2, Y3).3.1 shows how the outputs are
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Table 3.1. Multiplexer Output Selection Based on Control Input E,
S1, and S0 [153]

E S1 S0 Output

LOW LOW LOW Y0

LOW LOW HIGH Y1

LOW HIGH LOW Y2

LOW HIGH HIGH Y3

HIGH X X None

selected. The sensors are connected to the multiplexing unit through a connector.The

output from the mux is connected to a Wheatstone bridge circuit that has three fixed

resistor arms.

Signal Conditioning and Amplification Unit

The resistance change of the sensor is converted into a voltage difference and is

amplified using an LM324-N low power Quad- operational amplifier (Texas Instru-

ments) (op-amp). The bridge is powered by Bluno with 3.3V supply while the op-amp

is powered at 5V from Bluno. The gain of the circuit is adjusted using the combina-

tion of resistors connecting to the op-amp. Considering the 2.2, if R3 is replaced by a

sensor then the output voltage of the wheatstone bridge is given my 3.4, where R3 is

a variable sensor resistance. This outputof Wheatstone bridge is further supplied to

differential amplifier circuit that amplifies the signal based on the gain values. The

output of differential opamp circuit is given by 3.5. V+ and V - are the inputs to

opamp and G is the gain value that is based on the resistance connected in circuit

(Rf and Rx)
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Microcontroller Unit

Microcontroller Unit: The Bluno nano board used in the project uses Atmega 328

microcontroller and has on-board TI CC2540 BLE chip with transmission range over

20 m that can be connected to android and iOS devices. This microcontroller board

is powered by 4.8V battery or USB. The board is programmed using an Arduino

Integrated Development Environment.

Vout = Vin ×
R3 − R

R3 + R
(3.4)

Vamp = (V + + V −)×G (3.5)

here, G =
Rf

Rx

, V + = Vin ×
R3

R + R3

, and V − = Vin ×
1

R
(3.6)

Schematic Design of Interface Circuit

Eagle PCB allows placement of different analog and digital components from the

circuit on the sheet and connecting these components with wires or buses. Most of the

components were already available in the eagle library and were used without modifi-

cation. Arduino Bluno pinout was not available and was designed on the software for

ease of fabrication using dimensions and pin diagrams available on the website [154].

The schematic design was iterated several times to optimize the circuit. figure 3.8

shows the circuit layout designed on Eagle.

Layout Design of Interface Circuit

After initial schematics design, Eagle allows users to develop a layout of the circuit

on a virtual PCB. The software allows placement of components on the virtual PCB

in required orientation. Connection between the components can be achieved by au-

torouter tool available on the software that connects the components while optimizing

the space and other parameters. Compact placement of parts or complex design can

cause the autorouter to keep few connections open that can be manually connected or
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Figure 3.7. Pinout diagram of Arduino Bluno nano board [154]

Figure 3.8. Sensor System Schematic Designed on Eagle PCB

placement of components can be updated to accommodate all the connections. The

layout was designed in order to make replaceable components easily accessible. The

2 layer PCB layout is shown in figure 3.9 where the blue colored components are on

the back side while red colored components and connections are on the front side.
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Figure 3.9. Sensor System Layout Designed on Eagle PCB

3.5.3 Fabrication of Sensor System on PCB and Design of Packaging

The PCB was printed by Advanced circuits Inc (Aurora,CO ,City, State, Country)

with both side soldermask and silkscreen. The vendor requires gerber files (Computer

Aided Machining files for PCB design) that the software generates using a CAM tool.

Once received, all the components on the circuit were soldered at research facility.

Figure 3.10. Fabricated PCB Received from Advanced Circuits

Packagining Design

Packaging for the whole system was designed on PTC Creo (MA, USA). And 3D

printed from “Think It Make It” lab at Herron School of Arts and Design, IUPUI

(IN, USA). The material used for packaging is polylactic acid or PLA for prototyping
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purposes. The packaging can be manufactured using materials like glass, polypropy-

lene, or silicon to avoid interaction with the sensors, caused by the degassing of the

plastic. The schematic image of the designed packaging system is provided in the

figure 3.11.

Figure 3.11. Sensor System Packaging Designed on PTC Creo 4.0

3.5.4 Programming of the Sensor System

The system was programmed using Arduino Integrated Development Environ-

ment software which uses basics of C and C++ programming language [155]. The

software enables easy programming of the Arduino microcontroller. The program is

not represented in the thesis. It contains the code to define all the sensor variables,

collect the sensor data every 8 seconds for further data analysis. It performs matrix

multiplications to extract features from the sensor data that can further scale the

analysis result between one to ten, where one is Normal and 10 is Hypoglycemic.

The system is also equipped with bluetooth that allows communication of the results

to smartphone and computers. A multi-color LED from the system is flashed based

on the results where red indicates Hypoglycemia, yellow indicates caution, and green

indicates euglycemia or normal condition.
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4. RESULTS

This Chapter describes the results for characterization and testing results of the sta-

tistical analysis, sensing material, fabricated electrical system, and fabricated sensor

array. Section 4.1 describes the statistical analysis results performed on GC-MS data

using MATLAB. The FESEM, UV/VIS and contact angle characterization results are

presented in Section 4.2. Section 4.3 describes the PEI-EGNP, PVDF-HFP/CB, and

PVDF-HFP-EGNP results tested as an array with a combination of multiple VOCs

and with the simulated breath. The results with characterization and testing of the

interface circuit are described in Section 4.4.

4.1 Statistical Analysis

The statistical analysis was performed on data acquired from the breath sample

analyzed on GC-MS and spectrally aligned using SpectConnect server from Georgia

Institute of Technology. Univariate statistical analysis identified 88 components with

p-value less than 0.05 (student’s t-test) between clam samples and camp samples from

normalized relative abundance matrix. Further analysis of this data suggested 38 of

the components/VOCs presents a statistically significant relation to hypoglycemia

(RT standard deviation less than 0.5). However, none of these 38 VOCs were able to

perfectly separate hypoglycemic and normal samples individually. Next, multivariate

analysis was conducted to identify a combination of VOCs that can achieve the high-

est AUC and separates hypo samples from non-hypo samples. Using the approach of

iterative LDA, described in methods, a panel of six VOCs was identified that could

perfectly separate the hypoglycemic breath samples from normal breath samples, that

yields 85.71% sensitivity and 100% specificity with AUC of 0.99. Belsley collinearity

diagnostics ensured that there is no strong collinearity among the VOCs in the identi-
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fied panel of VOCs. The VOCs were identified by NIST14 but were not verified, and

the names are not disclosed herein. A representation of the LDA scores for the 25

samples is shown in figure 4.1, demonstrating perfect separation in the between sam-

ples. The results were cross-validated using the MATLAB’s classification learner app

(MATLAB R2018a 9.4.0.1) (10-fold cross-validation feature). The cross-validation

was carried out 1000 times and the averaged data was reported.

Figure 4.1. 1 LDA results for 26 clamp samples (14 hypo, filled
squares, 11, non-hypo, unfilled squares) using a combination of 6
VOCs to develop the hypo signature. The model demonstrates perfect
separation (AUC, specificity, sensitivity = 1). Dashed line is helpful
to visualize cut-off discriminating hypo and non-hypo samples.

4.2 Characterization Results

FESEM, UV/VIS, and contact angle measurement were used to characterize the

sensing material and evaluate the film uniformity, particle size, and hydrophobicity

properties. These characteristic properties play an important role in sensor perfor-

mance.
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4.2.1 Field Emission Scanning Electron Microscope (FESEM) Analysis

A JSM-7800F FESEM (JEOL USA, Peabody, MA, USA) was used to evaluate

the morphological properties of the PEI/f-GNPs. FESEM images of the polymer

f-GNPs were taken at an accelerating voltage of 20 kV and a working distance of 5.0

mm. The bright spots of f-GNPs, scattered all over the interdigitated electrodes with

uniform dark film of polymer indicates very uniform film achieved using drop casting

of f-GNPs and spin coating polymer layer over it. The presenting results (shown

in figure 4.2) shows the formation of a uniform composite of f- GNPs and polymer

across the electrodes. The uniform layer is required to achieve higher sensitivity and

selectivity.

Figure 4.2. FESEM image of PEI-EGNP film showing EGNP parti-
cles embedded in polymer
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Figure 4.3. A Raméhart Goniometer Model 200-F4 used for Contact
Angle Measurement

4.2.2 Contact Angle Measurement

Raméhart contact angle goniometer model 200-F4 (Raméhart instrument co, Suc-

casunna, NJ, USA) was to evaluate the wettability of the sensors via measuring the

static contact angle between a water droplet and surface of the sensing film (instru-

ment shown in the 4.3). The contact angle for all three sensors used in the sensor array

is measured and presented in table 4.2. The comparison of contact angle in the three

devices shows that PVDF-HFP-EGNP sensor presents the highest hydrophobicity and

contanct angle of 94.6°. This leads to high stability toward water vapor. The contact

angle of water droplet and PVDF-HFP/CB is measured to be 80.1°and smaller than

PVDF-HFP-EGNP. This is due to addition of a glycerol (hydrophilic polymer) and

treatment of the film with DEC. PEI-EGNP also shows a low hydrophilicity property

and present a contact angle of 70°. The more hydrophobicity not only accounts for

more stability under humid conditions, it also makes the sensors more sensitive and
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Figure 4.4. Contact Angle Measurements for Sensor Array A) PVDF-
HFP/CB, B) PVDF-HFP-EGNP, and C) PEI-EGNP provided by
software ImageJ

selective under humid conditions as the porous polymer only allows certain VOCs to

interact with the conductive material and hence the sensors can be seen to have more

sensitivity in humid conditions. The figure 4.4 (b) shows the contact angles given

by the contact angle plugin on software ImageJ. The software measures the angle by

fitting the water droplet to a circle or an ellipse, the values with circle fit (Theta C)

are presented considering the materials. The software measures the inside angle that

needs to be converted to contact angle.

Table 4.1. Contact Angle Measurements for Each Sensor Represented
as Circle Fit (Theta C)

Sr. No Sensor Type Theta C

1 PVDF-HFP/CB 80.1°

2 PEI-EGNP 70°

3 PVDF-HFP-EGNP 94.6°

4.2.3 Ulta-Violet Visible (UV-VIS) Spectroscopy

UV-VIS measurement was conducted to evaluate the particle size and quality of

the EGNPs used in this study. The light absorption is measured across the range of
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300 nm to 700 nm and the results are shown in figure 4.5. The analysis suggests the

surface plasmon resonance (SPR) peak is observed at a wavelength of 515 nm which

indicates the spherical nanoparticles are smaller than 10 nm [156]. The analysis also

indicates a ratio of 1.21 for SPR peak absorbance to the absorbance at 450 nm (ASPR

/ A450 nm)which estimates the size of EGNPs to be smaller than 5 nm [156]. This

analysis is in agreement with the particle size reported by the company (3.5-5.5 nm).

Figure 4.5. A UV-VIS analysis of EGNPs

4.3 Sensor Array Results

The sensors were tested with different VOCs at different concentrations and under

different conditions. Four MFCs were utilized to expose the sensor to a specific flow

of VOCs. Since the interaction of VOCs from blood with Exhaled breath happens at

constant rate and concentration of these VOCs in the breath is affected by the va-
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por pressure of the VOCs, instead of concentration, flow rate was used to determine

the sensitivity of the sensor, especially under the simulated breath environment, To

determine the specificity of the sensor, concentration was calculated using formula de-

scribed in Chapter 3 (Section 3.3). The flow was measured in SCCM . The resistance

was measured every 0.7 s but since multiple sensors were tested together each sensor

response is 11.5-11.06 seconds apart. The fabricated sensors are shown in figure 4.6.

Figure 4.6. Contact Angle Measurements for Sensor Array A) PVDF-
HFP/CB, B) PVDF-HFP-EGNP, and C) PEI-EGNP provided by
software ImageJ

4.3.1 Sensor Array Response to Individual Targeting VOCs

The sensor array was tested with individual VOCs to test its sensitivity and

selectivity. The sensor was stabilized at 400 SCCM dry airflow for at least 30 minutes.

The sensor was then exposed to 50 SCCM of VOC for 3-cycles while keeping the

total flow rate constant. Table 4.3 shows the calculated ppm concentration values.

VOC3, VOC 4 and VOC 5 are the VOCs of interest as they have been seen in the

breath data as potential biomarkers for hypoglycemia. All these VOCs are present in

breath and have been identified as biomarkers for different diseases.

The sensor response to VOCs is summarized in Table 4.4. All the sensors in

sensor array are most sensitive towards VOC4 since the concentration of the VOC is

more due to its high vapor pressure. But figure 4.7 showing the comparison of sensor
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Table 4.2. Targeting VOC and its Concentration in Parts per Million(ppm)

Name of VOC Concentration inside the testing chamber

VOC1 163 ppm

VOC2 68 ppm

VOC3 37 ppm

VOC4 431 ppm

VOC5 34 ppm

response with respect to the VOCs, based on the calculation of response for 1ppm,

indicates that sensors are more selective towards VOC5 and VOC3.

Table 4.3. Sensor Array Response to Targeting VOCs (%∆R/R0)

Name PVDF-HFP/CB PEI-EGNP PVDF-HFP-EGNP

VOC1 0.212 0.718 3.978

VOC2 0.236 0.850 4.003

VOC3 0.190 0.568 3.029

VOC4 0.265 1.060 5.130

VOC5 0.193 0.712 3.926

4.3.2 Sensor Array Response to Multiple Targeting VOCs

The sensor array was tested with a combination of three VOCs to check its re-

sponse to a VOC signature. Fig 4.7 shows a PCA analysis that separates this VOC

signature from other signatures. The Panel that contains VOC3 and VOC5 have been

separated from the cluster as shown by PCA. The PCA shows combination of VOC4

are clustered away from combinations of VOC1.. Here the PCA is looking at low re-
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Figure 4.7. Sensor Response to Individual Targeting VOCs in Dry Air

Figure 4.8. Sensor Selectivity Towards Each VOC with respect to other VOCs

sponse to combinations of VOC4. The figure 4.9 shows the PCA along the principle

component 2 that shows that the desired panel of VOC1, VOC4, and VOC5 is sepa-

rated from other panels while along the PC 3, the combination of VOC1, VOC3, and

VOC5 is also separated from the other combinations. This shows the discriminating

power of the proposed sensor array in detecting the signature of hypoglycemia which

includes a combination of VOCs.
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(a) PCA plot along first two principle components

(b) PCA plot along second and third principle components

Figure 4.9. PCA Analysis of Percentage Resistance Change Showing
Separation Between Multiple Signatures

4.3.3 Sensor Array Response to Simulated Breath

The sensor array was tested with simulated breath with and without VOC. The

sensors response is evaluated similarly to the dry air. Fig. 4.8 shows a comparison be-

tween simulated breath and dry air response for the PEI-EGNP sensor. The response

is more than 200% of the response to VOCs in dry air. The sensor becomes more

sensitive in the presence of high humidity due to the interaction of water molecules

with the polymer film. The average percentage response to all the VOCs is summa-
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rized in Table 4.5. The three selected sensors detect three different VOCs selectively

in the simulated breath. The PEI-EGNP detects VOC 4, PVDF-HFP-EGNP detects

VOC1, while VOC5 is detected by PVDF-HFP/CB sensor. The enhanced sensitivity

is observed due to the presence of high humidity that interacts with the polymer. The

proposed sensing mechanism here is based on the observations. The polymer layer

is protecting the EGNPs and also allowing the VOCs to interacting with EGNPs

selectively.

(a) Sensor Response in Dry Air

(b) Sensor Response in Simulated Breath

Figure 4.10. Comparison of Sensor Response to Individual VOC in
Dry Air and Simulated Breath



54

Table 4.4. Sensor Array Response to Targeting VOCs in Simulated
Breath (%∆R/R0)

Name PEI-EGNP PVDF-HFP-EGNP PVDF-HFP/CB

VOC1 -0.280 3.570 -2.233

VOC2 1.241 1.383 0.590

VOC3 0.788 -1.554 0.554

VOC4 3.896 2.433 0.609

VOC5 2.981 2.049 1.029

4.3.4 Sensor Reproducibility Analysis

The sensors from sensor array were damaged during testing with the simulated

breath due to prolonged exposure to humidity. The sensor was then placed in a

vacuum to recover analyze the recovery and were tested after two days. PVDF-HFP-

EGNP sensor was damaged and lost its sensitivity while the PEI-EGNP and PVDF-

HFP/CB sensor were still equally sensitive. The PVDF-HFP-EGNP and PVDF-

HFP/CB sensor were replaced to investigate reproducibility. Table 4.6 and Fig 4.9

shows the sensor array response before and after replacement. The sensor was tested

with a single VOC for three cycles and the average sensor response is compared. 4.11

shows the average response of the old and new sensor array to VOC4 for three cycles,

considering the response to the first array as 100%. Both sensors have been fabricated

similarly but on different days. The presenting results show that change between the

sensor responses of the two separate sets of sensors fabricated in a period of a week

is less than 10%.

4.4 Sensor System Characterization and Results

The interface circuit consists of two signal conditioning circuits to accommodate

two different types of sensors as described in methods. The circuit was first simulated
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Figure 4.11. Sensor Response compared before and after replacement

Table 4.5. Reproducibility of Sensor Array Response to VOC4 (%∆R/R0)

PEI-EGNP PVDF-HFP-EGNP PVDF-HFP/CB

Old Sensor 1.060 5.130 0.337

Replaced Sensor 1.000 5.582 0.313

on Pspice with 5V as input voltage and then was compared with experimental results

for the same on the system. Fig 4.10 shows the circuit used for simulations. The

system consists of two circuits to accommodate two different types of sensors, the

values of the bridge resistors were optimized for linearity and gain in the working

range of the sensor.

4.4.1 Comparison Between Experimental and Simulation Results

The interface circuit was fabricated and developed using the electronics presented

in the material and method. The electrical system was powered by a 5V power

supply from a PC USB port. The experimental results showed a drop of 500 mV in

the voltage observed across the sensors. The output voltage change due to the change
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Figure 4.12. Simulation example of circuit on Pspice

to the sensor resistance was in agreement with the simulation results (shown in figure

4.13).

(a) Comparison for Circuit 1 (b) Comparison for Circuit 2

Figure 4.13. Comparison between simulation and experimental results
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4.4.2 Impact of Power Supply :Open Circuit Voltage

The electrical system is designed to be used with different batteries. The perfor-

mance of the electrical system in detecting resistance change of the sensor using power

supplies with different batteries has been investigated and the results are shown in

figure 4.14. The presenting results show that the sensors can correctly detect the

resistance change of the sensors in a range of 50 KΩ to 120 KΩ. This shows the

engineered circuit can be used with a variety of power supplies in different applica-

tions. A version of a system was also tested with multiple power supply voltages to

configure a portable battery and a power supply for the whole system. The Arduino

requires min 5V supply when connected to a computer it draws sufficient voltage to

function at maximum efficiency. Since the subparts of the system are connected to a

5V and 3.3V out pin from Arduino, the system response changes when power sup-

ply voltage changes. The experimental results were collected by testing the system

with a computer. The system was further tested with a 3.7V battery, a 3.7V battery

with step-up transformer, and two 3V cells connected in series. These options were

selected considering the size of the system and using the small available battery with

maximum capacity and output current. As expected, the systems initial output drops

due to low voltage power supply. The stepped-up 5V supply performs as good as the

6V supply.

The sensor system has been through multiple iterations and revisions. The parts

were replaced, the design was revised to make a compact and reliable system. The

system evolution from a simple multipurpose breadboard to optimised PCB is shown

in figure 4.15.
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Figure 4.14. Simulation example of circuit on Pspice

Figure 4.15. Evolution of Proposed Smart Sensor System
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5. CONCLUSION AND FUTURE WORK

The Chapter describes the achievements of this thesis and proposes future work that

can improve and enhance the proposed sensor system with advanced technology, fab-

rication, and testing methods to detect more VOCs and apply the system for breath

analysis and other diseases detection.

5.1 Conclusion

The purpose of the project was to design and develop a portable system to de-

tect a panel of VOCs related to hypoglycemia that has been seen before in diabetes

breath samples by our research group and has been verified in the statistical analysis

performed in the presented thesis. The chemiresistive sensors were developed us-

ing conductive polymer composite PVDF-HFP/CB and f-GNPs coated with polymer

layer PEI and PVDF. The sensors were fabricated to detect VOCs in high humid-

ity(greater than 90%) considering its application, the polymer layer helps in making

the film more hydrophobic and the porous structure of the film allows the interaction

of VOCs with sensing material. The PVDF-HFP/CB sensor was most hydrophobic

and shows selectivity towards VOC5 and shows the least sensitivity towards the hu-

midity of all proposed sensors due to high hydrophobicity. The PEI-EGNP sensor

was selective towards VOC4 in simulated breath while the PVDF-HFP-EGNP sensor

was most sensitive and was elective towards VOC1. The sensors were tested as an

array to have cross selectivity and to detect the panel more accurately.

A smart sensor interface system was fabricated on PCB with BLE communica-

tion to allow connection of the system with a PDA to monitor and store data for the

patients and doctors. An interface circuit has two unique signal conditioning circuits

to accommodate multiple sensors. The circuit was simulated on Pspice with chang-
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ing sensor resistance multiple times with different combinations of resistors for the

Wheatstone bridge and amplification circuit to investigate the best possible combi-

nation, maximizing the range and gain of the circuit. The system was fabricated and

tested with varying resistance to validate the simulation results. The system follows

the simulation closely and can detect resistance change over the desired range for both

the circuits. The system was also tested with multiple different power supplies to in-

vestigate its performance based on different power inputs. The system performance is

maximum when the power supply is more than 5V and drops gradually as the power

voltage drops. The system can be tuned to perform efficiently at low power voltage

by updating the software. The system is controlled by an Arduino microcontroller

that is programmed using Arduino software to perform control, data collection, and

analysis on the sensors. The project will help improve the lives of millions of patients

suffering from T1D or hypoglycemia by providing a noninvasive method to detect and

predict hypoglycemia.

5.2 Future Work

The project can be advanced further in all three segments. More samples are cur-

rently been analyzed to validate the VOCs that can exclusively predict hypoglycemia

on the breath sample, irrespective of the external factors like environment, age, gen-

der, and other personal factors such as smoking or drinking. Fabricating multiple

sensors on a single substrate can make the system compact and more portable. This

will also enhance cross selectivity. These sensor arrays will need to be tested under the

simulated condition with a combination of multiple VOCs to thoroughly understand

the cross selectivity. The system can be miniaturized further to advanced by sim-

ply integrating interface circuits, Arduino, and BLE chip on the same PCB. This will

also allow the arrangement of components at desired places and removal of redundant

components from the off-the-shelf Arduino module. The system currently uses BLE

for communication, a GSM module can be integrated into the system to communicate



61

with phones with no Bluetooth compatibility. This can further enhance the use of

the device towards the people who do not have smart phones.A Wi-Fi module can

also be included to send and receive alerts over Wi-Fi.

Currently, the prototype packaging that is designed in the project needs consid-

erable modifications based on the breath analysis application. Though the sensors

are not affected due to change in flow onto the sensors, a mouthpiece that can reg-

ulate the flow of exhaled breath onto the sensor is necessary to force the users to

blow at a constant rate that will cause constant VOC exchange in lungs. A polymer

layer on the inside walls of the packaging near the sensors or small chamber that

can pre-concentrate the samples would help the sensors become more sensitive and

accurate. The system can then be implemented in a clinical study to analyze the

impact of using the system on diabetes management for patients with T1D. Reviews

and feedbacks from the study will be useful in revising the system and also study

system performance.

An app for data collection and data presentation is under development that can

help the users to visualize the results in laymen terms. The app can also be pro-

grammed to store the data on the cloud and communicate with caregivers and doc-

tors for support to the patient. The sensors and software can be modified to perform

multiple analysis and detect different volatiles for different diseases. This way the

system is customizable to the disease and other volatile detection applications due to

its unique design.



REFERENCES



62

REFERENCES

[1] Emily Tu, Stephen M. Twigg, and Christopher Semsarian. Sudden death in
type 1 diabetes: The mystery of the ’dead in bed’ syndrome. International
Journal of Cardiology, 138(1):91–93, January 2010.

[2] Philip J. Stout, Nina Peled, Brian J. Erickson, Michael E. Hilgers, Joel R.
Racchini, and Thomas B. Hoegh. Comparison of Glucose Levels in Dermal
Interstitial Fluid and Finger Capillary Blood, July 2004.

[3] Hua Deng, Lin Lin, Mizhi Ji, Shuangmei Zhang, Mingbo Yang, and Qiang Fu.
Progress on the morphological control of conductive network in conductive poly-
mer composites and the use as electroactive multifunctional materials. Progress
in Polymer Science, 39(4):627–655, April 2014.

[4] Radu Ionescu, Umut Cindemir, Tesfalem Geremariam Welearegay, Raul
Calavia, Zouhair Haddi, Zareh Topalian, Claes-Göran Granqvist, and Eduard
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F. Lemonnier, and J. C. Klein. Progress toward the development of an im-
plantable sensor for glucose. Clinical Chemistry, 38(9):1613–1617, September
1992.

[76] Jiri. Janata and Andras. Bezegh. Chemical sensors. Analytical Chemistry,
60(12):62–74, June 1988.
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