
OPTICAL COMMUNICATIONS TESTBED FOR THE EXPLOITATION

OF LUMINESCENCE EMISSIONS OF SOLAR CELLS FOR OPTICAL

FREQUENCY IDENTIFICATION (OFID)

by

Samuel L. Denton

 A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science

Department of Engineering Technology

West Lafayette, Indiana

May 2020

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Walter D. Leon-Salas, Chair

School of Engineering Technology

Dr. Suranjan Panigrahi

School of Engineering Technology

Dr. Abdul Salam

Department of Computer and Information Technology

Approved by:

Dr. Duane D. Dunlap

Professor and Chair, School of Engineering Technology Graduate Education Committee

3

To my parents,

John and Nancy Denton,

To my sisters,

Maya and Grace,

And to all my friends,

Without your conversations and support, none of my success would be possible.

4

ACKNOWLEDGMENTS

The author would like to thank Prof. Leon-Salas and fellow lab members in the tinyLab

for their guidance and support throughout this project. The author would also like to thank the

National Science Foundation for its support through grant ECCS-1809637.

5

TABLE OF CONTENTS

LIST OF TABLES .. 7

LIST OF FIGURES .. 8

List of Abbreviations .. 10

Glossary .. 11

ABSTRACT .. 12

CHAPTER 1. INTRODUCTION ... 13

1.1 Statement of Problem ... 14

1.2 Significance of the Problem ... 14

1.3 Scope of the Study ... 15

1.4 Purpose of the Study .. 15

1.5 Assumptions, Limitations, & Delimitations .. 16

1.5.1 Assumptions ... 16

1.5.2 Limitations .. 16

1.5.3 Delimitations ... 16

1.6 Summary .. 16

CHAPTER 2. REVIEW OF LITERATURE .. 18

2.1 Powerline Communication... 18

2.2 Wireless Communication ... 19

2.2.1 Radio Frequency Communication .. 19

2.2.2 Optical Wireless Communication ... 22

2.3 Optical Frequency Identification ... 24

2.4 Manchester Encoding... 24

CHAPTER 3. RESEARCH METHODOLOGY .. 26

3.1 Optical Communication Testbed Functional Components .. 26

3.1.1 Receiver .. 27

3.1.1.1. Hardware Description .. 28

3.1.2 Transmitter .. 32

3.1.3 Powerline Communication Network .. 35

3.1.4 Power Distribution Board ... 38

6

3.2 Summary of Operation ... 39

CHAPTER 4. RESULTS .. 40

4.1 Test Plan and Results ... 40

4.1.1 Optical Receiver Circuit ... 40

4.1.2 System Integration Noise Investigation .. 46

4.1.3 Powerline Modulation Communication Test .. 49

4.1.4 Power Distribution Board ... 50

4.1.5 Manchester Communication Test ... 51

4.1.6 Powerline Serial Communication Test ... 56

CHAPTER 5. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 59

5.1 Conclusion ... 59

5.1.1 Optical Receiver Board ... 59

5.1.2 Optical Communication Testbed .. 60

5.3 Recommendations .. 60

REFERENCES ... 62

APPENDIX A. PCB LAYERS OF RECEIVER .. 64

APPENDIX B. RECEIVER MEASUREMENTS .. 68

APPENDIX C. POWERLINE MODULATION CODE .. 107

7

LIST OF TABLES

Table 1. Frequency Band Designations (National Instruments, 2019) ... 19

Table 2. Table of allocated frequencies and designated use (National Instruments, 2019) 20

Table 3. Power distribution board performance ... 50

Table 4. Function generator setting for bit rate... 53

Table 5. Manchester encoded and decoded data packets at 4800 bps .. 54

Table 6. Bit error rate of optical receiver at different speeds ... 54

Table 7. Pulse widths at different bit rates .. 55

Table 8. Serial decoding test at different bit rates .. 58

8

LIST OF FIGURES

Equation 1. Speed of light equation .. 19

Figure 2. Elements in an OW communications link (Langer & Grubor, 2007) 22

Figure 3. Visible Light Communication Scenario (Langer & Grubor, 2007) 23

Figure 4. Model of optical communication testbed .. 26

Figure 5. Optical communication panel layout ... 27

Figure 6. Optical receiver functional block diagram .. 27

Figure 7. Photodiode and transimpedance circuit ... 29

Equation 8. High pass filter design calculation .. 29

Equation 9. Low pass filter design calculation ... 29

Equation 10. Passband inverting gain calculation .. 30

Figure 11. Bandpass filter gain circuit .. 30

Figure 12. Eighth order lowpass filter circuit ... 31

Figure 13. Comparator Circuit .. 31

Figure 14. FPGA block diagram ... 32

Figure 15. LED downlight conversion unit .. 33

Figure 16. Spectral power distribution of Vero13 series LED modules (Bridgelux, 2018) 34

Figure 17. Level-shifter circuit ... 35

Figure 18. ST7580 powerline communication expansion board (STMicroelectronics, 2017b) ... 36

Figure 19. STM AC coupler (STMicroelectronics, 2017b) .. 36

Figure 20. STM32 PLM Sample program flow (STMicroelectronics, 2017a)............................. 37

Figure 21. STM32 PLM program debug output (STMicroelectronics, 2017a) 38

Figure 22. Power distribution board ... 38

Figure 23. Optical receiver functional block diagram .. 40

Figure 24. Photodiode and transimpedance amplifier frequency response functional test setup . 41

Figure 25. IR light source circuit .. 41

Figure 26. Photodiode and transimpedance amplifier test setup .. 42

Figure 27. Frequency response of photodiode and transimpedance amplifier 42

9

Figure 28. Bandpass filter frequency response test setup ... 43

Figure 29. Bandpass filter 2 frequency response .. 43

Figure 30. Lowpass filter test setup .. 44

Figure 31. Lowpass filter frequency response .. 44

Figure 32. Comparator test setup .. 45

Figure 33. Demonstration of comparator circuit ... 46

Figure 34. Functional block diagram of noise test setup .. 47

Figure 35. Setup for system noise test .. 47

Figure 36. Frequency spectrum of optical receiver with no signal (pre-noise investigation)....... 48

Figure 37. Frequency spectrum of optical receiver with no signal (post-noise investigation) 48

Figure 38.System noise with IR light source at 1kHz and ambient LED light 49

Figure 39. Powerline communication test setup ... 49

Figure 40. Powerline Communication Data.. 50

Figure 41. Manchester encoded data communication link ... 51

Figure 42. Manchester encoded data communication test setup ... 52

Equation 43. Bit rate calculations ... 52

Figure 44.Picoscope decoding Manchester data at 4800 bps, Ch A (blue) input and Ch B (red)

output .. 53

Figure 45. Packet data at 9600 bit rate .. 55

Figure 46. Manchester decode test comparator input (yellow) and output (blue) 56

Figure 47. Functional blocks within serial communication link... 57

Figure 48. Serial communication test setup .. 57

Figure 49. Final tested optical receiver ... 60

10

LIST OF ABBREVIATIONS

BER bit error rate

COB chip on board

EL electro-luminescence

FPGA field programmable gate array

GaAs Gallium Arsenide

IoT Internet of Things

IR Infrared

LED light emitting diode

LiFi Light-Fidelity

OFID optical frequency identification

OOF on-off keying

OW optical wireless

NFC near field communication

PL photo-luminescence

PLC powerline communication

PLM powerline modulation

RF radiofrequency

VLC visual light communication

WiFi Wireless-Fidelity

11

GLOSSARY

Electro-luminescence – “The phenomenon in which a material emits light when in the presence

of an electrical charge or field.” (Leon-salas & Fan, 2018)

Internet of Things – “The premise of Internet of Things is to have smart sensors collaborate

directly without human involvement.” (Al-Fugaha et al., 2015)

Light-Fideltiy – “A bidirectional wireless communications technology covering the infrared and

visible light spectrum for data communications.” (Haas, 2018)

Optical frequency identification – “A parallel to RFID, OFID uses solar cells to optically receive

both power and information from an interrogating device.” (Leon-salas & Fan, 2018)

Photo-luminescence – “The phenomenon in which a material emits light when in the presence of

light.” (Leon-salas & Fan, 2018)

Powerline communication – The transmission of data over powerlines

Powerline modulation – Modulation is the process of mixing an information signal with a carrier

signal, in this instance the carrier is the powerline.

Visual light communication – Optical transmission of data taking place using the visible light

spectrum.

Radiofrequency Identification – The use of radiofrequency waves to receive power and

information from an interrogating device. (Chawla, Vipul and Ha, 2007)

12

ABSTRACT

Denton, Samuel M.S., Purdue University, May 2020. Optical Communications Testbed for the

Exploitation of Luminescence Emissions of Solar Cells for Optical Frequency Identification

(OFID). Major Professor: Walter D. Leon-Salas

The purpose of this thesis was to investigate the possibility of Optical Frequency

Identification (OFID) technology being used as a communication pathway for devices in LiFi

systems that serve to open alternative transmission paths for Internet-of-Things infrastructure.

LiFi or light-fidelity, plays off the concept of wireless-fidelity, commonly known as WiFi, and

follows the trend of moving to higher frequencies within the electromagnetic spectrum. LiFi lies

within the visual light and infrared wavelength range, which can be referred to as the nanometer

wave range. The developed optical communication testbed is a proof of concept showing that

OFID technology, enabled by Gallium Arsenide solar cell emission, can communicate with

Visual Light Communication (VLC) systems. The scope of the work entails the development of

a testbed for a custom optical communications testbed for OFID linked to VLC communication

by sending transmissions via powerline modulation. An optical receiver circuit was developed

and tested, and integration and testing for powerline communication and LED luminaire were

successful. Manchester encoded data was sent at 4800 bit rate optically from an infrared light

source, received by the developed receivers and was decoded. Information was successfully

transmitted over powerline from computer terminal to LED luminaire output at 2400, 3600,

4800, 7200, and 9600 bit rate. Integration of these communication links did not occur due to

Purdue University closure of campus related activities from COVID-19.

13

CHAPTER 1. INTRODUCTION

The introduction and widespread adoption of Internet-of-Things (IoT) technology has

created a vision of seamless interaction between multitudes of devices. To support this vision of

connected vehicles, buildings, and other devices, many systems are being converted to enable

IoT operations. To be an IoT device, an object must be connected with the internet (Al-Fuqaha et

al., 2015). An IoT device consists of sensors collecting data and interacting with the environment

or machine to machine over a network (Cisco Systems, 2016). The traditional transmission route

for data in IoT schemes has taken place through wired or radio-based communications.

Pathways for radio transmission within the IoT environment include radio frequency

identification (RFID), Wireless Fidelity (WiFi), Bluetooth, ZigBee, and Near Field

Communication (NFC) (Al-Fuqaha et al., 2015). It is hard to narrow down the current number of

IoT devices in use but McKinsey estimates 127 new devices connect to the internet each second

(Patel et al, 2017). Cisco Systems has projected that 500 billion devices are expected to have IoT

capability by 2030 (Cisco Systems, 2016). The dramatic increase in devices using these

standards poses a problem for the unlicensed radio bands that are used. The size of the entire RF

spectrum is only 0.3 THz (Haas, 2018). As unlicensed radio bands become more crowded,

transmissions speeds will slow and interference will increase. The future bandwidth demand of

wireless devices is projected to be 6 THz by 2040 (Haas, 2018).

An alternative transmission path has been in development based off the ability to transmit

information through light, first called visible light communication (VLC) and then extended into

LiFi. A play on the concept of WiFi, LiFi is a wireless communications technology covering the

infrared (IR) and visible light spectrum for data communications. The size of the infrared and

visible light spectrum is 780 THz (Haas, 2018). The data transmission rates depend on the

modulation and lighting technology used. A segment within the optical communication

ecosystem includes the idea of optical frequency identification (OFID). OFID is named as such

due to the parallel ideas within RFID technology, that devices can receive both power and

information from an interrogating device (Leon-salas & Fan, 2019). Within OFID, solar cells are

employed for both conventional energy harvesting and the transmission and reception of

information encoded optically (Leon-salas & Fan, 2019).

14

The testbed setup built for this thesis creates a platform that can be used as an optical

communications testbed for OFID devices. The developed platform operates with high efficiency

Gallium Arsenide (GaAs) solar cells of which the electroluminescence and photoluminescence

properties can both be modulated. The modulated solar cell luminescence creates a

communications signal used as an uplink within the testbed. In the system’s downlink, the

conventional LED light is used to modulate the electroluminescence of the OFID receiver.

Communications from the luminaire are controlled by microcontroller and powerline modulation

module linked to a computer creating a VLC system.

1.1 Statement of Problem

The topic of this thesis was the development of an optical communications test bed for

OFID devices. The test bed is designed to operate with OFID technology conceptually described

and developed by Prof. WD Leon-Salas and Xiaozhe Fan (Leon-salas & Fan, 2018, 2019). OFID

technology is enabled using high efficiency solar cells which uses electro-luminescence and

photo-luminescence from solar cells for wireless communication. The photo-luminescence

property of the solar cell can be modulated to produce an output signal that can be used for

communications purposes.

The purpose of this thesis was to investigate the possibility of OFID technology being used

as a communication pathway for devices in LiFi systems that serve to open alternative

transmission paths for IoT infrastructure. The developed optical communication testbed is a

proof-of-concept showing that OFID technology can communicate with VLC systems. The scope

of this work entails the development of a custom optical communications testbed.

1.2 Significance of the Problem

The number of deployed IoT devices is projected to be 500 billion by 2030 (Cisco

Systems, 2016). A gap in necessary bandwidth for the operation of wireless devices is projected

in the near future. With a crowded wireless spectrum increased interference and slower

transmissions will occur. The RF spectrum has a size of 0.3 THz and the bandwidth demand of

wireless devices is projected to be 6 THz in the next 20 years (Haas, 2018). The gap in available

bandwidth can be supplemented with a new transmission path over IR and visible light. The

15

available bandwidth over IR and visual light is projected to be 780 THz (Haas, 2018). OFID

technology uses GaAs solar cells which can transmit data on the IR spectrum and receive

information over the visible light spectrum. Establishing OFID devices as able to work within

VLC systems provides a proof of concept for an application of OFID technology and aids in the

development of systems and architecture used within the IR and visible light spectrum.

1.3 Scope of the Study

 The scope of this study is the development and test of hardware and software related to

an optical communications testbed for OFID technology. The testbed consists of a transmitter

section to send encoded light communications from an LED luminaire to the OFID device and a

receiver to collect the output signal from an OFID device to decode transmitted signals. LED

luminaire communications are sent via powerline communication establishing the system to use

VLC.

 Outside of the scope of this study is the development of an OFID device to transmit data.

1.4 Purpose of the Study

 The goals of this thesis are:

• Design of an optical communications testbed that transmits information able to be

received by an OFID device and to receive information from an OFID device using

powerline communication.

• Validation of the testbed regarding the transmission and reception of optical data.

Validation consisting of both the build and test of the testbed.

 The test of both the transmitter and receiver to establish that an uplink and downlink of

the optical communication testbed work appropriately. First, each functional block of the design

for the transmitter and receiver will be tested to determine that it functions as designed. Next the

testbed will be constructed and each functional block will be tested to ensure functionality.

Finally, whole system validation will take place by demonstrating the operation of the full

testbed.

16

1.5 Assumptions, Limitations, & Delimitations

1.5.1 Assumptions

 Assumptions for this thesis include:

• Optical communications taking place in the system will be line of sight.

• Due to the scarcity of GaAs solar cells, high-power IR LEDs will be used to simulate

luminescence from GaAs solar cells.

1.5.2 Limitations

 Limitations of this thesis include:

• A fully operational OFID device will not be developed. Luminescent emissions from

GaAs solar cells will be simulated with LEDs.

• VLC transmission is enabled from the use of off the shelf LED, luminaires, LED drivers,

and PLC module.

• OFID data will be encoded via Manchester coding

1.5.3 Delimitations

 The delimitations of this thesis include:

• Communications distance is limited to up 4 meters within a closed room environment and

the only light source being from the system.

• A low data bit rate will be used, not exceeding 20 kbps.

• Silicon solar cells will not be used in this thesis.

1.6 Summary

 The rapid proliferation of IoT devices puts a strain on the finite amount of radiofrequency

bandwidth that enables these devices. Alternative transmission paths on the electromagnetic

spectrum make use of visible and infrared light. OFID transmission uses the photo-luminescence

property of GaAs solar cell which transmit data using infrared light. The optical communication

testbed developed for this thesis creates a system which receives OFID transmission and

implements VLC transmission with a LED luminaire. The scope of this thesis is the development

17

and test of hardware and software related to an optical communications testbed for OFID

technology. The purpose of this study is to design an optical communications testbed that

transmits information able to be received by an OFID device and to receive information from an

OFID device using powerline communication. The purpose of the study is to also validate the

design of the testbed regarding the transmission and reception of optical data and powerline

communication links. Assumptions for this thesis are that communication are line of sight and

that high efficiency GaAs solar cells will be used. Limitations are that an OFID device will not

be developed in the study, VLC will occur using off the shelf components, and OFID data will

use Manchester encoding. Delimitations for this thesis are communication distance will not

exceed 4 meters, data bitrate will not exceed 20 kbps, and silicon solar cells will not be used.

18

CHAPTER 2. REVIEW OF LITERATURE

 A review of literature was conducted to investigate the current state of visible light

communications and optical frequency identification design and technology. To supplement this

information background research on powerline communication, wireless communication, and

optical communication was performed. This chapter serves to give a brief overview to the works

and concepts relevant to the research question.

2.1 Powerline Communication

 Wired communication is the act of transmitting data over a wire-based technology, by

extension of this concept powerline communication (PLC) is the transmission of data over

powerlines. There is a long history of utility companies using the power grid for control,

maintenance, and charging for this commodity. Overtime the application of communication over

power grid has become a realizable and efficient networking loop. Electrical distribution

networks constitute a universal wiring system but at time of implementation were not designed

for communication purposes. Electrical equipment causes erratic levels of impedance and

attenuation from switching (Cypress Semiconductor, 2011). This and other time-variant

interference places constraints on the transmission capability with restrictions on bandwidth,

power limits, and high noise levels. Electrical powerlines are classified at three separate levels:

high (>100kV), medium (1-100kV), and low(<1kV) (Cypress Semiconductor, 2011). A general

trend is the lower the voltage level of the communication network the more hostile the

transmission path.

 Looking at PLC in terms of bands, two options are present: narrowband PLC and

broadband PLC. Narrowband PLC utilizes lower frequencies and data rates from 3-500 kHz and

up to hundreds of kbps respectively. Narrowband PLC is commonly applied for use in smart

grids and other energy related applications. Broadband PLC utilizes higher frequencies, 1.8-250

MHz, and high data rates, up to hundreds of Mbps (Cypress Semiconductor, 2011). Broadband

PLC applications have found widespread acceptance for internet distribution and other home

networking solutions due to the high data rates and ease of implementation.

19

2.2 Wireless Communication

 Wireless communication is the act of transmitting data with technology that does not

utilize an electrical conductor. The most commonly recognized and widely used instances of

wireless communication uses the radio frequency section of the electromagnetic spectrum. Less

common is optical communications which creates wireless communication networks on the

infrared, visual, and ultraviolet light section of the electromagnetic spectrum.

2.2.1 Radio Frequency Communication

 As noted above, radio frequency (RF) refers to a section of the electromagnetic spectrum.

Radio waves are electromagnetic waves ranging from 3 kHz to 300 GHz (Mouser Electronics,

2019). RF is a naturally occurring phenomena whose causes include solar flares, lighting, and

stars aging. Humankind uses technology to artificially create radio waves to oscillate at desired

frequencies for communications. RF signals are described by either frequency or wavelength.

The relationship between frequency and wavelength is inverse, shown Equation 1, in relationship

to the speed of light, C. Further in Table 1 the frequency bands and their wavelengths are shown.

𝐶 = 𝑓 × 𝜆

Equation 1. Speed of light equation

Table 1. Frequency Band Designations (National Instruments, 2019)

Frequency Wavelength Band Description

30-300 Hz 104 – 103 km ELF Extremely low frequency

300-3000 Hz 103 – 102 km VF Voice frequency

3-30 kHz 100 – 10 km VLF Very low frequency

30-300 kHz 10 – 1 km LF Low frequency

0.3-3 MHz 1 – 0.1 km MF Medium frequency

3-30 MHz 100 – 10 m HF High frequency

30-300 MHz 10 – 1m VHF Very high frequency

300-3000 MHz 100 – 10 cm UHF Ultra-high frequency

3-30 GHz 10 – 1 cm SHF Superhigh frequency

30-300 GHz 10 – 1 mm EHF Extremely high frequency

 Examples of RF communication in action include television and radio broadcasts, radar

systems, mobile communications, and remote controlled vehicles (Mouser Electronics, 2019).

20

Due to a fixed amount of radiofrequency spectrum, usage is highly regulated and segments of

frequency are allocated for licensed and unlicensed use, Table 2, shows this distribution.

Table 2. Table of allocated frequencies and designated use (National Instruments, 2019)

Frequencies in kHz Allocated purposes

490 – 510 Distress (telegraph)

510 – 535 Government

535 – 1605 AM radio

1605 – 1750 Land/mobile public safety

1800 - 2000 Amateur radio

Frequencies in MHz Allocated purposes

26.96 – 27.23, 462.525 – 467.475 Citizen band radios

30.56 – 32, 33 – 34, 35 – 38, 39 – 40, 40.02 – 40.98,

75.2 – 76, 150.05 – 156.2475, 157.1875 – 161.575,

162.0125 – 173.4, 220 – 222, 421 – 430, 451 – 454,

456 – 459, 460 – 512, 746 – 824, 851 – 869, 896 –

901, 935 – 940

Private mobile radio (taxis, trucks,

buses, railroads)

74.8 – 75.2, 108 – 137, 328.6 – 335.4, 960 – 1215,

1427 – 1525, 220 – 2290, 2310 – 2320, 2345 - 2390

Aviation (communication and radar)

162.0125 – 173.2 Vehicle recovery (LoJack)

50 – 54, 144 – 148, 216 – 220, 222 – 225, 420 –

450, 902 – 928, 1240 – 1300, 2300 – 2305, 2390 –

2450

Amateur radio

72 – 73, 75.2 – 76, 218 – 219 Radio control (personal)

54 – 72, 76 – 88, 174 – 216, 470 - 608 Television broadcasting VHF and UHF

88 – 99, 100 – 108 FM radio broadcasting

824 – 849 Cellular telephones

1850 – 1990 Personal communications

1910 – 1930, 2390 – 2400 Personal comm. (unlicensed)

1215 – 1240, 1350 – 1400, 1559 – 1610 Global Positioning Systems (GPS)

Frequencies in GHz Allocated Purposes

0.216 – 0.220, 0.235 – 0.267, 0.4061 – 0.45, 0.902 –

0.928, 0.960 – 1.215, 1.215 – 2.229, 2.320 – 2.345,

2.360 – 2.390, 27 – 3.1, 3.1 – 3.7, 5.0 – 5.47, 5.6 –

5.925, 8.5 – 10, 10.0 – 10.45, 10.5 – 10.55 13.25 –

13.75, 14 – 14.2, 15.4 – 16.6, 17.2 – 17.7, 24.05 –

24.45, 33.4 – 36, 45 – 46.9, 59 – 64, 66 – 71, 76 –

77, 92 – 100

Radar, all types

2.390 – 2.400 LANs (unlicensed)

2.40 – 2.4835 Microwave ovens

45.5 – 46.9, 76 – 77, 95 – 100, 134 – 142 Vehicle, anti-collision, navigation

10.5 – 10.55, 24.05 – 24.25 Police speed radar

0.902 – 0.928, 24 – 2.5, 5.85 – 5.925 Radio frequency identification

21

Table 2 (cont). Table of allocated frequencies and designated use (National Instruments, 2019)

3.7 – 4.2, 11.7 – 12.2, 14.2 – 14.5, 17.7 – 18.8, 27.5

– 29.1, 29.25 – 30, 40.5 – 41.5, 49.2 – 50.2

Geostationary satellites with fixed earth

receivers

 In the introduction of the thesis, two common applications of RF signal, WiFi and RFID

are referenced for sake of comparison and will be further described here. WiFi, or Wireless

Fidelity, is a wireless network architecture based on the serial standards first laid out by IEEE

802.11 (Kaushik, 2012). The frequency bands designated for WiFi are 2.4 GHz and 5 GHz. With

the original standard for WiFi the given data rate was 1 Mbps, now more current iterations of the

standard have a data rate going up to 54 Mbps (Kaushik, 2012). The operating range of WiFi

varies with the hardware implementation, commonly the range is 50 feet for indoor operation

and 1500 feet for outdoor operation. WiFi is a local area networking (LAN) technology designed

to connect multiple devices and be used inside buildings or other small implementation areas

(Kaushik, 2012).

 RFID systems consist of two subsystems: a reader, or interrogator, and a tag, or

transponder (Chawla, Vipul and Ha, 2007). Communication between the reader and tag occurs

through a technique called load modulation where variations in current flowing through the tag

are detected by the reader. (Chawla, Vipul and Ha, 2007) There are three types of RFID systems:

passive, semi-passive and active. Passive RFID tags receive power from the reader and are read

through inductive coupling. Semi-passive RFID tags communicate by inductive coupling like

passive RFID but a battery is included in the device allowing for sensors, time tracking, and

other features. Active RFIDs use battery power to send energy into the reader instead of

powering and then reflecting back energy like the passive RFID. Figure 3 shows the frequencies

used for RFID transmission. Applications for RFID technology include keycards, toll collection,

and product tracking.

 Both WiFi and RFID face issues inherent to the nature and widespread success of RF

communication. With the large-scale implementation of these RF products and only finite bands

of a unlicensed bandwidth available for use, congestion will become an issue for these

technologies causing slower transmission speed and interference (Leon-salas & Fan, 2019).

22

2.2.2 Optical Wireless Communication

 Optical wireless (OW) communications modulate the intensity of light with the light

being the carrier signal, link elements shown Figure 2. Optical signal is converted to electrical

signal by photodiodes or conversely electrical signal into optical signal by LEDs. Many

conventional OW communication systems are implemented to work within the near infrared

range close to 850 nm and 1550 nm due to existing lighting sources (Langer & Grubor, 2007).

Data rates for interior communication linkages range up to 100 Mbps while exterior

communication linkages range in the Gbps (Langer & Grubor, 2007). OW transmission has high

free-space loss due to unguided propagation, meaning radiating power is lost or not captured by

the receiver (Langer & Grubor, 2007). Multipath propagation causes inter-symbol-interference

and becomes a key factor with speeds above 10 Mbps (Langer & Grubor, 2007). The primary

source of noise in OW systems is ambient light creating shot noise. With artificial light sources,

harmonics up to 1 MHz can be introduced into the signal (Langer & Grubor, 2007). Both optical

filtering and electrical filtering can be used to mitigate noise in an optical communications

system.

Figure 2. Elements in an OW communications link (Langer & Grubor, 2007)

 A more recent form of wireless optical communication is Visible Light Communication

(VLC) using LEDs producing wavelengths from 380-700 nm and have a bandwidth around 20

MHz (Langer & Grubor, 2007). In VLC scenarios, PLC can be used to feed signal into

conventional LED lighting infrastructure leading to transmissions as shown in Figure 3 (Langer

& Grubor, 2007). VLC communication uses a photodiode as a receiver using the concept of

direct detection, where light is used as point-to-point connection similar to a wire (Haas, Yin,

Wang, & Chen, 2016). VLC faces many similar noises sources as detailed above.

23

Figure 3. Visible Light Communication Scenario (Langer & Grubor, 2007)

 Light-Fidelity (LiFi), an extension of VLC technology and concepts, uses the infrared

and visible light spectrum to produce high speed, secure, and bi-directional network

communications (Haas, 2018). Within LiFi, speeds of over 3 Gbps have been demonstrate using

a single LED (Haas et al., 2016). VLC and LiFi have aspects in common such as use of intensity

modulation, LED transmitters, and photodiode receivers. The difference between VLC and LiFi

is the technique of communication, VLC was developed to be point to point while LiFi is being

developed to be multipoint (Haas et al., 2016). Multipoint communication enables full user

mobility within a cell. Modulation techniques used within LiFi are similar to those used within

RF communication with necessary modifications added. A simple modulation scheme for LiFi is

on-off keying (OOK) providing a balanced tradeoff between performance and implementation

complexity (Haas et al., 2016).

 Wireless optical communication is a complementary technology to conventional radio

based wireless communications. Wireless optical communication has distinct characteristics

from radio including: large unregulated available bandwidth, no electromagnetic interference

with existing systems, and signal confinement within a room (Langer & Grubor, 2007). This

creates applications where optical-based communications can be the desired choice over radio-

based communication. One such application is in electromagnetically sensitive environments

such as hospitals or airplanes due to the minimal electromagnetic interference. Another

application due to the signal confinement would be for military use, or financial communications

as information transfer would not leave the room.

24

2.3 Optical Frequency Identification

 Optical Frequency Identification is an analogous technology to RFID following the idea

that tags can receive information and power from a reader. The difference being the transmission

path for the power and information in the two technologies, RFID from RF transmission and

OFID from light sources. Separate from RFID which can powered passively at a close range or

actively from a battery, OFID tags use high efficiency GaAs solar cells as transceivers and can

be powered from ambient light. Also corresponding to RFID, OFID can have passive and active

tags. Passive OFID uses ambient light as the power source and the reader receives luminescent

emissions of the solar cell. Active OFID uses light from the reader to power the device and the

reader receives the luminescent emissions of the solar cell.

 GaAs solar cells can be used to transmit information by modulating the photo-

luminescence and electro-luminescence emissions of the solar cell (Leon-salas & Fan, 2019).

Photo-luminescence can be modulated by switching the solar cell between open circuit and short

circuit, while electro-luminescence can be modulated by applying time varying voltage to the

solar cell (Leon-salas & Fan, 2019)(Leon-salas & Fan, 2018). Solar cells have previously been

implemented in schemes to receive optically encoded information, but GaAs solar cells also

possess the ability to transmit information due to strong luminescence emission around 870 nm

in the near infrared region.

2.4 Manchester Encoding

 Manchester encoding is a data modulation technique used for binary data transfer based

on analog, RF, optical, high-speed digital, or long-distance-digital signals (Keim, 2016).

Manchester code is a classical code where ‘0’ is encoded as ‘01’ and ‘1’ is encoded as ‘10’

(Cailean, Cagneau, Chassagne, Dimian, & Popa, 2014). This establishes the central idea of

Manchester encoding, data can be represented by voltage transitions instead of voltage levels

(Keim, 2016).

 While digital communication is largely advantageous for communication over analog

signal, issues occur related to synchronization and the need for DC coupling. Advantages of

Manchester code are DC balance, easy clock and data recovery, and decent bit error rate (BER)

performance (Cailean et al., 2014). Manchester encoding solves these issues by doing two things.

25

First, the signal never remains at logic high or logic low for an extended period of time

eliminating the coupling issue. Second the data signal is converted into a data plus

synchronization signal (Keim, 2016). Data plus synchronization is useful because in many

situations complexity and inefficiency is increased if two transmitters and receivers are needed to

make a complex data link (Keim, 2016). In Manchester encoding data transitions line up with the

clock edge. A main disadvantage of Manchester encoding is that twice as much bandwidth is

used to transmit the data because a Manchester code introduces a transition in the middle of each

bit to encode one logic state. If signal frequency is a constrained factor in a design, this creates a

maximum data rate (Keim, 2016). Manchester encoding is used for optical data in this instance

to remove error by AC coupling and to limit data synchronization related issues.

26

CHAPTER 3. RESEARCH METHODOLOGY

 This chapter details the design of the optical communications testbed for OFID including

the hardware and software descriptions for the receiver, transmitter, and powerline

communication. The operation and physical set up of the platform is also described.

3.1 Optical Communication Testbed Functional Components

 The testbed developed as a part of this thesis creates a VLC environment so that the

communication capabilities of OFID technology may be explored. The transmitter section uses a

microcontroller, powerline modulation board, LED driver, and chip on board (COB) LED

luminaire. The receiver circuit uses a photodiode, a transimpedance amplifier (TIA), several

bandpass gain stages, low-pass filter, comparator, and field programmable gate array (FPGA).

The network created from the transmitter and receiver, powerline communications modules, and

a PC allow for a transmission to be sent in the testbed and then received at the PC or to be sent

from the PC and be received by a device below the testbed. A model of the testbed system is

shown in Figure 4. A block diagram of the unit panel with receiver, transmitter, PLC module,

and microcontroller with necessary peripherals is shown Figure 5.

Figure 4. Model of optical communication testbed

27

Figure 5. Optical communication panel layout

3.1.1 Receiver

 The receiver for this testbed is designed to receive low power optical signals from OFID

technology. Broken into functional blocks the receiver consists of a photodiode, a

transimpedance amplifier, four bandpass filter gain stages, an eighth order lowpass filter, a

comparator, and an FPGA. Figure 6 shows the optical receiver circuit broken into functional

blocks. In the implementation of the receiver, the number of gain stages are configurable. This

arrangement enables experimentation with different gain and bandwidth settings.

Figure 6. Optical receiver functional block diagram

28

3.1.1.1. Hardware Description

Photodiode and TIA

 The first functional block of the system is the photodiode and transimpedance amplifier.

A photodiode is used as a transducer to convert light to current. The effect of light on a

photodiode is that an electron-hole pairs are generated when in reverse bias allowing current to

flow (Sinclair, 2001). In this incidence the light hitting the photodiode is ambient light and the

infrared light emitted from the solar cell.

 The photodiode chosen for this block was the Vishay Semiconductor BPW34 for its high

speed and radiant sensitivity. BPW34 responds to near infrared and visual light from

wavelengths 430-1100 nm. With the signal as a current measurement, it needs to be converted to

a voltage for further signal conditioning and processing. The conversion from current to voltage

uses a transimpedance amplifier. The circuit to implement this is shown below in Figure 7. The

current from the photodiode is driven over a feedback resistor creating a voltage output. Reverse

photo-current on the BPW34 datasheet is listed for a typical value of 50 μA. The signal applied

to the photodiode will cause a change to the current level. These levels of current are very small,

so a high resistance needs to be used to create a reasonable level of voltage output. A resistor

value was chosen to be 1MΩ so that voltage range of interest will take place on the millivolt

level. If this is found to be experimentally untrue the resistor size can be adjusted appropriately.

Another recommendation for transimpedance amplifiers is to include a balance capacitor in

parallel with the feedback resistor, not shown in Figure 7. The balance capacitor provides

stabilization to the TIA output. At this point in time, it is believed to be unnecessary for this

project’s implementation of the circuit. Out of caution an empty footprint has been left for this in

the PCB layout.

29

Figure 7. Photodiode and transimpedance circuit

Band Pass Filter Gain Stages

 A filter is used to remove unwanted noise from a signal. Gain is used to increase the level

of a signal. Gain is applied in filters to increase the level of the desired signal while reducing or

removing the unwanted signal components. In this implementation, a bandpass filter is used to

remove DC signal and associated noise at low frequencies and to provide the signal immunity

from higher frequencies. The corner frequency for the high pass filter is placed close to 100 Hz

to remove the DC signal and associated noise and allowing higher frequency signals to pass.

Using commonly available resistor and capacitor values a filter with a corner frequency at 106

Hz was designed for implementation, calculations shown Equation 8. Similarly, the corner

frequency for the lowpass filter was designed with to standard component values be close to

10kHz. The calculated lowpass corner frequency is calculated to be 12.9 kHz shown Equation 9.

The gain relationship in the passband is determined by the relationship between the resistors in

the low and high pass filters. Looking at Figure 11, it is seen that an inverting amplifier

configuration is used. The calculated gain is shown in Equation 10.

𝑓ℎ𝑝 =
1

2𝜋𝑅𝐶
=

1

2𝜋 × 1.5 kΩ × 100 nF
= 106.1 Hz

Equation 8. High pass filter design calculation

𝑓𝑙𝑝 =
1

2𝜋𝑅𝐶
=

1

2𝜋 × 56 kΩ × 2.2 nF
= 12.2 kHz

Equation 9. Low pass filter design calculation

30

𝐺 =
𝑅2

𝑅1
=

56 kΩ

1.5 kΩ
= 37

Equation 10. Passband inverting gain calculation

Figure 11. Bandpass filter gain circuit

Low-pass filter

 In the actual implementation of bandpass filters, the actual roll off rate of the upper

corner frequency is not as ideal as designed, to remedy this issue a MAX291 eighth-order

lowpass filter was added to provide steeper attenuation to the high frequencies. The MAX291 IC

uses a clock, LTC6992, to select the corner frequency of the lowpass filter. Clock speed is

determined by DIVCODE programming or the resistor network used with V+, DIV, and GND,

shown in Figure 12. The datasheet of the LTC6992 contains a table to show resistor networks

for desired frequencies. For this implementation, a frequency of 1 MHz was chosen and resistors

must be an open and short. The potentiometer attached to DIVMOD controls the duty cycle of

the modulation. The circuit for the MAX291 implementation is shown, Figure 12.

31

Figure 12. Eighth order lowpass filter circuit

Comparator

 The next block in the receiver is the comparator. This section converts the analog signal

into a digital signal. The comparator chosen to be used in this section is the LT1716 for its low

power consumption and successful use in other lab projects. The threshold level of the

comparator can be set by the potentiometer or by a data slicer depending on the jumper postion.

The circuit design is shown Figure 13.

Figure 13. Comparator Circuit

32

FPGA

 An FPGA and peripherals were added to the board for serial communication and

Manchester encoding of the optical signal. The FPGA chosen was the ICE5LP4K-SG48ITR, for

its low power operation and good feedback from successful implementation by other members of

the lab. The ICE5LP4K-SG48ITR also feature 4 DSP blocks which provides flexibility in the

design to add digital filtering as well as encoding and decoding. At current state the logic for the

FPGA implementation has not been designed. The functional block diagram and board layout are

shown, Figure 15 and Figure 19.

Figure 14. FPGA block diagram

3.1.2 Transmitter

 The transmitter for this project utilizes transmit data from the powerline communication

module and microcontroller to control the pulse modulation input for an LED driver which in

turn drives the LED luminaire. The transmission signal then is emitted from the luminaire as an

optical transmission. The LED luminaire chosen for this solution is a Bridgelux Vero 13, BXRC-

40E2000-D-73, chip on board (COB) LED in a housing used to convert traditional incandescent

downlight into an LED downlight, housing shown in Figure 15. The housing from a Juno

Lighting downlight conversion unit was used, the model number for this is Juno 4RLDG2-927-9-

WWH This model of the Vero 13 has a nominal correlated color temperature (CCT) of 4000 K,

color rendering index (CRI) of 90, pulsed drive current of 500 mA, forward voltage of 31.8, and

33

wattage of 15.9 W. CCT is a way to describe the color spectrum output of a light by correlating

the output color spectrum to that of a black body emitter at the designated temperature, in this

case 4000 K. The color spectrum for the Vero series of light is shown in Figure 16. The 4000 K

option was chosen due to the highest amount of spectral power distribution across the widest

band of wavelengths. The CRI is a measurement index the accuracy of the color output of the

light to render color for human eyes, commonly for interior lighting 85 to 90 is considered good

quality. There is no apparent link between CRI and solar cell performance, but this a

specification which matters in commercial lighting where VLC applications may be used. The

forward voltage is the amount of voltage that the COB LED will need to transmit light. From the

forward voltage the voltage drive levels of the LED driver are determined. When the forward

voltage is reached, the saturation current for the LED is reached, for pulsed applications this is

listed as 500 mA.

Figure 15. LED downlight conversion unit (Acuity Brands, 2019)

34

Figure 16. Spectral power distribution of Vero13 series LED modules (Bridgelux, 2018)

 The LED driver chosen for this application is a LM3409HV PFET controller. This device

was chosen because the evaluation board works with the required voltage level and allows for

external pulse width modulation (PWM) dimming. External PWM produces a square wave

pulsed light output, which is necessary for sending the desired transmission.

 After experimentation, it was found that using external PWM dimming caused light noise

instability, or flickering, when data was sent. In this instance there are two possible causes of

perceptible flicker. Human eyes can perceive changes in light levels when the light flickers at a

speed less than 100-120 Hz. The sent data is variable so it can change in length or value and

transmission speed in depending on the test case. This results in a case where either a test

message or a test bit can cause a flicker at less than 120 Hz and be visible to the human eye due

to the frequency of light modulation. Since frequency of light modulation is constrained by other

factors in the system, an option to resolve the issue is controlling the amplitude of the signal

modulation to reduce visible flicker. In the original design a serial signal from the

microcontroller (0-3.3V) is directly connected to the led driver.

 A level-shifter circuit was designed and connected in series in between the

microcontroller and the led driver to create a variable and user-controlled amplitude. Figure 17

35

shows the circuit implemented for the level shifter. Two TL081 op amps were used. The first op

amp was implemented as a buffer in case of any unknown loading effects that could occur

between the microcontroller and the shifting stage. The second op amp stage uses a

potentiometer as an adder on the circuit and the possibility to add gain remains from R2 and R4.

Initially the resistor configuration is set to unity gain and can be modified if determined

necessary. The potentiometer was set to provide 1.30 V as the voltage offset. This resulted in no

visible flicker from the light output. The voltage can be set higher, but the lowest possible value

was selected to maximize the amplitude of the transmitted signal. Due to the complexity of

human vision, outside factors affect the sensitivity and perception of the change of flux from

noise. The voltage offset was set qualitatively, and the voltage level may need to be changed due

to the perception of the user

Figure 17. Level-shifter circuit

3.1.3 Powerline Communication Network

 The powerline communication network for this system was built using evaluation

modules from STMicroelectronics (STM). STM developed a ST7580 powerline communication

expansion board for use with the STM32 Nucleo microcontroller products. The ST7580 is a chip

36

developed to be used for powerline networking system on chip. The ST7580 expansion paired

with AC coupling modules allow for communication over AC powerlines, expansion board is

shown Figure 18 and AC coupler Figure 19. The ST7580 modem allows for communication up

to 28.8 kbps (STMicroelectronics, 2017b). The AC coupler is designed by the manufacturer to be

in accordance with relevant band regulations for Cenelec B to D.

Figure 18. ST7580 powerline communication expansion board (STMicroelectronics, 2017b)

Figure 19. STM AC coupler (STMicroelectronics, 2017b)

37

 A library and sample program for the expansion board is provided in Appendix C. The

sample program has been successfully implemented with two modules. The master and slave

interaction in the sample program is shown Figure 20. The operation of the sample program

provides an output as shown in Figure 21 when monitored on a serial terminal. To send

information within the testbed the sample program was modified transmit data over the payload

independently and further to transmit user input data.one module is used to drive the PWM input

for the LED driver. Final setup for the optical communication testbed needs to have the PLC

modules setup to perform as serial relays. This allows for a serial port monitor on a PC to send a

signal, be transmitted by PLC to the panel in the testbed, received by the next module, and sent

as a PWM signal to the driver.

Figure 20. STM32 PLM Sample program flow (STMicroelectronics, 2017a)

38

Figure 21. STM32 PLM program debug output (STMicroelectronics, 2017a)

3.1.4 Power Distribution Board

 To supply power to the system and to safely connect to 120 Vac powerlines, a power

distribution circuit was built using AC-DC convertor modules. The power requirements are 5

Vdc, 12 Vdc, 32 Vdc, and 120 Vac. To meet the requirements two modules were used, the Delta

AA60S3600A to provide 36 Vdc and the Delta AA04D0512A for 5 and 12 Vdc. Fusing was

implemented to protect the system. The functional block layout is shown Figure 22.

Figure 22. Power distribution board

39

3.2 Summary of Operation

 The receiver converts an optical signal to electrical signal. The electrical signal is then

conditioned and converted to a digital signal to send to the PLC module. From the PLC module

the received signal is relayed to the PLC module at the computer. A serial monitor at the

computer then presents the transmission to the user. From the serial monitor, signal can be sent

to the PLC module over powerline. The transmission is sent to the LED driver, which then sends

a PWM signal to the luminaire to be receiver by a device underneath the testbed.

40

CHAPTER 4. RESULTS

 This chapter details the test plan and test results of the optical communication testbed for

OFID. The sections of the optical communication testbed tested are the optical receiver circuit,

powerline communication, power distribution circuit, Manchester communication test, and serial

communication test.

4.1 Test Plan and Results

4.1.1 Optical Receiver Circuit

 To test the optical receiver circuit the functionality of each block within the circuit was

tested, Figure 23. For the transimpedance amplifier, bandpass filters, and lowpass filter

frequency response was measured. To measure the frequency response, a Keysight33210 A

function/arbitrary waveform generator and Siglent SDS 1104X-E oscilloscope were used. The

test process is to output a signal from the function generator using logarithmic steps across the

frequency spectrum, at each step a csv file from the oscilloscope was saved, and after the data for

all steps was collected a transfer function script was used in MATLAB to determine the

frequency response, transfer function script located in Appendix B. The comparator was

evaluated by verifying the functionality with a sinewave and voltage reference placed on the

inputs of the circuit.

Figure 23. Optical receiver functional block diagram

41

Photodiode and Transimpedance Amplifier

 The frequency response of the photodiode and transimpedance amplifier was tested.

Figure 24 shows the functional blocks of the test setup used. To perform the test a light source

was created to emulate the output of the OFID tag. The light source was created using a function

generator to set the desired frequency, an ALD115pal MOSFET to drive the LED, and SFH

4232A infrared LED to emulate the solar cell output, the circuit diagram of the IR light source is

shown Figure 25 and the test setup is shown Figure 26. The frequency response of the

photodiode and transimpedance amplifier was calculated using MATLAB, tf_estimation.m script

shown in Appendix B, and the resulting frequency response is shown Figure 27.

Figure 24. Photodiode and transimpedance amplifier frequency response functional test setup

Figure 25. IR light source circuit

42

Figure 26. Photodiode and transimpedance amplifier test setup

Figure 27. Frequency response of photodiode and transimpedance amplifier

Bandpass Filter

 The frequency response of bandpass filters 1, 2, 3, and 4 were measured. Figure 28

shows the functional blocks of the test setup used. The frequency response of the bandpass filters

Optical receiver

IR light source

Oscilloscope

Function generator

Power supply

43

was calculated using MATLAB, tf_estimation.m script shown in Appendix B. The calculated

frequency response for bandpass filter 2 is shown Figure 29. The results for the filters 1, 3, and 4

are in Appendix B.

Figure 28. Bandpass filter frequency response test setup

Figure 29. Bandpass filter 2 frequency response

44

Eighth Order Lowpass Filter

 The frequency response of the eighth order lowpass filter was tested. Figure 30 shows

the functional blocks of the test setup used. The frequency response of the lowpass filter was

calculated using MATLAB, tf_estimation.m script shown in Appendix B. The calculated

frequency response for lowpass filter is shown Figure 31.

Figure 30. Lowpass filter test setup

Figure 31. Lowpass filter frequency response

45

Comparator

 The operation of the comparator was tested using Keysight33210A function generator,

Siglent SDS 1104X-E oscilloscope, and Fluke 107 multimeter. The test setup for the comparator

is shown Figure 32. The potentiometer on the input to the comparator was adjusted to various

voltages between 0 – 3.3 V and the output of the circuit was observed. Figure 33 shows the

operation of the comparator with channel 1 being an input sinewave, channel 3 is the voltage

from the potentiometer, and channel 2 is the output of the comparator.

Figure 32. Comparator test setup

46

Figure 33. Demonstration of comparator circuit

4.1.2 System Integration Noise Investigation

 After testing each block of the optical receiver circuit, the blocks were connected to test

the functionality, Figure 34 shows the block diagram of the test set up and Figure 35 shows the

test setup. The system noise and troubleshooting are detailed in Appendix B. Noise was found

from several sources within the circuit. The lowpass filter and clock were removed as the trace

for the clock passed too close to several components and infected the circuit with clock noise. A

source of noise was also determined to be ambient light from the lab. Figure 36 shows the

frequency spectrum before the comparator in the optical receiver circuit when no ambient light

or signal is being received by the optical receiver. Figure 37 shows utilizes the same

configuration and setup as the system in Figure 36, after noise issues have resolved. Figure 38

shows a 1kHz signal sent from the IR light source with the LED transmitter being used for

ambient light. In Figures 36, 37, and 38, the oscilloscope was used to measure traces from the

light source (trace 1, yellow), the comparator output (trace 2, purple), and the output and

frequency spectrum of bandpass filter 3 (trace 4, green and FFT, white).

47

Figure 34. Functional block diagram of noise test setup

Figure 35. Setup for system noise test

IR LED Receiver

Luminaire

Power Distribution

LED Driver

48

Figure 36. Frequency spectrum of optical receiver with no signal (pre-noise investigation)

Figure 37. Frequency spectrum of optical receiver with no signal (post-noise investigation)

49

Figure 38.System noise with IR light source at 1kHz and ambient LED light

4.1.3 Powerline Modulation Communication Test

 A test was performed to validate the operation of the powerline communication board.

The system test setup is shown Figure 39. Information is successfully transmitted over

powerline following the communication process detailed in 3.1.3 Powerline Communication

Network. Figure 40 shows the messages monitored on serial terminals on the computer with

data being sent between the two powerline communication units successfully. Code used for this

test is located in Appendix C and is main.c and St7580_appli.c for the powerline communication

test.

Figure 39. Powerline communication test setup

50

Figure 40. Powerline communication data

4.1.4 Power Distribution Board

 The power distribution board, shown in Figure 28, was tested using the Fluke 107

multimeter to measure the outputs on the circuit. The measured outputs are listed in Table 3.

Table 3. Power distribution board performance

 Expected (V) Measured (V)

Vout_5 5 6.1

Vout_12 12 12.03

Vout_36 36 36.16

 As shown in Table 3, the voltage outputs on the circuit are what is expected except that

the 5V output on the 5V/12V dual power converter is 6V. This is not ideal, but the higher voltage

should not change the operation of the circuits connected to this voltage. It is uncertain whether

this is a manufacturer defect or that the manufacturer datasheet is inaccurate. After system

51

integration it became apparent that there were also minor issues with grounding on the power

distribution board. Switching from independent power supplies to the board added a small visible

ripple on all boards connected to the power distribution board.

 Within the lab environment there are no issues powering the board on. After this board

was brought home for testing due to COVID-19 related lab closure, it was not possible to turn

the board on without tripping the circuit breaker. Since further testing is not possible, the source

of this issue is not clear. The board was brought to two separate houses and powered on resulting

on the circuit breaker being tripped.

4.1.5 Manchester Communication Test

 A test was used to evaluate the transmission of Manchester encoded data from an infrared

light source to the receiver circuit, passing from the photodiode through to the comparator, full

communication link shown in Figure 41, test setup shown in Figure 42. To transmit a

Manchester encoded signal, an arbitrary waveform was generated in MATLAB, uploaded to a

Koolertron JDS6600 Signal Generator, transmitted and then received by the optical receiver

circuit, and decoded by a Picoscope 2204A using Picoscope 6 software.

Figure 41. Manchester encoded data communication link

52

Figure 42. Manchester encoded data communication test setup

 The MATLAB script generate_manchester_waveform.m was used to generate the

Manchester encoded data and the scripts output is in Appendix B. To upload the CSV file to the

signal generator the JDS6600 software was utilized. The arbitrary waveform function outputs the

data at a speed and amplitude set by the frequency and amplitude generator display. To calculate

the appropriate speed for the signal generator the relation between encoded and non-encoded bits

was used. In example “1010’ becomes “01100110” when encoded, an example calculation is

shown Equation 43. Table 4 shows the output frequency for each bit rate tested.

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 1 𝑀𝑎𝑛𝑐ℎ𝑒𝑠𝑡𝑒𝑟 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑏𝑖𝑡𝑠 = 2 × 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 1 𝑏𝑖𝑡

1 𝑀𝑎𝑛𝑐ℎ𝑒𝑠𝑡𝑒𝑟 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑏𝑖𝑡 = 8 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

1 𝑏𝑖𝑡 = 4 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑏𝑖𝑡𝑠 =
𝑆𝑎𝑚𝑝𝑙𝑒𝑠

4
=

2048

4
= 512 𝑏𝑖𝑡𝑠

𝑏𝑖𝑡 𝑟𝑎𝑡𝑒 =
𝑏𝑖𝑡

𝑠𝑒𝑐𝑜𝑛𝑑
= 𝑏𝑖𝑡 × 𝑓

𝑏𝑖𝑡 𝑟𝑎𝑡𝑒 = 512 𝑏𝑖𝑡𝑠 × 𝑓

Equation 43. Bit rate calculations

Oscilloscope

Power Supply

Optical receiver

Picoscope

Function Generator

IR light source

Multimeter

Picoscope Software

53

Table 4. Function generator setting for bit rate

Bit rate Function Generator Fout (Hz)

9600 18.75

7200 14.0625

4800 9.375

3600 7.03125

2400 4.6875

 IR LED light source, Figure 25, is used to send the messages with the function generator

set to output Manchester encoded data through the arbitrary waveform function. Both the input

and output signal are monitored by the Picoscope to make use of its Manchester decoding

function. An example of what this measurement looks like is shown Figure 44. Table 5 shows

the results of decoding messages sent at 4800 bits per second, data for other transmission speeds

is located in Appendix B. Table 6, provides a summary of the bit error of transmission and

decoding of the data.

Figure 44.Picoscope decoding Manchester data at 4800 bps, Ch A (blue) input and Ch B (red)

output

Ch A

Ch B

54

Table 5. Manchester encoded and decoded data packets at 4800 bps

 Input Output Bit Error

Packet Bin Dec ASCII Bin Dec ASCII Transmitted Decoded

1 10010010 73 I 10010010 73 I 0/8 0/8

2 11010010 75 K 11010010 1 75 1 K SOH 0/8 1/9

3 10110010 77 M 10010010 73 I 0/8 1/8

4 11110010 79 O 11110010 79 O 0/8 0/8

5 10000010 65 A 10000010 65 A 0/8 0/8

6 11000010 67 C 11000010 67 C 0/8 0/8

7 10100010 69 E 10100010 1 69 1 E SOH 0/8 1/9

8 11100010 71 G 11100010 71 G 0/8 0/8

9 10010010 73 I 10010010 73 I 0/8 0/8

10 11010010 75 K 11010010 75 K 0/8 0/8

11 10110010 77 M 10010010 73 I 0/8 1/8

12 11110010 79 O 11110010 1 79 1 O SOH 0/8 1/9

13 10000010 65 A 10000010 65 A 0/8 0/8

14 11000010 67 C 11000010 67 C 0/8 0/8

 Average 0% 4%

Table 6. Bit error rate of optical receiver at different speeds

 Average Bit Error

Speed Transmission Decoding

2400 0% 31%

3600 0% 40%

4800 0% 4%

7200 0% 36%

9600 0% 43%

 Within Table 6, the bit errors were broken into two sections the error from transmission

and the error in decoding. Error in transmission was determined by observing the sent and

received packet data and counting the number of ‘01’ and ‘10’ transitions to see if any data was

lost over transmission. Decoding bit error rate was determine by examining the amount of bit

errors that occurred within decoding process from the Picoscope software. The average was

calculated based off the number of packets sent within the test at each bit rate. In example, the

percent in Table 6 for 4800 bit rate uses the packets listed in Table 5. Figure 45 shows an

example of the phenomenon when all the packet data is transmitted but not properly decoded.

Channel A is the input from the function generator and Channel B is the output at the comparator

of the optical receiver circuit, the logic is inverted due to the relationship between the light

55

output of the IR led and the received signal at the photodiode. Within the received packet the

decoding is in error due to a change in the pulse width. The pulse transition is configurable and

set by the potentiometer input on the comparator. The set point is determined by the average

voltage of the signal which is 1.04 V. Table 7 shows measured pulse width and the difference

between the input to the system which is successfully decoded and the output of the system

which follows the bit error rate shown in Table 6.

Figure 45. Packet data at 9600 bit rate

Table 7. Pulse widths at different bit rates

 Input Pulse Width (us) Output pulse width (us)

Bit Rate 101 010 0110 1001 101 010 0110 1001

9600 91.62 123.1 214.6 211.4 76 140 196 224

7200 124.6 171.8 292.1 240.5 104 180 252 296

4800 241.7 253.5 412.7 424.5 190 290 300 420

3600 250.2 323.8 493.1 574 310 310 350 560

2400 326.1 505.9 832 809.5 360 440 400 1280

 From the results of Table 7 and our ability to change the voltage setpoint on the

comparator, it appears that further options to tune the results are present. This approach was

unsuccessful and in Figure 46 this can be seen. Increasing or decreasing the voltage setpoint

56

decreases the pulse width causing more possibility for error from the decoding algorithm in the

Picoscope software as it is decodes in relation to the speed for which it is set.

Figure 46. Manchester decode test comparator input (yellow) and output (blue)

4.1.6 Powerline Serial Communication Test

 A test was used to demonstrate that powerline serial communication could occur at

different speeds, a diagram of the communication link is shown Figure 47. CoolTerm serial port

application was used to send a message from the computer to the microcontroller and powerline

modem. Modem to modem communication occurs through the powerline and microcontroller

relays the data to the LED driver to transmit the light encoded message. The test setup is shown

Figure 48. The summarized results of the test are shown Table 8, because CoolTerm is used the

carriage return (CR) and line feed (LF) are shown in the input data but are not in the data sent

over the powerline. The raw results are located in Appendix B under Serial Decoding Test.

57

Figure 47. Functional blocks within serial communication link

Figure 48. Serial communication test setup

Luminaire Optical Receiver

Picoscope Picoscope software +

Input terminal

Master

Slave

Level shifter

LED driver

58

 Table 8. Serial decoding test at different bit rates

 Input Output

Bit
Rate Packet Bin Hex Dec ASCII Bin Hex Dec ASCII

Bit
Error

2400

1 10101100 35 53 5 10101100 35 53 5 0/8

2 10110000 0D 13 CR

3 1010000 0A 10 LF

3600

1 10101100 35 53 5 10101100 35 53 5 0/8

2 10110000 0D 13 CR

3 1010000 0A 10 LF

4800

1 10101100 35 53 5 10101100 35 53 5 0/8

2 10110000 0D 13 CR

3 1010000 0A 10 LF

7200

1 10101100 35 53 5 10101100 35 53 5 0/8

2 10110000 0D 13 CR

3 1010000 0A 10 LF

9600

1 10101100 35 53 5 10101100 35 53 5 0/8

2 10110000 0D 13 CR

3 1010000 0A 10 LF

59

CHAPTER 5. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

 Conclusions and recommendations about the optical communication testbed and the

development of the optical receiver board, Manchester communication link, and powerline

communication link are discussed in this chapter.

5.1 Conclusion

 This section details the conclusions drawn from the development and test of the optical

communication testbed, this includes the optical receiver board, power distribution board,

Manchester communication link, and powerline communication link. The transmission of

Manchester encoded optical data was successfully achieved from an IR light source to the optical

receiver at 4800 bit rate with 4% errors in decoding present in all the data packets recorded. The

transmission of serial encoded data from a computer to a device within the optical

communication testbed was successfully achieved at bit rates of 2400, 3600, 4800, 7200, and

9600 with no errors present. The transmission of decoded optical information from the receiver

to powerline modem via FPGA was not achieved due to Purdue University closure of on campus

activities due to COVID-19. The working components of an optical communication testbed were

all realized except for the FPGA hardware to link the microcontroller and the optical receiver.

5.1.1 Optical Receiver Board

 The optical receiver board developed in this thesis is able to receive Manchester encoded

data optically. Each functional block within the optical receiver was able to be independently

verified for operation. The FPGA in the optical receiver was not operational to decode

Manchester data into serial data and transmit to the microcontroller.

 Noise testing was conducted on the optical receiver. System noise was caused by poor

routing of a clock signal causing noise to infect the circuit. Removing the clock and the filter it

set removed this noise from the circuit. Noise from oscillation also occurred on the circuit. The

gain on the first gain stage was reduced to 4.8 dB to create a preamplification stage and this

resulted in oscillation being removed. The remaining noise in the circuit was reduced by placing

60

a 100 nF balance capacitor in parallel with the photodiode in the transimpedance amplifier.

Figure 49 shows the final tested version of the optical receiver circuit.

Figure 49. Final tested optical receiver

5.1.2 Optical Communication Testbed

 Manchester communication tests were conducted on the optical receiver. All data was

successfully transmitted from the light source to the output of the optical receiver. At 4800 bit

rate the decoding of all the Manchester encoded data was successful with an error rate of 4%.

The other bit rates tested, 2400, 3600, 7200, and 9600, had varying levels of success with percent

error ranging from 31% to 43%.

 Powerline communication tests were conducted on the optical communication testbed at

bit rates of 2400, 3600, 4800, 7200, and 9600. The powerline communication tests successfully

transmitted a byte over a powerline at all speeds tested with no bit errors. The transfer of the

serial data to the FPGA in the optical receiver was not achieved.

5.3 Recommendations

 The development of FPGA hardware and system integration was significantly more

complex than anticipated. More time allocation to this process and discussion with lab members

on this subject is necessary for successful implementation.

 The Manchester encoded data faced issues with decoding. It is recommended that the

bandpass filters implemented within the circuit use a Bessel response to minimize the group

61

delay on the signal. The optical receiver also faced issue where the gain was reduced on a filter

to reduce noise from oscillations. It is recommended to use a transimpedance amplifier circuit

configuration with gain to act as a preamplifier in the circuit. On the optical receiver board the

gain required in the circuit was unknown, due to this four gains stages were developed with the

functionality to added and remove gain if necessary. It is recommended for the distance designed

in the optical communication testbed to remove the third and fourth gain stage from the circuit.

Another recommendation for gain within the optical receiver is to implement an automatic gain

control circuit so that no matter the location or signal strength received the gain added will

always be bring the signal to a predetermined level.

 Powerline modulation transmission successfully occurred using the STM32 environment.

The documentation on this system is lacking causing significant time and understanding to make

the system less of a blackbox. It is recommended to evaluate whether the communication

handling used within the systems API’s is necessary. If it is deemed unnecessary, further

research into other options is needed. An option that could be an attractive route to pursue is the

use DSP development boards and AC coupling.

62

REFERENCES

Acuity Brands. (2019). LED RETROFIT BAFFLE TRIM DOWNLIGHT RETROFIT FOR

STANDARD 4 ”.

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of

Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE

Communications Surveys and Tutorials, 17(4), 2347–2376.

https://doi.org/10.1109/COMST.2015.2444095

Bridgelux. (2018). Bridgelux ® Gen 7 Vero ® 13 Array Introduction.

Cailean, A. M., Cagneau, B., Chassagne, L., Dimian, M., & Popa, V. (2014). Miller code usage

in visible light communications under the PHY I layer of the IEEE 802.15.7 standard. IEEE

International Conference on Communications, 1–4.

https://doi.org/10.1109/ICComm.2014.6866699

Chawla, Vipul and Ha, D. S. (2007). An Overview of Passive RFID. IEEE Applications &

Practice.

Cisco Systems. (2016). At-a-Glance Internet of Things. Retrieved from www.cisco.com/go/iot.

Cypress Semiconductor. (2011). What is Power Line Communication? | EE Times. Retrieved

November 11, 2019, from https://www.eetimes.com/document.asp?doc_id=1279014#

Haas, H. (2018). Reviews in Physics LiFi is a paradigm-shifting 5G technology. Reviews in

Physics, 3(October 2017), 26–31. https://doi.org/10.1016/j.revip.2017.10.001

Haas, H., Yin, L., Wang, Y., & Chen, C. (2016). What is LiFi? Journal of Lightwave

Technology, 34(6), 1533–1544. https://doi.org/10.1109/JLT.2015.2510021

Kaushik, S. (2012). An overview of Technical aspect for WiFi Networks Technology. Retrieved

from www.ijecse.org

Keim, R. (2016). Manchester Encoding: What Is It, and Why Use It? - Technical Articles.

Retrieved November 11, 2019, from https://www.allaboutcircuits.com/technical-

articles/manchester-encoding-what-is-it-and-why-use-it/

Langer, K., & Grubor, J. (2007). Recent Developments in Optical Wireless Communications.

IEEE International Conference on Transparent Optical Networks, 146–151.

63

Leon-salas, W. D., & Fan, X. (2018). Live Demonstration : Modulating Luminescence Emissions

of Solar Cells for Sensing and Identification. 2018 IEEE International Symposium on

Circuits and Systems (ISCAS), 1. https://doi.org/10.1109/ISCAS.2018.8351753

Leon-salas, W. D., & Fan, X. (2019). Exploiting Luminescence Emissions of Solar Cells for

Optical Frequency Identification (OFID). 2018 IEEE International Symposium on Circuits

and Systems (ISCAS), 1–5. https://doi.org/10.1109/ISCAS.2018.8351139

Mouser Electronics. (2019). RF Wireless Technology | Mouser. Retrieved November 10, 2019,

from https://www.mouser.co.uk/applications/rf-wireless-technology/

Patel, Mark, Shangkuan, Jason, and Thomas, C. (2017). What’s new with the Internet of Things?

| McKinsey. Retrieved November 6, 2019, from

https://www.mckinsey.com/industries/semiconductors/our-insights/whats-new-with-the-

internet-of-things#

Sinclair, I. (2001). Transducing components. In Passive Components for Circuit Design.

https://doi.org/10.1016/b978-075064933-9/50008-x

STMicroelectronics. (2017a). UM2189 Getting started with the X-CUBE-PLM1 power line

communication software expansion for STM32Cube.

STMicroelectronics. (2017b). X-NUCLEO-PLM01A1, (June), 1–6.

64

APPENDIX A. PCB LAYERS OF RECEIVER

Schematic Capture of Receiver

65

66

Bottom copper view of Receiver

67

Top copper view of Receiver

68

APPENDIX B. RECEIVER MEASUREMENTS

Power Measurements

Board Power

Battery Theoretical Actual

Output Voltage 3.7 V 3.81 V

Digital Power

Vdd LDO Theoretical Actual

Input Voltage 3.7 V 3.81 V

Output Voltage 3.3 V 3.28 V

Vcore LDO Theoretical Actual

Input Voltage 3.7 V 3.81 V

Output Voltage 1.2 V 1.20 V

Analog Power

Vee LDO Theoretical Actual

Input Voltage 3.7 V 3.81 V

Output Voltage 3.3 V 3.28 V

Vref Theoretical Actual

Input Voltage 3.3V 3.28 V

Output Voltage 1.024 V 1.021 V

69

Frequency Response Measurement

Matlab Script: tf_estimation.m

The following is an example of the transfer function estimation script which is used to determine

the frequency response of a circuit from .csv files recorded using an oscilloscope.

%--

% manual transfer function estimation from a list of .csv files recorded

% with an oscilloscope. Each .csv file contains input and output

% (sinusoidal) waveforms. Input is on channel 2 and output is on channel 1

clear all;

datadir = 'T:\dentons\Measurements\TF estimation\tia_11212019\';

scope_file_list = [1:1:50];

num_of_files = length(scope_file_list);

A = zeros(1, num_of_files);

P = zeros(1, num_of_files);

f = zeros(1, num_of_files);

for m=1:num_of_files

 %--

 % read data from file

 filename = strcat('scope_', num2str(scope_file_list(m)), '.csv');

 [data, text, full] = xlsread(strcat(datadir,filename));

 t = data(5:2000, 1);

 y = data(5:2000, 3);

 x = data(5:2000, 2);

 Ts = t(2) - t(1);

 fs = 1/Ts;

 X = fft(x);

 Y = fft(y);

 Xmag = abs(X);

 Xphase = angle(X);

 Ymag = abs(Y);

 Yphase = angle(Y);

 max_ind = find(Xmag == max(Xmag(2:end)));

 n = max_ind(1);

 N = length(X);

 A(m) = Ymag(n)/Xmag(n);

70

 P(m) = Yphase(n) - Xphase(n);

 f(m) = n*fs/N;

 if P(m) > (pi()/2)

 P(m) = P(m) - pi();

 else P(m) < (-pi()/2)

 P(m) = P(m) + pi();

 end

end

%--

% plot transfer function

figure;

subplot(2,1,1)

semilogx(f, 20*log10(abs(A)));

xlim([0 inf])

xlabel('Frequency (Hz)');

ylabel('Magnitude (dB)');

title('Frequency Response of Transimpedance Amplifier')

grid on;

subplot(2,1,2)

semilogx(f,P*180/pi);

xlim([0 inf])

xlabel('Frequency (Hz)');

ylabel('Phase (deg)');

grid on;

71

Photodiode and Transimpedance Amplifer

Date: 11/20/2019

Time: 11:00PM EST

Instrument: Siglent SDS 1104X-E

Cal date:

Settings:

 Memdepth: 7k

 Filetype: Matlab (.dat)

Instrument: Keysight33210A Function/Arbtitrary Waveform Generator

Cal date:

Settings:

 Start Freq: 10 Hz

 Stop Freq: 20 kHz

 Steps: 50

 Log steps determined by logspace(1, 4.3, 50) (matlab function)

Transimpedance Amplifier (TIA)

Op Amp: TI OPA2350

Photodiode: Vishay BW34

Lightsource: Keysight33210A Function/Arbtitrary Waveform Generator

 SFH 4232A IR LED

 ALD1115pal MOSFET

72

Frequency Response of Transimpedance Amplifier

73

Bandpass Filter 1

Date: 4/20/2020

Time: 4:45PM EST

Instrument: Siglent SDS 1104X-E

Cal date:

Settings:

 Memdepth: 7k

 Filetype: Matlab (.dat)

Instrument: Keysight33210A Function/Arbtitrary Waveform Generator

Cal date:

Settings:

 Start Freq: 10Hz

 Stop Freq: 1MHz

 Steps: 50

 Log steps determined by logspace(1, 6, 50) (matlab function)

Bandpass Filter Gain Stage 1 (BPF1)

Op Amp: TI OPA2350

fc1: 106 Hz

fc2: 12.92 kHz

74

Frequency Response of Bandpass Gain Stage 1

75

Bandpass Filter 2

Date: 4/20/2020

Time: 5:30PM EST

Instrument: Siglent SDS 1104X-E

Cal date:

Settings:

 Memdepth: 7k

 Filetype: Matlab (.dat)

Instrument: Keysight33210A Function/Arbtitrary Waveform Generator

Cal date:

Settings:

 Start Freq: 10Hz

 Stop Freq: 1MHz

 Steps: 50

 Log steps determined by logspace(1, 4.3, 50) (matlab function)

Bandpass Filter Gain Stage 2 (BPF2)

Op Amp: TI OPA2350

fc1: 106 Hz

fc2: 12.91 kHz

76

Frequency Response of Bandpass Gain Stage 2

77

Bandpass Filter 3

Date: 4/20/2020

Time: 6:00PM EST

Instrument: Siglent SDS 1104X-E

Cal date:

Settings:

 Memdepth: 7k

 Filetype: Matlab (.dat)

Instrument: Keysight33210A Function/Arbtitrary Waveform Generator

Cal date:

Settings:

 Start Freq: 10 Hz

 Stop Freq: 20 kHz

 Steps: 50

 Log steps determined by logspace(1, 4.3, 50) (matlab function)

Bandpass Filter Gain Stage 3 (BPF3)

Op Amp: TI OPA2350

fc1: 106 Hz

fc2: 12.92 kHz

78

Frequency Response of Bandpass Gain Stage 3

79

Lowpass Filter

Date: 11/15/2019

Time: 2:20PM EST

Instrument: Siglent SDS 1104X-E

Cal date:

Settings:

 Memdepth: 7k

 Filetype: Matlab (.dat)

Instrument: Keysight33210A Function/Arbtitrary Waveform Generator

Cal date:

Settings:

 Start Freq: 10 Hz

 Stop Freq: 20 kHz

 Steps: 50

 Log steps determined by logspace(1, 4.3, 50) (matlab function)

Eighth Order Lowpass Filter (LPF)

IC: MAX291

fc: 10 kHz

80

81

Comparator

Channel 1: Input

Channel 2: Output

Channel 3: Comparator Setpoint

82

Optical Receiver Noise Investigation

Trace 1 (yellow): Light source signal

Trace 2 (purple): Comparator output

Trace 4 (green): BPF 3

FFT (white): from BPF3

No ambient light, no light source signal

83

Ambient light, no light source signal

Ambient light, light source signal

84

Cursor on 1.055 kHz at -4.4 dBV

No ambient light, light source signal

85

Noise spectrum from just LED luminaire

Noise Spectrum from LED luminaire with 1kHz signal

86

Noise spectrum with IR signal and LED luminaire ambient light

87

Manchester Communication Test

MATLAB script generate_manchester_waveform.m

% This script generates a voltage waveform to be loaded to the Koolertron

% waveform generator

clear all;

Tbit = 200e-6; % bit duration in sec.

filename = strcat('.\manchester_Tbit_', num2str(Tbit*1e6),'us.csv');

hi_level = 3.0;

lo_level = 0.0;

tx_data = [65, 67, 69, 71, 73, 75, 77, 79];

one_waveform = [0 0 0 0 1 1 1 1]; % normalized waveform between +1 and 0

(0=lo_level, 1=hi_level)

zero_waveform = [1 1 1 1 0 0 0 0]; % normalized waveform between +1 and 0

(0=lo_level, 1=hi_level)

Lbit = length(one_waveform); % number of samples per bit

Ts = Tbit/Lbit; % sampling time

Lsilence = 64*3;

waveform = zeros(1, length(tx_data)*(8*Lbit + Lsilence));

k = 1; % waveform sample index

for n=1:length(tx_data)

 byte = dec2bin(tx_data(n), 8);

 for m=8:-1:1

 bit = byte(m);

 if bit == '1'

 waveform(k : k+Lbit-1) = lo_level + (hi_level - lo_level)*one_waveform;

 k = k + Lbit;

 else

 waveform(k : k+Lbit-1) = lo_level + (hi_level - lo_level)*zero_waveform;

 k = k + Lbit;

 end

 end

 waveform(k:k+Lsilence-1) = hi_level*ones(1, Lsilence); % between bytes silence

 k = k + Lsilence;

end

%--

88

% write waveform to a file

%--

fid = fopen(filename, 'w');

if fid ~= -1

 for n=1:length(waveform)

 fprintf(fid, '%2.5f\n', waveform(n));

 end

 fclose(fid);

else

 disp('Cannot open file...');

end

%--

% print report

%--

fprintf('--\n');

fprintf(' Waveform Parameters:\n');

fprintf(' bit duration : %3.4f ms\n', Tbit*1e3);

fprintf(' hi level : %3.3f V\n', hi_level);

fprintf(' lo level : %3.3f V\n', lo_level);

fprintf(' sampling freq. : %3.2f kHz\n', 1/Ts*1e-3);

fprintf(' num. samples : %d\n', length(waveform));

fprintf(' one pulse :');

fprintf(' %g ', one_waveform');

fprintf('\n');

fprintf(' zero pulse :');

fprintf(' %g ', zero_waveform');

fprintf('\n');

89

Command window output of generate_manchester_waveform.m

generate_manchester_waveform

--

 Waveform Parameters:

 bit duration : 0.2000 ms

 hi level : 3.000 V

 lo level : 0.000 V

 sampling freq. : 40.00 kHz

 num. samples : 2048

 one pulse : 0 0 0 0 1 1 1 1

 zero pulse : 1 1 1 1 0 0 0 0

90

Manchester Decoding Results

Bit rate: 2400 bps

 Input Output Bit Error Rate

Packet Bin Dec ASCII Bin Dec ASCII Transmission Decode

1 11110010 79 O 1111000 15 SI 0/8 2/8

2 10000010 65 A 1000000 1 SOH 0/8 2/8

3 11000010 67 C 1100000 3 ETX 0/8 2/8

4 10100010 69 E 100000 1 SOH 0/8 3/8

5 11100010 71 G 1110000 7 BEL 0/8 2/8

6 10010010 73 I 100000 1 SOH 0/8 3/8

7 11010010 75 K 110000 3 ETX 0/8 3/8

8 10110010 77 M 100000 1 SOH 0/8 4/8

9 11110010 79 O 1111000 15 SI 0/8 2/8

10 10000010 65 A 1000000 1 SOH 0/8 2/8

11 11000010 67 C 1100000 3 ETX 0/8 2/8

12 10100010 69 E 100000 1 SOH 0/8 3/8

13 11100010 71 G 1110000 7 BEL 0/8 2/8

14 10010010 73 I 100000 1 SOH 0/8 2/8

15 11010010 75 K 110000 3 ETX 0/8 2/8

16 10110010 77 M 100000 1 SOH 0/8 4/8

17 11110010 79 O 1111000 15 SI 0/8 2/8

18 10000010 65 A 1000000 1 SOH 0/8 2/8

19 11000010 67 C 1100000 3 ETX 0/8 2/8

 Average 0% 31%

91

92

Bit rate: 3600 bps

 Input Output Bit Error Rate

Packet Bin Dec ASCII Bin Dec ASCII Transmission Decode

1 10100010 69 E 1011100 29 GS 0/8 3/8

2 11100010 71 G 1111100 31 US 0/8 3/8

3 10010010 73 I 1101100 27 ESC 0/8 4/8

4 11010010 75 K 1101100 27 ESC 0/8 2/8

5 10110010 77 M 100000 1 SOH 0/8 4/8

6 11110010 79 O 1111000 15 SI 0/8 1/8

7 10000010 65 A 1000000 1 SOH 0/8 2/8

8 11000010 67 C 1111100 31 US 0/8 4/8

9 10100010 69 E 1011100 29 GS 0/8 4/8

10 11100010 71 G 1111100 31 US 0/8 4/8

11 10010010 73 I 110000 3 ETX 0/8 4/8

 Average 0% 40%

93

Bit rate: 4800 bps

 Input Output Bit Rate Error

Packet Bin Dec ASCII Bin Dec ASCII Transmission Decode

1 10010010 73 I 10010010 73 I 0/8 0/8

2 11010010 75 K 11010010 1 75 1 K SOH 0/8 1/9

3 10110010 77 M 10010010 73 I 0/8 1/8

4 11110010 79 O 11110010 79 O 0/8 0/8

5 10000010 65 A 10000010 65 A 0/8 0/8

6 11000010 67 C 11000010 67 C 0/8 0/8

7 10100010 69 E 10100010 1 69 1 E SOH 0/8 1/9

8 11100010 71 G 11100010 71 G 0/8 0/8

9 10010010 73 I 10010010 73 I 0/8 0/8

10 11010010 75 K 11010010 75 K 0/8 0/8

11 10110010 77 M 10010010 73 I 0/8 1/8

12 11110010 79 O 11110010 1 79 1 O SOH 0/8 1/9

13 10000010 65 A 10000010 65 A 0/8 0/8

14 11000010 67 C 11000010 67 C 0/8 0/8

 Average 0% 0%

94

Bit rate: 7200 bps

 Input Output Bit Rate Error

Packet Bin Dec ASCII Bin Dec ASCII Transmission Decode

1 11010010 75 K 11011011 219 ï¿½ 0/8 2/8

2 10110010 77 M 10011011 217 ï¿½ 0/8 3/8

3 11110010 79 O 11111011 223 ï¿½ 0/8 2/8

4 10000010 65 A 11111011 223 ï¿½ 0/8 5/8

5 11000010 67 C 11111011 223 ï¿½ 0/8 4/8

6 10100010 69 E 10111011 221 ï¿½ 0/8 3/8

7 11100010 71 G 11111011 223 ï¿½ 0/8 3/8

8 10010010 73 I 11011011 219 ï¿½ 0/8 3/8

9 11010010 75 K 11011011 219 ï¿½ 0/8 2/8

10 10110010 77 M 10011011 217 ï¿½ 0/8 3/8

11 11110010 79 O 11111011 223 ï¿½ 0/8 2/8

 Average 0% 36%

95

Bit rate: 9600 bps

 Input Output Bit Rate Error

Packet Bin Dec ASCII Bin Dec ASCII Transmission Decode

2 10010010 73 I 1111011 222 ï¿½ 0/8 5/8

3 11010010 75 K 10111011 221 ï¿½ 0/8 3/8

4 10110010 77 M 100011 196 ï¿½ 0/8 3/8

5 11110010 79 O 11011010 1 91 1 [SOH 0/8 3/9

6 10000010 65 A 1011011 218 ï¿½ 0/8 3/8

7 11000010 67 C 10011011 217 ï¿½ 0/8 3/8

8 10100010 69 E 10011 200 ï¿½ 0/8 4/8

9 11100010 71 G 11111011 223 ï¿½ 0/8 5/8

10 10010010 73 I 1111011 222 ï¿½ 0/8 5/8

11 11010010 75 K 10111011 221 ï¿½ 0/8 3/8

12 10110010 77 M 100011 196 ï¿½ 0/8 3/8

13 11110010 79 O 11011011 219 ï¿½ 0/8 3/8

14 10000010 65 A 1011011 218 ï¿½ 0/8 3/8

15 11000010 67 C 10011011 217 ï¿½ 0/8 3/8

 Average 0% 43%

96

Serial Decoding Results

 Input Output

Bit
Rate Packet Bin Hex Dec ASCII Bin Hex Dec ASCII BER

2400

1 10101100 35 53 5 10101100 35 53 5 0%

2 10110000 0D 13 CR

3 1010000 0A 10 LF

3600

1 10101100 35 53 5 10101100 35 53 5 0%

2 10110000 0D 13 CR

3 1010000 0A 10 LF

4800

1 10101100 35 53 5 10101100 35 53 5 0%

2 10110000 0D 13 CR

3 1010000 0A 10 LF

7200

1 10101100 35 53 5 10101100 35 53 5 0%

2 10110000 0D 13 CR

3 1010000 0A 10 LF

9600

1 10101100 35 53 5 10101100 35 53 5 0%

2 10110000 0D 13 CR

3 1010000 0A 10 LF

97

Serial Transmission at 2400 bps

Delay between packet send and receive: 110.9 ms

Packet 1

Packet 2

98

Packet 3

Packet 1 (received)

99

Serial Transmission at 3600

Time delay between send and receive packets: 223.1 ms

Packet 1

Packet 2

100

Packet 3

Packet 1 (received)

101

Serial Transmission at 4800

Time delay between 1 packet sent and received

Packet 1

Packet 2

102

Packet 3

Packet 1 (received)

103

Serial transmission at 7200

Delay between sent and received packet 1: 239.7ms

Packet 1

Packet 2

104

Packet 3

Packet 1 (received)

105

Serial Transmission at 9600

Delay between sent and received packet 1: 751.8ms

Packet 1

Packet 2

106

Packet 3

Packet 1(received)

107

APPENDIX C. POWERLINE MODULATION CODE

Code for powerline modulation test

Main.c

/**

**

* @file main.c

* @author CLAB

* @version 1.1.0

* @date 18-Sept-2017

* @brief Main program body

**

* @attention

*

* <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2>

*

* Redistribution and use in source and binary forms, with or without modification,

* are permitted provided that the following conditions are met:

* 1. Redistributions of source code must retain the above copyright notice,

* this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright notice,

* this list of conditions and the following disclaimer in the documentation

* and/or other materials provided with the distribution.

* 3. Neither the name of STMicroelectronics nor the names of its contributors

* may be used to endorse or promote products derived from this software

* without specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS"

108

* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE

* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR

* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER

* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY,

* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE

* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*

**

*/

/* Includes --*/

#include "cube_hal.h"

#include "st7580_appli.h"

/** @addtogroup USER

* @{

*/

/* Private typedef ---*/

109

/* Private define --*/

/* Private macro ---*/

/* Private variables ---*/

/* Private function prototypes ---*/

int main(void);

/* Private functions ---*/

/**

* @brief Main program.

* @param None

* @retval None

*/

int main(void)

{

 /* MCU Configuration--*/

 /* Reset of all peripherals, Initializes the Flash interface and the Systick. */

 HAL_Init();

 /* Configure the system clock */

 SystemClock_Config();

 /* Initialize ST7580 interface */

 GPIO_PLM_Configuration();

 UART_PLM_Configuration();

110

 /* Initialize ST7580 PLM */

 BSP_PLM_Init();

 /* Initialize Buttons */

 BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_GPIO);

 /* Debug USART config */

 USART_PRINT_MSG_Configuration();

 /* Initialize P2P Application */

 P2P_Init();

 while(1)

 {

 /* Data Communication */

 //P2P_Process();

 AppliMasterBoard();

 //AppliSlaveBoard();

 }

}

#ifdef USE_FULL_ASSERT

/**

* @brief Reports the name of the source file and the source line number

* where the assert_param error has occurred.

* @param file: pointer to the source file name

* @param line: assert_param error line source number

* @retval None

111

*/

void assert_failed(uint8_t* file, uint32_t line)

{

 /* User can add his own implementation to report the file name and line number,

 ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

}

#endif

/**

* @}

*/

/**

* @}

*/

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

112

St7580_appli.c

/**

**

* @file st7580_appli.c

* @author CLAB

* @version 1.1.0

* @date 18-Sept-2017

* @brief user file to configure ST7580 PLC Modem.

*

@verbatim

===

==========

How to use this driver #####

===

==========

[..]

This file is generated automatically by STM32CubeMX and eventually modified

by the user

@endverbatim

**

* @attention

*

* <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2>

*

* Redistribution and use in source and binary forms, with or without modification,

* are permitted provided that the following conditions are met:

* 1. Redistributions of source code must retain the above copyright notice,

* this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright notice,

* this list of conditions and the following disclaimer in the documentation

113

* and/or other materials provided with the distribution.

* 3. Neither the name of STMicroelectronics nor the names of its contributors

* may be used to endorse or promote products derived from this software

* without specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS"

* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE

* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR

* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER

* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY,

* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE

* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*

**

*/

/* Includes --*/

#include <string.h>

#include "cube_hal.h"

114

#include "st7580_appli.h"

#include "stm32_plm01a1.h"

/** @addtogroup USER

* @{

*/

/** @defgroup ST7580_APPLI

* @brief User file to configure ST7580 PLC modem.

* @{

*/

/* Private typedef ---*/

/* Private define --*/

#define TRIG_BUF_SIZE 1

#define ACK_BUF_SIZE 1

/* Private macro ---*/

/* Private variables ---*/

SM_State_t SM_State;

char MsgOut[100];

int i = 0;

/* Private function prototypes ---*/

void AppliMasterBoard(void);

void AppliSlaveBoard(void);

/* Private functions ---*/

/** @defgroup ST7580_APPLI_Private_Functions

115

* @{

*/

/**

* @brief This function initializes the point-to-point communication

* @param None

* @retval None

*/

void P2P_Init(void){

 /* Modem MIBs configuration */

 BSP_PLM_Mib_Write(MIB_MODEM_CONF, modem_config, sizeof(modem_config));

 HAL_Delay(500);

 /* Phy MIBs configuration */

 BSP_PLM_Mib_Write(MIB_PHY_CONF, phy_config, sizeof(phy_config));

 HAL_Delay(500);

 /* Check User Button state */

 if (BSP_PB_GetState(BUTTON_KEY) == GPIO_PIN_SET)

 {

 /* User Button released */

 SM_State = SM_STATE_SLAVE;

 }

 else

 {

 /* User Button pressed */

 SM_State = SM_STATE_MASTER;

 }

116

 return;

}

/**

* @brief ST7580 P2P Process State machine

* @retval None.

*/

void P2P_Process() {

 switch(SM_State){

 case SM_STATE_MASTER:

 AppliMasterBoard();

 break;

 case SM_STATE_SLAVE:

 AppliSlaveBoard();

 break;

 }

 return;

}

/**

* @brief This function handles the point-to-point Master Board Communication

* @retval None

*/

void AppliMasterBoard(){

 uint8_t ret;

 uint8_t cRxLen;

 ST7580Frame* RxFrame;

 uint8_t lastIDRcv = 0;

 int it = 0;

117

 uint8_t aTrsBuffer[TRIG_BUF_SIZE] = {0};

 uint8_t aRcvBuffer[ACK_BUF_SIZE];

 sprintf(MsgOut, "P2P Communication Test - Master Board Side\n\r\n\r");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut), 500);

 while(1)

 {

 /* Initialize Trigger Msg */

 aTrsBuffer[TRIG_BUF_SIZE-1]++;

 if (aTrsBuffer[TRIG_BUF_SIZE-1] > 255)

 {

 aTrsBuffer[TRIG_BUF_SIZE-1] = 0;

 }

 sprintf(MsgOut, "Iteration %d\n\r", ++it);

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 /* Send Trigger Msg send */

 ret = BSP_PLM_Send_Data(DATA_OPT, aTrsBuffer, TRIG_BUF_SIZE,

NULL);

 /* Check TRIGGER Msg send result */

 if(ret)

 {

 /* Transmission Error */

 sprintf(MsgOut, "Trigger Transmission Err\n\r");

118

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

 //continue;

 }

 sprintf(MsgOut, "Trigger Msg Sent, ID: %d\n\r", aTrsBuffer[TRIG_BUF_SIZE-

1]);

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 sprintf(MsgOut, "PAYLOAD: ");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 HAL_UART_Transmit(&pUartMsgHandle, aTrsBuffer, TRIG_BUF_SIZE,

500);

 sprintf(MsgOut, "\n\r");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 /* Wait ACK Msg sent back from slave */

 RxFrame=NULL;

 for (int j=0;((j<10) && (RxFrame==NULL));j++)

 {

 RxFrame = BSP_PLM_Receive_Frame();

 if (RxFrame != NULL)

 {

 /* Check if a duplicated indication frame with STX = 03 is

received */

 if ((RxFrame->stx == ST7580_STX_03)&&(lastIDRcv ==

RxFrame->data[3+ACK_BUF_SIZE]))

 {

 RxFrame = NULL;

119

 }

 else

 {

 lastIDRcv = RxFrame->data[3+ACK_BUF_SIZE];

 break;

 }

 }

 HAL_Delay(200);

 }

 /* Check received ACK Msg */

 if (RxFrame == NULL)

 {

 /* No ACK Msg received until timeout */

 sprintf(MsgOut, "ACK Timeout - No ACK Received\n\r");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

 //continue;

 }

 cRxLen = (RxFrame->length - 4);

 sprintf(MsgOut, "ACK Msg Received\n\r");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 if (cRxLen != ACK_BUF_SIZE){

 /* ACK len mismatch */

 sprintf(MsgOut, "Wrong ACK Length\n\r");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

 //continue;

120

 }

 /* Copy payload from RX frame */

 memcpy(aRcvBuffer,&(RxFrame->data[4]),cRxLen);

 /* Check ID to verify if the right ACK has been received */

 if (aRcvBuffer[ACK_BUF_SIZE-1] == aTrsBuffer[TRIG_BUF_SIZE-1])

 {

 sprintf(MsgOut, "ACK Msg Received, ID: %d\n\r",

aRcvBuffer[ACK_BUF_SIZE-1]);

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

 }

 else

 {

 sprintf(MsgOut, "WRONG ACK Msg Received, ID: %d\n\r",

aRcvBuffer[ACK_BUF_SIZE-1]);

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

 }

 sprintf(MsgOut, "PAYLOAD: ");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 HAL_UART_Transmit(&pUartMsgHandle, aRcvBuffer, ACK_BUF_SIZE,

500);

 sprintf(MsgOut, "\n\r\n\r");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 HAL_Delay(1000);

 }

121

}

/**

* @brief This function handles the point-to-point Slave Board Communication

* @retval None

*/

void AppliSlaveBoard(){

 ST7580Frame* RxFrame;

 uint8_t cRxLen;

 int ret;

 uint8_t lastIDRcv = 0;

 int it =0;

 uint8_t aTrsBuffer[ACK_BUF_SIZE] = {'A','C','K'};

 uint8_t aRcvBuffer[TRIG_BUF_SIZE];

 sprintf(MsgOut, "P2P Communication Test - Slave Board Side\n\r\n\r");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut), 500);

 while(1)

 {

 sprintf(MsgOut, "Iteration %d\n\r", ++it);

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 /* Receive Trigger Msg from M board */

 RxFrame=NULL;

 do

 {

 RxFrame = BSP_PLM_Receive_Frame();

122

 if (RxFrame != NULL)

 {

 /* Check if a duplicated indication frame with STX = 03 is

received */

 if ((RxFrame->stx == ST7580_STX_03)&&(lastIDRcv ==

RxFrame->data[3+TRIG_BUF_SIZE]))

 {

 RxFrame = NULL;

 }

 else

 {

 lastIDRcv = RxFrame->data[3+TRIG_BUF_SIZE];

 break;

 }

 }

 HAL_Delay(200);

 } while(RxFrame==NULL);

 cRxLen = (RxFrame->length - 4);

 memcpy(aRcvBuffer,&(RxFrame->data[4]),cRxLen);

 sprintf(MsgOut, "Trigger Msg Received, ID: %d\n\r",

aRcvBuffer[TRIG_BUF_SIZE-1]);

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 sprintf(MsgOut, "PAYLOAD: ");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 HAL_UART_Transmit(&pUartMsgHandle, aRcvBuffer, TRIG_BUF_SIZE,

500);

 sprintf(MsgOut, "\n\r");

123

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 /* Send back ACK Msg to Master Board */

 aTrsBuffer[ACK_BUF_SIZE-1] = aRcvBuffer[TRIG_BUF_SIZE-1];

 do

 {

 ret = BSP_PLM_Send_Data(DATA_OPT, aTrsBuffer, ACK_BUF_SIZE,

NULL);

 } while (ret!=0);

 sprintf(MsgOut, "ACK Msg Sent, ID: %d\n\r",aTrsBuffer[ACK_BUF_SIZE-1]);

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 sprintf(MsgOut, "PAYLOAD: ");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 HAL_UART_Transmit(&pUartMsgHandle, aTrsBuffer, ACK_BUF_SIZE,

500);

 sprintf(MsgOut, "\n\r\n\r");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 }

}

/**

* @}

*/

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

124

Stm32_plm01a1.h

/**

**

* @file stm32_plm01a1.h

* @author CLAB

* @version 1.1.0

* @date 18-Sept-2017

* @brief Header file for HAL related functionality of X-CUBE-PLM1

**

* @attention

*

* <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2>

*

* Redistribution and use in source and binary forms, with or without modification,

* are permitted provided that the following conditions are met:

* 1. Redistributions of source code must retain the above copyright notice,

* this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright notice,

* this list of conditions and the following disclaimer in the documentation

* and/or other materials provided with the distribution.

* 3. Neither the name of STMicroelectronics nor the names of its contributors

* may be used to endorse or promote products derived from this software

* without specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS"

* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE

125

* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR

* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER

* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY,

* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE

* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*

**

*/

/* Define to prevent recursive inclusion -------------------------------------*/

#ifndef __PLM_MODULE_CONF_H

#define __PLM_MODULE_CONF_H

/* Includes --*/

#ifdef USE_STM32L0XX_NUCLEO

#include "stm32l0xx_hal.h"

#include "stm32l0xx_nucleo.h"

#include "stm32l0xx_hal_rcc.h"

#include "stm32l0xx_hal_rcc_ex.h"

#include "stm32l0xx_ll_usart.h"

#endif

126

#ifdef USE_STM32F4XX_NUCLEO

#include "stm32f4xx_hal.h"

#include "stm32f4xx_nucleo.h"

#include "stm32f4xx_hal_rcc.h"

#include "stm32f4xx_hal_rcc_ex.h"

#include "stm32f4xx_ll_usart.h"

#endif

#include "ST7580_Serial.h"

/* Exported types --*/

typedef struct sPlmDriver

{

 void(*Init)();

 int (*Reset)();

 int (*MibRead)(uint8_t , uint8_t * , uint8_t);

 int (*MibWrite)(uint8_t, const uint8_t*, uint8_t);

 int (*MibErase)(uint8_t index);

 int (*Ping)(const uint8_t*, uint8_t);

 int (*PhyData)(uint8_t, const uint8_t*, uint8_t, uint8_t*);

 int (*DlData)(uint8_t, const uint8_t*, uint8_t, uint8_t*);

 int (*SsData)(uint8_t, const uint8_t*, uint8_t, uint8_t, uint8_t*);

 ST7580Frame * (*NextIndicationFrame)();

}PlmDriver_t;

/* Exported constants --*/

/* Exported macro --*/

127

/* PLM control usart */

#define PLM_USART_RxBufferSize 512

#define PLM_USART USART1

#define PLM_USART_BAUDRATE 57600

#define PLM_USART_CLK_ENABLE() __USART1_CLK_ENABLE();

#define PLM_USART_RX_GPIO_CLK_ENABLE() __GPIOA_CLK_ENABLE()

#define PLM_USART_TX_GPIO_CLK_ENABLE() __GPIOA_CLK_ENABLE()

#define PLM_USART_FORCE_RESET() __USART1_FORCE_RESET()

#define PLM_USART_RELEASE_RESET() __USART1_RELEASE_RESET()

/* Definition for USARTx Pins */

#define PLM_USART_TX_PIN GPIO_PIN_9

#define PLM_USART_TX_GPIO_PORT GPIOA

#define PLM_USART_RX_PIN GPIO_PIN_10

#define PLM_USART_RX_GPIO_PORT GPIOA

/* Definition for USARTx's NVIC */

#define PLM_USART_IRQn USART1_IRQn

#define PLM_USART_IRQHandler USART1_IRQHandler

#if defined(USE_STM32F4XX_NUCLEO)

#define PLM_USART_TX_AF GPIO_AF7_USART1

#define PLM_USART_RX_AF GPIO_AF7_USART1

#elif defined(USE_STM32L0XX_NUCLEO)

#define PLM_USART_TX_AF GPIO_AF4_USART1

#define PLM_USART_RX_AF GPIO_AF4_USART1

#endif

128

/* Message debug usart */

#define MSG_USART USART2

#define MSG_USART_BAUDRATE 9600

#define MSG_USART_CLK_ENABLE() __USART2_CLK_ENABLE();

#define MSG_USART_RX_GPIO_CLK_ENABLE() __GPIOA_CLK_ENABLE()

#define MSG_USART_TX_GPIO_CLK_ENABLE() __GPIOA_CLK_ENABLE()

#define MSG_USART_FORCE_RESET() __USART2_FORCE_RESET()

#define MSG_USART_RELEASE_RESET() __USART2_RELEASE_RESET()

/* Definition for USARTx Pins */

#define MSG_USART_TX_PIN GPIO_PIN_2

#define MSG_USART_TX_GPIO_PORT GPIOA

#define MSG_USART_RX_PIN GPIO_PIN_3

#define MSG_USART_RX_GPIO_PORT GPIOA

/* Definition for USARTx's NVIC -- added */

#define MSG_USART_IRQn USART2_IRQn

#define MSG_USART_IRQHandler USART2_IRQHandler

/* End added */

#if defined(USE_STM32F4XX_NUCLEO)

#define MSG_USART_TX_AF GPIO_AF7_USART2

#define MSG_USART_RX_AF GPIO_AF7_USART2

#elif defined(USE_STM32L0XX_NUCLEO)

#define MSG_USART_TX_AF GPIO_AF4_USART2

#define MSG_USART_RX_AF GPIO_AF4_USART2

#endif

129

/* PLM Gpio */

#define PLM_GPIO_T_REQ_PORT GPIOA

#define PLM_GPIO_T_REQ_PIN GPIO_PIN_5

#define PLM_GPIO_T_REQ_CLOCK_ENABLE() __GPIOA_CLK_ENABLE()

#define PLM_GPIO_T_REQ_CLOCK_DISABLE() __GPIOA_CLK_DISABLE()

#define PLM_GPIO_T_REQ_SPEED GPIO_SPEED_HIGH

#define PLM_GPIO_T_REQ_PUPD GPIO_NOPULL

/***

*/

#define PLM_GPIO_RESETN_PORT GPIOA

#define PLM_GPIO_RESETN_PIN GPIO_PIN_8

#define PLM_GPIO_RESETN_CLOCK_ENABLE() __GPIOA_CLK_ENABLE()

#define PLM_GPIO_RESETN_CLOCK_DISABLE() __GPIOA_CLK_DISABLE()

#define PLM_GPIO_RESETN_SPEED GPIO_SPEED_HIGH

#define PLM_GPIO_RESETN_PUPD GPIO_NOPULL

/***

*/

#define PLM_PL_TX_ON_PORT GPIOC

#define PLM_PL_TX_ON_PIN GPIO_PIN_0

#define PLM_PL_TX_ON_CLOCK_ENABLE() __GPIOC_CLK_ENABLE()

#define PLM_PL_TX_ON_CLOCK_DISABLE() __GPIOC_CLK_DISABLE()

#define PLM_PL_TX_ON_SPEED GPIO_SPEED_HIGH

#define PLM_PL_TX_ON_PUPD GPIO_NOPULL

/***

*/

130

#define PLM_PL_RX_ON_PORT GPIOC

#define PLM_PL_RX_ON_PIN GPIO_PIN_1

#define PLM_PL_RX_ON_CLOCK_ENABLE() __GPIOC_CLK_ENABLE()

#define PLM_PL_RX_ON_CLOCK_DISABLE() __GPIOC_CLK_DISABLE()

#define PLM_PL_RX_ON_SPEED GPIO_SPEED_HIGH

#define PLM_PL_RX_ON_PUPD GPIO_NOPULL

#define PLM_PL_RX_ON_EXTI_LINE GPIO_PIN_1

#define PLM_PL_RX_ON_EXTI_MODE GPIO_MODE_IT_RISING_FALLING

//#define PLM_PL_RX_ON_EXTI_IRQN EXTI1_IRQn

#define PLM_PL_RX_ON_EXTI_PREEMPTION_PRIORITY 2

#define PLM_PL_RX_ON_EXTI_SUB_PRIORITY 2

#define PLM_PL_RX_ON_EXTI_IRQ_HANDLER EXTI1_IRQHandler

/* Exported Variables --*/

extern UART_HandleTypeDef pUartPlmHandle;

extern UART_HandleTypeDef pUartMsgHandle;

extern PlmDriver_t *pPlmDriver;

void GPIO_PLM_Configuration(void);

void UART_PLM_Configuration(void);

void USART_PRINT_MSG_Configuration(void);

void BSP_PLM_Init(void);

int BSP_PLM_Reset(void);

int BSP_PLM_Mib_Write(uint8_t indexMib, const uint8_t* bufMib, uint8_t lenBuf);

int BSP_PLM_Mib_Read(uint8_t indexMib, uint8_t* bufMib, uint8_t lenBuf);

int BSP_PLM_Mib_Erase(uint8_t indexMib);

int BSP_PLM_Ping(const uint8_t* pingBuf, uint8_t pingLen);

131

int BSP_PLM_Send_Data(uint8_t plmOpts, const uint8_t* dataBuf, uint8_t dataLen, uint8_t*

confData);

int BSP_PLM_Send_Secure_data(uint8_t plmOpts, const uint8_t* dataBuf, uint8_t clrLen,

uint8_t encLen, uint8_t* retData);

ST7580Frame *BSP_PLM_Receive_Frame(void);

#endif //__PLM_MODULE_CONF_H

132

Powerline Modulation Communication Test

MasterBoard

Main.c

/**

**

* @file main.c

* @author CLAB

* @version 1.1.0

* @date 18-Sept-2017

* @brief Main program body

**

* @attention

*

* <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2>

*

* Redistribution and use in source and binary forms, with or without modification,

* are permitted provided that the following conditions are met:

* 1. Redistributions of source code must retain the above copyright notice,

* this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright notice,

* this list of conditions and the following disclaimer in the documentation

* and/or other materials provided with the distribution.

* 3. Neither the name of STMicroelectronics nor the names of its contributors

* may be used to endorse or promote products derived from this software

* without specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS"

* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE

133

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE

* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR

* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER

* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY,

* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE

* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*

**

*/

/* Includes --*/

#include "cube_hal.h"

#include "st7580_appli.h"

// Adding from led_test code

//#include "usart.h" things in this defined elsewhere

#include <stdio.h>

/** @addtogroup USER

* @{

*/

134

/* Private typedef ---*/

/* Private define --*/

#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)

#define GETCHAR_PROTOTYPE int __io_getchar(void)

/* Private macro ---*/

/* Private variables ---*/

int test = 0;

/* Private function prototypes ---*/

int main(void);

/* Private functions ---*/

/**

* @brief Main program.

* @param None

* @retval None

*/

int main(void)

{

 /* MCU Configuration--*/

 /* Reset of all peripherals, Initializes the Flash interface and the Systick. */

 HAL_Init();

 /* Configure the system clock */

 SystemClock_Config();

 /* Initialize ST7580 interface */

135

 GPIO_PLM_Configuration();

 UART_PLM_Configuration();

 /* Initialize ST7580 PLM */

 BSP_PLM_Init();

 /* Initialize Buttons */

 BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_GPIO);

 /* Debug USART config */

 USART_PRINT_MSG_Configuration();

 /* Initialize P2P Application */

 P2P_Init();

 // Turning off buffers so io happens immediately hopefully doesnt mess up plm...........

 setvbuf(stdin, NULL, _IONBF, 0);

 setvbuf(stdout, NULL, _IONBF, 0);

 setvbuf(stderr, NULL, _IONBF, 0);

 uint8_t c;

 //printf("Enter a value :");

 c = getchar();

 //printf("\nYou entered: ");

 //putchar(c);

 //printf("\nDoing PLM\n");

 AppliMasterBoard(c);

 //printf("s"); //printf("\nPLM Success\n");

136

 return 0;

// while(1)

// {

// /* Take button press from st7580_appli.c */

// if (BSP_PB_GetState(BUTTON_KEY) == GPIO_PIN_SET)

// {

// /* User Button released */

// }

// else{

// AppliMasterBoard(test);

// test++;

// }

//

// //P2P_Process(); //Remove for master only

// }

}

PUTCHAR_PROTOTYPE

{

 /* Place your implementation of fputc here */

 /* e.g. write a character to the EVAL_COM1 and Loop until the end of transmission */

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)&ch, 1, 0xFFFF); //&pUartMsgHandle

&huart2

 return ch;

}

GETCHAR_PROTOTYPE

137

{

HAL_StatusTypeDef Status = HAL_BUSY;

uint8_t Data;

while(Status != HAL_OK)

Status = HAL_UART_Receive(&pUartMsgHandle, &Data, 1, 10); //&pUartMsgHandle &huart2

return(Data);

}

#ifdef USE_FULL_ASSERT

/**

* @brief Reports the name of the source file and the source line number

* where the assert_param error has occurred.

* @param file: pointer to the source file name

* @param line: assert_param error line source number

* @retval None

*/

void assert_failed(uint8_t* file, uint32_t line)

{

 /* User can add his own implementation to report the file name and line number,

 ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

}

#endif

/**

* @}

*/

138

/**

* @}

*/

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

St7580_appli.c

/**

**

* @file st7580_appli.c

* @author CLAB

* @version 1.1.0

* @date 18-Sept-2017

* @brief user file to configure ST7580 PLC Modem.

*

@verbatim

===

==========

How to use this driver #####

===

==========

[..]

This file is generated automatically by STM32CubeMX and eventually modified

by the user

@endverbatim

**

* @attention

*

* <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2>

139

*

* Redistribution and use in source and binary forms, with or without modification,

* are permitted provided that the following conditions are met:

* 1. Redistributions of source code must retain the above copyright notice,

* this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright notice,

* this list of conditions and the following disclaimer in the documentation

* and/or other materials provided with the distribution.

* 3. Neither the name of STMicroelectronics nor the names of its contributors

* may be used to endorse or promote products derived from this software

* without specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS"

* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE

* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR

* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER

* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY,

* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE

* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

140

*

**

*/

/* Includes --*/

#include <string.h>

#include <stdio.h> //added due to warning

#include "cube_hal.h"

#include "st7580_appli.h"

#include "stm32_plm01a1.h"

/** @addtogroup USER

* @{

*/

/** @defgroup ST7580_APPLI

* @brief User file to configure ST7580 PLC modem.

* @{

*/

/* Private typedef ---*/

/* Private define --*/

#define TRIG_BUF_SIZE 1 //21

#define ACK_BUF_SIZE 1 //17

/* Private macro ---*/

/* Private variables ---*/

SM_State_t SM_State;

char MsgOut[100];

141

/* Private function prototypes ---*/

void AppliMasterBoard(int data);

void AppliSlaveBoard(void);

/* Private functions ---*/

/** @defgroup ST7580_APPLI_Private_Functions

* @{

*/

/**

* @brief This function initializes the point-to-point communication

* @param None

* @retval None

*/

void P2P_Init(void){

 /* Modem MIBs configuration */

 BSP_PLM_Mib_Write(MIB_MODEM_CONF, modem_config, sizeof(modem_config));

 HAL_Delay(500);

 /* Phy MIBs configuration */

 BSP_PLM_Mib_Write(MIB_PHY_CONF, phy_config, sizeof(phy_config));

 HAL_Delay(500);

 //Remove button press to select master/slave status

// /* Check User Button state */

// if (BSP_PB_GetState(BUTTON_KEY) == GPIO_PIN_SET)

// {

// /* User Button released */

142

// SM_State = SM_STATE_SLAVE;

// }

// else

// {

// /* User Button pressed */

// SM_State = SM_STATE_MASTER;

// }

//

// return;

}

/**

* @brief ST7580 P2P Process State machine

* @retval None.

*/

//not using this

//void P2P_Process() {

// switch(SM_State){

// case SM_STATE_MASTER:

// AppliMasterBoard();

// break;

//

// case SM_STATE_SLAVE:

// AppliSlaveBoard();

// break;

// }

// return;

//}

/**

143

* @brief This function handles the point-to-point Master Board Communication

* @retval None

*/

void AppliMasterBoard(int data){

 uint8_t ret;

 uint8_t cRxLen;

 ST7580Frame* RxFrame;

 uint8_t lastIDRcv = 0;

 int it = 0;

 uint8_t aTrsBuffer[TRIG_BUF_SIZE] = {0}; //{'T','R','I','G','G','E','R',' ',\

 //

 'M','E','S','S','A','G','E',' ',\

 //

 'I','D',':',' ','@'};

 uint8_t aRcvBuffer[ACK_BUF_SIZE];

 //sprintf(MsgOut, "P2P Communication Test - Master Board Side\n\r\n\r");

 //HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut), 500);

 //while(1) //removed while

 //{ //removed while remove this too

 /* Initialize Trigger Msg */

 aTrsBuffer[TRIG_BUF_SIZE-1] = data;

// no while = no purpose for this

// if (aTrsBuffer[TRIG_BUF_SIZE-1] > 255) //from 'Z' to 255

// {

// aTrsBuffer[TRIG_BUF_SIZE-1] = 0; //from 'A' to 0

// }

144

 //not meaningful for debugging w/o while loop

// sprintf(MsgOut, "Iteration %d\n\r", ++it);

// HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut), 500);

 /* Send Trigger Msg send */

 ret = BSP_PLM_Send_Data(DATA_OPT, aTrsBuffer, TRIG_BUF_SIZE,

NULL);

 /* Check TRIGGER Msg send result */

 if(ret)

 {

 /* Transmission Error */

 sprintf(MsgOut, "Trigger Transmission Err\n\r");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

 //continue; //removed while remove this too

 }

 //sprintf(MsgOut, "Trigger Msg Sent, ID: %d\n\r",

aTrsBuffer[TRIG_BUF_SIZE-1]); //change %c to %d

 //HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

 //sprintf(MsgOut, "PAYLOAD: ");

 //HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

 //HAL_UART_Transmit(&pUartMsgHandle, aTrsBuffer, TRIG_BUF_SIZE,

500);

 //sprintf(MsgOut, "\n\r");

 //HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

145

 /* Wait ACK Msg sent back from slave */

 RxFrame=NULL;

 for (int j=0;((j<10) && (RxFrame==NULL));j++)

 {

 RxFrame = BSP_PLM_Receive_Frame();

 if (RxFrame != NULL)

 {

 /* Check if a duplicated indication frame with STX = 03 is

received */

 if ((RxFrame->stx == ST7580_STX_03)&&(lastIDRcv ==

RxFrame->data[3+ACK_BUF_SIZE]))

 {

 RxFrame = NULL;

 }

 else

 {

 lastIDRcv = RxFrame->data[3+ACK_BUF_SIZE];

 break;

 }

 }

 HAL_Delay(200); //initial 200

 }

 /* Check received ACK Msg */

 //hopefully no timeout

// if (RxFrame == NULL)

// {

// /* No ACK Msg received until timeout */

// sprintf(MsgOut, "ACK Timeout - No ACK Received\n\r");

// HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

146

// //continue; //removed while remove this too

// }

 cRxLen = (RxFrame->length - 4);

 //sprintf(MsgOut, "ACK Msg Received\n\r");

 //HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

 //ignoring for now

 if (cRxLen != ACK_BUF_SIZE){

 /* ACK len mismatch */

 sprintf(MsgOut, "Wrong ACK Length\n\r");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

 //continue; //removed while remove this too

 }

 /* Copy payload from RX frame */

 memcpy(aRcvBuffer,&(RxFrame->data[4]),cRxLen);

 /* Check ID to verify if the right ACK has been received */

// if (aRcvBuffer[ACK_BUF_SIZE-1] == aTrsBuffer[TRIG_BUF_SIZE-1])

// {

 //sprintf(MsgOut, "ACK Msg Received, ID: %d\n\r",

aRcvBuffer[ACK_BUF_SIZE-1]); //change %c to %d

 //HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

// }

// else

// {

147

// sprintf(MsgOut, "WRONG ACK Msg Received, ID: %d\n\r",

aRcvBuffer[ACK_BUF_SIZE-1]); //change %c to %d

// HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

// }

 //sprintf(MsgOut, "PAYLOAD: ");

 //HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

 //HAL_UART_Transmit(&pUartMsgHandle, aRcvBuffer, ACK_BUF_SIZE,

500);

 //sprintf(MsgOut, "\n\r\n\r");

 //HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

 HAL_Delay(1000);

 //} //removed while remove this too

}

/**

* @brief This function handles the point-to-point Slave Board Communication

* @retval None

*/

void AppliSlaveBoard(){

 ST7580Frame* RxFrame;

 uint8_t cRxLen;

 int ret;

 uint8_t lastIDRcv = 0;

 int it =0;

 uint8_t aTrsBuffer[ACK_BUF_SIZE] = {'A','C','K'}; //,' ','M','E','S','S',\

148

// 'A','G','E',' ','I','D',':',' ',\

// '@'};

 uint8_t aRcvBuffer[TRIG_BUF_SIZE];

 sprintf(MsgOut, "P2P Communication Test - Slave Board Side\n\r\n\r");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut), 500);

 while(1)

 {

 sprintf(MsgOut, "Iteration %d\n\r", ++it); //change %c to %d

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 /* Receive Trigger Msg from M board */

 RxFrame=NULL;

 do

 {

 RxFrame = BSP_PLM_Receive_Frame();

 if (RxFrame != NULL)

 {

 /* Check if a duplicated indication frame with STX = 03 is

received */

 if ((RxFrame->stx == ST7580_STX_03)&&(lastIDRcv ==

RxFrame->data[3+TRIG_BUF_SIZE]))

 {

 RxFrame = NULL;

 }

 else

149

 {

 lastIDRcv = RxFrame->data[3+TRIG_BUF_SIZE];

 break;

 }

 }

 HAL_Delay(200);

 } while(RxFrame==NULL);

 cRxLen = (RxFrame->length - 4);

 memcpy(aRcvBuffer,&(RxFrame->data[4]),cRxLen);

 sprintf(MsgOut, "Trigger Msg Received, ID: %d\n\r",

aRcvBuffer[TRIG_BUF_SIZE-1]);//change %c to %d

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 sprintf(MsgOut, "PAYLOAD: ");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 HAL_UART_Transmit(&pUartMsgHandle, aRcvBuffer, TRIG_BUF_SIZE,

500);

 sprintf(MsgOut, "\n\r");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 /* Send back ACK Msg to Master Board */

 aTrsBuffer[ACK_BUF_SIZE-1] = aRcvBuffer[TRIG_BUF_SIZE-1];

 do

 {

 ret = BSP_PLM_Send_Data(DATA_OPT, aTrsBuffer, ACK_BUF_SIZE,

NULL);

150

 } while (ret!=0);

 sprintf(MsgOut, "ACK Msg Sent, ID: %d\n\r",aTrsBuffer[ACK_BUF_SIZE-

1]);//change %c to %d

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 sprintf(MsgOut, "PAYLOAD: ");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 HAL_UART_Transmit(&pUartMsgHandle, aTrsBuffer, ACK_BUF_SIZE,

500);

 sprintf(MsgOut, "\n\r\n\r");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

}

}

/**

* @}

*/

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

SlaveBoard

Main.c

/**

**

* @file main.c

* @author CLAB

* @version 1.1.0

* @date 18-Sept-2017

* @brief Main program body

151

**

* @attention

*

* <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2>

*

* Redistribution and use in source and binary forms, with or without modification,

* are permitted provided that the following conditions are met:

* 1. Redistributions of source code must retain the above copyright notice,

* this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright notice,

* this list of conditions and the following disclaimer in the documentation

* and/or other materials provided with the distribution.

* 3. Neither the name of STMicroelectronics nor the names of its contributors

* may be used to endorse or promote products derived from this software

* without specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS"

* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE

* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR

* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER

152

* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY,

* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE

* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*

**

*/

/* Includes --*/

#include "cube_hal.h"

#include "st7580_appli.h"

// Adding from led_test code

#include <stdio.h>

/** @addtogroup USER

* @{

*/

/* Private typedef ---*/

/* Private define --*/

#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)

#define GETCHAR_PROTOTYPE int __io_getchar(void)

/* Private macro ---*/

/* Private variables ---*/

/* Private function prototypes ---*/

153

int main(void);

/* Private functions ---*/

/**

* @brief Main program.

* @param None

* @retval None

*/

int main(void)

{

 /* MCU Configuration--*/

 /* Reset of all peripherals, Initializes the Flash interface and the Systick. */

 HAL_Init();

 /* Configure the system clock */

 SystemClock_Config();

 /* Initialize ST7580 interface */

 GPIO_PLM_Configuration();

 UART_PLM_Configuration();

 /* Initialize ST7580 PLM */

 BSP_PLM_Init();

 /* Initialize Buttons */

 BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_GPIO);

 /* Debug USART config */

154

 USART_PRINT_MSG_Configuration();

 /* Initialize P2P Application */

 P2P_Init();

 // Turning off buffers so io happens immediately hopefully doesnt mess up

plm...........

 setvbuf(stdin, NULL, _IONBF, 0);

 setvbuf(stdout, NULL, _IONBF, 0);

 setvbuf(stderr, NULL, _IONBF, 0);

 while(1)

 {

 /* Data Communication */

 //P2P_Process();

 AppliSlaveBoard();

 }

}

PUTCHAR_PROTOTYPE

{

 /* Place your implementation of fputc here */

 /* e.g. write a character to the EVAL_COM1 and Loop until the end of transmission */

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)&ch, 1, 0xFFFF); //&pUartMsgHandle

&huart2

 return ch;

}

GETCHAR_PROTOTYPE

155

{

HAL_StatusTypeDef Status = HAL_BUSY;

uint8_t Data;

while(Status != HAL_OK)

Status = HAL_UART_Receive(&pUartMsgHandle, &Data, 1, 10); //&pUartMsgHandle &huart2

return(Data);

}

#ifdef USE_FULL_ASSERT

/**

* @brief Reports the name of the source file and the source line number

* where the assert_param error has occurred.

* @param file: pointer to the source file name

* @param line: assert_param error line source number

* @retval None

*/

void assert_failed(uint8_t* file, uint32_t line)

{

 /* User can add his own implementation to report the file name and line number,

 ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

}

#endif

/**

* @}

*/

156

/**

* @}

*/

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

St7580_appli.c

/**

**

* @file st7580_appli.c

* @author CLAB

* @version 1.1.0

* @date 18-Sept-2017

* @brief user file to configure ST7580 PLC Modem.

*

@verbatim

===

==========

How to use this driver #####

===

==========

[..]

This file is generated automatically by STM32CubeMX and eventually modified

by the user

@endverbatim

**

* @attention

*

* <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2>

157

*

* Redistribution and use in source and binary forms, with or without modification,

* are permitted provided that the following conditions are met:

* 1. Redistributions of source code must retain the above copyright notice,

* this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright notice,

* this list of conditions and the following disclaimer in the documentation

* and/or other materials provided with the distribution.

* 3. Neither the name of STMicroelectronics nor the names of its contributors

* may be used to endorse or promote products derived from this software

* without specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS"

* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE

* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR

* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER

* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY,

* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE

* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

158

*

**

*/

/* Includes --*/

#include <string.h>

#include <stdio.h> //added due to warning

#include "cube_hal.h"

#include "st7580_appli.h"

#include "stm32_plm01a1.h"

/** @addtogroup USER

* @{

*/

/** @defgroup ST7580_APPLI

* @brief User file to configure ST7580 PLC modem.

* @{

*/

/* Private typedef ---*/

/* Private define --*/

#define TRIG_BUF_SIZE 1 //21

#define ACK_BUF_SIZE 1 //17

/* Private macro ---*/

/* Private variables ---*/

SM_State_t SM_State;

char MsgOut[100];

159

/* Private function prototypes ---*/

void AppliMasterBoard(int data);

void AppliSlaveBoard(void);

/* Private functions ---*/

/** @defgroup ST7580_APPLI_Private_Functions

* @{

*/

/**

* @brief This function initializes the point-to-point communication

* @param None

* @retval None

*/

void P2P_Init(void){

 /* Modem MIBs configuration */

 BSP_PLM_Mib_Write(MIB_MODEM_CONF, modem_config, sizeof(modem_config));

 HAL_Delay(500);

 /* Phy MIBs configuration */

 BSP_PLM_Mib_Write(MIB_PHY_CONF, phy_config, sizeof(phy_config));

 HAL_Delay(500);

 //Remove button press to select master/slave status

// /* Check User Button state */

// if (BSP_PB_GetState(BUTTON_KEY) == GPIO_PIN_SET)

// {

// /* User Button released */

160

// SM_State = SM_STATE_SLAVE;

// }

// else

// {

// /* User Button pressed */

// SM_State = SM_STATE_MASTER;

// }

//

// return;

}

/**

* @brief ST7580 P2P Process State machine

* @retval None.

*/

//not using this

//void P2P_Process() {

// switch(SM_State){

// case SM_STATE_MASTER:

// AppliMasterBoard();

// break;

//

// case SM_STATE_SLAVE:

// AppliSlaveBoard();

// break;

// }

// return;

//}

/**

161

* @brief This function handles the point-to-point Master Board Communication

* @retval None

*/

void AppliMasterBoard(int data){

 uint8_t ret;

 uint8_t cRxLen;

 ST7580Frame* RxFrame;

 uint8_t lastIDRcv = 0;

 int it = 0;

 //make length 1

 uint8_t aTrsBuffer[TRIG_BUF_SIZE] = {0}; //{'T','R','I','G','G','E','R',' ',\

 //

 'M','E','S','S','A','G','E',' ',\

 //

 'I','D',':',' ','@'};

 uint8_t aRcvBuffer[ACK_BUF_SIZE];

 sprintf(MsgOut, "P2P Communication Test - Master Board Side\n\r\n\r");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut), 500);

 //while(1) //removed while

 //{ //removed while remove this too

 /* Initialize Trigger Msg */

 aTrsBuffer[TRIG_BUF_SIZE-1] = data;

// no while = no purpose for this

// if (aTrsBuffer[TRIG_BUF_SIZE-1] > 255) //from 'Z' to 255

// {

// aTrsBuffer[TRIG_BUF_SIZE-1] = 0; //from 'A' to 0

// }

162

 //not meaningful for debugging w/o while loop

// sprintf(MsgOut, "Iteration %d\n\r", ++it);

// HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut), 500);

 /* Send Trigger Msg send */

 ret = BSP_PLM_Send_Data(DATA_OPT, aTrsBuffer, TRIG_BUF_SIZE,

NULL);

 /* Check TRIGGER Msg send result */

 if(ret)

 {

 /* Transmission Error */

 sprintf(MsgOut, "Trigger Transmission Err\n\r");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

 //continue; //removed while remove this too

 }

 sprintf(MsgOut, "Trigger Msg Sent, ID: %d\n\r", aTrsBuffer[TRIG_BUF_SIZE-

1]); //change %c to %d

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 sprintf(MsgOut, "PAYLOAD: ");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 HAL_UART_Transmit(&pUartMsgHandle, aTrsBuffer, TRIG_BUF_SIZE,

500);

 sprintf(MsgOut, "\n\r");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

163

 /* Wait ACK Msg sent back from slave */

 RxFrame=NULL;

 for (int j=0;((j<10) && (RxFrame==NULL));j++)

 {

 RxFrame = BSP_PLM_Receive_Frame();

 if (RxFrame != NULL)

 {

 /* Check if a duplicated indication frame with STX = 03 is

received */

 if ((RxFrame->stx == ST7580_STX_03)&&(lastIDRcv ==

RxFrame->data[3+ACK_BUF_SIZE]))

 {

 RxFrame = NULL;

 }

 else

 {

 lastIDRcv = RxFrame->data[3+ACK_BUF_SIZE];

 break;

 }

 }

 HAL_Delay(200);

 }

 /* Check received ACK Msg */

 if (RxFrame == NULL)

 {

 /* No ACK Msg received until timeout */

 sprintf(MsgOut, "ACK Timeout - No ACK Received\n\r");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

 //continue; //removed while remove this too

164

 }

 cRxLen = (RxFrame->length - 4);

 sprintf(MsgOut, "ACK Msg Received\n\r");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 if (cRxLen != ACK_BUF_SIZE){

 /* ACK len mismatch */

 sprintf(MsgOut, "Wrong ACK Length\n\r");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

 //continue; //removed while remove this too

 }

 /* Copy payload from RX frame */

 memcpy(aRcvBuffer,&(RxFrame->data[4]),cRxLen);

 /* Check ID to verify if the right ACK has been received */

 if (aRcvBuffer[ACK_BUF_SIZE-1] == aTrsBuffer[TRIG_BUF_SIZE-1])

 {

 sprintf(MsgOut, "ACK Msg Received, ID: %d\n\r",

aRcvBuffer[ACK_BUF_SIZE-1]); //change %c to %d

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

 }

 else

 {

 sprintf(MsgOut, "WRONG ACK Msg Received, ID: %d\n\r",

aRcvBuffer[ACK_BUF_SIZE-1]); //change %c to %d

165

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

 }

 sprintf(MsgOut, "PAYLOAD: ");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 HAL_UART_Transmit(&pUartMsgHandle, aRcvBuffer, ACK_BUF_SIZE,

500);

 sprintf(MsgOut, "\n\r\n\r");

 HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 HAL_Delay(1000);

 //} //removed while remove this too

}

/**

* @brief This function handles the point-to-point Slave Board Communication

* @retval None

*/

void AppliSlaveBoard(){

 ST7580Frame* RxFrame;

 uint8_t cRxLen;

 int ret;

 uint8_t lastIDRcv = 0;

 int it =0;

 int c; //added

 uint8_t aTrsBuffer[ACK_BUF_SIZE] = {0}; //,' ','M','E','S','S',\

166

// 'A','G','E',' ','I','D',':',' ',\

// '@'};

 uint8_t aRcvBuffer[TRIG_BUF_SIZE];

 //test

 //sprintf(MsgOut, "P2P Communication Test - Slave Board Side\n\r\n\r");

 //HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut), 500);

 while(1)

 {

 //test

 //sprintf(MsgOut, "Iteration %d\n\r", ++it); //change %c to %d

 //HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 /* Receive Trigger Msg from M board */

 RxFrame=NULL;

 do

 {

 RxFrame = BSP_PLM_Receive_Frame();

 if (RxFrame != NULL)

 {

 /* Check if a duplicated indication frame with STX = 03 is

received */

 if ((RxFrame->stx == ST7580_STX_03)&&(lastIDRcv ==

RxFrame->data[3+TRIG_BUF_SIZE]))

 {

 RxFrame = NULL;

167

 }

 else

 {

 lastIDRcv = RxFrame->data[3+TRIG_BUF_SIZE];

 break;

 }

 }

 HAL_Delay(200);

 } while(RxFrame==NULL);

 cRxLen = (RxFrame->length - 4);

 memcpy(aRcvBuffer,&(RxFrame->data[4]),cRxLen);

// sprintf(MsgOut, "Trigger Msg Received, ID: %d\n\r",

aRcvBuffer[TRIG_BUF_SIZE-1]);//change %c to %d

// HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

// sprintf(MsgOut, "PAYLOAD: ");

// HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

// HAL_UART_Transmit(&pUartMsgHandle, aRcvBuffer, TRIG_BUF_SIZE,

500);

// sprintf(MsgOut, "\n\r");

// HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut, strlen(MsgOut),

500);

 /* Upload new data */

 //putchar(RxFrame);//if not used causes 01 output instead of 1

 //printf("Enter a value :");

 //c = getchar();

 //double inputs are because it receiving the plm data on interrupt???

168

 //printf("\nYou entered: ");

 //(c);

 //printf("\nUpdate trsbuffer ");

 //aTrsBuffer[ACK_BUF_SIZE-1] = c;

 /* Send back ACK Msg to Master Board */

 aTrsBuffer[ACK_BUF_SIZE-1] = aRcvBuffer[TRIG_BUF_SIZE-1];

 do

 {

 ret = BSP_PLM_Send_Data(DATA_OPT, aTrsBuffer, ACK_BUF_SIZE,

NULL);

 } while (ret!=0);

 //sprintf(MsgOut, "ACK Msg Sent, ID: %d\n\r",aTrsBuffer[ACK_BUF_SIZE-

1]);//change %c to %d

 //HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

 //sprintf(MsgOut, "PAYLOAD: ");

 //HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

 HAL_UART_Transmit(&pUartMsgHandle, aTrsBuffer, ACK_BUF_SIZE,

500);

 //sprintf(MsgOut, "\n\r\n\r");

 //HAL_UART_Transmit(&pUartMsgHandle, (uint8_t *)MsgOut,

strlen(MsgOut), 500);

}

}

/**

169

* @}

*/

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

