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ABSTRACT

Brown, Nathaniel H. MSABE, Purdue University, May 2020. Self-propulsion of Con-
taminated Microbubbles. Major Professor: Dr. Osvaldo H. Campanella and Dr.
Carlos M. Corvalan.

In many natural and industrial processes, bubbles are exposed to surface-active

contaminants (surfactants) that may cover the whole or part of the bubble interface.

A partial coverage of the bubble interface results in a spontaneous self-propulsion

mechanism, which is yet poorly understood. The main goal of this study is to en-

hance the understanding of the flow and interfacial mechanisms underlying the self-

propulsion of small surfactant contaminated bubbles. The focus is on characterizing

the self-propulsion regimes generated by the presence of surface-active species, and the

influence of surfactant activity and surface coverage on the active bubble motion. The

study was developed by simultaneously solving the full system of partial differential

equations governing the free-surface flow physics and the surfactant transport on the

deforming bubble interface using multi-scale numerical simulation. Results show in

microscopic detail how surface tension gradients (Marangoni stresses) induced by the

uneven interfacial coverage produce spontaneous hydrodynamics flows (Marangoni

flows) on the surrounding liquid, leading to bubble motion. Results also establish the

influence of both surfactant activity and interfacial coverage on total displacement

and average bubble velocity at the macroscale. Findings from this research improve

the fundamental understanding of the free-surface dynamics of self-propulsion and the

associated transport of surface-active species, which are critical to important natural

and technological processes, ranging from the Marangoni propulsion of microorgan-

isms to the active motion of bubbles and droplets in microfluidic devices. Overall, the

findings advance our understanding of active matter behavior; that is, the behavior of
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material systems with members able to transduce surface energy and mass transport

into active movement.
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1. INTRODUCTION

1.1 Overview

In a variety of natural and technological multi-phase systems, particles such as

drops and bubbles are exposed to surface-active contaminants (surfactants) that may

cover the whole, or part, of the particle interface. Since surfactants lower the surface

tension, a partial coverage of the particle’s interface creates an imbalance of forces

leading to a spontaneous self-propulsion mechanism, which is yet poorly understood

(Figure 1.1).

This thesis discusses, in detail, results from high-fidelity simulations to elucidate

the flow and interfacial physics underlying the self-propulsion of small contaminated

bubbles. Accurate numerical analysis incorporating all of the relevant phenomena

that influence the active motion driven by gradients of surface tension were included

to provide insight into the fundamental mechanisms of self-propulsion, and to probe

variables that are not readily accessible in experiments. Results show, in microscopic

detail, how surface tension gradients (Marangoni-stresses) induced by uneven inter-

facial coverage produce spontaneous hydrodynamic flows (Marangoni flows) on the

surrounding liquid, leading to bubble motion. Results also establish the influence

of both surfactant activity and interfacial coverage on the outer hydrodynamic flow,

total bubble displacement, and bubble velocity at the macroscale (Figure 1.2).

Self-propulsion is the main feature of active matter, therefore a better understand-

ing of the physics of self-propulsion is relevant to important natural and technological

systems able to transduce surface energy into active movement, such as swimming

microorganisms and autophoretic particles. Controlled active motion is also relevant

to the Marangoni propulsion of drops and bubbles in sensors and microfluidic de-
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vices. Moreover, better understanding of the spontaneous Marangoni flow regimes

generated by active motion may provide insight into self-organization and collective

dynamics of systems with many active members such as bacterial colonies, and the

rheology of active colloid suspensions.

1.2 Research Objective and Thesis Outline

1.2.1 Research Objective

The overall goal of this thesis is to enhance the understanding of the fundamental

flow physics and interfacial mechanisms underlying the Marangoni propulsion of small

surfactant-laden bubbles, with focus on characterizing self-propulsion regimes, and

the influence of surfactant activity and surface coverage on the active bubble motion

(Figure 1.2).

Above all, the computational model used in this thesis also drives the discovery

of previously unknown features of Marangoni propulsion that will offer opportunities

for further research on this topic.

1.2.2 Thesis Outline

To analyze the spontaneous self-propulsion mechanism, and the effect of interfa-

cial coverage and surfactant properties on the active bubble motion, a high-fidelity

computational model is developed in Chapter 2. To enhance fidelity and accuracy,

unnecessary simplifications in the computational model are avoided by simultaneously

solving the full system of partial differential equations governing the free-surface flow

physics and the surfactant transport on the deforming bubble interface.

The normal interfacial forces acting on the bubble interface are described using the

Young-Laplace pressure jump, which links the normal capillary pressure across the

interface to the shape (curvature) of the bubble. Critically, the tangential interfacial

stress condition is extended to account for the development of viscous stresses in the
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Fig. 1.1. Self-propulsion of a small surfactant-laden bubble.
The uneven distribution of surface active species at the bubble in-
terface generates surface tension gradients (blue arrows) leading to
active bubble motion in the direction of the contaminated cap (black
arrow).
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Fig. 1.2. Cross sectional velocity field induced by active bub-
ble motion. Interfacial tension gradients (Marangoni stresses) pro-
duce hydrodynamic flows in the outer liquid through viscous momen-
tum transfer, leading to bubble motion (black arrow). These direct
numerical simulations accurately display the impact interfacial surfac-
tant transport has on the external Marangoni flows associated with
active motion.
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bulk outer fluid induced by the surface tension gradients (Marangoni stresses) at the

interface.

The Navier-Stokes equations governing the outer flow and the convection-diffusion

equation governing the interfacial surfactant transport solved using the finite element

method (FEM) for discretization in space, and finite difference for discretization in

time with adaptive time step. To track the location of the deforming bubble interface,

the model uses arbitrary Lagrangian-Eulerian method.

The second part of Chapter 2 presents the simulation results for self-propulsion

of a small contaminated bubble in a highly-viscous liquid. By simultaneously solving

the full system of governing equations, the simulations enable a detailed description

of the microscopic physical mechanisms of self-propulsion. Initially, the simulations

are benchmarked against the spreading of contaminant on interfaces from theoretical

predictions from Jensen and Grotberg [1]. Then, results are used to explain in micro-

scopic detail how surface tension gradients induced by the uneven interfacial coverage

produce spontaneous hydrodynamic flows (Marangoni flows) on the surrounding bulk

liquid, leading to bubble motion (Figure 1.2).

Chapter 3 extends the results of Chapter 2 to characterize parametrically the

influence of material properties and initial conditions on Marangoni propulsion. The

chapter provides a thorough quantitative study of the influence of the surfactant

properties, the influence of neighboring solid boundaries, and the degree of surface

contamination on both the microscopic mechanisms of self-propulsion and the overall

bubble displacement and velocity at the macroscale.

Lastly, Chapter 4 offers concluding remarks along with recommendations for sub-

sequent work while emphasizing the importance of examining experimentally previ-

ously unobserved features uncovered by the simulations.
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1.3 Background

When a contaminant comes into contact with a bubble interface Marangoni flows

are generated, created by uneven surface tension distributions, resulting in bubble

propulsion. Marangoni-induced motion is a significant mechanism of motion seen in

many natural and industrial processes.

The importance of Marangoni flows, which are integral to Marangoni-driven propul-

sion, was first studied by Carlo Marangoni who investigated these surface tension

gradient induced flows for his dissertation. These surface tension differences can be

created by a variety of means including differences in electric potentials, chemical con-

centrations, and temperatures at an interface. The Marangoni flows that propel small

organisms and particles created by surfactants (surface-active agents) ( [2], [3], [4]),

has been thoroughly investigated for many decades because of how important and

common this mechanism is in the environment, biomedical, and industrial food and

pharmaceutical processes.

In the natural environment, the propulsion of some microorganisms depend on

Marangoni flows ( [5], [6]). Often, bacteria move by generating surfactant molecules

on their interface to lower a localized surface tension on a bio-film [5]. This creates

a gradient in surface tension, therefore inducing a Marangoni flow propelling the

bacteria [5]. Marangoni driven propulsion is also seen in rove beetles where they

release a surfactant to propel towards land if the insects were to accidentally fall into

a body of water [7]. This Marangoni movement is significant for the existence of many

natural organisms, in addition to aiding the natural environment. In an attempt of

developing an environmental cleanup strategy for oil spills, multiple studies have used

the mechanics of Marangoni propulsion of micro-capsules in the direction of surface

active contaminant (oils) to assist in the cleanup and removal of oil from contaminated

environments ( [8], [9]). Self-propulsion due to interfacial surface tension gradients

have previously been investigated in droplets where the surface tension gradients were
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shown to generate internal spontaneous Marangoni flows along with external flows

propelling the droplet in a viscous fluid [10].

Biomedical processes also utilize these surfactant induced Marangoni flows. An

instance of the importance of self-driven propulsion in a biomedical process includes

the movement of particles inside the body, driven by a diffusing solute on its interface,

creating a surface tension gradient allowing for directed drug delivery ( [11], [12],

[13]). These Marangoni flows on microbubbles involved in gas embolisms have also

previously been investigated in order to help develop therapeutic measures to reduce

the possibility of an embolism ( [14], [15]). These investigations of the Marangoni

effect on microbubbles involved in gas embolisms are performed in close proximity to

a wall, as discussed in Chapter 3, replicating the movement of the particle inside a

vein or artery.

Active microbubbles play an important role in the cleaning of industrial and food

processing equipment. Previous investigations show microbubble infused water is su-

perior compared to traditional cleaning methods [16]. Physicochemical properties of

bubbles of micro-scale or smaller posses a cleaning ability that is absent in bubbles

of the milli-scale and larger ( [17], [18], [19], [20]). The properties that microbub-

bles incorporate are smaller buoyant forces allowing for them to be submersed longer

and the large microbubble surface to volume ratio provides a surface area capable

of scavenging insoluble organic molecules in the water. Previous work [21] shows

that surfactants play a large factor in altering the dynamics of bubble interactions.

Microbubbles attach to grease and lipid molecules in cleaning processes [22]. Under-

standing the influence that surface active species have on the bubble movement is

of considerable importance. Microbubbles can assist in providing answers to many

industrial cleaning challenges with little environmental impact due to the simplicity

of their production, the low material cost, and the possibility of cleaning without

the addition of detergents [23]. The USDA Agriculture and Food Research Initia-

tive for Food Manufacturing Technology supports the importance that this relatively

new microbubble technology has on advancing food manufacturing technologies, and
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understanding the mechanisms of motion involved with this technology will be im-

perative. Because of these needs, the USDA has funded part of this study.

Due to the importance of understanding the practical and fundamental signifi-

cance of Marangoni flows, this work utilizes numerical simulations to advance the

knowledge of previously unknown mechanisms of Marangoni flows while considering

the interactions of interfacial dynamics and nearby tubular boundaries on the system.
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2. SELF-PROPULSION OF CONTAMINATED

MICROBUBBLES IN AN OUTER VISCOUS FLUID

In this chapter, the self-propulsion of a surfactant-laden bubble in a viscous liquid

is studied using high-fidelity numerical simulations. Results from the simulations are

used to characterize, in microscopic detail, how interfacial gradients induced by un-

even surfactant coverage produce spontaneous Marangoni flows on the surrounding

liquid, leading to active bubble motion. A previously unobserved transition in the

macroscopic flow regime is also analyzed. Findings from this research improve the

fundamental understanding of the free-surface dynamics of self-propulsion and the

associated transport of surface-active species, which are critical to important natural

and technological processes, ranging from the Marangoni propulsion of microorgan-

isms to the active motion of bubbles and droplets in microfluidic devices.

2.1 Introduction

Surfactant-driven propulsion created by Marangoni flows are caused by an asym-

metric distribution of surface-active contaminants (surfactants) at an interface such

as the bubble surface ( [2], [3], [4]). These interfacial concentration gradients are

what creates Marangoni-driven flows in the surrounding liquid, generating motion.

This chapter uses direct numerical simulations to enhance the understanding of the

dynamics of Marangoni-induced propulsion of microbubbles in a highly-viscous outer-

fluid.

For several decades, Marangoni flows in a viscous fluid have been investigated,

theoretically and experimentally, for both its fluid mechanical interest and practical

applications ( [2], [3], [4], [24]). These studies have investigated the hydrodynamic

influence of Marangoni flows created by surface-active substances and inhomogenous
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temperature distributions on bubbles, droplets, and surface tension generated interfa-

cial waves occurring at phase boundaries between liquid-gas and liquid-liquid phases.

Characterizing the dynamics of Marangoni-induced propulsion in a viscous outer-fluid

is critical to understand, predict, and ultimately finely tune microbubble cleaning pro-

cesses ( [22], [25]). Understanding how microbubbles interact with contaminants at

a micro scale allows for a more efficient and directed cleaning effort. Characterizing

these dynamics are also pertinent in regulating biomedical tasks such as targeted drug

delivery using small particles ( [11], [12], [13]) and surfactant assisted propulsion of

microorganisms ( [5], [6]).

The following section describes how simulations are used to identify, in micro-

scopic detail, how gradients in surface tension induced by irregular surfactant cov-

erage produce Marangoni flows on the surrounding viscous fluid. This is completed

by simultaneously solving the convection-diffusion equation for surfactant transport

and the full Navier-Stokes system. This model allowed for an exhaustive examination

of the micro-scale mechanisms of surfactant transport on the bubble interface. It is

also made possible to investigate the free-surface flows generated by the Marangoni

stresses induced by surface tension gradient on a bubble interface. The system is

considered highly viscous (Re� 1) due to the small bubble radius being the charac-

teristic length-scale for the model resulting in a small Reynolds value.

The model system is described in Section 2.2 and introduces the equations govern-

ing the fluid mechanics of Marangoni flows. Section 2.3 first validates the simulation

results against previous theoretical work for Marangoni flows in thin viscous films.

Then, results from the simulations are used to explain in microscopic detail how sur-

face tension gradients induced by uneven interfacial coverages produce spontaneous

hydrodynamic flows on the surrounding bulk liquid. These resulting flows in bulk fluid

lead to bubble motion. These results are then extended to the study of Marangoni

propulsion of contaminated bubbles.
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2.2 System Description and Governing Equations

Here, an accurate model (Sections 2.2.1 and 2.2.2) and high-fidelity simulations

(Section 2.2.3) incorporating all of the relevant phenomena that influence the active

motion of microbubbles are developed to help provide insight into the fundamental

mechanisms of self-propulsion and probe variables that are not readily accessible in

experiments.

2.2.1 The Fluid Mechanics of Marangoni Propulsion

As a model system, the self-propulsion of a bubble of small radius R̂ surrounded by

a viscous liquid of density ρ̂ and viscosity µ is considered. The surface of the bubble

is partially covered with an insoluble surfactant as sketched in Figure 2.1. This

configuration is common, for example when a small contaminated bubble coalesces

with a larger clean bubble resulting in a bubble with a small surfactant patch, as

seen in Figure 2.2, or when a small bubble approaches a contaminated surface. The

initially surfactant-laden region subtends a solid angle ω of contaminated spherical

interface. This solid-angle ω of initial contaminated interface subtends a fraction ε

ε =
ω

4π
∗ 100% (2.1)

representing the percentage of contaminated spherical interface based off the solid-

angle of contamination (ω) normalized by the solid angle of the entire sphere (4π).

Thus, a surfactant coverage ε > 50% describes a bubble with surfactant contaminat-

ing more than half the spherical interface in relation to the clean interface. Conversely,

ε < 50% describes a comparatively smaller region of contamination where less than

half of the spherical interface is contaminated in relation to the clean bubble interface.

The surfactant-laden area has an initial concentration of surfactant γ̂0. The initial

location of the surfactant front along the normalized arc-length s of the bubble is

s = α as shown by Figure 2.1.
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Due to asymmetric surfactant distribution, the bubble free-surface experiences

differences in surface tension. These gradients generate flow in the outer-fluid causing

bubble motion as shown in Figure 2.3.

Since the system is considered axisymmetric, it is described using a cylindrical

coordinate system (z, r) as shown in Figure 2.1. The dimensional velocity compo-

nents, where a hat (̂ ) specifies dimensional variables, in ẑ and r̂ directions are û and

v̂ respectively.

The system and results are described in dimensionless forms in the thesis. The

system is cast dimensionless using capillary velocity V = σ̂0/µ as characteristic ve-

locity scale, initial bubble radius R̂ as characteristic length scale, and µV/R̂ as the

stress scale, where σ̂0 is the surface tension that corresponds to γ̂0. Accordingly, the

characteristic time scale is τ = R̂µ/σ̂0. The dimensionless concentration of surfactant

γ is measured in units of initial dimensional concentration γ̂0, and the corresponding

dimensionless surface tension σ is measured in units of the initial dimensional surface

tension σ̂0. The relationship between the dimensional variables and dimensionless

variables is given as:

r =
r̂

R̂
, z =

ẑ

R̂
, σ =

σ̂

σ̂0
, γ =

γ̂

γ̂0
, (2.2)

t =
σ̂0

R̂µ
t̂, (u, v) =

µ

σ̂0
(û, v̂), p =

R̂

σ̂0
p̂ (2.3)

The evolution of the velocity field v and pressure p in the outer-liquid is governed

by the axisymmetric dimensionless continuity equation,

∇ · v = 0, (2.4)

and the conservation of momentum,

Re

(
∂v

∂t
+ v · ∇v

)
= ∇ ·T, (2.5)

where T is the viscous stress tensor given by

T = −pI + (∇v +∇vT ). (2.6)
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Fig. 2.1. Schematic of active bubble with surfactant patch. A
bubble with a clean interface (blue) and a surfactant coated patch (or-
ange). The radius of the bubble is R. The initial surfactant coverage
extends across the bubble normalized arc-length s until s = α with
the initial surfactant concentration being γ0. The initial solid-angle
of contaminated bubble interface is ω. The z-axis is shown by the
horizontal black arrow.
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Since the choice of characteristic length scale and characteristic velocity scale are R̂

and σ̂0/µ respectively, the Reynolds number in Equation (2.5) is

Re =
ρσ̂0R̂

µ2
, (2.7)

which measures the relative significance of the inertial and viscous forces. Because

of the small size of the bubble, this thesis focuses on the limit of negligible inertia

Re� 1. This is due to the small size of the bubble radius R̂� 1.

At the bubble interface, the traction boundary condition is applied [26]

2Hσn +∇sσ = n ·T, (2.8)

where n is the unit vector normal to the interface and 2H is the mean interface

curvature 2H = −∇s· n. The traction boundary condition includes both normal

capillary stresses 2Hσn and tangential (Marangoni) stresses ∇sσ induced by surface

tension gradient due to the presence of surfactant.

At the bubble interface the kinematic boundary condition is also imposed assuring

that there is no mass transfer across the gas-liquid interface

n · (v− vs) = 0, (2.9)

where vs is the velocity of the free surface. At the solid boundary of the tube, the

radial limit of the model, r = Rt, where Rt = 20, the no-slip and no-penetration

boundary conditions are applied:

u(z, Rt) = 0, v(z,Rt) = 0. (2.10)

Since the system is considered axisymmetric where the symmetric boundary con-

dition is applied until the end of the tube at z = ±20:

v(z, 0) = 0,
dv

dr
(z, 0) = 0. (2.11)

The simulations start with an outer-fluid considered undisturbed. Thus, at t = 0, the

initial conditions are:

u(z, r) = 0, v(z, r) = 0, R(z, r)±
√
r2 + z2 = 1. (2.12)
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2.2.2 Surfactant Transport and Marangoni Stress

The transport of surfactant on the surface of the bubble is described by the full

convection-diffusion equation ( [27], [28], [29]),

(
∂γ

∂t
)s + γ(vs · n)(∇s · n) +∇s · (γvs · t)t− Pe−1∇2

sγ = 0, (2.13)

which is solved simultaneously with the Navier-Stokes system of equations, where

t is the unit vector tangent to the interface and ∇s = (I − nn) · ∇ is the surface

gradient operator. The second term of Equation (2.13) describes changes in surfactant

concentration due to changes in local surface area. The third term describes changes

in surfactant concentration due to convection, and the fourth term describes changes

in surfactant concentration due to diffusion. In the diffusion term, the Peclet number

is given as:

Pe = (σ̂0R̂/µD), (2.14)

where D is the surfactant diffusion coefficient. For the typical values of the physico-

chemical parameters, the diffusive timescale is far larger than the visco-capillary

timescale, even when the size of the bubble can be as small as tens of microns.

In the simulations presented in this chapter, the order of magnitude for the Peclet

number is set Pe = O(100) calculated by using typical D = O(10−9) and bubble

radius R̂ = O(10−5).

The surfactant transport is strongly coupled with the free-surface hydrodynamics

since both terms on the left side of Equation (2.8) depend on the surfactant concen-

tration distribution γ(s, t) through surface tension σ(s, t). Here, a linear equation

of state is used to represent the relationship between surfactant concentration γ and

surface tension σ ( [30], [31], [32]):

σ = 1−Ma(γ − 1), (2.15)
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where Ma is the Marangoni number, which characterizes the surfactant strength.

Larger Marangoni numbers create greater surface tension gradients and consequently

higher Marangoni stress. The Marangoni number is given as:

Ma =
dσ̂

dγ̂

γ̂0
σ̂0
. (2.16)

As stated in the previous section, simulations start with a bubble having an initial

dimensionless radius of R = 1. The initial deposition of the surfactant on the bubble

interface extended across the normalized arc-length of the bubble s until s = α, with

α = 0.2, as seen in Figure 2.1.

γ(s, t = 0) =

 1 s ≤ α

0 s > α
(2.17)

2.2.3 Direct Numerical Simulation

This section presents the numerical methods used to solve the theoretical model

stated in the previous two sections. The non-linear system of partial differential

equations (Equations (2.4), (2.5), and (2.13)) describing the free-surface dynamics of

Marangoni flows induced by surfactant is solved based on a finite element algorithm.

The algorithm used in this Chapter is also applied to the simulations in Chapter 3.

The complexity of the numerical algorithm is considerable since the problem of

surfactant-induced Marangoni flows is highly nonlinear and strongly coupled. The

transport of surfactant is coupled with the bulk liquid flow. Furthermore, the gradi-

ent of the surfactant concentration over the bubble surface determines the Marangoni

stress, which drives the Marangoni flow. This flow determines the surfactant con-

centration distribution on the bubble interface. This leads to a strongly coupled

free-surface problem.

The full set of equations including the Navier-Stokes, continuity, kinematic, and

convection-diffusion equation along with their boundary conditions have to be solved

in a domain (Ω) that is unknown a priori. For that purpose, a numerical scheme based

on the Finite Element Method (FEM) [33], combined with a mapped mesh technique
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[34], which is implemented by the commercial code Comsol Multiphysics [35] is used.

The Comsol algorithm was extended to include the surfactant convection-diffusion

equation (Equation (2.13)) discussed in previous sections and is used throughout the

thesis.

In our numerical procedure, the elements of the mesh and the associated points of

the grid have a fixed configuration in a reference domain Ω0. Each point (x0 = (r0, z0))

in the reference domain (Ω0) is mapped to each point (x = (r, z)) in the physical

domain of the problem, Ω, by means of a one-to-one mapping. Therefore, there exists

an inverse mapping, that in our case obeys the equation set
∂2r0
∂r2

+
∂2r0
∂z2

= 0,

∂2z0
∂r2

+
∂2z0
∂z2

= 0,

(2.18)

which is usually know as the Winslow’s Smoothing Method [36]. The boundary

conditions for Equation (2.18) are (a) r0 = Rt with Rt = 20 and ∂z0/∂r = 0 at the

surface of the tube, (b) r0 = 0 and ∂z0/∂r = 0 at symmetry axis, (c) z0 = ±Rt and

∂r0/∂z = 0 at both ends of the tube, and (d) n ·∇x0 = λn at the free surface, λ being

an additional variable. The size of the axi-symmetric domain is sufficiently large not

to affect the results extending 20 radius away in each direction.

Our numerical scheme implements the classical Galerkin/FEM weighted residuals

formulation to solve simultaneously the Navier-Stokes, continuity, kinematic, conser-

vation of surfactant, and Equation (2.18) along with their boundary conditions. La-

grange elements were employed with piecewise-quadratic, continuous approximations

for all variables except pressure, using a piecewise-linear, continuous approximation.

The mesh used in this chapter consists of 19,600 triangular elements; 314 of them

are located along the free surface. This spatial discretization procedure results in a

system of non-linear algebraic equations that was solved by Newton iterations. The

linear solver for this iteration loop was MUMPS [37]. The number of degrees of free-

dom solved for is 170300 in the investigation completed in this chapter. The number

of triangular elements and degrees of freedom solved for is dependent on the geometry
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of the system which is altered in Chapter 3 when investigating the influence of the

tubular boundary.

2.3 Spreading of a Surfactant on a Plane Gas-liquid Interface

In this section, simulations of the free-surface dynamics of viscous Marangoni

flows is illustrated for the case of thin films, and compared against previous results

from the literature. This is completed by benchmarking theoretical predictions from

Jensen and Grotberg [1] against computations completed by the model described in

Section 2.2 with the geometry adapted spreading of a circular surfactant patch on

a thin film. The modified model investigates a spreading surfactant monolayer on a

flat air-liquid interface under viscous conditions. Results show that for thin viscous

films, the theory agrees with the simulations.

The system for the validation is based off cylindrical coordinates of (r, z) with

the gas-liquid interface height h being a function of radial distance r, and time t.

The characteristic length in the axial direction is the interface thickness. Jensen and

Grotberg’s theoretical equation, that takes into account the balance of Marangoni

and viscous stresses, can anticipate the location of the circular surfactant front rS as

a function of the initial radius of the surfactant patch R̃P (made dimensionless with

the thickness of the fluid layer), Marangoni number Ma, and time t in the lubrication

limit [1]. This scaling theory from Jensen and Grotberg [1] was created using the

lubrication approximation with the extra assumptions of no capillary or gravitational

forces, and a thin (R̃P � h) and viscous (Re � 1) liquid film follows the similarity

solution

h =

(
r

(16R̃P
2
Ma)1/4t1/4

)2

(2.19)

at later times.

A qualitative scaling discussion is presented below in order to justify the results.

The Marangoni stress ∇sσ driving the Marangoni flow, is approximated as

∇sσ ≈ dσ/dr (2.20)
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This is because of the small curvature of the liquid interface in the lubrication ap-

proximation. A linear equation of state, σ = 1−Ma(γ−1) (Equation (2.15)), relates

the local surfactant concentration γ to the surface tension σ. The location on the

radius of the surfactant patch is rS and the location on the radius of the liquid wave

peak (maximum height) is rL. Consequently, the Marangoni stress can be written as

∇sσ ≈ −Madγ/dr (2.21)

where the concentration of surfactant scales as γ ∼M/r2s ∼ πR̃P
2
r−2s when following

the investigation by Jensen [38] and defining the total mass of surfactant as M ,

producing

∇sσ ∼MaπR̃P
2
r−3s . (2.22)

The Marangoni stress is balanced by the viscous stress approximated as dV/dz

over the viscous interface, where the radial velocity scale V is given by the surfactant

front average velocity V ∼ rs/t. By reconstructing the equations, viscous stresses can

be estimated by

dV/dz ∼ rs/t. (2.23)

Finally, using the stress balance over the radius interface

dσ/dr ∼ dV/dz (2.24)

yields the scaling for the radius of the surfactant front

rs ∼ (πR̃P
2
Mat)1/4. (2.25)

The viscous and Marangoni stress (Equation (2.24)) balances were combined by

Jensen and Grotberg [1] with the added assumption that the leading edge speed of

the surfactant-laden interface rS equals the speed of the wave generated at the leading

edge rL. The prefactor to the (2.25), derived using similarity analysis, was found to

be

rs = (16MaR̃P
2
t)1/4. (2.26)
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Figure 2.4 displays how the simulated results for the radius of the surfactant patch

rS and the radius of the liquid wave peak rL closely follows the scaling described in

Equation 2.26 for viscous interfaces, primarily at later times t > 103.

In this section results from the simulation were shown to follow the scaling law

predictions discussed in literature related to viscous Marangoni flows. The strength

of the simulated results were shown by benchmarking this modified simulation with

Jensen and Grotberg’s theoretical scaling law.
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2.4 Self-propulsion of Contaminated Microbubbles: Interfacial Mecha-

nisms and Flow Regimes

2.4.1 Active Motion

This subsection discusses the overall motion of a small contaminated bubble during

Marangoni-induced propulsion. This is done by investigating the displacement and

velocity of the bubble interface associated with the propulsion and deformation of the

bubble for the duration of the active motion.

As illustrated in Figure 2.3, surface-tension gradients induced by the presence of

surfactant produce flow in the outer fluid driving the motion of the bubble. To begin

discussing this motion, a small bubble is considered with approximately 1/10 of its

surface (ε = 9.6%) uniformly covered with a moderate surfactant (Ma = 2) leading

to self-propulsion in the axial direction. This thesis focuses on the limit of negligible

inertia with Re = 10−4 � 1.

This transient motion is examined by following the speed vM of the bubble cen-

ter of mass over several decades in time in Figure 2.5. Initially, the surface-tension

gradients are strong, and the speed of the bubble grows rapidly. Starting from rest,

the speed rapidly increases to vM ≈ O(10−1) at early times and then remains approx-

imately constant. The vM speed increases moderately at t ≈ 0.3, and then decays

with time as the surface-tension gradients vanish.

The corresponding displacement d of the bubble center of mass zM is shown in

Figure 2.6. Bubble displacement becomes detectable at early times t ≈ 10−2 and

increases steadily for approximately three decades in time. When the bubble returns

to rest at t ≈ 50, the total displacement is of the order of the bubble size.

It is also observed that because of the asymmetric surfactant distribution the front

F and back B of the bubble, shown in Figure 2.7, move at different speeds causing

the interface to deform. The leading edge of the bubble has a larger initial velocity

vF (solid red line) shown by Figure 2.8. At time t ≈ 10−2 the leading edge of the

bubble begins to slow down and the back end velocity vB (dashed red line) slightly
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increases at t ≈ 1. Following t ≈ 1, the back end velocity vB began decreasing to

follow the same slope as vF at t ≈ 5 where both ends shared identical speeds until the

the end of the bubble movement. In this case the bubble front moves comparatively

faster at early times resulting in the bubble elongating in the direction of the motion.

Figure 2.9 shows the displacement of the front dF and back dB ends of the bubble

with elongation becoming noticeable at t ≈ 10−2 with the front end displacement dF

(solid black line) becoming larger than the back end displacement dB (dashed black

line) until t ≈ 5. After t ≈ 5 the bubble regains its circular shape and the paths that

dF and dB follow become nearly identical for the remainder of the bubble motion.

This elongation is visualized in Figures 2.10 and 2.11 where the initial shape of the

bubble (dashed black line) is compared to the bubble shape at the time of maximum

interfacial deformation t ≈ 0.6. Due to the elongation, the bubble attains a flattening

f = 1 − (b/a)2 ≈ 0.45 at t ≈ 0.6 as shown in Figure 2.12. Here, a is the maximum

bubble size in the axial direction and b is the maximum size in the radial direction.

The velocity magnitude field shown in Figure 2.13 of the bubble at t ≈ 1.6 depicts

the movement of the back end in the direction of the elongated front end.

The results in this section explained the overall movement of the active bubble in-

terface for the duration of the active swimming. Here, the deformation, displacement,

and speed of the bubble interface movement along the axis of propulsion (z-axis) was

explored in depth.

2.4.2 Interfacial Mechanisms

In this subsection the mechanisms associated with the Marangoni-induced propul-

sion on the bubble interface are investigated. The interfacial properties inspected in-

clude the tangential velocity, normal velocity, and the surfactant concentration across

the interface over the duration of this bubble active movement.

Figure 2.14 shows the variation of the interfacial concentration of surfactant γ as

a function of the normalized arc-length s along the surface of the bubble (see Figure
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Fig. 2.7. Sketch displaying directional nomenclature for the
active bubble. The plot shows the clean (blue) back end B and
contaminated (yellow) ε = 9.6% front end F of the bubble on the
positive side of the z-axis.
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2.1). Starting from the normalized initial value γ = 1, the surfactant concentration

at the front of the bubble (s = 0) decreases monotonically with time, and eventually

attains the value corresponding to the theoretical equilibrium concentration γ = 0.096

shown by the dashed black line. Figure 2.15 represents the migration of surfactant

(red) across the interface of the bubble as it coats the clean (blue) surface at different

times from t ≈ 0.3 to t ≈ 11.

The presence of the surfactant lowers the surface tension, creating an imbalance of

stresses on the bubble interface that leads to interfacial motion. Figure 2.16 shows the

tangential velocity of the interface vt induced by the surfactant gradients (Marangoni

stresses). The results show that the maximum interfacial velocity is large at early

times when the interfacial gradients are strong and then decrease with time as the

interfacial surfactant gradients weaken. The velocity generated by the interfacial

gradients drags the surfactant causing the surfactant to spread toward the back of

the bubble.

As surfactant migrates across the bubble surface Marangoni stresses are generated.

By focusing on the tangential velocity vt (solid blue line) and surfactant concentration

γ (solid red line) values across the interface at a single time (t = 0.3) in Figure 2.17, it

is seen that the peak vt occurs at the location on the bubble surface with the strongest

surfactant gradient.

The impact of a large surface tension gradient is shown by the larger peaks in

tangential vt and normal vn velocities (Figures 2.16 and 2.18) across the bubble nor-

malized arc-length s at earlier times. These large velocities on the bubble interface

resulted in the deformation and elongation of the bubble. As the magnitude of the

concentration γ front on the bubble interface begins to diminish at later times (Figure

2.14) the corresponding tangential vt and normal vn velocities (Figures 2.16 and 2.18)

on the bubble interface are also shown to diminish with the peaks becoming smaller as

the bubble finishes its movement with the concentration reaching equilibrium across

the interface.
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Mechanisms associated with the active bubble movement on the bubble interface

were discussed in this section. Large tangential and normal velocities on the bubble

normalized arc-length were seen at the location of the surfactant front. This surfactant

front is the origin of Marangoni stresses causing the bubble motion.

2.4.3 Outer Flow Regime

The presence of surfactant gradients also influences the bulk hydrodynamics by

the coupling of the interfacial motion with the bulk liquid flow through momentum

transfer. Figure 2.19 shows how the motion of the concentration across the interface

is linked to the bulk dynamics of the outer-fluid. During early stages of the process,

when the gradients of concentration, and therefore Marangoni stresses, are compara-

tively large at s ≈ 0.2 the outer-fluid is set into motion towards the rear part of the

bubble. This is seen clearly in Figure 2.20 (a) and (b) by following the arrow direc-

tion. At these early times, fluid is being pulled from in front of the bubble, around

the bubble interface and then inwards towards the rear end of the bubble.

The full picture, in general, shows fluid being pulled inward from in front of and

behind the bubble on the axis of propulsion (z-axis) at early times (Figure 2.20 (a)

and (b)). However, at t ≈ 3 (Figure 2.20 (c)) the bubble experiences a transition

from the hydrodynamics seen in (a) and (b), to the fluid being pushed outward from

in front of the bubble and pulled inward at the back end of the bubble on the axis of

propulsion.

After the hydrodynamic transition, shown in Figure 2.20 (c), the bubble enters

into its final hydrodynamic state and remains in this state until the bubble motion

is completed. Figure 2.20 (d) at t ≈ 6 shows this final hydrodynamic state with

fluid being pushed from in front of the bubble as well as from behind the on the axis

of propulsion. This final hydrodynamic state of the external fluid (Figure 2.20 (d))

directly contrasts the initial hydrodynamic state (Figure 2.20 (a) and (b)) where the

fluid is being pulled inward from in front of and behind of the bubble.
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This critical transition discussed above between two characteristic hydrodynamic

states of self-propulsion is to my knowledge investigated for the first time in self-

induced surface-active bubbles. The initial dynamic of this active bubble, seen in

Figure 2.20 (a) and (b), is described by the far-field hydrodynamics created by the ac-

tive motion of the bubble producing inflow of the outer liquid along the self-propulsion

axis from both in front of and behind the bubble. This hydrodynamic behavior is

characteristic of a general class of swimmers classified as ’pullers’ [39], and is illus-

trated by the black arrows on the z-axis and the red circle at the location of the

stagnation point in the snapshot at t = 0.6 in Figure 2.21(a). Examples of pullers

in nature include Chlamydomonas reinhardtii [40], P. aeruginosa [41], and amoe-

bae [42]. Pullers initially parallel to one another repel each other [43]. This pulling

dynamic is present whenever the surfactant front occurs on the front half of the bubble

s < 0.5.

The reversal of this behavior is observed at intermediate times, attributed to the

crossing of the surfactant front beyond the equator dividing the bubble into front

and back hemispheres. Figure 2.20 (c) at t ≈ 3 clearly shows the transition of the

hydrodynamic states with the concentration gradient present approximately at the

midpoint of the bubble normalized arc-length at s ≈ 0.5.

The dynamic after this transition is shown by the black arrows on the z-axis and

the red circle at the location of the stagnation point in the snapshot at t = 6 in 2.21(b).

It is observed that at this time the motion produces outflow of the liquid away from

the bubble along the self-propulsion axis (z-axis), which in previous works is described

as a ’pusher’ [39]. Examples of pushers seen in nature include flagellated cells [42],

Escherichia coli [40], and spermatozoa [44]. Contrary to pullers, parallel pushers

approach one another due to hydrodynamic attractions [43]. This phenomenon is

important to understanding swarming tendencies exhibited by many microorganisms

and bacteria [45], as well as understanding how to concentrate active swimmers for

oil recovery or microbubble cleaning.
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The results in Figure 2.21 provide evidence, for the first time, of self-induced

’puller-to-pusher’ transition in a bubble. Alternating puller-to-pusher transition was

previously only seen by microorganisms [41]. The first definition of a puller and

pusher comes from [42] where a ’puller’ is described as having the propelling edge of

the microswimmer also being the leading edge. A ’pusher’ is described as having the

propelling edge as the lagging edge on the self-propulsion axis. The results provided

in Figure 2.9 support that the bubble is a puller initially with the leading front edge

having a larger velocity vF (solid red line) at early times. At later times the lagging

back edge vB becomes larger when the bubble transitions into a pusher. Figure 2.22

(a) and (b) show at early times the bulk fluid in front of the bubble experiences

the larger velocity, and at later times for (c) and (d) the outer fluid at the back

end experiences larger velocity as the hydrodynamics transition from a puller to a

pusher. This time dependent transition in the far-field hydrodynamics may have

important consequences for interactions between swimmers or with swimmers having

neighboring boundaries ( [14], [15], [46]), originating transitory patterns of attraction

and repulsion depending on the Marangoni influence at the interface.
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2.5 Conclusion

In this chapter a computational model was developed to investigate bubble Marangoni-

driven propulsion and the mechanisms behind this motion. In-depth analysis into the

mechanics of surfactant gradient generated interfacial motion coupled with the outer-

fluid flows by momentum transfer, was made possible by high fidelity simulations.

Surfactant spreading across an interface using this simulation was validated against

theoretical results. This uneven distribution of surfactant on the bubble interface

resulted in bubble deformation at early times when large Marangoni stresses were

present. A shift in a bubble hydrodynamic condition first observed with the bubble

changing from a puller, at early times when Marangoni stresses acted on the front

half, to a pusher, at later times when Marangoni stresses were acting on the back

half of the bubble. To help understand small scale dynamics involved with bubble

cleaning and microorganism movement, it is important to know how the particles are

interacting with one another based on whether they are in the pusher or puller state.
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3. INFLUENCE OF SURFACTANT PROPERTIES AND

SOLID BOUNDARIES ON BUBBLE SELF-PROPULSION

3.1 Introduction

In this chapter, the influence of initial conditions and surfactant properties on

Marangoni propulsion are characterized parametrically. Here, a quantative study over

the influence of the degree of initial surfactant coverage ε, the influence of surfactant

strength Ma, and the influence of neighboring solid tubular boundaries Rt on the

bubble microscopic active motion mechanisms as well as the overall bubble speed and

displacement is conducted. Understanding the impact of these parameters will help

understand the mechanisms of microbubble propulsion. Uncovering the affect that

these parameters have on bubble self-propulsion macroscopic flow regime and the

correlating transport of surfactant on the bubble free-surface is essential in further

understanding the properties of bubble active motion.

3.2 Influence of Initial Surfactant Coverage ε on Bubble Propulsion

Here the influence of surfactant coverage on a self-propelled bubble moving in a

viscous fluid is described. First, an initial coverage of ε = 90.4%, α = 0.8 (seen in

Figure 3.1(a)) is examined. This is antipodal to the coverage discussed in Chapter

2 of ε = 9.6%, α = 0.2 (seen in Figure 3.1(b)). The initial surfactant coverage in

Figure 3.1(a) is equivalent to the initial clean region of the bubble investigated in

Chapter 2 seen in Figure 3.1(b). Qualitatively, the situation described with a bubble

with surfactant coverage ε = 90.4% is a common occurrence in microbubble cleaning

when a large contaminated bubble coalesces with a smaller clean bubble resulting in



50

a contaminated bubble with a small clean patch as seen in Figure 3.2. All bubble

interactions in this section have Marangoni of Ma = 2, Peclet of Pe = 140 in a very

viscous solution, i.e. Re = 10−4 � 1.

The bubble with initial coverage of ε = 90.4% shares similar qualities with a

bubble of initial coverage ε = 9.6%. During early stages of the process (up to t ≈ 0.01)

the center of mass zM of the bubble moves in a nearly identical manner for both values

of ε, as seen in Figure 3.3 where displacement d is plotted against time t. This is also

seen by comparing the speed of the bubble center of mass vM in Figure 3.4 where

the velocities between ε = 90.4% and 9.6% are almost identical until they separate

at t ≈ 0.01. This is not surprising when considering that the initial coverage values

are antipodal, area of the initial clean region for ε = 90.4% is equal to the area of

the contaminated region for ε = 9.6%, until time t ≈ 0.01 (solid blue line). At the

time t ≈ 0.01 the concentration front has moved an insignificant amount from its

initial position along the bubble normalized arc-length at s = α when α = 0.8 in

Figure 3.5 showing concentration γ over the normalized bubble arc-length s. As time

advances. when the surfactant front moves further from its initial position, important

differences become evident between both cases.

Figure 3.4 shows that the bubble with larger initial surfactant coverage has a

decrease in speed v significantly earlier than the bubble with initially smaller coverage.

Consequently, the bubble with larger coverage travels a shorter distance with time.

The differences appear as the initial similarities in the location of the surfactant

front across the plane z = 0 vanishes since in both cases the concentration front

moves toward the rear part of the bubble. Once the concentration front reaches this

point (s = 1), the Marangoni flow that drives the bubble forward starts to diminish.

However, the bubble still moves an additional minor distance, shown in Figure 3.3

depicting displacement d versus time t. Given the smaller distance to the back part

of the bubble, when α = 0.8, the concentration front arrives to this point earlier,

t ≈ 0.7, than for α = 0.2 ,t ≈ 11. This smaller distance the front needs to travel
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results in a considerably smaller total distance (D) travelled by the bubble at the end

of the process:

D ≡ lim
t→∞

zM(t), (3.1)

D ≈ 0.823 for ε = 9.6%, D ≈ 0.095 for ε = 90.4%. The fact that D ≈ 1− ε in both

cases is not due to a fortunate choice of parameters, but, as shown in the paragraphs

below, represents a much more general behavior.

The location of the surfactant gradient has altered how the bubble is deformed

depending on which half of the bubble is the location of initial leading edge. Figures

3.6 and 3.7 show the displacements d and velocities v, respectively, of the front and

back ends of the bubble over time t. These figures show that the displacement and

velocity of the front end of the ε = 9.6% bubble (solid blue line) and the back end

of ε = 90.4% bubble (dashed orange line) follow nearly identical paths until t ≈ 0.1.

During this time the displacement and velocity of the front end of ε = 9.6% (solid blue

line) and the back end of ε = 90.4% (dashed orange line) are larger than their opposite

bubble ends. The solid and dashed blue lines for the ε = 9.6% bubble front and back,

respectively, finally converge at a much larger overall displacement D (D ≈ 0.823),

whereas the solid and dashed orange lines for the ε = 90.4% bubble front and back,

respectively, converge at a smaller overall displacement D (D ≈ 0.095). The puller

hydrodynamic state is seen at early times with the front end of the ε = 9, 6% being

the leading edge, while the pusher hydrodynamic state can be seen at early times for

ε = 90.4% with the back end initially being the leading edge.

The result of this difference in displacement and velocity is seen in Figure 3.8 with

ε = 9.6% shown by a positive flattening f curve (solid blue line) indicating bubble

elongation. Flattening is described as f = 1−(b/a)2, where a is the maximum bubble

size in the axial direction and b is the maximum size in the radial direction. This

elongation due to the positive flattening curve for ε = 9.6% is clearly shown when

comparing the initial bubble interface shape (dashed black line) to the interface shape

at the time of maximum elongation (solid black line), t ≈ 0.6, shown in Figure 3.9(b).
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ε = 90.4% is represented in Figure 3.8 by a similar inverted negative flattening f curve

(dashed blue line) indicating compression. The compression of the interface shape is

visualized when comparing the initial bubble interface shape (dashed black line) to

the interface shape at the time of maximum elongation (solid black line), t ≈ 0.6,

shown in Figure 3.9(a). The minimum values of flattening for ε = 9.6% (dashed

blue line) is about −5% seen in Figure 3.8. Since the curves for both values of initial

coverage are almost symmetric across the horizontal axis, it occurs nearly at the same

instant of time as the maximum flattening observed for ε = 9.6%, at t ≈ 0.6.

The location of the initial gradient of surface tension on the bubble determines if it

is elongated (α < 0.5) or compressed (α > 0.5) with α describing the initial surfactant

coverage across the normalized arc-length of the bubble s. When compression occurs,

the bubble swimming with an initial coverage of ε = 90.4% has larger tangential

velocities vt at earlier times on the back end of the bubble normalized arc-length

s (Figure 3.10) where the surfactant concentration γ gradient is also larger across

the back region of bubble interface (Figure 3.5). The ε = 90.4% bubble has both the

largest concentration gradients and tangential velocities located on the rear half of the

bubble s > 0.5. As discussed in Chapter 2, elongation occurs in the swimming bubble

with ε = 9.6% where larger tangential velocities vt (Figure 2.16) occurring across the

bubble normalized arc-length s at locations of large concentration γ gradients (Figure

2.14) located on the front half of the bubble s < 0.5.

Finally, since for ε = 90.4% there is no transition from puller-to-pusher flow

configuration, after the maximum compression f (dashed blue line) (Figure 3.8) at

t ≈ 0.6 the bubble simply recovers its spherical shape. This breaks the symmetry

across the horizontal axis of the curve of flattening f versus time t, when compared

with the ε = 9.6% case (solid blue line) (Figure 3.8). The activity of the macroscopic

flow during this compression is visualized in the progression of the velocity magnitude

| V | of ε = 90.4% in the outer-fluid field shown by Figure 3.11 along with the

streamlines of the outer-fluid, whereas 3.12 depicts an enhanced view of the outer-

fluid velocity magnitude | V | without the streamlines at the same times for (a)
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through (d). As time progresses, the Marangoni stresses, induced by the surfactant

gradient, compresses the back end of the bubble as the surfactant travels to the back

end of the bubble, by following the larger bulk velocities from (a) to (c) where the

remaining Marangoni stresses propel the bubble slightly forward in the positive z

direction. The pusher hydrodynamic state is shown throughout the entire movement

of the ε = 90.4 bubble with the outer fluid being pushed away from the bubble along

the axis of propulsion [39] as shown by arrow velocity field plots in Figure 3.13 (a)

though (d).

Instead of the bubble transitioning from puller-to-pusher, the ε = 90.4% bubble

remains a pusher for the duration of the surfactant migration to the back end (s = 1).

When the surfactant front has barely moved from its initial position at s ≈ α for

α = 0.2 (Figure 3.14 (b)), the flow fields and streamline structure are very similar to

when the initial coverage is α = 0.8 (Figure 3.14 (a)) at the same time t ≈ 0.01 upon

reflection about the plane z = 0, except for the direction of the flow.

Figure 3.14(b) shows the early time (t = 0.01) puller configuration corresponding

to α = 0.2 with a stagnation point ahead of the bubble on the symmetry axis (the

bubble is moving to the right), contrastingly Figure 3.14(a) shows the early time

(t = 0.01) pusher configuration corresponding to ε = 90.4% with a stagnation point

behind of the bubble. Figure 3.15(b) shows late time (t = 6) pusher configuration

corresponding to ε = 9.6% with a stagnation point that is now behind the bubble on

the symmetry axis, while Figure 3.15(a) shows the early time (t = 0.01) pusher con-

figuration corresponding to ε = 90.4%, with a stagnation point behind of the bubble.

It also shows how similar the bulk flow fields are between the two configurations.
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3.2.1 ε Parametric Study

As seen in the previous paragraphs, the initial surface coverage seems to have a

strong influence on the maximum bubble displacement D. In order to have a better

understanding of the influence of ε on the displacement of the bubble, a parametric

study is performed and the results are shown in Figures 3.16 and 3.17 where the

coverage ε is represented as a fraction of interface coated by surfactant instead of

percentage with ε = 1 indicating a bubble initially coated completely with surfactant.

Figure 3.16 shows that, generally the distance traveled by the bubble D increases

with the fraction of uncovered surface (1 − ε) except when reaching the limit of

completely clean surface, where D drops abruptly to zero. As the initial area of

clean surface increases , the total displacement D curve detaches from the linear

relationship of D = 1− ε where it reaches a maximum and decreases toward the limit

of an uncontaminated bubble ε = 0 where D = 0.

Figure 3.17 shows the overall time T (defined as the time spent to travel 90% of

the total distance D) and the average speed U (defined as U ≡ D/T ) as a function

of the extent of the contaminated section ε, for Ma = 2. Results show that ε has a

strong effect on both T and U . The figure makes it clear that small contaminated

areas generate faster motions and larger displacements.
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3.3 Influence of Marangoni Number Ma on Bubble Propulsion

This section describes the influence of a large Marangoni number Ma on the active

motion of the small bubble. First, a thorough comparison between the case discussed

in Chapter 2 with Ma = 2 and a case with a larger Marangoni number, Ma = 20

is performed. Both cases will have all other initial conditions remain the same with

an initial coverage of ε = 9.6% (α = 0.2) and a Peclet of Pe = 140, with the outer

fluid having a high viscosity Re = 10−4. This study will allow a more thorough

understanding of the effect that stronger Marangoni flows have on the propulsion

of an object as previously studied by [47]. Varying concentrations and varieties of

chemically active species can alter the Marangoni impact.

The bubble with a larger Marangoni influence behaves very similar to the bubble

with the lesser Marangoni effect studied in Chapter 2. The overall macroscopic hy-

drodynamic regimes of the Marangoni movement is very similar between these two

cases for the duration of propulsion. The displacement d of the bubble center of mass

zM for Ma = 2 (solid orange line) and Ma = 20 (solid blue line) is seen in Figure

3.18 depicting displacement d versus time t shows a very similar trend in overall bub-

ble movement. The bubble with Ma = 20 initiates movement at t ≈ 10−3 and the

Ma = 2 bubble begins to move about a decade later at t ≈ 0.01. The speed v of

the bubble centers of mass vM , seen in Figure 3.19 depicting velocity v versus time

t, is very similar with the Ma = 2 bubble (solid orange line) slowing to a stop at

t ≈ 10 whereas Ma = 20 slows to a stop at t ≈ 1 roughly a decade earlier. One of

the more apparent differences seen when comparing the bubble center of mass speed

is the velocity peak for Ma = 20 (solid blue line) at t ≈ 0.05.

This peak is explained in Figure 3.20 where the front and back end velocities of the

bubble are tracked over time. In this plot at t ≈ 0.05, the Ma = 20 front end velocity

vF (solid blue line) is shown decreasing while the back end velocity vB is increasing

as the bubble approaches its maximum flattening f . This relationship between the

center of mass velocity vM peak for Ma = 20 and the peak bubble flattening, f shown
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in Figure 3.21 for Ma = 20 (solid blue line) explains that as the bubble approaches

the maximum flattening peak, the combined movement of both front and back ends

of the bubble generate a slight vM spike.

Displacement of the front and back ends of the bubbles in Figure 3.22 closely

match for the different Marangoni strengths,but are disconnected by a time factor

of 10. Both the front ends of the different bubbles, with different Ma, moving first

initially (solid lines) with the back ends (dashed lines) showing a delayed movement

resulting in bubble elongation. The maximum flattening for Ma = 2 is approximately

25% of the max flattening for the Ma = 20 bubble shown in Figure 3.21. The interface

shape at the time of maximum flattening for both cases, shown in Figure 3.23, is

compared with the initial bubble interface shape. Larger Marangoni stresses result

in greater deformation of the bubble interface, as well as a faster propulsion of the

bubble. The earlier propulsion of the Ma = 20 bubble is supported by the earlier

maximum flattening of the interface seen in Figure 3.23 (b) occurring at t ≈ 0.09,

whereas the Ma = 2 bubble experiences maximum flattening of the interface at a

later time t ≈ 0.6 (Figure 3.23 (a)). This is due to the surfactant migrating across

the interface more quickly with the Ma = 20 bubble compared to the Ma = 2 bubble

supported by Figure 3.24 in which the concentration γ on the interface is very similar

between the two cases despite differing from a factor of 10 when comparing (a) and

(b). The tangential velocity vt generated by this surfactant front shown in Figure 3.25

supports the quicker moving Marangoni front where vt is shown for similar locations

of the concentration fronts of the Ma = 2 (a) and Ma = 20 (b) bubbles. The

Ma = 20 bubble displays a much larger tangential velocity compared to Ma = 2 at

these similar surfactant front locations (by a factor of 10).

The similarities between the two cases are also shown in the velocity magnitude

| V | field of the outer-fluid at three different times for each case shown in Figure

3.26. The streamlines are nearly identical for the instances shown, despite the similar

hydrodynamic effects occurring a decade of time earlier for Ma = 20. The figure also
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shows nearly identical velocity magnitude fields, where the contour that represents

the velocity color gradient is decreased by a factor of 10 for Ma = 2.

Figure 3.27 shows an extremely similar hydrodynamic transition from pusher to

puller for the Ma = 20 and Ma = 2 bubbles using the bulk fluid arrow field. This

figure compares the macroscopic flows for Ma = 2 and Ma = 20 where arrow fields

are compared when the surfactant front is at similar locations across the bubbles

normalized arc-length. As previously discussed, the movement of the surfactant front

occurs a decade of time earlier for Ma = 20 compared to the Ma = 2 bubble. Both

Marangnoi cases are seen in the puller state at early times where the bulk fluid is

pulled inward on the axis of propulsion from both in front of and behind the bubble

for Figure 3.27 (a) and (d). Then in Figure 3.27 (b) and (e) both cases are seen

transitioning from puller to pusher as the surfactant front is crossing the midpoint

of both bubbles (s ≈ 0.5). Lastly, the bubbles remain in their final hydrodynamic

pushing state Figure 3.27 (c) and (f), where the outer-fluid being pushed away from

in front and behind the bubble on the axis of propulsion, until the movement of the

bubble ceases.
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3.3.1 Ma Parametric Study

The previous section showed how the surfactant strength has a large influence on

the average bubble velocity U and the final bubble displacement D. To have a com-

prehensive understanding of the impact of Ma on bubble displacement a parametric

study was performed where results are shown in Figures 3.28, 3.29, and 3.30 with the

coverage ε depicted as a fraction of coverage ε and not a percentage.

Figure 3.28 shows that the distance traveled by the bubble D

D ≡ lim
t→∞

zM(t), (3.2)

increases with the fraction of uncovered surface (1−ε), except when reaching the limit

of clean surface where D = 0. Here, the surface activity (Ma) was evaluated for three

values of the Marangoni number: Ma = 0.2 (weak surfactant), Ma = 2 (moderate

surfactant). and Ma = 20 (strong surfactant). The maximum displacement, shown

by D = 1 − ε, increases and arises at smaller initial surfactant coverages as Ma

increases. In fact, results of Figure 3.28 and 3.30 suggest that the limit of infinite

Ma,D ∼ 1 − ε. This seems to be the maximum distance attainable by the bubble.

This approximation fails for small coverages of weak surfactant because of the longer

dampened impact that the interfacial surface tension gradient has on the macroscopic

flows. Not only is 1 − ε the fraction of initially clean surface, it is also equal to half

the distance between the back end of the bubble s = 1 and the projection on the

z-axis of the initial location of the surfactant front Z, described by 1− ε = (1 +Z)/2

as seen in Figure 3.29.

The parametric plot shown by Figure 3.30 displays that Marangoni number has a

weak influence on total displacement; with stronger surfactants (Ma > 1) producing

displacements similar to those from weak surfactants, although at faster speeds. The

scaling of overall time T , defined as the time spent to travel 90% of the total distance

D, versus Ma for strong surfactant effects (Ma > 1) is T ∼Ma−1. This supports why

the interactions occurring in the Ma = 20 case occurred approximately 10x faster

than the Ma = 2 case.
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3.4 Influence of Tube Radius Rt on Bubble Propulsion

This section discusses the effect that a smaller capillary tube radius Rt (seen in

Figure 3.31) has on Marangoni driven propulsion along the axis of propulsion. Here

two bubble cases are examined, where both have a coverage of ε = 9.6%, Marangoni

of Ma = 2, and Peclet of Pe = 105 with an outer-fluid viscosity of Re = 1. The cases

discussed include a tube with a very large radius Rt = 20 and a tube with a very

small radius of Rt = 1.1 leaving a gap 10% of R between the tube and the bubble

initially centered at z = 0. A result of this study will be further understanding of

self-induced propulsion comparing the mechanisms involved with active microbubbles

in a free system versus a narrow capillary similar to a blood vessel ( [14], [15]).

The bubble in the small tube Rt = 1.1 possesses qualities that are similar to the

bubble in the large tube Rt = 20 at early times. For early periods in the propulsion

process (up to t ≈ 0.1), both cases share almost identical movements when tracking

the front and back of the bubble; as seen by the displacement of the bubble center

of mass (zM) and the bubble ends (dF and dB) (seen in Figures 3.33 and 3.32). The

bubble ends have nearly identical speeds (vF and vB) (seen in Figure 3.34) at early

times (up to t ≈ 10−3).

A major discrepancy is then seen at later times (at t ≈ 10−3) in Figure 3.35

with the velocity of the center of mass vM of the Rt = 20 (solid orange line) bubble

moving in the positive direction on the axis of propulsion, whereas the Rt = 1.1

(solid blue line) bubble has a negative velocity until t ≈ 1 when the bubble center

of mass velocity becomes positive. Figure 3.33 supports this evidence of a negative

velocity of the center of mass by showing that after t ≈ 0.1, the back end of the

Rt = 1.1 bubble is seen moving slightly in the negative direction along with the

Marangoni flows interacting with the nearby tube causing the bubble front end to

flatten, driving the center of mass backward. According to Figure 3.33, after t ≈ 0.1,

both ends of the Rt = 20 begin to move forward with the back end dB (dashed orange

line) lagging slightly behind the front end dF (solid orange line), whereas for Rt = 1.1
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the front end dF (solid blue line) moves for decades of time before the back end dB

(dashed blue line) begins to move forward at t ≈ 5. The movement of the back end dB

only occurred when the surfactant front passed the center of the bubble normalized

arc-length s = 0.5 at t ≈ 5 shown in Figure 3.36(b) with the solid purple line.

The Marangoni flow influenced by the surfactant front is unable to obtain the

previously seen puller hydrodynamic state of the Rt = 20 bubble shown by the outer-

fluid arrow velocity plot in Figure 3.37(a) at t ≈ 0.6, with fluid being pulled from

the front end of the bubble towards the back. Similarly, Figure 3.37(d) shows the

Rt = 1.1 bubble pulling fluid from the front end of the bubble. However, the flow

is constricted by the proximity of the bubble to the tube walls which prevents the

Marangoni flows from reaching the back end until the surfactant front on the bubble

interface passes the constricted region between the bubble and the wall at (e) t ≈ 5

where the pusher active motion state is able to be completed.

The impact that the tube radius has on the interfacial Marangoni flows can be seen

in Figure 3.38 when comparing the tangential velocities vt on the bubble interfaces

at similar surfactant front locations for Rt = 20 (a) and Rt = 1.1 (b). Tangential

velocities are slightly larger for Rt = 20 with the vt seen deforming for Rt = 1.1 at

s ≈ 0.4 where the proximal tube begins to interfere with the Marangoni stresses.

Figure 3.36 shows that the presence of a nearby tube slows the migration of the

surfactant front with the surfactant front at similar locations on the normalized arc-

length s occurring at later times for Rt = 1.1 compared to Rt = 20.

As a result of the nearby boundary, the Marangoni flows generated at the front

region of the bubble are unable to influence the rear section of the Rt = 1.1 bubble

in order to propel it at early times t < 5, shown in Figure 3.33. During these early

times t < 5 displacement d of the bubble front end dF (solid blue line) increases while

the bubble back end dB (dashed blue line) remains relatively immobile. This results

in the bubble elongating roughly two times more that the bubble with a larger tube

radius of Rt = 20. This is seen in the maximum flattening value f of Rt = 1.1 being

roughly double that of Rt = 20 seen in Figure 3.39.
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When comparing the interface shape at the times of maximum flattening, seen in

Figure 3.40, Rt = 20 (a) shows visibly less elongation compared to Rt = 1.1. The

outer-fluid velocity field in Figure 3.41 (a) shows the of maximum elongation (t ≈ 0.6)

for Rt = 20 occurring at a location of a large surface tension gradient (seen in Figure

3.36 (a) by the solid blue line). Alternatively, Figure 3.41 (e) shows the velocity

field at the time of maximum elongation for Rt = 1.1 occurring at t ≈ 5 where the

Marangoni stresses are interacting with the nearby tube boundary magnifying the

bubble compression as opposed to the larger surface tension gradients at times earlier

than t ≈ 5 (seen in Figure 3.36 (b)).

The macroscopic hydrodynamics of the bubble in the narrow tube (Rt = 1.1)

differ from the hydrodynamics seen in the free bubble Rt = 20. The Rt = 20 bubble

displays the pulling hydrodynamics (seen in the outer-fluid arrow field Figure 3.37 (a))

until t ≈ 3 where it transitions to the pushing state for the remainder of the bubble

swimming (seen in Figure 3.37 (c)). This differs from the bubble in the narrow tube

Rt = 1.1, where in Figure 3.37 (d) the bubble is seen pulling fluid from in front and

pushing fluid from behind at early times. However, when the surfactant front passes

the center of the bubble at s ≈ 0.5 (seen in Figure 3.36 (b) by the solid purple line

at t = 5) the Marangoni flows generated by the surfactant front interacts with the

wall and a gap between the bubble interface and the wall is formed allowing for fluid

to flow back towards the rear of the bubble at t ≈ 5 as seen in Figure 3.37 (e). This

allows for the Rt = 1.1 bubble to become a puller at t ≈ 5 with fluid being pulled from

in front of the bubble to behind due to the Marangoni flows compressing the bubble

and allowing the flow to reach behind the bubble. At later times, shown in Figure

3.37(f), the bubble regains its circular shape constricting the fluid flow resulting in

hydrodynamics returning to a similar state shown in Figure 3.37 (d).
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3.4.1 Rt Parametric Study

The movement of the center of mass zM for the different tube radii vary greatly

as seen in Figure 3.32 where the total distance D travelled by the bubble for Rt = 20

was D ≈ 0.878, whereas for Rt = 1.1 the total distance was D ≈ 0.189. A parametric

study was completed to show how D changes with differing Rt. Figure 3.42 shows

that D versus Rt follows a logarithmic growth curve with the maximum distance the

bubble being able to travel being D ≈ 0.88 while the minimum bubble displacement

trending towards D = 0 as Rt → R.

The Figure 3.43 plot shows the overall time (T , defined as the time spent to travel

90% of the total distance D) and the average speed (defined as U ≡ D/T ) as a

function of the capillary tube radius Rt. Smaller tube radius resulted in a longer

duration of movement with a slower velocity. In conclusion, a tube radius has a

negative impact on active self-propelled bubble movement.
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3.5 Conclusion

This chapter investigated a variety of parameters to more fully understand the

bubble self-propulsion mechanisms. These parameters included the impact of the ini-

tial size of surfactant coverage, the impact of various surfactant strengths, and the

impact of tubular boundaries at various distances away from the bubble and their

impact on the bubble propulsion. Previous similar works over these parameters influ-

encing active motion include the impact of various fixed coverages of surface-active

species on particles previously studied by [39], the influence of various surfactant

strengths on particle propulsion previously studied by [47], and the influence of a

small tube on Marangoni flows for a bubble or drop interface being previously inves-

tigated by [46], [14], and [15].

Results showed that the extent of contaminated area of the interface has a strong

effect on the total bubble displacement and speed. Smaller initially contaminated

regions were shown to typically achieve faster speeds and larger displacements. These

results are relevant to the study of long-term bubble migration, which may bring

large bubble groups far from equilibrium. Bubbles can easily be brought far away

from equilibrium by a small contaminated fraction of the interface and remain far from

equilibrium for a long time with very slow dynamics. The surfactant strength also has

an impact on displacement with the stronger surfactants creating larger displacements

than weaker surfactants along with quicker bubble movement. The investigation of

tube radius revealed that smaller tube radii constricted the Marangoni stresses in the

bulk fluid resulting in a dampened movement of the bubble when compared to the

bubble propelling in a larger tube.



107

4. SUMMARY AND OUTLOOK

In this research, the interfacial mechanisms and external flows of contaminated

bubble self-propulsion were thoroughly investigated. Characterization of various

regimes created by the presence of surface active species on the bubble interface

were tested along with the influence of neighboring boundaries on the performance

of bubble active motion. The free-surface mechanisms of Marangoni flows created

by gradients in surfactant concentration resulting in particle movement were studied

using an accurate computational model. Better understanding of self-induced bubble

movement generated by Marangoni flows was gained by simultaneously solving the

Navier-Stokes, continuity, kinematic, and conservation of surfactant equations.

The second chapter of this thesis focused on understanding the mechanics associ-

ated with the active motion of bubbles harnessing these Marangoni flows. Simulations

enabled an in depth investigation of the physical mechanisms of interfacial motion

created by surfactant gradients being coupled with the flows of the bulk liquid through

the transfer of momentum. The simulations were benchmarked against theoretical

predictions from literature of surfactant spreading on thin viscous films. The results

were used to describe how asymmetric surfactant coverage produces hydrodynamic

flows in the outer fluid resulting in bubble propulsion. A transition of self-induced

propulsion hydrodynamic states was observed with the bubble transitioning from a

puller at early times into a pusher at later times. This transition occurred when

the Marangoni stresses transition from acting on the front half of the bubble to the

back half, following the surfactant gradient. These pusher and puller dynamics are

important when understanding how large numbers of particles with these dynamics

are interacting with one another.

The third chapter of this thesis advanced the bubble propulsion investigation

completed in Chapter 2 to a parametric study of initial surfactant coverage, surfactant
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strength, and tube radius on the active bubble movement. Results showed that

the extent of contaminated area of the interface has a strong effect on the total

bubble displacement and speed, with smaller initially contaminated regions typically

achieving faster speeds and larger displacements. The surfactant strength also has an

impact on displacement with the stronger surfactants creating larger displacements

than weaker surfactants. The investigation of tube radius revealed that smaller tube

radii constricted the Marangoni stresses in the bulk fluid resulting in a dampened

movement of the bubble compared to the bubble swimming in a larger tube. These

computations allowed for accurate characterization of Marangoni propulsion with

various surfactant properties and in various neighboring tubular boundaries.

Understanding the extent of Marangoni propulsion due to chemical species is rec-

ognized as important in many industrial and biomedical processes. These range from

the cleaning of bio-films and industrial food processing equipment to drug capsule

and microfluidic device propulsion. Transport of surfactant on the bubble interface

is also seen in environmental and natural processes such as the cleaning of oil spills

and microorganism swimming. A more accurate understanding of these microfluidic

mechanisms of surfactant induced swimming allows for enhanced regulation of bubble

movement in chemical, food, biomedical, and pharmaceutical industries.

This research focused on characterizing self-propulsion regimes created by the

existence of contaminants and the influence these contaminants have on active bub-

ble motion. Next steps include generating experimental results to test the regimes

discovered by the simulated model. A remaining question is how solubility of the sur-

factant would alter the self-propulsion mechanism. Further research should include

an investigation of an active bubble propelled to a nearby wall to help understand

mechanisms of bubble attachment to surfaces in microbubble cleaning.
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