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ABSTRACT

Castellanos Llorca, Miguel Rodrigo. PhD, Purdue University, May 2020. Exposure-
Aware Signal Design for Millimeter Wave MIMO Communication Systems. Major
Professors: Dr. David J. Love and Dr. Borja Peleato.

All wireless devices expose users to some level of electromagnetic radiation dur-

ing operation. In many countries, exposure levels are strictly regulated to ensure

the safety of consumers. Previous research demonstrates that incorporating exposure

constraints into transmit signal design leads to substantial capacity gains over tradi-

tional power back-off techniques. This is especially vital for millimeter wave systems,

which require large array gains to combat high path losses and are more susceptible

to a decrease in transmit power. In this work, we present exposure modeling pro-

cedures and exposure-aware transmission schemes for millimeter wave systems. We

first develop methods to approximate the characteristic matrix of a quadratic model

for two exposure measures in the millimeter wave band: incident power density and

surface specific absorption rate (SAR). The proposed models can be calculated with a

small number of parameters and can be altered to account for changes in the exposure

scenario. Software simulations with half-wave dipole antennas corroborate the accu-

racy of the exposure models in the millimeter wave band. We then exploit the ability

of the model to calculate exposure at any point surrounding the device to develop

efficient exposure-aware signaling strategies. Finally, we propose a low-complexity

perturbation approach to obtain exposure-compliant beamforming vectors. Analyt-

ical and numerical results demonstrate that the proposed exposure-aware signaling

techniques outperform power reduction approaches.
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1. INTRODUCTION

In recent years, the unprecedented growth in mobile data traffic has led to an increas-

ingly congested sub-6 GHz spectrum. The expected large throughput demands for

future cellular systems have motivated efforts to exploit the wide bandwidths available

in the millimeter wave band (roughly 20-100 GHz) to achieve multi gigabit-per-second

data rates [1–3]. Millimeter wave systems experience higher path loss compared to

lower frequency systems and additional losses from atmospheric gas and rain absorp-

tion [4]. Fortunately, the small wavelengths of millimeter wave signals allow devices

to provide large beamforming gains through large-sized arrays comprising relatively

small antenna elements.

Millimeter wave technologies will play a pivotal role in fifth-generation (5G) wire-

less communication systems. Millimeter wave frequencies are ideal candidates for

wireless backhaul and access in small cell deployments due to the short-range and

highly directional nature of millimeter wave propagation [5, 6]. Additionally, mil-

limeter wave vehicular communication systems can take advantage of high data rate

transmissions to exchange raw, high-resolution sensor data obtained from radars,

cameras, and LIDARs (LIght Detection and RAnging) [7, 8]. One key consideration

for millimeter wave communication is the design of beamforming schemes that are

tailored to the sparse structure of millimeter wave channels and the hardware limita-

tions at these carrier frequencies. In this context, a variety of studies have addressed

practical and efficient precoding methods for millimeter wave systems [1, 5, 9–16].

An additional, less explored challenge in the implementation of millimeter wave

systems is the measurement and regulation of electromagnetic exposure to users. Elec-

tromagnetic waves emanated from wireless devices are absorbed by users at all fre-

quencies. In the radio and microwave frequency bands, this radiation is non-ionizing;

the main effect is heating of body tissues. Even so, biological experts generally agree
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that adverse health effects can arise from high levels of radio frequency (RF) en-

ergy absorption [17]. Radiation exposure is typically limited by governing bodies to

prevent hazardous operating conditions for users. Agencies such as the Federal Com-

munications Commission (FCC) and the International Commission on Non-Ionizing

Radiation Protection (ICNIRP) set guidelines for maximum allowable exposure and

determine appropriate testing methodologies. All wireless devices must comply with

these exposure limits before becoming available to the public.

For lower frequency systems, both the FCC and the ICNIRP have adopted specific

absorption rate (SAR) as the standard metric for regulatory compliance [18, 19].

SAR measures user electromagnetic exposure as absorbed power per unit mass, with

units W/kg. In this manner, SAR quantifies incident electromagnetic radiation and

subsequent absorption. The SAR constraint placed on a device is dependent on the

type of device and on its usage. At frequencies between 100 KHz and 6 GHz, the

FCC SAR limit for RF exposure from portable devices used by the public is a 1.6

W/kg average over any one gram of tissue [20].

Millimeter wave absorption behaves differently, and its regulation requires the

use of alternative exposure metrics. Interactions between millimeter waves and the

human body and the biological effects arising from such interactions have been the

subject of many studies over the past decades [21–27]. The limited penetration of

millimeter waves into the body leads to a large concentration of energy deposition in

thin layers of exposed tissue such as the skin and the eye, but negligible absorption

a few millimeters below the surface. As a result, tissue heating from millimeter wave

exposure is largely restricted to a thin tissue layer and can be effectively measured

with superficial quantities such as incident power density (PD) and SAR at the tissue

surface, commonly referred to as surface SAR. For example, the FCC and ICNIRP

have adopted incident PD as the standard exposure metric in the millimeter wave

band [18,19].

Electromagnetic emission management is critical to the safety and success of mil-

limeter wave systems. Incident PD exposures above several hundred mW/cm2 can
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cause pain in the skin and even ocular lesions [28], and millimeter wave devices limit

transmit power to be below 10 dBm to comply with regulatory standards [26]. Recent

works related to 5G exposure have addressed the effects of exposure constraints on

millimeter wave devices and the advantages of exposure-aware system design [29–32].

Regardless, exposure constraints are typically ignored during system design and later

act as secondary power constraints if absorption measurements exceed existing thresh-

olds. Such power limits on user-end devices can cause significant degradation to the

system performance, especially since millimeter wave systems need high transmit

gains to combat path loss. Fortunately, multiple-input multiple output (MIMO)

communication systems can benefit from large exposure variations as a function of

signal design and are able to jointly maximize the achievable rate under exposure

constraints.

A number of studies have addressed the development and validation of signal-level

exposure models. SAR measurement variations with respect to the phase difference

between two transmit antennas were first addressed in [33, 34]. Work in [35–38]

later demonstrated that SAR can be approximated as a mixed quadratic function of

the transmit signal and introduced the notion of an exposure matrix, which is the

characteristic matrix in the quadratic model. A Fourier analysis based model for

fast SAR and power loss density estimation was also proposed and validated in [39].

In [40, 41], a method for determining device compliance with SAR limits in linear

time was derived by exploiting the structure of the quadratic model.

Exposure models are important not only for characterizing the exposure induced

by wireless devices, but also for imposing exposure constraints on system signal design.

In this context, previous research has focused on the design and analysis of exposure-

aware transmissions [35–37,42–46]. In [36], a SAR-aware coding solution is introduced

and shown to provide a 2.5 dB improvement in probability of error over the Alamouti

code in a SAR-limited system. The problem of finding optimal beamformers and

precoders in systems with one or more SAR constraints is presented in [42, 44, 45]

and an extension for multi-user systems is presented in [43].
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In this dissertation, we focus on the problem of exposure-aware signal design for

millimeter wave systems. We first address suitable models for exposure measures

employed in the millimeter wave band. We then present two applications of the

developed exposure model for exposure-constrained systems. Finally, we develop a

new method for exposure-constrained beamforming for systems with limited feedback.

1.1 Signal-Level Models of Electromagnetic Exposure for Millimeter Wave

Communication Systems

The aforementioned quadratic model can predict electromagnetic exposure with

high accuracy, but computing the model parameters requires a significant amount of

overhead. Model parameters are calculated by obtaining exposure measurements —

from software simulations or phantom head setups — with a device held in a typical

operating condition and then performing a fitting procedure. These parameters are

specific to the measurement configuration, including the transmitter array design, the

operating frequency, the shape and dielectric properties of the exposed tissue, and

how the device is held relative to the exposed tissue. Since emission compliance must

be verified over a device’s typical operating conditions, various measurement sets are

needed to completely characterize exposure via these models.

This work addresses the issue of constructing low-complexity models for incident

PD and surface SAR in the millimeter wave band by deriving formulas to approximate

the exposure matrices in the quadratic model proposed in [35–38]. We leverage the

relative simplicity of electromagnetic absorption measures at millimeter wave frequen-

cies to develop parametric expressions that only require a few external measurements

and that can easily adapt to the testing configuration. We develop a method to

calculate incident PD matrices by approximating the near-field gain of the transmit-

ter in terms of basic array parameters and incorporating existing models for mutual

coupling and near-field effects. We also derive an expression for SAR matrices by

modeling the total electric field transmitted through the air-tissue boundary as the
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superposition of incident spherical waves refracted as plane waves through a planar

dielectric. The proposed formulas for the characteristic exposure matrices demon-

strate how the quadratic model can be represented as a rank-one model in terms of

an effective steering vector, which is defined later. To validate the model, we simulate

a 28 GHz millimeter wave exposure scenario with a uniform linear array (ULA) com-

posed of half-wave dipoles and a spherical tissue model. Our results demonstrate a

high degree of agreement between the quadratic model with the calculated exposure

matrices and the simulation measurements.

The proposed models estimate pointwise exposure and are, therefore, not directly

compatible with regulatory thresholds, which are defined as averages over predeter-

mined areas or volumes. Thus, a key modeling consideration is how to sample a

spatial region to obtain a robust characterization of averaged exposure. We first

derive upper bounds on the exposure differential between two testing points based

on the proposed models. This result is used to develop uniform and non-uniform

spatial sampling guidelines which guarantee variations in exposure measurements at

adjacent sample points do not exceed a predetermined threshold. We also discuss

how to construct exposure models for average exposure from the sampled pointwise

models. Finally, we present numerical examples to demonstrate the application of

the developed sampling methods.

1.2 Efficient Signal Design Under Exposure Constraints

One of the key advantages of the exposure model in Chapter 2 is that it provides

the system with the ability to calculate exposure at any point surrounding the device.

While the problem of optimal exposure-constrained signaling has been addressed in

previous studies [42, 43], we consider two scenarios in which the proposed exposure

model allows the system to perform efficient exposure-aware transmission schemes.

In the first scenario, we consider a system which is constrained by a large number

of exposure constraints corresponding to exposure limits on a large region of the body.
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In this case, it may not be practical to perform the optimal precoding strategy as dis-

cussed in [42]. We propose a precoding method which combines the optimal solution

to a signal design problem with a finite number of exposure constraints found in [42]

with a constraint sampling approach. The proposed discretization algorithm itera-

tively adds maximal exposure testing points as new constraints based on the current

optimal precoder and converges to a near-optimal solution after a small number of

iterations.

The optimal exposure-constrained signaling schemes are highly effective but re-

quire complex optimizations and high-resolution digital beamforming architectures.

A more basic alternative is to reduce the transmit power to comply with exposure

limits. While suboptimal, this approach is highly practical and limits the system com-

putational load. In its simplest form, power back-off is implemented on a worst-case

basis, i.e., the transmit power is reduced so that exposure lies below the regulatory

threshold regardless of the transmit signal and gesture. However, EM exposure is not

static; levels can vary significantly with changes in the transmit signal and the rela-

tive device location. Worst-case power back-off unnecessarily deteriorates the uplink

performance in many cases.

Power back-off can also be applied adaptively depending on the current exposure

in order to minimize the performance loss associated with power reduction. Previous

studies have addressed adaptive power back-off with respect to the transmit signal

[35, 42]. However, modern wireless devices are equipped with a variety of proximity

sensors and can determine not only when the device is near the user’s head but also

how close the user is to the device [47]. Systems may be able to use this information

to adjust power levels as a function of the relative device position.

In second scenario, we consider a codebook-based deployment in which the expo-

sure induced by the device varies due to changes in its position relative to the user.

We propose a method for adaptively regulating the transmit power of a millimeter

wave system to mitigate user exposure. We employ the low-complexity model pro-

posed in Chapter 2 to recalculate the codebook exposure whenever the device location
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relative to the user changes. Note that while the proposed scheme is applicable at any

frequency, we rely on the expressions developed in Chapter 2 to calculate exposure.

The exposure measures considered in the model, namely SAR at the tissue surface

and PD, are typically only used for above-6 GHz systems. To reduce the computa-

tional load on the system, we also propose the use of a discrete Fourier Transform

(DFT) codebook for data transmission. The codebook structure is leveraged to de-

rive a fast Fourier Transform (FFT) method for calculating the exposure induced by

each beam in the codebook. Simulation results demonstrate that adjusting the beam

power depending on the distance from the user yields notable gains in performance.

1.3 Beamforming Perturbation Approach for Mitigating User Exposure

Previous studies have mainly focused on optimal signaling schemes over exposure-

constrained channels, but these schemes may not be realizable in the uplink for cer-

tain deployments. Optimal beamforming with exposure limits requires both perfect

instantaneous CSI and complete knowledge of the exposure contraint. Channel in-

formation is often not available at the transmitter due to feedback constraints and

lack of reciprocity in frequency division duplexing (FDD) systems. In such cases, the

base station is often tasked with determining a suitable beamformer for the user, and

a limited feedback channel can be employed to convey this information to the user.

Optimal exposure-aware beamforming would require the base station to know the ex-

posure characteristics of the user, which are typically specified as multiple quadratic

forms with corresponding exposure matrices [42]. Feedback of the exposure matrices

is not practical since the size of these matrices grows quadratically with the number

of antennas in the user device and the exposure constraint may be characterized by

multiple exposure matrices. Therefore, the necessary components for exposure-aware

beamforming are typically not available at the same location.

We leverage existing signal-level exposure models to develop a low-complexity

exposure reduction scheme. Rather than decreasing the transmit power of a given
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beamforming vector to comply with exposure limits, we apply a small perturbation

to obtain an exposure-compliant beamformer while minimizing the beamforming gain

loss. We show that the perturbed beamformer can be viewed as the sum of the orig-

inal beam with reduced power and an orthogonal component which mainly acts to

decrease exposure. Our analytical and simulation results demonstrate that the pro-

posed exposure reduction approach outperforms traditional power back-off methods.

In contrast to optimal exposure-constrained beamforming, the proposed perturba-

tion technique does not require channel knowledge and can be applied to systems

employing beamforming codebooks. Therefore, the proposed scheme offers a practi-

cal solution to the problem of exposure management and can be easily implemented

in real systems, including standards-compliant LTE-Advanced and 5GNR devices.

1.4 Organization

This dissertation is organized as follows. In Chapter 2, we develop low-complexity

approaches to calculate exposure models suitable for millimeter wave exposure sce-

narios. We review prior work on signal-level exposure modeling and present our pro-

posed approaches for computing exposure matrices in the millimeter wave band. We

present software simulation results of a simple millimeter wave exposure scenario to

validate the proposed models. Spatial sampling techniques and the characterization

of spatially averaged exposure are also discussed.

In Chapter 3, we present two applications of the proposed signal-level exposure

model. We first propose an discretization-based iterative approach to obtain the

optimal precoder for an exposure-constrained channel. We then present a distance-

adaptive power back-off techniques that leverages the capabilities of the models de-

veloped in Chapter 2. We present simulation results for our proposed transmission

method and compare the performance with traditional power back-off techniques.

In Chapter 4, we propose two exposure-aware perturbation schemes for MIMO

systems. Analytical results demonstrate that the proposed approaches allow the
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system to transmit with higher power in the original beamforming direction compared

to power back-off techniques. Simulations demonstrate that the perturbation methods

achieve substantial gains over power reduction methods and perform nearly optimally

in certain cases.

1.5 Notation

A bold lowercase letter a denotes a column vector, a bold uppercase letter A

denotes a matrix, AT denotes the transpose of A, AH denotes the conjugate transpose

of A, ‖a‖ denotes the vector 2-norm of a, ‖A‖2 denotes the induced vector 2-norm

of A. A = diag(a0, a1, ...aN−1) denotes the diagonal matrix A with diagonal entries

given by a0, a1, ...aN−1. For a complex number z, Re{z} and Imag{z} denote the real

and imaginary parts of z, respectively.
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2. SIGNAL-LEVEL MODELS OF ELECTROMAGNETIC

EXPOSURE FOR MILLIMETER WAVE

COMMUNICATION SYSTEMS

2.1 Procedures for Computing Signal-Level Exposure Models

We briefly review the results of prior exposure modeling studies in [35–39] and

define the notion of an exposure matrix. We then present our proposed procedures

for calculating exposure matrices for pointwise incident PD and surface SAR. The

measurements required to compute exposure matrices with both the prior and the

proposed methods are discussed and compared. .

2.1.1 Review of Prior Art

Wireless devices sold worldwide are thoroughly tested for compliance with regula-

tory standards for maximum user exposure. These limits are often set conservatively

to ensure that electromagnetic radiation absorbed by users does not cause biologically

significant thermal heating. For systems operating below 6 GHz, exposure measure-

ments are typically expressed in terms of SAR. SAR is a measure of power absorbed

in human tissue per unit mass at a point p and is expressed as

SAR(p) =
σ
∣∣Em(p)

∣∣2
2ρ

, (2.1)

where σ is the tissue conductivity, Em(p) is the electric field strength, and ρ is the

density of the tissue [48].

c©[2019] IEEE. Reprinted, with permission, from M. R. Castellanos, Y. Liu, D. J. Love, B. Peleato,
J. M. Jin, and B. M. Hochwald, “Signal-Level Models of Pointwise Electromagnetic Exposure for
Millimeter Wave Communication,” accepted in IEEE Transactions on Antennas and Propagation,
June 2019.
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In a multi-antenna system, SAR values can vary significantly with respect to the

transmit signal. Let N be the number of transmitter antennas, and let x be the

length N transmit signal vector. Experimental results in [35–39] show that average

SAR measurements over a volume V are well approximated as a quadratic function

of the transmit signal x as

SARV (x) = xHRV x, (2.2)

where RV is the N × N matrix that characterizes the variation of SAR with re-

spect to x within the volume. Various studies have shown that incorporating SAR

constraints into signal design problems by employing the quadratic model yields sig-

nificantly higher rates compared to conventional power back-off schemes which lower

the transmit power to satisfy exposure constraints [35–37,42–45].

In (2.2), the SAR matrix RV is obtained by a fitting method, such as a least-

squares algorithm, on measured SAR data. Since regulatory agencies place limits

on the worst-case exposure, the volume is chosen such that it corresponds to the

maximum region of absorption. Changing the transmission frequency or the location

of the wireless device relative to the body can change the location of the hotspot [37].

Therefore, different operating conditions must be modeled by different SAR matrices,

all of which require additional exposure data.

Constructing sub-6 GHz SAR models requiring less measurements/simulations

is challenging given the complex nature of electromagnetic absorption at these fre-

quencies. Electromagnetic radiation at lower frequencies can reach past the dermal

and subcutaneous skin layers, and maximum SAR measurements are typically found

inside the body. For example, emissions from a portable device operating near the

head often induce SAR hotspots inside of the skull. Cooling mechanisms such as blood

flow can also significantly reduce intrabody tissue heating and affect the location of

maximum exposure.

In contrast, the submillimeter penetration depths of millimeter waves lead to

extremely large local SAR values at the tissue surface, but only about 40-60% of

incident power is able to reach past 0.1 mm [26]. The superficial nature of millimeter
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Fig. 2.1. A diagram of the considered exposure scenario. A body model
lies close to an N element transmitter array. The position of the n-th
element is sn, and exposure is measured at a point p on the body surface.

wave absorption suggests tissue heating is heavily dependent on incident PD and

surface SAR values, which are markedly easier to understand and model than SAR

readings at points deep in the body.

In the remainder of this study, we construct and analyze low-complexity signal-

level models for incident PD and surface SAR by exploiting the simple nature of

these exposure measures. Although these models are valid at all frequencies, the

main motivation for this work is to develop signal-level models that can be easily

incorporated into the design of exposure-aware transmission schemes such as those

proposed in [35–37,42–45]. As incident PD and surface SAR are not robust measures

of exposure for lower frequencies, the proposed models may not be useful for this

application for sub-6 GHz devices. Therefore, we mainly focus on the models in the

context of millimeter wave systems.
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2.1.2 Proposed Methods for Computing Exposure Matrices

Both incident PD and surface SAR are proportional to the squared electric field

magnitude, therefore either dosimetric quantity can be characterized as a quadratic

function of a transmit signal x as

EXP(p,x) = xHR(p)x, (2.3)

where EXP is the exposure measure, p is the measurement point, and R(p) is the

N ×N characteristic exposure matrix for the point p. We precede the development

and justification of the proposed models by outlining how to compute the exposure

matrix R(p) at a point p. In the considered exposure scenario, an N element antenna

array is in the vicinity of an arbitrary tissue model and exposure is measured at a

point p on the body surface, as shown in Fig. 2.1. The position of the n-th array

element and the vector from the n-th element to p are denoted as sn and pn = p−sn,

respectively. The phase center of the array, given as
∑N−1

n=0 sn [49], is assumed to lie

at the origin for convenience.

Table 2.1 lists the necessary model parameters, drawing a distinction between

those which are known or measured, and those which are calculated. Parameters

related to the antenna gain, such as the gain patterns and the array coupling matrix,

are assumed to be normalized with respect to the transmit power. Additionally, the

transmit signal x is assumed to be unit-norm. The following procedures provide a

step-by-step guides for calculating the matrix REXP(p).

Procedure for Computing PD Matrices: To compute the plane wave equivalent

PD matrix RPD(p), follow the steps below:

1. Calculate the near-field steering vector a(p), which is defined as [49]

a(p) ,
[
γ0e
−jϕ0 γ1e

−jϕ1 ... γN−1e
−jϕN−1

]T

, (2.4)

where ϕn and γn are given by

ϕn =
2π
(
‖pn‖ −‖p‖

)
λ

, (2.5)
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Table 2.1.
List of model parameters.

Measured/Known
Description

Parameters

λ Transmission wavelength (m)

gn(p) Gain pattern of the n-th antenna element

P Transmit power (W)

α(‖p‖) Near-field gain correction factor

M Array coupling matrix

ε∗ Relative complex tissue dielectric constant

ρ Tissue density (kg/m3)

Calculated

Parameters

a(p) Near-field steering vector

ζ in Angle of incidence from n-th source to p

τn Transmission coefficient for n-th source at p

γn = g1/2n (pn)
‖p‖
‖pn‖

. (2.6)

If the gain patterns gn(pn) are near-field gain patterns, then set γn = g
1/2
n (pn).

2. If coupling between array elements is to be modeled, determine a suitable cou-

pling matrix M. Otherwise set M = I.

3. If the gain pattern g(p) was measured in the far-field, determine an appropriate

scaling coefficient α(‖p‖) to correct for differences between the near-field and

far-field array gain. Otherwise set α(‖p‖) = 1.
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4. Calculate the PD matrix RPD(p) as

RPD(p) =
Pα(‖p‖)
4π‖p‖2

MHa(p)aH(p)M. (2.7)

Procedure for Computing Surface SAR Matrices: To compute the surface SAR

matrix RSAR0(p), follow the steps below:

1. Calculate the PD matrix RPD(p).

2. Determine angles of incidence (AoIs) ζ in from the sources to the point p based

on the tissue model.

3. Calculate the corresponding transmission coefficients τn assuming the incident

wavefronts are plane waves, and define the diagonal N ×N matrix T as

T = diag(τ0, τ1, . . . , τN−1). (2.8)

For TE and TM polarized radiation, τn is given as

τn,TE =
2 cos ζ in

cos ζ in +
√
ε∗ − sin2 ζ in

,

τn,TM =
2
√
ε∗ cos ζ in

ε∗ cos ζ in +
√
ε∗ − sin2 ζ in

.

(2.9)

4. Calculate the surface SAR matrix as

RSAR0(p) =
η0σ

ρ
THRPD(p)T, (2.10)

where η0 is the intrinsic impedance of free space given by 377 Ω. Note that the

tissue conductivity σ can be calculated from ε∗ = ε′ − jε′′ as

σ = ωε0ε
′′, (2.11)

where ω is the transmission angular frequency and ε0 is the permittivity of free

space given by 8.85× 10−12 F/m.
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Apart from ε∗, all of the non-calculated parameters involved in these procedures

are related to the transmitter and can be easily obtained from standard array mea-

surements/simulations. Tissue permittivity measurements in the millimeter band

are sparse due to technical limitations, but various studies have addressed models for

human skin complex permittivity at millimeter wave frequencies [21,22,25,27]. Note

that the measured parameters do not depend on the location of the user relative to

the transmitter. Therefore, exposure matrices for various operating conditions can

be computed with the same set of parameters.

2.2 Millimeter Wave Exposure Modeling

In this section, we derive the formulas for calculating exposure matrices provided

in Section 2.1.2. The problem of modeling pointwise incident PD and surface SAR

is equivalent to estimating the incident and transmitted electric field across the body

surface. Therefore, our objective is to approximate the near-field array pattern and

the transmission of energy through the air-tissue boundary.

2.2.1 Incident Power Density

Most regulatory agencies have adopted incident PD as the main exposure metric in

the millimeter band [18,19]. PD measurements are typically estimated by converting

field strength measurements to plane wave equivalent PDs, and can be calculated as

S(p) =

∣∣Em(p)
∣∣2

2η0
=

∣∣Hm(p)
∣∣2

2
η0, (2.12)

where Em(p) is the electric field strength and Hm(p) is the magnetic field strength.

Throughout this chapter, it is assumed that PD refers to plane wave equivalent PD.

Incident PD limits are often referred to as maximum permissible exposures (MPEs)

in regulatory standards [18]. We derive an expression to compute the incident PD

matrix RPD(p) for the quadratic model

S(p,x) = xHRPD(p)x (2.13)
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at a point p located near the transmitter array.

Since incident PD is proportional to
∣∣Em(p)

∣∣2, calculating PD matrices requires

minimal work if the variations in the transmitter array’s radiated electric field as

a function of p and x are known. However, this information is not always readily

available and can be difficult to measure. Therefore, we focus on a more practical

scenario in which only the gain patterns of the individual antenna elements are known.

The initial assumptions for the model development are as follows:

(A1) p is in the far-field of the antenna elements.

(A2) the antenna elements in the array are uncoupled.

Far-field conditions are dependent on the transmission wavelength λ and the array

size. The general conditions for (A1) to hold are ‖p‖ > 2W 2
max/λ, ‖p‖ � Wmax, and

‖p‖ � λ, where Wmax is the maximum linear dimension of the antenna elements.

Some cases where (A2) holds include arrays with inter-element spacing that is large

relative to λ and arrays fed by decoupling networks.

Incident PD at a point p can be expressed in terms of array parameters as

S(p,x) =
PG(p,x)

4π‖p‖2
, (2.14)

where P is the transmit power and G(p,x) is the array gain. In cases where (A1) and

(A2) hold, the array gain can be obtained by the principle of pattern multiplication

as

G(p,x) =
∣∣∣aH(p)x

∣∣∣2 , (2.15)

where a(p) is the length N transmitter steering vector and x is the unit-norm length

N transmit signal [50]. In (2.15), the term aH(p)x is often referred to as the array

factor, which accounts for differences in the phase and amplitude of the radiated

fields. Note that the individual gain patterns are absorbed in the steering vector.

Steering vectors typically represent the set of phase delay differences correspond-

ing to the radiated fields from each source and ignore path loss differences between

wavefronts. This is only applicable far from the array, as the path lengths from each
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transmitter element to p may differ significantly when the point of interest is close

to the array. These path length variations result in non-negligible attenuation dif-

ferences between the waves which must be accounted for to calculate the array gain

at p. The steering vector is therefore constructed to represent the gains and phase

delays differences between spherical wavefronts as they impinge on p and is defined

as in (2.4). Note that a(p) is given in a general form that adapts to both the array

geometry and the elements’ gain patterns.

A characteristic matrix RPD(p) for the quadratic model of ideal incident PD can

be defined using the expressions above as

RPD,ideal(p) ,
P

4π‖p‖2
a(p)aH(p). (2.16)

The matrix RPD,ideal(p) is a Hermitian, positive semi-definite matrix by construction.

Note that the dominant eigenvector of the ideal PD matrix is a scalar multiple of

the near-field array steering vector a(p), and maximum exposure occurs when x is

aligned with a(p). This agrees with the intuition that plane wave equivalent PD is

directly proportional to the array gain.

The characteristic matrix given in (2.16) is accurate under (A1) and (A2), but

many exposure scenarios do not fall under these assumptions. Both near-field field

components and mutual coupling can significantly affect array patterns and radiation

emissions. We add correction factors to (2.16) to address both of these issues.

The near-field region of an array is characterized by complex field components that

decrease with distance faster than 1/‖p‖. This results in gain patterns whose shape

can vary significantly with distance from the source. In antenna measurement proce-

dures where far-field conditions cannot be met, a gain pattern Gnf(p) is measured in

the near-field and the far-field gain pattern is approximated from the model

Gff(θ, φ) ≈ α−1(‖p‖)Gnf(p), (2.17)

where θ and φ are the elevation and azimuth angles of p, respectively, and α(‖p‖) ∈
R>0 is the near-field gain correction factor (NFGCF) [51]. This only gives an es-

timate for the far-field gain since the NFGCF only varies with distance, but the
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error between the near-field and far-field gain patterns may have a directional depen-

dence. The near-field gain converges to the far-field gain at large distances, therefore

lim‖p‖→∞ α(‖p‖) = 1. The NFGCF can be estimated empirically by comparing mea-

sured data with theoretical gain curves that decay as 1/‖p‖2 [51].

Array elements are often mutually coupled and act as parasitic elements that

absorb and reradiate outgoing waves. A popular and simple method for modeling the

field pattern of a coupled array is through an N ×N coupling matrix M [52–54]. Let

{En,uc(p)}N−1n=0 denote the uncoupled three-dimensional electric field pattern of the

array elements obtained from a unit excitation. The coupled array field pattern can

be found as

Ec(p) = Euc(p)Mx, (2.18)

where Euc = [E0,uc, . . .EN−1,uc]. In general, the coupling matrix cannot be deter-

mined exactly and must be estimated as in [52,53]. Additionally, the coupling matrix

M may vary depending on p. However, we assume that M remains relatively constant

over the exposed region of interest.

Incident PD Model: With the above models for ideal PD, near-field gain, and

mutual coupling, the corrected characteristic exposure matrix to compute incident

PD as xHR(p)x is defined as

RPD(p) , α(‖p‖)MHRPD,ideal(p)M

=
Pα(‖p‖)
4π‖p‖2

MHa(p)aH(p)M. (2.7 revisited)

The corrected matrix better approximates incident power density in non-ideal scenar-

ios as shown in Section 2.3.2. It can also be seen that the corrected and uncorrected

models agree under (A1) and (A2) since RPD(p) = RPD,ideal(p) when α(‖p‖) = 1

and M = I. The model in (2.7) is able to predict pointwise exposure with only prior

knowledge of array parameters which are typically measured during the transmitter

design. Note that the model not only predicts PD as a function of the transmit signal,

but also as a function of space.



20

It can be seen that the PD matrix is rank-one by construction, and therefore it can

be expressed as the outer product of its dominant eigenvector as RPD(p) = r(p)rH(p).

In the ideal PD model, this eigenvector is colinear with the array steering vector a(p),

whereas the coupling matrix and NFGCF rotate and scale the a(p) in the non-ideal

scenario. In both cases, maximum exposure occurs when the transmit signal is aligned

with the dominant eigenvector of the PD matrix, which can be expressed as a linear

transformation of a(p). This motivates the notion of an effective array steering vector

for a given exposure measure, which is defined as the vector âEXP(p) such that

EXP(p,x) =

∣∣âHEXP(p)x
∣∣2

‖p‖2
. (2.19)

Note that for the proposed PD matrix, the effective array steering vector is given as

âPD(p) =

√
Pα(‖p‖)

4π
MHa(p), (2.20)

and so incident PD can be defined as the rank-one model

S(p,x) =

∣∣âHPD(p)x
∣∣2

‖p‖2
. (2.21)

PD calculations are relatively easy to perform for compliance, but they do not con-

tain information about energy absorption in tissues. Incident electromagnetic waves

are partially reflected when incident on dielectric media, which leads to significant dif-

ferences in absorption for oblique incidence versus tangent incidence. Because of this,

we consider SAR at the tissue surface as an alternative measurement for radiation

absorption.

2.2.2 Specific Absorption Rate

SAR is a more robust measure of exposure than incident PD since it captures the

rate of energy absorption in tissues. Unlike incident PD, SAR must be measured,

not calculated, with the device operating in its intended manner at full transmit

power. Current methodologies require measuring SAR values in a phantom head
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while the wireless device is held in a variety of operating conditions. Although

current averaging volumes for SAR may not yield measurements that are useful for

determining compliance in millimeter wave systems, SAR values at the tissue surface

may serve as a suitable measure of energy deposition.

For a plane wave with power density S(p,x) incident on a point p on the surface

of planar tissue, the pointwise surface SAR, denoted as SAR0 is given as

SAR0(p,x) =
2TS(p,x) cos ζ i

ρδ
, (2.22)

where T is the power transmission coefficient of the skin, ζ i is the angle of incidence

(AoI), and δ is the skin depth [21]. The skin depth is defined as the distance that

electromagnetic radiation travels into a material before its power decreases to exp(−2)

of its surface value and is given by

δ =
λ

−2πIm{
√
ε∗} , (2.23)

where ε∗ is the complex dielectric constant of the tissue [55]. Small penetration depths

also lead to radiation absorption in tissue decreasing exponentially from the skin as

SAR(p,x, ξ) = SAR0(p,x)e−2ξ/δ, (2.24)

where ξ is the depth from the tissue surface [21]. Maximum exposure occurs at the

surface of the tissue and quickly decays within the skin.

The expression in (2.22) is heavily dependent on the AoI ζ i. Far from the array,

this can approximated as the AoI from the center of the array to p because all path

lengths‖pk‖ are approximately the same. We denote the surface SAR model in (2.22)

with ζ i calculated in this manner as the single plane wave (SPW) SAR model, since

the incident radiation at p is assumed to be a plane wave with power density S(p,x).

The approximations of the SPW model may lead to poor SAR estimates when p

is close to the array. For example, if p is much closer to one of the array elements

than to any other antenna, then ζ i cannot be estimated as above. Moreover, the

assumption that the incident wavefront behaves like a plane wave may not hold in
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general. Rather than computing surface SAR by finding the incident field at p, we

propose finding the total transmitted field as a superposition of the transmitted fields

from each source.

. . .

tissue

incident wavefronts

transmitted wavefront

array

Fig. 2.2. Diagram of the considered electromagnetic radiation transmis-
sion scenario with array elements located near a planar tissue model. The
radiated field from the n-th source impinges on the tissue surface at an
angle of incidene ζ in and contributes to the total transmitted field.

Consider the scenario in Fig. 2.2, where the transmitter array is a short distance

away from a planar tissue surface. We assume all electromagnetic fields involved

are time-harmonic and can therefore be represented in phasor form. For the n-th

source, let ζ in be the AoI of the incident wavefront and E in(p) be the complex complex

magnitude of the incident electric field at point p. The transmitted electric field
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amplitudes can be expressed in terms of the incident field amplitudes and transmission

coefficients τn as

E tn(p) = τnE in(p), (2.25)

where the superscript t denotes the transmitted portion of the electric field. The total

transmitted field can then be found as the sum of the individual fields as E t(p) =∑N−1
n=0 τnE in(p). Transmission coefficients are dependent on the field polarization,

the shape of the incident waves, and the geometry of plane of incidence. Here, we

assume that the incident waves and surface of incidence are planar. In this case, the

transmission coefficients for TE and TM polarization are given as in (2.9).

Surface SAR Model: Since SAR is proportional to
∣∣E t∣∣2 and incident PD is pro-

portional to
∣∣E i∣∣2, the surface SAR matrix is defined in terms of the PD model as

RSAR0(p) ,
η0σ

ρ
THRPD(p)T, (2.10 revisited)

where T is a diagonal matrix with the transmission coefficients τ0, τ1, . . . , τN−1 in

its diagonal. This SAR matrix can then be used to predict surface SAR at a point p

as xHRSAR0(p)x. Furthermore, the exponential decay model in (2.24) indicates that

reducing average SAR measurements in millimeter wave systems can be simplified to

reducing surface SAR measurements. Note that RPD is calculated with the proposed

PD model as in (2.7), so the proposed surface SAR model is valid even when (A1)

and (A2) do not apply. It can be seen that the SAR matrix is also characterized by

an effective array steering vector, given as

âSAR0(p) =

√
η0σ

ρ
TH âPD(p), (2.26)

and surface SAR can be modeled as

SAR0(p,x) =

∣∣∣âHSAR0
(p)x

∣∣∣2
‖p‖2

. (2.27)

In this case, the rotation of the steering vector is dependent on p through T.
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2.3 Model Verification Results

In this section, we validate the proposed formulas for exposure matrices in (2.7)

and (2.10) by simulating a simple millimeter wave exposure scenario in ANSYS High

Frequency Structure Simulator (HFSS) software. The following examples demon-

strate that the quadratic signal-level models can predict exposure values from software

simulations with high accuracy, even in non-ideal settings.

2.3.1 Dipole Array Parameters and Head Model

We consider N element uniform linear arrays (ULAs) of half-wavelength dipoles

placed on the x-axis transmitting at 28 GHz. In all simulations, the inter-element

spacing of the array is λ/2 and the system transmit power P is 10 mW. Simulations

were performed with both ideal and non-ideal dipoles. The use of ideal dipoles indi-

cates that the antennas were implemented as cylindrical sources with the theoretical

radiation pattern of a linear antenna in both the near-field and the far-field. Note

that simulations with ideal dipoles fall under (A1) and (A2). Non-ideal dipoles were

also modeled in HFSS in order to validate the proposed models in the presence of

mutual coupling and near-field effects.

The parameters for the ideal and non-ideal dipoles are shown in Table 2.2. At the

operating frequency of 28 GHz, the ideal and non-ideal dipoles achieved a maximum

gain of 1.64 and 1.76, respectively, in the xy-plane. For simplicity, all exposure testing

points in the validation results are assumed to lie in the xy-plane. The coupling
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matrices were calculated with the array Z-parameters as described in [52]. This

resulted in the normalized coupling matrices M(2) and M(4) given as

M(2) =

 0.69 + j0.03 0.07 + j0.13

0.07 + j0.13 0.69 + j0.03

 ,

M(4) =


0.48 + j0.03 0.06 + j0.08 −0.03− j0.03 0.02 + j0.02

0.06 + j0.08 0.47 + j0.04 0.05 + j0.08 −0.03− j0.03

−0.03− j0.03 0.06 + j0.08 0.47 + j0.04 0.05 + j0.08

0.02 + j0.02 −0.03− j0.03 0.05 + j0.08 0.48 + j0.03


, (2.28)

for a two-element and four-element ULA, respectively. The NFGCFs were obtained

by comparing the predicted and actual array gain at a point 5 mm away from the

transmitter at boresight, giving the factors α(2) = 1.43 and α(4) = 2.91 for arrays of

two and four elements, respectively.

Table 2.2.
Dipole antenna parameter specifications.

Parameter
Specifications

Ideal Dipole Non-ideal Dipole

Total Length (mm) 5.353 5.065

Radius (mm) 0.01 0.01

Source Length (mm) N/A 0.05

Source Impedance (Ω) N/A 71.18

For SAR simulations, we consider a hemispherical head model with a 20 mm

radius centered on the y-axis at a point 5 mm away from the origin, as seen in Fig.

2.3. The head tissue is assumed to be homogeneous with complex dielectric constant

ε∗ = 19− j19.26 approximately based on Gandhi’s model in [21] at a frequency of 28
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GHz, giving a tissue conductivity of σ = 30 S/m. The tissue density is assumed to

be 1 g/cm3. SAR values in HFSS were obtained at a depth of 0.2 mm.

20 mm

p 5 mm

body tissue

dipole
array

0.2 mm

x

y

Fig. 2.3. HFSS setup for SAR simulations. The dipole array is placed 5
mm away from a hemispherical tissue model with radius 20 mm, complex
dielectric constant ε∗ = 19 − j19.26, and tissue density 1 g/cm3. SAR
values are obtained at a depth of 0.2 mm from the surface point p.

Since the SAR simulation results were obtained below the tissue surface, we scale

the proposed SAR model and SPW model by a constant β to properly account for

absorption losses. To determine β, we simulated a plane wave traveling in the −y
direction and measured pointwise SAR on the y-axis at a depth of 0.2 mm below

the tissue surface. This SAR reading was compared to the predicted surface SAR

value obtained from (2.22) to compute β. For the head model with parameters as
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Fig. 2.4. Plane wave equivalent PD values from HFSS simulations and the
quadratic model xHRPD(p)x, with PD matrices calculated as in (2.7), vs.
the beam sweep angle ψ of the transmit signal x in (2.29). The point p
is located 5 mm from the array center and at 30◦ from boresight. Results
with half-wave dipole ULAs are shown in the ideal case with (a) N = 2
and (b) N = 4, and in the non-ideal case with N = 2 and N = 4 in (c)
and (d), respectively. The dipole antenna parameters are given in Table
2.2, and the array coupling matrices are given in (2.28).
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discussed above, this procedure resulted in a scaling coefficient β = 0.7024. The same

scaling coefficient was used for all SAR scenarios.

2.3.2 Incident PD Model Validation

In the first example, we compare incident PD values obtained from simulations to

the quadratic PD model. A beam sweep is performed by setting the transmit signal

as

x =
1√
N

[
1 ejψ ej2ψ . . . ej(N−1)ψ

]T

, (2.29)

and varying ψ. Plane wave equivalent PD values were obtained from HFSS at a point

p located 5 mm from the center of the array at 30◦ from boresight. These results

were compared to the PD model xHRPDx for various values of ψ. The PD matrices

were calculated in terms of the simulation parameters and the point p using (2.7).

For example, the matrix for a two-element ULA with ideal dipoles was computed as

R
(2)
PD =

 2.87 0.68 + j4.41

0.68− j4.41 6.95

 . (2.30)

Fig. 2.4 (a) and (b) demonstrate a high agreement between the proposed PD

model and the simulation results in the ideal case. The model yields a sinusoidal curve

in the case N = 2, and the variation of PD behaves as a sum of sinusoids for N = 4.

The PD model also demonstrates high accuracy in estimating the simulated exposure

values in a non-ideal scenario as seen in Fig. 2.4 (c) and (d). As expected, the

correction factors impose an amplitude scaling and phase translation on the sinusoid

model obtained for N = 2.

2.3.3 Surface SAR Model Validation

In the second example, we consider the surface point p = [3.47 − 5.30 0]T mm

on the head model in Fig. 2.3. Fig. 2.5 shows the comparison between simulated

measurements from HFSS and both the SPW SAR model and the proposed SAR
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model xHRSAR(p)x with RSAR(p) found as in (2.10). For example, the scaled SAR

matrix βRSAR(p) for a two-element ULA with ideal dipoles was determined to be

R
(2)
SAR =

 5.20 −0.20 + j13.49

−0.20− j13.49 35.04

 . (2.31)

In the non-ideal case, we found an error between the amplitude of the proposed

model and the simulated SAR even when taking the absorption coefficient into con-

sideration. These discrepancies could be caused by a variety of unaccounted factors,

such as coupling between the antennas and the head model, the curvature of the head

model, and the depth at which SAR is simulated. To address this issue, the predicted

SAR values were scaled by a constant K, which was chosen to minimize the error

between the proposed model and the simulated values. We note that this scaling

constant was only used in the case of the non-ideal dipoles.

The results demonstrate that the proposed model can predict the simulated SAR

values with high accuracy. More importantly, the shape of the curves produced by

the proposed model closely match that of the simulation results, especially compared

to the SPW model curves. This suggests that the model can predict which transmit

signals result in relatively high and low exposure values. Therefore, the model can

still be applied to design transmission schemes which minimize exposure levels even

if K cannot be determined accurately. In addition, any amplitude offset between

the proposed model and actual SAR measurements can be lumped into the effective

transmit power of the device and controlled through power control settings.

2.4 Exposure Model Analysis and Applications

Given a wireless device and a model for the exposed body, the proposed models

for incident PD and surface SAR enable systems to estimate pointwise exposure over

regions in space. Let P be a set of testing points or a region over which exposure
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is regulated, such as a superficial area on a head model or a region surrounding the

transmitter array. Then an exposure constraint over P can be expressed as

EXP(p,x) ≤ Q, ∀p ∈ P , (2.32)

where Q is the regulatory exposure threshold. However, if P is defined as a contiguous

area or volume, it is unfeasible to directly incorporate this constraint into signal

design algorithms to mitigate electromagnetic absorption. In this section, we present

methods for sampling P in order to characterize exposure over the entire testing

region within a certain error threshold with a finite number of points. We then

leverage this sampled representation to obtain a method for calculating exposure

matrices for predicting average exposure, rather than pointwise exposure.

2.4.1 Sampling Methods

Let p and p̃ be two points in the region P . We first examine the relationship

between the maximum difference in exposure levels at these points, given as

dEXP(p, p̃) = max
x:‖x‖=1

∣∣EXP(p,x)− EXP(p̃,x)
∣∣ , (2.33)

and inter-point distance ‖p− p̃‖.
Note that the highest levels of exposure occur at points which are closest to the

array and which lie in the direction of the highest array gain. These characteristics

can be captured by the minimum distance to the array over P , denoted as rmin, and

the maximum directivity over P among the antennas, denoted as Gmax. The minimum

distance rmin is defined as the smallest distance from a point in P to any antenna

element and is given as

rmin = min
p∈P

rmin(p), (2.34)

where rmin(p) is smallest distance to p over the array elements,

rmin(p) = min
n=0,1,...,N−1

‖pn‖ . (2.35)
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Likewise, the maximum directivity Gmax can be defined in terms of the individual

gain pattern as

Gmax = max
n=0,1,...,N−1

max
p∈P

gn(pn). (2.36)

These parameters correspond to a worst-case scenario in terms of exposure, and are

therefore useful in bounding the maximum exposure differential.

We now state the following lemma as a preliminary step in characterizing an upper

bound on dEXP(p, p̃).

Lemma 2.4.1 Let p and p̃ be distinct points in a set P not containing the origin.

Assume that gn(pn) is constant over P. Then we have that for any non-zero transmit

signal x, ∣∣∣∣∣∣
∣∣aH(p)x

∣∣2
‖p‖2

−
∣∣aH(p̃)x

∣∣2
‖p̃‖2

∣∣∣∣∣∣ < ε (2.37)

as long as ‖p− p̃‖ < ∆/‖x‖2, where ∆ is given as

∆ =
εr2min

2N2Gmax

(
4π

λ
+

1

rmin

)−1
. (2.38)

The proof can be found in Appendix A.

Although Lemma 2.4.1 only bounds the difference in a quantity closely related

to PD, the structure of the exposure models allow this result to be applied to both

the PD and SAR models. As demonstrated in Section 2.2, both PD and surface

SAR matrices can be characterized by an steering vector, and exposure at p can be

modeled as a rank-one quadratic as in (2.19). The effective steering vector âEXP(p)

can be expressed as a spatially dependent linear transformation on a(p) of the form

âEXP(p) = kEXPD(p)Wa(p), (2.39)

where kEXP is a constant of proportionality dependent on the exposure measure, D(p)

is an N ×N diagonal matrix defined as a function of p, and W is an N ×N matrix.

For example, the PD effective steering vector âPD(p) can be obtained by setting

kPD =
√
P/4π, D = α(‖p‖)I and W = MH . For simplicity we assume that the
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region of interest is small enough so that D(p) can be approximated by a constant

matrix D over P and gn(pn) is approximately constant.

The linear transformation in (2.39) and Lemma 2.4.1 can then be applied to show

the following result.

Lemma 2.4.2 Let p and p̃ be distinct points in a set P not containing the origin.

Assume gn(pn) is approximately constant over P and that W is full rank. Then

dEXP(p, p̃) < ε (2.40)

as long as

‖p− p̃‖ < ∆EXP ,
∆

k2EXP‖WD‖22
, (2.41)

where ∆ is given as in Lemma 2.4.1.

Proof By substituting (2.19) into the definition of dEXP(p, p̃), we have that

dEXP(p, p̃) = max
x :‖x‖=1

∣∣∣∣∣∣
∣∣âHEXP(p)x

∣∣2
‖p‖2

−
∣∣âHEXP(p̃)x

∣∣2
‖p̃‖2

∣∣∣∣∣∣ . (2.42)

Since effective steering vectors in (2.42) are linear transformations of a(p), dEXP(p, p̃)

can be expressed as

dEXP(p, p̃) = max
x :‖x‖=1

∣∣∣∣∣∣
∣∣aH(p)x̂

∣∣2
‖p‖2

−
∣∣aH(p̃)x̂

∣∣2
‖p̃‖2

∣∣∣∣∣∣ , (2.43)

where x̂ is the effective transmit signal given as

x̂ = kEXPWHDHx. (2.44)

Applying Lemma 2.4.1 with the effective transmit signal x̂, we have that if

‖p− p̃‖ < ∆

maxx :‖x‖=1 ‖x̂‖2
=

∆

k2EXP‖DW‖22
, (2.45)

then dEXP(p, p̃) < ε as desired.
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The previous results not only imply that the maximum exposure differential dEXP(p, p̃)

can be guaranteed to lie below the error threshold ε if the two testing points are suffi-

ciently close, but also give an explicit expression for the maximum allowable distance

between the two points. The assumption that W is full rank, which is equivalent

to M having full rank, corresponds with the notion that non-zero transmit signals

cannot induce an eletric field of zero over P and is thus reasonable in the context

of this study. These bounds are now applied to formulate uniform and non-uniform

sampling methods which allow us to characterize pointwise exposure over P in terms

of a finite number of points at the cost of a predetermined margin of error.

Uniform Sampling: A direct application of Lemma 2.4.2 yields a method for uni-

formly sampling the region P . Let ε be the desired maximum exposure variation

between adjacent points. Then sampling points in P at a maximum distance of ∆EXP

guarantees that the exposure differential between two adjacent points is at most ε.

Note that this criteria only gives a guideline for the allowable distance between sam-

ple points, since the specific manner of sampling should be determined based on the

body tissue geometry. However, we provide a numerical example in Section 2.4.3 to

demonstrate how to sample a relatively simple region.

Non-uniform Sampling: A shortcoming of the uniform sampling method is that

it does not leverage the decay of electromagnetic field strengths with distance from

sources. Intuitively, exposure values should follow a downward trend as points move

farther from the transmitter and thus the distance between sampled points should

be allowed to increase without penalty. This dependence can be seen in the term

∆EXP, which increases with r3min. Additionally, other model parameters which are

dependent on location, such as the transmission coefficients and the NFGCF, also

affect the sampling distance. The uniform sampling approach restricts ∆EXP to a

constant value based on the point closest to the array, but a non-uniform method can

be developed by adaptively adjusting the sampling distance.

The main idea of the non-uniform sampling algorithm is to sample the closest

points to the array first and move outwards while adaptively adjusting the sampling
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distance. Given a spatial region P , we first sample the closest point to the transmitter

array, given as

p0 = argmin
p∈P

rmin(p). (2.46)

Based on Lemmas 2.4.1 and 2.4.2, a positionally dependent sampling distance can be

defined as

∆EXP(p) ,
εr2min(p)

2N2Gmaxk2EXP

∥∥WD(p)
∥∥2
2

×
(

4π

λ
+

1

rmin(p)

)−1
. (2.47)

According to the uniform sampling criteria, the next sample points should be located

at a distance of ∆EXP(p0) from p0. Let p1 be one of those points, and let ∆EXP(p1)

be the sampling distance corresponding to p1. Since exposure at points closer to the

array than p1 is characterized by the sample at p0, the remaining sample points will

be located farther from the array than p1. Therefore, the next sample point, p2, is

chosen to lie at a maximum distance of ∆EXP(p1) from p1, as doing so ensures that

the conditions of Lemma 2.4.2 are still satisfied and the exposure differential between

p1 and p2 is bounded as dEXP(p1,p2) < ε. This procedure is repeated until the entire

region is sampled.

2.4.2 Spatially Averaged Exposure Model

As previously mentioned, regulation agencies measure spatially averaged exposure

rather than pointwise exposure in order to determine whether wireless devices comply

with exposure thresholds. The sampling methods developed in the previous section

allow us to characterize modeled exposure over a region P with a finite number

of points. We now show how this representation can be used to estimate spatially

averaged exposure over P , given as

EXPavg(P) =

∫
P EXP(p,x)dp

|P| , (2.48)
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where |P| is the area or volume of P , with a quadratic model xHRavg(P)x. For

simplicity, we shortly drop the dependence of the exposure function on the transmit

signal x.

Let P be the region over which measurements are averaged and let

Ps =
{

p(0), p(1), . . . , p(M−1)
}

(2.49)

be theM sample points obtained by applying either of the proposed sampling methods

on P . The region P can be divided into subregions corresponding to each sample point

as

P(m) =

{
p ∈ P : p(m) = argmin

p̃∈Ps

‖p− p̃‖
}
. (2.50)

The m-th subregion consists of the points in P lying closest to the m-th sample point,

and these subregions define a partition of P . Therefore, average exposure over P can

be written as

EXPavg(P) =

∑M−1
m=0

∫
P(m) EXP(p)dp

|P| . (2.51)

Assuming there are no discontinuities in the electromagnetic field over P , the

integral Mean Value Theorem gives us that the average exposure over each subre-

gion P(m) is equal to the exposure value at some point p̃(m) in the subregion. This

relationship can be formally stated as

EXP(p̃(m)) =

∫
P(m) EXP(p)dp∣∣P(m)

∣∣ . (2.52)

Note that the point p̃(m) belongs to the m-th sample point’s subregion. Moreover,

the distance between pm and p̃m must be less than the distance between pm and its

neighboring sample points. Thus, Lemma 2.4.2 ensures that

dEXP(pm, p̃m) < ε. (2.53)

Combining the expressions (2.51) and (2.52) with the bound in (2.53), we have

that average exposure over the entire region can be approximated as

EXPavg(P) ≈
∑M−1

m=0

∣∣∣P(m)
∣∣∣EXP(p(m))

|P| . (2.54)
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If P is sampled such that each subregion is of the same size, average exposure can be

approximated as the arithmetic mean of the sample points as

EXPavg(P) ≈ EXPavg(Ps) ,
1

M

M−1∑
m=0

EXP(p(m)). (2.55)

In this case, the maximum error between the approximation in (2.55) and the true

averaged exposure, given as

dEXP(P ,Ps) = max
x :‖x‖=1

∣∣EXPavg(P)− EXPavg(Ps)
∣∣ , (2.56)

will also be bounded by ε. The approximation for average exposure given in (2.55)

can also be written in terms of the signal-level model as

EXPavg(Ps,x) =
1

M

M−1∑
m=0

xHREXP(p(m))x (2.57)

= xH

 1

M

M−1∑
m=0

REXP(p(m))

x (2.58)

, xHREXP, avg(P)x, (2.59)

where the matrix REXP, avg(P) now characterizes average exposure over P . In general,

the average exposure matrix can be written as a weighted average of the exposure

matrices for each sample point as

REXP, avg(P) =
1

|P|
M−1∑
m=0

∣∣∣P(m)
∣∣∣REXP(p(m)). (2.60)

In practice, average exposure matrices R0, R1, ... ,RL−1 corresponding to L dif-

ferent body regions and/or gestures can be calculated offline to model exposure over

a variety of operating conditions. A worst-case constraint on the system can then be

defined as

max
`=0,1,...,L−1

xHR`x ≤ Q. (2.61)

This constraint is identical to those examined in [36,37,42–46], therefore the signaling

schemes developed in these studies can be applied to jointly maximize the far-field

rate performance while controlling near-field exposure.



37

2.4.3 Numerical Examples of Sampling Methods

We present a numerical example to demonstrate the application of the proposed

sampling guidelines. We consider a scenario similar to that in Fig. 2.3, but with a

spherical head model with a radius of 90 mm at a distance d away from a transmitter

equipped with N ideal half-wave dipoles operating at a frequency of 28 GHz. We

assume an incident power density constraint is placed on the surface of the head

model in the xy-plane, where maximum exposure occurs.

The surface of the head model was sampled for N = 2 and d = 10 mm according to

the uniform and non-uniform sampling guidelines as seen in Fig. 2.6. For illustrative

purposes, the transmit power was set to P = 10 mW and the variation threshold

ε was set to 25 mW/cm2. The sampled area corresponds to an arc of length 94.25

mm centered at boresight from the center of the transmitter. Note that although

the uniform sampling forces points to be located in close proximity, the non-uniform

approach allows sparser sampling at points relatively far from the transmitter. It

takes 51 points to uniformly sample the region, whereas the region can be sampled

with only 17 points using the non-uniform method.

Table 2.3.
Number of sample points for different choices of N and d.

Parameters
# Sampling Points

Uniform Non-uniform

d = 10 mm, N = 2 1251 343

d = 10 mm, N = 4 5003 1359

d = 5 mm, N = 2 5357 787

d = 5 mm, N = 4 21425 3133

The number of sample points required to sample the region from the previous ex-

ample with a variation threshold of ε = 1 mW/cm2 for various combinations of values
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for N and d are shown in Tables 2.3. In all cases, non-uniform sampling requires a

significantly smaller number of points than the uniform method but the sampling dis-

tance must be recalculated at each iteration, increasing the computational complexity

of this approach. Although the amount of sampling required in all cases seems oner-

ous, this is due to the restrictive bound we have placed on the maximum difference

between pointwise exposure measurements. For practical applications, the sample

points should be used to compute average exposure matrices as discussed in Section

2.4.2.

2.4.4 Average Exposure Model Validation

In order to validate the average exposure model, we consider two arcs, denoted

as P1 and P2, on the surface of a head model of radius R = 90 mm next to a two-

element dipole array at distance of d = 5 mm from the head, as shown in Fig. 2.7.

These regions were sampled uniformly and non-uniformly according to the proposed

guidelines. As in Section 2.3, we assume that the transmission frequency is 28 GHz,

the transmit power is 10 mW, and all arrays are ULAs with λ/2 spacing.

In Fig. 2.8, we perform a beam sweep with non-ideal dipoles as in Section 2.3

and compare the simulated average PD from HFSS with the average PD predicted

by the model in (2.55). The regions were uniformly sampled with ε = 10 mW/cm2,

resulting in 45 and 29 sample points for P1 and P2, respectively. The proposed model

approximates the simulated values well even though the value of ε is relatively large.

We also studied the convergence of the average exposure matrix in (2.60) as M

increases for both uniform and non-uniform samplings of the regions P1 and P2.

In this case, we consider an ideal two-element half-wave dipole array and compute

average PD matrices. For each region P , the limit as M → ∞ of the average PD

matrices, denoted as R(P), is taken to be REXP, avg(P) from (2.60) with ε = 0.1

mW/cm2. In Fig. 2.9, we compare the mean-square-error (MSE) between the average

PD matrix RPD, avg(P) from (2.60) and R(P) versus the number of samples used to
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compute RPD, avg(P). Since the sampling procedures are defined in terms of ε rather

than the number of samples, there is a range of values of ε for which a sampling of

P will result in a fixed M . Therefore, for any given M we take the MSE above to

be the average MSE among all ε which result in M samples. The plot shows that

non-uniform sampling leads to a lower MSE than uniform-sampling in both regions.

This is because the non-uniform sampling procedure allocates more samples to the

portions of a region which have a larger effect on the average PD matrix than to the

portions which are less impactful.

2.5 Conclusion

In this chapter, we examined exposure models for two major measures of elec-

tromagnetic absorption at millimeter wave frequencies. We developed expressions to

approximate the pointwise exposure matrices for both incident PD and surface SAR

and showed that both exposure measures are characterized by an effective steering

vector. The proposed models only require a relatively small number of parameters

to be computed and can predict exposure over contiguous regions without additional

measurements. Software simulations demonstrate that the exposure models can esti-

mate pointwise exposure with high accuracy.

The models were then analyzed in order to provide insights into how to sample

them to obtain an accurate representation of exposure over a spatial region. The pro-

posed uniform and non-uniform sampling guidelines indicate what inter-point sam-

pling distance is required to ensure that spatial exposure variations lie beneath a

chosen threshold. A numerical example showing the application of the sampling

algorithms demonstrates that non-uniform spatial sampling results in significantly

fewer sample points. The sampling methods can further be applied to the problem

of calculating quadratic models for spatially averaged exposure. Simulation results

demonstrate that these models can effectively approximate average exposure. Average

exposure matrices can also be directly incorporated into exposure-aware signal design
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algorithms in the literature to achieve high data rates while remaining compliant with

regulatory exposure standards.
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Fig. 2.5. SAR values from HFSS simulations, the SPW SAR model in
(2.22), and the quadratic model xHRSAR(p)x, with SAR matrices calcu-
lated as in (2.10), vs. the beam sweep angle ψ of the transmit signal
x in (2.29). The body model and measurement point are shown in Fig.
2.3. Non-simulated values were scaled by a factor of 0.7024 to account
for absorption losses. Results with half-wave dipole ULAs are shown in
the ideal case with (a) N = 2 and (b) N = 4, and in the non-ideal case
with N = 2 and N = 4 in (c) and (d), respectively. The dipole antenna
parameters are given in Table 2.2, and the array coupling matrices are
given in (2.28). In the non-ideal cases, the proposed model was scaled by
a factor of K = 1.203 and K = 1.423 in (c) and (d), respectively.
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Fig. 2.6. Plots of the sampling points obtained from the (a) uniform and
(b) non-uniform sampling approaches over the surface of a spherical head
model with radius 90 mm at a distance of 10 mm from a two-element ideal
dipole ULA. Sampling was performed with an error parameter of ε = 25
mW/cm2.
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Fig. 2.7. Two regions considered in the validation of the average exposure
model. Each region is an arc of measure 5◦ on the surface of a spherical
head model with radius 90 mm at a distance of 5 mm from the center of
the array.
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and the proposed average exposure model in (2.55), vs. the beam sweep
angle ψ of the transmit signal x in (2.29) on the regions P1 and P2. Values
were obtained for a non-ideal two-element dipole array. For both regions,
the proposed model was calculated using a uniform sampling with ε = 10
mW/cm2.
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3. EFFICIENT SIGNAL DESIGN UNDER EXPOSURE

CONSTRAINTS

In this chapter, we propose two applications for the exposure models considered in

Chapter 2 by introducing constraints directly into the signal design problem. We first

consider a scenario in which the number of exposure constraints is large, and propose

an approach that reduces the number of exposure constraints by iteratively finding

the points with maximum exposure. In the second scenario, we consider a dynamic

exposure scenario in which the position of the device relative to the user changes.

We propose a position-based adaptive power back-off scheme and develop an efficient

implementation by leveraging the structure of DFT codebooks.

3.1 System Model

We consider an uplink narrowband transmission from a wireless device with NT

transmit antennas to a base-station with NR receive antennas. The received signal

y ∈ CNR can be written as

y = Hx + n, (3.1)

where x ∈ CNT is the transmit signal, H ∈ CNR×NT is the channel matrix, and

n ∈ CNR is an additive white Gaussian noise (AWGN) vector with entries distributed

as C(0, σ2). The transmit signal x is formed from M data streams by precoding

a zero-mean, unit-variance symbol vector s ∈ CM with a precoder F ∈ CNT×M as

x = Fs. We assume that the data streams are independent, thus E[ssH ] = I.

We assume the channel follows an extended Saleh-Valenzuela geometric model [56]

with L propagation clusters. Here, H is given as

H =
1√
L

L∑
`=1

β`aR(θR,`)a
H
T (θT,`), (3.2)
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where β` ∼ CN (0, 1) denotes the complex cluster gain, aR(θR,`) ∈ CNR denotes

the receive array steering vector corresponding to the angle of arrival (AOA) θR,`,

and aT (θT,l) ∈ CNT denotes the transmit array steering vector corresponding to the

angle of departure (AOD) θT,`. The transmitter and receiver are assumed to employ

uniform linear arrays (ULAs) of antennas with half-wavelength spacing. In this case,

the array response vector for an array with N elements is given as

a(θ) =
[
1 ejπ sin θ . . . ejπ(N−1) sin θ

]T
. (3.3)

The precoder optimization problem under simultaneous transmit power and ex-

posure constraints is given as

max
F∈F

log

∣∣∣∣I +
1

σ2
HFFHHH

∣∣∣∣
s.t. tr(FHF) ≤ PT (3.4)

EXP(F,P) ≤ Q,

where F is the precoding feasible set, EXP(F,P) is an exposure constraint function

defined over the set of testing points P and Q is the exposure threshold. The mod-

els from the previous section yield the approximation xHR(p)x for exposure at p.

Exposure measurements are typically reported as averages over a specified time win-

dow. The averaging times are typically on the order of minutes, while the transmit

signal can vary on the order of microseconds. Additionally, the maximum exposure

measurement must lie below the PD or SAR limit for the device to be compliant.

Therefore, we define the exposure constraint function EXP(F,P) as a maximum ex-

posure constraint over all of the testing points

EXP(F,P) , max
p∈P

E
[
xHR(p)x

]
= max

p∈P
tr
(
FHR(p)F

)
. (3.5)

PD and SAR thresholds are typically specified as averages over contiguous spatial

regions rather than single points. PD measurements are averaged over areas of 1 or

20 cm2, while SAR measurements are averaged over volumes corresponding to 1 or
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10 g [18, 19]. The point exposure model can be extended to find an exposure matrix

RV corresponding to an averaging volume (or surface) V through the relation

RV =
1

|V |

∫
V

R(p)dV. (3.6)

The volume exposure matrix inherits its Hermitian and positive semi-definite struc-

ture from R(p), therefore the proposed approaches do not preclude cases where spatial

averages are measured.

Even in the case F = CNT×M , i.e., when only the precoder size is constrained, the

problem in (3.4) is non-convex. Work in [42] shows that this problem has a strong

dual in the case that P is finite and that an optimal precoder can be obtained through

a modified waterfilling algorithm. However, P may be large or infinite, and millimeter

wave systems are often unable to perform fully-digital precoding, therefore it might

be impractical or impossible to apply this optimal solution.

3.2 Discretization Method for Optimal Signaling

3.2.1 Problem Formulation

We first consider a scenario in which the feasible precoding set is CNT×M and

the number of testing points in P is large. In this case, the optimal solution to (3.4)

derived in [42] might be overwhelming to compute. To address this issue, we propose a

discretization approach to significantly reduce the size of the constraint space of (3.4).

We assume perfect transmitter and receiver channel knowledge. We also assume that

the transmitter can calculate the characteristic exposure matrix R(p) at any testing

point p ∈ P as in Chapter 2.
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3.2.2 Discretization

The precoder design problem in (3.4) can also be seen as a semi-infinite program-

ming (SIP) problem by expressing it as

max
F∈F

log

∣∣∣∣I +
1

σ2
HFFHHH

∣∣∣∣
s.t. tr(FHF) ≤ PT (3.7)

tr(FHR(p)F) ≤ Q ∀p ∈ P .

SIPs refer to optimizations in which the number of constraints is infinite. These

problems arise naturally in many fields and are generally difficult to solve in closed-

form unless the problem satisfies certain conditions [57].

One common and intuitive method for solving SIPs known as discretization ap-

proximates the infinite constraint space P as a finite set. The resulting optimization

problem with a finite number of constraints can then be solved through other meth-

ods depending on the structure of the problem. Let PF[P ′] denote the optimization

problem

PF[P ′] : C[P ′] = max
F∈F

log

∣∣∣∣I +
1

σ2
HFFHHH

∣∣∣∣
s.t. tr(FHF) ≤ PT (3.8)

EXP(F,P ′) ≤ Q,

and let F[P ′] be a solution to PF[P ′]. The main idea is to obtain a finite set Pd ⊆ P ,

referred to as a grid, such that C[Pd] ≈ C[P ]. The desired grid, if it exists, may

still contain a large number of points and yield a problem which cannot be efficiently

solved. An alternative approach is to define or compute a nested grid sequence, i.e.,

{Pk} with Pk ⊆ Pk+1 for all k, and iteratively solve the problem PF[Pk] until the

solution converges to optimality.

We make the following assumptions to simplify our analysis:

(A3) : The set of testing points P is compact.
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(A4) : The function tr(FHR(p)F), where R(p) corresponds to one of the consid-

ered exposure metrics, is continuous over P for any precoder F.

The first of these assumptions is reasonable since exposure decreases as a function of

distance from the transmitter and therefore P can be defined as some closed set with

points bounded as within a sphere of norm Dmax. Additionally, electromagnetic fields

are continuous in most cases, implying that (A4) holds.

We propose the use of an efficient discretization algorithm in [58] along with

the modified waterfilling algorithm from [42] to solve PF[P ]. The main idea is to

iteratively identify the points in P that correspond to active constraints. Let the

initial grid P0 consist of a single point p0 and solve PF[P0] to obtain the precoder

F[P0]. The following grid P1 = {p0, p?1} is obtained by finding a point p?1 that has the

largest exposure value given the current precoder as

p?1 = argmax
p∈P

tr(FH
0 R(p)F0). (3.9)

A new precoder F[P1] is obtained by solving PF[P1] and the process is repeated.

A summary of the proposed algorithm is provided in Algorithm 1. Note that

the assumptions (A3) and (A4) ensure the existence of a maximal exposure point in

each iteration. In the context of our discussion, the algorithm probes the constraint

space with near-optimal precoders to find the exposure hotspots. If at any point

in the algorithm we have that Pk+1 = Pk, then the algorithm can be stopped since

this implies that F[Pk] is a feasible precoder, and Pk ⊆ P gives that C[Pk] ≥ C[P ].

However, there is no guarantee that this condition occurs, so an alternative stopping

criterion should be defined, for example, when
∣∣C[Pk−1]− C[Pk]

∣∣ /C[Pk] is smaller

than a predetermined threshold. This convergence criterion may result in a solution

that exceeds the exposure constraint, but this issue can be remedied by setting the

exposure constraint to be slightly lower than desired or by performing a small power

back-off.
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Algorithm 1 Discretization Algorithm

Input: p0,R(p), PT , Q

1: Set P0 := {p0} and k := 0

2: while Stopping criteria not met do

3: Find a solution Fk = F[Pk] for PF(Pk) using the modified waterfilling algorithm

4: Set Pk+1 = Pk ∪ {p?k+1}, where p?k+1 is a solution to

max
p∈P

tr
(
FH
k R(p)Fk

)
5: k → k + 1

6: end while
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The convergence of general discretization approaches depends heavily on the type

of problem considered. The following lemma shows that Algorithm 1 converges to an

optimal solution of PF[P ].

Lemma 3.2.1 Under assumptions (A3) and (A4), a solution to the problem PF[P ]

exists and limk→∞C[Pk] = C[P ].

Proof Let F(P ′) denote the set of feasible points

F(P ′) =
{

F ∈ F : tr(FHF) ≤ PT , tr(FHR(p)F) ≤ Q, p ∈ P ′
}
, (3.10)

and L(F,P ′) denote the feasible level set

L(F,P ′) =
{
F′ ∈ F : C(F′) ≤ C(F)

}
∩ F(P ′), (3.11)

where C(F) is the objective function of PF[P ]. We show that F(P) is nonempty, and

L(F, {p0}) is bounded for some F. These conditions, combined with assumptions,

(A3) and (A4) allow us to apply Theorem 2.1 in [58] to complete the proof.

The set of feasible points is clearly nonempty since we have 0 ∈ F(P). Now let

p0 ∈ P and F ∈ F be arbitrary and let F = CM×NT be equipped with the Frobenius

norm as its metric. Any precoder F′ ∈ L(F, {p0}) must satisfy the transmit power

constraint, so we have that

0 ≤
∥∥F′∥∥

F
≤
√
PT . (3.12)

Therefore, L(F, {p0}) is bounded, as desired.

An analysis of the rate of convergence of Algorithm 1 was not performed, but our

simulation results show that the algorithm converges in less than five iterations for a

variety of initial points.

3.2.3 Numerical Results

We now present simulation results for the proposed precoding schemes in a 28

GHz uplink scenario. The transmitter and receiver are equipped with ideal half-wave
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dipole ULAs with λ/2 spacing. We assume the receive array has NR = 16 elements

in all simulations. We perform Monte Carlo simulations with the i.i.d. realizations

of the channel model in (3.2) with L = 6 clusters, and AOAs and AODs uniformly

distributed in [0, 2π). The transmitter is assumed to be at a distance of 5 mm

from a spherical head model with radius 9 cm corresponding to statistical body size

measurements obtained from [59].

An incident PD constraint is placed on the head at points lying in the azimuth

plane with line-of-sight to the center of the transmitter array. Rather than placing

constraints over a continuous region, we consider a more practical case in which there

are 21 evenly distributed testing points. For the given head model, this corresponds to

points on the head at boresight angles less than 71.33◦ that are spaced 1.5 mm apart.

PD matrices are calculated with the proposed ideal baseband model in (2.16). The

performance of the proposed scheme is compared with the worst-case power back-off

method, in which the power of the optimal precoder withouth exposure constraints

is reduced by a factor of γworst, where

γworst = min

{
1,

Q

Qworst

}
, (3.13)

and Qworst is the worst-case exposure reading

Qworst = max
F∈F

tr(FHF)≤PT

EXP(F,P). (3.14)

In the first experiment, the exposure constraint is to set to Q = 5 mW/cm2, and

we fix the noise variance as σ2 = 1. In Fig. 3.1, we vary the transmit power and

show the capacity performance of the power back-off and the discretization approach.

Results for a higher number of data streams are omitted since both the traditional

and modified waterfilling algorithms pour all power into a single channel eigenmode at

low transmit SNRs. The proposed method shows a rate improvement over the power

back-off approach when both the transmit power constraint and exposure constraint

are active. This gain becomes more significant as the transmit power increases since

the back-off scheme restricts beams to a fixed power level to ensure induced exposures
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Fig. 3.1. Capacity vs. the transmit power constraint PT for the proposed
discretization approach and worst-case power back-off. The exposure con-
straint and noise variance are fixed to Q = 5 mW/cm2 and σ2 = 1, re-
spectively.

lie below the exposure limit. However, the capacity achieved by the proposed methods

also reaches an asymptotic value since the exposure constraint becomes the only active

constraint at high values of PT .

In Fig. 3.2, the transmit power is set to PT = 10 mW and the PD constraint is var-

ied. The noise variance is fixed to give a 0 dB transmit SNR. We consider the feasible

precoding set CNT×M . The results demonstrate that the proposed methods outper-

form the power back-off method, especially for lower exposure thresholds. Again, all
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Fig. 3.2. Capacity vs. the exposure constraint Q with transmit power
PT = 10 mW. The transmit SNR is fixed to 0 dB.

methods exhibit an asymptotic behavior since the probability of an active exposure

constraint decreases as Q increases. Note that in the case NT = 4, the power back-off

method with M = 2 performs worse than with M = 4 at low PD thresholds, as shown

in Fig. 3.2. This is because waterfilling is performed prior to the power back-off and

the lowered water level may be highly suboptimal for large power reductions. A more

detailed discussion of this phenomenon can be found in [42].
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3.3 Position-Based Adaptive Power Back-Off

3.3.1 Problem Formulation

We assume the transmitter employs codebook-based beamforming with M = 1

data streams. The beamforming direction is constrained to a predetermined trans-

mission codebook C, but the system is able to adaptively reduce the transmit power

as needed. Uplink power control is important for managing interference between users

in cellular systems and is currently employed in 5GNR [60–62]. Here, however, we

propose its use as a means for complying with exposure limitations. A maximum

transmit power constraint is also placed on the system as‖f‖2 ≤ PT , where PT is the

power constraint. The feasible beamforming set is, therefore, given as

F =
{√

γf : f ∈ C, γ ∈ [0, 1]
}
, (3.15)

where γ is the adaptive power back-off constant and C is the beamforming direction

codebook composed of vectors with power PT . The max-SNR beamformer optimiza-

tion problem under an exposure constraint is given as

max
f∈F

‖Hf‖2

s.t. EXP(f ,P) ≤ Q, (3.16)

where EXP(f) is a function which gives the time-averaged exposure induced by the

device when transmitting with the beamformer f , and Q is the regulatory threshold.

We assume the receiver is able to estimate the receive SNR of each beam in C, for

example, by transmitting pilot symbols, and that this information is fed back to the

transmitter.

3.3.2 Dynamic Exposure Model

We consider a millimeter wave exposure scenario in which the user’s head is located

near the transmitter array, as seen in Fig. 3.3. The array is located in the xy-plane

and is centered at the origin. The head is modeled as a sphere of radius Rhead centered
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on the y-axis. The distance between the center of the array and the head is denoted

as d, and φ denotes the tilt angle between the y-axis and the array. An exposure

constraint is placed on the system as per regulatory standards for millimeter wave

systems [20]. During testing, multiple exposure cases are considered in order to

identify the location of worst-case exposure. We assume that average PD values are

to be monitored over the region P on the surface of the head and that the system

must satisfy the constraint

PDP(f , τ ) ≤ Q, (3.17)

where τ = [d, φ]T is a vector which characterizes the position of the device relative

to the head and PDP(f , τ ) is the average PD over P induced by an array with

beamformer f and location parameter τ . We assume that P is a region in the xy-

plane since maximum exposure will occur in this plane.

P

transmitter array

head model

p

ssn
d

. . .
φ

x

y

origin

Fig. 3.3. Diagram of the considered exposure scenario. A ULA in the
xy-plane is located near a spherical head model. The distance between
the array and the head is d, and the array is tilted at an angle φ. Average
PD levels are monitored over the region P in the xy-plane. For a point p
in the region, s denotes the position vector from the center of the array
to p, and sn denotes the position vector from the n-th array element to p.
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Rather than directly modeling average exposure, we use the pointwise exposure

model for PD discussed in [63]. Let p be a point in the region P , and let s and sn

denote the position vector from the center of the array to p and from the n-th antenna

to p, respectively. Work in [63] demonstrates that PD at p can be well-approximated

as

PDp(f , τ ) =
∣∣∣fHrp(τ )

∣∣∣2 , (3.18)

where rp(τ ) is a length NT vector which characterizes PD at p. More importantly, [63]

also gives an expression to calculate rp(τ ) for any p, d, and φ. Let anf(s) denote the

near-field array response vector of the transmitter at p, which is given as

anf(s) ,
[
γ1e
−jϕ1 γ2e

−jϕ2 ... γNT
e−jϕNT

]T

, (3.19)

where

ϕn =
2π
(
‖sn‖ −‖s‖

)
λ

, (3.20)

γn =
‖s‖
‖sn‖

, (3.21)

and λ is the transmission wavelength. Then, the PD vector for an array of isotropic

antennas is given as

rp(τ ) =

√
1

4π‖s‖2
anf(s). (3.22)

Note that, given the array geometry, s and sn can be calculated from p and τ . In

addition, expressions for rp for scenarios with non-ideal antenna gain patterns are

discussed in [63].

Results in [63] also demonstrate that by appropriately sampling P , average expo-

sure can be estimated as

PDP(f , τ ) ≈ 1

K

K∑
k=1

PDpk(f , τ ), (3.23)

where K is the number of sample points and pk is the k-th sample point. Therefore,

we express the exposure constraint on the system as

PD(f , τ ) =
1

K

K∑
k=1

∣∣∣fHrk(τ )
∣∣∣2 ≤ Q, (3.24)
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where we let rk = rpk denote the PD vector for the k-th sample point, for simplicity.

It is important to note that rk(τ ) is dependent on d and φ through s and sn.

As the device moves, the exposure induced by the device will naturally change. We

assume the device is able to measure d and φ using a proximity sensor and calculate

rk(τ ) using (3.22). Therefore, the device can estimate the induced exposure PD(f , τ )

for any f , d and φ.

3.3.3 Power Back-Off Schemes

Current wireless systems deal with exposure constraints by decreasing the transmit

power. In such a scheme, a power reduction factor γ(f , τ ) ∈ [0, 1] is computed as a

function of f and τ so that
√
γ(f , τ )f obeys the exposure constraint. The system

then beamforms with
√
γ(fopt, τ )fopt, where

fopt = argmax
f∈C

‖Hf‖2 . (3.25)

While this is not an optimal solution to (3.16), power back-off provides a practi-

cal method for finding feasible solutions to the exposure-constrained beamforming

problem. We now discuss two strategies for computing γ(f , τ ).

Regulation agencies compare worst-case exposure measurements to thresholds to

determine compliance. Therefore, γ is typically computed as

γworst = min

{
1,

Q

Qworst

}
, (3.26)

where Qworst is the worst-case exposure reading among all transmit signals, gestures,

and relative device positions. In the considered setting, this quantity can be calculated

as

Qworst = max
f∈F ,τ∈T

PD(f , τ ), (3.27)

where T denotes the set of feasible distances and tilt angles.

Worst-case power reduction is highly restrictive since it unnecessarily attenuates

all signals regardless of their expected emissions. However, this problem can be
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alleviated by computing the power back-off factor as a function of the current induced

exposure. For each beamformer f in the codebook, we can calculate

γadp(f , τ ) = min

{
1,

Q

PDP(f , τ )

}
. (3.28)

Clearly, γadp(f , d) is the largest γ for which the beamformer
√
γf satisfies both the

exposure and power constraint.

Previous studies have addressed adaptive power back-off only as a function of

the transmit signal [35, 42]. One issue with the proposed scheme, however, is that

updating the adaptive power back-off factors each time τ changes may be impractical

and computationally intensive for general codebooks. To address this, we show how

the complexity of computing γadp(f , τ ) can be significantly reduced by employing a

DFT codebook.

3.3.4 DFT Codebook Implementation

Let NTO be the size of the DFT codebook for some positive integer O and let W

denote the NTO ×NTO DFT matrix with entries

Wi,k = e
−j2π (i−1)(k−1)

NTO (3.29)

for i = 1, 2, . . . , NTO and k = 1, 2, . . . , NTO. The DFT-based beamforming vectors

are obtained from the first NT rows of W as

f (i) =

√
PT
NT

[
1 e
−j2π i

NTO . . . e
−j2π (NT−1)i

NTO

]T
, (3.30)

where i = 1, 2, . . . , NTO. Our goal is to efficiently calculate γadp for each f (i). For

convenience, we drop the dependence of exposure on d.

Let r̂k = [rTk 0T ]T be the length NTO vector obtained by zero-padding the length

NT vector rk. The NTO-point inverse DFT (IDFT) of r̂k is then given as

zk =
1

NTO
WH r̂k. (3.31)
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Moreover, we have that

PDk(f
(i)) = PTNTO

2|zik|2 , (3.32)

where zik is the i-th element of zk. The average exposure constraint for f (i) can be

expressed as

PDP(f (i)) =
1

K

K∑
k=1

PTNTO
2|zik|2 . (3.33)

Therefore, we have

γ
(i)
adp = γadp(f (i)) = min

{
1,

QK∑K
k=1 PTNTO2|zik|2

}
, (3.34)

and the exposure-aware codebook is F̃ =

{√
γ
(i)
adpf

(i)

}NTO

i=1

.

In practice, DFTs and IDFTs can be performed very efficiently via efficient FFT

implementations, which makes the proposed DFT-based transmission an attractive

alternative over other exposure-aware schemes. The effective channel gain can also

be computed as an IDFT to reduce the difficulty of the beamformer search. In

addition, DFT codebooks are realizable in millimeter wave systems constrained to

analog beamforming architectures.

3.3.5 Numerical Results

We now present simulation results for the proposed scheme in a 28 GHz uplink

scenario. We assume the receiver and transmitter are equipped with ULAs with

NR = 16 and NT = 2 ideal isotropic antennas, respectively. The user’s head is

modeled as a sphere with radius Rhead = 9 cm, corresponding to statistical body size

measurements obtained from [59]. An incident PD constraint is placed on the head at

points lying in the azimuth plane, since this is the plane of maximum exposure. The

region P is set to be an arc of measure 5◦ centered at boresight from the array. This

region was uniformly sampled with K = 51 points to obtain the exposure constraint

in (4.5).

In Fig. 3.4, we plot the maximum possible PD at points at the center and edges

of P for a transmit power of PT = 10 mW. The tilt angle φ was fixed as φ = 90◦, and
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Fig. 3.4. Maximum possible PD vs. the distance d at points in the center
and edge of the region P for a transmitter with transmit power PT = 10
mW and φ = 90◦.

the distance d was varied in the range from 4 to 6 mm. The solid lines are obtained

from the PD model by taking PT‖r‖2, where r is the PD vector for the considered

point. The dashed lines show an ideal far-field approximation in which the maximum

PD at a point p is given as

PDff =
NTPT
4πD2

p

, (3.35)

where Dp is the distance from the center of the array to p. Note that the far-field

approximation yields notably different values at points close to the array. This indi-

cates that the PD model is necessary to appropriately reduce the transmit power as

needed.
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Fig. 3.5. Average receive SNR vs. the transmit power PT for the different
power back-off schemes applied to a DFT codebook. The exposure con-
straint is Q = 4 mW/cm2 and the noise variance σ2 = 1. The distance d
is uniformly distributed in [4, 6] mm and the tilt angle is as φ = 90◦

We compare the receive SNR achieved by applying the power back-off schemes

to a DFT codebook with factor O = 2. We perform Monte Carlo simulations with

i.i.d. realizations of the channel model in (3.2) with L = 6 clusters, cluster gains

distributed as CN (0, 1), and AOAs and AODs uniformly distributed in [0, 2π). The

distance d from the transmitter to the user is modeled as a uniformly distributed

random variable in the interval [4, 6] mm. The PD constraint is fixed as Q = 4

mW/cm2 according to the proposed FCC guidelines [64].
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Performance results for a fixed tilt angle of φ = 90◦ are shown in Fig. 3.6. Worst-

case back-off reduces power so that all beams in the DFT codebook satisfy the PD

constraint at the worst-case distance of 4 mm. Adaptive back-off for f means that

γ is computed only as a function of the beamformer and the worst-case distance.

Adaptive back-off for f and d signifies that the rk are calculated for each d in order to

update the exposure constraint, and power reduction depends on d and f . At PT = 30

mW, adapting the power back-off as a function of both f and d leads to a gain of 1.5

dB over the scheme which only adapts to f .

Fig. 3.5 demonstrates the performance of the power back-off schemes when φ is ad-

ditionally modeled as a uniformly distributed random variable in the range [60◦, 120◦].

Note that the overall performance of the system decreases due to an increase in ex-

posure values at certain tilt angles. The position-based power back-off adapts to f , d,

and φ, and this scheme shows a significant performance benefit over the other back-off

methods.

3.4 Conclusion

In this chapter, we demonstrated how exposure models allow us to formulate a

signal design problem with a transmit power constraint and an exposure constraint.

We developed two exposure-aware transmission strategies as applications of the signal-

level exposure model developed in Chapter 2. We first presented a discretization

approach for optimal precoding when the number of exposure constraints is large.

The proposed algorithm leverages the pointwise exposure models to iteratively add

constraints to the precoder optimization as needed. We then examined the advantages

of adjusting the transmit power levels of exposure-constrained depending on both the

transmit signal and the position of the device relative to the user. We also propose

the use of a DFT codebook in order to simplify the recalculation of the power back-

off factors when the device moves. Numerical results demonstrate that the proposed

schemes outperforms traditional power back-off methods.
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Fig. 3.6. Average receive SNR vs. the transmit power PT for the different
power back-off schemes applied to a DFT codebook. The exposure con-
straint is Q = 4 mW/cm2 and the noise variance σ2 = 1. The distance
d and the angle φ are uniformly distributed in the ranges [4, 6] mm and
[60◦, 120◦], respectively.
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4. BEAMFORMING PERTURBATION APPROACH FOR

MITIGATING USER EXPOSURE

4.1 System Model

We consider an uplink MIMO system in which a transmitter with NT antennas

communicates with a receiver with NR antennas. We assume a narrowband transmis-

sion where the transmitter beamforms a data symbol s ∈ C, and the receiver obtains

the signal y ∈ CNR , given by

y = Hfs+ n. (4.1)

Here, H ∈ CNR×NT is the channel between the UE and the BS, f ∈ CNT is the

beamforming vector, and n ∈ CNR is the AWGN noise vector with entries distributed

as CN (0, σ2). We assume that the transmit symbol is zero-mean and unit-variance,

i.e., E[s] = 0 and E[sHs] = 1. The receiver combines y with a unit-norm vector

z ∈ CNR to obtain an estimate of the data symbol as

ŝ = zHy = zHHfs+ zHn. (4.2)

The achievable rate at the receiver is given as

R = log

(
1 +

1

σ

2∣∣∣zHHf
∣∣∣2) . (4.3)

Given H, R can be maximized by choosing z and f to maximize the beamforming gain∣∣zHHf
∣∣2. We assume H is perfectly known at the receiver and that the transmitter

has no knowledge of the channel. With no further constraints on z, the receiver

will combine optimally by employing maximum ratio combining (MRC), which sets

z = Hf/‖Hf‖, resulting in a beamforming gain of ‖Hf‖2. We assume that the

receiver is responsible for selecting a suitable beamformer to maximize ‖Hf‖2 and
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that feedback is employed to convey f to the transmitter. The selection of f , however,

is complicated by power and exposure constraints placed on the user device.

The transmitter is assumed to lie in the vicinity of the user and is, therefore,

subject to an exposure constraint in addition to the traditional power constraint.

A power constraint can be imposed on the system as ‖f‖2 ≤ P , where P is the

transmit power limit. Optimal signaling under a single power constraint has been

widely studied in the literature.

In a multi-antenna system, the radiated electric field is a result of the superposition

of the fields from the individual antenna elements. Therefore, exposure values can

vary significantly with the transmit signal. This relationship can be captured with

the quadratic model first proposed in [35–37]. In these works, time-averaged exposure

over a volume V is modeled as

EXP = fHRV f , (4.4)

where RV is the characteristic exposure matrix corresponding to V . Experimental

results in [35–37,39,41] demonstrate that this model can accurately predict exposure

measures such as SAR, power-loss density, and incident PD, in a variety of operating

conditions. These studies also address the issue of computing an appropriate exposure

matrix RV .

Exposure compliance testing typically considers multiple gestures and operating

conditions to determine the possible worst-case exposure volumes associated with

each case. We let K be the total number of considered averaging volumes, and let Vk

be k-th volume chosen as a candidate for worst-case exposure. With the quadratic

model in (4.4), an exposure constraint on the system can be expressed as

fHRkf ≤ Qk, k = 1, 2, . . . , K (4.5)

where Rk is the exposure matrix which characterizes exposure at Vk, and Qk is the

regulatory exposure constraint for the k-th case. As previously mentioned, worst-case

exposure must lie below the established threshold for the device to pass exposure
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testing, so any feasible beamformer must satisfy each of the K exposure constraints

and the power constraint.

Given a channel realization H, the maximum effective channel gain under power

and exposure constraints is given as

fopt = argmax
f

‖Hf‖2 (4.6)

s.t. fHf ≤ P,

fHRkf ≤ Qk, k = 1, 2, . . . , K.

Since all of the constraints are quadratic, the problem can also be written as

fopt = argmax
f

‖Hf‖2 (4.7)

s.t. fHRkf ≤ Qk, k = 0, 1, . . . , K,

where the power constraint is accounted for by letting R0 = I and Q0 = P . The solu-

tion to (4.7) has been studied under various levels of channel state information (CSI)

in [42, 43], which demonstrates the exposure constraints behave similarly to spatial

correlation at the transmitter. Optimal signaling is not realizable in our scenario

since the transmitter lacks channel information and the receiver has no knowledge of

the exposure matrices Rk.

We assume the receiver chooses the beamforming vector by solving

fP = argmax
x̃∈F

‖Hx̃‖2 , (4.8)

where F is the feasible beamforming set. In the case of optimal beamforming, F is

the set of all vectors f in CNT with fHf = P . For a codebook-based deployment,

we have that F = {f1, f2, . . . , f|F|}, where |F| denotes the number of vector in the

codebook. The transmitter receives fP through feedback, but the beamformer may

not comply with the exposure constraints. Therefore, the transmitter must choose

an alternate beamformer which satisfies all constraints.

A suboptimal but practical approach for ensuring exposure compliance is to re-

duce the transmit power of the beamformer. In a power back-off scheme, the device
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calculates a back-off factor α ∈ [0, 1] such that αfP satisfies the exposure constraints,

i.e.,

α2fHP RkfP ≤ Qk, k = 1, . . . , K. (4.9)

In practice, power back-off is generally performed with regards to the worst-case

exposure by setting

αworst =

√√√√min

(
1, min

k=1,2,...,K

Qk

EXPk,worst

)
, (4.10)

where EXPk,worst is the worst-case exposure for the k-th constraint and is given as

EXPk,worst = max
f

fHRkf . (4.11)

Reducing the transmit power on a worst-case basis is simple and forces the system to

comply with all of the exposure constraints. In addition, EXPk,worst can be measured

offline through exposure testing procedures and does not require the use of signal-level

exposure models.

Systems can also leverage exposure models to perform power back-off adaptively

as a function of the current induced exposure. An adaptive back-off factor can be

calculated as

αadp =

√√√√min

(
1, min

k=1,2,...,K

Qk

fHP RkfP

)
. (4.12)

By adjusting the power back-off factor to the exposure induced by fP , the system

achieves better performance than with a worst-case approach. As seen in previous

analyses of exposure-constrained channels, however, there is a large gap in perfor-

mance between the optimal scheme and the power back-off methods. In the following

sections, we address the problem of finding an alternative method for obtaining a

feasible solution to (4.7) based only on fP , Rk and Qk.
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4.2 Perturbation-Based Beamforming

Our goal is to find a beamforming vector g which achieves performance close to

that of fP but satisfies the exposure constraints. To this end, we define a perturbation

function Φh : CNT → CNT which maps a vector f to the solution of the problem

Φh(f) = argmin
g∈CNT

h(f ,g) (4.13)

s.t. gHRkg ≤ Qk, k = 0, 1, 2, . . . , K,

where h(f ,g) is a metric between the vectors f and g. The average distortion induced

by the perturbation operation can be characterized through the expected beamform-

ing gain loss incurred by beamforming with Φh(fP ) instead of fP , given as [65]

D(Φh) = EH

[∣∣∣‖HfP‖2 −
∥∥HΦh(fP )

∥∥2∣∣∣] . (4.14)

The perturbation function should therefore be chosen minimize the distortion func-

tion. Note that for fixed Rk and Qk, the performance of Φh is completely specified by

h. We now provide upper bounds for the distortion function which yield appropriate

choices for h.

4.2.1 Minimum Distance

We first consider a perturbation scheme in which the beamforming vector g is

chosen to be the nearest vector to fP in terms of Euclidean distance which satisfies

the power and exposure constraints. Note that the expected beamforming gain loss

can be bounded as

D(Φh) = E

[∣∣∣∣(‖HfP‖ −
∥∥HΦh(fP )

∥∥)(‖HfP‖+
∥∥HΦh(fP )

∥∥)∣∣∣∣
]

≤ 2
√
PE

[
‖H‖22

∥∥fP − Φh(fP )
∥∥] . (4.15)

Therefore, minimizing the Euclidean distance between fP and g will also minimize

the distortion induced by the perturbation.
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In this case, the metric is set as

hD(f ,g) =‖f − g‖2 , (4.16)

yielding the optimization problem

gD = ΦD(fP ) = argmin
g
‖fP − g‖2 (4.17)

s.t. gHRkg ≤ Q, k = 0, 1, . . . , K.

Note that since we are minimizing the Euclidean distance, it is not necessary to use

the phase-invariant distance, given as

d(f ,g) = min
ψ∈[0,2π)

∥∥∥f − ejψg
∥∥∥ . (4.18)

If we let g̃D be a solution to the problem

g̃D =argmin
g

min
ψ∈[0,2π)

∥∥∥fP − ejψg
∥∥∥2 (4.19)

s.t. gHRkg ≤ Q, k = 0, 1, . . . , K,

then ejψ
∗
g̃D, where

ψ∗ = argmin
ψ∈[0,2π)

‖fP − g̃∗D‖ , (4.20)

is clearly a solution to (4.17). Moreover, multiplication of the beamforming vector g

by ejθ, where θ ∈ [0, 2π), does not change the beamforming gain, nor the power of

the beam, nor the induced exposure by the beam.

The problem (4.17) is a convex quadratically constrained quadratic program (QCQP).

The Lagrangian of this problem can be formulated as

LD(g,µ) =‖fP − g‖2 +
K∑
k=0

µk

(
gHRkg −Qk

)
, (4.21)

where µk is the dual variable corresponding to the k-th quadratic constraint and

µ = [µ0 µ1 . . . µK ]T . The following proposition gives the optimal solution for the

problem.
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Lemma 4.2.1 Let Qk > 0 for k = 0, 1, . . . , K and define

Wµ =
K∑
k=0

µkRk. (4.22)

Let

g =
(
Wµ + I

)−1
fP . (4.23)

If there exist dual variables {µk}k=0,1,...,K that satisfy the conditions
gHRkg ≤ Qk,

µk > 0,

µK
(
gHRkg −Qk

)
= 0,

(4.24)

for k = 0, 1, . . . , K, then gµ is the optimal solution to (4.17).

Proof: Since the optimization problem in (4.17) is convex and satisfies Slater’s

condition, the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient

for the optimality of g. These conditions are given as

g − fP + Wµg = 0, (4.25)

gHRkg ≤ Qk, (4.26)

µk ≥ 0, (4.27)

µk

(
gHRkg −Qk

)
= 0, (4.28)

where k = 0, 1, . . . , K. Note that (4.25) can be rearranged to give

g =
(
Wµ + I

)−1
fP . (4.29)

Therefore if µ satisfies the remaining KKT conditions, then g is optimal.

The Lagrange dual problem of (4.17) is given as

µD = argmax
µ≥0

min
g
LD(g,µ). (4.30)

The dual problem is always a convex problem, therefore, we can find always µD

which solves the dual. The convexity of (4.17) implies that the problem satisfies
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strong duality. Thus, µD satisfies the conditions in the Lemma 1, and gD = gµD

is the optimal solution to (4.17). We refer to this scheme as the minimum distance

(MinD) perturbation method.

The perturbed beamforming vector gD can be decomposed as

gD = αDfP + eD, (4.31)

where αD ∈ C is scalar applied to the main beam fP and eHDfP = 0. Note that

since fHP fP = P , we must have that |αD| ∈ [0, 1] for any gD which satisfies the power

constraint. Therefore, |αD| can be seen as a back-off factor applied to the main beam.

Expressions for αD and eD in (4.31) can be obtained. Let WD = WµD
. Then we

have that

αD =
fHP (WD + I)−1fP

fHP fP
, (4.32)

and

eD =
(
(WD + I)−1 − αDI

)
fP . (4.33)

4.2.2 Maximum Correlation

Consider the case in which fP is the optimal beamforming vector without exposure

constraints. In other words, fP =
√
Pv1 where v1 is the dominant eigenvector of

HHH. In this case, the distortion measure D(Φh) for an arbitrary fading channel can

be bounded as [66]

D(Φh) ≤
√
P 2 − E

[∣∣fHP Φh(fP )
∣∣2] (E [λ1] +

√
2Var [λ1]

)
, (4.34)

where λ1 is the dominant eigenvalue of HHH. Note that the effect of the perturbation

on the bound is completely captured by the term

√
1− E

[∣∣fHP Φh(fP )
∣∣2]. Therefore,

we can minimize the distortion measure by maximizing the correlation
∣∣fHP Φh(fP )

∣∣2.
Accordingly, we define the objective function

hC(f ,g) = −
∣∣∣gHf

∣∣∣2 , (4.35)
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yielding the optimization problem

gC =argmax
g

∣∣∣fHP g
∣∣∣2 (4.36)

s.t. gHRkg ≤ Q, k = 0, 1, . . . , K.

While maximizing the correlation between two vectors f and g is equivalent to

minimizing the phase-invariant distance d(f ,g) when the norms of f and g are fixed,

this is not true in general. From (4.18), we have that

d(f ,g) = min
ψ∈[0,2π)

(
fHf − 2Re

(
ejψfHg

)
+ ghg

)
= fHf − 2

∣∣∣fHg
∣∣∣+ gHg. (4.37)

Since the norm of g is not fixed, minimizing d(f ,g) does not correspond with maxi-

mizing
∣∣fHg

∣∣2.
While (4.36) is not convex, its solution can be obtained through strong duality.

Note that (4.36) can also be expressed as

gC =argmax log

(
1 +
∣∣∣fHP g

∣∣∣2) (4.38)

s.t. gHRkg ≤ Q, k = 0, 1, . . . , K,

which is a maximum capacity analysis problem for rank-one precoding under mul-

tiple quadratic constraints given the channel fHP . This problem is a special case of

the precoder optimization under multiple quadratic constraints given in [42]. The

Lagrangian of (4.38) is given as

LC(g,µ) = log

(
1 +
∣∣∣fHP g

∣∣∣2)− K∑
k=0

µk

(
gHRkg −Qk

)
, (4.39)

and the dual problem is given by

µC = argmin
µ≥0

max
g

LC(g,µ). (4.40)

The following lemma gives the optimal solution to (4.38).
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Lemma 4.2.2 Let Qk > 0 for k = 0, 1, . . . , K and define

Wµ =
K∑
k=0

µkRk. (4.41)

Let µC be the optimal dual variables obtained by solving the dual of (4.38) and WC =

WµC
. Then, the solution to (4.38) is given by

gC =

√
‖u‖2 − 1

‖u‖2
W−1

C fP , (4.42)

where u = W
−1/2
C fP .

Proof: The proof can be found in Theorem 3.6 of [42].

We refer to this scheme as the maximum correlation (MaxC) perturbation method.

As before, we have that gC can be written as gC = αCfP + eC , where

αC =

√
fHP W−1

C fP − 1

fHP fP
, (4.43)

and

eC =


√
‖u‖2 − 1

‖u‖2
W−1

C − αCI

 fP . (4.44)

4.2.3 Performance Analysis

In this section, we provide a brief performance analysis of the proposed perturba-

tion schemes. The following lemmas demonstrate that the back-off factors that arise

from the perturbation schemes are guaranteed to be greater than that of the adaptive

power back-off solution, where the system beamforms with

fadp = αadpfP (4.45)

with αadp is defined as in (4.12).

Lemma 4.2.3 Let Qk > 0 for k = 0, 1, . . . , K and let gD = αDfP +eD be the solution

to (4.17). Then, |αD| ≥ αadp.
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Proof: We have that the squared Euclidean distance between fP and g can be

written as

‖fP − g‖2 =
∥∥(1− α)fP − e

∥∥2 = |1− α|2‖fP‖2 +‖e‖2 . (4.46)

Therefore, the MinD scheme equivalently finds α and e with fHP e = 0 which minimize

the term |1− α|2‖fP‖2 +‖e‖2 subject to the power and exposure constraints. The

adaptive back-off solution, which is achieved when α = αadp and e = 0, satisfies both

the power and exposure constraints by definition and is a feasible solution to the

optimization in (4.17). Therefore, if we have that gD = αDfP + eD is the solution to

(4.17), we have the following bound:

|1− αD|2‖fP‖2 ≤|1− αD|2‖fP‖2 +‖eD‖2

≤
∣∣1− αadp

∣∣2‖fP‖2 . (4.47)

Note that αadp is real, so the inequality above yields

1−|αD| ≤|1− αD| ≤ 1− αadp, (4.48)

which implies |αD| ≥ αadp.

Lemma 4.2.4 Let Qk > 0 for k = 0, 1, . . . , K and let gC = αCfP +eC be the solution

to (4.36). Then, |αC | ≥ αadp.

Proof: For g = αfP + e with fHP e = 0, we have

|α| =
∣∣fHP g

∣∣
‖fP‖2

. (4.49)

Therefore, maximizing the correlation between fP and g is equivalent to maximizing

α. Since fadp is a feasible solution to (4.36), we have that |αC | ≥ αadp as desired.

Note that in both perturbation schemes, the system is able to transmit with more

power in the main beam compared to the adaptive back-off solution by transmitting

a portion of energy in an orthogonal direction e. Because of this, we refer to e as an

exposure-cancelling component, since its purpose is to decrease the exposure induced

by the main beam.
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In general, the beamforming gain of g can be written as

‖Hg‖2 =|α|2‖HfP‖+ 2Re
{

fHP HHHe
}

+‖He‖2 . (4.50)

In many cases, however, the norm of the vector e is much smaller than that of fP ,

and the beamforming gain can be approximated as

‖Hg‖2 ≈|α|2‖HfP‖ . (4.51)

Since the perturbation schemes are able to transmit with more power on the main

beam, they generally perform better than the adaptive back-off method. Note that

in the case fP =
√
Pv1, where v1 is the dominant right singular vector of H, we have

that

‖Hg‖2 = |α|2‖HfP‖+‖He‖2 . (4.52)

Therefore, both perturbation schemes are guaranteed to achieve a higher receive signal

power than the adaptive back-off technique when applied to the optimal beamforer

without exposure constraints.

4.3 Numerical Results

In this section, we compare the performance of the proposed perturbation schemes

with the adaptive power back-off method and the optimal solution to (4.7). We

first consider a MIMO system with NT = 2 and NR = 8. We performed Monte

Carlo simulations with i.i.d. Rayleigh fading, where the entries of H are distributed

according to CN (0, 1). In the first simulation we placed a SAR constraint on the

system and used a SAR matrix obtained from [35] given by

R =

 r1 r2e
jϕ

r2e
−jϕ r1

 , (4.53)

where r1 = 4.6050, r2 = 2.6250, and ϕ = 0.78π. We fixed the SAR constraint to

Q = 1.6 W/kg and varied the transmit power P . The noise variance is fixed as

σ2 = 1 in all simulations.
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Fig. 4.1. Average receive SNR vs. transmit power P for a SAR-
constrained 2x8 MIMO system. The proposed perturbation methods and
the power back-off methods are applied to the optimal exposure-unaware
beamformer.

In Fig. 4.1, the perturbation schemes and the traditional back-off methods are

applied to the optimal exposure-unaware beamformer fP =
√
Pv1, where v1 is the

dominant eigenvector of HHH. Both the MinD and the MaxC method achieve better

SNR than the adaptive power back-off method. At P = 1 W, the MinD and MaxC

methods achieve gains of about 0.6 dB and 1.6 dB, respectively, over the adaptive

back-off method. In addtion, the MaxC scheme performs nearly optimally throughout

the considered range of transmit power. While the MinD approach performs notably

worse than the MaxC approach, its implementation only requires the solution of a
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relatively simple convex problem instead of the strong dual method required for the

MaxC scheme.
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Fig. 4.2. Main beam back-off factor vs. transmit power P for a SAR-
constrained 2x8 MIMO system.

Fig. 4.2 shows the main beam back-off factors for the adaptive power back-off

scheme given in (4.12) and the magnitude of the back-off factor for the proposed

schemes given in (4.32) and (4.43) for the case of optimal exposure-unaware beam-

forming. The perturbation schemes allows the system to transmit with a higher power

than the adaptive power scheme, resulting in the performance gains seen in Fig. 4.1.

This demonstrates the power back-off factor is the dominant factor in determining

the performance of the perturbation schemes, as seen in Fig. 4.1.
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In Fig. 4.4 we consider the same scenario as above, but we add a second SAR

constraint to the system. The second SAR matrix is obtained from [42] and is given

as

R =

 3.94 −2.65− 2.53j

−2.65 + 2.53j 4.57

 . (4.54)

We set both SAR limits as 1.6 W/kg and vary the transmit power. Note that the

additional SAR constraint decreases the overall performance of the system. In this

case the, the perturbation approaches achieve higher gains over the adaptive power

back-off than in the single SAR constraint case. At P = 1 W, the MinD approach

leads to a 1 dB gain over the adaptive back-off scheme, while the MaxC approach

achieves a gain of 2 db over the back-off scheme.

For the next experiment, we consider a millimeter wave scenario at 28 GHz. We

again perform Monte Carlo simulations with the i.i.d. realizations of the channel

model in (3.2) with L = 6 clusters, cluster gains distributed as CN (0, 1), and AOAs

and AODs uniformly distributed in [−π/2, π/2). We assume the transmitter and

receiver are equipped with half-wave dipole ULAs consisting of NT = 4 and NR = 16

antennas, respectively. We place an exposure constraint on the system as in Section

3.3.5, where an incident PD constraint with Q = 4 mW/cm2 is placed on the surface

of a spherical head model with radius 9 cm along an arc of measure 5◦ in the azimuth

plane centered at boresight from the array. The distance between the head and the

array is 4 mm, and the array is assumed to be perpendicular to the head normal.

Due to sparse nature of millimeter-wave channels, signaling schemes based on

directional beam steering are often implemented. In this case, the beamforming

vector fP is set to the transmit steering vector corresponding to the beamforming

angle θopt as

fP =

√
P

NT

aT (θopt), (4.55)

where aT (θ) is defined as in (3.3) and θopt is given as

θopt = argmax
θ∈T

∥∥HaT (θ)
∥∥2 , (4.56)
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and T is a codebook of beamforming angles. We assume that T consists of 4 uniformly

spaced angles in the range [−π/2, π/2). We apply the perturbation approaches and

the adaptive back-off method to the fP obtained from above.

In Fig. 4.3, we demonstrate the performance of the proposed schemes compared

to the adaptive back-off scheme. The performance of the optimal scheme is shown as

an upper bound for the codebook-based schemes. Note that the optimal beamformer

is not restricted to the codebook. The proposed perturbation schemes demonstrate a

substantial performance improvement over the adaptive back-off approach.
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Fig. 4.3. Average receive SNR vs. transmit power P for a 2x8 MIMO
system with two SAR constraints. The proposed perturbation methods
and the power back-off methods are applied to the optimal exposure-
unaware beamformer.
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Fig. 4.4. Average receive SNR vs. transmit power P for a 4x16 MIMO
millimeter wave system with an incident PD constraint. The proposed
perturbation methods and the power back-off methods are applied to a
DFT codebook.

In Fig. 4.5, we display the normalized array gain (with respect to the transmit

power) achieved by the considered exposure-aware beamforming methods in the mil-

limeter wave scenario. The original beam denotes the given fP from the codebook

search over a sample channel realization with T consisting of 16 uniformly spaced

angles in the range [−π/2, π/2). The optimal beamforming solution achieves the

optimal tradeoff between beamforming gain and exposure compliance, and therefore

demonstrates the optimal allocation of power in each direction. Note that in this case,

the optimal solution significantly reduces the power of the main lobe and increases
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the sidelobe levels. By contrast, the perturbation approaches show array gains which

are similar to the original array gain. As expected, the MaxC array gain achieves the

highest main lobe level of all of the exposure-aware schemes.
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Fig. 4.5. Normalized array gain achieved by the exposure-aware beam-
forming methods.

4.4 Conclusion

In this chapter, we developed a low-complexity perturbation approach to reduce

the exposure of a given beamforming vector in order to comply with exposure lim-

its. The proposed method can be interpreted as reducing the power of the original

beamformer and directing energy in an orthogonal direction to decrease exposure. By
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employing the proposed method, the system is able to direct more power in the origi-

nal beamforming direction than when employing traditional power back-off methods.

Simulation results demonstrate that the proposed method is able to outperform the

simpler back-off methods and only incurs a relatively small loss compared to the

optimal exposure-aware beamforming approach.
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5. SUMMARY

Previous research related to exposure-aware signaling has focused on sub-6 GHz sys-

tems. However, exposure management at millimeter wave is of paramount impor-

tance. The nature of millimeter wave exposure makes it potentially more dangerous

to humans than sub-6 GHz exposure. In addition, millimeter wave systems need

high array gains to combat the high path losses at these frequencies, which makes

worst-case power back-off approaches especially harmful for millimeter wave systems.

In this dissertation, we studied the problem of exposure mitigation in the context

of millimeter wave systems. The two main aspects of this problem are modeling ex-

posure in terms of the transmit signal and designing efficient transmission schemes to

maximize the performance of the system subject to exposure constraints. The former

problem is important because sub-6 GHz exposure measures are not applicable at

millimeter wave frequencies. The exposure-aware signal design problem for millime-

ter wave systems also differs from that of sub-6 GHz systems because millimeter wave

systems are often constrained by hardware and power consumption limitations. Thus,

there is a need to develop low-complexity algorithms which can be implemented in

millimeter wave systems.

In Chapter 2, we focused on the modeling portion of the considered problem. We

focused on modeling incident PD and surface SAR, as both are pertinent exposure

measures in the millimeter wave band. Both of these measures are relatively simple

to model in terms of array parameters, which allowed us to develop expressions to

calculate pointwise exposure at any point surrounding the device. In addition, we

studied the problem of how to sample regions so that the pointwise exposure models

can be used to characterize average exposure. We performed various simulations with

half-wave dipoles and demonstrated that the proposed models can accurately estimate

millimeter wave exposure.
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In Chapter 3, we presented two applications of the developed exposure models.

We first developed an iterative algorithm for optimal precoding which samples the

constraint space in order to identify the active constraints. We also leveraged the

proposed exposure models to formulate a scheme which adjusts the transmit power

not only as a function of the transmit signal but also as a function of the distance

between the user and the device. Due to the increased complexity that arises from

recalculating the power back-off factors each time the device moves, we proposed the

use of a DFT codebook to expedite the process. Simulation results showed that both

of these efficient algorithms offer significant performance benefits.

In Chapter 4, we proposed a perturbation approach as an alternative to power

back-off approaches. We considered the problem of slightly perturbing a given beam-

former in order to obtain a beamforming vector which attains similar beamforming

gain but satisfies the exposure and power constraints. We considered two metrics

for the perturbation approach which aim to reduce the performance loss associated

with the perturbation. Our analytical and numerical results demonstrated that the

proposed approaches outperform power back-off approaches by allowing the system

to transmit with more power in the intended beamforming direction.

It is important to note that both the exposure models and the signaling strategies

were developed generally and may have possible applications beyond the millimeter

wave frequency band. System transmission frequencies are set to increases beyond

the millimeter wave band, and the proposed exposure models may find use at higher

frequencies depending on regulatory guidelines. In addition, the efficient exposure-

aware signaling methods considered in this thesis offer low-complexity alternatives to

exposure management. Such methods may find use in applications which require low

computational complexity or low power consumption.
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A. APPENDIX

A.1 Proof of Lemma 2.4.1

Let r =‖p‖ and r̃ =‖p̃‖, and denote a(p) and a(p̃) as a and ã, respectively. The

n-th element of a is expressed as

an = g1/2(p)
r

rn
exp (−jϕn), (A.1)

where ϕn is given as in (2.5), and similarly for ãn. Since the points p and p̃ are

nonzero, the desired bound can be expressed as

A =

∣∣∣∣∣r̃aHx
∣∣−∣∣rãHx

∣∣∣∣∣
rr̃

∣∣r̃aHx
∣∣+
∣∣rãHx

∣∣
rr̃

< ε. (A.2)

We first derive an upper bound on A in terms of the inter-point distance‖p− p̃‖.
An application of the reverse triangle inequality and the Cauchy-Schwarz inequality

gives an upper bound on A as

A ≤ BC‖x‖2 ,
[‖r̃a− rã‖

rr̃

‖r̃a‖+‖rã‖
rr̃

]
‖x‖2 . (A.3)

For clarity, we bound B and C separately.
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Through repeated applications of the triangle inequality and the Cauchy-Schwarz

inequality, it can be shown that the term B can be bounded as

B≤ G1/2
max

N−1∑
n=0

∣∣∣∣exp(jϕn)

rn
− exp(jϕ̃n)

r̃n

∣∣∣∣
≤ G1/2

max

N−1∑
n=0

1

rn

∣∣exp(jϕn)− exp(jϕ̃n)
∣∣+

∣∣∣∣ 1

rn
− 1

r̃n

∣∣∣∣
= G1/2

max

N−1∑
n=0

2

rn

∣∣∣∣∣sin
(
ϕn − ϕ̃n

2

)∣∣∣∣∣+

∣∣∣∣ r̃n − rnrnr̃n

∣∣∣∣
(a)
< G1/2

max

N−1∑
n=0

(
2π

λrn
|rn − r + r̃ − r̃n|+

∣∣∣∣ r̃n − rnrnr̃n

∣∣∣∣
)

≤ G1/2
max

N−1∑
n=0

(
2π

λrn

(
|rn − r̃n|+|r − r̃|

)
+

∣∣∣∣ r̃n − rnrnr̃n

∣∣∣∣
)

(b)

≤ G1/2
max

(
4πN

rminλ
‖p− p̃‖+

N

r2min

‖p− p̃‖
)
, (A.4)

The bound sin(y) < y for y > 0 is used in (a), and (b) results from the definition of

rmin. Similarly, the term C can be bounded as

C≤ G1/2
max

N−1∑
n=0

∣∣∣∣exp(jϕn)

rn

∣∣∣∣+

∣∣∣∣exp(jϕ̃n)

r̃n

∣∣∣∣
≤ 2NG

1/2
max

rmin
. (A.5)

Combining the bounds for B and C, we have that

A <
2N2Gmax‖x‖2

r2min

(
4π

λ
+

1

rmin

)
‖p− p̃‖ . (A.6)

Therefore, A < ε if

‖p− p̃‖ < εr2min

2N2Gmax‖x‖2
(

4π

λ
+

1

rmin

)−1
. (A.7)

Let r =‖p‖ and r̃ =‖p̃‖, and denote a(p) and a(p̃) as a and ã, respectively. The

n-th element of a is expressed as

an = g1/2n (pn)
r

rn
exp (−jϕn), (A.8)
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where ϕn is given as in (2.5), and similarly for ãn. Since the points p and p̃ are

nonzero, the desired bound can be expressed as

A =

∣∣∣∣∣r̃aHx
∣∣−∣∣rãHx

∣∣∣∣∣
rr̃

∣∣r̃aHx
∣∣+
∣∣rãHx

∣∣
rr̃

< ε. (A.9)

We first derive an upper bound on A in terms of the inter-point distance‖p− p̃‖.
An application of the reverse triangle inequality and the Cauchy-Schwarz inequality

gives an upper bound on A as

A ≤ BC‖x‖2 ,
[‖r̃a− rã‖

rr̃

] [‖r̃a‖+‖rã‖
rr̃

]
‖x‖2 . (A.10)

For clarity, we bound B and C separately.

Through repeated applications of the triangle inequality and the Cauchy-Schwarz

inequality, it can be shown that the term B can be bounded as

B≤ G1/2
max

N−1∑
n=0

∣∣∣∣exp(jϕn)

rn
− exp(jϕ̃n)

r̃n

∣∣∣∣
≤ G1/2

max

N−1∑
n=0

(
1

rn

∣∣exp(jϕn)− exp(jϕ̃n)
∣∣+

∣∣∣∣ 1

rn
− 1

r̃n

∣∣∣∣
)

= G1/2
max

N−1∑
n=0

 2

rn

∣∣∣∣∣sin
(
ϕn − ϕ̃n

2

)∣∣∣∣∣+

∣∣∣∣ r̃n − rnrnr̃n

∣∣∣∣


(a)
< G1/2

max

N−1∑
n=0

(
2π

λrn
|rn − r + r̃ − r̃n|+

∣∣∣∣ r̃n − rnrnr̃n

∣∣∣∣
)

≤ G1/2
max

N−1∑
n=0

(
2π

λrn

(
|rn − r̃n|+|r − r̃|

)
+

∣∣∣∣ r̃n − rnrnr̃n

∣∣∣∣
)

(b)

≤ G1/2
max

(
4πN

rminλ
‖p− p̃‖+

N

r2min

‖p− p̃‖
)
, (A.11)

The bound sin(y) < y for y > 0 is used in (a), and (b) results from the definition of

rmin. Similarly, the term C can be bounded as

C≤ G1/2
max

N−1∑
n=0

(∣∣∣∣exp(jϕn)

rn

∣∣∣∣+

∣∣∣∣exp(jϕ̃n)

r̃n

∣∣∣∣
)

≤ 2NG
1/2
max

rmin
. (A.12)
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Combining the bounds for B and C, we have that

A <
2N2Gmax‖x‖2

r2min

(
4π

λ
+

1

rmin

)
‖p− p̃‖ . (A.13)

Therefore, A < ε if ‖p− p̃‖ < ∆/‖x‖2.
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