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ABSTRACT

Xu, Ling Ph.D., Purdue University, May 2020. Harmomic maps into Teichmüller
spaces and superrigidity of mapping class groups. .

This thesis contains two parts.

In the first part of the present work, we will study the harmonic maps onto

Teichmüller space. We will formulate a general Bochner type formula for harmonic

maps into Teichmüller space. We will also prove the existence theorem of equivariant

harmonic maps from a symmetric space with finite volume into its Weil-Petersson

completion T , by deforming an almost finite energy map in the sense of [1] into a

finite energy map.

In the second part of the work, we discuss the superrigidity of mapping class

group. We will provide a geometric proof of both the high rank and the rank one

superrigidity of mapping class groups due to Farb-Masur [2] and Yeung [3].
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1. INTRODUCTION

Given a smooth map u : M → N between two complete Riemannian manifolds, it is

called harmonic if it is a critial point of energy functional defined by

E(u) =

∫
M

‖du‖2dV (1.1)

An important milestone of the research on harmonic mappings is [4] by Eells and

Sampson in 1964, where they established an existence theorem of harmonic maps

from a compact Riemannian manifold into a Riemannian manifold with non-positive

sectional curvature, via heat equation method. In 1983, Schoen and Uhlenbeck [5]

developed the regularity theory of harmonic maps.

The theory of harmonic maps to singular spaces is a generalization of the theory

of harmonic maps between Riemmanian manifolds. It was originated by Gromov and

Schoen in the seminal paper [6], In their remarkable work [6], the authors proposed a

theory of harmonic mappings into buildings, as well as important applications to p-

adic supperrigidity for certain discrete groups. Then it was subsequently extended for

harmonic maps to maps into more general NPC (non positively curved) space by Ko-

revaar and Schoen ( [7] and [8]), where they defined the Korevaar-Schoen energy func-

tional and asserted existence of harmonic maps and their general regularity.asserted

and [9]).

In the first part of the present work, we will study the harmonic maps into Te-

ichmüller space. Teichmüller space T = T (S) is the space of Riemann surface struc-

tures up to isotopy, and the mapping class group Mod(S) is the group of isotopy

classes of orientation-preserving homeomorphisms of S. Teichmüller space is non

positively curved when equipped with the Weil-Petersson metric. However, the exis-

tence of harmonic maps into a Teichmüller space is not guaranteed due to the fact

that the Weil-Petersson metric is not complete. We have proved the following exis-
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tence theorem for equivariant harmonic maps from a symmetric space into its metric

completion T with respect to Weil-Petersson metric.

Theorem 1.0.1 Let M̃ = G/K be an irreducible symmetric space of noncompact

type which is neither complex nor real hyperbolic space, and Γ be a lattice in G. If a

homomorphism ρ : Γ→Mod(S) is sufficiently large, then there exists a ρ-equivariant

Lipschitz harmonic map from M̃ to T .

The proof of the theorem follows from Theorem 2.1.3 and Corollary 2.1.5 in [8] under

the assumption that there exists a finite energy ρ-equivariant map from M̃ to T ,

which can be constructed directly when Γ is cocompact. We start with the almost

finite energy retraction from M̃/Γ to the central tile of a tiling of the Borel-Serre

compactification of M(cf. [1], theorem 6.1) and construct an almost finite energy ρ-

equivariant map (defined in section 6.3) from M̃ to T by composition. The key point

is to prove

Theorem 1.0.2 Let M̃ = G/K be an irreducible symmetric space of noncompact

type, Γ be a lattice in G, and ρ : Γ → Mod(S) be a homomorphism. If there is an

almost finite energy ρ-equivalriant map from M̃ to T , then there exits a finite energy

ρ-equivariant map from M̃ to T .

In the second part of the work, we discuss the superrigidity of mapping class

groups. The history behind the problem of rigidity of Kähler manifolds was initi-

ated by Calabi and Vesentini [10] in 1960. The authors implies that compact locally

symmetric spaces of dimension at least 2 do not admit any nontrivial infinitesimal

holomorphic deformation. In 1968, Mostow [11] celebrated the strong rigidity theo-

rem that two compact ball quotients of complex dimension at least 2 with isomorphic

fundamental groups are isometric and thus biholomorphic or conjugate biholomor-

phic. At that time, the results of Eells-Sampson [4] on existence of harmonic map is

already known and people had been hoping to use the approach of harmonic maps

to derive results in rigidity. This was not successful until the work of Siu [12], which

proves a strong rigidity result for Kähler manifolds with curvature which is sufficiently
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negative, in particular if the curvature is strongly negative in the sense of Siu. This

reproved the result of Mostow in the case of locally Hermitian symmetric spaces. The

technique of harmonic maps has been generalized to study geometric superrigidity,

cf. [13].

In another direction, Teichmuller space is equipped with a natural invariant metric,

the Weil-Petersson metric. It is well-known that the Weil-Petersson metric is Kahler

and is negatively curved, in particular, strongly negatively curved in the sense of Siu,

from the work of Ahlfors, Wolpert, Schumacher and others, (cf. [14]) Hence the result

of Siu applied once a harmonic map is shown to exist. The difficulty here is that the

Weil-Petersson metric is incomplete and hence the result of Eells-Sampson did not

applied.

Nevertheless, there is the following superrigidity type of results concerning lattices

and mapping class groups.

Theorem 1.0.3 (Superrigidity of mapping class group) Let M̃ = G/K be an

irreducible symmetric space of noncompact type which is not real or complex hyper-

bolic. Let Γ be a lattice in G. Then any homomorphism ρ from Γ to the mapping

class group Mod(S) has finite image.

The above theorem is proved via different methods in both high rank and rank-one

cases by Farb-Masur [2] and Yeung [3]. In our work, we give a uniform proof by using

harmonic map approach and the Bochner formula which is modified from the one in

[11]. These are the main ingredients of my proof:

Theorem 1.0.4 (Bochner type formula) Let M̃ = G/K be an irreducible sym-

metric space of noncompact type other than real or complex hyperbolic spaces, and Γ

be a lattice in G. Assume that u : M = M̃/Γ → T is a harmonic map, then the

following Bochner type formula holds:∫
R(u)

Qijkl∇iu
α
l ∇ju

β
khαβ =

1

2

∫
R(u)

QijklRTαβγδu
α
i u

β
j u

γ
ku

δ
l (1.2)

where R(u) is the regular set of u, defined

R(u) = {x ∈ Ω | ∃r > 0 such that Br(u(x)) ⊂ T ′ for a stratum T ′ of T }
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on which the map u is smooth.

h and RT are the metric and curvature tensors on T with respect to the Weil-

Petersson metric.

Q = Qijkldxi⊗dxj⊗dxk⊗dxl is a 4-tensor on M̃ satisfying the following conditions

1. Q(X, Y, Z,W ) = −Q(Y,X,Z,W ) = Q(Z,W,X, Y ).

2. Q is parallel, i.e. ∇Q = 0.

3. Q is compatible with curvatures on M , i.e.

〈Q(., ., ., X), RM(., ., ., Y )〉+ 〈Q(., ., ., Y ), RM(., ., ., X)〉 = 0

Using the above Bochner formula combined with a regularity theorem of harmonic

maps in [15], we can prove the following theorem, which is the most important step

in proving the theorem of supperrigidity of mapping class group.

Theorem 1.0.5 Let f be a ρ-equivariant harmonic map from M̃ = G/K to T , then

f is totally geodesic on its regular set.
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2. SUMMARY

In Chapter 3, we will recall some notions for later discussion. In section 3.1, we will

recall the definition of Teichmüller space and its Weil-Petersson metric completion.

We will also recall the definition of mapping class group. In section 3.2, we will

recall the definition definition of a nonpositively curved (NPC for short) space, which

generalizes the definition of smooth manifold with negative curvature, and show its

relationship with Teichmüller space. In section 3.3, we will introduce the harmonic

map into singular spaces and some related notations. We will also recall the existence

theorem in [8].

Theorem 2.0.1 ( [8],Theorem 2.1.3 & Remark 2.1.5) .

1. Assume M = M̃/Γ is compact and ρ is a proper action of Γ = π1(M). Assume

X is an NPC space. There exists an ρ equivariant, Lipschitz harmonic map

u : M̃ → X.

2. Assume M = M̃/Γ is complete, and ρ is a proper action of Γ = π1(M) on

X. Assume X is an NPC space. If there exists a finite energy ρ-equivariant

map u0 : M̃ → X, then there exists an ρ-equivariant, Lipschitz harmonic map

u : M̃ → X.

In Chapter 4, we will discuss the regularity theory of harmonic maps in Teichmüller

space. In section 4.1, we will give the model space of T and the definition of regular

set and singular set. In section 4.2, we recall the regularity threorem in [14] that the

Hausdorff dimension of the singular set of a harmonic map into T is at most n− 2.

Theorem 2.0.2 ( [14], Theorem 1) Let T be Teichmüller space of an oriented

surface S of genus g and p marked points such that k = 3g − 3 + p > 0 and T
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be its metric completion with respect to the Weil-Petersson metric. If u : Ω → T a

harmonic map from an n-dimensional Lipschitz Riemannian domain, then the Haus-

torff dimension of singular set

dimH(S(u)) ≤ n− 2

Theorem 2.0.3 ( [14], Theorem 2) Let u : Ω → T be a harmonic map from an

n-dimensional Lipschitz domain. For any compact subdomain Ω1 of Ω, there exists

a sequence of smooth function {ψi} with ψi ≡ 0 in a neighborhood of S(u) ∩ Ω̄1,

0 ≤ ψi ≤ 1 and ψi → 1 for all x ∈ Ω1\S(u) such that

lim
i→∞

∫
Ω

|∇∇u||∇ψi|dµ = 0

In Chapter 5, we formulate a general Bochner type formula for harmonic maps

into Teichmüller space, following the method of [13], which could be used to prove

the supperrigidity theorem later.

Theorem 2.0.4 (Bochner type formula) Let M̃ = G/K be an irreducible sym-

metric space of noncompact type and Γ be a lattice in G. Assume that u : M =

M̃/Γ→ T is a harmonic map, then the following Bochner formula holds:∫
R(u)

Qijkl∇iu
α
l ∇ju

β
khαβ =

1

2

∫
R(u)

QijklRN
αβγδu

α
i u

β
j u

γ
ku

δ
l (2.1)

In Chapter 6, we will discuss the equivariant harmonic maps into Teichmüller space.

In section 6.1, we will recall the notation of equivariant harmonic maps. In section

6.2, we will prove a Poincaré inequality for a non-compact locally symmetric space.

Lemma 2.0.5 Let M̃ = G/K be an irreducible symmetric space of noncompact type,

Γ be a lattice in G, and M = M̃/Γ. Let f ∈ C∞0 (M) ∩H2(M) ∩H1(M). Then∫
M

|f − f̂ |2dVg ≤ c

∫
M

|∇f |2dV (2.2)

for some constant c > 0. where f̂ is the average of f on M defined by

f̂ =
1

V ol(M)

∫
M

|f |dVg
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In section 6.3, we will construct finite energy maps from non-compact locally sym-

metric spaces to T starting from a retraction of [1]. In section 6.4, we will prove the

existence theorem of equivariant harmonic maps.

Theorem 2.0.6 Let M̃ = G/K be an irreducible symmetric space of noncompact

type which is neither complex nor real hyperbolic spaces, and Γ be a lattice in G. If a

homomorphism ρ : Γ→Mod(S) is sufficiently large, then there exists a ρ-equivariant

Lipschitz harmonic map from M̃ to T .

Remark: ρ is sufficiently large if ρ(Γ) ⊂Mod(S) contains two independent pseudo-

Anosov’s. More details can be found in section 6.4.

In Chapter 7, we will provide a geometric proof of both the high rank and the

rank one superrigidity of mapping class groups due to Farb-Masur [2] and Yeung [3],

by using the equivariant harmonic maps constructed in previous chapter.

Theorem 2.0.7 Let M̃ = G/K be an irreducible symmetric space of noncompact

type which is neither complex nor real hyperbolic spaces. Let Γ be a lattice in G.

Then any homomorphism ρ from Γ to the mapping class group Mod(S) has finite

image.
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3. PRELIMINARIES

In this chapter, we recall some notions for later discussion.

3.1 Teichmüller space and mapping class group

Let S be punctured Riemann surface of finite type (g, p), where g denotes the

genus of compact surface S and p denotes the number of punctures. We assume that

k = 3g − 3 + p > 0.

Definition 3.1.1 (marked Riemann surface) A marked Riemann surface (X, f)

is a punctured Riemann surface X together with an orientation-preserving homemo-

rphism f : S → X.

Two marked surfaces (X, f) ∼ (Y, g) are equivalent if g ◦ f−1 : X → Y is isotopic

to an isomorphism.

Definition 3.1.2 (Teichmüler Space) We define the Teichmüler Space T = T (S)

of S by

T = {(X, f)}/ ∼

where (X, f) is a marked Riemann surface of S and the equivalence is given by isotopy

to an isometry.

The Teichmüller space T is equipped with a natural holomorphic local coordinate

(cf. [16]).

Definition 3.1.3 (mapping class group) The mapping class group is defined as

the quotient

Mod(S) = Homeo+(S)/Homeo0(S)
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where Homeo+(S) denotes the group of orientation-preserving homeomorphisms of

S. Homeo0(S) denotes the subgroup of homeomorphisms homotopic to identity.

A mapping class [h] acts on Teichmüler space as following:

[(X, f)]→ [(X, f ◦ h−1)]

The action of Mod(S) on T is by biholomorphic maps. The moduli space of Riemann

surfaces is

M = T /Mod(S)

Let (X, f) be a marked Riemmann surface

Definition 3.1.4 (quadratic differential) A quadratic differential on X is a holo-

morphic section of κ⊗ κ where κ is the canonical line bundle on X.

Locally, a quadratic differential has the form q(z)dz2, where q(z) is holomorphic.

Denote

QD(X) = {integrable quadratic differentials on X}

Then a theorem in [16] shows that the holomorphic cotangent space of T at the

marked surface (X, f) is isomorphic to QD(X), whose dimension is equal to 3g−3+p.

There are several kinds of metrics defined on Teichmüller spaces. Teichmüller

introduced the Teichmüller metric, which is a complete metric. William Thurston in-

troduced another metric on Teichmüller spaces. In our work, we focus on Teichmüller

spaces eqquiped with the Weil-Petersson metric, which was introduced by André Weil

using the Petersson inner product on forms on a Riemann surface as follow:

Definition 3.1.5 (Weil-Petersson metric) For q1, q2 ∈ QD(X), the Petersson

inner product defined on the cotangent space of T is defined by

h(q1, q2) =

∫
X

q1(z)q2(z)

ρ(z)
dzdz̄

The dual metric is called the Weil-Petersson (WP) metric.
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The following properties of The Weil-Petersson metric are used in the rest of the

thesis:

Proposition 3.1.1 .

1. The WP metric is a Kähler metric.

2. The WP metric is incomplete, but any two points in Teichmüller space can be

joined by a Weil-Petersson geodesic.

3. The WP metric has negative holomorphic sectional curvatures, scalar curva-

tures, and Ricci curvatures.

Proof The proof is given in [17] and [18].

Denote the metric completion of T by T with respect to the Weil-Petersson metric.

T is not a locally compact space. The action of Mod(S) on T extends to an action

by homeomorphisms on T .

3.2 NPC space

In the classical theory of harmonic maps, Eells and Sampson shows that there

exists a unique harmonic maps from a compact Riemannian manifold into a Rieman-

nian manifold with non-positive sectional curvature. In the theory of harmonic maps

into singular spaces, one assume the target space have similar characteristic features

in geometry compared with non-positive sectional curvature in Riemannian manifold.

The following definition of metric space is a natrual generalization of the Riemannian

manifold with non-positive sectional curvature.

Definition 3.2.1 (NPC space, [7]) A complete metric space (X, d) (possibly in-

finite dimensional) is said to be non-positively curved (NPC) if the following two

conditions are satified:
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• (X, d) is a length space, that is, for any two points P,Q in X, the distance

d(P,Q) is realized as the length of a rectifiable curve connecting P to Q. (We

call such distance-realizing curves geodesics.)

• For any three points P,Q,R in X and choices of geodesics γPQ (of length r),

γQR (of length p), and γRP (of length q) connecting the respective points, the

following comparison property is to hold: For any 0 < λ < 1, write Qλ for the

point on γQP which is a fraction λ of the distance from Q to R. That is,

d(Qλ, Q) = λp, d(Qλ, R) = (1− λ)p

On the (possibly degenerate) Euclidean triangle of side lengths p, q, r and op-

posite vertices P̄ , Q̄,R̄, there is a corresponding point

Qλ = Q̄+ λ(R̄− Q̄)

The NPC hypothesis is that the metric distance d(P,Qλ) (from Qλ to the oppo-

site vertex P ) is bounded above by the Euclidean distance |P̄ − Q̄λ|.

This inequality can be written precisely as

d2(P,Qλ) ≤ (1− λ)d2(P,Q) + λd2(P,R)− λ(1− λ)d2(Q,R)

.

Proposition 3.2.1 T is a NPC space.

Proof By Proposition 3.1.1, Teichmüller space T is a length space. So is it metric

completion.

Again, by Proposition 3.1.1, the sectional curvature Teichmüller space T is neg-

ative. hence the distance induced by the metric satisfies the comparison property of

NPC space. It is obvious that the distance function d is continuous, it follows that

the metric completion of T also satisfies the comparison property.

Hence it follows that its Weil-Petersson metric completion T is an NPC space.
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3.3 Harmonic maps into singular spaces

The theory of harmonic maps to singular spaces is a generalization of the theory

of harmonic maps between Riemmanian manifolds. It was originated by Gromov and

Schoen in the seminal paper [6], In their remarkable work [6], the authors proposed a

theory of harmonic mappings into buildings, as well as important applications to p-

adic supperrigidity for certain discrete groups. Then it was subsequently extended for

harmonic maps to maps into more general NPC (non positively curved) space by Ko-

revaar and Schoen ( [7] and [8]), where they defined the Korevaar-Schoen energy func-

tional and asserted existence of harmonic maps and their general regularity.asserted

and [9]).

In this section, we will first briefly recall the definition of harmonic maps into

singular spaces in [7] and the recall the existence theorem of equivariant harmonic

maps in [8].

Let (Ω, µ) be a Riemannian manifold, and X = (X, d) a metric space. Consider a

map u : Ω→ X.

Recall that the harmonic map between Riemannian manifold is a critical point of

the energy functional. In general metric spaces, we are going to first define a similar

energy functional, which is called Korevaar-Schoen energy functional.

Assume 1 < p < ∞. First we can define the space Lp(Ω, X) by assuming the

integration of the p-th power of the distance function over Ω is finite. i.e. fixing

Q ∈ Ω,

Lp(Ω, X) = {u : Ω→ X |
∫

Ω

dp(u(x), Q)dµ(x) <∞}

To define the (p-th) Korevaar-Schoen energy of a function u ∈ Lp(Ω, X), we first

fix a real number ε > 0 and the unit vectors V ∈ Sn−1, and let

eε(x) =

∫
Sn−1

(
d(u(x), u(exp(x, εV ))

ε
)pdσ(V )

Let ν be any Borel measure on the interval (0, 2) satisfying

ν ≥ 0, ν(0, 2) = 1,

∫ 2

0

λpdν(λ) <∞
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Define the approximate energy density function νeε(x) by averaging the spherical

averages eε(x) on [0, 2] with respect to the measure ν:

νeε(x) =

∫ 2

0

eλε(x)dν(λ)

For u ∈ Lp(Ω, X) and f ∈ Cc(Ω), define the functional

νEε(f) =

∫
Ω

f(x)νeε(x)dµ(x)

We write u ∈ W 1,p(Ω, X) if

sup
f∈Cc(Ω),0≤f≤1

(lim sup
ε→0

)νEε(f) =ν E <∞

Theorem 3.3.1 ( [7], theorem 1.5.1) Let 1 < p < ∞, u ∈ Lp(Ω, X) have finite

energy νE with respect to some measure ν. Then it has finite energy with respect to

all such ν, and each measure νeε(x)dµ(x) converges weakly to the same energy density

measure de, having total mass νE.

One can give a formal definition of the norm of the directional derivative of u in the

direction V at x by

|u∗(V )| = lim
ε→0

(
d(u(x), u(exp(x, εV ))

ε
)

Remark: The limit exists according to [7].

Theorem 3.3.2 ( [7],Theorem 1.10) Let (Ω, g) be a Riemannian domain, and let

1 < p < ∞. Let u ∈ W 1,p(Ω, X). Then the energy density measure de is absolutely

continuous with respect to Lebesgue measure, i.e. there exists |∇u|p(x) ∈ L1(Ω, R)

s.t.

de = |∇u|p(x)dµ(x)

More precisely,

|∇u|p(x) =

∫
Sn−1

|u∗(V )|pdσ(V )

For p = 2, one can define the energy of a map u by

E(u) =

∫
Ω

|∇u|2(x)dµ(x) =
1

ωn

∫
Ω

|∇u|2(x)dµ(x)
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Remark: If X is a Riemannian manifold with metric h, then |∇u|2(x) is the square

of the norm the usual gradient of u, which is

|∇u|2(x) = µijhαβ
∂uα
∂xi

∂uβ
∂xj

In this case, Korevaar-Schoen energy functional E(u), is the usual energy functional.

Definition 3.3.1 (harmonic maps) A map u ∈ W 1,p(Ω, X) is said to be harmonic

if it is a critical point of the energy functional E(u) amongst all finite energy maps

with the same boundary value on every bounded Lipschitz subdomain Ω′ ⊂ Ω.

By the definition above, we can extend the theory of harmonic mappings from Rie-

mannian manifolds into NPC metric spaces.

Theorem 3.3.3 ( [8],Theorem 2.1.3 & Remark 2.1.5) .

1. Assume M = M̃/Γ is compact and ρ is a proper action of Γ = π1(M) on X.

Assume X is an NPC space. There exists a ρ-equivariant, Lipschitz harmonic

map u : M̃ → X.

2. Assume M = M̃/Γ is complete, and ρ is a proper action of Γ = π1(M) on

X. Assume X is an NPC space. If there exists a finite energy ρ-equivariant

map u0 : M̃ → X, then there exists a ρ-equivariant, Lipschitz harmonic map

u : M̃ → X.

The following definition is from [6] will be used in the prove of the regularity

theorem of harmonic maps later.

Ex0(σ) =

∫
Bσ(x0)

|∇u|2dµ

Ix0(σ) =

∫
∂Bσ(x0)

d2(u, u(x0))dΣ

By Section 1.2 of [6], there exists a constant c > 0 depending only on the metric on

Ω such that

σ → ecσ
2 σEx0(σ)

Ix0(σ)
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is non-decreasing for any x0 ∈ Ω. One can define the order of a map u at x0 by

Ord(x0) = lim
σ→0

ecσ
2 σEx0(σ)

Ix0(σ)
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4. REGULARITY THEOREMS FOR HARMONIC MAPS

IN TEICHMÜLLER SPACE

4.1 model space of T

Let T be the Teichmüller space of punctured Riemann surface of finite type (g, p)

such that k = 3g − 3 + p > 0 and T be the Weil-Petersson completion of T . The

complex dimension of T is k = 3g − 3 + p. The space T is a stratified space, i.e.

T =
⋃
T ′

where T ′ = T or T ′ is a lower dimensional Teichmüller space, where all the strata

are totally geodesic with respect to the Weil-Petersson distance. ( [16]).

Definition 4.1.1 (regular set & singular set) Given a map (not necessarily har-

monic) u : Ω→ T , we define its regular set and singular set as

R(u) = {x ∈ Ω | ∃r > 0 such that u(Br(x)) ⊂ T ′ for a stratum T ′ of T }

S(u) = Ω\R(u)

A point in R(u) is called a regular point and a point in S(u) is called a singular point.

If u : Ω → T is harmonic, x is a regular point of u, then the usual regularity

theory for harmonic maps implies that u is C∞ in a neighborhood of x.

We can decompose the singular set S(u) of a harmonic map u as a disjoint union

of sets

S(u) =
k⋃
j=0

Sj(u)

where

Sj(u) = {x ∈ S(u) | ]u(x) = j}
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4.2 Regularity theorems

The following regularity theorems are used in constructing the Bochner formula.

Theorem 4.2.1 ( [14], Theorem 1) Let T be the Teichmüller space of an oriented

surface S of genus g and p marked points such that k = 3g − 3 + p > 0and T be its

metric completion with respect to the Weil-Petersson metric. If u :→ T is a har-

monic map from an n-dimensional Lipschitz Riemannian domain, then the Haustorff

dimension of the singular set

dimH(S(u)) ≤ n− 2

Theorem 4.2.2 ( [14], Theorem 2) Let u : Ω → T be a harmonic map from an

n-dimensional Lipschitz domain. For any compact subdomain Ω1 of Ω, there exists

a sequence of smooth function {ψi} with ψi ≡ 0 in a neighborhood of S(u) ∩ Ω̄1,

0 ≤ ψi ≤ 1 and ψi → 1 for all x ∈ Ω1\S(u) such that

lim
i→∞

∫
Ω

|∇∇u||∇ψi|dµ = 0

Remark:

1. ∇∇u denotes the Hessian of u. It is well-defined on R(u). |∇∇u||∇ψi| is

well-defined on Ω since ∇ψi = 0 near singular points.

Corollary 4.2.2.1 Let u : Ω→ T be a harmonic map defined as above. Then there

exists a stratum T ′ of T such that u(R(u)) ⊂ T ′.

Proof Let T ′ be the stratum such that

T ′ ∩ u(R(u)) 6= ∅

We are going to prove that u(R(u)) ⊂ T ′. By theorem 4.2.1, the singular set is of

Hausdorff codimension 2, so the regular set R(u) is connected. It suffices to prove

that u−1(T ′) ∩R(u) is a nonempty open subset of R(u).
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u−1(T ′)∩R(u) is nonempty since T ′ ∩u(R(u)) 6= ∅. For any x ∈ u−1(T ′)∩R(u),

by the definition of R(u), there exists r > 0 such that u(Br(x)) ⊂ T ′, which implies

that Br(x) ⊂ u−1(T ′) ∩R(u).
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5. BOCHNER TYPE FORMULA

In this section, we formulate a general Bochner type formula for harmonic maps into

Teichmüller space, which we will use prove the supperrigidity theorem later.

5.1 A Bochner type formula

Let Q be a covariant 4-tensor on M̃ satisfying the following conditions:

1. Q(X, Y, Z,W ) = −Q(Y,X,Z,W ) = Q(Z,W,X, Y ).

2. Q is parallel, i.e. ∇Q = 0.

3. 〈Q(., ., ., X), RM(., ., ., Y )〉+ 〈Q(., ., ., Y ), RM(., ., ., X)〉 = 0.

Theorem 5.1.1 (Bochner type formula) Let M̃ = G/K be an irreducible sym-

metric space of noncompact type other than real or complex hyperbolic spaces, and

Γ be a lattice of G with finite volume quotient, i.e. M = M̃/Γ is of finite volume.

Assume that u : M → T is a harmonic map, then the following Bochner formula

holds: ∫
R(u)

Qijkl∇iu
α
l ∇ju

β
khαβ =

1

2

∫
R(u)

QijklRN
αβγδu

α
i u

β
j u

γ
ku

δ
l (5.1)

Proof We follow the proof of [13]. Since M is non-compact, we need to make sure

that the boundary term is trivial. So we use a cut-off function η supported on geodesic

ball of radius 2R from a fixed point x0 ∈ M̃/Γ,

Ω2R = {x ∈ M̃/Γ | d(x, x0) < 2R}

which has the following property:

η ≡ 1 on ΩR, η ≡ 0 on Ωc
2R, and |dη| < 4

R
.
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Let ψ be the smooth function in Theorem 4.2.2 with respect to Ω̄2R. Let Q be a

4-tensor on M̃ defined as above. Then on the regular set R(u), we have

ηψQijkluαl ∇i∇ju
β
khαβ =

1

2
ηψQijkluαl [∇i,∇j]u

β
khαβ

=
1

2
ηψQijkl(gmsRM

ijkmu
α
l u

β
shαβ −RN

αβγδu
α
l u

β
j u

γ
ku

δ
l )

The first term equals zero since

QijklgmsRM
ijkmu

α
l u

β
s = QijksgmlRM

ijksu
α
l u

β
s

and

QijklgmsRM
ijkm +QijksgmlRM

ijks = 0

Take the integration on R(u), we have∫
R(u)

ηψQijkluαl ∇i∇ju
β
khαβ =

1

2

∫
R(u)

ηψQijklRN
αβγδu

α
l u

β
j u

γ
ku

δ
l (5.2)

Denote the neighborhood of Ω2R\S(u) where ψ vanishes by B. Integrate the L.H.S

by part, recall that ∇Q = 0, we have

L.H.S =

∫
Ω2R\B

ηψQijkluαl ∇i∇ju
β
khαβ

= −
∫

Ω2R\B
∇i(ηψ)Qijkluαl ∇ju

β
khαβ −

∫
Ω2R\B

ηψQijkl∇iu
α
l ∇ju

β
khαβ

= −
∫
R(u)

∇i(ηψ)Qijkluαl ∇ju
β
khαβ −

∫
R(u)

ηψQijkl∇iu
α
l ∇ju

β
khαβ (5.3)

The first term of equation (5.3) is bounded by∫
R(u)

∇i(ηψ)Qijkluαl ∇ju
β
khαβ =

∫
R(u)

ψ∇iηQ
ijkluαl ∇ju

β
khαβ+

∫
R(u)

η∇iψQ
ijkluαl ∇ju

β
khαβ

(5.4)

Since Q is bounded and u is Lipschitz, the bounded by

c

∫
M

(
4

R
+ |∇ψ|)|∇∇u|

where c depends on the Lipschitz constant of u. By theorem 4.2.2 ( [14], Theorem

2), it vanishes by taking ψ → 1 and R→∞.
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The two additional conditions in [13] are the following.

4. The quadratic form (ξij)→ Qijklξ
ilξjk is positive definite for all traceless sym-

metric 2-tensors (ξij).

5. The inner product 〈Q, T 〉 is nonpositive for any tensor T of curvature type with

nonpositive Riemannian sectional curvature in the case of rank > 2 and with

nonpositive complexified sectional curvature in the rank 1 case.

Remark: 1. If the 4-tensor satisfies additionally (4) and (5), the Bochner formula

(5.1) gives by (4) a nonpositive right-hand side, which by (5) implies that∇df vanishes

identically on its regular set.

2. As is shown in [13], let M be a g1obally symmetric irreducible Riemannian

manifold of noncompact type. Assume that either M is of rank at least two or M is the

quaternionic hyperbolic space of quaternionic dimension at least two or the hyperbolic

Cayley plane, such 4-tensor Q satisfying condition (1)-(5) exists. Furthermore, Q is

parallel with respect to the Killing metric on the symmetric space satisfying various

eigenvalue bounds as given in [13].
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6. EQUIVARIANT HARMONIC MAPS INTO

TEICHMÜLLER SPACE

In this chapter, we are going to prove the following existence theorem for equivariant

harmonic maps from a symmetric space into the Weil-Petersson completion T .

Theorem 6.0.1 Let M̃ = G/K be an irreducible symmetric space of noncompact

type which is neither complex nor real hyperbolic space, and Γ be a discrete subgroup

of G with finite volume quotient. If a homomorphism ρ : Γ→Mod(S) is sufficiently

large, then there exists a ρ-equivariant Lipschitz harmonic map from M̃ to T .

The proof of the theorem follows from Theorem 2.1.3 and Corollary 2.1.5 in [8] under

the assumption that there exists a finite energy ρ-equivariant map from M̃ to T ,

which can be constructed directly when Γ is cocompact. We start with the almost

finite energy retraction from M̃/Γ to the central tile of a tiling of the Borel-Serre

compactification of M(cf. [1], theorem 6.1) and construct an almost finite energy

ρ-equivariant map (defined in section 6.3) from M̃ to T by composition.

6.1 Equivariant harmonic maps

Let (M, g) be a metrically complete Riemannian manifold, possibly with smooth

compact boundary .Denote the fundamental group of M by Γ and the universal cover

of M by M̃ . Let X be a metric space, and ρ : Γ→ isom(X) a homomorphism. Such

a ρ is also called representations of Γ. Let now ρ be a representation in isom(T ).

Definition 6.1.1 A map u : M̃ → T is ρ-equivariant if

u(ρ(γ)x) = ρ(γ)u(x)

for any γ ∈ Γ and x ∈ M̃ .
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For a ρ-equivariant map u the real-valued functions d(u(x), u(y)) are invariant

under the action of Γ, then it follows that the Sobolev energy densities considered in

Chapter 3 are ρ-invariant, so we may think of them as being defined on the quotient

M .

An equivariant map u is said to have finite energy if its Korevaar-Schoen energy

on M

E(u) =

∫
Ω

|∇u|2(x)dµ(x)

is finite. An equivariant map u is said to be harmonic if its push-forward (still written

as u) is a harmonic map on M .

6.2 Poincaré inequality for a non-compact locally symmetric space

We are going to use Poincaré inequality for a non-compact locally symmetric

space of finite volume. The proof of such a statement does not seem to be available

in the literature. Yeung explained to the author the following argument of Donnelly

concerning the Poincare Lemma. It turns out that the same proof essentially works

without assuming arithmeticity of Γ. The proof of the following proposition is based

on an argument provided by Donnelly.

First, we proof the following lemma.

Lemma 6.2.1 Suppose h ∈ C∞o (R+) and θ > 0 satisfies |θ′/θ| ≥ c1 > 0. Then∫ ∞
0

h2θdx ≤ c

∫ ∞
0

(h′)2θdx. (6.1)

Proof From integration by parts,

2

∫ ∞
0

hh′θdx = −
∫ ∞

0

h2θ′dx = −
∫ ∞

0

h2 θ
′

θ
θdx.

Hence our assumption implies that

c1

∫ ∞
0

h2θdx ≤ 2|
∫ ∞

0

h2 θ
′

θ
θdx| ≤ 2(

∫ ∞
0

h2θdx)1/2(

∫ ∞
0

(h′)2θdx)1/2,

from which the lemma follows.
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Theorem 6.2.2 Let f ∈ C∞0 (M). Then∫
M

|f |2dVg ≤ c

∫
M

|∇f |2 (6.2)

for some constant c > 0.

Proof From the Decomposition Principle as shown in [19], we know that it suffices

to prove that the essential spectrum of 4 on a neighborhood U of the the cusp

D = M̃/Γ− M̃/Γ

is bounded away from 0, where M̃ is the Borel-Serre compactification of M̃ .

The metric behavior of the Killing metric on M near a cusp is given by [20],

Proposition 4.3 with volume form given by Corollary 4.4. It follows from the formula

there that the volume form near the cusp is of the form θdtdx with volume element

θ satisfying
θ′

θ
≥ c1 ≥ 0

where we may assume that t ∈ [0,∞). From the construction in [1] D is a disjoint

union of Di and U is a finite disjoint union of Vi, i = 1, · · · , N of neighborhoods of

Di. Apply Lemma 6.2.1, the energy near the cusp is of form

∫
Vi

f 2dV =

∫
Di

∫ ∞
0

f 2θdtdx ≤ c

∫
Di

∫ ∞
0

(
∂f

∂t
)2θdtdx ≤ c

∫
Vi

|∇f |2dV (6.3)

Then it follows that∫
U

|∇f |2dVg =

∫
∪Ni Vi
|∇f |2dVg =

N∑
i=1

∫
Vi

|∇f |2dVg

≥ c2

N∑
i=1

∫
Vi

|f |2dVg = c2

∫
∪iVi

u2dVg (6.4)

Here is a slightly different version of Poincaré Inequality to be used later.
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Theorem 6.2.3 Let f ∈ C∞0 (M) ∩H2(M) ∩H1(M). Let f̂ be the average of f on

M . Then ∫
M

|f − f̂ |2dVg ≤ c

∫
M

|∇f |2 (6.5)

for some constant c > 0.

Proof Fix a point x0 ∈ M . Let Br(x0) be the geodesic ball of radius r centered at

x0. Let η be the cut-off function supported on B2r(x0) and is identically 1 on Br(x0)

with |∇η| ≤ 2
r
. From our assumption,

f − f̂ ∈ L2(M)

since M has finite volume. It the follows that∫
M

|(f − f̂)η|2dVg ≤ c

∫
M

|∇((f − f̂)η)|dVg

≤ 2c

∫
M

|∇f |2η2dVg + 2c

∫
M

|f − f̂ |2|∇η|2dVg

≤ 2c

∫
M

|∇f |2dVg +
4c

r

∫
M

|f − f̂ |2dVg

Proposition follows by letting r →∞

6.3 Construction of finite energy map

Assume that M is compact, we can conclude from theorem 3.3.3 that there exists

a ρ-equivariant harmonic map from M̃ to T . However, when M is only of finite

volume, one has to construct a finite energy map first, which in general, is open.

In this section, we exhibit a method for constructing finite energy maps when M

is a symmetric space. We start with the result of Saper [1] that the identity map of

M can be deformed into a retraction onto a compact submanifold.

Definition 6.3.1 (almost finite energy [21]) A ρ-equivariant map f is an almost

finite energy map if there exists a function ϕ ∈ C∞(M), satisfying the following

conditions
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1. ϕ is an exhaustion function on M and ϕ ≥ 1.

2. |∇ϕ| ≤ C.

3. |4ϕ| ≤ C.

4.
∫
M
ϕ1+αdVg <∞ where 0 < α ≤ 1

2
.

such that ∫
M

|∇f |2ϕ−(1+α)dVg <∞ (6.6)

The following theorem from [1] is used to construction the almost finite energy map

into T

Theorem 6.3.1 ( [1], Theorem 7.3) Let r : M̃ → M̃0 be the ρ-invariant retraction

onto the central tile of a tiling and let r′ be the induced retraction on M . Assume G

is almost Q-simple and that M is noncompact. Then r′ has almost finite energy if

and only if GC 6= SL(2, C). Furthermore, r′ has finite energy of and only if GC is

not equal to SL(2, C), SL(2, C)× SL(2, C), SL(3, C), or a Q-split form of SO(5, C).

Lemma 6.3.2 Let M̃ = G/K be an irriducible symmetric space of noncompact type

which admits a finite energy retraction onto its compact retract (Theorem 7.3 in [1]),

Γ be a discrete subgroup of G with finite volume quotient. Let X be a NPC space, and

ρ : Γ → iso(X) be a homomorphism. Then there exists a finite energy ρ-equivariant

map from M̃ to X.

Proof By using the theorem 7.3 of [1], we can construct a retraction r from M̃ onto

the central tile of a tiling M̃0, whose induced retraction on M has finite energy. Ac-

cording to the Proposition 2.6.1 in [7], there also exists a ρ-equivariant local Lipschitz

map v from M̃0 to X. Now construct

u = v ◦ r

It is obvious that u is ρ-equivariant.
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Since v is local Lipschitz and M̃0/Γ is compact, v is Lipschitz.

E(u) =

∫
M

|∇u|2(x)dµ(x) ≤ c2

∫
M

|dr|2(x)dµ(x) (6.7)

i.e. u is of finite energy.

Corollary 6.3.2.1 Let M̃ = G/K be an irriducible symmetric space of noncompact

type which admits a finite energy retraction onto its compact retract (Theorem 7.3 [1]),

and Γ be a discrete subgroup of G with finite volume quotient. If a homomorphism

ρ : Γ → Mod(S) is sufficiently large, then there exists a ρ-equivariant Lipschitz

harmonic map from M̃ to T .

Proof Follows immediately from theorem 3.3.3. and the theorem 1.2 in [22], which

shows that the homomorphism is proper if it is sufficiently large.

Lemma 6.3.3 If the induced retraction only has an almost finite energy, we can only

construct a finite energy ρ-equivariant map from M̃ to T .

Proof The proof is similar to Lemma 4.3.2. Let

u = v ◦ r

Then

E(u) =

∫
M

|∇u|2(x)ϕ−(1+α)dµ(x) ≤ c2

∫
M

|dr|2(x)ϕ−(1+α)dµ(x)

Denote (M̃, g) be a symmetric space as studied before. Let g1 = ϕ−
2(1+α)
n−2 g. Then

the energy of u with respect to g1 is

Eg1(u) =
1

2

∫
M

|∇u|2g1dVg1 =
1

2

∫
M

|∇u|2gϕ−(1+α)dVg <∞ (6.8)

Lemma 6.3.4 Assume (M, g1) defined as above. Then (M, g1) is a complete Rie-

mannian manifold.
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Proof Using Proposition 4.3 in [20] and ϕ = log(3 + a) in [21], one can get the

metric form of (M, g1). Completeness is given by the fact that∫
|dsg1 | =

∫ ∞
0

da

(log(3 + a))(1+α)/(n−2)
=∞ (6.9)

In this case, the exponent here is not greater than 3/4 since all examples involved

has n ≥ 4, actually 5.

By Theorem 3.3.3, there exists a ρ-equivariant harmonic map u from (M̃, g1) to T̄ .

Lemma 6.3.5 Assume that M̃, g1 are defined as before, f is a ρ-equivariant har-

monic map from (M̃, g1) to T̄ . Then there exists a constant c > 0, s.t.

‖∇∇u‖2 ≤ c‖∇u‖2
g1

(6.10)

Proof If M is irreducible, as shown in [13], we can define a 4-tensor Q such that

(1)(2)(3) in section 5.1 is satisfied. Recall the Bochner formula in previus chapter∫
M

Qijkl∇iu
α
l ∇ju

β
khαβ =

1

2

∫
M

QijklRN
αβγδu

α
i u

β
j u

γ
ku

δ
l (6.11)

The computations in [13] shows that for each symmetric space of rank at least two

and each Q as chosen, Qijklξilξjk is positive define on symmetric traceless two tensor

ξij. Decompose

∇∇f = (∇∇f)0 + (∇∇f)tr

into the direct sum of traceless part and

(∇∇f)tr = 4gf

then we have∫
M

Qijkluαl ∇i∇ju
β
khαβdVg ≤ c

∫
M

QijklRN
γδµβ(∇iu

α
l )tr(∇ju

β
k)trhαβdVg (6.12)

Note that Q is a bounded tensor and is positive definite with eigenvalues bounded

from below by a positive constant. Then we conclude that

‖∇∇f‖2 ≤ c

∫
M

|4gf |2 (6.13)
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Since f is g1-harmonic, we conclude that

4gf = (1 + α)∇i logϕ∇if (6.14)

where ∇iφ is bounded by the definition of almost finite energy map. Hence

‖∇∇f‖2 ≤ c

∫
M

|(1 + α)∇i logϕ∇if |2dVg

≤ c(1 + α)2

∫
M

ϕ−2|∇ϕ|2|∇f |2dVg (6.15)

Since ϕ ≥ 1 and |∇ϕ| ≤ C, the last term of the above inequality is bounded above

by

C1

∫
M

|∇f |2ϕ−(1+α)dVg

which is finite.

Theorem 6.3.6 Let M̃ = G/K be an irreducible symmetric space of noncompact

type which is not real or complex hyperbolic, and Γ be a discrete subgroup of G with

finite volume quotient. If a homomorphism ρ : Γ→Mod(S) is sufficiently large, then

there exists a finite energy ρ-equivariant map from M̃ to T .

Proof We can define a cut-off function η : R → R supported on [−2, 2] such that

≡ 1 on [−1, 1] and |η′| ≤ C1. Define ηt : M → R such that

ηt(x) = η(
ϕ(x)

t
)

Since |∇ϕ| ≤ C, we will have

|∇ηt| ≤
C2

t

Now let ΩR = {x ∈ M | ϕ(x) ≤ R}. It follows from the Poincare Inequality that we

have ∫
M

|ηt∇f − η̂t∇f |2dV ≤
∫
M

|∇(ηt∇f)|2dV

≤ C2
2

R2

∫
Ω2R−ΩR

|∇f |2V +

∫
M

|∇∇f |2dVg

≤ C2
2

Rα

∫
Ω2R−ΩR

|∇f |2ϕ−(1+α)Vg +

∫
M

|∇∇f |2dV (6.16)
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where

η̂t∇f =
1

V ol(M)

∫
M

|η∇f |dV

Now from Cauchy-Schwarz Inequality,∫
M

|ηt∇f |dV ≤ (

∫
M

|ηt∇f |2ϕ−(1+α)dV )(

∫
M

ϕ1+αdV )

≤ C

∫
M

|∇f |2ϕ−(1+α)dV (6.17)

Now letting R→∞, we conclude that

‖∇f‖2 < C (6.18)

6.4 Existence theorem

Let S be punctured Riemann surface of finite type (g, p), where g denotes the

genus of compact surface S and p denotes the number of punctures. We assume that

k = 3g − 3 + p > 0. A singular foliation of S is a foliation with 1-dimensional leaves

except at isolated singular points.

Definition 6.4.1 (pseudo-Anosov, [23]) An element γ ∈ Γ is called pseudo-Anosov

if there is r > 1 and transverse measured foliations F+, F− on S such that

γF+ = rF+

γF− = r−1F−

F+ and F− are called the stable and unstable foliations of γ, respectively.

Remark: We can scale the measure on a foliation F by a real number r > 0 to

obtain a new measured foliation, which we denote by rF .

Definition 6.4.2 (sufficiently large, [23]) A subgroup of Mod(S) is sufficiently

large if it contains two independent pseudo-Anosov’s.

A homomorphism ρ : Γ → Mod(S) is sufficiently large if its image is sufficiently

large.
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Definition 6.4.3 (proper, [23]) A finitely generated subgroup of Mod(S) is called

proper if there is a set of generators γ1, . . . γk of the subgroup such that the sublevel

sets of the displacement function

δ(σ) = max{dWP (σ, γiσ) : i = 1, . . . , k}

are bounded.

Theorem 6.4.1 ( [23], Theorem 1.2) Finitely generated subgroups of Mod(S) is

proper if it is sufficiently large.

Theorem 6.4.2 Let M̃ = G/K be an irreducible symmetric space of noncompact

type which is not real or complex hyperbolic, and Γ be a discrete subgroup of G with

finite volume quotient. If a homomorphism ρ : Γ→Mod(S) is sufficiently large, then

there exists a ρ-equivariant Lipschitz harmonic map from M̃ to T .

Proof Theorem 5.3.5 shows that there exists a finit energy ρ-equivariant map from

M̃ to T . By theorem 3.3.3, one can construct a ρ-equivariant harmonic map from M̃

to T .
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7. SUPPERRIGIDITY OF MAPPING CLASS GROUP

7.1 Introduction

In this chapter, we discuss the superrigidity of mapping class group.

The history behind the problem of rigidity of Kähler manifolds was initiated by

Calabi and Vesentini [10] in 1960. The authors implies that compact locally symmetric

spaces of dimension at least 2 do not admit any nontrivial infinitesimal holomorphic

deformation. In 1968, Mostow [11] celebrated the strong rigidity theorem that two

compact ball quotients of complex dimension at least 2 with isomorphic fundamental

groups are isometric and thus biholomorphic or conjugate biholomorphic. At that

time, the results of Eells-Sampson [4] on existence of harmonic map is already known

and people had been hoping to use the approach of harmonic maps to derive results

in rigidity. This was not successful until the work of Siu [12], which proves a strong

rigidity result for Kähler manifolds with curvature which is sufficiently negative, in

particular if the curvature is strongly negative in the sense of Siu. This reproved the

result of Mostow in the case of locally Hermitian symmetric spaces. The technique

of harmonic maps has been generalized to study geometric superrigidity, cf. [13].

In another direction, Teichmuller space is equipped with a natural invariant metric,

the Weil-Petersson metric. It is well-known that the Weil-Petersson metric is Kahler

and is negatively curved, in particular, strongly negatively curved in the sense of Siu,

from the work of Ahlfors, Wolpert, Schumacher and others, (cf. [14]) Hence the result

of Siu applied once a harmonic map is shown to exist. The difficulty here is that the

Weil-Petersson metric is incomplete and hence the result of Eells-Sampson did not

applied.

In this section, we provide a geometric proof of both the high rank and the rank

one superrigidity of mapping class groups due to Farb-Masur [2] and Yeung [3].
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Theorem 7.1.1 (Superrigidity of mapping class group) Let M̃ = G/K be an

irreducible symmetric space of noncompact type which is not real or complex hyper-

bolic. Let Γ be a lattice in G. Then any homomorphism ρ from Γ to the mapping

class group Mod(S) has finite image.

The sketch of the proof is the following. First we construct a ρ-equivariant harmonic

map from M̃ to T̄ . Then following the works of [22], we claim that this map is

constant. Finally, we proof that the image of ρ is finite by using the property of

properly discontinuity of the mapping class group.

7.2 Totally geodesic

Lemma 7.2.1 Let f be a ρ-equivariant harmonic map from M̃ = G/K to T̄ , then

f is totally geodesic on its regular set.

Proof We work on the quotient M̃/Γ and follow the proof of [MSY]. Since M̃/Γ

is non-compact, we need to make sure that the boundary term is trivial. So we

use a cut-off function η supported on geodesic ball of radius 2R from a fixed point

x0 ∈ M̃/Γ,

Ω2R = {x ∈ M̃/Γ | d(x, x0) < 2R}

which has the following property:

η ≡ 1 on ΩR, η ≡ 0 on Ωc
2R, and |dη| < 4

R
. Let ψ be the smooth function in

Theorem 2 of [DM] w.r.t. Ω̄2R. Let Q be a 4-tensor on M̃/Γ satisfiying (i)-(v) in

[MSY]. Then

ηψQijklfαl ∇i∇jf
β
k hαβ =

1

2
ηψQijklfαl [∇i,∇j]f

β
k hαβ

=
1

2
ηψQijkl(gmsRM

ijkmf
α
l f

β
s hαβ −RN

αβγδf
α
l f

β
j f

γ
k f

δ
l )

The first term equals zero since

QijklgmsRM
ijkmf

α
l f

β
s = QijksgmlRM

ijksf
α
l f

β
s
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and

QijklgmsRM
ijkm +QijksgmlRM

ijks = 0

Take the integration on M̃/Γ, we have∫
M̃/Γ

ηψQijklfαl ∇i∇jf
β
k hαβ =

1

2

∫
M̃/Γ

ηψQijklRN
αβγδf

α
l f

β
j f

γ
k f

δ
l (7.1)

Integrate the L.H.S by part, recall that ∇Q = 0, we have

L.H.S = −
∫
M̃/Γ

∇i(ηψ)Qijklfαl ∇jf
β
k hαβ −

∫
M̃/Γ

ηψQijkl∇if
α
l ∇jf

β
k hαβ (7.2)

The first term is bounded by

c

∫
M̃/Γ

(
4

R
+ |∇ψ|)|∇∇f |

where c depends on the Lipschitz constant of f . By theorem 2 in [14], it vanishes by

taking ψ → 1 and R→∞. Thus we have∫
M

Qijkl∇if
α
l ∇jf

β
k hαβ =

1

2

∫
M

QijklRN
αβγδf

α
i f

β
j f

γ
k f

δ
l (7.3)

Since f is harmonic, df is traceless, by property (4)(5) of Q, L.H.S is nonnegative,

while R.H.S is nonpositive. Hence

|∇df | = 0

Lemma 7.2.2 Assume u → T is a totally geodesic on its regular set. Then u is

totally geodesic on the entire M̃ .

Proof It suffices to prove that u maps geodesics to geodesics. i.e. let

γ : [0, 1]→ M̃

be a a constant speed parametrization of a geodesic, then we are going to prove that

u ◦ γ is a constant speed parametrization of a geodesic.
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Let x0 = γ(0) and x1 = γ(1). We claim that there exists sequences {xk0} → x0

and {xk1} → x1, such that the geodesics γk joint xk0 and xk1 located in the regular set

of u.

Let B be a hypersurface perpendicular to γ′(1) at x1 with local coordinate

ϕ : Br(0)→ B

Let γx be the unique geodesic joining x0 and x ∈ B. (It is well-defined since M̃

has negative sectional curvature.) One can define a map

Φ : Br(0)× [0, 1]→ M̃

by

Φ(p, t) = γϕ(p)(t)

Then for any ε > 0,

Φ |Br(0)×(ε,1)

is a diffeomorphism. Now since

dimH(S(u))) ≤ n− 2

For any ε > 0, there exists p ∈ Br(0), such that

Ψ({p} × (ε, 1)) ∩ S(u) = ∅

Especially, for ε = 1
k
, we get a series pk. Let

xk0 = Φ(pk,
1

k
)

xk1 = Φ(pk, 1)

Then the image of γk ⊂ R(u).

Noticed that we have

∇u ≡ 0

in R(u). Thus u ◦ γk is a constant speed parametrization of a geodesic in T . By

the continuity of u, this then implies that u ◦ γ is also a geodesic, which proves the

lemma.
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7.3 Supperrigidity of mapping class group

Theorem 7.3.1 Let M̃ = G/K be an irreducible symmetric space of noncompact

type which is not real or complex hyperbolic. Let Γ be a discrete subgroup of G with

finite volume quotient. Then any homomorphism ρ from Γ to the mapping class group

Mod(S) has finite image.

Proof First, we assume that ρ is sufficiently large.

By theorem 6.4.2, there exists a ρ-equivariant harmonic map u from M̃ to T . By

Corollary 4.2.2.1, the image of the regular set of u is located in a single stratum, that

is T ⊂ T̄ such that

u(R(u)) ⊂ T

Now we will prove that u is actually a constant map. We prove by contradiction. We

have already known that by lemma 7.2.1 that u is totally geodesic on the regular set

R(u). By Lemma 7.2.2, we can see that u is a totally geodesic map from M̃ to T ,

which means that M̃ can be regarded as a immersion submanifold of T .

But we already assume that either the rank of M̃ is not less that 2 or not real or

complex hyperbolic. This leads to a contradiction. This implies that u is a contant

map on M , i.e. ρ(Γ) fixes a point in Teichmüller space. Since the action of the

mapping class group is properly discontinuous, this implies that ρ(Γ) is finite.

Then we assume that ρ is not sufficiently large.

By ( [24], Theorem 4.6) any irreducible subgroup of mapping class group that

is not sufficiently large is either finite or virtually cyclic, i.e. there exists a cyclic

subgroup Γ2 of Γ such that the index[Γ2 : Γ] is finite. We assume that ρ(Γ) is

virtually cyclic. Then there exists a homeomorphism ρ̃ : Γ2 → Z such that

h1(M2, Z) = dim(H1(M2, Z)⊗R) > 0

where M2 = M̃/Γ.

Since M2 is locally symmetric, Matsushima’s Vanishing theorem implies that

h1(M2, Z) = 0
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when rank of M2 ≥ 2. In the case of quaternionic and Cayley rank one cases, the

vanishing follows from Kazhdan property (cf. [13]). This leads to a contradiction.
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