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ABSTRACT 

Rock masses may present remarked geostatic stress anisotropy and anisotropic material 

properties; thus, the tunnel alignment with the geostatic principal stress directions and with the 

axes of material anisotropy is unlikely. Nevertheless, tunnel design often neglects those 

misalignments and; yet, the misalignment effects were unknown. In this doctoral research, tunnels 

under complex anisotropic conditions were modelled analytically and numerically with 3D 

nonlinear Finite Element Method (FEM). When the tunnel misaligns with the geostatic principal 

stress directions, anti-symmetric axial displacements and shear stresses are induced around the 

tunnel. Analytical solutions for misaligned shallow and deep tunnels in isotropic elastic ground 

are provided. The analytical solutions were validated with 3D FEM analyses. Near the face, the 

anti-symmetric axial displacements are partially constrained by the tunnel face, producing 

asymmetric radial displacements and stresses. The asymmetric radial displacements at the face can 

be divided into a rigid body displacement of the tunnel cross-section and anti-symmetric radial 

displacements. Those asymmetries may affect the rock-support interaction and the plastic zone 

developed around the tunnel. In anisotropic rock masses, the tunnel misalignment with the axes of 

material anisotropy also produces anti-symmetric axial displacements and stresses around the 

tunnel. It occurs because when the tunnel is not aligned with the principal material directions, the 

in-plane stresses are coupled with the axial displacements (i.e. the compliance matrix is fully 

populated). Thus, tunnels in anisotropic rock mass not aligned with the geostatic principal stresses 

and with the axes of material anisotropy are substantially more complex than tunnels not aligned 

with the principal stress directions in isotropic rock mass. An analytical solution for misaligned 

tunnels in anisotropic rock mass is provided. It was observed that the relative orientation of the 

geostatic principal stresses with respect to the axes of material anisotropy plays an important role. 

The axial displacements produced by far-field axial shear stresses and by the rock mass anisotropy 

may compensate each other; thus, axial and radial displacements around the tunnel are reduced. 

On the other hand, those anti-symmetric axial displacements may be amplified; thus, the ground 

deformations are increased. Asymmetric radial and axial deformations, and asymmetric spalling 

of the tunnel walls are commonly observed on tunnels in anisotropic rock masses. The tunnel 

misalignment with the geostatic principal stress directions and with the axes of material anisotropy 

could be associated with those phenomena that, so far, are not well comprehended. 
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 INTRODUCTION 

1.1 Importance of the Research 

The literature shows that rock masses are likely to present remarked geostatic stress 

anisotropy and anisotropic mechanical properties. Those are consequences of the rock’s complex 

formation processes. According to Brady & Brown (2006), the main factors affecting rock 

behavior and geostatic stresses are: topography (elevations and valleys); residual stresses (due to 

cooling, for instance); tectonic movements; fracturing and sets of joints; and inclusions. The 

interplay among those factors is complex; thus, geostatic stresses and mechanical properties are 

expected to be complex as well. In addition, it is anticipated that residual soils, since they inherit 

the fabric structure from the rock matrix, also present anisotropic behavior. Examples include the 

granite residual soils in Porto (Gomes & Fonseca, 2013) and the gneiss residual soils in Sao Paulo 

(Futai et al., 2013). 

Brown & Hoek (1978) compiled the in-situ stresses of a large variety of rock masses at a 

large number of locations and depths. The authors observed that the vertical stress (σv) follows a 

scattered linear trend with depth (z), in which the line σv=0.027z (MPa) fits the data relatively well. 

However, the ratio of the average horizontal stress with the vertical stress (K=σh,average/σv) varies 

significantly with depth. Jaeger et al. (2007) observed that for depths shallower than 300 m, the 

scatter was large and ranged between 1 and 4. Below 2,000 m, the range was narrower and most 

of the data fell below or around one. There is consensus in the literature that the large scatter of K 

close to the surface is due to topographic effects (Brady & Brown, 2006; Goodman, 1989; Hoek, 

2008) and tectonic activity (Haimson et al., 2003; Park et al., 2014). McGarr & Gay (1978) 

compiled the full in-situ stress tensor at 77 different sites. This compilation included the principal 

stress ratios (σ1/σ3, σ2/σ3 and σ1/σ2), with depth, and a variety of rock masses. The interval with 

95% confidence for each principal stress ratio was: σ1/σ2=1.45±0.80; σ1/σ3=2.42±2.28; and 

σ2/σ3=1.66±1.0. These statistics showed that the expected stress anisotropy in rock masses was 

high and quite variable. Indeed, the literature is rich in measurements of in-situ stresses and shows 

that strong stress anisotropy should be expected in rock masses (Evans et al., 1989; Gysel, 1975; 

Haimson et al., 2003; Park et al., 2014; Read & Martin, 1992; Wileveau et al., 2007).  
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Rock masses may have a structure defined by bedding, stratifications, layering, foliations, 

joints and flow structures, to name a few; thus, anisotropic behavior should be anticipated. 

Anisotropic elastic and elastoplastic models are mostly used to represent such behavior. Amadei 

et al. (1987) compiled the stiffness ratio E1/E3 versus G12/G13, and the Poisson’s ratios ν12 versus 

ν13  for a wide range of rocks and test procedures (“1” is the direction parallel to the fabric structure, 

“3” is the perpendicular direction and “2” is the longitudinal direction, i.e. normal to planes with 

directions 1 and 3). The compiled ratios E1/E3 were usually smaller than two. There was a large 

scatter on the measured Poisson’s ratios, but most of the data fit within the range 0.1 to 0.3, which 

is typical of rocks. The majority of the tests showed E1 larger than E3, indicating that the stiffness 

parallel to the fabric structure is larger than the stiffness perpendicular to it. Worotnicki (1993) 

also compiled results of the stiffness ratio E1/E3. The author pointed out that granites, sandstones, 

gneisses and amphibolites showed small to moderate anisotropy (i.e. 70% of the tested rocks had 

E1/E3 < 1.3, 80% had E1/E3 < 1.5 and only 3% had E1/E3 > 2); mudstones, slates, phyllites and 

schists showed high anisotropy (50% had E1/E3>2 and 30% had E1/E3<1.5; also, the maximum 

measured ratio was 6); limestones, marbles and dolomites (carbonatic rocks) had low to moderate 

anisotropy (60% had E1/E3 < 1.3, 80% had E1/E3 < 1.5 and the largest E1/E3 was 1.7). More recently, 

Park & Min (2015) found a stiffness ratio E1/E3 of 1.4 for Asan Gneiss; 1.75 for Boryeong shale 

and 3.8 for Yeoncheon schist, which is consistent with the compiled data previously presented. 

Tonon & Amadei (2003) conducted a 2D FEM parametric analysis to assess the influence 

of the stiffness anisotropy on tunnel behavior. The authors observed that, for a highly anisotropic 

ground (E1/E3 = 3.25), the stress field around an unsupported tunnel was not significantly affected; 

however, the ground deformations were very much dependent on the anisotropy ratios. A similar 

observation was made by Fortsakis et al. (2012), who also conducted a series of 2D FEM analyses. 

The authors concluded that the assumption of an equivalent isotropic ground could lead to an 

underestimation of the ground deformations. 

The importance of the tunnel orientation with respect to the geostatic principal stress 

directions is recognized by the practical recommendation of aligning the tunnel with the geostatic 

major principal stress (σH) (Goodman, 1989). Tunnels were constructed in an Underground 

Research Laboratory (URL) in France to investigate their behavior by adopting different 

construction methods and supports. The URL was placed at 490m depth in an anisotropic 

Claystone rock mass. The principal stress ratios were, as average, σh/σv=1 and σH/σv =1.3 



 

26 

(Wileveau et al., 2007). Because of the sedimentation process, the rock had an oriented structure 

(bedding), with E1/E3 varying from 1.2 to 2 (Armand et al., 2013). Tunnels were excavated parallel 

and perpendicular to σH. A supported circular tunnel of radius of 2.6m aligned with σH showed a 

horizontal convergence of 37 to 58mm and a vertical convergence of 24 to 30mm. A similar tunnel 

aligned with σh showed horizontal convergence of 19mm to 34mm and vertical convergence of 

112mm to 158mm (Armand et al., 2013). The data illustrates the importance of the tunnel 

orientation with respect to the geostatic principal stresses. 

As discussed, rock masses may present remarked stress and material anisotropy, which 

may strongly affect tunnel behavior. However, tunnel design often neglects the tunnel orientation 

with respect to the far-field stress or with the directions of material anisotropy; yet, there is lack 

of research on the effects of the tunnel misalignment with respect to the geostatic principal stresses 

and to the material anisotropy directions. When the tunnel is not aligned with the geostatic 

principal stresses, those stresses can be decomposed into stresses in the plane of the tunnel cross-

section and perpendicular to the tunnel cross-section, i.e. axial shear and normal stresses. The far-

field axial shear stresses cause anti-symmetric axial displacements and shear stresses along the 

axis of the tunnel. If the rock mass has anisotropic properties, the tunnel misalignment with the 

principal directions of material anisotropy also induces anti-symmetric axial displacements and 

axial shear stresses along the tunnel. The reason for this is that the tunnel response is fully coupled 

in the transverse and longitudinal directions (i.e. the compliance matrix of the system is fully 

populated) when the tunnel axis misaligns with the axes of material anisotropy. The consequences 

of the induced axial shear stresses and axial distortion on the behavior of tunnels has been 

unexplored in the literature. This doctoral research seeks to fill this gap. The objective of this 

research is to fully understand the behavior of tunnels under complex anisotropic conditions. To 

achieve this goal, an exhaustive numerical modeling campaign was conducted, investigating 

several scenarios of tunnels under complex anisotropic conditions. Numerical results were 

confronted with the actual behavior of tunnels in highly anisotropic rock masses. Analytical 

solutions for misaligned tunnels were also developed and validated with numerical results. The 

excellent agreement between analytical and numerical solutions essentially shows that both 

solutions are correct. The results presented in this Dissertation show that the misalignment of 

tunnels with principal directions of stress and material anisotropy can explain the asymmetric 

deformations and asymmetric failure commonly observed in tunnels in anisotropic rock masses. 
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1.2 Dissertation Organization 

This Dissertation is a collection of articles that have been published or are in the review 

process for publication. Eleven papers were written (eight papers in peer-reviewed journals and 

three conference papers). The list of articles is shown below. The articles are organized as chapters 

of this Dissertation. The research can be divided into three parts: (1) Numerical modeling of 

tunnels, papers 1 to 3; (2) Tunnels misaligned with the geostatic principal stress directions in 

isotropic ground, papers 4 to 7; and (3) Tunnels misaligned with the geostatic principal stress 

directions in anisotropic ground, papers 8 to 11. 

The first stage of the research focused on the numerical modeling of tunnels. Topics 

regarding three-dimensional numerical modeling of tunnels using a nonlinear Finite Element 

Method (FEM), such as mesh discretization, model dimensions, boundary conditions, ground-

support interaction, 3D face effects, influence of the construction sequence and buoyancy effects, 

were investigated. Three papers were written on this topic: papers (1) to (3). 

The second stage of the research focused on tunnels not aligned with the geostatic principal 

stress directions. When the tunnel is not aligned with the principal stresses, far-field axial shear 

stresses are present. Those stresses induce anti-symmetric axial displacements around the tunnel. 

These effects are often neglected in tunnel design; yet, their influence on tunnel behavior has not 

been fully explored. The influence of the far-field axial shear stresses was exhaustively 

investigated near and far-behind the face, for unsupported and supported tunnels in elastic and 

elastoplastic rock masses. Four papers were written on this topic: papers (4) to (7). 

The third research stage concentrated on tunnels in anisotropic rock masses not aligned 

with principal stress directions and with the principal axes of material anisotropy. Supported and 

unsupported tunnels were investigated, considering different orientations of the principal stress 

directions with respect to the axes of material anisotropy. Four papers were written on this topic: 

papers (8) to (11). 
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Abstract 

3D modeling of tunnels using a nonlinear ground model is still a time-consuming task because it 

usually requires a large number of incremental phases with iterative processes, to ensure accuracy 

while minimizing computational effort. Optimization of the finite element mesh is of utmost 

importance. Despite the current tendency towards 3D modeling of tunnels, few publications are 

concerned with mesh optimization considering model size, grid refinement and order of elements. 

This paper improves the understanding of key issues that affect 3D modeling of tunnels. Our results 

shown that: (1) 2nd order elements are more efficient when material nonlinearity is present and 

should be preferred; (2) the plastic zone size has a strong influence on the model dimensions and 

may require discretizations much larger than those currently accepted. The paper provides 

recommendations for mesh refinement and model dimensions (width and length) as a function of 

the plastic zone size, for accurate 3D models with reduced computational cost. 

2.1 Introduction 

Tunnel design currently relies on numerical models thanks to the increase of computer 

capabilities, together with the development of sophisticated and user-friendly finite element codes 

and ground models. The 3D modeling of tunnels is becoming more attractive due to recognized 

limitations of the 2D modeling (Janin et al., 2015; Möller, 2006), and because 3D modelling is 

able to capture better the response of tunnel excavations (Janin et al., 2015; Mašín, 2009; Möller, 

2006; Svoboda & Masin, 2011; Yeo et al., 2009). 

Despite the improvements in hardware and software, 3D modelling of tunnels is still a 

time-consuming task because it involves incremental phases to simulate the excavation and, most 

often, incorporates material nonlinearity (i.e. plasticity). The step-by-step excavation procedure 
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consists of a sequence of phases where the elements inside the opening (excavation rounds) are 

deactivated while the elements that represent the liner are activated. 

The potentially large number of incremental phases, complemented with material 

nonlinearity (i.e. several iterations to converge), makes the 3D modelling of tunnels expensive. 

For instance, Franzius & Potts, 2005 mentioned calculation times of 291.3h to run a 45,947 nodes 

finite element model with 40 incremental phases and 194.9h to run a 38,083 nodes model with 32 

incremental phases on a Sun SF 880 server at Cambridge University. They also suggested that the 

excavation round length used in the model should be linked to the computational capabilities, given 

that this parameter strongly influences the time for processing. 

More recently, Do et al., 2014, performed a 3D numerical study of mechanized twin tunnels 

simulating details of the excavation, such as face pressure, shield weight and gap filled with 

grouting. Their models had 1,100,000 nodes and required 340h (approx. 2 weeks) to run using a 

2.67 GHz core i7 CPU RAM 24G computer. Despite improvements of hardware, tunnel models 

are increasing in complexity and, therefore, requiring more computational effort to run. Such effort 

may make 3D modelling unfeasible for some applications. An optimum finite element mesh that 

leads to accurate results in reasonable time is necessary to make 3D modelling feasible, for both 

industry and research. Surprisingly, few publications on numerical modelling of tunnels are 

dedicated to mesh optimization. 

The literature presents a wide range of model sizes (length and width) and finite element 

grids (Do et al., 2014; Eberhardt, 2001; Gomes & Celestino, 2009; Janin et al., 2015; Möller, 2006; 

Nam & Bobet, 2007; C. W. W. Ng, Lee, Ng, & Lee, 2005; Svoboda & Masin, 2011; Yeo et al., 

2009), that seem to indicate that there is no well-stablished procedure to define model dimensions 

and grid refinement. For instance, Franzius & Potts, 2005, summarized the model dimensions 

carried out by other authors. From the summary, one can observe that the model width has an 

average of 17.8Rtunnel and a standard deviation of 10Rtunnel (Rtunnel is the radius of the tunnel); and 

the model length has an average of 27.2Rtunnel and a standard deviation of 15.2Rtunnel. These 

statistics illustrate the large scatter of the models sizes found in the literature. 

Most of the recommendations for model size consider stresses, strains and displacements 

at the boundaries. Meisnerr, 1996, cited by Möller, 2006, states that a 8Rtunnel to 10Rtunnel model 

width would be enough to minimize errors; this is in agreement with the rule of thumb that the 

boundaries should be at least 10Rtunnel far from the opening. However, such recommendation 
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suggests that the boundaries are only affected by the size of the tunnel and not by other variables 

such as the initial stresses, plastic size and/or geological features. 

Möller, 2006, proposed expressions to establish the model dimensions for shallow tunnels 

as a function of the tunnel diameter and the overburden ratio (ratio between tunnel depth and tunnel 

radius), by using an advanced constitutive model for the ground (a hardening soil model), while 

considering surface settlements and shear stress mobilization at the boundaries. The criteria were 

that the settlement at a lateral boundary should not exceed 1% of the maximum settlement along 

the surface and that the principal stress directions should not rotate more than 2.5° with respect to 

their initial directions at the boundaries. Such limits are uncertain and do not provide information 

on the accuracy achieved by the numerical model around the opening; also, the conclusions did 

not explicitly consider the size of the plastic zone. Interestingly, Möller, 2006, found that the 

necessary mesh width was the same for 2D and 3D models. 

Vlachopoulos & Diederichs, 2014, recommended that the boundaries should be placed at 

least 12 tunnel radius (Rtunnel) from the opening and at least 3Ryield (yield radii) from the plastic 

zone around the opening. However, no relation was provided between the size of the model and 

the accuracy achieved around the opening, nor the criteria for the recommendation. 

This paper seeks to improve our understanding on how the finite element mesh and the 

sequential excavation modelling affect the numerical results, considering material nonlinearity; 

thus, providing guidelines and information for practitioners and academicians to build more 

efficient and reliable 3D models. 

2.2 Grid refinement and type of element 

3D models of tunnels are usually built by extruding a 2D grid along the tunnel axis. All 

references consulted (except Janin et al., 2015, which adopted a 3D mesh with tetrahedron 

elements) used extrusion. Figure 2.1 illustrates the most common type of 3D models found in the 

literature. The aim of this section is to investigate the transversal grid refinement and the order of 

the elements (i.e. interpolation function) for 3D simulations. 
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Figure 2.1 Typical 3D tunnel model found in the literature, typically built by extrusion of a 2D 
grid. 

 

Grid refinement and order of elements were evaluated such that nonlinear behavior was 

accurately captured; that is, the goal was to find whether there is an advantage of using quadratic 

interpolation elements (serendipity 2nd order elements – 20 node hexahedron elements) instead of 

linear interpolation elements (1st order elements – 8-node hexahedron elements) and how refined 

the grid should be to obtain accurate results. 

Numerical accuracy, defined as how close a result is from its true value, was assessed using 

the results obtained with a very refined grid. Figure 2.2 shows a cross section perpendicular to the 

tunnel axis, far from the face such that uniform results are obtained. The numerical output is 

consistent with the analytical solution developed for plane strain hollow plates loaded at the 

boundaries, for elastic perfectly plastic Mohr-Coulomb material (Salesҫon, 1969). Such analytical 

solution has been used to validate the elastic perfectly plastic Mohr-Coulomb model in FEM codes, 

such as Midas NX GTS (MIDAS, 2014)More specifically, comparisons are made with the radial 

displacements at the perimeter of the opening. 

Accuracy is calculated using the following equation, which measures the error between the 

true (reference) solution and the value obtained from a given realization. 

reference

reference

u

uu
Accuracy


(%) . Where ureference is taken from the reference mesh. Note that the 

accuracy is expressed as a percentage. 

A deep unsupported circular tunnel is assumed, with a radius of 5 m (Rtunnel=5m), subjected 

to far-field geostatic pressures of 100 kPa and coefficient of earth pressure at rest, Ko, equal to 1, 

i.e. hydrostatic loading. Note that under these conditions, the problem has axial symmetry. It is 
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common practice to adopt a uniform stress field with depth for deep tunnel analysis. This is a valid 

assumption because the changes in stress with depth are negligible for a deep tunnel (Bobet, 2003). 

For the models, the lateral boundaries are placed at 250m (50Rtunnel) from the center of the tunnel, 

a distance large enough such that errors due to the boundaries are avoided, and the axial boundaries 

are also far enough such that plane strain conditions are achieved at the cross section of interest. 

The ground models were either linear elastic (Ryield=Rtunnel) or elastic perfectly plastic with 

a Mohr-Coulomb failure with associated flow rule (Ψ=φ=19.6°), that results in Ryield=3Rtunnel (the 

soil properties are presented in Table 2.1). Note that a yield radius greater than three times the 

tunnel radius is unlikely in practice because it would lead to unacceptable ground movements and 

even collapse of the opening. In weak ground conditions, the support would prevent such large 

plastic deformations around the opening. Therefore, Ryield=3Rtunnel is representative of the worst 

case scenario. Further, an associated flow rule was assumed, which carries relatively high 

volumetric plastic strains (Ψ=φ=19.6°), making the material nonlinearity more noticeable. 

Figure 2.2 shows the refined mesh with 2nd order elements, used as reference. Figure 2.2 

also shows the yield radius obtained using the parameters presented in Table 2.1 for 

Ryield=3Rtunnel=15m. The size of the yield radius matches the analytical solution. 

The strength parameters shown in Table 2.1 (cohesion and friction angle) were determined 

given the yield radius (Ryield) for 100kPa hydrostatic pressure, using Salesҫon’s solution. The size 

of the plastic zone is representative of the level of nonlinearity of the numerical model. Therefore, 

the recommendations throughout the paper may be applicable to other ground conditions, far-field 

stresses and to supported tunnels, based on the size of the plastic zone developed around the tunnel. 

 

Table 2.1 Soil properties for Ryield/Rtunnel ratios. Tunnel with Rtunnel = 5m and 100kPa far-field 
hydrostatic pressure. 

 

 

Ryield / Rtunnel c (kPa) φ (°) E (MPa) ν

1 - - 100 0.3
1.5 28.1 19.6 100 0.3
2 17.5 19.6 100 0.3

2.5 12.7 19.6 100 0.3
3 10.0 19.6 100 0.3



 

37 

 

 

Figure 2.2 Refined mesh using 2nd order hexahedra, used as reference, and yield ground. 

 

Both structured and unstructured grids are investigated. Structured grids have a regular 

pattern, and are common in the literature (Eberhardt, 2001; Gomes & Celestino, 2009; Nam & 

Bobet, 2007; Nicholas Vlachopoulos & Diederichs, 2014). Unstructured grids have an irregular 

pattern. Unstructured grids provide more flexibility to discretize the domain compared to 

structured grids, given that they allow complex nodal connectivity and different element types (i.e. 

rectangular and triangular elements). Therefore, initially, unstructured grids could be preferable 

because they allow a more efficient distribution of nodes and quadrature points; that is, a more 

refined grid in the region near the opening and a coarser grid far from the opening. 

First, structured grids are analyzed. A total of 6 different grids are assessed. The grids are 

made by dividing the opening perimeter and the boundaries equally, adopting a refined grid close 

to the opening that gradually coarsens towards the boundaries. 
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Figure 2.3 plots the normalized radial displacement at the perimeter of the opening, as a 

function of the number of nodes of the different grids. The radial displacements are normalized by 

those of the reference model (Figure 2.2) using the same ground properties. The computational 

effort is directly related to the number of nodes, which determines the size of the system of 

equations to be solved, while the efficiency of a model relates the accuracy achieved with the 

number of nodes in the model; that is, the higher the accuracy and the smaller the number of nodes, 

the more efficient the mesh is. Thus, the efficiency of the finite element mesh can be assessed by 

comparing the number of nodes with the accuracy achieved. 

Figure 2.3 shows that, for all cases analyzed, the difference in normalized displacements 

from the case considered “correct” decreases as the number of nodes (i.e. as the number of 

elements) increases. It is interesting to note that irrespective of the type of element, either first 

order or second order, the errors are small if the ground model is elastic. This is not the case 

however when plasticity is considered. Indeed, when the material yields (Ryield=3Rtunnel and 

associated flow rule, Ψ=φ=19.6°), the most refined mesh with 1st order elements achieves a 12.8% 

accuracy using 918 nodes, while the coarser mesh with 2nd order elements achieves a 4.9% 

accuracy using only 287 nodes. The grid with 2nd order elements considered optimum (coarsest 

grid with errors smaller than 1% for nonlinear material) is presented in Figure 2.4. In this case, the 

errors are 0.6% with 836 nodes. 

The data in Figure 2.3 show that 2nd order elements are more efficient than 1st order 

elements, when material nonlinearity is present. This observation can be explained because of the 

quadratic interpolation of the 2nd order elements that can capture the nonlinear material behavior 

more accurately than the linear interpolation of 1st order elements. This conclusion is strengthened 

by the fact that, for linear material (Ryield=Rtunnel), there is no advantage in using 2nd order elements 

over 1st order elements. 
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Figure 2.3 Convergence towards reference radial displacement for structured grid with 1st order 
and 2nd order elements (8-nodes and 20-nodes hexahedral elements). 

 

 

Figure 2.4 Front view of the optimum structured grid with 2nd order elements. 

To assess the influence of the grid pattern, three types of grids using 2nd order elements 

with approximately the same number of nodes are compared: 1) structured grid using hexahedron 

elements; 2) unstructured grid using only pentahedron elements (grid A); and 3) unstructured grid 

using hexahedron and pentahedron elements (grid B). The grids are developed using a mesh 
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generator with Delaunay algorithm with a refined mesh close to the opening that gradually 

coarsens toward the boundary. 

Similar to Figure 2.3, Figure 2.5 compares the radial displacements at the perimeter of the 

opening, normalized with respect to the reference model displacements (Figure 2.2), for different 

types of grid and number of nodes. Results are obtained for nonlinear material (Ryield=3Rtunnel and 

associated flow rule, see Table 2.1). As expected, as the number of nodes in the discretization 

increases, e.g. as the number of elements increase, the errors decrease and the solution converges 

towards the correct solution. The three types of grids provide similar accuracy for the same number 

of nodes. Therefore, the type of the grid structure is not as important as the type of element. Figure 

2.6 andFigure 2.7 show the optimum unstructured grids. Grid A, with pentahedron elements only, 

has 724 nodes and achieves 0.8% accuracy, while grid B, with hexahedron and pentahedron 

elements, has 589 nodes and 1% accuracy. 

Despite the advantage of using 2nd order elements (i.e. quadratic interpolation), with respect 

to 1st order elements, models are found in the literature that use 1st order elements (i.e. linear 

interpolation). For instance, Ng & Lee, 2005, used 1st order elements due to limitations of 

computational resources; however, it is arguable that a faster mesh resulting in equally or better 

results is possible using a coarser grid with 2nd order elements, based on the results presented in 

this paper. 

 

Figure 2.5 Convergence towards reference radial displacement for different types of grid with 2nd 
order elements. 
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Figure 2.6 Front view of the optimum unstructured grid A with 2nd order elements. 

 

Figure 2.7 Front view of the optimum unstructured grid B with 2nd order elements. 

2.3 Mesh width  

The influence of the model width on the accuracy of the results was assessed by a set of 

analyses varying the model width (Lwidth) and the degree of material nonlinearity (yield radius 

ranging from 1 to 3 times the tunnel radius; see soil properties in Table 2.1). Examples of the 

meshes investigated are presented in Figure 2.8 (only the front face is shown, for clarity). Similar 
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to previous examples, the tunnel radius is 5m and the stress state is hydrostatic (i.e. K0 = 1), with 

far field stress 100kPa. 

As discussed, the range of model widths found in the literature is high, from 48.2Rtunnel to 

8Rtunnel (Franzius & Potts, 2005). Also, there is no well-established procedure to determine the 

model width. Further, most of the suggestions found often do not account for important aspects 

such as the size of the plastic zone and there are no recommendations relating mesh size and 

accuracy. 

    

Figure 2.8 Examples of the front view of finite element meshes with 2nd order elements (20-node 
hexahedra) to assess the influence of model width. Note that the grid refinement is kept constant 

regardless of the mesh size. 

 

Figure 2.9 plots the error of the radial displacements at the perimeter of the opening with 

respect to the reference value, which is the displacement obtained numerically with a model 

extremely wide (200Rtunnel), using the grid structure shown in Figure 2.8. The figure shows that 

the errors quickly decrease as the width of the mesh increases. The figure also shows that, as the 

size of the plastic zone around the tunnel increases, the errors increase. 

It is interesting to see that the errors are smaller than 5% for mesh widths larger than about 

15 times the tunnel radius and become negligible for widths larger than 40-45 tunnel radius. It is 

worth noting that, for a model width equal to 10Rtunnel, which is a common reference in the 

literature (Möller, 2006), the error is acceptable for linear elasticity (1.3%), but may be 

unacceptable for Ryield=3Rtunnel (13%). Also, the Vlachopoulos & Diederichs, 2014, 

recommendation to adopt a model size of 3Ryield beyond the plastic zone may lead to inaccurate 

results. For instance, for Ryield=3Rtunnel, the criterion requires a model size of 12Rtunnel, which would 

result in an error of 8.5%, according to Figure 2.9. 

Figure 2.10 shows the required model width (Lwidth), as a function of the yield radius, to 

obtain errors below 2%, 1% and 0.5%. For a given accuracy, the width of the mesh needed 
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increases with the size of the plastic zone. These observations, however, apply for the case of 

isotropic stress field, which results in a yield zone that has axial symmetry. In general, the far-field 

stresses are anisotropic, and so the plastic zone around the tunnel will not be cylindrical. In this 

case, the recommendation is to adopt the largest plastic zone size, measured from the center of the 

opening. This is discussed in more detail in Section 6, where a case with anisotropic stress field is 

analyzed. 

 

Figure 2.9 Relation between accuracy, model width (Lwidth) and plastic radius (Ryield). 

 

Figure 2.10 Model width and accuracy with plastic radius. 
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2.4 Mesh length  

The model must be long enough to capture the changes of stresses and displacements ahead 

and behind the excavation face of the tunnel, without any undesirable effects due to the boundaries. 

To do this, it is necessary to determine the influence length of the tunnel face; that is, the distance 

ahead and behind the tunnel face affected by the excavation. Also, it is necessary to assess the 

influence of the front and back boundaries on the results, such that the solution is free from 

boundary effects. The goal is to find the minimum model length that accurately captures the 3D 

tunnel excavation. 

As mentioned before, there is no well-established procedure in the literature to estimate the 

model length. In fact, most of the recommendations disregard the influence of material nonlinearity 

and do not relate model length with accuracy. 

2.4.1 Tunnel face effects 

The tunnel excavation changes the stresses in the ground, mobilizing shear stresses 

(longitudinal and transversal arching) to achieve a new stress state. This process is gradual, starts 

with the initial stresses in the ground and ends up with a steady-state response at some distance 

behind the face of the tunnel. 

It is informative to determine the location where the stresses in the ground start to be 

affected by the tunnel excavation and where the displacements stop changing behind the tunnel 

face; in other words, to determine the length of influence of the tunnel face, which can be done by 

assessing the displacements and stresses evolution along the tunnel. 

A model with 80Rtunnel length and 50Rtunnel width using a suitable grid with 2nd order 

elements is built for the analyses (Figure 2.11). The length of 80Rtunnel is large enough to capture 

the evolution of stresses and displacements along the excavation and avoid boundary effects. Also, 

the 50Rtunnel width minimizes boundary effects (see Section 3.1). The grid refinement and the order 

of the elements have been discussed in Section 2. In the analyses, the tunnel radius is 5m and the 

initial stress state is hydrostatic (i.e. K0 = 1), with a far field stress of 100kPa. The model has been 

run for different degrees of material nonlinearity (yield radius ranging from 1 to 3 times the tunnel 

radius with associated flow rule; see parameters in Table 2.1). 
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Möller, 2006, found that the mesh length is almost independent of the excavation round 

length using a hardening elastoplastic model; therefore, the stress path history due to a step-by-

step simulation of the excavation should have a small influence on the model length. Such finding 

is confirmed by comparing the radial displacement profile obtained with a step by step excavation 

with a round length of 0.2Rtunnel and with a single step until the center of the model (40Rtunnel long), 

as will be shown and discussed later in Figure 2.12. Therefore, to assess the influence length of 

the tunnel face, the excavation is simulated in a single step 40Rtunnel long until the center of the 

model; this is convenient because of faster computation and simple analysis of the data, given that 

the single step does not produce the “saw-tooth” shaped results associated with the step by step 

excavation. 

 

Figure 2.11 3D model using 2nd order elements to assess the length of influence of the tunnel 
face. 

 

Figure 2.12 shows the total radial displacements at the perimeter of the opening and those 

radial displacements normalized with respect to the displacements far from the tunnel face (note 

also that the figure includes results from a step-by-step excavation with a round length of 0.2Rtunnel). 

The results are plotted as a function of the distance from the tunnel face (Dface) normalized by the 
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tunnel radius (Rtunnel). Note that Dface/Rtunnel=0 is the tunnel face, Dface/Rtunnel>0 represents a 

distance ahead of the tunnel face and Dface/Rtunnel<0 behind the tunnel face. 

The displacements start to be mobilized relatively close to the face (at around 4Rtunnel ahead 

of the face), with the largest changes occurring near the face. At the face (Dface=0), the normalized 

radial displacement is 0.16 for Ryield=3Rtunnel and 0.29 for Ryield=Rtunnel, which is consistent with 

the literature (Vlachopoulos & Diederichs, 2009). The radial displacement shows an abrupt 

increase just behind the face and a continued increase towards a steady displacement with distance 

behind the face. This happens at around 15Rtunnel. The shape of the curves, as one can see in the 

figure, strongly depends on the size of the plastic zone around the tunnel. 

Despite the influence of the step-by-step excavation on the total displacements (note that 

the radial displacement far behind the face increases by 20% with the step by step excavation for 

Ryield=3Rtunnel and associated flow rule, compared with the single step), for the normalized 

displacements, after a distance of around 4Rtunnel behind the face, the normalized radial 

displacements for Ryield=3Rtunnel for the step by step and single step match, denoting that both 

methods give the same results. 

 

Figure 2.12 Radial displacement with distance from the face. 

 

Figure 2.13 shows the tangential stresses (σθθ) near the perimeter of the opening, 

normalized with respect to the initial stresses, with the distance from the face, normalized by the 

tunnel radius. For a hydrostatic far-field stress (σ11=σ22=σ33=p), the normalized stress is σθθ/p. Far 

ahead from the excavation face, the stress field is isotropic and of magnitude 100kPa. As the 

excavation face approaches, the shear stresses are mobilized (longitudinal and transversal arching) 
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and the tangential stresses start to increase. For a linear elastic material (Ryield=Rtunnel), the 

tangential stresses monotonically increase until they reach a constant value behind the excavation 

face. For an elasto-plastic material, yielding limits the increase of the tangential stresses. Once the 

material yields, the tangential stresses start to decrease until they reach a constant magnitude 

behind the face, at a distance of around 2Rtunnel. Note that the distance ahead of the face where the 

shear stresses are mobilized increases with the size of the plastic zone. The stresses shown in 

Figure 2.13 Tangential stresses near the opening perimeter, with distance from the face. Figure 

2.13 are consistent with Cantieni & Anagnostou, 2009, results for an unsupported tunnel. Note that 

if a support is installed, an increase in the stresses behind the tunnel face is expected after the 

support installation, as shown by Cantieni & Anagnostou, 2009. 

 

Figure 2.13 Tangential stresses near the opening perimeter, with distance from the face. 

 

The length of the model must, at least, extend from the location where stresses or 

displacements start to be mobilized ahead of the face to where stresses and displacements reach a 

constant value behind the excavation face; that is, the length must be inclusive of the largest 

influence of the excavation face. 
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displacements, for different sizes of the plastic zone. The plots can be used to estimate the model 

length, even for models with anisotropic far-field stress, by using the largest size of the yield zone, 

as it will be shown later in the verification section. Also, the model must include the length affected 

by the front and back boundaries, as discussed in the next section. 

 

Figure 2.14 Minimum distance ahead and behind the tunnel face required to reach a target 
accuracy, as a function of the plastic zone size. 

2.4.2 Front and back boundaries 

The aim of the section is to determine how results are affected by the front and back 

boundaries of the model. A model with 20Rtunnel length and 50Rtunnel width, with a suitable refined 

grid, using 2nd order elements is built for the analyses. Figure 2.15 shows the model. A step-by-

step excavation is implemented throughout the entire model to assess the length of influence of 

the front and back boundaries. As it will be shown, the 20Rtunnel model length is enough to obtain 

displacements free from boundary effects. 

The model is run for different plastic zone sizes (Ryield from 1.5 to 3 Rtunnel with associated 

flow rule, 19.6°; see input parameters in Table 2.1), and with an excavation round length of 

0.2Rtunnel. Similar to previous discussions, the tunnel radius is 5m and the stress state hydrostatic 

(i.e. K0 = 1), with a far field stress of 100kPa. 

Figure 2.16 shows the radial displacements at the perimeter of the tunnel normalized by 

the radial displacements far from the influence of the face. The results are plotted as a function of 
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the distance from the center of the model (Dcenter), normalized by the tunnel radius. That is, 

Dcenter/Rtunnel=0 represents the middle of the model; Dcenter/Rtunnel=10 represents the back boundary, 

and Dcenter/Rtunnel=-10, the front boundary. 

As Figure 2.16 shows, the front boundary has an influence over a length of 2Rtunnel and the 

back boundary, over 6Rtunnel. It is interesting to note that the length of influence of the front and 

back boundaries does not vary significantly with the plastic zone size. Thus, in general, results 

over a length of 2Rtunnel ahead of the front boundary and 6Rtunnel behind the back boundary should 

be disregarded. In other words, any mesh discretization should include an additional 2Rtunnel length 

beyond the front boundary and 6Rtunnel behind the back boundary, to achieve acceptable results. 

 

Figure 2.15 3D model to assess the influence of the front and back boundaries. 
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Figure 2.16 Normalized radial displacements at the perimeter of the opening, along the tunnel 
length. 

2.5 Axial grid refinement 

A 3D tunnel model is usually built by extruding a 2D grid along the tunnel axis. Despite 

the strong influence that the axial grid refinement has on accuracy and computational effort, as 

highlighted by Franzius & Potts, 2005, and Möller, 2006, there is limited research on the axial grid 

refinement. In this section, this issue is discussed. 

The models used for this study are similar to those presented in section 3.2.2 (same 

dimensions and boundary conditions), but with an excavation round length (L) of 1Rtunnel, 0.4Rtunnel 

and 0.2Rtunnel. These values encompass a wide range of excavation round lengths used in practice. 

The goal is to evaluate the radial displacement profile obtained with the different excavation round 

lengths, to determine which element length ensures accurate results regardless of the excavation 

round length. Note that the excavation round length affects the stress path of the ground around 

the opening; therefore, the radial displacements profile varies with different excavation round 

lengths, as mentioned by Vlachopoulos & Diederichs, 2009. 

Each model is run using different element lengths (Lelement) (i.e. different axial grid 
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associated flow rule (19.6°). Figure 2.17 shows the models using Lelement=0.1Rtunnel and 

Lelement=1Rtunnel. 

Figure 2.18 toFigure 2.20 show the radial displacements at the perimeter of the tunnel after 

excavation throughout the entire model (similar to what was done in previous section), shown in 

Figure 2.16, with distance from the center of the model (Dcenter) normalized by the tunnel radius, 

for excavation round lengths (L) of 1Rtunnel, 0.4Rtunnel and of 0.2Rtunnel. As before, Dcenter/Rtunnel=0 

represents the center of the model; Dcenter/Rtunnel=10 the back boundary, and Dcenter/Rtunnel=-10, the 

front boundary. Those graphs illustrate the influence of the step by step excavation in the 

displacements, for Ryield=3Rtunnel using an elastic perfectly plastic Mohr Coulomb model with 

associated flow rule. Note that the displacements increase as the excavation round length decreases. 

For a round length of 0.2Rtunnel, the step by step excavation causes 18% increase of the radial 

displacements with respect to a single step excavation. 

 

Figure 2.17 Models with different axial grid refinement. (a) Lelement=0.1Rtunnel and (b) 
Lelement=1Rtunnel. 



 

52 

The displacements have the characteristic saw-tooth shape with a periodicity equal to the 

excavation round. This is a result that has been observed by others (e.g. Möller, 2006). Note also 

that the amplitude of the saw-tooth, that is the difference between the maximum and minimum 

displacements, decreases as the round length is reduced; however, the overall magnitude of the 

displacements increases by decreasing the round length. 

For the largest round length, L=1Rtunnel, (Figure 2.18), the radial displacement profiles 

obtained for Lelement=Rtunnel (1 element per round) and for Lelement=0.5Rtunnel (2 elements per round) 

are inconsistent with the profile obtained using the most refined axial grid (Lelement=0.1Rtunnel). In 

contrast, the difference between the radial displacements between Lelement=0.2Rtunnel (5 elements 

per round) and Lelement=0.1Rtunnel (10 elements per round) is negligible. 

Similarly, for L=0.4Rtunnel (Figure 2.19), the radial displacement profiles for 

Lelement=0.1Rtunnel and Lelement=0.2Rtunnel are comparable, but different than Lelement=0.4Rtunnel. 

Similar observations can be made for L=0.2Rtunnel (Figure 2.20). In short, discretization using 

Lelement=0.2Rtunnel leads to satisfactory results for all round lengths assessed regardless of the 

number of elements per round length. Thus, element lengths of 0.2Rtunnel or shorter seem 

appropriate for the axial grid, regardless of the excavation round length. 

 

Figure 2.18 Radial displacements at the perimeter of the opening along the tunnel length for 
round lengths (L) of 1 tunnel radius (Rtunnel), for different axial grid refinements. 
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Figure 2.19 Radial displacements at the perimeter of the opening along the tunnel length for 
round lengths (L) of 0.4 tunnel radius (Rtunnel), for different axial grid refinements. 

 

Figure 2.20 Radial displacements at the perimeter of the opening along the tunnel length for 
round lengths (L) of 0.2 tunnel radius (Rtunnel), for different axial grid refinement. 
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2.6 Verification 

The previous analyses have been conducted assuming a hydrostatic far-field stress. While 

the assumption has been useful to identify the critical issues and reach simple conclusions, in 

reality, the geostatic stresses are anisotropic. It is thus imperative to determine to what extent the 

observations made can be generalized. To do this, additional analyses are made: a 3D model with 

large dimensions and refined mesh (reference model) is compared with a 3D model with 

dimensions and mesh refinement following the recommendations made based on the previous 

simulations. An excavation round length of 5m (i.e. one tunnel radius), tunnel radius of 5m, 

anisotropic stress field (i.e. σ1 = 100kPa, σ2 = σ3 =50kPa) and an elastic, perfectly plastic Mohr-

Coulomb material with parameters for Ryield=2Rtunnel and non-associated flow rule (Ψ=0°) (see 

Table 1) is adopted. Under such conditions, the shape of the plastic zone around the opening is not 

circular and the maximum distance from the center of the opening to the limit of the plastic zone 

is approximately 2Rtunnel. 

Figure 2.21 shows the reference 3D model, which uses 2nd order elements and has 80Rtunnel 

length and 50Rtunnel width. Such dimensions are sufficient to capture the displacements and stresses 

in the tunnel without boundary effects. The model uses an element length of 0.2Rtunnel within the 

volume comprised between 30Rtunnel behind the excavation face and 20Rtunnel ahead of the 

excavation face. The axial grid is coarsened close to the front and back boundaries to save 

processing time. 

  

Figure 2.21 Front and side view of the reference 3D model. 
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Figure 2.22 shows the grid built following previous recommendations. That is, the model 

uses 2nd order elements and mesh following Figure 2.4; the model width is 25Rtunnel, based on 

Figure 2.10 (assuming a 1% accuracy and Ryield=2Rtunnel); the model length is 26Rtunnel, based on 

Figure 2.14 and Figure 2.16 (assuming 1% accuracy and Ryield=2Rtunnel; 12Rtunnel behind the face 

and 6Rtunnel ahead of the face); and the element length is 0.2Rtunnel, as discussed in section 4. 

 

Figure 2.22 Front and side view of the recommended 3D model, which dimensions and grid were 
determined based on the recommendations provided. 

 

Figure 2.23 shows the radial displacements obtained from both models along the axis of 

the tunnel (represented by the distance from the face normalized by the tunnel radius; 

Dface/Rtunnel=0 is the tunnel face, Dface/Rtunnel>0 is ahead of the tunnel face and Dface/Rtunnel<0 is 

behind the tunnel face). The displacements profiles are similar to each other, showing that the 

recommendations reached with a hydrostatic far-field stresses can be used for anisotropic geostatic 

stresses. This observation is supported by the results shown in Figure 2.24, which is a plot of the 

principal stresses obtained from both models. As one can see, the results are similar. 
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Figure 2.23 Radial displacements at the wall and crown of the opening obtained with the 
reference and the recommended 3D models. 

   

Figure 2.24 Principal stresses at near the wall and crown of the opening obtained with the 
reference and the recommended 3D models. 

It is worth mentioning that the reference 3D model has 326,906 nodes and requires 40 

excavation steps, taking 13.46 hours to run, while the recommended model has 51,246 nodes and 

14 excavation steps, taking only 0.29 hours to complete. That is, the recommended model runs 

almost 50 times faster than the reference model and provides equivalent results. Both models were 

run on the same computer (32Gb RAM and Xeon E5-1660 v4, with 3.2GHz processor). 
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2.7 Conclusions 

In this paper, aspects that affect the 3D modelling of tunnels such as model size (width and 

length), grid refinement (transversal and longitudinal), grid type (structured and unstructured) and 

order of elements (i.e. interpolation functions) are investigated, to provide recommendations for 

3D meshing of FEM simulations of deep tunnels. 

Finite element grids with 2nd order elements (i.e. quadratic interpolation) show better 

performance than finite element grids using 1st order elements (i.e. linear interpolation) when 

material nonlinearity is involved. Therefore, 2nd order elements should be preferred. Also, the 

structure of the grid (structured or unstructured grid) has a secondary importance compared with 

the order of the elements. 

The size of the plastic zone has a major influence on the model dimensions. Requirements 

for model widths have been determined for yield radii (Ryield) varying from 1 (linear material) to 

3 (worst case scenario). To achieve a 1% accuracy, for Ryield=3Rtunnel and associated flow rule, a 

model width of 32Rtunnel is required, while for Ryield=1Rtunnel (linear material), a width of 11 Rtunnel 

is needed. This is in contrast with the common reference found in the literature of 10Rtunnel, which 

may be suitable for a linear material but may not be acceptable for a nonlinear material. 

Minimum model lengths have been also determined as a function of the yield radius. To 

obtain stresses and displacements with 1% accuracy, for Ryield=3Rtunnel and associated flow rule, 

the influence length of the excavation face is 23Rtunnel (15Rtunnel behind the face and 8Rtunnel ahead), 

while for Ryield=1Rtunnel (linear material), the influence length is 9Rtunnel (5Rtunnel behind and 4Rtunnel 

ahead). Common references found in the literature suggesting influence length of 4Rtunnel behind 

the face and 4Rtunnel ahead the face (e.g. Eberhardt, 2001, and Shahin, et al, 2004) may be 

appropriate for linear materials, but can lead to unacceptable errors when a nonlinear material is 

involved. Further, the length affected by the front and back boundaries should be added to the 

model length. It is recommended to add 8Rtunnel to the length of influence of the excavation, 2Rtunnel 

from the front boundary and 6Rtunnel from the back boundary, to avoid boundary effects. 

The paper also examines the minimum element length to be used when step-by-step 

excavation is attempted. This is necessary when an elastoplastic model is used, as the solution is 

stress-path dependent. Results from a number of simulations that explore the errors associated with 

different element sizes and excavation round lengths show that using 2nd order elements, with a 

maximum length of 0.2Rtunnel, provides acceptable values for stresses and displacements. 
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While the recommendations provided have been found with the assumption of hydrostatic 

far-field initial stresses, additional cases using the suggested mesh dimensions with far-field 

anisotropic stresses indicate that the recommendations are also applicable to those cases with 

anisotropic far-field stresses. 

The recommendations and conclusions reached with the work presented are not intended 

to cover all possible cases, as they have been obtained from a finite number of numerical 

experiments that, while covering a widespread of possibilities, are necessarily limited (e.g. they 

may not be applicable to shallow tunnels since they have not been included in the investigation). 

What is suggested should be taken as a first approximation for mesh optimization, while future 

work will, no doubt, refine and add to the recommendations. 
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Abstract 

When a shallow tunnel is excavated, an overall upward movement appears as a result of the weight 

removal from the excavation. This movement is analogous to buoyancy. When numerical 

simulation of shallow tunnels is used, the magnitude of the upward movement increases with the 

depth of the lower boundary, defined as the distance from the tunnel center to the bottom of the 

mesh. This seems counterintuitive, and yet it is mathematically correct. This paper investigates the 

influence of the assumptions made to model the buoyancy phenomenon numerically, and 

specifically the (typical) 2D plane strain and elasticity assumptions. 3D and 2D plane strain 

numerical models are carried out using a linear elastic model, where the influence of the ground 

stiffness increasing with depth is assessed. The results show that the buoyancy effect, i.e. 

increasing upwards movements with depth of the lower boundary, decreases when the ground 

stiffness increases with depth. 

3.1 Introduction 

The design of shallow tunnels is more challenging than that of deep tunnels because of the 

presence of the ground surface. The mathematical treatment of the problem becomes more 

complex because the ground surface must be treated as a free boundary and ground stresses 

increase with depth (gravity loading), while for deep tunnels, it is acceptable to consider the 

boundaries as infinite and the ground initial stresses as uniform and equal to the stresses at the 

center of the tunnel (Bobet, 2003). Despite the complexity of shallow tunnel analysis, analytical 

solutions have been developed by several authors (Sagaseta, 1987; Bobet, 2001; Park, 2005; Pinto 

& Whittle, 2014; Strack & Verruijt, 2002; Verruijt, 1997; Verruijt & Booker, 1996; Verruijt & 

Booker, 2000). Such solutions are useful for fast assessment of tunnel behavior and are alternatives 

to empirical methods, such as the well-known Peck (1969) empirical approach to surface 

settlements, later improved by e.g. Celestino et al. (2000); Marshall et al. (2012). The applicability 



 

62 

of the analytical solutions to actual tunnel cases was assessed by Chou & Bobet, (2002), Park 

(2005) and Pinto et al. (2014). The three publications concluded that analytical solutions can be 

used to predict the ground deformations around tunnels for different construction methods and 

geotechnical profiles. Despite the non-linear behavior of soils, linear-elasticity may be reasonable 

if the ground movements are small. For instance, Ledesma & Alonso (2017), obtained accurate 

ground movement predictions for tunnels excavated in soft ground near sensitive structures using 

analytical solutions. 

Together with the ground deformations due to the redistribution of stresses around the 

opening, i.e. ground loss and distortion of the tunnel cross section (Verruijt & Booker, 1996, 

Verruijt, 1997, and Pinto & Whittle, 2014), an upward rigid body motion occurs as a consequence 

of the ground weight removal due to the excavation (Strack & Verruijt, 2002, Verruijt & Booker, 

2000, Bobet, 2001). This upward rigid body motion is called “buoyancy displacement” throughout 

the paper. The weight removal can be represented as an upward force with magnitude γπr2 (unit 

weight of the ground times the area of the excavation, per unit length of the tunnel) applied at the 

center of the tunnel (Verruijt & Booker, 2000). To balance this upward force, at least one point on 

the half space domain must have the vertical displacement constrained. For instance, Strack & 

Verruijt (2002) constrained the displacements of two points at the ground surface at a horizontal 

distance of five times the tunnel depth, while Verruijt & Booker (2000) and Bobet (2001) opted to 

zero the vertical displacements of a point below the center of the tunnel. Both assumptions have 

provided reasonable results. The first one, by imposing the displacements at the tunnel perimeter 

as a boundary condition, as shown by Strack and Verruijt (2008) and Strack (2002). The second 

one, because one would expect that the vertical displacements at some distance below the tunnel 

should be negligible. 

Analytical solutions for shallow tunnels that consider gravity loading (and therefore the 

buoyancy effect) show an unbalanced term log(r) in the expressions for the vertical displacement, 

where r is the radial distance from the tunnel center (Bobet, 2001, Verruijt & Booker, 2000 and 

Strack & Verruijt, 2002). According to Verruijt & Booker (2000): “This is in agreement with the 

well-known singular behavior of the displacements of an elastic half plane loaded by a stress 

distribution having a non-zero resultant force (Timoshenko & Goodier, 1951)”. In other words, 

the vertical displacements increase with the logarithm of the radial distance from the tunnel, which 

arguably makes no physical sense, but it is mathematically correct. The consequence for any 
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numerical discretization attempted is that the vertical displacements, in particular on the surface, 

increase with the depth of the lower boundary, defined as the distance from the tunnel centerline 

to the lower boundary of the numerical model. This is supported by Chou & Bobet (2002), who 

showed that the magnitude of the buoyancy displacement depends on the depth of the lower 

boundary: the deeper the mesh, the larger the buoyancy displacement. It is worth mentioning that 

buoyancy displacements are not considered neglected in those analytical solutions where the 

ground deformations along the tunnel perimeter are used as input, such as Verruijt (1997), Verruijt 

& Booker (1996) and Pinto & Whittle (2014). 

The effects of the buoyancy on the vertical displacements at the surface were addressed by 

Chou & Bobet (2002) using the analytical solution developed by Bobet (2001). The authors 

obtained a good agreement between field data and analytical results by imposing zero displacement 

at a distance of two diameters (2D) below the tunnel centerline. Such distance minimizes the 

buoyancy displacements and so the authors recommended using a finite element mesh no deeper 

than 2D from the tunnel centerline. This recommendation is consistent with Möller (2006), who 

recommended a mesh depth (d) of 1.3 to 2.2D below the tunnel center for 2D models and 1.1 to 

1.45D below the tunnel center for 3D models. The range proposed by the author was associated 

with the tunnel diameter, which varied from 4 to 12m. According to Verruijt and Strack (2008), 

the buoyancy effect is more relevant in soft soils, where the relative stiffness (G/γh) is small and 

the buoyancy phenomenon may dominate deformations. Strack (2002) suggested to use a 

constitutive model that considers the unloading-reloading modulus of the ground, which is stiffer 

than the loading modulus, to achieve more realistic results. However, those factors do not affect 

the buoyancy displacement dependency on the depth of the lower boundary. 

So far, the buoyancy effect has been investigated assuming a homogeneous linear elastic 

ground; that is, with constant stiffness with depth. It is well known that the stiffness of the ground 

increases with the confinement stress, thus, the ground stiffness is expected to increase with depth 

(Gibson, 1967; Gibson, 1974; Schanz & Vermeer, 1998). In this paper, the causes of the buoyancy 

dependency on the depth of the lower boundary are investigated. The assumptions found in the 

literature, i.e. 2D plane strain and homogeneous linear elasticity, are assessed using numerical 

modelling. The goal of the simulations is to evaluate how those assumptions link buoyancy with 

depth of the lower boundary, and to investigate the effect of the ground stiffness increasing with 

depth on buoyancy. 
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3.2 Numerical model validation with Verruijt & Booker (2000) analytical solution 

In this section, numerical results are compared to the analytical solution proposed by 

Verruijt & Booker (2000). The reason is to show that the discretization used for all the analyses is 

essentially correct. Verruijt & Booker (2000) re-addressed the Mindlin’s problem (Mindlin, 1940) 

using complex variable analysis and conformal mapping techniques, which allowed them to obtain 

the displacement, stress and strain fields. The problem, first addressed by Mindlin (1940), consists 

of a circular opening in an elastic half space loaded by the unit weight of the material (γ). Mindlin 

(1940) found an analytical solution using bi-polar coordinates and assuming that the ground 

surface and the tunnel perimeter were stress boundaries. Verruijt & Booker (2000) incorporated 

the buoyancy effect by superimposing on the Mindlin’s problem the results of an upward vertical 

force applied at the center of the tunnel cross section and equivalent to the weight of the removed 

ground. 

Figure 3.1 illustrates the geometry of the shallow tunnel problem with the boundary 

conditions used in the numerical models, where one can see that the displacements at the lateral 

and bottom boundaries are restricted. In this simulation, the tunnel diameter (D) is 10m, the tunnel 

depth (h) is 25m and the model size (L and d) are both equal to 1,000D, which is intentionally very 

large such that boundary effects are negligible. The numerical model was built to reproduce the 

analytical solution, i.e. linear elastic ground and 2D plane strain analysis. The ground properties 

are E= 50MPa, ν= 0.3, K0= 1 and γ= 20kN/m3. The numerical model has two phases: the first 

phase generates the gravitational stress field, where the displacements due to the gravitational load 

are zeroed; in the second phase, the elements inside the tunnel are deactivated, simulating the 

tunnel excavation. The FEM code Midas GTS was used to conduct the numerical simulations. 

Details about the incrementally phased analysis and about the elements deactivation can be found 

on the software manual (Midas GTS, 2018). Note that the buoyancy effect does not depend on the 

support installation or if the ground is elastoplastic and yielding occurs. The buoyancy effect 

depends only on the ground weight being removed from the interior of the tunnel. Given that the 

weight of the liner is usually negligible compared to the weight of the excavated ground, its effects 

on buoyancy are generally small. It is worth to mention that the longitudinal bending stiffness of 

the tunnel liner may affect the buoyancy displacements near the face, which is not considered in 

the 3D FEM models. 
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Figure 3.1 Boundary conditions for the FEM models, i.e. rollers at the lateral boundaries and 
pins at the bottom boundary. 

 

Figure 3.2 shows the vertical displacement field with the deformed mesh after the tunnel 

excavation. As one can see, there is an upward movement, causing heave at the surface. The 

comparison between numerical and analytical solutions is shown in Figure 3.3 and 3.4. Figure 3.3 

compares the normalized displacements (i.e. rigid body, radial and tangential displacements) at the 

tunnel perimeter and Figure 3.4, the normalized vertical displacement at the ground surface (us). 

The displacements at the tunnel perimeter obtained with the numerical and with the analytical 

solution are consistent with each other. The differences between numerical and analytical results 

are smaller than 1% for the radial displacements (i.e. ur). There is an upward rigid body motion of 

the tunnel cross section due to the buoyancy effect (i.e. the buoyancy displacement). There is a 

small different, about 2% between the analytical and numerical buoyancy displacements. The 

tangential displacements (uθ) are almost zero. The vertical displacement at the ground surface 

obtained numerically and analytically are also consistent. Both numerical and analytical vertical 

displacements at the ground surface follow the same trend, with differences of around 3%. Those 

differences are considered sufficiently small. 

The good agreement between the analytical and the numerical solutions shows that both 

methods provide similar results if the mesh is sufficiently large. Such large upward ground 

movement is unexpected in practice, but it is mathematically correct and is associated with the 

large depth of the lower boundary (d=1,000D). Note that the depth of the lower boundary used is 
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unrealistically large, but it is adopted to show that numerical and analytical results are essentially 

the same if the model is large enough. 

 

 

Figure 3.2 Vertical displacement field with deformed mesh near the tunnel. Positive values 
indicate upward movement. 

 

 

Figure 3.3 Normalized rigid body, radial and tangential displacements (urigid body, ur and uθ) along 
the tunnel perimeter for h=2.5D and d=1000D. Positive radial displacements are inwards. 

Positive rigid body displacement is upwards. 
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Figure 3.4 Normalized vertical displacements at the ground surface with horizontal distance from 
the tunnel center (X) normalized with the tunnel diameter (D), for h=2.5D and d=1000D. 

Positive values denote upward vertical displacement (heave). 

3.3 Influence of depth of lower boundary on displacements. 

The influence of the depth of the lower boundary on displacements is evaluated 

numerically through 2D plane strain and 3D FEM models. The 2D plane strain model is included 

to evaluate the assumption of “very long tunnel” on the magnitude of the buoyancy. 3D models 

with different depths of the lower boundary (d) are built. Figure 3.5 shows the 3D mesh with d= 

4D. This discretization is representative of the other models. As before, D=10m and h=25m. The 

ground properties are also the same. In all the models, the gravity load is imposed in the first phase, 

while in the second phase, the elements that represent the tunnel are deactivated to simulate the 

excavation; see Figure 3.5. The model is built using 2nd order elements, as recommended by Vitali 

et al.(2017). The settlements from the 3D models are taken at a distance of 20D behind the tunnel 

face, which is large enough to make them comparable to the 2D simulations (Vitali et al., 2017). 

The results are shown in Figure 3.6, which is a plot of the vertical displacements of the ground 

surface (us) above the tunnel crown with the depth of the lower boundary (d), normalized with 

respect to the tunnel diameter (D). It includes the Verruijt & Booker (2000) analytical solution, 

and the 2D plane strain and 3D FEM models. As one can see in Figure 3.6, the settlements increase 
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with the logarithm of the depth of the lower boundary (d), for both 2D and 3D models, as well as 

for the analytical solution. All three models provide similar results and thus show that 3D modeling 

does not eliminate the phenomenon. The differences observed between analytical and numerical 

results for values of d/D smaller than 4 (i.e. lower boundary near the tunnel) are due boundary 

effect. It happens because the boundary conditions at the lower boundary are different on the 

analytical solution and on the numerical model. 

 

Figure 3.5 3D mesh with d= 4D, D= 10m, h= 25m, L= 20D and length 40D and excavation 
length of 20D. All other models with different depths (d) are similar. 

 

 

Figure 3.6 Normalized vertical displacements at the ground surface above the crown (us) with 
depth of the lower boundary (d), normalized by the tunnel diameter (D). Positive values 

represent upward vertical displacements (heave). 
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3.4 Buoyancy effect with increasing stiffness of the ground with depth 

In this section, the influence of the assumption of homogenous ground, i.e. uniform 

stiffness, on buoyancy is assessed. It is well known that the ground stiffness is dependent on 

confinement stress, i.e. the higher the confinement, the higher the ground stiffness. Then, it is 

expected that the ground stiffness increases with depth. Three scenarios are considered for the 

analysis: Young’s modulus of the ground constant with depth (E=E0); increasing linearly with 

depth (E=E0+αZ and E=αZ); and increasing with the square root of depth (Rostovtsev, 1964; 

Gibson, 1967; Gibson, 1974; Schanz & Vermeer, 1998). Figure 3.7 illustrates those stiffness 

profiles. Note that the profiles were taken such that E is 50MPa at the depth of the tunnel center. 

The stiffness profiles with negligible stiffness at the surface (i.e. E=αZ and 𝐸 = 𝐸 𝐾 𝛾𝑍/𝑝 ) 

may represent  non-cohesive soils, such as sands and normally consolidated clays. These soils have 

both strength and stiffness dependent on effective confinement stress, which is zero at the ground 

surface. The stiffness profiles with larger stiffness at the surface (i.e. E=E0+αZ and E=E0) are 

representative of cohesive soils such as overconsolidated clays and cemented sands. 

 

  

Figure 3.7 Stiffness profiles assessed: Ground stiffness (E) with depth (Z) normalized with 
respect to the tunnel diameter (D). 
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Figure 3.8 shows the vertical displacements of a point on the surface, above the crown, 

normalized with the tunnel diameter, as a function of depth of the lower boundary (d). It is obtained 

from 2D plane strain models. The figure shows that when the ground stiffness increases with depth, 

the buoyancy effect reduces substantially. The increase of stiffness with depth appears to 

compensate the stress/strain increase also with depth due to the weight loss associated with the 

excavation, thus reducing the displacements with distance below the tunnel. Buoyancy however is 

not fully eliminated. For instance, from d/D= 4 to d/D= 100, the settlement decreases its magnitude 

from -31.5mm to -25.1mm (6.4mm difference) for the scenario of linear increase of the Young’s 

modulus with depth, given by ZZE 2 (E is given in MPa and Z in m, Z=0 at ground surface); 

from -22.7mm to -11.7mm (difference of 11mm) for the scenario of linear increase of the Young’s 

modulus with depth given by ZZEE  250  ; and from -24.1mm to -7.4mm (16.7mm 

difference) for E increasing with the square root of depth ( 5.0/02.050/0 ZpZKEE refref   ); 

all this compared with the change from -14.4mm to 33.6mm (heave) (48mm difference), for E 

constant with depth (E=50MPa). Note that the ratio of stiffness increment with depth affects the 

buoyancy dependency on the depth of the lower boundary: the larger the stiffness increment with 

depth, the smaller the buoyancy effect is. 

Situations where the deformable ground layer is thick and a rigid layer, i.e. bedrock, is 

found far below the tunnel are common in practice. The discretization of the entire soft ground 

layer adopting a constant stiffness with depth might lead to an unrealistic prediction of the vertical 

displacements at the ground surface because of the buoyancy. It is arguable that considering the 

stiffness increase with depth may yield more realistic results in terms of surface settlements 

compared to those obtained with the assumption of uniform, e.g. average, stiffness. 
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Figure 3.8 Vertical displacements at a point on the surface above the crown, with depth of the 
lower boundary (d), normalized with the tunnel diameter. Results taken from 2D FEM models. 

 

Figure 3.9 shows convergence of the tunnel, between the crown and invert, with depth of 

the lower boundary, normalized with the tunnel diameter. As one can see, buoyancy does not affect 

the results. The changes in convergence observed at smaller depths are due to boundary effects; 

that is, the bottom boundary is not far enough from the tunnel such that the stress field is affected 

by the proximity of the boundary (the influence of the lower boundary is negligible when d is 

larger than 4D). As mentioned in the Introduction, buoyancy is compensated in Verruijt & 

Booker’s (2000) analytical solution by choosing a point below the tunnel where the vertical 

displacement is zero. In other words, buoyancy can be addressed with a vertical rigid body motion. 

Since convergence is the difference of radial displacements between two points in the tunnel 

diametrically opposed, the rigid body motion needed to compensate for buoyancy cancels out. 

Note that the vertical convergence of the analytical solution does not depend on the depth of the 

lower boundary; for E=E0, the vertical convergence is 0.642 for d=4D and is 0.649 for d=100D, 

thus, the difference is negligible (1%). 
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Figure 3.9 Vertical convergence at the crown and invert normalized with tunnel diameter, with 
depth of the lower boundary (d). Results taken from 2D FEM models. 

 

Figure 3.10 is a plot of the normalized vertical displacements of a point on the ground 

surface above the crown, with the distance from the tunnel face, for E constant with depth and for 

E increasing linearly with depth. Those results are taken from the 3D models shown in Figure 3.5. 

For E=E0, the displacements profiles changed significantly with d. Note that for E= E0 and d= 10D, 

the shape of the displacement profile is unrealistic because of the large buoyancy displacements 

near the face. For the case of the ground stiffness increasing linearly with depth (E=αZ, Figure 

3.7), the displacement profiles, for different depths of the lower boundary, have the same shape. 

Also, the displacement profiles for d= 4D and d= 10D are similar, since the buoyancy effect is 

minimized when the stiffness increases with depth. Those results show that the assumption of the 

ground stiffness increasing with depth may lead to more realistic deformation predictions. 
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Figure 3.10 Vertical displacements at the ground surface above the crown (us) with distance from 
the tunnel face, for E constant with depth (E= E0) and E increasing linearly with depth (E= αZ). 

3.5 Conclusion 

The effects of tunnel buoyancy and depth of the lower boundary on the magnitude of the 

ground displacements are assessed in the paper. It is shown that the vertical displacement of a point 

above the tunnel crown on the ground surface increases with the logarithm of the depth of the 

lower boundary, when a homogeneous linear-elastic ground is considered. This is explained, 

mathematically, as an upwards line force at the center of the tunnel representing the weight 

removal due to the tunnel excavation. Displacements due to such line force include a log(r) term, 

and so ground deformations follow the counterintuitive trend of increasing as the distance from 

the tunnel increases. A direct consequence of this phenomenon is that vertical displacements at the 

ground surface increase with the depth of the lower boundary. It is important to note that strains 

and stresses both in the ground and the tunnel support are not affected by the buoyancy effect. It 

is shown in the paper that this is not an issue due to a 2D modeling, as 3D models show the same 

results. Note that the longitudinal bending stiffness of the liner may affect the buoyancy 

displacement near the face, which was not considered in this paper. 

Buoyancy effects, which are not supported by field observations, decrease substantially 

when appropriate consideration of the stiffness of the ground is given. That is, geomaterials show 

an increase of stiffness with confinement; thus, the stiffness of the ground increases with depth. 

When such dependency is included in the numerical models, settlements on the surface become 

less sensitive to the depth of the lower boundary, albeit such dependency does not disappear 

completely. Given that buoyancy can be accounted for in numerical and analytical simulations by 
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including in the results a rigid body motion (i.e. by determining the point below the tunnel of no 

vertical displacements), convergence displacements are not affected in the analytical solutions, nor 

in numerical models when the lower boundary is far enough from the tunnel (i.e. distance between 

tunnel center and lower boundary larger than about 4 times the tunnel diameter). 

The work presented suggests that, when surface settlements need to be accurately 

determined, a proper representation of the increase of stiffness of the ground is needed in numerical 

and analytical models. Uniform (i.e. average) assumptions for the ground stiffness require the 

location of the point of zero vertical displacement below the tunnel, which can be estimated from 

e.g. semi-empirical recommendations such as those from Chou and Bobet (2002). If the focus of 

the analyses is on stresses and strains of the ground and/or tunnel support, buoyancy does not affect 

the results, and so the location of the bottom boundary is not relevant, as long as it is far enough 

from the tunnel to avoid boundary effects. 
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Abstract 

Due to the fast growth of urban areas worldwide, the demand for tunnels in developed areas is 

increasing. The design and construction of those tunnels is complex because of their shallow 

depths and their interaction with existing aboveground and buried structures, which results in 

rather limited allowable ground deformations induced by the tunnel excavation and support. In 

tropical regions, residual porous soils near the surface are common. Those soils are highly 

deformable; thus, tunneling may induce large ground deformations that may damage nearby 

structures. The NATM method is being widely employed in several big cities in tropical regions, 

but little research has been conducted to assess the induced ground deformations in residual soils, 

common in tropical areas. This paper provides insight into this issue. A well-documented metro 

tunnel in Sao Paulo, Brazil, in a residual red porous clay, was analyzed using 3D FEM. The 

behavior of the residual red porous clay was approximated by an advanced constitutive soil model 

calibrated with triaxial tests on intact samples extracted at the site. Predictions of the tunnel 

deformations during construction matched the field data. The calibrated model was then used to 

explore tunnel performance under different construction strategies. The influence of partial-face 

excavation, unsupported span length, support stiffness and pipe roof umbrella were assessed. The 

numerical results showed that partial-face excavation was effective to reduce ground deformations 

ahead of the face of the tunnel and to improve face stability; however, the settlements behind the 

face increased because of the delay in closing the primary lining. The installation of a stiffer liner 

closer to the face reduced the ground deformations significantly. The pipe roof umbrella was the 

most effective technique to reduce the ground deformations around the tunnel; however, the 

numerical results did not consider deformations that could be induced by the drilling and grouting 

operations. The results shown in this paper provide both qualitative and quantitative information 

about the ground deformations induced by NATM tunneling in residual porous soils, that could 
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help designers and contractors choose the optimum support and construction methods to minimize 

ground deformations. 

4.1 Introduction 

The increasing urbanization worldwide is creating a large demand for reliable underground 

infrastructure, as pointed out by Broere (2016). Tunnels in urban environments are usually 

excavated at shallow depths, in soft ground, and underneath aboveground and other buried 

structures. This normally requires rather limited ground deformations due to the tunnel excavation. 

For these reasons, the design and construction of those tunnels are challenging. The NATM 

principles (Rabcewicz, 1964), have been widely and successfully applied to excavate shallow 

tunnels in urban areas under challenging conditions. The NATM key characteristics include 

relatively simple execution, high flexibility during construction and reduced cost. The construction 

process of NATM tunnels may have a significant impact on induced ground deformations (Farias 

et al., 2004). NATM tunnels usually rely on partial excavation of the tunnel cross-section to reduce 

ground deformations (New and Bowers, 1994; Deane and Bassett, 1995). Typically, the excavation 

starts at the crown, then bench and invert in sequence (HSE, 1996). The tunnel support is typically 

shotcrete reinforced with steel ribs and steel fibers or wire mesh. In urban areas, tunnels may 

advance with small excavation steps and the support is installed close to the face. During tunnel 

construction, ground and support deformations are monitored, and those measurements are 

compared with the ground deformations predicted during design. Thus, tunnel excavation and 

support may be optimized during construction as new information becomes available. In urban 

areas, however, support optimization should never compromise deformations. 

Lateritic or mature residual soils are common in tropical regions. The residual soil may be 

highly weathered and heavily leached, so the void ratio may be large and the soil structure unstable 

and weakly bonded (Leroueil and Vaughan, 1990). Tunnels in those soils may induce large ground 

deformations that may affect aboveground and nearby buried structures. Ortigao et al. (1996) and 

Marques (2006) reported large ground deformations during the excavation of several kilometers 

of NATM tunnels in residual porous soils, for the metro system in Brasilia, Brazil. Surface 

settlements up to 500mm were reported. Those authors pointed out an unusual behavior in those 

soils: the vertical displacements decreased with depth (settlements at the ground surface were 

larger than at the tunnel crown), which is the opposite of expected behavior, e.g. Mair et al. (1993). 
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The ratio of the settlement at the surface and at the tunnel crown ranged between 1.2 and 1.3. 

Ortigao and Macedo (1993) associated this unusual behavior with the collapsible nature of the 

residual porous soil. 

Large ground deformations were observed during the construction of the “Paraiso tunnel” 

in Sao Paulo, Brazil, excavated in residual porous soil. This tunnel is well-described by Parreira 

(1991). Azevedo et al. (2002) conducted 2D FEM analysis of the Paraiso tunnel using an advanced 

constitute model (i.e. the Lade’s model) to represent the residual porous soil. The model 

parameters were calibrated with the laboratory test results conducted by Parreira (1991) on intact 

samples. The authors observed that the ground deformations around the tunnel were better 

predicted with the advanced soil model rather than with an elastic perfectly plastic model. The 

Paraiso tunnel was later investigated by Almeida e Souza et al. (2011). The authors observed that 

the settlement trough was not well captured by the empirical Gaussian curve (Schmidt, 1969; Peck, 

1968), but the Yield density curve, proposed by Celestino and Ruiz (1998) and Celestino et al. 

(2000), fit quite well the field data. Almeida e Souza et al. (2011) conducted 3D FEM analysis of 

the Paraiso tunnel using the Lade’s constitutive model with the parameters calibrated by Parreira 

(1991) and Azevedo et al. (2002). The authors obtained an excellent match between numerical 

results and field data. They showed that a nonlinear constitutive model should be adopted to 

properly reproduce the deformations around the tunnel. Almeida e Souza et al. (2011) also showed 

that the 2D analysis was not able to capture the complex stress paths near the face of the tunnel. 

According to Cantieni and Anagnostou (2009), the radial stresses at the tunnel perimeter increase 

ahead of the face, reduce to zero at the unsupported span and increase behind the tunnel support. 

Also, axial shear stresses are mobilized near the face and those shear stresses may remain 

mobilized (i.e. not reduce to zero) far-behind the face (Ng and Lee, 2005). The mobilization of the 

axial shear stresses near the face causes the rotation of the principal stress directions, as shown by 

Eberhardt (2001). Attempts to correlate 2D analysis techniques, such as the stress relief method 

(Panet and Guenot, 1982), with 3D analysis has shown that the “stress relief factor” changes 

substantially depending on the target (i.e. settlements at the surface or at depth, or internal forces 

in the support) and with the tunnel construction sequence, as pointed out by Moller (2002). 

Despite the large demand for shallow tunnels in highly deformable residual porous soils, 

insufficient research has been dedicated to investigate the ground deformations induced by 

tunneling in those soils. This paper seeks to provide insight into this issue. The Paraiso tunnel was 
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analyzed using a 3D FEM with an advanced soil constitutive model to represent the residual porous 

soil at the site (Schanz et al., 1999). An excellent match between numerical results and field data 

was obtained. The model was then used to investigate the effects of different construction 

strategies and assess their impact on ground deformations and on face stability. 

4.2 Project overview 

The Paraiso tunnel was completed in 1991. Detailed information about this tunnel is 

provided by Parreira (1991). Figure 4.1 illustrates the tunnel cross section and the excavation 

sequence. The tunnel cross section has an ellipsoidal shape, with 11.6m width and 8.5m height. 

The excavation was performed in three stages: crown (1), bench (2) and invert (3). The crown (1) 

was excavated in rounds of 1.6m. A bench (2) was kept to improve face stability. Immediately 

after excavation of the crown, two sets of steel ribs spaced 0.8m were installed and a layer of 0.2m 

of shotcrete was placed at the tunnel wall. The invert (3) was excavated 4.8m from the face, in 

advances of 1.6m. A 0.2m concrete layer reinforced with wire mesh was sprayed on the tunnel 

invert. A secondary liner of reinforced concrete with 0.15m thickness was installed later. 

 

 

Figure 4.1 Transversal and longitudinal cross section of the Paraiso tunnel. 

 

The geotechnical investigation in the region revealed a thin layer of landfill, a layer of 

residual red porous clay, a layer of stiff residual variegated clay and a layer of very dense clayey 



 

81 

sand. The water level was found at the transition between the residual red porous clay and the 

residual variegated clay. Figure 4.2 includes the geotechnical profile and the position of the tunnel 

instrumentation. In the instrumented cross-section analyzed, the residual red porous clay was 12m 

thick and the residual variegated clay, 10.6m thick. The soil profile described is the same as that 

adopted by Azevedo et al. (2002) and Almeida e Souza et al. (2011) for their analyses. The crown 

was located 7.6m below the surface and was excavated in the residual red porous clay, while the 

invert was excavated in the stiff variegated clay. Ground and support deformations were monitored 

during the excavation. Surface settlements were measured by bench marks; the vertical 

displacements above the crown were measured with vertical extensometers and the horizontal 

displacements near the springline were measured with an inclinometer. The deformations in the 

shotcrete support were measured at the crown and at the perimeter of the tunnel. Figure 4.2 

provides a sketch of the instrumentation used. 

 

Figure 4.2 Geotechnical profile and tunnel instrumentation. 

4.3 Soil model calibration of the Sao Paulo residual red porous clay 

The geotechnical properties of the Sao Paulo residual red porous clay have been 

extensively studied. This soil is classified as lateritic or mature residual soil. It is highly weathered 
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and heavily leached, with large void ratio and unstable soil structure. Indeed, Leroueil and 

Vaughan (1990) found that the behavior of these soils was dependent on their structure. Parreira 

(1991) conducted an exhaustive laboratory test campaign on samples of residual red porous clay 

collected from the excavation site. Undisturbed blocks of soil were excavated at depths of 3.5m 

and 6.5m. Table 4.1 shows the properties of the soil obtained from the block samples, as well as 

the values compiled by Massad et al. (1992) for the Sao Paulo residual porous clay. The properties 

of the soil samples at 3.5m and 6.5m depth are similar and are within the range of expected values 

for the Sao Paulo residual red porous clay. Note also that the soils are unsaturated. As pointed out 

by Parreira (1990), if the water content increases, the soil structure collapses, producing large 

volumetric deformations. 

 

Table 4.1 Properties of the Sao Paulo residual red porous clay from data compiled by Massad et 
al. (1992) and from the intact block samples from the Paraiso tunnel site. 

 Massad et al. (1992) Undeformed block samples (Parreira, 1991) 

   3.5m depth 6.5m depth 
  Range Average Range Average Range Average 
e 1.38-1.85 1.54 1.49-1.77 1.62 1.47-1.57 1.52 

w (%) 33-47 41 40-44 41.5 40-43 41 

γn (kN/m3) 13.5-16.5 15.2 13.6-15.1 14.4 14.1-15.1 14.7 

Sr (%) 62-88 74 64-75 70 68-77 72.4 
 

Drained triaxial compression loading tests and triaxial compression unloading tests were 

conducted by Parreira (1991) on intact specimens. The results from the triaxial tests, under 

confinement of 25 and 49kPa, of samples collected at 3.5m depth, and under 25, 49 and 98kPa 

confinement, for samples extracted at 6.5m depth, were selected to calibrate the constitutive model. 

Those confinement stresses were similar to the in-situ stress from where the samples were 

collected, so the soil structure was not altered by the confinement stress. 

The Hardening Soil Model (Schanz et al., 1999) was selected to represent the residual 

porous soil. This model is available in the material models library of Midas GTS NX, the FEM 

code used in this paper. It is a sophisticated elastoplastic model with Coulomb failure criterion and 

nonlinear elastic formulation. The model was developed considering the classical theory of 

Plasticity and captures the most relevant aspects of soil behavior such as: stiffness-stress-strain 
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dependence; hardening behavior; overconsolidation effects and critical state after large 

deformations. The input parameters for the Hardening Soil Model can be easily determined from 

conventional laboratory tests. The hardening soil model is, perhaps, the most popular constitutive 

model for soils, extensively used in both Industry and Academia. The model however may not 

capture the strain-softening behavior typically observed in dense sands and highly 

overconsolidated clays under small confinement stresses. 

Figure 4.3 plots the maximum shear stress (σ1-σ3) / 2 with the mean stress (σ1+σ3) / 2 at 

failure for selected triaxial tests, as well as the failure envelope. One can see that the failure 

envelope, with a friction angle (φ) of 30° and a cohesion intercept of 30kPa, fit well the results of 

the triaxial tests. Large suction stresses were measured in the laboratory (between 125 and 140kPa), 

as reported by Parreira (1991). Thus, the cohesion intercept is probably affected by the suction. 

For the Sao Paulo residual red porous clay, Massad et al. (1992) reported cohesion values of 10 to 

70kPa (average 32kPa), and 23 to 33° (average of 27°) for the friction angle; the strength 

parameters obtained from the triaxial tests fall within those ranges. 

Figure 4.4 presents the deviatoric stresses (σ1-σ3) / 2 and the volumetric deformations with 

axial deformation, obtained from the triaxial compression loading tests (Figure 4.4 a) and from the 

triaxial compression unloading tests (Figure 4.4 b). Figure 4.4 also presents the results from the 

calibrated constitutive model (Hardening Soil Model, Schanz et al., 1999). As one can see in Figure 

4.4, the calibrated constitutive model fits well the experimental data. For the triaxial compression 

tests (Figure 4.4a), the soil deforms following a hyperbolic stress-strain curve with failure at, 

approximately, 20% of axial deformation. Interestingly, Parreira (1991) observed that the initial 

stiffness of the residual red porous clay decreased as the confinement stress increased from 25 to 

98kPa. Such behavior is unexpected in conventional soils, but in this case, it was thought to be 

associated with the soil structure. The hardening soil model could capture well volumetric 

deformations, because they were weakly dependent on confinement. As one can see in Figure 4.4 

a, the volumetric strains in the triaxial tests were large, up to 12%, which is expected for residual 

porous soils because of the large in-situ void ratio and unstable structure. The constitutive model 

could reproduce well the magnitude of the volumetric deformations up to an axial deformation of 

about 10%; afterwards, the model slightly underpredicted volumetric deformations. For the triaxial 

compression unloading tests (Figure 4.4 b), the experimental results showed an initial quasi-linear 

increase of the deviatoric stress with axial deformations, up to about 0.2%; afterwards, the 
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deviatoric stresses slightly increased with axial deformations. As one can see in Figure 4.4 b, the 

hardening soil model was able to reproduce this behavior. Regarding volumetric deformations, the 

model predicted a very small increase with axial deformations, much smaller than that observed 

in the experiments. 

 

Figure 4.3 Failure envelope from triaxial compression loading tests with confinement stress 
(25kPa, 49kPa and 98kPa). The Coulomb strength properties are φ=30° and cohesion=30kPa. 

 

Vaughan and Kwan (1984) showed that the in-situ horizontal stress decreased as the 

original rock mass decomposed due to weathering and leaching. The authors observed that when 

the stiffness of the residual soil decreased to 1% of its original value, the in-situ horizontal stress 

approached the limit: = 𝐾 = . This is also the case for the residual porous soil. According 

to Vaughan and Kwan (1984), conventional laboratory tests, to determine K0, destroy the soil 

structure, and so K0 values tend to be overestimated. Ortigao et al. (1995) conducted in-situ 

measurements of K0 using the Menard pressuremeter. The authors obtained K0 values around 0.5. 
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Figure 4.4 Experimental data and numerical simulation of the triaxial tests. (a) Triaxial 
compression loading 25kPa, 49kPa and 98kPa confinement; and (b) Triaxial compression 

unloading for 98kPa vertical stress. 

 

Table 4.2 shows the calibrated parameters for the hardening soil model. The numerical 

results from the 3D FEM model of the Paraiso tunnel, shown in the following sections, were also 

considered in determining the best-fit values for the parameters. In other words, the parameters in 

Table 4.1 provided the best predictions for the selected laboratory triaxial tests and for the field 

data. 

For the residual variegated clay underneath the residual red porous clay (Figure 4.2), an 

elastic, perfectly plastic model with a Coulomb failure envelope was adopted. The geotechnical 

properties were: Young modulus (E), 120 MPa; Poisson’s ratio (ν), 0.17; cohesion (c), 66kPa; 

friction angle (φ), 25°; specific unit weight (γ) 18kN/m3; and K0 0.84. Those are the same 

properties used by Almeida e Souza (2011). 
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Table 4.2 Calibrated hardening soil model parameters to simulate the Sao Paulo residual red 
porous clay. 

E50,ref (kPa) 6000 

Eoed,ref (kPa) 2000 

Eur,ref (kPa) 12000 

Rf 0.9 

pref (kPa) 50 
n 1 

φ (°) 30 

K0,NC 0.5 
Ψ (°) 0 

c (kPa) 30 

γn (kN/m3) 15 
ν 0.27 

OCR 1 

4.4 Numerical modelling of the Paraiso Tunnel 

3D FEM modeling was conducted to analyze the Paraiso tunnel. Figure 4.5 shows the FEM 

model. The mesh was built using 2nd order hexahedron elements and was refined enough to ensure 

the accuracy of the numerical results (Vitali et al., 2017). The model dimensions were selected to 

avoid the interference of the boundaries with the results. Because the tunnel excavation was 

symmetric with respect to the tunnel vertical axis, only half of the tunnel was discretized. The 

bottom of the model was located at the transition between the residual variegated clay and the very 

dense clayey sand layer located 6.5m below the invert. Thus, buoyancy effects (Vitali et al., 2018) 

were negligible because the bottom of the mesh was located near the tunnel. The lateral boundaries 

were pinned and the bottom boundary was fixed. At the ground surface, the horizontal 

displacements were constrained to consider the effects of the pavement, as recommended by 

Azevedo (2002) and Almeida e Souza (2011). 

A front view of the mesh near the tunnel is presented in Figure 4.6. The mesh was refined 

near and above the tunnel crown, where the ground deformations were larger. The thickness of the 

residual red porous clay and of the residual variegated clay are given in Figure 4.2. The tunnel 

crown was 7.6m below the ground surface. As shown in the figure, the crown was located in 

residual red porous clay, while the invert, in residual variegated clay. The construction sequence 
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described previously was included in the 3D FEM analysis, as illustrated in Figure 4.7. The length 

of the excavation rounds was 1.6 m (note that the length of the 2nd order hexahedron elements was 

0.8 m; thus, the longitudinal mesh refinement was sufficient to obtain accurate results, according 

to Vitali et al., 2017). The model was run in 37 stages. In the first stage, the geostatic stress field 

was generated, with K0 equal 0.5 for the residual red porous clay and 0.84 for the residual 

variegated clay. The following stages simulated the excavation and support processes, by 

deactivating elements corresponding to a particular excavation sequence and activating elements 

representing the support. The tunnel support with shotcrete and steel sets was represented by shell 

elements with linear-elastic behavior and thickness of 0.2m (Figure 4.1). No slip between ground 

and support was allowed. The support had the following material properties: Young modulus (E), 

5GPa, and Poisson’s ratio (ν), 0.2. The stiffness taken for the support was somewhat small 

compared to typical values. This was done to simulate the early-age shotcrete and the reduced final 

stiffness caused by the loading of the shotcrete at early-age (Golser, 2001). Ideally, the time-

dependent behavior of the shotcrete should be considered in 3D FEM tunnel analysis, but since 

this information is unknown, it was assumed a constant Young modulus with time. 

 

Figure 4.5 Finite element mesh and model dimensions. 
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Figure 4.6 Front view of the mesh near the tunnel, with dimensions and geotechnical profile. 

 

Figure 4.7 Numerical simulation of the excavation sequence. 

 

Figure 4.8 shows the surface settlements, calculated with the model, as a function of the 

axial distance from the tunnel face (Figure 4.8 a, i.e. longitudinal settlement profile), and with the 

horizontal distance from the vertical axis of the tunnel (Figure 4.8 b, i.e. settlement trough). An 

excellent match between the actual ground deformations and numerical results was obtained. The 
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longitudinal settlement profile has a sigmoidal shape, with settlements starting to increase at 

around 20m ahead of the face of the tunnel, i.e. approximately at two tunnel diameters, and 

reaching a steady-state at around 20 m behind the face. Above the face of the tunnel, the measured 

settlement was 41mm, while the numerical model gave 45mm; far-behind the face, the measured 

settlement above the crown was 85mm, and the calculated settlement, 89mm. As one can see in 

Figure 4.8 b, the settlement trough calculated by the numerical model was close to the field data, 

except at about 10m from the tunnel axis, where the measured settlement was 20mm while the 

obtained settlement was 39mm. 

 

Figure 4.8 Surface settlements with: (a) axial distance from the face; and (b) horizontal distance 
from the vertical tunnel axis. 

 

Figure 4.9 shows the vertical displacements above the crown, at different depths and at 

different distances from the tunnel face (i.e. at 5.5m ahead of the face, at the face, and far-behind 

the face). The location of the vertical extensometer is shown in Figure 4.2. Numerical results and 

field data are in an excellent agreement. As one can see, the vertical displacements were almost 

constant with depth. Note that, far-behind the face, the numerical model gave a sharp reduction of 

the vertical displacements near the crown. This reduction is associated with the 3D face effects. It 

is interesting to note that this behavior is different from what is expected (Mair et al., 1993), where 

vertical displacements above the crown increase with depth. This seems to be the result of the large 

volume strains due to the collapsible behavior of the residual porous soils, as pointed out by 

Ortigao and Macedo (1993). Further, tunnels excavated in the Brasilia residual porous clay present 

similar behavior, as reported by Ortigao et al. (1996) and Marques (2006). 
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Figure 4.10 plots the horizontal displacements near the tunnel springline, with depth. The 

location of the inclinometer is illustrated in Figure 4.2. The horizontal displacement at the surface 

was zero because the pavement constrained the horizontal ground movements. The horizontal 

displacements increased with depth until about 6m below the surface (1.6m above the crown), and 

then they decreased to zero at 10m depth. The horizontal displacements increased again, with a 

peak at the transition between the residual red porous clay and the residual variegated clay. Below 

the transition, the horizontal displacements, in the variegated residual clay, were small. The 

numerical results showed an increase of the horizontal displacements until 5m depth, similar to 

the field data. Below that, the calculated horizontal displacements decreased, similar to the field 

data, but they were larger than those measured. In the residual variegated clay, the numerical 

horizontal displacements were small, in agreement with the field data. 

 

Figure 4.9 Vertical displacements with depth above the tunnel crown, at different distances from 
the face of the tunnel. 
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Figure 4.10 Horizontal displacements near the tunnel. 

 

Figure 4.11 shows the support deformation with axial distance from the face of the tunnel. 

The deformations of the primary support (shotcrete with steel sets) were assessed through the 

vertical displacements at the crown and the relative horizontal displacements at the tunnel walls, 

as indicated in Figure 4.11. The deformations increased with the distance from the face until about 

10m behind the face (at about 1 tunnel diameter), where the support deformations became constant. 

Large deformations were observed at the tunnel crown (up to 46mm), while at the invert, they 

were negligible. The displacements calculated by the numerical model at the two locations on the 

tunnel perimeter matched well the actual support deformations, as one can see in Figure 4.11. The 

vertical displacements at the crown were somewhat smaller than the actual measurements, and 

displayed a saw-tooth shape that oscillated between 43mm maximum to 33mm minimum. The 

average displacement was 38mm, 8mm lower than the actual displacements. The saw-tooth shape 

appears in numerical models of tunnels (Moller, 2002, Vitali et al., 2017) and is associated with 

the sharp stiffness contrast between the support and the ground, at the edge of the support near the 

face, and has a period that matches the length of the excavation/support rounds in the numerical 

model. 
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Figure 4.11 Displacements of the shotcrete. 

 

The stress paths of points in the ground at the tunnel perimeter are shown in Figure 4.12. 

“q” is the maximum shear stress ((σ1-σ3)/2) and “p” is the mean stress ((σ1+σ3)/2). The stresses 

were taken at 0.25m from the tunnel perimeter to avoid the singularity at the (sharp) corner of the 

face of the tunnel (i.e. where the face intersects the perimeter). Three points were investigated: the 

crown; springline, and a point between the crown and the springline (crown/springline), as 

illustrated in Figure 4.12. All those points are in the residual red porous clay, where most of the 

ground deformations occur. Ahead of the face, both mean stress and maximum shear stress 

increase towards the excavation. At the unsupported span, unloading occurs (i.e. both shear and 

mean stresses decrease), and behind the support, the stresses increase until they are constant far-

behind the face. 
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Figure 4.12 Stress paths at points around the tunnel. q= (σ1- σ3)/2 and p= (σ1+ σ3)/2. 

 

The stresses of the ground at the tunnel crown are shown in Figure 4.13. The stresses were 

taken at the tunnel perimeter. The stresses started to change at about 10m ahead of the face. The 

radial stress (σrr) increased ahead of the face, decreased to zero at the unsupported span and 

increased behind the support until reaching a constant value. The tangential (σθθ) and the axial 

stresses (σzz) slightly increased ahead of the face, decreased at the unsupported span and increased 

behind the support. The axial shear stress (τrz) was zero far-ahead of the tunnel face and increased 

as the distance from the face decreased. At the face, the axial shear stress was maximum and then 

decreased τrz until reaching a constant value far behind the face.  
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Figure 4.13 Stresses at the tunnel crown, with axial distance from the face. 

4.5 Discussion 

In this section, the influence of different construction schemes on ground deformations and 

face stability are evaluated, for the Paraiso tunnel. Different construction schemes were simulated 

numerically and compared with the observations and numerical results from the actual tunnel. Face 

stability was evaluated using the “Strength Reduction Factor” (Midas, 2019). This technique 

consists of the gradual reduction of the strength properties of the ground until failure occurs and 
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analysis, considering that the residual red porous clay could be represented by an elastic perfectly 

plastic model with Coulomb failure criteria, with the strength properties already discussed (i.e., 
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Also, a common decision to reduce ground deformations is to reduce the unsupported span and 
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full-face excavation, or the pipe roof umbrella system (Volkmann and Schubert, 2007). These three 

strategies, namely: (1) partial face excavation and support using benches; (2) length of unsupported 

span and support stiffness; and (3) ground treatment through umbrella support are explored in the 

following Sections. 

4.5.1 Partial face excavation 

The excavation of the Paraiso tunnel included two benches, as shown in Figure 4.1 and 

Figure 4.7: the upper bench (#2 in Figure 4.1), and the lower bench (#3 in Figure 4.1) that supports 

the upper bench. The contribution of the benches to support the face of the tunnel and limit ground 

displacements was investigated through three different scenarios, in addition to the actual case 

already discussed (the base case; see Figure 4.7): excavation without the upper bench; without 

benches (i.e. full face excavation); and partial face or full-face excavation preventing axial 

displacements of the ground at the face of the tunnel, to investigate the effectiveness of the benches. 

Figure 4.14 illustrates the 3D FEM models used for the simulations; Figure 4.14a shows the tunnel 

without the upper bench, and Figure 4.14b the full-face excavation. Note that the full-face 

excavation allows an earlier closure of the primary support. 

 

Figure 4.14 3D FEM models to investigate the influence of benches. (a) No upper bench; (b) full 
face excavation. 
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Figure 4.15 shows the surface settlements with the axial distance from the face (i.e. 

longitudinal settlement profile, Figure 4.15 a) and with the horizontal distance from the vertical 

tunnel axis (i.e. settlement trough, Figure 4.15 b). All scenarios present similar deformation 

patterns: no significant deformations far from the tunnel, and an increase as the distance to the 

tunnel decreases. What is interesting is to observe the effect of the face support on the settlements 

provided by all different scenarios. Two scenarios: the base case, no upper bench with face 

constrained, resulted in similar longitudinal and transverse deformations. The full-face scenario 

caused large longitudinal settlements ahead of the tunnel, similar to those obtained when the tunnel 

was excavated with no upper bench. The smallest deformations were obtained with the full-face 

scenario with constrained axial displacements. These observations highlight the importance of 

constraining the deformations at the face of the tunnel, and in particular those corresponding to the 

residual porous soil (encountered on the top half of the tunnel), rather than those of the residual 

variegated clay, which is a much stiffer deposit. It is interesting to note that the full-face scenario 

resulted in settlements similar to those of the no-upper-bench scenario ahead of the tunnel, and 

smaller behind the face of the tunnel. This is counterintuitive, as one would expect that the support 

provided by the lower bench, albeit on the stiffer soil, would result in smaller settlements. Indeed, 

this is the case, but the benefits of the support in the second scenario are counterbalanced by the 

benefits of providing an early closure of the support to the tunnel, which is the case with the full-

face excavation scenario.  
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Figure 4.15 Surface settlements. (a) longitudinal vertical cross section; (b) settlement trough far 
behind the face of the tunnel. 

 

Figure 4.16 shows the stress paths ahead of the face for the base case, no upper bench case 

and full-face case. The stresses were taken at the mid-height of the crown excavation. Far-ahead 

the face, the stress paths are the geostatic stresses. Closer to the tunnel, both mean and maximum 

shear stresses increase (i.e. loading stress path). Near the face, the mean stress decreases 

substantially while the maximum shear stress does so slightly. The stress paths for the cases 

without benches are similar. For the base case, the stress state at the face is farther from the yield 

surface than the stress state for the cases without bench. It is interesting to note that the mean stress 

at the face, for the base case, is substantially larger than the mean stresses for the cases without 

benches, while the maximum shear stresses are close to each other. Thus, one benefit of installing 

benches is that they increase the confinement stresses at the tunnel face, thus improving the face 

stability of the tunnel. 
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Figure 4.16 Stress paths ahead of the face for the base case, no upper bench case and full-face 
case. 

 

Figure 4.17 shows the normalized settlement with the strength reduction factor (n) for the 

base case (Figure 4.7), no upper bench (Figure 4.14a) and full face (Figure 4.14b). The settlements 

are normalized with respect to the settlement when n=1 (i.e. no reduction in the strength properties). 

The settlement is taken at the point where the slip surface reaches the ground surface, as indicated 

in Figure 4.17. As one can see, the settlements slightly increase with the increase of the strength 

reduction factor; that is, as the strength of the soil decreases. The modest increase is the result of 

limited yielding of the ground. The numerical simulations showed that when the slip surface 

reached the ground surface, the rate of the settlements increased (i.e. settlements became more 

sensitive to the reduction of the strength). In each scenario, the settlement had a sharp increase 

(orders of magnitude) at a given strength reduction factor, which indicated failure. Thus, the 

strength reduction factor can be associated with the factor of safety against failure. The largest 

factor of safety was found for the base case, while the smallest for the full face excavation scenario. 

The results in Figure 4.17 show that the benches were efficient in increasing the face stability of 

the tunnel. Figure 4.18 shows the plastic deformations around the tunnel, at failure, for the base 

case (Figure 4.18a), for the no-upper-bench scenario (Figure 4.18b) and for the full-face 
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excavation scenario (Figure 4.18c). The figures illustrate the failure mechanism at the face of the 

tunnel. It is interesting to note that the slip surface for the base case extended to the invert of the 

tunnel, while for the no upper bench scenario, failure was concentrated at the tunnel crown, and 

for the full-face excavation scenario, the slip surface included the entire face. The effect of the 

benches was to send the critical failure surface deeper into the ground, inside the stiffer lower soil 

layer, thus increasing the face stability of the tunnel. 

 

Figure 4.17 Normalized settlement (Sy) with the strength reduction factor (n) for the base case, 
no upper bench case, and full face excavation case. Settlements are normalized with respect to 

the case when n=1 (Sy,n=1). 

 

Figure 4.18 Equivalent plastic deformation around the tunnel, at failure. (a) base case (b) no 
upper bench; (c) full face excavation. The red color represents equivalent plastic deformations 
equal or larger than 2%. The blue color represents no plastic deformation. Colors between red 

and blue represent equivalent plastic deformations between zero and 2%. 

n, strength reduction factor

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

S
y 

/ S
y,

 n
=

1

0

5

10

15

20

25

Sy

Full face

No upper 
bench

Base case



 

100 

4.6 Unsupported span and liner stiffness 

The importance of the unsupported span length and of the stiffness of the primary lining 

support on ground deformations was investigated through 3D FEM models of the Paraiso tunnel. 

The following parameters were considered: unsupported span length (L) of 0.8 m and 1.6 m (these 

are common in NATM tunnels with 10m diameter in soft ground; 1.6 m is the base case), and 

primary support thickness (t) 0.2 m to 0.6 m; additional cases with undeformable support with 

L=0.8m and L=1.6m were also included for comparison purposes. 

The surface settlements for all cases are presented in Figure 4.19. Figure 4.19a plots the 

settlements along a vertical axial cross section of the tunnel, and Figure 4.19b plots the settlement 

trough through a vertical cross section located far behind the face of the tunnel. As one can see, 

the surface settlements decrease as the support stiffness increases and as the unsupported span 

length decreases. For the base case (i.e. L=1.6m and t=0.2m), the settlement far-behind the face is 

89mm above the crown. If the lining thickness increased to 0.4m, the settlement is 73mm, 18% 

smaller than the base case. For t = 0.4m and L = 0.8m, the surface settlements are further reduced 

to 58mm far-behind the face (35% smaller than the base case). Thus, the numerical results showed, 

as expected, that the ground deformations can be significantly reduced by simply installing a 

thicker liner closer to the face. Note that the settlements would be heavily reduced if an 

undeformable liner was installed, which highlights the importance of the liner stiffness in the 

results. For L = 0.8m and undeformable liner, the surface settlement decreased to 30mm (67% 

smaller than the base case). These findings are in contrast to those from Azevedo et al. (2002), 

who found a negligible influence of the tunnel support stiffness on ground deformations. Given 

that those authors used a 2D FEM for the calculations, the difference in the results illustrates the 

importance of the longitudinal arching of the support, as well as the loading path in the soil, which 

is not captured by 2D analyses. 

The influence of the liner stiffness on the ground stresses is illustrated in Figure 4.20. The 

figure is a longitudinal plot of the ground stresses at the tunnel crown with the distance from the 

face. Two cases are investigated: the base case (i.e. L=1.6m and t=0.2m) and the case with L= 0.8 

m and undeformable liner. Those were the cases with maximum and minimum ground 

deformations; thus, the other cases are in between. The figure shows that, far from the face, the 

stresses are the in-situ stresses. Close to the face of the tunnel, the radial stresses decreased, while 

the shear stresses increased. Both radial and axial shear stresses were zero along the unsupported 
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span length. Far-behind the face, the radial stresses increased and were much larger for the case of 

undeformable liner than for the base case. This is expected because a stiffer liner closer to the face 

attracts more load from the ground through 3D face effects (i.e. longitudinal arching), which reliefs 

the stresses in the ground and reduces ground deformations. Interestingly, no axial shear stresses 

occurred behind the face of the tunnel for the case of undeformable liner. Since the liner was 

undeformable, no axial deformation occurred at the tunnel perimeter. 

Figure 4.21 shows the normalized settlement with the strength reduction factor for the base 

case and for the case with L=0.8m and undeformable liner. Those two cases show the influence of 

the unsupported span and of the support stiffness on face stability. As one can see, the collapse of 

the tunnel face required a further reduction of the strength of the ground when the support was 

placed closer to the face (note that failure of the support was neglected in all cases). The results 

show that reducing the unsupported span length and increasing the liner stiffness improves the 

safety of the tunnel face against failure. The reason for this is that a stiff liner closer to the face of 

the tunnel attracts more load and so there is a transfer of load from the ground to the liner. This is 

done, in part, through longitudinal arching (i.e. 3D face effects), which reliefs the stresses in the 

ground ahead of the face. 
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Figure 4.19 Surface settlements with axial distance from the tunnel face: (a) longitudinal vertical 
cross section; and (b) settlement trough far behind the face of the tunnel. Unsupported span 

length (L) 0.8 m and 1.6 m, lining thickness (t) 0.2 m to 0.6 m, and undeformable liner. 

 

Figure 4.20 Stresses at a point of the ground, located at the crown, with axial distance from the 
face of the tunnel. Base case and for undeformable liner with unsupported span of 0.8 m. 
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Figure 4.21 Normalized settlement (Sy), respect to the case n=1 (Sy,n=1), with the strength 
reduction factor (n), for the base case (L=1.6m and t=0.2m), and L=0.8 with underformable liner. 

4.6.1 Reinforcement with pipe roof umbrella system 

The pipe roof umbrella system (Volkmann and Schubert, 2007) is a common method to 

reduce ground deformations due to tunneling. The umbrella may consist of horizontal jet-grouting 

columns reinforced with steel pipes placed along the tunnel perimeter. The idea is to create an 

umbrella for the tunnel excavation, so the unsupported span (L) is protected. The efficiency of this 

technique in reducing ground deformations is assessed through 3D FEM models of the Paraiso 

tunnel. Figure 4.22 shows the excavation sequence with the umbrella. The umbrella was 0.5m 
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for the analyses. Note that the use of umbrella and benches may not be realistic because of 

constructability issues, but it was included for comparison purposes with the base case. 

Figure 4.23 shows the surface settlements with the axial distance from the face (i.e. 

longitudinal settlement profile, Figure 4.23a) and with the horizontal distance from the vertical 

tunnel axis (settlement trough, Figure 4.23b) for the base case and for the cases with umbrella 

shown in Figure 4.22. As one can see, the surface settlements were substantially reduced when the 

umbrella was included, with maximum surface settlement about 29% of that calculated in the base 

case. The settlements started to increase at about 20m (two tunnel diameters) ahead of the face. 

Note that the settlements with full-face excavation with umbrella started earlier than for the other 

two cases, were larger than those with the base case with umbrella, and yet they ended up far 

behind the face with a magnitude similar to those of the base case with umbrella. This seems 

counterintuitive as the base case provides support to the face with the benches, which does not 

occur for the full-face case. As discussed before, the reason for this behavior is that the closure of 

the liner occurs earlier with the full-face case than with the base case. The settlement trough far-

behind the face for the base case with umbrella and for the full face with umbrella is almost the 

same. 

 

Figure 4.22 Construction sequence with umbrella. (a) full face excavation with umbrella; (b) 
base case with umbrella. 
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Figure 4.23 Surface settlements for the base case, the base case with umbrella and for full face 
with umbrella, (a) with axial distance from the face, and (b) with horizontal distance from the 

vertical tunnel axis. 

 

The normalized settlements, as a function of the strength reduction factor (n), are shown in 

Figure 4.24, for the base case, the base case with umbrella, and the full face with umbrella. As 

before, the settlement was taken at the point where the failure slip first reached the surface, as 

indicated in the figure. When the umbrella was included in the base case, a larger reduction of the 

strength properties was required for failure (n at failure for the base case with the umbrella was 

around 3.2, and for the base case, 2.5). For the case of full face excavation with umbrella, the 

failure occurred when n=2.5, which is larger than the strength reduction required for failure of the 

full-face excavation case (n=2.1, Figure 4.17). For the base case, there are two well-identified 

regimes in the figure: the first, at n=2.1, when the failure slip reaches the ground surface; and the 

second, at n=2.5, when the tunnel collapses. Those points are not clearly identified on the other 

cases. This suggests that the umbrella provides ductility to the failure mechanism. Figure 4.25 

shows the plastic deformations around the tunnel, at failure, for all the cases. It is interesting to 

note that failure, and so large plastic deformations, are confined in a volume of ground ahead of 

the face of the tunnel. 
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Figure 4.24 Normalized settlement (Sy) with respect to n=1 (Sy,n=1), with the strength reduction 
factor (n), for the base case , the base case with umbrella and the full face with umbrella. 

 

Figure 4.25 Plastic deformation around the tunnel at failure. (a) base case, n=2.5; (b) Full face 
excavation with umbrella, n=2.5; (c) base case with umbrella, n=3.2. The red color represents 
equivalent plastic deformations equal or larger than 2%. The blue color represents no plastic 
deformation. Colors between red and blue represent equivalent plastic deformations between 

zero and 2%. 
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the execution of the umbrella in some tunnels. Farrell et al. (2014) reported large settlements 

caused when using an umbrella near sensitive buildings. The authors showed that approximately 

25mm occurred due to the execution of the horizontal jet-grouting columns and an additional 

10mm, due to the tunnel excavation. In other words, 70% of the surface settlements occurred 

during the execution of the horizontal jet grouting columns. Thus, the efficiency of the umbrella 

is highly dependent on the quality of the execution. 

4.7 Conclusion 

The impact of different construction strategies of NATM tunnels on ground deformations 

and face stability are assessed in this paper. The Paraiso tunnel, a metro tunnel in Sao Paulo, Brazil, 

was used for the analysis. The tunnel was excavated in a residual porous soil and induced large 

surface settlements. A 3D FEM numerical model with an advanced soil constitutive model, 

calibrated with the properties of the soil encountered at the site, was used to simulate the tunnel 

construction and predict ground deformations. The results from the model were in close agreement 

with the field data. The face stability of the tunnel was assessed using the strength reduction 

method. 

The Paraiso tunnel was built with partial-face excavation with two benches to improve face 

stability. The influence of those benches was investigated, as well as the impact of changing the 

support scheme, either by reducing the unsupported span or increasing the stiffness of the liner. In 

addition, the benefits of installing an umbrella to the face of the tunnel were also analyzed. The 

results of the simulations showed that the benches reduced the ground deformations ahead of the 

face. With no benches, i.e. with full-face excavation, the settlements ahead the face increased by 

36%, and the factor of safety of the face of the tunnel decreased by about 20%. Interestingly, the 

settlement through far-behind the face for the base case (actual tunnel construction process) and 

for the case with full face excavation were very similar, although the longitudinal settlement 

profiles were rather different. For the full face excavation case, the settlements ahead the face were 

larger than the base case, but behind the face, the settlements for the full face case were smaller 

than the base case. It occurred because the entire tunnel liner was completed near the face for the 

excavation with full face while, for the base case, the tunnel liner could not be closed near the face 

because of the benches. It was observed that the base case collapsed with a strength reduction 

factor (n) of 2.5 and the full-face case, with n=2.1. 
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The numerical results also showed that, as expected, a stiffer support closer to the face, 

reduced the ground deformations induced by the tunnel. The Paraiso tunnel was excavated with an 

unsupported span length of 1.6m and supported with shotcrete with thickness of 0.2m. By reducing 

the unsupported span length to 0.8m, the surface settlement above the crown far-behind the face 

decreased by 19%. For an unsupported span length of 0.8m and support thickness of 0.4m, the 

surface settlement far-behind the face above the crown was 35% smaller than the settlement of the 

base case. When an undeformable liner was considered, and installed 0.8m behind the face, the 

surface settlements were 67% smaller than those of the base case. In addition, the installation of a 

stiffer support close to the tunnel face improved face stability. The strength reduction required for 

failure of the tunnel with an unsupported span length of 0.8m was 2.8, while for the base case, 

with 1.6m unsupported span, was 2.5. Note that adopting a thicker shotcrete liner would increase 

substantially the cost of the project, while reducing the unsupported span length would be less 

costly. The drawback of reducing the unsupported span length is to slow down the tunnel advance. 

The pipe roof umbrella system considered in the numerical analysis consisted of jet-

grouted columns reinforced with steel pipes, along the tunnel perimeter. The numerical results 

showed that the umbrella was highly effective in reducing ground deformations and in improving 

the face stability. The surface settlements above the crown far-behind the face was 71% smaller 

than the base case. It was also observed that, at failure, the failure surface developed ahead of the 

umbrella; thus, a larger mass of soil was mobilized before failure, resulting in a factor of safety 

larger than the base case. Note that the numerical results assumed no ground deformations due to 

the execution of the umbrella (cases where large settlements due to the execution of the umbrella 

have been reported). Thus, the pipe roof umbrella system may not be a good option if an excellent 

execution quality is not ensured. 

The ground deformations caused by the Paraiso tunnel were large and could potentially 

damage nearby structures. Based on the numerical analyses conducted, the settlements could have 

been reduced if a shorter excavation step and a stiffer support were adopted. Thus, for future 

NATM tunnels in porous soils near sensitive structures, a small excavation step and a thick primary 

support should be considered. It would also be advantageous to use early strength shotcrete that 

can reach large stiffness soon after installation, given that the numerical results revealed that the 

stiffness of the tunnel support was effective in reducing ground deformations. The numerical 

results showed that the earlier closure of the liner ring was highly effective in reducing ground 
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deformations. They also showed that the lower bench had negligible influence on the ground 

deformations, since it was located in a very competent soil layer. Thus, the construction process 

could be optimized by reducing the length of the lower bench, or even eliminating it, so the lining 

could be closed earlier. The numerical results showed that the upper bench was highly effective in 

reducing the ground deformations ahead of the face and in improving the face stability. 

Optimization of the upper bench length would be desirable, so that the primary support could be 

closed as early as possible. Although the numerical results indicated that an umbrella system would 

be highly effective to limit ground deformations, the drilling and grouting operations could cause 

large ground deformations, especially in unstable soils (i.e. residual porous clays). Thus, the 

umbrella system should be used only when ground deformations due to its execution are negligible. 
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Abstract 

It is well-known that rock masses may present marked stress anisotropy. However, most of the 

tunnel analyses (numerical and analytical) assume the tunnel axis aligned with one of the principal 

stress directions. When this is not the case, axial shear stresses appear, which then are neglected, 

as it is done in all analytical solutions available for tunnel analysis. Existing solutions may consider 

advanced nonlinear ground behavior (i.e. elastic-brittle-plastic with e.g. Hoek and Brown failure 

criteria), linear-elastic ground with transversely anisotropic properties, seismic loading, 

groundwater and support, etc., but all consider that the axis of the tunnel aligns with one of the 

principal far-field stresses. This is also what is generally assumed when conducting more 

sophisticated, three dimensional numerical analyses. In this paper, an analytical solution to 

calculate the stresses and displacements induced by far-field axial shear stresses is presented. 

Solutions for supported and unsupported tunnels are provided. The proposed analytical solution 

can be combined with the classical Kirsch and Einstein-Schwartz solutions to determine the 

complete stress and displacement fields around the tunnel. Further, the effects of stress anisotropy 

are discussed. 

5.1 Introduction 

Analytical solutions have been extensively developed for tunnels. Some of them are 

regularly used in practice, such as the Kirsch and Einstein-Schwartz solutions (Kirsch, 1898; 

Einstein & Schwartz, 1979). Despite improvements on numerical modeling, analytical solutions 

are still used because they allow fast and robust tunnel analysis. For instance, Ledesma & Alonso, 

2017, obtained accurate ground deformation predictions caused by tunnels under the World 

Heritage Structures “Sagrada Familia Basilica” and “Casa Mila”, in Barcelona, Spain, using 

analytical solutions. For reliability problems, which may require a large number of calculations, 
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analytical solutions are widely used because numerical methods may be unmanageable or even 

unfeasible. Analytical solutions are attractive because they incorporate the most significant 

variables in a closed-form formulation and are benchmarks to sophisticated numerical analysis and 

code validation. However, the mathematical treatment of analytical solutions may be cumbersome 

and simplifications must be assumed. The analytical solutions for tunnels normally rely on 2D 

plane strain conditions and circular tunnel cross-sections. 

New analytical solutions for tunnels are being developed. For example, the solutions 

proposed by Kirsch and Einstein Schwartz were expanded by Bobet (2003) to incorporate the 

effects of groundwater flow and seismic loading for lined and unlined deep tunnels in linear elastic 

ground. Further expansions, to include transversely anisotropic elastic ground, were carried out by 

Hefny & Lo (1999), Bobet (2011), Zhang & Sun, (2011), Bobet & Yu (2016), Bobet (2016a) and 

Bobet (2016b). Analytical solutions for viscoelastic ground are also available. Those solutions 

were proposed by Wang et al. (2013), Wang, et al. (2015) and Wang et al. (2017) for deep tunnels 

with elliptical cross-section and also for circular twin tunnels. The analytical solutions mentioned 

so far are applicable to deep tunnels. Analytical solutions for shallow tunnels in linear-elastic 

ground were presented by Bobet (2001), Park, (2005), Pinto & Whittle, (2014), Strack & Verruijt 

(2002), Verruijt & Booker (1996) and Verruijt (1997). The applicability of analytical solutions for 

shallow tunnels was assessed by Chou & Bobet (2002) and Pinto et al. (2014). Both papers found 

good agreement between field data and predictions using analytical methods. 

The closed-form solutions found so far assume elasticity and, thus, are valid only if minor 

or no yielding is present around the opening. Including plasticity in the solutions increases the 

complexity of the problem, and results are currently limited to unsupported tunnels, static loading, 

dry ground and isotropic far-field stresses. Salenҫon (1969) developed an analytical solution for a 

loaded hollow plate in elastic perfectly plastic ground with Mohr-Coulomb failure. Such solution 

applies to deep tunnels. The solution considers associated and non-associated flow rules. Other 

solutions, for other failure criteria are currently available, for example the solution from Carranza-

Torres (2004) with the Hoek and Brown failure criteria. Sharan (2003, 2005) incorporated elastic-

brittle-plastic behavior with Hoek and Brown failure in an analytical solution. Massina & 

Sakellariou (2009) found an analytical solution for shallow tunnels considering elastic perfectly 

plastic material with Coulomb failure.  
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In all the formulations discussed, the tunnel axis is aligned with one of the principal 

directions because all solutions assume plane strain conditions on any cross-section perpendicular 

to the axis of the tunnel. Therefore, the far-field axial shear stress that appears due to the 

misalignment of the tunnel with the horizontal principal stresses is neglected. 

It is well-known that rock masses may have pronounced anisotropic far-field stresses 

(Brady & Brown, 2006; Jaeger & Cook, 2007; McGarr & Gay, 1978). Under these conditions, the 

plane strain assumption may be incorrect and may lead to erroneous conclusions (Hoek, 2008). 

The importance of the orientation of the underground excavation with respect to the far-field stress 

tensor is well-recognized in choosing the orientation of caverns and their shape. It is generally 

recommended to orient them parallel to the major principal stress direction, and with a shape such 

that stress concentrations are minimized (Goodman, 1989). However, for most applications in 

Civil engineering, the tunnel alignment is pre-determined and must be designed regardless of its 

orientation with respect to the far-field stress tensor. 

McGarr & Gay (1978) determined the complete geostatic stress tensor from 77 different 

sites. From their compilation, it is possible to estimate the level of stress anisotropy expected in 

rock masses. Figure 5.1 shows the scatter of the principal stress ratios compiled by McGarr & Gay 

(1978) (σ1/σ2, σ1/σ3, σ2/σ3) with depth. The average, plus or minus one standard deviation, for each 

principal stress ratio is: σ1/σ2=1.45±0.40; σ1/σ3=2.42±1.14; and σ2/σ3=1.66±0.5. Those ratios may 

be even higher for shallow depths (smaller than 100m) because of the topography influence (Jaeger 

and Cook, 2007). These statistics show that the expected anisotropy is indeed high and quite 

variable. Most of the data for σ1/σ2 and σ2/σ3 are in the range between 1 and 2. Figure 5.1 also 

shows that the geostatic stress tensor most often shows anisotropy in the 3 directions (i.e. 

σ1≠σ2≠σ3). 
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Figure 5.1 Ratio of principal stresses with depth, from McGarr & Gay (1978) data compilation.  

 

Gysel (1975) presents the geostatic stress tensors with respect to the tunnel alignment for 

two sections of the Sonnerberg tunnel, built in the Alps, in Lucerne, Switzerland. The sections are 

1km apart approximately and excavated in different types of sandstone. Table 5.1 shows the 

geostatic stress tensors normalized with respect to the vertical stress in the two sections. The results 

illustrate the stress anisotropy with respect to the tunnel axis and spatial variability. In section 2, 

the axial shear stresses are relatively large (43% and 17% of the vertical stress). Clearly, neglecting 

those stresses may be unsafe. 

 

Table 5.1 Geostatic stress tensors normalized with respect to the vertical stress, where z is the 
tunnel axis, y the vertical to the tunnel and x the horizontal. (modified from Gysel, 1975). 

 σxx / σyy σzz / σyy τxy / σyy τzy / σyy τzx / σyy 
Section 1 2.17 0.98 -0.07 0.05 0.05 
Section 2 2.73 1.36 -0.32 -0.43 -0.17 

 

This paper presents an analytical solution to calculate the stresses and displacements of 

unsupported and supported tunnels when the axis of the tunnel is not aligned with the direction of 

the horizontal principal stresses. The new analytical solution assumes: 1) linear elastic, 

homogeneous and isotropic ground; 2) one of the principal stresses is the vertical stress (this is 

done for convenience, but it is not a limitation of the solution); 3) circular cross section; 4) 
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infinitely long; and 5) deep tunnel. The analytical solution includes the calculation of the axial 

shear forces in the liner, which may be relevant for the support design. In addition to the closed-

form solution, the paper explores, numerically, the influence of the tunnel misalignment on the 

size of the yield zone around the tunnel, when plasticity is introduced. 

5.2 Analytical solution for out of plane shear stresses 

Given that far-field anisotropic stresses may be expected in rock masses, as discussed in 

the Introduction, it may be unlikely that the tunnel axis is aligned with one of the principal 

directions, as it is often assumed for tunnel design. Figure 5.2 shows the plan view (i.e. normal to 

the vertical, y-axis) of a tunnel not aligned with the horizontal principal stresses. In the figure, the 

tunnel makes an angle, α, with the direction of the major horizontal stress (σH). So that α=0° means 

that the tunnel is aligned with the major horizontal stress (σH). The geostatic stress tensor can be 

rotated such that one of the rotated axes is parallel to the axis of the tunnel and the other 

perpendicular (recall that, for convenience, the vertical axis is taken as a principal stress axis). This 

is convenient for the analysis, as it will be shown later. Figure 5.3 shows the plan view of the 

tunnel aligned with the geostatic stress tensor, where the far-field stresses are decomposed into an 

axial stress (σzz,ff), horizontal stress (σxx,ff), vertical stress (σyy,ff) and shear stress (τxz,ff). The 

convention presented in Figure 5.3 is adopted throughout the paper.  

Because of the superposition principle, valid for linear-elastic materials, the problem 

shown in Figure 5.3 can be divided in two problems: 1) a circular tunnel in an infinite elastic 

medium under far-field horizontal and vertical stresses (σxx,ff and σyy,ff; Figure 5.4a) and 2) a 

circular tunnel in an infinite elastic medium under far-field shear stress (τxz,ff; Figure 5.4b). Note 

that problem (1), shown in Figure 5.4a, can be solved using Kirsch or Einstein-Schwartz solutions 

for unlined and lined tunnels, respectively. 

A new analytical solution, to calculate the stress and displacement fields for the 2nd problem 

(illustrated in Figure 5.4b), is provided for lined and unlined tunnels. The stress and displacement 

fields from the proposed analytical solution can be added to the Kirsch or Einstein-Schwartz 

solutions to obtain the full 3D stresses and displacements. This is possible because the far-field 

axial normal stress (σzz,ff) does not affect the radial and the tangential stresses and displacements 

on an infinitely long tunnel, for a linear elastic ground. The Kirsch and Einstein-Schwartz solutions 

are included in the Appendix, for completeness. 
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The calculation procedure consists of: 1) identify the in situ principal stress directions and 

their magnitudes (Figure 5.2); 2) align the tunnel axis with the stress tensor by rotating the principal 

stress tensor (Figure 5.3); 3) use the horizontal and vertical far-field stresses (σxx,ff and σyy,ff) as 

input to the Kirsch or Einstein-Schwartz solutions (Figure 5.4a); and (4) use the far-field axial 

shear stress (τxz,ff) as input to the presented analytical solution (Figure 5.4b). The solution is the 

result of the addition of stresses and displacements obtained in steps (3) and (4). 

 

Figure 5.2 Plan view of a circular tunnel not aligned with one of the principal horizontal stress 
directions. 

 

Figure 5.3 Plan view of a circular tunnel and far-field stresses. 
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Figure 5.4 Decomposition of the far-field horizontal and vertical stresses (σxx,ff and σyy,ff) and far-
field axial shear stress (τxz,ff) into two problems. 

 

Given that the tunnel is long,  applies and thus, equilibrium, in cylindrical 

coordinates, simplifies into: 

       (1) 

Note that, given the problem in Figure 5.3, the axial stresses, zz, are equal to zz,ff. 

The strains are: 

         (2) 

 

where w is the axial displacement (i.e. displacements parallel to the z-axis). Stresses and 

strains, given the assumption of linear-elasticity, are: 

         (3) 

where G is the ground shear modulus. 

Substituting (3) and (2) in (1): 

       (4) 

Equation (4) can be solved assuming that the displacements w can be decomposed into a 

function of the radial coordinate r, f(r), and a function of , g(). That is, w= f(r) g(). Substitution 

in (4) and integration, results in the expression:  
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 (5) 

Therefore, strains and stresses are given as: 

(6) 

 (7) 

where An, Bn, Cn and Dn are constants that can be found imposing the boundary conditions, 

which depend on the tunnel being unsupported or supported, as discussed in the following. 

5.3 Unsupported tunnel 
T 

The boundary conditions for the unsupported tunnel are: 

        (8) 

       (9) 

The solution is: 

       (10) 

The expression for the axial displacements, w, shown in (8) includes the (initial) 

displacements due to the geostatic stresses. The “net” displacements, that is those that occur due 

to the tunnel excavation, are: 

        (11) 
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5.4 Supported tunnel 

The solution assumes no-slip (i.e. no relative displacement between ground and liner). Note 

that if a full slip condition is intended, the ground does not transfer shear stress to the liner. 

Equations (5-7) apply to both the ground and the liner (in the following the superscript g denotes 

the ground, and s, the liner). Figure 5.5 illustrates the geometry of the liner. 

 

Figure 5.5 Geometry of the liner. 

 

The axial liner displacements are: 

  (12) 

The boundary conditions are: 

        (13) 

         (14) 

The complete solution is: 

For r > r0  

   










11

)cos()sin()cos()sin(
n

ns
n

s
n

n

ns
n

s
n

s rnDnCrnBnAw 

r




 sin

cos

ffz
g

ffzr
g


















gs

zr
g

zr
s

zr
s

i

ww
rr

rr





0

0



 

122 

,      (15) 

For ri < r < r0

 
,       (16) 

Where A is given by: 

        (17) 

For a thin liner, with thickness t, i.e. t =ro-ri << r0, 

      (18) 

       (19) 
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Where B is given by: 

          (20) 

5.5 Verification 

The analytical solution is validated through comparisons with 3D finite element models, 

where the tunnel axis is inclined at an angle α with the principal horizontal stress, and the vertical 

stress is a principal stress. Four cases are considered, with α= 90°, 75°, 60° and 45° (see Figure 

5.2)s. The radius of the tunnel for all the cases is r0=5 m. 

Figure 5.6 to 8 show the finite element model, for the case with α=45°, and the boundary 

conditions and dimensions of the model, which is representative of the other discretizations. The 

mesh combines unstructured and structured grids, uses 2nd order elements (i.e. quadratic 

interpolation elements) and the model dimensions are large enough to avoid boundary effects. The 

numerical results around the opening are taken from a structured grid at the center (core) of the 

model (Figure 5.8). Such mesh provides accurate results even for highly nonlinear materials (Vitali 

et al., 2017). The liner is represented with shell elements with 0.1r0 (0.5m) thickness. Linear-elastic 

models are adopted for both ground and liner. The input properties are: E=100MPa, ν=0.3 for the 

ground, and E=25GPa, ν=0.2 for the liner. The models are solved in two steps. The first step 

generates the geostatic stress field by applying normal stresses and restricting the normal 

displacements at the boundaries, as illustrated in Figure 5.6 and Figure 5.7. In the second step, the 

solid elements inside the tunnel are deactivated and the shell elements are activated (for the lined 

tunnel), so that the liner is installed with no delay. The displacements from the 1st stage are zeroed. 

Those two steps are intended to duplicate the analytical solution. The following coordinate systems 

are used: (1) coordinate system x-y-z; it is aligned with the tunnel, where the z-axis is the axial 

direction, the x-axis is the horizontal direction perpendicular to the tunnel axis and the y-axis, the 

vertical direction; and (2) coordinate system v-h-H that represents the principal stress directions, 

i.e. vertical and horizontal directions σh and σH, respectively. Note that the vertical, i.e. the y-axis, 

is a principal stress axis. 
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Figure 5.6 Plan view of the finite element model with dimensions and boundary conditions. 

 

Figure 5.7 Front view of the finite element model with dimensions and boundary conditions. 
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Figure 5.8 Finite element mesh of the core of the model, where the results are taken. 

 

The geostatic stresses used for the simulations are shown in Table 5.2; note that they are 

referenced with respect to the coordinate system x,y,z shown in Figure 5.2 (the axis z is parallel to 

the axis of the tunnel and y is vertical). For α=90°, the tunnel axis is aligned with the minor 

horizontal stress (σh) and, as a consequence, no far-field shear stress is present. As the tunnel axis 

rotates (see Figure 5.2), the far-field shear stress (τxz,ff) increases, the horizontal stress (σxx,ff) 

increases, while the vertical stress remains constant. The selected scenario encompasses a range 

of Kxy (defined as the ratio between horizontal and vertical stress, i.e. σxx,ff/σyy,ff) from 0.5 to 1 and 

τxz,ff/σyy,ff from 0 to 0.5. 

 

Table 5.2 Far-field stresses in the coordinate system, x-y-z, attached to the tunnel. 

α (°) σxx,ff (MPa) σyy,ff (MPa) σzz,ff (MPa) τxz,ff (MPa) 

90 1 2 3 0 
75 1.13 2 2.87 0.5 
60 1.5 2 2.5 0.87 
45 2 2 2 1 

 

Figure 5.9 and Figure 5.10 compare the analytical and numerical results for the 

unsupported tunnel. The results are presented in cylindrical coordinates for convenience, where 
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θ=0° and 180° correspond to the springlines and θ=90° to the crown of the tunnel. The values 

plotted from the numerical solution are those provided by the simulations, while those from the 

analytical solution are obtained from the superposition of the Kirsch solution, using as input the 

far-field horizontal and vertical stresses (σxx,ff and σyy,ff; the equations are shown in the Appendix), 

and the predictions from the analytical solution, using as input the far-field shear stresses (τxz,ff) 

(equations (10)). As one can see in the figures, the analytical and numerical results provide 

consistent values, with differences smaller than 1%, as average. 

Note that the largest displacements and stresses occur at the springline and at the crown. 

As expected, when Kxy=1 (α=45°), the radial displacements and the tangential stresses are constant 

along the tunnel perimeter. Also, as expected, the differences between radial and tangential stresses 

at the springline and at the crown increase as Kxy decreases. The far-field axial shear stress (τxz,ff) 

causes anti-symmetric axial displacements at the springline and no axial displacements at the 

crown. Note that the tunnel cross-section remains planar. Also, the shear stresses are zero at the 

springline and reach a maximum value at the crown. 

 

Figure 5.9 Unsupported tunnel. Radial and axial displacements of the ground at the tunnel 
perimeter. 

 

Figure 5.11 and Figure 5.12 compare the analytical and numerical results for the supported 

tunnels. As with the unsupported tunnel, the results for the analytical solution are obtained from 

superposition using the Einstein and Schwartz solution (the equations are presented in the 

Appendix), using as input the far-field stresses normal to the cross section of the tunnel (σxx,ff and 

σyy,ff), and the new solution (equations for thin liner), using the far-field shear stress (τxz,ff). The 
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figures show that the analytical solution compares well with the numerical solution, with errors of 

the order of 1%. As one can see, for Kxy=1 (α=45°), the radial stresses at the ground-liner interface 

are constant along the tunnel perimeter and, therefore, the bending moment is zero and the thrust 

force is constant. As Kxy decreases from 1 to 0.5, i.e. as the angle α decreases, the radial stresses 

become less compressive, but non-uniform, so the liner is subjected to bending moments and thrust 

forces. The shear stress (τθz) is zero at the springline and increases towards the crown, where it 

reaches a maximum. The in-plane shear stress (τθr) is zero at the crown and springline, and has a 

maximum at θ=45° and θ=135°. 

 

Figure 5.10 Unsupported tunnel. Tangential and shear stresses of the ground at the tunnel 
perimeter. 
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Figure 5.11 Supported tunnel. Radial and shear stresses at the liner-ground contact. 

 

Figure 5.12 Supported tunnel. Forces and bending moments in the liner. 

5.6 Discussion 

The interplay that exists between ground, liner and far-field stresses on the plane of the 

tunnel cross section is now well understood (e.g. Einstein and Schwartz, 1979). However, the 

effects of tunnel misalignment with the far-field stresses, i.e. due to the presence of far-field shear 

stresses, is not well known. To discuss this issue, the anisotropic geostatic stress field obtained by 

Gysel (1975), for section 1 of the Sonnerberg tunnel, is taken as reference. The stress tensor has 

principal stress ratios σ1/σ3 = 2.33 and σ2/σ3 = 1.11, which are within the range of expected stress 

anisotropy, according to McGarr & Gay (1978). The same numerical model used for the 
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verification is employed for the analysis in elastoplastic ground, i.e. same mesh, dimensions, 

boundary conditions and steps, except for the values of the far-field stresses. The ground and liner 

properties are Eground=1GPa; Eliner=25GPa; t=0.1r0 (0.5m); νground=0.3; νliner=0.2, which are typical 

values for deep tunnels in soft rock. No slip between liner and ground is considered. 

It is assumed that the vertical stress is a principal stress, i.e. σyy,ff= σv =1MPa. For α=0° 

(Figure 5.2), the tunnel is aligned with the major principal horizontal stress, i.e. σzz,ff = σH 

=2.33MPa and σxx,ff = σh =1.11MPa. For the analyses, the tunnel axis is rotated clockwise by an 

angle α with respect to the vertical, y axis, from the major principal horizontal stress (σH) towards 

the minor principal horizontal stress (σh); that is, when α=90°, the tunnel axis is aligned with the 

minor principal horizontal stress (σh), i.e. σzz,ff = σh =1.11MPa and σxx,ff = σH =2.33MPa. The 

expressions for the far-field stresses σxx,ff, σzz,ff and τxz,ff are: 

 

 

; 

; 

The far-field horizontal stress (σxx,ff) increases and the far-field axial stress (σzz,ff) decreases 

as the tunnel axis rotates from 0° to 90°. The far-field shear stress (τxz,ff) is zero when the tunnel 

axis is aligned with one of the principal stresses (i.e., α=0° and 90°) and it is maximum at α=45°. 

Figure 5.13 shows the stress ratio Kxy (σxx,ff/σyy,ff) and the far-field axial shear stress normalized 

with respect to the far-field vertical stress (τxz,ff/σyy,ff) with the rotation angle (α). For α=0°, Kxy is 

1.1 and there is no far-field shear stress. The stress ratio Kxy increases with α and is maximum (i.e. 

Kxy of 2.33) when α=90°. The far-field shear stress (τxz,ff) increases until α=45° and then decreases 

(τxz,ff at α=45° is 0.61σyy,ff). 
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Figure 5.13 Stress ratio (Kxy) and normalized far-field shear stress with respect to the vertical 
stress, with the tunnel rotation angle (α). 

 

Figure 5.14 shows the normalized tangential and shear stresses with respect to the far-field 

vertical stress and the normalized radial displacements with respect to the tunnel radius with the 

rotation angle (α). The results are computed at the perimeter (r=r0) of an unsupported tunnel, at the 

springline and crown. The tangential stress (σθθ) decreases at the springline and increases at the 

crown as the horizontal stress (σxx,ff) increases (as the rotation angle  increases). At the same time, 

the radial displacement increases at the springline while it decreases at the crown. The shear stress 

(τθz) at the crown and the axial displacement (w) at the springline are maximum at α=45° and zero 

when the tunnel is aligned with a principal stress (α=0° and 90°). Note that τθz is 1.22 times the 

vertical stress for α=45°. 
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Figure 5.14 Unsupported tunnel in elastic ground. Normalized stresses with respect to the far-
field vertical stress and normalized displacements with respect to the tunnel radius with tunnel 

rotation. 

 

The tunnel axis orientation may strongly affect the internal forces in the liner, when the 

tunnel is supported. Figure 5.15 shows the radial stresses (σrr) and the shear stress (τθz) at the 

ground-liner contact, with the tunnel axis rotation (α). The contact stresses are normalized with 

respect to the far-field vertical stress (σyy,ff). As the tunnel rotates, the radial stress over the crown 

increases while at the springline it remains almost constant. The shear stress (τθz) at the crown is 

maximum for α=45° and zero for α=0° and α=90°, when the tunnel is aligned with the principal 

stresses. Figure 5.16 shows the normalized internal forces with respect to the tunnel radius (r0) and 

the far-field vertical stress (σyy,ff), with the rotation angle (α). As the tunnel axis rotates from 0° to 

90°, the bending moments, M, increase at both the crown and springline while the thrust, T, 

increases, prominently at the crown. At the same time, the shear force, V, in the liner first increases 

up to α =45° and then decreases. 
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Figure 5.15 Supported tunnel in elastic ground. Stresses at the ground-liner contact, normalized 
with respect to the far-field vertical stress, with tunnel axis rotation. 

  

Figure 5.16 Supported tunnel in elastic ground. Thrust (T), shear force (V) and bending moment 
(M) normalized with respect to the tunnel radius and far-field vertical stress, with tunnel axis 

rotation. 

 

Figure 5.17 shows the thrust-moment interaction diagram for the tunnel support for α=0°, 

45° and 90°. The demand along the structure is compared with yielding envelope (forces taken 

from θ = 0° to 90°). The envelope is calculated neglecting the steel reinforcement and the tensile 

strength of the concrete. The adopted unconfined compression strength for the concrete is 20MPa. 
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No safety factors to reduce strength or to increase the load were applied to calculate the envelope. 

The failure envelope is calculated using the structural software “response 2000” (Bentz, 2000). It 

considers the non-linear stress distribution along the liner cross section and the cracked region. 

The yielding envelope shown in Figure 5.17 represents the crushing of the most compressed face. 

Examples of the tunnel liner verification can be found in Hoek et al. (2008). 

When the tunnel is aligned with the major horizontal principal stress, σH, (α=0°), the stress 

ratio is Kxy=1.11, which results in relatively small bending moments and large factor of safety 

against failure. However, when the tunnel is aligned with the minor horizontal principal stress, σh, 

(α=90°), the stress ratio is Kxy=2.33 and the demand on the liner is larger than its strength. An 

eventual failure would be reached first at the crown. 

It is important to note, as shown in Figure 5.16, that the far-field shear stress (τxz,ff) produces 

an axial shear force (V) and axial displacements in the liner, as illustrated in Figure 5.18. The shear 

force (V) is maximum when the tunnel axis is oriented at 45° with the intermediate principal 

direction (α=45°), and is zero when the tunnel is parallel to one of the principal directions (α=0° 

or 90°). As a side note, for full slip between ground and support, the ground is not able to transfer 

shear stresses to the liner, the liner does not take load from the far-field shear and the stresses and 

displacements in the ground, due only to the far-field shear stresses, can be obtained using the 

expressions given in (11) for the unlined tunnel. 

For α=45°, the stress ratio Kxy is 1.72 and the shear force is maximum. Note that in this 

case the combination of thrust and moment (Figure 5.17) does not induce failure. However, the 

large shear force, V, which is not considered in the force-moment diagram, can potentially damage 

the support and should be examined using e.g. suitable concrete codes. Note that the results 

presented are specific to the case discussed and may not be generalized. 

Figure 5.19 shows the radial displacements, normalized with the tunnel radius, obtained 

from the numerical models, with the rotation angle (α). As one can see, the radial displacements 

from the 3D models with shear stresses are consistently larger than the other models, i.e. 2D plane 

strain and 3D with no shear stresses. The largest difference is for α=30°, where the radial 

displacements are 81.8%, at the crown, and 49.4%, at the springline, larger than those from the 2D 

model. The results seem to indicate that neglecting the far-field shear stress in tunnel analysis may 

underpredict ground deformations and, therefore, may lead to unsafe tunnel design. Note also that 
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the 3D models do not consider the step-by-step excavation, which could lead to even higher ground 

deformations, as shown in Vitali et al. (2017). 

 

 

Figure 5.17 Supported tunnel. Thrust-moment Interaction diagram. 

 

 

Figure 5.18 Distortion on the tunnel liner due to far-field shear stress (τxz,ff). 
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In Figure 5.19, between α=0°, where the tunnel is aligned with the major principal stress, 

and α=45°, where the axial and horizontal stresses (σzz,ff and σxx,ff) have the same magnitude, the 

radial displacements in the 3D models with no shear stresses are larger than those from the 2D 

plane strain models (the differences are 53.7% and 41.9% at the springline and crown, respectively, 

for α=0°). This is because when the axial stress is larger than the horizontal stress, the maximum 

shear stress ((σ1-σ3)/2) happens in the axial-vertical plane. That is, for elastoplastic ground, the 

axial normal stress may be relevant because it may affect the plastic zone size and the ground 

deformations. The differences between the 3D with no shear and 2D plane strain models are small 

compared to the differences obtained when using the 3D model with shear stress. For α between 

45° and 90°, when the horizontal stress is larger than the axial stress, the 2D plane strain and 3D 

model with no shear predict the same ground deformations.  

The deformations at the crown are always larger than at the springline. This is the result of 

the horizontal stresses increasing as the tunnel rotates, while the vertical stress remains constant. 

Therefore, there is an increasing stress concentration over the tunnel crown with the stress rotation, 

which in turn induces a larger plastic zone and larger deformations over the crown. It is interesting 

to note that this is the opposite for linear-elastic ground, where the displacements at the springline 

are larger (see Figure 5.14). The 3D models with shear stress show larger differences between 

displacements at the crown and springline than the 2D plane strain models and the 3D model with 

no shear stress. This is due to the effect of the tangential shear stress (τθz), which is maximum at 

the crown and zero at the springline (as shown in Figure 5.10). 

 

Figure 5.19 Normalized radial displacements at the crown and at the springline with respect to 
the tunnel radius with the rotation angle (α). 

 (°)

0 10 20 30 40 50 60 70 80 90

u r /
 r

0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

 (°)

0 10 20 30 40 50 60 70 80 90
0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

2D plane strain

3D 

3D, no axial shear

Crown Springline



 

136 

5.7 Conclusions 

The paper presents an analytical solution to calculate stresses and displacements of the 

liner, if present, and the ground, for a deep circular tunnel, when its axis is not aligned with the 

principal directions of the far-field stresses. The solution assumes that both the ground and the 

liner remain elastic and accounts only for the far-field shear stress generated due to the tunnel 

misalignment with the principal stress directions. Since the proposed analytical solution assumes 

linear-elasticity, it can be combined with the Kirsch solution (for unsupported tunnel) and with the 

Einstein-Schwartz solution (for supported tunnel). The combined analysis has been validated by 

comparing the results from the new analytical solutions with those from a Finite Element Method. 

The differences are smaller than about 1%. 

The tunnel misalignment with the principal stresses induces shear stresses around the 

opening. Those stresses distort the tunnel cross-section in the axial direction by inducing axial 

displacements in the ground. If the tunnel is lined and the liner is bonded to the ground, the shear 

stress induces axial shear forces in the liner, which may be relevant and should be considered for 

the support design. Further, the shear stress increases the deviatoric stresses in the ground and may 

increase the size and change the shape of the plastic zone around the opening, which may lead to 

ground deformations higher that those predicted when the effects of the tunnel misalignment are 

neglected. 

The stress field in the ground, in general, and in rock masses in particular, may be highly 

anisotropic, and so alignment of the tunnel with the principal stresses may not generally occur. 

The paper shows that the tunnel response in terms of stresses and deformations of both ground and 

support strongly depend on the tunnel orientation with respect to the principal geostatic stresses. 

The numerical and analytical results show that the worst scenario is when the tunnel is aligned 

with the smallest horizontal principal stress, and the best, when the tunnel is aligned with the 

largest horizontal principal stress. This observation is consistent with the recommendation of 

aligning the axis of underground structures with the major principal stress direction (Goodman, 

1989). Finally, the proposed analytical solution is valid for elastic ground (i.e. no yielding) or when 

there is localized, minor, yielding around the opening. 

List of Variables 

α = angle between tunnel axis and horizontal principal stress; 

σxx,ff = far-field horizontal stress normal to the tunnel axis; 
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σyy,ff = far-field vertical stress, assumed normal to the tunnel axis; 

σzz,ff = far-field stress parallel to the tunnel axis; 

τzx,ff = far-field axial shear stress; 

Kxy = stress ratio (σxx,ff / σyy,ff); 

w = axial displacement; 

ur = radial displacement; 

G=Gg = shear modulus of the ground; 

Gs = shear modulus of the structure; 

E = Young’s modulus; 

ν = Poisson’s ratio; 

r0 = tunnel radius; 

t = support thickness; 

ri = tunnel internal radius (r0+t); 

T = thrust force of the liner; 

M = bending moment of the liner; 

V = axial shear force of the liner; 

φ = friction angle of the ground; 

c = cohesion of the ground; 

Ψ = dilatancy angle of the ground; 

x, y, z= coordinate system attached to the tunnel, with z-axis parallel to tunnel axis; 

σv = vertical stress; 

σh = minor principal horizontal stress; 

σH = major principal horizontal stress; 

r ,θ, z= cylindrical coordinate system, with z-axis parallel to tunnel axis; 

σθθ = tangential stress in cylindrical coordinates; 

σrr = radial stress in cylindrical coordinates; 

τrθ = in-plane shear stress in cylindrical coordinates; 

τrz = axial shear stress in cylindrical coordinates; 

τθz = axial shear stress in cylindrical coordinates; 
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5.8 Appendix 

Stresses and displacements for a deep unsupported tunnel, with a circular cross section, 

excavated in elastic ground, assuming plane strain conditions are (Kirsch solution, Kirsch, 1898): 

; 

; 

; 

 

 

Stresses and displacements for a supported deep circular tunnel, for elastic ground and liner, 

assuming plane strain conditions and no slip between ground and liner are (Einstein-Schwartz 

solution, Einstein & Schwartz, 1979): 

At the ground-liner contact, i.e. r=r0: 

 

 

 

 

where: 

; 

   



















































 


 2cos341111

2

4

0

2

0

2

0,

r

r

r

r
K

r

r
K xyxy

ffyy
rr

   












































 


  2cos31111

2

4

0

2

0,

r

r
K

r

r
K xyxy

ffyy

 


































 


  2sin3211

2

4

0

2

0,

r

r

r

r
K xy

ffyy
r

       












































 

2cos1411
1

2

4

0

2

0

2

0,

r

r

r

r
K

r

r
Kr

E
u xyxy

ffyy
r

      
 2sin2121

1

2

4

0

2

0,





























r

r

r

r
Kr

E
u xy

ffyy

       2cos*4*611
2

1
*11

2

1
22,0, baKaK xyffyyxyffyyrr 

     2sin*2*611
2

1
22, baK xyffyyr 

         


2cos*2*141
2

1
*1

2

1

1 220
0,

abKaK
r

Eu
xyxy

ffyy

r 


       


 2sin*21*1
1 22

0,

baK
r

Eu
xy

ffyy




 
 






1

1
*0 CFFC

CF
a



 

139 

 

 

 

And 

   ;   

For the liner: 
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Abstract 

Despite the well-known stress anisotropy that may be present in rock masses, tunnel design is often 

done with the assumption that the tunnel is aligned with one of the geostatic principal stress 

directions. However, this alignment is improbable and so axial shear stresses may be 

unintentionally neglected. These shear stresses distort the tunnel cross-section in the axial direction, 

which is not accounted for in 2D analyses. In this paper, the effects of axial shear stresses on 

shallow tunnels misaligned with the principal in-situ stress directions are assessed. 3D FEM 

models are conducted for that purpose and the results are compared with 2D plane strain models, 

often used in practice. Two scenarios are studied: competent rock mass, which behaves as a linear-

elastic material, and soft ground, which undergoes plastic deformations. For soft ground, the axial 

stresses increase the size and change the shape of the plastic zone around the tunnel, thus inducing 

larger ground deformations. 

6.1 Introduction 

Tunnel design usually disregards the tunnel orientation with the geostatic principal stress 

directions despite the well-known fact that stress anisotropy often occurs in rock masses. For 

instance, the convergence-confinement method and 2D plane strain analysis, which are commonly 

used in tunnel design, assume that the tunnel is aligned with one of the geostatic principal stress 

directions. 

The importance of tunnel orientation with respect to the existing stress field is well-

recognized in the literature for cavern design. For instance, it is common practice, as recommended 

by Goodman (1989), to align the cavern with the major principal stress direction and choose the 

shape of the cavity cross-section such that stress concentrations are minimized. However, in civil 

engineering, the tunnel direction is normally pre-determined due to other considerations and so 
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design should consider the tunnel misalignment with respect to the principal directions of the 

geostatic stresses. 

The literature shows that a highly anisotropic stress field may be present in rock masses. 

Brown & Hoek (1978) compiled a large amount of data across the world and showed that the 

vertical stresses (σv) follow a quasi-linear trend with depth (z), in which the line σv (MPa) = 0.027z 

(m) fits relatively well the data and recommended to use this relation to estimate the vertical stress. 

They also found that the stress ratio K (σh,average/ σv) varied significantly with depth, with values 

larger than one. That is, the horizontal stresses were larger than the vertical stresses. Jaeger et al. 

(2007) observed that for depths shallower than 300m, the scatter of the K value was large and 

ranged between 1 to 4, but below 2,000 m, the range was narrow, with values often smaller than 

one. The large scatter of K observed close to the surface was associated with topography (Brady 

& Brown, 2006; Goodman, 1989; Hoek, 2008; Jaeger et al., 2007). However, large horizontal 

stresses can also be caused by tectonic movements. Haimson et al. (2003) and Park et al. (2014) 

conducted hydraulic tests at shallow depths on granitic and gneissic rock masses in South Korea, 

near Seoul, in an active seismic area. The measured horizontal stresses were consistently larger 

than the vertical stresses at shallow depths. The data also showed a remarked horizontal stress 

anisotropy. This horizontal stress anisotropy is consistent with observations by other authors. 

According to Brady & Brown (2006), the major horizontal stress (σH) and the minor horizontal 

stress (σh) rarely have the same magnitude. McGarr & Gay (1978) compiled data of the in-situ 

stresses for 77 different sites and found average values: σ1/σ2=1.45±0.80; σ1/σ3=2.42±2.28; and 

σ2/σ3=1.66±1.0. Read & Martin (1992) also reported a highly anisotropic stress field in a massive 

granitic rock mass in Canada. The average stresses were: σ1/σ2=1.15±0.1; σ1/σ3=3.93±0.5; and 

σ2/σ3=3.43±0.5. Because of the complexity and variability of the in-situ stresses in rock, Hoek 

(2008) recommended to measure the in-situ stress field for the design of underground structures 

in rock masses. 

Clearly, given the large stress anisotropy that may be present in the ground, its effects on 

the tunnel should be considered. Deep tunnels not aligned with the principal stress directions have 

been investigated by Vitali et al. (2018). The authors observed that, if the ground has linear-elastic 

behavior, the 3D stress and displacement fields can be calculated analytically by adding the 

solutions for stresses acting normal and parallel to the tunnel axis. The authors suggested the use 

of the traditional Kirsch solution for unsupported tunnels and the Einstein-Schwartz solution 
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(Einstein & Schwartz, 1979) for supported tunnels to account for the stresses normal to the tunnel, 

i.e. vertical and horizontal stresses. To account for the tunnel misalignment with the principal 

directions of the geostatic stresses; that is, to include the axial shear stresses (τxz), the authors 

proposed an analytical solution for both supported and unsupported tunnels. 

For shallow tunnels, given that stress anisotropy may be present and that it is unlikely that 

the tunnel aligns with one of the principal stress directions, consideration must be given to the 

potential effects on tunnel behavior that arise due to the presence of axial shear stresses. This paper 

investigates the influence of shallow tunnel misalignment with the principal stress directions. 3D 

FEM models have been conducted and the results compared with those from 2D plane strain 

models that neglect the influence of the axial shear stresses. 

6.2 Effect of misalignment 

FEM models of a shallow tunnel not aligned with the principal stress directions have been 

completed. See Figure 6.1Figure 6.1. The tunnel makes an angle α with the major horizontal stress, 

σH, as indicated in Figure 6.1. The angles α assessed are 0°, 15°, 30°, 45°, 60° 75° and 90°, where 

α= 0° represents a tunnel parallel to the major horizontal stress, σH, and α=90°, parallel to the 

minor horizontal stress, σh. In the figure, the y-axis is vertical, the z-axis is aligned with the axis 

of the tunnel and the x-axis is perpendicular to the tunnel cross section. Thus, σxx is the horizontal 

stress perpendicular to the tunnel axis, σzz is the axial stress and τxz is the axial shear stress. It is 

assumed that the vertical stress is a principal stress σv=σyy. 

The models have a transitional mesh from the boundaries to a structured mesh refined at 

the center of the model. The mesh at the center of the model uses 2nd order hexahedron elements. 

This mesh ensures the accuracy of the numerical results even for high material nonlinearity (Vitali 

et al., 2017). The tunnel is circular with 5m radius (r0). The tunnel centerline is 25m below the 

surface (2 tunnel diameters of overburden) and 40m above the bottom boundary. The simulations 

consist of three phases: the first phase generates the in-situ stresses based on the K0-procedure 

(Midas, 2014); the second phase is a null stage, to balance the in-situ stresses generated during the 

first phase; and the third phase simulates the full excavation of the tunnel. 

The anisotropic in-situ stress adopted for the numerical analyses is based on Park et al. 

(2014) measurements of horizontal stresses. The in-situ stresses are presented in Figure 6.2. The 

data are bound by the minor horizontal stress equal to the vertical stress, σv (MPa)=0.027z (m), 
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and the major horizontal stress, four times larger than the vertical stress. Figure 6.3 shows the in-

situ stress ratios for each angle α. As the tunnel rotates from 0° to 90°, the in-situ horizontal stresses 

(σxx) increase and the axial stresses (σzz) decrease. The in-situ axial shear stress (τxz) is maximum 

for α=45° and is zero when the tunnel is aligned with one of the principal stresses. 

The analyses are carried out considering credible strength parameters for gneissic rock. 

The first series of the simulations is done assuming that the rock is linear elastic and obeys the 

Mohr Coulomb failure criterion, with a non-associated flow rule (ψ=0°). They are: E= 10GPa, v= 

0.2, c= 10MPa and φ= 50°. The results from 3D models are compared with 2D plane strain models. 

Figure 6.4 shows the tunnel convergence at the springline (horizontal) and at the crown/invert 

(vertical), obtained with the 3D and 2D models. The convergence from both models is identical. 

Since the ground has large strength, there is no yield around the opening and the ground behaves 

within its elastic regime. The axial stresses do not affect tunnel convergence, as observed also by 

Vitali et al. (2018) for deep tunnels. 

 

 

Figure 6.1 FEM model of a tunnel not aligned with the principal stress directions. Plan view and 
refined mesh at the center of the model. r0 is the tunnel radius, 5m. 
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Figure 6.2 Horizontal stresses near the surface (data from Park et al. 2014). 

 

Figure 6.3 In-situ stress ratios normal and parallel to the tunnel. Kxy=σxx/σv; Kzy=σzz/σv. 
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Figure 6.4 Tunnel convergence from 3D and 2D plane strain models, for linear-elastic ground. 
Positive convergence is inwards. 

 

However, the 2D plane strain models do not provide the axial displacements or the axial 

shear stresses. Figure 6.5 shows the axial displacements and the axial shear stresses for α=45°. 

Note that the axial shear stresses are maximum over the crown and below the invert and zero at 

the springline (because of the unsupported opening). The axial displacements are anti-symmetric 

with respect to the tunnel vertical axis. They are maximum at the springline and zero at the crown 

and invert. 

To investigate the influence of the tunnel alignment in soft ground, a second series of 

analyses is carried out considering: E= 1GPa, v= 0.2, c= 100kPa and φ= 45°. Figure 6.6 shows the 

tunnel convergence obtained from 3D and 2D plane strain models. Two types of 3D simulations 

are run: (1) full geostatic stress field (3D); and (2) no axial shear stress (3D, no axial shear). This 

is done to investigate the relative importance of the in-situ axial normal stress (σzz) and of the in-

situ axial shear stresses (τxz). Note that a plane strain condition assumes zero axial strains. The 

magnitude of the tunnel convergence predicted by the 3D models is consistently larger than that 

predicted by the 2D plane strain model. This is due to a combination of effects not properly 

addressed (the effect of the axial stress) or not addressed at all (the effect of the axial shear stress) 

by the 2D model. Figure 6.7 shows the plastic zone around the tunnel for α=0°. The volume of 
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yielded rock extends up to a radial distance of about 11.3m for the 3D model and 5.5m for the 2D 

model. Figure 6.8 shows the plastic zone around the tunnel for α=45°. The yield zone extends to 

14.2m for the 3D model and 9.3m for the 2D plane strain model. The plastic zone is consistently 

larger on the 3D models than on the 2D models (except for the α=90° case). As a consequence of 

the larger plastic deformations, the ground movements from the 3D models are larger than the 2D 

model. 

The horizontal convergence (at the springline) increases as the tunnel rotates from being 

aligned with σH, (α=0°) to σh (α=90°). It is interesting to note that the differences between 3D and 

2D decrease as the rotation, i.e. as the angle α, increases. The largest difference between the 3D 

and 2D horizontal convergence occurs at α=0°, where that of the 3D model is 2.7 times larger than 

of the 2D model. The differences are negligible at α=90°. The discrepancies are due to the axial 

stress (τxz=0 for α=0° and 90°); for α=0°, the in-situ axial stress is maximum (σzz=4σv or Kzy=4) 

and for α=90°, it is minimum (σzz=4σv or Kzy= 1). Thus, the maximum shear, as a difference 

between the vertical and horizontal stress, acts in the axial plane for α=0° and in the plane 

perpendicular to the tunnel axis for α=90°. The effects of the axial shear stress are noticeable when 

the tunnel is not aligned with one of the geostatic principal stresses (compare 3D and 3D with no 

axial shear), and are the largest at about α=45°. This is the result of the axial stresses having an 

impact on the yielding of the rock around the opening. Figure 6.8 provides a comparison of the 

size of the plastic zone around the tunnel between the 2D and the 3D simulations, for α=45°. As 

one can see, the effect of the axial shear on the size of the rock yielded is quite important. As a 

result, the plastic deformations in the 3D model are larger, and thus the tunnel convergence is also 

larger. 
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Figure 6.5 Axial displacements and axial shear stresses for α=45° for linear elastic ground. 

 

The convergence between the crown and invert displays a complex evolution with α. 

However, the trends discussed, namely: (1) larger convergence for the 3D than the 2D models; (2) 

larger differences at α<45° and smallest at α=90°; (3) effects of the axial shear stress increasing 

with α, still apply. It is interesting to note that the vertical convergence is not the largest when the 

tunnel is aligned with the minor horizontal stress (α=90°), as one could expect. The plastic zone 

for α=90° is shown in Figure 6.9. The plastic zone over the crown and below the invert is larger 

for α=45° (Figure 6.8b) and for α=0° (Figure 6.7b) than for α=90° (Figure 6.9), which may explain 

the trend of the vertical convergence shown in Figure 6.6b. 
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Figure 6.6 Tunnel convergence from 3D and 2D plane strain models, for soft ground. Positive 
convergence is inwards. 

   

Figure 6.7 Plastic zone for α=0° from: (a) 2D plane strain; and (b) 3D models. 

   

Figure 6.8 Plastic zone for α=45° from: (a) 2D plane strain; and (b) 3D models. 

 

Figure 6.9 Plastic zone for α=90°. 
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The size of the plastic zone around the tunnel also affects the axial displacements. Figure 

6.10 shows the axial displacements with α for the linear-elastic and for the soft ground. When the 

ground is elastic (Figure 6.10a), the axial displacements are proportional to the in-situ axial shear 

stress (τxz). When the ground is soft (Figure 6.10b), the plot of the axial displacements is not 

symmetric. In fact, axial displacements are comparatively larger when α>45° than the 

corresponding values of α when α<45°. This is due to the development of the plastic zone around 

the tunnel, which changes with the tunnel alignment, due to the changes of the axial and horizontal 

stresses. 

 

Figure 6.10 Axial displacements at the springline with α for: (a) linear elastic; and (b) soft 
ground. 

6.3 Conclusion 

Significant geostatic stress anisotropy may be expected in rock masses, especially close to 

the surface. Thus, alignment of a tunnel with one of the geostatic principal stresses is unlikely. The 

effects on shallow tunnels of the misalignment of the tunnel axis with respect to the in-situ 

principal stress directions are investigated in this paper. The in-situ stress field determined by Park 

et al. (2014) in a gneissic rock is taken as reference for the study. Two scenarios are explored. The 

first scenario assumes the properties of competent gneiss, while the second considers the properties 

of soft ground. In the first scenario, no yielding occurs around the tunnel. As a consequence, the 

axial stresses do not affect tunnel convergence and results from 2D, plane strain models, are 

comparable to those from 3D models, except for the axial deformations of the tunnel cross section. 

Those are the result of the presence of axial shear stresses that appear when the tunnel is not aligned 

with the principal geostatic stresses. 
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When the tunnel is excavated in soft ground, the tunnel convergence obtained with 3D 

models is consistently larger than that obtained with 2D plane strain models. The reason for this is 

that the 2D models do not capture the actual axial and axial shear stresses. Those contribute to 

increase the size of the yield zone around the tunnel with respect to that from 2D analyses. 

Therefore, 2D plane strain analysis may underpredict ground movements. The largest mismatch 

in terms of axial stresses occurs when the tunnel is aligned with the maximum or minimum 

horizontal geostatic stresses, and the largest mismatch in terms of axial shear stresses is when the 

tunnel is at 45° with one of the horizontal principal geostatic stresses. 

The results shown highlight the importance of considering the actual alignment of the 

tunnel with the geostatic stress field. It also underscores the necessity of performing 3D modeling 

of tunnels, in particular when yielding of the ground may occur.  
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Abstract 

Rock masses often present strong stress anisotropy, especially at shallow depths; thus, the 

alignment of a tunnel with one of the principal stress directions is unlikely. As a result, far-field 

out-of-plane shear stresses are present and, yet, their effects are often neglected in tunnel design 

because it is commonly assumed that the tunnel is aligned with one of the principal stress directions. 

The paper presents an analytical solution to determine the axial displacements and the axial shear 

stresses around shallow tunnels not aligned with the principal stresses in elastic ground, when 

subjected to a far-field shear stress. The analytical solution is developed using complex variable 

analysis and conformal mapping techniques to consider the presence of the ground surface. The 

analytical solution can be added to the Verruijt and Booker (2000) solution to determine the full 

3D stress and displacement fields far-behind the face of unsupported shallow tunnels subjected to 

a general state of stress. In addition, 3D FEM models are conducted to investigate the effects of 

the far-field shear stress near the face of the tunnel. The far-field shear stress induces asymmetric 

ground deformations near the face, which remain far-behind the face when the tunnel is supported, 

and when the ground is elastoplastic. 

7.1 Introduction 

Tunnel design often neglects the effects of tunnel alignment with respect to the directions 

of the principal far-field stresses or the directions of material mechanical properties. However, 

rocks and soils may present strong in-situ stress and material anisotropy. There is lack of research 

on the effects of the tunnel’s misalignment with far-field stresses, in spite the recognized 

importance of those effects. For instance, it is a well-known practical recommendation to align the 

direction of a cavern with the major horizontal principal stress to minimize stress concentrations 
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(Goodman, 1989). Also, Armand et al. (2013) present convergence measurements of tunnels 

constructed parallel and perpendicular to the major horizontal stress (σH), in an anisotropic 

claystone, that show that the ground deformation and the damage zone developed around the tunnel 

are heavily affected by tunnel orientation. 

The literature is rich in examples of rock masses with remarked geostatic stress anisotropy, 

especially near the surface (Brown & Hoek, 1978; Evans et al., 1989; Martin & Kaiser, 1996; 

McGarr & Gay, 1978; Wileveau et al., 2007). The in-situ stresses compilation presented by Brown 

& Hoek (1978) clearly shows that such stress anisotropy is larger near the surface, most likely due 

to topographic effects (Brady & Brown, 2006; Goodman, 1989; Hoek, 2008) and tectonic activity 

(Haimson et al., 2003; Park et al., 2014). Residual soils inherit the rock matrix features and, 

therefore, may present stress anisotropy as well. In urban areas, buildings and excavations affect 

the stress field near the surface; thus, even isotropic ground may present stress anisotropy due to 

anthropogenic activities. Haimson et al. (2003) and Park et al. (2014) conducted hydraulic tests 

near the surface in Granitic and Gneissic rock masses in an active seismic area in South Korea. 

Figure 7.1 shows the principal stress ratios 
v

H
HvK




  and 
v

h
hvK




  with depth. The horizontal 

stresses are consistently larger than the vertical stress at shallow depths and the major horizontal 

stress is larger than the minor horizontal stress; thus, it is probable that tunnels may not be aligned 

with one of the in-situ principal stress directions. 

 

Figure 7.1 Stress ratios with depth reported by: (a) Haimson et al. (2003) in granitic rock mass; 
and (b) by Park et al. (2014) in gneissic rock mass. 
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Figure 7.2 illustrates a tunnel not aligned with the principal horizontal stresses (i.e. 

assuming that the vertical is one of the principal stress directions). The stress tensor can be rotated 

such that one of the axes of the coordinate system is parallel to the tunnel axis, as shown in Figure 

7.3. As one can see, there is a far-field axial shear stress (τxz,ff) that appears when the tunnel is not 

aligned with one of the horizontal principal stresses. The problem of an infinite opening in a 

general triaxial stress field was first addressed by Brady and Bray (1978). The authors extended 

the 2D plane strain stress problem to any orientation of the opening with respect to the triaxial 

stress field. 

Deep tunnels, with their axis not parallel with one of the principal geostatic stresses, were 

studied by Vitali et al. (2018) and by Vitali et al. (2019b). The authors observed that, in elastic 

ground, τxz,ff causes axial displacements and stresses, but it does not affect stresses and 

displacements on the plane of the cross-section of the tunnel. In other words, the far-field stresses 

can be decomposed such that stresses and displacements in a plane perpendicular to the tunnel axis 

can be calculated without considering the axial stresses; thus, existing plane-strain analytical 

solutions can be used (Einstein & Schwartz, 1979; Kirsch, 1898). The axial shear stress and axial 

displacement fields for supported and unsupported deep tunnels were provided by Vitali et al. 

(2018). Thus, the 3D stress and displacement fields in the ground and in the liner, if present, can 

be determined analytically by adding the (existing) in-plane and (new) out-of-plane analytical 

solutions. This is possible because of the principle of superposition, valid for linear-elastic 

materials. In elastoplastic ground, such decomposition is not possible and Vitali et al. (2018) 

showed that τxz,ff strongly affected the ground deformations and the size and shape of the plastic 

zone around the tunnel. 

Deep tunnels are simpler to analyze than shallow tunnels because one can assume that the 

boundaries are far from the tunnel and the far-field geostatic stresses are uniform (i.e. gravity 

loading may be neglected; Bobet, 2003). However, in shallow tunnels, the presence of the ground 

surface, as a stress boundary, and the increase of gravity loading with depth cannot be neglected. 

Thus, complex variable analysis and conformal mapping techniques may be needed to modify the 

geometry of the problem such that boundary conditions can be conveniently imposed (Strack & 

Verruijt, 2002; Verruijt, 1997; Verruijt & Booker, 2000). Verruijt & Booker (2000) re-addressed 

the Mindlin’s tunnel problem using complex variable analysis and conformal mapping and 

provided an exact solution for stresses and displacements for an unsupported shallow tunnel in 
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isotropic elastic ground subjected to gravity and far-field horizontal stresses (defined by the ratio 

K between the horizontal and the vertical stress). An approximate solution for shallow supported 

tunnels subjected to water seepage was provided by Bobet (2001), which accounts for the 

mechanical effects induced by seepage forces. 

Despite the simplified assumptions made for the analytical solutions, and more specifically 

the assumption of elasticity, ground deformations predicted are reliable if ground deformations are 

small, as shown in the work by Chou & Bobet (2002), Pinto et al. (2014) and Park et al. (2005), 

who provided comparisons between field data and settlement predictions from analytical solutions. 

Ledesma & Alonso (2017) also used analytical solutions to estimate ground deformations near 

sensitive historical structures in Barcelona and found that predictions were reasonably close to 

field measurements. Further, analytical solutions provide a fast assessment of tunnel behavior, and 

are very convenient for inexpensive parametric analysis. They can also be used to validate FEM 

models and can provide a first-order assessment of the problem, which can then be further 

investigated with sophisticated numerical models such as 3D FEM models. 

In this paper, an analytical solution is presented to determine the axial shear stress and axial 

displacement fields for shallow tunnels not aligned with respect to the geostatic principal stresses. 

The solution, within the realm of elasticity, can be added to existing solutions that consider gravity 

loading and stresses on the plane perpendicular to the tunnel axis, e.g. Verruijt & Booker (2000), 

to obtain the full stress and displacement fields. The paper also investigates the near-face effects 

of the far-field axial shear (τxz,ff) using 3D FEM models.  

7.2 Analytical solution for shallow tunnels subjected to axial shear stresses 

For the analysis, a circular shallow tunnel with depth h (distance between ground surface 

and tunnel centerline) and radius r0 in a linear-elastic isotropic ground is considered. It is assumed 

that the vertical axis (y-direction) is a principal stress direction, that the principal horizontal 

stresses are σh (minor) and σH (major), and that the major horizontal stress (σH) makes an angle Ψ 

with the tunnel axis (z-direction), as illustrated in Figure 7.2. The principal stress tensor is rotated 

by an angle Ψ to have the stresses in the coordinate system (xyz), such that the axis z is parallel to 

the direction of the tunnel and the axis, x, perpendicular; note that the axis y remains unchanged 

and is vertical; see Figure 7.3. Equations (1) to (4) provide the rotated stresses. 
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Figure 7.2 Tunnel axis direction with respect to the principal horizontal stresses. 

 

Figure 7.3 Tunnel axis aligned with the rotated stress tensor. 

 

hHffxx  )(cos)(sin 22
,  ;       (1) 

vffyy  , ;          (2) 

hHffzz  )(sin)(cos 22
,  ;       (3) 

)2sin(
2,  hH

ffxz


 ;        (4) 

Where σxx,ff is the far-field horizontal stress; σzz,ff is the far-field axial stress; σyy,ff is the 

far-field vertical stress and; τxz,ff is the far-field axial shear stress. For a long tunnel (i.e. no face 

effects), the derivatives (𝜕/𝜕𝑧) are zero, thus, the equilibrium equations (∇ ∙ 𝜎 + �⃗� = 0) are: 
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Where γ is the unit weight of the ground. The shear stresses xz and yz only depend on the 

axial displacement w, given that 𝜕𝑤/𝜕𝑧 = 0, and can be expressed as: 

x

w
Gxz 


           (8) 

y

w
Gyz 


           (9) 

Equations (5) and (6) describe equilibrium in the xy plane and are decoupled from equation 

(7). Also, equations (8) and (9) show that the axial shear stresses only produce axial displacements. 

Therefore, for long tunnels in linear elastic ground, the stresses σxx, σyy and τxy, on a plane 

perpendicular to the tunnel axis, and the axial shear stresses τyz and τxz can be analyzed 

independently. Further, the axial normal stress, σzz, is not present in the equilibrium equations (5) 

to (7) or in the strain-compatibility equations (given that 𝜕𝑤/𝜕𝑧 = 0); thus, σzz has no effect on 

long tunnels, given the problem described in Figure 7.2. 

The problem illustrated in Figure 7.3 can be decoupled into two problems, as shown in 

Figure 7.4. Problem I represents the 2D plane strain scenario that includes gravity and the far-field 

stresses σxx,ff and σyy,ff (Figure 7.4a). Problem II includes the far-field axial shear stresses (τxz,ff) 

(Figure 7.4 b). Note that the shear stresses increase with depth, as determined by equation (4). An 

exact solution for Problem I was provided by Verruijt & Booker (2000). The solution for problem 

II is presented in the following. 

Equilibrium and compatibility for Problem II can be simultaneously satisfied by combining 

equations (8), (9) with (7); that is: 

02

2

2

2









y

w

x

w
         (10) 

Problem II is divided in two problems, IIa and IIb (Figure 7.5). Problem IIa includes the 

geostatic stress field, but with no opening. Problem IIb includes the opening by imposing stresses 
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at the perimeter of the tunnel that are exactly the same, with opposite sign, as the stresses of 

Problem IIa, and zero stresses at all the boundaries. Thus, the addition of Problems IIa and IIb 

results in Problem II, as it should. 

 

 

Figure 7.4 Decomposition of the 3D problem into: (I) Problem I and (II) Problem II. 
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Figure 7.5 Decomposition of Problem II: (a) Problem IIa, far-field axial shear with no opening; 
and (b) Problem IIb, axial shear stresses at the perimeter of the tunnel only. 

 

The solution of problem (IIa) is trivial: The axial shear stresses are given by xz= xz, ff. The 

solution of problem IIb requires satisfying equation (10) and the boundary conditions. All 

boundaries are free of stresses, except at the perimeter of the tunnel. Using polar coordinates with 

origin at the tunnel center (Figure 7.6),introducing the stress ratios 
v

H
HvK




  and 
v

h
hvK




 , and 

given that )( yv   ; )(0 yKHvHH   ; )(0 yKhvhh   , the shear stress (τrz) at the 

perimeter of the opening (r=r0): 

 sincos 21 pprz          (11) 
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Equation (4) for the far-field axial shear stress (τxz,ff) can be rewritten as: 
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Figure 7.6 Coordinate systems. Polar coordinates with origin at the tunnel center, and Cartesian 
coordinates with origin at the ground surface above the tunnel. 

 

Problem IIb is solved using complex analysis, in which the stress function is an analytic 

complex function. The boundary conditions are: 

1) 0 xzx           (15) 

2) 00  yzy           (16) 

3)   sincos 210 pprr rz        (17) 

A conformal mapping technique transforms the problem geometry to impose boundary 

conditions. Here, we follow the conformal mapping transformation used by Verruijt & Booker 

(2000). Given that iyx   and  i , the conformal mapping function is: 
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The inverse mapping is given by: 
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Where  and  are the modulus and polar coordinate of the complex variable  in the - 

plane. Thus, ξ and η can be expressed in terms of x and y as: 
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Also, x and y can be written in terms of  and  as:  
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The mapping is shown in Figure 7.7. The shallow tunnel in the z-plane is transformed into 

a concentric annular region in the ζ-plane. The outer circle with radius 1 in the ζ-plane ( 1 ) 

corresponds to the ground surface in the z-plane (y=0), and the inner circle in the ζ-plane (   ) 

corresponds to the tunnel perimeter in the z-plane (r=r0). 

 

Figure 7.7 Mapping of the shallow tunnel region in the z-plane to a concentric annular region in 
the ζ-plane. 

 

A solution for the axial displacement w can be found in the form of a Laurent Series. Since 

there is no rigid body motion in the axial direction (a0=0), w is expressed as: 
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Where an and bn are complex constants that are obtained from the boundary conditions in 

equations (15) to (17). 

Imposing the boundary condition at y=0, i.e. equation (16), we obtain the following 

expression: 
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Given equation (26) and considering the symmetry of the problem, w(x=0) =0, we have: 
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Where an are now real numbers. The shear stresses are, thus: 
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Finally, the stress boundary condition, given in Equation 17, takes the form: 

  sincossincos 21 ppyzxzrz       (30) 

Note that the angles , in the x-y plane, and , in the - plane, are not the same. The 

constants an in Equation (27) are obtained by expressing the trigonometric functions in  in terms 

of , i.e. cos = x/ro and sin = y/ro where x and y are taken from (23) and (24), and expanding the 

right-hand side of equation (30) as a Fourier series in terms of the angle , given equations (21) 

and (22), and equating term by term the right and left sides of the equation. This produces the 

series of linear equations (31) to (33), that are used to obtain the an constants. 
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Once the constants an are known (only several of those are needed for accurate results, and 

thus only several equations need to be considered), the complete solution in terms of axial 

displacements and shear stresses is obtained from (27) to (29), noting that the shear stresses from 

problem (IIa) must be added to those from equation (28). 

In summary, stresses and displacements for a shallow tunnel can be obtained through the 

following steps: 1) select the ground properties (E, ν and γ), tunnel depth and geometry (h, r0) and 

far-field shear stress (τxz,ff); compute the value of  from (19); 2) obtain constants an from the 

linear system of equations 31 to 33 (10 to 15 equations are generally sufficient); 3) determine the 

axial shear stresses and the axial displacements using equations 27 to 29, given (20), at any 

coordinate x, y ( iyx  ). 

There is no particular difficulty, given the previous discussion, in extending the approach 

to the problem of a supported tunnel. Following the method used by Bobet (2011) for a similar 

scenario, Problem (II) in Figure 7.4, now with a liner, is decomposed into four problems: IIa, IIb, 

IIc and IId. Problems IIa and IIb are shown in Figure 7.5 and the solutions are presented in 

equations (26) to (33). They provide the stresses and displacements due to the opening. The 

interaction between the ground and the liner is described by Problems IIc and IId, which are 

illustrated in Figure 7.8. Such interaction is given by the unknown stresses rz at the contact 

between the ground and the liner. Compatibility of stresses at the interface is automatically 

satisfied by imposing the same stresses, rz, at the perimeter of the opening and at the liner. 

Therefore, coefficients of equations (27) to (29) should be determined with the new boundary 

condition (rz at the tunnel perimeter) together with the coefficients of equation (35) to (37) to 

determine rz. Then, the solutions of problems IIc and IIb are combined to determine problem IId. 

Compatibility of displacements requires that, at r=r0: 

 wIId = wIIb+ wIIc         (34) 
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Figure 7.8 Problems IIc and IId. In combination with problems IIa and IIb, provide the solution 
for problem II of a supported shallow tunnel. 

 

The solution for problem IIc is given by equations (27) to (29). The solution for problem 

IId is given by: 
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The solution of equation (34), given equations (35) to (37) requires a numerical method, 

again because the polar coordinate angle  in the x-y plane is not the same as the angle  in the -

 plane. The results however may have limited interest because, as it will be shown later, the 

presence of the face of the tunnel (not considered in the derivation) brings into question the 

problem decomposition postulated in equations (5) to (7). This is because stresses normal to the 

tunnel (Problem I in Figure 7.4) induce axial deformations in the ground near the face of the tunnel. 

This is discussed in more detail in section 4. So, unless the liner is placed far from the face, or 

simultaneously with the full excavation of the tunnel, which is not realistic, the close-form solution 

obtained may not represent the interplay that exists between the ground and the support.  
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7.3 Verification of the analytical solution 

The analytical solution is verified using numerical methods. 3D FEM models are conducted 

considering angles Ψ= 0°, 15°, 30°, 45°, 60°, 75° and 90° (Figure 7.2). The results of the model 

are extracted from a structured refined mesh with boundaries far from the tunnel, as illustrated in 

Figure 7.9., to avoid boundary effects and ensure accuracy of the numerical results (Vitali et al., 

2017). The refined mesh is located and the center of the model and a transitional mesh connects 

the refined mesh to the boundaries. Second order elements are used, as recommended by Vitali et 

al. (2017). The refined mesh at the center of the discretization is illustrated in Figure 7.9. The mesh 

has elements with 0.2r0 length behind the face. Such longitudinal refinement ensures accuracy 

even for high material non-linearity, as shown by Vitali et al. (2017). Two cases are run for the 

verification: one with overburden h= 10m and the other with h=25m; all simulations are done for 

a tunnel with diameter 10m (or radius r0=5m). The case with h=25m represents a common shallow 

tunnel, and h=10m a tunnel very close to the surface and is used as an extreme case to further 

verify the analytical solution. The distance from the tunnel centerline to the bottom of the model 

is d= 40m, or 8r0, that ensures that the bottom boundary does not affect the results (Vitali et al., 

2019a). The ground properties are: E=1GPa, ν=0.2 and γ=27kN/m3, which are typical of soft rocks. 

The stress ratios are Khv=1 (i.e. σv=σh) and KHv=4 (i.e. σH =4σv), which are within the range of the 

stress ratios reported by Park et al. (2014) in Gneiss (Figure 7.1) and are consistent with data 

compiled by McGarr & Gay (1978). The numerical models comprise two phases: in the 1st phase, 

the geostatic stress field is imposed and the ground displacements are zeroed; in the 2nd phase, the 

elements inside the tunnel are deactivated. Those two phases are intended to reproduce the 

analytical solution.  

 

Figure 7.9 Mesh used for the simulations; h=5r0, r0 is the tunnel radius, r0= 5m. 
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Figures 7.10 to 7.15 compare results from the analytical solution with the FEM results for 

different tunnel alignment angles Ψ and different tunnel depths. Stresses and displacements are 

taken at the tunnel perimeter. The in-plane tangential stresses, σθθ, and displacements, ux and uy, 

are obtained analytically using Verruijt and Booker solution (Verruijt and Booker, 2000). The axial 

tangential stresses, τθz, and displacements, w, are calculated using the proposed analytical solution. 

The comparison between FEM and analytical solutions shows that the equations derived are 

correct. The axial shear stress and tangential stresses at the tunnel perimeter are presented in Figure 

7.10, for h=2r0, and in Figure 7.11, for h=5r0. As the tunnel rotates from Ψ=0° to 90°, the horizontal 

stress, σxx,ff, increases; it is minimum for Ψ=0° (σxx,ff= σh= σv) and maximum for Ψ=90° (σxx,ff= 

σH= 4σv). The axial shear, τxz,ff, increases with Ψ and is maximum when Ψ=45° (τxz,ff= 1.5σv). τxz,ff 

decreases as Ψ rotates from 45° to 90°. When the tunnel is aligned with one of the principal stresses 

(Ψ=0° and Ψ=90°), τxz,ff is zero. The magnitude of both tangential and axial shear stresses is larger 

for h=5r0 than for h=2r0. This is because the deeper the tunnel, the larger the geostatic stresses near 

the tunnel. The stresses along the tunnel perimeter show the same trend for both tunnel depths; 

that is, stresses are larger at the invert than at the crown and, because of gravity, the results are 

asymmetric with respect to the polar coordinate . The figure shows that as the misalignment of 

the tunnel with the major principal geostatic stress increases, i.e. as Ψ increases, both the tangential 

and axial shear stresses increase. Note that the axial shear stresses, τθz, along the tunnel perimeter 

are the largest at Ψ=45°, i.e. when τxz,ff is maximum. 

 

Figure 7.10 Axial shear and tangential stresses along the tunnel perimeter for h=10m. 
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Figure 7.11 Axial shear and tangential stresses along the tunnel perimeter for h=25m. 

 

The horizontal and the axial displacements along the tunnel perimeter are shown in Figure 

7.12, for h=2r0, and in Figure 7.13, for h=5r0. The magnitude of the displacements is larger for 

h=5r0 than for h=2r0, because of the larger stresses for the deeper tunnel. Both horizontal and axial 

displacements, ux and w, are maximum at the springline and zero at the crown and at the invert 

because of the symmetry of the problem with respect to the vertical axis; ux is symmetric and w 

anti-symmetric with respect to the vertical axis (note that this is not the case for the horizontal 

axis); Figure 7.14 shows a view of the deformed mesh near the tunnel for Ψ=45° that illustrates 

the axial deformations induced by the axial shear. Also note, again because of gravity, that the 

results are not symmetric with respect to the horizontal axis through the center of the tunnel. The 

plots in Figures 7.12 and 13 indicate that the results from the numerical simulations and from the 

analytical solution are essentially the same. The figures also show that as the tunnel misalignment 

increases, i.e. as Ψ increases up to 45o, the horizontal and axial displacements increase. As the 

misalignment further increases, the axial displacements continue to increase, while the axial 

displacements decrease after their peak at Ψ=45o. 
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Figure 7.12 Horizontal and axial displacements along the tunnel perimeter for h=10m. 

 

Figure 7.13 Horizontal and axial displacements along the tunnel perimeter for h=25m. 

 

Figure 7.14 Axial displacements and deformed mesh near the tunnel, for Ψ=45°. 

 

Figure 7.15 plots the tunnel convergence, taken as the difference in radial displacements 

between the crown and invert, obtained from both methods: analytical and numerical. Positive 
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convergence is in the inward direction and negative, outward. Again, the results are comparable, 

which provides confidence in the analytical solution. The figure shows a monotonic decrease of 

tunnel convergence with the rotation angle Ψ such that when the axis of the tunnel is parallel to 

the σH stress, Ψ=0°, the convergence is the largest positive (inwards deformation) and when the 

axis of the tunnel is parallel to σh, Ψ=90°, convergence is the largest negative (outwards 

deformation). 

 

Figure 7.15 Vertical convergence with tunnel misalignment, Ψ, for h=10m; and h=25m. 

7.4 Face effects  

Past research has been conducted to investigate the stress paths and ground deformations 

near the tunnel face (Almeida e Sousa et al., 2011; Cantieni & Anagnostou, 2009; Eberhardt, 2001; 

Gomes & Celestino, 2009; Ng & Lee, 2005), but the work was done assuming that the tunnel was 

aligned with one of the principal stresses. Thus, the influence of the far-field axial shear stress 

(τxz,ff) near the tunnel face has not been considered. In the following, the influence of τxz,ff near the 

tunnel face is assessed numerically, for unsupported and supported tunnels in elastic and 

elastoplastic ground. The FEM models and the boundary conditions presented in section 3 are used, 

with Ψ=45° (i.e. σxx,ff/σv=σzz,ff/σv =2.5 and τxz,ff/σv=1.5) and h=5r0. The ground properties are 

E=1GPa, ν=0.3 and γ=27kN/m3, the same as before. Results from the full 3D simulations (i.e. 

considering the presence of τxz,ff, referred as 3D) are then compared with those obtained without 

the presence of τxz,ff, i.e. for σxx,ff/σv=σzz,ff/σv=2.5 and τxz,ff=0 (referred as 3D no shear) to assess 
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the effect of τxz,ff on stresses and displacements near the face. Note that the good match between 

analytical and FEM results shown in previous section validates the FEM model built (i.e. mesh, 

model size and boundary conditions). 

7.4.1 Tunnel in elastic ground 

Figure 7.16 shows the mesh with the position of three reference sections, namely: Position 

(3) far-behind the face, where there are no face effects; Position (2) at the face; and Position (1), 

far-ahead the face, where the ground is under the geostatic stress field. Figure 7.17 shows the stress 

paths of points in the ground as the tunnel is excavated, i.e. the stress changes from position (1) to 

position (3). The stresses are taken at 2m distance (i.e. 0.2 tunnel diameter) from the tunnel 

perimeter to avoid the singularity effect on the stresses at the tunnel perimeter due to the corner at 

the face. The stress paths are assessed at three points: two at the springline, on the left and on the 

right, and one at the crown. The stress paths are obtained for the two scenarios: 3D and 3D, no 

shear. In the figure, σmean=(σ1+σ2+σ3)/3 and τmax=(σ1-σ3)/2.  

Figure 7.17 (a) shows the stress paths of points located at the springline, on the right and 

on the left side (the results differ due to the far-field axial shear). As one can see, the stress paths 

for the 3D scenario are asymmetric. That is, the point on the right loads from (1) to (2) and unloads 

from (2) to (3) while on the left, it unloads from (1) to (2) and loads from (2) to (3). The different 

stress paths are the result of the effects of stresses normal to the axis of the tunnel (Figure 7.4, 

Problem I) that produce symmetric results and of the shear stresses (Figure 7.4, Problem II) that 

produce antisymmetric results. At position (3), far-behind the face, the stress state of the points on 

the left and on the right is the same. For the 3D, no shear scenario, the stress paths of the two 

points at the springline are the same. Thus, the presence of τxz,ff causes asymmetry on the stresses 

near the face. Note that the point on the right experiences larger deviatoric stresses than the point 

on the left. This is because τxz,ff tends to distort the tunnel cross-section, as shown in Figure 7.14, 

and those axial displacements are partially constrained by the face. The stress paths of points on 

the crown are shown in Figure 7.17 (b) for the 3D and 3D, no shear scenarios. The results show 

loading from position (1) to (3) in both cases, with the two loading paths showing similar 

characteristics, except that the 3D scenario, which includes τxz,ff, results in higher shear stresses 

than the 3D, no shear scenario, which does not include τxz,ff. 
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Figure 7.16 Position with respect to the tunnel face: position (3) far-behind the face; (2) at the 
face and; (1) far-ahead the face. 

 

Figure 7.17 Stress paths near the tunnel face. 

 

Figure 7.18 (a) shows the radial displacements at the springline for the 3D scenario, with 

the distance from the face normalized with respect to the tunnel radius (Z/r0); positive distance 

refers to locations ahead of the face and negative, behind the face. The figure also includes the 

horizontal displacements at the crown and invert. It is interesting to note that they are the same, 
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and thus they indicate a rigid body motion of the tunnel cross-section towards the right springline. 

This rigid body motion only occurs in the full 3D scenario and thus it is caused by τxz,ff. The rigid 

body motion of the tunnel cross-section has been subtracted from the radial displacements in 

Figure 7.18 (a) to compare the displacements on both sides of the springline; as one can see, the 

displacements of the two points at the springline, right and left, are not the same near the face. A 

similar plot for the 3D no shear scenario is presented in Figure 7.18 (b) and shows that the two 

points at the springline have the same displacement, i.e. there are no rigid body motions near the 

face. For both scenarios, the radial displacements are small at about four times the tunnel radius 

ahead of the face, and quickly increase close to the face. At a distance of about 4 to 6 radii behind 

the face, the displacements on both sides of the springline become equal. The horizontal 

displacements at the crown and invert, for the 3D scenario, are small at about four radii ahead of 

the face, increase close to the face and then quickly decrease behind the face until they become 

zero far behind the face. Because of symmetry, the horizontal displacements at the crown and 

invert for the 3D no shear scenario are zero. 

 

Figure 7.18 Displacements of points around the tunnel perimeter with normalized distance from 
the face, for unsupported tunnel in elastic ground. (a) 3D; (b) 3D, no shear. 

 

Figure 7.19 shows the horizontal and vertical convergence with Z/r0 for the 3D and 3D, no 

shear scenarios. Interestingly, the results of the two scenarios are exactly the same. For the vertical 

convergence, this is somewhat expected because the axial shear stress that appears due to the tunnel 

misalignment does not affect the crown due to the symmetry. It is also interesting to observe that 

the horizontal convergence takes a sigmoidal shape, similar to that observed in tunnels aligned 

with one of the geostatic principal stress directions. As one can see, the ground does not experience 
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deformations about four radii ahead of the face; the larger convergence rate occurs at the face, and 

the rate of convergence increases slowly behind the face, until a distance of about four tunnel radii 

where results do not change significantly with distance.  

 

Figure 7.19 Horizontal and vertical convergence with distance from the tunnel face normalized 
with respect to the tunnel radius, for unsupported tunnel in elastic ground. 

 

Figure 7.20 shows the displacements along the tunnel perimeter at the face (Z=0) for 3D 

and 3D no shear scenarios. As one can see, the radial and the axial displacements for the 3D no 

shear scenario are symmetric while they are asymmetric for the 3D scenario. The radial 

displacements plotted do not include the rigid body motions (i.e. the horizontal displacements at 

the crown and invert shown Figure 7.18). At the springline, the radial displacements are inwards 

(positive) and decrease towards the crown. At the crown, the radial displacement is outwards, i.e. 

the tunnel elongates in the vertical direction. The axial displacements, Figure 7.20 (b), are 

somewhat constant with θ for the 3D no shear scenario, while, for the 3D scenario, this is not the 

case (see also Figure 7.14). The tangential displacements are about the same on both scenarios, as 

shown in Figure 7.20 (c). They are the largest for θ of 45° and 135° and are zero at the springline 

and at the crown. The differences between the displacements at the face from 3D and 3D no shear 

scenarios are due to the far-field axial shear, τxz,ff. The differences (u3D–u3D no shear) are shown in 

Figure 7.21. At the face, τxz,ff does not induce tangential displacements, but causes anti-symmetric 

radial and axial displacements and a horizontal rigid body displacement towards the right, given 

the far-field load used in the simulations. 
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Figure 7.20 Displacements along the tunnel perimeter at the tunnel face for 3D and 3D no shear 
scenarios (i.e. Z/r0=0): (a) radial displacements; (b) axial displacement and; (c) tangential 

displacements. 

 

The axial displacements (w) with Z/r0 for the 3D and 3D, no shear scenarios are shown in 

Figure 7.22. The 3D no shear scenario, Figure 7.22(a), shows similar axial displacements at the 

crown and springline. The axial displacements are the largest near the face and quickly reduce 

behind the face. The 3D scenario results in different axial displacements at the crown and at each 

side of the springline due to the combined effect of the tunnel distortion in the axial direction and 

the ground movements toward the excavation near the face. Due to the orientation of the tunnel, 

the axial displacements at the springline, left, are larger than at the point on the right. Far-behind 

the face, as it should, the axial displacements have the same magnitude, but opposite directions, 

and they are zero at the crown. 

 

Figure 7.21 Difference between displacements from 3D and 3D no shear scenarios along the 
tunnel perimeter at the tunnel face (i.e. Z=0). 
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Figure 7.22 Axial displacements at points around the tunnel perimeter with normalized distance 
from the tunnel face with respect to the tunnel radius for unsupported tunnel in elastic ground. 

(a) 3D; (b) 3D no shear. 

7.4.2 Supported tunnel  

The models are run considering the construction sequence (i.e. step-by-step excavation and 

liner installation; see Möller, 2006) with the liner placed immediately after the excavation (i.e. no 

unsupported span length and excavation round length of 0.2r0). The liner is represented by shell 

elements with linear-elastic behavior. No-slip at the ground-liner contact is assumed. The liner 

properties are: E=20GPa, ν=0.2 and 0.5m thickness. These conditions are typical of reinforced 

concrete liners installed near the face to minimize the ground deformations Two scenarios are 

analyzed: full 3D and 3D, no shear. 

Figure 7.23 shows the displacements with the normalized distance Z/r0 at points at the 

tunnel perimeter. Similar to what happens with the unsupported tunnel (Figure 7.18), the horizontal 

displacements of points located at the right and left sides of the springline are different near the 

face for the 3D scenario, but they are the same for the 3D, no shear scenario. Note the slightly 

saw-tooth like plot of displacements behind the face. This is caused by the excavation-support 

sequence used in the simulations. An important difference between the results from the 

unsupported tunnel (Figure 7.18) and the supported tunnel (Figure 7.23) is that, far-behind the face, 

the radial displacements on the right and left of the springline are not the same, and the horizontal 

displacements are not zero at the crown and invert. In other words, the 2D plane strain conditions 

that could be assumed for an analytical (or numerical) solution are not met. Note that this is the 
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reason why the analytical solution for supported shallow tunnels discussed earlier may not 

represent well what actually happens. The reason for this behavior is that the τxz,ff, at the face, 

induces radial and axial deformations, which the liner must accommodate. 

 

Figure 7.23 Displacements at points around the tunnel perimeter with normalized distance from 
the face, for supported tunnel in elastic ground. (a) 3D; (b) 3D no shear. 

 

This observation is further supported by the results shown in Figure 7.24 that plots the 

radial stresses (σradial) of the ground with normalized distance Z/r0 at the two points on the 

springline, one at the right and the other at the left. Note that the radial stresses at the tunnel 

perimeter are zero for the unsupported tunnel; however, for the supported tunnel, the radial stresses 

are not zero because of the load applied from the ground to the liner. The 3D, no shear scenario 

(Figure 7.24a) results in a symmetric response, as it should, due to the absence of the τxz,ff. The 3D 

scenario (Figure 7.24b) gives an asymmetric response. As expected, far ahead of the face, the 

horizontal stresses are those of the free-field. As the ground approaches the face of the tunnel, the 

radial stresses show a very different behavior at the springline, depending on location, i.e. due to 

the τxz,ff. The point on the right sees the radial stresses increase up to the face and then abruptly 

decrease behind the face. This is the opposite of what occurs at the point on the left, where the 

radial stresses monotonically decrease, from far ahead from the face to far behind the face. Far-

behind the face, the two radial stress are different. 
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Figure 7.24 Radial stresses at points around the tunnel perimeter with normalized distance from 
the tunnel face for supported tunnel in elastic ground. (a) 3D; (b) 3D no shear. 

 

The asymmetry in the radial stresses results in a load to the liner that is asymmetric as well, 

as one can see in Figure 7.25, which is a plot of the thrust force and bending moments far-behind 

the face, for the 3D and 3D, no shear scenarios. Consistent with previous findings and discussion, 

the thrust force and bending moments in the liner are symmetric for the 3D, no shear scenario, but 

they are not for the 3D scenario. Since the observed asymmetry is caused by induced in-plane 

displacements near the face due to the presence of the τxz,ff, the internal forces in the liner are 

asymmetric also for full-slip conditions, i.e. when the contact between the ground and liner is 

frictionless (not shown in the figures). 

 

Figure 7.25 Internal forces along the tunnel perimeter for 3D and 3D no shear far-behind the 
face (at a distance 10r0 behind the face). Bending moments (a) and Thrust force (b). 
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7.4.3 Tunnel in elastoplastic ground  

The results presented so far were obtained considering elastic ground; thus, stress-strains 

were not affected by the stress history. This is not the case for elastoplastic ground. To investigate 

the 3D face effects on elastoplastic ground, the model now includes the Mohr-Coulomb failure 

criterion with a non-associated flow rule. The ground properties are E=1GPa, ν=0.2, γ=27kN/m3, 

c=100kPa, φ=45° and dilatancy angle of 0°. The construction sequence is considered with an 

excavation round length of 0.2r0 and no unsupported length. Unsupported and supported tunnels 

are assessed. 

Figure 7.26 shows the plastic zone developed around the tunnel far behind the face, for the 

3D and 3D, no shear scenarios, for supported and unsupported tunnels. The plastic zone in this 

paper is defined as the region that undergoes equivalent plastic strains larger than 10-3. As expected, 

the installation of the support reduces substantially the size of the plastic zone and may even 

prevent the development of plastic deformations. The plastic zone for the 3D no shear scenarios 

is symmetric because τxz,ff is zero; thus, deformations around the tunnel are symmetric. In contrast, 

the plastic zone for the 3D scenarios is asymmetric; it is larger on the right-hand side than on the 

left-hand side because of τxz,ff, which affects the stress paths near the tunnel, as shown in Figure 

7.17. It is interesting to note that, overall, the size of the ground yielding around the tunnel is larger 

for the 3D scenarios than for the 3D, no shear scenarios. This is expected given that the far-field 

shear stress increases the deviatoric stresses, as one can see in Figure 7.17. 

 

Figure 7.26 Plastic zone around the tunnel far behind the face for tunnels in elastoplastic ground; 
(a) unsupported, 3D; (b) unsupported, 3D no shear; (c) supported, 3D; (d) supported, 3D no 

shear. 
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Figure 7.27 shows the horizontal convergence at the two points on the springline with the 

normalized distance Z/r0 for the 3D and 3D, no shear scenarios, and for the supported and 

unsupported tunnels on elastic and on elastoplastic ground. The displacements on elastoplastic 

ground have a saw-tooth shape, which is the numerical response to the step-by-step excavation of 

the tunnel in elastoplastic ground (Möller, 2006; Vitali et al., 2017; Vlachopoulos & Diederichs, 

2009). Figure 7.27 shows the average displacements of the saw-tooth shape. As expected, the 

displacements on elastoplastic ground are larger than on elastic ground, but the differences 

observed for the unsupported tunnels are much larger than for the supported tunnels. This is 

because the support reduces substantially the plastic deformations around the tunnel, as shown in 

Figure 7.26. Tunnel convergence for the 3D scenario is larger than for 3D no shear scenario on 

elastoplastic ground, but it is the same on elastic ground. This is expected because the plastic zone 

is larger for 3D than for 3D no shear scenario; thus, plastic deformations are larger. The 

convergence is the same on elastic ground, as discussed before.  

 

Figure 7.27 Radial displacement at the right springline with normalized distance from the face, 
for unsupported and supported tunnel in elastic and elastoplastic. (a) 3D; (b) 3D no shear. 

 

Figure 7.28 shows the displacements with the normalized distance Z/r0 at points at the 

tunnel perimeter for the unsupported and for supported tunnels for the 3D scenario. Because of the 

asymmetric plastic zone developed around the tunnel, the ground movements far-behind the face 

are asymmetric. Note that the radial displacements at the left and right of the tunnel, at the 

springline, are not the same far behind the face. Horizontal displacements near the face are 

observed at the crown and at the invert. These movements are associated with a horizontal rigid 
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body motion due to the presence of the far-field shear stress, similar to what was found for the 

cases analyzed in elastic ground. 

 

Figure 7.28 Displacements at points around the tunnel perimeter with normalized distance from 
the face, for the 3D scenario in elastoplastic ground. (a) unsupported; (b) supported. 

 

The radial displacements (uradial) far-behind the face along the tunnel perimeter for 

supported and unsupported tunnel, for the 3D and 3D no shear scenarios, are shown in Figure 7.29; 

results from a 2D simulation of the unsupported tunnel are included for comparison. The 2D 

simulation assumes plane strain conditions and has the same horizontal and vertical far-field 

stresses (σxx,ff and σyy,ff) as the two 3D scenarios, but the influence of the axial and shear stresses 

(σzz,ff and τxz,ff) and face effects are neglected. Figure 7.29(a), for the unsupported tunnel, shows 

that the results from the 2D and 3D no shear have a similar shape, are symmetric, and that the 

displacements from the 3D, no shear scenario are larger than from the 2D. This is reasonable given 

that the size of the plastic zone increases when the axial stress σzz,ff and face effects are included 

(Vitali et al., 2018). The radial displacements are the largest for the 3D scenario and are not 

symmetric, again because the plastic zone size is larger and not symmetric, as shown in Figure 

7.26. Therefore, 2D models are likely to underpredict ground deformations because they neglect 

the axial stresses and face effects. Further, the far-field axial shear, τxz,ff, strongly affects the ground 

response around the tunnel by inducing asymmetric deformations. For the supported tunnel, Figure 

7.29(b), the differences in the radial displacements far-behind the face, between the 3D and 3D no 

shear scenarios, are smaller than those observed for the unsupported tunnel because the presence 

of the liner reduces the size of the plastic zone around the tunnel. 
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Figure 7.30 and 31 show the axial displacements (w) around the tunnel perimeter for the 

unsupported and supported tunnel, respectively, in elastoplastic ground with normalized distance 

from the face, Z/r0, for the 3D and 3D no shear scenarios (the 2D model would not produce axial 

displacements). For the 3D, no shear scenario, Figures 7.30(b) and 31(b), the axial displacements 

are maximum at the face and do not disappear behind the face, contrary to what was observed for 

the unsupported tunnel in elastic ground. This, of course, is because of the unrecoverable plastic 

deformations produced. For the 3D scenario, the axial displacements are asymmetric close and far-

behind the face. The axial displacements are generally larger for the 3D scenario than for 3D no 

shear scenario, which is consistent with the plastic zone being larger for 3D than for the 3D no 

shear scenario. As expected, the magnitude of the axial displacements is reduced when the tunnel 

is supported, as one can see by comparing Figures 7.30(a) and 31(a). 

 

Figure 7.29 Radial displacements far-behind the face around the tunnel perimeter of a tunnel in 
elastoplastic ground. Positive values denote inward movement. (a) unsupported; (b) supported. 

 

Figure 7.30 Axial displacements at points around the tunnel perimeter with normalized distance 
from the unsupported tunnel face in elastoplastic ground. (a) 3D scenario (b) 3D no shear 

scenario. 
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Figure 7.31 Axial displacements at points around the tunnel perimeter with normalized distance 
from the supported tunnel face in elastoplastic ground. (a) 3D scenario (b) 3D no shear scenario. 

7.5 Conclusions 

Far-field shear stresses are present whenever a tunnel is not aligned with one of the 

principal stress directions. The effects of the far-field shear stress, τxz,ff, are often neglected by the 

customary assumption that the tunnel is aligned with one of the principal stresses. An analytical 

solution is presented to calculate the axial displacements and axial shear stresses far behind the 

face of shallow tunnels in elastic ground, due to the far-field shear stresses. The analytical solution 

considers the presence of the ground surface and gravity by using complex variable analysis and 

conformal mapping techniques. The solution provided can be combined with the analytical 

solution obtained by Verruijt and Booker (2000) to determine the full 3D displacement and stress 

fields far-behind the face of an unsupported shallow tunnel in elastic ground. This combination is 

possible because equilibrium and compatibility equations can be decoupled into two problems: in-

plane and out-of-plane, for an infinite shallow tunnel in elastic ground. The analytical solution has 

been verified by comparing its predictions with results from 3D FEM models. 

Near the face, the stress paths of points in the ground near the tunnel are complex due to 

longitudinal and transversal arching. The stress paths are obtained using 3D FEM models, which 

include step-by-step excavation. The results show that the far-field shear stress strongly affects the 

stress paths of points in the ground near the face, due to the constraint on displacements imposed 

by the face. The results show that, near the face, the far-field shear stresses produce radial 

displacements and a rigid body motion of the tunnel cross-section. This is an interesting 

observation that suggests that, near the face, the in-plane stresses and deformations due to the far-

Z / r0

-8 -6 -4 -2 0 2 4

w
 (

m
)

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

Springline left
Springline right
Crown

(a)

Z / r0

-8 -6 -4 -2 0 2 4

w
 (

m
)

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

Springline left
Crown

(b)



 

187 

field stresses normal to the axis of the tunnel are coupled with the out-of-plane shear stresses and 

axial deformations associated with the far-field shear stress. When a liner is installed close to the 

face, the coupling between shear stresses and in-plane deformations remains even far-behind the 

face. The finding has two important consequences: one, that the assumption commonly made, 

when using analytical solutions, that the response of a supported tunnel far behind the face can be 

obtained by decoupling the far-field in-plane and out-of-plane stresses may not be correct even in 

elastic ground; and two, the loss of symmetry of the solution for a supported tunnel. In other words, 

full 3D numerical simulations are required to properly capture the interplay that exists between 

ground and support when the tunnel is not aligned with the direction of the far-field principal 

geostatic stresses, i.e. when a far-field shear stress appears. If 3D face effects can be neglected, the 

decoupling between in-plane and out-of-plane stresses is valid, as shown by Vitali et al. (2018). 

In elastoplastic ground, the asymmetry of stresses near the face causes the development of 

an asymmetric plastic zone around the tunnel. Hence, the displacements around the tunnel near the 

face and far-behind the face are asymmetric. Such asymmetric response has been observed for 

both supported and unsupported tunnels but, as expected, the presence of the liner decreases the 

magnitude of the deformations compared to those of the unsupported tunnel. Further, the presence 

of the far-field shear stress increases the overall size of the plastic zone with respect to that of a 

tunnel aligned with the far-field principal stress directions. 

Numerical results of an unsupported tunnel misaligned with the far-field principal stresses 

in elastoplastic ground show that 2D models yield values of the radial displacements at the 

perimeter of the excavation that are too low compared to those from 3D models. They also do not 

capture the asymmetry of the response. The reason is because 2D models neglect face effects and 

the far-field axial stresses. The results improve in magnitude with a 3D numerical analysis but 

ignoring the far-field shear stress; however, the asymmetry of the response is not captured. In other 

words, full 3D analysis is needed to completely capture the effects of the tunnel misalignment with 

the geostatic stresses. 

Nomenclature 

Ψ = angle between tunnel axis and major horizontal principal stress; 

Ω = complex variable, x+iy; 

ζ = complex variable, ξ+iη; 

α = tunnel radius in the ζ-plane; 
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σv = vertical stress; 

σh = minor principal horizontal stress; 

σH = major principal horizontal stress; 

KHv = principal stress ratio (σH / σv); 

Khv = principal stress ratio (σh / σv); 

r, θ = polar coordinates in the Ω-plane; 

ρ, 𝜑 = polar coordinates in the ζ -plane; 

x, y, z: coordinate system attached to the tunnel, with z-axis parallel to the tunnel axis; 

σxx,ff = far-field horizontal stress normal to the tunnel axis; 

σyy,ff = far-field vertical stress normal to the tunnel axis; 

σzz,ff = far-field axial stress parallel to the tunnel axis; 

τzx,ff = far-field out-of-plane shear stress; 

w = axial displacement; 

uradial = radial displacement; 

utangential = tangential displacement; 

ux = horizontal displacement; 

G = shear modulus; 

E = Young modulus; 

ν = Poisson ratio; 

γ = unit weight; 

φ = friction angle; 

c = cohesion; 

r0 = tunnel radius; 

ri = internal tunnel radius; 

h = tunnel depth, distance between ground surface and tunnel centerline; 

d = model depth, distance between bottom boundary and tunnel centerline; 

Z = axial distance from the tunnel face; 

 

Acknowledgments 

The research is being partially supported by the research funding agency of the Brazilian 

government CNPq (“Conselho Nacional de Desenvolvimento Cientifico”). The authors 



 

189 

acknowledge the support from CNPq and from Midas company, which kindly provided the license 

of Midas GTX NX software, used in the present work. 

7.6 References 

Almeida e Sousa, J., Negro, A., Matos Fernandes, M., & Cardoso, A. S. (2011). Three-

Dimensional Nonlinear Analyses of a Metro Tunnel in São Paulo Porous Clay, Brazil. 

Journal of Geotechnical and Geoenvironmental Engineering, 137(4), 376–384. 

https://doi.org/10.1061/(ASCE)GT.1943-5606.0000433 

Armand, G., Noiret, A., Zghondi, J., & Seyedi, D. M. (2013). Short- and long-term behaviors of 

drifts in the Callovo-Oxfordian claystone at the Meuse/Haute-Marne Underground 

Research Laboratory. Journal of Rock Mechanics and Geotechnical Engineering, 5(3), 

221–230. https://doi.org/10.1016/j.jrmge.2013.05.005 

Bobet, A. (2001). Analytical Solutions for Shallow Tunnels in Saturated Ground. Journal of 

Engineering Mechanics, 127(12): 1258-1266. https://doi.org/10.1061/(ASCE)0733-9399 

Bobet, A. (2003). Effect of pore water pressure on tunnel support during static and seismic loading. 

Tunnelling and Underground Space Technology, 18(4), 377–393. 

https://doi.org/10.1016/S0886-7798(03)00008-7 

Bobet, A. (2011). Lined circular tunnels in elastic transversely anisotropic rock at depth. Rock 

Mechanics and Rock Engineering, 44(2), 149–167. https://doi.org/10.1007/s00603-010-

0118-1 

Brady, B. H. G., and Bray, J. H. The boundary element method for determining stresses and 

displacements around long openings in a triaxial stress field. International Journal of Rock 

Mechanics and Mining Sciences & Geomechanics Abstracts. Vol. 15. No. 1. Pergamon, 

1978. 

Brady, B. H. G., & Brown, E. T. (2006). Rock Mechanics for underground mining: Third edition. 

Rock Mechanics for underground mining: Third edition. https://doi.org/10.1007/978-1-

4020-2116-9 

Brown, E. T., & Hoek, E. (1978). Trends in relationships between measured in-situ stresses and 

depth. International Journal of Rock Mechanics and Mining Sciences, 15(4), 211–215. 

https://doi.org/10.1016/0148-9062(78)91227-5 



 

190 

Cantieni, L., & Anagnostou, G. (2009). The effect of the stress path on squeezing behavior in 

tunneling. Rock Mechanics and Rock Engineering, 42(2), 289–318. 

https://doi.org/10.1007/s00603-008-0018-9 

Chou, W. I., & Bobet, A. (2002). Predictions of ground deformations in shallow tunnels in clay. 

Tunnelling and Underground Space Technology, 17(1), 3–19. 

https://doi.org/10.1016/S0886-7798(01)00068-2 

Eberhardt, E. (2001). Numerical modelling of three-dimension stress rotation ahead of an 

advancing tunnel face. International Journal of Rock Mechanics and Mining Sciences, 

38(4), 499–518. https://doi.org/10.1016/S1365-1609(01)00017-X 

Einstein, H., & Schwartz, C. (1979). Simplified analysis for tunnel supports. ASCE J Geotech Eng 

Div, 105(4), 499–518. 

Evans, K. F., Engelder, T., & Plumb, R. A. (1989). Appalachian Stress Study .1. a Detailed 

Description of Insitu Stress Variations in Devonian Shales of the Appalachian Plateau. 

Journal of Geophysical Research-Solid Earth and Planets, 94, 7129–7154. 

Gomes, R. a. M. P., & Celestino, T. B. (2009). Influence of physical and geometrical parameters 

on three-dimensional load transfer mechanism at tunnel face. Canadian Geotechnical 

Journal, 46(7), 855–868. https://doi.org/10.1139/T09-016 

Goodman, R. E. (1989). Introduction to rock mechanics. https://doi.org/10.1016/0148-

9062(81)90521-0 

Haimson, B. C., Lee, M. Y., & Song, I. (2003). Shallow hydraulic fracturing measurements in 

Korea support tectonic and seismic indicators of regional stress. International Journal of 

Rock Mechanics and Mining Sciences, 40(7–8), 1243–1256. 

https://doi.org/10.1016/S1365-1609(03)00119-9 

Hoek, E. (2008). Practical Rock Engineering. https://doi.org/10.2113/gseegeosci.14.1.55 

Kirsch, G. (1898). Die theorie der elastizitat und die bedurfnisse der festigkeitslehre. Veit. Ver. 

Deut. Ing., 42, 497–807. 

Ledesma, A., & Alonso, E. E. (2017). Protecting sensitive constructions from tunnelling: the case 

of World Heritage buildings in Barcelona. Géotechnique, (10), 1–12. 

https://doi.org/10.1680/jgeot.SiP17.P.155 



 

191 

Martin, C. D., & Kaiser, P. K. (1996). Mine-by Experiment Committee report, Phase 1: excavation 

response, summary and implications. Atomic Energy of Canada Limited, Report AECL–

11382. AECL Research, Chalk River, Ont. 

McGarr,  a, & Gay, N. C. (1978). State of Stress in the Earth’s Crust. Ann. Rev. Earth Planet. Sci., 

6, 405–436. 

Möller, S. (2006). Tunnel induced settlements and structural forces in linings. PhD Thesis, 

Institute of Geotechnical Engineering, Universitat of Stuttgart, Stuttgart. 

Ng, C. W. W., Lee, G. T. K., Ng, C. W. W., & Lee, G. T. K. (2005). Three-dimensional ground 

settlements and stress- transfer mechanisms due to open-face tunnelling. Canadian 

Geotechnical Journal, 42, 1015–1029. https://doi.org/10.1139/T05-025 

Park, E. S., Choi, B. H., Bae, S. H., & Jeon, S. (2014). Horizontal stresses at shallow depths in 

Seoul ( Korea ) gneissic region. Rock Engineering and Rock Mechanics: Structures in and 

on Rock Masses - Proceedings of EUROCK 2014, ISRM European Regional Symposium, 

399–404. 

Park, K. H. (2005). Analytical solution for tunnelling-induced ground movement in clays. 

Tunnelling and Underground Space Technology, 20(3), 249–261. 

https://doi.org/10.1016/j.tust.2004.08.009 

Pinto, F., & Whittle, A. J. (2014). Ground Movements due to Shallow Tunnels in Soft Ground. I: 

Analytical Solutions. Journal of Geotechnical and Geoenvironmental Engineering, 140(4), 

04013040. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000948 

Pinto, F., Zymnis, D. M., & Whittle, A. J. (2014). Ground Movements due to Shallow Tunnels in 

Soft Ground. II: Analytical Interpretation and Prediction. Journal of Geotechnical and 

Geoenvironmental Engineering, 140(4), 04013041. 

https://doi.org/10.1061/(ASCE)GT.1943-5606.0000947 

Strack, O. E., & Verruijt, A. (2002). A complex variable solution for a deforming buoyant tunnel 

in a heavy elastic half-plane. International Journal for Numerical and Analytical Methods 

in Geomechanics, 26(12), 1235–1252. https://doi.org/10.1002/nag.246 

Verruijt, A. (1997). A complex variable solution for a deforming circular tunnel in an elastic half-

plane. International Journal for Numerical and Analytical Methods in Geomechanics, 

21(2), 77–89. https://doi.org/10.1002/(SICI)1096-9853(199702)21:2<77::AID-

NAG857>3.0.CO;2-M 



 

192 

Verruijt, A., & Booker, J. R. (2000). Complex variable analysis of Mindlin’ s tunnel problem, in: 

Proceedings of Developments in Theoretical Geomechanics - The John Booker Memorial 

Symposium. Rotterdam; Jannuary, 2000. 

Vitali, O. P. M., Celestino, T. B., & Bobet, A. (2018). Analytical solution for tunnels not aligned 

with geostatic principal stress directions. Tunnelling and Underground Space Technology, 

82(12), 394–405. https://doi.org/10.1016/j.tust.2018.08.046 

Vitali, O. P. M., Celestino, T. B., & Bobet, A. (2019a). Buoyancy effect on shallow tunnels, 

International Journal of Rock Mechanics and Mining Sciences, 114(2), 1–6. 

https://doi.org/10.1016/j.ijrmms.2018.12.012 

Vitali, O. P. M., Celestino, T. B., & Bobet, A. (2019b). Shallow Tunnel Not Aligned with the 

Geostatic Principal Stress Directions. In Proceedings of Geo-Congress2019, Geotechnical 

Special Publication (GSI). Philadelphia,PA. 

Vitali, O. P. M., Celestino, T., & Bobet, A. (2017). 3D finite element modelling optimization for 

deep tunnels with material nonlinearity. Underground Space, 3(2), 125–139. 

https://doi.org/10.1016/j.undsp.2017.11.002 

Vlachopoulos, N., & Diederichs, M. S. (2009). Improved longitudinal displacement profiles for 

convergence confinement analysis of deep tunnels. Rock Mechanics and Rock Engineering, 

42(2), 131–146. https://doi.org/10.1007/s00603-009-0176-4 

Wileveau, Y., Cornet, F. H., Desroches, J., & Blumling, P. (2007). Complete in situ stress 

determination in an argillite sedimentary formation. Physics and Chemistry of the Earth, 

32(8–14), 866–878. https://doi.org/10.1016/j.pce.2006.03.018 

  



 

193 

 PROGRESSIVE FAILURE DUE TO TUNNEL MISALIGNMENT 
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misalignment with geostatic principal stresses. In: Proceedings of ISRM 14th International 
Congress on Rock Mechanics: 2292-2299. 

 

Abstract 

When the axis of the tunnel is not parallel to one of the far-field (geostatic) principal stresses, far-

field axial shear stresses are present, which distort the tunnel in the axial direction and affect the 

stress paths of the ground near the face of the tunnel. The goal of the paper is to investigate the 

effects of tunnel misalignment with the far-field principal stresses on the progressive failure of the 

ground around the tunnel. A well-documented experimental tunnel in a massive granite rock mass 

is used as reference. 3D FEM modelling is conducted to back calculate the tunnel response and to 

assess the effects of the tunnel misalignment. The misaligned tunnel shows failure at locations not 

predicted when the tunnel is aligned with the intermediate principal stress. The numerical results 

suggest that the misalignment may lead to asymmetric spalling of the tunnel walls. 

8.1 Introduction 

Rock masses may present remarked in-situ stress anisotropy because of its complex 

formation processes. It is highly unlikely that a tunnel is excavated totally or in part aligned with 

the far-field, or geostatic, principal stresses. It has been accepted that the worst-case scenario is 

when the tunnel is aligned with the far-field intermediate principal stress. In this case, the stress 

concentrations around the tunnel are maximized and stress-induced failure is more likely to occur. 

To minimize this effect, there have been recommendations to align the tunnel with the major 

principal stress (Goodman, 1989). However, for most civil applications, the tunnel direction is 

given, so the alignment between tunnel and principal stresses is improbable. Yet, little research 

has been conducted to investigate the effects of misalignment on tunnel behavior (Vitali et al., 

2018; Vitali et al., 2019a; Vitali et al., 2019b). When the tunnel is not aligned with the principal 

stresses, far-field axial shear stresses are present that distort the tunnel cross-section in the axial 

direction (Vitali et al., 2018). As shown by Vitali et al. (2019b), the far-field axial shear stress 
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induces asymmetric displacements near the face; thus, the stress paths near the tunnel face are 

heavily affected by the far-field axial shear stress. As a consequence, if the tunnel has a stiff 

support installed near the face and/or the ground is elastoplastic, the ground displacements far 

behind the face could be asymmetric. For instance, Vitali et al. (2019b) showed that the plastic 

zone around the tunnel could be highly asymmetric because of the effects of the far-field axial 

shear stress near the tunnel face. Such asymmetry can only be captured by 3D FEM modeling of 

the misaligned tunnel, which is rarely conducted for tunnel design or even for research. So far, to 

the authors’ best knowledge, no investigation has been conducted on the influence of tunnel 

misalignment on stress-induced progressive failure of the rock around the excavation. This paper 

seeks to provide insight on this topic. The paper uses a well-documented experimental tunnel at 

the URL in Canada, using 3D FEM model, to investigate the effects of the far-field axial shear 

stress on the progressive failure of the rock around the tunnel excavation. 

A large investigation campaign was conducted at the Underground Research Laboratory 

(URL) in Canada (Martin & Kaiser, 1996). The goal of the research program was to investigate 

the behavior of the massive Lac du Bonnet granite at a large depth, and assess the suitability of the 

site for nuclear waste storage. Laboratory tests, in-situ tests and instrumented experimental tunnels 

were completed at the site (Martin & Kaiser, 1996). A progressive failure of one of the tunnels 

was extensively studied (Hajiabdolmajid, et al., 2003; Hajiabdolmajid, et al., 2002; Hajiabdolmajid 

& Kaiser, 2002; Martin, 1997; Renani & Martin, 2018). The tunnel was excavated aligned with 

the intermediate principal stress to maximize the concentration of stresses and, thus, induce a larger 

failure zone around the excavation. It was observed that failure at the tunnel wall started at stress 

levels that were substantially smaller than the unconfined compressive strength (UCS) of the intact 

rock. Detailed description of the tunnel is provided by Martin (1997) and by Martin & Kaiser 

(1996). The instrumentation of this experimental tunnel included seismic and acoustic sensors and 

triaxial strain gages to measure the stresses at points near the tunnel perimeter. The tunnel was 

circular, with 3.5m diameter, and unsupported. The excavation was conducted with rounds of 0.5 

to 1m length. The in-situ stresses were, in MPa, σ1=60±3, σ2=45±4 and σ3=11±2 (Martin, 1997, 

Hajiabdolmajid et al., 2003). Figure 8.1 shows the geometry of the tunnel with the failure zone, 

the principal stresses with respect to the tunnel and the location of the triaxial strain gages (SM5 

and SM10) installed to monitor the rock response. A localized failure occurred at the location of 

the largest stress concentration. The failure zone had a V-notched shape, which is typical of brittle 
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rock masses (Kaiser et al., 2000; Martin et al., 1999). The depth of the failure zone near the crown 

extended up to 1.3 times the tunnel radius (i.e., 2.275m). Note that σ3 was not aligned with the 

vertical direction; it was shifted approximately14° with respect to the vertical axis. 

The progressive failure of Lac du Bonnet granite has been widely investigated in the 

laboratory (Martin & Chandler, 1994) and in the field (Martin, 1997). Based on damage controlled 

uniaxial compression tests, Martin & Chandler (1994) observed that progressive failure started 

when the deviatoric stress reached the crack damage stress (σcd). Afterwards, the cohesion 

degraded and the frictional strength increased as damage (i.e. cracks) accumulated in the rock until 

it reached the rock residual strength. Martin (1997) suggested that progressive failure around the 

tunnel was governed mostly by the loss of cohesion because of the low confinement stresses. To 

reproduce the observed mechanical behavior, Hajiabdolmajid et al. (2002) and Hajiabdolmajid et 

al. (2003) proposed a new constitutive model, denominated “Cohesion Weakening and Frictional 

Strengthening” (CWFS), where the cohesion and the friction angle are a function of plastic strains. 

Using this model, those authors were able to reproduce the progressive failure observed in the 

tunnel. Recently, Renani & Martin (2018) proposed an updated version of this constitutive model 

(non-linear CWFS model) that considers a non-linear evolution of the friction mobilization and 

cohesion loss during progressive failure. Using the non-linear CWFS model, the authors 

investigated the progressive failure of several tunnels in brittle rock and the stress-strain behavior 

of the damage-controlled uniaxial compression tests conducted by Martin & Chandler (1994). The 

authors showed that the non-linear CWFS model could reproduce the progressive failure observed. 
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Figure 8.1 URL tunnel. Details of the failure zone, principal stresses and strain gages location 
(after Martin & Kaiser, 1996). 

8.2 The Non-Linear CWFS model 

The nonlinear CWFS model proposed by Renani & Martin (2018) is an updated version of 

the CWFS model first proposed by Hajiabdolmajid et al. (2002). The intent of the model is to 

capture the progressive failure of brittle rock masses by considering cohesion loss (c) and 

mobilization of the friction angle (φ) as a function of the equivalent plastic strain (εp), thus: 

  )()(tan ppNf c           (1) 
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Renani & Martin (2018) recommended the following cohesion degradation and frictional 

strength mobilization functions for in-situ rocks: 
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Where: cinitial and φinitial are the initial strength properties; that is, the cohesion and the 

friction angle of the undamaged rock mass (εp=0); cresidual and φresidual are the residual strength 

properties and εp, residual is the equivalent plastic strain required to reach the residual state. 

The non-linear CWFS constitutive model is implemented in Midas GTS NX software, 

which is the FEM code used in this paper. The dependencies of cohesion with εp and friction angle 

(φ) with εp are used as input for the model, as well as the elastic properties of the rock (E, ν). Figure 

8.2 shows the non-linear cohesion reduction with plastic strain (c vs. εp) and the non-linear 

frictional strength mobilization (φ vs. εp) adopted to represent the rock mass, in this investigation. 

The plots are based on expressions (3) and (4) provided by Renani & Martin (2018). As illustrated 

in Figure 8.2, for εp= 0 (i.e. no plastic deformations), the cohesion is equal to 50 MPa (initial 

cohesion) and the mobilized friction angle is zero (φinitial). As the plastic strain increases, the 

cohesion decreases while the mobilized friction angle increases. Both cohesion and friction angle 

reach the residual values when the equivalent plastic strain is 0.5% (εp,residual). The residual values 

are 10 MPa for the cohesion and 42° for the friction angle. The stress-strain curves for different 

confinement stresses are also presented in Figure 8.2. Because there is no mobilized frictional 

strength before yielding (i.e. φ=0° for εp=0), the onset of the progressive failure does not depend 

on the confinement stress. The model predicts a linear-elastic behavior until the deviatoric stress 

(σ1-σ3) reaches the initial strength of the rock mass (determined by cinitial). Afterwards, damage 

begins to accumulate in the rock mass and the behavior is governed by the interplay that exists 

between cohesion loss and friction mobilization, where the confinement stress plays an important 

role. The elastic properties adopted are: E=60 GPa, ν=0.25. The rock properties are consistent 
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with those reported in the literature for the Lac du Bonnet granite (Renani & Martin, 2018, Martin 

& Chandler, 1994, Martin, 1997 and Hajiabdolmajid et al., 2002). 

 

Figure 8.2 Cohesion loss and friction angle mobilization with equivalent plastic strain and stress-
strain curves. 

8.3 Model of URL tunnel 

A 3D FEM model was built to investigate the tunnel. Figure 8.3 shows the discretization 

used for the simulation. The model was large enough such that boundary effects were avoided 

(Vitali et al, 2017). Given that the tunnel was aligned with the direction of σ2, it was possible to 

take advantage of the existing symmetry, so that only one quarter of the problem was discretized. 

The mesh was built using 1st order elements with a very refined grid such that the size and the 

shape of the failure zone near the tunnel opening could be determined. The geostatic far-field stress 

was generated by applying a uniform pressure to the top, left and front boundaries of the mesh 

(Figure 8.3, left). The pressures were σhorizontal=σ1=60 MPa, σvertical=σ3=11 MPa and 

σlongitudinal=σ2=45 MPa. The 3D excavation sequence (i.e. step by step procedure, Vitali et al., 2017) 

was simulated using an excavation round length of 0.5m. The model was run using the non-linear 

CWFS model with the properties shown in Figure 8.2. 
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Figure 8.3 Finite element mesh. Model dimensions and mesh discretization near the opening. 

 

Figure 8.4 shows the principal stresses (σ1 and σ3), at the location of the strain gages SM5 

and SM10 (Figure 8.1), with the distance from the tunnel face (Dface) normalized with respect to 

the tunnel radius (Rtunnel=1.75 m). The figure compares the major and the minor principal stresses 

obtained numerically with the stresses measured in-situ (Martin, 1997). The agreement between 

the numerical results and the field data is better for cell SM10 than for SM5. This is because the 

cell SM10 was located far from the failure zone such that the rock mass remained within its linear 

elastic regime, while cell SM5, which was close to the failure zone, was affected by the failure of 

the rock. Figure 8.5 shows the geometry of the failure zone measured in-situ and predicted by the 

model. The X-axis is aligned with σ1 and the Y-axis, with σ3. As one can see, the shape and depth 

of the failure zone predicted numerically are consistent with those observed in the field. Note that 

the failed rock mass detached from the tunnel wall and fell into the tunnel. Since the failure zone 

was close to SM5 (Figure 8.1), its readings were probably affected by the failure. 
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Figure 8.4 Principal stresses near the tunnel perimeter. (a) stresses at cell SM5, 2.663 m from the 
center of the tunnel and (b) stresses at cell SM7, 3.394 m from the center of the tunnel. 

 

 

Figure 8.5 Geometry of the failure zone measured in the field and the plastic zone predicted by 
the numerical model. 
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8.4 Estimated Failure of URL tunnel if not aligned with far-field principal stresses 

The comparison shown before between the numerical results and the field data from the 

experimental tunnel indicates that the numerical model adequately represents the actual tunnel 

behavior. To investigate the influence of potential tunnel misalignment with the far-field principal 

stresses, a new 3D FEM model was built. In the model, the axis of the tunnel was at 45° with σ2 

and σ1, as indicated in Figure 8.6. The far-field stresses, defined with respect to the tunnel, were 

σxx,ff=σzz,ff=52.5 MPa, σyy,ff=σ3=11 MPa and τxz,ff=7.5 MPa, where z is parallel to the tunnel axis 

(Figure 8.6). The model consisted of a refined structured mesh at the center (i.e. the same 

discretization used before) connected to the boundaries with an unstructured mesh. The refined 

mesh is shown in Figure 8.6. The model was large enough to avoid boundary effects. The 

excavation sequence was also reproduced in the model, i.e. a step by step procedure (Vitali et al., 

2017). The misalignment of the tunnel with the principal stresses produces far-field axial shear 

stresses (τxz,ff) that distort the tunnel cross-section in the axial direction, as shown in Figure 8.7, 

and makes the stress paths near the tunnel face asymmetric. 

 

Figure 8.6 3D FEM model of the tunnel not aligned with the far-field principal stresses 
directions. (a) tunnel; (b) stresses with respect to the tunnel axis and; (c) refined mesh at the 

center of the model. 
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Figure 8.7 Deformed cross section in the axial direction, far-behind the tunnel face. 

 

Figure 8.8 compares the failure zones obtained numerically for the tunnel aligned with σ2 

(α=90°, Figure 8.3) and for the misaligned tunnel (α=45°, Figure 8.6). As expected, the V-notched 

failure zone is larger for α=90° because the concentration of stresses around the tunnel is the largest 

when the tunnel is aligned with σ2. However, the failure zone for the misaligned tunnel extends 

along one of the sides of the tunnel. This indicates that the far-field axial shear stress could produce 

spalling on one side of the tunnel, which would not occur when the tunnel is aligned with σ2. Figure 

8.9 shows the deviatoric stresses with distance from the face of the tunnel normalized with respect 

to the tunnel radius at the springline, for α=45° (points B1 and B2 in Figure 8.8). For α=90°, the 

stresses at points B1 and B2 are exactly the same because of the symmetry; however, for α=45°, 

the symmetry is lost and the stresses are different as a consequence of the far-field axial shear 

stress (τxz,ff). Note that the deviatoric stress at point B2 increases as the point approaches the face 

of the tunnel and, near the face, the deviatoric stress abruptly increases causing yielding. In contrast, 

at point B1, the deviatoric stress decreases as the point moves to the face of the tunnel. Similar to 

B2, the deviatoric stress increases abruptly at the face, but it remains small and no yield is induced. 

All this suggests a possible asymmetric spalling at the tunnel walls when a far-field shear stress is 

present. 



 

203 

 

Figure 8.8 Geometry of the failure zone for α=45° and α=90°. 

 

Figure 8.9 Deviatoric stresses normalized with distance to the face, for α=45°. 
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8.5 Conclusion 

The progressive failure of a tunnel not aligned with the principal stresses is investigated in this 

paper. The well-documented URL experimental tunnel is used for that purpose. The tunnel was 

excavated aligned with the intermediate principal stress in a massive granite rock mass, with 

remarked stress anisotropy. As a consequence of the large stress concentrations around the tunnel 

induced by the excavation, a failure zone with a V-notched shape was formed. A 3D FEM model 

was used to investigate the tunnel’s response. The mechanical behavior of the rock mass was 

simulated using an advanced constitutive model that included progressive failure of brittle rock 

masses. The numerical model predicted accurately the size and the shape of the failure zone 

observed in the field and stresses at points near the face of the tunnel. The same tunnel geometry 

and rock properties were used to investigate what would occur if the tunnel was not aligned with 

the intermediate principal stresses. The presence of a far-field axial shear stress induced distortions 

in the axial direction of the tunnel and made the stress paths at points in the rock near the tunnel 

face asymmetric. The model predicted a smaller V-notched failure zone for the misaligned tunnel 

than of the aligned tunnel but, because of the presence of the far-field axial shear stress, plastic 

strains developed along the wall of the tunnel at locations other than those predicted in the aligned 

tunnel. The numerical results indicated that the presence of a far-field axial shear stress could 

induce asymmetric spalling on the tunnel walls. This failure would not be predicted if the tunnel 

was assumed to be aligned with the intermediate principal stress. Thus, the numerical results 

suggest that the tunnel aligned with the intermediate principal stress may not be the worst-case 

scenario. 
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 ANALYTICAL SOLUTION FOR A DEEP CIRCULAR TUNNEL IN 
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VITALI, O. P. M.; CELESTINO, & BOBET, A. (2019). Analytical solution for a deep circular 
tunnel in anisotropic ground and anisotropic geostatic stresses. Manuscript under review for 
publication in a peer-reviewed journal. 

 

Abstract 

Rock masses that have a well-defined structure may also present a remarked in-situ stress 

anisotropy; thus, the misalignment of a tunnel with the geostatic principal stresses and/or with the 

principal axes of material anisotropy is very likely. Analytical solutions for tunnels in transversely 

anisotropic rock available in the literature assume alignment of the tunnel with the geostatic 

principal stresses and with one of the principal directions of the material anisotropy (i.e. 2D plane 

strain condition). Such assumption is quite restrictive. In this paper, a new analytical formulation 

for circular deep tunnels in full anisotropic rock is presented. It provides the full stress and 

displacement fields around a tunnel misaligned with the geostatic principal stresses or with the 

directions of material anisotropy. The analytical solution has been verified by comparing its 

predictions with results from 3D FEM modelling, for a number of scenarios with increasing 

complexity. A parametric analysis has been conducted to investigate the interplay that exists 

between the orientation of the axis of the tunnel and the directions of the principal geostatic stresses 

and/or the directions of material anisotropy. 

9.1 Introduction 

Rock masses that have a complex origin may also present a remarked stress and material 

anisotropy. The literature is rich in measurements of in-situ stresses (Brown and Hoek 1978; Evans 

et al. 1989; Gysel 1975; Haimson et al. 2003; Martin and Kaiser 1996; McGarr and Gay 1978; 

Park et al. 2014; Perras et al. 2015; Souček et al. 2017; Wileveau et al. 2007; Zhang et al.. 2017; 

Zhao et al. 2015) and anisotropic rock properties (Amadei et al. 1987; Batugin and Nirenburg 1972; 

Exadaktylos 2001; Park and Min 2015b; Worotnicki 1993) that show that anisotropy is expected 

in rock. When a tunnel is excavated in a rock mass, misalignment of the tunnel axis with the 

geostatic principal stresses and/or with the principal directions of material anisotropy is very likely. 
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However, in tunnel design and even in research, the effects of tunnel misalignment are often 

neglected. Research shows (Vitali et al. 2018, 2019a and 2019b) that far-field axial shear stresses 

are present as a result of the misalignment, which in turn distort the tunnel cross section in the 

axial direction (i.e. the axial shear stresses produce anti-symmetric axial displacements around the 

tunnel). If the rock mass is isotropic and elastic, and the tunnel is unsupported, far behind the face 

of the tunnel, the in-plane deformations are decoupled from the out-of-plane deformations (Vitali 

et al. 2018 and 2019a). However, if the rock mass is anisotropic and elastic or elastoplastic and the 

tunnel is misaligned with the principal directions of material anisotropy, the in-plane and out-of-

plane deformations are coupled. This is so because the compliance matrix (D) is fully populated. 

Schubert et al. (2005) and Schubert et al. (1995) reported axial displacements in opposite directions 

at the tunnel walls (i.e. anti-symmetric axial displacements) in anisotropic rock masses (phyllites 

and shear zones), which were confirmed later using numerical models (Goricki et al., 2005; 

Schubert and Mendez, 2017). 

Rock anisotropy tends to be more pronounced when a well-defined structure is present, 

such as bedding, stratification, layering, foliation, joints or flows. This is the case for metamorphic 

rocks such as schists, slates, quartzites, mudstones and phyllites. Marked material anisotropy is 

also found in sedimentary rock masses such as shales, sandstones and claystones because of the 

direction of material deposition and the presence of bedding planes. A particular rock structure of 

interest is that of transverse anisotropy, which can be taken as a good approximation for a number 

of rocks, including metamorphic and sedimentary. The presence of such structure may induce 

significant differences in strength and stiffness of the rock mass along a direction parallel to the 

structure, i.e. parallel to bedding, and along a direction perpendicular, i.e. perpendicular to the 

bedding plane. Worotnicki (1993) compiled results of the stiffness ratio E1/E3 (E1 is parallel to the 

structure and E3, perpendicular) that showed that granites, sandstones, gneisses and amphibolites 

had small to moderate anisotropy (i.e. 70% of the tested rocks had E1/E3 < 1.3, 80% E1/E3 < 1.5 

and only 3% had E1/E3 > 2); mudstones, slates, phyllites and schists showed high anisotropy (50% 

had E1/E3>2 and 30% had E1/E3<1.5; also note that the maximum measured stiffness ratio was 6); 

limestones, marbles and dolomites (carbonatic rocks) showed low to moderate anisotropy (60% 

had E1/E3 < 1.3, 80% had E1/E3 < 1.5, with the largest E1/E3 = 1.7). Park and Min (2015a) found a 

stiffness ratio E1/E3 of 1.4 for Asan Gneiss; 1.75 for Boryeong shale and 3.8 for Yeoncheon schist, 

which is consistent with the compiled data previously presented. Tonon and Amadei (2002) 
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conducted a 2D FEM parametric analysis to assess the influence of the stiffness anisotropy on 

tunnel behavior. The authors observed that, even for a highly anisotropic ground (E1/E3 = 3.25), 

the stress field around an unsupported tunnel was not significantly affected by the stiffness ratio, 

but the displacement field was. A similar conclusion was obtained by Fortsakis et al. (2012), who, 

after conducting a series of 2D FEM analyses, concluded that the assumption of an equivalent 

isotropic ground might lead to an underestimation of the ground deformations. 

The rock mass anisotropy may also affect the geostatic stress field (Amadei 1996; Amadei 

and Pan 1992; Amadei et al. 1987; Tonon and Amadei 2003). According to Amadei and Pan (1992), 

for a pure gravity-induced stress field, the vertical stress is a principal stress and is given by the 

overburden weight, the major horizontal stress is aligned with the structure, which is the stiffer 

direction, and the minor horizontal stress is perpendicular. In addition, tectonic activity increases 

the horizontal stresses and affects stress anisotropy. Hoek and Brown (1978) compiled a large 

number of stress ratios (σv/σh,ave), with depth, for a variety of rock masses around the world. At 

depths shallower than 300m, the horizontal stress was often larger than the vertical stress, with 

stress ratios of 1 to 5. Haimson et al. (2003), measured the horizontal stresses at shallow depths 

(from 7.2m to 244.2m depth) in gneissic and granitic rock masses in a seismic area near Seoul, 

South Korea. The minor horizontal stress was, in most locations, larger than the vertical stress. 

Also, the major horizontal stress (σH) was often significantly larger than the minor horizontal stress 

(σh); the ratio σH/σh ranged from 1.2 to 2.3. These observations were supported by Park et al. 

(2014). Large anisotropic horizontal stresses are also reported by Wileveau et al. (2007), who 

obtained ratios of σH/σh ranging from 1.3 to 2 in limestone, and by Perras et al. (2015), who 

reported ratios σH/σh ranging from 1 to 3.2. 

Most analytical solutions for tunnels in anisotropic rock have been developed with the 

assumption of elastic behavior and plane strain conditions (Bobet 2011, 2016a, 2016b; Bobet and 

Yu 2016; Pachoud and Schleiss 2016; Manh et al. 2014; Zhang and Sun, 2011). The assumption 

of elasticity often limits the range of applications of the closed-form solutions to those cases where 

the medium is stiff or the ground deformations are small. Indeed, Choi and Bobet (2002), Pinto et 

al (2014) and Park (2005) reported good predictions for ground deformations around shallow 

tunnels using analytical solutions and Ledesma and Alonso (2017) obtained reasonable ground 

deformations for tunnels excavated near sensitive historic structures, using analytical solutions. 

The assumption of plane strain (i.e. 2D) implicitly assumes tunnel alignment with both the 
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geostatic principal stresses and the directions of material anisotropy. Despite their obvious 

limitations, analytical solutions are widely used in tunnel design because they allow a fast and 

robust assessment of the tunnel performance and can be used as reference to sophisticated 

numerical models.  

In this paper, a new analytical solution for an unsupported deep circular tunnel in a full 

anisotropic elastic rock is presented. The solution provides the 3D stress and displacement fields 

around the opening. Its predictions are verified using a 3D FEM model.  

9.2 Analytical solution  

It is assumed that the tunnel is deep, has a circular cross section, is unsupported and the 

surrounding rock is fully anisotropic. Throughout the paper, the coordinate system XYZ (see 

Figure 9.1) is used, where the tunnel is aligned with the Z-axis, the Y-axis is vertical and the X-

axis, horizontal. Figure 9.1a shows the problem: a tunnel in an anisotropic rock with an arbitrary 

geostatic stress field. The far-field stresses are represented in the XYZ coordinate system; that is, 

σxx,ff is the horizontal far-field stress, σyy,ff is the vertical far-field stress, σzz,ff  is the axial far-field 

stress, and τxy,ff, τxz,ff, τyz,ff are the far-field shear stresses. The problem is decomposed into two: 

Problem 1, Figure 9.1b, with the geostatic stresses but with no tunnel; and Problem 2, Figure 9.1c, 

with the tunnel and with stresses applied to the perimeter of the tunnel that are equal to those of 

the free field but with opposite sign. As one can see, the addition of Problems 1 and 2, in Figures 

1b and 1c, results in the problem shown in Figure 9.1a. The solution of Problem 1 is 

straightforward: the stresses in the rock mass are equal to those of the free field, while the 

displacements are taken as zero, to represent the initial conditions, i.e. before the tunnel is 

excavated. The stresses at the perimeter of the tunnel in Problem 1 are given by equations (1) to 

(3). The angle θ is the polar coordinate, as shown in Figure 9.2. These stresses, with the sign 

changed, are applied to the perimeter of the tunnel in Problem 2. 
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Figure 9.1 Division of a complex problem into two simpler problems. a) Anisotropic rock mass 
and geostatic stresses; b) Anisotropic rock mass without tunnel and with geostatic stresses; and 

c) Anisotropic rock mass with tunnel. 

 

Figure 9.2 Tunnel opening and polar coordinates; r0 is the tunnel radius. 

 

Problem 2 describes a long tunnel along the Z axis. That is, variables cannot change along 

the Z axis, i.e. 𝜕/𝜕𝑧 = 0; thus, the equilibrium equation (∇ ∙ 𝜎 + �⃗� = 0), in the absence of body 

forces, reduces to equations (4) to (6) and the compatibility of strains to equation (7).  
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The stress-strain relationship for a full anisotropic elastic rock is given by equation (8). 
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Where the matrix Sij is the compliance matrix. Because of the infinite tunnel, 𝜕/𝜕𝑧=0, the 

axial deformations (εzz) are zero; thus, the axial stress (σzz) can be expressed as: 
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The compliance matrix can be written as: 
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Where: 
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The equations of equilibrium are satisfied by defining two stress functions F and H such 

that: 
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Defining the complex variable z as: z = X + μY, where  is a complex number, and 

imposing the compatibility equation (7) and that ∂γyz/∂x = ∂γxz/∂y, equations (13) and (14) are 

obtained.  
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The two equations can be used to obtain the functions F and H by e.g. substitution. This 

results in equation (15). The equation is satisfied when  are the roots of the canonic equation (16). 

There are six roots, but three are the conjugates. 
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The solution of the system of equations 13 and 14 is singular when the tunnel is aligned 

with one of the principal directions of material anisotropy. The solution is given in Appendix 1. 

Defining, following Lekhnitskii (1936), )(')( 1111 zFz  , )(')( 2222 zFz   and 
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Where zk = X+ k Y, and k are the roots of equation (16), and 
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The functions φk are defined as Laurent series. That is,  
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, where k =1, 2, 3        (28) 

Where: 
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The complex coefficients Akm can be determined by imposing the boundary conditions at 

r=ro, i.e. at the perimeter of the opening. That is, 

      drzzz rrr 03332211 cossin)()()(Re2      (30) 

      drzzz rrr 03333222111 sincos)()()(Re2       (31) 

    drzzz rz 033222111 )()()(Re2        (32) 
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This results in the following system of linear equations: 
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Where:  
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, k= 1, 2, 3.         (34) 

A case of particular interest is that of a rock mass with orthotropic elasticity, (Amadei et 

al. 1987; Worotnicki 1993). The compliance matrix in (8) can be defined with nine elastic 

properties, and takes the form shown in (35). 
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   (35) 

Equation (35) is written such that the axes xyz are the principal directions of material 

anisotropy, and thus the tunnel is aligned with one of the principal directions, i.e. the z direction. 

When this is not the case, the compliance matrix (D) is rotated following the procedure shown in 
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(36), using Voigt’s notation, such as the axis Z ends up being the axis of the tunnel. Note that the 

rotated compliance matrix may be fully populated. 

      'DDRRRDRD T       (36) 

Note that: TRR  1 . The rotation matrices and details about the rotation convention are 

provided in Appendix 2. 

The analytical solution for a tunnel in an orthotropic elastic material not aligned with the 

principal directions of material anisotropy is verified using a 3D FEM model. The FEM model is 

built using 2nd order hexahedral elements and the mesh is refined enough such that the numerical 

results are accurate (Vitali et al. 2017). The numerical model consists of two phases: the 1st one 

generates the geostatic stress field; the 2nd, represents the tunnel excavation (through deactivation 

of the elements inside the tunnel perimeter). The numerical results are extracted from the nodes at 

the tunnel perimeter. The material properties adopted are: Ex=2GPa; Ey= 1GPa; Ez= 3GPa; 

νxy=0.2; νxz=0.3; νyz=0.4; Gxy=0.7GPa; Gxz=0.8GPa; Gyz=0.5GPa. The principal directions of 

material anisotropy are rotated with respected to the tunnel axis using the ZXZ-rotation convention. 

It is assumed that the Euler angles are α=30°; =45° and γ=20°. The far-field stresses are: σyy,ff = 

20MPa, σxx,ff=10MPa and σzz,ff=5MPa (compression is taken as positive). Note that it is assumed 

that the tunnel is aligned with the principal stresses, but misaligned with the principal directions 

of material anisotropy. Figure 9.3 compares the stresses and displacements along the tunnel 

perimeter obtained with the analytical solution with those with the 3D FEM model. The stresses 

and the displacements are normalized with respect to the far-field vertical stress (σv) and to the 

tunnel radius (r0), respectively. The good match between analytical and numerical results shows 

that the analytical solution is essentially correct. It is interesting to note that even though the tunnel 

is aligned with the geostatic principal stress directions, there are axial displacements and axial 

shear stresses. This is due to the coupling of normal strains with shear stresses and also of the shear 

strains with normal stresses, because of the rotated compliance matrix D. Note also that stresses 

and displacements show no symmetry, as it would be when the tunnel was aligned with one of the 

principal directions of material anisotropy. 
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Figure 9.3 Analytical and numerical stresses normalized with respect to the vertical stress and 
displacements normalized with respect to the tunnel radius around the tunnel perimeter for 

orthotropic elastic rock mass. 

9.3 Discussion 

Rock masses may present structure determined by e.g. schistosity, foliation, stratification, 

bedding, etc., that may induce anisotropy. Despite the complexity that this introduces, the rock 

mass behavior can be well approximated with the assumption of transverse anisotropy (Amadei et 

al. 1987; Batugin and Nirenburg 1972; Worotnicki 1993). This requires six elastic properties that 

can be determined from conventional laboratory tests or from theoretical approximations 

(Exadaktylos 2001). The compliance matrix in (35) is still valid, but with Ex=Ez, νyz=νyx and 

Gyz=Gyx. 

The orientation of the predominant structure is conventionally defined with two angles: the 

dip (α1) and the strike angle (α2); see Figure 9.4. Note that it is assumed that the “Z” axis, i.e. the 

axis of the tunnel, is aligned with the North. In other words, the strike angle is given with respect 

to the axis of the tunnel. Note that when α1=0°, the structure is horizontal and the tunnel is aligned 

with one of the principal directions of material anisotropy. The rotation matrix, needed to express 

the compliance matrix in the XYZ coordinate system, is obtained through rotation, which is 

expressed in terms of the angles α1 and α2 and is given in Appendix 3. Appendix 4 provides a 

Matlab code to find stresses and displacements at the tunnel perimeter (i.e. r=r0) using the 

analytical solution for transversely anisotropic rock mass. 
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Figure 9.4 Orientation of structural planes. (a)  strike perpendicular to tunnel axis; (b) strike at an 
angle with the tunnel axis. The North is assumed parallel to the Z-axis. 

 

The effects of tunnel misalignment with the rock mass principal directions of material 

anisotropy has been left largely unexplored. Yet, there is field evidence of anti-symmetric axial 

displacements in tunnels in foliated rock (Schubert et al. 2005; Schubert and Budil 1995), thought 

to be caused by the anisotropic properties of the rock mass. Also, it has been known that the far-

field axial shear stresses induce axial distortions in the tunnel cross-section (Vitali et al. 2018, 

2019a and 2019b). To understand better the implications of tunnel misalignment on ground 

response, a parametric analysis has been conducted. The analyses are geared to explore the effects 

of tunnel orientation with the principal directions of the geostatic stresses (Figure 9.5), and with 

the principal directions of material anisotropy (Figure 9.6). The following information is used in 

all cases: σv= 5MPa, σh= 5MPa and σH= 10MPa and: Ez = Ex = 3GPa (Young modulus parallel to 

the isotropic planes); Ey = 1GPa (Young modulus perpendicular to the isotropic planes); Gxy = Gyz 

= 0.5GPa (shear modulus perpendicular to the isotropic planes); Gxz =0.8 GPa (shear modulus 

parallel to the isotropic planes); νyz =νxy = 0.2 and; νxz= 0.4. The geostatic stress field adopted 

corresponds to a point at 200m depth with stress anisotropy in the range found in rock masses 

(Brown and Hoek 1978; Evans et al. 1989; Gysel 1975; Haimson et al. 2003; Martin and Kaiser 

1996; McGarr and Gay 1978; Park et al. 2014; Perras et al. 2015; Souček et al. 2017; Wileveau et 

al. 2007; Zhang et al. 2017; Zhao et al. 2015). The material properties adopted are credible for 

highly anisotropic rock masses, such as slates, schists and phyllites. Note that the ratio Ex/Ey = 3 

is on the upper limit of the range presented by Worotnicki (1993). 
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Figure 9.5 illustrates the plan view of the tunnel orientation with the principal stress 

directions and the principal directions of material anisotropy. The tunnel is assumed horizontal 

and at an angle Ψ with the major horizontal stress (σH). The far-field stresses, expressed in the 

coordinated system XYZ (attached to the tunnel), as a function of the angle Ψ, are given in 

equations (37) to (40). As the tunnel rotates (i.e. as Ψ increases from 0° to 90°), the far-field 

horizontal stress, σxx,ff, increases and is maximum at Ψ=90°, while the vertical stress (σyy,ff) 

remains constant. The far-field axial shear stress (τxz,ff) is zero for Ψ=0° and Ψ=90° and is 

maximum for Ψ=45°. 

hHffxx  )(cos)(sin 22
,  ;       (37) 

vffyy  , ;          (38) 

hHffzz  )(sin)(cos 22
,  ;       (39) 

)2sin(
2,  hH

ffxz


 ;        (40) 

Figure 9.6 describes three different rock structure scenarios: horizontal structure, α1 =0o 

(e.g. horizontal bedding, Figure 9.6a), vertical structure, α1 =90o (e.g. vertical bedding, Figure 

9.6b), and inclined structure, α1 =45o (Figure 9.6c). The scenarios are investigated considering the 

major horizontal principal stress, σH, parallel to the strike (α2) (Figure 9.5a), and the major 

horizontal principal stress perpendicular to the strike (Figure 9.5b). For a horizontal structure, 

α1=0°, the tunnel and the geostatic principal horizontal stresses (σH and σh) are aligned with the 

rock structure for any Ψ. Those scenarios are chosen because they encompass a variety of cases 

common in practice. 

When Ψ=45°, the two cases, namely σH parallel to α2 (Figure 9.5a) and σH perpendicular 

to α2 (Figure 9.5b) have the same far-field horizontal stress (σxx,ff= 7.5Mpa), the same vertical 

stress (σv =σyy,ff= 5Mpa), the same strike (α2=45°) and dip angles, the same far-field axial shear 

stress (τxz,ff), but different direction (τxz,ff=±2.5MPa). Thus, the two cases are used to show the 

influence of the far-field axial shear stress (τxz,ff) on the tunnel behavior. 
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Figure 9.5 Plan view of a tunnel misaligned with the principal horizontal stresses in a 
transversely anisotropic rock mass. (a) Major horizontal stress (σH) parallel to the strike (α2); (b) 

Minor horizontal stress (σH) parallel to the strike (α2). 

 

Figure 9.6 Tunnel at angle Ψ=45° with the major horizontal stress, with dip angles, α1: (a) 0°; (b) 
90°; and (c) 45°. 

9.3.1 Horizontal bedding (α1 = 0°) 

Figures 9.7 and 8 show the normalized stresses and displacements at the tunnel perimeter 

(i.e. at r=r0) for a tunnel in a horizontally stratified rock mass (i.e. α1=0°, Figure 9.6a) with Ψ=45°. 

In this case, the tunnel is aligned with one of the principal directions of material anisotropy for any 

angle Ψ; thus, the problem is decoupled (i.e. the in-plane and out-of-plane responses are 

independent of each other). Figure 9.7 compares the analytical and the numerical results for α1=0° 

and Ψ=45° in terms of the normalized tangential stresses, σθθ/σv, normalized tangential axial shear 

stresses, τzθ/σv, and normalized radial, ur/r0, tangential, uθ/r0, and axial, uz,/r0, displacements at the 

tunnel perimeter (r=r0). The excellent match between analytical and numerical results shows that 

the analytical solution is correct. The tangential stresses (σθθ) are symmetric with respect to the 

vertical and horizontal axes; σθθ is maximum at the crown and at the invert and minimum at the 
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springline. The tangential axial shear stresses (τθz) are anti-symmetric with respect to the vertical 

axis; they are zero at the springline and maximum at the crown and invert. Radial and tangential 

displacements (ur and uθ) are symmetric; ur is almost constant along the tunnel perimeter, the 

maximum is at the crown and at the invert and the minimum at the springline. The uθ is small 

around the tunnel, negligible when compared to ur. The axial displacements (uz) are anti-symmetric; 

they are zero at the crown and invert and maximum at the springline. Thus, the tunnel is distorted 

in the axial direction about the vertical axis. 

 

Figure 9.7 Normalized stresses and displacements around the tunnel perimeter for horizontally 
stratified rock mass and Ψ=45°. 

 

Figure 9.8 shows, as a function of the tunnel angle Ψ,  the tunnel convergence normalized 

with the tunnel radius, i.e. the difference in radial displacements divided by the radius, on the 

horizontal and vertical axes, as well as the normalized axial displacements at the springline. The 

horizontal convergence is minimum for Ψ=0°, i.e. when the tunnel is aligned with σH and it 

increases as the tunnel rotates, reaching a maximum at Ψ=90°, when the tunnel is aligned with σh. 

In contrast, the vertical convergence is maximum at Ψ=0° and it decreases as the tunnel rotates, 

with a minimum at Ψ=90°. The axial displacements are zero at Ψ=90° and Ψ=0°, when the tunnel 

is aligned with the principal horizontal stresses, and is maximum at Ψ=45°, when the far-field axial 

shear is maximum. These are expected results. What is interesting is to note how the orientation 

of the tunnel with the far-field stresses affects the results. If it is assumed that the tunnel is aligned 

with the major principal horizontal stresses, the vertical convergence is overpredicted, the 

horizontal underpredicted and the axial displacements are also underpredicted. 
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Figure 9.8 Tunnel convergence and axial displacements with Ψ for horizontally stratified rock 
mass. 

9.3.2 Vertical bedding (α1 = 90°) 

Three cases are investigated when α1=90°, namely σH parallel to α2(Figure 9.5a); σH 

perpendicular to α2 (figure 9.5b) and a “no shear” case (i.e. τxz,ff =0). The “no shear” case includes 

the same far-field stresses, but the far-field axial shear stress is zero; this case is included to 

illustrate the errors produced when misalignment of the tunnel with the far-field geostatic stresses 

is not considered (i.e. τxz,ff =0). Figures 9.9 to 11 show the normalized displacements and stresses 

around the tunnel perimeter for the three cases, when Ψ=45°. Displacements and stresses at the 

tunnel perimeter are determined with the analytical formulation and with a 3D FEM modelling; 

the results show an excellent agreement. 

The results are consistent with the symmetry of the problem; that is, σθθ, ur and uθ are 

symmetric with respect to the vertical and horizontal axes through the center of the tunnel, while 

τθz and uz are anti-symmetric with respect to the vertical axis and symmetric with respect to the 

horizontal axis. The evolution of σθθ, ur and uθ with the polar coordinate, θ, follows the same trend 

in all three cases: σθθ is maximum at the crown and invert (i.e. θ= 90° and 270°) and minimum at 

the springline (i.e. θ= 0° and 180°), while ur is maximum at the springline and minimum at the 

crown and invert. The magnitude of σθθ is almost not affected by the presence of the far-field axial 
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shear stress, but the radial and tangential displacements are affected. In contrast, the evolution of 

τθz and uz is very different in each case. This is expected because of the presence of τxz,ff. In all 

three cases, τθz is zero at the springline and maximum at the crown and at the invert, while uz is 

zero at the crown and at the invert and maximum at the springline. Again, this is expected because 

of the symmetry of the problem. Observe that the presence of the far-field axial shear stress 

substantially increases the tangential axial shear stresses (τθz) around the tunnel perimeter. 

The presence of the far-field axial shear, τxz,ff, and the misalignment of the tunnel with the 

principal directions of material anisotropy both produce axial distortions of the tunnel cross section 

about its vertical axis. What is interesting is that when σH is perpendicular to α2, the axial distortion 

produced by τxz,ff and by the material anisotropy have the same direction, while when σH is parallel 

to α2, the axial distortions have opposite directions. This explains why the axial and radial 

displacements are the largest when σH is perpendicular to α2 and the smallest when σH is parallel 

to α2. The axial and radial displacements when τxz,ff is not considered lie between the displacements 

when τxz,ff is considered. Thus, τxz,ff may increase or decrease the ground deformation around the 

tunnel, depending on the orientation of the geostatic principal stress directions with respect to the 

principal directions of material anisotropy. Note that in the previous case (i.e. horizontal bedding, 

α1=0°), τxz,ff had no influence on the radial displacements, neither the rock structure induced axial 

deformations or tangential axial shear stresses around the tunnel perimeter. Thus, the cases where 

the tunnel is misaligned with the principal directions of material anisotropy substantially increase 

the complexity of the problem, and so ignoring any tunnel misalignment may lead to inaccurate 

ground deformations. 

 

Figure 9.9 Normalized stresses and displacements around the tunnel perimeter for rock mass 
with vertical structure (α1=90°), for Ψ=45° and σH parallel to α2. 
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Figure 9.10 Normalized stresses and displacements around the tunnel perimeter for rock mass 
with vertical structure (α1=90°), for Ψ=45° and σH perpendicular to α2. 

 

Figure 9.11 Normalized stresses and displacements around the tunnel perimeter for rock mass 
with vertical structure (α1=90°), for Ψ=45° and “no shear” (i.e. τxz,ff=0). 

 

Figure 9.12 plots, for the case of σH parallel to α2 (Figure 9.5a) and for different tunnel 

orientations, Ψ, the normalized tunnel convergence along the vertical and horizontal axes through 

the center of the tunnel, as well as the normalized axial displacements at the springline. The figure 

includes results for the “no axial shear” case. As one can see, the vertical convergence has a weak 

dependence on tunnel orientation, while the results of horizontal convergence and axial 

displacements depend on the misalignment of the tunnel with respect to the major horizontal stress. 

It is interesting to observe that neglecting the far-field axial shear in the calculations results in 

overestimating vertical convergence and axial displacements; for the latter, the direction of the 

axial displacements is opposite to what it should be. It is also interesting to note that the horizontal 
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convergence is not the largest when Ψ=90°, i.e. when the tunnel is aligned with σh and thus σxx,ff  

is maximum. The reason for this is that, in this case, σH is parallel to the bedding, which is the 

stiffer direction; thus, as the tunnel rotates, the increase of the horizontal stress, which would 

increase the horizontal displacements, is compensated by the increase of the horizontal stiffness. 

The axial displacements without τxz,ff are larger than with τxz,ff, which is counterintuitive. The 

reason again is because of the orientation of the tunnel with the soft/stiff directions of the rock 

mass; indeed, the axial distortion produced by τxz,ff and by the misalignment of the tunnel with the 

directions of material anisotropy compensate each other. This “compensation” reduces the axial 

and radial displacements around the tunnel with the angle Ψ. 

 

Figure 9.12 Tunnel convergence and axial displacements when σH is parallel to α2 (Figure 9.5a), 
with alignment Ψ, for α1=90°. 

 

The case with σH perpendicular to α2 (Figure 9.5b) is shown in Figure 9.13. The trends for 

convergence and axial displacements are similar, with and without τxz,ff. In all the cases, the 

horizontal convergence increases and the vertical convergence decreases as the tunnel rotates from 

Ψ=0° to 90°. The horizontal convergence is larger than the vertical, for any Ψ. While the difference 

between horizontal and vertical convergence is small for Ψ=0°, it is quite large for Ψ=90° (the 

horizontal convergence is 16.1 times larger than the vertical). This substantial increase is due to 

the fact that the major horizontal stress is perpendicular to the bedding planes, which is the softer 

orientation of the rock mass; thus, as the tunnel rotates, the horizontal stress increases and the 

Dark markers: no axial shear
White markers: complete stress field
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horizontal stiffness decreases. Different than what was found for the case with σH parallel to α2 in 

Figure 9.12, is that the horizontal convergence is larger when the far-field stresses include the far-

field shear than when it does not. Also, the axial displacements with τxz,ff are larger than without 

τxz,ff. This is because, in this case, distortions due to τxz,ff and due to the orientation of the material 

anisotropy are both in the same direction; thus axial and radial displacements are larger. 

 

Figure 9.13 Tunnel convergence and axial displacements when σH is perpendicular to α2 (Figure 
9.5b), with alignment Ψ, for α1=90°. 

9.3.3 Inclined bedding (α1 = 45°) 

The same three cases (i.e. σH parallel to α2, σH perpendicular to α2 and “no shear”), 

discussed in the previous section, are also investigated, but for inclined bedding, α1=45°. Figures 

9.14 to 16 show the normalized displacements and stresses around the tunnel perimeter, for α1 = 

45°, Ψ=45°, σH parallel to α2 (figure 9.14), σH perpendicular to α2 (figure 9.15), and “no shear”, 

τxz,ff =0, (figure 9.16). Displacements and stresses at the tunnel perimeter were determined with 

the analytical formulation and with the 3D FEM modelling. As one can see, the results match, 

which further supports the notion that the analytical solution is correct. The results in all three 

cases lose the symmetry that was present in the previous scenarios, i.e. when the axis of the tunnel 

is aligned with one of the principal directions of the material anisotropy (i.e. horizontal bedding, 

α1=0°). Because the rock structure is inclined with respect to the tunnel, the axis of distortion (i.e. 

Dark markers: no axial shear
White markers: complete stress field
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anti-symmetry axis of axial displacements) and the location of the maximum and minimum 

convergence change with the angle Ψ and with the orientation of the principal horizontal stresses 

with respect to the rock structure (Figure 9.5). It is interesting to note that, similar to the case with 

vertical bedding (α1=90°), the larger ground displacements occur when σH is perpendicular to the 

strike direction and are smaller when σH is parallel to the strike direction. The ground 

displacements obtained with no far-field axial shear stress (i.e. no axial shear) lie in between. It is 

also interesting to note that the far-field axial shear stress has little influence on σθθ (i.e. the 

tangential stresses around the tunnel perimeter are similar in all cases), but has a large influence 

on the tangential axial shear stress. The tangential axial shear stresses (τθz) are substantially larger 

when τxz,ff is present. The far-field axial shear stress has a minor influence on the location of the 

maximum and minimum radial displacements; as one can see in figures 9.14 to 16, the maximum 

convergence is similar in all cases; it is observed at: θ= 153° for “no shear”; θ= 151° for σH parallel 

to α2 and; θ=154.5° for σH perpendicular to α2. In contrast, the axial displacements are zero at: 

θ=36° for “no shear”; θ=120.5° for σH parallel to α2 and; θ=72.5° for σH parallel to α2; these results 

show that τxz,ff heavily affects the position of the axis of distortion (the axis of anti-symmetry). 

Note that, in all cases, the location of the minimum convergence makes a 90° angle with the 

maximum convergence and the location of the maximum axial displacement also makes a 90° 

angle with the axis of distortion. 

Figure 9.17 shows the deformed meshes in the axial direction for α1=45° and Ψ=45°, for 

the three cases assessed, namely “no shear”, σH parallel to α2 (figure 9.5a) and, σH perpendicular 

to α2 (figure 9.5b). For the “no shear” case (τxz,ff=0), the axis of distortion is located in the 1st and 

3rd quadrants, at θ=36°. When σH is parallel to α2, the axis of distortion is shifted to the 2nd and 4th 

quadrants (figure 9.17b), located at θ=-60°. It is because, similar to α1=90°, the distortion caused 

by τxz,ff and by the material anisotropy have opposite directions, so that the resultant axial distortion 

is shifted by 84.5° when τxz,ff is included. When σH is perpendicular to α2, the axis of distortion is 

in the 1st and 3rd quadrants, at θ=72.5°. In this case, also similar to α1=90°, the distortions produced 

by τxz,ff and by the material anisotropy have the same direction, since τxz,ff distorts the tunnel cross-

section about the vertical axis, the resultant axis of distortion is shifted by 36.5° towards the 

vertical when τxz,ff is included, remaining in the same quadrant as the “no shear” case. 
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Figure 9.14 Normalized stresses and displacements around the tunnel perimeter for rock mass 
with α1=45°, Ψ=45° and σH parallel to α2. 

 

Figure 9.15 Normalized stresses and displacements around the tunnel perimeter for rock mass 
with α1=45°, Ψ=45° and σH perpendicular to α2. 
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Figure 9.16 Normalized stresses and displacements around the tunnel perimeter for rock mass 
with α1=45° for Ψ=45° and “no shear” (τxz,ff=0). 

 

Figure 9.17 Deformed meshes in the axial direction for α1=45° and Ψ=45° a) “no shear”; b) σH 

parallel to α2 and; c) σH perpendicular to α2. 

 

Figure 9.18 shows the maximum and minimum convergence and the maximum axial 

displacement at the tunnel perimeter, with Ψ, when σH is parallel to α2. The results with no axial 

shear (τxz,ff =0) are presented to assess the influence of τxz,ff on the tunnel behavior. The figure also 

shows the location (i.e. polar coordinate) of the axis where the maximum convergence occurs, and 

the location of the axis of distortion. The maximum convergence with no τxz,ff is larger than when 

considering the shear. This is similar to what was observed in the case of vertical bedding, α1=90°; 

however, the minimum convergence with no τxz,ff is slightly smaller than when including the shear. 

Similar to vertical bedding case (α1=90°), the maximum convergence occurs when Ψ=45° instead 

of at 90°, when the far-field horizontal stress, σxx,ff, is maximum. This is the result of the opposite 

effects of the axial distortions caused by τxz,ff and of the rock structure, so the ground deformations 

around the tunnel are reduced. The axial displacements are zero for Ψ=0° because, at this 

orientation, the tunnel is aligned with the strike direction of the rock structure. As the tunnel rotates, 
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axial displacements are induced because of the tunnel misalignment with the horizontal principal 

stresses and with the principal directions of material anisotropy. The maximum axial 

displacements have no symmetry with the angle Ψ; they are larger when the far-field axial shear 

stress, τxz,ff, is considered. When Ψ=90°, the tunnel is aligned with the minor horizontal stress and 

is perpendicular to the strike direction of the bedding; thus, the axial displacements are caused by 

the inclined bedding dipping towards the tunnel. 

It is interesting to note that the location (i.e. polar coordinate θ) of the maximum 

convergence and of the axis of distortion changes significantly as the tunnel rotates. For Ψ=0°, the 

tunnel is aligned with major horizontal stress, σH, and with the strike direction of the bedding; thus, 

no axial displacement is induced, the maximum convergence occurs at θ=135°, and the minimum 

convergence, at 45°. As the tunnel rotates, the maximum convergence changes its position from 

θ=135°, when Ψ=90°, to 180° (i.e. horizontal axis), when Ψ=0°. As one can see, τxz,ff has little 

influence on the position of the axis of maximum convergence. However, the position of the axis 

of distortion is heavily affected by τxz,ff. The axis of distortion is located between 90° and 180° 

when the far-field axial shear, τxz,ff, is included (i.e. complete stress field) and between 0° and 90° 

when it is not included (i.e. no axial shear). This indicates that the presence of the far-field axial 

shear stress shifts the axis of distortion, as shown in figure 9.17. This is the result of the opposite 

effects on axial distortions of tunnel misalignment with the rock structure and of the far-field axial 

shear, τxz,ff. When Ψ=90°, the tunnel is aligned with the minor horizontal stress, σh, (i.e. τxz,ff=0) 

and is perpendicular to the strike, so the bedding is dipping towards the tunnel; thus, the maximum 

convergence and the axis of distortion are both located in the horizontal axis (i.e. θ=0° or 180°). 

  

Figure 9.18 Transverse and axial displacements of the tunnel when σH is parallel to α2 (Figure 
9.5a), with Ψ, for α1=45°. 

Dark markers: no axial shear
White markers: complete stress field
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Figure 9.19 shows the maximum and minimum convergence, the maximum axial 

displacement at the tunnel perimeter, the position of the maximum convergence, and the position 

of the axis of distortion, with Ψ, when σH is perpendicular to α2. The similarities with the results 

from α1=90° and σH perpendicular to α2 are noteworthy: the maximum convergence increases with 

Ψ, i.e. the smallest convergence is for Ψ=0° and largest for Ψ=90°; the maximum horizontal 

convergence and the maximum axial displacements are larger when the far-field axial shear stress 

is included than when it is not. However, the maximum convergence when the rock structure is 

vertical (α1=90°) is larger than when the it is inclined (α1=45°). Note that, for Ψ>45°, the tunnel 

convergence is substantially larger when the major horizontal stress is perpendicular to the strike 

direction than when it is parallel. It is because the direction parallel to the strike is stiffer than the 

direction perpendicular. In this case, the axial distortion of the tunnel cross-section caused by the 

far-field axial shear stress, τxz,ff, and by the material anisotropy have the same direction; thus, the 

axial displacements are amplified when τxz,ff is considered. Observe that the axial displacement 

when τxz,ff is considered is consistently larger than the axial displacements when τxz,ff is neglected. 

Figure 9.19 shows that the position of the maximum convergence is almost not affected by 

τxz,ff, while the position of the axis of distortion is heavily affected. For Ψ=0°, the tunnel is aligned 

with σH and is perpendicular to α2; because in this case σxx,ff and σyy,ff are equal, the axis of 

maximum convergence is vertical (θ=90°) given that the vertical direction is softer than the 

horizontal direction. As the tunnel rotates, the position of maximum convergence changes from 

θ=90°, when Ψ=0°, to θ=162.5°, when Ψ=90°. The axis of distortion, irrespective of whether τxz,ff 

is included or not, is in the first quadrant. The axis of distortion is horizontal (θ= 0° or 180°) when 

Ψ=0°. Note that there is no axis of distortion when Ψ=90° because, for this orientation, the tunnel 

is aligned with the minor horizontal stress and with the strike direction of the rock structure, so no 

axial displacements are induced. Note that the presence of τxz,ff shifts the axis of distortion towards 

the vertical (i.e. θ=90°), but the axis remains in the same quadrant. This occurs because τxz,ff 

distorts the tunnel cross-section about the vertical axis; thus, the resultant axis of distortion is in 

between the vertical and the axis of distortion when the far-field axial shear stress, τxz,ff, is not 

present (i.e. no axial shear case). 
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Figure 9.19 Transverse and axial displacements of the tunnel when σH is perpendicular to α2 
(Figure 9.5b), with Ψ, for α1=45°. 

 

In summary, the studied cases show that the ground deformations around the tunnel in 

anisotropic rock masses are heavily affected by: (1) the orientation of the tunnel with respect to 

the rock structure; (2) the orientation of the tunnel with respect to the geostatic principal stresses; 

and (3) the orientation of principal direction of the geostatic principal stresses with respect to the 

principal directions of material anisotropy. For horizontal bedding (i.e. α1=0°), the tunnel is aligned 

with the principal direction of material anisotropy for any angle Ψ; thus, in-plane and out-plane 

deformations are decoupled such that the rock structure does not produce axial deformations 

around the tunnel, nor the far-field axial shear stress affects the in-plane deformations. This is not 

the case for vertical bedding (i.e. α1=90°) and for inclined bedding (i.e. α1=45°), where the tunnel 

is misaligned with the geostatic principal stresses and with the principal directions of material 

anisotropy; thus, anti-symmetric axial displacements are induced around the tunnel and the radial 

displacements are affected by the far-field axial shear stresses. For vertical bedding (i.e. α1=90°), 

the axis of distortion is vertical because the rock structure and the far-field axial shear stress distort 

the tunnel cross-section about the same axis (i.e. the vertical). It is observed that when the major 

horizontal stress is parallel to the strike direction, the axial distortions produced by the far-field 

axial shear is opposite to that caused by the rock structure; thus, axial and radial displacements 

around the tunnel are reduced when the far-field axial shear stress is considered. However, when 

the major horizontal stress is perpendicular to the strike direction, the axial distortions of the tunnel 

cross-section due to the tunnel misalignment with respect to the rock structure and to the geostatic 
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horizontal principal stresses have the same direction, so the axial and radial displacements around 

the tunnel are amplified when the far-field axial shear stress is present. 

When the rock structure dips towards the tunnel, the axial distortions of the tunnel cross-

section and the location of the maximum radial displacements are heavily dependent on the angle 

Ψ (Figure 9.5). This is because the distortion caused by the rock structure is no longer about the 

vertical axis and depends on the strike direction, while the axial distortion caused by the far-field 

axial shear stress is about the vertical axis for any Ψ. Similar to the case with vertical bedding, for 

the inclined bedding, the ground deformations are reduced when the major horizontal stress is 

parallel to the strike direction and are amplified when the major horizontal stress is perpendicular 

to the strike. 

It is interesting to note that, among all cases studied, the largest and the smallest maximum 

tunnel convergence occurs when the bedding is vertical (α1=90°), and when the major horizontal 

stress is perpendicular to the strike direction (Figure 9.5b). The largest maximum convergence 

occurs for Ψ=90° (i.e. tunnel aligned with the minor horizontal stress) and the smallest, for Ψ=0° 

(i.e. when the tunnel is aligned with the major horizontal stress). In this case, the softest material 

direction of the rock mass is perpendicular to the bedding and the stiffest material direction is 

parallel. When the bedding is vertical and major horizontal stress is perpendicular to the strike 

direction, the largest stress is acting along the softest material direction, maximizing the 

displacements. 

9.4 Conclusions 

A new analytical solution for unsupported deep tunnels in full anisotropic rock mass is 

presented. The analytical solution explicitly considers the coupling of in-plane and out-of-plane 

deformations by taking into the formulation the fully populated compliance matrix of an 

anisotropic rock mass. Thus, it provides the full stress and displacement fields far-behind the face 

of an unsupported, circular and deep tunnel misaligned with the geostatic principal stress directions 

and with the principal directions of material anisotropy. The analytical solution is verified using 

3D FEM modeling on a variety of scenarios with increasing complexity. An excellent match 

between the analytical and numerical results is obtained, which shows that the analytical solution 

is essentially correct. The analytical solution has potential applications to practice because it 
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expands previous solutions where the tunnel was aligned with one of the principal geostatic stress 

directions and with one of the principal directions of material anisotropy. 

The interplay between the tunnel misalignment with the rock structure of a transversely 

anisotropic rock mass and with the geostatic principal stress directions is assessed. The results 

show that the tunnel misalignment produces axial displacements around the tunnel perimeter (i.e. 

axial distortion of the tunnel cross-section). The results also show that, for the cases investigated, 

the axial and radial displacements around the tunnel are larger when the major horizontal principal 

stress is perpendicular to the strike and smaller when the major horizontal stress is parallel to the 

strike, when the tunnel is not aligned with the principal horizontal stresses. When the major 

horizontal stress is parallel to the strike, the axial distortions due to the misalignment with the far-

field stresses and with principal directions of material anisotropy have opposite effects; thus, 

deformations are reduced. However, when the major horizontal stress is perpendicular to the strike, 

the axial distortions, due to tunnel misalignment with the far-field stresses and with the material 

anisotropy have complementary effects; so the rock mass deformation around the tunnel is 

amplified. The analyses highlight the importance of the coupling between in-plane and out-of-

plane stresses and deformations of tunnels in anisotropic rock masses and provides insights into 

the complex interplay that exists between the direction of the tunnel and the far-field stress 

directions and the directions of material anisotropy. 

Nomenclature 

Ψ = angle between tunnel axis and major horizontal principal stress; 

z = complex variable, x+iμy; 

σv = vertical stress; 

σh = minor principal horizontal stress; 

σH = major principal horizontal stress; 

r, θ = polar coordinates in the xy-plane; 

X, Y, Z: coordinate system attached to the tunnel, with Z-axis parallel to the tunnel axis; 

σxx,ff = far-field horizontal stress normal to the tunnel axis; 

σyy,ff = far-field vertical stress normal to the tunnel axis; 

σzz,ff = far-field axial stress parallel to the tunnel axis; 

τzx,ff, τyx,ff = far-field out-of-plane shear stresses; 

τxy,ff = far-field out-of-plane shear stresses; 



 

235 

σθθ = tangential stress; 

τθz = tangential axial shear stress; 

uθ = tangential displacement; 

ur = radial displacement; 

uz = axial displacement; 

G = shear modulus; 

E = Young modulus; 

ν = Poisson ratio; 

r0 = tunnel radius; 
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9.6 Appendix 1 

When the tunnel axis is aligned with one of the principal directions of material anisotropy 

of an orthotropic or transversely anisotropic elastic rock mass, the compliance matrix has the form 

shown in (A.1), and introduces a singularity to the general solution presented in the paper.  
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The system of equations (13) and (14) is no longer coupled and is given by equations (A.2) 

and (A.3). 
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The roots can be obtained directly from (A.4) and (A.5). 
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Also, λk=0, where k=1, 2, 3. 

9.7 Appendix 2 – Rotation of the compliance matrix using Euler angles 

The rotation of the compliance matrix (D) can be conducted using the Euler’s angles. The 

convention adopted follows the zxz or x-convention, where the first rotation, α, is about the z-axis, 

which is the axis of the tunnel; the second rotation is , about the axis x’, which is the rotated x 

axis; and the third rotation, γ, is about the z’’-axis, which is the rotated z axis. See figure 9.20. The 

rotation matrices, using Voigt’s notation, are: 

 

Figure 9.20 zxz-convention for the Euler angles. 
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The rotated compliance matrix is obtained by: 

 '' 123321 DRRDRRRRD TTT         (A.9) 

9.8 Appendix 3 – Rotation of compliance matrix using dip and strike angles 

The orientation of discontinuities in rock masses are commonly described using the dip angle, α1, 

and the strike, α2, as illustrated in Figure 9.4. Note that it is assumed that the North is aligned with 

the axis of the tunnel, i.e. with the z-axis. Assuming that the x-axis is horizontal, the y-axis, vertical, 

and the z-axis is aligned with the tunnel, the rotation matrix, using Voigt’s notation, is: 
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   '' DDRRD T          (A.11) 

Where n= (nx, ny, nz) is the normal vector to the rock mass structure and s= (sx, sy, sz) and t= (tx, 

ty, tz) are the vectors parallel to the plane of the structure. They are defined, in terms of dip and 

strike angles, as: 
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9.9 Appendix 4 – Matlab code for a tunnel in transversely anisotropic rock 

The Matlab code that can be used to solve the proposed analytical solution is included. 

This code was written using version R2016b. The code provides the stresses and displacements at 

the tunnel perimeter for an unsupported tunnel in a transversely anisotropic rock mass. The Matlab 

code reads the input data from an excel spreadsheet (Figure 9.21) and generates another excel 

spreadsheet with the results. The input data are: 1) Transversely anisotropic material properties; 2) 

Dip and strike direction angles; 3) The far-field stresses; 4) the tunnel radius and 5) the number of 

divisions along the tunnel perimeter where results are obtained. 
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Figure 9.21 Excel sheet format for the input data for the Matlab code. The excel file should be 
named INPUT.xlsx. 

 

function [] = TunnelAniso 
  
%***************************************** 
% READING INPUT DATA 
  
filename = 'INPUT.xlsx'; 
xlRange = 'B2:B3'; 
E = xlsread(filename,xlRange); 
filename = 'INPUT.xlsx'; 
xlRange = 'D2:D3'; 
v = xlsread(filename,xlRange); 
filename = 'INPUT.xlsx'; 
xlRange = 'F2:F3'; 
G = xlsread(filename,xlRange); 
filename = 'INPUT.xlsx'; 
xlRange = 'B7:B8'; 
Alpha = xlsread(filename,xlRange); 
% to avoid singularity 
if Alpha(2)==90 
    Alpha(2)=89.9; 
end   
filename = 'INPUT.xlsx'; 
xlRange = 'B11:B16'; 
Sff = xlsread(filename,xlRange); 
Sxff=Sff(1); 
Syff=Sff(2); 
Szff=Sff(3); 
Txyff=Sff(6); 
Tyzff=Sff(4); 
Txzff=Sff(5); 
filename = 'INPUT.xlsx'; 
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xlRange = 'B18:B18'; 
r = xlsread(filename,xlRange); 
filename = 'INPUT.xlsx'; 
xlRange = 'B20:B20'; 
N = xlsread(filename,xlRange); 
n_= 360/N; 
N=N+1; 
  
%********************************************************* 
% ASSEMBLING COMPLIANCE MATRIX 
  
Alpha = (pi()/180)*Alpha; % angles in rad 
s_a1 = sin(Alpha(1)); 
s_a2 = sin(Alpha(2)); 
c_a1 = cos(Alpha(1)); 
c_a2 = cos(Alpha(2)); 
  
% Unit vector (equation A.12) 
n = [-s_a1*s_a2, c_a1, s_a1*c_a2]; 
s = [-c_a1*s_a2, -s_a1,c_a1*c_a2]; 
t = [c_a2, 0, s_a2]; 
  
% Rotation matrix (equation A.10) 
R_S=[t(1)^2,     t(2)^2,    t(3)^2,    2*t(2)*t(3),          2*t(1)*t(3),          
2*t(1)*t(2); 
     n(1)^2,     n(2)^2,    n(3)^2,    2*n(2)*n(3),          2*n(1)*n(3),          
2*n(1)*n(2); 
     s(1)^2,     s(2)^2,    s(3)^2,    2*s(2)*s(3),          2*s(1)*s(3),          
2*s(1)*s(2); 
     n(1)*s(1), n(2)*s(2), n(3)*s(3), n(2)*s(3)+n(3)*s(2), 
n(1)*s(3)+n(3)*s(1), n(1)*s(2)+n(2)*s(1); 
     t(1)*s(1), t(2)*s(2), t(3)*s(3), t(2)*s(3)+t(3)*s(2), 
t(1)*s(3)+t(3)*s(1), t(1)*s(2)+t(2)*s(1); 
     t(1)*n(1), t(2)*n(2), t(3)*n(3), t(2)*n(3)+t(3)*n(2), 
t(1)*n(3)+t(3)*n(1), t(1)*n(2)+t(2)*n(1)]; 
  
%Compliance matrix for transversely anisotropic elastic rock mass (equation 
35) 
D = [   1/E(1),  -v(1)/E(2) ,   -v(2)/E(1),  0,      0,         0; 
      -v(1)/E(2),   1/E(2),     -v(1)/E(1),  0,      0,         0; 
      -v(2)/E(1), -v(1)/E(1),     1/E(1),    0,      0,         0; 
           0,          0,            0,    1/G(1),   0,         0; 
           0,          0,            0,      0,     1/G(2),     0; 
           0,          0,            0,      0,      0,       1/G(1)]; 
  
%Rotated compliance matrix (equation A.11) 
D_rot = R_S'*D*R_S; 
  
%Beta matrix (equation 11) 
B = zeros(6); 
for i=1:6 
    for j=1:6 
        B(i,j)=D_rot(i,j)-(D_rot(i,3)*D_rot(3,j))/D_rot(3,3); 
    end 
end 
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% ---------------------------------------------------------------- 
% Check if the case is singular 
if s_a2==1 || s_a1==0 || s_a1==1 && s_a2==0 
  
% roots for the in-plane stresses (equation A.2)  
a=zeros(5,1); 
a(1)=B(1,1); 
a(2)=0; 
a(3)=(2*B(1,2)+B(6,6)); 
a(4)=0; 
a(5)=B(2,2); 
  
L=roots(a); 
mi=[0,0,0]; 
mi(1)=L(1); 
mi(2)=L(3); 
  
% roots for out-of-plane stresses (equation A.3) 
a=zeros(3,1);     
a(1)=B(5,5); 
a(2)=0; 
a(3)=B(4,4); 
L=roots(a); 
mi(3)=L(1); 
  
%lambda vector 
l=[0,0,0]; 
  
% Coefficients A (equations 33 and 34) 
F=zeros(4); 
F = [1,0,1,0; 
    0,1,0,1; 
    real(mi(1)),-imag(mi(1)),real(mi(2)),-imag(mi(2)); 
    imag(mi(1)),real(mi(1)),imag(mi(2)),real(mi(2))]; 
L = zeros(1,4); 
L = (r/2)*[-Syff, Txyff, Txyff, -Sxff]; 
A=inv(F)*L'; 
  
A1= complex(A(1),A(2)); 
A2= complex(A(3),A(4)); 
A3= complex(0.5*r*Tyzff,-0.5*r*Txzff); 
  
% if it is not singular 
else 
  
% Coefficients of the 6th order polynomium (equation 16) 
a=zeros(7,1); 
a(1)=B(1,1)*B(5,5)-B(1,5)^2; 
a(2)=-2*B(1,1)*B(4,5)-2*B(1,6)*B(5,5)+2*(B(1,4)+B(5,6))*B(1,5); 
a(3)=B(1,1)*B(4,4)+4*B(1,6)*B(4,5)+(2*B(1,2)+B(6,6))*B(5,5)-(B(1,4)+B(5,6))^2 
-2*(B(2,5)+B(4,6))*B(1,5); 
a(4)=-2*B(1,6)*B(4,4)-2*(2*B(1,2)+B(6,6))*B(4,5)-
2*B(2,6)*B(5,5)+B(1,5)*B(2,4)+2*(B(1,4)+B(5,6))*(B(2,5)+B(4,6))+B(2,4)*B(1,5)
; 
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a(5)=(2*B(1,2)+B(6,6))*B(4,4)+4*B(2,6)*B(4,5)+B(2,2)*B(5,5)-
2*(B(1,4)+B(5,6))*B(2,4)-(B(2,5)+B(4,6))^2; 
a(6)=-2*B(2,6)*B(4,4)-2*B(2,2)*B(4,5)+2*(B(2,5)+B(4,6))*B(2,4); 
a(7)=B(2,2)*B(4,4) - B(2,4)^2; 
  
L=roots(a); 
  
mi=[0,0,0]; 
mi(1)=L(1); 
mi(2)=L(3); 
mi(3)=L(5); 
  
% lambda vector (equations 25 to 27) 
l=[0,0,0]; 
l(1)= -( B(1,5)*mi(1)^3 - (B(1,4)+B(5,6))*mi(1)^2 + (B(2,5)+B(4,6))*mi(1) - 
B(2,4)) / (B(5,5)*mi(1)^2 - 2*B(4,5)*mi(1) + B(4,4)); 
l(2)= -( B(1,5)*mi(2)^3 - (B(1,4)+B(5,6))*mi(2)^2 + (B(2,5)+B(4,6))*mi(2) - 
B(2,4)) / (B(5,5)*mi(2)^2 - 2*B(4,5)*mi(2) + B(4,4)); 
l(3)= -( B(1,5)*mi(3)^3 - (B(1,4)+B(5,6))*mi(3)^2 + (B(2,5)+B(4,6))*mi(3) - 
B(2,4)) / ... 
        (B(1,1)*mi(3)^4 - 2*B(1,6)*mi(3)^3 + (2*B(1,2) + B(6,6))*mi(3)^2 - 
2*B(2,6)*mi(3) + B(2,2)); 
  
% Coefficients A (equation 33 to 34) 
F=zeros(6); 
F = [   1       ,      0       ,    1       ,     0         , 
real(l(3))                                      , -imag(l(3)) ; 
        0       ,      1       ,    0       ,     1         , 
imag(l(3))                                      ,  real(l(3)) ; 
    real(mi(1)) , -imag(mi(1)) ,real(mi(2)) ,-imag(mi(2))   , 
real(mi(3))*real(l(3)) -  imag(mi(3))*imag(l(3)), -imag(mi(3))*real(l(3)) - 
real(mi(3))*imag(l(3)) ; 
    imag(mi(1)) , real(mi(1))  ,imag(mi(2)) ,real(mi(2))    , 
imag(mi(3))*real(l(3)) + real(mi(3))*imag(l(3))  ,  real(mi(3))*real(l(3)) - 
imag(mi(3))*imag(l(3))  ; 
    real(l(1))  , -imag(l(1))  ,real(l(2))  ,-imag(l(2))    ,           
1                                     ,                 
0                                ; 
    imag(l(1))  , real(l(1))   ,imag(l(2))  ,real(l(2))     ,           
0                                     ,                 
1                                ]; 
  
L = (r/2)*[-Syff, Txyff, Txyff, -Sxff, Tyzff, -Txzff]; 
  
A=inv(F)*L'; 
  
A1= complex(A(1),A(2)); 
A2= complex(A(3),A(4)); 
A3= complex(A(5),A(6)); 
  
end 
  
%******************************************************************* 
% Calculation of stresses and displacements at the tunnel perimeter 
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% Polar coordinate tetha (t) at the tunnel perimeter 
t=zeros(N,1); 
for i=1:N 
    t(i)=(i-1)*n_*(pi()/180); 
end 
  
%auxiliars 
aux1=zeros(N,1); 
for i=1:N 
   aux1(i)=complex(cos(t(i)),sin(t(i))); 
end 
aux2=zeros(N,1); 
for i=1:N 
   aux2(i)=complex(sin(t(i)),cos(t(i))); 
end 
    
%Stress Function PHI at the tunnel perimeter, r=r0 (from equations 28 and 29) 
PHI1=zeros(N,1); 
PHI2=zeros(N,1); 
PHI3=zeros(N,1); 
for i=1:N 
   PHI1(i)=A1*aux1(i); 
   PHI2(i)=A2*aux1(i); 
   PHI3(i)=A3*aux1(i); 
end 
  
%Derivative of the Stress Function PHI at the tunnel perimeter, r=r0 (from 
equations 28 and 29) 
diffPHI1=zeros(N,1); 
diffPHI2=zeros(N,1); 
diffPHI3=zeros(N,1); 
for i=1:N 
   diffPHI1(i)=A1*(1/r)*aux2(i)*(1/(sin(t(i)) - mi(1)*cos(t(i)))); 
   diffPHI2(i)=A2*(1/r)*aux2(i)*(1/(sin(t(i)) - mi(2)*cos(t(i)))); 
   diffPHI3(i)=A3*(1/r)*aux2(i)*(1/(sin(t(i)) - mi(3)*cos(t(i)))); 
end 
  
%Stresses at the tunnel perimeter (figure 1c), eq. 17 to 21. 
Sx=zeros(N,1); 
Sz=zeros(N,1); 
Sy=zeros(N,1); 
Txy=zeros(N,1); 
Tyz=zeros(N,1); 
Tzx=zeros(N,1); 
for i=1:N 
Sx(i)=2*real((mi(1)^2)*diffPHI1(i) + (mi(2)^2)*diffPHI2(i) + 
(mi(3)^2)*l(3)*diffPHI3(i)); 
Sy(i)=2*real(diffPHI1(i) + diffPHI2(i) + l(3)*diffPHI3(i)); 
Txy(i)=-2*real(mi(1)*diffPHI1(i) + mi(2)*diffPHI2(i) + 
mi(3)*l(3)*diffPHI3(i));  
Tyz(i)=-2*real(l(1)*diffPHI1(i) + l(2)*diffPHI2(i) + diffPHI3(i)); 
Tzx(i)=2*real(mi(1)*l(1)*diffPHI1(i) + mi(2)*l(2)*diffPHI2(i) + 
mi(3)*diffPHI3(i)); 
end 
  
%Axial normal stress (equation 9) 
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for i=1:N 
    Sz(i)= -(1/D_rot(3,3))*(D_rot(1,3)*Sx(i) + D_rot(2,3)*Sy(i) + 
D_rot(3,4)*Tyz(i) + D_rot(3,5)*Tzx(i) + D_rot(3,6)*Txy(i));    
end     
  
%Stresses at the tunnel perimeter (figure 1b) 
Stff=zeros(N,1); 
Srff=zeros(N,1); 
Trtff=zeros(N,1); 
Trzff=zeros(N,1); 
Ttzff=zeros(N,1); 
for i=1:N 
    Srff(i)=0.5*(Sxff+Syff)-0.5*(Syff-Sxff)*cos(2*t(i)) + Txyff*sin(2*t(i)); 
    Stff(i)=0.5*(Sxff+Syff)+0.5*(Syff-Sxff)*cos(2*t(i)) - Txyff*sin(2*t(i)); 
    Trtff(i) = 0.5*(Syff-Sxff)*sin(2*t(i)) + Txyff*cos(2*t(i)); 
    Trzff(i) = Txzff*cos(t(i)) + Tyzff*sin(t(i)); 
    Ttzff(i) = -Txzff*sin(t(i)) + Tyzff*cos(t(i)); 
end 
  
%Stresses at the tunnel perimeter (figure 1a) 
St=zeros(N,1); 
Sr=zeros(N,1); 
Ttz=zeros(N,1); 
Trz=zeros(N,1); 
Trt=zeros(N,1); 
for i=1:N     
    Sr(i)= Srff(i) + 0.5*(Sx(i)+Sy(i))-0.5*(Sy(i)-
Sx(i))*cos(2*t(i))+Txy(i)*sin(2*t(i)); 
    St(i)= Stff(i) + 0.5*(Sx(i)+Sy(i))+0.5*(Sy(i)-Sx(i))*cos(2*t(i)) - 
Txy(i)*sin(2*t(i)); 
    Trt(i)= Trtff(i)+ 0.5*(Sy(i)-Sx(i))*sin(2*t(i)) + Txy(i)*cos(2*t(i)); 
    Trz(i) = Trzff(i)+ Tzx(i)*cos(t(i)) + Tyz(i)*sin(t(i)); 
    Ttz(i) = Ttzff(i)+ -Tzx(i)*sin(t(i)) + Tyz(i)*cos(t(i));           
end 
Sxx = Sxff + Sx; 
Syy = Syff + Sy; 
Szz = Szff + Sz; 
Txy = Txyff + Txy; 
Txz = Txzff + Tzx; 
Tyz = Tyzff + Tyz; 
  
% Displacements at the tunnel perimeter (equation 22 to 24). 
Ux=zeros(N,1); 
Uy=zeros(N,1); 
Uz=zeros(N,1); 
Ur=zeros(N,1); 
Ut=zeros(N,1); 
for i=1:N     
    Ux(N+1-i)= real(2*PHI1(i)*((B(1,1)*(mi(1)^2) + B(1,2) - B(1,6)*mi(1) + 
l(1)*(B(1,5)*mi(1) - B(1,4))))+...  
                2*PHI2(i)*((B(1,1)*(mi(2)^2) + B(1,2) - B(1,6)*mi(2) + 
l(2)*(B(1,5)*mi(2) - B(1,4))))+... 
                2*PHI3(i)*(l(3)*(B(1,1)*(mi(3)^2) + B(1,2) - B(1,6)*mi(3)) + 
B(1,5)*mi(3) - B(1,4)));        
    Uy(N+1-i)= real(2*PHI1(i)*(B(1,2)*mi(1) + (B(2,2)/mi(1)) - B(2,6) + 
l(1)*(B(2,5) - (B(2,4)/mi(1))))+... 
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                2*PHI2(i)*(B(1,2)*mi(2) + (B(2,2)/mi(2)) - B(2,6) + 
l(2)*(B(2,5) - (B(2,4)/mi(2))))+... 
                2*PHI3(i)*(l(3)*(B(1,2)*mi(3) + (B(2,2)/mi(3)) - B(2,6)) + 
B(2,5) - (B(2,4)/mi(3))));            
    Uz(N+1-i)= real(2*PHI1(i)*(B(1,4)*mi(1) + (B(2,4)/mi(1)) - B(4,6) + 
l(1)*(B(4,5) - (B(4,4)/mi(1))))+... 
                2*PHI2(i)*(B(1,4)*mi(2) + (B(2,4)/mi(2)) - B(4,6) + 
l(2)*(B(4,5) - (B(4,4)/mi(2))))+... 
                2*PHI3(i)*(l(3)*(B(1,4)*mi(3) + (B(2,4)/mi(3)) - B(4,6)) + 
B(4,5) - (B(4,4)/mi(3))));               
end 
  
for i=1:N 
    Ur(i) = -(cos(t(i))*Ux(i) + sin(t(i))*Uy(i)); 
    Ut(i) = -sin(t(i))*Ux(i) + cos(t(i))*Uy(i); 
end 
  
%Export results to an excel spreadsheet. 
for i=1:N 
   t(i) = t(i)*(180/pi()); 
end 
 
filename = 'Results_Aniso.xlsx'; 
T = table(t,Sr, St, Trt, Trz, Ttz, Ur, Ut, Uz, Ux, Uy, Sxx, Syy, Txy, Txz, 
Tyz, Szz); 
writetable(T,filename); 
  
  
  
end 
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 3D FACE EFFECTS OF TUNNELS MISALIGNED WITH THE 
PRINCIPAL DIRECTIONS OF MATERIAL AND STRESS ANISOTROPY 

VITALI, O. P. M.; CELESTINO, & BOBET, A. (2019). 3D face effects of tunnels misaligned 
with the principal directions of material and stress anisotropy. Manuscript under review for 
publication in a peer-reviewed journal. 

 

Abstract 

Rock masses may present remarked stress anisotropy or fabric structure, such as foliation 

and bedding; thus, it is likely that a tunnel is misaligned with the geostatic principal stress 

directions, with the principal material directions, or with both. Anti-symmetric axial displacements 

and axial shear stresses are induced as a consequence of the tunnel misalignment. However, the 

effects of the misalignment near the face are still unknown. In this paper, the 3D face effects on 

tunnels misaligned with the geostatic principal stress directions and/or with the material principal 

directions are investigated. 3D FEM modeling is conducted for unsupported and supported tunnels. 

A transversely anisotropic elastic model is selected to represent the structured rock mass. The 

results show that misaligned tunnels undergo asymmetric deformations near the face. The radial 

deformations far-behind the face are symmetric for unsupported tunnels, but they are asymmetric 

for supported tunnels. The reason for this is that asymmetric deformations near the face affect 

ground-support interaction. As a consequence, the internal forces in the tunnel support are also 

asymmetric; further, the support forces may be larger than those of a tunnel aligned with the 

geostatic principal stress. 

10.1 Introduction 

Tunnel construction is a three-dimensional problem, and so the importance of the stress 

redistribution that occurs near the face of the tunnel cannot be overstated. Near the face, axial 

displacements and axial shear stresses are induced, which cause the rotation of the principal stress 

directions in the ground around the tunnel (Eberhardt, 2001). If the tunnel is supported, the radial 

stresses at the tunnel perimeter reduce to zero on the unsupported span behind the face and increase 

to a constant value far-behind the face (Cantieni and Anagnostou, 2009; Almeida e Sousa et al., 

2011). Thus, the importance of considering 3D face effects to properly predict ground and support 
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deformations due to tunneling is widely recognized in the literature; for instance, it is well-

established in the literature that 3D models predict ground deformations more accurately than 2D 

models, when compared with field measurements (Galli et al., 2004; Möller, 2006; Yeo et al., 

2009; Almeida e Sousa et al., 2011; Svoboda and Masin, 2011; Janin et al., 2015, Vermeer et al, 

2002). This is so because 2D tunnel analysis fails to reproduce the stress paths, near the face, that 

the ground undergoes during construction (Cantieni and Anagnostou, 2009). Thanks to recent 

advances in hardware and software, 3D numerical analyses of tunnels are nowadays feasible in 

practice. 

Most research on 3D face effects on tunnels has been conducted assuming that the tunnel 

is aligned with one of the geostatic principal stress directions. However, rock masses may present 

remarked stress anisotropy (Gysel, 1975; Brown and Hoek, 1978; McGarr and Gay, 1978; Evans 

et al., 1989; Martin and Kaiser, 1996; Haimson et al., 2003; Wileveau et al., 2007; Zhao et al., 

2013, 2015; Park et al., 2014; Perras et al., 2015; Zhang et al., 2017; Souček et al., 2017), due to 

e.g. tectonic movements (Haimson et al., 2003; Park et al., 2014). An extensively data survey of 

the geostatic stress fields in rock masses was conducted by McGarr and Gay (1978) over 77 sites 

around the world, and the average, plus or minus one standard deviation, of the principal stress 

ratios found was: σ1/ σ2=1.45 ± 0.40; σ1/σ3=2.42 ± 1.14; and σ2/σ3=1.66 ± 0.5. The data showed 

that the geostatic stress field was quite anisotropic and variable; thus, the most probable scenario, 

for any tunnel, is that of being misaligned with the geostatic principal stress directions. As a 

consequence, far-field axial shear stresses are present along the direction of the tunnel and produce 

anti-symmetric axial displacements around the tunnel; that is, the tunnel cross-section is distorted 

in the axial direction (Vitali et al., 2018; Vitali et al., 2019a; Vitali et al., 2019b, Vitali et al., 2019c, 

Vitali et al., 2019d). Interestingly, the presence of the far-field axial shear stress is often neglected 

in tunnel design, and yet the importance of the tunnel alignment with the principal stress directions 

is well-recognized in the technical literature. For instance, Goodman, (1989) recommends aligning 

the axis of the tunnel or cavern with the geostatic major principal stress such that stress 

concentrations around the tunnel are minimized. When this is not the case, as shown by Vitali et 

al., (2019b), far-field axial shear stresses appear that cause asymmetric deformations near the face 

and that strongly affect the ground-support interaction and the plastic deformations around the 

tunnel. One of the consequences of the asymmetric deformations near the face is that the internal 

forces in the liner and the plastic zone around the tunnel are asymmetric (Vitali et al., 2019b). 
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Vitali et al., (2019c) studied numerically the effects of tunnel misalignment with the geostatic 

principal stress directions of an experimental tunnel at the URL in Canada (Martin, 1997) in a 

massive granite rock mass. The authors observed that asymmetric spalling at the tunnel walls could 

occur if the tunnel was not aligned with the principal geostatic stress directions. 

Also, investigation of 3D face effects on tunnels often assumes that the ground is isotropic. 

However, the ground, e.g. rock masses, may have a remarkable fabric structure such as foliation, 

schistosity, stratification, bedding, joint sets, etc.; thus, an anisotropic behavior of the ground is 

expected. Worotnicki (1993) observed that, for structured rock masses such as mudstones, slates, 

phyllites and schists, the stiffness anisotropy was very high. For instance, the author indicated that 

more than 50% of the laboratory data on these rocks showed that the material stiffness parallel to 

the structural planes was, as average, two times larger than perpendicular to the structural planes, 

and could be as high as six times. In the field, tunnel instrumentation data on NATM tunnels in 

highly anisotropic ground contains evidence of asymmetric deformations and opposite axial 

displacements in opposite directions at each springline (Schubert and Budil, 1995; Goricki et al., 

2005; Schubert et al., 2005; Schubert and Moritz, 2011; Klopčič and Logar, 2014; Lenz et al., 

2017). This behavior is often associated with anisotropic properties (e.g. foliation and schistosity) 

or with heterogeneities of the rock mass. For instance, Schubert et al., (2005) associated the 

asymmetric radial displacements at the springline with the presence of synclines and anticlines, 

observed in the geological mapping of the tunnel face, and the anti-symmetric axial displacements, 

also at the springlines, with the axial component of strains due to buckling and sliding of inclined 

schistosity near the tunnel walls.  

In this paper, the 3D face effects of tunnels misaligned with the rock mass structural planes 

and/or with the geostatic principal stress directions are investigated. 3D FEM modeling of 

unsupported and supported tunnels are conducted. The rock mass is represented by transversely 

anisotropic elastic model. This is consistent with the technical literature, where, a transversely 

anisotropic model is often used to approximate the behavior of structured rock masses (see e.g. 

Batugin and Nirenburg (1972) and Exadaktylos (2001) who found that a transversely anisotropic 

elastic model was able to predict the rock mass behavior observed in the laboratory). The interplay 

between the tunnel misalignment with principal stresses and with the rock mass structure is 

assessed. Further, the ground deformations and the internal forces in the liner of a misaligned 
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tunnel are compared with those of a tunnel aligned with the minor horizontal stress, which is often 

assumed as the worst scenario for tunnel design. 

10.2 Numerical model 

3D FEM models were built to investigate the 3D face effects of tunnels not aligned with 

the principal directions of material and/or stress anisotropy. The finite element mesh was refined 

and was made large enough to ensure accuracy of the results (Vitali et al., 2017). 2nd order 

hexahedron elements were adopted. The FEM mesh consisted of a structured refined grid at the 

center of the model (Figure 10.1) connected with the boundaries by an unstructured mesh. Figure 

10.2 illustrates the mesh of the excavated tunnel with the liner, reference positions and tunnel 

coordinate system. The reference positions are: (1) far-ahead the face; that is, where the geostatic 

stress field is found; (2) at the face; and (3) far-behind the face, where the 3D face effects no longer 

affect the stresses and displacements around the tunnel. The coordinate system XYZ in Figure 10.2 

was chosen such that the tunnel was aligned with the Z-axis, which was taken as positive in the 

direction of excavation, the Y-axis was vertical and the X-axis, horizontal. The tunnel cross section 

was circular and had a 5m radius. The length of the hexahedron elements along the tunnel was 1m 

(i.e. 0.2r0). The axial mesh refinement was sufficient to ensure accurate results (Vitali et al., 2017). 

The FEM models included several phases to represent the tunnel excavation sequence. The first 

phase generated the geostatic stress field. The next phases simulated the tunnel excavation process 

by sequentially deactivating the elements inside the excavation rounds and activating the elements 

representing the support, if present. An excavation and support round of 1m (i.e. 0.2r0) was adopted. 

The tunnel support was simulated with shell elements. It was assumed that the tunnel was installed 

immediately after the excavation, so the unsupported span was zero. No relative slip between the 

liner and the tunnel was allowed (i.e. no-slip condition). Figure 10.2 illustrates the mesh near the 

face of a supported tunnel  

The rock mass was represented by a transversely anisotropic elastic model. The orientation 

of the rock mass structure was determined by the dip angle (α1) and by the strike direction (α2). It 

was assumed that the tunnel was aligned with the North in the horizontal direction, so the dip was 

the vertical angle between the tunnel and the structural planes and the strike was the horizontal 

angle between the tunnel axis and the structural planes. When α1=0°, the structural planes are 

horizontal. The rock mass properties adopted for all cases discussed in this paper were: Young 
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modulus perpendicular to the structural planes (E1) equal to 1GPa; Young modulus parallel to the 

structural planes (E2=E3), 3GPa; in-plane Poisson ratio (ν23), 0.333; out-of-plane Poisson ratio 

(ν13= ν12), 0.25; in-plane Shear modulus (G23), 1.125GPa; and out-of-plane Shear modulus (G23= 

G13), 0.667GPa. The selected properties are typical of highly anisotropic rock masses such as 

phyllites, slates schists and quartzites (Worotnicki, 1993). The support of the tunnel was 

approximated using a linear-elastic model with Young modulus (E) equal to 25GPa and Poisson 

ratio (ν) equal to 0.2, which are typical properties of reinforced concrete. The thickness of the liner 

was 0.5m (i.e. 0.1r0), which is typical for a 5m tunnel radius. 

 

Figure 10.1 Refined mesh at the center of the model, far-from the boundaries. 
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Figure 10.2 FEM mesh near the face. Reference positions and coordinate system. (1) far-ahead 
of the face; (2) at the tunnel face; and (3) far-behind the face. The Z-axis is the tunnel axis; the 

X-axis is the horizontal axis, and the Y-axis is the vertical axis. 

10.3 3D face effects due to the rock mass structure 

Tunnels misaligned with the rock mass structure are investigated in this section. An 

isotropic stress field was adopted to isolate the effects of the rock structure from those of the far-

field stress. The far-field principal stresses were 5MPa that corresponded to an overburden of about 

200m. To investigate displacements and stresses near the face, the following cases were 

investigated: rock structure with dip angles (α1) 0°, 45°, 90° and 135° and strike direction (α2) of 

0° and 45°. Figure 10.3 illustrates the cases with α2=0° that represent tunnels perpendicular to the 

strike direction and are used to investigate the effects of the dip on tunnel behavior; those cases 

are discussed first. Figure 10.3a shows a tunnel aligned with the structural planes when the dip 

angle is 0° (i.e. horizontal stratification); Figure 10.3b shows the rock mass structural planes 

dipping behind the face with α1=45°; Figure 10.3d, dipping ahead of the face with α1=135°; and 

Figure 10.3c when the dip angle is 90° (i.e. vertical stratification). The case with strike direction 

45o (α2=45°) is more complex, as the tunnel is not aligned with any of the principal directions of 

material anisotropy, and is discussed later.  
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Figure 10.3 Rock mass structure with respect to the tunnel, for strike direction (α2) 0°. Dip angles 
(α1) of (a) 0°; (b) 45°; (c) 90°; (d) 135°. 

 

Figure 10.4 is a plot of the normalized horizontal and vertical tunnel convergence, with 

respect to the tunnel radius (r0), and the distance from the face (Z), normalized with respect to the 

tunnel radius, for dip angles 0°, 45°, 90° and 135°. The strike angle is 0° in all the cases (cases 

shown in Figure 10.3). As one can see, tunnel convergence starts to increase approximately at 4r0 

ahead of the face and reaches a constant at approximately 4r0 behind the face of the tunnel. Both 

vertical and horizontal convergences are the largest for α1=0° and the smallest for α1=90°. The 

results for α1=45° and for α1=135° are exactly the same because of symmetry. Also, the vertical 

convergence is larger than the horizontal, except for α1=90°, where they are the same. For α1=0°, 

the tunnel is aligned with the rock mass structure; thus, the rock mass stiffness in the vertical 

direction is the smallest (i.e. along the direction perpendicular to the rock mass structural planes), 

while in the horizontal direction it is the largest (i.e. parallel to the rock mass structural planes). 

When α1=90°, the tunnel is perpendicular to the structural planes, as shown in Figure 10.3c, and 

thus, on the tunnel cross section, the rock is isotropic and has the largest stiffness. 
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Figure 10.4 Normalized tunnel convergence with respect to the tunnel radius with the normalized 
distance from the face with respect to the tunnel radius for strike angle (α2) 0°. (a) horizontal 

convergence; (b) vertical convergence. 

 

Figure 10.5 shows the normalized radial displacements at the tunnel perimeter with respect 

to the tunnel radius, as well as the deformed cross section of the tunnel at the face and far-behind 

the face, for dip angles (α1) 0°, 45°, 90° and 135°. As already mentioned, the radial displacements 

are the largest for α1=0° and the smallest for α1=90°. Far-behind the face, the radial displacements 

are symmetric in all cases; at the face, they are asymmetric for α1=45° and 135° and symmetric for 

α1=0° and 90°. The deformed cross section far-behind the face has an ellipsoidal shape for α1=0°, 

45° and 135° and a circular shape for α1=90°. The radial displacements for α1=45° and 135° are 

the same far-behind the face, but they are different at the face. Interestingly, at the face, there is a 

vertical translation of the tunnel cross-section when α1=45° and 135°, which is downwards for 

α1=45° and upwards for α1=135°. These vertical translations are not present far-behind the face of 

the tunnel. When the tunnel is aligned with the principal material directions (i.e. α1=0° and 90°), 

no vertical translation of the tunnel cross-section occurs. 
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Figure 10.5 Normalized radial displacements at the tunnel perimeter, with respect to the tunnel 
radius, and deformed tunnel cross-section, for strike angle (α2) 0°. (a) at the face; (b) far-behind 

the face. Deformations are magnified by a factor of 200 at the face and by 100 far-behind the 
face. 

 

Figure 10.6 presents the normalized radial displacements at the crown and at the invert of 

the tunnel and the vertical translation (normalized by the tunnel radius), with the distance from the 

tunnel face (also normalized with respect to the tunnel radius), for α1=45°. As one can see in Figure 

10.6a, the radial displacements at the crown and at the invert are different near the face of the 

tunnel, but they are the same far-behind the face. Also, the vertical translation of the cross section 

starts near face and is maximum at the face (i.e. Z=0). Figure 10.6b shows “corrected” radial 

displacements (the vertical translation is subtracted), with the distance from the face. Interestingly, 

the corrected radial displacements are the same near the face (the differences are within numerical 
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error), which indicates that the vertical translation is, in reality, a rigid body vertical motion of the 

tunnel. 

 

Figure 10.6 Normalized radial displacements and vertical translation of the tunnel cross section 
with respect to the tunnel radius, with the normalized distance from the face with respect to the 

tunnel radius for α1=45° and α2=0°. (a) radial displacements and vertical translation; (b) 
corrected radial displacements. 

 

Figure 10.7 shows the normalized stress paths with respect to the vertical stress at points 

near the tunnel perimeter, for the dip angles (α1) 0°, 45° and 90°. The stresses are computed at the 

springline, at the crown and at the invert, at a distance of 0.1r0 from the tunnel perimeter to avoid 

the mathematical singularity that occurs due to the sharp corner at the intersection of the tunnel 

face and the tunnel perimeter. The stress paths follow the same trend at all points. Far ahead of the 

face of the tunnel, i.e. at location (1) in Figure 10.2, the stresses are those of the geostatic stress 

field. Ahead of the face, as the distance from the face decreases, the shear stresses increase 

substantially; behind the face, the shear stresses continue to increase with distance from the face 

until reaching a constant value (location (3) in Figure 10.2). The mean stresses increase near the 

face (at location (2) in Figure 10.2) and decrease behind the face. For the three dip angles, the 

stress paths at the springlines are symmetric. For α1=0° (Figure 10.7a), the stress paths at the invert 

and at the crown are the same, as expected, but different at the springlines. For α1=45° (Figure 

10.7b), the stress paths are all different, and are associated with the downwards rigid body 

displacement of the tunnel cross section near the face, as shown in Figures 10.5 and 10.6. The 

downwards rigid body displacement compresses the ground underneath the tunnel and relieves the 

ground above. Because of the similarities between α1=45° and α1=135°, the stresses at the crown 
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for α1=45° are exactly the same as the stresses at the invert for α1=135° and vice-versa. For α1=90° 

(Figure 10.7c), the stress paths are exactly the same at points around the tunnel perimeter, due to 

symmetry. 

 

Figure 10.7 Normalized stress paths with respect to the vertical stress, for strike angle (α2) 0°. (a) 
dip angle (α1) 0°; (b) dip angle (α1) 45°; (c) dip angle (α1) 90°. 

 

Figure 10.8 shows the axial displacements with respect to the tunnel radius with the 

distance from the tunnel face, both normalized with respect to the tunnel radius, for dip angles (α1) 

0°, 45°, 90°. At the springlines, for all cases, axial displacements are mobilized near the face and 

are maximum at the face. The axial displacements reduce to zero far behind the face. For α1=0° 

and 90°, at the crown and invert (Figures 10.8a and 10.8c), no axial displacements are induced far-

behind the face because the tunnel is aligned with the rock mass structure; however, axial 

displacements are induced near the face. For α1=45° (Figure 10.8b), axial displacements at the 

crown and at the invert are produced far-behind the face and have the same magnitude, but opposite 

directions. Because of the symmetry, the axial displacements at the crown for α1=45° are exactly 

the same as at the invert for α1=135° and vice-versa. 
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Figure 10.8 Normalized axial displacements with respect to the tunnel radius with the normalized 
distance from the face with respect to the tunnel radius, for strike angle (α2) 0°. (a) dip angle (α1) 

0°; (b) dip angle (α1) 45°; (c) dip angle (α1) 90°. 

 

The normalized axial displacements along the tunnel perimeter, for the case with α1=45° 

are plotted in Figure 10.9. At the face (i.e. Z=0), the axial displacements are asymmetric. They are 

the largest at the crown and the smallest at the invert. Far-behind the face, the axial displacements 

are anti-symmetric. The horizontal axis is the axis of anti-symmetry, so the axial displacements 

are maximum at the crown and at the invert and zero at the springline. The axial displacements at 

the face can be understood within the context of the rigid body displacement of the tunnel cross 

section explained earlier. The face of the tunnel constrains the axial displacements induced around 

the tunnel perimeter. As consequence, asymmetric radial deformations are induced near the face 

(note that for α1=0° and 90°, Figure 10.8, no anti-symmetric axial displacements are induced far-

behind the face and the ground deformations near the face are symmetric, as shown in Figure 10.5). 
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Figure 10.9 Normalized axial displacements with respect to the tunnel radius at the tunnel 
perimeter for α1=45° and α2=0°. The colors of the axially deformed tunnel cross-sections are 

associated with the magnitude of the axial displacements and are kept to help the visualization of 
the deformed shape. 

 

The preceding discussion focused on the influence of the dip angle on the tunnel response, 

while the strike of the rock structure remained aligned with the horizontal axis of the tunnel (i.e. 

α2=0°). In the following, the effect of the tunnel misalignment with the strike is investigated. To 

that end, the following cases were considered: strike direction, α2=45°, with dip angles 0°, 45° and 

90°. Figure 10.10a shows the tunnel misaligned with the vertical structural planes (i.e. α1=90°) and 

Figure 10.10b shows the tunnel misaligned with the inclined structural planes (i.e. α1=45°); for dip 

angle (α1) 0°, the rock mass structure is horizontal and is shown in Figure 10.3a. Note that, for 

α1=0°, the strike angle has no influence in the results because the horizontal tunnel is always 

aligned with the rock structure. The same isotropic geostatic stress field, as before, was adopted. 
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Figure 10.10 Rock mass structure with strike direction (α2) 45°. Dip angles (α1): (a) 90°; (b) 45°. 

 

Figure 10.11 shows the normalized horizontal and vertical tunnel convergence, with 

respect to the tunnel radius, with the distance from the face, also normalized with respect to the 

tunnel radius, for dip angles (α1) 0°, 45° and 90° and strike angle (α2) 45°. As one can see, and 

similar to the previous cases with α2= 0°, tunnel convergence starts to increase approximately at 

4r0 ahead of the face and reaches a constant at approximately 4r0 behind the face of the tunnel. For 

α1=0°, the horizontal convergence is smaller than the vertical. The opposite occurs for α1=90° and 

for α1=45°. A comparison between the results for α2=45° and for α2=0° (Figure 10.4) indicates that 

the horizontal convergences increase as the strike angle rotates (α2) from 0° to 45°. In contrast, the 

vertical convergences are slightly affected with the strike rotation. When the strike angle (α2) is 0°, 

the rock mass stiffness in the horizontal direction is always the largest irrespective of the dip angle 

(α1). As the strike angle rotates, the stiffness in the horizontal direction decreases; thus, the 

horizontal convergence increases. Thus, the numerical results show that the strike direction affects 

the most the horizontal displacements, while the dip angle, the vertical. 
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Figure 10.11 Normalized tunnel convergence with respect to the tunnel radius with the 
normalized distance from the face with respect to the tunnel radius, for strike angle (α2) 45°. (a) 

horizontal convergence; (b) vertical convergence. 

 

The normalized radial displacements at the tunnel perimeter and the deformed tunnel cross 

section, for dip angles (α1) of 0°, 45° and 90° and strike (α2) 45°, are shown in Figure 10.12. For 

α1=0°, the deformed cross section has a symmetric ellipsoidal shape, with maximum convergence 

in the vertical direction and minimum in the horizontal. This is expected since the tunnel is aligned 

with the structure of the rock. For α1=45°, the ground deformations are asymmetric at the face and 

are ellipsoidal far-behind the face, with a maximum radial displacement at θ=125° and a minimum 

at θ=35°; at the face, there is a translation of the tunnel cross section in the diagonal direction 

downwards and towards the right springline (Figure 10.12.a.2). For α1=90°, the radial 

displacements at the face are asymmetric and are symmetric far-behind the face. At face, there is 

a translation of the tunnel cross section in the horizontal direction towards the right springline 

(Figure 10.12.a.3). Far behind the face, the deformed cross section has a symmetric ellipsoidal 

shape, with maximum convergence in the horizontal direction and minimum in the vertical. It is 

interesting to compare the results from α2=45° with those from α2=0°. For the case with a dip angle 

(α1) of 90°, the misalignment with the strike direction increases the magnitude of the radial 

displacements at the tunnel perimeter and produces asymmetric deformations at the tunnel face 

(i.e. a horizontal translation towards the right springline); for the case with a dip angle (α1) of 45°, 

the tunnel misalignment with α2 affected the direction of the translation at the face (vertical and 

downwards for α1=45° and α2=0°, Figure 10.5.a.2, and downwards, towards the right, for α1=45° 

and α2=45°, Figure 10.12.a.2) and the location where the maximum and minimum convergence 
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occurred far-behind the face. As shown in Figure 10.12.b.2, for α1=45° and α2=45°, the deformed 

cross-section far-behind the face is distorted. The maximum radial displacement occurs at θ=125° 

and the minimum, at θ=35°. For α1=45° and α2=0°, (Figure 10.5.b.2) the deformed cross-section 

far-behind the face is symmetric with respect to the horizontal and vertical axis. Thus, the 

maximum radial deformation is along the vertical direction (θ=90°) and the minimum along the 

horizontal direction (θ=0°). 

 

Figure 10.12 Normalized radial displacemets at the tunnel perimeter ,with respect to the tunnel 
radius, and deformed tunnel cross-section for strike angle (α2) 45°. (a) at the face; (b) far-behind 

the face. Deformations are magnified by a factor of 200 at the face and by 100 far-behind the 
face. 

 

Figure 10.13 shows the radial displacements and the translation motion of the tunnel (this 

is justified in the next few sentences) at θ=125°, where the radial displacements are maximum, 

with distance from the face. The displacements and the distance from the face are normalized with 
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respect to the tunnel radius. Near the face, the radial displacements are asymmetric and a 

translation of the tunnel cross-section occurs. Far-behind the face, the radial displacements at 

θ=125° and θ=305° are the same and there is no rigid body displacement. Figure 10.13b shows the 

radial displacements at θ=125° and θ=305° without the rigid body displacement component (i.e. 

corrected radial displacements, where deformations are subtracted from the translation of the 

tunnel cross-section). As one can see, the corrected radial displacements with the distance from 

the face are the same, with differences of the order of the numerical approximation. This is 

consistent with the case α1=45° and α2=0° discussed before. These results indicate that the 

asymmetry near the face due to the tunnel misalignment with the rock structure is due to a rigid 

body displacement of the tunnel cross-section. 

 

Figure 10.13 Normalized radial displacements and translation displacement of the tunnel cross 
section with respect to the tunnel radius, with the normalized distance from the face with respect 
to the tunnel radius for α1=45° and α2=45°. (a) radial displacements and rigid body displacements 

and (b) corrected radial displacements. 

 

The normalized stress paths with respect to the vertical stress at different points near the 

tunnel perimeter for strike angle 45° and dip angles 0°, 45° and 90° are presented in Figure 10.14. 

The stresses are taken at 0.1r0 from the tunnel perimeter to avoid the mathematical singularities 

caused by the corner at the face of tunnel. The stresses for α1=0° are the same of those presented 

in Figure 10.7a. Similar to the stress paths for strike angle 0° (Figure 10.7), the four locations 

present a loading stress path with an abrupt increase of the stresses near the face. For α1=45° and 

α2=45° (figure 10.14a), the stress paths near the face are asymmetric at the springlines and at the 

crown and invert. As shown in Figures 10.12 and 10.13, for α1=45° and α2=45°, a rigid body 
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motion occurs downwards and towards the right. Near the face, the stresses at the invert and at the 

right springline are larger than at the crown and at the left springline, respectively. This is caused 

because the rigid body displacement near the face unloads the crown and the left springline and 

loads the invert and the right springline. For α1=90° and α2=45° (Figure 10.14b), the stress paths 

at the crown and at the invert are the same; however, the stress paths are different at the springlines. 

The reason for this is because the radial displacements are symmetric at the crown and invert and 

asymmetric at the springlines. As shown in Figure 10.12, for α1=90° and α2=45°, a horizontal rigid 

body displacement towards the right springline occurs at the face. Thus, the stresses are larger at 

the right springline than at the left because the rigid body displacement compresses the ground in 

the right springline and unloads the ground at the left springline. 

 

Figure 10.14 Normalized stress paths with respect to the vertical stress, for strike angle (α2) 45°. 
(a) Dip angle (α1) 45°; (b) Dip angle (α1) 90°. 

 

Figure 10.15 shows the normalized axial displacements at the tunnel perimeter with respect 

to the tunnel radius, for α2=45° and α1=45°. At the face, the axial displacements are asymmetric 

and, far behind the face, are anti-symmetric, with the axis of anti-symmetry at θ=35°. Comparing 

the axial displacements for α1=45° and α2=45° with those for α1=45° and α2=0° (Figure 10.9), one 

can see that the strike angle changes the position of the axis of anti-symmetry, but not the 

magnitude of the axial displacements (i.e. the maximum axial displacement for α2=0°is 4% larger 

than the maximum axial displacement for α2=45°, which is considered negligible). Near the face, 

a)

mean / v

0.6 0.8 1.0 1.2 1.4 1.6

 m
a

x 
/ 


v

0.0

0.2

0.4

0.6

0.8

1.0

Crown
Invert
Right springline
Left springline

1

2

3

b)

mean / v

0.6 0.8 1.0 1.2 1.4 1.6

 m
ax

 /
 

v

0.0

0.2

0.4

0.6

0.8

1.0

Crown
Invert
Right springline
Left springline

1

2

3

22 2
2



 

267 

the asymmetric axial deformations are constrained, which induce asymmetric radial displacements, 

as shown in Figures 10.12 and 10.13. Note that the radial displacements are symmetric far-behind 

the face (Figure 10.12.b.2.), where there is no constraint to the anti-symmetric axial displacements. 

 

Figure 10.15 Normalized axial displacements at the tunnel perimeter with respect to the tunnel 
radius for α1=45° and α2=45°. The colors of the axially deformed tunnel cross-sections are 

associated with the magnitude of the axial displacements and are kept to help the visualization of 
the deformed shape. 

10.4 3D face effects due to stress anisotropy 

In addition to the anisotropic behavior already discussed, rock masses may present stress 

anisotropy  (Gysel, 1975; Brown and Hoek, 1978; McGarr and Gay, 1978; Evans et al., 1989; 

Martin and Kaiser, 1996; Haimson et al., 2003; Wileveau et al., 2007; Zhao et al., 2013, 2015; 

Park et al., 2014; Perras et al., 2015; Zhang et al., 2017; Souček et al., 2017). When the tunnel is 

not aligned with one of the geostatic principal stress directions, far-field axial shear stresses appear. 

In this section, the 3D face effects of unsupported tunnels misaligned with the rock mass structure 

and with the geostatic principal stress directions are investigated. A structured rock mass with dip 

angle (α1) 45° and strike direction (α2) 45° (Figure 10.10b) is selected. An anisotropic geostatic 

stress field is adopted assuming that the vertical axis is one of the principal stress directions. A 

vertical stress (σv) of 5MPa as the intermediate principal stress, a minor principal horizontal stress 

(σh) of 5MPa, and a major principal horizontal stress (σH) of 10MPa, are adopted. The somewhat 

large horizontal stress anisotropy ratio of 2 is often reported in the literature (Gysel, 1975; Evans 
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et al., 1989; Haimson et al., 2003; Park et al., 2014; Souček et al., 2017). Figure 10.16 shows the 

plan view of the misaligned tunnel with the horizontal principal stresses. Figure 10.16a shows the 

major principal horizontal stress perpendicular to the strike of the rock structure and Figure 10.16b, 

parallel to the strike. Three scenarios are investigated, as listed in Table 10.1 (the coordinate system 

is that attached to the tunnel, as shown in Figure 10.2). In scenario one, the largest horizontal stress 

is perpendicular to the strike of the rock structure; in scenario two, the far-field axial shear stress 

is neglected; and in scenario three, the smallest horizontal stress is parallel to the strike. The three 

scenarios have the same far-field horizontal stress (σxx,ff), the same vertical stress (σv) and the same 

tunnel orientation with respect to the rock structure (α1=α2=45°). The only difference among 

scenarios is the far-field axial shear stress, as shown in Table 10.1. 

Table 10.1 Far-field geostatic stresses in the tunnel coordinate system for the three scenarios 
studied. 

Scenario  σxx,ff/σv τxz,ff/σv 

1) σH perpendicular to α2 1.5 0.5 

2) no far-field axial shear 1.5 0 
3) σH parallel to α2 1.5 -0.5 

 

 

Figure 10.16 Tunnel orientation with respect to the rock mass structure and geostatic stresses. (a) 
major principal (largest horizontal) stress (σH) perpendicular to the strike direction (α2); and (b) 

minor principal (smallest horizontal) stress parallel to the strike direction (α2). 

 

Figure 10.17 shows the normalized axial displacements at the tunnel perimeter with respect 

to the tunnel radius, for the three scenarios. Axial displacements are asymmetric at the face and 

anti-symmetric far-behind the face. The axial displacements are larger when σH is perpendicular 
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to α2 (scenario one) and smaller when σH is parallel to α2 (scenario two). Note how the position of 

the axis of anti-symmetry changes with the far-field axial shear stress. The axis is in the 1st quadrant 

when σH is perpendicular to α2 (scenario one) and for the “no far-field axial shear stress” scenario 

(scenario two), while it is in the second quadrant when σH is parallel to α2 (scenario three). This is 

the result of the combination of the anti-symmetric axial displacements, due to the tunnel 

misalignment with the rock mass structural planes, and the anti-symmetric axial displacements due 

to the far-field axial shear stress. For scenario one (σH perpendicular to α2), the anti-symmetric 

axial displacements produced by the rock mass structure and by the far-field axial shear stress have 

the same direction; thus, the axial displacements are increased. For scenario three (σH parallel to 

α2), the anti-symmetric axial displacements due to the rock mass structure and due to the far-field 

axial shear stress have opposite direction; thus, the axial displacements are reduced. 

 

 

 

Figure 10.17 Normalized axial displacements at the tunnel perimeter with respect to the tunnel 
radius for dip angle (α1) 45° and strike angle (α2) 45°. (a) at the face; (b) far-behind the face; (1) 
σH perpendicular to α2; (2) no far-field axial shear stress; (3) σH parallel to α2. The colors of the 

axially deformed tunnel cross-sections are associated with the magnitude of the axial 
displacements and are kept to help the visualization of the deformed shape. 
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Figure 10.18 shows the normalized radial displacements at the tunnel perimeter and the 

deformed cross section of the tunnel for the anisotropic geostatic stress fields (i.e. the three 

scenarios shown in Table 10.1) and for an isotropic geostatic stress field (Figure 10.12, α1=α2=45°). 

The ground deformations at the face are asymmetric, but symmetric (i.e. ellipsoidal shape with 

symmetries along the major and minor axes of the ellipse) far-behind the face. For scenario one 

(σH perpendicular to α2), large inward radial displacements occur, at the face, on the left side of 

the tunnel. This can be associated with a translation of the cross section downwards and towards 

the right (see later for further discussion). For scenario two, where no far-field axial shear stresses 

are considered, the asymmetric deformations at the face are less remarkable than for the other two 

scenarios; a downwards and towards the right translation of the cross section occurs. For scenario 

three (σH parallel to α2), the opposite is observed; that is, there are large inward radial 

displacements on the right side of the tunnel. Thus, a translation of the tunnel cross-section 

downwards and towards the left occurs. Far behind the face, the deformed cross section of the 

three scenarios has an ellipsoidal shape with the maximum radial displacement at θ=157.5° and 

the minimum at θ=67.5°. Interestingly, the far-field axial shear stress did not affect the location of 

maximum and minimum radial displacements far-behind the face, but heavily affected the radial 

deformations at the tunnel face. Among the three scenarios, the radial displacements are the largest 

for scenario one (σH perpendicular to α2) and the smallest for scenario three (σH parallel to α2). 

This observation is associated with the anti-symmetric axial displacements produced by the rock 

structure and by the far-field axial shear stress. As shown in Figure 10.17, the axial displacements 

for scenario one are the largest because the anti-symmetric axial displacements caused by the rock 

structure and by the far-field axial shear stress have the same sign, i.e. they add to each other. 

Because the rock mass is transversely anisotropic and the tunnel is not aligned with the rock 

structure, in-plane and out-of-plane deformations are coupled (Vitali et al. 2019d). Thus, the larger 

the axial displacements, the larger the radial displacements. For the isotropic geostatic stress case 

with the same orientation with respect to the rock structure of the three scenarios (i.e. α1=α2=45°), 

the radial displacements were smaller than the ones with the adopted anisotropic geostatic stress 

state. The maximum radial displacement occurred at θ=125° and the minimum at θ=35°. Thus, the 

far-field stress anisotropy affected the shape of the deformed tunnel cross-section near and far-

behind the face, as shown in Figure 10.18. 
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Figure 10.18 Normalized radial displacements at the tunnel perimeter and deformed tunnel cross-
section for α1=45° and α2=45°. (a) at the face; (b) far-behind the face. Deformations are 

magnified by a factor of 200 at the face and by 100 far-behind the face. 

 

Figure 10.19 shows the normalized maximum and minimum convergence of the tunnel 

with the normalized distance from the face, for the three scenarios (Table 10.1). As already 

mentioned, the maximum convergence occurs at θ=157.5° and the minimum at 67.5°. In all 

scenarios, the tunnel deformations start to increase at a distance of 4r0 ahead the face and reach 

steady state at 4r0 behind the face in all scenarios; note that this observation is similar to what was 
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found in preceding analyses involving only the rock anisotropy. At the face (Z=0), the radial 

displacements abruptly increase. The maximum convergence is larger when σH is perpendicular to 

α2 and smaller when σH is parallel to α2. The minimum convergence, Figure 10.19(b) is similar for 

the three scenarios. Figure 10.20 shows the normalized radial displacements at θ=157.5° and at 

θ=337.5°, the locations of maximum deformation, and the translation of the tunnel cross section 

with the normalized distance from the face for scenarios one (σH is perpendicular to α2) and two 

(no far-field axial shear stress). Scenarios one and two presented a cross-section translation 

downwards and towards the right, at the face (figure 10.18.a.1 and 10.18.a.2). The radial 

displacements at θ=157.5° and at θ=337.5° are different near the face but are the same far-behind 

the face. A translation of the cross section is observed near the face; the magnitude of the 

translation is larger for scenario one (σH perpendicular to α2) than for scenario two (no far-field 

axial shear). This is expected because the translation is associated with the axial displacements 

near the face. Since the axial displacements are larger for scenario one, the magnitude of the 

translation is expected to be larger as well. Figure 10.20 also presents the radial displacements 

without the cross section translation (i.e. the corrected radial displacements). For scenario one (σH 

is perpendicular to α2), the corrected radial displacements are asymmetric near the face (i.e. 

different radial displacements at θ=157.5° and at θ=337.5°). For scenario two (no far-field axial 

shear stress), the corrected radial displacements are symmetric with the distance from the face (i.e. 

radial displacements at θ=157.5° and at θ=337.5° are the same). Vitali et al. (2019b) observed that 

the asymmetries near the face on an unsupported tunnel misaligned with the geostatic principal 

stresses in an isotropic elastic ground could be decomposed into a rigid body displacement of the 

tunnel cross-section and anti-symmetric radial displacements at the tunnel perimeter. For scenario 

one, the asymmetric deformations near the face are more complex because of the anisotropic 

properties of the rock mass. The asymmetric radial displacements near the face caused by the rock 

structure seem to be caused by a rigid body displacement of the tunnel cross-section, while the 

asymmetric deformations due to the far-field axial shear stress in the presence of anisotropic rock, 

is more complex. Figure 10.21 shows the normalized radial displacements at θ=67.5° and θ=247.5°, 

the location of the minimum radial displacements, and the cross section translation for scenario 

three (σH parallel to α2) and the corrected radial displacements. For this scenario, the tunnel cross-

section translation is downwards and towards the left. As one can see in figure 10.20, the corrected 
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radial displacements are asymmetric near the face, which is similar to scenario one and consistent 

with Vitali et al. (2019b). 

 

Figure 10.19 Normalized convergence with respect to the tunnel radius with normalized distance 
from the tunnel face; (a) maximum convergence at θ=157.5°; and (b) minimum convergence at 

67.5°. 

 

Figure 10.20 Normalized radial displacements and cross section translation with respect to the 
tunnel radius, with the normalized distance from the face with respect to the tunnel radius, at 

θ=157.5° and at θ=337.5°. (a) σH perpendicular to α2; (b) “no far-field axial shear stress”. 
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Figure 10.21 Normalized radial displacements and cross section translation with respect to the 
tunnel radius, with the normalized distance from the face with respect to the tunnel radius for σH 
parallel to α2 and for θ=67.5° and θ=247.5°. (a) normalized radial diplacements and cross section 

translation; and (b) corrected radial displacements. 

 

The normalized stress paths at points near the tunnel, with respect to the vertical stress, for 

the three scenarios (Table 10.1) are shown in Figure 10.22. The stresses are taken 0.1r0 from the 

tunnel perimeter to avoid singularities at the corners. The stress paths at the crown and at the invert 

(bottom of figure 10.22) are different for the three scenarios. Near the face, at location (2) in Figure 

10.2, the stresses at the invert are larger than at the crown for all scenarios. The reason for this is 

the downward translation of the tunnel cross-section that occurs in all the three scenarios, as shown 

in figures 10.18, 10.20 and 10.21. Thus, the ground underneath the tunnel is compressed near the 

face, while the ground above is unloaded. The stress paths at the crown and at the invert are similar 

to those shown in Figures 10.14a, for α1=α2=45° and isotropic geostatic stress field. The top plots 

of Figure 10.22 represent the stress paths at the springline; Figure 10.22a, for scenario one (σH 

perpendicular to α2), Figure 10.22b for scenario two and Figure 10.22c for scenario 3. Figure 

10.22a shows that at the right springline, ahead of the face, both maximum shear and mean 

effective stresses increase as the distance from the face decreases; that is, the ground is taking load 

as it approaches the tunnel face; near the face, at location (2) in Figure 10.2, the stresses abruptly 

increase; behind the face, the stresses decrease as the distance from the face increases until the 

stress state is constant far-behind the face; so, the ground unloads behind the face. At the left 

springline, the opposite behavior is observed: there is unloading ahead of the face and loading 

behind the face. For scenario 2 (“no far-field axial shear stress”), Figure 10.22b, the right and left 
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springlines show loading ahead of the face and unloading behind the face; however, the stress 

paths are asymmetric. Near the face, the stresses on the right are larger than on the left. For 

scenarios one and two, the cross section translation near the face is towards the right (Figures 10.18 

and 10.20); thus, the right springline is loaded, while the left is unloaded. For scenario three (σH 

parallel to α2), Figure 10.22c, there is unloading ahead of the face and loading behind the face at 

the right springline. At the left springline, the opposite happens (i.e. loading ahead of the face and 

unloading behind the face). For scenario three, the tunnel cross section translation is towards the 

left (Figures 10.18 and 10.21); thus, the left springline is compressed near the face while the right 

springline is unloaded. It is interesting to note that the maximum shear stresses are larger when the 

far-field axial shear stress is included. Note that the unloading ahead of the face only happens 

when the far-field axial shear stress is present. It is related to the more pronounced asymmetric 

deformations near the face that happen when the far-field axial shear stress is present, as discussed 

in figures 10.18, 10.20 and 10.21. When the far-field axial shear stress was present (scenarios one 

and three, Figures 10.18.a.1 and 10.18.a.3), at the face, outward radial displacements occurred at 

one side of the tunnel and large inward displacements occurred at the opposite side. When the far-

field axial shear stress was neglected (scenario two, Figure 10.18.a.2), no outwards radial 

displacement occurred, and the inward displacements were smaller. Thus, the asymmetric 

deformations at the face induced opposite stress paths at the opposite sides of the tunnel, as shown 

in the top plots a) and c) of Figure 10.22. The stress paths at points around the tunnel perimeter for 

the isotropic geostatic stress case were considerably less asymmetric than the scenarios with 

anisotropic geostatic stress. In the isotropic geostatic stress field, all points around the tunnel 

perimeter had a loading stress path, with an abrupt increase of stresses near the face, until a 

constant value was reached far-behind the face. This is similar to the stress paths at the crown and 

invert in scenarios one, two and three, but different to the stress paths at the springlines. It shows 

that the complexity of the stress paths near the face increases substantially if the geostatic stress 

field is anisotropic, especially if the tunnel is not aligned with one of the principal stress directions. 
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Figure 10.22 Normalized stress paths with respect to the vertical stress. (a) σH perpendicular to 
α2; (b) “no far-field axial shear stress”; (c) σH parallel to α2. 

10.5 Effects on ground-structure interaction 

The asymmetric deformations near the face that occur when the tunnel is misaligned with 

the rock structure or with the geostatic principal stresses do affect the interaction between the 

tunnel liner and the ground. To investigate the effects of the tunnel misalignment on supported 

tunnels, 3D FEM modeling considering a liner installed immediately after the round excavation 

was conducted (Figure 10.2) for the three scenarios investigated in the previous section (Table 

10.1). The length of the excavation round was 0.2r0. The liner was represented by shell elements 

with thickness 0.1r0 and linear-elastic behavior. The elastic properties for the liner were Young 

modulus (E) 25GPa and Poisson ratio (ν) 0.2, which are typical of elastic properties of reinforced 

concrete. No slip was allowed between the liner and the ground. The dip and strike angles (i.e. 

α1=45° and α2=45°, see Figure 10.10b) and the rock mass properties of previous sections were 

adopted. 
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Figure 10.23 shows the normalized radial displacements at θ=157.5° and at θ=337.5°, the 

locations where the radial displacements are maximum with respect to the tunnel radius, with the 

normalized distance from the face with respect to the tunnel radius, for the three scenarios. As 

expected, the radial displacements are substantially smaller than those for the unsupported tunnel 

(Figure 10.19). The radial displacements near the face and far-behind the face are asymmetric. For 

σH perpendicular to α2, the radial displacements far-behind the face at θ=157.5° are larger than at 

θ=337.5°. In contrast, when σH is parallel to α2, the radial displacements at θ=337.5° are larger. 

This has important implications for the liner, as one can see in Figure 10.24, which is a plot of the 

radial stresses normalized with respect to the far-field vertical stress, for the three scenarios (Table 

10.1). In the figure, the stresses are taken at 0.1r0 from the tunnel perimeter. For scenario one, 

when σH is perpendicular to α2 (Figure 10.24a), the radial stresses at the right springline increase 

at the face and abruptly decrease behind the face; then, they increase with the distance from the 

face until constant far-behind the face. At the left springline, the radial stresses decrease ahead of 

the face as the distance from the face decreases; behind the face, the radial stresses slightly increase 

with the distance from the face until constant far-behind the face. Note that the radial stresses at 

the left springline are smaller than at the right. This is consistent with the asymmetric radial 

displacements discussed in Figure 10.23a, where one can see that right springline is compressed 

while the left is unloaded. For scenario two, no far-field axial shear stress”, Figure 10.24b, the 

radial stresses at the right and left springline are similar ahead of the face, but they are different 

behind the face; the radial stresses are larger at the right springline than at the left. For scenario 

three, when σH is parallel to α2 (Figure 10.24c), the radial stresses are similar to those when σH is 

perpendicular to α2 but inverted; that is, the radial stresses are larger at the left springline than at 

the right. This is consistent with the asymmetric radial displacements (Figure 10.23c). Note that 

the radial stresses at the springlines for scenarios one and three are asymmetric ahead of the face, 

but they are symmetric for scenario two. This is related with the pronounced asymmetric stresses 

(discussed in Figure 10.22) and deformations (discussed in Figures 10.18, 10.20 and 10.21) 

observed near the face when the far-field axial shear stress is present. The radial stresses at the 

crown are similar in all three scenarios; they decrease ahead of the face and increase behind the 

face until constant. Note that the radial stresses far behind the face at the crown are larger than at 

the springline. This is the result of the far-field horizontal stress (σxx,ff) being larger than the vertical 
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stress (i.e. σxx,ff=1.5σv, table 10.1); thus, the stress concentrations are maximum at the crown and 

at the invert. 

 

Figure 10.23 Normalized radial displacements at θ=157.5° and at θ=337.5° with respect to the 
tunnel radius, with the normalized distance from the face with respect to the tunnel radius, for 

supported tunnel. (a) σH perpendicular to α2, (b) no far-field axial shear stress, (c) σH parallel to 
α2. 

 

 

Figure 10.24 Normalized radial stresses with respect to the tunnel radius, with the normalized 
distance from the face with respect to the tunnel radius. (a) σH perpendicular to α2, (b) no far-

field axial shear stress, (c) σH parallel to α2. 

 

The forces in the liner far-behind the face, normalized with respect to the vertical stress 

and the tunnel radius, are shown in Figure 10.25. As one can see, for all scenarios, the internal 

forces are asymmetric because of the asymmetric radial stresses far-behind the face (Figure 10.24). 

The internal forces are larger for scenario one, when σH is perpendicular to α2 and smaller for 

scenario three, when σH is parallel to α2. This is expected, because the ground deformations are 

larger when σH is perpendicular to α2, as shown in Figures 10.18, 10.19 and 10.23. The thrust 

forces are maximum near the crown, and the bending moments are the largest at the right springline 

when σH is perpendicular to α2 and for the “no far-field axial shear stress” scenario, and at the left 

springline when σH is parallel to α2. The figure shows that, when σH is perpendicular to α2 and for 
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the “no far-field axial shear stress” scenario, both bending moments and thrust forces are larger at 

the right springline than at the left. In contrast, when σH is parallel to α2, the internal forces are 

larger at the left springline than at the right. This is consistent with the asymmetric radial stresses 

far-behind the face, as shown in Figure 10.24. The radial stresses at the right springline are larger 

than at the left when σH is perpendicular to α2 and for the “no far-field axial shear stress”, while 

the opposite is observed when σH is parallel to α2. 

 

Figure 10.25 Normalized internal forces, thrust (T) and bending moments (M), with respect to 
the vertical stress and tunnel radius. 

10.6 Conclusions 

Rock masses may present both remarked stress anisotropy and anisotropic mechanical 

properties. Despite the well-recognized importance of tunnel alignment with the geostatic principal 

stress directions, few research has been conducted so far to investigate the effects of tunnel 

misalignment with the principal stresses. 3D face effects on tunnels misaligned with the geostatic 

principal stress directions and/or with the rock mass structure were investigated in this paper. 3D 

FEM simulations were performed using a transversely anisotropic elastic model to represent the 

rock mass and an isotropic elastic model for the tunnel liner. 

The 3D face effects on tunnels misaligned with the rock mass structure were assessed under 

the assumption of an isotropic stress state and unsupported excavation. The tunnel misalignment 

with the rock mass structure induces anti-symmetric axial displacements far-behind the face. The 
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reason for this is that, when the tunnel is misaligned with the principal axes of material anisotropy, 

the in-plane and the out-of-plane stresses and deformations around the tunnel are coupled (Vitali 

et al., 2019d). Thus, anti-symmetric axial displacements are induced even when no far-field axial 

shear stress is present. Near the face, asymmetric radial displacements occurred, while they were 

symmetric far-behind the face. The reason for the loss of symmetry at the face was because the 

anti-symmetric axial displacements were constrained by the presence of the face of the tunnel, 

which caused asymmetric radial deformations near the face, so the symmetry of displacements 

around the tunnel was lost. It was observed that a translation of the tunnel cross section occurred 

near the face, which was maximum at the face. When the translation was subtracted from the radial 

displacements at the tunnel perimeter, the corrected radial displacements were symmetric; in other 

words, the asymmetry near the face was due to a rigid body displacement of the tunnel cross section. 

As a consequence, the stresses near the face of the tunnel were also asymmetric. One side of the 

tunnel was subjected to larger stresses than the other, because one side was compressed by the 

tunnel rigid body displacement, while the other was unloaded. When the tunnel was aligned with 

one of the principal axes of material anisotropy, no anti-symmetric axial displacements were 

induced and no asymmetric deformations occurred at the face. This is because when the tunnel 

aligns with the rock structure, in-plane and out-of-plane stresses and deformations are decoupled 

(similar to an isotropic ground); thus, no anti-symmetric axial displacements were induced and, as 

a consequence, no asymmetric radial displacements occurred near the face. 

The response of tunnels misaligned with both geostatic principal stress directions and with 

the rock mass structure were assessed through the case of a tunnel inclined 45° with the major 

horizontal principal stress in a structured rock mas with dip angle of 45° and strike of 45° (i.e. 

assuming tunnel aligned with the North direction). Three scenarios were selected: major horizontal 

stress perpendicular to the strike; major horizontal stress parallel to the strike and a case where the 

far-field axial stress was not included, i.e. the “no far-field axial shear stress” scenario. The three 

scenarios had the same vertical and horizontal far-field stresses and the same orientation of the 

tunnel with respect to the rock structure. The appearance of the far-field axial shear stress produced 

anti-symmetric axial displacements far-behind the face and asymmetric radial displacements near 

the face of the tunnel. When the major horizontal stress was perpendicular to the strike, the anti-

symmetric axial displacements produced by the rock structure and by the far-field axial shear stress 

had the same direction, so the axial displacements were increased. The opposite was observed 
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when the major horizontal stress was parallel to the strike direction, so the axial displacements 

were reduced. The radial displacements were larger when the major horizontal stress was 

perpendicular to the rock structure and smaller when the major horizontal stress was parallel. The 

radial displacements were asymmetric near the face and with ellipsoidal deformed shape far-

behind the face in all three scenarios. The asymmetric deformations near the face were more 

pronounced when the far-field axial shear stress was present. It was observed that a translation of 

the tunnel cross-section occurred near the face. It is interesting to note that, when the translation 

motion was subtracted from the radial displacements, the corrected radial displacements were 

asymmetric near the face when the far-field axial shear stress was present, but they were symmetric 

when the far-field axial shear stress was not present. Thus, the numerical results indicated that the 

asymmetric deformations near the face caused by the rock structure were due to a rigid body 

displacement of the tunnel cross section. For a misaligned tunnel with the geostatic principal 

stresses in an isotropic elastic ground, Vitali et al. (2019b) showed that the asymmetric radial 

displacements at the face due to the far-field axial shear stress could be decomposed into a rigid 

body displacement of the tunnel cross-section and anti-symmetric radial displacements. The 

scenarios investigated in this paper were more complex because of the rock mass anisotropy. In 

all three scenarios, the stresses near the face were asymmetric as a consequence of the asymmetric 

deformations.  

For unsupported tunnels in transversely anisotropic elastic ground, the radial displacements 

far-behind the face are always symmetric, while asymmetric deformations only happen at or near 

the face. If the tunnel is supported, the asymmetric deformations affect the interaction between the 

liner and the ground. As a result, the radial displacements and the radial stresses at the tunnel 

perimeter far-behind the face are asymmetric, and thus, the internal forces in the liner, i.e. thrust 

and bending moment, are also asymmetric. The ground deformations and the liner internal forces 

are the largest when the major horizontal stress is perpendicular to the strike direction of the rock 

mass structure and are the smallest when parallel to the strike. 
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Abstract 

Rock masses may present remarked stress anisotropy, and so it is likely that a tunnel is 

misaligned with the geostatic principal stress directions. As a consequence, anti-symmetric axial 

displacements and axial shear stresses are induced around the tunnel due to the presence of far-

field axial shear stresses. Limited research has been conducted on the effects of the far-field axial 

shear stress on tunnel behavior. This paper investigates the effects of tunnel misalignment with the 

geostatic principal stresses in anisotropic rock masses. 3D FEM modeling of a tunnel misaligned 

45° with the principal horizontal stresses is conducted. An anisotropic geostatic stress field is 

considered, with the major horizontal stress two times larger than the vertical stress and the minor 

horizontal stress equal to the vertical stress. The anisotropic behavior of the rock mass is 

represented by a transversely anisotropic elastic model, with properties typical of anisotropic rock 

masses. Tunnels in horizontally and vertically-structured rock masses are assessed. Unsupported 

and supported tunnels are investigated. The results show that asymmetric deformations and 

asymmetric stresses are induced near the face of the tunnel as a result of the tunnel misalignment 

with the geostatic principal stresses and with the rock mass structure. These asymmetric 

deformations near the face affect the ground-support interaction such that the internal forces in the 

liner are also asymmetric. 

11.1 Introduction 

The literature shows that rock masses are likely to present remarked geostatic stress 

anisotropy and anisotropic mechanical properties. This is a consequence of the rock complex 

formation processes. According to Brady & Brown (2006), the main factors affecting rock mass 

properties and geostatic stresses are: topography (elevations and valleys); residual stresses (due to 

cooling, for instance); tectonic movements; fracturing and jointing; and inclusions. Thus, geostatic 
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stresses and mechanical properties are expected to be complex as well. In-situ stress measurements 

in rock masses show large horizontal stresses and significant horizontal stress anisotropy (Gysel, 

1975; Brown and Hoek, 1978; McGarr and Gay, 1978; Evans, Engelder and Plumb, 1989; Martin, 

1997; Haimson, Lee and Song, 2003; Wileveau et al., 2007; Zhao et al., 2013, 2015; Park et al., 

2014; Perras, Wannenmacher and Diederichs, 2015; Souček et al., 2017). For instance, (Martin, 

1997) reported a highly anisotropic stress field in a massive granitic rock mass in Canada. The 

average stresses were: σ1/σ2=1.2±0.1 and σ1/σ3=3.9±0.5. Gysel (1975) presented the geostatic 

stress field measured in two sections along the Sonnerberg tunnel (Lucerne, Switzerland), in 

sandstone. The stress ratios were σ1/σ3=2.33, σ1/σ2=2.10 on one of the sections and σ1/σ3=4.29, 

and σ1/σ2=1.70 on the other. Haimson et al. (2003) and Park et al. (2014) evaluated the geostatic 

stress field of the granitic and gneissic rock masses in South Korea, near Seoul, in an active seismic 

area. The measured horizontal stresses showed large stress anisotropy and were consistently larger 

than the vertical stress. An extensive compilation of 77 geostatic stresses was conducted by 

McGarr and Gay (1978), where the interval, with 95% confidence, for each principal stress ratio 

was: σ1/σ2=1.45±0.80 and σ1/σ3=2.42±2.28. These data show that the expected stress anisotropy 

in rock is indeed high and quite variable. 

The importance of tunnel alignment with the geostatic principal stress directions is 

recognized in the literature. Goodman (1989) recommends aligning the tunnel or cavern with the 

major principal stress to minimize stress concentrations around the opening. Convergence 

measurements of tunnels constructed in the Underground Research Laboratory (URL) in France 

showed the importance of the tunnel orientation with respect to the geostatic principal stress 

directions. These tunnels were excavated in an anisotropic Claystone rock mass at 490m depth, 

with average principal stress ratios σh/σv=1 and σH/σv =1.3 (Wileveau et al., 2007). Because of the 

sedimentation process, the rock had an oriented structure (horizontal bedding), and thus 

anisotropic mechanical properties, with E1/E3 varying from 1.2 to 2 (Armand et al., 2013). 

Experimental tunnels were excavated parallel and perpendicular to σH. A supported circular tunnel 

of radius 2.6m, aligned with σH, showed horizontal convergence of 37 to 58mm and vertical 

convergence of 24 to 30mm. A similar tunnel aligned with σh showed horizontal convergence of 

19mm to 34mm and vertical convergence of 112mm to 158mm (Armand et al., 2013). 

Tunnel design is commonly conducted assuming that the tunnel is aligned with one of the 

geostatic principal stress directions and yet, as previously discussed, the assumption is unrealistic. 
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When the tunnel is misaligned with the geostatic principal stress directions, far-field axial shear 

stresses are present. These axial shear stresses induce anti-symmetric axial displacements and axial 

shear stresses far-behind the tunnel face (Vitali et al., 2018; Vitali et al.,2019a; Vitali et al., 2019b; 

Vitali at al., 2019c). On shallow tunnels in isotropic ground, Vitali et al. (2019b) observed that the 

far-field axial shear stress induced asymmetric deformations and stresses near the face and that 

ground-support interaction and yielding around the tunnel, if any, were affected by the asymmetric 

deformations near the face. Vitali et al. (2019c) investigated the effects of tunnel misalignment on 

the progressive failure around the well-documented experimental tunnel at the URL in Canada 

(Martin, 1997). They found that no plastic deformations at the tunnel walls occurred when the 

tunnel was aligned with the minor principal stress, but asymmetric spalling would occur if the 

tunnel was not aligned with the geostatic principal stresses. 

Asymmetric deformations of the tunnel walls have been observed on tunnels in structured 

rock masses, such as phyllites and slates. For instance, asymmetric radial displacements at the 

tunnel wall, horizontal displacements at the crown and axial displacements at the springline are 

often measured on the shotcrete support of NATM tunnels in anisotropic rock masses (Schubert 

and Budil, 1995; Goricki et al., 2005; Schubert et al., 2005; Schubert and Moritz, 2011; Klopčič 

and Logar, 2014; Lenz et al., 2017). Those asymmetric deformations are commonly associated 

with the anisotropic properties of the rock mass and with localized heterogeneities. Button et al., 

(2006) observed that the asymmetric deformation patterns observed in the field could be partially 

reproduced numerically in tunnels not aligned with the rock mass structure. Tonon and Amadei, 

(2002), Tonon and Amadei (2003) and Fortsakis et al., (2012) highlighted the importance of 

considering the anisotropic properties of the rock mass in numerical models to obtain more 

accurate ground deformation predictions (they assumed, however, that the tunnel was aligned with 

the geostatic principal stresses). In this paper, the influence of the tunnel misalignment with the 

geostatic principal stresses in anisotropic rock masses is assessed, for unsupported and supported 

tunnels, through 3D FEM modeling. Horizontally- and vertically-structured rock masses are 

considered. A transversely anisotropic elastic model is adopted to represent the rock mass.  

11.2 3D FEM model 

3D FEM modeling was conducted to investigate tunnels misaligned with the geostatic 

principal stresses in anisotropic rock masses. A tunnel misaligned 45° with the major principal 
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horizontal stress, in a transversely anisotropic rock mass, is assumed. The rock mass is assumed 

elastic with the following properties: Young modulus perpendicular to the structural planes (E1), 

1GPa; Young modulus parallel to the structural planes (E2=E3), 3GPa; in-plane Poisson ratio (ν23), 

0.333; out-of-plane Poisson ratio (ν13= ν12), 0.25; in-plane Shear modulus (G23), 1.125GPa; and 

out-of-plane Shear modulus (G23= G13), 0.667GPa. These properties are typical of highly 

anisotropic rock masses, such as phyllites and slates. According to Worotnicki (1993), more than 

50% of highly structured rock masses present a E1/E2 ratio larger than 2. For the simulations, 

horizontal and vertical structural planes are considered (i.e. dip angles 0° and 90°, respectively). 

The geostatic principal stresses are: vertical stress (σv), 5MPa (the vertical stress is assumed as a 

principal stress), minor horizontal stress (σh), 5MPa and major horizontal stress (σH), 10MPa. This 

is not an unusual anisotropic stress field, according to e.g. Gysel, 1975; Evans et al., 1989; 

Haimson et al., 2003; Wileveau et al., 2007; Park et al., 2014; Souček et al., 2017. Two directions 

for the major horizontal stress are evaluated: σH perpendicular to the strike and σH parallel to the 

strike of the rock structure (i.e. perpendicular or parallel to the e.g. rock bedding; note that the 

direction of the horizontal stresses for a tunnel parallel to the rock structure does not change the 

results due to the symmetry of the problem). 

Figure 11.1 shows the FEM mesh built for the investigation. The tunnel is circular with 

radius (r0) 5m. 2nd order hexahedron elements are used. The mesh refinement and the size of the 

model (Figure 11.1a) are selected to ensure the accuracy of the results, following the 

recommendations provided by Vitali et al. (2017). Figure 11.1b illustrates the plan view of the 

mesh with the boundary conditions, where Ψ=45° is the angle that the tunnel makes with the 

principal horizontal stresses. The geostatic stress field is generated by applying a load pressure at 

the boundaries with the same magnitude as the geostatic principal stresses. Given the anisotropic 

rock masses investigated (i.e. horizontally- and vertically-structured rock masses) and that the 

vertical axis is a principal stress direction, it is possible to take advantage of the symmetry of the 

problem and use only half the discretization. The mesh consists of a refined structured grid at the 

center of the model, where the results are extracted, linked to the boundaries by an unstructured 

grid, as shown in Figures 11.1c and 11.1d. 

Supported and unsupported tunnels are considered. The 3D FEM simulation follows the 

excavation sequence of the tunnel by deactivating the elements inside the excavation round and 

activating the elements that represent the tunnel support, if present. The simulations are run in two 
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steps: the first step generates the geostatic stress field, and the second, the excavation and support, 

if present. The liner is represented by shell elements with thickness 0.5m (0.1r0). No slip between 

ground and liner is allowed. Figure 11.2 illustrates the mesh near the face of a supported tunnel. 

The liner, if included, is installed immediately after the excavation; that is, the unsupported span 

is zero. In Figure 11.2, position 1 indicates a location far-ahead of the face of the tunnel and 

represents the region not affected by the tunnel excavation; position 2 is at the face of the tunnel; 

and position 3, far-behind the face of the tunnel, where stresses and displacements are independent 

of the distance from the face of the tunnel. 

 

Figure 11.1 FEM mesh. (a) Model dimensions; (b) plan view and boundary conditions; (c) 
vertical cross section along the tunnel and; (d) refined mesh at the center of the model. 
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Figure 11.2 Mesh near the face of the supported tunnel, with the coordinate system XYZ 
attached to the tunnel. Position (1) represents a point far ahead of the face; (2), at the face (i.e. 

Z=0); and (3), far-behind the face.  

11.3 Tunnel in horizontally structured rock mass 

Horizontal stratification is not uncommon in sedimentary and even metamorphic rock 

masses. The effects of such structure on tunnels misaligned with the geostatic principal stresses 

are analyzed through a number of simulations where the tunnel is horizontal and, thus, aligned 

with the rock mass structure. Two cases are studied: (1) far-field stresses σxx,ff=σzz,ff=7.5MPa, 

σyy,ff=5MPa, τxz,ff=2.5MPa (tunnel oriented at Ψ=45o with the far-field principal stresses) and (2) 

same far-field stresses, but no far-field shear, i.e. σxx,ff=σzz,ff=7.5MPa, σyy,ff=5MPa, τxz,ff=0, to 

investigate the influence of the far-field axial shear. 

Figure 11.3 shows the horizontal and vertical tunnel convergence, normalized with the 

tunnel radius, with the distance from the face, normalized also with the tunnel radius, for the two 

cases. Displacements start to increase at 4r0 ahead of the face, abruptly increase at the face and 

increase further behind the face until they are constant at about 4r0 behind the face. Tunnel 

deformations are identical in both cases, which indicates that the far-field axial shear stress has no 

influence on the results. It is interesting to note that the vertical and the horizontal tunnel 

deformations are similar, despite the fact that the far-field horizontal stress is larger than the 

vertical. The reason for this is that the stiffness of the ground parallel to the rock mass structure is 

the largest and the stiffness perpendicular to the structure is the smallest. So, in the simulations, 

the (larger) horizontal stress is parallel to the stiffest rock mass direction and the (smaller) vertical 

stress is parallel to the softest rock mass direction, and so the two effects compensate each other. 
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Figure 11.3 Normalized tunnel convergence with respect to the tunnel radius with the normalized 
distance from the face with respect to the tunnel radius for unsupported tunnel. (a) horizontal 

convergence, (b) vertical convergence. 

 

Figure 11.4 shows the normalized radial displacements and the deformed cross-section at 

the face and far behind the face. For case (2), with no far-field axial shear stress, the deformations 

are symmetric at the face and far-behind the face. For case (1), with the complete stress field, the 

deformations at the tunnel perimeter are symmetric far-behind the face, but asymmetric at the face, 

where the tunnel cross section translates towards the right. Far-behind the face, the deformed cross 

section in both cases is exactly the same, which shows that the far-field axial shear stress does not 

affect the radial displacements far-behind the face. This is because, when the tunnel axis is aligned 

with one of the principal material directions, in-plane and out-of-plane deformations are decoupled 

(Vitali et al., 2019d). 

The normalized radial displacements at the springline, on the right and left, and the tunnel 

cross section translation are presented in Figure 11.5. For case (1), complete stress field, the radial 

displacements are asymmetric from a distance of 4r0 ahead of the face to about 6r0 behind the face. 

A translation of the tunnel cross section occurs near the face, which is maximum at the face (i.e. 

at Z=0). For case (2), the radial displacements at the springline do not change with the distance 

from the face; that is, no translation of the tunnel cross section occurs. Thus, the presence of the 

far-field axial shear stress induces asymmetric deformations near the face. Figure 11.6 shows the 

normalized “corrected” radial displacements with the normalized distance from the face, for case 

(1). The corrected radial displacement is the radial displacement without the translation of the 

tunnel cross section, as indicated in Figure 11.6. The corrected radial displacements are 
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asymmetric near the face, which is consistent with Vitali et al. (2019b). The authors observed that 

the far-field axial shear stress caused asymmetric radial deformation near the face of a shallow 

tunnel in isotropic ground. Those asymmetric radial displacements could be decomposed into a 

rigid body displacement of the tunnel cross section and anti-symmetric radial displacements. 

 

Figure 11.4 Normalized radial displacemets at the tunnel perimeter with respect to the tunnel 
radius and deformed tunnel cross-section, for unsupported tunnel. (a) at the face; (b) far-behind 
the face. Deformations are magnified 200 times at the face and 100 times far-behind the face. 

 

Figure 11.5 Normalized displacements with respect to the tunnel radius, with normalized 
distance from the face with respect to the tunnel radius. (a) Case 1, complete stress field; (b) 

Case 2, no far-field axial shear. 
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Figure 11.6 Normalized displacements with respect to the tunnel radius with the normalized 
distance from the face with respect to the tunnel radius. Case 1, complete stress field. 

 

The stress paths, normalized with respect to the vertical stress, at points near the tunnel 

perimeter (i.e. at right and left springline and at the crown) are shown in Figure 11.7 (see Figure 

11.2 for location of points 1, 2, 3). The stresses were computed at a distance of 0.1r0 from the 

tunnel perimeter, to minimize the disturbance due to the corner between face and tunnel. For Case 

1 (complete stress field), on the right-hand side of the springline, the rock stresses increase towards 

the face of the tunnel, i.e. both mean stress and maximum shear stress increase; close to the face, 

the stresses abruptly increase, while they steadily decrease behind the face until they reach a 

constant value. On the left-hand side, the opposite is observed; that is, unloading ahead of the face 

and loading behind the face. Note that far behind the face of the tunnel, the two stress paths yield 

the same results. The asymmetry of the stress paths is consistent with the asymmetric deformations 

near the face discussed previously. Indeed, there is a horizontal translation of the tunnel cross 

section towards the right near the face, as shown in Figure 11.4, that results in compression of the 

rock at the right springline, while the rock at the left springline is unloaded. For Case 2, no far-

field axial shear stress, the two stress paths are exactly the same. There is loading ahead of the face 

and unloading behind the face. Note that unloading ahead of the face was observed only when the 

far-field axial shear stress was present. Figure 11.8 presents the normalized stress paths at the 
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crown for case 1 (complete stress field) and case 2 (no far-field axial shear). The stresses at the 

crown and at the invert are the same because of the symmetry of the problem. The stress paths for 

the two cases follow a loading path ahead and behind the tunnel face, with an increase of the mean 

effective stress near the face. The shear stresses are larger for case 1 than for case 2 because of the 

presence of the far-field axial shear stress. 

 

Figure 11.7 Normalized stress paths with respect to the vertical stress. (a) Case 1, complete stress 
field ; (b) Case 2, no far-field axial shear. Numbers 1, 2, 3 denote location (see Figure 11.2). 

 

Figure 11.9 shows the normalized axial displacements at the tunnel perimeter, for Case 1 

(complete stress field; for Case 2, no axial displacements were induced far-behind the face). As 

one can see in the Figure, anti-symmetric axial displacements are induced far-behind the face. The 

axial displacements are maximum at the springline and zero at the crown; those are produced by 

the far-field axial shear stress. At the face, the axial displacements are asymmetric due to the 

constraints produced by the tunnel face (Figure 11.4). For Case 2, where the far-field axial shear 

stress is neglected, no anti-symmetric axial displacements are induced and so, no asymmetric radial 

deformations occur near the face. 
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Figure 11.8 Stress paths at the crown. 

 

Figure 11.9 Normalized axial displacements with respect to the tunnel radius along the tunnel 
perimeter for Case 1, complete stress field. Unsupported tunnel. The colors of the deformed 

tunnel cross-section are associated with the magnitude of the axial displacements and are shown 
to help with the visualization. 
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If a liner is installed near the face, the asymmetric radial deformations may affect the 

stresses in the support. To investigate the influence of the far-field axial shear stress on supported 

tunnels in a horizontally structured rock masses, the two cases previously discussed are analyzed 

again, but with a liner placed close to the face (Figure 11.2). Figure 11.10 shows the normalized 

radial displacements with the normalized distance from the face. For Case 1, complete stress field, 

the radial displacements at the springline are asymmetric near the face and far behind the face. For 

Case 2, no far-field axial shear, the radial displacements at the springline are always symmetric. 

Consistent with the findings from the unsupported tunnel, the asymmetric deformations are caused 

by the anti-symmetric axial displacements induced by the far-field axial shear stress. 

Figure 11.11 shows the normalized radial stresses at the tunnel perimeter, with respect to 

the vertical stress, with the normalized distance from the face. For Case 1, complete stress field, 

on the right-hand side of the springline, the radial stresses increase at the face and abruptly decrease 

behind the face; then, they slightly increase with the distance from the face until they are constant. 

On the left-hand side of the springline, the radial stresses decrease ahead of the face as the distance 

from the face decreases and then, behind the face, they increase with distance until they are 

constant. The radial stresses on the right are larger than on the left springline, which is consistent 

with the asymmetric deformations near the face. Note that there is a translation of the tunnel cross 

section towards the right (Figure 11.4.a.1), which compresses the right springline and unloads the 

left. For Case 2, the radial stresses are the same (i.e. both abruptly decrease at the face and slightly 

increase behind the face until they are constant far-behind the face). It is interesting to note that 

the radial stresses at the crown are similar in both cases. At the crown, the radial stresses decrease 

ahead of the face and increase behind the face until they reach a constant value. Note that, behind 

the face, the radial stresses at the crown are larger than at the springline. Figure 11.12 shows the 

internal forces in the liner, normalized with respect to the vertical stress and the tunnel radius. The 

internal forces (i.e. thrust forces and bending moments) are symmetric for Case 2 (no far-field 

axial shear) and asymmetric for Case 1 (complete stress field), where they are larger on the right 

than on the left. This observation is consistent with the asymmetric radial displacements that occur 

at the tunnel perimeter. Note also that Case 1 produces the largest internal forces. 
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Figure 11.10 Normalized radial displacements with respect to the tunnel radius with the 
normalized distance from the face with respect to the tunnel radius, for supported tunnel. (a) 

Case 1, complete stress field and, (b) Case 2, no far-field axial shear. 

 

Figure 11.11 Normalized radial stresses with respect to the far-field vertical stress with the 
normalized distance from the face with respect to the tunnel radius, for supported tunnel. (a) 

Case 1, complete stress field; (b) Case 2, no far-field axial sher stress. 

 

Figure 11.12 Normalized internal forces with respect to the vertical stress and tunnel radius. (a) 
Thrust (b) Bending moment. 
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11.4 Tunnel in vertically-structured rock mass 

In this case, the tunnel is inclined 45° with the strike of the rock structure and with the 

geostatic principal horizontal stresses, as shown in Figure 11.13. The figure also shows the 

boundary conditions of the FEM model, which are analogous to those in Figure 11.2. Three cases 

are investigated: (1) major horizontal stress (σH) perpendicular to the strike; (2) no far-field axial 

shear stress; and (3) major horizontal stress (σH) perpendicular to the strike. The far-field horizontal 

and axial stress are the same in all three scenarios (i.e. σxx,ff=σzz,ff=7.5MPa). When σH is 

perpendicular to the strike (case 1), the far-field axial shear stress (τxz,ff) is 2.5MPa, and when 

parallel to the strike (case 3), τxz,ff= -2.5MPa. Case 2 assumes τxz,ff=0. 

 

Figure 11.13 Plan view of the tunnel misaligned with the vertically structured rock mass and 
boundary conditions. 

 

The axial displacements at the tunnel perimeter, normalized with respect to the tunnel 

radius, are presented in Figure 11.14, for an unsupported tunnel. In all cases, axial displacements 

are induced far behind the face. The axial displacements are asymmetric at the face and anti-

symmetric far-behind the face. The axis of anti-symmetry far-behind the face is the vertical axis 

in all three cases, so the maximum axial displacements are at the springline and there are no axial 

displacements at the crown or invert. This is because of the presence of the far-field axial shear 
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stress and because of the tunnel misalignment with the rock mass structure. It is interesting to note 

that the axial displacements for Case 2, no far-field shear, are larger than for Case 3, σH parallel to 

the strike, but smaller than for Case 1, σH perpendicular to the strike. The reason for this is that, 

when σH is perpendicular to the strike, the axial distortions produced by the far-field axial shear 

stress and by the rock mass anisotropy complement each other, while when σH is parallel to the 

strike, they have opposite effects. 

 

Figure 11.14 Normalized axial displacements of the tunnel: (a) at the face; (b) far-behind the 
face. The colors of the axially deformed tunnel cross-sections are associated with the magnitude 

of the axial displacements and are used for visualization purposes. 

 

Figure 11.15 shows the normalized horizontal and vertical tunnel displacements with the 

normalized distance from the face of the tunnel. The displacements of Case 1 with horizontally 

structured rock mass are plotted for comparison. The vertical displacements are similar in all three 

cases with vertically structured rock mass and are smaller than those with horizontally structured 

rock mass. The reason for this is because the rock stiffness in the vertical direction is the largest 
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for vertically structured rock mass and the smallest for horizontally structured rock mass. For 

vertically structured rock mass, the horizontal displacements are larger for Case 1 (σH 

perpendicular to the strike) and smaller for Case 3 (σH parallel to the strike). This is due to the 

compliance matrix of the transversely anisotropic elastic model, which is fully populated when the 

tunnel is misaligned with one of the principal axes of material anisotropy. Thus, in-plane and out-

of-plane stresses and deformations are coupled. As a consequence, radial displacements are 

affected by the far-field axial shear stresses. Note that when the tunnel is aligned with one of the 

principal axes of the material anisotropy, in-plane and out-of-plane deformations are decoupled. 

As a consequence, the far-field axial shear stress has no influence to the radial displacements far-

behind the face (see e.g. Figures 11.4 and 11.5 for horizontally-structured rock mass). The 

horizontal convergence for Case 1 with horizontally structured rock mass is smaller than with 

vertically structured rock mass, because the rock mass stiffness is the largest in the horizontal 

direction than when the rock mass structure is horizontal. 

 

Figure 11.15 Normalized horizontal and vertical tunnel convergence, with respect to the tunnel 
radius, with the normalized distance from the face, with respect to the tunnel radius. 

Unsupported tunnel. 

 

Figure 11.16 shows the normalized radial displacements and the deformed tunnel cross-

section of the cases with vertically structured rock mass and of Case 1, with horizontally structured 

rock mass, which is included for comparison. At the face of the tunnel, the radial displacements 

are always asymmetric, but they are symmetric far-behind the face. As explained before, the 

asymmetric deformations near the face occur because the anti-symmetric axial displacements are 

constrained by the face of the tunnel. Note that the asymmetric deformations at the face and the 
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symmetric deformations far-behind the face are larger when σH is perpendicular to the strike (case 

1) and smaller when σH is parallel to the strike (case 3). At the face, a horizontal translation of the 

tunnel cross section occurs for all cases. The translation is towards the right for Case 1 (σH 

perpendicular to the strike, Figure 11.16.a.1), Case 2 (no far-field axial shear stress, Figure 

11.16.a.2) and for Case 1 with horizontally structured rock mass (Figure 11.16.a.4), but it is 

towards the left for Case 3 (σH parallel to the strike). As one can see in Figure 11.16, the deformed 

tunnel cross-section has a pronounced ellipsoidal shape far-behind the face when the rock structure 

is vertical (Cases 1 to 3). This is the result of a larger far-field horizontal stress than vertical, and 

the fact that the larger horizontal stress is applied in the direction of the smaller stiffness of the 

rock. The opposite happens in the horizontally structured rock mass, as discussed in the previous 

section. 

 

Figure 11.16 Normalized radial displacements at the tunnel perimeter with respect to the tunnel 
radius and deformed tunnel cross-section, for unsupported tunnel. (a) at the face; (b) far-behind 
the face. Deformations are magnified 200 times at the face and 100 times far-behind the face. 
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Figure 11.17 shows the normalized radial displacements at the springline and the horizontal 

translation of the tunnel cross section with the normalized distance from the face of the tunnel. The 

radial displacements on the left and right at the springline are different near the face but are the 

same far-behind the face. The horizontal translation of the tunnel cross section occurs near the face 

in all three scenarios; it is maximum at the face and reduces to zero far behind the face. Figure 

11.17 also shows the “corrected” radial displacements, which are the radial displacements without 

the translation, as indicated in the graphs. For Case 2, no far-field axial shear stress, the corrected 

radial displacements are the same (within numerical approximation) on both sides of the springline. 

For Cases 1 and 3, where the far-field axial shear stress is not zero, the corrected radial 

displacements near the face are asymmetric. Thus, the horizontal translation observed in Case 2, 

no far-field axial shear, is in reality a horizontal rigid body displacement of the tunnel cross section, 

while in Cases 1 and 3, where the far-field axial shear stress is present, the deformations are more 

complex. The combination of rock anisotropy and far-field axial shear produces a response of the 

rock around the tunnel quite different (and more complex) than when the rock is isotropic. Indeed, 

in isotropic elastic ground, Vitali et al. (2019b) observed that the asymmetric radial deformations 

near the face due to a far-field axial shear stress could be decomposed into a rigid body 

displacement of the tunnel cross-section and anti-symmetric radial displacements, which is not 

always the case in anisotropic rock. 

Figure 11.18 shows the stress paths at the springline, normalized with respect to the vertical 

stress. The labels (1, 2 and 3) shown in Figure 11.18 refer to positions far-ahead of the face (1), at 

the face (2), and far-behind the face (3), as indicated in Figure 11.2. The stresses are extracted at 

a distance of 0.1r0 from the tunnel perimeter, to avoid the mathematical singularity at the corner 

formed between the tunnel face and the excavation. As a consequence of the asymmetric 

deformations near the face, the stress paths are asymmetric near the face as well. For Case 1, σH 

perpendicular to the strike, the rock on the right-hand side of the springline takes load ahead of the 

face, the stresses increase near the face, and then they decrease behind the face. On the left, the 

stresses decrease ahead of the face and increase behind the face. Note that the stresses on the right 

and left springlines far-behind the face are the same. The stress paths are consistent with a 

horizontal translation of the tunnel cross section towards the right, which compresses the rock at 

the springline, to the right, and unloads to the left. The opposite is observed for Case 3, σH parallel 

to the strike. On the right, there is unloading ahead of the face and loading behind the face; on the 
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left springline, there is loading ahead of the face and unloading behind. Note that the tunnel 

translation in Case 3 is towards the left. For Case 2, no far-field axial shear stress, both sides of 

the springline follow the same stress path. The stresses near the face are larger at the right 

springline, which is consistent with the observed horizontal translation towards the right. It is 

interesting to note that the unloading stress path ahead of the face is only observed when the far-

field axial shear stress is present. Figure 11.19 shows the normalized stress paths at the crown with 

respect to the vertical stress, for the three cases with vertically structured rock mass, and for Case 

1, with horizontally structured rock mass, which is included for comparison. As one can see, all 

the stresses increase near the face. The shear stresses are smaller for Case 2, no far-field axial shear 

stress, than for the other cases. Far-behind the face, the stress state for Case 1, σH perpendicular to 

the strike, and Case 3, σH parallel to the strike, are the same and slightly different than for Case 1, 

with horizontally structured rock mass. This finding suggests that the orientation of the rock 

structure with respect to the tunnel strongly affects the ground deformations around the tunnel, 

particularly near the face of the tunnel, but has limited influence on the stresses around the tunnel 

far-behind the face. 

The asymmetric deformations found near the face may affect the liner, if the tunnel is 

supported. This is investigated by running three new cases, all analogous to the previous cases 

discussed, but with a liner placed close to the face (Figure 11.2). The results are presented in 

Figures 11.20 and 11.21. Figure 11.20 shows the normalized radial stresses with the normalized 

distance from the tunnel face. As a consequence of the asymmetric deformations near the face, the 

radial stresses at the tunnel perimeter are asymmetric near and far-behind the face. The largest 

stress asymmetries occur for Case 1, when σH is perpendicular to the strike, and the smallest for 

Case 2, no far-field axial shear stress. The radial stresses are larger at the right springline when σH 

is perpendicular to the strike and when there is no far-field axial shear stress, but are larger at the 

left when σH is parallel to the strike. This is consistent with the direction of the tunnel cross section 

translation observed. The radial stresses at the crown are similar for the three cases and are larger 

than the stresses at the springline, given that the horizontal stress is larger than the vertical (i.e. 

stress concentrations are larger at the crown). Figure 11.21 shows the internal forces of the liner 

normalized with respect to the vertical stress and the tunnel radius. The internal forces are always 

asymmetric. The thrust is larger at the crown and at the invert and is smaller at the springline, 

while the bending moments are larger at the springline. The internal forces are larger for Case 1, 
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when σH is perpendicular to the strike and are smaller for Case 3, when σH is parallel to the strike. 

This is expected because the radial deformations are larger for Case 1 and smaller for Case 3, as 

shown in Figures 11.15, 11.16 and 11.17. It is interesting to note that the internal forces for the 

cases with far-field axial shear stress (Cases 1 and 3) are more asymmetric than the case with no 

far-field axial shear stress (Case 2). 

 

Figure 11.17 Normalized radial and horizontal translation of the tunnel cross section with respect 
to the tunnel radius with the normalized distance from the face with respect to the tunnel radius, 
for unsupported tunnel. (a) Case 1, σH perpendicular to the strike; (b) Case 2, no far-field axial 

shear stress and; (c) Case 3 σH parallel to the strike. 
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Figure 11.18 Normalized stress paths with respect to the vertical stress for unsupported tunnel. 
(a) Case 1: σH perpendicular to the strike; (b) Case 2, no far-field axial shear stress; and (c) Case 

3, σH parallel to the strike.  

 

Figure 11.19 Stress paths at the crown. 

 

Figure 11.20 Normalized radial stresses with respect to the vertical stress with the normalized 
distance from the face with respect to the tunnel radius, for supported tunnel. (a) Case 1, σH 

perpendicular to the strike; (b) Case 2, no far-field axial shear stress; and (c) Case 3, σH parallel 
to the strike. 
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Figure 11.21 Normalized internal forces with the vertical stress and tunnel radius. (a) Thrust; (b) 
Bending moment. 

11.5 Conclusions 

The effects of the tunnel misalignment with the geostatic principal stress directions in 

anisotropic rock masses are investigated in this paper. Far-field axial shear stresses are present 

when the tunnel is not aligned with the geostatic principal stress directions. Anti-symmetric axial 

displacements and axial shear stresses are induced around the tunnel due to the tunnel 

misalignment with the geostatic principal stress directions and with the principal material 

directions. Near the face, axial displacements are constrained by the face of the tunnel; as a 

consequence, asymmetric radial deformations occur near the face. 3D FEM simulations of a tunnel 

at 45° with the horizontal principal stresses have been performed, with an anisotropic geostatic 

stress field. Two scenarios have been investigated: a horizontal tunnel in rock mass with horizontal 

structure, and in a rock mass with a vertical structure. In both scenarios, the rock response is 

approximated through a transversely anisotropic elastic model. Both unsupported and supported 

tunnels are considered. 

For the scenario with the horizontally-structured rock mass, the tunnel is always aligned 

with the rock mass structure. Asymmetric radial deformations near the face of the tunnel occur 

when a far-field axial shear stress is present. Far-behind the face, for the unsupported tunnel, the 

radial displacements are symmetric, which indicates that the far-field axial shear stress does not 
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affect the radial displacements far-behind the face. The reason is that, when the tunnel is aligned 

with one of the principal material directions, in-plane and out-of-plane deformations are decoupled. 

For supported tunnels, the asymmetric deformations near the face affect the liner response. Far 

behind the face, asymmetric radial displacements and stresses are present, so the internal forces in 

the liner are asymmetric.  

For the scenario where the rock mass structure is vertical and the tunnel axis makes an 

angle of 45° with the strike or the rock structure, axial displacements and axial shear stresses are 

induced around the tunnel. Three scenarios are being investigated: major horizontal stress parallel 

to the strike direction, major horizontal stress perpendicular to the tunnel direction and no far-field 

axial shear stress. Far-behind the face, the induced axial displacements are always anti-symmetric 

with respect to the vertical axis. The largest axial displacements occur when σH is perpendicular 

to the strike and the smallest when σH is parallel to the strike. This is because, when σH is 

perpendicular to the strike, the axial distortion of the tunnel cross section produced by the far-field 

axial shear stress and by the rock mass structure complement each other. The opposite happens 

when σH is parallel to the strike. Near the face, asymmetric deformations are induced. The 

asymmetric radial deformations near the face are larger when σH is perpendicular to the strike and 

smaller when σH is parallel. The same is true far-behind the face of the tunnel. In other words, the 

far-field axial shear stress affects the radial displacements far-behind the face when the tunnel is 

misaligned with the principal directions of material anisotropy. For supported tunnels, the radial 

stresses at the tunnel perimeter are asymmetric near the face and far-behind the face. Thus, the 

internal forces in the tunnel liner are asymmetric. The largest internal forces occur when σH is 

perpendicular to the strike and the smallest when σH is parallel to the strike. 

The ground deformations far-behind the tunnel face are heavily affected by the orientation 

of the rock mass structure with the tunnel. For the horizontally structured rock mass, the deformed 

tunnel cross section far-behind the face has a slightly ellipsoidal shape (i.e. the radial 

displacements at the springline are similar to those at the crown and invert). In contrast, for 

vertically-structured rock mass, the deformed tunnel cross section has a pronounced ellipsoidal 

shape, where the radial displacements at the springline are substantially larger than at the crown 

and invert. For this specific case, the far-field horizontal stress is larger than the vertical. Thus, for 

horizontally-structured rock mass, the largest stresses are aligned with the stiffest material 

direction (i.e. parallel to the rock structure) and the smallest stresses are aligned with the softest 
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material direction (i.e. perpendicular to the strike). The opposite occurs for vertically-structured 

rock mass. The rock stresses near the tunnel perimeter for horizontally- and vertically-structured 

rock mass are similar far-behind the face, which seems to suggest that rock anisotropy has a modest 

influence on the stresses far behind the face of the tunnel. 

The results presented in this paper provide insight into the complex behavior of tunnels in 

anisotropic rock masses, and highlight the importance of considering the tunnel misalignment with 

the geostatic principal stress directions and with the rock mass structural planes. Also, the results 

show the importance of the orientation of the geostatic principal stress directions with respect to 

the principal directions of material anisotropy. 
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of tunnels misaligned with the geostatic principal stresses in isotropic and anisotropic rock masses. 
54th US Rock Mechanics /Geomechanics Symposium (ARMA 2020). 
 

Abstract 

Rock masses may present remarked stress anisotropy, and so the geostatic horizontal 

stresses may be highly anisotropic and larger than the overburden stress. Therefore, the alignment 

of a tunnel with one of the geostatic principal stress directions is improbable; thus, far-field axial 

shear stresses are likely to be present in the direction of the tunnel. In addition, rock masses may 

have important material anisotropy due to the presence of structure, e.g. bedding, foliation and 

stratification; so, a tunnel is also likely to be misaligned with the principal material directions of 

the rock mass. Those misalignments are often neglected in tunnel design and yet, their effects are 

not well explored in the literature. In this paper, the deformation patterns and the 3D face effects 

on tunnels misaligned with the principal directions of stress and material anisotropy are explored. 

12.1 Introduction 

Rock masses may present remarked stress and material anisotropy and, yet, tunnel design 

often neglects the tunnel orientation with the principal directions of stress and material anisotropy. 

However, the importance of the tunnel orientation with respect to the geostatic principal stress 

directions is well recognized. Experimental tunnels had been constructed in an Underground 

Research Laboratory (URL) in France, where the URL was placed at 490m depth in an anisotropic 

Claystone rock mass. Tunnels were excavated parallel and perpendicular to the major horizontal 

stress (σH). A supported circular tunnel of radius 2.6m aligned with σH showed a horizontal 

convergence of 37 to 58mm and a vertical convergence of 24 to 30mm. A similar tunnel aligned 

with the minor horizontal stress (σh) showed horizontal convergence of 19mm to 34mm and 

vertical convergence of 112mm to 158mm (Armand et al., 2013). These field data illustrate the 

importance of the tunnel orientation with respect to the geostatic principal stresses. Indeed, it has 
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been long known that a tunnel should be aligned with the geostatic major principal stress to 

minimize stress concentrations around the opening (Goodman, 1989). 

When the tunnel is not aligned with the geostatic principal stresses, the far-field stresses 

can be decomposed into stresses in the plane of the tunnel cross-section and perpendicular to the 

cross-section, i.e. axial normal and shear stresses. The far-field axial shear stresses cause anti-

symmetric axial displacements and shear stresses along the axis of the tunnel. Near the face, the 

axial displacements are partially constrained by the face, which causes asymmetric radial 

displacements and stresses near the face (Vitali et al. 2018, 2019a, 2019b, 2019c). If the tunnel is 

unsupported and in an elastic rock, Vitali et al. 2019b showed that the asymmetric radial 

displacements at the face can be divided into a rigid body displacement of the tunnel cross section 

and anti-symmetric radial displacements. The asymmetric deformations near the face disappear 

far-behind the face, where the radial displacements are symmetric, and the anti-symmetric axial 

displacements are not constrained. However, if the tunnel is supported and/or the rock mass is 

elastoplastic, the radial displacements far-behind the face may be asymmetric. The asymmetric 

stresses near the face may produce an asymmetric plastic zone around the tunnel if the rock mass 

is elastoplastic. Further, the pressure in the liner may be asymmetric; thus, asymmetric internal 

forces might occur in the tunnel support (Vitali et al. 2019b and 2019c). 

If the rock mass has anisotropic properties, the tunnel misalignment with the principal 

directions of material anisotropy also induces anti-symmetric axial displacements and axial shear 

stresses along the tunnel. The reason for this is that the tunnel response is fully coupled in the 

transverse and longitudinal directions (i.e. the compliance matrix of the system is fully populated, 

Vitali et al. 2020a). Vitali et al. 2020a showed that the asymmetric radial displacement near the 

face of an unsupported tunnel misaligned with the principal material directions in a transversely 

anisotropic elastic rock mass under isotropic stress state is due to a rigid body displacement of the 

tunnel cross section. However, when the geostatic stress field is anisotropic and the tunnel also is 

misaligned with the principal stress directions, the asymmetric deformations near the face are 

rather complex. Thus, misaligned tunnels in anisotropic rock masses are substantially more 

difficult to analyze than misaligned tunnels in isotropic rock masses, where axial displacements 

and in-plane stresses are decoupled (Vitali et. 2020a, 2020b and 2020c). Asymmetric radial 

deformations and anti-symmetric axial displacements around tunnels in anisotropic rock masses 

are commonly observed (Schubert and Budil 1995, Schubert et al. 2005), but, so far, the sources 
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of these deformations are not clearly identified. It is possible that those deformations were 

associated with the misalignment of the tunnel axis with the principal directions of stress and/or 

material anisotropy. 

In this paper, the deformation patterns and the 3D face effects of misaligned tunnels in 

isotropic and anisotropic rock masses are presented. The analyses were done using 3D FEM 

modeling. The models were built following the recommendations provided by Vitali et al. (2017), 

to ensure accurate numerical results. The tunnels were unsupported and circular, with radius (r0) 

of 5m. The isotropic rock mass was represented by an elastic model with E = 2GPa (Young 

modulus) and ν = 0.33 (Poisson ratio). The anisotropic rock mass was characterized by a 

transversely anisotropic elastic model with: E1 = E3 = 3.33GPa (Young modulus parallel to the 

isotropic planes); E2 = 0.67GPa (Young modulus perpendicular to the isotropic planes); 

G12=G23=0.51GPa (shear modulus perpendicular to the isotropic planes); G13=1.25GPa (shear 

modulus parallel to the isotropic planes); ν23 =ν12 = 0.25 and; ν13= 0.33. Where “1” and “3” are 

directions parallel to the rock structure and “2”, perpendicular. Those properties are representative 

of a highly anisotropic rock mass, such as slate, schist or phyllite. Note that the ratio E1/E2 = 5 is 

on the upper limit of the range reported by Worotnicki (1993). The orientation of the rock structural 

planes is given by the dip angle (α1) and by the strike direction. A dip angle (α1) of 45° was chosen 

for this study. A major horizontal stress (σH) of 10MPa, minor horizontal stress (σh) of 5MPa and 

vertical stress of 5MPa were adopted. The vertical stress corresponded to an overburden of about 

200m. The selected geostatic stress anisotropy was within the range found in the literature (Mcgarr 

and Gay 1978; Willeaveau et al. 2007; Brown and Hoek, 1978; Haimson et al. 2003). Note that E 

= (E1+E2)/2 = 2GPa. Thus, the isotropic rock mass had the average stiffness of the anisotropic rock 

mass. 

Different orientations of the tunnel with respect to the principal stress directions were 

assessed for two scenarios, as shown in Figures 12.1 and 12.2. Scenario 1 (Figure 12.1) considered 

the major horizontal stress aligned with the rock structure. In scenario 2 (Figure 12.2), the minor 

horizontal stress was aligned with the rock mass structure. The tunnel was horizontal and made an 

angle Ψ with the major horizontal stress (σH), as indicated in Figures 12.1 and 12.2. The far-field 

stresses, in the coordinate system attached to the tunnel (illustrated in Figures 12.1 and 12.2), are: 

hHffxx  )(cos)(sin 22
,  ;  (1) 

vffyy  , ;     (2) 
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hHffzz  )(sin)(cos 22
,  ;  (3) 

)2sin(
2,  hH

ffxz




;    (4) 

Where the axis z is parallel to the direction of the tunnel and the axis, x, perpendicular; 

note that the axis y remains unchanged and is vertical. 

 

Figure 12.1 Plan view of the case with major horizontal stress parallel to the rock structure, 
scenario 1. 

 

Figure 12.2 Plan view of the case with minor horizontal stress parallel to the rock structure, 
scenario 2. 

 

When Ψ=0°, the tunnel is aligned with the major horizontal stress (σH); thus, the far-field 

horizontal stress (σxx,ff) is minimum (i.e. σxx,ff = σh) and no far field axial shear stress (τxz,ff) is 

present. As the tunnel rotates, the far-field horizontal stress (σxx,ff) increases and the far-field axial 
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shear stress (τxz,ff) appears. The far-field axial shear stress is maximum when Ψ=45°. For this angle: 

the far-field axial shear stress (τxz,ff) was -2.5MPa for scenario 1 and 2.5MPa for scenario 2 (i.e. 

the same magnitude but opposite direction), and the far-field horizontal stress was 7.5MPa for 

scenarios 1 and 2. When Ψ=90°, the tunnel is aligned with the minor horizontal stress (σh); thus, 

the horizontal stress (σxx,ff) is maximum (i.e. σxx,ff = σH), and no far-field shear is present. A case 

with no far-field axial shear stress (i.e. no shear, τxz,ff=0) is included to assess its influence. That is 

σxx,ff, σyy,ff, σzz,ff are the same as before, but τxz,ff is neglected. The far-field axial shear stress does 

not affect the radial displacements far-behind the face if the tunnel is unsupported and the rock 

mass is isotropic and elastic (Vitali et al. 2018, 2019a, 2019b); however, the radial deformations 

are affected by the far-field axial shear stress if the rock mass has anisotropic properties (Vitali et 

al. 2020a, 2020b and 2020c). 

12.2 Deformations Far-Behind the Face 

The maximum radial displacements (ur,max) far-behind the face at the tunnel perimeter, with 

the angle Ψ, for scenario 1 (Figure 12.1) are plotted in Figure 12.3. This figure also illustrates the 

deformed tunnel cross sections for Ψ=0°, 45° and 90°. The displacements were normalized with 

respect to the tunnel radius (r0). 

For the isotropic rock mass, as Ψ increased from 0° to 90°, the maximum radial 

displacement increased, because of the increase on the far-field horizontal stress. In contrast, for 

anisotropic rock mass, the maximum radial displacements decreased with Ψ. This occurred 

because the stiffness of the rock mass parallel to the structural planes was substantially larger than 

the stiffness perpendicular to those planes. For Ψ=0° in scenario 1, the tunnel aligns with the rock 

structure and with σH; thus, the horizontal rock mass stiffness is the smallest and the far-field 

horizontal stress is the smallest as well (σxx,ff = σh). As the tunnel rotates, the far-field horizontal 

stress (σxx,ff) increases, but the horizontal stiffness of the rock mass also increases, compensating 

the larger horizontal stresses (σxx,ff). Interestingly, the maximum radial displacements for the 

tunnel in anisotropic rock with no shear were larger than with the full stress field; thus, showing 

that the presence of the far-field axial shear stress reduced the radial displacements. For isotropic 

rock, the deformed cross section was symmetric with the horizontal and vertical axes being the 

axes of symmetry; the maximum radial displacement was always at the springline (except for Ψ=0°, 

where the radial displacements were uniform along the tunnel perimeter). For anisotropic rock, the 
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location of the maximum radial displacement changed as the tunnel rotated; thus, the deformed 

cross sections were not symmetric with respect to the vertical and horizontal axes (except for 

Ψ=90°). The maximum radial displacements were larger for the anisotropic rock when Ψ was 

between 0° and 45° and for the isotropic rock when Ψ ranged from 45° to 90°. 

 

Figure 12.3 Maximum radial displacement (ur,max) at the tunnel perimeter normalized with 
respect to the tunnel radius (r0) with angle Ψ, for scenario 1. The displacements of the deformed 

cross-sections are amplified 75 times. 

 

The normalized maximum axial displacements (uaxial,max/r0), with Ψ, and the axially 

deformed cross sections for Ψ = 45° and 90° are presented in Figure 12.4. For isotropic rock, the 

axial displacements were zero for Ψ equal 0° and 90° since, at these angles, the tunnel was aligned 

with one of the principal stress directions. The axial displacements were maximum at Ψ=45°, the 

direction at which the far-field axial shear stresses are the largest. The axial displacements were 

anti-symmetric with respect to the vertical axis, as illustrated by the deformed cross sections in the 

figure. Note that the left springline displaced forward while the right springline, backward. For 

anisotropic rock, the axial displacements were zero for Ψ=0° because the tunnel was aligned with 

the major horizontal stress and with the rock mass structure. As the tunnel rotated, the maximum 

axial displacements increased until Ψ=45° and were almost constant from Ψ=45° to 90°. For 

Ψ=90°, even though no far-field axial shear stress was present, the tunnel was not aligned with the 
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rock structure and, thus, anti-symmetric axial displacements were induced along the tunnel. 

Because of the material anisotropy, the axis of anti-symmetry changed as the tunnel rotated. It is 

interesting to note that the axial displacements for anisotropic rock with no axial shear were 

slightly larger than when the far-field axial shear stress was included. For anisotropic rock with no 

shear, the magnitude of the maximum axial displacements at the tunnel perimeter with the angle 

Ψ (Figure 12.1) were similar to those when the far-field axial shear stress was included. At Ψ=45°, 

the axis of anti-symmetry is located at 33° from the horizontal and the right springline displaces 

forward while the left, backward. It is interesting to note that this is in the opposite direction of the 

axial distortion caused by the far-field axial shear stress in isotropic rock, as one can see in the 

axially deformed cross-sections presented in Figure 12.4. Thus, the rock anisotropy and the far-

field axial shear stress produced anti-symmetric axial displacements in the opposite directions. As 

a consequence, the axis of anti-symmetry was shifted to near horizontal and the ground 

deformations were reduced. 

 

Figure 12.4 Maximum axial displacement (uaxial,max) at the tunnel perimeter normalized with 
respect to the tunnel radius (r0) with angle Ψ, for scenario 1. The axially-deformed cross sections 
were taken from the FEM software used in this work (Midas GTS NX). The colors are included 

to enhance visualization.  
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The normalized maximum radial displacements at the tunnel perimeter with the angle Ψ, 

for scenario 2 (Figure 12.2), are presented in Figure 12.5, as well as the deformed tunnel cross 

section for Ψ=0°, 45° and 90°. Note that the plots of ur,max for scenarios 1 and 2 are the same for 

the isotropic rock. For the anisotropic rock, the maximum radial displacement (ur,max) increased 

with Ψ, which was the opposite than in scenario 1, where the ur,max decreased with Ψ. When Ψ was 

between 45° to 90° in scenario 2 (Figure 12.5), the maximum radial displacement was substantially 

larger for the tunnel in anisotropic rock than for the tunnel in isotropic rock, and larger than for 

the tunnel in anisotropic rock in scenario 1 (Figure 12.3). The reason for this is because, in scenario 

2, the minor horizontal stress was aligned with the stiffest rock mass direction. When Ψ was 0°, 

the far-field horizontal stress was minimum (σxx,ff = σh) and rock stiffness on the horizontal plane 

was maximum; thus, as the tunnel rotated, the horizontal stress increased while the horizontal 

stiffness of the rock mass decreased, amplifying the ground deformations. It is interesting to note 

that the radial displacements for anisotropic rock with no far-field axial shear stress were smaller 

than with the full stress field. It is the opposite in scenario 1. Thus, in scenario 2, the far-field axial 

shear stress contributed to increase the radial displacements far-behind the face. As with scenario 

1, the location where the maximum radial displacement occurred changed with Ψ. For Ψ=45°, 

scenarios 1 and 2 only differed from each other by the direction of the far-field axial shear; 

however, the maximum radial displacement for scenario 2 was 33% larger than for scenario 1 (this 

observation is revisited later when discussing axial displacements). 
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Figure 12.5 Maximum radial displacement (ur,max) at the tunnel perimeter normalized with respect 
to the tunnel radius (r0) with angle Ψ, for scenario 2. The displacements of the deformed cross-

sections are amplified 75 times. 

 

Figure 12.6 shows the normalized maximum axial displacements at the tunnel perimeter, 

with Ψ, for scenario 2. For isotropic rock, the maximum axial displacements for scenarios 1 and 2 

had the same magnitude, the axis of anti-symmetry had the same orientation (i.e. vertical), but the 

direction of the axial distortion was the opposite from each other because the far-field axial shear 

stresses had opposite directions. Note that the left springline for the isotropic rock mass case 

displaced backward in scenario 2 and forward in scenario 1. For anisotropic rock with the full far-

field stresses, the maximum axial displacements were substantially larger than for isotropic rock 

and for the case of anisotropic rock with no far-field axial shear stress. This is different from 

scenario 1, where the axial displacements in anisotropic rock with no shear were slightly larger 

than in anisotropic rock with full far-field stress. As one can see in the axially deformed tunnel 

cross-sections presented in Figure 12.6, when Ψ=45°, the anti-symmetric axial displacements for 

the tunnel in isotropic rock (with shear) and in anisotropic rock with no far-field axial shear had 

the same direction, i.e. forward on the right springline and backward on the left springline; thus, 

the axial displacements due to the rock anisotropy and due to the far-field axial shear stress have 

the same direction and thus they add to each other, producing larger deformations around the tunnel 
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(compare results with anisotropic rock between scenario 1, Figure 12.4, and scenario 2, Figure 

12.6). The axis of anti-symmetry changed substantially with Ψ; note that for Ψ=0°, the axis of anti-

symmetry was horizontal while for Ψ=45°, it was quasi- vertical. For Ψ=45°, when scenarios 1 

and 2 only differ by the direction of the far-field axial shear, the axial deformations from scenarios 

1 and 2 were substantially different (i.e. the axis of anti-symmetry was in a different position and 

the maximum axial displacement for scenario 2 was approximately two times larger than for 

scenario 1; compare Figure 12.6 with Figure 12.4). 

These numerical results suggest that the axial displacements produced by the far-field axial 

shear stresses and by the rock mass material anisotropy may compensate or supplement each other. 

For scenario 1, the anti-symmetric axial displacements induced by the far-field stress and by the 

rock anisotropy had opposite sign; thus, axial and radial displacements at the tunnel perimeter of 

the tunnel were smaller than those in anisotropic rock with no far-field axial shear stress. For 

scenario 2, the anti-symmetric axial displacements due to the far-field stresses and due to the rock 

anisotropy had the same sign; thus, axial and radial displacements were amplified with respect to 

the tunnel in anisotropic rock with no far-field axial shear stress. 

 

Figure 12.6 Maximum axial displacement (uaxial,max) at the tunnel perimeter normalized with 
respect to the tunnel radius (r0) with angle Ψ, for scenario 2. The axially deformed cross sections 
were taken from the FEM software used in this work (Midas GTS NX). The colors are included 

to enhance visualisation. 
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12.3 Deformations Near the Face 

Near the face, any far-field anti-symmetric axial displacements are partially constrained by 

the face of the tunnel; consequently, asymmetric radial displacements occur near the face (Vitali 

et al. 2019b, 2019c, 2020b and 2020c). Those asymmetric deformations near the face are explored 

in this section for scenarios 1 and 2 when Ψ=45°. Scenarios 1 and 2 only differ by the direction of 

the far-field axial shear stress when Ψ=45° (Figures 12.1 and 12.2); that is, the far-field horizontal, 

vertical and axial stresses are the same on both scenarios (σxx,ff = σzz,ff = 7.5 MPa and σyy,ff = 5 MPa) 

and the far-field axial shear stress has the same magnitude but opposite directions (τxz,ff = -2.5 MPa 

in scenario 1 and τxz,ff = 2.5 MPa in scenario 2). The case of the tunnel in anisotropic rock 

neglecting the far-field axial shear stress (τxz,ff = 0) was included to investigate the influence of the 

far-field axial shear stress. The tunnel orientation with respect to the rock mass structural planes 

when Ψ=45° is illustrated in Figure 12.7.  

 

Figure 12.7 Tunnel orientation with respect to the rock mass structure for Ψ=45°. The lines in the 
figure represent the direction of the rock mass structure, with a dip angle of 45°. 

 

Normalized radial displacements (ur/r0) with normalized distance from the face (Z/r0), 

deformed cross section at the face (Z=0) and far-behind the face (Z=6r0) are presented in Figures 

12.8 and 12.9. Those plots show the radial displacements with the distance from the face at the 
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locations of maximum and minimum radial displacements for tunnels in isotropic and in 

anisotropic rock masses in scenarios 1 (Figure 12.8) and 2 (Figure 12.9). As one can see in the 

plots, the tunnel face affected the radial displacements from a distance of 4r0 ahead of the face to 

4r0 behind the face, for the tunnels in isotropic and anisotropic rock mass. Beyond the distance of 

4r0, the radial displacements were symmetric, and so this distance defines the extent of the 

influence of the face. 

 

Figure 12.8 Radial displacements near the face for scenario 1 and Ψ=45°. (a) isotropic rock; (b) 
anisotropic rock with no far-field axial shear stress; and (c) anisotropic rock with complete stress 

field. (1) maximum radial displacements with distance from the face, both normalized with 
respect to the tunnel radius; (2) normalized minimum radial displacements with normalized 

distance from the face; (3) deformed tunnel cross section far-behind the face (i.e. at 6r0 behind 
the face, Z=6r0), and at the face (Z=0). The deformed cross sections are amplified 75 times far-

behind the face and 200 times at the face. 
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Figure 12.9 Radial displacements near the face for scenario 2 and Ψ=45°. (a) isotropic rock; (b) 
anisotropic rock with no far-field axial shear stress; and (c) anisotropic rock with complete stress 

field. (1) maximum radial displacements with distance from the face, both normalized with 
respect to the tunnel radius; (2) normalized minimum radial displacements with normalized 

distance from the face; (3) deformed tunnel cross section far-behind the face (i.e. 6r0 behind the 
face, Z=6r0), and at the face (Z=0). The deformed cross sections are amplified 75 times far-

behind the face and 200 times at the face. 

 

Figure 12.8(a) shows the radial displacements for the isotropic rock mass in scenario 1 

when Ψ=45°. The maximum radial displacements occurred at the springlines and the minimum 

radial displacements at the crown and invert. Far-behind the face, the deformed cross section was 

symmetric; however, near the face, the radial displacements were asymmetric. The tunnel cross-

section translated horizontally towards the left springline at the face, as shown in figure 12.8(a3). 

Note that pronounced asymmetric deformations occurred at the springlines, while the radial 

displacements at the crown and at the invert were symmetric (note that the vertical is the axis of 

anti-symmetry of the axial displacements; thus, the maximum axial displacements occur at the 

springlines). Figure 12.8b shows the radial displacements for the tunnel in anisotropic rock mass 
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displacements at the tunnel perimeter were symmetric about an inclined axis and asymmetric near 

the face. At the face, the tunnel cross-section translated downwards and towards the right 

springline. The maximum radial displacements were highly asymmetric near the face while the 

minimum radial displacements were slightly asymmetric. The radial displacements near the face 

for the tunnel in anisotropic rock with full stress field are shown in figure 12.8(c). Similar to the 

other cases, the radial displacements were asymmetric near the face and symmetric far-behind the 

face. The tunnel cross-section translated downwards and towards the left springline near the face. 

Note that, different from the other cases (i.e. isotropic rock and anisotropic rock with no shear), 

the maximum radial displacements were almost symmetric near the face, while the minimum radial 

displacements were highly asymmetric. The radial displacements were smaller for the tunnel in 

anisotropic rock with full stress field than in anisotropic rock with no far-field axial shear stress. 

The asymmetric radial displacements produced by the far-field axial shear stress (i.e. translation 

towards the left springline) and those produced by the rock anisotropy (i.e. translation downwards 

and towards the right springline) compensate each other in scenario 1. 

Figure 12.9(a) shows the radial displacements near the face for the tunnel in isotropic rock 

in scenario 2 with Ψ=45°. Far-behind the face, the radial displacements were the same as in 

scenario 1. Near the face, the tunnel cross-section translated towards the right springline (opposite 

direction than in scenario 1). This occurred because the direction of the anti-symmetric axial 

displacements is related to the direction of tunnel translation near the face. Since the case 

“anisotropic rock, no shear” neglects the far-field axial shear stress, Figure 12.9(b) is exactly the 

same as Figure 12.8(b) because the only difference between scenarios 1 and 2, when Ψ =45°, is 

the direction of the far-field axial shear stress. Figure 12.9(c) shows the radial displacements near 

the face for the tunnel in anisotropic rock with full stress field. The maximum radial displacements 

were highly asymmetric near the face, while the minimum radial displacements were slightly 

asymmetric. The radial displacements were larger for the tunnel in anisotropic rock with full stress 

field than in anisotropic rock with no far-field axial shear stress. At the face, as shown in figure 

12.9(c3), the tunnel cross-section translated downwards and towards the right springline. The 

asymmetric deformations near the face produced by the far-field axial shear stress and by the rock 

anisotropy supplemented each other, producing more pronounced asymmetric deformations near 

the face and larger ground deformations. 
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12.4 Conclusion 

The deformation patterns and the 3D face effects on misaligned tunnels in isotropic and 

anisotropic rock masses were investigated in this paper. 3D FEM modelling was conducted to 

analyze different orientations of the tunnel axis with respect to the major horizontal stress in 

isotropic and anisotropic rock masses. For comparison purposes, the stiffness of the isotropic rock 

mass was the average stiffness of the anisotropic rock mass. 

In isotropic elastic rock, the far-field axial shear stresses did not affect the radial 

deformations far-behind the face of an unsupported tunnel (Vitali et al. 2018, 2019a, 2019b). The 

radial displacements were larger when the tunnel was aligned with the minor horizontal stress 

(Ψ=90°) and smaller when the tunnel was aligned with the major horizontal stress (Ψ=0°). The 

axial displacements were the largest when Ψ=45°, because, for this orientation, the far-field axial 

shear stress was maximum. The axis of anti-symmetry was vertical; thus, the maximum axial 

displacements occurred at the springline. Near the face, the far-field axial shear stress produced 

asymmetric radial displacements; these extended from four tunnel radii ahead of the face to four 

tunnel radii behind the face. At the face, the tunnel cross-section translated horizontally towards 

the springline; thus, the radial displacements at the springlines were asymmetric but they were 

symmetric at the crown and invert. The asymmetric radial displacements were related to the anti-

symmetric axial displacements; that is, the largest asymmetry on the radial displacements occurred 

at the springlines (horizontal direction), which was where the axial displacements were maximum; 

and no asymmetric radial displacements occurred where the axis of anti-symmetry was located (at 

the crown and invert, in the vertical direction). Far-behind the face, where the axial displacements 

were not constrained, the radial displacements were symmetric and the axial displacements, anti-

symmetric. 

Tunnels in transversely anisotropic elastic ground misaligned with the geostatic principal 

stress directions and with the axes of material anisotropy are substantially more complex than 

tunnels not aligned with the geostatic principal stresses in isotropic elastic ground. When the tunnel 

is misaligned with the principal directions of material anisotropy, the axial shear stresses are 

coupled with the in-plane deformations (i.e. the compliance matrix is fully populated, Vitali et al. 

2020a); thus, the far-field axial shear stresses affect the radial deformations far-behind the face. 

Misaligned tunnels in anisotropic rock were explored for two scenarios: major horizontal stress 

aligned with the rock structure (scenario 1); and minor horizontal stress aligned with the rock 
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structure (scenario 2). For scenario 1, the radial displacements were larger when the tunnel was 

aligned with the major horizontal stress (Ψ=0°) and were smaller when the tunnel was aligned with 

the minor horizontal stress (Ψ=90°). This may not be expected considering the recommendation 

of aligning the tunnel with the major principal stress (Goodman, 1989). The reason for this 

behavior is that, given that the largest rock mass stiffness was parallel to the rock structure, when 

the major horizontal stress was aligned with the rock structure (i.e. scenario 1), the larger 

deformations that should occur with the larger stresses were reduced due to the larger stiffness of 

the rock mass. On the other hand, for scenario 2, the radial displacements were substantially larger 

when the tunnel was aligned with the minor horizontal stress (Ψ=90°) than when the tunnel was 

aligned with the major horizontal stress (Ψ=0°). This is expected because, for scenario 2 where the 

minor horizontal stress is aligned with the rock structure, the larger stresses were applied along the 

direction of smaller stiffness, thus producing larger deformations. To investigate the influence of 

the far-field axial shear stress, the misaligned tunnels in anisotropic rock were analyzed neglecting 

the far-field axial shear stress. The presence of the far-field axial shear stress reduced the radial 

and the axial displacements in scenario 1 and increased them in scenario 2. In scenario 1, the far-

field axial shear stress and the rock anisotropy produced anti-symmetric axial displacements in 

opposite directions, compensating each other; thus, the ground deformations around the tunnel 

were reduced. In scenario 2, the anti-symmetric axial displacements produced by the rock 

anisotropy and by the far-field axial shear stress were in the same direction; thus, those axial 

displacements supplemented each other, increasing the ground deformations. 

The deformations near the face were investigated for scenarios 1 and 2 when Ψ=45°. When 

the tunnel made 45° with the major horizontal stress towards the minor horizontal stress, the 

tunnels in scenarios 1 and 2 had the same orientation with respect to the rock structure, had the 

same far-field horizontal, vertical and axial stresses, and the same far-field axial shear stress but 

with opposite direction; thus, the only difference between scenarios 1 and 2, when Ψ=45°, is the 

direction of the far-field axial shear stress. In addition, a tunnel in anisotropic rock mass with no 

far-field axial shear stress was analyzed to assess the influence of the far-field axial shear stress. 

Near the face, highly asymmetric radial displacements were observed. The ground deformations 

for scenario 2 were substantially larger than for scenario 1. In scenario 1 (major horizontal stress 

aligned with the rock structure), the asymmetric radial displacements near the face produced by 
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the far-field axial shear stress and by the rock anisotropy compensated each other, while those 

asymmetric deformations supplemented each other in scenario 2. 

The large differences observed between scenarios 1 and 2 highlight the importance of the 

orientation of the geostatic principal stresses with respect to the rock mass structural planes. 

Further, for the selected rock mass properties, geostatic stresses and the scenarios explored, the 

ground deformations were generally larger and more asymmetric near the face for misaligned 

tunnels in anisotropic rock than in isotropic rock. The results presented in this paper highlight the 

importance of considering the anisotropic properties of the rock mass as well as the full geostatic 

stress field; thus, 3D FEM modeling is needed for the design of misaligned tunnels and caverns in 

anisotropic rock masses. 
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 CONCLUSIONS 

The main findings of the doctoral research are presented here. Note that each chapter has 

its own detailed conclusion; thus, the focus of this chapter is on the overall outcomes of the 

research. 

13.1 Numerical modeling of tunnels 

The research work involved an exhaustive numerical modeling campaign using the Finite 

Element Method (FEM). The numerical models were three-dimensional and non-linear in most 

cases. 3D numerical modelling of tunnels demands great computational effort, and this is probably 

the main reason why 3D modelling is hard to implement in engineering practice, despite recent 

advances on hardware and software. However, there is a tendency towards 3D FEM modeling in 

Engineering Practice. The 3D modelling of tunnels requires a refined mesh near the tunnel and 

several phases to simulate the construction sequence. Soils and rocks are better represented by 

elastoplastic models, which may require several iteration steps to reach convergence. Thus, 3D 

modelling of tunnels may be very time consuming even using modern computers and well-

developed FEM software. For instance, Do et al., (2014) reported that a 3D tunnel model with 

1,100,000 nodes required 2 weeks to run in a 2.67GHz core i7 RAM 24G computer. 

In the research conducted, an extensive 3D numerical modeling campaign was conducted 

to optimize 3D FEM models for tunnels considering different levels of material nonlinearity (i.e. 

size of the plastic zone near the tunnel). Optimization here means determination of the smallest 

model size with the coarsest mesh to achieve the desired accuracy. Since the research required 

running many 3D models, some of them with high material nonlinearity, it was important to do 

preliminary work to reduce the processing time and guarantee accurate results. A paper was written 

with the results obtained and was published in a peer-reviewed journal (Vitali et al. 2017). For 3D 

nonlinear FEM analyses, it was observed that a coarser mesh with 2nd order elements (i.e. quadratic 

interpolation) provided more accurate results than a finer mesh with 1st order elements (i.e. linear 

interpolation) with the same number of nodes. Thus, 2nd order elements are recommended. The 

size of the FEM model is heavily dependent on the size of the plastic zone developed around the 
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tunnel. The larger the plastic zone, the larger the model must be. Thus, recommendations for model 

dimensions based on linear-elasticity may lead to large errors in highly nonlinear analyses. 

Tunnels can be divided into deep and shallow according to their proximity to the ground 

surface. Deep tunnels can be modeled by placing the boundaries far from the opening and assuming 

that the influence of the self-weight increasing with depth (i.e. gravity loading) can be neglected, 

i.e. the stress field is not a function of depth (Bobet, 2003). Shallow tunnels, on the other hand, are 

more complex, given that the presence of the ground surface needs to be accounted for and gravity 

loading must be considered. Also, the bottom boundary of a shallow tunnel, when numerically 

modeled, strongly affects the vertical displacement field because of the unloading produced by 

removal of the weight of the material inside the opening (such unloading is reflected as a 

singularity when the problem is solved with the Theory of Elasticity). The tunnel excavation 

removes weight from the ground, and so an upward unbalanced force appears, causing upward 

vertical movements to the ground. It is denominated in the literature as “buoyancy”. The magnitude 

of those upward displacements depends on the distance from the tunnel to the bottom boundary of 

the model – the deeper the model, the larger are the upward displacements. Obviously, this is 

physically unrealistic, yet mathematically correct. This problem was analyzed using 2D and 3D 

FEM numerical models and the analytical solution developed by Verruijt & Booker (2000). It was 

found that the importance of the location of the bottom boundary decreased when the ground 

stiffness increased with depth (which is expected even for uniform geomaterials due to the increase 

of confinement). A paper was written on this issue and was published in a peer-reviewed journal 

(Vitali et al. 2019a) 

The New Austrian Tunneling Method (NATM, Rabcewics, 1964) has been successfully 

used worldwide. Most of the tunnels in Sao Paulo, Brazil, have been excavated following the 

NATM principles. One of these tunnels, the Paraiso tunnel, is a well-documented case by Parreira 

et al. (1991). This tunnel was excavated in residual porous soil, which is a soil typical of Tropical 

regions, and had large surface settlements. Ground deformation control is of utmost importance 

on tunneling in urban environments to avoid damage to nearby buildings and facilities. To 

investigate strategies to minimize ground deformations, the Paraiso tunnel was analyzed using a 

3D FEM nonlinear analysis. An excellent match between numerical and field data was obtained. 

With the model thus verified, different construction sequences were simulated numerically using 

3D nonlinear FEM analysis; more specifically, the impact of different construction and support 
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strategies on the surface settlements was assessed. A paper was written with the results and was 

submitted for publication in a peer-reviewed journal (Vitali at al. 2020a). It was observed that the 

construction sequence had strong influence on the ground deformations induced by tunneling. The 

numerical results showed that: (1) reducing the unsupported span and increasing the stiffness of 

the tunnel liner effectively reduced the induced ground deformations; (2) the benches were highly 

efficient to reduce the ground deformations ahead of the face and to increase the face stability; (3) 

the early closure of the tunnel liner reduced the ground deformations behind the face and; (4) a 

umbrella system made of continuous reinforced jet grouting columns along the tunnel perimeter 

reduced significantly the ground deformations around the tunnel; however, the drilling and 

grouting operations could cause large ground deformations, that could be even larger than those 

from the tunnel excavation itself, as reported by Farrell et al. 2006. Note that 2D tunnel analyses 

are not able to capture the influence of important construction aspects such as the stiffness of the 

liner, the presence of the benches and the early or late closure of the tunnel liner. Thus, 3D FEM 

modeling should be conducted for more reliable tunnel analysis. 

13.2 Tunnels misaligned with the geostatic principal stress directions in isotropic ground 

When the axis of the tunnel is not aligned with one of the directions of the far-field principal 

stresses, anti-symmetric axial displacements around the tunnel are produced. The complete far-

field stress is decomposed into stresses acting on the cross section of the tunnel and axial stresses; 

the latter include both axial and shear stresses. Four papers addressing the issue of tunnels not 

aligned with the principal geostatic stresses were written (Vitali et al. 2018, 2019b, 2019c, 2019d). 

With the assumption of elasticity, a complete solution was obtained by the addition of the effects 

of the stress-decomposition. That is, for a deep circular tunnel, the Kirsch or Einstein-Schwartz 

solutions (Kirsch, 1898; Einstein and Schwartz, 1979) can be used to obtain the ground and liner, 

if present, stresses and displacements due to the stresses acting on the cross section of the tunnel; 

for an unsupported shallow tunnel, the solution is given by Verruijt & Booker (2000). New 

analytical solutions were found to calculate the axial shear stress and the axial displacement fields 

around a circular tunnel for supported and unsupported deep tunnels and for unsupported shallow 

tunnels, with the assumption that all materials remain within their elastic regime. The solutions 

were verified by comparing results with 3D FEM simulations. Excellent agreement between 

numerical and analytical results were obtained (Vitali et al. 2018 and 2019b). 
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Far-behind the face, the anti-symmetric axial displacements associated with the far-field 

shear did not affect the radial displacements on unsupported tunnels in isotropic elastic ground. 

But near the face, the anti-symmetric axial displacements were partially constrained by the tunnel 

face; consequently, the radial displacements near the face were asymmetric. It was observed that 

the asymmetric radial displacements near the face could be decomposed into a rigid body 

displacement of the tunnel cross-section and into anti-symmetric radial displacements along the 

tunnel perimeter. As a consequence of the asymmetric radial deformations near the face, the 

stresses near the face were also asymmetric. Those asymmetries near the face could affect the 

ground deformations far-behind the face in an elastoplastic ground or if a liner was installed near 

the face. In elastoplastic ground, the plastic zone around the tunnel could be asymmetric as a result 

of the asymmetric stresses near the face. If the tunnel is supported, the asymmetric radial 

displacements near the face produce an asymmetric loading on the tunnel liner; thus, the liner 

internal forces are asymmetric. Those results show that the far-field axial shear stress and the 3D 

face effects strongly affect the ground deformations around the tunnel. 2D tunnel analysis neglects 

the far-field axial shear stresses and the 3D face effects; thus, the asymmetric deformations are 

missed and the ground deformations may be underpredicted. Therefore, for the design of tunnels 

in rock masses with high geostatic stress anisotropy, 3D FEM analysis is recommended. 

A well-documented experimental tunnel in the Underground Research Laboratory (URL) 

in Canada (Martin, 1997) was chosen to investigate the effects of tunnel misalignment with the 

geostatic principal stresses. A paper was written with these results (Vitali et al. 2019d). This URL 

was located in a massive granite rock mass with highly anisotropic stresses. The experimental 

tunnel was excavated aligned with the intermediate principal stress. An advanced constitutive 

model, suitable to reproduce the progressive failure of massive rock masses, was adopted, i.e. the 

Cohesion Weakening and Frictional Strengthening model (Renani and Martin, 2018). The 3D 

FEM model accurately reproduced the size and shape of the V-notched failed zone at the tunnel 

crown and the radial and tangential stresses near the tunnel. The good agreement between 

numerical results and field data validated the numerical model. To investigate the effects of the 

tunnel misalignment, a numerical model of the tunnel making an angle of 45° with the intermediate 

principal stress with the major horizontal stress was built. The same FEM mesh, boundary 

conditions, rock mass properties and geostatic stress field used were adopted. Anti-symmetric axial 

displacements were induced around the tunnel, and asymmetric radial displacements occurred near 
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the face. The failed zone around the misaligned tunnel was asymmetric, with the plastic zone 

extending to one side of the springline. The result suggests that asymmetric spalling at the tunnel 

walls, which is commonly observed in tunnels in massive rock masses, may be caused by the 

misalignment of the tunnel with the principal stress directions. 

13.3 Tunnels misaligned with the geostatic principal stress directions in anisotropic 
ground 

Rock masses may present remarked fabric structure; thus, pronounced anisotropic 

properties are expected. Further, alignment of the tunnel with one of the principal directions of 

rock mass anisotropy is unlikely. Tunnels in anisotropic ground misaligned with the geostatic 

principal stress directions and with the axes of material anisotropy are substantially more complex 

than tunnels not aligned with the principal stresses in isotropic ground. When the tunnel is 

misaligned with both principal directions of material and stress anisotropy, the axial shear stresses 

are coupled with the in-plane deformations of the tunnel (i.e. the compliance matrix is fully 

populated); thus, the far-field axial shear stresses affect the radial deformations far-behind the face. 

Four papers were written on misaligned tunnels in anisotropic rock masses (Vitali et al. 2020b, 

2020c, 2020d and 2020e). An analytical solution was developed for unsupported tunnels in a 

general far-field stress state in a full anisotropic elastic ground. The analytical results were 

compared with the numerical results from a 3D FEM analysis for several complex scenarios. 

Numerical and analytical solutions matched. A Matlab code to solve the analytical solution for 

transversely anisotropic elastic rock mass was written and was provided in Vitali et al. 2020b. 

The misalignment of the tunnel with the principal material directions, even for isotropic 

geostatic stresses, produced anti-symmetric axial displacements around the tunnel perimeter. Near 

the face, asymmetric radial displacements occurred because of the anti-symmetric axial 

displacements being constrained by the tunnel face. Since anti-symmetric axial displacements are 

produced by both misalignments (i.e. with the geostatic principal stresses and with the axes of 

material anisotropy), the orientation of the principal geostatic stresses with respect to the axes of 

material anisotropy plays an important role. If the tunnel is not aligned with the geostatic principal 

stresses and with the principal directions of material anisotropy, the far-field axial shear stresses, 

depending on the orientation of the tunnel, may increase or decrease the anti-symmetric axial 

displacements induced, in turn, by the rock anisotropy. Asymmetric deformations around tunnels 
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in anisotropic rock masses are commonly observed (Schubert and Budil 1995, Schubert et al. 

2005), but, so far, the sources of the asymmetric deformations have not been clearly identified. It 

is possible that those asymmetric deformations were associated with the tunnel misalignment with 

the principal directions of stresses and material anisotropy. 

13.4 Future developments 

A natural continuation of this research is to investigate 3D face effects and develop new 

analytical solutions for misaligned tunnels in isotropic and anisotropic rock masses considering 

water seepage, seismic loading and the support with ground anchors. It would be very interesting 

to look into tunnels not aligned with the geostatic principal stresses and with the axes of material 

anisotropy considering sophisticated constitutive models for anisotropic rock masses and 

anisotropic flow with consolidation effects (excess pore pressure generation and its dissipation 

with time). High quality field and laboratory data are available for the experimental tunnels of the 

Underground Research Laboratory in France (ANDRA). Tunnels were built with different 

orientations with respect to the principal stress directions. The field data showed that the influence 

of the tunnel orientation with respect to the principal stress directions was remarkable. The data 

available for the ANDRA’s tunnels could be used to investigate misaligned tunnels with water 

seepage and pore pressure dissipation with time. 
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