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ABSTRACT 

Erroneous decisions made by pilots during encounters with adverse weather is often cited as a 

cause of General Aviation accidents. Pilot experience, which can be measured in several ways, is 

believed to play a role in the outcome of such encounters. However, it is unclear whether any of 

the elements of experience alone or in combinations affect the likelihood of General Aviation 

accidents during actual encounters with adverse weather, or how they do so. One barrier to 

conclusively determining such effects is the danger in extrapolating simulation results to the real 

world; nearly all work done to date has used simulators to identify accident risk. Therefore, the 

extent to which such results can be applied to actual flying is not clear.   

 

In this work, two conceptual models for analyzing experience and its role in encounters with 

adverse weather during the cruise phase of General Aviation Part 91 fixed wing operations are 

presented.  A novel method for evaluating accident risk, specifically the likelihood that an incident 

turns into an accident is also presented and then used to evaluate the experience profile of 595 

pilots, detailed in actual accident and incident reports from the NTSB and ASRS databases. The 

effect of various elements of experience, alone and in combinations, on that risk is evaluated using 

regression modeling. The level of significance for each experience variable is first established, and 

then a series of discrete models is developed to progressively evaluate accident risk along a 

hypothetical experience continuum. This approach obviates commonly encountered challenges 

with research in the area and provides results that are ecologically valid.  

 

The focus of this research work was on the role of cognitive aspects of experience in the outcome 

of  flights during the cruise phase of General Aviation Part 91 fixed wing flights between January 

1, 2005 and December 31, 2015. Only flights which encountered adverse weather during the cruise 

phase and for which experience and/or errors in decision making were determined to be a cause or 

factor in the outcome were included in the study. All flights during the period that involved takeoff 

and landing,  equipment failure or student pilots were not considered for the study. The emphasis 

of the research was on the effect of experience on cognitive aspects of pilot performance during 

adverse weather encounters, rather than “stick and rudder” skills. 
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It was found that variables related to the breadth or variety of pilots’ experience are more predictive 

of the likelihood of adverse weather encounters turning into accidents compared to those related 

to the duration or length of experience. While several commonly used measures of experience 

provide some level of insulation against accidents, the relationship between elements that define 

the length or duration of experience and outcomes is not linear. Furthermore, this relationship is 

mediated by variables that define the breadth of experience, especially at their  lower levels. These 

findings may be leveraged to design specifically targeted regulatory or training policies and 

interventions to expedite the transition from novice to expert pilots in General Aviation weather-

related decision making. 
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 INTRODUCTION 

1.1 Experience as a Factor in General Aviation Accidents During Adverse Weather 

Encounters 

Erroneous decisions made by pilots during encounters with adverse weather are often cited as a 

cause of General Aviation (GA) accidents [Simpson, 2001; O'Hare and Smitheram, 1995; Goh and 

Wiegmann, 2001; Wiggins and O’Hare, 1995; 2003a; 2003b]. It seems reasonable to believe that 

experience plays a role in the outcome of such encounters, a belief that has been evaluated by 

researchers [Wiggins and O’Hare, 1995; Johnson and Wiegmann, 2011; Goh and Wiegmann, 

2002], although there has been no consensus on the role it plays.   

 

More specifically, there is no consensus on the roles that different aspects of experience might 

play in making accidents more or less likely in general aviation.  Experience can be measured in a 

number of ways, such as total flight hours, flight hours in a particular type of aircraft, whether the 

pilot is instrument rated or not, what type of certificate the pilot has, and recent flying experience.  

It is unknown whether any of these elements, alone or in combinations, reflect or are predictive of 

the likelihood of an accident.   

 

One barrier to conclusively determining such effects is the danger in extrapolating simulation 

results to the real world; nearly all work done to date has used simulators to identify accident risk.  

It is unclear whether such results can be applied to actual flying.  In this work, a novel method for 

evaluating accident risk, specifically the likelihood that an incident turns into an accident is 

evaluated using actual incident and accident reports. The effect of the various elements listed above, 

alone and in combinations, on that risk is evaluated using regression modeling. 

1.2 Motivation 

Weather is a critical consideration for flying and is often cited as a causal or contributory factor in 

aircraft accidents [AOPA, 2009; Prinzo, 2007; Knecht and Lenz, 2010; Knecht, 2008; Latorella 

and Chamerlain, 2001; Latorella, Lane and Garland, 2002; Yuchnovicz, Novacek, Burgess, Heck, 

and Stokes, 2001]. Weather related GA accidents consistently involve the highest rate of fatalities 



 

 

11 

of all GA accident causes [AOPA, 2009; Knecht, 2008; Latorella and Chamerlain, 2001; Latorella, 

et al, 2002; Yuchnovicz, et al, 2001]. In 2011 for instance, 40 out of 54 weather related accidents 

in the non-commercial fixed-wing GA flights were fatal and 28 out of 43 were fatal in 2010 [AOPA  

2011; AOPA 2012].  

 

Most accidents caused by adverse weather generally give reasonable warning to the pilot [AOPA, 

2011]. Therefore, some experts have suggested most accidents and incidents in weather are 

preventable [Weener, 2014]. However, adverse weather presents pilots with a dynamic, safety 

critical situation in which time is often limited and information uncertain. Decision making under 

such contexts has been described as “Naturalistic Decision Making (NDM) [Klein, Orasanu, 

Calderwood & Zsambok, 1993; Orasanu and Martin, 1998; Lipshitz, Klein, Orasanu and Salas, 

2001].  

 

Decision making within naturalistic contexts has been the subject of much research and our current 

understanding is that experience plays an important role in them [Klein, 1993; 2008]. There is 

some consensus across different fields of endeavor that operators with high levels of experience 

make more accurate decisions under conditions with severe time pressure and information 

uncertainty than inexperienced operators [Calderwood et al, 1988; Klein et al, 1989; Klein et al, 

1995, Ericsson and Charness, 1994; Ericsson, 2004].  

 

Despite some evidence that experience is a multifaceted attribute, not much research has been 

focused on the role different elements of experience play in decision making or the interactions 

between them. According to Lanicci [2012], most studies on weather related accidents in GA have 

focused on either identifying the factors associated with weather-related accidents, identifying the 

pilot decision-making processes that contribute to weather-related accidents or understanding how 

new technologies could contribute to improve pilot decision making. Experience has been 

identified as a factor associated with weather-related accidents, but its dimensions and their and 

their contribution to adverse weather decision making has received little attention. An 

understanding of the different aspects of experience and an understanding of the relationships 

between them could be leveraged to develop precisely targeted training interventions to improve 

the efficacy of weather-related decision making in GA.  
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1.3 Contribution 

This dissertation identified some of the plausible variables which make up GA pilot experience, 

determine the relationships between them and identify their contributions to decision making 

during encounters with adverse weather situations. 

 

Experience comes with continuous application of knowledge and therefore, can be modified 

through training [Jensen, 1995; FAA, 2009]. Some of the insights gained from research on expert 

pilot decision making have been used to develop pilot decision making training interventions with 

varying levels of success [Ayers, 2006; Schumacher and Lease, 2007; Ball, 2008; Wiggins and 

O’Hare, 2003a]. However, not all such training interventions have been successful [Keller, 2015] 

and, the prevalence of weather-related accidents points to a need for more precisely targeted 

training interventions.  

 

The key to expert performance is to create targeted challenges through which experience and 

performance across pertinent and essential dimensions can be incrementally improved [Ericsson, 

2006; Adams, 1993]. However, as Wiggins and O’Hare [1995] have noted, the “characteristics 

necessary for an optimal training program remain unclear”. A prerequisite for doing this 

effectively is identifying those aspects of experience that support accurate weather decision 

making and the dynamics between them. This knowledge can then be used to develop germane 

scenarios to expedite the accumulation of the body of experienced based knowledge that brings 

about decision making expertise. 

 

The work contained in this dissertation differs from previous work in three ways. First, it 

establishes the level of significance of each experience variable to the outcome of adverse weather 

encounters and then determines the effect of different levels of exposure to the elements on the 

outcome of adverse weather encounters. This is the first research effort to quantify how each 

element of experience affects the outcome of adverse weather encounters and determine how it 

does so. 
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Secondly, although researchers have used several experience related variables in studying the 

decision-making performance of expert and novice pilots, these variables are typically treated as 

independent, linear elements. However, some elements of experience are intrinsically linked to 

one another and therefore, cannot be acquired independently. For instance, pilot certificates and 

rating require minimum levels of total flight hours. This research is novel in the sense that it 

investigates the simultaneous effect of varying levels of multiple elements of experience on the 

outcome of encounters with adverse weather, as well as the interaction between them.  

 

Thirdly, a tacit assumption underpinning research into experience and its effects on adverse 

weather decision making is that a direct relationship exists between each variable and the outcome 

of adverse weather encounters. This research effort adopts a different approach and in the first of 

its kind, models pilots’ total experience as a multi-element  attribute, comprising two main 

dimensions, duration and relevance. These are in turn made up of various elements of experience 

acquired along a hypothetical experience continuum.  This novel approach facilitates the 

investigation any interactive relationships that may exist between experience elements, potentially 

giving new insights into the nature of experience, how it is acquired, and what its effects are.  

 

This dissertation, therefore, makes three distinct contributions to the currently existing body of 

knowledge. First, it provides a novel methodological approach for experience and decision making 

research in aviation that overcomes several challenges typically associated with approaches 

currently used. Secondly, it introduces a conceptual framework which captures the key 

relationships between various elements of pilot experience and facilitates analysis of the 

interactions between them to identify elements that impact the outcome of adverse weather 

encounters in a manner that ensures ecologically validity. The  first contribution is expected to 

have some value for future research work within the field by eliminating commonly encountered 

challenges in related research. The second contribution is a conceptual framework that facilitates 

new ways of thinking about the acquisition of experience and the transition from novice to expert 

in general aviation weather decision making. Thirdly, although a few researchers have suggested 

the accumulation of total flight hours does not automatically confer pilots with decision making 

expertise,  there has only been anecdotal  evidence within the aviation community to support this 

assertion. However, the results from this study provide empirical evidence that is ecologically 
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valid to support the assertion. It is expected that if the recommendations that have ensued from 

this research are implemented, there will be a  reduction in general aviation accidents during 

encounters with adverse weather. 

1.4 Limitations and Delimitations 

This research work focused on the role of experience in the outcome of  General Aviation Part 91 

fixed wing flights between January 1, 2005 and December 31, 2015 that encountered adverse 

weather during the cruise phase. Only flights for which experience and/or errors in decision 

making were determined to be a cause or factor in the outcome were considered for the study. 

Accordingly, all flights during the period that involved takeoff and landing,  equipment failure or 

student pilots were not considered for the study. The emphasis of the research was on the effect of 

experience on cognitive aspects of pilot performance during adverse weather encounters, rather 

than “stick and rudder” skills. 

1.5 Organization of the Document 

This dissertation is made up of ten Chapters. Following this first Chapter, an overview of  trends 

and efforts to improve GA safety with a focus on weather related accidents and pilots’ response to 

adverse weather encounters is discussed in Chapter 2. Chapter 3 takes a look at the role of decision 

making in aviation safety, highlighting  the evolution of ideas on pilot error and aeronautical 

decision making and then goes on to review various  decision making theories and their 

relationship with aeronautical decision making. It then focuses on naturalistic decision making and 

naturalistic contexts as the environment for decision making during encounters with adverse 

weather. The chapter also highlights efforts to improve pilot decision making and how those have 

focused on experience as a key requirement for decision making during encounters with adverse 

weather. The chapter concludes with a look at the transition process novice to expert pilot in 

adverse weather decision making and how that may be expedited through training 

 

The methodological approach for the first part of the research is presented in chapter 4. A novel 

approach adopted for the research is also presented in the chapter along with an overarching 
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conjecture for the first part of the study. Following this, the results from the first study are 

presented in Chapter 5, followed by a discussion of the results in Chapter 6. 

 

In Chapter 7, a conceptual framework is presented to anchor the methodology adopted for the 

second study in the research. The analytical approach used is also presented. The results obtained 

from the second study are then presented in Chapter 8 and their meaning and implications are 

discussed in Chapter 9. In Chapter 10, conclusions from the study are presented, and future related 

research work discussed.  
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 BACKGROUND AND LITERATURE REVIEW 

2.1 Trends in General Aviation Safety Performance 

In this chapter, trends in General Aviation safety performance are presented and  efforts to improve 

General Aviation safety are discussed. Some of the safety challenges pertinent to General Aviation 

are highlighted and weather as a cause of  General Aviation accidents are discussed. Pilot response 

to adverse weather encounters, along with some of the factors that impact such response  are also 

highlighted 

 

The safety performance data for General Aviation (GA) in the United States (U.S.) between 2000 

and 2013 shows a relatively flat accident rate, with an average of 6.73, ranging between 5.83 and 

7.07 accidents per 100,000 flight hours as shown in Figure 1 (BTS Table 2-14, 2015). In terms of 

fatalities, GA averaged 529 fatalities between 2000 and 2013, ranging between 387 and 706 deaths 

per year (BTS Table 2-1, 2015). GA accidents typically account for a high percentage of total 

accidents and fatalities in U.S Aviation. In 2010 for instance, about 51 percent of the estimated 

total flight time of all U.S. civil aviation were GA flights, but accounted for about 96 percent of 

the total accidents and about 97 percent of the fatal accidents as depicted in Figure 2 (NTSB, 

2012a). Similarly, in 2011, GA accidents accounted for 95 percent of total aircraft accidents and 

94 percent of the fatal accidents (NTSB, 2014).  

 

Several design, operational, human and technological challenges impact GA safety. According to 

the Aircraft Owners and Pilots Association (AOPA) Air Safety Institute, “most GA aircraft cannot 

fly over or around weather the way airliners can, and they often do not have the systems to avoid 

or cope with hazardous weather conditions, such as ice” (AOPA, 2011; 2013). Additionally, GA 

covers a wider range of operations, requiring more take offs and landings, often from facilities that 

may not be fully supported (AOPA 2011; 2013, Op Cit). There is also a greater variability of pilot 

training, certification and experience level within GA compared to Airlines and GA pilots have 

limited access to cockpit resources and flight support (AOPA 2011; 2013, Op Cit).  Not 

surprisingly therefore, GA accounts for over 90% of all US aviation accidents and fatalities 
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Figure 1: Total GA Accident and Fatality Rate (2000 – 2013) 

 

Figure 2: GA Accidents and Fatalities Vs Total U.S. Aviation Accidents and 

Fatalities (2010 - 2011) 
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In spite of these challenges, there has been significant improvement in the GA accident record in 

the past decade compared to what existed in the 1960s and 1970s, which saw double digit accident 

rates (BTS, 2015; GAMA; 2010). However, the improvements appear to have stalled, and there 

has been no significant sustained improvement in the GA safety performance between 2000 and 

2013. Although individual segments within GA have seen improvements in their safety 

performance in some of the years within the period, the sector as a whole has witnessed no 

sustained improvement. The trend has been that improvements in one segment are negated by 

increased accident numbers in other segments. In 2011 for instance, a reduction in non-commercial 

helicopter accidents fatalities was cancelled out by an increased number of fatalities in commercial 

and non-commercial fixed wing as well as in the commercial helicopter segments (AOPA, 2013). 

Similarly, safety performance improvements in categories of GA operations such as corporate and 

executive flights were cancelled out by a disproportionately high number of accidents in operations 

classified as personal flights (AOPA, 2012; AOPA, 2014a). Overall, the GA accident rate has 

remained generally flat, with no significant sustained improvement over the last decade. As a result, 

significant efforts have been directed at finding ways to improve current GA safety performance. 

2.2 Efforts to Improve General Aviation Safety 

Significant efforts have been made by stake holders and researchers in government, industry and 

academia to improve safety in GA operations. In 1997 a national goal to reduce the fatal accident 

rate for aviation by 80% within ten years was proposed by the government based on a strategic 

plan to improve safety outlined in the report of the White House Commission on Aviation Safety 

(Gore, 1997; Stough, Shafer and Schaffner, 2000). It called for research to be carried out in support 

of the goal. Pursuant to this, the National Aeronautics and Space Administration (NASA) 

established the Aviation Safety Program (AvSP), a partnership between the Federal Aviation 

Administration (FAA), the Department of Defense and the aviation industry. The AvSP was tasked 

with developing advanced, affordable technologies to help make travel safer on airplanes (NASA 

FS-2000-02-47-LaRC). Similarly, the FAA established the Safer Skies initiative in 1998 as a 

government-industry initiative with the aim of achieving significant reductions in fatal accidents 

(FAA, 2001).  
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Safer Skies is made up of three teams; the Commercial Aviation Safety Team, the Partners in 

Cabin Safety and the General Aviation Joint Steering Committee (GAJSC). The GAJSC focuses 

on the leading causes of general aviation accidents with the aim of eliminating the equivalent of 

an entire year’s worth of accidents by 2007 (FAA Op Cit). Initially launched in 1997, the GAJSC 

was revitalized in 2011 after a period of relative inactivity and tasked with improving GA safety 

through data-driven risk reduction efforts that focus on education, training, and enabling new 

equipment in GA aircraft (GAJSC, 2014). Additionally, the FAA also established Centers of 

Excellence for General Aviation Research (CGAR) in 2001, made up of several universities tasked 

with focusing on “those areas of aviation safety that apply to the General Aviation Community” 

(FAA, 2014). In 2012, the Center of Excellence for the Partnership to Enhance General Aviation 

Safety, Accessibility and Sustainability (PEGASAS) was established, partnering the FAA with a 

national network of researchers, educators, and industry leaders with the goal of enhancing GA 

safety, accessibility, and sustainability (FAA 2014 Op Cit). As a result of these efforts, issues 

associated with GA safety have been given a high priority within the government, industry and the 

research community. A major thrust of the efforts to improve the GA safety performance has been 

directed at accidents that occur as a result of adverse weather encounters. Weather is a major cause 

of GA accidents and nearly 75% of weather-related accidents are fatal (AOPA, 2015). The FAA 

has made reducing the number of fatal GA accidents a priority, using non-regulatory, proactive, 

and data-driven strategy to get results (FAA, 2014a). One such method involves the use of GA 

operations data for research to identify risks before they become accidents.  

 

This research work therefore, seeks to contribute to this effort, by using GA operations data to 

model the odds for accidents in adverse weather conditions based on variables related to the pilot’s 

operational experience. 

2.3 Weather as a Causal Factor in General Aviation Accidents 

Weather is a critical consideration for flying and is often cited as a causal or contributory factor in 

aircraft accidents (AOPA, 2009; Prinzo, 2007; Knecht and Lenz, 2010; Knecht, 2008; Latorella 

and Chamerlain, 2001; Latorella, Lane and Garland, 2002; Yuchnovicz, Novacek, Burgess, Heck, 

and Stokes, 2001). Weather related GA accidents consistently involve the highest rate of fatalities 

of all GA accident causes (AOPA, 2009; Knecht, 2008; Latorella and Chamerlain, 2001; Latorella, 



 

 

20 

et al, 2002; Yuchnovicz, et al, 2001). In 2011 for instance, 40 out of 54 weather related accidents 

in the non-commercial fixed-wing GA flights were fatal and 28 out of 43 were fatal in 2010 (AOPA  

2011; AOPA 2012). The trend for total and fatal GA accidents during encounters with weather 

from 2002 and 2011 depicted in figure 3 shows no significant sustained reduction in either the 

total number of accidents or fatalities over the period. However, a closer look at the statistics show 

certain trends that follow the type of weather-related accident. 

 

 

Figure 3: Weather Accident Trend for GA Aircraft – 2002 – 2011 (AOPA 2012) 

2.3.1 Types of Weather-Related General Aviation Accidents 

Five major types of weather accidents in GA operations have been identified by AOPA’S Air 

Safety Institute. These are Visual Flight Rules (VFR) Flight into Instrument Meteorological 

Conditions (IMC), Poor Instrument Flight Rules (IFR) Technique, Thunderstorm, Turbulence and 

Icing (AOPA, 2010; AOPA, 2011; AOPA, 2012). Out of the five types, transitions of VFR flights 

into IMC, whether inadvertent or deliberate, have been especially fatal (Goh and Wiegmann, 2001; 

Coyne, Baldwin & Latorella, 2008; NASA, 2007; Ball, 2010; AOPA 2009; AOPA 2012). About 

two-thirds of all IMC accidents over the previous 20 years had led to at least one fatality, a rate 
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three times higher than the fatality rate for all GA accidents (NTSB 2005). Similarly, more than 

86% of all fixed-wing VFR-into-IMC accidents since 2002 have been fatal (AOPA 2014). Overall, 

the fatality rate for accidents involving VFR flights into IMC is about 80%, while other types of 

GA accidents account for about 19% of GA accident deaths (Goh and Wiegmann, 2001). The 

major types of weather-related accidents and their contribution to the GA accidents in 2011 is 

shown in Figure 4 (AOPA 2012).  

 

Figure 4: Types of Weather Accidents for GA Aircraft 2011 (AOPA 2012) 

 

The number of accidents and fatalities due to transitions from VFR flights into IMC far exceeds 

those due to all other types of weather accidents for GA aircraft in 2011. The trend is similar for 

other years between 2000 and 2012 (AOPA 2013; 2014). The magnitude of the safety challenge 

posed by weather to GA operations is associated with its dynamic nature. Pilots have no control 

over environmental factors that may impact a flight, particularly weather. It may be possible to 

plan a flight to avoid mountainous terrain for instance, but the dynamic nature of weather means 

conditions may deteriorate suddenly or unexpectedly and require immediate action by the pilot to 

ensure the safety of the flight.  This is the case with some of the transitions of VFR flights into 

IMC. Not all weather related accidents result from sudden and unpredictable change in the weather 

conditions. Most accidents caused by adverse weather generally give reasonable warning to the 

pilot (AOPA, 2011; NTSB 1989; 1994) therefore, some experts have suggested most accidents 

and incidents in weather are preventable (Weener, 2014). Transitions of VFR flights into IMC for 
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instance, represent the prototypical Plan Continuation Error (PCE). PCE refers to the continuation 

of an original plan, even in the face of new evidence suggesting that the plan should be abandoned 

(Orasanu, Martin, & Davison, 2001).  

2.3.2 Pilot Response to Adverse Weather Encounter 

Pilots’ response to adverse weather encounters is affected their understanding of the situation. 

Therefore, factors which impact this understanding affect the outcome of the flight. A great deal 

of research has been carried out to determine how pilots respond during adverse weather 

encounters (Capobianco and Lee, 2001; Wiggins, Goh and O’Hare, 2002; NTSB, 2005, 2007; 

Knecht, 2006; 2008a; 2008b; Hunter, Martinussen and Wiggins, 2009). According to Lanicci 

(2012), most studies on weather related accidents in GA have focused on either identifying the 

factors associated with weather-related accidents, identifying the pilot decision making processes 

that contribute to weather-related accidents or understanding how new technologies could 

contribute to improve pilot decision making. Some of these  studies have shown pilot errors and 

in particular, pilot decision making is responsible for the majority of both fatal and non-fatal 

accidents in adverse weather (Jensen and Benel, 1977). This study will therefore, focus on pilot 

decision making processes that contribute to weather-related accidents, to determine how factors 

that shape these may be leveraged to reduce weather-related decision making errors. One cause of 

decision errors lies in the way humans process information; the working memory available is 

limited, as is the ability to retrieve information from long-term memory. Training, past experience, 

organizational pressures and other stressors may influence or disrupt the process. 

 

Researchers have identified important cognitive and contextual factors that affect decision making 

during encounters with adverse weather (Burian, Orasanu and Hitt, 2000; Goh and Wiegmann, 

2001; Stokes, Kemper, and Marsh, 1992; Wiegmann, Goh, and O’Hare, 2002; Wiggins and 

O’Hare, 1995; McCoy and Mikunas, 2000; O’Hare and Smitheram, 1995). Cognitive factors are 

intrinsic or innate to the pilot and represent the sum of a pilot’s skill, knowledge and experience, 

while contextual factors are extrinsic considerations such as motivation, which mediate intrinsic  

factors. The interaction between these factors determines the decision making process employed 

and the outcome of the process. Some of the findings from these studies are reviewed in the next 

section. 
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2.4 Pilots Related Causes of General Aviation Accidents 

The pilot-in-command of an aircraft is directly responsible for and is the final authority as to the 

safe operation of that aircraft (U.S. CFR 14-1-A1.1; AIM 5-5-1). The pilot has to continually 

monitor and evaluate several variables and parameters pertinent to the flight and decide on the best 

course of action to safely complete the flight. According to (AOPA 2013), all accidents except 

those due to mechanical failures or improper maintenance, those with undetermined causes, and 

those due to circumstances beyond the pilot’s control are pilot related. Pilot related causes of GA 

accidents consistently account for about 75 percent of non-commercial fixed wing fatal and non-

fatal accidents (AOPA 2013) and weather-related accidents produce the largest proportion of these 

fatalities. Such accidents arise from the improper actions or inactions of the pilot and reflect 

specific failures of flight planning or decision making (AOPA 2012; Burian et al, 2000) due to 

erroneous cognitive processing of pertinent information or the influence of contextual factors on 

cognitive processing of information available. 

2.4.1 Cognitive Factors 

Cognitive factors are personal characteristics that modulate performance to bring about 

improvements or decline (Roy, 2013). Cognitive factors that cause GA accidents during adverse 

weather encounters are associated with information processing and decision making. Studies have 

identified two main phases in the decision making process used by pilots; the situation assessment 

phase and the course of action selection phase. (Jensen, 1995, Orasanu and Martin 1998).  In the 

situation assessment phase, the problem is defined, associated variables are evaluated, and 

potential solutions identified. A course of action is then selected from the options identified, taking 

cognizance of the response requirements posed by the situation (Orasanu and Martin, Op Cit).  

 

Weather-related decision making is influenced by how well a pilot understands the weather 

situation from assessing available weather information available (McAdaragh, 2002). The level of 

situation awareness developed is determined by the accuracy of the situation assessment. This in 

turn depends on the quality of information about the situation that is available. The information 

presented to the pilot should be relevant, complete and presented in a timely and useable manner 

to allow full evaluation the situation.   
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Information about flight weather may be obtained from a host of information systems on the 

ground and in the air (McAdaragh, 2002 Op. Cit). There has been a substantial increase in the 

number and variety of systems that provide weather information to pilots. The interaction between 

cognitive factors and cues from information presented by information systems generates decision 

options from which a course of action is selected. Since the course of action chosen derives from 

the assessment of the situation, the decision maker should fully identify variables pertinent to the 

situation and accurately evaluate their significance in order to accurately identify viable options 

for solving them.   

 

Three categories of response options have been identified; rule based, choice and creative response 

options (Orasanu and Fischer, 1997). Rule based decisions prescribe a specific course of action in 

response to a particular situation, while choice-based decisions present different options from 

which a selection may be made depending on the goals to be achieved and constraints presented 

by the situation. A creative decision situation is one in which the decision maker must create one 

or several options based on an evaluation of the situation. The three decision structures are related 

to the skill, rules and knowledge-based classification of human error (Rasmussen 1979; 1982 and 

1987; Reason, 1990).  

 

It follows therefore, that errors may either result from a wrong interpretation of the problem, i.e. a 

situation assessment error, or the selection of a wrong choice of action, having accurately assessed 

the situation (Orasanu and Martin, 1998). Situation assessment errors in turn may occur either 

because pertinent information about the situation is not available, inadequate, unclear or because 

the pilot is unable to piece available information together to generate an accurate assessment of 

the situation.  This may happen because the pilot ignores or does not fully understand the 

implications of information available. It may also be that the time to fully evaluate information 

may be limited and situation assessment is hurried and incomplete. Errors in situation assessment 

represent mistakes in planning and increase the chance that a wrong course of action is selected. 

Thus, the selection of a wrong course of action is the end product of a flawed process of 

recognizing, gathering, and evaluating information.  
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GA flight operations in adverse weather present pilots with a creative decision situation in which 

they must evaluate the situation and determine the best course of action to take. The level of skills, 

knowledge and experience the pilot possesses determine the kind of cognitive processing the pilot 

employs to assess the situation (Adams, 1993). Studies have identified inadequacies in pilot’ skills, 

knowledge and experience as factors that adversely affect the cognitive processing that leads 

selection of a course of action (Klein, 1993; Orasanu and Martin, 1998, Carney et al, 2015; Knecht 

and Lenz, 2010; Detwiler, Holcomb, Hackworth and Shappel, 2008; Johnson, Wiegmann, and 

Wickens; 2006).  

 

Inadequate Weather Knowledge, Skill and Experience. Pilots are expected to acquire adequate 

knowledge and skills to safely plan and complete a flight from their training.  According to the 

FAA, the overall purpose of flight training is the “acquisition and honing of basic airmanship skills” 

(FAA, 2004), including “the exercise of sound judgment that results in optimal operational safety 

and efficiency” (FAA, 2004 Op. Cit). 

 

Knowledge is acquaintance with or understanding of a science, art, or technique. Skill refers to the 

ability to use one's knowledge effectively and readily in execution or performance, while 

experience is practical knowledge, skill, or practice derived from direct observation of or 

participation in events or in a particular activity. (Merriam Webster). Studies indicate a relationship 

between the three terms; skill follows from the application of knowledge, and experience from 

continued application of both knowledge and skill (Adams and Erikson, 1992; Adams, 1993). 

Pilots acquire knowledge pertinent to operating an aircraft during training, and become skillful 

pilots as they use apply this knowledge during flights. Experience results from continued 

application of knowledge and skills.  There is therefore, a progression along a hypothetical 

continuum from knowledgeable to skilled to expert pilot.  

 

Studies have identified inadequacies in the level of weather knowledge, skills and experience some 

GA pilots possess (Carney et al, 2015).  This inadequacy exists in two main areas; first, in 

knowledge and application of basic weather theory, and secondly, in the understanding and use of 

weather information technology. Research suggests some pilots do not fully understand the 

meaning and implication of observed and forecasted weather information available during both 
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the preflight and in-flight phases of flight. For instance, some pilots are unable to completely 

project the implication of weather information such as forecasted minimum VFR (MVFR) 

conditions for a flight and determine how to proceed.  Additionally, some pilots have been unable 

to consistently apply available weather information to assess the situation and generate the level 

of preflight and in-flight situational awareness required for accurate weather-related decision 

making (Carney et al, 2015).  

 

Studies further indicate the inadequacies in the level of weather knowledge, skills and experience 

some pilots possess stem from gaps and inconsistencies in the type and quality of weather-related 

training they receive (Carney et al, 2015). The weather training materials and scenarios used are 

ineffective and do not imbue pilots with the ability to correlate weather knowledge to actual flight 

conditions and make safe, timely and appropriate weather-related decisions under VFR conditions 

(Carney et al, 2015).  The challenge is exacerbated by the fact that this ability is neither tested nor 

required to pass the Private Pilot written exam (Carney et al, 2015). Therefore, there is no 

mandatory requirement to improve pilots understanding of weather phenomenon.  

 

Furthermore, flight training occurs in a controlled and regulated environment, which may insulate 

student pilots from experience with sub-optimal weather conditions that may be encountered 

during normal flying operations. Outside the training environment pilots are free to fly under less 

than optimal weather conditions if they choose to.  Given the minimal level of experience flying 

in such weather conditions during training, some pilots are unable to develop an accurate 

representation of the situation and select a safe course of action (Orasanu and Martin, 1998). 

Finally, inconsistencies have been observed in the training pilots receive on the features and 

limitations of weather technology available for use in the cockpit. As a result, some pilots are 

unable to accurately and efficiently use the information cockpit weather information systems to 

make expeditious weather-related decisions (Carney et al, 2015).  

Effects of Inadequate Weather Knowledge, Skill and Experience. Inadequate knowledge, skill and 

experience are known to adversely affect task performance in aviation (Orasanu and Martin, 1998; 

Carney et al, 2015). Studies have linked pilots with limited weather knowledge and experience 

with PCEs such as transitions from VFR into IMC (Goh & Wiegmann, 2002; Burian, Orasanu, 

and Hitt 2000; Knecht and Lenz, 2010). Although some competent and experienced pilots have 
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been known to transition from VFR flights into IMC (AOPA 2012), the evidence from research 

suggests inadequate knowledge, skills and experience are predisposing factors to such accidents 

(Johnson and Wiegmann, 2011; Carney et al, 2015). Studies further suggest non-instrument rated, 

inexperienced instrument rated, and pilots with low total flight hours are particularly vulnerable 

(Goh and Wiegmann, Op Cit, Burian et al, 2000 Op Cit).   

 

Pilot knowledge, skills and experience appear to significantly impact pilot performance in 

deteriorating or adverse weather conditions.  A sound knowledge of basic weather theory which 

provides an understanding of issues like the extent or spread of different weather fronts and how 

these may be affected by other weather systems operating nearby is required to accurately assess 

and avoid adverse weather phenomena such as updrafts or cloud clearance that may not be evident 

from mere visual observation, (Knecht and Lenz, 2010). Similarly, while a scattered cloud layer 

may not constitute a hazard on its own, several layers together may interfere with visibility on 

VFR flights (Carney et al, 2015). Since pilots may encounter multiple weather types during a flight 

and the condition of the weather may deteriorate during the course of the flight, (Knecht and Lenz, 

2010), a good understanding of basic weather theory as well as experience with different weather 

types is essential for accurate and timely situation assessment and response selection (Orasanu and 

Martin, 1998). Additionally, an understanding of the features and limitations of the technology 

which brings the weather information to the pilot is required to piece together the true weather 

situation from all the information available.  

 

Both aspects of knowledge and skill are important and related; the ability to evaluate available 

information, understand its implication and accurately determine the potential risk the weather 

poses requires a good understanding of basic weather theory.  However, this is predicated on the 

assumption that the most up to date weather is available and being evaluated. Where that is not the 

case, the assessment of the situation could be inaccurate, and may affect the decisions made, 

resulting in the selection of an erroneous course of action. In practice, the latter corresponds to 

experience with a specific airplane make and model and its equipment. 



 

 

28 

2.4.2 Contextual Factors 

Contextual factors are personal, psycho-social or other considerations that may induce a pilot to 

select a course of action different from the one suggested by an assessment of the situation. They 

include factors such as stress, motivation, as well as peer or other social pressures. Contextual 

factors are pervasive background factors that can affect the process of situation assessment and 

course of action selection in a way that keeps pilots from making a purely rational decision (Jensen, 

1995). For instance, they could lower a pilot’s risk perception and increase optimism about the 

outcome of a potential course of action even when there are significantly less risky alternatives. 

The concepts of “Get-home-itis” (FAA, 2013), and “framing” (Kahneman and Tversky, 1979) 

illustrate the scope of motivational and contextual factors. According to the FAA (2013), get-

home-itis is the “urge to push on regardless of the data telling you that it might not be the best 

decision” and occurs “when the desire to get to a destination overrides logic, sound decision 

making and basic instinct.”  Get-home-itis is a form of goal fixation that may result in a plan 

continuation error.   

 

Kahneman and Tversky’s (1979) Prospect theory suggests people frame the outcome of available 

options in risky decision making situations in terms of gains and loss; when faced with a choice 

between two options, the tendency is to select the option that is framed as a gain over the one 

framed as a loss. For instance, a decision to divert to an alternative airfield due to adverse weather 

during a flight may be framed as a loss in terms of wasted time, effort and money may induce a 

pilot to press on with the flight and possibly, a transition from VFR into IMC. In addition, 

Kahneman and Tversky (1979) also suggested the perceived likelihood of occurrence of an 

undesirable event influences the weight assigned to the decision. For pilots, the perceived 

likelihood of occurrence of an undesirable outcome is affected by self-assessments of their level 

of competence and ability as well as personality traits such as risk tolerance. Studies indicate pilots 

who consider themselves highly competent and skillful have a greater propensity to continue with 

a flight in deteriorating weather conditions (Wiegmann and Goh, 2000). These personal 

assessments may be overly optimistic but still act as a motivator, affecting the situation assessment 

and course of action selection process, especially when cues are ambiguous.  
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The term “sunk cost’ (Arkes and Blumer, 1985; O'Hare and Owen, 2002) has been used to further 

explain how decision framing works in practice. Sunk costs represent the amount of resources i.e. 

time, effort and money that a pilot has already invested into a flight. Early on into the flight, few 

resources have been invested in the flight, so the cost sunk into it is low. Therefore, the loss from 

a decision to discontinue the flight due to adverse weather is low and pilots may be more inclined 

to do so. As the flight proceeds towards its destination, the sunk cost gradient increases, as does 

the extent of perceived loss and consequently, the likelihood of pressing on towards the destination 

increases. Pilots have been found to be less likely to continue with a flight in adverse weather when 

the transition from VFR into IMC is framed as a loss and diverting as a gain than when left to use 

their own natural frames (O'Hare and Smitheram, 1995). Experienced pilots are believed to 

understand that safety should be framed as a gain, rather than productivity; pilots should be more 

highly motivated to be safe than complete a flight.  

2.4.3 Impact of Cognitive and Contextual Factors on Pilot Decision Making 

Cognitive and contextual factors directly impact pilot decision making process. Pilot knowledge 

and experience determine the speed and accuracy of situation assessment, while motivation and 

other contextual factors impact risk assessment and therefore the final decision made as well as 

the course of action selected. This is depicted in Figure 5. 

 

 

Figure 5: Impact of Cognitive and Contextual Factors on Decision Making 
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 PILOT DECISION MAKING AND AVIATION SAFETY  

This chapter takes a look at the role of decision making in aviation safety. It starts with a discussion 

of the evolution of ideas on pilot error and aeronautical decision making and then goes on to review 

various  decision making theories and their relationship with aeronautical decision making. It then 

focuses on naturalistic decision making and naturalistic contexts as the environment for decision 

making during encounters with adverse weather. The chapter also highlights efforts to improve 

pilot decision making and how those have focused on experience as a key requirement for decision 

making during encounters with adverse weather. The chapter concludes with a look at the 

transition process novice to expert pilot in adverse weather decision making  and how that 

may be expedited through training 

3.1 The Role of Decision Making in Aviation Safety 

Erroneous decision making by pilots during encounters with adverse weather is often cited as a 

cause of GA accidents (Simpson, 2001; O'Hare and Smitheram, 1995; Goh and Wiegmann, 2001; 

Wiggins and O’Hare, 1995; 2003a; 2003b). Decision making within the context of aviation has 

been defined as:  

 

“the ability of a pilot to respond to cues from the environment, evaluate the situation, come 

to conclusions and act on those conclusions” (Green and Muir, 1991). 
 

The ADM process starts long before getting into the aircraft, during preflight preparations and 

continues throughout all phases of the flight. After takeoff, pilots often have no control over some 

of the variables that could affect the safety of their flight, such as changes in the weather. Rather, 

they must identify information or cues relevant to the situation and decide on the best course of 

action to take. The decision made is the outcome of a complex interaction between cognitive 

factors mediated by contextual factors. This outcome is reflected in the course of action selected 

and eventually, the outcome of the flight. Accurate decision making is therefore, fundamental to 

safety in aviation. 
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The importance of decision making to safe flying operations has been underscored by AOPA 

(2013), which noted: 

“While pilot-related accidents involving maneuvering or descent and approach may be an 

indication of poor airmanship, they also raise questions about the pilot’s decision making.  

Since pilots typically receive some form of warning about deteriorating or adverse weather 

in advance, related accidents may be considered failures of decision making during both 

the flight planning and in-flight phases (AOPA 2013)”.  

 

Flying is a process made up of several deliberate actions. Each action is preceded by a decision, 

which in turn is predicated on the conclusion reached from evaluating the situation. Factors that 

affect pilot situation awareness impact decision making and potentially affect the outcome of a 

flight. Given the central role decision making plays in aviation safety, there has been considerable 

effort to understand pilot decision making and the factors that impact it. 

3.2 Evolution of Ideas on Pilot Error and Aeronautical Decision Making  

The evolution of ideas on ADM is in many ways related to developments in research on accident 

causation and decision making in general. A majority of the early work on accident causation 

adopted the view of a single causal event, which could be attributed to a single entity (Griffen, 

Young and Stanton, 2015). In aviation, this has historically been the pilot. Hence, pilot error has 

been cited as the cause of a majority of aircraft mishaps (O'Hare and Smitheram, 1995; Goh and 

Wiegmann, 2001; Wiggins and O’Hare, 1995; 2003a; 2003b). Studies by Greenwood and Woods 

(1919), Newbold (1926) as well as Farmers and Chambers (1940) led to the development and 

propagation of an ‘accident proneness’ theory. This held that certain individuals were predisposed 

towards accidents due to behavioral, attitudinal and personality factors. The accident proneness 

theory was used to explain human error in aviation, suggesting some pilots were just behaviorally 

predisposed to errors. Kalez and Hovde (1945) as well as Kunkle (1946) drew on the concept to 

characterize a group of military pilots who seemed to be involved in a high number of violations 

or accidents. The attraction behind the notion of single cause accidents attributable to a single 

entity was that once both were identified (cause and responsible entity), related accidents could be 

prevented by removing individuals with such traits from flying. However, subsequent work cast 

doubts on the accident proneness theory (Mintz and Blum, 1949; Arbous and Kerrich, 1951). In 



 

 

32 

addition to shortcomings in the methodology used in much of the work from which the idea 

emerged, researchers found no meaningful evidence for a consistent or measurable personality 

trait that predisposes operators to accidents (Johnson, 1946; Mohr and Clemmer, 1988; Wagenaar 

and Groeeweg 1987).  

 

While the accident proneness theory was being questioned, other research work had begun to 

suggest human errors were due to errors in judgement or decision making, rather than behavioral 

traits (Kelly and Ewart, 1942). Indeed, in their subsequent work on pilot performance, Kalez and 

Hovde (1953) suggested a group of supposedly error prone pilots exhibited error in judgement. 

Additionally, research on tests for aircrew members by Guilford and Lacy (1947) identified 

judgement as an essential requirement for pilot performance.  Judgement in this sense, referred to 

cognitive rather than perceptual or memory abilities (Kochan, Jensen and Chubb, 1997). These 

developments heralded a move away from the understanding that pilot error was caused by 

behavioral traits to the belief that it is associated with cognitive factors and decision making, 

exposing a need for better understanding of pilot decision making. 

3.2.1 Decision Making Theories and Aeronautical Decision Making 

Research in the late 1970s suggested the main underlying cause of pilot error accidents was 

erroneous decision making (Jensen and Benel, l977). As a result, efforts were geared towards 

finding ways to improve pilot decision making.  Studies show decision making skills can be 

improved through training (Thorpe, Martin, Edwards and Eddows 1976; Jensen and Benel, 1976 

and Roscoe, 1980), and there have been several attempts to identify and measure the skills required 

for accurate decision making (Kochan et al, 1997). Decision making in general is complex and 

several different perspectives, theories and models have been put forward to explain the process. 

Decision making models follow one of three broad approaches, based on the assumptions and 

frames of reference adopted. These are the normative, prescriptive and descriptive approaches 

(Baron, 1988).  

Normative decision making models like the Subjective Expected Utility and Bayesian Inference 

models assume a “rational” decision maker. According to O’Hare (1992), they “define standards 

of decision making that can be shown to be optimal if certain axioms are accepted.” These models 

assume the decision maker is able to accurately determine all relevant variables associated with all 
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possible options and thus weigh the possible outcomes and select the one that optimizes utility.  

Due to the dynamic nature of flying and the uncertainties associated with adverse weather 

encounters, this approach has limited applicability in aviation.  

 

Prescriptive decision making models advocate the use of a systematic approach or sequence of 

actions to acquire and analyze information and determine a correct course of action. This approach, 

which is predicated on the use of heuristics rather than detailed analysis of options to speed up the 

decision making process are quite common in aviation. They include models such as the 3Ps 

(Perceive, Process, Perform), PAVE (Pilot, Aircraft, enVironment, and External pressures) and 

DECIDE (Detect, Estimate, Choose, Identify, Do, Evaluate). 

 

Rather than focusing on finding an optimal decision to maximize utility or a standardized sequence 

of steps to reach a decision, descriptive approaches focus on how people typically make decisions 

and describe what people do during the process. The approaches recommended by the normative 

and prescriptive decision making models are based on some implicit assumptions, such as an ideal 

decision maker with accurate and complete information about all variables relevant to the decision 

making situation, or with sufficient time to apply a systematic evaluation scheme. However, this 

is rarely the case in practice. Descriptive models of decision making attempt to replace the ideal 

decision maker and conditions required by normative models with a rational decision maker having 

access to imperfect information and limited computational capacities representative of that actually 

possessed by decision makers in realistic decision making situations (Simon, 1933; Kahneman and 

Tversky, 1979, 1984 ). Descriptive models of decision making take cognizance of these limitations 

by introducing concepts such bounded rationality and satisficing. According to Gigerenzer and 

Selten (2001), bounded rationality describes “how a judgement or decision is reached (that is, the 

heuristic processes or proximal mechanisms) rather than merely the outcome of the decision, and 

they describe the class of environments in which these heuristics will succeed or fail”. Bounds on 

rationality result in ‘satisficing’ (Simon, 1955), where decision makers choose the first satisfactory 

alternative they find rather than searching for one that is optimal or maximizes utility. 

 

Descriptive decision making approaches have been applied to study how people make decisions 

in the natural, dynamic, real-world environments in which they operate. These studies reveal 
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seasoned operators do not generate and compare between option sets (Klein, 2008). Rather they 

use their experience to rapidly categorize situations they encounter and determine an appropriate 

course of action based on the category (Klein, 2008). This kind of decision making has been termed 

“Naturalistic Decision Making (NDM).” 

3.2.2 Naturalistic Decision Making 

NDM describes how people actually make decisions in the real-world settings they operate in 

(Klein, Orasanu, Calderwood & Zsambok, 1993; Orasanu and Martin, 1998; Lipshitz, Klein, 

Orasanu and Salas, 2001, Klein, 2008). According to Simpson (2001), it “describes how 

experienced people make decisions in dynamic, naturalistic environments, under conditions of 

time pressure, dynamic goals, uncertain cues and high risk.” NDM emphasizes the operator’s 

knowledge and experience of as the basis for decision making (Zsambok, 1997; Pruitt, Cannon-

Bowers and Salas, 1997). The operational environment determines the conditions under which 

decisions are made and shape the decisions themselves through their “constraints and affordances” 

(Lipshitz, Klein, Orasanu and Salas, 2001). NDM focuses on experts relying directly on their 

experience to make decisions within their field of expertise, with the aim of describing the 

cognitive processes these experts employ in reaching decisions (Lipshitz et al, 2001). 

 

Several NDM have been proposed, illustrating different ways decision making occurs in 

operational settings. For instance, experience and domain knowledge may be used to recognize 

patterns, classify situations and retrieve a decision based on the classification under the 

Recognition Primed Decision Making (RPD) model, (Klein, 1993, 1998), or a search for the 

dominant alternative where more than one candidate solution is possible (Montgomery, 1989). It 

may also be based on argument driven action, where actions are selected based on their 

appropriateness for the situation (Lipshitz, 1988). Decision making varies along a continuum from 

analytical to intuitive, depending on how the situation identified is classified (Hammond, Hamm, 

Grassia and Pearson, 1987). Analytic decision making employs a more cognitively intensive 

process, while intuitive decision making employs pattern matching and determine whether the 

decision maker employs a skill, rule or knowledge-based level of cognitive control (Rasmussen, 

1985; 1993).  
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NDM models share some common characteristics. The decision making situation presents cues 

which are recognized and become inputs used to rapidly assess the situation. Situation assessment 

is aided by a repertoire of mental images built from the decision maker’s experiences and 

familiarity the context surrounding the decision making process. The situation and decision 

making process are dynamic; the problem may be ill-structured, available information may be 

incomplete and/or of dubious quality, and the goals the decision making process seeks to achieve 

may be ill-defined, dynamic or competing. Additionally, NDM environments often involve some 

time pressure and high safety or other stakes.   

 

Decision making may be located at any point along a cognitive continuum and its location 

determines whether analytic or intuitive decision making process is employed. Cohen, Freeman 

and Wolf (1996) developed a recognition/metacognition model, which suggests the location of the 

decision making process is determined by the familiarity of the situation, time available for 

decision making as well as the potential consequences an erroneous decision.  A recognition 

strategy, where candidate solutions are evaluated serially until a satisfactory one is found is 

adopted if the test determines time is a concern. Otherwise, the metacognitive component is 

employed, and more detailed analysis is given to the problem during a re-evaluation process. 

 

The decision making mechanism espoused by NDM approaches has been supported by field 

observations of experts at work. The RPD model in particular was developed from cognitive task 

analysis of experienced fire ground commanders working under conditions characterized by 

extreme time pressure and significant safety consequences (Klein, Calderwood and Clinton-

Cirocco, 1986; 2010). RPD describes how expert operators make decisions under naturalistic 

situations using intuitive rather than analytical strategies. According to the RPD, experience builds 

up a repertoire of patterns which enables them to recognize the important factors within a decision 

making situation and develop a picture of what to expect, and what action to take in response 

(Klein, Calderwood, and Clinton-Cirocco, 1986). In this way, the decision making task becomes 

on of matching the situation to learned patterns and selecting an appropriate course of action in 

response. 
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Results from the study by Klein et al (1986) indicates fire ground commanders used their 

experience to identify and classify situations they faced and then identified appropriate course of 

action to deal with the situation. Similarly, Kobus, Proctor and Holste (2001), found that highly 

experienced military officers were significantly more accurate in developing an appropriate course 

of action during a dynamic tactical scenario than those with low-experience. The recognition 

primed decision making process is shown below. 

 

Figure 6: Model of Recognition Primed Decision Making. (Adapted from Klein et al, (1993) 
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The RPD model is made up of an intuitive and an analytic component; matching cue patterns and 

selecting a course of action is done intuitively, while mental simulation is carried out analytically 

(Klein, 1998). During mental simulation, decision makers analyze how decision options may play 

out within the decision making context. The process continues and decision options may be 

modified for use if required. NDM models emphasize the importance of contexts in decision 

making. Variables within the operating environment determines the kind of decision making 

process utilized to determine the appropriate course of action. 

3.3 Context for Decision Making During Encounters with Adverse Weather  

Adverse weather presents pilots with a dynamic, safety critical situation in which time is often 

limited and information uncertain. This is a naturalistic decision making environment. Pilots’ 

response in this environment is based on their understanding and interpretation of the situation. 

Decision making error, when they occur, originate from the decision maker’s knowledge base 

which supports the decision making process (Orasanu and Martin, 1998).  

 

Normative and prescriptive models of decision making cannot be realistically applied under 

naturalistic conditions, as decision making performance deteriorates under the stress imposed by 

the prevailing conditions. Naturalistic decision making models which consider experience, 

dynamic situations with ambiguous cues, and significant safety implications are better suited to 

decision making during adverse weather encounters in aviation. Naturalistic decision making 

contexts preclude a search for optimal decisions through careful analytical or structured 

approaches. Rather, some form of satisficing occurs, and a decision is made on the first satisfactory 

course of action selected and the process repeated as the situation demands. This decision making 

process is not arbitrary. Indeed, findings from research suggest decision makers within naturalistic 

contexts leverage knowledge and experience acquired over many years of training to decide on an 

accurate course of action. A significant amount of effort has gone into enabling pilots make better 

decisions through training as discussed in the next section.   
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3.4 Efforts to Improve Pilot Decision Making 

Efforts to improve pilot decision making have been led by the FAA, working with researchers and 

other stake holders in industry to develop training materials aimed at improving ADM. One 

outcome of this effort was the publication of a series of six training manuals (DOT/FAA//PM-

86/41 - DOT/FAA//PM-86/46) and an Advisory Circular (AC No: 60-22), which provided 

guidance and recommendations on the management of human factors issues that had been 

identified as causing or contributing to aviation accidents. The series of manuals included 

“introductory material, background information, and reference material on Aeronautical Decision 

Making” (AC 60-22). They were primarily prescriptive, outlining a “systematic approach to risk 

assessment and stress management in aviation” (AC 60-22). They also highlighted the influence 

personal attitudes could have on decision making and how those attitudes could be modified to 

enhance safety in the cockpit (AC 60-22). Methods for teaching ADM techniques and skills 

alongside conventional flight instruction were also prescribed. The documents recommended a 

conservative approach to ADM, aimed at helping inexperienced pilots avoid common human 

factors and decision making pitfalls, with the belief that as they accumulated accident free flight 

hours they would gain the experience required to handle more challenging situations.  

 

The development resulted in what has been described as “first generation ADM training” (Adams, 

1993). First generation ADM training was quite successful; pilots who had received the training 

made significantly fewer ADM errors compared to those who had not (FAA 1991; Adams 1993). 

Despite these improvements however, pilot error continued to account for a large proportion of the 

now reduced GA accidents (Driskall and Adam, 1993; Adam and Erikson, 1992).  

 

Adam and Erikson (1992) have observed that, the training approach advocated by these efforts had 

two main shortcomings. First generation ADM training advocated a “serial checklist evaluation of 

alternative decisions” (Adams 1993), it was not readily applicable to naturalistic decision making 

environments like aviation (Orasanu 2010).  Furthermore, the approach advocated by first 

generation ADM did not account for differences between expert and novice decision makers. As 

a result, some shortcomings were observed when it was applied for recurrency training involving 

more experienced pilots (Adam and Erikson, 1992; Adams, 1993).    
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Notwithstanding the large proportion of aviation mishaps deemed to have been caused by pilot 

error, some pilots successfully handled challenging situations or failures during flights despite 

never having previously encountered similar situations. Such pilots typically had many years of 

flying experience and were considered expert aviators. Therefore, researchers began to explore the 

differences between expert and novice pilots to understand the differences between then and gain 

insights into what was required to transform novice pilots to experts.   

 

Research on expert performance in other fields of endeavor show exceptional performance is the 

result of high levels of knowledge and skill acquired through the aggregation of experience over 

time (Newell and Simon, 1972; Chase and Simon, 1973). Since experienced pilots had performed 

exceptionally in many challenging situations, experience was recognized as an essential 

requirement for accurate judgment and ADM (Adams 1992; FAA 1991; Diehl, Hwoschinsky, 

Lawton and Licack, 1987).  

 

At first, it was generally assumed that the level of experience required for good judgment in ADM 

only came with the accumulation of accident free flight hours over an extended period spent flying 

(Kochan, Jensen and Chubb, 1997). However, research showed a close relationship between 

experience and training; exposure to highly structured and focused training facilitated the 

aggregation of experience (Diehl, Hwoschinsky, Lawton and Licack, 1987). Therefore, researchers 

began to look more closely at the more complex ADM approach and problem solving strategies 

expert pilots seemed to adopt (Adams and Erikson, 1992), in order to identify differences between 

expert and novice pilot decision making mechanism and strategies.  

 

These studies have shown expertise in ADM is correlated with training and experience and 

increased with the accumulation of flight time. Despite well-known limitations placed on human 

cognition by attention span as well as the capacity of both short and long term memory, expert 

pilots have developed the ability to quickly and efficiently access and leverage a well-organized 

body of knowledge acquired through experience to make accurate decisions in naturalistic 

situations. The main difference observed between expert and novice pilots is in the speed and 

accuracy of decision making. Experts have a “perceptual superiority” based on well-structured 

memory traces formed and stored from experiences acquired over time spent flying. This allows 
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experienced pilots to quickly and efficiently assess a situation, reach an accurate decision, and take 

effective action.  The whole process occurs so quickly that it seems automatic or intuitive (Adams 

and Erikson, 1992; Adams, 1993). This high speed, efficient cognitive processing is facilitated by 

experience, which the pilot leverages to quickly recognize what available cues foretell of uncertain 

situations (Adams and Erikson, 1992).  

 

These insights led to the second generation of ADM, known as the expertise approach. In contrast 

to first generation ADM training which advocated an assessment of own abilities along with the 

management of hazardous attitudes and a structured approach to decision making, the expertise 

approach was directed at enhancing memory and problem solving during training. Training here 

emphasized applications to real world problems using techniques such as Scenario and Computer 

Based Training (SBT and CBT) to increase the knowledge base of novice pilots and the 

organization of this knowledge (Adams and Erikson 1992).  

3.4.1 Findings from Research into Second Generation Aeronautical Decision Making 

Two important issues emanate from research that has led to the development of the expertise 

approach to ADM, as follows: 

Experience is Central in the Expertise Approach to ADM. Experience is central to expert decision 

making and is accumulated from practical knowledge acquired over time spent flying.it is reflected 

in a seemingly intuitive response to changing situations in an NDM environment. According to 

Bastic, (1982), intuition is “knowledge based on experiences and acquired through sensory 

contact”. It is the way we translate our experiences into action Klein 2003). Adams and Erikson 

(1992) have suggested intuition is reflected in automatic responses to situations based on “an 

implicit perception of the whole problem”. It is a response to cues and the context of a naturalistic 

situation brought about by extensive knowledge from experience acquired within a particular 

domain.   

 

Experience is accumulated through repeated encounters with different decision making situations. 

This allows pilots increase their knowledge about those situations and develop pertinent memory 

traces. These memory traces serve as the basis for intuitive decision making in naturalistic 
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situations. Expert decision making therefore, is based on rapidly accessing a structured repertoire 

of memory traces systematically archived from knowledge and experience. 

 

Training is Important for Building Experiences Which Drive Expertise. The foregoing suggests 

the memory traces that support rapid decision making by experienced operators may be modified 

through training that provides opportunities for repeated encounters with different decision making 

situations a pilot may encounter. Since aviation training emphasizes procedure oriented training 

for developing flying and decision making skills, it lays the foundation for the development of 

more sophisticated decision making as experience is accumulated (Adams and Erikson, 1992; 

Adams, 1993). Training establishes and expands the knowledge and experience base on which 

expertise is built. It follows therefore, that increased understanding of the types of experience that 

support expert performance would allow for the refinement of pilot training programs. Therefore, 

the right kind of training is essential to build the kind of experience profile that can help novice 

pilots improve their judgment and decision making skills.   

3.5 The Role of Experience In Decision Making During Encounters With Adverse Weather 

Considerable evidence from general research on decision making in naturalistic environments as 

well as studies of human performance in several fields shows experience is an essential 

requirement for expert performance. Operators with high levels of experience make more accurate 

decisions under conditions with severe time pressure and information uncertainty (Adams and 

Erikson, 1992; Adams, 1993; Calderwood et al, 1988; Klein et al, 1989; Klein et al, 1995, Ericsson 

and Charness, 1994; Ericsson, 2004; Simon and Chase, 1973; De Groot, 1978). The decisions are 

made intuitively rather than analytically (Adams and Erikson, 1992; Adams, 1993; Klein, 1997; 

2008; Klein, Calderwood and Clinton-Cirocco, 2010; Orasanu, 1993; Simpson, 2001). Indeed, one 

NDM model, the Recognition Primed Decision making (RPD) emphasizes experience as the 

essential requirement for good decision making. According to the RPD, experience enables quick 

recognition and classification of the critical information within a naturalistic situation which 

facilitates timely formulation, selection and implementation of the correct course of action (Klein, 

Calderwood and McGregor, 1989; Klein, 1989; 1993; Pruitt, Cannon-Bowers and Salas, 1997; 

Lipshitz, Klein, Orasanu and Salas 2001).  
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In aviation, studies have shown pilot experience is an insulating factor against erroneous decision 

making during encounters with adverse weather. Wiegmann, Goh and O'Hare (2002) as well as Li, 

Baker and Grabowski, (2001) found experience to have an insulating effect against erroneous 

decision making during adverse weather encounters by GA pilots. 

 

Some researchers have suggested expertise results from the experiences accumulated from time 

spent practicing within a domain (Chase and Simon, 1873; De Groot, 1978; Chi, Glaser and Farr, 

1988; Ericsson and Charness, 1994; Ericsson, 2004).  In aviation, this has been taken to correspond 

to the total flying hours a pilot has accrued. Therefore, pilot experience is typically evaluated on 

the total number of flying hours a pilot has accumulated (Li and Baker, 1999; Wiegmann, Goh and 

O’Hare, 2002; Wiggins and O’Hare, 2003a; Johnson and Wiegmann, 2011). Indeed, several 

studies have found that pilots with higher total flying hours (more experienced) make better 

judgements and decisions about hazardous weather situations than pilots with lower total flying 

hours (Wiggins and O'Hare 1995; Johnson and Wiegmann, 2011; Goh J, & Wiegmann D, 2002; 

O’Hare D & Owen D, 2002).  

 

However, two problems arise from the use of total flying hours as a measure of experience. First, 

reviews of NTSB GA accident reports in which weather was determined to be a causal factor reveal 

many of the accidents involve pilots with a high number of total flying hours (Landsberg, 2004; 

NASA, 2007; Keller, 2015). Accidents which involve such experienced pilots raise questions 

about the use of total flying hours as the sole measure of experience. Does experience only help 

pilots make accurate decisions in certain situations? If that is the case, in what situations does 

experience help? 

 

It appears the use of total flying hours does not permit the level of resolution or discriminatory 

power required to fully elucidate the nature of experience that supports accurate naturalistic 

decision making.  Kochan, Jensen and Chubb (1997) have noted that more than total flying hours 

is required to make an expert pilot and suggested other dimensions including relevance, 

meaningfulness, recency, number and variety of the experience. However, so far, no studies have 

been conducted to investigate the role these dimensions play in decision making. 
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Secondly, some studies have found experience had no positive effect on decision making during 

simulated adverse weather encounters. Burian, Orasanu and Hitt, (2000), Li and Baker, (1999) as 

well as the NTSB (2005) have reported finding no positive effect on decision making from 

experience based on total flying hours during adverse weather encounters. Furthermore, some 

researchers have found other measures of experience may be more appropriate in determining 

superior decision making performance in certain situations. For instance, Wiggins and O’Hare 

(1995) found that a proximal measure of experience, such as cross country flying hours was a 

better predictor of differences between the weather related decision making performance of 

experienced and inexperienced pilots than a global measure of experience such as total flying hours. 

Similarly, Wiegmann, Goh and O’Hare (2001) found that recent flight experience (hours flown in 

the last 90 days) was a more relevant experience variable in determining the accuracy of weather 

related decision making than total flying hours.  

 

The foregoing suggests a one-dimensional definition of experience, based on total flying hours 

may lack the resolution or discriminatory power required to fully elucidate the nature of experience 

in General Aviation. This means our ability to fully understand and take advantage of its 

contribution to decision making during adverse weather encounters is limited. Indeed, some 

research suggests experience is a multifaceted attribute with several elements. In addition to the 

number of total flying hours, several other elements are also important for accurate decision 

making during encounters with adverse weather (Jensen, 1995; Shappell, Hackworth, Holcomb, 

Lanicci, Bazargan, Baron and Halperin, 2010; Wiggins and O’Hare, 1995; Wiegmann, Goh and 

O’Hare, 2001; Kochan, Jensen and Chubb, 1997; Jensen, 1995; Li, Baker and Grabowski, 2001; 

Burian and Orasanu, 2000; Johnson and Wiegmann, 2011; Coyne, Baldwin and Latorella, 2008; 

FAA, 2005). These variables include total flight hours, total hours in event aircraft make/model, 

total hours in last 90 days, cross-country hours, cross-country hours in last 90 days, Actual 

instrument hours, simulated instrument hours, total instrument hours.  

 

Despite considerable evidence suggesting experience may be made of several dimensions, 

researchers are yet to empirically investigate and ascertain what these dimensions are, what role 

they play and how they interact to help pilots make a decision during adverse weather encounters. 
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This study is designed to investigate aspects if experience identified from previous research and 

the interaction between them. 

 

Studies have shown experience can be modified through training (Jensen, 1995; FAA 2009). 

Currently, many training interventions designed to elevate the experience level of novice pilots are 

based on findings and recommendations from research using total flying hours as the sole measure 

of experience (Jensen, 1995; Yuchnovicz,, Novacek, Burgess, Heck and Stokes, 2001; O'Hare and 

Smitheram, 1995). Some of the recommendations have been successfully implemented (Ayers, 

2006; Schumacher and Lease, 2007; Ball, 2008; Wiggins and O’Hare, 2003a), but others appear 

not to have been effective, since desired results were not achieved. (Keller, 2015). Furthermore, 

the number of pilots with high total flight hours involved in weather related accidents suggests a 

need to investigate and gain additional insights into the composition and dynamics of experience 

in order to design more effective training routines. An understanding of the relationship between 

aspects of experience be leveraged to develop precisely targeted training interventions to increase 

important aspects of pilot experience and improve the accuracy of weather related decision making.  

3.6 Transition from Novice to Expert Pilot In Adverse Weather Decision Making 

The transition from novice to expert in GA weather related decision making weather depends on 

knowledge derived from experience accumulated from flying (Adams and Erikson, 1992; Drefus 

and Drefus 1986; Eriksson, 2006). While pilots typically receive some form of warning about 

deteriorating or adverse weather in advance (AOPA XXXX), research suggests novice pilots and 

some pilots with a high number of total flying hours do not possess the kind of experience that 

enables accurate weather related decision making.  

Pilot experience determines the type of cognitive processing used in decision making, as well as 

the speed and accuracy of both situation and risk assessment (Orasanu, 2010; Adams and Ericsson, 

1992; Klein, 1998; Adams 1993). Novice pilots do not possess the deep and well-integrated 

knowledge of experts (Chi et al, 1988; Klein, 1998) and so, are at a disadvantage in naturalistic 

decision making situations (Orasanu 2010). Wiegmann et al (2002) found more experienced pilots 

made decisions quicker than less experienced pilots while flying simulated adverse weather 

conditions. This allowed them act quicker to avoid adverse weather compared to less experienced 
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pilots. Similarly, Fischer, Davison and Orasanu (2003) found experienced pilots showed a more 

complex understanding or safety risk compared to novice pilots. Expert pilots can rapidly access 

and utilize experience based knowledge to accurately assess the situation and select an appropriate 

course of action (Adams 1993). However, what constitutes the kinds of experience based 

knowledge that enables accurate weather related situation and risk assessment advantages to pilots 

is yet to be empirically investigated. 

 

Studies indicate expertise is not an automatic consequence of lengthy experience. Many types of 

experience exist, with different quantitative and qualitative impacts on performance (Eriksson, 

2002; Ericcson and Adams 1993, Ericsson, Krampe and Tesch-Romer, 1993; Adams 1993; 

Ericsson, 1996; Vicente and Wang, 1998). Experienced operators adapt to the demands of the task 

they are engaged in and their responses become increasingly automated. As a result, they lose 

conscious control over their actions and rather than expand their experience base, they only repeat 

them (Ericsson, 2006).  

 

Ericsson (2006) has suggested only some types of domain related experience bring about improved 

performance. Mindless training and the accumulation of flying hours from flying in routine 

weather conditions will not support the development of cognitive representations required for 

accurate situation assessment (Ericsson, 2006). Experience that supports the transition from novice 

to expert performance includes a diverse body of practical knowledge that forms memory traces 

which support intuitive decision making. This kind of experience results from precisely targeted, 

deliberate training that is relevant and changes the mechanism that drives expert performance 

(Eriksson, 2006). This mechanism is revealed in cognitive processing during situation assessment 

and risk assessment that evaluates cues as pieces of a puzzle rather than in isolation. The superior 

performance of experts is largely due to well-developed cognitive representations that mediate 

performance during this process (Ericcson, 2006). Therefore, training for expertise in weather 

related decision making should focus on tasks that develop cognitive representations that expedite 

cognitive processes.  
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Figure 7: Impact of Training on Expertise 

 

Training could also be aimed at enabling pilots increase their associative cognitive processing and 

problem solving capabilities, eventually leading to the development of autonomous cognitive 

processing characterized by efficient and dynamic decision making. The relatively high number 

of pilots with high total flying hours involved in weather related accidents suggests the 

composition of these tasks is not fully known. We are currently unable to design training programs 

that target areas in which pilots have inadequate experience. 

3.6.1 Training for Expertise in Weather Decision Making 

Domain specific training is an effective strategy for improving decision making (Glaser and 

Bassok, 1989). Adams (1993) found that the development of expertise in decision making is 

influenced by the kinds of decision making task demands encountered during training. Similarly, 

a study of pilot response to emergency situations in aviation by McKinney and Davies (2004) 

found that pilots who had prior simulator experience with a similar emergency situation responded 

more successfully to the actual event compared to those who had not. This suggests increasing the 

amount of contact pilots have with germane scenarios should expedite the accumulation of the 

body of experienced based knowledge that brings about decision making expertise. Furthermore, 

the RPD model holds that experience builds up a repertoire of patterns which supports recognition 

of the important factors within a decision making situation and development of a complete picture 

of what to expect and what action to take in response (Klein, Calderwood, and Clinton-Cirocco, 

1986). The decision making task then becomes one of matching the situation to learned patterns 

and selecting the appropriate course of action in response. Therefore, training for expertise in GA 
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weather decision making should ensure contact with scenarios that facilitate accumulation of the 

right kinds of experience.  

 

One way to achieve this is through precisely targeted training that elicits responses that are 

pertinent and can expand their pilots’ knowledge and experience base. Research suggests the 

greatest amount of improvement occurs during training and from the duration of experience 

(Ericsson and Smith, 1991). However, routine training that does not increase the experiential 

knowledge base is of little help. Therefore, there is a need to empirically determine what types of 

experience are required to support expertise in adverse weather decision making in order to 

develop training scenarios that can help pilots build this experience base. 

 

Research further shows the key to expert performance is to induce targeted challenges through 

which performance across pertinent and essential dimensions can be incrementally improved 

(Ericsson, 2006). Expertise in ADM during encounters with adverse weather requires extensive 

experience. Since there are several dimensions to experience, the challenge is in identifying the 

specific dimensions that contribute most significantly to building the experiential knowledge base 

that facilitates superior performance during such encounters. This will allow the development of 

precisely targeted training interventions to achieve weather decision making goals on each element 

within the spectrum of experience identified. Customized scenarios that provide weather decision 

making challenges representative of those a pilot may encounter while flying in a particular 

airspace along with proficiency goals can then be developed from historical weather data and 

accident/incident databases for use in training. 

 

Based on the foregoing therefore, we can develop a typology of challenging weather scenarios for 

any flight region, identify the kinds of experience based knowledge known to support decision 

making in those situations and develop training that builds the kinds of experience identified. The 

use of computer simulated cue recognition training has shown some promise in improving the 

timeliness of weather related decision making (Wiggins and O’Hare, 2003). However, even when 

cues have been identified, some pilots have been seen to lack the ability to accurately and reliably 

determine the significance of cues identified and consequently, make an erroneous decision 

(Stokes, Kemper, and Kite, 1997). Recognition of pertinent cues in a dynamic flying environment 
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during adverse weather requires experience that is relevant and useful for the recognition process, 

not just experience based on the number of flying hours. Furthermore, misdiagnosis of the 

significance of the cues indicates relevant experience in itself is not enough to guarantee accurate 

decision making during such adverse weather encounters.  For instance, a range of different 

outcomes may be associated with certain cues depending on the context. Experience with a wide 

variety of weather situations is necessary to accumulate the kind of practical knowledge required 

for expert decision making during such encounters.  
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 METHOD – FIRST STUDY 

The first part of this study sought to answer two research questions: first, what is the relationship 

between each element of experience and the outcome of encounters with adverse weather?  Next, 

is there a relationship between different levels of each experience elements and the odds of 

accidents from encounters with adverse weather? To answer these questions, a novel method for 

evaluating accident risk, specifically the likelihood that an incident turns into an accident is 

evaluated using actual pilot experience data from incident and accident reports. The details of this 

methodology are presented in this chapter. The overarching conjecture for this part of the research 

and related hypotheses are also presented, the dependent and independent variables are defined, 

along with the inclusion and exclusion criteria for the study data. The approach for collecting the 

study data collection is then presented, followed by the details of the analysis carried out. 

4.1 Conjecture  

Adverse weather encounters occur randomly, so nothing prevents a pilot from encountering one 

during a flight. For this study, incidents and accidents are considered to have a hierarchical 

relationship; an incident is an encounter  with adverse weather that was resolved, while an accident 

is refers to one that was not resolved. Viewed in this way, it then becomes possible to consider and 

investigate the key variables that that prevent a transition from incidents to accidents, since that is 

the preferred outcome. 

 

The general belief is that what prevents these randomly occurring incident involving adverse 

weather encounters  from transitioning into accidents is the pilot’s experience. If that truly is the 

case, it then follows that: 

 

If experience truly determines outcome of adverse weather encounters, we should see significant 

differences between the experience profile of pilots who had accidents during adverse weather 

encounters and those who did not. 

 

The corollary to this conjecture, therefore, is: 
 

The experience profile of a pilot has no effect on the outcome of adverse weather encounters  
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One challenge to  establishing the veracity of this conjecture is that there is no single database that 

contains experience information on pilots whose adverse weather encounter resulted in incidents 

as well as those whose resulted in accidents.  So, there is no way to evaluate the likelihood that an 

incident transitions into an accident.  One way to handle this is to search for a similar sample of 

pilots within the aviation community to act as a control group, typically through surveys, but this 

often introduces several additional challenges, including low response rates, incomplete or 

inaccurate responses, which may inadvertently bias the selection of participants, to mention a few.  

4.2 Methodological Approach  

To overcome the aforementioned challenges, a novel methodological approach was adopted for 

this study. Rather than seeking a population based sample of pilots who did not have accidents 

during encounters with adverse weather, a comparable sample of “incident pilots” was drawn from 

a different, independent database - the FAA administered Aviation Safety Reporting System 

(ASRS) database and used as the control group. This is a methodological innovation that marks 

the first contribution of this research.  

 

In addition to obviating some of the challenges commonly encountered in related research, the 

methodological approach adopted in this study also provides results that are ecologically valid. 

Additionally, it allows the research to go beyond analysis of the demographic characteristics of 

pilots who had accident to determine what their effects might be, as is often is the case. By creating 

a control group, comparisons can be carried out between the two groups to determine how 

individual or different combinations of variables are distributed between the groups or associated 

with the outcome and determine whether significant patterns of differences exist.  

4.3 Criteria for Data Collection  

To gather the data required for the study, queries were run on both the NTSB and ASRS databases 

to identify reports of General Aviation (Part 91) fixed wing accidents and incidents respectively, 

between January 1, 2005 and December 31, 2015, in which experience or decision making during 

adverse weather encounters was determined to be a cause or factor. Each report identified by the 

query was subsequently reviewed to ensure it met the criteria specified for the study.  
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There were four exclusion and three inclusion criteria each for the reports from which the study 

data was collated. For the exclusion criteria, accidents and incidents during the take-off and landing 

phases of flights were excluded, since they could be indicative of short comings in airmanship, 

rather than decision making mediated by experience. Similarly, accidents and incidents during 

adverse weather encounters involving student pilots or those in which equipment failure was 

determined to be a cause or factor were also excluded. Reports with incomplete data were also 

excluded from the study since there was no way to determine whether the pattern of missing data 

was random 

 

To be included in the study, accident and incident reports had to be for flights under GA (Part 91) 

operations and  carried out in a fixed wing airplane. Flights involving rotary wing or amateur build 

airplanes were therefore, excluded from the study. Additionally, adverse weather must have 

encountered during the flight and experience and/or errors in decision making determined to be 

causal or contributory factor to the outcome. 

 

The inclusion and exclusion criteria ensure only GA encountered adverse weather  in which 

experience was determined to be a cause or factor in the outcome are included. Since the focus of 

the study is on the mediating effect of experience on the outcome of  encounters with adverse 

weather, the inclusion and exclusion criteria ensure accidents due to other reasons like equipment 

failure or airmanship are excluded, because they may not reflect the mediating effect of experience 

on the outcome of such encounters. If experience does indeed affect the outcome of such 

encounters, then its effect should be evident in the purest cases. So, to avoid the potential 

confounding effect that such cases may introduce, they were not considered and only the purest 

cases were used for the study.  

 

Based on the foregoing criteria, a total of 595 reports, comprising 218 accident and 377 non-

accident flights between January 1 2005 to December 31 2015 satisfied all seven criteria. Pilot 

experience data was then extracted from the reports and collated for analysis. 
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4.4 Dependent and Independent Variables 

The dependent variable for this study was the outcome of adverse weather encounters, coded “0” 

for incidents and “1” for accidents. Incidents were defined as encounters that did not result in loss 

of life, injury to persons, or damage to property. Accidents were encounters that resulted in one of 

the three outcomes. Six variables identified as elements of experience by previous studies and 

commonly used in NTSB, ASRS and other aviation accident and incident databases to detail pilots’ 

experience profile were extracted and tabulated. A list of some of the previous research, variables 

studied, and a summary of their findings are provided in Appendix A.    

 

The experience elements included in this study were total flight hours, hours in last 90 days, hours 

in make and model, certificate type, instrument rating and airplane rating.  Airplane rating had two 

categories: Single Engine Rating and Multi-Engine Rating; certificate type had three categories: 

Private Pilots License (PPL), Commercial Pilots License (CPL) and Airline Transport Pilots 

License (ATPL). Table 1 contains the variables and their coding for this study.  

 

Table 1: Experience Variables and Their Coding for the Study 

Experience Variable Coding 

Total Flight Hours Number of  Hours 

Hours in Last 90 days Number of Hours 

Hours in Make and Model Number of Hours 

Certificate Type 

Private Pilot License (PPL) = 1 

Commercial Pilot License (CPL) = 2 

Airline Transport Pilot License (ATPL) = 3 

Instrument Rating 
Non-Instrument Rated = 0 

Instrument Rated = 1 

Airplane Rating 
Single-Engine Rated = 1 

Multi-Engine Rated = 2 

Outcome 
Incident = 0 

Accident = 1 
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4.5 Analytical Approach 

After extracting and collating the data, analysis started with exploration of the data using 

descriptive statistics, to summarize and gain some insight into the composition and nature of each 

experience variable and their distribution for the two groups of pilots in the study. Standard 

measures of central tendency including mean, median and mode as well as measures of dispersion 

such as standard deviation, minimum and maximum values were computed along with the 

frequency distribution for each variable.  

 

Individual experience variables were then analyzed to determine whether they had any relationship 

with the outcome of adverse weather encounters. Specifically, Chi-square tests were used to 

determine the extent to which each element of experience or different levels of multi-level 

experience variables was associated with accidents. This was followed by a determination of the 

strength of any such associations in terms of odds ratios. 

4.5.1 Chi-square Tests 

Chi-square tests use cross-tabulation or contingency tables to present data on categorical variables 

analyze the relationship between variables so analysis can be carried out to identify relationships 

which may exist between such variables. Chi-square statistic is then used to evaluate the statistical 

significance of the relationship between variables in the table. For this study, the table took the 

format shown in Table 2:  
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Table 2: Cross Tabulation for Chi-Square Tests 
 

 

 

Where: 

a represents the number of pilots with the type of experience and had an accident 

b represents the number of pilots without the type of experience and had an accident 

c represents the number of pilots with the type of experience and did not have an accident 

d represents the number of pilots without the type of experience and did not have an accident 

 

So,  

 

 

There are a + c pilots with the experience type so,  we would expect  
 

a′ =
(a+b) ∗ (a+c)

a+b+c+d
 pilots who have the experience to have accidents  

 

This is the expected value of a for the null hypothesis that  experience has no effect  

on accidents, and the same holds for b,  c and d (H0 ) 

 

If the observed values are significantly different from their expected values under the null 

hypothesis, we can conclude that our null hypothesis is unlikely to be true  

 

 

 

The prevalence of accidents for any type of experience is =  
a+b

a+b+c+d
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Chi-square tests can only be carried out on categorical variables so, the regulatory categories of 

each categorical experience variable (certificate type, instrument rating and airplane rating) as 

detailed in Table 1 were used. The continuous experience variables were broken into different 

categories. Total flight hours was broken into three categories; <=250 total flight hours,          251 

– 1500 total flight hours, and > 1500 total flight hours, based on Federal Aviation Regulations for 

minimum hours of flight time required for specific certificates. The first category represents total 

flight hour range and cut off point to earn and operate as a privately  licensed pilot before becoming 

eligible to earn a commercial license, while the second represents that to earn and operate as a 

commercial pilot before eligibility to earn an airline transport license and transition to the third 

category. Hours flown in the last 90 days and hours in make and model were broken into two 

categories each, using the upper and lower median value for the pilot sample studied as the cut off 

values.  

 

The chi-square tests tell us which of the elements of experience is associated with the outcome  of 

adverse weather encounters, in this case, using real pilot experience data. In some ways, it also 

tests the ecological validity of findings from previous studies. Odds ratios were used to quantify 

the strength of association between each experience variable and the outcome of adverse weather 

encounters as well as to determine the association between different levels of the variables and the 

outcome of adverse weather encounters. However, significant difference between two groups on 

any variable does not mean the variables are causally related to the outcome used to distinguish 

between the two groups. It also does not mean the variables are predictive of the likelihood of the 

outcome. Additionally, it does not tell us how the variables of interest covary. While it provides 

some insight into the relationships within the variables, it provides no indication of which variables 

are strongest or most important in predicting the outcome. So, to explore which combinations of 

experience elements are predictive of the likelihood of accidents during encounters with adverse 

weather, we turn to logistic regression. 

4.5.2 Logistic Regression  

The objective of logistic regression is to find an equation that best predicts the probability of an 

outcome or dependent variable as a function of one or a set of independent variables. It models 

variables in a manner that allows for the determine  the unique effect of each variable by 
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controlling for all other variables being considered. It also allows us examine how the variables 

being studied interact to produce the outcome being studied. Therefore, logistic regression gives 

us a more sophisticated and nuanced look at each variable’s predictive contribution to the 

likelihood of the outcome. 

 

The logistic regression model developed in this first study contained all six experience variables 

studies. All the continuous variables (total flight hours, hours in make and model and hours in last 

90 days) were entered as single variables, while certificate type was broken into their regulatory 

categories of PPL, CPL and ATPL, with PPL set as the base category. Similarly, Airplane rating 

was broken into single and multiple engine ratings, with single engine rating set as the base 

category. 

 

The descriptive statistics for the data as well as the results of the Chi-square tests and logistic 

regression model are presented in the next chapter. 

 

  



 

 

57 

 RESULTS FROM FIRST STUDY 

5.1 Distribution of Pilot Experience Variables 

Experience information was collected for a total of 595 pilots, comprising 218 accident and 377 

non-accident pilots from the NTSB and ASRS databases respectively. The breakdown of the data 

by experience variable for both groups is detailed in Table 3. The mean total flight hours for all 

pilots in the study was 4675.37 hours, while accident and non-accident pilots had mean total flight 

hours of 2223.54 and 6093.14 hours respectively. Similar values for the median total flight hours 

were 2500.00, 760.00 and 3900.00 flight hours respectively. Hours flown in the last 90 days had 

a mean of 65.42 hours overall, 48.49 hours for pilots in the accident group and 75.21 hours for 

those in the non-accident group, while the median hours flown in the last 90 days were 30.00 and 

60.00 hours respectively and 50 hours overall. The mean hours flown in make and model for 

accident and non-accident pilots were 610.06 and 972.21 hours respectively while the overall mean 

was 300 hours. The median was 300 hours overall, while the values for accident and incident pilots 

were 174.00 and 453.00 hours respectively.  

 

There were 183 pilots with a private pilot’s license, 187 with a commercial pilot’s license and 225 

with airline transport pilot’s license. Additionally, 147 pilots had single engine rating and 448 

multi engine rating. There were 516 pilots with instrument rating, while 79 were non instrument 

rated.  Details of the descriptive statistics are presented in Table 3 and Figures 8 - 14. 
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Table 3: Descriptive Statistics 

Experience Variable Total 
Accident 

Pilots 
Incident Pilots 

Total Flight Hours 

N 595.00 218.00 377.00 

Mean 4675.37 2223.54 6093.14 

SD 8879.98 3528.57 10577.62 

Median 2500.00 760.00 3900.00 

Min 50.00 50.00 57.00 

Max 178000.00 22228.00 178000.00 

Hours in Last 90 

days 

N 595.00 218.00 377.00 

Mean 65.42 48.49 75.21 

SD 64.71 51.51 69.43 

Median 50.00 30.00 60.00 

Min 0.00 0.00 1.00 

Max 680.00 250.00 680.00 

Hours in Make and 

Model 

N 595.00 218.00 377.00 

Mean 300.00 610.06 972.21 

SD 1453.13 1580.37 1358.76 

Median 300.00 174.00 453.00 

Min 1.00 2.00 2.00 

Max 18300.00 9200.00 9200.00 

  

    Frequency Percent 
Accident 

Pilots 

Incident 

Pilots 

Certificate Type 

PPL 183 30.80 135.00 48.00 

CPL 187 31.40 55.00 132.00 

ATPL 225 37.80 28.00 197.00 

Airplane Rating 
Single Engine 147 24.70 125.00 22.00 

Multi Engine 448 75.30 93.00 355.00 

Instrument Rating 

Non-

Instrument 

Rated 

79 13.30 73.00 6.00 

Instrument 

Rated 
516 86.70 145.00 371.00 
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Figure 8: Distribution of Total Flight Hours by Categories 

 

 

Figure 9: Distribution of Hours in Last 90 Days by Categories 
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Figure 10: Distribution of Hours in Make and Model by Categories 

 

 

Figure 11: Distribution of Outcome 
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Figure 12: Distribution of Instrument Rating 

 

 

Figure 13: Distribution of Certificate Type 
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Figure 14: Distribution of Airplane Rating 

5.2 Evaluation of Individual Experience Variables  

Categorical Experience Variables. Chi-square tests on experience variables showed significant 

associations between accidents during adverse weather encounters and certificate type (χ2 = 169.63, 

p < .001), instrument rating (χ2 = 122.03, p < .001) and airplane rating (χ2 = 196.97, p < .001).  

Pilots with a private pilot’s license were most highly associated with accidents (61.9%), compared 

to those with a commercial pilot’s license (25.2%) or airline transport license (12.8%). Within the 

same certificate type, 73.8% of the pilots in the study with only a private license had accidents 

during adverse weather encounters, while only 26.2% who did not. The percentages dropped 

dramatically when pilots had already earned a commercial license (70.6% versus 29.4%)  or an air 

transport pilots license (12.4% versus 87.6%). Pilots with only a private pilot’s license made up 

30.8% of the study pilots but were associated with 62.02% of the accidents during adverse weather 

encounters, while those with a commercial and airline transport license made up 31.4% and 37.8% 

but made up 25.13% and 12.8% respectively of the accidents. Details of the Chi-square results for 

certificate type are displayed in Figure 15 and Table 4, while the test of significance is shown in 

Table 5 below: 

  

Multi-Engine 

Rating 

Single-Engine 

Rating 
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Figure 15:  Chi-Square Tests for Certificate Type 

 

  

Accidents 
Incidents 

PPL ATPL CPL 

28 

197 

197 

197 

197 

197 

 



 

 

64 

 

 

 

Table 4: Chi-Square Tests for Certificate Type 

  
Outcome 

Total 
Incidents Accidents 

Certificate 

Type 

Private Pilot 

License 

Count 48 135 183 

Expected Count 116 67 183 

% within Certificate 

Type 
26.20% 73.80% 100.00% 

% within Outcome 12.70% 61.90% 30.80% 

% of Total 8.10% 22.70% 30.80% 

Commercial 

Pilots License 

Count 132 55 187 

Expected Count 118.5 68.5 187 

% within Certificate 

Type 
70.60% 29.40% 100.00% 

% within Outcome 35.00% 25.20% 31.40% 

% of Total 22.20% 9.20% 31.40% 

Airline 

Transport 

License 

Count 197 28 225 

Expected Count 142.6 82.4 225 

% within Certificate 

Type 
87.60% 12.40% 100.00% 

% within Outcome 52.30% 12.80% 37.80% 

% of Total 33.10% 4.70% 37.80% 

Total 

Count 377 218 595 

Expected Count 377 218 595 

% within Certificate 

Type 
63.40% 36.60% 100.00% 

% within Outcome 100.00% 100.00% 100.00% 

% of Total 63.40% 36.60% 100.00% 
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Table 5: Significance Table for Certificate Type  Chi-Square Test 

Chi-Square Tests 

Value df 
Asymptotic Significance 

(2-sided) 

Pearson Chi-

Square 
169.628 2 0 

Likelihood Ratio 175.595 2 0 

Linear-by-Linear 

Association 
159.035 1 0 

N of Valid Cases 595     

 

Pilots without an instrument rating were more highly associated with accidents during adverse 

weather encounters, compared to those with an instrument rating. For pilots without an instrument 

rating, 92.4% had accidents, while only 7.6% did not. The association was reversed for pilots  with 

an instrument; only 28.1% had accidents, while 71.9% did not. Instrument rated pilots made up 

86.7% of pilots in the study and accounted for only 24.4% of the accidents. Non-instrument rated 

pilots on the other hand, accounted for 12.3% of pilots in the study and accounted for 12.3% of 

the accidents. Details of the Chi-square results for instrument rating are displayed in Figure 16 and 

Table 6, while the test of significance is shown in Table 7 below: 
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Figure 16: Chi-Square Tests for Instrument Rating 

 

Table 6: : Chi-Square Tests for Instrument Rating 

   
Outcome 

Total 
Incidents Accidents 

Instrument 

Rating 

Non 

Instrument 

Rated 

Observed 6 73 79 

Expected 50.1 28.9 79 

% within Instrument Rating 7.60% 92.40% 100.00% 

% within Outcome 1.60% 33.50% 13.30% 

% of Total 1.00% 12.30% 13.30% 

Instrument 

Rated 

Count 371 145 516 

Expected Count 326.9 189.1 516 

% within Instrument Rating 71.90% 28.10% 100.00% 

% within Outcome 98.40% 66.50% 86.70% 

% of Total 62.40% 24.40% 86.70% 

Total 

Count 377 218 595 

Expected Count 377 218 595 

% within Instrument Rating 63.40% 36.60% 100.00% 

% within Outcome 100.00% 100.00% 100.00% 

% of Total 63.40% 36.60% 100.00% 

 

  

 

371 

145 

145 
6 

    Non Instrument Rated Instrument Rated 
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Table 7: Significance Table for Instrument Rating Chi-Square Tests 

Chi-Square Tests 

Value df 

Asymptotic 

Significance 

(2-sided) 

Exact Sig. 

(2-sided) 

Exact Sig. 

(1-sided) 

Pearson Chi-Square 122.033 1 0     

Continuity Correction 119.278 1 0     

Likelihood Ratio 126.463 1 0     

Fisher's Exact Test       0 0 

Linear-by-Linear 

Association 
121.827 1 0     

N of Valid Cases 595         
 

 

Pilots with a single-engine airplane rating were more highly associated with accidents during 

adverse weather encounters compared to those with a multi-engine airplane rating. Those with a 

single-engine rating made up 24.7% of the pilots studied, but accounted for 21% of the accidents. 

Those with a multi-engine airplane rating made up 75.3% and had only 15.6% of the accidents. 

Within pilots with a single engine rating, 85% had accidents, while only 15% did not, while the 

corresponding percentages were 20.8% and 79.2% respectively for pilots with a multi-engine 

rating. Details of the Chi-square results for airplane rating are displayed in Figure 17 and Table 8, 

while the test of significance is shown in Table 9 below: 
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Table 8:  Chi-Square Test for Airplane Rating 

   Outcome 
Total    Incidents Accidents 

Airplane 

Rating 

Single 

Engine 

Rating 

Count 22 125 147 

Expected Count 93.1 53.9 147 

% within Airplane Rating 15.00% 85.00% 100.00% 

% within Outcome 5.80% 57.30% 24.70% 

% of Total 3.70% 21.00% 24.70% 

Multi 

Engine 

Rating 

Count 355 93 448 

Expected Count 283.9 164.1 448 

% within Airplane Rating 79.20% 20.80% 100.00% 

% within Outcome 94.20% 42.70% 75.30% 

% of Total 59.70% 15.60% 75.30% 

Total 

Count 377 218 595 

Expected Count 377 218 595 

% within Airplane Rating 63.40% 36.60% 100.00% 

% within Outcome 100.00% 100.00% 100.00% 

% of Total 63.40% 36.60% 100.00% 

 

 

Accidents 
Incidents 

Single-Engine Rating Multi-Engine Rating 

 

 22 

125 

355 

93 

Figure 17:Chi-Square Tests for Airplane Rating 
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Table 9:  Significance Table for Airplane Rating Chi-Square Tests 

Chi-Square Tests 

Value df 

Asymptotic 

Significance 

(2-sided) 

Exact Sig. 

(2-sided) 

Exact Sig. 

(1-sided) 

Pearson Chi-

Square 
196.97 1 0     

Continuity 

Correction 
194.211 1 0     

Likelihood Ratio 200.105 1 0     

Fisher's Exact 

Test 
      0 0 

Linear-by-Linear 

Association 
196.639 1 0     

N of Valid Cases 595         

 

Continuous Experience Variables. There were significant associations between total flight hours, 

(χ2 = 109.37, p < 0.00), hours in the last 90 days (χ2 = 16.22, p<0.00) and hours in airplane make 

and model (χ2 = 19.83, p < 0.00) and the outcome of adverse weather accidents. For total flight 

hours, the largest differences existed between pilots within the lowest and highest categories. Pilots 

with 250 total flight hours or less accounted for 8.9% of the total number of accidents pilots but 

were associated with 20.20% of the accidents during adverse weather encounters. At the other end, 

pilots with more than 1500 total flight hours accounted for 60% of the total number of accidents 

pilots in the study and were associated with 34.4% of the accidents. Pilots that had between 251 

and 1500 total flight hours made up 31.1% of accident pilots and were associated with 45.4% of 

the total accidents. Pilots with 250 total flight hours or less were much more associated with 

accidents (83%) than incidents (17%). Those with between 251 to 1500 total flight hours were 

more evenly spread (53.50% and 46.50% for accidents and incidents respectively). The 

percentages for accident and incident were 79% and 21% respectively for pilots who had more 

than 1500 total flight hours. Details of the Chi-square results for certificate type are displayed in 

Figure 18 and Table 10, while the test of significance is shown in Table 11. 
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Figure 18:  Chi-Square Tests for Total Flight Hour Categories 
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Table 10: Chi-Square Tests for Total Flight Hour Categories 

  
Outcome 

Total 
Incidents Accidents 

Total Flight 

Hour Categories 

(TFH_Cats) 

0-250 Total 

Flight 

Hours 

Count 9 44 53 

Expected Count 33.6 19.4 53 

% within TFH_Cats 17.00% 83.00% 100.00% 

% within Outcome 2.40% 20.20% 8.90% 

% of Total 1.50% 7.40% 8.90% 

251 - 1500 

Total Flight 

Hours 

Count 86 99 185 

Expected Count 117.2 67.8 185 

% within TFH_Cats 46.50% 53.50% 100.00% 

% within Outcome 22.80% 45.40% 31.10% 

% of Total 14.50% 16.60% 31.10% 

> 1500 

Total Flight 

Hours 

Count 282 75 357 

Expected Count 226.2 130.8 357 

% within TFH_Cats 79.00% 21.00% 100.00% 

% within Outcome 74.80% 34.40% 60.00% 

% of Total 47.40% 12.60% 60.00% 

Total 

Count 377 218 595 

Expected Count 377 218 595 

% within TFH_Cats 63.40% 36.60% 100.00% 

% within Outcome 100.00% 100.00% 100.00% 

% of Total 63.40% 36.60% 100.00% 

 

Table 11: Significance Table for Chi-Square Test on Total Flight Hour Categories  

Chi-Square Tests 

Value df 
Asymptotic Significance 

(2-sided) 

Pearson Chi-Square 109.373 2 0.00 

Likelihood Ratio 110.948 2 0.00 

Linear-by-Linear Association 109.100 1 0.00 

N of Valid Cases 595   

 

For hours in last 90 days, 54.8% of all the pilots studied were in the lower median, while 45.2% 

were in the upper median. However, 65.6% of pilots in the lower median were associated with 

accidents, while only 34.4% of those in the upper category were. A larger percentage of pilots in 

the lower category were associated with accidents (43.9%), compared to those in the upper median 
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(27.9%). Details of the Chi-square results for certificate type are displayed in Figure 19 and Table 

12, while the test of significance is shown in Table 13 below: 

 

 

Figure 19:  Chi-Square Test for Hours in Last 90 Days 
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Table 12:  Chi-Square Test for Hours in Last 90 Days 

 Outcome 
Total 

Incidents Accidents 

Hours in Last 

90 Days 

(Last_90Cats) 

Lower 

Median 

Count 183 143 326 

Expected Count 206.6 119.4 326.0 

% within Last_90 Cats 56.1% 43.9% 100.0% 

% within Outcome 48.5% 65.6% 54.8% 

% of Total 30.8% 24.0% 54.8% 

Upper 

Median 

Count 194 75 269 

Expected Count 170.4 98.6 269.0 

% within Last_90Cats 72.1% 27.9% 100.0% 

% within Outcome 51.5% 34.4% 45.2% 

% of Total 32.6% 12.6% 45.2% 

Total 

Count 377 218 595 

Expected Count 377.0 218.0 595.0 

% within Last_90Cats 63.4% 36.6% 100.0% 

% within Outcome 100.0% 100.0% 100.0% 

% of Total 63.4% 36.6% 100.0% 

 

 

Table 13: Significance Table for Chi-Square Test on Hours in Last 90 Days 

Value df 

Asymptotic 

Significance 

(2-sided) 

Exact Sig. 

(2-sided) 

Exact Sig. 

(1-sided) 

Pearson Chi-Square 16.22 1 0     

Continuity Correction 15.539 1 0     

Likelihood Ratio 16.421 1 0     

Fisher's Exact Test       0 0 

Linear-by-Linear 

Association 
16.193 1 0     

N of Valid Cases 595         

 
 

 

Hours in airplane make and model followed the same trend as hours in the last 90 days.  A total of 

51.8% of all the pilots studied were in the lower median, while 48.2% were in the upper median. 
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However, 63.8% of pilots in the lower median were associated with accidents, while only 36.2% 

of those in the upper category were. A larger percentage of pilots within the lower median were 

associated with accidents (45.1%), compared to the percentage in the  upper median (27.5%). 

Details of the Chi-square results for certificate type are displayed in Figure 20 and Table 14, while 

the test of significance is shown in Table 15 below: 

 

 

Figure 20:  Chi-Square Test for Hours in Make and Model 
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Table 14:  Chi-Square Test for Hours in Make and Model 

  
Outcome Total 

Incidents Accidents   

Make_ModelCats 

1.00 

Count 169 139 308 

Expected Count 195.2 112.8 308.0 

% within 

Make_ModelCats 
54.9% 45.1% 100.0% 

% within Outcome 44.8% 63.8% 51.8% 

% of Total 28.4% 23.4% 51.8% 

2.00 

Count 208 79 287 

Expected Count 181.8 105.2 287.0 

% within 

Make_ModelCats 
72.5% 27.5% 100.0% 

% within Outcome 55.2% 36.2% 48.2% 

% of Total 35.0% 13.3% 48.2% 

Total 

  Count 377 218 595 

  Expected Count 377 218 595 

  
% within 

Make_ModelCats 
63.4% 36.6% 100.0% 

  % within Outcome 100.0% 100.0% 100.0% 

  % of Total 63.4% 36.6% 100.0% 

 

 

Table 15: Significance Table for Chi-Square Test on Hours in Make and Model 

  Value df 

Asymptotic 

Significance 

(2-sided) 

Exact Sig. 

(2-sided) 

Exact Sig. 

(1-sided) 

Pearson Chi-Square 19.832 1 0.000     

Continuity Correction 19.081 1 0.000     

Likelihood Ratio 20.029 1 0.000     

Fisher's Exact Test       0.000 0.000 

Linear-by-Linear 

Association 
19.798 1 0.000     

N of Valid Cases 595         
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5.3 Logistics Regression Model  

A multi-predictor logistic regression model based on the results of the Chi-Square tests was fitted 

to the data to identify which of the variables deemed significantly associated with accidents by the 

Chi-square tests were most predictive of the likelihood of accidents. The objective was to develop 

a model that predicts the likelihood of accidents so that the hypothesis that pilots with lower levels 

of different combinations of different experience variable were more vulnerable to accidents 

during adverse weather encounters could be tested. The logistic regression analysis was carried 

out with IBM® SPSS Statistics Version 26 in a Windows 10 Operating System Environment. 

Private pilot’s license was set as the reference category for  certificate type and the  continuous 

experience variable were not broken into categories. The results of the logistic regression are 

detailed in Table 16.  
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Table 16: Logistic Regression Results for First Study 
 

  B S.E. Wald df Sig. Exp(B) 

95% C.I .for 

EXP(B) 

Lower Upper 

Total Flight 

Hours 
0.000 0.000 0.401 1 0.527 1.000 1.000 1.000 

Hours in Last 90 

Days 
0.002 0.002 0.913 1 0.339 1.002 0.998 1.005 

Hours in Make 

and Model 
0.000 0.000 0.577 1 0.447 1.000 1.000 1.000 

Instrument Rating -1.623 0.486 11.137 1 0.001 0.197 0.076 0.512 

Certificate Type     13.040 2 0.001       

Commercial Pilot 

License 
-0.556 0.321 3.000 1 0.083 0.574 0.306 1.076 

Air Transport 

Pilot License 
-1.400 0.398 12.386 1 0.000 0.247 0.113 0.538 

Multi Engine 

Rating 
-1.801 0.345 27.336 1 0.000 0.165 0.084 0.324 

Constant 4.604 0.607 57.568 1 0.000 99.904     

From the model, the log odds of accidents during adverse weather encounters decreased 

significantly for pilots who had an instrument rating (β = -1.62; p < .001; OR = 0.20, 95% CI: .08 

- .51), had an air transport pilots license ((β = -1.40; p < .001; OR = 0.25, CI: .11 - .54) and a 

multiple-engine rating (β = -1.80; p < .001; OR = 0.17, CI: .08 -.32). Commercial pilot license was 

significant at the .1 level of significance (β = -1.62; p < .08; OR = 0.57). 

As aggregates, neither total flight hours, hours flown in the last 90 days nor hours flown in airplane 

make and model had a significant effect on the odds of accidents during adverse weather 

encounters.  

 

5.4 Evaluation of the Logistics Regression Model and Validation of Predicted Probabilities 

The regression model fitted to the data was statistically significant  (Χ2  =239.91, (7), p < .001), 

with a -2 log likelihood of 541.92. The Hosmer & Lemeshow goodness-of-fit test was (Χ2  = 10.51, 

(8), p > .05). The Nagelkerke R Square value was .45, while the Cox & Snell R Square value was 

0.33. The overall predictive power for the model was 82%. Details are in Table 17. 
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Table 17: Model Evaluation, Fit and Validation Statistics for Logistic Regression 

Model 

Test of Model Coefficients Χ2  =239.91, (7), p < .001 

-2Log-Likelihood 541.92 

Nagelkerke R Square 0.45 

Cox & Snell R Square 0.33 

Hosmer & Lemeshow Test Χ2  = 10.51, (8), p > .05 

Overall Predictive Power 81.80% 

5.5 Reduced Logistic Regression Model 

A more parsimonious logistic regression model was fitted to the data using only independent 

variables significant from the full model. There were little or no changes in either coefficients for 

the predictor variables or model evaluation statistics. The model fit and validation statistics were 

also similar to those for the full logistic regression model. Details of the reduced model and model 

evaluation, fit and validation statistics are detailed in Tables 18 and 19. 

Table 18: Results of Reduced Logistic Regression Model 

 

  
B S.E. Wald df Sig. Exp(B) 

95% C.I. for 

EXP(B) 

Lower Upper 

Instrument 

Rating 
-1.614 0.486 11.035 1 0.001 0.199 0.077 0.516 

Certificate Type     18.585 2 0.000       

Commercial 

Pilot License 
-0.504 0.311 2.626 1 0.105 0.604 0.328 1.111 

Air Transport 

Pilot License 
-1.387 0.344 16.249 1 0.000 0.250 0.127 0.490 

Airplane Rating -1.797 0.344 27.351 1 0.000 0.166 0.084 0.325 

Constant 4.645 0.606 58.783 1 0.000 104.057     
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Table 19: Model Evaluation, Fit and Validation Statistics Reduced Logistic 

Regression Model 
 

Test of Model Coefficients Χ2  =238.11, (4), p < .001 

-2Log-Likelihood 543.72 

Nagelkerke R Square 0.45 

Cox & Snell R Square 0.33 

Hosmer & Lemeshow Test Χ2  = 1.334 (3), p > .05 

Overall Predictive Power 81.80% 

 

The results presented in this chapter are interpreted and their significance discussed in the next 

chapter.   
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 DISCUSSION  – FIRST STUDY 

This study sought to determine pilot experience variables most associated with, and predictive of 

the likelihood of an accident during encounters with adverse weather in General Aviation. Much 

of the previous research carried out in this area have involved the use of simulation and surveys to 

identify risk factors associated with accidents during adverse weather encounters or the decision-

making processes that contribute to such accidents (Lanicci et al., 2012). Amongst other factors, 

poor situation assessment and experience have been proposed as important factors in weather 

related accidents (Wiegmann and Goh, 2001). Experience is believed to enable more accurate 

situation assessment and decision making during dynamic, safety critical encounters in which time 

pressure exists. How different aspects of pilot experience facilitate this during encounters with 

adverse weather, or which specific elements of experience more significantly impact the likelihood 

of accidents is not quite clear. In this study, experience data for pilots who had accidents from 

actual encounters with adverse weather during the cruise phase of GA part 91 fixed wing flights 

was compared with that of pilots who did not, to identify and quantify differences between the two 

groups. The purpose, therefore, was to determine the relationship between each of six elements of 

experience considered in this study and the outcome of encounters with adverse weather and then 

develop a model predictive of the likelihood of an accident given different levels of each 

experience variable. 

6.1 Associations between Experience and Accidents.  

There were significant differences between accident and non-accident pilots on each of the 

experience variables evaluated in this study. Lower levels of each experience element were 

significantly associated with accidents during adverse weather encounters compared to higher 

levels for each. This result agrees with those from several previous research efforts that have 

variously found different elements of experience to be associated with the outcome of adverse 

weather encounters (Shappell, et al., 2010; Johnson, & Wiegmann, 2015; Li, et al., 2001; Burian, 

et al., 2000; NTSB, 2005; Wiegmann, et al., 2002). However, the results also appear to contradict 

findings from some other studies that have reported no associations between some of the 

experience elements and the outcome of adverse weather encounters (Wiegmann, et al., 2001; 
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Burian, et al., 2000; Coyne, et al., 2008; Wiggins, 2014). This was expected, given the 

contradictory findings on the issue in published research literature. However, the results in this 

study were obtained from the experience profile of 595 real pilots who flew real missions and 

therefore, have a high level of ecological validity.  

6.2 Dimensions of Experience – Length Versus Breadth of Experience 

The elements of experience in this study fell into either of two categories. The first were flight 

hour-based and delineated experience in terms of length/duration, while the second were 

license/certification-based and expressed experience in terms of breadth/variety. The relationship 

between the latter set of experience variables (instrument rating, airplane rating and certificate type) 

and accidents during adverse weather encounters was much clearer and consistent. Results from 

the Chi-square tests and logistic regression showed higher levels of each variable (CPL over PPL; 

ATPL over CPL and PPL) led to significantly reduced association with, and odds of accidents 

during adverse weather encounters. For example, the Chi-square tests showed that in terms of 

accidents given pilots’ certificate type, those with a 61.9% of accident pilots had a PPL, while only 

25.2% and 12.8% had a CPL and ATPL respectively. The results of the Chi-square tests followed 

a similar pattern for purely dichotomous independent experience variables. For instance, 92.4% of 

pilots without instrument rating were associated with accidents, compared to only 28.1% of pilots 

that were instrument rated.  

 

Results from the logistic regression model confirmed that the categorical variables were indeed 

significant predictors of the likelihood of accidents during adverse weather encounters.  All the 

categorical  independent experience variables had increasingly negative coefficients  with 

increasing levels of the variable. For instance, with private pilot’s license set as the reference pilot 

certification category, the logistic regression coefficient was -0.556 for a commercial pilot’s 

license and -1.40 for an air transport pilot’s license. Although the coefficient for commercial pilot’s 

license was significant at the .1 level of significance rather than the .05 level, increasing levels of 

all categorical variables considered in the study had an insulating effect against accidents during 

adverse weather encounters. 
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Unlike variables that expressed experience in terms of breadth/variety, the relationship between 

the length/duration-based experience variables (total flight hours, hours in make and model and  

hours in last 90 days) and accidents during adverse weather encounters was not quite clear. 

Although Chi-square tests on categorized levels of each duration variable showed statistically 

significant and increasing associations between increasing levels of each variable and accidents 

during adverse weather encounters similar to the breadth/variety experience variables,  the results 

of the logistic regression was completely different from the case with the latter. As aggregates, 

none of the length-based experience variables were statistically significant. Indeed, there was no 

change in the odds of accidents during adverse weather encounters with increasing levels of any 

of the length/duration experience elements.  

 

The foregoing suggests variables related to the breadth or variety of General Aviation pilots’ 

experience are more predictive of the likelihood of accidents during adverse weather encounters 

compared to those related to the duration or length of experience. There was no change in the 

efficacy of a reduced logistic regression model without flight hour related variables to accurately 

discriminate and predict correct responses, and the predictive power of the reduced model 

remained at value remained at 81.80%. This result was somewhat baffling, because it affirmed  

none of the flight hour related variable is predictive of the likelihood of accidents during adverse 

weather encounters, despite clear associations between these variables and accidents identified by 

the Chi-square tests. There were significant differences in association with accidents between 

lower and higher categories of each variable. One reason for this may be because both sets of pilots 

in the study could be considered quite experienced considering the fact that the mean and median 

total flight hours in this study were much higher than values used to distinguish between 

experienced and novice pilots in previous studies as detailed in Appendix B.  

 

It is plausible from the foregoing that the length of experience may only be a significant factor in 

preventing accidents up to a certain point, or between certain ranges of total flight hours and not 

others. For instance, 83% of pilots with 250 total flight hours or less were associated with accidents, 

but this reduced to 53% for pilots with 251 to 1500 total flight hours and then to only 21% for 

pilots with more than 1500 total flight hours. Whether this trend is due to increasing total flight 

hours or due only to the addition of breadth/variety elements of experience is not clear.  
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The findings in this first study have some implications for the evaluation of experience. The 

aviation community traditionally measures pilot experience by the total number of flight hours 

accumulated (NTSB, 2005; Burian, Orasanu and Hitt, 2000; Li and Baker, 1999). A pilot’s total 

flight hours is the primary eligibility criterion for additional certifications and/or licenses. There is  

some anecdotal evidence to suggest total flight hours is an important but insufficient measure of 

experience. Much of this evidence has come from stories of pilot encounter with adverse weather 

encounters and studies primarily carried out using computer based simulations of adverse weather 

flying conditions.  Such evidence has therefore, been inconclusive. A major reason for this has 

been that the extent to which results from laboratory based studies can be extrapolated to actual 

flying is unclear. However, the results in this study provide empirical, ecologically valid evidence 

that total flight hours as a single measure, is indeed an insufficient determinant of experience.  

 

Results from this study show the likelihood of accidents during adverse weather encounters 

reduced significantly, as the variety/breadth of pilots’ experience increased, especially in what 

may be considered low to intermediate ranges of flight hour related variables. Similar results were 

not  obtained for the duration-based experience variables. These results therefore, reaffirm 

suggestions that cognate or task related experience significantly impact pilot judgement and 

performance during adverse weather encounters (Wiggins and O’Hare, 1995; 2003; Kochan et al, 

1997). The results also agree with findings from studies on expertise in other fields, suggesting a 

wide variety of experience, spanning the spectrum of tasks within a domain expedite the transition 

from novice to expert operator within the domain (Ericsson and Charness, 1994; Ericsson, 2004). 

 

In terms of situation assessment and decision making, the recognition primed decision making 

model which is based on the recognition of patterns within a situation, presupposes the decision 

maker has had enough experience with similar situations to have built up an adequate repertoire 

of solutions from which to draw upon. Klein (1989) observed that “experience enables a person to 

understand a situation in terms of plausible goals, relevant cues, expectancies, and typical actions.” 

Furthermore, the selection of a course of action in recognition primed decision making is intuitive, 

which also requires a fair amount of cognate experience. A unidimensional measure of experience, 

based on total number of flight hours alone may therefore, be somewhat deficient, lacking the 
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resolution or discriminatory power required to fully elucidate the nature of experience. If this is 

the case, our ability to take advantage of the insulating effect of experience on erroneous decision 

making during adverse weather encounters may be limited. Defining experience using only one of 

its attributes restricts our ability to influence its acquisition by limiting the range of training to 

which pilots could be exposed. 

 

Expertise is generally believed to result from the accumulation of experience over time, but there 

is some debate over how long it takes to become an expert. The results from this study suggest the 

variety of experience may be more impactful towards achieving expertise than its duration. The 

knowledge can be leveraged to design specifically targeted training interventions to increase those 

aspects of weather decision making experience determined to most significantly impact the 

outcome of adverse weather encounters for pilots with deficiencies in those areas. In this way, it 

may be possible to expedite the transition from novice to expert pilots in weather-related decision 

making. 

  



 

 

85 

 METHOD FOR SECOND STUDY 

This chapter presents the methodology for the second study. The conjecture underpinning the study 

is first discussed, followed by the  methodology, which details the dependent and independent 

variables, hypotheses and statistical model developed to test them. 

7.1 Acquisition of Pilot Experience 

The aviation community traditionally evaluates pilot experience by the total flight hours 

accumulated. Generally, pilot experience and therefore, accident vulnerability is treated as a linear 

function of the number of flight hours accumulated (Knecht, 2015). However, there is no empirical 

evidence to suggest this is the case. Indeed, there has been some attempt to link total flight hours 

and accident rates using a gamma based function, with some success (Knecht, 2015). In practice 

however, pilots acquire experience along hypothetical continuum. This hypothetical continuum 

may be considered to consist of a horizontal component defined by the length of experience and a 

vertical component defined by the variety of experience possessed by the pilot. The length of 

experience is parameterized by the total flight hours accumulated and can be broken into three 

distinct zones based on Federal Aviation Regulations. The zones are as described in the previous 

study and include 0-250 total flight hours, 251 – 1500 total flight hours, and > 1500 total flight 

hours.  The variety of experience is parameterized by different categorical experience variables, 

and some of these elements can only be acquired within specific zones. This framework for the 

acquisition of experience in practice  is depicted Figure 21: 

 



 

 

86 

 

Figure 21: Framework for Acquisition of Pilot Experience 

 

Based on the foregoing therefore, it is reasonable to conject that pilot experience is not a linear 

function of total flight hours. As pilots acquire total flight hours, some interaction occurs between 

experience elements along both the horizontal and vertical dimensions. Overall pilot experience, 

therefore, is some function of the interaction of multiple elements of experience. Consequently, 

since it is generally understood that experience insulates pilots from erroneous decision making 

during encounters with adverse weather, this function that determines overall pilot experience also 

determines the extent to which it insulates pilots and accordingly, the likelihood of accidents 

during adverse weather encounters.  

 

In the first study, elements that address the length/duration of a pilot’s experience  were found to 

be associated with the outcome of adverse weather encounters but not predictive of the likelihood 

of the outcome of such encounters.  It was surmised that the elements are an important but 
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insufficient  measure of pilot experience. United States Federal Aviation Regulations only mandate 

pilot certifications or licenses as eligibility preconditions to independently carry out specified 

kinds of flight operations (U.S. CFR 14, 1F, Part 91). For instance, a private pilot’s license is 

required to independently operate a flight,  a commercial pilots license is required to operate a 

flight for reimbursement and so on. It is, therefore, not uncommon to find pilots who have never 

chosen to acquire additional licenses or ratings other than a private license and single engine rating. 

It is reasonable to believe such pilots grow in experience over time. However, they may not benefit 

from the insulating effect of elements of experience that address the breadth of experience and 

their overall experience may increase more slowly than if they had those elements. Yet, many of 

such pilots fly  for extended periods without accident. It therefore seems that on its own, increasing 

total flight hours provides some insulating effect against accidents, and the results of the Chi-

square tests from the first study indicate that is the case. What is unclear is how the likelihood of 

accidents for such pilots change over time and how that compares with pilots who have additional 

elements of experience. 

7.2 Conjecture and Logistic Regression Model 

Research on the acquisition of expertise indicates that expert performance in any task results from 

exposure to a wide range of scenarios across the task spectrum (Adams and Ericsson, 1991; 

Ericsson and Charness, 1994; Ericsson, 2004; Wiggins and O’Hare, 1995; 2003; Kochan et al, 

1997). In aviation, each additional license and certification requires pilots to demonstrate some 

level proficiency  in a range of flight related tasks. For instance, it is possible to obtain a private 

pilot’s license with little or no weather knowledge and minimal instrument  flying skills (Carney 

et al. 2015). However, to earn an instrument rating, pilots must amongst other requirements, 

demonstrate some level of competence on the acquisition and use of weather information as well 

as the use of cockpit instruments and other aids to where necessary, safely evaluate the weather 

situation and decide how to proceed to ensure a safe outcome. Additional requirements for 

knowledge, skills and abilities also exist for other licenses and certifications. These requirements 

ensure pilots are exposed to, acquire and demonstrate some level of proficiency a wide spectrum 

of tasks that may be encountered in the course of  operations permitted by the license or ratings 

possessed. 
 



 

 

88 

This, therefore, implies:  

 

Pilots with experience spanning both hypothetical experience dimensions will have significantly 

reduced likelihood of accidents during adverse weather encounters compared to those with 

experience only along one dimension (total flight hours only).   

 

To test this conjecture, a hierarchical logistic modelling approach was adopted, and each element 

of experience was introduced successively into the model in the order in which it is acquired in 

practice. The logistic regression models for this study were developed to closely mimic the 

accumulation of experience in practice. Changes in likelihood of accidents during adverse weather 

encounter were then evaluated for each additional element of experience added to the model. The 

aim was to determine the effect of each additional element of experience on the likelihood of 

accidents during adverse weather encounters.  

7.3 Dependent and Independent Variables 

The dependent variable for this study was the outcome of adverse weather encounters, coded “0” 

for incidents and “1” for accidents. Incidents were defined as encounters that did not result in loss 

of life, injury to persons, or damage to property. Accidents were encounters that did. Total flight 

hours was added to the three experience variables  found to be significant from the first study. The 

three categories describes previously (<=250 flight hours, 251 – 1500 flight hours, and > 1500 

flight hours), based on Federal Aviation Regulations were used respectively for the three zones in 

the framework as discussed in section 7.1. Hours flown in the last 90 days and hours flown in 

airplane make and model were excluded from this study since they were not significant from the 

first study. As in the first study, the regulatory categories of the categorical experience variables 

were retained. Therefore,  airplane rating had two categories: Single Engine Rating and Multi-

Engine Rating; certificate type had three categories: Private Pilot’s License (PPL), Commercial 

Pilots License (CPL) and Airline Transport Pilots License (ATPL).  

 

In addition to each independent variable added successively to the model, interactions terms were 

included in the logistic regression model to evaluate the effect of potential interactions that occur 

as breadth elements are added to total flight hours. For instance, if a pilot earned an instrument 
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rating after a private license, the logistic regression model included total flight hours, instrument 

rating and a total flight hours * instrument rating interaction term.   

7.4 Analysis Methodology 

An initial reference logistic regression model was first developed based on the stated conjecture 

to determine the likelihood of accidents assuming that elements of experience that define the 

breadth of experience interact with total flight hours, which determines its length. The model was 

then evaluated to ascertain for significance, fit and predictive power. Next, a hierarchical approach 

was adopted, and different elements of experience were incrementally added to total flight hours 

within each of the three experience acquisition zones discussed in section 7.1. As successive 

certifications, licenses and interaction terms were added to the model, the model was evaluated to 

determine changes to the reference model, significance of individual predictors goodness of fit for 

the model. Finally, the predicted probabilities for each iteration was assessed and compared to the 

base line as well as to previous models within the experience acquisition zone. 
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 RESULTS FOR SECOND STUDY 

In this chapter, detailed results from the second study are presented, as a prelude to the discussion 

of the implications of the results in the next chapter. A multivariable logistic regression model was 

fitted to the data to test the hypotheses that pilots with multi-dimensional experience profile have 

a lower likelihood of accidents during adverse weather encounters compared to pilots with 

unidimensional experience profile. The logistic regression analysis was carried out with IBM® 

SPSS Statistics Version 26 in a Windows 10 Operating System Environment.  

8.1 Reference Logistic Regression Model with Interaction Terms 

The results of the reference logistic regression model in this study was similar to the results of the 

logistic regression model from the first study. Only instrument rating (β = -2.16, p < .001; OR =.12, 

CI (.06 - .25) and air transport pilot’s license (β = -1.158, p < .001; OR = .31, CI = .14 - .71) were 

negatively related to the log odds of a pilot having an accident during adverse weather encounters 

at the .05 level of significance. Commercial pilots license (β = -0.229) and multi-engine rating (β 

= -0.003) were also negatively related, but insignificantly so. Total flight hours had no effect on 

the odds of accidents during adverse weather encounters. None of the interaction terms were 

associated with the outcome of adverse weather encounters. The results of the logistic regression 

are detailed in Table 20. 
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Table 20: Results of Reference Logistic Regression Model with Interaction Terms 

  B S.E. Wald df Sig. Exp(B) 

95% C.I. for 

EXP(B) 

Lower Upper 

Total Flight Hours 0.00 0.00 0.54 1.00 0.46 1.00 1.00 1.00 

Instrument Rating -2.13 0.39 30.65 1.00 0.00 0.12 0.06 0.25 

CPL -0.23 0.39 0.35 1.00 0.55 0.80 0.37 1.70 

ATPL -1.16 0.42 7.72 1.00 0.01 0.31 0.14 0.71 

MER 0.00 0.39 0.00 1.00 0.99 1.00 0.46 2.14 

Instrument Rating 

by Total Flight 

Hours 

0.00 0.00 0.03 1.00 0.85 1.00 1.00 1.00 

CPL by Total Flight 

Hours 
0.00 0.00 0.83 1.00 0.36 1.00 1.00 1.00 

ATPL by Total 

Flight Hours 
0.00 0.00 0.00 1.00 0.95 1.00 1.00 1.00 

MER by Total 

Flight Hours 
0.00 0.00 1.00 1.00 0.32 1.00 1.00 1.00 

CPL by Instrument 

Rating by MER by 

Total Flight Hours 

0.00 0.00 1.04 1.00 0.31 1.00 1.00 1.00 

ATPL by Instrument 

Rating by MER by 

Total Flight Hours 

0.00 0.00 0.00 1.00 0.98 1.00 1.00 1.00 

Constant 1.77 0.32 29.82 1.00 0.00 5.86     
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Table 21: Statistics for Reference Logistic Regression Model 

Test of Model Coefficients Χ2  =169.95, (11), p < .001 

-2Log-Likelihood 741.26 

Nagelkerke R Square 0.29 

Cox & Snell R Square 0.22 

Hosmer & Lemeshow Test Χ2  = 8.93, (8), p > .05 

Overall Predictive Power 70% 

8.1.1 Evaluation of Reference Logistic Regression Model with Interaction Terms 

The logistic regression model fitted to the data was statistically significant (Χ2  = 169.95, (11), p 

< .001). The -2 log likelihood was 741.26, while the Hosmer & Lemeshow goodness-of-fit test 

was (Χ2  = 8.93, (8), p > .05).  Hypothesis tests on individual experience variables in the model 

showed only instrument rating and airline transport license  were significant, with chi-square 

values of 30.652  and 7.720 respectively. Corresponding p-values for both were .00 and .01 

respectively. Predicted probabilities for the model agreed well with actual outcomes. Overall 

predictive accuracy was 70%, compared with 56.2% for the null model. 

8.2 Logistic Regression Models for First Experience Acquisition Zone  

Logistic Regression Model 1-1. The initial logistic regression model fitted to the data with total 

flight hours as the only explanatory variable was not statistically significant (Χ2  =.917, (1), p 

> .05). The null hypothesis that total flight hours made no difference to the likelihood of accidents 

during adverse weather encounters failed to be rejected (p > .05), and there was no change in the 

odds (0.99) of accidents during adverse weather encounters, with increasing total flight hours alone. 

Details are shown in Tables 22 and 23. 
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Table 22: Results for Logistic Regression Model 1-1 

 B S.E. Wald df Sig. Exp(B) 

95% C.I. for 

EXP(B) 

Lower Upper 

Total Flight 

Hours 
-0.004 0.004 0.907 1 0.341 0.996 0.988 1.004 

Constant 1.593 0.713 4.987 1 0.026 4.917   

 

Table 23: Statistics for Logistic Regression Model 1-1 

Test of Model Coefficients Χ2  = .917, (1), p > .05 

-2Log-Likelihood 101.57 

Nagelkerke R Square .015 

Cox & Snell R Square .01 

Hosmer & Lemeshow Test Χ2  = 4.21, (7), p > .05 

Overall Predictive Power 72.4% 

 

Logistic Regression Model 1-2.  The significance of the logistic regression model did not change 

(p > .05) when private pilot’s license was added it.  Neither the Cox and Snell R Square (.01), nor 

the Nagelkerke R Square (.015) was different. Similarly, statistical tests on individual predictors 

were not significant (p > .05) and there was no change in the odds ratio or predictive power of the 

model. Details are in Tables 24 and 25. 

Table 24: Results for  Logistic Regression Model 1-2 

 B S.E. Wald df Sig. Exp(B) 

95% C.I. for 

EXP(B) 

Lower Upper 

Total Flight Hours -0.004 0.004 0.860 1 0.354 0.996 0.988 1.004 

PPL -0.003 1.284 0.000 1 0.998 0.997 0.081 12.347 

Constant 1.596 1.565 1.040 1 0.308 4.933   
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Table 25: Statistics for  Logistic Regression Model 1-2 

Test of Model Coefficients Χ2  = .917, (1), p > .05 

-2Log-Likelihood 101.57 

Nagelkerke R Square .015 

Cox & Snell R Square .01 

Hosmer & Lemeshow Test Χ2  = 4.01, (7), p > .05 

Overall Predictive Power 72.4% 

 

Single engine rating was found to be significantly correlated to private pilot’s license (Pearson’s 

correlation coefficient > .81) at the .01 level (2-tailed) of significance. So, the model with single-

engine was very similar to the model with private pilot’s license and was not developed any further. 

The correlation results are in Table 26. 

 

Table 26: Table of Correlation for Single Engine Rating and Private Pilot's 

License 

  SER PPL 

SER 

Pearson Correlation 1 .812** 

Sig. (2-tailed)  0.000 

Sum of Squares and Cross-products 1.954 1.931 

Covariance 0.023 0.022 

N 87 87 

PPL 

Pearson Correlation .812** 1 

Sig. (2-tailed) 0.000  

Sum of Squares and Cross-products 1.931 2.897 

Covariance 0.022 0.034 

N 87 87 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

Logistic Regression Model 1-3.  Adding instrument rating to the model with total flight hours and 

private pilot’s license provided significant improvements to the overall model (p < .05; 

𝜒2(3) 21.19 ). The Hosmer and Lemeshow goodness-of-fit statistic was significant  

𝜒2(7) 8.58; (p >  .05). The-2 Log likelihood was  82.43, while the Cox and Snell R Square 

was .22, and the Nagelkerke R Square was .31.  Of the three predictors now in the model, only 
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instrument rating was significant (p < .05; OR = .034, CI =.01 - .20); neither private pilot’s license 

not total flight hours were significant. The model was able to predict 80.5% of the outcome, an 

improvement over the previous model. The variables in the equation are shown in Table 27. 

Table 27:  Results for Logistic Regression Model 1-3. 

 B S.E. Wald df Sig. Exp(B) 

95% C.I. for 

EXP(B) 

Lower Upper 

Total Flight 

Hours 
0.011 0.007 2.613 1 0.106 1.011 0.998 1.024 

PPL -1.386 1.343 1.065 1 0.302 0.250 0.018 3.477 

Instrument 

Rating 
-3.381 0.888 14.509 1 0.000 0.034 0.006 0.194 

Constant 1.628 1.644 0.980 1 0.322 5.091   

 

Table 28: Statistics for Logistic Regression Model 1-3 

Test of Model Coefficients Χ2  = 21.19  (3), p < .001 

-2Log-Likelihood 81.29 

Nagelkerke R Square .31 

Cox & Snell R Square .22 

Hosmer & Lemeshow Test Χ2  = 8.58, (7), p > .05 

Overall Predictive Power 80.50% 

 

Logistic Regression Model 1-4. The logistic regression model with interaction terms was 

significant.  Although the interaction between total flight hours and instrument rating had a 

negative coefficient, the term itself was not significant. However, the model closely resembled the 

previous model without the interaction term and was significant (𝜒2(3) 201.4; (p >  .05), and 

provided a good fit 𝜒2(8) 7.075; (p >  .05). The -2 Log likelihood was  82.35, while the Cox 

and Snell R Square was .21, and the Nagelkerke R Square was .30. The variables in the equation 

are shown in Table 29, while the model statistics are in Table 30. 
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Table 29: Logistic Regression Model 1-4 

  B S.E. Wald df Sig. Exp(B) 

95% C.I. for 

EXP(B) 

Lower Upper 

Total Flight 

Hours 
0.012 0.008 2.681 1 0.102 1.012 0.998 1.028 

Instrument 

Rating 
-2.207 3.461 0.407 1 0.524 0.110 0.000 97.206 

Instrument 

Rating by Total 

Flight Hours 

-0.005 0.017 0.087 1 0.768 0.995 0.962 1.029 

Constant 0.066 0.941 0.005 1 0.944 1.068     

 

Table 30: Statistics for Logistic Regression Model 1-4 

Test of Model Coefficients Χ2  = 20.14, (3), p < .001 

-2Log-Likelihood 82.35 

Nagelkerke R Square .30 

Cox & Snell R Square .21 

Hosmer & Lemeshow Test Χ2  = 7.08, (8), p > .05 

Overall Predictive Power 80.50% 

 
 

8.3 Logistic Regression Models for Second Experience Acquisition Zone  

Logistic Regression Model 2-1. The initial logistic regression model fitted to the data for the 

second experience acquisition zone with total flight hours as the only explanatory variable was not 

statistically significant (𝜒2(1) .74; (𝑝 >  .05)). The -2 Log likelihood ratio was 405.69, the Cox 

and Snell R Square was .002, while the Nagelkerke R Square was .003. The null hypothesis on 

total flight hours failed to be rejected, and there was no change in the odds (OR = 1) of accidents 

during adverse weather encounters, based on total flight hours alone within this zone. The model 

was only able to correctly classify 55.7% of the outcome. Details are contained in Tables 31 and 

32. 
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Table 31:  Results for Logistic Regression Model 2-1 

 B S.E. Wald df Sig. Exp(B) 

95% C.I. for 

EXP(B) 

Lower Upper 

Total Flight 

Hours 
0.000 0.000 0.738 1 0.390 1.000 0.999 1.000 

Constant 0.455 0.287 2.520 1 0.112 1.576   

 

 

Table 32:Statistics for Logistic Regression Model 2-1 

Test of Model Coefficients Χ2  = .739 (1), p > .05 

-2Log-Likelihood 405.69 

Nagelkerke R Square .003 

Cox & Snell R Square .002 

Hosmer & Lemeshow Test Χ2  = 13.59 (8), p > .05 

Overall Predictive Power 55.70% 

 

Logistic Regression Model 2-2. The logistic regression model was significant when instrument 

license was added  (𝜒2(2) =  50.332;   p <  .05).  The -2 Log likelihood ratio was 356.08, while 

the Cox and Snell R Square was .16 and the Nagelkerke R Square was .21.  The model was able 

to predict 62.2% of outcomes correctly. Statistical tests on individual predictors was significant (p 

> .05) for instrument rating and the odds ratio was .071 (CI = .03 - .18). However, total flight hours 

was not significant to the model (p > .05). Details are in Table 33 and 34. 

 

Table 33:  Results for Logistic Regression Model 2-2 

 B S.E. Wald df  Sig. Exp(B) 

95% C.I. for 

EXP(B) 

Lower Upper 

Total Flight Hours 0.000 0.000 0.287 1 0.592 1.000 0.999 1.001 

Instrument Rating -2.650 0.489 29.331 1 0.000 0.071 0.027 0.184 

Constant 2.328 0.518 20.189 1 0.000 10.260   
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Table 34: Statistics for Logistic Regression Model 2-2 
Test of Model Coefficients Χ2  =50.33 (2), p < .001 

-2Log-Likelihood 356.10 

Nagelkerke R Square .21 

Cox & Snell R Square .16 

Hosmer & Lemeshow Test Χ2  = 17.45, (8), p > .05 

Overall Predictive Power 62.20% 

 

Logistic Regression Model 2-3. The logistic regression model with total flight hours * instrument 

interaction term within this second experience acquisition zone was significant.  Although the 

interaction between total flight hours and instrument rating had a negative coefficient, the term 

itself was not significant. The model itself  closely resembled the previous model without the 

interaction term and was significant ( 𝜒2(3) 354.22; (p >  .05),  and provided a good fit 

𝜒2 15.48 (8); (p >  .05). The -2 Log likelihood was  354.22, while the Cox and Snell R Square 

was .16, and the Nagelkerke R Square was .22. The variables in the equation are shown in Table 

35, while the model statistics are in Table 36. 

 

Table 35:  Results for Logistic Regression Model 2-3 

 B S.E. Wald df Sig. Exp(B) 

95% C.I. for 

EXP(B) 

Lower Upper 

Total Flight Hours 0.003 0.002 1.564 1 0.211 1.003 0.998 1.008 

Instrument Rating -1.117 1.237 0.816 1 0.366 0.327 0.029 3.695 

Instrument Rating by 

Total Flight Hours 
-0.003 0.002 1.431 1 0.232 0.997 0.992 1.002 

Constant 0.882 1.192 0.547 1 0.459 2.415   
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Table 36: Statistics for Logistic Regression Model 2-3 

Test of Model Coefficients Χ2  =52.21, (3), p < .001 

-2Log-Likelihood 354.22 

Nagelkerke R Square 0.22 

Cox & Snell R Square 0.16 

Hosmer & Lemeshow Test Χ2  = 15.48 (8), p > .05 

Overall Predictive Power 62.20% 

 

Logistic Regression Model 2-4. There was no change in predictive power (62.2%) when 

commercial pilot license was added to the model with total flight hours and instrument rating.  The 

model was significant 𝜒2(3) 55.49; (p <  .05), and there was a reduction in the -2 Log likelihood 

ratio (350.94).  There was a slight increase in both the Cox and Snell R square (.17) and the 

Nagelkerke R square (.23) values. The Hosmer and Lemeshow goodness-of-fit statistic was 

significant  𝜒2(8)𝑜𝑓 9.70; (p >  .05). Of the three predictors in the model, only total flight hours 

was not significant (p > .05). Both instrument rating and commercial pilot’s license were both 

significant (p < .05). The variables in the equation are shown in Table 37, while Table 38 contains 

the statistics for the model.  

 

Table 37:  Results for Logistic Regression Model 2-4 

 B S.E. Wald df Sig. Exp(B) 

95% C.I. for 

EXP(B) 

Lower Upper 

Total Flight 

Hours 
0.000 0.000 0.280 1 0.597 1.000 0.999 1.001 

Instrument 

Rating 
-2.469 0.496 24.786 1 0.000 0.085 0.032 0.224 

CPL -0.623 0.277 5.073 1 0.024 0.536 0.312 0.922 

Constant 2.367 0.519 20.781 1 0.000 10.670   
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Table 38: Statistics for Logistic Regression Model 2-4 

Test of Model Coefficients Χ2 (3) = 55.49, p < .001 

-2Log-Likelihood 350.94 

Nagelkerke R Square .23 

Cox & Snell R Square 0.17 

Hosmer & Lemeshow Test Χ2 (3) = 9.70;  p > .05 

Overall Predictive Power 62.20% 

 

Logistic Regression Model 2-5. The logistic regression model with total flight hours * instrument 

* commercial pilot license interaction term within this second experience acquisition zone was 

significant.  The interaction term itself was not significant, but the model had a good fit 

𝜒2 5.49 (8); (p >  .05). The -2 Log likelihood was  350.10, while the Cox and Snell R Square 

was .17, and the Nagelkerke R Square was .23.The variables in the equation are shown in Table 

39, while the model statistics are in Table 40. 

 

Table 39:  Results for Logistic Regression Model 2-5 

 B S.E. Wald df Sig. Exp(B) 

95% C.I. for 

EXP(B) 

Lower Upper 

Total Flight Hours 0.000 0.000 0.851 1 0.356 1.000 1.000 1.001 

Instrument Rating -2.470 0.498 24.640 1 0.000 0.085 0.032 0.224 

CPL -0.056 0.683 0.007 1 0.934 0.945 0.248 3.605 

CPL by Instrument 

Rating by Total Flight 

Hours 

-0.001 0.001 0.821 1 0.365 0.999 0.998 1.001 

Constant 2.206 0.544 16.415 1 0.000 9.079   
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Table 40: Statistics for Logistic Regression Model 2-5 

Test of Model Coefficients Χ2  =239.91, (7), p < .001 

-2Log-Likelihood 541.92 

Nagelkerke R Square 0.45 

Cox & Snell R Square 0.33 

Hosmer & Lemeshow Test Χ2  = 10.51, (8), p> .05 

Overall Predictive Power 82% 

 

Logistic Regression Model 2-6. The logistic regression model remained significant when multiple 

engine rating was added to total flight hours, instrument rating and commercial pilot’s license (p 

< .05; 𝜒2(4), 57.08). The -2 Log likelihood ratio dropped to (349.35), while the Cox and Snell R 

Square was .18 and the Nagelkerke R Square was .24.  The Hosmer and Lemeshow goodness-of-

fit statistic was significant  𝜒2(8) 8.06; (p >  .05). The model was able to predict 62.50% of 

outcomes correctly. Only instrument rating was significant (p > .05); neither total flight hours, 

commercial pilot’s license nor multi engine rating was significant. Details are in Tables 41, and 

42. 

 

Table 41:  Results for Logistic Regression Model 2-6 

 B S.E. Wald df Sig. Exp(B) 

95% C.I. for 

EXP(B) 

Lower Upper 

Total Flight 

Hours 
0.000 0.000 0.470 1 0.493 1.000 1.000 1.001 

Instrument Rating -2.449 0.497 24.334 1 0.000 0.086 0.033 0.228 

CPL -0.328 0.363 0.818 1 0.366 0.720 0.354 1.467 

MER -0.436 0.346 1.589 1 0.208 0.647 0.328 1.274 

Constant 2.382 0.521 20.943 1 0.000 10.828   
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Table 42: Statistics for Logistic Regression Model 2-6 

Test of Model Coefficients 𝜒2(4), 57.08,  p < .001 

-2Log-Likelihood 349.35 

Nagelkerke R Square .24 

Cox & Snell R Square .18 

Hosmer & Lemeshow Test 𝜒2(8) 8.06; (p >  .05) 

Overall Predictive Power 62.50% 

 

Logistic Regression Model 2-7. The logistic regression model with total flight hours * instrument 

rating* commercial pilot license* multiple engine rating interaction term within this second 

experience acquisition zone was significant (𝜒2(5) 66.13; (p <  .00).  The interaction term  had 

a very small negative coefficient (-.002) and was significant (p < .05). The model provided a good 

fit 𝜒2 4.01 (8); (p >  .05) to the data. The -2 Log likelihood was  340.30, the Cox and Snell R 

Square was .20, and the Nagelkerke R Square was .27. The variables in the equation are shown in 

Table 43, while the model statistics are in Table 44. Its overall productive power was 65.50% 

 

Table 43:  Results for Logistic Regression Model 2-7 

 B S.E. Wald df Sig. Exp(B) 

95% C.I. for 

EXP(B) 

Lower Upper 

Total Flight Hours 0.001 0.000 2.612 1 0.106 1.001 1.000 1.002 

Instrument Rating -2.484 0.501 24.567 1 0.000 0.083 0.031 0.223 

CPL 0.805 0.552 2.128 1 0.145 2.236 0.758 6.593 

MER -0.074 0.373 0.039 1 0.843 0.929 0.447 1.931 

CPL by Instrument 

Rating by MER by 

Total Flight Hours 

-0.002 0.001 8.149 1 0.004 0.998 0.996 0.999 

Constant 2.028 0.530 14.659 1 0.000 7.602     
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Table 44: Statistics for Logistic Regression Model 2-7 

Test of Model Coefficients 𝜒2 4.01 (8); (p >  .05) 

-2Log-Likelihood 340.30 

Nagelkerke R Square 0.27 

Cox & Snell R Square 0.20 

Hosmer & Lemeshow Test 𝜒2 4.01 (8); (p >  .05) 

Overall Predictive Power 66.5% 

8.4 Logistic Regression Models for Third Experience Acquisition Zone  

Logistic Regression Model 3-1. The logistic regression model with only total flight hours for pilots 

within the third experience acquisition zone was not statistically significant, 𝜒2(1) =

 1.87; (p >  .05). The -2 Log likelihood was 462.44, while the Cox and Snell R Square was .005 

and the Nagelkerke R Square was .007.  Increasing total flight hours was not associated with any 

change in the odds of accidents during adverse weather encounters. The Hosmer and Lemeshow 

goodness-of-fit statistic was significant  𝜒2(8) =  12.53; (p >  .05).  The model was able to 

predict 66.5% of outcomes correctly, but this was the same predictive power as the null model. 

Total flight hours was not a significant predictor of the outcome of adverse weather encounters. 

Th Details are presented in Tables 45 and 46. 

 

Table 45:  Results for Logistic Regression Model 3-1 
 

  B S.E. Wald df Sig. Exp(B) 

95% C.I. for 

EXP(B) 

Lower Upper 

Total Flight 

Hours 
0.000 0.000 1.224 1 0.269 1.000 1.000 1.000 

Constant -0.559 0.155 13.066 1 0.000 0.572     
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Table 46:  Statistics for Logistic Regression Model 3-1 

Test of Model Coefficients 𝜒2(1) =  1.87; (p >  .05) 

-2Log-Likelihood 541.92 

Nagelkerke R Square 0.007 

Cox & Snell R Square 0. 005 

Hosmer & Lemeshow Test 𝜒2(8) =  12.53; (p >  .05) 

Overall Predictive Power 66.50% 

 

Logistic Regression Model 3-2. The logistic regression model with air transport pilot’s license 

added to total flight hours was statistically significant, 𝜒2(2) =  42.94; (p <  .00). The -2 Log 

likelihood ratio was 421.36, while the Cox and Snell R Square was .11 and the Nagelkerke R 

Square was .15. The Hosmer and Lemeshow goodness-of-fit statistic was significant  𝜒2(8) =

5.84; (p >  .05). The model’s predictive power increased to 67%. Total flight hours was not a 

significant predictor of the outcome of adverse weather encounters and there was no change in 

odds of accidents with increasing total flight hours. However, the odds ratio for air transport lance 

was .13. Details are presented in Tables 47 and 48. 

 

Table 47:  Results for Logistic Regression Model 3-2. 

  B S.E. Wald df Sig. Exp(B) 

95% C.I. for 

EXP(B) 

Lower Upper 

Total Flight 

Hours 
0.000 0.000 0.465 1 0.495 1.000 1.000 1.000 

ATPL -1.549 0.251 38.138 1 0.000 0.213 0.130 0.347 

Constant -0.003 0.158 0.000 1 0.986 0.997     
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Table 48:  Statistics for Logistic Regression Model 3-1. 

Test of Model Coefficients Χ2  =239.91, (7), p < .001 

-2Log-Likelihood 541.92 

Nagelkerke R Square 0.45 

Cox & Snell R Square 0.33 

Hosmer & Lemeshow Test Χ2  = 10.51, (8), p> .05 

Overall Predictive Power 82% 

 

Logistic Regression Model 3-3. The logistic regression model with interaction of air transport 

pilots license and total flight hours was statistically significant, 𝜒2 (3)= 43.55; (p < .001). The -2 

Log likelihood ratio was 420.75, while the Cox and Snell R Square was .11 and the Nagelkerke R 

Square was .16. The Hosmer and Lemeshow goodness-of-fit statistic was 𝜒2 (8)=5.53; (p  > .05). 

The model’s predictive power increased to 6870%. Neither total flight hours nor the interaction of  

air transport pilots license and total flight hours  was a significant predictor of the outcome of 

adverse weather encounters (p > .05) and there was no change in odds of accidents with changes 

in either variable. However, air transport pilots license was significant and produced a .25 

reduction in the odds of accidents during adverse weather encounters with an  air transport pilots 

license compared to having either a commercial pilots license or private pilot’s license. Details are 

presented in Tables 49 and 50. 

 

Table 49:  Results for Logistic Regression Model 3-3 

 B S.E. Wald df Sig. Exp(B) 

95% C.I. for 

EXP(B) 

Lower Upper 

Total Flight 

Hours 
0.000 0.000 0.812 1 0.367 1.000 1.000 1.000 

ATPL -1.403 0.314 19.950 1 0.000 0.246 0.133 0.455 

ATPL by Total 

Flight Hours 
0.000 0.000 0.588 1 0.443 1.000 1.000 1.000 

Constant -0.127 0.226 0.317 1 0.573 0.881   
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Table 50:  Statistics for Logistic Regression Model 3-3 

Test of Model Coefficients Χ2  =239.91, (7), p < .001 

-2Log-Likelihood 541.92 

Nagelkerke R Square 0.45 

Cox & Snell R Square 0.33 

Hosmer & Lemeshow Test Χ2  = 10.51, (8), p> .05 

Overall Predictive Power 82% 
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 DISCUSSION  – SECOND STUDY 

In this chapter, the results from the second study presented in chapter 8 are interpreted and their 

significance discussed in light of the research objective.   
 

9.1 Aim and Objective of the Second Study 

 

The aim of the second study was to determine the effect of elements that address the 

breadth/variety of experience on the likelihood of accidents during adverse weather encounters. 

For pilots, the time spent flying an airplane counts towards their total flight hours, However, 

acquiring additional elements of experience like instrument rating or commercial pilots license is 

at the discretion of each pilot, and some opt not to acquire such additional ratings or certifications. 

Results from the first study indicated elements of experience which address the breadth or variety 

of experience  were both associated with, and predictive of accidents during adverse weather 

encounters. Although total flight hours was associated with accidents during encounters with 

adverse weather, it was not predictive of the likelihood of accidents during such encounters.  

 

The objective for this study therefore, was to test the conjecture that pilots with experience 

spanning both the horizontal and vertical dimensions of a hypothetical experience continuum 

proposed as a framework for the acquisition of experience in practice would have significantly 

reduced likelihood of having accidents during adverse weather encounters compared to those with 

experience only along the length/duration dimension. The conjecture was based on the 

understanding that cognate or task related experience significantly impact the attainment of 

expertise and outcome of task performance. Previous studies have found that the transition from 

novice to expert is mediated and expedited by the kinds of experience acquired over time (Ericsson 

1993, Adams and Ericsson, 1992; Ericsson and Charnes, 1994; Klein, 1989; Andersson 1982, 1987, 

1993). Therefore, flying tasks that allow pilots experience and become proficient with different 

kinds of flying conditions would expedite their transition to experts in adverse weather flying, 

compared to those that restricted their exposure.  
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9.2 Implications of the Reference Logistic Regression Model  

 

Results from the reference logistic regression model with interactions developed for this study  

showed only instrument rating and air transport pilot’s license were predictive of the likelihood of 

accidents during adverse weather encounters. Therefore, the conjecture was supported for 

instrument rating and air transport pilot license. However, neither total flight hours, commercial 

pilot license or airplane rating was found to be significant. The findings, therefore, did not support 

the conjecture that pilots with a commercial pilot license or multi engine rating would be less likely 

to have accidents during encounters with adverse weather. Furthermore, none of the interaction 

terms in the reference model was a significant predictor of the likelihood of accidents during 

adverse weather encounters.  

 
 

On the surface, some of these findings appears contrary to results from previous studies, such as 

those that have found total flight hours to be a significant indicator of the likelihood of accidents 

during adverse weather encounters or expertise in weather decision making. However, that may 

not necessarily be the case, since many of the studies provide no information on participants’ 

instrument rating status or certification level. Other than Schvaneveldt et al. (2001) pilots classified 

as experts in previous research have had less than 1500 total flight hours and were generally not 

eligible for air transport licenses. It is plausible therefore, that the differences in performance 

observed in such studies were due to the presence or absence of instrument rating and air transport 

license as the results in this study indicate, rather than total flight hours.  

9.3 Interaction of Variables within the Experience Acquisition Zones  

First Experience Acquisition Zone (0 – 250 Total Flight Hours). The initial model for the first 

experience acquisition zone for this study had only total flight hours and was not significant. The 

model could only explain 1.5% of the variance in outcome (Nagelkerke R Square value).  This 

finding was not surprising given the earlier observation that weather related accidents involve 

pilots with varying amounts of total flight hours. The model with private pilot license or single 

engine rating and total flight hours was not significant. This too, was not surprising, since every 

pilot in the study had a least a private license and by association, at least a single engine rating. In 

addition to being highly correlated, both elements of experience provided no discriminatory value.  
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The next model with instrument rating added was significant and improved the overall model fit 

statistics. Indeed, instrument rating was the only additional element of experience pilots in the 

study could acquire within this zone. Although the model with the first order interaction term 

between instrument rating and total flight hours was significant, the interaction term itself was not 

significant. This result was unexpected, since the accident insulating effect of instrument rating 

was expected to increase as a function of total flight hours. The coefficient for the interaction term 

was -.005, but this was negligible, as was the odds ratio (.995) given the high p-value (.7) and 

confidence interval (.96 – 1.03). It appears instrument rating has a unique effect that is distinct 

from total flight hours. Furthermore, there was barely any change in the model statistics between 

the model with and without the total flight hour * instrument rating interaction term.  

 

Second Experience Acquisition Zone (251 – 1500 Total Flight Hours). Pilots within this zone could 

acquire an instrument rating, a multi engine rating or a commercial license individually or in 

different combinations. Therefore, individual models were developed for each combination with 

additional elements added successively to those already in the previous model. 

 

The models within this zone followed the trend set by those developed for the first experience 

zone. The initial model with only total flight hours was not significant. The model could only 

explain 0.3% of the variance in outcome (Nagelkerke R Square value).  The addition of instrument 

rating significantly improved the model as well as overall model fit statistics and predictive power. 

The model retained its significance with the addition of subsequent elements like commercial pilot 

license and multi engine rating and had slightly improved fit statistics and predictive power.  As 

was the case in the first experience acquisition zone, the models with interaction terms was  

significant but none of the first (total flight hours * commercial license/multi engine rating) or 

second order (total flight hours * commercial license/multi engine rating * instrument rating) 

interaction terms was significant. The third order interaction term (total flight hours * commercial 

license * multi engine rating * instrument rating) was significant, but this could have been by 

chance, since the odds ratio was .996. Other than some slight changes in model statistics, the 

models with interaction terms were very similar to their equivalent models with main effects only. 
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Third Experience Acquisition Zone (>1500 Total Flight Hours). Pilots within this zone could only 

add an air transport pilot license, so only the effect that had on the likelihood of accidents was 

investigated. The pattern seen in the first two experience acquisition zones continued here. The 

initial model with total flight hours was not significant but became significant with improved fit 

and predictive statistics once air transport license added. The model with air transport license * 

total flight hour interaction was not significant and was similar to the model with only the two 

main effects. 

9.4 Implications of the Results from Experience Acquisition Zone Framework   

The conjecture that pilots with experience spanning both the length and breadth dimensions of a 

hypothetical experience continuum proposed as a framework for the acquisition of experience in 

practice would have significantly reduced likelihood of having accidents during adverse weather 

encounters compared to those with experience only along the length/duration dimension was 

supported by the results of the models within each experience acquisition zone.  

 

Although none of the primary interaction terms investigated was significant, there were slight 

improvements in each model with their addition. It is not clear why the first and second order 

interaction terms were not significant, but the third order interaction term was within the second 

experience acquisition zone. One reason for this may be that the interaction terms may be of a 

different order than was investigated in this study.  

 

The major difference between the reference logistic regression model and the models within each 

experience acquisition zone is the contradictory results on the effect of both commercial pilot 

license and multi engine rating on the likelihood of accidents during adverse weather encounters. 

Both elements of experience were not significant in the reference model but were in the models 

for the second experience zone. A large number of the pilots whose profiles were extracted for this 

study had more than 1500 total flight hours. The results from the reference model may have been 

impacted by the aggregation and the break down into different categories based on the experience 

acquisition zone framework revealed hitherto hidden effects. 
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 CONCLUSIONS, CONTRIBUTION AND 

RECOMMENDATIONS FOR FUTURE WORK 

10.1 Conclusion 

The first part of this research sought to identify pilot experience variables that individually, or in 

combinations are predictive of the likelihood of accidents during adverse weather encounters. The 

conjecture investigated was that if experience truly determines outcome of adverse weather 

encounters, there  should be significant differences between the experience profile of pilots who 

had accidents during adverse weather encounters and those who did not. The results obtained show 

that variables related to the breadth or variety of General Aviation pilots’ experience are more 

predictive of the likelihood of accidents during adverse weather encounters than those related to 

the duration or length of experience. The results also affirmed findings that task related experience 

expedites the transition from novice to expert pilot. The foregoing suggests increased emphasis on  

aspects of training that increase the breadth and variety of pilots’ experience could help reduce the 

likelihood of accidents during adverse weather encounters. One way to facilitate this could be by 

modifying the regulatory requirements for pilot certifications and ratings to require an increased 

level of task related proficiency.  

 

 In the second part of the study, an experience acquisition framework was proposed and used to 

investigate the effect of multi-dimensional experience on the likelihood of accidents, based on the 

conjecture that pilots with experience spanning both hypothetical dimensions of the framework 

have significantly reduced likelihood of accidents during adverse weather encounters compared to 

those with experience only along one dimension. The conjecture was supported, and significant 

relationship between elements that address the breadth of experience and total flight hours were 

identified. However, the conjecture that the dimensional interaction experience terms were not 

supported.  

10.2 Contribution 

This dissertation contributes to the current body of knowledge on experience and its impact on 

pilot performance and aviation safety in three ways. The first contribution is methodological; it 
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presents a new methodological approach for research on experience and pilot performance that 

obviates some of the challenges commonly associated with currently used approaches. The second 

contribution is conceptual; the experience acquisition framework introduced in this study is a novel 

way to view the accumulation of experience in General Aviation and allows for nuanced  and 

insightful study of weather related expertise. The third contribution is utilitarian; the findings from 

this study, which are ecologically valid,  may be applied in conjunction with other considerations 

to formulate policies that increase opportunities for, and support the transition of pilots from novice 

to expert in aviation weather related  operations and decision making. This would then have the 

effect of  reducing weather related accidents and improving overall aviation safety. 

10.3 Recommendations Future Work 

This  research work presents a new conceptual framework and methodological approach for 

evaluating experience and pilot performance during adverse weather encounters in General 

Aviation operations. The approach has the advantage of allowing for the clear identification and 

specification of pertinent variables which impact the outcome. While this research focused on ten 

experience variables within six major categories, these are by no means exhaustive list of variables. 

Furthermore, only outcomes occurring during the cruise phase of flights was considered in this 

study. However, a significant proportion of  weather related General Aviation accidents and 

incidents occur during the take-off and landing phases of flights. Therefore, future work could 

expand the variables evaluated to include variables not included in this study such as cross-country 

flight experience and instructor ratings. Similarly, future work should also include phases of flight 

such as take-off and landing, which were not considered in this study.  

 

Finally, in terms of immediate follow on outcome from this study, plans are underway to leverage 

the predictive models developed in this study to develop a web based and mobile application, the 

“Experience Adequacy Assessment Tool” to provide a means for pilots to evaluate whether they 

have adequate experience to embark on a planned flight where weather may be a consideration. 

The tool would provide the likelihood of an encounter with adverse weather transitioning to an 

accident, based on experience information provided by the pilot.  
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APPENDIX B: STUDY DATA 

Reference 
Number 

Total 
Flight 
Hours 

Hours 
in Last 

90 Days 

Hours in 
Make 
and 

Model 

Instrumen
t Rating 

Certificat
e Type 

Airplan
e 

Rating 

Outcom
e 

CHI08CA094 50 10 42 0 1 1 1 

CEN11FA240 55 17 55 0 1 1 1 

NYC08CA110 60 6 60 0 1 1 1 

ACN1210434 144 11 58 0 1 1 0 

CEN14FA071 98 29 98 0 1 1 1 

CHI08CA086 190 5 1 0 1 1 1 

WPR14CA019 257 94 257 0 1 1 1 

ACN1284009 57 2 57 0 1 1 0 

CEN13FA214 64 1 61 0 1 1 1 

SEA03FA013 70 3 70 0 1 1 1 

ERA11FA147 73 3 73 0 1 1 1 

ERA12FA193 74 8 74 0 1 1 1 

DFW07FA049 85 3 85 0 1 1 1 

ACN752740 90 40 20 0 1 1 0 

ACN1310045 91 1 28 0 1 1 0 

WPR13FA183 93 28 26 0 1 1 1 

NYC06FA215 96 40 96 0 1 1 1 

NYC07FA173 99 13 10 0 1 1 1 

WPR10CA344 100 35 80 0 1 1 1 

ERA10FA415 101 101 8 0 1 1 1 

CHI07FA032 103 20 30 0 1 1 1 

DEN08LA079 110 60 110 0 1 1 1 

ANC07CA010 129 10 129 0 1 1 1 

CEN12LA414 136 28 56 0 1 1 1 

NYC03LA121 137 4 113 0 1 1 1 

ERA09LA079 146 11 103 0 1 1 1 

ERA14LA122 150 30 150 0 1 1 1 

ACN734803 152 4 4 0 1 1 0 

DFW08CA174 162 9 28 0 1 1 1 

ACN748467 163 70 163 0 1 1 0 

ERA14FA002 163 4 30 0 1 1 1 

ERA09FA185 168 6 126 0 1 1 1 

WPR18FA001 170 23 16 0 1 1 1 

CHI06CA046 192 4 106 0 1 1 1 



 

 

142 

NYC06FA133 193 19 34 0 1 1 1 

NYC08FA138 193 9 113 1 1 1 1 

CHI06LA061 201 52 107 1 1 1 1 

LAX05FA193 206 0 191 0 1 1 1 

CEN11FA437 207 14 51 0 1 1 1 

ERA13FA083 208 19 123 0 1 1 1 

CHI04FA284 220 10 25 0 1 1 1 

ERA15FA220 220 20 143 0 1 1 1 

CHI07FA182 224 2 65 0 1 1 1 

ERA14FA377 230 46 230 0 1 1 1 

ERA13CA362 233 50 71 1 1 1 1 

ACN1376849 235 175 55 1 1 1 0 

LAX07LA143 237 15 15 1 1 1 1 

ANC17FA018 250 0 250 0 1 1 1 

CEN12FA196 250 7 24 0 1 1 1 

CEN14LA074 250 10 250 0 1 1 1 

ERA18FA022 256 6 447 0 1 1 1 

SEA06LA029 258 7 258 0 1 1 1 

ACN672967 260 20 125 1 1 1 0 

NYC08CA283 264 30 123 0 1 1 1 

CHI05CA052 267 34 76 1 1 1 1 

CHI06FA043 272 37 42 0 1 1 1 

ACN694657 273 39 180 1 1 1 0 

WPR17LA124 280 102 50 0 1 1 1 

CEN16LA084 300 100 200 0 1 1 1 

CEN09CA136 306 32 297 1 1 1 1 

ERA15CA116 311 42 67 1 1 1 1 

ERA10FA503 330 6 240 0 1 1 1 

WPR12FA031 333 14 246 0 1 1 1 

DEN04FA043 339 10 70 1 1 1 1 

CEN10LA103 341 39 107 1 1 1 1 

WPR10FA459 352 54 277 0 1 1 1 

ACN1307052 356 20 134 1 1 1 0 

ACN737370 375 10 20 1 1 1 0 

ACN690143 385 30 225 1 1 1 0 

ERA11FA118 388 20 388 1 1 1 1 

ERA10CA168 400 7 60 0 1 1 1 

MIA05FA045 400 27 308 0 1 1 1 

ACN686249 410 8 30 1 1 1 0 

CEN09FA369 412 53 45 0 1 1 1 

GAA15CA051 415 16 210 1 1 1 1 



 

 

143 

NYC05FA100 415 13 305 1 1 1 1 

ERA12FA433 452 17 98 1 1 1 1 

CHI08FA054 456 2 255 1 1 1 1 

CHI03LA072 460 4 297 1 1 1 1 

LAX05FA088 473 100 69 1 1 1 1 

CEN13FA456 475 38 154 1 1 1 1 

IAD03FA005 478 38 2 1 1 1 1 

CEN18FA144 496 10 245 1 1 1 1 

ACN723957 500 15 75 1 1 1 0 

ANC04FA021 506 12 450 0 1 1 1 

CEN11FA401 509 57 236 1 1 1 1 

CHI07LA260 520 7 495 0 1 1 1 

CHI07LA051 544 26 298 1 1 1 1 

NYC07FA083 546 65 55 1 1 1 1 

NYC04FA179 560 53 536 1 1 1 1 

CHI04FA044 583 16 103 0 1 1 1 

ERA13LA111 598 31 537 1 1 1 1 

ERA17FA108 606 3 300 0 1 1 1 

WPR09FA176 609 14 496 0 1 1 1 

ERA12CA177 610 24 239 1 1 1 1 

IAD05LA051 611 4 315 1 1 1 1 

NYC08FA180 616 20 400 0 1 1 1 

LAX08FA002 690 3 425 1 1 1 1 

ERA10FA359 691 4 100 1 1 1 1 

ACN685787 700 10 80 1 1 1 0 

WPR11FA082 710 47 456 0 1 1 1 

ERA10LA506 711 52 600 1 1 1 1 

ERA12FA385 755 38 38 1 1 1 1 

CEN13FA067 765 10 38 0 1 1 1 

ERA17LA113 790 30 710 1 1 1 1 

DEN07CA070 837 22 697 1 1 1 1 

GAA16CA066 856 11 662 1 1 1 1 

CEN10FA044 885 29 500 1 1 1 1 

LAX03FA051 890 25 740 1 1 1 1 

ERA12CA211 899 7 827 0 1 1 1 

CEN15FA388 920 4 40 1 1 1 1 

WPR11FA032 940 100 138 1 1 1 1 

CEN15FA008 1003 77 100 1 1 1 1 

GAA17CA215 1069 12 32 1 1 1 1 

WPR10FA142 1083 20 443 1 1 1 1 

ACN690509 1085 9 700 1 1 1 0 
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WPR16FA042 1262 4 962 1 1 1 1 

ACN726815 1377 21 801 1 1 1 0 

ERA16CA246 1446 15 1134 1 1 1 1 

LAX04FA162 1550 15 842 1 1 1 1 

ACN688719 1614 3 1483 1 1 1 0 

IAD03FA045 1773 24 365 1 1 1 1 

WPR09LA079 1900 66 40 1 1 1 1 

ERA13LA012 1948 45 1450 1 1 1 1 

CEN10FA057 2269 18 780 0 1 1 1 

ERA16FA143 2330 2 345 1 1 1 1 

ERA11CA262 2525 10 392 1 1 1 1 

NYC03FA205 2660 30 210 1 1 1 1 

ACN730104 4200 20 4100 1 1 1 0 

ERA14LA433 4399 92 1423 1 1 1 1 

ANC07CA019 5060 24 24 0 1 1 1 

GAA17CA388 5365 35 3 1 1 1 1 

NYC08CA272 6164 19 6000 1 1 1 1 

SEA07FA012 408 11 280 1 2 1 1 

ACN1477818 410 16 17 1 2 1 0 

DFW07FA149 457 59 36 1 2 1 1 

ACN787804 470 15 470 1 2 1 0 

ACN1468179 800 20 40 1 2 1 0 

NYC05FA075 815 101 613 1 2 1 1 

NYC05FA075-
1 815 101 613 1 2 1 1 

DFW07CA014 1164 54 100 0 2 1 1 

ERA13FA336 1335 221 35 0 2 1 1 

CEN16FA295 1455 0 1019 1 2 1 1 

NYC08TA130 2030 60 30 0 2 1 1 

CEN12FA639 5300 60 1100 1 2 1 1 

ANC16FA023 7190 5 5700 0 2 1 1 

DFW07FA051 7563 151 3546 1 2 1 1 

ATL07FA005 250 41 111 1 1 2 1 

LAX08FA092 274 7 29 0 1 2 1 

ACN964253 300 60 270 1 1 2 0 

ACN648279 320 25 80 1 1 2 0 

ACN10134177 357 10 28 1 1 2 0 

CHI06FA117 379 30 144 1 1 2 1 

CEN11FA302 438 30 18 1 1 2 1 

ACN812721 525 39 175 1 1 2 0 

NYC08FA231 539 1 222 0 1 2 1 



 

 

145 

ACN1214769 550 10 150 1 1 2 0 

DEN08FA059 565 52 52 1 1 2 1 

ATL06CA031 600 30 600 0 1 2 1 

CEN15FA087 627 53 348 0 1 2 1 

ACN1143993 630 30 143 1 1 2 0 

CHI07FA102 633 15 92 1 1 2 1 

ACN982115 710 50 55 1 1 2 0 

DEN06FA065 737 10 107 1 1 2 1 

CEN15LA021 750 0 156 1 1 2 1 

CEN13FA039 783 0 29 0 1 2 1 

CEN13FA039 783 0 29 0 1 2 1 

WPR09CA003 792 59 25 1 1 2 1 

ACN885926 800 15 250 1 1 2 0 

ACN1045952  1018 31 260 1 1 2 0 

ERA09FA074 1057 28 144 1 1 2 1 

CHI05CA057 1096 40 413 1 1 2 1 

ACN1137952 1100 12 1000 1 1 2 0 

LAX07FA200 1177 30 284 1 1 2 1 

CEN14IA139 1262 31 984 1 1 2 1 

IAD05LA034 1403 22 70 1 1 2 1 

ACN1329503 1530 10 453 1 1 2 0 

ACN1012995 1533 16 326 1 1 2 0 

ACN1346187 1562 42 961 1 1 2 0 

ACN712674 1563 60 117 1 1 2 0 

ACN938703 1605 17 199 1 1 2 0 

ACN788183 1720 37 1200 1 1 2 0 

ACN1255948 1756 32 856 1 1 2 0 

ACN719576 1950 25 188 1 1 2 0 

ACN943902 2015 27 615 1 1 2 0 

NYC07CA137 2221 19 1890 1 1 2 1 

ACN1461629 2300 80 200 1 1 2 0 

ACN715336 2500 40 1000 1 1 2 0 

ACN955888 2800 26 300 1 1 2 0 

ACN785363 3000 20 1800 1 1 2 0 

ACN843072 3280 40 1620 1 1 2 0 

ACN721654 3561 23 790 1 1 2 0 

ACN711699 3700 30 1000 1 1 2 0 

ACN1409504 4300 60 2200 1 1 2 0 

WPR12FA040 4582 12 728 1 1 2 1 

ACN839556 6000 20 3000 1 1 2 0 

ACN967962 10000 50 8500 1 1 2 0 
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ACN788048 105 100 105 1 2 2 0 

LAX08LA179 231 109 17 1 2 2 1 

ACN822764 235 30 160 1 2 2 0 

ACN886534 266 19 244 1 2 2 0 

ACN814611 300 11 115 1 2 2 0 

ACN1315980 305 18 157 1 2 2 0 

ACN698598 315 21 21 1 2 2 0 

CEN10FA101 322 1 189 1 2 2 1 

ACN1119387 330 15 316 1 2 2 0 

DEN06LA036-
2 378 50 180 1 2 2 1 

ACN792762 390 100 40 1 2 2 0 

ACN819791 420 25 15 1 2 2 0 

ACN858396 425 30 200 1 2 2 0 

ACN955097 450 40 300 1 2 2 0 

ACN1208020 460 100 10 1 2 2 0 

ACN652801 474 2 3 1 2 2 0 

ACN674682 480 60 2 1 2 2 0 

ERA17FA017 494 134 188 1 2 2 1 

ACN1078312 505 50 30 1 2 2 0 

ACN882812 505 110 75 1 2 2 0 

NYC07FA226 530 59 84 1 2 2 1 

ACN789173 560 120 400 1 2 2 0 

ACN1204986 570 10 200 1 2 2 0 

ACN737363 575 40 500 1 2 2 0 

ACN923741 575 60 100 1 2 2 0 

ACN1234848 600 60 271 1 2 2 0 

ACN772046 600 20 100 1 2 2 0 

ACN957162 600 30 130 1 2 2 0 

ACN983052 600 250 20 1 2 2 0 

ERA11FA146 603 183 502 1 2 2 1 

NYC06FA156 626 43 585 1 2 2 1 

ACN655613 630 120 15 1 2 2 0 

ACN837782 662 72 82 1 2 2 0 

MIA05LA083 680 45 500 1 2 2 1 

ACN1119625 700 80 300 1 2 2 0 

ACN1245094 700 150 30 1 2 2 0 

ACN982906 724 183 709 1 2 2 0 

ACN1312872 734 13 140 1 2 2 0 

ACN764448 740 160 120 1 2 2 0 

ACN1060935 750 150 450 1 2 2 0 
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ACN703636 760 12 8 1 2 2 0 

ACN931528 775 20 11 1 2 2 0 

ACN1358513 800 100 80 1 2 2 0 

ACN813619 800 20 500 1 2 2 0 

CHI06LA072 803 37 91 1 2 2 1 

CEN13LA088 841 135 135 1 2 2 1 

DEN06LA036-
1 850 65 650 1 2 2 1 

ACN982902 860 680 30 1 2 2 0 

ERA12LA180 922 87 55 1 2 2 1 

ACN933857 925 100 60 1 2 2 0 

ACN705336 946 118 337 1 2 2 0 

ACN802644 970 170 170 1 2 2 0 

ACN1223672 984 29 645 1 2 2 0 

CHI06FA232 998 247 33 1 2 2 1 

ACN1117811 1000 50 150 1 2 2 0 

ACN734567 1000 90 100 1 2 2 0 

ACN1155193 1020 50 60 1 2 2 0 

ACN930173 1020 23 2750 1 2 2 0 

ACN999603 1025 30 30 1 2 2 0 

ACN1073146 1060 50 217 1 2 2 0 

ACN1054605  1097 180 460 1 2 2 0 

ACN1221676 1100 80 35 1 2 2 0 

ACN765342 1100 20 20 1 2 2 0 

ANC16LA032 1150 141 78 1 2 2 1 

ACN705189 1200 30 750 1 2 2 0 

ACN1449039 1230 50 200 1 2 2 0 

ACN1343580 1250 30 300 1 2 2 0 

ACN792965 1255 6 32 1 2 2 0 

WPR16FA059 1291 10 133 1 2 2 1 

ACN1291557 1300 126 119 1 2 2 0 

ACN1333059 1335 120 350 1 2 2 0 

ACN820593 1348 40 197 1 2 2 0 

ACN870569 1350 85 225 1 2 2 0 

ACN1502815 1400 45 1050 1 2 2 0 

ACN692950 1460 470 750 1 2 2 0 

ACN1398464 1500 55 550 1 2 2 0 

ACN674376 1580 25 300 1 2 2 0 

NYC07LA178 1580 81 275 1 2 2 1 

ACN1254263 1600 12 300 1 2 2 0 

ACN1299979 1610 31 1500 1 2 2 0 
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CHI02FA284 1645 137 58 1 2 2 1 

LAX06FA071-2 1650 146 56 1 2 2 1 

ACN1022976 1660 38 1020 1 2 2 0 

ACN934925 1700 50 50 1 2 2 0 

NYC06FA155 1718 42 1606 1 2 2 1 

ERA13FA253 1746 24 1000 1 2 2 1 

DFW06FA021 1796 66 43 1 2 2 1 

ACN770817 1800 100 1400 1 2 2 0 

ACN810006 1800 100 120 1 2 2 0 

ACN1115965 1850 50 350 1 2 2 0 

ACN946672 1850 6 480 1 2 2 0 

CEN15FA119 1873 206 65 1 2 2 1 

ACN869774 1884 240 493 1 2 2 0 

ACN696548 1900 40 130 1 2 2 0 

DEN08CA133-
1 1951 49 121 1 2 2 1 

ACN905407 2000 200 200 1 2 2 0 

LAX08MA007 2054 191 296 1 2 2 1 

ACN1246917 2090 23 329 1 2 2 0 

ACN1336289 2120 15 1600 1 2 2 0 

ACN1013959 2174 20 669 1 2 2 0 

ACN1412187 2248 88 1012 1 2 2 0 

ACN1240864 2300 10 110 1 2 2 0 

ACN1252612 2300 45 1100 1 2 2 0 

NYC05CA127 2300 50 750 1 2 2 1 

ACN946647 2350 25 2100 1 2 2 0 

CEN13FA131 2365 57 127 1 2 2 1 

ACN1013943 2500 20 250 1 2 2 0 

ACN1141540 2500 30 1400 1 2 2 0 

ACN714827 2500 15 500 1 2 2 0 

ERA11LA398 2500 25 10 1 2 2 1 

GAA16CA107-
2 2500 5 800 1 2 2 1 

ACN1317193 2523 89 953 1 2 2 0 

ACN1227053 2600 6 1200 1 2 2 0 

ACN907750 2600 150 260 1 2 2 0 

ACN1089305 2650 14 150 1 2 2 0 

ACN655792 2650 70 135 1 2 2 0 

ACN732454 2700 25 650 1 2 2 0 

ACN798520 2700 45 330 1 2 2 0 

ACN1103931 2800 200 150 1 2 2 0 
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ACN723667 2800 60 200 1 2 2 0 

ACN990341 2800 50 75 1 2 2 0 

ACN922300 2950 20 300 1 2 2 0 

GAA16CA107-
1 2985 98 290 1 2 2 1 

ERA15FA215 2998 2 168 1 2 2 1 

ACN1034308  3000 30 500 1 2 2 0 

ACN937851 3000 40 300 1 2 2 0 

DFW06LA073 3000 23 1100 1 2 2 1 

ACN1426758 3200 20 600 1 2 2 0 

ERA09LA204 3257 34 10 1 2 2 1 

ACN1160077 3275 52 873 1 2 2 0 

ACN943163 3385 25 800 1 2 2 0 

ACN1135239 3500 50 1200 1 2 2 0 

ACN689185 3500 40 1000 1 2 2 0 

ACN826976 3500 50 1700 1 2 2 0 

GAA16LA031 3643 127 1984 0 2 2 1 

ACN835626 3800 65 310 1 2 2 0 

ACN930426 3862 9 2750 1 2 2 0 

ACN1337805 3900 100 300 1 2 2 0 

ACN983750 4015 27 250 1 2 2 0 

ACN711793 4050 45 2000 1 2 2 0 

ACN1182340 4084 55 550 1 2 2 0 

ACN1307814 4200 100 200 1 2 2 0 

NYC02FA142 4312 42 4022 1 2 2 1 

ACN927264 4600 15 500 1 2 2 0 

ERA11LA344 4837 78 87 1 2 2 1 

ACN888864 4915 35 677 1 2 2 0 

ACN1413837 5000 20 500 1 2 2 0 

ACN959434 5000 45 4600 1 2 2 0 

ACN981761 5000 50 200 1 2 2 0 

CEN14FA032 5055 218 903 1 2 2 1 

CEN15FA081 5150 25 4700 1 2 2 1 

ACN772873 5200 120 1500 1 2 2 0 

ACN828469 5200 42 2650 1 2 2 0 

ACN843383 5500 234 3000 1 2 2 0 

ERA14LA006 5541 40 600 1 2 2 1 

ACN1198716 5600 30 5000 1 2 2 0 

ACN878185 5600 20 3600 1 2 2 0 

ANC05LA150-
1 5696 141 98 1 2 2 1 
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ACN1356261 6000 50 50 1 2 2 0 

ACN729297 6000 150 200 1 2 2 0 

ANC12FA073 6000 17 125 1 2 2 1 

ACN1066431 7000 50 14 1 2 2 0 

ACN1134221 7200 50 1000 1 2 2 0 

ACN820587 7300 30 750 1 2 2 0 

ACN1310986 8540 200 620 1 2 2 0 

ANC02FA025 9403 98 8772 1 2 2 1 

ANC05LA027 10000 70 700 1 2 2 1 

ACN935230 13360 80 360 1 2 2 0 

ACN720093 15000 50 90 1 2 2 0 

ERA13FA275 16561 44 56 1 2 2 1 

ACN1247324 19000 70 500 1 2 2 0 

CEN09LA054 22228 96 2525 1 2 2 1 

ACN818665 29742 60 9200 1 2 2 0 

ACN717486 800 50 1000 1 3 2 0 

ACN1291516 1000 80 2900 1 3 2 0 

ACN1246878 1300 100 600 1 3 2 0 

ACN765765 1300 60 1200 1 3 2 0 

ACN1317843 1600 12 200 1 3 2 0 

ACN666500 1600 240 220 1 3 2 0 

ACN663945 1700 100 4000 1 3 2 0 

ACN888587 1700 50 125 1 3 2 0 

ACN1249185 1860 150 25 1 3 2 0 

ACN754849 2000 45 150 1 3 2 0 

ACN1310019 2050 96 267 1 3 2 0 

CEN16LA098 2274 65 82 1 3 2 1 

ACN717650 2300 25 800 1 3 2 0 

ACN792761 2300 180 700 1 3 2 0 

ACN1100757 2500 40 500 1 3 2 0 

ACN1151239 2500 85 529 1 3 2 0 

ACN900960 2650 150 1200 1 3 2 0 

ACN1090362 2800 30 100 1 3 2 0 

ACN1238010 2800 130 300 1 3 2 0 

ACN1313421-
1 2800 100 600 1 3 2 0 

ACN804764 2800 30 50 1 3 2 0 

ACN1307319 2850 60 600 1 3 2 0 

NYC06CA177 2875 17 2300 1 3 2 1 

NYC06MA192 2877 84 84 1 3 2 1 

ACN1236456 2900 60 33 1 3 2 0 
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ACN1416209 2900 45 70 1 3 2 0 

ACN1281053 3000 50 1500 1 3 2 0 

ACN718672 3000 125 750 1 3 2 0 

ERA15FA326 3000 15 100 1 3 2 1 

ACN1020135 3200 80 1000 1 3 2 0 

ACN1471540 3300 100 410 1 3 2 0 

ACN945977 3300 120 12 1 3 2 0 

DEN06LA041 3347 19 2257 1 3 2 1 

ACN1080994 3391 108 151 1 3 2 0 

ACN854927 3400 65 400 1 3 2 0 

ACN1257400 3500 125 1500 1 3 2 0 

ACN1360479 3500 25 2000 1 3 2 0 

ACN648006 3500 180 150 1 3 2 0 

ANC06FA018 3584 90 129 1 3 2 1 

ACN839154 3700 80 130 1 3 2 0 

ANC05LA150-
2 3712 46 948 1 3 2 1 

DEN05FA051 3778 118 414 1 3 2 1 

NYC08CA188 3790 150 1040 1 3 2 1 

ACN1307577 3800 100 15 1 3 2 0 

ACN721792 3800 100 350 1 3 2 0 

ACN997865 3850 75 675 1 3 2 0 

ACN1099064 4000 60 1700 1 3 2 0 

ACN1105303 4000 20 100 1 3 2 0 

ACN1127323 4000 60 50 1 3 2 0 

ACN1221688 4000 300 3000 1 3 2 0 

ACN1257385 4000 70 1500 1 3 2 0 

ACN1309247 4000 80 100 1 3 2 0 

ACN729099 4000 150 500 1 3 2 0 

ACN960331 4000 25 2500 1 3 2 0 

ACN1090356 4005 47 796 1 3 2 0 

ERA12LA435 4080 119 389 1 3 2 1 

ACN1149038 4100 77 950 1 3 2 0 

ACN1128508 4300 20 230 1 3 2 0 

ACN1263894 4300 95 900 1 3 2 0 

ACN1199897 4500 45 3800 1 3 2 0 

ACN712637 4500 60 150 1 3 2 0 

ACN762711 4500 85 550 1 3 2 0 

ACN841092 4500 45 200 1 3 2 0 

ERA11IA007 4500 62 724 1 3 2 1 

ACN807541 4600 35 1700 1 3 2 0 
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ACN865482 4600 200 150 1 3 2 0 

ACN717053 4700 60 30 1 3 2 0 

ACN1026369  4850 45 3550 1 3 2 0 

LAX06FA071-1 4880 143 2200 1 3 2 1 

ACN1344524 4900 200 3800 1 3 2 0 

ACN1006821 4950 27 650 1 3 2 0 

ACN1014203 5000 100 2300 1 3 2 0 

ACN1256286 5000 50 90 1 3 2 0 

ACN701232 5000 100 100 1 3 2 0 

ACN763168 5000 100 300 1 3 2 0 

ACN1026404  5100 20 400 1 3 2 0 

ACN1353987 5100 25 150 1 3 2 0 

ACN717793 5200 60 200 1 3 2 0 

ACN1309547 5300 45 300 1 3 2 0 

DEN05CA050-
1 5320 75 1253 1 3 2 1 

ACN1314999 5400 103 1700 1 3 2 0 

ACN710897 5400 200 500 1 3 2 0 

ACN1097989 5500 180 150 1 3 2 0 

ACN1144763 5500 35 3300 1 3 2 0 

ACN1237191 5500 30 500 1 3 2 0 

ACN693915 5500 30 1200 1 3 2 0 

ACN647220 5600 15 1100 1 3 2 0 

ACN703867 5696 150 400 1 3 2 0 

ACN952260 5700 53 1670 1 3 2 0 

ACN868207 5706 98 1105 1 3 2 0 

ACN673356 5800 65 300 1 3 2 0 

ACN1070935 6000 90 700 1 3 2 0 

ACN1085370 6000 29 1385 1 3 2 0 

ACN1263863 6000 90 350 1 3 2 0 

ACN1274088 6000 90 150 1 3 2 0 

ACN703314 6000 70 70 1 3 2 0 

ACN713797 6000 100 1500 1 3 2 0 

ACN841072 6000 70 500 1 3 2 0 

ACN846397 6000 40 50 1 3 2 0 

ACN978803 6000 150 1700 1 3 2 0 

ACN1269168 6005 25 195 1 3 2 0 

CEN10LA105 6018 61 1831 1 3 2 1 

ACN745486 6100 100 1000 1 3 2 0 

ACN1236748 6200 50 900 1 3 2 0 

ACN1251715 6200 220 165 1 3 2 0 



 

 

153 

ACN1321901 6200 100 45 1 3 2 0 

ACN870421 6200 40 250 1 3 2 0 

ERA13FA115 6369 166 31 1 3 2 1 

ACN670868 6500 30 1500 1 3 2 0 

ACN685667 6500 50 1500 1 3 2 0 

ACN767230 6500 500 1500 1 3 2 0 

ACN808406 6900 60 940 1 3 2 0 

ACN1107909 7000 40 20 1 3 2 0 

ACN1129735 7000 100 9 1 3 2 0 

ACN652017 7000 120 1300 1 3 2 0 

ACN653857 7000 60 500 1 3 2 0 

ACN838678 7000 60 500 1 3 2 0 

NYC05CA068 7000 68 1400 1 3 2 1 

ERA11IA006 7100 76 759 1 3 2 1 

ACN1153151 7105 105 1600 1 3 2 0 

ACN871637 7200 40 70 1 3 2 0 

ACN714794 7557 90 5186 1 3 2 0 

ACN739844 7558 112 975 1 3 2 0 

ACN769796 7600 135 300 1 3 2 0 

ACN1198953 7700 100 1900 1 3 2 0 

ACN943914 7800 250 650 1 3 2 0 

ACN1147193 8000 60 1800 1 3 2 0 

ACN1472483 8000 90 2500 1 3 2 0 

DEN05CA050-
2 8000 75 3000 1 3 2 1 

MIA05LA049-
1 8020 91 553 1 3 2 1 

NYC08LA164 8200 150 120 1 3 2 1 

LAX04FA113 8230 110 1037 1 3 2 1 

ACN1227365 8333 25 3 1 3 2 0 

ACN1160836 8350 209 2305 1 3 2 0 

ACN1451231 8500 30 2500 1 3 2 0 

ACN855250 8500 70 150 1 3 2 0 

ACN1039336  8600 50 25 1 3 2 0 

ACN733579 8600 111 1643 1 3 2 0 

ACN1307550 8670 80 1854 1 3 2 0 

ACN1310027 8731 137 522 1 3 2 0 

ACN749437 8750 100 300 1 3 2 0 

ACN1168862 9000 150 1500 1 3 2 0 

ACN1224305 9000 60 1150 1 3 2 0 

ACN1427424 9000 100 4000 1 3 2 0 
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ACN720729 9200 109 500 1 3 2 0 

ACN1221742 9223 86 846 1 3 2 0 

ACN1447796 9291 157 3780 1 3 2 0 

ACN1087555 9500 65 4000 1 3 2 0 

ACN1148188 9500 50 250 1 3 2 0 

ACN1341243 9600 55 1000 1 3 2 0 

ACN1383903 9600 72 1700 1 3 2 0 

ACN810002 9740 73 3030 1 3 2 0 

ACN1313421-
2 9800 150 200 1 3 2 0 

ACN671018 9900 82 500 1 3 2 0 

ACN1173533 9975 150 600 1 3 2 0 

ACN1164657 10000 75 50 1 3 2 0 

ACN1244460 10000 120 4 1 3 2 0 

ACN873637 10000 120 2400 1 3 2 0 

ACN1041581  10100 40 50 1 3 2 0 

ACN1312856 10200 50 3000 1 3 2 0 

CEN17CA114 10200 60 200 1 3 2 1 

ACN866335 10300 140 800 1 3 2 0 

ACN830799 10350 150 2250 1 3 2 0 

ACN871357 10520 80 2888 1 3 2 0 

ACN1405203 10540 80 4070 1 3 2 0 

ACN1063538 10600 40 2000 1 3 2 0 

ACN718678 10900 110 775 1 3 2 0 

ACN1270462 11000 40 3000 1 3 2 0 

ACN1486559 11000 100 300 1 3 2 0 

ACN958441 11000 75 3500 1 3 2 0 

ACN1092044 11400 60 240 1 3 2 0 

ACN1069431 12000 120 1500 1 3 2 0 

ACN1273211 12000 10 30 1 3 2 0 

ACN659309 12000 160 130 1 3 2 0 

ACN912400 12500 100 1500 1 3 2 0 

ACN1310077 12700 31 2700 1 3 2 0 

ACN1317159-
1 12778 93 2530 1 3 2 0 

ACN881382 13000 160 1300 1 3 2 0 

ACN881383 13000 140 4000 1 3 2 0 

ERA09CA127 13000 200 50 1 3 2 1 

ACN1080989 13400 45 5800 1 3 2 0 

ACN717485 13424 130 30 1 3 2 0 

ACN1213783 13500 60 1800 1 3 2 0 
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ACN657225 13500 60 200 1 3 2 0 

ERA11LA397 13594 62 1100 1 3 2 1 

ACN1317159-
2 13976 150 6200 1 3 2 0 

ACN1317187 13976 150 6200 1 3 2 0 

ACN1168316 14000 100 6000 1 3 2 0 

ACN677310 14000 65 1200 1 3 2 0 

ACN704834 14000 25 3100 1 3 2 0 

ACN843226 14000 150 2500 1 3 2 0 

ACN1310392 14450 50 7000 1 3 2 0 

ACN1071653 14500 50 60 1 3 2 0 

ERA11LA330 14500 125 2200 1 3 2 1 

ACN1189383 15000 50 165 1 3 2 0 

ACN1299971 15000 30 5000 1 3 2 0 

ACN1319558 15000 180 30 1 3 2 0 

ACN703037 15200 45 3500 1 3 2 0 

GAA16CA383 15750 6 150 1 3 2 1 

ACN1390078 16000 100 80 1 3 2 0 

ACN973467 16000 90 3000 1 3 2 0 

ACN995478 16200 300 2000 1 3 2 0 

NYC08FA324 16746 198 2330 1 3 2 1 

ACN1282354 17000 30 1500 1 3 2 0 

ACN883248 17000 35 100 1 3 2 0 

ACN644789 17500 120 1200 1 3 2 0 

ACN652018 18000 160 4150 1 3 2 0 

ACN969225 18000 75 50 1 3 2 0 

DFW06FA186 18300 250 18300 1 3 2 1 

ACN1070333 18500 150 4000 1 3 2 0 

ACN740700 19000 100 1000 1 3 2 0 

ACN1381841 19300 100 1000 1 3 2 0 

ACN1276014 19800 30 180 1 3 2 0 

ACN881279 20000 60 500 1 3 2 0 

ACN935230-1 20000 100 500 1 3 2 0 

ACN1288579 21350 25 1000 1 3 2 0 

ACN976333 22000 150 600 1 3 2 0 

ACN846425 23000 40 400 1 3 2 0 

ACN705337 25000 150 1000 1 3 2 0 

ACN1425954 26500 128 3243 1 3 2 0 

ACN1276801 27000 85 350 1 3 2 0 

ACN864435 28000 100 500 1 3 2 0 

ACN1076692 30000 20 25 1 3 2 0 
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ACN682713 30000 85 55 1 3 2 0 

ACN1243605 
17800

0 90 30 1 3 2 0 
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