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ABSTRACT

Ph.D., Purdue University, August 2020. Some Connections Between Complex Dy-
namics and Statistical Mechanics. Major Professor: Roland K.W. Roeder.

Associated to any finite simple graph Γ is the chromatic polynomial PΓ(q) whose

complex zeros are called the chromatic zeros of Γ. A hierarchical lattice is a sequence

of finite simple graphs {Γn}∞n=0 built recursively using a substitution rule expressed

in terms of a generating graph. For each n, let µn denote the probability measure

that assigns a Dirac measure to each chromatic zero of Γn. Under a mild hypothesis

on the generating graph, we prove that the sequence µn converges to some measure µ

as n tends to infinity. We call µ the limiting measure of chromatic zeros associated to

{Γn}∞n=0. In the case of the Diamond Hierarchical Lattice we prove that the support

of µ has Hausdorff dimension two.

The main techniques used come from holomorphic dynamics and more specifically

the theories of activity/bifurcation currents and arithmetic dynamics. We prove a

new equidistribution theorem that can be used to relate the chromatic zeros of a

hierarchical lattice to the activity current of a particular marked point. We expect

that this equidistribution theorem will have several other applications, and describe

one such example in statistical mechanics about the Lee-Yang-Fisher zeros for the

Cayley Tree.



1

1. CHROMATIC ZEROS ON HIERARCHICAL LATTICES

AND

EQUIDISTRIBUTION ON PARAMETER SPACE

1.1 Introduction

Motivated by a concrete problem from combinatorics and mathematical physics,

we will prove a general theorem about the equidistribution of certain parameter values

for algebraic families of rational maps. We will begin with the motivating problem

about chromatic zeros (Section 1.1.1) and then present the general equidistribution

theorem (Section 1.1.2).

We expect the equidistribution theorem to have other applications. In Section 2

we will describe one such instance.

1.1.1 Chromatic Zeros on Hierarchical Lattices

Let Γ be a finite simple graph. The chromatic polynomial PΓ(q) counts the number

of ways to color the vertices of Γ with q colors so that no two adjacent vertices have the

same color. It is straightforward to check that the chromatic polynomial is monic,

has integer coefficients, and has degree equal to the number of vertices of Γ. The

chromatic polynomial was introduced in 1912 by G.D. Birkhoff in an attempt to

solve the Four Color Problem [1, 2]. Although the Four Color Theorem was proved

later by different means, chromatic polynomials and their zeros have become a central

part of combinatorics (For example, a search on Mathscinet yields 333 papers having

the words “chromatic polynomial” in the title). For a comprehensive discussion of

chromatic polynomials we refer the reader to the book [3].
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A further motivation for study of the chromatic polynomials comes from statistical

physics because of the connection between the chromatic polynomial and the partition

function of the antiferromagnetic Potts Model; see, for example, [4–6] and [7, p.323-

325].

We will call a sequence of finite simple graphs Γn = (Vn, En), where the number of

vertices |Vn| → ∞, a “lattice”. The standard example is the Zd lattice where, for each

n ≥ 0, one defines Γn to be the graph whose vertices consist of the integer points in

[−n, n]d and whose edges connect vertices at distance one in Rd. For a given lattice,

{Γn}∞n=1, we are interested in whether the sequence of measures

µn :=
1

|Vn|
∑
q∈C

PΓn (q)=0

δq (1.1)

has a limit µ, and in describing its limit if it has one. Here, δq is the Dirac Measure

which, by definition, assigns measure 1 to a set containing q and measure 0 otherwise.

(In (1.1) zeros of PΓn(q) are counted with multiplicity.) If µ exists, we call it the

limiting measure of chromatic zeros for the lattice {Γn}∞n=1.

This problem has received considerable interest from the physics community es-

pecially through the work of Shrock with and collaborators Biggs, Chang, and Tsai

(see [8–12] for a sample) and Sokal with collaborators Jackson, Procacci, Salas and

others (see [13–15] for a sample). Indeed, one of the main motivations of these papers

is understanding the possible ground states (temperature T = 0) for the thermody-

namic limit of the Potts Model, as well as the phase transitions between them. Most

of these papers consider sequences of m×n grid graphs with m ≤ 30 fixed and n→∞.

This allows the authors to use transfer matrices and the Beraha-Kahane-Weiss The-

orem [16] to rigorously deduce (for fixed m) properties of the limiting measure of

chromatic zeros. The zeros typically accumulate to some real-algebraic curves in C

whose complexity increases as m does; see [8, Figures 1 and 2] and [13, Figures 21

and 22] as examples. Indeed, this behavior was first observed in the 1972 work of

Biggs-Damerell-Sands [17] and then, more extensively, in the 1997 work of Shrock-

Tsai [18]. Beyond these cases with m fixed, numerical techniques are used in [14] to
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make conjectures about the limiting behavior of the zeros as m→∞, i.e. for the Z2

lattice.

To the best of our knowledge, it is an open and very difficult question whether

there is a limiting measure of chromatic zeros for the Z2 lattice. If such a measure

does exist, rigorously determining its properties also seems quite challenging. For

this reason, we will consider the limiting measure of chromatic zeros for hierarchical

lattices. They are constructed as follows: start with a finite simple graph Γ ≡ Γ1 as

the generating graph, with two vertices labeled a and b, such that Γ is symmetric over

a and b. For each n > 1, Γn retains the two marked vertices a and b from Γ, and

we inductively obtain Γn+1 by replacing each edge of Γ with Γn, using Γn’s marked

vertices as if they were endpoints of that edge. A key example to keep in mind is the

Diamond Hierarchical Lattice (DHL) shown in Figure 1.1. In fact, one can interpret

the DHL as an anisotropic version of the Z2 lattice; see [19, Appendix E.4] for more

details.

Fig. 1.1. Constructing the Diamond Hierarchical Lattice (DHL).

Several other possible generating graphs are shown in Figure 1.2, including a gen-

eralization of the DHL called the k-fold DHL. The k-fold DHL, Triangle, and Split

Diamond are 2-connected, while the others are not.

Statistical physics on hierarchical lattices dates back to the work of Berker and

Ostlund [20], followed by Griffiths and Kaufman [21], Derrida, De Seze, and Itzykson

[22], Bleher and Žalys [23–25], and Bleher and Lyubich [26].
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Fig. 1.2. Several possible generating graphs.

A graph Γ is called 2-connected if there is no vertex whose removal disconnects

the graph. Our main results about the limiting measure of chromatic zeros are:

Theorem A. Let {Γn}∞n=1 be a hierarchical lattice whose generating graph Γ ≡ Γ1 is

2-connected. Then its limiting measure µ of chromatic zeros exists.

Theorem B. Let µ be the limiting measure of chromatic zeros for the k-fold DHL

and suppose k ≥ 2. Then, supp(µ) has Hausdorff dimension 2.

As shown in Figure 1.3, the support of the limiting measure of chromatic zeros

for the DHL equals the union of boundaries of the black, blue, and white sets. Let

rq(y) be the renormalization mapping for the DHL, given in (1.4). Points in white

correspond to parameter values q for which rnq (0) → 1, points in blue correspond to

parameter values q for which rnq (0)→∞, and points in black correspond to parameter

values for which rnq (0) does neither. The region depicted on the left is approximately

−2 ≤ Re(q) ≤ 4 and −3 ≤ Im(q) ≤ 3. The region on the right is a zoomed in view of

the region shown in the red box on the left. See Section 1.7 for an explanation of the

appearance of “baby Mandelbrot sets”, as on the right. Their appearance will imply

Theorem B. Figures 1.3 and 1.4 were made using the Fractalstream software [27].

Meanwhile, in Figure 1.4, the support of the limiting measure of chromatic zeros

for the hierarchical lattice generated by the split diamond (see Figure 1.2) equals the

union of boundaries of the black, blue, and white sets. Let rq(y) denote the renor-

malization mapping generated by the split diamond, given in (1.30). The coloring
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Fig. 1.3. The support of the limiting measure of chromatic zeros for the
DHL.

scheme is the same as in Figure 1.3, but using this different mapping. The region

depicted is approximately −1 ≤ Re(q) ≤ 5 and −3 ≤ Im(q) ≤ 3.

The technique for proving Theorems A and B comes from the connection between

the antiferromagnetic Potts model in statistical physics and the chromatic polynomial;

see, for example, [4–6] and [7, p.323-325]. For any graph Γ, one has:

PΓ(q) = ZΓ(q, 0), (1.2)

where ZΓ(q, y) is the partition function (1.18) for the antiferromagnetic Potts model

with q states and “temperature” y. It is a polynomial in both q and y by the Fortuin-

Kasteleyn [28] representation (1.19). See Section 1.5 for more details.

Remark 1.1.1. The computer plots from Figures 1.3 and 1.4 lead to several further

questions. Moreover, the techniques developed in this paper can also be used to study

the q-plane zeros of the partition function for the Potts Model on hierarchical lattices

for fixed values of y 6= 0. These will be explored in the upcoming work of Chang,

Shrock, and the second author of the present paper [29].
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Fig. 1.4. The support of the limiting measure of chromatic zeros for the
split diamond

Given a hierarchical lattice {Γn}∞n=1 generated by Γ = (V,E), let us write the

partition functions Zn(q, y) ≡ ZΓn(q, y) for each n ∈ N. The zero locus of Zn(q, y)

is a (potentially reducible) algebraic curve in C2. However, we will consider it as

a divisor by assigning positive integer multiplicities to each irreducible component

according to the order at which ZΓ(q, y) vanishes on that component. This divisor

will be denoted by

Sn := (Zn(q, y) = 0),

where, in general, we denote the zero divisor of a polynomial p(x, y) by (p(x, y) = 0).

Since Γ0 is a single edge with its two endpoints, we have

S0 = (q(y + q − 1) = 0) = (q = 0) + (y + q − 1 = 0).
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If Γ is 2-connected, there is a Migdal-Kadanoff renormalization procedure that takes

Γ and produces a rational map

R ≡ RΓ : C× P1 → C× P1 be given by R(q, y) = (q, rq(y)),

with the property that

Sn+1 = R∗Sn for n ≥ 0. (1.3)

Here, P1 denotes Riemann Sphere, R∗ denotes the pullback of divisors, and the ra-

tional map rq : P1 → P1 has degree |E| (However, the degree can drop below |E| for

finitely many values of q). Informally, one can think of the pullback on divisors R∗

as being like the set-theoretic preimage, but designed to keep track of multiplicities.

The reader should keep in mind the case of the DHL for which

rq(y) =

(
y2 + q − 1

2y + q − 2

)2

. (1.4)

It will be derived in Section 1.5.

Because R(q, y) = (q, rq(y)) is a skew product over the identity, for each n ≥ 0 we

have

Sn = (Rn)∗
(
(q = 0) + (y + q − 1 = 0)

)
= (q = 0) + (Rn)∗(y + q − 1 = 0).

The chromatic polynomial of a connected graph Γ has a simple zero at q = 0, which

we can ignore when discussing the limiting measure of chromatic zeros. It corresponds

to the divisor (q = 0) above. Therefore, using (1.2), all of the chromatic zeros for Γn

(other than q = 0) are given by

C̃n = (Rn)∗(y + q − 1 = 0) ∩ (y = 0), (1.5)

where each intersection point is assigned its Bezout multiplicity.

Since we want to normalize and then take limits as n tends to infinity, we re-write

(1.5) in terms of currents (see [30,31] for background). We find

µ̃n :=
1

|Vn|
[C̃n] = (π1)∗

(
1

|Vn|
(Rn)∗[y + q − 1 = 0] ∧ [y = 0]

)
, (1.6)
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where square brackets denote the current of integration over a divisor and ∧ denotes

the wedge product of currents. Since [y = 0] is the current of integration over a

horizontal line, the wedge product is just the horizontal slice of 1
|Vn|(R

n)∗[y+q−1 = 0]

at height y = 0. Since the wedge product results in a measure on C×P1, we compose

with the projection (π1)∗ to obtain a measure on C. (In the previous two paragraphs

we have used tildes on C̃n and µ̃n to denote that we have dropped the simple zero at

q = 0.)

It is relatively standard to see that

1

|En|
(Rn)∗[y + q − 1 = 0]→ T,

where T is the fiber-wise Green current for the family of rational maps rq(y). In

Proposition 1.5.4 we’ll see that α := limn→∞
|En|
|Vn| exists so that

Tn :=
1

|Vn|
(Rn)∗[y + q − 1 = 0]→ αT.

However:

First Main Technical Issue: Tn → αT does not necessarily imply convergence of

the slices Tn ∧ [y = 0]→ αT ∧ [y = 0].

This issue will be handled using the notion of activity currents which were intro-

duced by DeMarco in [32,33] to study bifurcations in families of rational maps (they

are sometimes called bifurcation currents). Since then, they have been studied by

Berteloot, DeMarco, Dujardin, Favre, Gauthier, Okuyama and many others. We

refer the reader to the surveys by Berteloot [34] and Dujardin [35] for further details.

We can re-write (1.6) as

µ̃n :=
1

|Vn|
[(rnq ◦ a)(q) = b(q)],

where a, b : C→ P1 are the two marked points

a(q) = 0 and b(q) = 1− q.
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(Special care must be taken at the finitely many parameters q for which we have the

drop of degree degy(rq(y)) < |E|. It is the Second Main Technical Issue for proving

Theorem A and it will be be explained in the next subsection.)

Meanwhile, the activity current of the marked point a is defined by

Ta := lim
n→∞

1

|En|
(rnq ◦ a)∗ω̂,

where ω̂ is the fiberwise Fubini-Study (1, 1) form on C × P1. Therefore, proving

Theorem A reduces to proving the convergence

µ̃n =
1

|Vn|
[(rnq ◦ a)(q) = b(q)]→ αTa. (1.7)

It will be a consequence of Theorems C and C’ that are presented in the next sub-

section.

1.1.2 Equidistribution in Parameter Space

Let V be a connected projective algebraic manifold. An algebraic family of rational

maps of degree d is a rational mapping

f : V × P1 99K P1

such that, there exists an algebraic hypersurface Vdeg ⊂ V (possibly reducible) with

the property that for each λ ∈ V \ Vdeg the mapping

fλ : P1 → P1 defined by fλ(z) = f(λ, z)

is a rational map of degree d. A marked point is a rational map a : V 99K P1. (We will

denote the indeterminacy locus of a by I(a). It is a proper subvariety of codimension

at least two.)

Our result will depend heavily on a theorem from arithmetic dynamics due to

Silverman [36, Theorem E] and this will require us to assume that the manifold V ,

the family f , and the marked points a and b are defined over the algebraic numbers

Q. In other words, every polynomial in the definitions of these objects has coefficients

in Q.
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Convention. Throughout the paper, an algebraic family of rational maps

f : V × P1 99K P1

defined over Q will mean that both V and f are defined over Q.

Theorem C. Let f : V ×P1 99K P1 be an algebraic family of rational maps of degree

d ≥ 2 defined over Q and let a, b : V 99K P1 be two marked points defined over Q.

Extending Vdeg, if necessary, we can suppose I(a) ∪ I(b) ⊂ Vdeg.

Suppose that:

(i) There is no iterate n satisfying fnλ a(λ) ≡ b(λ).

(ii) The marked point b(λ) is not persistently exceptional for fλ.

Then we have the following convergence of currents on V \ Vdeg

1

dn
[(fnλ ◦ a)(λ) = b(λ)]→ Ta, (1.8)

where Ta is the activity current of the marked point a(λ).

The precise definition of activity current will be given in Section 1.2.

The following version of Theorem C holds on all of V , without removing Vdeg, an

essential feature for our application to Theorem A.

Theorem C’. Let f : V ×P1 99K P1 be an algebraic family of rational maps of degree

d ≥ 2 defined over Q and let a, b : V 99K P1 be two marked points defined over Q.

Suppose that

(i) There is no iterate n satisfying fnλ a(λ) ≡ b(λ).

(ii) The marked point b(λ) is not persistently exceptional for fλ.

Consider the rational map

F : V × P1 99K V × P1 defined by F (λ, z) = (λ, f(λ, z)).
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Then the following sequence of currents on V

(π1)∗

(
1

dn
(F n)∗ [z = b(λ)] ∧ [z = a(λ)]

)
(1.9)

converges and the limit equals Ta when restricted to V \ Vdeg. Here, π1 : V ×P1 → P1

is the projection onto the first coordinate π1(λ, z) = λ.

Remark 1.1.2. We have phrased Theorems C and C’ in their natural level of gen-

erality. However, in most applications that we have in mind (in particular to the

chromatic zeros), one can use V = Pm and define everything in the usual affine

coordinates Cm ⊂ Pm in the following ways:

(i) f(λ, z) = P (λ,z)
Q(λ,z)

with P,Q ∈ Q[λ, z] and having no common factors of positive

degree in Q[λ, z], and

(ii) a(λ) = R(λ)
S(λ)

with R, S ∈ Q[λ] and having no common factors of positive degree

in Q[λ] (and similarly for b(λ)).

The reader can keep in mind the simple case of the renormalization mapping for the

DHL (1.4) in which case everything is defined over Q ⊂ Q. Here V = P1,

(i) r(q, y) =
(
y2+q−1
2y+q−2

)2

,

(ii) a(q) ≡ 0, and b(q) = 1− q.

The degree of this family is d = 4 and Vdeg = {0,∞} because the degree of rq(y) drops

when q = 0 and q =∞ but at no other values of q.

The proofs of Theorem C and C’ will closely follow the strategy that Dujardin-

Favre use in [37, Theorem 4.2]. However:

Second Main Technical Issue: The proof of [37, Theorem 4.2] requires a techni-

cal “Hypothesis (H)” that is not satisfied for the Migdal-Kadanoff renormalization

mapping (1.4) for the DHL (and presumably not satisfied for many other hierarchical

lattices). Indeed, q = 0 ∈ Vdeg for this mapping and there are active parameters
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accumulating to q = 0. One sees this in Figure 1.3 where q = 0 is the “main cusp”

on the left side of the black region.

Our assumption that the family and the marked points are defined over Q allows us

to avoid Hypothesis (H). Note that, using quite different techniques, Okuyama has

proved in [38, Theorem 1] a version of [37, Theorem 4.2] without Hypothesis (H). His

proof requires the marked point to be critical, but does not require working over Q.

Once Theorem C is proved, one can extend the convergence (1.8) across Vdeg by an

application of the compactness theorem for families of plurisubharmonic functions [39,

Theorem 4.1.9], thus proving Theorem C’. Note that a similar statement to Theorem

C’ is found in the work of Gauthier-Vigny [40, Corollary 3.1]. The proof there also

uses such compactness to extend a given convergence across various “bad” parameters

that are analogous to our Vdeg.

1.1.3 Recent Works on Interplay Between Holomorphic Dynamics and

Statistical Mechanics

The present work lies in the context of several recent papers where holomorphic

dynamics has played a role in studying problems from statistical physics. We describe

a sample of them here.

One can interpret a rooted Cayley Tree as a type of hierarchical lattice, and this

allows one to apply a renormalization theory that is similar to the Migdal-Kadanoff

version used in this paper, in order to study statistical physics on such trees. This led

to holomorphic dynamics playing an important role in proof of the Sokal Conjecture

by Peters and Regts [41] and also in their work on the location of Lee-Yang zeros for

bounded degree graphs [42]. The same renormalization theory was also recently used

in combination with techniques from dynamical systems by He, Ji, and the authors

of the present paper to characterize the limiting measure of Lee-Yang zeros for the

Cayley Tree [43].
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Meanwhile, holomorphic dynamics has been used by Bleher, Lyubich, and the

second author of the present paper to characterize the limiting measure of Lee-Yang

zeros for the DHL [19] and also to describe the limit behavior of the Lee-Yang-Fisher

zeros for the DHL [44].

1.1.4 Structure of the Paper

In Section 1.2 we present the background on activity currents and describe the

Dujardin-Favre classification of the passive locus, that will play an important role in

the proofs of Theorems C and C’. Theorems C and C’ are proved in Section 1.3 and

Section 1.4.

We return to the problem of chromatic zeros in Section 1.5 by providing back-

ground on their connection with the Potts Model from statistical physics. We also set

up the renormalization mapping rq(y) associated to any hierarchical lattice having

2-connected generating graph. We prove Theorem A in Section 1.6 by verifying the

hypotheses of Theorem C’.

For the k-fold DHL with k ≥ 2, one can check that the critical points y = ±
√

1− q

satisfy rq(±
√

1− q) ≡ 0 ≡ a(q). Therefore, a result of McMullen [45, Theorem 1.1]

gives that supp(Ta) has Hausdorff dimension 2. This is explained in Section 1.7,

where we prove Theorem B.

In Section 1.8 we discuss the chromatic zeros associated with the hierarchical

lattices generated by each of the graphs shown in Figure 1.2. We conclude this dis-

sertation in Section 2 with a second application of Theorem C in statistical mechanics:

the limiting current of Lee–Yang–Fisher zeros for the Cayley Tree.
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1.2 Basics in Activity Currents

1.2.1 Activity Current for Holomorphic Families

Let Λ be a connected complex manifold. A holomorphic family of rational maps of

degree d ≥ 2 is a holomorphic map f : Λ× P1 → P1 such thatfλ := f(λ, ·) : P1 → P1

is a rational map of degree d for every λ ∈ Λ. In this context, a marked point is just

a holomorphic map a : Λ→ P1. Remark that if one starts with an algebraic family of

rational maps f : V × P1 99K P1 one can delete Vdeg to obtain a holomorphic family

f : (V \ Vdeg)× P1 → P1.

The marked point a : Λ→ P1 is called passive at λ0 ∈ Λ if the family {fnλ a(λ)} is

normal in some neighborhood of λ0, otherwise a is said to be active at λ0. The set of

active parameters is called the active locus. The active locus naturally supports an

invariant current Ta which we will describe now. (Classically, one usually chooses a

to be a marked critical point, but it is not necessary.)

Associated to a holomorphic family fλ of rational maps with degree d ≥ 2 is a

skew product mapping

F : Λ× P1 → Λ× P1 given by F (λ, z) = (λ, fλ(z)). (1.10)

Let ω be the Fubini-Study (1, 1) form on P1 and let ω̂ = π∗2ω, where π2(λ, z) = z is

the projection onto the second coordinate. The next proposition and corollary are

standard results in complex dynamics, see for example [37, Proposition 3.1].

Proposition 1.2.1. The sequence of closed positive (1, 1) currents, d−n(F n)∗ω̂, con-

verges to a closed positive (1, 1) current T̂ .

Let vn, v∞ be the local potentials of d−n(fn)∗ω̂ and T̂ respectively. In the proof of

Proposition 1.2.1 one sees that that vn → v∞ locally uniformly, which implies the

following corollary:

Corollary 1.2.2. For any marked point a : Λ → P1, we have the following conver-

gence of intersection of currents:

1

dn
(fn)∗ω̂ ∧ [z = a(λ)]→ T̂ ∧ [z = a(λ)] . (1.11)
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Let Γ := {(λ, a(λ)} ⊂ Λ × P1. Since π1 : Γ → Λ is an isomorphism, one defines the

activity current of the pair (f, a) by

Ta := (π1)∗

(
T̂ ∧ [z = a(λ)]

)
. (1.12)

The next result can be found in [37, Theorem 3.2], in which it was assumed that

a(λ) is a marked critical point. However, one can check that its proof does not rely

on the fact that the marked point is critical.

Theorem 1.2.1. The support of the activity current Ta coincides with the active locus

of a.

1.2.2 Activity Current for Algebraic Families

Let f : V × P1 99K P1 be an algebraic family of rational maps of degree d.

The construction from the previous subsection defines the activity current Ta for the

corresponding holomorphic family f : (V \ Vdeg) × P1 → P1. We will now show that

there is a natural extension of Ta through the hypersurface Vdeg.

As the construction is local, without loss of generality we can suppose V is an

open subset of Cm. We can choose a lift f̃ : V × C2 → C2 which is holomorphic and

so that for each λ ∈ V ,

f̃λ(z, w) := f̃(λ, z, w) = (Pλ(z, w), Qλ(z, w)),

where Pλ, Qλ are homogeneous polynomials. Moreover, Pλ, Qλ have degree d′ ≤ d,

with equality iff λ ∈ V \ Vdeg. Similarly, the marked point a : V 99K P1 can be lifted

to a holomorphic map

ã : V → C2.

Let Gn : V → [−∞,∞) be the PSH function defined by

Gn(λ) :=
1

dn
log ||(f̃nλ ◦ ã)(λ)||.
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Proposition 1.2.3. Suppose V ⊂ Cm is open. The pointwise limit

G(λ) := lim
n→∞

Gn(λ)

exists and is PSH in V . When restricted to V \ Vdeg, the current T̃a := ddcG is

identically equal to the activity current Ta.

Remark 1.2.4. On V \ Vdeg the functions Gn(λ) correspond to local potentials for

the currents on the left side of (1.11) from Corollary 1.2.2 and the limiting function

G(λ) corresponds to the local potential for the current on the right side of (1.11). In

particular, on V \ Vdeg the continuous functions Gn(λ) converge locally uniformly to

the continuous function G(λ) and the latter is not equal to −∞ anywhere. See the

proof of [37, Proposition 3.1] for details.

Proof. Fix a parameter λ ∈ V so that fλ : P1 → P1 is a rational map with degree

d′ ≤ d. Since its lift f̃λ is defined up to a multiplicative constant, we may assume

that in the unit sphere S ⊂ C2 we have supS |f̃λ| = 1. By the homogeneity of f̃λ,

||f̃λ(z, w)|| ≤ ||(z, w)||d′ , which implies ||f̃n+1
λ (z, w)|| ≤ ||f̃nλ (z, w)||d′ ,

so the maps Gn satisfy

Gn+1(λ) =
1

dn+1
log ||(f̃n+1

λ ◦ ã)(λ)||

≤ 1

dn+1
log ||(f̃nλ ◦ ã)(λ)||d′ ≤ 1

dn
log ||(f̃nλ ◦ ã)(λ)|| = Gn(λ),

which implies that {Gn}∞n=1 is a decreasing sequence of PSH functions, so it either

converges to a PSH limit function G or to −∞ identically. The latter is impossible,

by Remark 1.2.4.

Proposition 1.2.5. Suppose V ⊂ Cm is open. The sequence of PSH functions Gn

converges to G in L1
loc(V ). Equivalently, the sequence of currents ddcGn converges to

T̃a = ddcG.

Proof. Assume on the contrary that Gn 6→ G in L1
loc(V ). Then the compactness

theorem for PSH functions [39, Theorem 4.1.9] implies that there is a subsequence
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Gnk and some PSH function G′ 6= G in L1
loc(V ) such that Gnk → G′ in L1

loc(V ).

Then there is a set Ω ⊂ V of positive measure in which G′(λ) 6= G(λ) for all λ. In

particular, since Vdeg is a hypersurface and hence has zero measure, we can find a

compact set K ⊂ Ω \ Vdeg in which Gnk → G′. However, by Corollary 1.2.2, Gn → G

uniformly in K, which is a contradiction.

1.2.3 Classification of the Passivity Locus

Dujardin-Favre Classification of Passivity Locus [37, Theorem 4].

Let f : Λ×P1 → P1 be a holomorphic family and let a(λ) be a marked point. Assume

U ⊂ Λ is a connected open subset where a(λ) is passive. Then exactly one of the

following cases holds:

(i) a(λ) is never preperiodic in U . In this case the closure of the orbit of a(λ) can

be followed by a holomorphic motion.

(ii) a(λ) is persistently preperiodic in U .

(iii) There exists a persistently attracting (possibly superattracting) cycle attracting

a(λ) throughout U and there is a closed subvariety U ′ ( U such that the set of

parameters λ ∈ U \U ′ for which a(λ) is preperiodic is a proper closed subvariety

in U \ U ′.

(iv) There exists a persistently irrationally neutral periodic point such that a(λ) lies

in the interior of its linearization domain throughout U and the set of parameters

λ ∈ U for which a(λ) is preperiodic is a proper closed subvariety in U .

This classification is stated in [37] with the marked point being critical. However,

the heart of the proof is a separate theorem (Theorem 1.1 in [37]) whose statement

does not require the marked point to be critical. Meanwhile, the remainder of the

proof is short and it is easy to check that the marked point need not be critical.

However, one should note that the statement in [37] claims that in Case (iii) the set

λ such that a(λ) is preperiodic is a closed subvariety of U itself, without first removing
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a proper closed subvariety U ′. Unfortunately, that is not true, but fortunately that

particular claim is not used anywhere later in their paper.

Consider the following holomorphic family of polynomial mappings

fλ(z) = z(z − λ)(z − 1/2)

where λ ∈ C. The critical points of fλ are

c±(λ) =
(1 + 2λ)±

√
4λ2 − 2λ+ 1

6
,

which vary holomorphically in a neighborhood Dr(0) of λ = 0, for some r > 0. Notice

that c−(0) = 0 and c+(0) = 1
3
. Consider the marked critical point c(λ) := c+(λ). One

can check that

1. There exists 0 < ε < r such that λ ∈ Dε(0) implies that fnλ (c(λ)) → 0 with

|fnλ (c(λ))| < 1/2 for all n ≥ 0, and

2. There exists an infinite sequence {λk}∞k=1 in Dε(0) \ {0} with λk → 0 such that

for each k there is an iterate nk with fnkλk (c(λk)) = 0.

Therefore, the set of preperiodic parameters λ ∈ Dε(0) is not a closed subvariety, but

they are in Dε(0) \ {0}.

Proof of the claim about preperiodic parameters in Case (iii):

By taking a suitable iterate, let us suppose that a(λ) is attracted to an attracting

fixed point p(λ). For each λ ∈ U let m(λ) denote the local multiplicity of p(λ) for fλ.

Let m0 := min{m(λ) : λ ∈ U} and let

U ′ := {λ ∈ U : m(λ) > m0}.

Suppose λ0 ∈ U \ U ′ and choose a neighborhood W of λ0 such that W b U \ U ′.

Then, there exists ε > 0 such that:

(i) fλ(Dε(p(λ)) b Dε(p(λ)), and
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(ii) for each λ ∈ W and each z ∈ Dε(p(λ)) \ {p(λ)} we have that fλ(z) 6= p(λ),

i.e. p(λ) is the only preimage of p(λ) under fλ within Dε(p(λ)).

Since W is compact and fnλ (a(λ)) → p(λ) for all λ ∈ W there exists k > 0 such

that for all λ ∈ W we have that fkλ (a(λ)) ⊂ Dε(p(λ)). Then, using (ii) above, the set

of preperiodic parameters in W is

{λ ∈ W : fnλ (a(λ)) = p(λ) for some 0 ≤ n ≤ k},

which is a closed subvariety of W .
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1.3 Proof of Theorem C

Our proof of Theorem C will closely follow the strategy that Dujardin-Favre use

to prove Theorem 4.2 in [37] and we will assume some of the basic results from their

proof.

Let f : V × P1 99K P1 be an algebraic family of rational maps of degree d defined

over Q. Let a, b : V 99K P1 be marked points and assume, without loss of generality,

that the indeterminacy I(a)∪ I(b) ⊂ Vdeg. Let Ta be the activity current of a(λ) and

suppose that all hypotheses of Theorem C are satisfied.

Proposition 1.3.1. The following convergence of currents

1

dn
[(fnλ ◦ a)(λ) = b(λ)]→ Ta (1.13)

holds in V \Vdeg if and only if there is a dense set of parameters λ ∈ Vgood ⊂ V \Vdeg

such that

hn(λ) :=
1

dn
log distP1 (fnλ a(λ), b(λ))→ 0, (1.14)

where distP1 denotes the chordal distance on P1.

Proof. A direct adaptation of the first four paragraphs of the proof of Theorem 4.2

in [37] shows that (1.13) holds if and only if hn → 0 in L1
loc(V \ Vdeg). If hn 6→ 0

in L1
loc(V \ Vdeg), then, as in paragraph seven of the same proof, one uses Hartogs’

Lemma [39, Theorem 4.1.9(b)] to find an open set U ⊂ V \ Vdeg and a subsequence

nk such that hnk(λ)→ h(λ) < 0 for all λ ∈ U .

The proof of Theorem C will then follow immediately from the following:

Proposition 1.3.2. There is a dense set of parameters λ ∈ Vgood ⊂ V \ Vdeg such

that (1.14) holds.

This is almost an immediate consequence of the following beautiful theorem:
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Silverman’s Theorem E [36]. Let φ : P1 → P1 be a rational map of degree d ≥ 2

defined over a number field K. Let A,B ∈ P1(K) and assume that B is not exceptional

for φ and that A is not preperiodic for φ. Then

lim
n→∞

δ(φnA,B)

dn
= 0, (1.15)

where δ(P,Q) = 2− log distP1(P,Q) is the logarithmic distance function1.

Remark that (1.15) holds if and only if limn→∞
1
dn

log distP1(φnA,B) = 0.

If we want to use Silverman’s Theorem E directly, we need that there is a dense

set of parameters V∞ ⊂ V \ Vdeg such that the marked point a(λ) has infinite orbit

under fλ for all λ ∈ V∞. We do not know if this true at this level of generality, even

if the active locus is non-empty.

1.3.1 Proof of Proposition 1.3.2

We will need the following result:

Algebraic Points Are Dense. Let V ⊂ Pn be a projective algebraic manifold that is

defined over Q. Then, the set of points a ∈ V that can be represented by homogeneous

coordinates in Q form a dense subset of V (in the complex topology). I.e. V (Q) is

dense in V .

We could not find this statement in the literature, but it can be proved by induc-

tion on dim(V ). The base of the induction, when dim(V ) = 0, plays an important

role in the theory of Kleinian Groups, see for example [46, Lemma 3.1.5].

Proof of Proposition 1.3.2. We will consider the active and passive loci separately.

Let λ0 be an active parameter, and W ⊂ V be any open neighborhood containing

λ0. We will find a parameter λ1 ∈ W at which (1.14) holds. We will do this by

showing that there exists a parameter λ1 ∈ W such that iterates of a(λ1) under fλ1

1In [36, Theorem E] a different logarithmic distance function was used. However, as mentioned in
Section 3 of the referenced paper, the result still holds if we use 2− distP1(·, ·) instead.
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will eventually land on a repelling cycle disjoint from b(λ1). This will immediately

imply (1.14) at λ1.

Pick three distinct points in a repelling cycle of fλ0 which is disjoint from b(λ0).

By reducing W to a smaller neighborhood of λ0 if necessary, we can ensure that the

repelling cycle moves holomorphically as λ varies over W , and that b(λ) is disjoint

from the cycle for every λ ∈ W . Since the family {fnλ a(λ)}∞n=1 is not normal in W , it

cannot avoid all three points.

We now suppose λ0 is in the passive locus for a and let U be the connected

component of the passive locus containing λ0. Then, the Dujardin-Favre classification

gives four possible behaviors for fnλ (a(λ)) in U .

In Cases (i),(iii), and (iv) the classification gives a (possibly empty) closed sub-

variety U ′ ( U such that the set of parameters for which a(λ) is preperiodic is

contained in a proper closed subvariety U1 ⊂ (U \U ′). Moreover, the hypothesis that

marked point b(λ) is not persistently exceptional gives that there is another proper

closed subvariety U2 ⊂ U such that b(λ) is not exceptional for λ ∈ U \ U2. Then,

U \ (U ′ ∪ U1 ∪ U2) is an open dense subset of U . Since V (Q) is dense in V , see the

beginning of this subsection, arbitrarily close to λ0 is a point λ1 ∈ U \ (U ′ ∪U1 ∪U2)

with coordinates in Q. Since there are only finitely many coefficients to consider, we

can find a number field K so that fλ1 ∈ K(z) and the points a(λ1), b(λ1) ∈ P1(K).

Since λ1 ∈ U \ (U ′ ∪ U1 ∪ U2), the point a(λ1) has infinite orbit under fλ1 , and the

point b(λ1) is not exceptional for fλ1 . Hence Silverman’s Theorem E implies that

(1.14) holds for the parameter λ1.

Finally suppose we are in Case (ii), so that the marked point a(λ) is persistently

preperiodic. By assumption, there is no iterate n that satisfies fnλ (a(λ)) ≡ b(λ), so

there is a proper closed subvariety U1 ⊂ U such that for all λ ∈ U \ U1 and for all

n ≥ 0, we have fnλ (a(λ)) 6= b(λ). It follows that for each λ ∈ U \ U1, the quantities

distP1(fnλ (a(λ)), b(λ)) are uniformly bounded in n ≥ 0, which implies (1.14) for all

λ ∈ U \ U1.
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1.3.2 Arithmetic Proof of Proposition 1.3.2

Under Additional Hypotheses

The additional hypotheses are:

(iii) The parameter space is P1.

(iv) The marked point a is not passive on all of P1 \ Vdeg.

For applications in chromatic zeros our parameter space is P1 so that Hypothesis (iii)

will automatically hold (in fact, we typically think of it as C ⊂ P1). Meanwhile,

for the renormalization mappings associated with many hierarchical lattices one can

check Hypothesis (iv) directly, but it does not hold for all such mappings (e.g. when

the generating graph is a triangle, as discussed in Section 1.8.3).

The proof will not depend on the Dujardin-Favre classification of the passive locus

but instead requires technical results from arithmetic dynamics. Proposition 1.3.2 will

follow from Silverman’s Theorem E and the next statement (choosing K to be dense

in C), which is due to Laura DeMarco and Niki Myrto Mavraki.

Proposition 1.3.3. (DeMarco-Mavraki) Suppose the hypotheses in Theorem C

and additionally hypotheses (iii) and (iv) above. Then, for any number field K there

are at most finitely many parameters λ ∈ P1(K) \ Vdeg such that the marked point

a(λ) is preperiodic under fλ.

We will need the following two results, which depend on having a one-dimensional

parameter space. Denote the logarithmic absolute Weil height on Q by h : Q → R.

For a rational map φ : P1 → P1 defined over K and a point P ∈ P1(K), we denote the

canonical height function associated to φ by ĥφ(P ). For more background on these

definitions, see [47].

Call-Silverman Specialization [48, Theorem 4.1].

Let (f, a) be a one-dimensional algebraic family of rational maps of degree d ≥ 2 with
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a marked point a, both defined over a number field K. Then, for any sequence of

parameters {λn}∞n=1 ⊂ P1(K) \ Vdeg such that h(λn)→∞, we have

lim
n→∞

ĥfλn (a(λn))

h(λn)
= ĥf (a),

where ĥf (a) is the canonical height associated to the pair (f, a).

The canonical height of the pair ĥf (a) was introduced in [48].

The pair (f, a) is isotrivial if there exists a branched covering W → P1 \Vdeg and a

family of holomorphically varying Möbius transformations Mλ such that Mλ◦fλ◦M−1
λ

is independent of λ ∈ W and also Mλ ◦ a is a constant function of λ ∈ W .

Theorem 1.3.1. (DeMarco [49, Theorem 1.4]) Suppose f : P1 × P1 99K P1 is a

non-isotrivial one-dimensional algebraic family of rational maps. Let ĥf : P1(k̄)→ R

be a canonical height of f , defined over the function field k = C(P1). For each

a ∈ P1(k̄), the following are equivalent:

(1) The marked point a is passive in all of P1 \ Vdeg;

(2) ĥf (a) = 0;

(3) (f, a) is preperiodic.

Moreover, the set

{a ∈ P1(k) : a is passive in all of P1 \ Vdeg}

is finite.

Proof of Proposition 1.3.3. Assume on the contrary that there is a sequence of dis-

tinct parameters {λn}∞n=1 ⊂ P1(K) \ Vdeg such that a(λn) is preperiodic for fλn . It

follows from Northcott property [47, Theorem 3.7] that the parameters λn satisfies

h(λn)→∞. Meanwhile, since a(λn) is preperiodic for fλn , we have ĥfλn (a(λn)) = 0.

Then Call-Silverman Specialization implies ĥf (a) = 0, so by Theorem 1.3.1 the

marked point a must be passive in all of P1 \ Vdeg, which contradicts hypothesis (iv).
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1.4 Proof of Theorem C’

The following statement about convergence of sequences of PSH functions is prob-

ably standard, but we will include a proof because we cannot find an appropriate

reference.

Proposition 1.4.1. Let {φn}∞n=1 be a sequence of PSH functions in an open connected

set U ⊆ Cm which is uniformly bounded above in compact sets. Suppose there is a

PSH function φ in U such that φn → φ in L1
loc(U \X), where X ⊂ U is an analytic

hypersurface. Then φn → φ in L1
loc(U).

Proof. Assume by contradiction that φn 6→ φ in L1
loc(U). Then there is an ε > 0, a

compact set K with positive Lebesgue measure, and a subsequence φnk such that

||φnk − φ||L1(K) > ε for all k.

Note that since φn → φ in L1
loc(U \X), the compact set K must intersect X. By the

hypotheses, the sequence φnk satisfies the conditions for the compactness theorem for

PSH functions [39, Theorem 4.1.9], so we can find a further subsequence (which we

still denote by φnk), and a PSH function φ̃ in U such that

φnk → φ̃ in L1
loc(U).

In particular φnk → φ̃ in L1(K), which implies φ̃ 6= φ in L1(K), so there exist

δ > 0 and a compact subset K ′ ⊂ K with positive Lebesgue measure such that

|φ̃(z) − φ(z)| > δ for all z ∈ K ′. Let Xε be the ε-neighborhood of X in U , and let

X ′ε := Xε ∩K ′. Choose ε > 0 which satisfies Leb(K ′) = 2Leb(X ′ε). It follows that∫
K′\X′

ε

|φ̃− φ| dLeb > δ · Leb(K ′ \X ′ε) =
δ

2
Leb(K ′) > 0. (1.16)

Meanwhile, since K ′ \ X ′ε is a compact subset of U disjoint from X, we must have

φ̃ = φ in L1(K ′ \X ′ε), which contradicts (1.16).
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Proof of Theorem C’. This is a local statement, so we can suppose without loss of

generality that V is an open subset of Cm. Choose a lift f̃ : V ×C2 → C2 and denote

the iterates of each f̃λ : C2 → C2 by

f̃nλ (z, w) =
(
P

(n)
λ (z, w), Q

(n)
λ (z, w)

)
.

Choose lifts ã, b̃ : V → C2 and denote their coordinates by ã(λ) = (a1(λ), a2(λ)) and

b̃(λ) = (b1(λ), b2(λ)).

Recall from Section 1.3 that

hn(λ) :=
1

dn
log distP1 (fnλ a(λ), b(λ)) . (1.17)

Although (1.17) is only defined on V \Vdeg, interpreting hn in terms of the lifts allows

its extension to all of V :

hn(λ) :=
1

dn
log |P (n)

λ (ã(λ))b2(λ)−Q(n)
λ (ã(λ))b1(λ)|2

− 1

dn
log ||(f̃nλ ◦ ã)(λ)||2 − 1

dn
log ||b̃(λ)||2.

Note that the last term satisfies

1

dn
log ||b̃(λ)||2 → 0 in L1

loc(V ) as n→∞,

and by Proposition 1.2.5,

1

dn
log ||(f̃nλ ◦ ã)(λ)||2 → 2G in L1

loc(V ) as n→∞,

where G is the local potential for Ta. Moreover, by Proposition 1.3.1, hn → 0 in

L1
loc(V \ Vdeg). Therefore we can conclude that

1

dn
log |P (n)

λ (ã(λ))b2(λ)−Q(n)
λ (ã(λ))b1(λ)|2 −→ 2G in L1

loc(V \ Vdeg).

Since G and the sequence 1
dn

log |P (n)
λ (ã(λ))b2(λ)−Q(n)

λ (ã(λ))b1(λ)| are PSH functions

in V , it follows from Proposition 1.4.1 that

1

dn
log |P (n)

λ (ã(λ))b2(λ)−Q(n)
λ (ã(λ))b1(λ)| −→ G in L1

loc(V ),

The PSH functions on the left hand side are local potentials for the currents expressed

in (1.9) and G is a local potential for Ta on V \ Vdeg.
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1.5 The Potts Model, Chromatic Zeros, and

Migdal Kadanoff Renormalization

We first give a brief account of the antiferromagnetic Potts model on a graph

Γ and its connection with the chromatic zeros of PΓ. Suitable references include

[4–6], [7, p.323-325], and references therein. We then describe the Migdal-Kadanoff

Renormalization procedure that produces a rational function rq(y) relating the zeros

for the Potts Model on one level of a hierarchical lattice to the zeros for the next level.

The remainder of the section is devoted to proving properties of the renormalization

mappings rq(y).

1.5.1 Basic Setup

Fix a graph Γ = (V,E) and fix an integer q ≥ 2. A spin configuration of the graph

Γ is a map

σ : V → {1, 2, ..., q}.

Fix the coupling constant J < 0. The energy HΓ(σ) associated with a configuration

σ on Γ is defined as

HΓ(σ) = −J
∑

{vi,vj}∈E

δ(σ(vi), σ(vj)) = −JE(σ),

where δ(a, b) = 1 if a = b and 0 otherwise, and E(σ) is the number of edges whose

endpoints are assigned the same spin under σ. Remark that since J < 0 it is ener-

getically favorable to have different spins at the endpoints of each edge, if possible.

This means that we are in the antiferromagnetic regime.

The Boltzmann distribution assigns a configuration σ on Γ probability propor-

tional to the weight

WΓ(σ) = exp

(
−HΓ(σ)

T

)
= exp

(
JE(σ)

T

)
,
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where T > 0 is the temperature of the system (We set the Boltzmann constant

kB = 1). The probability Pr(σ) of σ occurring is therefore

Pr(σ) = WΓ(σ)/ZΓ where ZΓ :=
∑
σ

WΓ(σ), (1.18)

and the sum is over all possible spin configurations. Some intuition for this distribu-

tion can be gained by considering the following two extreme cases: when T is near

zero, configurations with minimum energy are strongly favored. Meanwhile for high

temperature, all configurations occur with nearly equal probability.

Let us introduce the temperature-like variable y := eJ/T, so that WΓ(σ) = yE(σ).

All the quantities above implicitly depend on q, y, and the graph Γ. The normalizing

factor ZΓ(q, y) is called the partition function and given by

ZΓ(q, y) :=
∑
σ

yE(σ).

It turns out that ZΓ(q, y) is actually a polynomial in both q and y. To see this it will

be helpful to express the partition function in terms of (q, v) where v = y − 1. For

any subset of the edge set A ⊆ E is a subgraph (V,A). We have

ZΓ(q, v) =
∑
σ

∏
(i,j)∈E

[1 + vδ(σi, σj)] =
∑
A⊆E

qk(A)v|A|. (1.19)

where k(A) is the number of connected components of (V,A), including isolated ver-

tices. This is called the Fortuin-Kasteleyn [28] representation of ZΓ(q, v); see, for

example, [6, Section 2.2]. (We will only express ZΓ in terms of v instead of y in this

paragraph and in Subsection 1.5.2.)

As discussed in the introduction, we will describe the zeros of ZΓ(q, y) as a divisor

denoted

S := (ZΓ(q, y) = 0).

Remark that in the next subsection we will see that if Γ is 2-connected, then we have

that ZΓ(q, y) = qZ̃Γ(q, y) with Z̃Γ(q, y) irreducible, implying S is a reduced divisor, i.e.
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all multiplicities are one. Therefore, if Γ is 2-connected there is no harm in thinking

of S as a (reducible) algebraic curve.

To establish the connection between the chromatic polynomial PΓ(q) and the

partition function ZΓ(q, y) of the Potts model note that

PΓ(q) =
∑

σ such that
E(σ)=0

1 = ZΓ(q, 0).

Therefore, the chromatic zeros are given by the intersection:

C := S ∩ (y = 0),

where Bezout intersection multiplicities and multiplicities of the divisor S are taken

into account.

1.5.2 Irreducibility of Z̃Γ(q, y) for 2-Connected Γ

It follows from (1.19) that we can always factor ZΓ(q, v) = qZ̃Γ(q, v) in the poly-

nomial ring C[q, v]. The goal of this subsection is to prove:

Proposition 1.5.1. If Γ is 2-connected, then Z̃Γ(q, v) is irreducible in C[q, v]. (The

same holds in the (q, y) variables.)

We will prove this proposition using the well-known relationship between Z̃Γ(q, y)

and the Tutte Polynomial of Γ. It is defined as

TΓ(x, y) =
∑
A⊂E

(x− 1)k(A)−1(y − 1)|A|+k(A)−|V |, (1.20)

where k(A) has the same interpretation as in (1.19). The variables (x, y) in the Tutte

Polynomial are related2 to the variables (q, v) in the Partition Function (1.19) by:

x = 1 + (q/v) and y = v + 1.

2Although the variable y appears in Equation (1.18) for the partition function and also in Equation
(1.20) for the Tutte Polynomial, there is no conflict of notation because both satisfy y = v + 1.
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Comparing (1.20) with (1.19) we see the following relationship [6, Section 2.5] between

T (x, y) and ZΓ(q, v):

TΓ(x, y) = (x− 1)−1(y − 1)−|V |ZΓ((x− 1)(y − 1), y − 1). (1.21)

Proposition 1.5.1 will be a corollary to the following nice result by de Mier, Merino,

and Noyi [50].

Irreducibility Of Tutte Polynomials. If Γ is a connected matroid, in particular

a 2-connected graph, then TΓ(x, y) is irreducible in C[x, y].

Lemma 1.5.2. ZΓ(q, v) vanishes to order exactly |V | at the origin.

Proof. For any subgraph (V,A), it follows from a counting argument that we have the

inequality k(A) + |A| ≥ |V |. Moreover, for the subgraph (V,A0) without any edges,

the sum k(A0) + |A0| is exactly |V |. Therefore the order of vanishing is exactly |V |

at the origin.

Proof of Proposition 1.5.1. By the Irreducibility of the Tutte Polynomial, it suffices

to prove that if Z̃Γ is reducible then so is TΓ. Suppose Z̃Γ is reducible:

Z̃Γ = A1 · A2 ·B,

where A1, A2 are non-constant irreducible factors, and B can potentially be a unit.

Denote by Ci the zero set of Ai.

Let H : C2 → C2 be the birational map (x, y) 7→ ((x − 1)(y − 1), y − 1), so that

by (1.21) we have

TΓ(x, y) = (y − 1)−|V |+1(Z̃Γ ◦H).

Therefore, in order to prove that TΓ is reducible it suffices to find at least two irre-

ducible factors of Z̃Γ ◦H each of which is not equal to y − 1.

For i = 1 and 2, although H−1(Ci) can possibly contain the line

E := {(x, y) ∈ C2 : y = 1},

it cannot be the only irreducible component of H−1(Ci) because H(E) is a single

point (0, 0). From this observation we now have to consider two separate cases.



31

(i) If A1 6≡ A2, then the zero set of TΓ contains at least two distinct irreducible

components, neither of which is the line E.

(ii) If A1 ≡ A2, then the zero set of TΓ contains an irreducible component of multi-

plicity at least two, which is not the line E.

In either case, we conclude that TΓ is reducible.

1.5.3 Combinatorics of Hierarchical Lattices

Proposition 1.5.3. Suppose {Γn}∞n=1 is a hierarchical lattice that is generated by a

2-connected generated graph Γ = (V,E). Then, Γn is 2-connected for each n ≥ 0.

Proof. The proof is by induction on n. Since Γ0 is a single edge with two vertices at

its endpoints it is 2-connected. Suppose now that Γn is 2-connected for some n ≥ 0

to show that Γn+1 is 2-connected. Recall that Γn+1 is built by replacing each edge

of the generating graph Γ with a copy of Γn using the marked vertices a and b as

endpoints. The vertices of Γn+1 fall into two classes:

1. The |V | vertices of Γn+1 that come from the vertices of Γ. Each of them is a

marked vertex a or b from some copy of Γn, and

2. The remaining vertices.

If the removal of a vertex of Type (1) disconnects Γn+1 then, since each Γn is 2-

connected, this would imply that removal of the corresponding vertex of Γ disconnects

Γ. This is impossible because Γ is 2-connected. Meanwhile, if removal of a vertex of

Type (2) disconnects Γn+1 then its removal will also disconnect the unique copy of

Γn that the vertex is contained in. This contradicts the induction hypothesis.

Proposition 1.5.4. Let Γn = (Vn, En) be a hierarchical lattice generated by gener-

ating graph Γ = (V,E). Then |Vn| and |En| grow at the same exponential rate as

n→∞.
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Proof. Observe that for any n ≥ 1,

|Vn+1| = |Vn|+ |En| · (|V | − 2) = |Vn|+ |E|n · (|V | − 2) .

It follows from induction that

|Vn| = |V |+ (|V | − 2) ·
n−1∑
i=1

|E|i = |V |+ (|V | − 2) · |E| |E|
n−1 − 1

|E| − 1
,

which proves the assertion.

1.5.4 Migdal-Kadanoff Renormalization for the DHL

Let {Γn = (Vn, En)}∞n=0 be the Diamond Hierarchical Lattice (DHL). For each

n ≥ 0 the partition function Zn(q, y) ≡ ZΓn(q, y) has zero divisor

Sn := (Zn(q, y) = 0).

Remark that Γ0 is always a single edge with two vertices at its endpoints, so a simple

calculation yields ZΓn(q, y) = q(y + q − 1) so that

S0 := (q(y + q − 1) = 0).

Associated to the hierarchical lattice {Γn}∞n=0 is a Migdal-Kadanoff renormalization

mapping that relates the zero divisor Sn+1 to the zero divisor Sn.

Proposition 1.5.5. For the DHL we have that for each n ≥ 0

Sn = (Rn)∗(S0)

where R : C× P1 → C× P1 is given by

R(q, y) = (q, rq(y)) , where rq(y) =

(
y2 + q − 1

2y + q − 2

)2

. (1.22)

As usual, the superscript ∗ denotes pullback of a divisor and we will denote points

y ∈ P1 using the standard chart C ⊂ P1.
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The proof will be very similar to the derivation of the Migdal-Kadanoff renor-

malization transformation for the Ising Model on the DHL [19, Section 2.5] and it

relies on the multiplicativity of the conditional partition functions which is proved

in [19, Lemma 2.1], in the context of the Ising Model.

Proof. For each n ≥ 0 consider the following conditional partition functions:

Un ≡ Un(q, y) :=
∑

σ such that
σ(a)=σ(b)=1

W (σ) and Vn ≡ Vn(q, y) :=
∑

σ such that
σ(a)=1, σ(b)=2

W (σ).

We claim for each n ≥ 0 that

Un+1 =
(
U2
n + (q − 1)V2

n

)2
and Vn+1 =

(
2 UnVn + (q − 2)V2

n

)2
. (1.23)

To show this, it will be helpful to depict them graphically as follows:

The ones and twos in the figure denote the spins at the marked vertices a and b. Let

us graphically illustrate the derivation of the first equation from (1.23):

The numbers one, two, and three in the second row of the figure above are meant

to denote the boundary conditions imposed on each of the four copies of Γn that

are glued together to form Γn+1. The third line is obtained from the second using

multiplicativity of the conditional partition functions. (Once the spins at those four
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vertices are fixed, the conditional partition function is the same as that of a disjoint

union of the four copies of Γn, each with its corresponding boundary conditions.) The

expression for Vn+1 in (1.23) can be obtained similarly.

In order to use an iteration on P1 instead of C2 it will be more convenient to iterate

the ratio yn := Un/Vn, where n ≥ 0. A simple calculation shows that y0 = y = eJ/T .

Using (1.23) we find that

yn+1 =
Un+1

Vn+1

=

(
U2
n + (q − 1)V2

n

2UnVn + (q − 2)V2
n

)2

=

(
y2
n + q − 1

2yn + q − 2

)2

= rq(yn).

Therefore, (qn, yn) = Rn(q, y) where qn = q for all n.

Note that

Zn(q, y) = q Un + q(q − 1)Vn. (1.24)

Since the generating graph Γ is 2 connected Proposition 1.5.3 implies that Γn is

2-connected for each n ≥ 0. Therefore, Proposition 1.5.1 gives that

Z̃n(q, y) = Un + (q − 1)Vn

is irreducible, implying that Un and Vn have no common factors of positive degree in

q or y. Therefore,

Sn = (Zn(q, y) = 0)

= (qn(Un + (qn − 1)Vn) = 0)

= (qn(yn + qn − 1) = 0) = (Rn)∗S0,

(1.25)

where in the third equality we used that Un and Vn have no common factors of positive

degree.

The map rq(y) given in (1.22) is called the Migdal-Kadanoff renormalization map-

ping for the q-state Potts model on the DHL. Remark that this is an algebraic family

of rational mappings of degree 4 defined over Q. As a consequence of Proposition

1.5.5, the chromatic zeros for the DHL can be obtained dynamically:

Cn = (Rn)∗(S0) ∩ (y = 0) (1.26)
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and note that up to the simple zero at q = 0 we can use

C̃n = (Rn)∗(y + q − 1 = 0) ∩ (y = 0). (1.27)

When considering the limiting measure of chromatic zeros it suffices to consider C̃n.

1.5.5 Migdal-Kadanoff Renormalization for

Arbitrary Hierarchical Lattices

Now suppose Γn = (Vn, En) is the hierarchical lattice generated by an arbitrary

generating graph Γ = (V,E). It is clear that we can repeat the procedure in Propo-

sition 1.5.5 to produce a renormalization mapping rq(y) associated to the generating

graph Γ, which is a rational map in y on the Riemann sphere of degree at most |E|,

parameterized by polynomials in q with integer coefficients.

However, it is possible that the generic degree of rq(y) is strictly smaller than |E|.

One such example is the Tripod shown in Figure 1.2 for which we have

Un+1 = (Un + (q − 1)Vn)
(
U2
n + (q − 1)V2

n

)
and

Vn+1 = (Un + (q − 1)Vn)
(
2UnVn + (q − 2)V2

n

)
.

The common factor of positive degree (Un + (q − 1)Vn) is a consequence of the “hori-

zontal” edge that is connected to the remainder of the generating graph Γ at a single

vertex. When taking the ratios yn = Un/Vn we lose track of these common factors

resulting in the drop of generic degree:

R(q, y) = (q, rq(y)) where rq(y) =
y2 + q − 1

2y + q − 2
,

which has degree two even though Γ has three edges. This drop in generic degree

results in (Rn)∗S0 < (Zn(q, y)) for the hierarchical lattice generated by the Tripod.

This phenomenon can be avoided if the generating graph is 2-connected and the

proof is exactly the same as for the DHL. We summarize:
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Proposition 1.5.6. Let {Γn}∞n=0 be the hierarchical lattice generated by Γ = (V,E).

If Γ is 2-connected, then the associated renormalization mapping R(q, y) = (q, rq(y))

has generic degree |E| and satisfies

Sn = (Rn)∗(S0),

where Sn = (Zn(q, y)) and S0 = (q(y + q − 1)). Moreover, rq is defined over Q.

Several concrete examples are presented in Section 1.8.
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1.6 Proof of Theorem A

Let {Γn}∞1 be a hierarchical lattice, whose generating graph Γ = (V,E) is 2-

connected. Let us denote its Migdal-Kadanoff renormalization mapping by

R(q, y) = (q, rq(y)).

Since Γ is 2-conneced, Proposition 1.5.6 implies that the chromatic zeros for Γn (omit-

ting the simple zero at q = 0) are given by C̃n = (Rn)∗(y + q − 1 = 0) ∩ (y = 0).

Therefore, in the language of currents,

µ̃n :=
1

|Vn|
∑

q∈C\{0}
PΓn (q)=0

δq = (π1)∗

(
1

|Vn|
(Rn)∗[y + q − 1 = 0] ∧ [y = 0]

)
,

where the zeros of PΓn(q) are counted with multiplicities, as always. Since µ̃n and

µn (see (1.1)) differ by 1/|Vn| times a Dirac measure at q = 0, it suffices to prove

that the sequence µ̃n converges. Moreover, Proposition 1.5.4 allows us to replace the

normalizing factor of |Vn| with |En|. Therefore, it suffices to verify that R = (q, rq(y))

and the marked points a(q) = 0 and b(q) = 1−q satisfy the hypotheses of Theorem C’.

By Proposition 1.5.6, the algebraic family rq is defined over Q. Hypotheses (i)

and (ii) on the marked points will be verified in Propositions 1.6.1 and 1.6.2 below.

Proposition 1.6.1. There are no iterates n ≥ 0 satisfying rnq (0) ≡ 1− q.

Proof. Away from the finitely many points in Vdeg, the chromatic zeros of Γn are

solutions in q to rnq (0) = 1− q. If there is some iterate n ≥ 0 such that

rnq (0) ≡ 1− q,

this will imply that Γn has infinitely many chromatic zeros, which is impossible be-

cause deg(PΓn) = |Vn|.

Proposition 1.6.2. The marked point b(q) = 1− q is not persistently exceptional for

the maps rq.
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Proof. Assume by contradiction that the marked point b(q) = 1 − q is persistently

exceptional. Taking the second iterate, we can suppose it is a fixed point. Then by

(1.25), the pullback of the divisor (y = 1− q) by the map R2 satisfies

(Z̃2(q, y)) =
(
R2
)∗

(y = 1− q) = |E|2(y = 1− q),

which implies that the partition function, Z̃2(q, y) = (y+q−1)|E|
2
, for Γ2 is reducible.

However, since the generating graph Γ is assumed to be 2-connected, Γ2 is also 2-

connected, so Z̃2(q, y) is irreducible by Proposition 1.5.1, which is a contradiction.

(Theorem A)
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1.7 Proof of Theorem B

We will use the following famous result:

Theorem 1.7.1 (McMullen [45]). For any holomorphic family of rational maps

over the unit disk ∆, the bifurcation locus B(f) ⊂ ∆ is either empty or has Hausdorff

dimension two.

Although the above theorem states that the bifurcation locus, which is the union

of the active loci of all the critical points, has Hausdorff dimension two (unless it is

empty), one can check that the proof still applies to each individual marked critical

point c(λ), as long as it bifurcates. Indeed the proof of Theorem 1.7.1 consists of

using activity of the marked point to construct a holomorphically-varying family of

polynomial-like mappings, whose critical point is the marked one c(λ). Associated

to this family is the space of parameters λ for which the orbit of the critical point

remains bounded (in the polynomial-like mapping). McMullen shows that this set

is a quasiconformal image of the Mandelbrot set (or a higher degree generalization).

The boundary of this “baby Mandelbrot set” has Hausdorff Dimension two [51], and,

by definition, the marked point c(λ) is active at such points.

Proof of Theorem B. Using an analogous proof to that of Proposition 1.5.5 one finds

that the renormalization mapping for the k-fold DHL is

rq(y) =

(
y2 + q − 1

2y + q − 2

)k
. (1.28)

For this family of mappings we have Vdeg = {0,∞}. Since the generating graph is

2-connected Theorem A implies that the limiting measure of chromatic zeros exists

for the k-fold DHL and the proof of Theorem A implies that on C \ Vdeg it coincides

with the activity measure for the marked point a(q) ≡ 0.

One can check that c(q) :=
√

1− q is a critical point for rq(y), which we can

suppose is marked after replacing C with a branched cover. A direct calculation shows

that rq(c(q)) ≡ 0 ≡ a(q). Therefore, the activity loci of marked point a(q) (and hence
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of our limiting measure of µ of chromatic zeros) coincides with the activity locus for

the critical point c(q).

It remains to check that these are non-empty and not entirely contained in the set

of parameters for which the degree of rq(y) drops. Drop in degree of rq(y) corresponds

to values of q for which numerator and denominator of rq(y) have a common zero.

One can check that this only happens when q = 0.

One can also check by direct calculation that y = 1 and y = ∞ are both persis-

tently superattracting fixed points for rq(y). One has that rq(0) is a degree k ≥ 2

rational function of q and that r0(0) = (1/2)k. Therefore, there is some parameter

q1 6= 0 for which rq1(0) = 1. On some open neighborhood of this parameter one has

rnq (0) → 1. Meanwhile, one has r2(0) = ∞ and so there is an open neighborhood

of q = 2 on which rnq (0) → ∞. This implies that the marked point a(q) cannot be

passive on the connected set C \ {0} by the identity theorem.

Theorem 1.7.1 and the paragraph following it then give that the activity locus of

c(q) has Hausdorff Dimension equal to two.

In the special case that k = 2, Laura DeMarco and Niki Myrto Mavraki observed

the following:

Proposition 1.7.1. Let rq(y) be the renormalization mapping for the 2-fold DHL

given by (1.28) with k = 2. Then, B(rq) = supp(Ta).

Proof. The critical points of the map rq(y) are y = 1, 1− q,∞, 2−q
2
,±
√

1− q. Three

of them behave similarly: y = 1 and y = ∞ are superattracting fixed points, while

y = 2−q
2

is just a preimage of ∞. Meanwhile, note that ±
√

1− q are both preimages

of y = 0, so the bifurcation locus of the family is the union of the activity loci of the

two marked points y = 0, y = 1− q.

The map rq commutes with

Cq(y) :=

(
y + q − 1

y − 1

)2

,
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which satisfies Cq(1− q) = 0 and Cq(0) = rq(1− q) = (1− q)2. Therefore, the activity

loci of y = 0 and y = 1 − q coincide, and it follows that the bifurcation locus of the

family is equal to the activity locus of the non-critical marked point y = 0.
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1.8 Examples

We conclude the paper with a discussion of the chromatic zeros associated with

the hierarchical lattices generated by the graphs shown in Figure 1.2. We also provide

a more detailed explanation of Figures 1.3 and 1.4.

1.8.1 Linear Chain

In this case, each graph Γn is a tree so that PΓn(q) = q(q − 1)|Vn|. See, for

example, [52]. Therefore, the limiting measure of chromatic zeros for the linear chain

is a Dirac measure at q = 1.

Meanwhile, even though the generating graph is not 2-connected, the statement

of Proposition 1.5.6 still applies with

rq(y) =
y2 + q − 1

2y + q − 2
,

which is the same formula as for the k-fold DHL, except with exponent k = 1. One

can check that rq has y = 1 − q as a persistent exceptional point, so that Theorem

C’ does not apply. Indeed, the activity locus for marked point a(q) ≡ 0 is the round

circle |q − 1/2| = 1/2 while for each n ≥ 0 the sequence of wedge products (1.9) is

just the Dirac measure at q = 1.

1.8.2 k-Fold DHL, Where k ≥ 2

In the proofs of Theorems A and B we already saw that the limiting measure µ

of chromatic zeros exists for this lattice and that outside of Vdeg = {q = 0,∞} it

coincides with the activity measure for the marked point a(q) ≡ 0. Here, we will

explain the claim the activity locus, and hence supp(µ), is the boundary between any

two of the colors (blue, black, and white) in Figure 1.3.

The Migdal-Kadanoff renormalization mapping is given by (1.28). One can check

that this mapping has y = 1 and y =∞ as persistent superattracting fixed points. In

Figure 1.3, the set q for which rnq (0)→ 1 is shown in white (i.e. not colored) and the
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set of q for which rnq (0)→∞ is shown in blue. Each of these corresponds to passive

behavior for the marked point a(q) ≡ 0. Meanwhile, if there is some neighborhood

N of q0 ∈ C \ Vdeg on which rnq (0) does not have one of these two behaviors, then

Montel’s Theorem implies that a(q) is also passive on N . Such points are colored

black.

Conversely, if q0 is on the boundary of two colors (blue, black, and white), then q0

is an active parameter for the marked point a(q). Indeed, if N is any neighborhood

of q0 then along any subsequence nk we have that rnkq (0) will converge uniformly to

1 or ∞ the parts of N that are white or blue, respectively, and rnkq (0) will remain

bounded away from 1 and ∞ on the black. Therefore, rnq (0) cannot form a normal

family on N .

1.8.3 Triangles

As the generating graph is 2-connected, Proposition 1.5.6 applies and one can

compute that the Migdal-Kadanoff renormalization mapping is:

rq(y) = y

(
y2 + q − 1

2y + q − 2

)
. (1.29)

It is the same as for the linear chain, but with an extra factor of y. Notice that for

this family of mappings Vdeg = {q = 0, 2,∞}. The proof of Theorem A applies and

one concludes that on C \ Vdeg the limiting measure of chromatic zeros µ coincides

with the activity measure of the marked point a(q) ≡ 0. However, a curious thing

happens: for every iterate n we have rnq (0) = 0 so that the marked point a is globally

passive on C \ Vdeg. Therefore, µ is supported on Vdeg. This illustrates why it was

important to use Theorem C’ (instead of just Theorem C) when proving Theorem A.

Working inductively with (1.29) one can directly prove that µ is the Dirac measure

at q = 2.
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1.8.4 Tripods

As explained in Section 1.5.5, the Migdal-Kadanoff renormalization mapping for

the tripod coincides with that of the linear chain, due to a common factor appearing

in the numerator and denominator. This drop in degree makes rq not useful for

studying the chromatic zeros on the hierarchical lattice generated by the tripod.

However, since each of the graphs Γn in this hierarchical lattice is a tree, the limiting

measure of chromatic zeros exists and is a Dirac measure at q = 1, by the same

reasoning as for the linear chain.

1.8.5 Split Diamonds

The split diamond is 2-connected and Theorem A implies that there is a limiting

measure of chromatic zeros µ for the associated lattice. One can check that the

Migdal-Kadanoff renormalization mapping for this generating graph is

rq(y) =
y5 + 2(q − 1)y2 + (q − 1)y + (q − 1)(q − 2)

2y3 + 2y2 + 5(q − 2)y + (q − 2)(q − 3)
. (1.30)

As for the k-fold DHL, one can check that rq has y = 1 and y = ∞ as persistent

superattracting fixed points. Therefore, one can use the the same coloring scheme as

for the k-fold DHL to make computer images of the activity locus of a(q) ≡ 0, and

hence of supp(µ); See Figure 1.4. With some explicit calculations, one can rigorously

verify that each of the three behaviors (white, blue, and black) actually occurs for

q 6∈ Vdeg.
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2. SECOND APPLICATION OF THEOREM C & C’ -

LEE-YANG-FISHER ZEROS FOR THE CAYLEY TREE

In this section we will describe another application of Theorem C & C’ in statistical

mechanics. Particular we show that the limiting current of Lee-Yang-Fisher zeros

for the Cayley Tree exists. We expect that this result will be useful in studying

thermodynamics quantities for this model, such as critical components.

2.1 Introduction

Let us first recall the Ising Model on a graph Γ = (V,E) with vertex set V and

edge set E. Assign a “spin” to each vertex using a spin configuration σ : V → {±1}.

The total energy of the configuration σ is given as

H(σ) = −J ·
∑
{v,w}∈E

σ(v)σ(w)− h ·
∑
v∈V

σ(v), (2.1)

where J > 0 is the coupling constant that describes the interaction between neigh-

boring spins, and h is the externally applied magnetic field.

Let W (σ) := exp(−H(σ)/T ) for temperature T . The partition function Z is

defined by

Z ≡ Z(Γ, h, T ) :=
∑
σ

W (σ),

which is summed over all possible spin configurations σ. The partition function is

a fundamental quantity in statistical mechanics as most aggregate thermodynamic

quantities of a physical system can be derived from it.

Using the change of variables

z = exp(−2h/T ) (field-like variable) and

t = exp(−2J/T ) (temperature-like variable),
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Z(z, t) becomes a polynomial after multiplying by
√
z
|V |√

t
|E|

to clear the denomina-

tors. For fixed t ∈ [0, 1], T. D. Lee and C. N. Yang [53] characterized these zeros,

now known as Lee–Yang zeros in their famous theorem.

Lee–Yang Theorem. For t ∈ [0, 1], the complex zeros in z of the partition function

Z(z, t) for the Ising model on any graph lie on the unit circle T = {|z| = 1}.

2.1.1 Limiting Measure of Lee–Yang Zeros µt

Let us loosely define a “lattice” to be a sequence of connected graphs Γn = (Vn, En)

of increasing size. The standard example is the Z2 lattice: for each n ≥ 0, one defines

Γn to be the graph whose vertices consist of the integer points in [1, n] × [1, n] and

whose edges connect vertices at distance one in R2.

For each n ≥ 0, denote by Zn(z, t) the partition function associated to Γn, and

let z1(t), . . . , z|Vn|(t) be the Lee–Yang zeros at temperature t ∈ [0, 1]. For classical

lattices (Zd, etc), it is a consequence of the van-Hove Theorem [54] and the Lee–Yang

Theorem that for each t ∈ [0, 1] the sequence of measures

µt,n :=
1

|Vn|

|Vn|∑
i=1

δzi(t)

weakly converges to a limiting measure µt that is supported on the unit circle T,

called the limiting measure of Lee–Yang zeros for the lattice {Γn}.

A famous unsolved problem from statistical physics is to understand the limiting

measures of Lee–Yang zeros µt for the Zd (d ≥ 2) lattice and how they depend on t.

Besides the one-dimensional lattice Z1, there are very few lattices for which a global

description of the limiting measure of Lee–Yang zeros has been rigorously proved,

these include the Diamond Hierarchical Lattice [19] and the Cayley Tree [43].
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2.1.2 Lee–Yang Zeros for the Cayley Tree

Let Γkn denote the n-th-level rooted Cayley Tree with branching number k and Γ̂kn

the unrooted (full) Cayley Tree of level n with branching number k. An illustration

for k = 2 is given in Figure 2.1.

Fig. 2.1. Four levels of the rooted (left) and unrooted (right) Cayley tree
with branching number k = 2.

We will denote the corresponding lattices by Γk := {Γkn}∞n=0 and Γ̂k := {Γ̂kn}∞n=0.

Lee-Yang zeros on the Cayley Tree (see Figure 2.1) were first studied by Müller-

Hartmann and Zittartz in the 1970s [55, 56], also Barata–Marchetti [57], Barata-

Goldbaum [58], and others. The hierarchical structure of the Cayley Tree allows the

following Migdal-Kananoff renormalization procedure to locate these Lee-Yang zeros,

which played a key role in the aforementioned papers:

Proposition 2.1.1. For any k ≥ 2, any t ∈ [0, 1) and any z ∈ T := {z ∈ C : |z| = 1}

consider the following Blaschke Product:

Bz,t,k(w) := z

(
w + t

1 + wt

)k
. (2.2)

The Lee–Yang zeros for the n-th rooted Cayley Tree with branching number k ≥ 2 are

solutions z to

Bn
z,t,k(z) = −1, (2.3)
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and the Lee–Yang zeros for the n-th full Cayley Tree with branching number k ≥ 2

are solutions z to

Bz,t,k+1 ◦Bn−1
z,t,k(z) = −1. (2.4)

For the classical Zd (d ≥ 2) lattice, not much has been rigorously proved about

the limiting measure of Lee–Yang zeros beside the case when t > 0 is sufficiently

small. Nevertheless there is a conjectural description as detailed in [19, P.493-494].

Building on Proposition 2.1.1 and the works of the aforementioned papers, an almost

global picture of the limiting measure of Lee–Yang zeros for the Cayley Tree was

obtained in [43], using modern techniques from dynamical systems. The point was

to determine to what extent the conjectural picture for the Zd lattice is true for the

Cayley Tree. We refer the reader to [43] for the main results and statements.

2.2 Lee–Yang–Fisher Zeros for the Cayley Tree

Recall that for any graph Γ, the partition function ZΓ(z, t) for the Ising model is a

polynomial in two variables after clearing the denominators. In previous sections, one

fixes the temperature t ∈ [0, 1] and consider the complex zeros of ZΓ in the z-plane.

If we allow both z and t to vary, the zero locus of ZΓ(z, t) is a (potentially reducible)

algebraic curve in C2. We will consider it as a divisor by assigning the multiplicity

to each irreducible component according to its order of vanishing in ZΓ(z, t). This

divisor is called the Lee-Yang-Fisher (LYF) zeros for Γ.

For simplicity, in the remainder of the section we will focus on the rooted Cayley

Tree with a fixed branching number k ≥ 2 (see Figure 2.1). Let Sn be LYF zeros

for the n-th rooted Cayley Tree, and let dn be the degree of Sn. We are interested

in whether the sequence d−1
n [Sn] converges as n → ∞ in weak topology of current.

If such limit exists, it’s called the limiting current of LYF zeros for the Cayley Tree.

Similar convergence problems on the LYF zeros on the Diamond Hierarchical Lattice
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have been recently studied by Bleher-Lyubich-Roeder in [44]. Proposition 2.1.1 allows

us to obtain Sn dynamically as follows:

By Proposition 2.1.1, the Lee-Yang-Fisher zeros for the n-th rooted Cayley Tree

are the solutions z, t to

Bn
z,t(z) = −1,

where

Bz,t(w) = z

(
w + t

1 + wt

)k
.

Note that the degree of Bz,t(w) is less than k if and only if z = 0 or t = ±1.

In order to apply Theorem C & C’, the parameter space needs to be a projective

variety, in our case we will use P2 as follows: Denote the coordinates in V := P2 by

[Z : T : U ] such that (z, t) = (Z/U, T/U). Then, Bz,t can be extended as an algebraic

family of rational maps (Section 1.1.2) B[Z:T :U ] in V = P2, with

Vdeg := {Z = 0} ∪ {T = U} ∪ {T = −U} ∪ {U = 0} ⊂ P2.

In the affine coordinate (z, t) = (Z/U, T/U) we recover the family Bz,t. We remark

that

1. Points in Vdeg are precisely the parameters for which the degree of Bz,t degen-

erates to less than k.

2. Since U = 0 is the line at infinity with respect to the coordinates (z, t), the

space V \Vdeg is just C2 with three lines {z = 0}∪{t = 1}∪{t = −1} removed.

Define the skew product B : (V \ Vdeg)× P1 → (V \ Vdeg)× P1 by

B(z, t, w) := (z, t, Bz,t(w)),

and let a(z, t) := z and b(z, t) := −1 be two marked points. Note that a, b can be

extended as rational functions in P2 in a natural way. Then the current of integration

over Sn can be expressed as

1

dn
[Sn] =

1

kn
[Bn

z,t ◦ a(z, t) = b(z, t)]

= (π1)∗

(
1

kn
(Bn

z,t)
∗[w = b(z, t)] ∧ [w = a(z, t)]

)
,
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where π1 is the projection onto the parameter space V .

Having this set up, the existence of the limiting current of LYF zeros for the

rooted Cayley Tree is now a consequence of the equidistribution Theorems C’. Let us

recall that Ta denotes the activity current of the marked point a(z, t) = z as defined

in Section 1.1.2.

Theorem D. For any fixed branching number k ≥ 2, the limiting current of Lee–

Yang–Fisher zeros for the rooted Cayley Tree S exists. Moreover, when restricted

to V \ Vdeg, the current S is equal to the activity current Ta of the marked point

a(z, t) = z, i.e. the following weak convergence of currents holds in V \ Vdeg:

1

dn
[Sn] =

1

kn
[Bn

z,t(z) = −1] −→ Ta.

Proof. It is enough to work in affine coordinate U = 1 and check that family of rational

maps {Bz,t} along with the marked points a, b in V \ Vdeg satisfy the hypotheses of

Theorem C & C’.

Clearly, the family of rational maps

Bz,t = z

(
w + t

1 + wt

)k
and the two marked points a(z, t) = z, b(z, t) = −1 are all defined over Q.

Suppose there is some integer n ≥ 1 with Bn
z,t(z) ≡ −1, this implies that any

(z, t) ∈ V \ Vdeg is a zero of the partition function for the n-th rooted Cayley Tree,

which is a non-constant polynomial in z and t, which is impossible.

Suppose b(z, t) = −1 is persistently exceptional. Then for all (z, t) ∈ V \ Vdeg,

either w = −1 is a superattracting fixed point, or a point in a superattracting two

cycle. However, for the parameter (z, t) = (2, 0) 6∈ Vdeg, the rational map

B2,0(w) = 2wk

satisfies

B2,0(−1) = 2(−1)k, B2
2,0(−1) = 2k+1(−1)k

2

,
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So that the point w = −1 cannot be a fixed point or in a two cycle. This shows that

the marked point b cannot be persistently exceptional.

Since the hypotheses of Theorem C & C’ hold, the theorem follows.

Remark 2.2.1. For any fixed branching number k ≥ 2, the proof of Theorem D

can be easily adjusted to show the existence of limiting current of LYF zeros for the

unrooted Cayley Tree, but we will omit the details here.
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