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ABSTRACT

Pilla, Michael R. Ph.D., Purdue University, August 2020. Spectra of Composition
Operators on the Unit Ball in Two Complex Variables. Major Professor: Carl C.
Cowen.

Let φ be a self-map of B2, the unit ball in C2. We investigate the equation

Cφf = λf where we define Cφf := f ◦ φ, with f a function in the Drury Arveson

Space. After imposing conditions to keep Cφ bounded and well-behaved, we solve

the equation Cφf = λf and determine the spectrum σ(Cφ) in the case where there

is no interior fixed point and boundary fixed point without multiplicity. We then

investigate the existence of one-parameter semigroups for such maps and discuss

some generalizations.
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1. INTRODUCTION

1.1 Background

Let φ be a self map of the unit ball BN = {z ∈ CN | |z1|2 + · · ·+ |zN |2 < 1} in CN ,

not an automorphism. We assume φ is not a constant function. In the case of the

disk D, work by Koenig in 1884, presuming φ(0) = 0 and φ′(0) = λ where 0 < |λ| < 1,

demonstrated that the functional equation, known as Schroeder’s equation,

f ◦ φ = λf

has an essentially unique solution in the disk [22]. Of course, there is nothing special

about the interior fixed point at 0. One can always conjugate by an automorphism

of the disk to send any interior fixed point to the origin. Except for the identity,

recall that Schwarz lemma tells us that there are no other fixed points in the disk.

Assuming some additional hypotheses, Enoch [13] and Bridges [5] were able to extend

this result to analytic self maps of BN with interior fixed point.

Now, it may also be the case that our self map of the ball φ has no interior fixed

points. If φ has no interior fixed points in the disk, then it is well known that there

is a privileged fixed point a on the boundary such that iterates of φ converge to a on

compact subsets of the disk. This privileged point is called the Denjoy-Wolff point.

MacCluer demonstrated an analogue of this for BN [24]. In particular, suppose φ is a

holomorphic, fixed point free self-map of BN . Then there exists a unique point ζ on

the boundary such that the iterates of φ converge uniformly to ζ on compact subsets

of BN . We will also call this point the Denjoy-Wolff point. It also follows from [24]

that

0 < d(ζ) = lim inf
z→ζ

1− |φ(z)|2

1− |z|2
= α ≤ 1
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where we call d(ζ) the dilation coefficient of φ for reasons to be explained below.

This dilation coefficient will further partition the cases where we have an attractive

boundary fixed point and will be the focus of our attention.

1.2 Geometric Function Theory in BN

In the disk, investigations of the function theoretic properties of Cφ make frequent

use of the fact that an analytic function in the disk has nontangential limit at ζ ∈ ∂D

in the nontangential approach region given by

Γ(ζ, α) = {z ∈ D | |z − ζ| < α(1− |z|)}

where α > 1.

In several variables, this is not sufficient. Instead, we must use a more restricted

notion of convergence.

Definition 1 Let ζ ∈ ∂BN and let Γ(t) define a curve from [0, 1) to BN such that

Γ→ ζ as t→ 1. Next, let γ(t) = 〈Γ(t), ζ〉ζ be the orthogonal projection of Γ onto the

complex line through 0 and ζ. A curve is called restricted if the following criteria are

satisfied:

lim
t→1

|Γ− γ|2

1− |γ|2
= 0 and

|ζ − γ|
1− |γ|2

≤M

for some constant M .

We say that f : BN → CN has restricted limit L at ζ if limz→ζ f(z) = L along

every restricted curve.

Intuitively, the second criteria is telling us that the projection γ(t) resides in a

nontangential approach region in the copy of the unit disk lying in the complex line

through 0 and ζ.

We will also make use of the generalized Julia-Carathéodory theorem, the proof

and full statement of which can be found in [27] as Theorem 8.5.6 or [10] as Theorem
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2.81. For ζ ∈ ∂BN , we let φζ(z) = 〈φ(z), ζ〉, the coordinate of φ in the direction of

ζ. We will also let φ′(z) represent the Jacobian matrix of φ. We state the truncated

version with the relevant equivalences here for convenience.

Theorem 2 (Julia-Carathéodory theorem in BN) Let φ be an analytic map from

BN into itself and let ζ ∈ ∂BN . Then the following are equivalent:

1. d(ζ) = lim infz→ζ(1 − |φ(z)|)/(1 − |z|) < ∞ where the limit is taken as z ap-

proaches ζ unrestrictedly in BN .

2. The map φ has restricted limit η at ζ, where |η| = 1 and Dζφη(z) = 〈φ′(z)ζ, η〉

has finite restricted limit at ζ.

Given these conditions, 〈φ′(z)ζ, η〉 has restricted limit d(ζ) at ζ.

Thus, by the Julia-Carathéodory theorem in BN , the complex directional deriva-

tive Dζφ has a radial limit at ζ which is called the dilation coefficient of φ. It is called

the dilation coefficient due to its connection to Julia’s lemma in BN and its geometric

interpretation. We recall it here for convenience.

Lemma 3 (Julia’s Lemma in BN) Suppose ζ is in ∂BN with d(ζ) < ∞. Suppose

an → ζ satisfies

lim
n→∞

1− |φ(an)|2

1− |an|2
= d(ζ)

and limn→∞ φ(an) = η where η is in ∂BN . Then for every z in BN

|1− 〈φ(z), η〉|2

1− |φ(z)|2
≤ d(ζ)

|1− 〈z, ζ〉|2

1− |z|2
.

If we let E(k, ζ) = {z ∈ BN | |1 − 〈z, ζ〉|2 ≤ k(1 − |z|2} denote the ellipsoid

internally tangent to the unit sphere at ζ with center 1
1+k

ζ, then φ maps the ellipsoid

E(k, ζ) into the ellipsoid E(d(ζ)k, η) (see [10] Lemma 2.77).

Suppose φ is an analytic map from the ball BN into itself with no interior fixed

points. As we saw, MacCluer demonstrated in [24] that there exists a unique point
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ζ ∈ ∂BN , which we call the Denjoy-Wolff point of φ, with φ(ζ) = ζ such that the

iterates of φ converge uniformly to ζ on compact subsets of BN . It also follows

from [24] that

0 < d(ζ) = lim inf
z→a

1− |φ(z)|2

1− |z|2
≤ 1

and thus by the Julia-Carathéodory theorem in BN , the complex directional derivative

Daφ has radial limit d(ζ) at ζ so that Dζφζ(ζ) = 〈φ′(ζ)ζ, ζ〉 ≤ 1. Uniqueness follows

from Julia’s lemma in BN . Suppose ζ1 and ζ2 are distinct fixed points on the boundary

of B2 such that d(ζ1) ≤ 1 and d(ζ2) ≤ 1. Set E(k, ζ) = {z ∈ B2 | |1− 〈z, ζ〉|2 ≤ k(1−

|z|2)}. Then we see geometrically that E(k, ζ1) and E(k, ζ2) are ellipsoids internally

tangent to the unit sphere at ζ1 and ζ2, respectively. Recall that Julia’s Lemma in

BN tells us that φ maps the ellipsoids E(k, ζ1) and E(k, ζ2) into the corresponding

ellipsoids and E(d(ζ1)k, ζ1) and E(d(ζ2)k, ζ2), respectively. Choose k1 and k2 so that

the closed ellipsoids E(k1, ζ1) and E(k2, ζ2) are tangent to each other at w in BN .

Then φ(w) is in E(k1, ζ1)∪E(k2, ζ2) = {w}, contradicting the hypothesis that φ does

not have a fixed point in BN .

We state it here for reference.

Theorem 4 If φ is an analytic map of the ball BN into itself that has no fixed points

in the ball, then there is a unique fixed point ζ (the Denjoy-Wolff point) of φ on the

boundary with d(ζ) ≤ 1. If φ(b) = b with |b| = 1, not the Denjoy-Wolff point, then

d(b) > 1.

For the case when ζ is the Denjoy-Wolff point, by the generalized Julia-Carathéodory

Theorem we have d(ζ) = 〈φ′(ζ)ζ, ζ〉 = α. The dilation coefficient partitions our self

maps of the ball into three classes, depending on the fixed point behavior of φ. We

define these as follows.

Definition 5 An analytic map φ from BN into BN is called

• elliptic if φ fixes an interior point of BN
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• hyperbolic if φ has no fixed point in BN and dilation coefficient α < 1

• parabolic if φ has no fixed point in BN and dilation coefficient α = 1.

1.3 A Uniform Approach to Solving Schroeder’s Equation

In the disk, Cowen approached the problem of solving Schroeder’s equation in a

uniform way using linear fractional maps [9]. Under quite general conditions, it was

shown that a nonconstant analytic map φ, not an automorphism, from the disk into

the disk can be intertwined with a linear fractional map Φ and an analytic map σ

such that

Φ ◦ σ = σ ◦ φ

where σ maps the disk into a domain Ω with Φ mapping Ω onto Ω. We have the

following commutative diagram:

D D

Ω Ω

φ

σ σ

Φ

If Ω is the smallest set containing σ(D) for which Φ(Ω) = Ω, then the model

parameters (σ,Ω,Φ) will be unique up to holomorphic equivalence. The classification

depends on the behavior near the Denjoy-Wolff point a. The model results in the

following four cases:

i. (plane/dilation) Ω = C, σ(a) = 0, and Φ(z) = sz where 0 < |s| < 1.

ii. (plane/translation) Ω = C, σ(a) =∞, and Φ(z) = z + 1.

iii. (half plane/dilation) Ω = {z | <z > 0}, σ(a) = 0, and Φ(z) = sz where

0 < s < 1.

iv. (plane/dilation) Ω = {z | =z > 0}, σ(a) =∞, and Φ(z) = z ± 1.
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We next turn our attention to Schroeder’s equation f ◦ φ = λf . We would like to

interpret this as an eigenvalue equation. We start with the following definition.

Definition 6 If H is a vector space of functions defined on a set X, given a function

f : X → X, we define the composition operator Cφ by

Cφf = f ◦ φ.

Thus we may write Schroeder’s equation as Cφf = λf . We next ask ourselves over

what vector space we are solving the equation. We must then determine when f is

in the appropriate vector space. The vector spaces over which we would like to solve

our functional equation are Hilbert function spaces. We recall that a Hilbert function

space is a Hilbert space of complex-valued functions with pointwise vector operations

along with the property that for each z in our set, the linear functional given by

evaluation at z, f → f(z) is continuous. By the Riesz representation theorem, there

exists a function kz which we will call the kernel function, in the Hilbert space that

induces the linear functional f(z) = 〈f, kz〉. In such a case, we call the function kz the

reproducing kernel. A Hilbert function space is also known as a reproducing kernel

Hilbert space (RKHS) or a Hilbert space of analytic functions.. The most celebrated

example in C is the Hardy space H2(D).

Definition 7 For 0 < p <∞, the Hardy space Hp(D) is the set of functions analytic

on the unit disk D for which

sup
0<r<1

∫ 2π

0

|f(reiθ)|p dθ
2π

<∞.

For 1 ≤ p < ∞, Hp(D) is a Banach space with norm ||f ||p given by the pth root

of this supremum. The Hardy space H∞(D) is the set of analytic functions that are

bounded in D with supremum norm ||f ||∞.

When p = 2, one can show, letting f(z) =
∑∞

j=0 ajz
j, that an equivalent definition

is given by
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H2(D) = {f |
∞∑
j=0

|aj|2 <∞}.

If we restrict f to reside in a Hilbert function space, then we may interpret

Schroeder’s equation as an eigenvalue equation over our Hilbert function space for a

composition operator Cφ.

Since H2(D) is an infinite-dimensional vector space, we also generalize the notion

of eigenvalues.

Definition 8 Let X be a Hilbert space and T a bounded linear operator from X into

X. The spectrum of T is defined to be

σ(T ) := {λ ∈ C | λI − T is not invertible}.

For finite-dimensional vector spaces, the spectrum coincides with the set of eigen-

values. For infinite-dimensional vector spaces, however, the set of eigenvalues is a

subset of the spectrum. If our Hilbert space is H2(D), we do not need to be con-

cerned about the boundedness of the composition operator Cφ since one can use

the Littlewood subordination principle to demonstrate that Cφ is bounded for every

analytic map φ : D→ D with

||Cφ|| ≤
(

1 + |φ(0)|
1− |φ(0)|

) 1
2

.

See Corollary 3.7 of [10] for details.

In our case, the strategy to find the spectrum is to start with the equation F ◦Φ =

λF and thus, letting f = F ◦ σ, use the model results to determine the spectrum of

the equation

f ◦ φ = F ◦ σ ◦ φ = F ◦ Φ ◦ σ = λF ◦ σ = λf.

In the disk, it is natural to consider Cφ acting on the Hardy space H2(D). Our

goal is to make partial steps toward generalizing the results in the disk to the unit

ball B2 when our self map φ has no interior fixed point.
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1.4 Linear Fractional Maps in CN

Before we attempt to generalize the results to higher dimensions, we must first

say what it means to be a linear fractional map in CN for N > 1. For N = 1, given

a linear fractional map f(z) = az+b
cz+d

, recall that one may define the associated matrix

of f as follows:

mf =

a b

c d

 .

One can show that mf acts as a linear transformation on complex projective

coordinates (see [25] pg.156). We take the perspective that linear fractional maps in

CN should have associated matrices which act as linear transformations on complex

projective coordinates. Recall the following construction. We associate the point

z = (z′1, z2) where z′1 ∈ CN and z2 ∈ C, z 6= 0, with the point
z′1
z2
∈ CN . This

associated space is known as the complex projective space CPN . We now consider a

linear transformation in CN which can be represented by a complex matrix as

A B

C∗ D


where A is an N × N matrix, B and C are column vectors in CN , D ∈ C, and C∗

denotes the conjugate transpose of C. Denote the rows of A by ai for i = 1, ..., N and

B =
(
b1 · · · bN

)T
. For a point

z′1
z2

 in CPN , we have

w′1
w2

 =

A B

C∗ D

z′1
z2

 =


〈a1, z′1〉+ b1z2

...

〈aN , z′1〉+ bNz2

〈z′1, C〉+Dz2

 .

where 〈·, ·〉 represents the standard inner product.
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Let z ∼

z′1
z2

 and w ∼

w′1
w2

. Then we can associate the above linear transfor-

mation in CPN with the non-linear transformation in CN given by

w =
w′1
w2

=

(
〈a1, z′1〉+ b1z2

〈z′1, C〉+Dz2

, ...,
〈aN , z′1〉+ bNz2

〈z′1, C〉+Dz2

)

=

〈a1,
z′1
z2
〉+ b1

〈 z
′
1

z2
, C〉+D

, ...,
〈aN , z

′
1

z2
〉+ bN

〈 z
′
1

z2
, C〉+D


=

(
〈a1, z〉+ b1

〈z, C〉+D
, ...,
〈aN , z〉+ bN
〈z, C〉+D

)
=

Az +B

〈z, C〉+D
.

This is precisely the definition given by Cowen and MacCluer [10] and is the one

we will adopt.

Definition 9 We say φ is a linear fractional map in CN if

φ(z) =
Az +B

〈z, C〉+D

where A is an N ×N matrix, B and C are column vectors in CN , D ∈ C, and 〈·, ·〉

is the standard inner product.

This class of maps has been studied in more generality by others [16], [26], [29], [31]

and can be demonstrated to share many additional properties with linear fractional

maps in the disk that justify their definition as linear fractional maps [11].

We define the associated matrix mφ of the linear fractional map φ(z) = Az+B
〈z,C〉+D

to be given by

mφ =

A B

C∗ D


which, as we saw, is a linear transformation on CPN . If φ(z) = w and the point

v ∈ CN is associated with z, then mφv is associated with the point w and vice versa.

A routine calculation also shows that mφ1◦φ2 = mφ1mφ2 and mφ−1 = (mφ)−1.
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1.5 A Uniform Approach in Several Variables

In several variables, an analogue of the linear fractional models used in the disk

will not be adequate. The proof of the existence of the linear fractional models in

the disk cannot be generalized to BN due to its critical use of the Riemann mapping

theorem, which fails in CN for N > 1. This is not the only issue in higher dimensions.

As we will see, to gain any traction for the case when N > 1, further refinement is

needed.

While it can be demonstrated that linear fractional maps induce bounded compo-

sition operators over the standard Hardy spaces (see [11], [20]), one can’t guarantee

much more without additional assumptions. Not only can it be demonstrated that

the composition operator Cφ is not necessarily bounded, but one can construct un-

bounded composition operators induced by polynomials [7]! We can, however, classify

the set of linear fractional maps in definition 9 from B2 into B2 in a similar fashion

as in the disk [8]. We hope to expand on this by including analytic maps under

given conditions. In this classification, both for linear fractional maps and for more

general analytic maps, we exclude two types of maps that we consider degenerate.

We exclude maps that are not invertible as maps of CN onto itself and maps of the

ball that do not have a Denjoy-Wolff point. The first type maps the ball into a lower

dimensional affine set and in the latter case one can show that the map acts as a

generalized rotation on an affine subset that has a non-trivial intersection with the

ball.

We find that for the class of linear fractional maps in two complex variables,

Cowen’s model theory generalizes to admit seven cases to be considered [8]. The

seven cases are determined by the behavior of the map φ near the Denjoy-Wolff point

and its characteristic domain. As in the disk, one can show that this classification

is invariant under conjugation by an automorphism. We find that there are three

characteristic domains to be considered. These are the whole space C2, the half space
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H = {(z1, z2) ∈ C2 | <z1 > 0}, and the Siegel half space H2 = {(z1, z2) ∈ C2 | <z1 >

|z2|2}. We have the following seven cases.

I. The Denjoy-Wolff point is inside the ball and the characteristic domain is the

whole space. This is the whole space/dilation case.

II. There are three distinct fixed points, the Denjoy-Wolff point is on the boundary

and the characteristic domain is a half space. This is the half space/dilation

case.

III. There are three distinct fixed points, the Denjoy-Wolff point is on the boundary

and the characteristic domain is a Siegel half space. This is the Siegel half

space/dilation case.

IV. There is one fixed point of multiplicity three on the boundary and the char-

acteristic domain is the whole space. This is the whole space/Heisenberg

translation-translation case.

V. There is one fixed point of multiplicity three on the boundary and the character-

istic domain is a Siegel half space. This is the Siegel half space/Heisenberg

translation case.

VI. There are two fixed points with the Denjoy-Wolff point of multiplicity two on

the boundary and the characteristic domain is the whole space. This is the

whole space/translation case.

VII. There are two fixed points with the Denjoy-Wolff point of multiplicity one on

the boundary and the characteristic domain is the whole space. This is the

whole space/asymptotic translation case.

Case I corresponds to the case when φ has an interior fixed point, that is, φ is an

elliptic map. Cases II and III correspond to the case when φ is a hyperbolic map. The

remaining cases correspond to the cases when φ is a parabolic map. We reproduce

the results of [8] here for convenience.
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Theorem 10 (The Model for Iteration of Linear Fractional Maps) Let φ be

a linear fractional map of B2 into itself, not an automorphism of the ball and not con-

stant. We can intertwine φ with a model linear fractional map Φ with characteristic

domain Ω, either the half space, Siegel half space, or the whole space, and an open

map σ from B2 into Ω such that

σ ◦ φ = Φ ◦ σ.

If Ω is the smallest set containing σ(B2) for which Φ(Ω) = Ω, then the model

parameters (σ,Ω,Φ) will be unique up to holomorphic equivalence.

We have the following commutative diagram:

B2 B2

Ω Ω

φ

σ σ

Φ

In addition, there exists a set V , known as the fundamental set, such that V is an

open, connected, simply connected subset of B2 such that φ(V ) ⊂ V and for every

compact set K in B2, there is a positive integer n with φn(V ) ⊂ V with φ and σ

univalent on V and with σ(V ) a fundamental set for Φ on Ω.

If our map φ is an analytic map that is not a linear fractional map but otherwise

has the same model for iteration as Theorem 10, we will say that φ satisfies the

requirements of Theorem 10.

1.6 The Drury-Arveson Space

Recall that the equation f ◦ φ = λf was studied over the Hardy space H2(D).

In BN , the correct generalization of the Hardy space H2(D) seems to be the Hilbert

function space known as the Drury-Arveson space H2
d(BN) or just H2

d when it is

understood that we are working in the ball. See [30] for a recent survey on the

Drury-Arveson space.
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We began by introducing some basic notation. For z = (z1, ..., zn) ∈ Cn, we let

zα =
n∏
i=1

zαii

for every multi-index α = (α1, ..., αn) ∈ Nn. Likewise we write

α! =
n∏
i=1

αi! and |α| =
n∑
i=1

αi.

Suppose f(z) is analytic in BN so that

f(z) =

(∑
α

a(1)
α zα, ...,

∑
α

a(N)
α zα

)
We define the Drury-Arveson space H2

d to be the reproducing kernel Hilbert space

(RKHS) on BN with kernel

k(z, w) = kw(z) =
1

1− 〈z, w〉
where 〈·, ·〉 is the standard inner product. For two functions f, g ∈ H2

d if we have

Taylor expansions given by

f(z) =
∑
α

cαz
α and g(z) =

∑
α

dαz
α

then we define their inner product to be

〈f, g〉H2
d

= 〈f, g〉 =
∑
α

α!

|α|!
cαdα.

An orthonormal basis is then given by {eα} where

eα =

√
|α|!
α!

zα.

An analytic function f(z) =
∑

α cαz
α is in H2

d if

||f ||2H2
d

= ||f ||2 =
∑
α

|cα|2
α!

|α|!
<∞.
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For w ∈ BN , we have

k(z, w) = kw(z) =
1

1− 〈z, w〉
=
∞∑
n=0

〈z, w〉n =
∞∑
n=0

∑
|α|=n

|α|!
α!

wαzα

which is in H2
d and

f(w) =
∑
α

cαw
α =

∑
α

cα
|α|!
α!

wα〈zα, zα〉 = 〈f, kw〉.

Our goal then, will be as follows:

Goal 1 Given an analytic map φ : B2 → B2, not an automorphism, such that φ is

in the Siegel half space/dilation case. Find all analytic functions f : B2 → C in the

Drury-Arveson space and all complex numbers λ that satisfy the functional equation

Cφf = λf .

Much of what we do will be applicable to both the Siegel half space/dilation case

and the half space/dilation case. We will make note when we must presume the

former. When applicable we will follow arguments given by [10].
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2. SOLVING SCHROEDER’S EQUATION IN THE

SIEGEL HALF SPACE/DILATION AND HALF

SPACE/DILATION CASE

2.1 Conjugation

Recall that in the case where φ has an interior fixed point, we may conjugate by

an automorphism to relocate the interior fixed point to the origin so that we may

assume φ(0) = 0 without loss of generality. For the case where φ has no interior fixed

point and Denjoy-Wolff point on the boundary, we standardize the problem so that

we may presume φ(e1) = e1 without loss of generality, where e1 = (1, 0) is the “east

pole”. We justify this below.

Lemma 11 Suppose η is an automorphism of the ball and suppose ψ = η−1 ◦ φ ◦ η.

Then f is a solution to f ◦φ = λf if and only if g = f ◦ η is a solution to g ◦ψ = λg.

Proof This follows immediately from the relation

g ◦ ψ = f ◦ η ◦ ψ = f ◦ φ ◦ η = λf ◦ η = λg.

Thus, according to the above lemma, since we are concerned with maps that have

no interior fixed point and a boundary fixed point, without loss of generality we may

conjugate by a rotation to place the Denjoy-Wolff point at e1 = (1, 0), the “east pole”

of the ball.

For φ in the Siegel half space/dilation model or half space/dilation model, we may

further conjugate φ by the appropriate automorphisms [8] to attain

σ ◦ φ = Φ ◦ σ
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where Φ(z) = (αz1, βz2) with α ≥ |β|2 and 0 < α < 1 where α = |β|2 corre-

sponds to the Siegel half space/dilation model and α > |β|2 corresponds to the half

space/dilation model.

As in the disk, our strategy will be to first find the solutions of the equation

F ◦ Φ = λF and thus, letting f = F ◦ σ, determine the solutions of the equation

f ◦ φ = F ◦ σ ◦ φ = F ◦ Φ ◦ σ = λF ◦ σ = λf.

We first need the following theorem.

Lemma 12 Suppose that φ, V , Φ, σ, and Ω satisfy requirements of Theorem 10.

Suppose λ 6= 0 is a complex number. If F is analytic on Ω and F ◦ Φ = λF , then

f ◦ φ = λf where f = F ◦ σ. Conversely, if f is analytic on B2 and f ◦ φ = λf , there

is a function F analytic on Ω so that F ◦ Φ = λF and f = F ◦ σ.

Proof If F ◦ Φ = λF , then

f ◦ φ = F ◦ σ ◦ φ = F ◦ Φ ◦ σ = λ ◦ F ◦ σ = λf.

Conversely, if f ◦φ = λf , then since σ is univalent on V , we may define F̃ on σ(V )

by letting F̃ = f ◦ σ−1 so that F̃ ◦ Φ = λF̃ on σ(V ). Since σ(V ) is a fundamental

set for Φ on Ω, we can define F on Ω by F (w) = λ−kF̃ (Φk(w)) where k is an integer

large enough so that Φk(w) is in σ(V ). If k′ = k + m is another such integer with

m > 0, then

λ−k
′
F̃ (Φk′(w)) = λ−k−mF̃ (Φk+m(w)) = λ−k−mF̃ (Φm(Φk(w)))

= λ−k−m
(
λmF̃ (Φk(w))

)
= λ−kF̃ (Φk(w))

so that F is well defined. We see that it satisfies F ◦ Φ = λF and f = F ◦ σ.
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2.2 The Solution to F ◦ Φ = λF .

We begin by finding the solution to the equation F ◦Φ = λF and then use Lemma

12 to transfer the solution to f ◦ φ = λf .

Theorem 13 Let Φ(z) = (αz1, βz2) with α ≥ |β|2 and 0 < α < 1 so that Φ corre-

sponds to the Siegel half space model or half space model. If β /∈ R or Φ is in the half

space model, then F ◦Φ = λF has a nonzero solution F analytic in C2 if and only if

λ = αkβl for k, l ∈ N ∪ {0} with F (z) = zk1z
l
2. If β ∈ R and Φ is in the Siegel half

space model (so that α = β2), then F ◦Φ = λF has a nonzero solution F analytic in

C2 if and only if λ = αkβl for k, l ∈ N∪ {0} with F (z) = zk1z
l
2 or a polynomial of the

form

Fm(z) =
∑

{k,l|m=2k+l}

aklz
k
1z

l
2

where m is a fixed nonnegative integer and akl can equal 0 or 1 for each k, l.

Proof Let F (z) =
∑

k,l≥0 aklz
k
1z

l
2 be an analytic function in C2. To avoid triviali-

ties, we presume F (z) 6= 0. We then proceed to compare coefficients of the Taylor

expansion. Our functional equation then demands

∑
k,l

akl(αz1)k(βz2)l = F (Φ(z)) = λF (z) = λ
∑
k,l

aklz
k
1z

l
2

for all z1 and z2 which implies that

αkβlakl = λakl

for all k, l ≥ 0. Let β = reiθ with θ 6= πp for p integer. Then, for akl, amn 6= 0 we have

αkβl = λ = αmβn → αkrleiθl = αmrneiθn

which implies l = n, since α is real, from which it follows that k = m and therefore

akl = amn. Thus if β is not real, our solutions must be the monomials zk1z
l
2. In such

a case, for each monomial F (z) = aklz
k
1z

l
2, λ = αkβl satisfies our equation so that
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F ◦ Φ(z) = akl(αz1)k(βz2)l = αkβlaklz
k
1z

l
2 = λF (z).

In the case that β is real, if α > β2 then again for akl, amn 6= 0 we obtain αkβl =

αmβn. Since α 6= β and α > β2 implies α > βj for all positive integers j ≥ 2 (so that

α 6= βj for any positive integer j), we have αk−m = βn−l only when k = m and n = l

and thus F (z) is a monomial.

If we have α = β2, we conclude

αkβl = β2k+l = λ.

As before, any monomial F (z) = aklz
k
1z

l
2 satisfies our equation with λ = αkβl.

For akl = amn 6= 0, we must have β2k+l = λ = β2m+n which implies 2k + l = 2m+ n.

Thus, polynomials of the form

Fm(z) =
∑

{k,l|m=2k+l}

aklz
k
1z

l
2

where akl can equal 0 or 1 for each k, l, satisfy our requirement.

As the simplest explicit example of a polynomial Fm(z), take F2(z) = z1 + z2
2 .

Then, since α = β2, we have

F ◦ Φ(z) = (αz1) + (βz2)2 = β2z1 + β2z2
2 = β2(z1 + z2

2) = λF (z).

2.3 The Solution to f ◦ φ = λf

This brings us to our first new theorem.

Theorem 14 Suppose φ is an analytic map, not an automorphism, of the unit ball

BN into itself with Denjoy-Wolff point ζ in the Siegel half space/dilation or half

space/dilation case with intertwining σ ◦ φ = Φ ◦ σ and Φ(z) = (αz1, βz2). Then
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f ◦ φ = λφ has a non-zero solution if and only if λ = αkβl for nonnegative integers

k,l. Additionally, if β /∈ R or α > |β|2, then f is a non-zero solution of f ◦φ = αkβlf

for some nonnegative integers k,l if and only if f(z) = cσk1σ
l
2 where c is a constant.

If β ∈ R and α = β2, then, in addition to the above solutions, the polynomials

fm(z) = c
∑
{k,l|m=2k+l} aklσ1(z)kσ2(z)l where m is a fixed nonnegative integer and akl

can equal 0 or 1 for each k, l, are permitted.

Proof Apply Lemma 12 and Theorem 13.
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3. SPECTRA OF COMPOSITION OPERATORS

INDUCED BY MAPS IN THE SIEGEL HALF

SPACE/DILATION CASE

3.1 Growth Estimates

While we have acquired the analytic solutions desired, we have not completely

solved the problem as the function f is an eigenvector of Cφf = λf if and only if f

is in the Hilbert function space on which the composition operator Cφ acts. To help

determine when our functions are in our space, we first find a growth estimate.

Theorem 15 Let φ be an analytic map from the unit ball C2 into itself with Denjoy-

Wolff point η, |η| = 1 and the dilation coefficent d(η) less than or equal to 1. Let

b be another fixed point of φ and suppose that φ is analytic in a neighborhood of b.

Likewise suppose there is a δ > 0 for which |φ(z)| < 1 whenever |z − b| < δ and

|z| ≤ 1. If σ is the model map of φ that takes the ball into the Siegel half-space with

σ ◦ φ = Φ ◦ σ and Φ(z1, z2) = (αz1, βz2) with 0 < |β|2 ≤ α < 1, then for every

p > |3 log |β|/ logDbφb(b)| where Dbφb(z) = 〈φ′(z)b, b〉, there is a constant M so that

|σ(z)| < M |z − b|−p

in a neighborhood of b.

Proof Let r0 = Dbφb(b) and r = e(
3|log(|β|)|

p ) < r0 with |β|2 ≤ α = d(η) ≤ 1. WLOG

assume that δ is such that if 0 < |z − b| < δ and |z| ≤ 1 then |Dbφb(b)−Dbφb(z)| <

r0 − r as well as |φ(z)| < 1. Now let

K = {w | |b− w| ≥ δ and w = φ(z) for some z with |z| ≤ 1 and |b− z| ≤ δ}.
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Then K is a compact subset of the ball such that for z in the ball with |b−z| < δ,

either |b−φ(z)| < δ or φ(z) is in K. Thus, for z in the closed ball in a neighborhood of

b, we have that φk(z) is inK for some positive integer k. Let δ′ = sup{|b−w| | w ∈ K}.

By our intertwining assumption, for positive integer n such that φn(z) is in K,

we have σ ◦ φn = Φn ◦ σ where Φn(z1, z2) = (αnz1, β
nz2), so σ = Φ−1

n ◦ σ ◦ φn where

Φ−1
n (z1, z2) = (α−nz1, β

−nz2) is in Φ−1
n ◦ σ(K). Since σ(K) is a compact subset of

the Siegel half-space, we have |σ(z)| ≤M1|αβ|−n where M1 = max{|w| | w ∈ σ(K)}.

Our goal is then to make an estimate of the integer n for which φn(z) is in K.

Let φ(z) = (ϕ1(z), ϕ2(z)) and b = (b1, b2). Also let q(t) = tb+(1−t)z for 0 ≤ t ≤ 1

be the line segment from z to b. If |b− z| < δ then we have

|b− φ(z)| = |φ(b)− φ(z)| |b| ≥ |〈φ(b)− φ(z), b〉| =
∣∣∣∣〈φ(tb+ (1− t)z)

∣∣∣1
0
, b〉
∣∣∣∣

=

∣∣∣∣〈∫ 1

0

d

dt
φ(tb+ (1− t)z)dt, b〉

∣∣∣∣ =

∣∣∣∣∫ 1

0

〈φ′(tb+ (1− t)z)(b− z)T , b〉dt
∣∣∣∣

=

∣∣∣∣〈φ′(b)b, b〉|b− z| − ∫ 1

0

(
〈φ′(b)b, b〉 − 〈φ′(tb+ (1− t)z)

(b− z)T

|b− z|
, b〉
)
|b− z|dt

∣∣∣∣
≥|b− z||〈φ′(b)b, b〉 − (r0 − r)| = r|b− z|.

Now, if |b− φ(z)| < δ then by the same reasoning we obtain

|b− φ(φ(z))| ≥ r|b− φ(z)| ≥ r2|b− z|.

Let n be the least integer such that |b − φn(z)| ≥ δ. Then n is the least integer

for which φn(z) is in K. We have δ′ ≥ |b− φn(z)| ≥ rn|b− z|. We isolate n to obtain

n ≤ log(δ′|b−z|−1)
log r

. Thus, since |β|2 ≤ α implies |α|−n ≤ |β|−2n, we have that

|σ(z)| ≤M1|αβ|−n ≤M1|β|−
3 log(δ′|b−z|−1)

log r

= M2|b− z|3
log β
log r = M2|b− z|−p.
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3.2 The Spectra in the Siegel Half Space/Dilation Case

In this section we will determine the spectrum of a composition operator on the

Drury-Arveson Space in the Siegel Half Space/Dilation Case. Thus φ will have

Denjoy-Wolff point ζ on the unit ball with 〈φ′(ζ)ζ, ζ〉 = α < 1. While some of

our results will hold in great generality, others need additional hypotheses. These

include a smoothness hypothesis on the boundary and a restriction of φ to a subset

of analytic maps of the ball known as the Schur-Agler class. We have the following

definition.

Definition 16 The Schur-Agler class Sn is the set of all holomorphic mappings φ :

Bn → Bn for which the Hermitian kernel

kφ(z, w) =
1− 〈φ(z), φ(w)〉

1− 〈z, w〉
is positive semidefinite.

In one variable, every self-map of the disk resides in the Schur-Agler class. This

is not true in higher dimensions. Explicitly, every self-map of the ball BN is not

necessarily in the Schur-Agler class for N > 1. It turns out, however, that linear

fractional maps as defined above are in this class [20]. In many ways, this class should

be seen as the appropriate analogue of the unit ball of H∞(D) in the multivariable

setting. See [18] for further justification of this. The assumption that our map is

in this class is invoked due to the fact that, for N > 1, the composition operator

Cφ induced by the analytic map φ is not necessarily bounded. As noted, one may

even construct polynomials that give rise to unbounded composition operators. For

φ in the Schur-Agler class, however, the composition operator Cφ induces a bounded

composition operator over the standard Hilbert function spaces [19]. This suggests

that maps in the Schur-Agler class should enjoy function-theoretic privileges over

more generic maps of the ball and is the motivation for our assumption.

We began by showing circular symmetry. We utilize a similarity argument which

illustrates a connection between Toeplitz operators and composition operators. In
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the disk, the set of multipliers of the Hardy space H2(D) is precisely H∞(D) and

thus for f to be a multiplier one only needs to show that f ∈ H∞(D). In order to

generalize to higher dimensions, however, we note that it is not sufficient to show

that f is bounded, that is f ∈ H∞(Bn). This is because for H2
d(Bn) for n > 1, the

set of multipliers is a proper subset of H∞(Bn) (see [30] for an example). We instead

appeal to a positivity argument. We first recall the following properties of positive

semi-definite functions.

• Kernel functions are positive semi-definite. This can easily be seen by the fact

that for a kernel function k(z, w), complex numbers ai, ..., an, and distinct points

{z1, ..., zn}, we have

n∑
i,j=1

aiajk(zi, zj) = 〈
n∑
j=1

ajkzj ,
n∑
i=1

aikzi〉 =

∣∣∣∣∣∣∣∣ n∑
j=1

ajkzj

∣∣∣∣∣∣∣∣2 ≥ 0.

• The Schur product, also known as the Hadamard product, of two positive semi-

definite functions is positive semi-definite. Recall that for two matrices M and

N , both of dimension m×n, the Schur product M ◦N is an m×n matrix given

entry-wise by

(M ◦N)ij = (M)ij(N)ij.

Note the following result applies to the Siegel half space/dilation and half space/dilation

case.

Theorem 17 Suppose φ is an analytic map of B2 into itself with intertwining linear

fractional map given by Φ(z) = (αz1, βz2) with α ≥ |β|2. Then for θ ∈ R the operator

Cφ acting on H2
d is similar to the operator eiθCφ. In particular, if λ ∈ σ(Cφ) then so

is λeiθ for all real θ.

Proof Since φ may be intertwined with Φ, there is a map σ from the ball into

the Siegel half space or half space (depending on which case we are in) such that

(σ ◦ φ)(z) = (Φ ◦ σ)(z) for all z in the ball. Let F (w) = ei
θ
2

logw1
logα ei

θ
2

logw2
log β for w in the
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Siegel half space/half space where log denotes the principal branch of the logarithm.

Then a simple calculation shows F ◦Φ(w) = eiθF (w). Writing f = F ◦ σ we see that

f ◦ φ = F ◦ σ ◦ φ = F ◦Φ ◦ σ = eiθF ◦ σ = eiθf . We next desire to show that Tf and

T 1
f

are multipliers on H2
d . We know by [1] that Tf is a multiplier of norm at most ρ

if and only if

ρ2I − T ?f Tf ≥ 0.

A simple calculation shows that for θ ≥ 0 and β ∈ R, we have that

e
πθ

4 logα e
πθ

2 log β < |f(z)| < e−
πθ

4 logα e−
πθ

2 log β .

Likewise, for θ < 0 and and β ∈ R, we have

e−
πθ

4 logα e−
πθ

2 log β < |f(z)| < e
πθ

4 logα e
πθ

2 log β .

Since the linear span of kernel functions are dense in H2
d , it is sufficient to check

the above equation on linear combinations of kernel functions. Thus, we want to show

that (ρ2 − f(z)f(w))k(z, w) is positive semi-definite. If θ ≥ 0, let ρ = e−
πθ

4 logα e−
πθ

2 log β

and if θ < 0 let ρ = e
πθ

4 logα e
πθ

2 log β . Then we have

N∑
k,l=1

ckcl(ρ
2 − f(zk)f(zl)) = ρ2

∣∣∣∣∣
N∑
j=1

cj

∣∣∣∣∣
2

−
N∑

k,l=1

ckclf(zk)f(zl) ≥ 0.

Since kernel functions are positive semi-definite and the Schur product of positive

semi-definite functions are positive semi-definite, it follows that (ρ2−f(z)f(w))k(z, w)

is positive semi-definite. The above argument applies likewise to T 1
f

as well and with

a little more algebra this same reasoning works for β /∈ R. Thus for h ∈ H2
d , we have

((Tf )
−1CφTf ))(h) = (Tf )

−1((f ◦ φ)(h ◦ φ)) = eiθ(Tf )
−1TfCφh = eiθ(Cφh)

from which we conclude that Cφ is similar to eiθCφ.
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Since similar operators have the same spectrum, we apply the spectral mapping

theorem to conclude that the spectrum of eiθCφ is eiθ times the spectrum of Cφ.

We next introduce some terminology. The K and M defined below can be ±∞

in addition to integers.

Definition 18 We say the sequence of points {zk}Mk=K in B2 is an iteration se-

quence for φ if φ(zk) = zk+1 for K < k < M .

Given an iteration sequence {zk}0
k=−∞ of distinct points for φ, not an elliptic

automorphism (i.e. an automorphism of the ball that fixes an interior point) of the

ball B2 onto itself, we have limk→−∞ |zk| = 1. Otherwise suppose b were a limit point

of this sequence and |b| < 1. If a is the Denjoy-Wolff point of φ and b = a, then the

pseudohyperbolic distance from b to zk1 is greater than the pseudohyperbolic distance

from b to zk2 = φn(zk1) for n = k2 − k1 > 0 which contradicts the assumption that

a subsequence {zkj} of the iteration sequence converges to b with kj tending to −∞.

See [10], section 2.6 for further discussion on pseudohyperbolic distances in BN . If

b 6= a , then there is an ε > 0 so that Dε = {z | |z − b| ≤ ε} is contained in B2 and

does not contain a. In this case, the iterates of Dε converge to a and there is an n

so that φn(Dε) ∩Dε = ∅, which also contradicts the assumption that a subsequence

{zkj} of the iteration sequence converges to b with kj tending to −∞.

If φ is not an elliptic automorphism of the ball B2 onto itself and z0 is a point of the

ball, then zk = φk(z0) defines an iteration sequence of distinct points for k ≥ 0 or else

there is a least M so that φM(z0) = a, the Denjoy-Wolff point of φ in B2, and there

is an iteration sequence of distinct points defined for 0 ≤ k ≤ M . Moreover, either

there is no point w of B2 with φ(w) = z0 or we can find z−1 so that φ(z−1) = z0. So

every point of the ball is in at least one iteration sequence {zk}Mk=K of distinct points

for which either M = ∞ and limk→∞ = a or M is finite and φM(z0) = a and either

K = −∞ and limk→−∞ |zk| = 1 or K is finite and there is no point w in B2 with

φ(w) = zK .
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We will be particularly interested in the case {zk}0
k=−∞ in which limk→−∞ zk = b

where b = (b1, b2) is a fixed point of φ on the boundary of the ball. If b is not

the Denjoy-Wolff point, then we have seen by Theorem 4 that 〈φ′(b)b, b〉 > 1. As

mentioned in the introduction, the case in which φ, an analytic map from BN to BN ,

has interior fixed point ζ which by conjugation we may presume is 0, was solved in [5]

and [13]. In addition to a few natural conditions on our map φ, it was determined

that there could also be an arithmetic obstruction called resonance. In the case of

B2, this occurs when the eigenvalues of φ′(0), given by λ1 and λ2, are such that either

λ1 = λn2 or λ2 = λm1 for some non-negative integers n,m > 1. This obstruction only

exists for BN with N > 1.

If φ is analytic in a neighborhood of b, then there is ε > 0 so that φ is univalent on

Bε = {z | |z − b| ≤ ε} and φ−1 maps Bε into itself. If we fix z2 = b2, then φ−1(z1, b2)

maps the disk Dε = {z = (z1, b2) | |z − b| ≤ ε} into itself. Since φ−1(b) = b, we

have that b is an attractive interior fixed point of the disk Dε and thus, by modifying

the results of [9], we utilize the model theory of linear fractional maps in the disk,

which do not have resonance obstructions, to construct an intertwining and obtain

that there is an analytic map ψ so that ψ(b) = 0

ψ(φ−1(z)) = (φ−1)′(b)ψ(z) = (φ′)−1(b)ψ(z)

for z in Dε. Since φ−1 is univalent near b, so is ψ. Multiplying ψ by appropriate

constants of modulus 1 if necessary, without loss of generality we may assume that

ψ maps the radial segment {rb | 1 − ε < r < 1} to a curve tangent to the vector

〈1, 0〉 at 0. Now the conformality of ψ shows that if δ > 0 is small enough that the

interval {(r, 0) | 0 ≤ r < δ} is in ψ(Dε), the image of {(r, 0) | 0 ≤ r < δ} under

ψ−1 is a curve tangent to the radius {rb | 0 < r < 1} in the ball. Now for w so that

w ∈ {(r, 0) | 0 ≤ r < δ}, defining z−k = ψ−1
(
(φ′−1(b))kw

)
for k = 0, 1, ... gives an

iteration sequence {zj}0
j=−∞ so that zj has restricted limit b as j approaches negative

infinity. In particular, there are uncountably many such iteration sequences.
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Theorem 19 Let φ be an analytic map from the unit ball B2 into itself, not an

automorphism of the ball, with corresponding composition operator Cφ acting on H2
d .

If b ∈ ∂B2 is a fixed point of φ with 〈φ′(b)b, b〉 > 1 and φ is analytic in a neighborhood

of b, then for each ρ < 〈φ′(b)b, b〉− 1
2 , the circle of radius ρ centered at the origin

intersects the spectrum of Cφ.

Proof Suppose that φ satisfies the above conditions. Then, as we saw above, the fact

that φ is analytic near the boundary fixed point b implies that there are uncountably

many iteration sequences {zj}0
j=−∞ that have restricted limit b. For a given iteration

sequence, let kj(z) =
(1−|zj |2)

1
2

1−〈z,zj〉 denote the normalized reproducing kernel for the point

zj.

Suppose ρ < ρ1 < 〈φ′(b)b, b〉−
1
2 with |λ| = ρ. Let

hλ =
−1∑

j=−∞

λ−j−1

(
1− |z0|2

1− |zj|2

) 1
2

kj.

By the Julia-Carathéodory Theorem in B2, we have

lim
j→−∞

1− |zj+1|2

1− |zj|2
= 〈φ′(b)b, b〉.

Thus there is a constant c so that

|λ|−j−1

(
1− |z0|2

1− |zj|2

) 1
2

= |λ|−j−1

(
−1∏
l=j

1− |zl+1|2

1− |zl|2

) 1
2

≤ c

(
|λ|
ρ1

)−j
= c

(
ρ

ρ1

)−j
.

Since ||kj|| = 1, the series for hλ converges absolutely which implies it converges

in H2
d . Also (C∗φ − λ)hλ is

−1∑
j=−∞

λ−j−1

(
1− |z0|2

1− |zj+1|2

) 1
2

kj+1 −
−1∑

j=−∞

λ−j
(

1− |z0|2

1− |zj|2

) 1
2

kj = k0.

Moreover, if σ(Cφ) does not intersect the circle |λ| = ρ, then
(
C∗φ − ρeiθ

)−1
exists

for each real θ and we define Q by
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Q =
1

2π

∫ 2π

0

(
C∗φ − ρeiθ

)−1
dθ.

Now

Qk0 =
1

2π

∫ 2π

0

(
C∗φ − ρeiθ

)−1
k0dθ =

1

2π

∫ 2π

0

hρeiθdθ

=
−1∑

j=−∞

1

2π

∫ 2π

0

ρ−j−1ei(−j−1)θkj

(
1− |z0|2

1− |zj|2

) 1
2

dθ

=

(
1− |z0|2

1− |z−1|2

) 1
2

k−1.

since 1
i(−j−1)

ei(−j−1)θ evaluated from 0 to 2π is zero for all values of j except j = −1.

Thus, writing Kw(z) = 1
1−〈z,w〉 , the kernel for evaluation at w, we have QKz0 = Kz−1 ,

which means C∗φQKz0 = Kz0 . Since Q is a rational function of C∗φ, they commute and

we have QC∗φKz0 = Kz0 also.

For each such iteration sequence {zk}0
k=−∞, the argument above showed that

C∗φQKz0 = QC∗φKz0 = Kz0 . Since there are uncountably many such z0, their ker-

nel functions span H2
d and we get C∗φQ = QC∗φ = I. But we assumed that φ is not

an automorphism, so we have a contradiction. Thus our assumption that σ(Cφ) does

not intersect the circle |λ| = ρ must be false.

Up to this point, our results apply to the half space/dilation and Siegel half

space/dilation cases. We next demonstrate an annulus of eigenvalues that lies in our

spectrum when we are in the Siegel half space/dilation case. In preparation of this,

we first prove the following lemma.

Lemma 20 The function

G(z) =

(
1 + z1

1− z1

)k (
z2

1− z1

)l
belongs to H2

d for l ∈ N ∪ {0} and |2k + l| < 1 where N = {1, 2, 3, ...}.
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Proof First we see that to have G ∈ H2
d , G must be holomorphic in the ball so we

must have l ∈ N ∪ {0} due to the factor zl2. Thus l is a nonnegative integer. We

proceed to determine the restrictions on k and l by cases.

• First suppose that k ≥ 0. In this case (1 + z1)k will be a multiplier of H2
d and

thus we may ask when (1 − z1)−kzl2(1 − z1)−l = zl2(1 − z1)−(k+l) is in H2
d . We

use the generalized binomial expansion formula to obtain

zl2
(1− z1)k+l

=
∞∑
n=0

Γ(n+ k + l)

Γ(n+ 1)Γ(k + l)
zn1 z

l
2

which resides in H2
d when

∞∑
n=0

Γ(n+ k + l)2

Γ(n+ 1)2Γ(k + l)2

n!l!

(n+ l)!
<∞.

Using Stirling’s approximation to determine the behavior as n→∞, we find

Γ(n+ k + l)2

Γ(n+ 1)2Γ(k + l)2

n!l!

(n+ l)!
∼

2π
n+k+l

(
n+k+l
e

)2(n+k+l)√
2πl
(
l
e

)l
√

2πn
(
n
e

)n 2π
k+l

(
k+l
e

)2(k+l)√
2π(n+ l)

(
n+l
e

)n+l

∼ (n+ k + l)2n+2(k+l)−1

nn+ 1
2 (n+ l)n+l+ 1

2

∼ n2k+l−2.

where we see that our sum converges when 2−(2k+l) > 1 or 2k+l = |2k+l| < 1.

• Now suppose k < 0 and k+ l < 0. Then (1− z1)−(k+l) will be a multiplier of H2
d

and we consider when zl2(1 + z1)−t is in H2
d where t = −k > 0. Using the above

computation (replacing 1−z1 with 1+z1 makes no difference) by replacing k+ l

with t, we find that we need

Γ(n+ t)2

Γ(n+ 1)2Γ(t)2

n!l!

(n+ l)!
∼

2π
n+t

(
n+t
e

)2(n+t)√
2πl
(
l
e

)l
√

2πn
(
n
e

)n 2π
t

(
t
e

)2t√
2π(n+ l)

(
n+l
e

)n+l

∼ (n+ t)2n+2t−1

nn+ 1
2 (n+ l)n+l+ 1

2

∼ n2t−l−2.
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where our sum converges when 2 − (2t − l) = 2 + 2k + l > 1 which implies

2k + l > −1. Since our conditions k < 0 and k + l < 0 imply 2k + l < 1, we

conclude again that |2k + l| < 1.

• Now suppose that k < 0 and k+ l > 0. We further break up into two additional

subcases. First suppose 2k + l < 0. Then

(
1 + z1

1− z1

)k (
z2

1− z1

)l
=

(
1 + z1

1− z1

)k (
z2

1− z1

)l
(1− z1)k

(1− z1)k
=
zl2(1− z2

1)k

(1− z1)2k+l
.

Since 2k+ l < 0, (1−z1)−(2k+l) is a multiplier. Let t = −k so that zl2(1−z2
1)−t =∑∞

n=0
Γ(n+t)

Γ(n+1)Γ(t)
z2n

1 zl2. Then we observe the behavior as n→∞ of the expression

Γ(n+ t)2

Γ(n+ 1)Γ(t)

(2n)!l!

(2n+ l)!
∼ (n+ t)2(n+t)−1

n2n+1

n
1
2 22nn2n

(2n+ l)
1
2 (2n+ l)2n+l

∼ n2t−2−l.

Thus in order to converge, we must have 1 < 2 − (2t − l) = 2 + 2k + l which

implies 2k + l > −1 which again gives |2k + l| < 1.

Finally, suppose k < 0, k + l > 0 and 2k + l > 0. Then we have

(
1 + z1

1− z1

)k (
z2

1− z1

)l
(1 + z1)k+l

(1 + z1)k+l
=
zl2(1 + z1)2k+l

(1− z2
1)k+l

.

Now we have that (1 + z1)2k+l is a multiplier and by the above calculation

zl2(1 − z2
1)−(k+l) is in our space when 1 < 2 − (2(k + l) − l) which implies

2k + l < 1 as desired.

This exhausts all of our cases.

We now proceed to determining our annulus of eigenvalues for H2
d(B2) for the

Siegel half space/dilation case.
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Lemma 21 Suppose φ is an analytic map from B2 into B2 in the Siegel half-space

model with model map Φ(z) = (αz1, βz2) and Denjoy-Wolff point (1, 0). If

α
1
2 < |λ| < α−

1
2

then λ is an eigenvalue of Cφ on H2
d .

Proof It is often useful to map problems in the ball to the Siegel half space, which

one can show is biholomorphic to the ball in two variables via the map from B2 to H2

given by Ψ(z) = (Ψ1(z),Ψ2(z)) =
(

1+z1
1−z1 ,

z2
1−z1

)
with inverse Ψ−1(z) =

(
z1−1
z1+1

, 2z2
z1+1

)
.

Suppose φ is in the Siegel half space model so that σ ◦ φ = Φ ◦ σ for appropriate

σ(z) = (σ1(z), σ2(z)) and Φ(z) = (αz1, βz2) where σ maps the ball into the Siegel

half space. Let

γ(z) = Ψ−1 ◦ σ(z) =

(
σ1(z)− 1

σ1(z) + 1
,

2σ2(z)

σ1(z) + 1

)
where γ : B2 → B2. For λ = αkβl and F (z) = zk1z

l
2 we have f(z) = F ◦ σ(z) =

(σ1(z))k (σ2(z))l. Let G = Ψk
1Ψl

2 so that f = σk1σ
l
2 = G ◦ γ. From the above lemma

we know that G(z) =
(

1+z1
1−z1

)k (
z2

1−z1

)l
is in H2

d when |2k + l| < 1. Thus for λ = αkβl

we have

|λ| = |αkβl| = |β|2k+l ⇒ α
1
2 < |λ| < α−

1
2 .

Notice that we used the fact that σ maps the ball into the Siegel half space. This

is the step where we had to deviate from considering the half space/dilation case.

We next turn our attention toward the spectral radius of Cφ.

Lemma 22 If φ is in the Siegel half space/dilation or half space/dilation model and

in the Schur-Agler class, then ||Cφ|| is bounded on H2
d and

(
1

1− |φ(0)|2

) 1
2

≤ ||Cφ|| ≤
(

1 + |φ(0)|
1− |φ(0)|

) 1
2

.
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Proof The lower bound is attained by noting that k(z, 0) = 1 and

||C∗φ|| ≥ ||C∗φk(z, 0)|| = ||k(z, φ(0))|| =
(

1

1− |φ(0)|2

) 1
2

.

The upper bound is obtained by appealing to [19] for our result.

Theorem 23 Let φ be in the Schur-Agler class and in the Siegel half space/dilation

or half space/dilation case with linear fractional model Φ(z) = (αz, βz). Then the

spectral radius of φ acting on H2
d is α−

1
2 .

Proof Conjugating by a rotation, we may presume that φ has Denjoy-Wolff point

given by (1, 0). We will move the problem to the Siegel half-space H2 via the bi-

holomorphic map Ψ(z) =
(

1+z1
1−z1 ,

z2
1−z1

)
. Now suppose φ has an intertwining map

σ : B2 → H2 so that σ ◦ φ = Φ ◦ σ. By [19], the spectral radius is given over H2
d by

r(Cφ) = lim
n→∞

(1− |φn(0)|)−
1
2n .

It suffices, then, to show that limn→∞(1 − |φn(0)|2)
1
n = α. Recall that for any

z ∈ B2, if w = Ψ(z) we have the identity

1− |z|2 =
4

|w1 + 1|2
(
<(w1)− |w2|2

)
.

By our intertwining hypothesis, φ is conjugate to Φ(z) = (αz1, βz2) where Φ :

H2 → H2. We note that Ψ(0, 0) = (1, 0) and Φn(1, 0) = (αn, 0) with 0 < α < 1. We

calculate

lim
n→∞

(1− |φn(0)|2)
1
n = lim

n→∞

(
4

|αn + 1|2
(
<(αn)− |0|2

)) 1
n

= α

from which our result follows.

Before proceeding further, it will be instructive to say a few words on a special

class of functions known as inner functions.
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Definition 24 Let BN be the unit ball in CN . We say a nonconstant function f is

an inner function in BN if f ∈ H∞(BN) with radial limit f ∗ such that |f ∗(ζ)| = 1 for

almost all ζ ∈ ∂BN , the boundary of the ball.

For N = 1, where the ball is the unit disk, inner functions play an important

role for factorization theorems, invariant subspaces, and numerous other applications

(see [6] for a recent survey). The most well-known being Blaschke products, which

are functions of the form

B(z) = eiθzm
∏
n≥1

|an|
an

an − z
1− anz

where θ ∈ R, m is a non-negative integer, and {a1, a2, ...} is a (not necessarily finite)

sequence with 0 < |ai| < 1 for all 1 ≤ i ≤ ∞ satisfying the Blaschke condition given

by

∑
n≥1

(1− |an|) <∞.

These are by no means the only inner functions in the disk. One may even

construct inner functions that have no zeroes in the disk. Consider e
z+1
z−1 with z ∈ D

as an example. In the disk, methods of determining the spectrum of the composition

operator Cφ bifurcate into two cases, depending on whether or not φ is an inner

function from the disk into itself. While our annulus of eigenvalues determined in

Lemma 21 and spectral radius determined in Theorem 23 did not depend on this

bifurcation, our final result will.

In the ball BN for N > 1, things become more complicated. In order for such

functions to exist, they would have to exhibit certain pathological features including

extreme oscillatory behavior near the boundary (see [27], section 19.1). The existence

of such functions for N > 1 was first demonstrated by Aleksandrov [2] and indepen-

dently by Low [23] building on results by Hakim and Sibony [14]. Later the results

were strengthened by Rudin [28], including the fact that this set is dense in the unit

ball of H∞(BN) in the compact-open topology. While in the disk, inner functions
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are sufficiently well-behaved as to merit further study, we find them to be sufficiently

pathological in B2 as to exclude them.

It can be shown that a self map of the disk, analytic in a neighborhood of the closed

disk and not an inner function, must map, at most, a finite amount of points from the

boundary into the boundary (Lemma 1.3, [21]). The generalization of this result is not

immediate due to the critical use of the identity principle and accumulation points in

the case of the disk. In particular, although the identity principle generalizes, zeroes

of a holomorphic function are never isolated and thus requiring an accumulation point

of zeroes puts no restriction on the function [4].

We thus make the hypothesis that our function φ, analytic in a neighborhood of the

closed unit ball and not an inner function, is such that the set {z ∈ ∂B2 | |φ(z)| = 1}

consists of at most a finite set of points. The generalization that seems to be likely is

that the family of curves {Γi} that lie on the boundary of B2 such that φ maps each

Γi back into the boundary, must be a finite set.

Conjecture 25 Let φ be a map of B2 into itself, analytic in a neighborhood of the

closed unit ball that does not map the ball into a lower-dimensional affine set. The

family of curves {Γi} on the boundary of B2 such that φ maps Γi back into the boundary

is a finite set.

It doesn’t appear that replacing our hypothesis with the above conjecture would

interrupt the validity of our results. From our hypothesis we acquire the following

theorem.

Theorem 26 If φ is analytic in a neighborhood of the closed unit ball and does not

map the ball into a lower-dimensional affine set, then there is a positive integer n

such that {z | |φn(z)| = 1} is either empty or consists entirely of fixed points of φn.

Proof We know by our hypothesis that the set {b ∈ ∂B2 | |φ(b)| = 1} is finite.

Denote this set of points by {bi}m1 . Given bi, if for some positive integer n, we have

|φn(bi)| < 1, then we are done. Otherwise, |φj(bi)| = 1 for all positive integers
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j. Either φj+k(bi) = φj(bi) for some positive integers j and k or the iterates of

φj(bi) form an infinite set of elements where each element is on the boundary and of

magnitude 1, contrary to our assumption. For each bi, we thus have a ji and ki such

that φji+ki(bi) = φji(bi). Taking n to be the appropriate multiple of the ki’s gives our

result.

Theorem 27 Suppose φ maps the unit ball B2 into itself and is analytic in a neighbor-

hood of the closed unit ball. Suppose φ has Denjoy-Wolff point a on the boundary of the

ball with α = 〈φ′(a)a, a〉 < 1. Suppose also that {zj | |φ(zj)| = 1} = {a, b1, b2, ..., bk},

where φ(bj) = bj for j = 1, ..., k. If

max{〈φ′(bj)bj, bj〉−
1
2 | j = 1, 2, ..., k} < |λ| < 〈φ′(a)a, a〉−

1
2

then λ is an eigenvalue of Cφ on H2
d(B2) of infinite multiplicity.

Proof We have already seen the results for λ with α
1
2 < |λ| < α−

1
2 . Let r0 =

min{〈φ′(bj)bj, bj〉 | j = 1, 2, ..., k} and let α = 〈φ′(a)a, a〉. Suppose λ and λ0 are

positive numbers satisfying r
− 1

2
0 < λ0 < λ < 1. Circular symmetry will show that the

conclusion will follow if we show λ is an eigenvalue. Since |φ(z)| < 1 for all z ∈ B2

except for the values a and bj for j = 1, ..., k, we see that for every ε > 0, the set

given by

{φ(z) | |z| ≤ 1 and |z − bj| ≥ ε for j = 0, 1, 2, ..., k}

is a compact subset of B2. Thus by the hypothesis on our model for iteration, there

is a constant Mε so that |σ(z)| ≤Mε for |z − bj| ≥ ε. Since 〈φ′(bj)bj, bj〉−
1
2 < λ0 < 1,

we have

| logα|
log〈φ′(bj)bj, bj〉

<
| logα|
−2 log λ0

By our growth estimate given by Theorem 15 there are Mj and εj so that

|σ(z)| ≤Mj|z − bj|
−
∣∣∣ 3 logα
2 log λ0

∣∣∣
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for |z − bj| < εj. Thus there is an M so that for z ∈ B2, we have

|σ(z)| ≤M
k∏
j=1

|z − bj|
−
∣∣∣ 3 logα
2 log λ0

∣∣∣

and for r
− 1

2
0 < λ0 < λ < 1. Let x = log λ

3 logα
. Note that for the values of λ under

consideration, x > 0. This implies

|σ(z)2x| ≤M2x

k∏
j=1

(
|z − bj|

−
∣∣∣ 3 logα
2 log λ0

∣∣∣)2| log λ
3 logα |

= M2x

k∏
j=1

|z − bj|
−
∣∣∣ log λ
log λ0

∣∣∣

Since 0 < λ0 < λ < 1 implies
∣∣∣ log λ

log λ0

∣∣∣ < 1, the product is seen to be integrable

along the boundary of the unit ball B2 and thus σx is in H2
d(B2). We conclude that

each λ such that r
− 1

2
0 < λ < α−

1
2 , is an eigenvalue of Cφ on H2

d(B2). Applying circular

symmetry, we conclude our results.

We now combine the sum of our work to establish the main result.

Theorem 28 Let α be the dilation coefficient of an analytic map φ, from B2 into

itself, that resides in the Schur-Agler class and is in the Siegel half space/dilation

model where φ is not inner and no slice function of φ is inner. Then the spectrum of

φ acting on H2
d is given by

σ(Cφ) = {λ | |λ| ≤ α−
1
2}.

Proof Since φ is not an inner function, we know by our hypothesis that the set

{z | |φ(z)| = 1} is a finite set. By Theorem 26 there is a positive integer n such that

the set {z | |φn(z)| = 1} consists of fixed points {a, b1, ...bk}, where a is the Denjoy-

Wolff point, for some integer k. We know from Theorem 4 that a is the unique point
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in which 〈φ′(a)a, a〉 ≤ 1. Now suppose a is the Denjoy-Wolff point for φ. Then since

aTa = 1, we have

〈φ′n(a)a, a〉 = 〈(φ′(a))
n
a, a〉 = aT (φ′(a))

n
a

aTφ′(a)aaTφ′(a)a · · · aTφ′(a)a =
(
aTφ′(a)a

)n ≤ 1.

Thus a is the Denjoy-Wolff point for φn as well. By Theorem 19 we have that

σ(Cφn) intersects the circle of radius r for 0 < r < r
− 1

2
0 where r0 = min{〈φ′n(bj)bj, bj〉}.

We also have by Theorem 27 that σ(Cφn) includes the circle of radius r for r
− 1

2
0 <

r < α−
n
2 . Since Cφn = Cn

φ , we have by the spectral mapping theorem that σ(Cφ)

intersects the circle of radius r for 0 < r < α−
1
2 . By Theorem 17 we know that σ(Cφ)

includes the disk {λ | |λ| ≤ α−
1
2}. Since we are presuming that φ is in the Schur-Agler

class, Theorem 23 implies that this circle is exactly the spectrum and our proof is

complete.

3.3 An Explicit Example

Example 29 We next construct an example of a self map of the ball in C2 that

satisfies the requirements of Theorem 28. Consider the linear fractional map given

by

φ(z) =

(
z1 + 3

4
,
z2

2

)
.

It is clear that φ : B2 → B2 has no fixed points in the ball and for ζ = (1, 0) we

have φ (ζ) = ζ as the Denjoy-Wolff point with Dζφζ(ζ) = 1
4
. By [20], linear fractional

maps are in the Schur-Agler class. To conform to our model we put σ(z) = e1 − z

and Φ(z) = (1
4
z1,

1
2
z2) which gives us

σ ◦ φ(z) =

(
1− z1 + 3

4
,−z2

2

)
=

(
1

4
(1− z1),−1

2
z2

)
= Φ ◦ σ(z).

Our conditions are satisfied and thus the spectrum of Cφ is given by
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σ(Cφ) = {λ ∈ C | |λ| <
(

1

4

)− 1
2

= 2}.

where λ1 = |λ2|2 and we thus have a Siegel Half Space/Dilation case.
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4. SEMIGROUPS IN SEVERAL COMPLEX VARIABLES

4.1 Background

Recall that a one-parameter semigroup for a monoid (S, ∗) is a map φ :

[0,∞)→ S, such that

i. φ(0) = I.

ii. φ(s+ t) = φ(s) ∗ φ(t).

Let BN = {(z1, ..., zN) ∈ CN |
∑N

i=1 |zi|2 < 1} be the unit ball in CN and

T = {φ : BN → BN | φ is a nonconstant analytic map, not an automorphism}.

For φ ∈ T , it is clear that the set of iterates {φn} under composition for n = 0, 1, 2, ...,

defines a discrete semigroup. We know that this discrete semigroup can be extended

to a one-parameter semigroup in one complex variable [9]. The proof of this result

depends on Cowen’s model theory of linear fractional maps, as discussed in our intro-

duction, in which we intertwine analytic functions with model linear fractional maps

that fall into four categories classified according to their behavior near the Denjoy-

Wolff point and what is known as the characteristic domain [9]. As we saw, we may

extend the definition of the Denjoy-Wolff point to maps of more than one complex

variable using results by MacCluer [24]. This allows us to analyze the model theory

in higher dimensions. In all cases, we suppose the derivative of our map φ at the

Denjoy-Wolff point is not zero. We will use the generalization of this model theory

in two complex variables applied to linear fractional maps in order to define a con-

tinuous one-parameter semigroup on the set of linear fractional maps in two complex

variables.

Of necessity, σ will be an invertible linear fractional map and we may write
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φ = σ−1 ◦ Φ ◦ σ. (4.1)

We can thus define a discrete semigroup for the set {φn} by

φn = σ−1 ◦ Φn ◦ σ (4.2)

where Φn is our model linear fractional map.

4.2 Semigroups for Linear Fractional Maps in Two Complex Variables

It can be shown that the eigenvectors of the associated matrix mφ correspond to

fixed points of φ [8]. We assume our maps are invertible and thus we do not have to

consider zero eigenvalues. We may use Jordan form of a matrix to factor mφ to obtain

mφ = SΛS−1 where the columns of S are (generalized) eigenvectors of mφ and Λ is in

Jordan form. Given a linear fractional map φ of BN into itself and an automorphism

ψ of BN , we see that

mψmφm
−1
ψ = mψSΛS−1m−1

ψ = (mψS)Λ(mψS)−1.

Thus, not only are our maps are equivalent up to conjugation by an automorphism,

but conjugation by an automorphism yields the same Jordan form matrix Λ.

We see that, for n = 0, 1, 2, . . . , the iterates are given by mφn = (mφ)n = SΛnS−1.

We then would like to extend this definition by finding an expression for Λn and

replacing n = 0, 1, 2, . . . , with t ∈ [0,∞). The form of Λ will depend on which of

the seven cases we are in. Since cases II, III,VI, and VII can be written as direct

sums of lower dimensional associated matrices, our new result will consist of defining

a one parameter semigroup for cases IV and V. We proceed to compute the cases

with Denjoy-Wolff point on the boundary.

In order to define a one-parameter semigroup, we must be sure that our map stays

in our space for fractional iterates. This will follow from the fact that the half-space

and the Siegel half-space are convex domains in C2. We see this as follows.
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It is clear that, since in each case Λ is in Jordan form (taken so that the off-

diagonal elements are ones on the subdiagonal above the diagonal), each of the model

maps Λ are associated with a map of the form Az +B.

Now, given two vectors (u1, u2) and (w1, w2) in the half-space, we have for t ∈ [0, 1]

<(tu1 + (1− t)w1) = t<u1 + (1− t)<w1 > 0

and thus the half space is convex.

Given two vectors (u1, u2) and (w1, w2) in the Siegel half-space, we have for t ∈

[0, 1]

<(tu1 + (1− t)w1) = t<u1 + (1− t)<w1 > t|u2|2 + (1− t)|w1|2

≥ t2|u2|2 + (1− t)2|w1|2 ≥ |tu2 + (1− t)w2|2

and thus the Siegel half space is convex.

In cases II and III, we have three distinct fixed points and thus mφ is diagonaliz-

able. Suppose

Λ =


λ1 0 0

0 λ2 0

0 0 λ3

 .

For n, a nonnegative integer, we have mφn = (mφ)n = SΛnS−1 where

Λn =


λn1 0 0

0 λn2 0

0 0 λn3

 .

We may embed this in a continuous semigroup defined by mφt = SΛtS−1 for all

t ≥ 0 where
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Λt =


λt1 0 0

0 λt2 0

0 0 λt3

 .

We then have for s, t ≥ 0,

mφtmφs = SΛtS−1SΛsS−1 = SΛt+sS−1 = mφt+s

from which it follows that φt◦s = φt+s.

In cases VI and VII, we note that Λ is given by

Λ =


λ 1 0

0 λ 0

0 0 η


where λ may equal η depending on whether we are in case VI or VII. Hence we find

mφn = SΛnS−1 = S(An ⊕Bn)S−1

with

An =

λn nλn−1

0 λn

 and Bn = (ηn). (4.3)

Hence we can embed this into a continuous semigroup defined for all t ≥ 0 by

Λ =


λt tλt−1 0

0 λt 0

0 0 ηt

 .

We check this satisfies the one-parameter semigroup properties by noting

ΛtΛs =


λt tλt−1 0

0 λt 0

0 0 ηt



λs sλs−1 0

0 λs 0

0 0 ηs

 =


λt+s (t+ s)λt+s−1 0

0 λt+s 0

0 0 ηt+s

 = Λt+s
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and thus

mφtmφs = SΛtS−1SΛsS−1 = SΛt+sS−1 = mφt+s

from which it follows that φt◦s = φt+s.

In cases IV and V, we have one fixed point of multiplicity three. In these cases,

Λ has the form

Λ =


α 1 0

0 α 1

0 0 α

 .

We may assume that the diagonal elements are all 1 as, for λ = 1
α

, we have

Λ =


α 1 0

0 α 1

0 0 α

 = α


1 λ 0

0 1 λ

0 0 1


and any multiple of an associated vector in CN+1 is associated with the same vector

in CN . Thus, without loss of generality,

Λ =


1 λ 0

0 1 λ

0 0 1

 .

It is a straightforward result to show that for n a nonnegative integer we have

mφn = (mφ)n = SΛnS−1 where

Λn =


1 λn λ2n(n−1)

2

0 1 λn

0 0 1

 .

We may embed this in a continuous semigroup defined by mφt = SΛtS−1 for all

t ≥ 0 where
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Λt =


1 λt λ2t(t−1)

2

0 1 λt

0 0 1

 .

We check this satisfies the one-parameter semigroup properties by noting

ΛtΛs =


1 λt λ2t(t−1)

2

0 1 λt

0 0 1




1 λs λ2s(s−1)
2

0 1 λs

0 0 1

 =


1 λ(t+ s) λ2(t+s)(t+s−1)

2

0 1 λ(t+ s)

0 0 1

 = Λt+s

and thus

mφtmφs = SΛtS−1SΛsS−1 = SΛt+sS−1 = mφt+s

from which it follows that φt◦s = φt+s.

Example 30 Let φ be the linear fractional map from B2 into B2 given by

φ(z) =

(
z1 + 2z2 + 1

−z1 + 2z2 + 3
,
−2z1 + 2z2 + 2

−z1 + 2z2 + 3

)
.

It can be shown that this map corresponds to case V. We have

φ(z) =
Az +B

C∗z +D

where A =

 1 2

−2 2

, B =

1

2

, C =

−1

2

 and D = 3.

Then

mφ =


1 2 1

−2 2 2

−1 2 3

 =


1 0 −1

4

0 1
2
−1

8

1 0 0




2 1 0

0 2 1

0 0 2




0 0 1

−1 2 1

−4 0 4


so λ = 1

2
and we have
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mφt =


1 0 −1

4

0 1
2
−1

8

1 0 0




1 t
2

t(t−1)
8

0 1 t
2

0 0 1




0 0 1

−1 2 1

−4 0 4

 =


2−t2

2
t t2

2

−t 1 t

− t2

2
t t2+2

2


which implies

φt(z1, z2) =

(
(2− t2)z1 + 2tz2 + t2

−t2z1 + 2tz2 + t2 + 2
,
−2tz1 + 2z2 + 2t

−t2z1 + 2tz2 + t2 + 2

)
.

It is a straightforward calculation to see that φ0 = I and φ1 = φ.

4.3 Classification of Linear Fractional Maps in the Siegel Half Space/Dilation

and Half Space/Dilation Cases

We see in [8], under some very general conditions, a complete classification of

linear fractional maps in C2. We would like to know, given a linear fractional map

φ from the ball into the ball, which of the seven cases we are in. We first note that,

for a map φ, we have that φ is in case I if and only if φ has an interior fixed point

of the ball. This follows from the fact that if φ has a interior fixed point in the ball,

then Φ has an interior fixed point in σ(B2) and case I is the only case where Φ has

an interior fixed point. We next note that cases II and III correspond to maps with

three distinct fixed points. Following the reasoning used in [4], we know that for a

map φ with three distinct fixed points, the associated matrix mφ is diagonalizable. If

we use Jordan form to write mφ = SΛS−1 where

Λ =


λ1 0 0

0 λ2 0

0 0 λ3


then we have
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mn
φ = S


λn1 0 0

0 λn2 0

0 0 λn3

S−1.

As noted in [8], since Φ is an automorphism of Ω and σ(B2) ⊂ Ω, we get

Φ−1(σ(B2)) ⊂ Φ−1(Ω) = Ω and, in general, Φ−n(σ(B2)) ⊂ Ω for every positive

integer n. Thus, since Ω is to be the smallest domain satisfying condition (1.2), we

have Ω = ∪∞n=1Φ−n(σ(B2)).

Given a linear fractional map φ with three distinct fixed points, we determine φn

using the techniques above and then calculate

|φn(z1)|2 + |φn(z2)|2.

We want this expression to be inside the ball for sufficiently large n. For conve-

nience we can take Φ = φ and σ(z) = z and ask what space eventually maps the

above expression into the ball. Since the half space and Siegel half-space are holo-

morphically distinct in C2, once we determine the above space, we will be able to

standardize it to a half space or Siegel half space, classifying the map.

4.4 Semigroups for Analytic Maps in Two Complex Variables

In one complex variable, it is known [9] that under very general conditions, an

analytic map φ from the disk into the disk can be intertwined with a linear fractional

map Φ : Ω→ Ω and an analytic map σ such that

σ ◦ φ = Φ ◦ σ (4.4)

where Ω is the characteristic domain. The proof of this relies on the Riemann Mapping

Theorem which does not hold for CN if N > 1. However, since we know that our

model maps in C2 stay in our appropriate space for fractional iterates, we can define

a one-parameter semigroup for a map φ by explicitly constructing σ and Φ.
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Example 31 In this example, we will construct a map for the Siegel half space/Heisenberg

translation case (case V). We will follow the below commutative diagram where

Ψ(z) = z+1
−z1+1

is the Cayley map from BN to H2 with Ψ−1(z) =
(
z1−1
z1+1

, 2z2
z1+1

)
and

σ = ω ◦Ψ.

B2 B2

H2 H2

φ

σ σ

Φ

We will choose ω(z) = (
√

2z1,
√
z2) where we take the principal branch of the

square root. One can show ω : H2 → H2. Then ω−1(z) = (1
2
z2

1 , z
2
2) with

σ(z) =

√2(z1 + 1)

−z1 + 1
,

√
z2

−z1 + 1

 and σ−1(z) =

(
z2

1 − 2

z2
1 + 2

,
4z2

2

z2
1 + 2

)
. (4.5)

Next, we want to choose Φ to correspond to case V. By [8], we know that for

case V, φ is equivalent to a Heisenberg translation whose associated matrix has one

Jordan block. Recall that a Heisenberg translation in C2 is a linear fractional map of

the form hb(z) = Az+ b where A =

1 2b2

0 1

 and b = (b1, b2)T . Thus we choose our

map Φ to be the Heisenberg translation given by

Φ(z) =

(
z1 +

1

2
z2 +

1

2
, z2 +

1

4

)
.

We then define φ = σ−1 ◦ Φ ◦ σ. A calculation shows φ(z) = (φ1(z), φ2(z)) where

φ1(z) =
15z1 + z2 + 1 + 4

√
2z2(z1 + 1) + 4

√
2(1− z2

1) + 2
√
z2(1− z1)

−z1 + z2 + 17 + 4
√

2z2(z1 + 1) + 4
√

2(1− z2
1) + 2

√
z2(1− z1)

and

φ2(z) =
16z2 − z1 + 1 + 8

√
z2(1− z1)

−z1 + z2 + 17 + 4
√

2z2(z1 + 1) + 4
√

2(1− z2
1) + 2

√
z2(1− z1)

.

To define a one-parameter semigroup, we note that
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mΦ =


1 0 0

0 1 −1
4

0 0 1

 =


1 0 0

0 2 −8

0 0 8




1 1 0

0 1 1

0 0 1




1 0 0

0 1
2

1
2

0 0 1
8


and thus

mΦt =


1 0 0

0 2 −8

0 0 8




1 t t(t−1)
2

0 1 t

0 0 1




1 0 0

0 1
2

1
2

0 0 1
8

 =


1 t

2
t(t+7)

16

0 1 t
4

0 0 1


which gives

Φt(z) =

(
z1 +

t

2
z2 +

t(t+ 7)

16
, z2 +

t

4

)
.

Hence we define φt = σ−1 ◦Φt ◦σ to be our one-parameter semigroup of φ. Define

the following:

A :=1024z1 + 64t2z2 + t2(t+ 7)2(1− z1) + 256t
√

2z2(z1 + 1)

+ 32t(t+ 7)
√

2(1− z2
1) + 16t2(t+ 7)

√
z2(1− z1)

B :=1024 + 64t2z2 + t2(t+ 7)2(1− z1) + 256t
√

2z2(z1 + 1)

+ 32t(t+ 7)
√

2(1− z2
1) + 16t2(t+ 7)

√
z2(1− z1)

C :=64t2(1− z1) + 1024z2 + 512t
√
z2(1− z1)

D :=1024 + 64t2z2 + t2(t+ 7)2(1− z1) + 256t
√

2z2(z1 + 1)

+ 32t(t+ 7)
√

2(1− z2
1) + 16t2(t+ 7)

√
z2(1− z1).

A calculation shows φt(z) = (φ1t(z), φ2t(z)) where φ1t(z) and φ2t(z) are given by

φ1t(z) =
A

B

and
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φ2t(z) =
C

D

It is a straightforward calculation to see that φ0 = I and φ1 = φ.
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5. FUTURE WORK

5.1 Spectra of Maps in Different Model Cases

Recall that our model theory admits seven cases to be considered for analytic

maps of B2 into itself. While case I (interior fixed point) and case III (Siegel half

space/dilation) are solved, we have made great progress on case II (half space/dilation)

as well. We may ask ourselves what the spectra of maps in the other four cases (at-

tractive boundary fixed point with multiplicity) as well. Taken over the Hardy space

in B2, work by Bayart [3] along with results by Jiang and Chen [17] solve the problem

for Cφ when φ is a linear fractional map. It remains to show, however, how this

generalizes to analytic maps that have an intertwining.

5.2 Generalized Hardy Spaces

In the disk, the Hardy space is a specific realization of a broader class of Hilbert

function spaces known as weighted Hardy spaces. These are the Hilbert spaces whose

vectors are functions that are analytic in the unit disk with monomials {1, z, z2, ...}

representing a complete orthogonal set of non-zero vectors for the Hilbert space.

These include well-studied spaces such as the Bergman space and the Dirichlet space.

In several variables, the Drury-Arveson space can likewise be studied as a specific

realization of a broader class of Hilbert function spaces. We define these below.

Definition 32 Let m, β be positive integers. The space H2
m,β(Bm) is the Hilbert

function space with reproducing kernel

1

(1− 〈z, w〉)β
.



51

The space H2
2,β can be identified with the space of holomorphic functions f : B2 →

C which have power series f(z) =
∑

i,j=0 aijz
izj such that

||f ||2H2
2,β

= ||f ||2 :=
∑
i,j=0

|aij|2
(β − 1)!i!j!

(β + i+ j − 1)!
<∞.

The Drury-Arveson space is obtained by setting β = 1 and the Hardy space on

the ball is obtained by setting β = m + 1. The spectral radii of linear fractional

maps has been determined for these spaces [20]. Preliminary results suggesting the

following is true for this more generalized class of Hilbert function spaces.

Conjecture 33 Assuming some natural hypotheses, similar to those given in The-

orem 28, given an analytic map φ, from the ball into the ball, with no interior fixed

point and boundary fixed point ζ (without multiplicity), the spectrum of Cφ acting on

H2
2,β(B2) is given by

σ(Cφ) = {λ | |λ| < α−
β
2 }

where α is the radial limit of the complex directional derivative Dζφ, i.e. the dilation

coefficient.
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