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ABSTRACT

Chen, Yao Ph.D., Purdue University, August 2020. Inferential GANs and Deep Fea-
ture Selection with Applications. Major Professor: Xiao Wang Professor.

Deep nueral networks (DNNs) have become popular due to their predictive power

and flexibility in model fitting. In unsupervised learning, variational autoencoders

(VAEs) and generative adverarial networks (GANs) are two most popular and suc-

cessful generative models. How to provide a unifying framework combining the best

of VAEs and GANs in a principled way is a challenging task. In supervised learning,

the demand for high-dimensional data analysis has grown significantly, especially in

the applications of social networking, bioinformatics, and neuroscience. How to si-

multaneously approximate the true underlying nonlinear system and identify relevant

features based on high-dimensional data (typically with the sample size smaller than

the dimension, a.k.a. small-n-large-p) is another challenging task. In this dissertation,

we have provided satisfactory answers for these two challenges. In addition, we have

illustrated some promising applications using modern machine learning methods.

In the first chapter, we introduce a novel inferential Wasserstein GAN (iWGAN)

model, which is a principled framework to fuse auto-encoders and WGANs. GANs

have been impactful on many problems and applications but suffer from unstable

training. The Wasserstein GAN (WGAN) leverages the Wasserstein distance to avoid

the caveats in the minmax two-player training of GANs but has other defects such

as mode collapse and lack of metric to detect the convergence. The iWGAN model

jointly learns an encoder network and a generator network motivated by the iterative

primal dual optimization process. The encoder network maps the observed samples

to the latent space and the generator network maps the samples from the latent

space to the data space. We establish the generalization error bound of iWGANs
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to theoretically justify the performance of iWGANs. We further provide a rigorous

probabilistic interpretation of our model under the framework of maximum likelihood

estimation. The iWGAN, with a clear stopping criteria, has many advantages over

other autoencoder GANs. The empirical experiments show that the iWGAN greatly

mitigates the symptom of mode collapse, speeds up the convergence, and is able to

provide a measurement of quality check for each individual sample. We illustrate the

ability of iWGANs by obtaining a competitive and stable performance with state-of-

the-art for benchmark datasets.

In the second chapter, we present a general framework for high-dimensional non-

linear variable selection using deep neural networks under the framework of supervised

learning. The network architecture includes both a selection layer and approximation

layers. The problem can be cast as a sparsity-constrained optimization with a sparse

parameter in the selection layer and other parameters in the approximation layers.

This problem is challenging due to the sparse constraint and the nonconvex optimiza-

tion. We propose a novel algorithm, called Deep Feature Selection, to estimate both

the sparse parameter and the other parameters. Theoretically, we establish the al-

gorithm convergence and the selection consistency when the objective function has a

Generalized Stable Restricted Hessian. This result provides theoretical justifications

of our method and generalizes known results for high-dimensional linear variable se-

lection. Simulations and real data analysis are conducted to demonstrate the superior

performance of our method.

In the third chapter, we develop a novel methodology to classify the electrocardio-

grams (ECGs) to normal, atrial fibrillation and other cardiac dysrhythmias as defined

by the Physionet Challenge 2017. More specifically, we use piecewise linear splines

for the feature selection and a gradient boosting algorithm for the classifier. In the

algorithm, the ECG waveform is fitted by a piecewise linear spline, and morphological

features related to the piecewise linear spline coefficients are extracted. XGBoost is

used to classify the morphological coefficients and heart rate variability features. The

performance of the algorithm was evaluated by the PhysioNet Challenge database
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(3658 ECGs classified by experts). Our algorithm achieves an average F1 score of

81% for a 10-fold cross validation and also achieved 81% for F1 score on the indepen-

dent testing set. This score is similar to the top 9th score (81%) in the official phase

of the Physionet Challenge 2017.

In the fourth chapter, we introduce a novel region-selection penalty in the frame-

work of image-on-scalar regression to impose sparsity of pixel values and extract active

regions simultaneously. This method helps identify regions of interest (ROI) associ-

ated with certain disease, which has a great impact on public health.Our penalty

combines the Smoothly Clipped Absolute Deviation (SCAD) regularization, enforc-

ing sparsity, and the SCAD of total variation (TV) regularization, enforcing spatial

contiguity, into one group, which segments contiguous spatial regions against zero-

valued background. Efficient algorithm is based on the alternative direction method

of multipliers (ADMM) which decomposes the non-convex problem into two itera-

tive optimization problems with explicit solutions. Another virtue of the proposed

method is that a divide and conquer learning algorithm is developed, thereby allowing

scaling to large images. Several examples are presented and the experimental results

are compared with other state-of-the-art approaches.
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1. INTRODUCTION

Human has long dreamed of creating machines that can think. Scientists today are ap-

plying machine learning and deep learning to create machines that help us do certain

task. In cases like facial recognition, machines have already outperformed humans.

In particular, deep learning technology, a specific branch of machine learning based

on artificial neural networks, has made a great progress during past decade. Different

neural network models have been applied to both supervised and unsupervised tasks.

For example, fully connected neural networks (FNN) have performed well on regular

classification and regression tasks, convolution neural networks (CNN) have shown

great advantages in image processing, and recurrent neural networks (RNN) have

been widely used in sequential tasks. Besides supervised learning models, deep gen-

erative architectures like variational autoencoders (VAEs) and generative adversarial

nets (GANs) have achieved great successes in unsupervised learning. Deep Learning

has been implement in various artificial intelligence tasks, like driverless car, language

translation, etc. In the field of healthcare, deep learning and machine learning are

also playing more and more important roles. In this dissertation, we introduce sev-

eral novel ideas in deep learning and their implement on medical care data. More

detailed background knowledge, notation and model structures, in deep learning and

healthcare terms are introduced in chapter 2.

1.1 Deep Generative Models

Generative models are one of the breakthroughs of modern deep learning tech-

nology. To train a generative model we first collect a large amount of data in some

domain (e.g., images, sentences, or sounds, etc.) and then train a model to generate
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data whose distribution is similar to it. The intuition behind this approach follows a

famous quote from Richard Feynman: ”What I cannot create, I do not understand.”

VAEs and GANs are two well developed frameworks in this field. Especially in

image generating tasks, both generate either nice inferential model or state-of-art

samples, but also have their own disadvantages. VAEs framework includes encoder,

which maps the real sample to the low-dimensional latent space, and decoder, which

reconstruct the sample from the latent variable. The generative model is trained

by minimize the reconstruction error of samples plus a regularization terms. VAEs

have built nice theoretical results, but tend to generate blurry images in practice.

GANs architecture consists of a generator and a discriminator, which generator gen-

erates samples while discriminator tries to distinguish them from the real samples.

Essentially, GANs is playing a minmax two-player problem. Empirically, GANs can

generate vivid and sharp images compare with VAEs, but it is also well known that

GANs suffers from unstable training and mode collapse problem. During the train-

ing, GANs usually require a delicate balance between generator and discriminator.

One comment thought would be choosing different metric of difference between two

distributions, as the architecture offers such flexibility. In [1], Wasserstein distance

is applied to calculate the distance between two distribution instead of the Jensen-

Shannon divergence in vanilla GANs. Wasserstein GAN (WGAN) has improved the

stability training of GANs. However, challenges still remain as WGAN also suffers

mode collapse problem and lacks metrics to monitor the convergence of training. How

to build a framework that fuses the best of VAEs and GANs, i.e. stably generating

vivid, diverse images and detecting the convergence of the training simultaneously

remain to be a challenging problem.

In chapter 3, the deep generative models are studied and a novel framework,

Inferential WGAN (iWGAN), that unifying the best of VAEs and GANs has been

proposed. The iWGAN architecture includes encoder network as well as generator

under WGAN framework. We establish theoretical generalization error bound of
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iWGANs and rigorous probabilistic interpretation of the model. We also raised an

algorithm based on the model with clear stopping criteria.

1.2 High-dimensional Data Analysis

High-dimensional data analysis has always been a important and challenging ques-

tion in the field of statistics and machine learning. How to approximate the true

underlying system and select the relevant features with high-dimensional data, i.e.

sample size smaller than the variable dimension, is challenging. Deep neural networks

have been widely used in solving supervised learning problems. Deep feedforward net-

works, and their derivatives, like convolutional neural networks and recurrent neural

networks, have significantly improved the performance of many tasks. They even out-

performed human in tasks such as image classification and disease diagnosis. Most

successful cases using deep neural networks require enormously large dataset, in order

to obtain a good estimation of millions of parameters in the model. However, collect-

ing data can be difficult for many domains in practice, particularly the aread such as

social networking, bioinformatics, and neuroscience. Whether deep neural networks

can performance well in high-dimensional data analysis becomes both interesting and

challenging.

In chapter 4, a general framework for high-dimensional nonlinear variable selec-

tion via deep neural networks is proposed. The framework includes a selection layer

in other neural network structure. The variable selection is achieved by sparse con-

trol of the selection layer’s parameter. A novel algorithm is raised to estimate the

sparse parameter and other parameters. We also build the theoretical results on the

approximation error of such framework and the selection consistency.

1.3 Machine Learning for Medical Diagnosis

With the rapid development of varieties of machine learning frameworks, state-

of-the-art results spring up like mushrooms. How to take advantages of them for
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real world problems and benefit humankind in the area of healthcare has become the

next challenge for researchers. As statisticians, we are very curious whether these

models can be applied to solve healthcare difficulties or improve the efficiency of

healthcare system. For example, can we incorporate human knowledge into machine

and further help improve the diagnosis accuracy and efficiency? Many more questions

are waiting to be answered and machine learning techniques are highly expected to

play an important role.

Although machine learning has demonstrated its power on many tasks, the state-

of-the-art results are mostly based on huge cleaned data or well known datasets that

are carefully studied. However, in reality, collecting data to answer scientific questions

is hard and people often facing a raw, unaligned, and incomplete data. How to start

from zero to build a pipeline to solve the real problem is always challenging and often

requires lots of cross discipline cooperation.

In chapter 5, we demonstrate a case study of machine learning in medical care

problem. We developed a new automatic approach of classifying the electrocardio-

grams (ECGs) to normal, atrial fibrillation, other cardiac disease along with noise

signal. Our method achieves top 9th score in the Physionet Challenge 2017.

1.4 Local Region Regression

We are now experiencing an age of data explosion. Tremendous data with differ-

ent data types are collected. It is easy to collect both image data and other scalar

variable data in the same field. For example, fMRI image and other variables such

as cognitive scores can be easily collected at the same time when patients enter the

hospital. Building connection between them has been a significant research activity

in the area of neuroscience. One of the urgent tasks is to discover the Region of

Interest (ROI) of image data that may help identify subjects with high risk. Machine

learning techniques with penalized optimization is often used. However, requirements

of spatially heterogeneous smoothness and local region selection are the most signif-
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icant challenges to be faced by researchers. How to achieve sparsity of the selection

and smoothness of selected region simultaneously poses a lot of challenges to modern

machine learning methods.

In chapter 6, we introduce a novel region-selection penalty in the framework of

image-on-scalar regression to impose sparsity of pixel values and extract active re-

gions simultaneously. We define a novel penalty, SCAD2TV, which combines the

SCAD regularization, enforcing sparsity, and the SCAD of TV regularization, en-

forcing spatial contiguity, into one group, which segments contiguous spatial regions

against zero-valued background. This method helps identify regions of interest (ROI)

associated with certain disease, which has a great impact on public health.
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2. BACKGROUND

In this chapter, preliminary knowledge and terms of deep learning and medical care

that will be used in latter chapters are defined.

2.1 Deep Learning

Deep learning has a long history and many aspirations. Several approaches have

been proposed that have yet to entirely bear fruit. Several ambitious goals have yet

to be realized. Modern deep learning provides a very powerful framework for both su-

pervised learning and unsupervised learning. We introduce several basic frameworks

which are used in latter chapters in the following.

2.1.1 Deep feedforward network

Deep feedforward networks, also often called feedforward neural networks, or mul-

tilayer perceptrons (MLPs), are the most essential deep learning models. The models

are defined to approximate some function f ∗. For example, the general prediction

problem:

y∗ = f ∗(x) (2.1)

y = t(y∗) (2.2)

where t is a fixed function related to the prediction problem, and f ∗ is an unknown

function. For regression, t is the identity mapping. For classification, t is the func-

tion to maps y∗ to different number of classes. A feedforward network defines a

mapping y = f(x; θ) and learns the value of the parameters θ that result in the best

approximation of the true function f ∗.
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Deep feedforward networks are represented by composing together many different

functions. For example, f (1), f (2), f (3) are three functions that connected in a chain

to form the feedforward model f(x) = f (3)(f (2)(f (1)(x))). The number of chain

functions are called the depth of the model. The final chain function or layer of the

feedforward network is called the output layer, and the functions before the output

layer is called hidden layers. The output of each hidden layer is vector-valued and

the dimensionality of these hidden layer is called the width of the model. Figure 2.1

is example of feedforward neural networks.

x1

x2

x3

xp

...

Output

Hidden

layer

Θ(1)

Output

layer

Θ(H)

Fig. 2.1. Feedforward Neural Networks Architecture

The function represented by Figure 2.1 can be written as

f(x) = TH+1 ◦ σ ◦ TH ◦ σ ◦ · · · σ ◦ T1 ◦ (x), (2.3)

where Ti(u) = Θ(i)u + b(i), i = 1, . . . , H + 1, are affine transformations with

unknown parameters (Θ(i), b(i)) with Θ(i) ∈ Rdi×di−1 and b(i) ∈ Rdi , and σ(·) is the

activation function. Popular choice of activation functions includes rectified linear

unit (ReLU), sigmoid, and tanh.



8

2.1.2 Variational AutoEncoders (VAEs)

Variational AutoEncoders (VAEs) have become the most popular generative mod-

els. The major task of generative models is studying the distribution, Px, of data

x ∈ X . In order to be able to sample from Px, we first define a latent variable z,

which follows distribution that is easy to sample from. Then we define a decoder

pθ(x|z) to model the conditional distribution Px|z. If we can estimate the conditional

distribution well, then we can sample x from given latent variable z and approximate

Px by:

pθ(x) =

∫
pθ(x|z) · p(z)dz (2.4)

we can then estimate θ by maximize the likelihood function of given data. How-

ever, Equation 2.4 is intractable, which means the Pz|x = pθ(z|x)pz/pθ(x) is also

intractable. Markov Chain Monte Carlo (MCMC) is one solution for estimating the

integration, but it is very inefficient. So we define an encoder qφ(z|x) to approximate

pθ(z|x). Then the log likelihood function can be rewritten as:

log pθ(x
(i)) = Ez∼qφ(z|x(i))

[
log pθ(x

(i))
]

= Ez[log
pθ(x

(i)|z)p(z)

pθ(z|x(i))

qφ(z|x(i))

qφ(z|x(i))
]

= Ez[log pθ(x
(i)|z)]−DKL(qφ(z|x(i))‖p(z))

+DKL(qφ(z|x(i))‖pθ(z|x(i))) (2.5)

The first two terms of Equation 2.5 have tractable lower bound, which we can take

gradient and optimize. The first term is always greater than 0. Putting together, we

can maximize the lower bound of the likelihood function.

VAEs are principled approach in generative models. It allows we do inference of

q(z|x), which can be useful feature representation in other tasks. However, instead of

optimize the likelihood function, we maximize its lower bound. This makes this ap-

proach has intrinsic bias even with growing sample size. Also, VAEs generate blurrier
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and low quality samples compared to the state-of-the-art generated by Generative

Adversarial Nets (GANs).

z x̂x
Encoder

qφ(z|x)

Decoder

pθ(x|z)

Fig. 2.2. Autoencoder Architecture

2.1.3 Generative Adversarial Nets (GANs)

Generative adversarial nets (GANs) are a class of machine learning framework that

is used to generate samples from target distribution or learning the target distribution.

GANs consists of two networks: generative model G and discriminative model D. The

generative model G learns to map a latent variable z, typically follows a standard

multivariate normal distribution or a uniform distribution, to the target distribution

where the sample x come from. While the discriminative model D are trained to

distinguish true sample x and the generated samples G(z). The training object of

G is to increase the error rate of D and the goal of D is to identify true data from

synthesized ones. The success of G is aimed to fool arbitrary D, in which sense, we

conclude G(z) follows the true distribution of x.

x̂z

x

f

G

Fig. 2.3. Generative Adversarial Nets Architecture

The general loss function of GANs is defined in Equation 2.6, where φ1 and φ2

can be flexibly defined. The loss function can be also regarded as the measurement
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of two distribution Px and PGz. With different choice of measurement, the φ1 and

φ2 will be defined correspondingly. For example, the vanilla GANs choose Jensen-

Shannon Divergence with φ1(x) = log x and φ2(x) = − log(1−x). Wasserstein GANs

(WGANs) use Wasserstein distance to measure the difference of Px and PG(z), so

φ1(x) = φ2(x) = x is adopted with constrain of f to be 1-Lipschitz. In practice,

GANs generate state-of-art samples, but they always suffer unstable training and

mode collapse.

min
G

max
D

V (G,D) = Ex∼pdata(x)[φ1((f(x)))] + Ez∼pzz[φ2(f(G(z)))] (2.6)

2.2 Healthcare

With the rapid development of Machine Learning, its applications in medical

care has also become popular. AI for medicine has been wide used in diagnosis and

interpretation of medical data. In latter chapters, we will implement two applications

of machine learning on different disease. In this section, the background knowledge

of Alzheimer’s Disease and Atrial Fibrillation is introduced.

2.2.1 Alzheimer’s Disease

Alzheimer’s disease (AD), also simply called as Alzheimer’s is a chronic neurode-

generative disease. The most common symptom is difficulty in remembering recent

events, and problems with language, disorientation, mood swings, loss of motivation,

not managing self-care and behavioural issues may come after. Patients often grad-

ually withdraw from family and society, lose bodily function and are lead to death.

In 2015, there were approximately 29.8 million people worldwide with AD. It most

often begins in people over 65 years of age. AD has become one of the top 10 leading

causes of death in the United States.
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2.2.2 Atrial Fibrillation

Atrial Fibrillation(AF) is an abnormal heart rhythm characterized by rapid and

irregular heartbeat. AF, usually associated with significant mortality and morbidity,

is the most common sustained cardiac arrhythmia, occurring in 1-2% of the general

population [2, 3]. At least 2.7 million Americans are living with AF and, more than

12 million Europeans and North Americans are estimated to suffer from AF [3, 4].

The incidence of AF increases with age, from less than 0.5% at 40-50 years, to 5-

15% for 80 years of age [5]. Its prevalence will likely triple in the next 30-50 years,

particularly, in the United States and other western countries with aging population

demographics [6]. This growth may also be influenced by extended survival outcomes

for patients with congestive heart failure (CHF), valvular heart disease, and coronary

artery disease, as AF is common among patients with other forms of structural heart

disease.
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3. INFERENTIAL WASSERSTEIN GENERATIVE

ADVERSARIAL NETS

3.1 Introduction

One of the goals of generative modeling is to match the model distribution Pθ(x)

with parameters θ to the true data distribution PX for a random variable X ∈ X .

For latent variable models, the data point X is generated from a latent variable

Z ∈ Z through a conditional distribution P (X|Z). Here X denotes the support

for PX and Z denotes the support for PZ . In this chapter, we consider models

with Z ∼ N (0, I). There has been a surge of research on deep generative networks

in recent years and the literature is too vast to summarize here [7–9]. These models

have provided a powerful framework for modeling complex high dimensional datasets.

We start introducing two main approaches for generative modeling. The first one is

called variational auto-encoders (VAEs) [7], which use variational inference to learn a

model by maximizing the lower bound of the likelihood function. VAEs have elegant

theoretical foundations but the drawback is that they tend to produce blurry images.

The second approach is called generative adversarial networks (GANs) [8], which

learn a model by using a powerful discriminator to distinguish between real data

points and generative data points. GANs produce more visually realistic images but

suffer from the unstable training and the mode collapse problem. Although there

are many variants of generative models trying to take advantages of both VAEs and

GANs [10, 11], to the best of our knowledge, the model which provides a unifying

framework combining the best of VAEs and GANs in a principled way is yet to be

discovered.
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3.1.1 Related work

The generative model is to learn a mapping, denoted by G, from Z to X to

approximate the conditional distribution PG(X|Z) of the data point X ∈ X given

latent code Z ∈ Z. We consider the deterministic mapping G in this work. Both the

vanilla GAN [8] and the Wasserstein GAN (WGAN) [1] can be viewed as minimizing

certain divergence between the data distribution PX and the generative model dis-

tribution PG(Z). For example, the Jensen-Shannon (JS) divergence is implicitly used

in vanilla GANs [8]. The 1-Wasserstein distance between PX and PG(Z), denoted

by W1(PX , PG(Z)), is employed in WGANs. Empirical experiments suggest that the

Wasserstein distance is a more sensible measure to differentiate probability measures

supported in low-dimensional manifold. In terms of training, it turns out that it is

hard or even impossible to compute these standard divergences in probability, es-

pecially when PX is unknown and PG(Z) is parameterized by deep neural networks

(DNNs). The training of GANs is converted into playing a game between two com-

peting networks: the generator and the discriminator. The generator is to fool the

discriminator and the discriminator is to distinguish between true data samples and

generated samples. Instead, the training of WGANs is to study its dual problem

because of the elegant form of Kantorovich-Rubinstein duality [12]. Analogous to

GANs, the discriminator is now a real-valued 1-Lipschitz function. Many techniques

such as weight clipping [1] and gradient penalty [13] are used to enforce the Lipschitz

constraint. For autoencoder GANs, [14] first introduced the VAE-GAN, which is a

hybrid of VAEs and GANs. The VAE-GAN uses a GAN discriminator to replace a

VAE’s decoder to learn the loss function. The motivation behind this modification

is that VAEs tend to produce blurry outputs during the reconstruction phase. More

recent VAE-GAN variants, such as Adversarial Generator Encoders (AGE) [15] and

Auto-encoding GANs (α-GAN) [11], use a separate encoder to stabilize GAN train-

ing. The main difference with standard GANs is that, besides the generator G, there

is an encoder Q : X → Z which maps the data points into the latent space. This en-
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coder is to approximate the conditional distribution Q(Z|X) of the latent variable Z

given the data point X. Other encoder-decoder GANs are introduced in Adversarially

Learned Inference (ALI) [16] and Bidirectional Generative Adversarial Networks (Bi-

GAN) [17]. The objective of both ALI and BiGAN is to match two joint distributions

under the framework of vanilla GANs, the joint distribution of (X,Q(X)) and the

joint distribution of (G(Z), Z). When the algorithm achieves equilibrium, these two

joint distributions roughly match. It is expected to obtain more meaningful latent

codes by Q(X), and this should improve the quality of the generator as well. Adver-

sarial Variational Bayes (AVB) [18] presented a more flexible latent distribution to

train Variational Autoencoders. [19] provided new interpretations of GANs and VAEs

and revealed strong connections between them which are linked by the classic wake-

sleep algorithm. Regarding the optimization perspectives of GANs, [20, 21] studied

duality-based methods for improving algorithm performance for training. Primal-dual

Wasserstein GANs (PD-GANs) are introduced in [22], which proposed a new penalty

term whose evaluation samples are obtained from the encoder Q. [23] developed a

convex duality framework to address the case when the discriminator is constrained

into a smaller class. [24] developed an evaluation metric to detect the non-convergence

behavior of vanilla GANs, which is the duality gap defined as the difference between

the primal and the dual objective functions.

3.1.2 Our Contributions

Although there are many interesting works on autoencoder GANs, it remains

unclear what the principles are underlying the fusion of auto-encoders and GANs.

For example, do there even exist these two mappings, the encoder Q and the de-

coder G, for any high-dimensional random variable X, such that Q(X) has the same

distribution as Z and G(Z) has the same distribution as X? Is there any probabilis-

tic interpretation such as the maximum likelihood principle on autoencoder GANs?

What is the generalization performance of autoencoder GANs? We introduce in-
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ferential WGANs (iWGANs), which provide satisfying answers for these questions.

We will mainly focus on the 1-Wasserstein distance, instead of the Kullback-Leibler

divergence. We borrow the strength from both the primal and the dual problems

and demonstrate the synergistic effect between these two optimizations. The encoder

component tends out to be a natural consequence from our algorithm. Furthermore,

the iWGAN has a rigorous probabilistic interpretation under the maximum likelihood

principle, and our learning algorithm is equivalent to the maximum likelihood estima-

tion when our model is defined as an energy-based model based on an autoencoder.

Our main contributions are listed as follows: (a) We propose a novel framework,

called iWGAN, to learn both an encoder and a decoder simultaneously. We prove

the existence of meaningful encoder and decoder, establish an equivalence between

WGAN and iWGAN, and develop a generalization error bound for iWGAN. (b) We

establish a rigorous probability interpretation for iWGANs and our training process

is exactly the same as the maximum likelihood estimation. As a byproduct, this in-

terpretation allows us to perform the quality check at the individual sample level. (c)

We demonstrate the natural use of the duality gap as a measure of convergence for

iWGANs, and show its effectiveness for various numerical settings. Our experiments

do not experience any mode collapse problem.

The rest of the chapter is organized as follows. Section 2 presents the new iWGAN

framework, and its extension to general inferential f-GANs. Section 3 establishes the

generalization error bound and introduces the algorithm for iWGANs. The proba-

bilistic interpretation and the connection with the maximum likelihood estimation

are introduced in Section 4. Extensive numerical experiments are demonstrated in

Section 5 to show the advantages of the iWGAN framework. Proofs of theorems and

additional numerical results are provided in the Appendix.
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3.2 The iWGAN Model

The autoencoder generative model consists of two parts: an encoder Q and a

generator G. The encoder Q maps a data sample x ∈ X to a latent variable z ∈ Z,

and the generator G takes a latent variable z ∈ Z to produce a sample G(z). In gen-

eral, the autoencoder generative model should satisfy the following three conditions

simultaneously: (a) The generator can generate images which have a similar distribu-

tion with observed images, i.e., the distribution of G(Z) is similar to that of PX ; (b)

The encoder can produce meaningful encodings in the latent space, i.e., Q(X) has

a similar distribution with Z; (c) The reconstruction errors of this model based on

these meaningful encodings are small, i.e., the difference between X and G(Q(X)) is

small.

We emphasize that the benefit of using an autoencoder is to encourage the model

to better represent all the data it is trained with, so that it discourages mode-collapse.

We first show that, for any distribution residing on a smooth manifold, there always

exists an encoder Q∗ which guarantees meaningful encodings and exists a generator

G∗ which generates samples with the same distribution as data points by using these

meaningful codes.

Theorem 3.2.1 Consider a continuous random variable X ∈ X , where X is a d-

dimensional smooth Riemannian manifold. Then, there exist two mappings Q∗ : X →

Rp and G∗ : Rp → X , with p = max{d(d + 5)/2, d(d + 3)/2 + 5}, such that Q∗(X)

follows a multivariate normal distribution with zero mean and identity covariance

matrix and G∗ ◦Q∗ is an identity mapping, i.e., X = G∗(Q∗(X)).

Learning Q∗ and G∗ from the data points is a challenging task. Consider a general

f -GAN model [25] here. Let h : R → (−∞,∞] be a convex function with h(1) =

0. The f -GAN defines the f -divergence between the data distribution PX and the

generative model distribution PG(Z) for the generator G as:

GANh(PX , PG(Z)) = sup
f∈F

[
EX {f(X)} − EZ {h∗(f(G(Z))}

]
,
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where h∗(x) = supy{x · y − h(y)} is the convex conjugate of h and F is an arbitrary

class of functions f : X → R. If h(x) = x log(x) − (x + 1) log(x + 1) − 2 log 2, f -

GAN recovers the original vanilla GAN [8]. If h(x) = 0 when x = 1 and h(x) = ∞

otherwise, we have h∗(x) = x. With the property that F is 1-Lipschitz function class,

the f -GAN turns to be the WGAN.

For ease of presentation, we illustrate our methodology by mainly focusing on

Wasserstein distance and the inferential WGAN (iWGAN) model. The extension

to general inferential f-GANs (ifGANs) is straightforward and will be presented in

Section 3.2.3.

3.2.1 iWGAN

Recall that the 1-Wasserstein distance between PX and PG(Z) is defined as

W1(PX , PG(Z)) = inf
π∈Π(PX ,PZ)

E(X,Z)∼π
∥∥X −G(Z)

∥∥, (3.1)

where ‖ · ‖ represents the L2-norm and Π(PX , PZ) is a set of all joint distributions of

(X,Z) with marginal measures PX and PZ , respectively. The main difficulty in (3.1)

is to find the optimal coupling π and this is a constrained optimization because the

joint distribution π needs to match these two marginal distributions PX and PZ .

Based on the Kantorovich-Rubinstein duality [12], the WGAN studies the 1-

Wasserstein distance (3.1) through its dual format

W1(PX , PG(Z)) = sup
f∈F

[
EX∼PX

{
f(X)

}
− EZ∼PZ

{
f(G(Z))

}]
, (3.2)

where F is the set of all bounded 1-Lipschitz functions. This is also a constrained

optimization due to the Lipschitz constraint on f such that f(x) − f(y) ≤ ‖x − y‖

for all x, y ∈ X . Weight clipping [1] and gradient penalty [13] have been used to

satisfy the constraint of Lipschitz continuity. The experiment of [1] showed that the

WGAN can avoid the problem of gradient vanishment. However, the WGAN does

not produce meaningful encodings and many experiments still display the problem of

mode collapse [1, 13].
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On the other hand, the Wasserstein Autoencoder (WAE) [10], after introducing an

encoder Q : X → Z to approximate the conditional distribution of Z given X, mini-

mizes the reconstruction error infQ∈Q EX
∥∥X−G(Q(X))

∥∥, where Q is a set of encoder

mappings whose elements satisfies PQ(X) = PZ . The penalty, such as D(PQ(X), PZ),

is added to the objective to satisfy this constraint, where D is an arbitrary diver-

gence between PQ(X) and PZ . The WAE can produce meaningful encodings and have

controlled reconstruction error. However, the WAE defines a generative model in an

implicit way and does not model the generator through G(Z) with Z ∼ PZ directly.

To take the advantages of both WGAN and WAE, we propose a new autoencoder

GAN model, called iWGAN, which defines the divergence between PX and PG(Z) by

W 1(PX , PG(Z)) = inf
Q∈Q

sup
f∈F

[
EX‖X−G(Q(X))‖+EX

{
f(G(Q(X)))

}
−EZ

{
f(G(Z))

}]
.

(3.3)

The term ‖X−G(Q(X))‖ can be treated as the autoencoder reconstruction error

as well as a loss to match the distributions between X and G(Q(X)). We note

that the L1-norm ‖ · ‖1 has been used for the reconstruction term by α-GAN [11]

and CycleGAN [26]. Another term EX∼PX{f(G(Q(X)))} − EZ∼PZ{f(G(Z))} can be

treated as a loss for the generator as well as a loss to match the distribution between

G(Q(X)) and G(Z). We emphasize that this term is different with the objective

function of the WGAN in (3.2). The properties of (3.3) will be discussed in Theorem

3.2.2. The primal and dual explanation of (3.3) will be presented in Section 3.2.2.

Furthermore, it is challenging for practitioners to determine when to stop training

GANs. Most of the GAN algorithms do not provide any explicit standard for the

convergence of the model. However, the measure of convergence for iWGAN becomes

very natural and we use the duality gap as the measure. The duality gap for (G̃, Q̃, f̃)

is defined as

DualGap(G̃, Q̃, f̃) = sup
f∈F

L(G̃, Q̃, f)− inf
G∈G,Q∈Q

L(G,Q, f̃), (3.4)

where L(G,Q, f) is

L(G,Q, f) = EX‖X −G(Q(X))‖+ EX{f(G(Q(X)))} − EZ{f(G(Z))}.
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Theorem 3.2.2 The iWGAN objective (3.3) is equivalent to

W 1(PX , PG(Z)) = inf
Q∈Q

{
W1(PX , PG(Q(X))) +W1(PG(Q(X)), PG(Z))

}
. (3.5)

Therefore, W1(PX , PG(Z)) ≤ W 1(PX , PG(Z)). If there exists a Q∗ ∈ Q such that

Q∗(X) has the same distribution with Z, then W1(PX , PG(Z)) = W 1(PX , PG(Z)). Let

(Q̃, G̃, f̃) be a fixed solution and assume that the encoder, generator, and discriminator

all have enough capacities. Then the duality gap is larger than W1(PX , PG̃(Q̃(X))) +

W1(PG̃(Q̃(X)), PG̃(Z)). Moreover, if G̃ outputs the same distribution as X and Q̃ outputs

the same distribution as Z, both the duality gap and W 1(PX , PG̃(Z)) are zeros and

X = G̃(Q̃(X)) for X ∼ PX .

According to Theorem 3.2.2, the iWGAN objective is in general the upper bound

of W1(PX , PG(Z)). However, this upper bound is tight. When the space Q includes

a special encoder Q∗ such that Q∗(X) has the same distribution as Z, the iWGAN

objective is exactly the same as W1(PX , PG(Z)). Theorem 3.2.2 also provides an

appealing property from a practical point of view. The values of both the duality gap

and W 1(PX , PG̃(Z)) give us a natural criteria to justify the algorithm convergence.

3.2.2 A Primal-Dual Explanation

We explain the iWGAN objective function (3.3) from the view of primal and dual

problems. Note that both the primal problem (3.1) and the dual problem (3.2) are

constrained optimization problems. First, the primal variable f for the dual problem

(3.2) is also a dual variable for the primal problem (3.1). From the Lagrange multiplier

perspective, we can write the primal problem (3.1) such that

infπ Eπ
∥∥∥X −G(Z)

∥∥∥+
∫
x
f(x)

(
pX(x)−

∫
z
π(x, z)dz

)
dx−

∫
z
f(G(z))

(
pZ(z)−

∫
x
π(x, z)dx

)
dz

= inf
Q∈Q

EX
{
‖X −G(Q(X))‖+ f(G(Q(X)))

}
− EZ

{
f(G(Z))

}
.
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Second, the primal variable π for the primal problem (3.1) is also a dual variable for

the dual problem (3.2). We can write the dual problem (3.2) such that

sup
f∈F

EX
{
f(X)

}
− EZ

{
f(G(Z))

}
−
∫
X×Z

π(x, z)
(
f(x)− f(G(z))− ‖x−G(z)‖

)
dxdz

= sup
f∈F

EX
{
‖X −G(Q(X))‖+ f(G(Q(X)))

}
− EZ

{
f(G(Z))

}
.

When we solve primal and dual problems iteratively, this turns out to be exactly the

same as our iWGAN algorithm.

In addition, the optimal value of the primal problem (3.1) satisfies

inf
Q∈Q

sup
f∈F

EX
{
‖X −G(Q(X))‖+ f(G(Q(X)))

}
− EZ

{
f(G(Z))

}
,

and the optimal value of the dual problem (3.2) satisfies

sup
f∈F

inf
Q∈Q

EX
{
‖X −G(Q(X))‖+ f(G(Q(X)))

}
− EZ

{
f(G(Z))

}
.

The difference between the optimal primal and dual values is exactly the duality gap

in (3.4).

3.2.3 Extension to f-GANs

This framework can be easily extended to other types of GANs. Assume that F

is the 1-Lipschitz function class. We extend the iWGAN framework to the inferential

f-GAN (ifGAN) framework. Define the ifGAN objective function as follows:

W 1,h(PX , PG(Z)) = inf
Q∈Q

sup
f∈F

[
EX‖X−G(Q(X))‖+EX

{
f(G(Q(X)))

}
−EZ

{
h∗(f(G(Z)))

}]
.

(3.6)

Following this definition, we have

W 1,h(PX , PG(Z)) = inf
Q∈Q

{
W1(PX , PG(Q(X))) + GANh(PG(Q(X)), PG(Z))

}
.

We show GANh(PX , PG(Z)) ≤ W 1,h(PX , PG(Z)). This is because

GANh(PX , PG(Z)) = sup
f∈F

EX {f(X)} − EZ {h∗(f(G(Z))}

≤ inf
Q∈Q

[
sup
f∈F

EX {f(X)} − EX {f(G(Q(X)))}+ sup
f∈F

EX {f(G(Q(X)))} − EZ {h∗(f(G(Z))}
]

=W 1,h(PX , PG(Z)).
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This indicates that the ifGAN objective (3.6) is an upper bound of the f-GAN objec-

tive.

3.3 Generalization Error Bound and the Algorithm

Suppose that we observe n samples {x1, . . . , xn}. In practice, we minimize the

empirical version, denoted by Ŵ 1(PX , PG(Z)), of W 1(PX , PG(Z)) to learn both the

encoder and the generator, where,

Ŵ 1(PX , PG(Z)) = inf
Q∈Q

sup
f∈F

[
Êobs‖x−G(Q(x))‖+ Êobs

{
f(G(Q(x)))

}
− Êz

{
f(G(z))

}]
.

(3.7)

Here Êobs{·} denotes the empirical average on the observed data {xi} and Êz denotes

the empirical average on a random sample of standard normal random variables.

Before we present the details of the algorithm, we first establish the generalization

error bound for iWGANs in this section.

In the context of supervised learning, generalization error is defined as the gap

between the empirical risk and the expected risk. The empirical risk is correspond-

ing to the training error, and the expected risk is corresponding to the testing error.

Mathematically, the difference between the expected risk and the empirical risk, i.e.

the generalization error, is a measure of how accurately an algorithm is able to pre-

dict outcome values for previously unseen data. However, in the context of GANs,

neither the training error nor the test error is well defined. But we can define the

generalization error in a similar way. Explicitly, we define the “training error” as

Ŵ 1(PX , PG(Z)) in (3.7), which is minimized based on observed samples. Define the

“test error” as W1(PX , PG(Z)) in (3.1), which is the true 1-Wasserstein distance be-

tween PX and PG(Z). The generalization error for iWGANs is defined as the gap

between these two “errors”. In other words, for a iWGAN model with the parameter

(G,Q, f), the generalization error is defined as Ŵ 1(PX , PG(Z))−W1(PX , PG(Z)). For

discussions of generalization performance of classical GANs, see [27] and [28].
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Theorem 3.3.1 Given a generator G ∈ G, and n samples (x1, . . . , xn) from X =

{x : ‖x‖ ≤ B}, with probability at least 1− δ for any δ ∈ (0, 1), we have

W1(PX , PG(Z)) ≤ Ŵ 1(PX , PG(Z)) + 2R̂n(F) + 3B

√
2

n
log

(
2

δ

)
, (3.8)

where R̂n(F) = Eε
{

supf∈F n
−1
∑n

i=1 εif(xi)
}

is the empirical Rademacher complexity

of the 1-Lipschitz function set F , in which εi is the Rademacher variable.

For a fixed generator G, Theorem 3.3.1 holds uniformly for any discriminator

f ∈ F . It indicates that the 1-Wasserstein distance between PX and PG(Z) can be

dominantly upper bounded by the empirical Ŵ 1(PX , PG(Z)) and Rademacher com-

plexity of F . Since Ŵ 1(PX , PG(Z)) ≤ Ŵ1(PX , PG(Q(X))) + Ŵ1(PG(Q(X)), PG(Z)) for any

Q ∈ Q, the capacity of Q determines the value of Ŵ 1(PX , PG(Z)).

In learning theory, Rademacher complexity, named after Hans Rademacher, mea-

sures richness of a class of real-valued functions with respect to a probability distri-

bution. There are several existing results on the empirical Rademacher complexity of

neural networks. For example, when F is a set of 1-Lipschitz neural networks, we can

apply the conclusion from [29] to R̂n(F), which produces an upper bound scaling as

O(B
√
L3/n). Here L denotes the depth of network f ∈ F . Similar upper bound with

an order of O(B
√
Ld2/n) can be obtained by utilizing the results from [30], where d

is the width of the network.

Next, we introduce the details of the algorithm. Our target is to solve the following

optimization problem:

min
G∈G,Q∈Q

max
f∈F

Êobs‖x−G(Q(x))‖+ Êobs
{
f(G(Q(x)))

}
− Êz

{
f(G(z))

}
+λ1J1(f) + λ2J2(Q), (3.9)

where J1(f) and J2(Q) are regularization terms for f and Q respectively. We ap-

proximate G,Q, f by three neural networks with pre-specified architectures. The

details of the neural network architectures are provided in the Appendix E. Since

f is assumed to be 1-Lipschitz, we adopt the gradient penalty defined as J1(f) =
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Algorithm 1 The training algorithm of iWGAN

While DualGap > ε1 or L(Gi, Qi, f i) > ε2

for t = 1, ..., ncritic do

Sample real data xi ∼ PX , latent variable zi ∼ PZ and a random number ε ∼

U [0, 1]

x̂i ← εxi + (1− ε)Gi(zi)

Calculate Li = L(Gi, Qi, f i|xi, zi) and gradient of −Li

Update f by Adam: f i+1 ← Adam(−∇fL
i)

where for f i,

−∇fL
i = ∇f

1

n

∑n
k=1

(
f i(Gi(zik))− f i(Gi(Qi(xik))) + λ1(‖∇x̂if

i(x̂i)‖2 − 1)2
)

end for

for t = 1, ..., ncritic do

Sample real data x′i ∼ PX , latent variable z′i ∼ PZ

Calculate L′i = L(Gi, Qi, f i+1|x′i, z′i) and gradient of L′i

Update G, Q by Adam: Gi+1, Qi+1 ← Adam(∇G,QL
′i)

where for Gi, Qi,

∇G,QL
′i = ∇G,Q

1

n

n∑
k=1

(‖xik −Gi(Qi(xik))‖+ f i+1(Gi(Qi(xik)))− f i+1(Gi(zik)))

+
λ2

n(n− 1)

∑
l 6=j

k(zil , z
i
j) +

λ2

n(n− 1)

∑
l 6=j

k(Q(xil), Q(xij))−
2λ2

n2

∑
l,j

k(zil , Q(xij))

end for

EX
{

(‖∇Xf(X)‖2 − 1)2
}

in [13] to enforce the 1-Lipschitz constraint on f ∈ F . Fur-

thermore, since we expect Q(X) follows approximately standard normal, we use the

maximum mean discrepancy (MMD) penalty [31], denoted by J2(Q) = MMDk(PQ(X), PZ),

to enforce Q(X) to converge to PZ , where k is a kernel function. We have adopted the

stochastic gradient descent to estimate the unknown parameters in neural networks.

The optimization (3.9) consists of two tuning parameters λ1 and λ2 and we select the
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optimal tuning parameters by grid search using cross validation. The details of the

algorithm are presented in Algorithm 1.

3.4 Probabilistic Interpretation and the MLE

The iWGAN has proposed an efficient framework to stably and automatically es-

timate both the encoder and the generator. In this section, we provide a probabilistic

interpretation of the iWGAN under the framework of maximum likelihood estimation.

Maximum likelihood estimator (MLE) is a fundamental statistical framework for

learning models from data. However, for complex models, MLE can be computa-

tionally prohibitive due to the intractable normalization constant. MCMC has been

used to approximate the intractable likelihood function but do not work efficiently

in practice. The iWGAN can be treated as an adaptive method for the MLE train-

ing, which not only provides computational advantages but also allows us to generate

more realistic-looking images. Furthermore, this probabilistic interpretation enables

other novel applications such as image quality checking and outlier detection.

Let X denote the image. Define the density of X by an energy-based model based

on an autoencoder [32,33]:

p(x|θ) = exp
(
−
∥∥x−Gθ(Qθ(x))

∥∥− V (θ)
)
,

where

V (θ) = log

∫
exp(−

∥∥x−Gθ(Qθ(x))
∥∥)dx,

and θ is the unknown parameter and V (θ) is the log normalization constant. The

major difficulty for the likelihood inference is due to the intractable function V (θ).

Suppose that we have the observed data {xi : i = 1, . . . , n}. The log-likelihood

function of θ is `(θ) = n−1
∑n

i=1 log p(xi|θ), whose gradient is

∇θ`(θ) = −Êobs
{
∂θ
∥∥x−Gθ(Qθ(x))

∥∥}+ Eθ
{
∂θ
∥∥x−Gθ(Qθ(x))

∥∥}, (3.10)

where Êobs[·] denotes the empirical average on the observed data {xi} and Eθ[·] denotes

the expectation under model p(x|θ). The key computational obstacle lies in the
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approximations of the model expectation Eθ[·]. To address this problem, we propose

a novel dual approximation for this expectation. By Theorem 5.10 of [12], there exists

an optimal f ∗ such that

P(x,y)∼π
(
f ∗(y)− f ∗(x) = ‖y − x‖

)
= 1 (3.11)

for the optimal coupling π. Therefore, there exists a f ∗ such that f ∗(x)−f ∗(Gθ(Qθ(x))) =

‖x−Gθ(Qθ(x))‖ with probability one with respect to the distribution of x. Since Eθ
in (3.10) is taken under the current estimated θ and we also require Gθ to be a good

generator and the distributions of Gθ(z) and Gθ(Qθ(x)) to be close, we approximate

‖x−Gθ(Qθ(x))‖ by f ∗(Gθ(z))− f ∗(Gθ(Qθ(x))). We replace ‖x−Gθ(Qθ(x))‖ in the

second term of (3.10) by f ∗(Gθ(z)) − f ∗(Gθ(Qθ(x))), yielding a gradient update for

θ of form θ ← θ + ε∇̂θ`(θ), where

∇̂θ`(θ) = −Êobs
{
∂θ
∥∥x−Gθ(Qθ(x))

∥∥}+ Eθ
{
∂θf

∗(Gθ(z))− ∂θf ∗(Gθ(Qθ(x))
}
. (3.12)

Here f ∗ needs to be learned and is solved by the corresponding dual problem at each

iteration. We approximate f ∗ by a network fη with an unknown parameter η, yielding

a gradient update for η of form

η ← η + ε Eθ
{
∂ηfη(Gθ(z))− ∂ηfη(Gθ(Qθ(x))

}
. (3.13)

The advantage of using expectations in (3.12) and (3.13) is that we can evaluate them

by using only marginal distributions of z and x. The above iterative updating process

is exactly the same as in Algorithm 1. Therefore, the training of iWGAN is to seek the

MLE. This probabilistic interpretation provides a novel alternative method to tackle

problems with the intractable normalization constant in latent variable models. The

MLE gradient update of p(x|θ) decreases the energy of the training data and increases

the dual objective. Compare with original GANs or WGANs, our method gives much

faster convergence and simultaneously provides a higher quality generated images.

The probabilistic modeling opens a door for many interesting applications. Next,

we present a completely new approach for determining a highest density region (HDR)
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estimate for the distribution of X. What makes HDR distinct from other statistical

methods is that it finds the smallest region, denoted by U(α), in the high dimensional

space with a given probability coverage 1−α, i.e., P(X ∈ U(α)) = 1−α. We can use

U(α) to assess each individual sample quality. Note that commonly used inception

scores (IS) and Fréchet inception distances (FID) are to measure the whole sample

quality, not at the individual sample level. More introductions of IS and FID are

given in next section. Let θ̂ be the MLE. The density ratio at x1 and x2 is

p(x1|θ̂)
p(x2|θ̂)

= exp
{
− (‖x1 −Gθ̂(Qθ̂(x1))‖ − ‖x2 −Gθ̂(Qθ̂(x2))‖)

}
.

The smaller the reconstruction error is, the larger the density value is. We can define

the HDR for x through the HDR for the reconstruction error ex := ‖x−Gθ̂(Qθ̂(x))‖,

which is simple because it is a one-dimensional problem. Let Ũ(α) be the HDR for

ex. Then, U(α) = {x : ex ∈ Ũ(α)}. Here Qθ̂(U(α)) defines the corresponding region

in the latent space, which can be used to generate better quality samples.

3.5 Experimental Results

The goal of our numerical experiments is to demonstrate that iWGAN can achieve

the following three objectives simultaneously: high-quality generative samples, mean-

ingful latent codes, and small reconstruction errors. We also compare iWGAN with

other well-known GAN models such as Wasserstein GAN with gradient penalty (WGAN-

GP) [13], Wasserstein Autoencoder (WAE) [10], and Adversarial Learning Inference

(ALI) [16] to illustrate a competitive and stable performance with state-of-the-art for

benchmark datasets.

3.5.1 Mixture of Gaussians

We first train our iWGAN model on three datasets from the mixture of Gaussians

with an increasing difficulty shown in the Figure 3.1: a). RING: a mixture of 8

Gaussians with means {(2 ·cos
2π · i

8
, 2 ·sin 2π · i

8
)|i = 0, . . . 7} and standard deviation
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(a) RING (b) Swiss Roll (c) GRID

Fig. 3.1. Mixture of Gaussians

Fig. 3.2. Duality gap, generated samples from iWGAN, and generated samples from
WGAN-GP on mixture of Gaussians

0.02, b). SPIRAL: a mixture of 20 Gaussians with means {(0.1+0.1· 2π
20
·cos

2πi

20
, 0.1+

0.1 · 2π
20
· sin 2πi

20
)|i = 0, . . . , 19} and standard deviation 0.02 and c). GRID: a mixture

of 25 Gaussians with means {(2 · i, 2 · j)|i = −2,−1, . . . , 2, j = −2,−1, . . . , 2} and

standard deviation 0.02. As the true data distributions are known, this setting allows

for tracking of convergence and mode dropping.

Duality gap and convergence We illustrate that as the duality gap converges

to 0, our model converges to the generated samples from the true distribution. We

keep track of the generated samples using G(z) and record the duality gap at each

iteration to check the corresponding generated samples. We compare our method

with WGAN-GP in Figure 3.2. Both methods adopt the same structure, learning

rate, number of critical steps, and other hyper-parameters.
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Figure 3.2 shows that iWGAN converges quickly in terms of both the duality gap

and the true distributions learning. Duality gap has also been a good indicator of

whether the model has generated the desired distribution. When comparing with

the WGAN model, the iWGAN surpasses the performance of the WGAN-GP at very

early stage and avoids the appearance of mode collapse.

(a) RING (b) Swiss Roll (c) GRID

Fig. 3.3. Latent Space of Mixture of Gaussians

Latent space We choose the latent distribution to be a five dimensional standard

normal distribution Z ∼ N(0, I5). During the training each batch size is chosen

to be 256. After training, the distribution of Q(X) is expected to be close to the

distribution of Z. To demonstrate the latent distribution visually, we plot the Q(X)i

against Q(X)j for all i 6= j in Figure 3.3. We can tell that the joint distribution of

any two dimensions of Q(X) is close to a bivariate normal distribution.

Mode collapse We investigate the mode collapse problem for the iWGAN. If

we draw two random samples in the latent space z1, z2 ∼ N(0, I5), the interpolation,

G(λz1 + (1−λ)z2), 0 ≤ λ ≤ 1, should fall around the mode to represent a reasonable

sample. In Figure 3.4, we select λ ∈ {0, 0.05, 0.10, . . . , 0.95, 1.0}, and do interpola-

tions on two random samples. We repeat this procedure several times on 3 datasets

as demonstrated in Figure 3.4. No matter where the interpolations start and end,

the interpolations would fall around the modes other than the locations where true

distribution has a low density. There may still be some samples that appears in the
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Fig. 3.4. Interpolation: H and N indicates the first and last samples in the interpola-
tions, other colored samples are the interpolations.

middle of two modes. This may be because the generator G is not able to approximate

a step function well.

Fig. 3.5. Quality Check

Individual sample quality check From the probability interpretation of iW-

GANs, we naturally adopt the reconstruction error ‖X − G(Q(X))‖, or the quality

score

Quality Score = exp (−‖X −G(Q(X))‖)
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as the metric of the quality of any individual sample. The larger the quality score is,

the better quality the sample has.

Figure 3.5 shows their quality scores for different samples. The quality scores of

samples near the modes of the true distribution are close to 1, and become smaller

as the sample draw is away from the modes. This indicates that the iWGAN does

converge and learns the distribution well, and the quality score is a reliable metric for

the individual sample quality.

3.5.2 MNIST & CelebA

We experimentally demonstrate our model’s ability on two well-known bench-

mark datasets, MNIST and CelebA. We present the performance of iWGAN on

CelebA in this section and the performance on MNIST in the Appendix. CelebA

(CelebFaces Attributes Dataset) is a large-scale face attributes dataset with 202, 599

3×64×64 colored celebrity face images, which cover large pose variations and diverse

people. This dataset is ideal for training models to generate synthetic images. The

MNIST database (Modified National Institute of Standards and Technology database)

is another large database of handwritten digits 0 ∼ 9 that is commonly used for

training various image processing systems. The MNIST database contains 70, 000

28 × 28 grey images. CelebA is a more complex dataset than MNIST. The CelebA

dataset is available at http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html and

the MNIST dataset is available at http://yann.lecun.com/exdb/mnist/.

The first result by iWGAN on CelebA is shown in Figure 3.6. We chosen 64to be

dimensions of the latent space Z of CelebA. For each panel, Figure 3.6 respectively

shows the generated samples from G(Z), the reconstructed samples from G(Q(X)),

and the latent space interpolation between two randomly chosen images. In particu-

lar, we perform latent space interpolations between CelebA validation set examples.

We sample pairs of validation set examples x1 and x2 and project them into z1 and

z2 by the encoder Q. We then linearly interpolate between z1 and z2 and pass the

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://yann.lecun.com/exdb/mnist/
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(a) Generated samples (b) Reconstructions

(c) Interpolations

Fig. 3.6. iWGAN on CelebA

intermediary points through the decoder to plot the input-space interpolations. In

addition, Figure 3.7 shows the first 8 dimensions of the latent space calculated by

Q(x) on CelebA. Figures 3.6 and 3.7 visually demonstrate that iWGANs can simul-

taneously generate high quality samples, produce small reconstruction errors, and

have meaningful latent codes. Figure 3.8 also displays images with high and low

quality scores selected from CelebA.

We compare iWGAN, both visually and numerically, with WGAN-GP, WAE, and

ALI. Figure 3.9a, Figure 3.9b, Figure 3.9c, and Figure 3.9d display the random gener-

ated samples from iWGAN, WGAN-GP, WAE, and ALI, respectively. The generated

faces by iWGAN demonstrate higher qualities than other three methods. The top

panel of Figure 3.10 shows the comparison between real images and reconstructed

images among three methods, iWGAN, WAE and ALI. Note that WGAN-GP cannot
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Fig. 3.7. Latent Space of CelebA dataset

Fig. 3.8. Images with high (left) and low (right) quality scores by iWGAN

provide reconstructed images since it does not produce the latent codes. The bottom

panel of Figure 3.10 shows the interpolated images by iWGAN, WAE, and ALI.

We numerically compare these four methods using four performance measures such

as inception scores (IS), Fréchet inception distances (FID), reconstruction errors (RE),

and maximum mean discrepancy (MMD) between encodings and standard normal

random variables. Proposed by [34], the IS involves using a pre-trained Inception v3
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(a) iWGAN (b) WGAN-GP

(c) WAE (d) ALI

Fig. 3.9. Generated samples by different models.

model to predict the class probabilities for each generated image. These predictions

are then summarized into the IS by the KL divergence as following,

IS = exp
(
Ex∼PG(Z)

DKL (p(y|x)‖p(y))
)
, (3.14)

where p(y|x) is the predicted probabilities conditioning on the generated images, and

p(y) is the corresponding marginal distribution. Higher scores are better, correspond-
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(a) Reconstructions

(b) Interpolations

Fig. 3.10. Reconstruction comparison.

ing to a larger KL-divergence between the two distributions. The FID is proposed

by [35] to improve the IS by actually comparing the statistics of generated samples to

real samples. It is defined as the Fréchet distance between two multivariate Gaussians,

FID = ‖µr − µG‖2 + Tr
(
Σr + ΣG − 2(ΣrΣG)1/2

)
, (3.15)
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where Xr ∼ N(µr,Σr) and XG ∼ N(µG,ΣG) are the 2048-dimensional activations

of the Inception-v3 pool-3 layer for real and generated samples respectively. For the

FID, the lower the better. However, as discussed in [36], IS is not a reliable metric

for the wellness of generated samples. This is also consistent with our experiments.

Although WAE delivers the best inception scores among four methods, WAE also

has the worst FID scores. The generated samples (Figure 3.9c) show that WAE is

not the best generative model compared with other three methods. Furthermore, the

reconstruction error (RE) is defined as

RE =
1

N

N∑
i=1

‖X̂i −Xi‖2, (3.16)

where X̂i is the reconstructed sample for Xi. RE is used to measure if the method

has generated meaningful latent encodings. Smaller reconstruction errors indicate a

more meaningful latent space which can be decoded into the original samples. The

maximum mean discrepancy (MMD) is defined as

MMD =
1

N(N − 1)

∑
l 6=j

k(zl, zj) +
1

N(N − 1)

∑
l 6=j

k(z̃l, z̃j)−
2

N2

∑
l,j

k(zl, z̃j) (3.17)

where k is a positive-definite reproducing kernel, zi’s are drawn from prior distribution

PZ , and z̃i = Q(xi) are the latent encodings of real samples. MMD is used to measure

the difference between distribution of latent encodings and standard normal random

variables. Smaller MMD indicates that the distribution of encodings is close to the

standard normal distribution.

From Table 3.1, in terms of generative models, iWGAN and ALI are better models,

where WGAN-GP comes after, but WAE is suffering from generating clear pictures.

In terms of RE and MMD, iWGAN and WAE are better choices, where ALI cannot

always reconstruct the sample to itself (Figure 3.10a). In general, Table 3.1 shows that

iWGAN has successfully produced both meaningful encodings and reliable generator

simultaneously.
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Table 3.1. Comparison of iWGAN, ALI, WAE, WGAN-GP

Methods IS FID RE MMD

True 1.96(0.019) 18.63 – –

iWGAN 1.51(0.017) 51.20 13.55(2.41) 6× 10−3

ALI 1.50(0.014) 51.12 34.49(8.23) 0.39

WAE 1.71(0.029) 77.53 9.88(1.42) 4× 10−3

WGAN-GP 1.54(0.016) 61.39 – –

3.6 Conclusion

We have developed a novel iWGAN model, which fuses auto-encoders and GANs

in a principle way. We have established a generalization error bound for iWGAN.

We have provided a solid probabilistic interpretation on iWGAN using the maxi-

mum likelihood principle. Our training algorithm with an iterative primal and dual

optimization has demonstrated an efficient and stable learning. We have proposed a

stopping criteria for our algorithm and a metric for individual sample quality checking.

The empirical results on both synthetic and benchmark datasets are state-of-the-art.

We now mention several future directions for research on iWGAN. First, one might

be interested in applying iWGAN into image-to-image translation, as the extension

should be straightforward. A second direction is to develop a formal hypothesis

testing procedure to test whether the samples generated from iWAGN is the same

as the data distribution. We are also working on incorporating iWGAN into the

recent GAN modules such as BigGAN [37], which can produce high-resolution and

high-fidelity images. As its name suggests, the BigGAN focuses on scaling up the

GAN models including more model parameters, larger batch sizes, and architectural

changes. Instead, iWGAN is able to stabilize GAN training, and it is a promising

idea to fuse these two frameworks together.
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3.A Proof of Theorem 3.2.1

According to the Nash embedding theorem [38, 39], every d-dimensional smooth

Riemannian manifold X possesses a smooth isometric embedding into Rp with p =

max{d(d + 5)/2, d(d + 3)/2 + 5}. Therefore, there exists an injective mapping u :

X → Rp which preserves the metric in the sense that the manifold metric on X is

equal to the pullback of the usual Euclidean metric on Rp by u. The mapping u is

injective so that we can define the inverse mapping u−1 : u(X )→ X .

Let X̃ = u(X) ∈ Rp, and write X̃ = (X̃1, . . . , X̃p). Let Fi(x) = P(X̃i ≤ x),

i = 1, . . . , p, be the marginal cdfs. By applying the probability integral transformation

to each component, the random vector

(
U1, U2, . . . , Up

)
:=
(
F1(X̃1), F2(X̃2), . . . , Fp(X̃p)

)
has uniformly distributed marginals. Let C : [0, 1]p → [0, 1] be the copula of X̃, which

is defined as the joint cdf of (U1, . . . , Up):

C(u1, u2, . . . , up) = P
(
U1 ≤ u1, U2 ≤ u2, . . . , Up ≤ up

)
.

The copula C contains all information on the dependence structure among the com-

ponents of X̃, while the marginal cumulative distribution functions Fi contain all

information on the marginal distributions. Therefore, the joint cdf of X̃ is

H(x̃1, x̃2, . . . , x̃p) = C
(
F1(x̃1), F2(x̃2), . . . , Fp(x̃p)

)
.

Define, for i = 2, . . . , p,

Ci(u1, u2, . . . , ui) = C
(
u1, u2, . . . , ui, 1, . . . , 1

)
.

The conditional distribution of Uk, given U1, . . . , Uk−1, is given by [40]

Ck(uk|u1, . . . , uk−1) = P
(
Uk ≤ uk|U1 = u1, . . . , Uk−1 = uk−1

)
=

[
∂k−1Ck(u1, . . . , uk)/∂u1 · · · ∂uk−1

][
∂k−1Ck−1(u1, . . . , uk)/∂u1 · · · ∂uk−1

] ,
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for k = 2, . . . , p.

We will construct Q∗ as follows. First, we obtain X̃ ∈ Rp by X̃ = u(X). Sec-

ond, we transform X̃ into a random vector with uniformly distributed marginals

(U1, . . . , Up) by the marginal cdf Fi. Then, define Ũ1 = U1 and

Ũk = Ck
(
Uk|U1, . . . , Uk−1

)
, k = 2, . . . , p.

Hence, Ũ1, . . . , Ũp are independent uniform random variables. Finally, let Zi =

Φ−1(Ui) for i = 1, . . . , p. This completes the transformation Q∗ from X to Z =

(Z1, . . . , Zp).

The above process can be inverted to obtain G∗. First, we transform Z into

independent uniform random variables by Ũi = Φ(Zi) for i = 1, . . . , p. Next, let

U1 = Ũ1. Define

Uk = C−1
k (Ũk|Ũ1, . . . , Ũk−1), i = 2, . . . , p,

where C−1
k (·|u1, . . . , uk) is the inverse of Ck and can be obtained by numerical root

finding. Finally, let X̃i = F−1
i (Ui) for i = 1, . . . , p and X = u−1(X̃), where u−1 :

u(X ) → X is the inverse mapping of u. This completes the transformation G∗ from

Z to X.

3.B Proof of Theorem 3.2.2

By the iWGAN objective (3), (5) holds. Since W1 is a distance between two

probability measures, W1(PX , PG(Z)) ≤ W 1(PX , PG(Z)). If there exists a Q∗ ∈ Q such

that Q∗(X) has the same distribution as PZ , we have

W 1(PX , PG(Z)) ≤ W1(PX , PG(Q∗(X))) +W1(PG(Q∗(X)), PG(Z)) = W1(PX , PG(Z)).

Hence, W1(PX , PG(Z)) = W 1(PX , PG(Z)). We also observe that

sup
f
L(G̃, Q̃, f) = W1(PX , PG̃(Q̃(X))) +W1(PG̃(Q̃(X)), PG̃(Z)).
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By Theorem 3.2.1, we have infG,Q L(G,Q, f̃) ≤ L(G∗, Q∗, f̃) = 0 when the encoder

and the decoder have enough capacities. Therefore, the duality gap is larger than

W1(PX , PG̃(Q̃(X))) +W1(PG̃(Q̃(X)), PG̃(Z)). It is easy to see that, if G̃ outputs the same

distribution as X and Q̃ outputs the same distribution as Z, both the duality gap

and W 1(PX , PG(Z)) are zeros and X = G̃(Q̃(X)) for X ∼ PX .

3.C Proof of Theorem 3.3.1

We first consider the difference between population W1(PX , PG(Z)) and empirical

Ŵ1(PX , PG(Z)) given n samples S = {x1, . . . , xn}. Let f1 and f2 be their witness

function respectively. Using the dual form of 1-Wassertein distance, we have

W1(PX , PG(Z))− Ŵ1(PX , PG(Z))

=EX∼PX{f1(X)} − EZ∼PZ{f1(G(Z))} − 1

n

n∑
i=1

f2(xi) + EZ∼PZ{f2(G(Z))}

≤EX∼PX{f1(X)} − EZ∼PZ{f1(G(Z))} − 1

n

n∑
i=1

f1(xi) + EZ∼PZ{f1(G(Z))}

≤ sup
f

EX∼PX{f(X)} − 1

n

n∑
i=1

f(xi) , Φ(S).

Given another sample set S ′ = {x1, . . . , x
′
i, . . . , xn}, it is clear that

Φ(S)− Φ(S ′) ≤ sup
f

|f(xi)− f(x′i)|
n

≤ ‖xi − x
′
i‖

n
≤ 2B

n
,

where the second inequality is obtained since f is 1-Lipschitz continuous function.

Applying McDiamond’s Inequality, with probability at least 1−δ/2 for any δ ∈ (0, 1),

we have

Φ(S) ≤ E{Φ(S)}+B

√
2

n
log

(
2

δ

)
. (3.18)

By the standard technique of symmetrization in [41], we have
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E{Φ(S)} = E

{
sup
f

EX∼PX{f(X)} − 1

n

n∑
i=1

f(xi)

}
≤ 2Rn(F). (3.19)

It has been proved in [41] that with probability at least 1− δ/2 for any δ ∈ (0, 1),

Rn(F) ≤ R̂n(F) +B

√
2

n
log

(
2

δ

)
. (3.20)

Combining Equation (3.18), Equation (3.19) and Equation (3.20), we have

W1(PX , PG(Z)) ≤ Ŵ1(PX , PG(Z)) + 2R̂n(F) + 3B

√
2

n
log

(
2

δ

)
.

By Theorem 3.2.2, we have Ŵ1(PX , PG(Z)) ≤ Ŵ 1(PX , PG(Z)). Thus,

W1(PX , PG(Z)) ≤ Ŵ 1(PX , PG(Z)) + 2R̂n(F) + 3B

√
2

n
log

(
2

δ

)
.

3.D Experimental Results on MNIST

3.D.1 Latent Space

Figure 3.11 shows the latent space of MNIST, i.e. Q(X)i against Q(X)j for all

i 6= j.

Fig. 3.11. Latent Space of MNIST dataset
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3.D.2 Generated Samples

Figure 3.12 shows the comparison of random generated samples between WGAN-

GP and iWGAN. Figure 3.13 shows examples of interpolations of two random gener-

ated samples.

(a) WGAN-GP (b) iWGAN

Fig. 3.12. Generated samples on MNIST

Fig. 3.13. Interpolations by iWGAN on MNIST

3.D.3 Reconstruction

Figure 3.14b shows, based on the samples from validation dataset, the distribution

of reconstruction error. Figure 3.14a shows examples of reconstructed samples. Figure

3.15 shows the best and worst samples based on quality scores from the validation

dataset.
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(a) Reconstructions
(b) Histogram of RE

Fig. 3.14. Reconstructions on MNIST

(a) Samples with high quality scores (b) Samples with low quality scores

Fig. 3.15. Sample quality check by iWGAN on the validation dataset of MNIST

3.E Architectures

The codes used for this chapter is available at: https://drive.google.com/

drive/folders/1-_vIrbOYwf2BH1lOrVEcEPJUxkyV5CiB?usp=sharing. In this sec-

tion, we present the architectures used for each experiment.

3.E.1 Mixture of Guassians

For Mixture Guassians, the latent space Z ∈ R5, for each batch, the sample size

is 256.

https://drive.google.com/drive/folders/1-_vIrbOYwf2BH1lOrVEcEPJUxkyV5CiB?usp=sharing
https://drive.google.com/drive/folders/1-_vIrbOYwf2BH1lOrVEcEPJUxkyV5CiB?usp=sharing
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Encoder architecture:

x ∈ R2 → FC1024 → RELU

→ FC512 → RELU

→ FC256 → RELU

→ FC128 → RELU → FC5

Generator architecture:

z ∈ R5 → FC512 → RELU

→ FC512 → RELU

→ FC512 → RELU → FC2

Discriminator architecture:

x ∈ R2 → FC512 → RELU

→ FC512 → RELU

→ FC512 → RELU → FC1

3.E.2 MNIST

For MNIST, the latent space Z ∈ R8 and batch size is 250.

Encoder architecture:

x ∈ R28×28 → Conv128 → RELU

→ Conv256 → RELU

→ Conv512 → RELU → FC8
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Generator architecture:

z ∈ R8 → FC4×4×512 → RELU

→ ConvTrans256 → RELU

→ ConvTrans128 → RELU → ConvTrans1

Discriminator architecture:

x ∈ R28×28 → Conv128 → RELU

→ Conv256 → RELU

→ Conv512 → RELU → FC1

3.E.3 CelebA

For CelebA, the latent space Z ∈ R64 and batch size is 64.

Encoder architecture:

x ∈ R64×64×3 → Conv128 → LeakyRELU

→ Conv256 → InstanceNorm→ LeakyRELU

→ Conv512 → InstanceNorm→ LeakyRELU → Conv1

Generator architecture:

z ∈ R64 → FC4×4×1024

→ ConvTrans512 → BN → RELU

→ ConvTrans256 → BN → RELU

→ ConvTrans128 → BN → RELU → ConvTrans3
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Discriminator architecture:

x ∈ R64×64×3 → Conv128 → LeakyRELU

→ Conv256 → InstanceNorm→ LeakyRELU

→ Conv512 → InstanceNorm→ LeakyRELU → Conv1
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4. NONLINEAR VARIABLE SELECTION VIA DEEP

NEURAL NETWORKS

4.1 Introduction

Recent advances in technology, such as biotechnologies and artificial intelligence,

have pushed real-world data into an extremely high-dimensional space. The demand

for high-dimensional data analysis has grown significantly, especially in the appli-

cations of social networking, bioinformatics, and neuroscience. At the same time,

high-dimensional data analysis has been a challenge to researchers in the field of

statistics and machine learning. How to approximate the true underlying system and

identify relevant features based on high-dimensional data (typically with the sample

size smaller than the dimension, a.k.a. small-n-large-p) is a challenging task. Start-

ing from [42], [43], [44] who introduced, respectively, the famous criteria Cp, AIC and

BIC, the problem of variable selection was extensively studied in the statistical and

machine learning literature from both theoretical and algorithm perspective.

The literature on high-dimensional linear regression is too vast to summarize.

Popular methods including Lasso [45] and elastic net [46], based on an `1-penalty

of the coefficients, have played an important role in variable selection. Non-convex

penalties such as SCAD [47] and MCP [48] have also demonstrated promising results

for variable selection. Another direction is the non-convex greedy pursuit includ-

ing Orthogonal Matching Pursuit(OMP) [49, 50], Compressive Sampling Matching

Pursuit [51]. These greedy algorithms implicitly approximate the solution to the `0-

constrained least squares problem on the linear regression model. High-dimensional

generalized linear models are studied by [52] and [53]. It is well-known that, with a

design matrix satisfying some variant of irrepresentable condition, consistent variable
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selection is possible under the condition s log(p/s) = o(n) as n→∞ [54], where s is

the intrinsic dimension of relevant variables.

Besides the curse of high-dimensionality, the challenge of this problem also lies in

the possible nonlinear relationship between the predictors and the response. The es-

timation and hypotheses testing problems for high-dimensional sparse additive model

were studied in [55], [56] and [57]. In contrast, for high-dimensional nonparametric

regression, [58] established tight conditions making it possible to consistently esti-

mate the set of relevant variables. In particular, when the intrinsic dimension s is

fixed, the situation in nonparametric regression is the same as in linear regression,

that is, log p is small compared to the sample size n. [58] also presented when the

number of relevant variables s tends to infinity, consistent variable selection in non-

parametric set-up is possible only if s + log log p is small compared to log n. On

the other hand, there are few papers discussing practical procedures for recovering

the sparsity for nonlinear models. A few exceptions are [59–61], and some kernel

methods including [62], [63], [64]. However, [61] only discusses a single layer neural

network model without considering the approximation error, and kernel methods are

essentially equivalent to a single hidden layer neural network [65].

In this chapter, we develop a novel deep learning-based variable selection method

for high-dimensional nonlinear systems. During the past decade, deep learning has

demonstrated great successes in solving many complex artificial intelligence tasks

such as pattern recognition and speech understanding [66]. The problems that the

current deep learning techniques work well usually have a very large sample size and

a relatively small number of features (without or with very few false features). It is

hard to apply deep learning directly to the so-called small-n-large-p problem. This

chapter approximates the nonlinear system by a deep neural network, which com-

poses of both a selection layer and approximation layers. The problem can be cast

as a sparsity-constrained optimization with a sparse parameter in the selection layer

and other parameters in the approximation layers. We propose a novel greedy algo-

rithm, called Deep Feature Selection (DFS), to estimate both parameters under the
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framework of supervised learning. The contributions of the chapter are: (a). We

have proved the accuracy of DFS for a class of loss functions that have a Generalized

Stable Restricted Hessian (GSRH). The GSRH is an extension of the Stable Restricted

Hessian (SRH) introduced in [67]. This condition requires the loss function to have

well-conditioned Hessian when restricted to sparse canonical subspaces. The original

SRH only has a sparse parameter, while GSRH deals with both a sparse parameter

in the selection layer and other parameters in the approximation layers. (b) We have

developed an efficient DFS algorithm and it provides a practical procedure for re-

covering the sparsity pattern for nonlinear systems. Obtaining the global optima is

NP-hard with an `0-constraint, but with the theoretical justifications, DFS yields ac-

curate solutions and is a tractable algorithm. (c) We have evaluated the performance

of DFS using simulated data and real data. Even for linear regression, our algorithm,

without knowing the underlying linear structure, demonstrates superior performance

on variable selection over other well-known algorithms such as LASSO and SCAD. For

high-dimensional nonlinear classification, DFS outperforms other methods on both

the selection error and the prediction error.

The rest of the chapter is organized as follows. In section 4.2, we describe the

neural network architecture and provide the approximation error. In section 4.3,

we present our algorithm. In section 4.4, we state main theorems, and the GSRH

condition for the loss function is provided as well. In section 4.5, we compare DFS

with other related algorithms for both a linear regression example and a nonlinear

classification example. section 4.6 provides analysis on real datasets. section 4.7 gives

some concluding remarks. The proofs are provided in Appendix.

4.2 The Model and The Approximation Error

Let x ∈ X ⊂ Rp be the high-dimensional explanatory variable and y ∈ Y ⊂ R be

the response variable. Consider a supervised learning problem:

y = t(f(x) + ε), (4.1)
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where t : R→ Y is a fixed function related to the prediction problem, f : Rp → R is

an unknown function, and ε is an independent noise. For regression, we may define

t(z) = z, while for classification, we may define t(z) = sign(z). For a large-p-small-n

problem, assume f ∈ Fs is a s-sparse high-dimensional nonlinear function, where Fs
is defined as:

Fs =
{
f : Rp → R : ∃ f̄(x̃) = f(x), x̃ ∈ Rs, ∀ x ∈ Rp, f̄ is Lipschitz

}
, (4.2)

where x̃ represents the sub-vector of x only including all the coordinates with indices

lying inside S, which is a small subset of the index set {1, . . . , p} and Card(S) = s.

We use deep neural networks to approximate such s-sparse functions. In particu-

lar, we adopt the network architecture displayed in Figure 4.1. This network has two

main functional parts: the selection part and the approximation part. The main dif-

ference of Figure 4.1 from the usual neural network is that we add a sparse one-to-one

linear layer between the input layer and the selection layer. In particular, the input

variable x = (x1, . . . , xp)
> ∈ Rp is transformed into w ∗x = (w1x1, . . . , wpxp)

> ∈ Rp,

where w is a sparse parameter. The sparsity constraint on w only allows that the

features corresponding to nonzero wi’s are selected. The function represented by this

neural network can be written as

h(x) = TH+1 ◦ σ ◦ TH ◦ σ ◦ · · · σ ◦ T1 ◦ (w ∗ x), (4.3)

where Ti(u) = Θ(i)u+ b(i), i = 1, . . . , H + 1, are affine transformations with unknown

parameters (Θ(i), b(i)) with Θ(i) ∈ Rdi×di−1 and b(i) ∈ Rdi , and σ(·) is the activation

function. Popular choice of activation functions includes rectified linear unit (ReLU),

sigmoid, and tanh. In this chapter, we will mainly focus on neural networks with the

ReLU activation function.

The function h(x) in (4.3) is a high-dimensional s-sparse piecewise affine function

[68]. The collection of such functions is defined as

Hs,d =
{
h : h(x) = Td+1 ◦ σ ◦ Td ◦ σ ◦ · · · σ ◦ T1 ◦ (w ∗ x), ‖w‖0 = s

}
.
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With an abuse of notation, we use w to denote the sparse parameter in the selection

layer and Θ to denote all other parameters in the approximation layers. The ad-

vantage of this architecture lies in the capability of simultaneously selecting relevant

features and modeling complex nonlinear systems.

x1

x2

x3

xp

...
...
...

Output

w1

w2

w3

wp

Approximation

layerΘ(1)

Selection

layer

Output

layerΘ(H+1)

Fig. 4.1. Deep Feature Selection Architecture

In the following, we establish the approximation error when using a deep neural

network (4.3) to approximate a high-dimensional s-sparse function in Fs.

Theorem 4.2.1 Assume that, for the function f : Rp → R, there exists a Lipschitz

function f̄ : Rs → R defined on the R-ball in l2-norm, satisfying |f̄(x̃)| ≤ η and

|f̄(x̃) − f̄(ỹ)| ≤ ηR−1 ‖x̃− ỹ‖2, such that f(x) = f̄(x̃) as defined in Equation 4.2.

Then there exists a neural network h(x) =
∑2+2k

i=1 Θ
(2)
i σ(Θ

(1)
i,· (w ∗ x) + b

(1)
i ) with

‖w‖0 = s and
∥∥Θ(2)

∥∥
2
≤ C1, where C1 is a constant depending on s and η only, such

that

(a) Both h(x) and f(x) are s-sparse functions and have the same support;

(b)

sup
x
|f(x)− h(x)| ≤ C2ηk

−1/s log k,

where C2 is a constant depending on s only.
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4.3 The Algorithm

Assume that (x1, y1), . . . , (xn, yn) are n i.i.d. samples on X × Y ⊂ Rp × R. Let

` : Y×Y → R be a loss function, which could be cross entropy for classification, mean

squared error for regression, or other loss functions. The empirical risk function is

l(f) =
1

n

n∑
i=1

`(yi, f(xi)). (4.4)

Since we are using a deep neural network (4.3) to approximate f ∈ F , we minimize

the empirical risk function over the neural network space Hs,d. Recall that sparsity

constraint is applied on w to achieve the task of variable selection. Here we adopted

`0-penalty to realize the sparsity on w. [62] has similar scheme, but uses `1-penalty to

achieve the sparsity of coefficients. However, `1 penalty tends to overshrink large coef-

ficients and results in biased estimators, while `0 penalty can eliminate the estimation

bias and enjoy the oracle properties [69].

Consider the following optimization problem:

minimize g(w,Θ) =
1

n

n∑
i=1

`(yi, h(xi;w,Θ)) + λ1‖w‖2
2 + λ2‖Θ‖2

2, s.t. ‖w‖0 ≤ s,

(4.5)

where ‖ · ‖2 is the Frobenius norm, s is a positive integer controlling the sparsity

level, and λ1, λ2 are regularization parameters. The `2 regularization is introduced

to prevent overfitting on neural network and also meet the Generalized Stable Re-

stricted Hessian (GSRH) conditions in the Section 4.4. We propose a novel algorithm

called Deep Feature Selection (DFS), which is inspired by and generalizes the GraSP

algorithm [67], to approximate the solution to (4.5) for a broader class of objective

functions.

Even for a simple quadratic objective, (4.5) is a NP-hard problem due to the

combinatorial complexity. However, similar to the results of compressive sensing, if

the objective function satisfies certain properties, this allows us to obtain accurate

estimates through tractable algorithms. As described in section 4.4, to assure that

DFS yields accurate solutions, we require the objective function to have a Generalized
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Stable Restricted Hessian (GSRH). This property is analogous to the RIP condition

in the standard compressive sensing framework and generalizes the SRH [67].

Algorithm 2 The DFS algorithm

Input g(·) and s

Output ŵ, Θ̂ initialization: ŵ, Θ̂

WHILE halting condition not holds

compute local gradient: (zw, zΘ) = ∇g(ŵ, Θ̂)

identify directions: Z = supp(zw2s)

merge supports: T = Z ∪ supp(ŵ)

minimize over support: (bw, bΘ) = arg minw,Θ g(w,Θ), s.t.w|T c = 0

prune estimate: ŵ = bws , Θ̂ = bΘ

DFS is an iterative algorithm, given in Algorithm 2, that updates an estimated

sparse Θ̂ and non-sparse Θ̂ at every iteration. First all weight matrices are initialized

by a uniform distribution, wi ∼ U(− 1√
p
, 1√

p
) and θi ∼ U(− 1√

di−1

, 1√
di−1

), or simply

follow the default normalization in your neural network packages. Then in each iter-

ation, we first compute the gradient of the objective function, (zw, zΘ) = ∇g(ŵ, Θ̂),

at the current estimate. Then 2s coordinates of zw with the largest magnitude are

identified as Z. These indices are combined with the current support of ŵ to form

T = Z ∪ Ŝ. Note that T has at most 3s indices. Next, we minimize the objec-

tive function subject to the constraint w|T c = 0 to obtain an intermediate estimate

(bw, bΘ). Finally, ŵ is updated as the best s-term approximation of the intermediate

estimate bw, i.e. keep the s largest absolute values of bw, and Θ̂ = bΘ.

The halting conditions of the algorithm are usually set to be a maximum iteration

step and an unchanged support T from previous step. The maximum step can be set

under the guidance of Corollary 4.4.1. If the minimization over support T reaches

the global optima of objective function subject to the given support, the unchanged

estimation of (bw, bΘ), which returns unchanged estimation of the support. The

minimization step in DFS can be relaxed by applying a restricted gradient descent,
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where the gradient of g is restricted on the union of T and the indices of the support

of Θ̂. Furthermore, Algorithm 2 is proposed for a fixed s. In practice, we apply the

BIC-like criteria to tune an optimal s, and more details are given in section 4.5.

4.4 Theoretical Results

We first characterize the objective function for which accuracy of DFS can be

guaranteed. For a twice continuous differentiable objective function, we impose a

condition called Generalized Stable Restricted Hessian. The properties of this con-

dition basically require that the curvature of the objective function over the sparse

subspaces can be bounded locally, which weaken the convexity requirements of the

objective function.

Definition 4.4.1 (Generalized Stable Restricted Hessian) Suppose that g is a

twice continuously differentiable function whose Hessian is denoted by Hg(·). Fur-

thermore, let

Ak(w,Θ) = sup
{

∆THg(w,Θ)∆
∣∣∣ |supp(w) ∪ supp(∆w)| ≤ k, ‖∆‖2 = 1

}
(4.6)

and

Bk(w,Θ) = inf
{

∆THg(w,Θ)∆
∣∣∣ |supp(w) ∪ supp(∆w)| ≤ k, ‖∆‖2 = 1

}
, (4.7)

for all k-sparse vectors w, where ∆T = (∆T
w,∆

T
Θ). Then g is said to have a Gener-

alized Stable Restricted Hessian (GSRH) with constant µk, or in short µk-GSRH, if

1 ≤ Ak(w,Θ)
Bk(w,Θ)

≤ µk.

Next, we provide a trivial example to illustrate the motivation of the GSRH

condition.

Example 1 Let g(w,Θ) =
1

2
(wTQw+λ1‖w‖2

2 +λ2‖Θ‖2
2), where Q = 2×11T− I.

We have:

Hg(w,Θ) =

Q + λ1Ip 0

0 λ2IP

 (4.8)
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Note that all diagonal entries of Q are all equal to one, while its off-diagonal entries

are all equal to two. Therefore, for any 1-sparse vector ∆1 we have ∆T
1 Q∆1 = ‖∆‖2

2.

However, for ∆1 = (1,−1, 0, . . . , 0)T, we have ∆T
1 (Q + λ1Ip)∆1 = −2 + 2λ1 < 0,

when λ1 < 1, which means the Hessian of g is not positive semi-define, thus g is

not convex. Then for any ∆ = (∆1,∆2), ‖∆‖ = 1 and ∆1 is a 1-sparse vector.

∆THg∆ = (1 + λ1) ‖∆1‖2
2 + λ2 ‖∆2‖2

2. If (1 + λ1) > λ2, A1(w,Θ) = 1 + λ1 and

B1(w,Θ) = λ2. Therefore, µ1 =
1 + λ1

λ2

, and we can manipulate the ratio of λ1 and

λ2 to make the condition of theorem verified.

Now define

(w?,Θ?) = arg min g(w,Θ), s.t. ‖w‖0 ≤ s (4.9)

Theorem 4.4.1 Suppose that g is a twice continuously differentiable function that

has µ4s-GSRH with µ4s ≤ 1+
√

3
2

. Furthermore, suppose that for some ε > 0 we have

ε ≤ B4s(w,Θ) for all 4s-sparse w. Then,

(a). The estimate at the i-th iteration, (ŵ(i), Θ̂(i)), satisfies∥∥∥(ŵ(i), Θ̂(i))− (w?,Θ?)
∥∥∥

2
≤ 2−i

∥∥∥(ŵ(0), Θ̂(0))− (w?,Θ?)
∥∥∥

2

+
6 + 2

√
3

ε

∥∥∇g(w?,Θ?)|I∪RΘ

∥∥
2
.

(4.10)

(b). The support set of ŵ(i), denoted as Ŝ(i), satisfies∥∥∥w?|S\Ŝ(i)
∥∥∥

2
≤ 2−i

∥∥∥(ŵ(0), Θ̂(0))− (w?,Θ?)
∥∥∥

2

+
6 + 2

√
3

ε

∥∥∇g(w?,Θ?)|I∪RΘ

∥∥
2
,

(4.11)

where I is the position of the 3s largest entries of ∇g(w?,Θ?) in magnitude in

terms of w, RΘ is the coordinates set of Θ, and S is the support set of w?.

Remark 1 Inequality (4.10) of Theorem 4.4.1 shows that ∇g(w?,Θ?) determines

how accurate the estimate can be. In fact, (4.10) holds for any s-sparse w? and

Θ?, even if (w?,Θ?) does not obey (4.9). However, arbitrary choices of w? and Θ?
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may result in a large norm of ∇g(w?,Θ?)|I∪RΘ
, so that inequality (4.10) and (4.11)

cannot be bounded well. From (4.5), ∇g(w?,Θ?) can be decomposed into two parts

∇l(w?,Θ?) + 2(λ1‖w?‖1 + λ2‖Θ?‖1) (4.12)

If (w?, Θ?) is sufficiently close to an unconstrained minimum of l, then the first part

of (4.12) is negligible since ∇l(w?,Θ?) has small magnitude at minimum. For the

second part, the magnitude is determined by the magnitude of λ’s. Similarly, inequal-

ity (4.11) of Theorem 4.4.1 shows that the selection consistency is also determined by

the norm of ∇g(w?,Θ?)|I∪RΘ
.

Remark 2 In practice, we tune λ1 and λ2 to have the objective function g satisfying

a GSRH. Note that

∆THg(w,Θ)∆ = ∆T
(
Hl(w,Θ) +

λ1Ip 0

0 λ2IP

)∆ (4.13)

where P is the dimension of Θ. When λ1 and λ2 have larger magnitude than the

eigenvalues of Hl, (4.13) is approximately
max(λ1, λ2)

min(λ1, λ2)
, so that µk ≈

max(λ1, λ2)

min(λ1, λ2)
.

By manipulating the ratio of λ1 and λ2, µ4s in Theorem 4.4.1 can be easily bounded by

1+
√

3
2

. On the other hand, from Remark 1, large λ1 and λ2 will relax the right side of

(4.10) and (4.11), which costs the loss of accuracy in both estimation and selection.

In practice, the ratio of λ1 and λ2 is fixed to be 1.25. A sequence of (λ1, λ2) is tested,

and the pair which returns the lowest loss function value will be adopted.

Let M̄ = max{max(|ŵ(0)
j |, |w?

j |), j ∈ Ŝ(0) ∪ S}, and m = min{|w?
j |, j ∈ S}.

Corollary 4.4.1 Suppose that g is a twice continuously differentiable function that

has µ4s-GSRH with µ4s ≤ 1+
√

3
2

, and for some ε > 0 we have ε ≤ B4s(w,Θ) for

all 4s-sparse w. Furthermore, suppose m ≥ 6+2
√

3
ξε

∥∥∇g(w?,Θ?)|I∪RΘ

∥∥
2

for some

0 < ξ < 1, and max(‖Θ?‖∞, ‖Θ̂(0)‖∞) ≤ c/2, then we have

Ŝ(i) = S if i ≥ log2

2
√
sM̄ + c

√
P

(1− ξ)m
. (4.14)

where P is the dimension of Θ?.
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Remark 3 When w is exactly s-sparse, Corollary 4.4.1 shows that our algorithm

sequentially achieves the exact recovery of true support within a finite number of

iterations. For most applications, our algorithm makes the right selection within 20

iterations. In practice, weight normalization can be applied to all approximation layers

to speed up the convergence. In such case, ‖Θ?‖∞ ≤ 1 is satisfied.

In reality, our algorithm converges most of the time. However if divergences occurs

due to improper hyper-parameters, like learning rate or the structure of the model,

this can be detected by the loss over iteration not decreasing.

4.5 Simulation Studies

We illustrate the performance of the proposed model and algorithm using two

simulated examples. We compare our method with other competing algorithms for

both cases.

4.5.1 A Linear Regression Example

Although DFS is designed for high-dimensional nonlinear variable selection, we

demonstrate that DFS is also competitive with other linear variable selection methods

when the underlying model is a linear model, with n < p,

y = Xβ + ε, X ∈ Rn×p, β ∈ Rp. (4.15)

We generated 100 datasets from this linear system. The number of nonzero coef-

ficients is s = 100, the sample size is n = 500, and the feature dimension is p = 1000.

To generate the design matrix X, we first generate an n× p random Gaussian matrix

X̄ whose entries are i.i.d. N (0, 1) and then normalize its columns to the
√
n-length.

Denote Xi and X̄i to be the ith column of X and X̄, respectively. Then X is gener-

ated with X1 = X̄1, Xj = X̄j + 0.2 × (X̄j+1 + X̄j−1), j = 2, ..., p − 1 and Xp = X̄p.

That is, the features x1, . . . , xp are mutually correlated. The underlying regression

coefficient β is generated with nonzero coefficients uniformly distributed in [m,M ],
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where m =
√

2 log(p)/n and M = 100m, and first 100 coefficients are set to be non-

zero. The response vector y is generated by (4.15) with ε1, . . . , εn independently from

N (0, 1). The variable selection performance is evaluated by the False Selection Rate

and the Negative Selection Rate:

fsr = (
K∑
k=1

|Ŝk\Sk|)/(
K∑
k=1

|Ŝk|), nsr = (
K∑
k=1

|Sk\Ŝk|)/(
K∑
k=1

|Sk|) (4.16)

, where S is the true support of w, Ŝ is the support of estimated ŵ and | · | denotes

the cardinality of a set, K is the total number of datasets. The smaller the values of

fsr and nsr are, the better the performance of the variable selection is.

Fig. 4.2. Linear Regression Example: BIC-like criteria for selection of s in linear
system (colored curves refer BIC curves for different datasets; dotted vertical lines
refer the position of smallest BIC for different datasets)

We first apply DFS with different choices of s’s, and use a BIC-like criteria for

high dimensional model [70, 71], which is defined as BIC = n · log σ̂2 + c · s · log n,
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where σ̂2 is the MSE of the model, and c is set to be 3, to select an optimal s. For

the first 10 datasets out 100, the selection of s is shown in Figure 4.2. For given s,

it costs about 1.65 minutes for each run on a single CPU@2.6GHz with single thread

called. For comparison, we have also applied the popular linear variable selection

algorithms, including Lasso [45] and LARS [72], elastic net [46], and SCAD [47].

Lasso and elastic net are tested using existing python packages ‘sklearn’ [73]. SCAD

is performed by an existing R package ‘ncvreg’ [74]. For all algorithms, the best model

is selected by BIC-like criteria. That is a sequence of hyper-parameters will be tested

on each methods and the one returns the lowest BIC value will be adopted as the

best hyper-parameter.

Table 4.1. Comparison Table of DFS (Deep Feature Selection), LASSO, Elastic Net
and SCAD (Smoothly Clipped Absolute Deviation) in Linear Variable Selection. |Ŝ|
denotes the average number of variable selected for 100 datasets; the number in
parentheses denote the standard deviations of the corresponding values.

Methods |Ŝ| fsr nsr training MSE testing MSE

DFS(two-step) 99.53 (4.24) 0.0235 0.0286 1.6620(1.75) 5.6496 (7.24)

LASSO 121.74(5.95) 0.1819 0.0041 2.4124(0.39) 4.2604(0.77)

Elastic Net 127.22 (7.44) 0.2173 0.0042 2.6095(0.55) 4.7369(0.99)

SCAD 99.08 (1.21) 0.0029 0.0121 4.0373(0.99) 6.2901(1.74)

Table 4.1 displays the average number of selected features and average fsr and nsr

across 100 datasets. DFS method has selected very close to 100 variables with pretty

small fsr and nsr. In practice, we recommend a two-step procedure for prediction

because that the tuning parameters λ1 and λ2 are good for selection but may not

be good for prediction and DFS algorithm has early stop criteria which cause the

optimization procedure is not exhausted. So the training and testing error reported

in Table 4.1 is based on two-step procedure. Lasso and elastic net have chosen much

more variables than needed with a high fsr. SCAD has performed the best among
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Fig. 4.3. Numerical results of false selection rate and negative selection rate between
different linear variable selection methods. (left) false selection rate of SCAD, Lasso,
Elastic Net and DFS when p increases. (right) negative selection rate of SCAD, Lasso,
Elastic Net and DFS when p increase

three linear methods in terms of feature selection. However, SCAD dose not perform

well in term of prediction under BIC model selection schemes.

Next, we also generate another 10 datasets from (4.15) with different choices of p

varying from 500 to 2000. Let s varies from 90 to 110. The fsr and nsr of different

algorithms are shown in Figure 4.3. For the false selection rate, DFS and SCAD

remains at lower level compare with Lasso and Elastic Net. And as p increase, fsr of

Lasso and Elastic Net increases significantly. For the negative selection rate, although

DFS performs highest nsr, but remains at a very low level with other three methods.

The increase of nsr and fsr of DFS might be due to the increase of the neural network

complexity when p increases, which leads to a great presentation power and a larger

possibility of overfitting. Reducing the complexity of approximation layers with a

finer tuned λ1 and λ2 might help decrease the nsr.

4.5.2 A Nonlinear Classification Example

In this section, consider a high-dimensional nonlinear classification example. 30

datasets were generated from the nonlinear system [60]
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Fig. 4.4. Nonlinear Classification Example: BIC-like criteria for selection of s in
nonlinear system(colored curves refer BIC curves for different datasets; dotted vertical
lines refer the position of smallest BIC for different datasets)

y =

1, ex1 + x2
2 + 5 sin(x3x4)− 3 > 0

0, otherwise,

(4.17)

where the variables x1, . . . , x4 together with additional 496 variables were generated

in:

xi = (e+ zi)/2, i = 1, . . . , P, (4.18)

where e and zi are independently generated from N (0, 1). That is, the variables

x1, . . . , xp are mutually correlated with a correlation coefficient of 0.5. Each dataset

consists of 600 observations where 300 observations have a response value of 1 and

others have a response value of 0. For each dataset, we used 300 observations as the

training data, and the remaining for the testing. The number of 0-1 are balanced in

both training and testing set.



61

We again used a BIC-like criteria to select s using the training set. The BIC is de-

fined as: BIC = −2 · log L̂+s · log n, where L̂ is the maximized value of the likelihood

function of the model. For given s, it takes DFS 5.57 minutes on average with single

CPU@2.6GHz and single thread. Figure 4.4 shows that the tuned s is 4 in 29 out of

30 datsets, which indicates that DFS has successfully handled the nonlinear relation-

ship. We compare DFS with SCAD [47], the generalized additive model (GAM) [75],

random forest (RF) [76], Bayesian adaptive regression trees (BART) [77, 78], and

Bayesian neural network (BNN) [60]. GAM provides a penalized likelihood approach

for fitting sparse generalized additive models in high dimension. Both RF and BART

are regression tree-based methods, which can yield a flexible model capturing nonlin-

earities and interaction effects in the unknown regression function. The BRNN and

BNN are both bayesian methods. Table 4.2 shows the average number of features

selected, fsr, nsr and the training and testing error. The training and testing error is

defined as the percentage of mis-classified samples in training set and testing set. The

training error and testing error is reported based on two-step procedure. The one-step

model in this case also provides very decent training error (5.19%) and testing error

(8.38%). The comparison indicates that DFS outperforms all other methods in terms

of variable selection. Among the five methods, DFS achieves the lowest fsr and nsr.

DFS has achieved the exact recovery of support on 25 out of 30 datasets. At the same

time, DFS also achieves the top training and testing error with two-step procedure.

We also run 100 replicas on DFS without carefully tuned hyper-parameters. DFS se-

lected 4.09 (0.29) variables with false selection rate and negative selection rate equal

0.0782 and 0.0575 respectively.

4.6 Real Data Analysis

4.6.1 MNIST

In this section, we apply DFS on the handwritten digits database, MNIST. The

database has a training set of 60, 000 examples, and a test set of 10, 000 examples. The
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Table 4.2. Comparison Table of DFS (Deep Feature Selection), BNN (Bayesian Neural
Networks), GAM (generalized additive model), RF (random Forest), BART (Bayesian
adaptive regression trees) and SCAD (Smoothly Clipped Absolute Deviation) in non-
linear variable selection and prediction. |Ŝ| denotes the average number of variable
selected for 10 datasets; training and testing error denotes the percentage of mis-
classified samples in the corresponding datasets; the number in parentheses denote
the standard deviations of the corresponding values.

Methods |Ŝ| fsr nsr Training Error Testing Error

DFS (two-step) 4.03(0.18) 0.049 0.042 0.08 % (0.002) 5.72 % (0.03)

BNN 4.3 (0.26) 0.093 0.025 3.57 % (0.47) 9.70 % (0.99)

GAM 13.5 (3.68) 0.730 0.100 12.13 % (1.34) 15.57 % (1.97)

RF 5.2 (0.39) 0.310 0.100 0.0 % (0.0) 14.30 % (1.04)

BART 3.3 (0.33) 0.030 0.200 4.47 % (0.55) 16.90 (1.58) %

SCAD 5.0 (1.45) 0.460 0.325 18.70 % (2.91) 21.43 % (2.48)

digits have been size-normalized and centered in a fixed-size image. Each handwritten

digit is of dimension 28 × 28, and was labeled from 0 to 9. This serves as a multi-

classification problem.

Since all images are centered, the edge of each image is expected to be non-

informative. We first use the one hot encoding version of the MNIST database (the

values of pixels are either 0 or 1), and sum up all 60, 000 training samples for each

individual pixel location. If the sum at a pixel location has value under 100, we

naively believe that this pixel is not informative for classification, and the rest may

be informative. Such region consists of 550 pixels and is shown in Figure 4.5.

We run our DFS algorithm on the MNIST training data to make the variable

selection. Selection regions with different choices of pixel numbers, s from 300 to

550, are shown in Figure 4.5b. It is interesting to compare the informative region

(Figure 4.5a) with the selected region with s = 550 from our algorithm in Figure 4.5c.

These two regions almost exactly match with each other.
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(a) Informative region from

cumulated one-hot encoding

training samples

(b) Region selected by DFS

method with different number of

pixels s to be selected

(c) Region difference between

informative region and 550

selected pixels from DFS

Fig. 4.5. MNIST experiments

We train a simple one hidden layer neural network (800 hidden unit) with all

pixels as well as with the pixels selected by our algorithm only. The purpose of

this experiment is to demonstrate superior pixel selection performance rather than

the prediction performance of a well-tuned model. We control all other parameters,

including training steps, learning rate, the same for all models. The performance on

testing set is performed in Table 4.3.
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Table 4.3. MNIST Experiments: Testing accuracy of simple neural networks applying
DFS on support with different number of pixels s

# of s All pixels (784) 550 500 450 400 350 300

Accuracy 98.09% 98.56% 98.53% 98.45% 98.61% 98.45% 98.22%

Table 4.3 suggests, on testing set, the same model works better with selected pixels

instead of all pixels. The region with 400 pixels yields the highest accuracy on test

data. The highest accuracy also beats the benchmark, with 1.6% error, on MNIST

website for 2-layer neural network with 800 hidden unit. Besides the benefit of higher

accuracy, our algorithm also saves up to 1/3 of the computing time for training model

with less features.

4.6.2 Selection of Drug Sensitive Genes

In this section, we apply DFS on the data from a cancer cell line encyclopedia

(CCLE) study to identify genes that are associated with anticancer drug sensitivities.

The CCLE dataset consists of 8-point dose-response curves for 24 chemical compounds

(drugs) across over 400 cell lines, which is aviable at www.broadinstitute.org/ccle.

For each cell line, it consists of the expression data of 18,926 genes. We use the area

under the dose-response curve, which is termed as activity area in [79], as our response

to measure the sensitivity of a drug for each cell line. Our goal is to use DFS to identify

the genes that are associated with the drug sensitivity for each drug. We select 3 out

of 24 drugs whose drug sensitivity gene has been verified by other studies for the

testing. Before running DFS, we apply marginal feature screening [80] to reduce the

number of genes to around 90. Slightly less than 500 observations (cell lines) are

collected for each drug. DFS returns 4 to 6 relevant genes for each drug. The selected

genes are given in Table 4.4.

Table 4.4 indicates that DFS selections are consistent with these verified genes.

Specifically, for 17-AAG, [81] and [79] reported NQO1 as the top predictive biomarker

www.broadinstitute.org/ccle
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Table 4.4. Drug-sensitive genes identified by DFS. Verified gene denotes the verified
gene by medical and biological studies; Selected gene denotes the genes selected by
DFS.

Drug Verified Gene Selected Gene

17-AAG NQO1 NQO1, MMP24, ATP6V0E1,

SEC23IP, INO80, C9f37

Paclitaxel BCL2L1 BCL2L1, SSRP1,

ZNRD1, SLC35F5

Topotecan SLFN11 SLFN11, ELAVL1,

HMGB2, CD63

for it. For the drug Paclitaxel, it has been confirmed that BCL2L1 is predictive

of treatment response in [82, 83]. For the drug Topotecan, both [79] and [84] re-

ported that SLFN11 is the predictive of treatment response. Bayesian Neural Network

method has provided very similar results but need much more computing resources.

4.7 Concluding Remarks

This chapter studies high-dimensional nonlinear variable selection via deep neural

networks. This problem is converted into a sparsity-constrained optimization. We

introduce a greedy algorithm called the Deep Feature Selection (DFS). Under the

condition of a Generalized Stable Restricted Hessian, we provide theoretical conver-

gence guarantees and establish the selection consistency. Further, DFS outperforms

many other algorithms on a variety of numerical examples.

There are several extensions we can pursue for future work. It will be interesting

to study the capacity of proposed networks based on Rademacher complexities. This

can guide us to control the generalization error to avoid the overfitting. There are

many hyperparameters, such as the depth and width of the network, which need to be



66

fine-tuned. It is interesting to apply the Bayesian optimization [85] technique to auto-

matically select these hyperparameters. Let J(f) = E(x,y)[l(f)]. The approximation

error is defined as inff∈Hs,d J(f)− inff∈Fs J(f), which can be bounded using Theorem

2.1. On the other hand, the generalization error is defined as supf∈Hs,d |J(f)− l(f)|,

which is typically bounded by the Rademacher complexity of function class Hs,d [86].

We leave this for future research. The approximation error and the generalization

error add up to excess risk.

Characterizing the uncertainty for the high-dimensional variable selection is an-

other challenging task. Combining variable selection with the popular variational

auto-encoders [7] or generative adversarial networks [8] may provide promising an-

swers to this question.

4.A Proof of Theorem 4.2.1

In this section, we would like to approximate function f by our proposed deep

neural network h with one selection layer and one approximation layer. Explicitly

speaking, h : Rp → R has the following structure:

h(x) =
l∑

i=1

Θ
(2)
i σ
(

Θ
(1)
i,· (w ∗ x) + b

(1)
i

)
∀x ∈ Rp,

where ∗ is the element-wise multiplication, w ∈ Rp is the sparse parameter for the

selection layer, Θ
(1)
i,· ∈ Rp is the i-th row of Θ(1), b

(1)
i ∈ R and Θ

(2)
i ∈ R are the i-th

element of b(1) and Θ(2) respectively, for i = 1, . . . , l. We set ‖w‖0 = s and ‖w‖2 ≤ c1

to perform variable selection. Without loss of generality and by homogeneity of σ,

we may assume ‖(Θ(1)
i,· , b

(1)
i )‖2 = c2, for i = 1, . . . , k. The sparsity of w results in

(w ∗x)> = ((w̃ ∗ x̃)>,0>) after rearranging the position of x. Here w̃ stands for the

sub-vector of w with nonzero values. This also implies Θ
(1)
i,· = (Θ̃

(1)
i,· ,0

>) because of the

feed-forward property of neural network, where Θ̃
(1)
i,· ∈ Rs is the weight corresponding

to the neurons w̃∗x̃. Thus, we can find a function h̄ : Rs → R such that h(x) = h̄(x̃)

by rewriting σ as a function of x̃:
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σ
(

Θ
(1)
i,· (w ∗ x) + b

(1)
i

)
= σ

(
(Θ̃

(1)
i,· ,0

>)
(w̃ ∗ x̃

0

)
+ b

(1)
i

)
= σ

(
Θ̃

(1)
i,· (w̃ ∗ x̃) + b

(1)
i

)
,

that is to say, for any x̃ ∈ Rs, h̄(x̃) =
∑l

i=1 Θ
(2)
i σ(Θ̃

(1)
i,· (w̃ ∗ x̃) + b

(1)
i ) satisfying

‖w̃‖2 ≤ c1 and ‖(Θ̃(1)
i,· , b

(1)
i )‖2 = c2, for i = 1, . . . , l.

To approximate f̄(x̃) by h̄(x̃), we first introduce a space of functions, in which

functions can be represented by an uncountable number of basis. For the theoretical

analysis, we assume that x̃ ∈ Rs are almost surely bounded by R in l2-norm. We

then augment the variable x̃ to z̃ = (x̃>, R)> ∈ Rs+1 by appending the constant R to

x̃. This leads to ‖z̃‖2 ≤
√

2R. By defining the vector vi = (Θ̃
(1)
i,· ∗ w̃>,

b
(1)
i

R
)> ∈ Rs+1,

we may write the neurons in the approximation layer as

φvi(x̃) = σ
(

Θ̃
(1)
i,· (w̃ ∗ x̃) + b

(1)
i

)
= σ

(
(Θ̃

(1)
i,· ∗ w̃>)x̃ + b

(1)
i

)
= σ(v>i z̃) = (v>i z̃)+,

which now turn to a function of z̃. Without loss of generality, we may further

suppose that the l2-norm of each vector v is equal to 1/R. This means the space

of v, denoted as V , is the 1/R-sphere for the l2-norm. We also assume that for

any given x̃ ∈ Rs, the functions v → φv(x̃) are continuous. Based on the set of

units, we define our space of functions Q1 from Rs to R, in which function q can be

decomposed as q(x̃) =
∫
V φv(x̃)dµ(v), where µ is a signed Radon measure on V . The

norm α1(q) equipped for Q1 is defined by the infimum of the total variation |µ|(V)

over all decomposition of q(x̃). If the signed measure µ has a density with respect

to a fixed probability measure τ with full support on V , that is, dµ(v) = p(v)dτ(v),

then the norm α1(q) is equal to the smallest value of |µ|(V) =
∫
V |p(v)|dτ(v) over all

integrable functions p such that q(x̃) =
∫
V φv(x̃)p(v)dτ(v).

Similarly, we may also define a squared norm α2
2(q) as the infimum of

∫
V |p(v)|2dτ(v)

over the same decomposition. The function space in which q(x̃) =
∫
V φv(x̃)p(v)dτ(v),

equipped with norm α2(q) is denoted as Q2. Due to Jensen’s inequality, it is straight-

forward that α2(q) is greater than α1(q). Therefore, Q2 is included in Q1.
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Lemma 1 For δ larger than a constant that depends only on s, for any function

f̄ : Rs → R such that for all x̃, ỹ ∈ Rs satisfying ‖x̃‖2 ≤ R and ‖ỹ‖2 ≤ R,

|f̄(x̃)| ≤ η and |f̄(x̃)− f̄(ỹ)| ≤ ηR−1 ‖x̃− ỹ‖2, there exists a neural network q̄(x̃) =∑2+2k
i=1 Θ

(2)
i σ((Θ̃

(1)
i,· ∗ w̃>)x̃ + b

(1)
i ) with

∥∥Θ(2)
∥∥

2
≤ 2 + δ and ‖(Θ̃(1)

i,· ∗ w̃>, b
(1)
i /R)‖2 =

1/R, for i = 1, . . . , 2 + 2k, that can approximate f̄(x̃) with uniform error:∣∣∣f̄(x̃)− q̄(x̃)
∣∣∣ ≤ C(s)η(

δ

η
)−2/(s+1) log(

δ

η
) + C(s)δk−(s+3)/2s,

where C(s) is a constant related to s.

Proof The proof can be accomplished by two parts. We first approximate this

ηR−1-Lipschitz-continuous function f̄ by a function q in the function space Q2, then

use a network with 2 + 2k neurons to approximate q.

The first part has been proved by [65], that is, for this ηR−1-Lipschitz-continuous

function f̄(x̃), there exists a function q(x̃) ∈ Q2, such that α2(q) ≤ δ and for any

‖x̃‖2 ≤ R,

|q(x̃)− f̄(x̃)| ≤ C(s)η(
δ

η
)−2/(s+1) log(

δ

η
). (4.19)

We will use the results in [87] to prove the second part, which shows that for

any probability measure µ (positive and with finite mass) on the sphere Ss and any

ε ∈ (0, 1
2
), there exists a set of m points v1, . . . ,vm, such that for all u ∈ Ss,∣∣∣ ∫

Ss
|v>u|dµ(v)− 1

m

m∑
i=1

|v>i u|
∣∣∣ ≤ ε (4.20)

with m ≤ C(s)ε−2+6/(s+3) = C(s)ε−2s/(s+3), for some constant C(s) that depends only

on s.

Since Q2 ⊂ Q1, we also have q(x̃) ∈ Q1, and we rewrite it as a function of z̃:

q(x̃) =

∫
Ss
σ
(

(Θ̃(1)
,· ∗w̃>)x̃+b

)
dµ(v) =

∫
Ss
σ(v>z̃)dµ(v) =

∫
Ss

(v>z̃)+dµ(v) , r(z̃).

Furthermore, because (v>z̃)+ = v>z̃/2 + |v>z̃|/2, and µ = µ+ − µ−, where µ+ and

µ− are positive measures, r(z̃) can be decomposed as:

r(z̃) =
1

2

∫
Ss

(v>z̃)dµ(v) +
µ+(Ss)

2

∫
Ss
|v>z̃|dµ+(v)

µ+(Ss)
− µ−(Ss)

2

∫
Ss
|v>z̃|dµ−(v)

µ−(Ss)
.
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The first term of r(z̃) is a liner function t>z̃ of z̃, with ‖t‖2 ≤ 1. We may write it as

the sum of two units:

t>z̃ = ‖t‖2

(( t

‖t‖2

)>
z̃

)
+

+ (−‖t‖2)

(( −t
‖t‖2

)>
z̃

)
+

.

For the second term of r(z̃), we may approximate it with k1 term. Following (4.20),

we have∣∣∣∣µ+(Ss)

2

∫
Ss

∣∣∣v> z̃

‖z̃‖2

∣∣∣dµ+(v)

µ+(Ss)
− µ+(Ss)

2

1

k1

k1∑
i=1

∣∣∣v>i z̃

‖z̃‖2

∣∣∣∣∣∣∣ ≤ εµ+(Ss).

This implies

∣∣∣µ+(Ss)

2

∫
Ss
|v>z̃|dµ+(v)

µ+(Ss)
− µ+(Ss)

2

1

k1

k1∑
i=1

|v>i z̃|
∣∣∣ ≤ εµ+(Ss) ‖z̃‖2 ≤

√
2Rεµ+(Ss).

We then write |v>z̃| as |v>z̃| = (v>z̃)+ +(−v>z̃)+, which leads to an approximation

of
√

2Rεµ+(Ss) with 2k1 units, where k1 ≤ C(s)ε−2s/(s+3). Similarly, we can approxi-

mate the last term with 2k2 units for an approximation error of
√

2Rεµ−(Ss), where

k2 ≤ C(s)ε−2s/(s+3). Let q̄(x̃) denote the neuron network composed of these 2 + 2k

units, that is, q̄(x̃) =
∑2+2k

i=1 Θ
(2)
i σ((Θ̃

(1)
i,· ∗ w̃>)x̃ + b

(1)
i ). Thus,

|q(x̃)− q̄(x̃)| ≤
√

2Rεµ+(Ss) +
√

2Rεµ−(Ss) =
√

2Rεα1(q), (4.21)

where k = k1 + k2 satisfying k ≤ C(s)ε−2s/(s+3). Moreover, the output weights Θ(2)

satisfying:

‖Θ(2)‖2 ≤ ‖Θ(2)‖1 = 2 ‖t‖2 + µ+(Ss) + µ−(Ss) = 2 ‖t‖2 + α1(q) ≤ 2 + δ,

since α1(q) ≤ α2(q) ≤ δ.

Combining the (4.19) and (4.21) together, we have

|f̄(x̃)− q̄(x̃)| ≤ C(s)η(
δ

η
)−2/(s+1) log(

δ

η
) + C(s)δk−(s+3)/2s,

where
∥∥Θ(2)

∥∥
2
≤ 2 + δ and ‖(Θ̃(1)

i,· ∗ w̃>, b
(1)
i /R)‖2 = 1/R, for i = 1, . . . , 2 + 2k.
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A.1 Proof of Theorem 4.2.1

Proof For the uniform error in Lemma 1, we can optimize over δ to obtain a uniform

approximation bound proportional to ηk−1/s log k by using δ = ηk(s+1)/(2s). Combin-

ing this and Lemma 1, we may approximate f̄(x̃) by a h̄(x̃) =
∑2+2k

i=1 Θ
(2)
i σ(Θ̃

(1)
i,· (w̃ ∗

x̃) + b
(1)
i ) with

∥∥Θ(2)
∥∥

2
≤ C(s, η). By writing Θ

(1)
i,· = (Θ̃

(1)
i,· ,0

>) and w> = (w̃>,0>),

we have h(x) = h̄(x̃), satisfying ‖w‖0 = s and
∥∥Θ(2)

∥∥
2
≤ C(s, η). Thus, we can

conclude that

|f(x)− h(x)| ≤ C(s)ηk−1/s log k.

4.B Proof of section 4.4

Let v|I denote restriction of vector v to the rows indicated by indices in I, or a

vector that equals v except for coordinates in Ic where it is zero depending on the

context. Let PI denote the restriction of identity matrix to the columns indicated by

I. To be convenient, we also denote αk(p, q) =
∫ 1

0
Ak(tq + (1 − t)q)dt, βk(p, q) =∫ 1

0
Bk(tq + (1− t)q)dt, and γk(p, q) = αk(p, q)− βk(p, q), where Ak(·) and Bk(·) are

defined by (4.6) and (4.7) respectively.

Proposition 1 Let Q(t) be a matrix-valued function such that for all t ∈ [0, 1], Q(t)

is symmetric and its eigenvalues lie in interval [B(t), A(t)] with B(t) > 0. Then for

any vector v we have

( ∫ 1

0

B(t)dt
)
‖v‖2 ≤

∥∥∥∥( ∫ 1

0

Q(t)dt
)
v

∥∥∥∥
2

≤
( ∫ 1

0

A(t)dt
)
‖v‖2

Proposition 2 Let Q(t) be a matrix-valued function such that for all t ∈ [0, 1], Q(t)

is symmetric and its eigenvalues lie in interval [B(t), A(t)] with B(t) > 0. If Γ is a

subset of row/column indices of Q(t) then for any vector v we have∥∥∥∥( ∫ 1

0

P>Γ Q(t)PΓcdt
)
v

∥∥∥∥
2

≤
( ∫ 1

0

A(t)−B(t)

2
dt
)
‖v‖2
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The detailed proof of Proposition 1 and Proposition 2 can refer to [67], so we omit

here.

Lemma 2 Let Rw denote the set supp(ŵ −w?). The current estimate (ŵ, Θ̂) then

satisfies

‖(ŵ −w?)|Zc‖2

≤γ4s((ŵ, Θ̂), (w?,Θ?)) + γ2s((ŵ, Θ̂), (w?,Θ?))

2β2s((ŵ, Θ̂), (w?,Θ?))

∥∥∥(ŵ, Θ̂)− (w?,Θ?)
∥∥∥

2

+

∥∥∇g(w?,Θ?)|Rw\Z
∥∥

2
+
∥∥∇g(w?,Θ?)|Z\Rw

∥∥
2

β2s((ŵ, Θ̂), (w?,Θ?))
.

Proof For simplicity, we re-write (zw, zΘ) as z in the following proof. Since Z =

supp(zw2s) and |Rw| ≤ 2s, we have
∥∥z|Rw

∥∥
2
≤ ‖z|Z‖2. Thus,

∥∥z|Rw\Z
∥∥

2
≤
∥∥z|Z\Rw

∥∥
2
. (4.22)

According to the algorithm, z = ∇g(ŵ, Θ̂), therefore,∥∥z|Rw\Z
∥∥

2

≥
∥∥∥∇g(ŵ, Θ̂)|Rw\Z −∇g(w?,Θ?)|Rw\Z

∥∥∥
2
−
∥∥∇g(w?,Θ?)|Rw\Z

∥∥
2

=

∥∥∥∥( ∫ 1

0

P>Rw\ZHg(t(ŵ, Θ̂) + (1− t)(w?,Θ?))dt
)(

(ŵ, Θ̂)− (w?,Θ?)
)∥∥∥∥

2

−
∥∥∇g(w?,Θ?)|Rw\Z

∥∥
2

≥
∥∥∥∥( ∫ 1

0

P>Rw\ZHg(t(ŵ, Θ̂) + (1− t)(w?,Θ?))PRw\Zdt
)(

(ŵ, Θ̂)− (w?,Θ?)
)
|Rw\Z

∥∥∥∥
2

−
∥∥∥∥( ∫ 1

0

P>Rw\ZHg(t(ŵ, Θ̂) + (1− t)(w?,Θ?))P(Rw∩Z)∪RΘ
dt
)(

(ŵ, Θ̂)− (w?,Θ?)
)
|(Rw∩Z)∪RΘ

∥∥∥∥
2

−
∥∥∇g(w?,Θ?)|Rw\Z

∥∥
2



72

By splitting Rw ∪RΘ into two sets Rw \ Z and (Rw ∩ Z) ∪RΘ, then applying the

triangle inequality, we have the last inequality. Using Proposition 1 and 2, we have∥∥z|Rw\Z
∥∥

2
≥ β2s((ŵ, Θ̂), (w?,Θ?))

∥∥∥((ŵ, Θ̂)− (w?,Θ?)
)
|Rw\Z

∥∥∥
2

− γ2s((ŵ, Θ̂), (w?,Θ?))

2

∥∥∥((ŵ, Θ̂)− (w?,Θ?)
)
|(Rw∩Z)∪RΘ

∥∥∥
2

−
∥∥∇g(w?,Θ?)|Rw\Z

∥∥
2

≥ β2s((ŵ, Θ̂), (w?,Θ?))
∥∥∥((ŵ, Θ̂)− (w?,Θ?)

)
|Rw\Z

∥∥∥
2

− γ2s((ŵ, Θ̂), (w?,Θ?))

2

∥∥∥(ŵ, Θ̂)− (w?,Θ?)
∥∥∥

2

−
∥∥∇g(w?,Θ?)|Rw\Z

∥∥
2

(4.23)

Similarly, by Proposition 2, we obtain∥∥z|Z\Rw

∥∥
2

≤
∥∥∥∇g(ŵ, Θ̂)|Z\Rw −∇g(w?,Θ?)|Z\Rw

∥∥∥
2

+
∥∥∇g(w?,Θ?)|Z\Rw

∥∥
2

=

∥∥∥∥( ∫ 1

0

P>Z\Rw
Hg(t(ŵ, Θ̂) + (1− t)(w?,Θ?))PRw∪RΘ

dt
)(

(ŵ, Θ̂)− (w?,Θ?)
)
|Rw∪RΘ

∥∥∥∥
2

+
∥∥∇g(w?,Θ?)|Z\Rw

∥∥
2

≤γ4s((ŵ, Θ̂), (w?,Θ?))

2

∥∥∥(ŵ, Θ̂)− (w?,Θ?)
∥∥∥

2
+
∥∥∇g(w?,Θ?)|Z\Rw

∥∥
2
.

(4.24)

Since
∥∥∥((ŵ, Θ̂)− (w?,Θ?)

)
|Rw\Z

∥∥∥
2

= ‖(ŵ −w?)|Zc‖2, combining (4.22), (4.23) and

(4.24), we get

γ4s((ŵ, Θ̂), (w?,Θ?))

2

∥∥∥(ŵ, Θ̂)− (w?,Θ?)
∥∥∥

2
+
∥∥∇g(w?,Θ?)|Z\Rw

∥∥
2

≥
∥∥z|Z\Rw

∥∥
2

≥
∥∥z|Rw\Z

∥∥
2

≥ β2s((ŵ, Θ̂), (w?,Θ?)) ‖(ŵ −w?)|Zc‖2

− γ2s((ŵ, Θ̂), (w?,Θ?))

2

∥∥∥(ŵ, Θ̂)− (w?,Θ?)
∥∥∥

2
−
∥∥∇g(w?,Θ?)|Rw\Z

∥∥
2
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Therefore,

‖(ŵ −w?)|Zc‖2

≤γ4s((ŵ, Θ̂), (w?,Θ?)) + γ2s((ŵ, Θ̂), (w?,Θ?))

2β2s((ŵ, Θ̂), (w?,Θ?))

∥∥∥(ŵ, Θ̂)− (w?,Θ?)
∥∥∥

2

+

∥∥∇g(w?,Θ?)|Rw\Z
∥∥

2
+
∥∥∇g(w?,Θ?)|Z\Rw

∥∥
2

β2s((ŵ, Θ̂), (w?,Θ?))
.

Lemma 3 The vector (bw, bΘ) given by

(bw, bΘ) = arg min
w,Θ

g(w,Θ), s.t. w|T c = 0 (4.25)

satisfies

‖(w?|T ,Θ?)− (bw, bΘ)‖2

≤
‖∇g(w?,Θ?)|T ∪RΘ

‖2

β4s((bw, bΘ), (w?,Θ?))
+

γ4s((bw, bΘ), (w?,Θ?))

2β4s((bw, bΘ), (w?,Θ?))
‖w?|T c‖2

Proof By definition,

∇g(w?,Θ?)−∇g(bw, bΘ)

=

∫ 1

0

Hg

(
t(w?,Θ?) + (1− t)(bw, bΘ)

)
dt
(
(w?,Θ?)− (bw, bΘ)

)
Because (bw, bΘ) is the solution of (4.25), we have ∇g(bw, bΘ)|T ∪RΘ

= 0. Therefore,

∇g(w?,Θ?)|T ∪RΘ

=

∫ 1

0

P>T ∪RΘ
Hg

(
t(w?,Θ?) + (1− t)(bw, bΘ)

)
dt
(
(w?,Θ?)− (bw, bΘ)

)
=

∫ 1

0

P>T ∪RΘ
Hg

(
t(w?,Θ?) + (1− t)(bw, bΘ)

)
PT ∪RΘ

dt
(
(w?,Θ?)− (bw, bΘ)

)
|T ∪RΘ

+

∫ 1

0

P>T ∪RΘ
Hg

(
t(w?,Θ?) + (1− t)(bw, bΘ)

)
PT cdt

(
(w?,Θ?)− (bw, bΘ)

)
|T c

(4.26)

Since g has µ4s-GSRH and |T ∪supp(tw?+(1− t)bw)| ≤ 4s for all t ∈ [0, 1], functions

A4s(·) and B4s(·), defined by (4.6) and (4.7), exist such that

B4s(t(w
?,Θ?)+(1−t)(bw, bΘ)) ≤ λmin(P>T ∪RΘ

Hg

(
t(w?,Θ?)+(1−t)(bw, bΘ)

)
PT ∪RΘ

)
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and

A4s(t(w
?,Θ?)+(1−t)(bw, bΘ)) ≥ λmax(P>T ∪RΘ

Hg

(
t(w?,Θ?)+(1−t)(bw, bΘ)

)
PT ∪RΘ

).

Hence, Proposition 1 can be applied and we have

β4s((bw, bΘ), (w?,Θ?)) ≤ λmin(

∫ 1

0

P>T ∪RΘ
Hg

(
t(w?,Θ?) + (1− t)(bw, bΘ)

)
PT ∪RΘ

dt)

and

α4s((bw, bΘ), (w?,Θ?)) ≥ λmax(

∫ 1

0

P>T ∪RΘ
Hg

(
t(w?,Θ?) + (1− t)(bw, bΘ)

)
PT ∪RΘ

dt)

The results implies that the matrix
∫ 1

0
P>T ∪RΘ

Hg

(
t(w?,Θ?)+(1−t)(bw, bΘ)

)
PT ∪RΘ

dt,

denoted by M , is positive-definite. Henceforth it is invertible and

1

α4s((bw, bΘ), (w?,Θ?))
≤ λmin(M−1) ≤ λmax(M−1) ≤ 1

β4s((bw, bΘ), (w?,Θ?))
.

(4.27)

Multiplying both sides of (4.26) by M−1, we obtain

M−1∇g(w?,Θ?)|T ∪RΘ

=
(
(w?,Θ?)− (bw, bΘ)

)
|T ∪RΘ

+M−1
( ∫ 1

0

P>T ∪RΘ
Hg

(
t(w?,Θ?) + (1− t)(bw, bΘ)

)
PT cdt

)
w?|T c ,

where we use the fact that
(
(w?,Θ?)−(bw, bΘ)

)
|T c = (w?−bw)|T c = w?|T c , because

bw|T c = 0. By (4.27) and Proposition 2, we have

‖(w?|T ,Θ?)− (bw, bΘ)‖2

=
∥∥((w?,Θ?)− (bw, bΘ)

)
|T ∪RΘ

∥∥
2

≤
∥∥M−1∇g(w?,Θ?)|T ∪RΘ

∥∥
2

+

∥∥∥∥M−1
( ∫ 1

0

P>T ∪RΘ
Hg

(
t(w?,Θ?) + (1− t)(bw, bΘ)

)
PT cdt

)
w?|T c

∥∥∥∥
2

≤
‖∇g(w?,Θ?)|T ∪RΘ

‖2

β4s((bw, bΘ), (w?,Θ?))
+

γ4s((bw, bΘ), (w?,Θ?))

2β4s((bw, bΘ), (w?,Θ?))
‖w?|T c‖2

(4.28)
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Lemma 4 The estimation error in the current iteration,
∥∥∥(ŵ, Θ̂)− (w?,Θ?)

∥∥∥
2
, and

that in the next iteration, ‖(bws , bΘ)− (w?,Θ?)‖2, are related by the inequality:

‖(bws , bΘ)− (w?,Θ?)‖2

≤γ4s((ŵ, Θ̂), (w?,Θ?)) + γ2s((ŵ, Θ̂), (w?,Θ?))

2β2s((ŵ, Θ̂), (w?,Θ?))

(
1 +

γ4s((bw, bΘ), (w?,Θ?))

β4s((bw, bΘ), (w?,Θ?))

)
×
∥∥∥(ŵ, Θ̂)− (w?,Θ?)

∥∥∥
2

+
2 ‖∇g(w?,Θ?)|T ∪RΘ

‖2

β4s((bw, bΘ), (w?,Θ?))

+
(
1 +

γ4s((bw, bΘ), (w?,Θ?))

β4s((bw, bΘ), (w?,Θ?))

)∥∥∇g(w?,Θ?)|Rw\Z
∥∥

2
+
∥∥∇g(w?,Θ?)|Z\Rw

∥∥
2

β2s((ŵ, Θ̂), (w?,Θ?))
(4.29)

Proof Since Z ⊂ T , we have T c ⊂ Zc. Thus,

‖w?|T c‖2 = ‖(ŵ −w?)|T c‖2 ≤ ‖(ŵ −w?)|Zc‖2

Using Lemma1, we get

‖w?|T c‖2 ≤
γ4s((ŵ, Θ̂), (w?,Θ?)) + γ2s((ŵ, Θ̂), (w?,Θ?))

2β2s((ŵ, Θ̂), (w?,Θ?))

∥∥∥(ŵ, Θ̂)− (w?,Θ?)
∥∥∥

2

+

∥∥∇g(w?,Θ?)|Rw\Z
∥∥

2
+
∥∥∇g(w?,Θ?)|Z\Rw

∥∥
2

β2s((ŵ, Θ̂), (w?,Θ?))
.

(4.30)

Furthermore,

‖(bws , bΘ)− (w?,Θ?)‖2

≤‖(bws , bΘ)− (w?|T ,Θ?)‖+ ‖w?|T c‖2

≤‖(w?|T ,Θ?)− (bw, bΘ)‖2 + ‖(bws , bΘ)− (bw, bΘ)‖2 + ‖w?|T c‖2

≤2 ‖(w?|T ,Θ?)− (bw, bΘ)‖2 + ‖w?|T c‖2 ,

where the last equation holds because ‖w?|T ‖0 ≤ s and bws is the best s-term ap-

proximation to bw. Therefore, following Lemma 2,

‖(bws , bΘ)− (w?,Θ?)‖2

≤
2 ‖∇g(w?,Θ?)|T ∪RΘ

‖2

β4s((bw, bΘ), (w?,Θ?))
+
(
1 +

γ4s((bw, bΘ), (w?,Θ?))

β4s((bw, bΘ), (w?,Θ?))

)
‖w?|T c‖2

(4.31)
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Combining (4.30) and (4.31), we obtain

‖(bws , bΘ)− (w?,Θ?)‖2

≤γ4s((ŵ, Θ̂), (w?,Θ?)) + γ2s((ŵ, Θ̂), (w?,Θ?))

2β2s((ŵ, Θ̂), (w?,Θ?))

(
1 +

γ4s((bw, bΘ), (w?,Θ?))

β4s((bw, bΘ), (w?,Θ?))

)
×
∥∥∥(ŵ, Θ̂)− (w?,Θ?)

∥∥∥
2

+
2 ‖∇g(w?,Θ?)|T ∪RΘ

‖2

β4s((bw, bΘ), (w?,Θ?))

+
(
1 +

γ4s((bw, bΘ), (w?,Θ?))

β4s((bw, bΘ), (w?,Θ?))

)∥∥∇g(w?,Θ?)|Rw\Z
∥∥

2
+
∥∥∇g(w?,Θ?)|Z\Rw

∥∥
2

β2s((ŵ, Θ̂), (w?,Θ?))

B.1 Proof of Theorem 4.4.1

Proof Following Definition 4.4.1, it is easy to verify that for k ≤ k
′

and any vector

u, we have Ak(u) ≤ A
′

k(u) and Bk(u) ≥ B
′

k(u). Henceforth, for k ≤ k
′

and any pair

of vectors p and q, we have αk(p, q) ≤ α
′

k(p, q), βk(p, q) ≥ β
′

k(p, q) and µk ≤ µk′ .

Consequently, for any function that satisfies µk-GSRH,

αk(p, q)

βk(p, q)
=

∫ 1

0
Ak(tq + (1− t)p)dt∫ 1

0
Bk(tq + (1− t)p)dt

≤
∫ 1

0
µkBk(tq + (1− t)p)dt∫ 1

0
Bk(tq + (1− t)p)dt

= µk

holds and thereby γk(p,q)
βk(p,q)

≤ µk− 1. Thus, applying Lemma 3 to the estimation in the

i-th iteration, we obtain∥∥∥(ŵ(i), Θ̂(i))− (w?,Θ?)
∥∥∥

2

≤ (µ4s − 1)µ4s

∥∥∥(ŵ(i−1), Θ̂(i−1))− (w?,Θ?)
∥∥∥

2
+

2 ‖∇g(w?,Θ?)|T ∪RΘ
‖2

β4s((bw, bΘ), (w?,Θ?))

+ µ4s

∥∥∇g(w?,Θ?)|Rw\Z
∥∥

2
+
∥∥∇g(w?,Θ?)|Z\Rw

∥∥
2

β2s((ŵ(i−1), Θ̂(i−1)), (w?,Θ?))

≤ (µ4s − 1)µ4s

∥∥∥(ŵ(i−1), Θ̂(i−1))− (w?,Θ?)
∥∥∥

2
+

2 ‖∇g(w?,Θ?)|I∪RΘ
‖2

β4s((bw, bΘ), (w?,Θ?))

+ 2µ4s

‖∇g(w?,Θ?)|I∪RΘ
‖2

β2s((ŵ(i−1), Θ̂(i−1)), (w?,Θ?))
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Using the assumption µ4s ≤ 1+
√

3
2

, and ε ≤ B4s(w,Θ) for some ε > 0 for all 4s-sparse

w, we have ∥∥∥(ŵ(i), Θ̂(i))− (w?,Θ?)
∥∥∥

2
≤ 1

2

∥∥∥(ŵ(i−1), Θ̂(i−1))− (w?,Θ?)
∥∥∥

2

+
3 +
√

3

ε
‖∇g(w?,Θ?)|I∪RΘ

‖2 .

(4.32)

Furthermore, since
∥∥∥w?|S\Ŝ(i)

∥∥∥
2

=
∥∥∥(ŵ(i) −w?)|S\Ŝ(i)

∥∥∥
2
≤
∥∥∥(ŵ(i), Θ̂(i))− (w?,Θ?)

∥∥∥
2
,

we have∥∥∥w?|S\Ŝ(i)
∥∥∥

2
≤ 1

2

∥∥∥(ŵ(i−1), Θ̂(i−1))− (w?,Θ?)
∥∥∥

2
+

3 +
√

3

ε
‖∇g(w?,Θ?)|I∪RΘ

‖2 .

(4.33)

The theorem follows using the (4.32) and (4.33) recursively.

B.2 Proof of Corolary 4.4.1

Proof By Part b of Theorem 4.4.1,∥∥∥w?|S\Ŝ(i)
∥∥∥ ≤ 2−i

∥∥∥(ŵ(0), Θ̂(0))− (w?,Θ?)
∥∥∥

2
+

6 + 2
√

3

ε

∥∥∇g(w?,Θ?)|I∪RΘ

∥∥
2

≤ 2−i(
∥∥ŵ(0) −w?

∥∥
2

+
∥∥∥Θ̂(0) −Θ?

∥∥∥
2
) +

6 + 2
√

3

ε

∥∥∇g(w?,Θ?)|I∪RΘ

∥∥
2

≤ 2−i(2
√
sM̄ + c

√
P ) + ξm

≤ m if i ≥ log2

2
√
sM̄ + c

√
P

(1− ξ)m
.

(4.34)

The second inequality follows from triangle inequality. With max(‖Θ?‖∞, ‖Θ̂(0)‖∞) ≤

c/2,
∥∥∥Θ̂(0) −Θ?

∥∥∥
2
≤ c
√
P holds, where c is a constant. Combining this fact and the

assumption m ≥ 6+2
√

3
ξε

∥∥∇g(w?,Θ?)|I∪RΘ

∥∥
2

with 0 < ξ < 1, the third inequality can

be obtained. The last inequality follows after some algebra. This implies Ŝ(i) = S if

i ≥ log2
2
√
sM̄+c

√
P

(1−ξ)m .
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5. CLASSIFICATION OF SHORT SINGLE LEAD

ELECTROCARDIOGRAMS (ECGS) FOR ATRIAL

FIBRILLATION DETECTION USING PIECEWISE LIEAR

SPLINE AND XGBOOST

5.1 Introduction

Atrial Fibrillation(AF) is an abnormal heart rhythm characterized by rapid and

irregular heartbeat. AF, usually associated with significant mortality and morbidity,

is the most common sustained cardiac arrhythmia, occurring in 1-2% of the general

population [2, 3]. At least 2.7 million Americans are living with AF and, more than

12 million Europeans and North Americans are estimated to suffer from AF [3, 4].

The incidence of AF increases with age, from less than 0.5% at 40-50 years, to 5-

15% for 80 years of age [5]. Its prevalence will likely triple in the next 30-50 years,

particularly, in the United States and other western countries with aging population

demographics [6]. This growth may also be influenced by extended survival outcomes

for patients with congestive heart failure (CHF), valvular heart disease, and coronary

artery disease, as AF is common among patients with other forms of structural heart

disease.

Accurate diagnosis of AF is the first step to address this problem and is essential

in mitigating such serious concerns. There have been many previous research studies

related to the classification of abnormal ECG beats for arrhythmia [88–93]. Most of

the proposed models have used classical classifiers such as support vector machine

(SVM) or neural network with discrete wavelet transformation of the signals to cap-

ture morphological characteristics of the ECG [91,93]. One of the key challenges for

AF detection is that it can be episodic. Hence, AF classification from continuous

monitoring data in real settings is important for its accurate diagnosis. With the ad-
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vent of wearable monitoring devices and increased computational power, researchers

have endeavored in developing comparable classification methods in more realistic

settings. For example, [94] tackled the classification of ECG beats collected from

mobile devices to identify AF and myocardial infarction. Due to the limited compu-

tational capacity of those mobile devices, the classification model was developed based

on heart rate variability, instead of analyzing morphological features of ECG beats,

therefore under-utilizing rich temporal data. In another study, the classification prob-

lem in wearable device environment was studied, however only the compressed sensed

ECG signals (encoded by discrete wavelet transformation and basis pursuit denois-

ing) were considered [95]. With the similar constraints on computational power, the

SVM method was employed on heart rate variability. To make the algorithm compu-

tationally efficient, [96] proposed a method focusing on heart rate variability without

dealing with high dimensional morphological features.

We tackled AF classification problem based on ECG recordings (Physionet Chal-

lenge 2017 data [97]) collected from AliveCor device, which is an ECG recording

device in the mobile environment [98]. The proposed model can capture heart rate

variability and morphological features without generating high dimensional features

as wavelet analysis does. To circumvent representing the morphology in high di-

mension, we employed a signal fitting method called piecewise linear function. XG-

Boost [99], a gradient boosting method based classifier known for its performance in

many data analysis competition, is used to have improved classification performance.

We achieved an F1 score of 81% on the test set from PhysioNet Challenge, which is

comparable to other high-ranked competitive classifiers [98].

Overall, our approach focuses on identification of features from waveform mor-

phology with piecewise linear splines and,

• Generates fewer number of features than the methods based on the discrete wavelet

transformation, making this method more efficient and statistically robust.

• Can be applied to any type of ECG recordings. In comparison, most existing methods

are trained on standard ECG database collected in hospital and not contaminated
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by any external noises; they also focus only on classification between normal and AF

rhythms.

• Uses the Kaggle [100]1 winning algorithm XGBoost for the classifier; this approach is

highly efficient and flexible and can be easily used on distributed platforms for further

computational efficiency.

5.2 Methods

5.2.1 Challenge data

ECG recordings, collected and band pass filtered using the AliveCor device, were

sampled at 300 Hz. The training set contains 8,528 single lead ECG recordings ranging

from 9 seconds to just over 60 seconds. The test set (withheld by the organizers)

contains 3,658 ECG recordings of similar lengths. Each recording is labeled as either

‘Normal’, ‘AF’, ‘Other’ or ‘Noisy’. All the labelling was performed by a single expert.

During the various phases of the challenge, reference labels for the training data of

the ECGs were updated with three reference versions provided by the organizers.

The data profile in Table 5.1 is given based on the latest version. The test set was

unavailable to the public and was not accessible to us.

5.2.2 AF classification algorithm overview

AF is defined as a “tachyarrhythmia characterized by predominantly uncoordi-

nated atrial activation with consequent deterioration of atrial mechanical function” by

the American College of Cardiology (ACC), the American Heart Association (AHA)

and the European Society of Cardiology (ESC) [101].

Despite the enormity of this issue, AF detection remains problematic, as it can be

episodic. The irregular rhythms in the ECG, which can be captured by the underlying

pattern of R waves, is a key factor when diagnosing AF. Another important factor

1A machine learning challenge
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Table 5.1. Data profile for the training set

Type # recording
Time length (s)

Mean SD Max Median Min

Normal 5076 32.11 9.97 60.95 30.0 9.05

AF 758 32.34 12.32 60.21 30.0 9.99

Other 2415 34.30 11.76 60.86 30.0 9.13

Noisy 279 24.38 10.41 60.0 30.0 9.36

Overall 8528 32.50 10.89 60.95 30.0 9.05
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is the absence of P wave. AF detection by an algorithm can be considered as one of

two school of thoughts: atrial activity analysis-based or ventricular response analysis-

based methods. Atrial activity analysis-based AF detectors are based on the analysis

of the absence of P waves or the presence of fibrillatory f waves in the TQ interval. In

contrast, ventricular response analysis is based on the predictability of the inter-beat

timing (‘RR interval’) of the QRS complexes in the ECG [97] (Figure 5.2). We have

developed a hybrid method, where both approaches are combined for the selection of

features. To extract information according to atrial activity and ventricular response,

we break the method into several steps, which are shown in the flowchart (Figure 5.1).

We implemented the algorithm in Python 2.7, and incorporated some existing

packages, ‘biosppy’ [102] and ‘scipy’ [103] for pre-processing, such as denoising and

re-sampling for the wavelet method. The model was trained on the training dataset

and stored as a separate file. To predict a new record, the model takes an ECG

recording as an input and returns a class label of either ‘Normal’, ‘AF’, ‘Other’

or ‘Noisy’. The evaluation was performed by running the algorithm on the server,

equipped with virtual machines (VM), provided by the challenge organizers. Each

VM is configured with a single-core AMD 64 processors, 2GB of RAM, a 2GB read-

wirte/home partition, and a 500 MB read-write/tmp partition. Each classification

task was limited to 2 × 1011 CPU instructions [104]. Our final submission consisted

of 34 recordings that exceeded the computational limit and were classified as ‘Noisy’.

5.2.3 R peaks detection and PQRST segmentation

A complete normal heartbeat produces four entities on ECG – a P wave, a QRS

complex, a T wave and a U wave, where the U wave is not typically seen and its

absence is generally ignored. Therefore, a PQRST interval as shown in Figure 5.2 is

considered to represent a complete heartbeat wave on an ECG recording. Depending

on the source lead of the ECG, this interval might be inverted (i.e., negative R peaks)

for some waves.
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Input: ECG

recording

Remove noise/Filter

Detect R peaks

and segment

Feature Extraction

Classifier: XGBoost

Output: Normal,

AF, Other or Noisy

Entire ECG leading

• RR interval length

• RR interval difference

• Heartbeat rate

Each segmentation of ECG leading

• Fourier Coefficient of each segmentation

• Piecewise linear spline

– Location of PQRST wave

– Amplitude of PQRST wave

– Appearance of f waves

Fig. 5.1. Flowchart for different steps (left) and list of features (right).
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Fig. 5.2. A depiction of a typical ECG beat showing the PQRST interval

R peaks detection and PQRST segmentation is the first step for analyzing the

ECG and classifying to different categories. Correctly identifying the R peaks and

making proper PQRST segmentation could provide valuable information regarding

different features including heart rate, and RR interval, which can also facilitate the

discovery of the irregularity of the heart rhythm.

Comparison of different methods for R peaks detection

Different methods have been proposed to identify the R peaks. We compared five

of the existing methods including Christov [105], Engelse and Zeelenberg [106], SSF

(Slope Sum Function) [107], P. Hamilton [108], and H. Gamboa [109]. These five

methods have shown an accuracy of 90% or more for QRS detection on Physionet

database [110,111]. For the challenge dataset, the performance of these five methods

does not differ significantly from each other in the case of positive R peaks [110].

However, Hamilton’s [108] method performed better for automatically detecting the

negative R peaks.
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5.2.4 Fitting heartbeat

Both atrial activity analysis-based or ventricular response analysis-based methods

require capturing the morphological features of the ECG wave. Traditional methods

use the wavelet transformation, and then consider the coefficients as a representation

of the ECG for further analysis. However, it is difficult to extract the P, Q, R, S

and T locations and amplitude information from the wavelet coefficients, since the

PQRST signals vary their positions randomly [112]. We introduce piecewise linear

splines for capturing the waveform morphology at the heartbeat level.

Piecewise linear function

Piecewise linear functions, such as adaptive piecewise estimation are commonly

used in non-parametric studies to fit a function [113]. The method uses a series

of end-to-end straight lines to approximate the wave or function. The location of

end points on the X axis are called knots. The goal is to minimize the sum of the

least squared errors between the piecewise linear function and the true function to

achieve a better fit. Figure 5.3 shows a simple example of a piecewise linear spline

(red) for estimating a quadratic function whose parameters are unknown (blue). The

mathematical form of the piecewise linear spline is shown in Equation 5.1. We define

f(x) to be the function on [0, 1] without loss of generality:

f(x,B) = β0 + β1x+
k∑
i=1

βi+1(x− ti)+ (5.1)

where t = {0 = t0 < t1 < · · · < tk+1 = 1} are the knots we choose, Bs are the

coefficients for each spline.
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Fig. 5.3. Piecewise linear spline example: here we have a function f(x)(blue) is
estimated by a piecewise linear spline(red) when the knots {x0 = 0, . . . , x5 = 1} is
given [114]

The keys to a good approximation on a piecewise linear model are (i) the number

of knots, and (ii) the location of the knots. With the number of knots and the location

of the knots fixed, our question can be simplified to an optimization problem with a

quadratic loss function, as in Equation 5.2.

L(y, f(x,B)) =
N∑
i=1

(y − f(x,B))2 (5.2)

where f(x,B) is defined in Equation 5.1. Our task is simplified to minimize Equa-

tion 5.2 on the space of B, in Equation 5.3:

B̂ = argminB L(y, f(x,B)) (5.3)

Here, we propose a forward step-wise algorithm and adaptively add new knot to

current knots in the most likely position iteratively [115]. The details of each step

are given in Algorithm 3. Two examples of the fitting of piecewise linear spline are

shown in Figure 5.4. The examples include fitting the function for a Doppler function

and PQRST segment of a heartbeat.
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Algorithm 3 Fitting piecewise linear functions [115]

Given significant level α, f(xi) i = 1, ..., n;

for k = 1, ... : do

Find {t1, ..., tk} ∈ [t0 = 0, tk+1 = 1] and corresponding f̂ so that it minimize

Equation 5.2

Set residuals Rl = {f(xj)− f̂(xj)|xj ∈ [tl−1, tl]}, for l = 1, ..., k

Test the independence on Rl at significant level α, l = 1, ..., k, collect p-value pl

for each set Rl

if min{pi} < α then

continue

else

Residuals are independent in all sets at significant level of α

break

end if

end for

(a) Fitting the Doppler function

with piecewise linear function

(b) Fitting a heartbeat with

piecewise linear function

Fig. 5.4. The examples show the approximation of functions and waves with piecewise
linear functions. For each heartbeat, it takes at most 30 iterations to find a well-fitted
piecewise linear function.

The piecewise linear function approximated from the algorithm helps us correctly

identify the position of the peaks in the ECG, which is critical for the analysis of the
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atrial activity in detecting the absence of P waves and the presence of f waves by

capturing the morphology.

5.2.5 Feature extraction

To detect AF, clinicians seek for the rhythm of the heartbeat, absence of P wave

and, presence of f wave (Figure 5.5). F wave is an atrial flutter wave on ECG which

is more of a regular tachyarrhythmia and often superimposed with atrial fibrillation.

It appears as a ‘sawtooth’ pattern in the leads II, III and aVF [116] (Figure 5.5).

Fig. 5.5. Examples of ECGs of atrial fibrillation. On the top: the arrow indicates a
P wave in normal sinus rhythm, which is lost in atrial fibrillation (middle); On the
bottom: the morphology of f waves in ECG. The irregularity of heartbeat can be seen
in both graphs.

We have developed a set of rules to extract the statistical features of heartbeat

rate for the ECG signal and detect the P wave and f wave related features from the

coefficients of the heartbeat approximation based on piecewise linear spline. These

rules are described in detail in this section.
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Heartbeat Rate and Rhythm

The detection of R peaks and PQRST segmentation help us count the number of

heartbeat over a period of time. The heartbeat rate of each ECG is tracked along

with number of R peaks in a fixed time window. With the window shifting over

entire ECG, we get a sequence of heartbeat, which provides the heart rate and the

heart rate variability(HRV). We define the set {Ri | i = 1, ..., n}2 to be the sequence

of R peak locations of the ECG leading record, and heartbeat rate is defined as

the number of R peaks detected over one second. We compute the length of RR

intervals, which are the time differences between two adjacent R peaks, as {RRi =

Ri+1−Ri | i = 1, ..., n−1} and calculate the difference between RR interval lengths as

{diff i = RRi+1−RRi | i = 1, ..., n−2}. Statistical measurements of {RRi}, {diffi}

such as mean and standard deviation are extracted, and the variation of the sequence

indicative of the rhythm of the heartbeat.

Absence of P waves

The absence of P waves is captured by first annotating each wave in the PQRST

intervals. After fitting the PQRST intervals to piecewise linear functions, we mark

the inflection points of the piecewise linear functions as our candidates for each peak.

Since R peaks are located by the first step, according to the characteristic of each wave,

we annotate the PQRST peaks among the candidates according to their amplitude

and distance to the R peaks, as shown in Figure 5.6. With the annotation of PQRST,

we can detect the absence of P wave by identifying the presence of an inflection point

before the Q wave.

2n denotes the number of R peaks detected in each ECG recordings, and will vary for different
recordings
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Fig. 5.6. Annotation of PQRST wave from fitted piecewise linear function

Presence of f waves

The presence of f waves in the ECG is another measure used by clinicians for

detection of AF. It usually appears as a ‘sawtooth’ pattern [116] (Figure 5.5). To

detect AF, we at first identify the coefficients of the piecewise linear function and

then find the inflection points. This step is similar to the detection of the absence of

P waves. After that, we compute the number of inflection points that follows the R

peak. If there is an irregular number of inflection points after the R wave, it is more

likely that there is a ‘sawtooth’ pattern for the presence of f waves. We compute the

proportion of such waves in the ECG leading, and depending on the percentage, we

detect the f waves.

Other Features

We also used other general features such as the RR interval, and the differences in

RR interval and heartbeat rate, as described in Figure 5.1. The argument for using

differences in RR interval can be explained by the Lorenz plot [117] (Figure 5.7). The

slope gets closer to 1 if RR intervals are regular without much variation; in contrast, it

becomes more random if RR intervals are irregularly changing as shown in Figure 5.7.
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Fig. 5.7. Lorentz plot showing the difference between the differences of RR intervals
for Normal, AF and Other classes for three samples. X axis are RR(n) - RR(n-1),
and Y axis are RR(n+1) - RR(n) for each n, where n is an index of RR intervals.

5.2.6 Classification

The features extracted using piecewise linear function and other features that has

been reported in the literature to classify AF as described in the previous sections

were used for inputs for a classifier. The list of the features are: i) heart beat rate and

rhythm, ii) presence or absence of P waves as identified by piecewise linear function,

iii) presence or absence of f waves, iv) RR interval and v) differences in RR interval.

For each samples, these features are extracted and an high dimensional vector was

created. These vectors were then split randomly for training and testing with a 10 fold

cross validation. We used 82% (7000) of the challenge dataset as our training data

and the remaining 18% (1528) as our validation set. XGBoost, a gradient boosting

algorithm was used as the classifier of the ECG signal from the features extracted [99].

Other methods such as neural network (NN) were also explored. The XGBoost, short

for “Extreme Gradient Boosting”, uses gradient boosted trees to solve the problem

of supervised learning. Gradient boosted trees use decision trees of a fixed maximum

size as base learners, and iteratively learns the base learners to add up to a final
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Table 5.2. Counting rules for the numbers of the variables

Predicted Classification

Normal AF Other Noisy Total

Reference Normal Nn Na No Np
∑

N

Classification AF An Aa Ao Ap
∑

A

Other On Oa Oo Op
∑

O

Noisy Pn Pa Po Pp
∑

P

Total
∑

n
∑

a
∑

o
∑

p

strong classifier [118]. A python open source package for XGBoost was used for the

implementation [119].

5.2.7 Evaluation Metrics

The results are measured in terms of F1 score and receiver operating characteristics

(ROC) curve, described in this section. The definition of the F1 score is based on

the confusion matrix for the reference class and the predicted class. The confusion

matrix is shown in Table 5.2.

The performance of the algorithm was evaluated as an F1 measure as defined

by the challenge organizers, which is an average of the three F1 values from each

classification type. F1 values are defined with the following equations for the three

categories.

• Nomral rhythm: F1n = 2×Nn∑
N+

∑
n

• AF rhythm: F1a = 2×Aa∑
A+

∑
a

• Other rhythm: F1o = 2×Oo∑
O+

∑
o

• Noisy: F1p = 2×Pp∑
P+

∑
p
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The final score is calculated as:

F1 = (F1n + F1a + F1o)/3

We also represented in other traditional statistical measures such as receiver operating

characteristics (ROC) curve, precision-recall curve (PRC), positive predictive value

(PPV) as well as sensitivity (a.k.a true positive rate) and specificity. The definitions

of these parameters are listed below.

Specificity = Number of true negative
Number of actually negative samples

Sensitivity = Number of true positive
Number of actually positive samples

PPV = Number of true positive
Number of positive calls

False positive rate = Number of false positive
Number of actually negative samples

The ROC curve and PRC are graphical plot that illustrate the diagnostic perfor-

mance of a binary classifier as its discrimination threshold is varied. The ROC curve

is created by plotting the true positive rate against the false positive rate at various

thresholding settings. PRC is created by plotting the PPV against sensitivity, and

shows the trade off between precision and recall for different threshold.

5.3 Results

5.3.1 Classification performance on the test set (hidden)

To build our model on the training data, we performed 10-fold cross validation

with randomly selecting 7000 (82%) records as the training set and the remaining 1528

(18%) records as the validation set. For the 10-fold cross validation, we achieved an

average F1 score of 80.5%, accuracy of 83.8% with specificity of 98.3%. Among the

F1 score, the normal class, AF class and other class had a score of 0.90, 0.78 and

0.74 respectively. Especially for the ‘AF’ class, we have achieved a sensitivity of 0.78

and positive predictive value of 0.81. For the test set that was hidden from us, we
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Table 5.3. Final F1 Score of Piecewise Linear Spline/XGBoost method for the test
set (hidden)

Class F1 score (%)

Normal 0.90

AF 0.80

Other 0.72

Overall 0.81

achieved similar performance statistics. The detailed F1 score for the hidden test set

is shown in Table 5.3.

5.3.2 Precision recall (PR) curve and receiver operating characteristic

(ROC) curve

For a multi-class classification problem, we characterize the ROC curve for each

class, by testing that class against all other classes. We used 82% (7000) of the

challenge dataset as our training data and the remaining 18% (1528) as our validation

set to generate the ROC curve, shown in Figure 5.8.

The ROC curves indicate good performance of the algorithm, when we consider

the classification problem for each class as a binary classifier. We also studied the

head-to-head comparison between each pair of classes and achieved the lowest area

under the curve (AUC) for normal-other pair, which is still 0.94. The AUC for each

class is above 0.9, and the class ‘AF’ has achieved an AUC of 0.98. As the data are

imbalanced and precision recall curve (PR) better represents the performance in such

cases, we used the PR curve. The AUCs of 3 major classes (‘Normal’, ‘AF’, ‘Other’)

are all above 0.8 for the PR curve. The AUC of noise is low due to the high degrees

of imbalance of noise data in the dataset.
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Fig. 5.8. Receiver operating characteristic (ROC) curve (left) and precision recall
curve (PR) curve (right) for AF classification. For each curve, one class is tested
against all other classes as a binary classification problem.

5.4 Discussion

We have shown that the proposed algorithm using piecewise linear coefficients from

the ECG beats is capable of detecting AF from ECGs recorded from wearable devices

(AliveCor) with high accuracy (ranked among top 10 challenge results) by identifying

important features of waveform morphology for AF. Detailed information regarding

the PQRST waves helped improve the result significantly. One of the most significant

challenges we faced during the development of our algorithm was the uncertainty

about the clinical reasoning for the samples that were labeled as the ‘Other’ class.

Hence, more information regarding the other arrhythmia diseases as well as further

study about them could help improve the F1 score. During the challenge, we tested

other existing methods on the challenge data set, including wavelet entropy. We also

tested our algorithm on other publicly available ECG datasets with annotation of ‘AF’

such as the MIT-BIH arrhythmia database [111,120]. These findings are summarized

in this section.
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5.4.1 Other class

For our result, the class ‘Other’ has the lowest F1 score, as shown in Table 5.3.

Mostly because the ‘Other’ class includes any disease that is not AF. Our feature

extraction primarily follows the diagnosis and clinical definition of AF. Some of the

other arrhythmias include ventricular tachycardia, ventricular fibrillation, supraven-

tricular tachycardias which can be sub classified based on atrial or AV nodal origin

and AV nodal re-entry tachycardias [121] (Figure 5.9). Since our model is based on

manually selecting features streamlined to detect AF without knowing the individ-

ual ECG characteristics of each specific type of arrhythmia in the ‘Other’ class, we

have essentially limited the performance of the algorithm by over-fitting for the class

‘AF’. For example, separation of noise and ventricular fibrillation was not investi-

gated. Both of them are irregular rhythms and differentiating them tends to be a

hard problems in pattern recognition.

Fig. 5.9. Classification diagram for tachyarrhythmias.3

5.4.2 Comparison to other methods

Wavelet transformation has been widely used in AF detection [122–124]. We in-

cluded the RR-interval information (distance between two R peaks and the difference

between the lengths of heartbeats) and the coefficient and entropy of the wavelet

transformation. This method achieved an overall F1 score of 0.72 and accuracy of

0.74. We also replaced wavelet coefficients with Fourier coefficients as the features,

which achieved a similar level of accuracy and F1 score. Table 5.4 illustrates detailed

3AV: atrioventricular
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results, revealing that wavelet and Fourier coefficient methods have limited power on

detecting AF on such datasets with the XGBoost classifier.

5.4.3 Other dataset

The method can easily be applied to other ECG datasets. We applied our model

trained by challenge data on a subset of MIT-BIH arrhythmia database. For this

dataset, the recordings are annotated as ‘AF’ or not AF (not ‘AF’ may include ‘Nor-

mal’, ‘Other’ or ‘Noisy’). The dataset includes 81 ECG samples, and their lengths

are approximately 30 seconds. By using the built model from the challenge data, we

have achieved an accuracy of 93.83%, sensitivity of 87.5% and specificity of 95.89%

with this dataset.

5.4.4 Limitation and future direction

Our algorithm extracts features at the heartbeat level, which can be computation-

ally expensive when applied to long ECG recordings. Although we have used large

computational resources, which may not be currently available for wearable devices,

the data can be sent to a cloud environment for processing. Additionally, we did not

have access to patients’ demographics, clinical history, or lab results. Such clinical

information can give a better context for a higher accuracy of the AF classification.
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6. LOCAL REGION SPARSE LEARNING FOR

IMAGE-ON-SCALAR REGRESSION

6.1 Introduction

There has been significant research activity aimed at the association between

image data and other scalar variables (e.g. cognitive score, diagnostic status) in the

study of neurodegenerative and neuropsychiatric diseases, such as Alzheimer’s disease

(AD) [125]. The growing public threat of AD has raised the urgency to discover

ROI of magnetic resonance images (MRI) that may identify subjects at greatest

risk for future cognitive decline and accelerate the testing of preventive strategies.

Machine learning methods have been developed and the penalized optimization is

popular in the framework of the empirical risk minimization plus a penalty. However,

spatially heterogeneous smoothness and local region selection greatly complicates the

image analysis. To address these challenges, several regularization methods have been

proposed to impose sparsity on both pixel values and their spatial derivatives. For

instance, GraphNet [126] combines the Lasso penalty and an `2 penalty of image

gradients, and TV-`1 [127,128] uses a weighted combination of the Lasso penalty and

the TV penalty.

It is well-known that both Lasso and TV models have the inherent bias and

often lead to less stable predictions [45]. For example, the spatially adaptive TV

model [129] was proposed to remove the inherent bias in the TV model by utilizing

a spatially varying weight function that is inversely proportional to the magnitude

of image derivatives. It is a two-step procedure where the weight function obtained

from the first step using standard TV is then used to guide smoothing in the sec-

ond step. It is of interest to note that, in the statistical literature, the Smoothly

Clipped Absolute Deviation (SCAD) penalty [130] has been proposed in the context
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of high-dimensional linear regression to address the shortcomings of Lasso (which is

not consistent in variable selection). SCAD has some desired properties of the esti-

mator such as continuity, asymptotic unbiasedness, sparsity, and the so-called oracle

property (which behaves the same as when the zero coefficients are known in ad-

vance). There are a few papers on the use of SCAD for image analysis [128, 131].

None of them consider the local region learning. We will adapt the SCAD penalty

for our local region selection problem in the framework of image-on-scalar regression.

In this chapter, we propose a novel regularization method called SCAD2TV, which

combines the SCAD regularization, enforcing sparsity, and the SCAD of TV regu-

larization, enforcing spatial contiguity, into one group, which segments contiguous

spatial regions against zero-valued background. This chapter makes three main con-

tributions:

• The new penalty, SCAD2TV, forces zeros on coordinates and spatial derivative

jointly, which makes it easy to identify ROI for the image-on-scalar regression

model. It solves the bias issue inherent in LASSO or TV methods.

• Our proposed algorithms are based on ADMM, which decomposes a non-convex

problem with the non-convex penalty into two iterative optimization problems

with explicit solutions. The divide and conquer learning algorithm is also de-

veloped, thereby allowing scaling to large images.

• Compared with GraphNet and TV-`1, SCAD2TV has better or competitive

performance in either prediction or selection errors.

6.2 Image-on-Scalar Regression and SCAD2TV

6.2.1 Image-on-Scalar Regression

Regression models with image responses and scalar predictors are routinely en-

countered in many applications [132, 133]. Consider an image-on-scalar regression

model with varying coefficients: Y (s) = XTβ(s) + η(s) + ε(s), where X ∈ Rp is the
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covariate, Y (s) ∈ R is the image response at pixel s ∈ S (a 2D or 3D domain), and

β(s) = (β1(s), . . . , βp(s))
T ∈ Rp is the coefficient image vector. Here η(·) is a zero-

mean spatial field which characterizes the spatial correlation, and ε(·) is the white

noise with mean zero and variance σ2. In this chapter, we focus on Y ∈ RN×N a 2D

image. Extension to 3D images is straightforward. The objective is to identify ROI

in the response image which are associated with the corresponding covariate by esti-

mating the coefficient images β1, . . . , βp. The available data are image and covariate

pairs for n subjects, (Xi, Yi(·)), i = 1, . . . , n. We obtain the estimator by minimizing

1

n

n∑
i=1

∑
s∈S

(
Yi(s)−XT

i β(s)
)2

+

p∑
j=1

pen(β`), (6.1)

where pen(·) is a penalty function which favors estimators according to certain

criteria. Our purpose is to recover nonzero active regions of β1, . . . , βp. The main

challenges are that we need to impose sparsity of pixel values and extract active

regions simultaneously.

6.2.2 Existing Regularizers

TV and SCAD. The TV analysis plays a fundamental role in various image

analyses since the path-breaking works [134,135]. We focus on the anisotropic version

of TV. For β ∈ RN×N , define the discrete gradient ∇ : RN×N → RN×N×2 is defined

by

(∇β)jk =



(βj+1,k − βjk, βj,k+1 − βjk), 1 ≤ j, k ≤ N − 1,

(0, βj,k+1 − βjk), j = N, 1 ≤ k ≤ N − 1,

(βj+1,k − βjk, 0), 1 ≤ j ≤ N − 1, k = N,

(0, 0), k = j = N.

The TV norm ‖β‖TV is just ‖β‖TV =
∑

j,k ‖(∇β)jk‖1. The isotropic induced TV

norm is
∑

j,k ‖(∇β)jk‖2, which is equivalent to the anisotropic induced TV norms up

to a factor of
√

2.
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The SCAD penalty ρλ(·) is more conveniently defined its derivative

ρ′λ(t) = λ
{
I(t ≤ λ) +

(aλ− t)+

(a− 1)λ
I(t > λ)

}
, t > 0,

and ρλ(0) = 0. We use a = 3.7 by convention. Consider a penalized least squares

problem: minimize %
2
(z−θ)2 +ρλ(θ). The solution is unique, explicit, and θ̂ = S%,λ(z),

where S%,λ is the thresholding function. Figure 6.1 displays the thresholding function

for SCAD and the soft thresholding function for Lasso with % = 1 and λ = 2. The

SCAD penalty shrinks small coefficients to zero while keeping the large coefficients

without shrinkage.

Fig. 6.1. Thresholding function for the Lasso penalty (left) and the SCAD penalty
(right) with % = 1 and λ = 2.

GraphNet and TV-`1. GraphNet and TV-`1 have been successful applied to

medical images. GraphNet is the weighted average of an `1 penalty on all coordinates

and a squared `2 penalty on the discrete gradient, while TV-`1 is the weighted average

of an `1 penalty and a TV penalty:

penGN(β) = λ
(
γ‖∇β‖2

2 + (1− γ)‖β‖1

)
penTV−`1(β) = λ

(
γ‖β‖TV + (1− γ)‖β‖1

)
.
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For both penalties, λ > 0 is the smoothing parameter which controls the strength

of regularization and γ ∈ [0, 1] is another smoothing parameter controlling the trade-

off between pixel sparsity and spatial regularity.

6.2.3 A New Penalty: SCAD2TV

For each coordinate βjk, the discrete gradient (∇β)jk ∈ R2 involves three coordi-

nate values βjk, βj+1,k, βj,k+1. Let β̃jk = (βjk, βj+1,k, βj,k+1)T . The SCAD2TV penalty

is defined by

penS2TV (β) =
N∑

j,k=1

{
γ

2∑
l=1

ρλ

(
|(∇β)jk,l|

)
+ (1− γ)

3∑
l=1

ρλ

(
|β̃jk,l|

)}
, (6.2)

where λ > 0 and γ ∈ [0, 1] are two tuning parameters, and ρλ is the SCAD

function. The first term in the penalty allows adaptive estimation of the coefficient

image and the second one enforces sparsity on coordinate values. One may also

consider the functional version of (6.2). After some rescaling, (6.2) is equivalent to

penS2TV (β) = γ

∫
ρλ(|β̇|) + (1− γ)

∫
ρλ(|β|). (6.3)

The SCAD2TV solves the bias problem inherent in the TV and Lasso models.

Note that this penalty function, unlike the L1 penalty used in Lasso, is not convex,

so that (6.1) is a non-convex objective function. We solve this problem based on the

ADMM and convert it into two sub-problems with closed-form solutions. In general,

ADMM has successful applications to convex problems. The behavior of ADMM

applied to nonconvex problems has been a mystery. Recently, the global convergence

of ADMM in non-convex optimization is discussed in [136], which shows that several

ADMM algorithms including SCAD are guaranteed to converge.
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6.3 Local Region Learning by SCAD2TV

6.3.1 Algorithm based on ADMM

Our proposed algorithm is based on ADMM [137]. We may write (6.1) as the

matrix form by an abuse of notation:

1

n

n∑
i=1

∥∥∥Yi −XT
i β
∥∥∥2

2
+

p∑
j=1

penS2TV (βj), (6.4)

where Yi ∈ RN2
is the veritorized response image for subject i, Xi ∈ RN2×pN2

is

the fixed extended design matrix related to the covariate for subject i, and β ∈ RpN2

is the concatenated vectorized unknown coefficient image. Furthermore, one of the

advantages of SCAD2TV in (6.2) is that we can write
∑p

j=1 penS2TV (βj) as ‖ρλ(Dβ)‖1

for a fixed p(5(N − 1)2 + 6(N − 1)) by pN2 matrix D depending only on γ, which

greatly facilitates the efficiency of our algorithm. This fact can be easily seen since

the elements involved in the (j, k)th term in (6.2) are

((∇β)jk, β̃jk)
T = (βj+1,k − βj,k, βj,k+1 − βj,k, βj,k, βj+1,k, βj,k+1)T = Djkβ̃jk,

for a fixed matrix Djk. So D is the concatenated version of Djk.

Problem (6.4) is equivalent to

min
1

n

n∑
i=1

∥∥∥Yi −XT
i β
∥∥∥2

2
+ ‖ρλ(α)‖1

s.t. α = Dβ.

We form the augmented Lagrangian as

L%(β, α, η) =
1

n

n∑
i=1

∥∥∥Yi −XT
i β
∥∥∥2

F
+ ‖ρλ(α)‖1 + ηT (α−Dβ) +

%

2

∥∥∥α−Dβ∥∥∥2

2
.

The ADMM consists of the iterations
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β(t+1) = arg min
β
L%(β, α

(t), η(t)) (6.5)

α(t+1) = arg min
α
L%(β

(t+1), α, η(t)) (6.6)

η(t+1) = η(t) + %(α(t+1) −Dβ(t+1)). (6.7)

It should be emphasized that both (6.5) and (6.6) have the explicit solutions.

Specifically, (6.5) is a ridge regression problem and (6.6) is a penalized least squares

problem with the identity design matrix. The closed-form solutions for (6.5) and 6.6

are, respectively,

β(t+1) =
1

2

( 1

n
XT
i Xi +

%

2
DTD

)−1( 2

n

n∑
i=1

XT
i Yi +DTη(t) + %DTα(t)

)
α(t+1) = S%,λ

(
Dβ(t+1) − η(t)

%

)
.

The details of the algorithm is summarized in Algorithm 4.

Algorithm 4 Local Region Learning by SCAD2TV

Input Training samples (X1, Y1), . . . , (Xn, Yn), tuning parameters λ, γ, %, stopping

criteria parameter εpri and εdual.

Initialize β(0) as random uniform numbers; initialize primal and dual residuals r(0)

and s(0);

While ‖r(k)‖2 > εpri and ‖s(k)‖2 > εdual Update α from (6.6): For given β = β(k)

and η = η(k), α(k+1) = S%,λ

(
Dβ − η

%

)
;

Update β from (6.5): For given α = α(k+1) and η = η(k), β(k+1) = 1
2

(
1
n
XT
i Xi +

%
2
DTD

)−1(
2
n

∑n
i=1 XT

i Yi +DTη + %DTα
)

;

Update η by (6.7): For given α = α(k+1) and β = β(k+1), η(k+1) = η(k) + %(α−Dβ);

Update r(k) and s(k): r(k+1) = α(k+1) −Dβ(k+1), s(k+1) = %DT (α(k+1) − α(k)).

Output β and α
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The output is either β or α. Note that α is a sparse solution and β may not be

sparse. In practice, we extract the coefficient image estimator from the output α to

obtain the sparse estimator.

6.3.2 Divide and Conquer Learning Algorithm for Large Image Size

To address the big data issue, a divide and conquer (D&C) algorithm is a solution

by recursively breaking down a problem into two or more sub-problems of the same or

related type, until these become simple enough to be solved directly. The solutions

to the sub-problems are then combined to give a solution to the original problem.

In the above discussion, we assume that, for each subject i, all image coordinate

values Yi ∈ RN2
are used together to infer the coefficient images β. However, in many

applications N may be large and such a “batch” procedure is undesirable. In order

to solve this issue, we develop a D&C algorithm for large image size.

Fig. 6.2. Partition the image into overlapped sub-images.

Image data have their intrinsic structure and we need proceed the divide step

with extra caution. For example, we may just partition each image as non-overlap

sub-images Yi = Yi1∪Yi2∪ · · · ∪YiJ , with the data processed sequentially. Due to the

TV term in SCAD2TV, we lose the boundary information for all sub-images and this

will give poor estimates of the boundary for all sub-images. We propose to partition

Yi with overlapped sub-images Yi = Ỹi1 ∪ Ỹi2 ∪ · · · ∪ ỸiJ . For instance, Figure 6.2

displays a 24 × 24 image, and it is straightforward to partition them into nine non-
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overlapped 8 × 8 sub-images. For our purpose, we extend each sub-image in four

directions. Specifically, on the left up corner, we include both the light blue part and

the light yellow part, which makes our first sub-image a 9 × 9 image. In the center,

we take the inside 8 × 8 orange part together with the brown part, which makes it

a 10 × 10 image. After this partition, we obtain nine overlapped sub-images. We

perform Algorithm 4 on each sub-image and update the coefficient images. For each

update we only keep the estimate for the original 8× 8 sub-image.

The above D&C algorithm can be executed sequentially in a single machine. This

algorithm is naturally adapted for execution in multi-processor machines, especially

shared-memory systems where the communication of data between processors does

not need to be planned in advance, because distinct sub-problems can be executed

on different processors.

6.4 Empirical Results

6.4.1 Synthetic data

We design a synthetic data example to compare the performance among three ap-

proaches: SCAD2TV, GraphNet, and TV-`1 in terms of both prediction and selection

errors.

Data Generation. In our setting, β = (β0, β1, β2) where each βj is a 64 × 64

image (See the left panel of Figure 6.3). The covariate is X = (1, X1, X2)T and each

Xj is generated from a uniform distribution between 0 and 2. The spatial field η(·) is

generated from a zero mean Gaussian random field. The error process ε(·) is the white

noise with mean zero and variance σ2. Two noise levels are adopted at σ = 1, 0.1.

The sample size is n = 100.

Applying SCAD2TV. In order to examine the performances of three methods,

SCAD2TV, GraphNet, and TV-`1, we have generated 100 datasets for each setting.

For each dataset, we obtain the coefficient image estimates β̂ from these three meth-

ods. The selection rate is define as
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SR =
1

|S|
∑
s∈S

(
I(β(s) = 0, β̂(s) = 0) + I(β(s) 6= 0, β̂(s) 6= 0)

)
, (6.8)

and the mean squared error is defined as

MSE =
1

n|S|

n∑
i=1

∥∥Ŷi − Yi∥∥2

2
, (6.9)

where |S| = 4096 is the total number of pixels and the Ŷi are the predicted images.

Practical Consideration. Smoothing parameters λ, γ can be selected by using

the K-fold cross-validation (CV). However, its computational time can be long even

under current computing facilities. In our experiment, we have tested a few different

values for the tuning parameters such as λ = 1, 2, . . . , 10 and γ = 0.1, 0.2, . . . , 0.9.

We find γ = 0.5 is a good balance for the estimation. The value of λ is related to our

expectation of ROI. If the ROI has a sharp boundary and the values do not change

much inside ROI, we can use a large λ. Otherwise, a smaller λ would be preferred.

We choose λ = 5, γ = 0.5 and ρ = 1.

Fig. 6.3. The coefficient images and the estimates. Left:True images; 2nd column:
SCAD2TV; 3rd column: TV-`1; Right: GraphNet.
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Results. For each setting, the experiments using SCAD2TV, GraphNet, TV-`1

are repeated 100 times. Figure 6.3 displays the estimates of coefficient images from

one realization. We note that SCAD2TV provides the solution almost exact the

same as the truth. TV-`1 can keep the sharp boundary but provide biased estimates

inside the active zone. GraphNet displays blurred estimates for both active zone

and zero sub-regions. The average of the selection rates and the MSEs are reported

in Table 6.1. It is noted that, in terms of the selection rate, SCAD2TV performs

better consistently than the other two methods. On the other hand, in terms of the

prediction error, SCAD2TV and TV-`1 are similar to each other, and GraphNet gives

the highest MSE.

Table 6.1. Comparison Results of both SR and MSE for SCAD2TV, TV-`1, and
GraphNet. The bold stands for the best among three methods.

SCAD2TV TV-`1 GraphNet

SR MSE SR MSE SR MSE

σ = 1

β0 0.820

1.97

0.783

1.98

0.534

1.98β1 0.728 0.740 0.583

β2 0.677 0.672 0.508

σ = 0.1

β0 0.9995

0.020

0.9675

0.024

0.8188

0.044β1 0.9983 0.9417 0.8210

β2 0.9990 0.9070 0.8472

6.4.2 Hippocampus Data

Dataset. To illustrate the usefulness of our proposed model, consider anatomical

MRI data collected at the baseline by the Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI) study, which is a large scale multi-site study collecting clinical, imaging,

and laboratory data at multiple time points from healthy controls, individuals with

amnestic mild cognitive impairment, and subjects with Alzheimer’s disease. Given
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the MRI scans, hippocampal substructures were segmented with FSL FIRST [138]

and hippocampal surfaces were automatically reconstructed with the marching cube

method [139]. We adopted a surface fluid registration based hippocampal subregional

analysis package [140], which uses isothermal coodinates and uid registration to gen-

erate one-to-one hippocampal surface registration for surface statistics computation.

In the dataset, we have total 403 observations. For each subject, it includes a

150× 100 2D representation of left hippocampus and 4 covariates: gender (female=0

and male=1), age (55-92), disease status (control=0 and AD=1), and behavior score

(1-36). The goal is to identify local regions of the response image associated with

each covariate.

Applying SCAD2TV. We have applied our D&C learning algorithm to this

dataset. We divide each response image into 150 overlapped sub-images. We execute

the algorithm sequentially in a single machine. The algorithm spends about 10 secs for

each partition, and takes 25 minutes to get the final estimation of β’s. The estimated

coefficient images are presented in the top panel of Figure 6.4.

Fig. 6.4. The estimates of coefficient images from three methods. Top: SCAD2TV;
Middle: TV-`1; Bottom: GraphNet.
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Results. Our purpose is to identify the local regions where the response hip-

pocampus image is associated with each individual covariate. Among all of the

covariates, we are particularly interested in the association between the response

hippocampus image and the disease status (Control vs AD). From the top panel of

Figure 6.4, it is interesting to notice that gender has no effect on the response im-

age, and for other three covariates SCAD2TV has been successfully identify the local

active regions.

Fig. 6.5. Left: β̂3; Middle: Mean response image for health controls; Right: Mean
response image for AD.

We take a close investigation on the coefficient image corresponding to the disease

status. The left panel of Figure 6.5 displays the estimate of β3. The sub-regions

in red indicate the active zone and the region in orange is the zero sub-region. In

general, the AD patients have lower pixel values in the response hippocampus image.

The right two panels are the mean response images for both health control and AD.

The mean difference is consistent with our estimation of β3.

We extract the pixels within the ROI for health controls and AD, and apply

hypothesis testing to test if their difference is significant. By applying hypothesis

testing on each pixel in the ROI, all of them are different between health controls and

AD at the significance level 5%, and 99.85% of the pixels in the ROI are different at

the significance level 1%. The result justifies our ROI selection is indeed the region

to differentiate between health controls and AD.
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Comparison with TV-`1 and GraphNet. We obtain the estimates of the

coefficient images for TV-`1 and GraphNet, which are presented in the middle and

bottom panels of Figure 6.4. These three methods overall detects similar regions.

Both TV-`1 and GraphNet display more blocky active regions, whereas SCAD2TV

keep the active zone with sharp boundaries. We also divide our dataset into 5 parts to

compare the prediction performance where each dataset contains around 80 observa-

tions. Every time we use 4 of them as the training data, and make prediction on the

remaining testing data. The averages of the MSEs are computed for each methods,

which are reported in Table 6.2. The MSEs are similar to each other and SCAD2TV

displays a slightly better prediction power.

Table 6.2. The MSEs for three methods

SCAD2TV TV-`1 Graphnet

MSE 0.5476 0.5482 0.5491

6.5 Conclusion

We have introduced a new region-selecting sparse non-convex penalty, SCAD2TV,

which enforces large regions of zero sub-images and extracts non-zero active zones si-

multaneously. Efficient algorithm and the distributed algorithm have been developed.

Numerical examples are presented and the experimental results are superior or com-

petitive with other state-of-the-art approaches such as GraphNet and TV-`1. We

have so-far focused on 2D images. It should be noted that our method works for 3D

images as well. We are currently implementing our algorithm in the distributed plat-

form such as Apache Spark. We have discussed the application for image-on-scalar

regression models. This new framework may also be applied to the image clustering

and image classification problems, which assume that only small regions of the images

have significant effects on clustering and classification.
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