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ABSTRACT

Schultz, Nicholas S. M.S., Purdue University, May 2020. A Hybrid Method for Dis-
tributed Multi-Agent Mission Planning System. Major Professor: Shaoshuai Mou.

This thesis presents work concerning a distributed heterogeneous multi-agent

robotic team for outdoor applications such as search and rescue or surveillance. The

goal of this research is to develop a method of control for a team of unmanned aerial

and ground robots that is resilient, robust, and scalable given both complete and in-

complete information about the environment. The method developed and presented

in this paper integrates approximate and optimal methods of path planning integrated

with a market-based task allocation strategy.

This thesis also presents a solution to unmanned ground vehicle path planning

within the developed mission planning system framework under incomplete informa-

tion. Methods such as genetic algorithm and deep reinforcement learning are proposed

to solve movement through unknown terrain environment. The final demonstration

for Advantage-Actor Critic deep reinforcement learning model elicits successful im-

plementation of the proposed model.
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1. INTRODUCTION

Humanity has come a long way since the early 1970’s when Joseph Engleberger,

dubbed the “father of robotics,” developed the first successful autonomous indus-

trial robot. The robot named “Shakey” was an advanced and specialized industrial

robot that could perceive its environment and make appropriate decisions based off

of sensor inputs [1]. After nearly 50 years, it is easy for one to consider widespread

autonomy to be a fait accompli, an achievement on the cusp of attainment. Modern

autonomous robots can be seen nearly everywhere in society from simple machines

such as the Roomba to complex vehicles such as Tesla’s self-driving car.

(a) “Shakey” Robot (b) Modern Robot

Figure 1.1.: Evolution of Robotics

At the base of all autonomous systems is their ability to perceive the environment

and process data from the outside world while simultaneously making complex de-

cisions. In terms of perception, it is common nowadays to see robots equipped with

stereo vision or LiDAR (Light Detection and Ranging) which allow robots to develop

an accurate layout of the surrounding environment.
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With knowledge of the environment, the robot must then make appropriate de-

cisions towards accomplishing a specific task. This type of control is described as

motion planning, or path planning. According to Steven LaValle, an expert in the

field of robotics and planning algorithms, “a fundamental need in robotics is to have

algorithms that convert high-level specifications of tasks from humans into low-level

descriptions of how to move” [2].

A classical version of motion planning is sometimes referred to as the Piano

Mover’s Problem [3]. This problem outlines one’s ability to take a piano and move

it room to room within a house without hitting any walls. In artificial intelligence

(AI), the terms motion planning, or path planning, describe an agent’s ability to

move from point A to point B while simultaneously updating knowledge of its envi-

ronment, making decisions, and avoiding collision with other agents or members of

the environment.

1.1 Motivation

Within the past 20-30 years, robotics and autonomy have become a large focus of

industry, academia, and the military. Researchers are finding new and innovative ways

to utilize robots for problems that may be too dangerous or impossible for humans

to solve on their own. More specifically, emphasis has been placed on controlling and

coordinating teams of robotic agents in order to solve large-scale tasks more efficiently.

Autonomous and intelligent multi-agent systems have found wide-spread applica-

tion in both civilian and military sectors [4] [5]. Unmanned aerial vehicle (UAV)/unmanned

ground vehicle (UGV) systems have become a focal point for such applications as

surveillance, navigation, crowd control, sensing, and emergency rescue operations in

regions where it is difficult or dangerous for human beings to access. UAVs and UGVs

have different characteristics that, when employed cooperatively, better address prob-

lems associated with preceding applications [6].



3

For example, in a disaster relief scenario multiple UAVs and UGVs can be de-

ployed to increase system efficiency, provide real-time assistance to those in need

while decreasing the overall time required to cover the target region [7]. UAVs have

superior mobility and agility and typically conduct exploration, simultaneous local-

ization and mapping (SLAM), and surveillance tasks. UGVs, on the other hand, are

more payload-capable and conduct such tasks as package delivery, extensive compu-

tation, and the supply of medical assistance [8]. An example of a UAV/UGV team

for search and rescue (SAR) can be seen in Figure 1.2.

Figure 1.2.: Robotic Search and Rescue Team Example

There are many challenges associated with assembling a successful autonomous

team of agents for situations such as disaster relief or SAR operations. The environ-

ment, for one, offers a multitude of obstacles. Some examples include foreign debris

blocking the robots’ path, hazardous operating conditions that affect stability or com-

munication, etc. It is important that robust and efficient algorithms be created to

account for all possible points of failure [6] [9].

In addressing the subsequent problem, this paper proposes a hybrid solution in

which a team of heterogeneous agents must conduct distributed task allocation and

path planning with both complete and incomplete information. First, this paper be-
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gins by examining a solution for task allocation and path planning of a heterogeneous

team of UAV/UGV agents with a complete map and knowledge of surroundings.

Moving from this point, it is assumed that during the process of exploration, per-

ceived information is obtained concurrently with subsequent navigation [10] and the

UGV will need to navigate towards its goal with dynamic environmental updates. An

extension to the hybrid algorithm is described for conducting task allocation and path

planning of a heterogeneous team of UAV/UGV agents with incomplete information

of the environment.

1.2 Literature Review

Task assignment and path planning are two fundamental problems in decision and

control of multiple robots. The combination of both in the presence of multiple agents

and multiple tasks presents problems ranging from scalability, robustness, complex-

ity, and computational feasibility [11]. When scaling the problem to a large envi-

ronment, multiple agents, and/or multiple tasks, there becomes a tradeoff between

optimality and computational expense [12]. Optimal solutions typically require an

expensive solution or a centralized planner, whereas successful suboptimal solutions

are distributed, but require techniques to reduce waste or unnecessary expense [13].

Mission planning methods need to efficiently coordinate a multitude of tasks to multi-

ple heterogeneous agents, plan paths accordingly, avoid obstacle and agent collisions,

and maximize optimality while performing in real-time. This becomes a complex and

challenging issue.

The term mission planning system (MPS) refers to the combined task allocation

and path planning problem. To date, there have been many methods developed for

the multi-robot task allocation (MRTA) problem as well as the multi-agent path

planning (MAPP) problem. However, little research has addressed the combination

or coupling of both [14] which is the core aspect addressed in this paper. This section

will outline popular methods developed for task allocation, path planning, and the
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combination of both for multi-agent systems. Additionally, this section will outline

common methods for agents dealing with incomplete or partial information of the

environment.

1.2.1 Multi-Robot Task Allocation

There are many benefits when considering multi-robot systems and some of these

include resolving task complexity while increasing team performance, reliability, and

simplicity in design [13]. Many systems today are increasingly complex and require

multiple agents to assess multiple tasks. Growing numbers of agents and tasks require

methods that effectively handle the system as a whole. [13] outlines current state-

of-the-art approaches for solving the MRTA problem. Initially, approaches to this

problem can be categorized as centralized and decentralized.

Some popular centralized algorithms proposed are GRAMMPS [15], Mtap-masim

[16], event assignment [17], and fair subdivision [18]. Centralized approaches to this

problem are among the most widely reported. The solution assumes that there is

full communication and complete information across a system and one central agent

is able to allocate tasks among the network simultaneously. These methods reduce

duplication of effort, resources, and increase saving of cost and time. However, one

major downfall of this approach is the lack of robustness. A failure among one agent

can cause the entire system to fail, which is especially undesirable.

In contrast, distributed, or decentralized, approaches disperse administrative tasks

and authorities between all agents within the system. Here, the system is assumed to

be strongly connected and information is shared among agents through a multi-hop

relay network. Visualization of how a decentralized method is realized can be seen in

Figure 1.3.
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Figure 1.3.: Decentralized System

Within this domain, many existing solutions have been classified between opti-

mization and market-based. Optimization approaches, such as Genetic Algorithm

(GA) [19] and mixed-integer linear programming (MILP) [20], operate on a set of

constraints and the optimum solution is chosen according to a set of certain criteria.

While this branch of distributed solutions appropriately solves many variations of the

MRTA problem, it is generally expensive in terms of computation and complex in

nature. A new distributed approach called market-based task allocation appeared

in 2004 with TraderBots [21] where agents follow a scheme of bid, auction, and as-

sign. More reputable papers utilizing this approach include consensus-based bundle

algorithm (CBBA) [22] and iterated auction-consensus algorithm (IACA) [23].

In general, distributed, market-based approaches to the MRTA problem have

found widespread application due to its practicality, optimality, and overall simplic-

ity in design. Strongly-connected agents can handle bids, auctions, and assignments

individually in a computationally efficient manner.
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1.2.2 Multi-Agent Path Planning

MAPP is a well studied research area and includes many sub-fields with narrowed

variants. At a high level, MAPP can be dissected into two broad categories: planning

with complete information and planning with incomplete information. The former is

a simpler look at the problem where each agent operates within a simple environment

assumed to know start, goal, agent, and obstacle locations. Incomplete information is

a way of varying the problem by solving MAPP when there is unknown or uncertain

information presented within the system.

Solving the compete information MAPP problem, while simplistic in nature, gives

proper insight into how multiple agents can cooperate within the same domain and

still applies to many real-life situations. Common graph-based solution methods

include variants of the A* graph search algorithm [24], rapidly-exploring random trees

(RRT) [25], and probabilistic roadmaps (PRM) [26]. The A* graph search algorithm

is optimal, but more computationally expensive and less scalable to its approximate

sample-based counterparts, PRM and RRT. Common optimization-based solution

methods include conflict-based search (CBS) [27] and MAPP algorithm [28]. While

most optimization methods offer efficient and complete results, they are considered

centralized planners and therefore lack robustness.

With incomplete information, agents must typically take into account dynamic

updates to the environment and respond appropriately. There are numerous ap-

proaches and variants within this domain, but the main split in current research is

between graph-based/optimization-based approaches and learning approaches. Pop-

ular graph and optimization approaches include the D* algorithm [29], evolutionary

algorithms, and diffusion maps [30]. Learning, more specifically deep reinforcement

learning (DRL), has become a popular field because of an agent’s ability to perceive

large data sets and execute an effective control policy almost instantaneously [31].
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1.2.3 Combined MRTA and MAPP

As previously stated and identified in research, less attention has been given to

systems that effectively couple task allocation and path planning. These mission

planning systems are applicable to many real-life multi-robot/swarm technologies.

The combined problem was solved recently with an optimal algorithm [14], how-

ever it is not scalable in the presence of large numbers of tasks. One method [32] looks

to use path planning as an effective bid valuation within a market-based task alloca-

tion system, but does not take into account collision between agents and conflicting

paths.

Thus, the goal of this research is to investigate a proper mission planning control

framework for integrating multiple heterogeneous agents in the presence of complete

and incomplete information.

1.3 Contributions

The main contributions of this work are

• A hybrid distributed multi-agent mission planning system that is scalable and

robust given complete information of the environment

• Extension to the hybrid mission planning system to assess incomplete knowledge

of terrain structure using various methods

• Software implementation and simulations demonstrating successful implemen-

tation of the designed algorithms



9

2. A HYBRID METHOD FOR MISSION PLANNING

2.1 Introduction

The first section of this paper addresses control of a heterogeneous, communicat-

ing team of agents within a complete (fully known) environment. More specifically,

this section analyzes the application and coupling of optimal and approximate plan-

ning methods within a distributed framework. An algorithm is presented utilizing

proposed methods for task assignment, path planning, and collision avoidance. Task

assignment is implemented as an extension to techniques proposed in the recently de-

veloped framework of CBBA and collision avoidance is presented in a consensus-based

framework coupled with a windowed replanning algorithm.

2.2 Problem Formulation

The foundation for this problem is the consideration of an outdoor environment.

[33] provides quality insight into global path planning for an outdoor environment.

The first assumption made is that the ground robot will have knowledge of its initial

position and orientation as well as global position and orientation in order to properly

localize itself within the environment. For outdoor applications, vehicle constraints

are less important due to the relative size of the obstacles and planned path, thus it

is logical to assume that the vehicle is capable of holonomic motion. The on-board

local navigator will plan around small obstacles and take care of vehicle dynamics

within the immediate area.

Since not all information may be known prior to planning and resolution im-

ages from aerial surveillance may not be complete, it becomes difficult to represent

the environment topologically. Thus, it is best to consider metric navigation where
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information is discretized and algorithms can better handle updates to the environ-

ment. For developing a planning space, configuration space is commonly used which

represents each possible configuration for the vehicle. With holonomic motion and

consideration of a 2D environment, the configuration space can be reduced to just

x and y coordinates, which is helpful for reducing the overall computational cost.

Additionally, since the environment can be relatively large compared to the ground

robot, discrete time is used in order to manage the processing power required to plan

each path.

Current methods of comparison, A*, PRM and RRT*, all use cell decomposition

within discrete metric navigation and are well-suited for planning in an outdoor en-

vironment. For the scope of this particular section, consider a complete map of the

environment. An undirected graph, G(V,E), is used to represent this environment

where V is a list of the possible locations for each agent given in (x, y) coordinates and

E is a list of the edges, or the possible transitions between states. An 8-grid approach

is used with the consideration of diagonal movements. The system is computed on a

time interval T ⊂ R that is unbounded to yield T = [0,∞].

For a heterogeneous team consider m agents and n tasks with the following nota-

tion:

ma ⊆ m , UAV agent,

mb ⊆ m , UGV agent,

nu ⊆ n , UAV task,

nv ⊆ n , UGV task,

nw ⊆ n , heterogeneous task.

Furthermore, each agent is assigned a task bundle limit, lm, which defines the maxi-

mum number of tasks allowed for an agent to complete. Additional basic assumptions

for this problem assume that all obstacles are point obstacles and there are no obsta-

cles present for UAVs.

Connectivity within the network is modeled using an unweighted adjacency ma-

trix, A. It is assumed that agents are strongly connected meaning that there is a path
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from any node to any other node. An example environment with “star” connectivity

among agents can be seen in Figure 2.1 below.

Figure 2.1.: Star Connection Map

To further explain this figure as well as additional similar figures that follow within

this paper, a legend is provided below in Figure 2.2.

Figure 2.2.: Figure Legend

Time is discretized within the system where agentm is located at point [xm(t), ym(t)]

at time step t. For each agent, current start location, [xm(0), ym(0)] ∈ V , and all goal

locations, n ∈ V , are known previously. Since time is discretized, the path from start
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location to goal location is defined in terms of (x, y) coordinates as well as the time

step, t, at which the robot will be at the specific vertex. Time step is included to

incorporate a consensus-based collision avoidance technique. This approach will be

discussed further on in the report.

[2] helps to express problem formulation for multi-agent path planning. The

configuration space is modeled as Cm = [xm, ym]T for each agent with configuration

q = [x, y]T ∈ R and the state space X is the Cartesian product of each agent’s

configuration space as seen below:

X = C1 × C2 × · · · × Cm. (2.1)

A state xm ∈ X is denoted as xm = (qm, t) with configuration q and time t

components. The obstacle region is defined as Xobs within the state space as see

below:

Xobs = {q ∈ X | q ∩O 6= ∅} ∀{ma,mb} ⊆ m. (2.2)

With a complete map, the assumption is made that each agent has knowledge of

all obstacle locations within the environment. Obstacles for this research are repre-

sented in a binary occupancy grid with 0 signifying the free space and 1 signifying

the obstacle space. Two different grids are used to represent the environment, a sim-

ple map with few obstacles and a complex map with many obstacles. Examples are

shown in Figure 2.3.
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(a) Simple Map (b) Complex Map

Figure 2.3.: Obstacle Map Examples

The free region is the region defined outside the obstacle space. This area is

represented as Xfree = X /∈ Xobs and a goal region is XG ⊂ Xfree. The goal region is

represented below:

XG = {(qGn , t) ∈ Xfree | t ∈ T} ∀{nu, nv, nw} ⊆ n. (2.3)

Constraints for this problem define that two agents cannot occupy the same state

at the same time step, agents cannot occupy spaces with obstacles, and agents may

not exceed their task bundle. A solution is a set of non-conflicting paths, where a

path for agent m is a sequence of (x, y) waypoints.

The solution layout for this problem is given in two different sections. The first

section discusses integration of distributed task assignment within a path planning

infrastructure and the second discusses distributed path planning in combination with

a collision avoidance technique based on consensus and waypoint sharing between

agents.
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2.3 Method

2.3.1 System Overview

The task assignment and path planning problem of multiple robots requires cou-

pling of information. [34] outlines why distributed, market-based strategies coupled

with path planning techniques is the best approach to this problem. More specifically,

an iterative approach to this problem allows for dynamic updates within the uncertain

environment. Moving on from this strategy, an iterative MPS hierarchical framework

is proposed consisting of three stages between UAVs and UGVs of pre-processing,

task assignment, and post-processing. A basic overview can be seen below in Figure

2.4 with subsequent discussion of each stage.

Figure 2.4.: MPS Hierarchical Framework

A detailed description of methods will be provided in following sections, but a

general overview is provided here. An assumption made in this work is that a scenario

model is pre-made from UAV surveillance and airborne sensors. UAVs and UGVs

coordinate control with 2D information outlining free space, obstacle space, and goal
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locations. From here, agents value tasks individually. Bids are time-value based

which converts well to embark time and distance traveled. UAVs assume a straight

line distance with no obstacles while UGVs must account for the obstacle space. To

reduce heavy computational requirements in bidding for multiple tasks, UGVs utilize

an approximate sample-based planning technique with scalability guarantees.

Post task valuation, agents coordinate among each other through an extension

of IACA to acquire their task bundle. This is a market-based, iterative strategy

that is resilient to time-bounded attacks on the system. The final stage of path

planning and collision avoidance is required for UGVs. With a distributed system,

each agent can use an optimal technique to plan for single tasks without consideration

for computational expense. Conflicts between UGV agents are resolved concurrent

with waypoint following. Nearby agents share a short series of future waypoints and

reach a consensus on which agent will perform a quick replan. Problem models and

algorithms are presented in this section.

2.3.2 Distributed Task Allocation

The problem of task allocation is first considered for properly assigning each agent

a task within the system. This problem has been properly formulated and addressed

by both articles presenting CBBA [22] and IACA [23]. The basis of IACA is as-

signing a time-discounted reward rij(t) ∈ R, depending on the time that agent i is

able to finish task j. For task allocation consider UAV agents: Ia = {1, 2, . . . , a},

UGV agents: Ib = {1, 2, . . . , b}, UAV specific tasks: Iv = {1, 2, . . . , u}, UGV specific

tasks: Iv = {1, 2, . . . , v}, and heterogeneous tasks: Iw = {1, 2, . . . , w}. The goal of

distributed task allocation is to find a group of values for agent xij ∈ 0, 1 which:

maximize:
m∑
i=1

(
n∑
j=1

rij(t)xij

)
(2.4)

subject to:
m∑
i=1

xij ≤ 1, ∀j ∈ {Iu, Iv, Iw}, (2.5)
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n∑
j=1

xij ≤ li, ∀i ∈ {Ia, Ib}, (2.6)

a∑
i=1

xij = 0, ∀j ∈ {Iv}, (2.7)

b∑
i=1

xij = 0, ∀j ∈ {Iu}, (2.8)

Equation 2.4 defines the objective of this distributed optimization problem. The goal

is to maximize the sum of discounted rewards across all tasks assigned within the

network. rij(t) signifies the reward that agent i will receive for being assigned task j

at time t. xij is an indicator function that defines whether task j is assigned to agent

i. 2.5 is a constraint that limits a task being assigned to multiple different agents, 2.6

constrains the amount of tasks assigned to an agent to stay within their bundle limit,

2.7 states that UAV agents cannot be assigned UGV-specific tasks, and 2.8 states

that UGV agents cannot be assigned UAV-specific tasks.

This algorithm is split into two main parts: auction and consensus/validation.

For the purpose of this paper, consensus and validation will be grouped into the

same category. The CBBA algorithm performs auction and consensus all in one step.

IACA is different in that agents run auction and consensus in an iterative fashion.

They build their bundle by at most one every iteration throughout the algorithm.

An advantage of this method is that iterative auction-consensus is resilient to time-

bounded attacks on the system. An overview of this process can be seen in Figure

2.5 below.

Figure 2.5.: IACA Overview
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First, a look at the mechanism of auction for both UAV and UGV agents. Once all

agents are set within the environment, they are introduced to a task list, {Iu, Iw, Iv} ∈

IT , that is pre-determined from the scenario model. All agents will bid for appropriate

tasks if their bundle is not already full. An agent with a full bundle will be removed

from the task allocation process. Task bids differ between agents. Generally, the task

bid calculation is given in the following form,

[yi]j(t) , rij(t) = cjλ
δi,0j(t)
j , (2.9)

where cj is the initial profit for task j that is pre-defined according to the relative

importance of task j and λ
δi,0j(t)
j is the embark time, or distance, for agent i. This

is the cumulative distance traveled by agent i given their task bundle. Embark time

for UAV agents is determined by Euclidean distance from the agent position and the

task position. Embark time for UGV agents is different because they have to account

for obstacles within the environment. Thus, this is determined by the path output

from PRM or RRT* approximate path planning algorithms. The mechanisms for

these path planning methods will be discussed in later sections. An overview of the

auction process can be seen in the flow diagram in Figure 2.6.

Figure 2.6.: Auction Flow Diagram
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Code implementation of the auction mechanism can be seen in the pseudocode in

Figure 2.7.

Figure 2.7.: Auction Pseudocode

Within the same iteration, once agents have their bids placed for specific tasks, all

agents within the system will reach a consensus on task allocation as well as validate

the results. Given a strongly-connected communication topology, agents need at most

∆G(t) (graph diameter) time steps in order to reach a consensus. The goal here is for

an agent to increase their bundle by at most one task in one iteration. For consensus,

agents input their bids, yi(t) and utilize the method of MAX-consensus [35] where

agents agree on the highest reward for the overall system. From this process, a winner

is assigned and agents look to validate results.

Validation is performed by individual agents with task bundle Pi(t) and winning

bid y∗(t) as inputs. Agent i will gather their valid consensus bundle Hi(t) and the
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winning task hi(t). If the winning task matches their valid consensus bundle, then the

agent is able to add the task to their final task bundle. An overview of the consensus

process can be seen in the flow diagram in Figure 2.8.

Figure 2.8.: Consensus/Validation Flow Diagram

Code implementation of the consensus mechanism can be seen in the pseudocode

in Figure 2.9.

(a) Consensus
(b) Validation

Figure 2.9.: Consensus/Validation Pseudocode

In summary, UAV and UGV agents bid between UAV-specific, UGV-specific, and

heterogeneous tasks in a distributive and iterative method. This distributed market-
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based strategy is desirable because approximate and optimal path planning informa-

tion can be coupled. Additionally, this method scales well for large environments and

a large number of agents. The next section will discuss novel path planning methods

utilized and their place within the mission planning system.

2.3.3 Distributed Path Planning

Distributed, or decentralized, path planning is completed in the same manner as

distributed task allocation. Each agent computes paths and trajectories on their own

accord and communicates essential information across the network. Path planning

is performed in both parts of the mission planning system and their implementation

will be discussed further in this section.

First, as previously discussed, novel approximate path planning methods of PRM

and RRT* are used during auction within distributed task allocation. These two

sample-based methods work well with the assumption of holonomic motion and as-

sume a static environment during the planning process. With stationary obstacles,

this is acceptable so long as it is possible to update paths for agent to agent collision

avoidance. The first method of comparison for fulfilling embark time in UGV-agent

bids is PRM.

[26] defines the mechanism behind PRM, so a short overview is given here. There

are two phases for this method: a learning phase and a query phase. In the learning

phase, a pre-determined number of nodes are computed within the free space of

the environment. The number of nodes chosen for a given environment depends on

its complexity. More nodes are required for larger and obstacle-rich environments.

If a path is not found for a given set of nodes, these are increased incrementally

until the number is sufficient. Generally, obstacles are represented within a binary

occupancy map where the free space is identified with a 0 and the obstacle space

is represented with a 1. Nodes are then connected in collision-free configurations.
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Only pairs of configurations whose relative distance is smaller than some constant

threshold, maxdist are connected. This defines,

Nc = {c̃ ∈ N | D(c, c̃) ≤ maxdist}, (2.10)

where it connects c to all nodes in Nc in order of increasing distance from c. A layout

of the probabilistic roadmap with node generation and subsequent connections can

be seen in Figure 2.10.

Figure 2.10.: Probabilistic Roadmap Example

In the query phase, a start node and goal node are determined. A search is

computed for all possible configurations between the two paths and the minimum

distance path is chosen. This is much more computationally efficient than Dijkstra’s

algorithm [36] where each individual node within the search space is computed for an

optimal path.

[25] defines the mechanism behind RRT, so a short overview is given here. For

holonomic planning, one can define f(x, u) = u and ||u|| ≤ 1. A max number of
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iterations and a max step-size is pre-determined, ∆q. Below is a simple walkthrough

of the algorithm.

1. Root node qinit is chosen within configurations space

2. Randomly sampled node qrand is determined

3. Nearest node qnear within the tree is calculated

4. Step size from nearest node to random node is taken qnew

5. Repeat until path is complete

qnew is only accepted if it does not conflict with obstacles within the environment. A

visual of the mechanism for this algorithm can be seen in Figure 2.11.

Figure 2.11.: Rapidly-Exploring Random Trees Example

The method used in the MPS is a variant of RRT called RRT*. This algorithm is

an optimized version of RRT. The difference is shown when a new node is generated,

qnew, and the nearest node in the tree is less than the pre-defined step size ∆q. When

this happens, a circle neighborhood of radius rq is generated and all nodes within

this area attached to the tree are connected to the randomly generated node qrand.

The least cost (or least distance) path is calculated and the random node qrand is

connected with the nearest node that gives this least cost path.

Empirical data was generated in comparison of these two methods. The IACA

extension was ran in a 100x100 resolution grid environment with an empty map,
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simple map, and complex map. The overall computation time was recorded for 50

separate runs with both methods. Overall, as seen in Table 2.1, RRT* outperformed

PRM in terms of computational expense and overall speed. The optimality of the

outputted trajectory was less important in this comparison since both methods are

approximate and an optimal path is planned later in the system.

Table 2.1.: PRM/RRT* Comparison

Avg computation time (sec) per agent (100x100)

Empty Map Simple Map Complex Map

PRM 0.1751 0.1895 0.1995

RRT* 0.0099 0.0241 0.0544

Different from the approximate path planning methods used in task allocation, an

optimal solution is looked towards when performing the act of trajectory generation

for the purpose of reaching pre-determined goals. As previously discussed, a simple,

well-known, effective method for optimal graph-based path planning is the A* algo-

rithm developed by Peter Hart [24]. His paper outlines the mechanism behind this

graph search method, so a short overview is given here.

The A* graph search algorithm is a heuristic search method meaning that it uses

special knowledge about the domain of the problem to improve the computational

efficiency of solutions. The basis for this algorithm is the computation of the following

node function:

f(n) = g(n) + h(n). (2.11)

The function evaluation here at each node within the graph is an estimate to the

total cost of finding a path within the graph. g(n) is the running total cost of reaching

a specific node n and h(n) is a heuristic function that estimates the remaining cost

left to the goal. A successful heuristic used with this method is the Euclidean distance

heuristic. This is simply the straight line distance computation between the current

node and goal node. A proof that this function is admissible is discussed in Hart’s
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paper as well as why the Euclidean distance heuristic generates an optimal solution.

By admissible it is meant that the graph search algorithm is guaranteed to find an

optimal path from start node to goal node. A simple example of an agent utilizing

this algorithm can be seen in Figure 2.12.

Figure 2.12.: A* Algorithm Example

A drawback of this method is that it expands a large amount of nodes compared

with approximate path planning methods of PRM and RRT*. This means the algo-

rithm is more computationally expensive and not scalable to large networks of agents.

This is why the A* algorithm is used when task bundles are finalized. UGV agent i

will only need to calculate one trajectory to the next task j within its bundle Pi.

Each agent running A* individually means real-time performance, but there still

is no guarantee of non-conflicting paths. Thus, methods of avoidance are left up to

either local navigation utilizing onboard sensors [37] or computed through consensus-

based collision avoidance methods simulating an intersection between agents [38]. To

handle inter-agent conflicts during execution, a consensus-based collision avoidance

method is developed along with an extension to the A* algorithm to resolve locally.

Conflict between agents is dealt strictly between UGV agents as it is assumed

that UAVs can avoid collision by flying at differing altitudes. An example of conflict

between UGV agents during path planning can be seen in Figure 2.13.
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Figure 2.13.: Collision Between UGV Agents

To clarify, a “danger region” is a region in which agents determine when to run

consensus-based collision avoidance (CBCA). A criterion ε is set that initiates CBCA

if two agents are operating within this distance. Agent i and j share waypoints

Wi and Wj. One agent will initiate a new set of waypoints Wµ upon consensus of

a certain condition. Agents share ε + 1 waypoints among the small network and

identify conflicts between paths. Should a conflict exist, agents use the method of

MAX-consensus [35]. Certain conditions that differentiate agents are given below:

• Path length

• Task priority

• Agent priority

• Battery status

For the purpose of this system, MAX-consensus is utilized on path length mean-

ing that in the event of a collision, the agent with the shortest embark time will

replan. Lastly, replanning is approached using an extension of the A* algorithm

called windowed-A* (WA*). The A* algorithm is constrained to a window of size ∆
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and the goal is chosen as an outlying point in the window that is within the agents

waypoint list. A visualization of WA* can be seen in Figure 2.14.

Figure 2.14.: Windowed A* Example

The final output from CBCA will be a modified waypoint list Wµ. A limitation of

this method occurs if three or more agents are clustered within the defined “danger

region”. However, research here considers an outdoor environment where this is a

highly unlikely event. Implementation of the CBCA algorithm can be seen in the

pseudocode in Figure 2.15.
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Figure 2.15.: Consensus-Based Collision Avoidance Pseudocode

2.4 Main Result

2.4.1 Mission Planning System

The final result utilizing the hybrid method described is a distributed multi-agent

mission planning system that is able to effectively distribute tasks among the network

and accomplish heterogeneous tasks in real-time for a large, simple outdoor environ-

ment. Thus, the hybrid method is defined as the coupling of novel path planning

algorithms PRM/RRT* and WA* with an iterative market-based task allocation al-

gorithm, IACA. Implementation of the final model can be seen in the pseudocode in

Figure 2.16.
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Figure 2.16.: Hybrid Method High-Level Pseudocode

One last item of discussion is the modeling of situation assessment (SA) errors [34].

SA errors within this system describe the comparison between outputs of approximate

and optimal path planning algorithms. Large errors between these two trajectories

may deplete the optimality of task allocation among the system. As seen in the

pseudocode overview, it is important to identify the approximate path Wapprox and

optimal path Woptimal. Should the difference exceed some criterion ζ, task allocation is

reran. In iteration, the number of nodes generated in the novel sample-based planner

is increased to generate more optimal assignment. Additionally, there is an aspect of

stochasticity to these methods, therefore there is a higher chance for an increase in

optimality among task allocation.

A graphical user interface (GUI) was created in Matlab to demonstrate effective

execution and simulation of this method. A brief visualization of this simulation can

be seen in Figure 2.17. Please refer to Figure 2.2 for the GUI legend.
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Figure 2.17.: Graphical User Interface Simulation

2.4.2 Advantages and Disadvantages

Maintaining a distributed market-based allocation system and managing sub-

optimality in this way promote a system that is robust and efficient in real-time

performance. Distributed sample-based computation paired with local consensus-

based repair to an optimal planner allow for a system that is scalable to many het-

erogeneous agents and tasks. Utilization of novel path planners such as the RRT*

and A* algorithms maintain a level of simplicity within the model and the windowed

replan relieves the burden of path deconfliction prior to execution. The SA error

check manages sub-optimality while improving results through node increases within

the PRM and RRT* approximate solution.

The method developed here is effective for a simple environment with complete

information. While it is a simplified model of the combined mission planning problem,
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the system is scalable, robust, and effective in its solution. With coordination and

control of multiple agents, the mission is completed faster and with the iterative

design, the SA error within the system is reduced. Some other assumptions that

limit the method is that the agents are holonomic and have perfect connection.

In order to further extend research in this field, this paper look towards a more

complicated environment where incomplete information is introduced. In this varia-

tion it is assumed that the ground robots have no prior knowledge of the environment

terrain. That is, they do not know the elevation along their path of travel. With dy-

namic updates from the terrain, they must make appropriate changes to their path

in real time so as to minimize their risk of failure. Thus, the next section discusses

extending the hybrid method for heterogeneous multi-agent mission planning system

with incomplete information.
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3. A HYBRID METHOD FOR MISSION PLANNING IN

PARTIALLY KNOWN ENVIRONMENT

3.1 Introduction

Recent research has focused on increasing complexity of the multi-agent mission

planning problem to include a dynamic environment or a partially/unknown envi-

ronment. Naturally, it is logical to assume that these issues are more complex and

complicated than the original mission planning problem. Solvers must manage the

tradeoff between optimality and computational expense while also dealing with new

information posed by the environment [39]. Managing unnecessary waste or expense

among the system becomes increasingly more complex the more that is unknown to

the agent. Additionally, there is an abundance of data available from onboard sen-

sors and managing this data can require large computational resources and increase

complexity of the system [12].

This section addresses control of a UGV agent within an unstructured environment

with dynamic updates. The model here is kept the same, only a solution for dealing

with unknown aspects of the environment is proposed. This solution will be integrated

within the current hybrid MPS that is developed with a simulation for demonstration

of the final result. The focus is on a new path planning strategy for the UGV agent

among an unstructured environment. By unstructured environment, it is meant that

the terrain, or elevation, is unknown before planning.

3.2 Problem Formulation

Within the current MPS structure, agents conduct their optimal path planning

through A* assuming complete knowledge of the environment. With unknown struc-
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ture added to the problem, there is a need for the agent to efficiently make decisions

based on a constant input of information from the environment. Thus, the goal is

to effectively substitute a method for A* that can handle incomplete information of

terrain structure within the environment.

This problem is formulated as controlling one UGV agent to one task in order

to simplify problem formulation while maintaining performance and success within

the greater multi-agent system. The initial simple environment is maintained and

each agent has complete knowledge of start, goal, and obstacle positions. This is

information taken from the scenario model described in the MPS framework. The

difference here is that terrain structure (or elevation) is gathered dynamically as

agents explore the environment through LiDAR [40]. It is assumed that LiDAR

data attained from the UGV agent is perfect and the vehicle is capable of holonomic

motion.

LiDAR data has been obtained from OpenTopography [41]. The data is taken

from various regions within Yellowstone National Park to include Norris Geyser Basin

and Stonetop Mountain. Yellowstone National Park is used because it contains steep

areas which pose high risk considerations for a UGV agent. The resolution for this

data is 0.5m and organized into a Digital Elevation Model (DEM). The DEM contains

elevation information in the form of a matrix representing (x, y) locations with a z

coordinate identifying the elevation. A mesh map representation of Norris Geyser

Basin and Stonetop Mountain can be seen in Figure 3.1 and 3.2, respectively.
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Figure 3.1.: Norris Geyser Basin Mesh Map

Figure 3.2.: Stonetop Mountain Mesh Map
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With consideration of another dimension within the problem, agent representation

is the following:

q = [x, y, z]T ∈ R. (3.1)

Additionally, the agent will be operating within an unbounded time interval T ⊂

[0,∞], and time is discretized agent i is located at point (xi(t), yi(t), zi(t)) at time

step t. Constraints are placed so the agent cannot exceed terrain slope/roughness

criteria and the agent cannot occupy spaces with obstacles. The solution is a set of

(x, y) non-conflicting waypoints. With this information, the UGV must find a path

from start to goal avoiding obstacles and minimizing risk of failure from traversing

along steep terrain.

Related works suggest that UGVs are able to sense the surrounding slope of the

environment and classify the information in many ways. The problem of terrain clas-

sification is formulated through [40] using a Mamdani Fuzzy Logic model. With the

LiDAR data, terrain will be classified for an 8-grid surrounding region. The process

of terrain classification consists of calculating the slope and roughness of the sector,

determining a value within a membership function, using a fuzzy rule to determine the

degree of membership, and defuzzifying the information into a traversability index,

τ . A visualization of the UGV reading terrain can be seen in Figure 3.3.
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Figure 3.3.: Visualization of LiDAR Readings

For each region, the slope and roughness are calculated as inputs into the mem-

bership function. These calculations can be seen below:

αSSlope = tan−1
|zs − zc|

0.5
, (3.2)

αSRoughness =

√√√√ 1

N

xs+1∑
xs−1

ys+1∑
ys−1

(zx,y − zs)2, (3.3)

where,

zs =
1

N

xs+1∑
xs−1

ys+1∑
ys−1

(zx,y). (3.4)

N is the number of surrounding cells and zx,y is the elevation information at the

point (x, y). The roughness is calculated as a standard deviation over a selected area

around the measured cell. These values are then used as inputs into a membership

function for roughness and slope. This outputs values of “flat”, “sloped”, or “steep”

for slope and “flat”, “medium”, or “rough” for roughness. A membership value is

outputted for each measurement and a defuzzifier function converts to a traversability

index, τ . An overview of this model can be seen in the figure below.
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Figure 3.4.: Mamdani Fuzzy Inference Model

The Mamdani fuzzy inference model was coded within Matlab and a visualization

of the input-output system along with an example of how the model works can be

seen in the figure below.

Figure 3.5.: Visual Representation of Mamdani Model

For subsequent solutions to the incomplete information problem, this fuzzy model

will be used to classify terrain as the agent moves throughout the environment. The

first approach uses a Genetic Algorithm and is discussed in the next section.
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3.3 Genetic Algorithm

3.3.1 Problem Description and Assumptions

The first solution approach to this problem uses a Genetic Algorithm (GA) to

minimize the traversability risk of a UGV moving within an environment with incom-

plete information. For this problem, the input variables that are being evaluated are

the range and direction of travel for the UGV. This is expressed below:

x =

r
θ

  m
rad

 (3.5)

Since a GA is used, the initial value is generated within the population. Space

around the UGV is separated into n sectors, each of which are assigned a traversabil-

ity index from zero to one through the Mamdani fuzzy inference model. Since a high

traversability index is good, the goal is to minimize the negative of this value. Addi-

tionally, RRT* is chosen to plan an approximate path from the starting location to

some given global goal location. This will ensure that the UGV has some knowledge

of direction in a complex environment. A visualization of how this is implemented

can be seen in Figure 3.6.

Figure 3.6.: RRT* Path with Incomplete Information

Waypoints are generated by this approximate method and the goal is to minimize

the distance to this approximate path so that the robot stays on course. This is a
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multi-objective problem and weighted sum method is used to solve. The objective

function can be seen below:

f(x) = a1φ1(x) + a2φ2(x), (3.6)

where,

φ1(x) = τs, (3.7)

φ2(x) = ||Pi − Pp||2. (3.8)

Here, τs is the function based on the Mamdani fuzzy inference model, Pi is the

location of the search point, and Pp is the closest point location on the approximated

path. τs is a reasonable formulation for the traversability index because an explicit

function is not available.

For this problem, the only constraint is placed on maintaining a minimum specified

distance away from obstacles. Exact locations of nearby obstacles are sensed and a

buffer ε is chosen to avoid possible collision. This constraint is kept on an order of

one and represented below:

g(x) = −
√

(ox − sx)2 + (oy − sy)2 + ε ≤ 0, (3.9)

where o is the coordinate position of the obstacle and s is the coordinate position

of the search point. The following bounds were placed on the range of travel and

direction:

0.5 ≤ r ≤ 1 [m] (3.10)

0 ≤ θ ≤ 2π [rad] (3.11)

Constraints are handled within this problem using a quadratic exterior penalty func-

tion. This function can be seen below:

Φ(x) = f(x) + rpP (x), (3.12)

where,

P (x) = max
[
0, g(x)

]2
. (3.13)

This penalty function derives a high function value when the constraint is not satisfied.

The value for rp here was chosen to be 100.
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3.3.2 Optimization Algorithm Description

For this problem, a pre-coded GA within Matlab is used obtained from Purdue

AAE 550 course [42]. In this problem, there is an implicit and discontinuous function

of τs. In order to find a global solution with discontinuous function, an approximate

global solver must be used. The Genetic Algorithm is able to handle this function,

as well as apply any bounds or constraints in the problem.

As a brief overview of the algorithm, GA can be decomposed into five main parts.

Variables are discretized and coded into chromosomes, then a population is initialized.

Next, agents in the population are tested against a cost function to determine a fitness

score. Selection, crossover, and mutation are performed to push along “the fittest”

members of the population as well as randomize over the data to explore for a global

solution. A visualization of this method can be seen in Figure 3.7.

Figure 3.7.: Flowchart of Genetic Algorithm
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Additionally, there are explicit bounds on the direction and range of travel. Bounds

are discretized into different chromosomes that are inputted into the algorithm. 8 bits

was chosen to code the vehicle travel range and 10 bits to code the direction of travel.

Resolution is calculated below:

rr =
1− 0.5

28 − 1
= 0.00196 [m], (3.14)

rθ =
2π − 0

210 − 1
= 0.00614 [rad]. (3.15)

The population size and mutation rate were calculated as the following:

NPop = 2l = 36, (3.16)

Pm =
l + 1

2NPopl
= 0.01466. (3.17)

Operators for the Matlab solver are tournament selection and uniform crossover

and the default coding is Gray. This means that the crossover probability, Pc = 0.5.

Stopping criteria is determined using a bit string affinity value of 0.9. When using

this algorithm, it is important to note that the results are not truly optimal, but this

approach typically provides a good enough solution.

3.3.3 Results

First, this problem was solved on a small scale in Matlab where the agent performs

one step. As a brief summary, the space around the agent is split into 16 separate,

equal regions and a traversability score is randomly picked between 0 and 1. Initial

parameters in the environment are chosen:

p =

0

0

 ,

g =

5

5

 ,
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o =

1.5

1.5

 ,
where p is the current coordinate position of the UGV, g is the coordinate position

of the next waypoint goal, and o is the coordinate position of the obstacle. The UGV

must use the waypoint goal and terrain information to make a decision about the

optimal next step length and direction of travel. The algorithm was ran with varying

weights and a Pareto Front was obtained by comparing the values for each objective

function. Below is a visual of the curve.

Figure 3.8.: Pareto Front

This Pareto Front is convex and the weighted sum approach will be able to handle

all solutions based on various weight inputs. In solving this problem, weights of

a = [0.5; 0.5] were chosen in order to balance the decision between heading towards

the goal and avoiding more risky traversable areas. The solution to this particular

run can be seen below:

x∗ =

0.5020

1.1792

  m
rad

 . (3.18)
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What this solution means is that the UGV will take a step length of 0.5020 [m]

in the direction of 1.1792 [rad] measured from the x axis. These polar coordinates

are converted to Cartesian coordinate locations and the position of the UGV is then

updated within the environment.

This algorithm was tested within a larger, more realistic environment and its

effectiveness was analyzed. The environment used for this example was Norris Geyser

Basin. A smaller 100x100 map within the environment was chosen to simulation the

UGV agent.

Within this section, an initial and goal location are selected and obstacles are pre-

defined throughout. With this information, the RRT* generates a path to the goal

and waypoints from this path are used as sub-goal points in the algorithm. The agent

uses ’sensed’ elevation data to calculate slope and roughness for eight surrounding

grid locations. Thus, here n = 8 as apposed to 16 sections in the previous example.

A Mamdani fuzzy inference model is coded to output traversability indices. For

simulation, values outputted by the Genetic Algorithm were used to move the UGV

accordingly. New sensed values were recorded and the agent continued to move until

it reached its goal.

In the first number of tests, the ground agent would often get stuck within local

minima, traveling back and forth between the same two points. This would typically

occur when the agent left its path to travel to regions of lower traversability. In order

to help this, the RRT* would replan if the agent reached some specified maximum

distance from the approximated path. Previously determined untraversable areas

were noted as new obstacles and the agent could then work its way around the map

towards its goal and avoid local minima. With this same example, a solution can be

seen below.
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Figure 3.9.: Genetic Algorithm Simulation

3.3.4 Advantages and Disadvantages

This method was able to effectively search for a global solution around obstacles

and implement local collision avoidance for a UGV. Terrain and traversability were

handled in a manner that provided a global solution. It completed the goal of path

planning with incomplete information about the terrain structure, nevertheless there

were still some complications that arose during simulation.

There were times when the agent would still become stuck in local minima within

the environment. Particularly, this would occur when the approximate path was ob-

structed by a large untraversable area. This is because there is a tradeoff between

terrain considerations and the global solution as seen by a single pareto curve exam-

ple. Additionally, the genetic algorithm is typically a higher computation cost with

many function evaluations which may lead to the “freezing robot” effect in implemen-

tation. Lastly, for this approach the agent needs full knowledge of obstacles within

the environment for a global solution with RRT*.

Future promising work to address the local minima is, as mentioned before, to

update untraversable obstacles within the region as they are discovered and replan
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with RRT*. This would ensure the agent is able to eventually find a path around

these large areas. For now, deep reinforcement learning is evaluated as a promising

solution because of the algorithm’s ability to handle a large search space and output

an action real-time based on past experiences.

3.4 Reinforcement Learning

3.4.1 Problem Description and Assumptions

The second solution approach is more promising in regards to planning with in-

complete information and processing stochastic, real-time environmental updates.

Here, the method proposed utilizes reinforcement learning to make real-time deci-

sions as the agent moves through the unknown terrain environment. Formulation of

this problem is similar to [31] where the goal is to minimize the expected time to goal

(or distance).

For reinforcement learning methods, Stonetop Mountain was used for training

since it is a larger environment. Multiple smaller regions within the DEM can be

used to give more variety to the input data set.

Before defining the objective function here, the problem is formulated as a Markov

decision process (MDP) with key notation defined. An MDP is a discrete time

stochastic control process where at each time step t, an agent is in some state

s, and may choose some action a to a new state s′. From a single step in the

process, an agent will acquire a reward from the state transition, Ra(s, s
′). Next,

state transition probability is defined as the probability of reaching the next state,

P [St+1 | St] = P [St+1 | S1, . . . , St] which is a memory-less random process. Lastly, γ

defines the discount applied to all future rewards. The tuple, 〈S,A, P,R, γ〉 defines

an MDP with a policy, π that maps actions to specific states. A visualization of an

MDP example can be seen in Figure 3.10.
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Figure 3.10.: Markov Decision Process Example

A value function, V (s) is a value defining how good it is to be in any given state.

The Q-Value, Q(s, a) is a value defining how good an action is to take given any state.

In reinforcement learning, the value function and the Q-Value function are used to

improve or evaluate a policy, π(s) = a which is a mapping of actions to states.

To narrow down how reinforcement learning is utilized in this problem, the goal,

state space, and value function must be defined. The goal is to learn a policy, π(s),

that maximizes a sum of discounted rewards, Ra(s, s
′).

max
∞∑
t=0

γtR(x(t), u(t)), (3.19)

where γ discounts all future rewards to account for uncertainty in future states.

The purpose of reinforcement learning here is to solve the optimal control problem

without knowledge of system dynamics. This is desirable because the dynamics of

terrain within the environment are unknown.

In discussing the state space of the problem, consider first what is known to the

agent. A global path from RRT* is provided to the agent in a set of waypoints and
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the agent knows immediate terrain classification of surrounding 8-grid square. Thus,

the agent’s state is determined to be,

s = [θp, τ1, . . . , τ8], (3.20)

where θp is the direction to the subgoal within the approximate path. It is important

to note that the action space will be limited to a 4-grid approach in order to manage

computational complexity and can be seen below,

a = [N,S,E,W ]. (3.21)

As defined by [43], reinforcement learning methods can typically be split between

policy evaluation algorithms such as TD(0), TD(λ), and Gradient TD(0) and policy

improvement algorithms such as Q-Learning, SARSA, and Actor-Critic (AC). Policy

evaluation algorithms generate a random policy and continuously evaluate policies

until an optimum is reached. Policy improvement algorithms on the other hand

continuously work to update parameters until a given policy converges to the optimal

policy.

Specifically, the methods chosen to solve this problem as means of comparison were

Tabular Q-Learning, Deep Q-Network (DQN), and Advantage Actor-Critic (A2C).

Subsequent sections in this paper will discuss each of the three methods used along

results, advantages, and disadvantages. Overall, it will be noted that A2C provides

the best results at a fraction of the computational expense.

3.4.2 Tabular Q-Learning

Q-Learning was one of the early breakthroughs in reinforcement learning [44]

because of its desirable off-policy behavior. Off-policy in this sense means that the

agent will follow a policy that is different than the policy that is learned. The agent

can continuously update the policy in both training and implementation. This off-

policy TD control algorithm is defined by,

Q(st, at) = Q(st, at) + α
[
Rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
. (3.22)
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The key idea here is utilizing the Bellman Equation [45] to update Q-Values as

the agent gains experience. This will in turn give an optimal policy for the problem.

The optimal update equation can be seen below,

Qπ∗(x, u) = R(x, u) + γQπ∗(x
′, π∗(x′)), (3.23)

π(x) = arg max
u

Q(x, u). (3.24)

The tabular method stores Q-Values within a lookup table. Upon convergence of

a policy, the greedy policy is chosen utilizing max Q-Values in the table for any given

state. A simple layout of this method can be seen in Figure 3.11.

Figure 3.11.: Tabular Q-Learning Model

As an agent moves and makes decisions within the environment, i.e. as the UGV

moves and learns about new terrain, the environment will output a new state for the

UGV and will classify the action based on a reward function. For the reward function,

there are three main considerations in motivating the agent to act appropriately:

• Terrain consideration

• Global solution
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• Minimum distance

With this in mind, the reward function for the reinforcement learning model was

crafted empirically to be the following:

Ra(s, s
′) = c1τs′ + c2(Ds −Ds′)− IO + IG − 1, (3.25)

where c is a constant adjusting the affect that terrain consideration and minimum

distance has on the final policy, τs′ is the traversability index for the search point s′, D

defines the distance from the goal, IO is an indicator function for hitting an obstacle,

and IG is and indicator function for reaching the goal. This reward function is similar

to the function used for GA to incorporate all important aspects of the system. It

is important to note that this reward function was obtained empirically for all three

reinforcement learning methods and will be used consistently throughout.

In order to solve the exploration-exploitation dilemma of reinforcement learning,

epsilon-greedy exploration is used to converge upon a policy as the agent acquires a

larger sample distribution. This tabular Q-Learning method was utilized in Matlab

on a smaller environment. Terrain for the smaller example can be seen in Figure 3.12.

Figure 3.12.: Mesh Map of Smaller Region
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The idea of utilizing a small section within the larger mesh terrain DEM is used

through each method. Methods such as DQN and A2C switch between terrains within

the larger dataset in order to develop a policy that is generalizable.

Training data for a UGV moving through this environment shows convergence

upon an optimal policy showing success and promise for the reward function. For

most trials, the policy converged within 50 episodes. Convergence of this data can be

seen below.

Figure 3.13.: Training Data: Tabular Q-Learning

For validation of the policy obtained from this training set on a smaller envi-

ronment example, the trained Q-Agent obtained was ran one more time through the

environment and the final path was outputted. A demonstration of the approximated

path and the final path from the Q-Agent can be seen in Figure 3.14.
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Figure 3.14.: Tabular Q-Learning Simulation

Though results seem promising for this simple Q-Learning method, it is important

to note that convergence was only reached when the start, goal, obstacles, and ter-

rain were kept the same throughout training. For any additional complications, the

environment size would need to be drastically reduced. This is because this method

stores optimal values within a table and slows significantly when having to update a

large state space. Additionally, the policy is not generalizable to multiple different

environments. DQN and A2C utilize deep reinforcement learning in order to deal

with these issues.

3.4.3 Deep Q-Learning

Given a large state and action space, the reinforcement learning agent cannot

possibly test all configurations. To handle this issue, an artificial neural network is

used in place of the q-table as a universal function approximator. More specifically,

a deep convolutional network is used to approximate the Bellman equation [46]. The

approxmation to the optimal action-value function is below:

Q∗(s, a) = max
π

E
[
rt + γrt+1 + γ2rt+2 + · · · | st = s, at = a, π

]
, (3.26)
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An issue with using this universal approximation is that reinforcement learning

is known to be unstable or even diverge [47]. This is primarily due to the following

causes:

• correlations present in sequence of observations

• small updates to Q may significantly change the policy

• data distribution and correlations between Q-values and target values change

Experience replay is introduced [48] to randomize over the data and remove corre-

lations in the observation sequence. The agent’s experiences et = (st, at, rt, st+1) are

stored at each time step in the data set Dt = e1, ..., et. In combination with iterative

update, Q-learning updates on minibatches of experiences that are drawn uniformly

from the pool. At iteration i, the update uses the following loss function:

Li(θi) = E(s,a,r,s′)

[(
r + γmax

a′
Q(s′, a′; θ−i )−Q(s, a; θi)

)2]
, (3.27)

where γ is the discount factor, θi defines the parameters of the Q-network and θ−i

defines the parameters used to compute the target.

The DQN agent was tested on various regions within the same environment of

Stonetop Mountain. The resolution of the map was 50x50 which was an increase

from the alloted size with tabular Q-learning. It is important to note that the deep

learning agents will incorporate an aspect of replanning within training. If an agent

reaches a distance, ε, away from the approximate path, RRT* is reran and the agent

utilizes the new set of waypoints. This is to help guide the agent when traversability

becomes an issue.

The layout for this method is very similar to tabular Q-learning with the integra-

tion of a deep convolutional network. Please refer to Figure 3.15 below.
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Figure 3.15.: Deep Q-Learning Model

During training, all aspects of the environment change per episode to include

terrain, obstacles, start, and goal locations. Thus, the trained agent develops a policy

that is generalizable across multiple domains. This aspect is desirable when planning

in an unknown area in which an agent will need to respond to appropriate terrain

inputs.

The DQN agent was trained at a maximum of 3500 episodes though the envi-

ronment with a maximum of 500 steps per episode. Episodes would terminate upon

reaching the maximum steps or the terminal location. From training data, it is clear

that the DQN agent recognizes a pattern among state inputs to reach the terminal

location and maximize total expected reward. This demonstrates convergence upon

an optimal policy. Typically, the DQN agent reached convergence upon around 2000

episodes. Training data can be seen in Figure 3.16.
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Figure 3.16.: Training Data: Deep Q-Learning

This method shows promise in the direction of finding a generalizable policy.

However, one can determine from the training set above that the agent still man-

aged to maintain approximately 200 steps within a 50x50 resolution environment.

This method does not prove to be efficient in minimizing total distance traveled and

would significantly decrease optimality within the hybrid MPS. To improve upon this

method, A2C is utilized as it is more sample efficient and effective towards generating

an optimal policy.

3.4.4 Advantage Actor-Critic

A downfall of implementing DQN is its actor-only structure. As described in [49],

the gradient estimators for these methods have a large variance and new gradients

are estimated independently of past gradients. Actor-critic methods were developed

to enhance the policy gradient updates and increase sample efficiency by introducing

a critic to the structure.

For A2C, first look at the baseline function approximator,

∆θJ(θ) = Eτ [
T−1∑
t=0

∆θ log πθ(at|st)Gt], (3.28)
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in which then the expectation can be decomposed,

∆θJ(θ) = Es0,a0,...,st,at [
T−1∑
t=0

∆θ log πθ(at|st)]Ert+1,st+1,...rT ,sT [Gt]. (3.29)

Notice that the second expectation is the Q-Value and can be written in final as:

∆θJ(θ) = Eτ [
T−1∑
t=0

∆θ log πθ(at|st)Qw(st, at)], (3.30)

where w represents the Q-value that is determined by parameterizing the Q-function

with a neural network.

With this method, the critic will estimate either the state-value (V) or the action-

value (Q) and the actor will update the policy distribution in the direction suggested

by the critic. It has been found that the state-value function makes an optimal

baseline function. Thus, the advantage value can be calculated,

A(st, at) = Qw(st, at)− Vv(st), (3.31)

and the relationship between Q and V can be taken from the Bellman optimality

equation,

Q(st, at) = E[rt+1 + γV (st+1)], (3.32)

thus the advantage can be finally written as:

A(st, at) = rt+1 + γVv(st+1)− Vv(st). (3.33)

The A2C agent was tested within the same environment of Yellowstone National

Park. The resolution of the map was again 50x50. To reiterate, this method utilizes

the aspect of RRT* replanning where replanning occurs on the basis of a distance ε

from the approximated path.

The layout for this method is slightly different that the DQN model. Two neural

networks are used to generate an action and output an estimate to the state-value.

The model for training the agent can be seen in Figure 3.17.
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Figure 3.17.: Advantage Actor-Critic Model

During training all aspects of the environment change per episode to include ter-

rain, obstacles, start, and goal. Thus, the trained agent develops a policy that is

generalizable across multiple domains in a similar fashion to the DQN agent.

During training, the A2C agent went for 5000 episodes with a maximum of 400

steps per episodes. As seen in Figure 3.18, the agent reaches convergence around

2000 episodes. Most importantly, the agent averaged under 100 steps per episode as

compared to 200 from the DQN model.
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Figure 3.18.: Training Data: Advantage Actor-Critic

This main advantage of this method over Deep Q-learning is that it was much

more efficient in finding a path to the goal. It will be easy to visualize in the final

results section, but this agent was better suited towards managing global decisions

and terrain considerations. The sampling efficiency and projection towards a target

generated by the critic allowed for a better training set for the agent and development

of a better overall policy. Integration of this method within the hybrid MPS is

discussed in the next section.

3.4.5 Results

From the training data presented, it is clear that A2C provides an agent that can

effectively adjust and locally repair the approximate global path with terrain con-

sideration while choosing to minimize distance to the final goal. This method has

demonstrated intelligent decision logic capability. To demonstrate this experimen-

tally, key information has been recorded for varying map resolutions. The values are

approximate averages across as many as 10 simulations per method and are clear

enough to circumvent further testing. The results are seen in the tables below.
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Table 3.1.: Reinforcement Learning Method Comparison: 20x20

Map Resolution: 20x20

Method Episodes Convergence Avg. Steps Time to Train

Tabular Q 60 yes 25 50 sec

DQN 800 yes 74 14 min

A2C 750 yes 51 13 min

Table 3.2.: Reinforcement Learning Method Comparison: 50x50

Map Resolution: 50x50

Method Episodes Convergence Avg. Steps Time to Train

Tabular Q n/a no n/a n/a

DQN 2000 yes 184 2 hr

A2C 2000 yes 86 1.5 hr

Table 3.3.: Reinforcement Learning Method Comparison: 80x80

Map Resolution: 80x80

Method Episodes Convergence Avg. Steps Time to Train

Tabular Q n/a no n/a n/a

DQN 3900 yes 241 4.2 hr

A2C 3500 yes 119 3.6 hr

Thus, the goal is to integrate the agent within the overall hybrid MPS system de-

veloped. In theory, the UGV agents would not plan ahead with A*, but simply adjust

their paths with the integrated policy. Local navigation sensors would have to take

over in conjunction with the consensus-based collision avoidance since future direction
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of each UGV is uncertain. For SA errors, each UGV agent measures distance from

the approximate path as it stands within the environment and compares this with

a predetermined value, ε. This maintains the SA consideration and ensures results

that are near optimality. As a reference to how the system integrates, pseudocode is

provided below.

Figure 3.19.: Hybrid MPS DRL Pseudocode

For final simulation, a random environment of 50x50 resolution was generated

along with random obstacles, start, and goal location for 4 agents: 2 UAVs and 2

UGVs. There were a total of 6 tasks: 2 UAV, 2 UGV, and 2 heterogeneous. A visual

of the simulation with subsequent discussion can be seen in Figure 3.20.
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Figure 3.20.: Hybrid MPS DRL Simulation

Per the diagram shown, each agent begins with randomly designated strongly con-

nected network. Consensus is reached within the system in a distributed fashion and

all tasks are allocated through a market-based approach. UAV agents disperse along

their straight line Euclidean distance paths and UGVs begin to move according to

their policy with approximate paths and terrain information as inputs. UGVs con-

tinue towards their goal until they reach a specified distance from their approximate

path. In this example that criteria is not met, but had it occurred agents would rerun

task allocation for the appropriate tasks.

Overall, deep reinforcement learning can handle large data sets and generalize a

policy for quality solution in an environment that the agent has never seen before.

With an optimal policy, the agent will be able to escape local minima and provide

a good solution as repair to the sub-optimal approximate RRT* solution. Utiliza-

tion of deep reinforcement learning allows for real-time performance with constant

updates from the environment where a novel replanning method based on the D* or
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evolutionary algorithms lead to the freezing robot issue in hardware deployment. The

integration of deep reinforcement learning within the overarching MPS framework al-

lows for a system that is scalable to multiple agents and multiple tasks, resilient to

time-bounded attacks, and computationally efficient given a complex and uncertain

environment.
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4. SUMMARY

4.1 Conclusion

The problem addressed within this study concerned itselft with efficient, resilient,

and robust control of a multi-agent heterogeneous team given complete and incom-

plete information. The research was mainly directed towards a robotic team com-

pleting missions such as search and rescue and surveillance within a large, outdoor

environment.

For a heterogeneous multi-agent team within a complete environment, the method

proposed consists of three main parts to solve the mission planning problem: approx-

imate planning, task allocation, optimal planning. An approximate RRT* planner

is used to quickly place bids for UGV agents and UAV agents place bids based on

Euclidean distance. Once all agents have a bid for each task, allocation is commenced

through the IACA algorithm extension for heterogeneous tasks increasing robustness

of the system. Planning is commenced with the A* algorithm for a single agent, single

task scenario. Optimality of this method is desirable and computation is real-time for

the isolated situation. Simplicity is maintained with the development of consensus-

based local collision avoidance between agents where previous computational path

check is not required. Approximate and optimal solutions are compared and an ex-

cess of sub-optimality initiates a new iteration of IACA extension. The nodes of

RRT* are increased to provide a better approximation and manage sub-optimality

throughout system.

To introduce a subset of the incomplete information problem, unknown terrain is

introduced to the ground vehicle. The goal of the ground vehicle is to reach a task

while minimizing risk of failure due to terrain considerations.
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The first proposed method is a hybrid solution that combines aspects of approx-

imate planning for a global solution and a genetic algorithm for local repair. The

agent will utilize this approximate path generated with RRT* to aid in single agent,

single task path planning. This will replace A* with windowed replan (CBCA) in

the complete map scenario. The UGV agent generates traversability indices for sur-

rounding locations through a Mamdani inference model. A genetic algorithm solves

optimal next step for the agent while minimizing deviation from the approximated

path and maximizing traversability. This solution is effective in simple environments

but can become stuck in local minima for complex terrains and could lead to the

freezing robot problem.

The second proposed method utilizes all known discrete information with continu-

ous traversability index states as inputs to a reinforcement learning model. Known in-

formation of obstacles, agent location, and terminal location are paired with unknown

information of surrounding traversability indices as state inputs. Three methods are

addressed within the paper to include Tabular Q-learning, DQN, and A2C methods.

Overall, A2C method demonstrated the most efficient results for UGV path planning.

For the method itself, A2C utilizes all state inputs into fully connected network which

acts as a universal nonlinear function approximator to the Bellman update equation.

Thus, this concept of Advantage Actor-Critic is used to update state-action values

(or Q-values), compare this through the actor network distribution, and develop an

optimal policy for a UGV agent operating within unknown terrain environment. The

goal is for a ground agent to learn, from experience, the optimal next best move as

it discovers information from the environment about surrounding traversability. The

policy developed is generalizable to many terrains and unknown environments and

thus is the overarching hybrid MPS.
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4.2 Future Work

Looking to the future, work will be needed to develop an appropriate collision

avoidance system for the UGV agents. As of now it is an assumption that local

navigation will direct agents through CBCA. This aspect of local navigation, however,

is another widely studied area in robotics. Considering assumptions taken in the

proposed solution, the two main factors are holonomic motion and no UAV collision.

To create a more realistic representation of the environment for implementation, these

two factors will need to be addressed.

Lastly, upon consideration of these assumptions, hardware implementation would

be the next step. A multi-robot team consisting of drones such as Parrot and UGVs

such as the Jackal would suit well as a testing platform for missions such as surveil-

lance or search and rescue.
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