
DISTRIBUTED CONTROL AND OPTIMIZATION IN MULTI-AGENT

SYSTEMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Xuan Wang

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Shaoshuai Mou, Chair

School of Aeronautics and Astronautics

Dr. Dengfeng Sun

School of Aeronautics and Astronautics

Dr. Martin J. Corless

School of Aeronautics and Astronautics

Dr. Shreyas Sundaram

School of Electrical and Computer Engineering

Approved by:

Dr. Gregory A. Blaisdell

Head of the School Graduate Program

iii

ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude towards my advisor, Prof.

Shaoshuai Mou, for his guidance and support during my doctoral study. He provided

me the chance to join Purdue University and work in Autonomous & Intelligent Multi-

agent Systems (AIMS) Lab. He is an inspiring mentor who provides constructive

instructions on my research path, and teaches me how to be a rigorous researcher.

I appreciate every discussion I have had with him, which spans academic, daily life,

and future career plans. Thank you Prof. Mou, for all the things you have done for

me!

In addition, I would like to thank my committee members, Prof. Dengfeng Sun,

Prof. Martin Corless, and Prof. Shreyas Sundaram for their suggestions and collab-

orations during my Ph.D. study. I would also like to show my sincere thank to Prof.

Brian Anderson for his collaboration on my research projects and valuable support

on my job applications. My lab mates and friends Wanxin Jin, Jiazhi Song, Jingqiu

Zhou, Jeffrey Hall, Paulo Heredia Aguilar, Zihao Liang, Mark Duntz, Jason King

Lo, Nicholas Schultz, Tianyu Zhou, Kevin Shi, Arthur de Waleffe, David Bambrick,

Jiazhen Zhou, Dawei Sun, Chuyu Zhang also helped me a lot during my four years

at Purdue, I would like to thank all of them.

Finally, I would like to thank my mom and dad, Lijuan Zhou and Zengmin Wang,

for their endless love, support, and encouragement. Last but not least, I would like

to thank my girlfriend, Shuang Wu, for her patience and support of my academic

endeavor.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

SYMBOLS . x

ABSTRACT . xi

1 INTRODUCTION . 1
1.1 Background and Motivation . 1
1.2 Key Challenges . 3
1.3 Literature Review . 3

1.3.1 Distributed Computation . 3
1.3.2 Distributed Optimization . 6
1.3.3 Resilient Consensus-based Distributed Algorithms 7

1.4 Contributions . 9
1.5 Dissertation Overview . 11

2 CONSENSUS-BASED DISTRIBUTED ALGORITHMS FOR SOLVING LIN-
EAR EQUATIONS . 12
2.1 Introduction . 12
2.2 A Modified DALE without Initialization 14

2.2.1 The Problem . 14
2.2.2 Main Result . 15
2.2.3 Validation . 17

2.3 A Distributed Algorithm for minimum l2 norm solution 18
2.3.1 The Problem . 18
2.3.2 Main Result . 18
2.3.3 Validation . 21

2.4 A Distributed Algorithm for minimum l1 norm solution 22
2.4.1 The Problem . 22
2.4.2 Main Result . 23
2.4.3 Validation . 33

3 SCALABLE, DISTRIBUTED ALGORITHMS FOR SOLVING LINEAR
EQUATIONS VIA DOUBLE-LAYERED NETWORKS 42
3.1 Introduction . 42
3.2 Problem Formulation . 44
3.3 Global-Consensus and Local-Conservation 46

v

Page

3.3.1 The Update . 47
3.3.2 Main result . 50
3.3.3 Validation . 55

3.4 Global-Conservation and Local-Consensus 56
3.4.1 The Update . 58
3.4.2 Main result . 60
3.4.3 Validation . 65

3.5 A Simplified Network Structure under Homogeneous Partition 67
3.5.1 The Update . 68
3.5.2 Main result . 69
3.5.3 Validation . 70

4 CONSENSUS-BASED DISTRIBUTED OPTIMIZATION FOR MULTI-AGENT
SYSTEMS . 74
4.1 Introduction . 74
4.2 A Distributed Algorithm for Least Squares Solutions 76

4.2.1 The Problem . 76
4.2.2 The Update . 77
4.2.3 Main Result . 81
4.2.4 Validation . 84

4.3 Distributed Optimization Enhanced by Integral Feedback 91
4.3.1 The Problem . 91
4.3.2 The Update . 92
4.3.3 Main Result . 93
4.3.4 Validation . 102

5 A RESILIENT CONVEX COMBINATION FOR CONSENSUS-BASED DIS-
TRIBUTED ALGORITHMS . 106
5.1 Introduction . 106
5.2 Problem Formulation . 107
5.3 Resilient Convex Combination . 109

5.3.1 A Resilient Convex Combination through Intersection of Con-
vex Hulls . 109

5.3.2 A Low-Complexity Algorithm to Calculate R 110
5.3.3 Main Result . 113

5.4 Application of the Resilient Convex Combination into Consensus-Based
Distributed Algorithms . 115

5.5 Validation . 116

6 CONCLUSION REMARKS AND FUTURE DIRECTIONS 121
6.1 Conclusion Remarks . 121
6.2 Future Directions . 122

6.2.1 Distributed Data-driven Multi-agent Learning and Control . 123
6.2.2 The Cyber-Security of Autonomous Multi-agent Systems . . . 124

vi

Page
6.2.3 Human in the Loop for Multi-agent Systems 124

REFERENCES . 126

VITA . 136

vii

LIST OF TABLES

Table Page

4.1 Comparing Algorithm (4.27)-(4.28) with existing algorithms 83

4.2 Comparing Algorithm (4.75) with existing algorithms 92

viii

LIST OF FIGURES

Figure Page

2.1 The speed xi(t) achieves x∗ in Example 2 17

2.1 The improved DALE with special initializations achieves xqmin 21

2.2 The process of each agent achieves xqmin in 3D space 22

2.3 Convergence of the distributed update (2.21) under a directed, strongly
connected network of 16 agents. 34

3.1 An Example of a Double-layered Multi-Agent Network 45

3.2 An example of the relation between agents’ locally available information
and the overall equation for the network of Fig. 3.1. The various sub-
matrices and sub-vectors do not have to be scalar. 47

3.3 Another Double-layered Multi-Agent Network. For clarity, the details of
agent communications are depicted for only one cluster. 56

3.4 Evolution of V (t) under the proposed updates (3.8)-(3.9) 56

3.5 An example of the relation between agents’ locally available information
and the overall equation for the network of Fig. 3.1. 58

3.6 Evolution of V (t) under distributed updates (3.44)-(3.45) 66

3.7 A homogeneous partition of the equation, with r = 3, c = 4. 68

3.8 A single-layered grid network without clusters or aggregators. 68

3.9 A single-layered network without clusters or aggregators. 70

4.1 A five-agent connected network . 84

4.2 Simulations in the case of unique least squares solutions with different
choices of c. 85

4.3 Simulations in the case of multiple least squares solutions with c = 1 . . . 86

4.4 An undirected connected network of five agents. 102

4.5 The exponential convergence rate of the proposed algorithm. 103

4.6 An undirected connected network of five agents. 104

ix

Figure Page

5.1 Finding Tverberg point T (yellow) in a 2-D space, with Ā = {1}. [κ = 2,
m = 6, m < (κ(n+ 1) + 1)] . 114

5.2 Finding R (red) in a 2-D space, with Ā = {1}. [κ = 1, m = 4, m =
(κ(n+ 1) + 1)] . 114

5.3 A network of 11 agents with malicious agents marked in red. 116

5.4 Simulations of normal agents under the consensus update (5.20) without
malicious agents (blank line) and with malicious agents 10 and 11 (red line).117

5.5 Consensus is reached by introducing ui(t) as Tverberg points (indicated
by the dashed line) or as the resilient convex combination (5.17) (indicated
by the solid line). 118

5.6 Simulations by using the resilient convex combination ui(t) of (5.17) into
(5.22). 119

5.7 Simulation results under the update (5.23) with no malicious agents (in-
dicated by the black line) or with malicious agents (indicated by the red
line). 120

5.8 Simulations by using the resilient convex combination ui(t) of (5.17) in
(5.23). 120

x

SYMBOLS

1r the vector in Rr with all entries equal to 1

Ir r × r identity matrix

⊗ the Kronecker product

M> the transpose of a matrix M

M > 0 the symmetric matrix M is positive definite

M ≥ 0 the symmetric matrix M is positive semi-definite

eig (M) the set of all eigenvalues of a matrix M

image M the image of a matrix M

kerM the kernel of a matrix M

diag {A1, A2, · · · , Ar} the block diagonal matrix with Ai the ith diagonal

block entry

col {A1, A2, · · · , Ar} a column stack of matrices Ai with the index in a

top-down ascending order

xi

ABSTRACT

Wang, Xuan PhD, Purdue University, August 2020. Distributed Control and Opti-
mization in Multi-agent Systems. Major Professor: Shaoshuai Mou.

In recent years, the collective behaviors in nature have motivated rapidly expand-

ing research efforts in the control of multi-agent systems. A multi-agent system is

composed of multiple interacting subsystems (agents). In order to seek approaches

that respect the network nature of multi-agent systems, distributed algorithms has re-

cently received a significant amount of research attention, the goal of which is allowing

multi-agent systems to accomplish global objectives through only local coordination.

Under this scope, we consider three major problems in this dissertation, namely,

distributed computation, distributed optimization, and the resilience of distributed

algorithms. First, for distributed computation, we devise distributed algorithms for

solving linear equations, which can eliminate the initialization step for agents; con-

verge to the minimum l1 and l2 solutions of under-determined linear equations; achieve

ultimate scalability inters of agents’ local storage and local states. Second, for dis-

tributed optimization, we introduce a new method for algorithm discretization so

that the agents no longer have to carefully choose their step-size. We also introduce a

new distributed optimization approach that can achieve better convergence rate with

lower bandwidth requirement. Finally, for the resilience of distributed algorithms,

we propose a new approach that allow normal agents in the multi-agent system to

automatically isolate any false information from malicious agents without identifi-

cation process. Though out the dissertation, all mentioned results are theoretically

guaranteed and numerically validated.

1

1. INTRODUCTION

1.1 Background and Motivation

Through the past few decades, with the development of techniques for control

and optimization, researchers have achieved significant accomplishments on auton-

omy. We allows robots to understand the environment, make human-like reasoning,

and then do decisions. However, for single robots, due to the considerations on cost,

size and mobility, they are usually equipped with limited hardware, so that can only

offer restricted functionality and a lower level of autonomy. In such a situation, as

the current manufacturing technology is not sufficient to integrate various hardware-

dependent functionalities into one small robot, a natural way to improve the capa-

bility of the system is to introduce multiple robots (agents) [1] to work together, so

that they can offer collective intelligence, a wider range and type of operations, and

therefore a higher-level of autonomy. However, these mentioned benefits cannot be

directly obtained by simply putting these robots together. Instead, an essential gap

that naturally arises is how one can guarantee that all the agents are cooperative, say

they are working towards a same goal as a cohesive whole. To achieve corporation,

the agents in the system must be interactive. However, such interaction are usu-

ally subject to a network constraints to communications among agents, which makes

multi-agent systems more challenging to control. Specifically, the network constraints,

to the relations between agents involving sensing, communication or control, usually

prohibit the application of traditional methods from controlling the multi-agent sys-

tems in a centralized manner. In order to seek new control approaches that respect

the network nature of multi-agent systems, distributed control has recently received

a significant amount of research attention, the goal of which is to allow multi-agent

systems to accomplish global objectives through only local coordination. Here, the

2

word ‘local’ contexts interaction between any given agent and a limited number of

associated ‘neighbor’ agents, often physically adjacent. Towards this end, the idea of

consensus [2], the aim of which is to drive all agents in the network to reach an agree-

ment regarding a certain quantity, has served as a basis in deriving many distributed

algorithms for multi-agent systems such as motion synchronization [1]; multi-robot

path planning/formation control [3]; flocking of mobile robots [4]; and cooperative

sensing [5].

In general, the key benefits of consensus-based distributed algorithms can be sum-

marized from two perspectives. One perspective is Top-down Analysis, where given

a sophisticated task, we care about how to decompose the task into small pieces so

that the local sub-tasks do not exceed the limited capability of individual agents.

The examples for this include the Large-scale computation [6], where you may want

to find a solution subjection to multiple constraints. In this case you can assign each

constraint to an agent and let them work together to find the solution to the original

problem. Another example is the Swarm control of autonomous vehicles [7], where

it may be difficult to use a single computer to control all the vehicles running on the

road. In this case, we allow the vehicles to control themselves, but at the meanwhile

maintain an agreement on higher-level decisions such as lane change, lane assignment,

priority in front of traffic lights. Except for top down analysis, another prospective

is Bottom-up Synthesis, where we assume each agent has some local data and our

goal to synthesize these scattered knowledges into a collective intelligence. Examples

for this include the information fusion in multi-sensor network [8] where we want to

get more accurate estimation of the overall system. Or in Collaborative learning [9],

where the objective can be local risk function, and the goal is to find a parameter set

that optimizes the learning model in a global sense.

3

1.2 Key Challenges

Under the scope of consensus-based distributed coordination for multi-agent sys-

tems, the key challenges arises from the following aspects.

• Scalability. Given a complex task to the overall system, we care about how

we can decompose the task into smaller pieces, such that each piece scales well

with the limited capability of the individual agent.

• Resilience, which has become a very popular topic for cyber-physical systems

in recent years. As we have introduced, multi-agent systems have network na-

tures, which leaves the system a large attacking surface and great vulnerability

to cyber-attacks. In this case, we care about how to maintain the functionality

of the systems, even in the presence of sophisticated attacks.

In this dissertation, our goal is to introduce some methods, trying to fill the gap of

multi-agent system by addressing the challenges we have identified. In the following,

I will explain how one can formulate different types of multi-agent coordination prob-

lems into consensus-based distributed optimization problems and then solve them in

scalable and resilient ways. Particularly, this dissertation covers three major types of

problems, which are briefly introduced in the following.

1.3 Literature Review

1.3.1 Distributed Computation

Distributed computation features prominently in many of today’s most pressing

engineering and data science challenges including cooperative machine learning [9];

multi-robot coordination [10]; large-scale power grid regulation [11]; complex numer-

ical computation [6] (computational fluid dynamics, finite-element analysis); and so

on. Among all numerical computations, perhaps the most fundamental problem is

solving a system of linear algebraic equations. Efforts to develop distributed algo-

rithms to solve such systems have been underway for a long time. The objective is to

4

achieve better efficiency by decomposing a large system of linear equations into smaller

ones and then being cooperatively solved by multiple computational agents [12–15].

In these results, a commonly used idea is a so-called “agreement principle” [12], in

which each agent limits the update of its state to satisfy its own equation while try-

ing to reach a consensus with its nearby neighbors’ states. Based on this idea, if the

underlying network jointly strongly connected, the distributed algorithm developed

in [12] is able to converge to an exact solution to the original linear equation with

exponential convergence speed. As [12] being one of the classical works in this area,

many related works in the literature further improves the results of this paper. For

example in [16], by adding extra modification terms to the algorithm in [12], one can

remove the initialization step that is required by the algorithm. Another modification

of [12] can be found in [17], which takes into account the sparsity of the known matrix

of the linear equation in order to reduce the agents’ state size. Furthermore, the result

in [18] studies the eigenvalue that characterize the exponential convergence parameter

of [12]. [19] studies the weakest possible conditions for the exponential convergence

of the algorithm, from a graphical prospective. [20] shows that if the communication

graph is random (instead of a strict guarantee on strongly connectedness), the algo-

rithm has almost surely convergence. Except for the mentioned works that mainly

explore the algorithm of [12] in terms of converge rate, some other works consider the

effectiveness of the algorithm under different network condition. [21] shows that the

data transmitting delays do not influence the result of [12]. [22] studies the security

issues, which introduces a verification method to protect the algorithm against the

local data manipulation in agents. In [23], an event trigger based algorithm is stud-

ied. By the trigger mechanism, the communication overhead of the network can be

reduced. In addition, a component dropping mechanism is developed [24] which also

aims to achieve better communication-efficiency.

Note that the algorithm developed in [12] is only able to achieve a feasible solution

to linear equations. If the equation has multiple solutions, one usually cares about

some special solutions in the solution space. For example, motivated by compres-

5

sion sensing applications, [25] developed a distributed algorithm based on Fillipov

Set Value maps, which is able to achieve the minimum l1 norm solution of under-

determined linear equations in finite-time; motivated by energy minimization, the

algorithm developed in [16] can achieve a particular solution that has the minimum

l2 norm by a special state initialization on [12]; a same result can be achieve by [26]

through a different approach namely, M-Fejer mappings.

Except for the results that are closely related to [12], other distributed algorithms

for achieving the exact solution of a linear equation can also be found in the existing

literature. For example, for positive definite linear equations, the result in [27] parti-

tioned the linear equation such that a local square matrix is assigned to each agent

of the network, and the summation of all local matrices equals the original equation.

Then it provides an algorithm that allows the agents in the network to solve the over-

all equation. During the solving process, the agents can join and leave the network at

any time, for infinitely many times, and lose all its memory upon leaving. In [28], by

adding some partial centralized information and an adaptive momentum to agents’

state update, one can achieve accelerated convergence rate on distributed algorithms

for solving linear equations. [29] considers linear equations that are generalized di-

agonal dominant, then by developing a distributed Gauss-Seidel, one can achieve

discrete-time finite time convergence for acyclic graphs and exponential convergence

for cyclic graphs. In [13], when the known matrix of the equation is square and non-

singular, a continuous update is proposed to achieve the unique solution exponentially

fast under fixed, undirected and connected graph. [30] considers a more complicated

matrix equation, namely, AXB = F , where A,X,B, F are matrices of proper size.

By adding four sets of dual variables, it develops continuous-time algorithms that can

solve this equation in distributed manner with undirected graph. In [31], instead of

partitioning the equation into rows as in [12], it partitions the overall linear equation

into columns. By doing this, the state of each agent does not have to be a com-

plete copy of the overall equation, but only a small section of the overall unknown

vector. Under this setup, an algorithm is proposed, which can achieve the solution

6

exponential fast under fixed undirected connected graphs. By combining the ideas

of [31] and [12], in [6], a linear equation can be partitioned into rows and columns

simultaneously, such that each agent only knows a small square block of the equation,

and can cooperatively achieve the solution to the linear equation exponentially fast.

1.3.2 Distributed Optimization

Apart from distributed computation, another major problem in multi-agent con-

trol is distributed optimization.Though only local coordination, the goal of distributed

optimization is to find a common decision vector which optimizes a global objective

function that can be written as an aggregate of agents’ local functions. By associating

these functions with the application specified objectives, the technique of distributed

optimization has been extensively applied to various types of multi-agent systems,

including the synchronization of coupled oscillators [11, 32], multi-robot formation

control [7], flocking of mobile robots [33], cooperative sensing [34] and multi-agent

learning [35,36].

To establish algorithms for distributed optimization, one can similarly combine

the idea of consensus with the gradient descent method [37]. Different from the case

in distributed computation where all agents’ constraints must process at least one

common solution, for distributed optimization, the local objective functions usually do

not have a common minimizer. This means in general, the consensus and the gradient

descent updates will have different equilibria so that the states in all agents can never

converge to a same point. To circumvent this difficulty, the work in [37–40] applies a

diminishing step-size (i.e. 1/t) to the gradient term in the update equations. As a side

effect, this time-variant step-size must be shared by all the agents in the network, and

the convergence rate of the algorithm will be degraded most commonly to O(1/
√
t)

(from exponential). In order to improve the convergence rate, many recent works

have shown that the exponential convergence rate can be achieved by doubling the

dimension of the state vector. See for example the continuous-time update introduced

7

in [41], where the role of the extra vector is played by the Lagrangian dual vector for

the consensus error, and the discrete-time update introduced in [42, 43], where the

extra vector performs gradient tracking. In these algorithms, the extra states have to

be exchanged across the network, necessitating duplication of the network bandwidth

requirement.

In many practical applications, due to feasibility reasons, the distributed opti-

mization problems are additionally associated with local constraints [37–39, 44–46].

To solve such a constrained optimization problem, one usually needs an algorithm

that integrates consensus, gradient descent and projection all together. In [37], an

algorithm for constrained optimization is developed by assuming that the constraints

in all the agents are identical. Further, in [38], the result of [37] is generalized by

removing the extra assumption. Note that both the algorithms in [37,38] are obtained

by applying a projection operator to an existing distributed optimization algorithm

with diminishing step-sizes, they are discrete-time and have a convergence rate of

O(1/
√
t). In addition to the algorithms based on diminishing step-sizes, another line

of research for constrained optimization stems from applying projection operators to

the algorithm [41] based on doubled state dimensions. This has led to the recent

achievements proposed in [44–46]. Although these algorithms can potentially achieve

a faster convergence rate than the ones based on diminishing step-sizes, yet the ex-

ponential convergence of these algorithms has never been theoretically guaranteed.

1.3.3 Resilient Consensus-based Distributed Algorithms

Simple and powerful as the idea of consensus for developing distributed compu-

tation/optimization algorithms, its effectiveness heavily depends on the assumption

that all agents in the network are sharing trustful information with their neighbors.

In practice, however, the presence of a large number of diverse agents in multi-agent

systems (provided by different vendors, with differing levels of trust) introduces the

potential for maliciously compromised agents (Byzantine) to inject misinformation

8

that propagates throughout the network and prevents the entire system from achiev-

ing a proper consensus-based coordination. As shown in [47], even one misbehaving

agent in the network can alter the states of other agents to any value it desires. To fix

such vulnerability, traditional information-security approaches (built on the pillars of

confidentiality, integrity, and availability) focus on protecting the data itself, but are

not directly applicable to distributed control algorithms, which involve not only data

gathering but also data processing, information sharing and coordination between

highly-mobile agents. Thus, instead of narrowly focusing on techniques such as data

encryption that aim to prevent attackers, a new line of research arises, which aims to

seek fundamentally new approaches that allow the network to reliably perform con-

sensus even after the adversary has successfully compromised certain agents in the

system. Towards this end, the main challenges arise from the special characteristics

of distributed systems where all agents in the network are with high mobility and

no agent has access to the global information. As a result, the paradigm of fault-

tolerant control [48] equipped with state-observers are not sufficient to capture the

sophisticated manners the malicious agents take to avoid detection.

In order to allow the normal agents in multi-agent systems to utilize only their

local information to mitigate or fully isolate the influence of malicious attackers, in the

existing literature, different attempts have been made, dating back to the results in

[49,50], which shows that a resilient consensus can be asynchronously achieved among

m agents with at most (m − 1)/3 malicious attackers. These results are applicable

to binary problems where the state of each agent either take 0 or 1. In reality,

however, engineering applications usually require the multi-agent system to reach a

consensus (synchronization) on a continuous domain that has infinite many choices.

To solve the problems of this type, the algorithm in [51] is developed, based on the

idea of letting each normal agent to run distributed consensus by excluding the most

extreme values that are far away from its other neighbors. A similar result has been

parallelly proposed in [52], which can be used for resilient distributed optimization

with applications in machine learning. Both of these results have introduced certain

9

restrictions to the behavior of malicious agents, which means if the malicious agents

can intentionally choose the states they send to the normal agents that maliciously

prevent them from reaching a proper consensus, these resilient algorithms may fail.

Such worst case scenario can be handled by the algorithm proposed in [53], which

guarantees a safe consensus even the malicious agents send arbitrary information

to different normal agents. The only limitation of this algorithm [53] lies in the

requirement that the agents’ states must be scalar. Although in the multi-dimensional

case, one can run the algorithms separately on each entry of the state vector, such

a scheme will violate the convex combination property of distributed consensus (i.e.

the agents states in the new time-step are not obtained by the convex combination

of the ones at the current time-step.) and becomes ineffective if the normal agents

are subject to local state constraints [6, 12]. To reach a completely theoretically

safe distributed consensus and also respect the convex combination property among

agents states, the methods based on Tverberg-points have been proposed for both

centralized [54] and distributed cases [55, 56]. According to [57], the computational

complexity of achieving Tverberg points are usually high. To lower the computational

complexity, new approaches are developed in [58, 59], which are based on an idea

called resilient convex combination. The difference between [58] and [59] is that

in [59], each normal agent employs a special treatment on its own state so that have a

relaxed requirement on its neighbor’s state. But apart from such differences, the key

advantage of both [58] and [59], is that their resilient convex combination are locally

solvable via linear or quadratic programming methods.

1.4 Contributions

The purpose of this dissertation is to develop novel distributed algorithms for

multi-agent systems, namely, distributed computation, distributed optimization, and

the resilience of distributed algorithms.

10

For distributed computation, we developed a distributed algorithm for solving

linear equations [16], which can achieve better numerical stability against round-

off errors and can eliminate the initialization step for agents. Such initialization is

necessary for traditional approaches. Second, if the linear equation system is under-

determined, traditional algorithm can only achieve an arbitrary solution. Here, by

introducing new algorithms, we allow the agents to converge to a particular solutions

with the minimum l1-norm [25,60] and minimum l2-norm [61]. Finally, compared with

traditional approaches where each agent has to know at least one complete row of

the original linear equation, by combining the idea of consensus and conservation, we

proposed a new distributed framework for solving linear equations that can achieve

ultimate scalability inters of agents’ local storage and local states.

For distributed optimization, we developed an algorithm for distributed least-

squares approximation [62, 63]. Compared with traditional approaches that needs to

carefully chose step-sizes for convergence, our approach does not involve any small

or time-varying step sizes. In addition, for more general constrained distributed

optimization [6] problems, we developed a new distributed algorithm by incorporating

the idea of integral feedback. Compared with traditional approaches, the algorithm

has better convergence rate and can save the communication bandwidth by 50%.

For the resilience of distributed algorithms, we have developed an algorithm that

allows the normal agents to compute a resilient convex combination [59]. Different

from traditional approached that are mainly based on identification, this approach

can automatically isolate any malicious information manipulated by cyber-attacks

without any identification process. In terms of implementation, it has low compu-

tational complexity, only based on local information and can be integrated into any

consensus-based distributed algorithms [64].

11

1.5 Dissertation Overview

The rest part of the dissertation is organized as follows. In Chapter 2, we first in-

troduced an existing distributed algorithm for solving linear equations called DALE.

Then we modified DALE in the following ways: eliminate the requirement for initial-

ization; allows DALE to achieve a minimum l2 norm solution; allow DALE to achieve

a minimum l1 norm solution. In Chapter 3, we still focus on distributed algorithms

for solving linear equations. But compared with the ones in Chapter 2 that are based

on the idea of consensus, the algorithms in this chapter integrates another idea called

conservation. By introducing a double-layered network that actively combines the

ideas of consensus and conversation, algorithms are developed that can achieve much

better scalability. Chapter 4 introduces two algorithms for distributed optimization.

The first one considers a least square minimization problem while the second one con-

siders a more general convex optimization problem with local constraints. In Chapter

5, we discuss the resilience for consensus-based distributed algorithms, by introducing

a new concept named resilient convex combination, we allow multi-agent systems to

achieve automated resilience towards cyber attacks. At last, conclusion remarks and

future directions are summarized in Chapter 6.

12

2. CONSENSUS-BASED DISTRIBUTED ALGORITHMS

FOR SOLVING LINEAR EQUATIONS 1

2.1 Introduction

Solving linear equation is a fundamental problem in many engineering applica-

tions. In recent years, the modeling and controlling of large scale systems (such as

power supply management; water quality management; and swarm control of au-

tonomous robots), calls for distributed algorithms for solving linear algebraic equa-

tions [12, 13, 16, 40, 62], which achieves efficiency by decomposing a large system of

linear equations into smaller ones that can be cooperatively solved by a network of

agents. Compared with distributed equation solvers such as Gaussian Belief Propa-

gation [66] and Neumann series approximation [67], which require the linear equation

to be either diagonally dominant or positive definite, the consensus-based distributed

linear equation solvers [12,13,16,40,62] are applicable to a much larger class of linear

equations.

Particularly, consider a network of m agents in which each agent i is able to

communicate with certain other nearby agents called its neighbors, denoted by Ni.

The neighbor relations can be described by a graph G such that there is an edge from

j to i if and only if j ∈ Ni. In this chapter, we assume G is directed. Suppose each

agent i knows a local matrix Ai ∈ Rni×n and a corresponding solution vector bi ∈ Rni ,

which are some partitions of an original linear equation Ax = b such that

[
A b

]
=

A1 b1

A2 b2

...
...

Am bm

 , A ∈ Rn̄×n (2.1)

1Resarch in this section has been published in the papers [16,65] with me as the leading author.

13

Suppose each agent i controls a state vector xi(t) ∈ Rn, which could be looked as

the estimate of agent i to the solution of the overall equation Ax = b. The goal is

to develop distributed algorithms that allows the states in all agents to converge to

a common vector x∗, which is a common solution satisfying all agents’ local linear

equations, i.e.

x1 = x2 = · · · = xm = x∗ (2.2)

Aixi = bi (2.3)

Towards this end, in existing literature, the authors of [12] have devised the following

Distributed Algorithm for solving Linear Equations (DALE):

1. Initialization: At t = 0, each agent i initializes xi(0) such that Aixi(0) = bi;

2. Update: At t + 1, t = 0, 1, ...,, each agent i receives xj(t) from certain other

agents denoted by Ni(t), and then update its own state to be

xi(t+ 1) = xi(t)− Pi

xi(t)− 1

di(t)

∑
j∈Nj(t)

xj(t)

 (2.4)

Here, Pi is the orthogonal projection matrix to the kernel of Ai; Ni(t) denotes

the set of agent i’s neighbors at time t, from which agent i can receive informa-

tion. We always assume that each agent is a neighbor of itself, that is, i ∈ Ni(t);

di(t) denotes the cardinality of Ni(t).

A major result of the DALE is the following theorem:

Theorem 2.1.1 [12] Suppose Ax = b has at least one solution and assume that

the sequence of neighbor graphs G(t), t ≥ 1, is repeatedly jointly strongly connected.

Then the DALE drives all xi(t) converges exponentially fast to the same solution to

Ax = b as t→∞.

We refer to [12] for the introduction of “repeatedly jointly strongly connected”,

which has been shown to be not only the sufficient but also necessary requirement of

the network connectivity for the above theorem to hold.

14

The DALE developed in [12] is applicable to all linear equations that have at least

one solution; converges exponentially fast; works for a large class of time-varying

directed graphs; operates asynchronously; and does not involve any time-varying

step-size. The aim of this chapter is to achieve further improvement to the DALE by

addressing the following two problems:

• The DALE heavily depends on that each state vector xi(t) is initialized to be a

solution to Aix = bi. When there are round-off errors in such initialization step

[68], the DALE might fail to achieve the exact solution to Ax = b. Moreover,

such initialization step requires each agent to be capable of finding an exact

solution to Aix = bi, which may be out of the computation capability of low-

cost agents. Motivated by this, the Section 2.2 of this chapter aims to eliminate

such initialization step and allows xi(0) can be chosen arbitrarily from Rn.

• When Ax = b has more than one solutions, the DALE achieves one of them.

However, it is unclear that which particular solution it converges to. In Sections

2.3 and 2.4, we will make certain modifications that allow the DALE to achieve

specific solutions with have minimum l2 or l1 norms. The significance of such

solutions are that, if x represents the state vector needed to be controlled in

industrial process [10, 69], a minimum l2 norm solution ensures the system to

achieve its goal with the lowest cost; if x represents the state vector correspond-

ing to an out signal from a compression sensing process [70–72], a minimum l1

norm solution ensures the algorithm to achieve the original sparse signal one

wants to recover.

2.2 A Modified DALE without Initialization

2.2.1 The Problem

The DALE in [12] requires an initialization step in which each xi(0) is initialized

to be a solution to Aix = bi. In this section, the problem of interest is to eliminate the

15

initialization step of DALE. To do this, we modify the DALE by adding one additional

term to (2.4), which drives all xi(t) to the manifold Ax = b even when they are not

initialized to be so. Please note that a similar idea has also been discussed in [13].

2.2.2 Main Result

Let
[
Āi b̄i

]
denotes a submatrix of [Ai bi] such that kerAi = ker Āi and ĀiĀ

′
i is

non-singular, which also implies that Aix = bi if and only if Āix = b̄i. By doing

this, the orthogonal projection matrix Pi to the kernel of Ai can be expressed as

Pi = I − Ā′i(ĀiĀ′i)−1Āi. The modified DALE will be: At t = 0, xi(0) is any vector in

Rn; The update for each agent i at t+ 1 is

xi(t+ 1) = xi(t)− Pi

xi(t)− 1

di(t)

∑
j∈Nj(t)

xj(t)

−Ā′i(ĀiĀ′i)−1(Āixi(t)− b̄i) (2.5)

Remark 2.2.1 It is worth mentioning that by multiplying Āi to both sides of algo-

rithm (2.5), one has Āixi(t+ 1) = Āix(t)− (Āixi(t)− b̄i) because of ĀiPi = 0. Then

Āixi(t + 1) = b̄i for t = 0, 1, 2.... This observation implies that xi(t) for t ≥ 1 is

always a solution to Āix = b̄i even if xi(0) is not.

To prove xi(t) converges to x∗ where Ax∗ = b, we prove the error vector ei(t) =

xi(t)− x∗ converge to 0. From (2.5), Āix
∗ = b̄i, and Pi = I − Ā′i(ĀiĀ′i)−1Āi, one has

ei(t+ 1) =xi(t)− x∗

− Pi
(
xi(t)− x∗ −

1

di(t)

∑
j∈Nj(t)

(xj(t)− x∗)

− Ā′i(ĀiĀ′i)−1(Āixi(t)− Āix∗)

=ei(t)− Pi(ei(t)−
1

di(t)

∑
j∈Nj(t)

ej(t))− (I − Pi)ei(t)

=
1

di(t)
Pi

∑
j∈Nj(t)

ej(t)

16

which is the same as the error equation in [12], thus, one has the following lemma:

Lemma 2.2.1 All ei(t) converge exponentially fast to be the same value e∗, where

e∗ = 0 when Ax = b has a unique solution.

From Lemma 2.2.1 and ei(t) = xi(t)− x∗, one has all xi(t) converges to be

z∗ = e∗ + x∗

When Ax = b has a unique solution. One has z∗ = x∗ and all xi(t) converges to the

unique solution x∗. Since e∗ may not be zero when Ax = b has multiple solutions, we

will need to show that z∗ is actually also a solution to Ax = b. Note that z∗ is the

common value where all xi(t) converge to. Thus, z∗ must satisfy equation (2.5). By

replacing xi(t+ 1) and xi(t) by z∗, one has

z∗ =z∗ − Pi(z∗ −
1

di(t)

∑
j∈Nj(t)

z∗)

− Ā′i(ĀiĀ′i)−1(Āiz
∗ − b̄i), i = 1, 2, ...,m (2.6)

which implies

Ā′i(ĀiĀ
′
i)
−1(Āiz

∗ − b̄i) = 0, i = 1, 2, ...,m (2.7)

Multiplying Āi to both sides of (2.7) leads to

Āiz
∗ − b̄i = 0, i = 1, 2, ...,m (2.8)

Then

Aiz
∗ = bi, i = 1, 2, ..,m

Thus, z∗ is a solution to Ax = b. To summarize, we have the following theorem:

Theorem 2.2.1 The modified DALE (2.5) with arbitrary xi(0) ∈ Rn drives all xi(t)

to converge exponentially fast to be a common solution to Ax = b.

17

2.2.3 Validation

To validate Theorem 2.2.1, consider the following linear equation,

A1

A2

A3

 =

19 0 12 5 10

12 16 10 5 5

5 12 16 14 16

4 16 16 17 4

13 4 5 7 4

,

b1

b2

b3

 =

5

17

99

9

51

(2.9)

with the unique solution x∗ = [0.96 2.77 − 12.46 7.25 10.10]′.

Let V (t) =
∑3

i=1 |xi(t)−x∗|2. Then V (t) = 0 if and only if all xi(t) = x∗. Suppose

the three agents are all connected with each other with undirected edges. Fig. 2.1

shows that the modified DALE (2.5), without any initialization step, drives all agents

exponentially fast to x∗.

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

900

1000

t

V (t)

Figure 2.1. The speed xi(t) achieves x∗ in Example 2

18

2.3 A Distributed Algorithm for minimum l2 norm solution

2.3.1 The Problem

When Ax = b has multiple solutions, the DALE developed in [12] enables each

agent to achieve one of its solutions. However, which one is to be achieved is not

clear. In this section, we will modify the initialization step of the DALE, so that it

can achieve a specific minimum l2 solution. Note that minimum l2 norm solution is

defined in the Euclidean distance, which is the solution being closest to the origin.

Here, we generalize the concept of l2 norm a little bit, by finding a solution that is

closest to a specified point q ∈ Rn. Specifically, consider

xqmin = arg min
Ax=b

1

2
|x− q|2, (2.10)

where | · | denotes the Euclidean norm. Obviously, when q = 0, xqmin becomes the

traditional minimum l2 norm solution. Note that finding such a xqmin can be formu-

lated as a convex optimization problem and then being solved by the Dykstra’s cyclic

projection method [73]. Such cyclic projection method usually requires a centralized

scheduling among all agents in the network.

2.3.2 Main Result

In this section we will show that under the same network connectivity requirement

as in [12], and by utilizing the following special initialization step, the update (2.4)

achieves xqmin exponentially fast :

Initialization: Each agent i initializes its xi(0) to minimize

1

2
|x− q|2 subject to Aix = bi (2.11)

The above initialization (2.11) could be easily completed by solving a linear equation

Aix = bi and Pix = Piq according to the following lemma:

19

Lemma 2.3.1 x = xqmin if and only if it satisfies Ax = b and PAx = PAq, where PA

is the orthogonal projection to kerA.

Proof of Lemma 2.3.1: By the standard Lagrange multiplier method for convex

optimization subject to linear constraints, there must exist a λ and xqmin such that

Ax = b (2.12)

x− q + A′λ = 0 (2.13)

Multiplying PA to (2.13), one has PA(x− q) + (APA)′λ = 0 which and APA=0 imply

PAx = PAq (2.14)

Thus xqmin must satisfies linear equations (2.12) and (2.14), which has the unique

solution since kerPA ∩ kerA = 0 because of the fact image PA = kerA.

To summarize, the point in Rn which is a solution to Ax = b and minimizes

1
2
|x − q|2 always exists, and must be the unique solution of (2.12) and (2.14). Thus

Lemma 2.3.1 is true.

The hold of this Lemma leads to the following theorem

Theorem 2.3.1 With the initialization (2.11) and the update (2.4), all xi(t) converge

exponentially fast to be xqmin.

Proof of Theorem 2.3.1: Note that by the initialization (2.11) one still has

Aixi(0) = bi, which is a special case of the DALE. By Theorem 2.1.1, all xi(t) con-

verges exponentially fast to be the same x∗ such that Ax∗ = b. To prove Theorem

2.3.1, we only need to prove that x∗ additionally minimizes 1
2
|x− q|2, or equivalently

by Lemma 2.3.1, PAx
∗ = PAq holds. Since x∗ is the final value that all xi(t) converges

to, it suffices to show

PAxi(t) = PAq, i = 1, 2, ..., n (2.15)

for all t = 0, 1, 2, ..., for which the induction method will be employed in the followings.

20

We first show

PAxi(0) = PAq. (2.16)

From image PA = kerA, image Pi = kerAi and kerA ⊂ kerAi, one has image PA ⊂

image Pi. Then

kerPi ⊂ kerPA

which and image (I − Pi) = kerPi imply PA(I − Pi) = 0, that is,

PAPi = PA (2.17)

By the initialization (2.11), one has Pixi(0) = Piq. This, along with (2.17) leads to

(2.16).

Now we suppose (2.15) is true for all i at t, and show it is true at t + 1. From

(2.4), (2.17) and the induction assumption, one has

PAxi(t+ 1) = PAxi(t)− PAPi

xi(t)− 1

di(t)

∑
j∈Nj(t)

xj(t)

= PAxi(t)−

PAxi(t)− 1

di(t)

∑
j∈Nj(t)

PAxj(t)

=

1

di(t)

∑
j∈Nj(t)

PAq

= PAq

Thus (2.15) is true. This completes the proof.

Remark 2.3.1 It is worth pointing out that the initialization (2.11) is a special case

of the initialization step in the DALE. All the results obtained under the DALE in [12]

are directly applicable here.

21

2.3.3 Validation

Suppose that the following linear equation is solved by the improved DALE with

3 agents.
A1

A2

A3

=

1 −1 1

1 −1 −1

0 0 1

 ,

b1

b2

b3

 =

3

−3

3

 (2.18)

xqmin and the preferred point q are:

xqmin =

5.5

5.5

3

 , q =

5

6

5

 (2.19)

Here, we assume the three agents are all connected with each other with undirected

edges. Let V (t) =
∑3

i=1 |xi(t)− x
q
min|2. Then V (t) = 0 if and only if all xi(t) = xqmin.

0 1 2 3 4 5
0

1

2

3

4

5

6

7

t

V (t)

Improved DALE
DALE

Figure 2.1. The improved DALE with special initializations achieves xqmin

Fig. 2.1 shows that the DALE in [12] does not achieve xqmin while the modified DALE

with the special initialization step (2.11) does.

We also provide Fig. 2 to illustrate the detailed process of the improved DALE to

achieve xqmin. By Pixi(0) = Piq and Aixi(0) = bi, each xi(0) is chosen as the closest

22

Figure 2.2. The process of each agent achieves xqmin in 3D space

point to q subject to Aix = bi. All the xi(t) then converge to reach a consensus value

which is xqmin as in indicated in Fig. 2.2.

2.4 A Distributed Algorithm for minimum l1 norm solution

2.4.1 The Problem

Note that if a linear equation Ax = b has multiple solutions, except minimum l2

norm, its sparse (minimum l0-norm) solution is also of particular interest in many

engineering applications. The examples include earthquake location detection [70],

analysis of statistical data [71], solving biomagnetic inverse problems [72], compressive

sensing, and so on. Challenged by the fact that the l0-norm minimization problem

is NP-hard [74], researchers usually turn to achieve solutions with minimum l1-norm

instead, for which the function to be minimized is convex; the obtained solution, is

almost surely unique and equals the sparse (minimum l0-norm) solution [75]. Exist-

ing results for achieving minimum l1-norm solutions are usually based on the idea

of LASSO [76], and they usually require a centralized coordinator and are not easily

generalized to the distributed case. Existing results in distributed optimization are

23

also not directly applicable since they either assume all agents hold the same con-

straints [37] or different but compact constraints [38], and they typically require the

weighting matrix associated with the network graph to be doubly stochastic [37, 38]

or at least weighted balanced [41]. However, when solving under-determined equation

sets via multi-agent networks, the local equations known by different agents can not

be the same; the solution set to the local equation constraint is an affine subspace

which is not compact; and as illustrated in [77], for a directed graph, additional co-

operations among agents are usually required to guarantee its weighting matrix is

doubly stochastic.

Motivated by these facts, in this section, we consider the modification of DALE

[12], that can achieve minimum l1 norm solution of a linear equation in a distributed

manner. That is

x∗ = arg min
Ax=b
‖x‖1, (2.20)

2.4.2 Main Result

The update

As we know that the DALE developed in [12] is able to find a feasible solution to

the linear equation, to further guide its results to be the minimum l1-norm solution,

we add the subgradient of ‖x‖1 subject to Aix = bi, namely, Pisgn (xi(t)), to (2.4)

and have the following

xi(t+1)=xi(t)−Pi

(
xi(t)−sij

∑
j∈Ni

xj(t)

)
− Pi
t+1

sgn (xi(t)) (2.21)

with Aixi(0) = bi, i = 1, 2, ...,m. Please note that sij is the weight of the edge, for

DALE, a particular choice of sij is 1
di

.

Remark 2.4.1 Because Aixi(0) = bi, and image Pi = kerAi, under the distributed

update (2.21), one has Aixi(t) = bi for ∀t > 0. Note that 1
t+1

is introduced to

adjust impact of the term Pisgn (xi(t)) to the original update (2.4), a device which is

24

commonly used in many distributed optimization algorithms [37]. This takes care of

the fact that Pisgn (xi(t)) cannot be expected to tend to zero. Without such adjusted

term 1
t+1

, we could never secure a consensus steady state solution xi(t) = x∗ with

Ax∗ = b.

Remark 2.4.2 The update (2.21) is different from the algorithms proposed in [37,

38]. In update (2.21), the gradient term 1
t+1
Pisgn (xi(t)) is computed with respect

to the current state xi(t) of agent i, thus, it is independent of the current round of

communication. In [37,38], the gradient follows the form of 1
t+1
Pisgn (sij

∑
j∈Ni xj(t)),

which is computed using a weighted average of agent i’s neighbors states.

The distributed update (2.21) leads to the following result

Theorem 2.4.1 Suppose the equation Ax = b is under-determined with a unique

minimum l1-norm solution. Suppose the graph G of an associated m-agent network

is directed and strongly connected, and its associated weighted adjacency matrix is

row stochastic. Let each agent knows Ai and bi. Initialize xi(0) such that Aixi(0) =

bi. Then, under the distributed update (2.21), all xi(t) converge asymptotically to

a constant given by x∗, which is the unique minimum l1-norm solution2 to equation

Ax = b.

For the convenience of establishing Theorem 2.4.1, let x(t) = col {x1(t), · · · , xm(t)}

denote a stack of all xi(t); let P̄ = diag {P1, · · · , Pm} denote a block-diagonal matrix

with the ith diagonal block equal to Pi. Further let S̄ = S ⊗ In, where S ∈ Rm×m

is a weighted adjacency matrix of the graph G. Then based on equation (2.21), the

evolution of all the states in the network can be rewritten in a compact form as

x(t+ 1) = Q̄x(t)− 1

t+ 1
P̄ sgn (x(t)) (2.22)

where

Q̄ = I − P̄ + P̄ S̄.

2Note that if the minimum l1-norm solution is non-unique, the algorithm will converge to one

of the minimum l1-norm solutions.

25

To prove Theorem 2.4.1, it is sufficient to show that x(t) → x∗, where x∗ , 1⊗ x∗.

Towards this end, our proof is divided into three steps, which progressively lead to

the fact that x(t) → x∗. Firstly, for the purposes of proving the correctness of the

algorithm, but not something computed in the course of executing the algorithm, we

introduce a trajectory z(t) linked in a certain way to x(t). Then based on this z(t),

we show that x(t) → z(t). Finally, we show that z(t) → x∗. The details of these

steps are provided in the following subsections.

Introducing a trajectory z(t).

For each time step t, define

z(t, k) , Q̄kx(t). (2.23)

Then the following Proposition holds.

Proposition 2.4.1 For each fixed t, as k →∞, the following limit of z(t, k) exists,

z(t) , lim
k→∞

z(t, k) = lim
k→∞

Q̄kx(t). (2.24)

Moreover, Q̄z(t) = z(t) and for ∀t, there holds z(t) = 1m ⊗ z(t) where z(t) ∈ Rn is

a solution to Ax = b.

To prove Proposition 2.4.1, we propose the following lemma, for which we provide

the proof in the Appendix.

Lemma 2.4.1 The following statements hold:

(a) All eigenvalues of P̄ S̄ have magnitude less than or equal to 1.

(b) λ? = 1 is the only eigenvalue of P̄ S̄ with magnitude 1. It is non-defective and

any corresponding eigenvector satisfies P̄ S̄u = S̄u = u where u = 1m ⊗ u and

u ∈ kerA.

26

Proof of Proposition 2.4.1: Let t be arbitrary but fixed. By definition (2.23), one

has

z(t, k + 1) = Q̄z(t, k) = (I − P̄ + P̄ S̄)z(t, k) (2.25)

with z(t, 0) = x(t). Since P̄ = diag {P1, · · · , Pm}, and setting z = col {z1, · · · , zm},

then update (2.25) can be rewritten as

zi(t, k + 1) = zi(t, k)− Pi

(
zi(t, k)− sij

∑
j∈Ni

zj(t, k)

)
. (2.26)

From update (2.26) and the fact that Pi is a projection matrix to kerAi, one has

Aizi(t, k + 1) = Aizi(t, k). Since also zi(t, 0) = xi(t) is a solution to Aixi = bi, one

has for ∀t, k, zi(t, k) is a solution to Aizi = bi.

To continue, define z∗ , 1m⊗z∗, where z∗ ∈ Rn is an arbitrary solution to Ax = b.

Since S is row stochastic, for any z∗ ∈ Rn, one has S̄z∗ = (S ⊗ In)(1m ⊗ z∗) = z∗.

Further, define η(t, k) , z(t, k)− z∗, where η(t, k) = col {η1(t, k), · · · , ηm(t, k)} and

ηi(t, k) = zi(t, k)−z∗ for all i = 1, · · · ,m. Recall that both zi(t, k) and z∗ are solutions

to Aizi = bi; then ηi(t, k) ∈ kerAi. Because Pi is a projection matrix to kerAi, one

has Piηi(t, k) = ηi(t, k), that is P̄η(t, k) = η(t, k). Then, by subtracting z∗ on both

sides of (2.25), one has

η(t, k + 1) = η(t, k)− (P̄ − P̄ S̄)η(t, k)− (P̄ − P̄ S̄)z∗

= η(t, k)− (P̄ − P̄ S̄)η(t, k)

= P̄ S̄η(t, k) (2.27)

By Lemma 2.4.1, there exists a non-singular matrix T such that

P̄ S̄ = T

I 0

0 R

T−1 (2.28)

where all the eigenvalues of R are the eigenvalues of P̄ S̄ with magnitude less than 1.

Let

M = lim
k→∞

(
P̄ S̄
)k

= T

I 0

0 0

T−1 (2.29)

27

Define η(t)∗ = limk→∞ η(t, k); then by update (2.27),

η(t)∗ = lim
k→∞

(P̄ S̄)kη(t, 0) = T

I 0

0 0

T−1η(t, 0) (2.30)

Further, by the definition of η, one has

lim
k→∞

z(t, k) = lim
k→∞

η(t, k) + z∗ = η(t)∗ + z∗ (2.31)

Equation (2.31) verifies the existence of limk→∞ z(t, k), namely z(t) as defined in

(2.24). As a consequence, Q̄z(t) = limk→∞ Q̄
k+1x(t) = z(t). To further show that

z(t) = 1m⊗ z(t) and for ∀t, z(t) is a solution to Ax = b, recall from equations (2.28)

and (2.30) that

P̄ S̄η(t)∗ = T

I 0

0 R

I 0

0 0

T−1η(t, 0) = η(t)∗ (2.32)

Thus, by Lemma 2.4.1 (b), one has η(t)∗ = 1m ⊗ η(t) and for ∀t, η(t) ∈ kerA. This,

along with the definition of z∗ yields

z(t) = η(t)∗ + z∗ = 1m ⊗ (η(t) + z∗) = 1m ⊗ z(t) (2.33)

Because z∗ ∈ Rn is a solution to Ax = b and η(t) ∈ kerA, it follows that z(t) is also

a solution to Ax = b. This completes the proof.

Proof of x(t)→ z(t).

Proposition 2.4.2 For update (2.22), given any initial x(0) and the z(t) defined in

(2.24), there always exists a positive constant β independent ot t such that

‖x(t)− z(t)‖2 ≤
β

t+1
(2.34)

Proof of Proposition 2.4.2: Pre-multiply equation (2.22) on the left by Q̄k, leading

to

Q̄kx(t+ 1) = Q̄k+1x(t)− 1

t+1
Q̄kP̄ sgn (x(t)) (2.35)

28

By taking k → ∞ and recalling from definition (2.24) that z(t) = limk→∞ Q̄
kx(t) =

limk→∞ Q̄
k+1x(t), one has

z(t+ 1) = z(t)− 1

t+1
lim
k→∞

Q̄kP̄ sgn (x(t)) (2.36)

Recall that Q̄ = I − P̄ + P̄ S̄ and P̄ 2 = P̄ (a property of projection matrices); then

lim
k→∞

Q̄kP̄ = lim
k→∞

(I − P̄ + P̄ S̄)tP̄

= lim
k→∞

(I − P̄ + P̄ S̄)(k−1)(I − P̄ + P̄ S̄)P̄

= lim
k→∞

(I − P̄ + P̄ S̄)(k−1)P̄ S̄P̄

= lim
k→∞

(I − P̄ + P̄ S̄)(k−2)(P̄ S̄)2P̄

= lim
k→∞

(P̄ S̄)kP̄ = MP̄ (2.37)

where M is defined in (2.29). Using this, equation (2.36) can be further written as

z(t+ 1) = Q̄z(t)− 1

t+1
MP̄ sgn (x(t)) (2.38)

Define e(t) = x(t)− z(t). Subtracting (2.38) from (2.22) yields

e(t+ 1) = Q̄e(t)− 1

t+1
(I −M)P̄ sgn (x(t)) (2.39)

Now, recall from Remark 2.4.1 and Proposition 2.4.1 that xi(t) and z(t) are solutions

to Aixi = bi, which implies that Pi(xi(t)− z(t)) = xi(t)− z(t), that is, P̄e(t) = e(t).

Thus, by using (2.37) in reverse,

Me(t) = MP̄e(t) = lim
k→∞

Q̄kP̄e(t)

= lim
k→∞

Q̄ke(t) = lim
k→∞

Q̄k(x(t)− z(t))

= z(t)− z(t) = 0

Bringing this, equations (2.28) and (2.29) into update (2.39), yields

e(t+1) = (I − P̄ + P̄ S̄ −M)e(t)− I−M
t+1

P̄ sgn (x(t))

= P̄ S̄e(t)− 1

t+1
(I −M)P̄ sgn (x(t))

= T

0 0

0 R

T−1e(t)− I−M
t+1

P̄ sgn (x(t)) (2.40)

29

Since all eigenvalues of R have magnitude strictly less than one, there must exist a

scalar 0 < ρ < 1 such that

‖e(t+ 1)‖2 ≤ ρ‖e(t)‖2 +
ce
t+1

(2.41)

where ce > 0 is the upper bound of ‖(I −M)P̄ sgn (x(t))‖2.

Now, given equation (2.41), for t = 2τ , τ = 0, 1, 2, · · · , one has

‖e(2τ)‖2 ≤ ρ2τ‖e(0)‖2 + ce

2τ∑
j=1

ρ2τ−j

j + 1

= ρ2τ‖e(0)‖2 + ceρ
τ

τ∑
j=1

ρτ−j

j+1
+ce

2τ∑
j=τ+1

ρ2τ−j

j+1

≤ ρ2τ‖e(0)‖2 + ce
ρτ

1− ρ
+ ce

1

τ + 2

1

1− ρ
(2.42)

For t = 2τ + 1, τ = 0, 1, 2, · · · , one has

‖e(2τ + 1)‖2 ≤ ρ‖e(2τ)‖2 +
ce

2τ + 2

≤ ρ2k+1‖e(0)‖2 + ce
ρτ+1

1− ρ
+ ρce

1

τ + 2

1

1− ρ
+ ce

1

2τ + 2
(2.43)

Since e(t) = x(t) − z(t), by combining equations (2.42) and (2.43), for ∀t > 0, it is

evident there must exist a positive constant β such that (2.34) is true. This completes

the proof.

Proof of z(t)→ x∗.

Proposition 2.4.3 Suppose the minimum l1-norm solution x∗ to problem (2.20) is

unique. Let x∗ , 1⊗x∗. Then for update (2.22), given any initial x(0), and the z(t)

defined in (2.24), one has

‖z(t)− x∗‖2 → 0 as t→∞ (2.44)

Before proving Proposition 2.4.3, we define x∗ = 1m ⊗ x∗ where x∗ is the unique

minimum l1-norm solution defined in (2.20). Let ε(t) = z(t) − x∗ and define a

30

function V (ε(t)) , ε(t)>ε(t). Let Π̄ , Π⊗ In ∈ Rmn×mn be a diagonal matrix, where

Π = diag {π1, · · · , πm} and [π1 π2 · · · πm] = π> = limk→∞
(
1>mS

k
)
∈ R1×m. Then,

we introduce the following two lemmas to summarize some useful results with proofs

provided in the Appendix.

Lemma 2.4.2 The following statements hold:

(a) The row vector π> is a left eigenvector of S corresponding to eigenvalue 1, Π̄ is

positive definite and

ε(t)>MP̄ sgn (x(t)) = ε(t)>Π̄ sgn (x(t))

(b) [sgn (x(t))]> Π̄(x(t)− x∗) ≥ ‖Π̄x(t)‖1 − ‖Π̄x∗‖1.

(c) ‖Π̄z(t)‖1 =
1>mπ

m
‖z(t)‖1 and ‖Π̄x∗‖1 =

1>mπ

m
‖x∗‖1.

(d) |‖Π̄x(t)‖1 − ‖Π̄z(t)‖1| ≤ max{πi}
√
mnβ

t+1
,

where mn is the dimension of x(t) and z(t), with m the number of agents in the

network, n the dimension of each xi(t), zi(t).

Lemma 2.4.3 Suppose the minimum l1-norm solution x∗ of the linear equation Ax =

b is unique. Further, suppose ‖ε(t)‖2 ≤ ∆ is bounded, where ε(t) = z(t) − x∗, then

there exists a positive constant α such that ∀t > 0,

‖z(t)‖1 − ‖x∗‖1 ≥ αε(t)>ε(t) = αV (ε(t)). (2.45)

Proof of Proposition 2.4.3: By (2.37), subtracting x∗ from both sides of equation

(2.36) yields

ε(t+ 1) = ε(t)− 1

t+1
MP̄ sgn (x(t)). (2.46)

31

Based on (a) of Lemma 2.4.2, one has

V (ε(t+ 1))

=

[
ε(t)− 1

t+1
MP̄ sgn (x(t))

]> [
ε(t)− 1

t+1
MP̄ sgn (x(t))

]
=V (ε(t))− 2

t+1
ε(t)>MP̄ sgn (x(t)) +

1

(t+1)2
‖MP̄ sgn (x(t))‖22

≤V (ε(t))− 2

t+1
ε(t)>Π̄sgn (x(t)) +

ψ

(t+1)2

=V (ε(t))− 2

t+1
sgn (x(t))>Π̄(z(t)− x∗) +

ψ

(t+1)2

=V (ε(t))− 2

t+1
sgn (x(t))>Π̄(x(t)− x∗)

− 2

t+1
sgn (x(t))>Π̄(z(t)− x(t)) +

ψ

(t+1)2

≤V (ε(t))− 2

t+1
sgn (x(t))>Π̄(x(t)− x∗) +

2γ̄β

(t+1)2
+

ψ

(t+1)2
(2.47)

where ψ and γ̄ are positive constants such that for all ∀x(t), ‖MP̄ sgn (x(t))‖2
2 ≤ ψ

and ‖Π̄sgn (x(t))‖2 ≤ γ̄ (the last inequality in (2.47) results from (2.34) of Proposition

2.4.2). Then, by bringing (b), (c) and (d) of Lemma 2.4.2 into equation (2.47), one

has

V (ε(t+ 1))− V (ε(t))

≤ − 2

t+1

(
‖Π̄x(t)‖1 − ‖Π̄x∗‖1

)
+

2γ̄β

(t+1)2
+

ψ

(t+1)2

=− 2

t+1

(
‖Π̄z(t)‖1−‖Π̄x∗‖1−

(
‖Π̄z(t)‖1−‖Π̄x(t)‖1

))
+

2γ̄β + ψ

(t+1)2

≤ − 2

t+1

(
‖Π̄z(t)‖1 − ‖Π̄x∗‖1 −max{πi}

√
mnβ

t

)
+

2γ̄β + ψ

t2

≤ − 2

t+1

1>mπ

m
(‖z(t)‖1−‖x∗‖1) + max{πi}

2
√
mnβ

(t+1)2
+

2γ̄β + ψ

(t+1)2

= − 2γ

t+1
(‖z(t)‖1 − ‖x∗‖1) +

ψ̄

(t+1)2
(2.48)

where γ = 1>mπ
m

and ψ̄ = 2 max{πi}
√
mnβ + 2γ̄β + ψ.

32

To continue, since z(t) = 1m ⊗ z(t) and x∗ = 1m ⊗ x∗, where z(t) is a solution

to Ax = b and x∗ is the unique minimum l1-norm solution to Ax = b, one has

‖z(t)‖1 − ‖x∗‖1 ≥ 0. This taken with (2.48) implies

V (ε(t+ 1)) ≤ V (ε(t)) +
ψ̄

(t+1)2
(2.49)

Since ψ̄ is a constant, and
∞∑
t=1

1

t2
< ∞, then V (ε(t)) must be bounded. Therefore,

there exists a constant ∆ such that ‖ε(t)‖2 ≤ ∆. Then, based on Lemma 2.4.3, by

introducing (2.45) to (2.48), one has :

V (ε(t+ 1)) ≤ (1− 2γα

t+1
)V (ε(t)) +

ψ̄

(t+1)2
(2.50)

The inequality (2.50) can be ‘solved’ by writing it in summation form:

V (ε(t+ 1)) ≤ ψ̄

(t+1)2
+

t∑
τ=2

[
ψ̄

(τ − 1)2

t∏
k=τ

(1− 2γα

k
)

]
(2.51)

Define F (τ0, t) =
t∏

k=τ0

(1− 2γα

k
), where τ0 is sufficiently large such that 0 < 1− 2γα

k
< 1

for ∀k ≥ τ0. Then

logF (τ0, t) =
t∑

k=τ0

log(1− 2γα

k
)

Since 0 < 1− 2γα
k
< 1 for ∀k ≥ τ0, it follows that log(1− 2γα

k
) ≤ −2γα

k
. Thus,

logF (τ0, t) ≤ −2γα
t∑

k=τ0

1

k
< −2γα

∫ t

k=τ0

1

k + 1

= −2γα log

(
t+ 1

τ0 + 1

)
.

In addition, since τ ≥ 2 and

τ0−1∏
k=τ

(1 − 2γα

k
) is a product of finite terms, with each

term being bounded by [1− γα, 1], this product must be also bounded by a certain

φ > 0; then,

t∏
k=τ

(1− 2γα

k
) =

τ0−1∏
k=τ

(1− 2γα

k
)F (τ0, t)

< φe
−2γα log(t+1

τ0+2
)

= φ

(
τ0 + 2

t+ 1

)2γα

(2.52)

33

Using equation (2.52) in (2.51), one has

V (ε(t+ 1)) <
ψ̄

t2
+

t∑
τ=2

[
ψ̄

(τ − 1)2
φ

(
τ0 + 2

t+ 1

)2γα
]

=
ψ̄

t2
+

(
τ0 + 2

t+ 1

)2γα

· φ
t∑

τ=2

ψ

(τ − 1)2
(2.53)

Since α, γ, φ and ψ̄ are positive constants, as t→∞, one has
ψ̄

t2
→ 0,

(
τ0+2
t+1

)2α → 0

and φ
t∑

τ=2

ψ̄

(τ − 1)2
is bounded. Thus,

V (ε(t+ 1))→ 0 as t→∞.

That is, ε(t) = (z(t)− x∗)→ 0 as t→∞. This completes the proof.

Proof of Theorem 2.4.1.

Based on the Proportion 2.4.2 and 2.4.3, one has for any initial x(0), update

(2.22) will drive x(t) → x∗ as t → ∞. Equivalently, by update (2.21), the states

xi(t), i = 1, · · · ,m in all agents will converge to x∗. This completes the proof.

2.4.3 Validation

Here, we describe the numerical simulations in MATLAB to validate the main

result, noting a particular representative example. The simulations were conducted

for a number of randomly generated networks with randomly generated linear equa-

tions. More precisely, we employ a directed, strongly connected network of m = 16

agents, where any two agents are connected with a probability of 0.4. Let sij = 1
di

.

Let each agent knows a Ai ∈ R2×33 and bi ∈ R2 with entries randomly selected from

the interval [0, 1]. The equation set Aix = bi, i = 1, · · · , 16 has a unique mini-

mum l1 norm solution x∗ with probability 1. Define V (t) , ‖x(t) − x∗‖2
2, where

x(t) = col {x1(t), · · · , xm(t)} and x∗ = 1⊗ x∗.

34

Figure 2.3. Convergence of the distributed update (2.21) under a
directed, strongly connected network of 16 agents.

The curves shown in Figure 2.3 are generally representative of the convergence

behavior in the vast majority of simulations we undertook but depict just one example.

Comparisons are given for the algorithm proposed in this section and the one proposed

in [12], as revealed by the results, the distributed update (2.21) is able to drive the

states xi(t) in all agents to the unique minimum l1 norm solution x∗ of the equation

set, which validates Theorem 2.4.1. On the contrary, the algorithm introduced in [12]

for solving linear equations is not guaranteed to achieve x∗.

Appendix

Proof of Lemma 2.4.1

(a) Since S is a row stochastic matrix corresponding to the weighted adjacency matrix

of a strongly connected graph, by the Perron-Frobenius theorem, S has a simple

eigenvalue equal to 1 and all the other eigenvalues of S have magnitude strictly

less than 1. Now let ω> =
[
ω1, · · · , ωm

]
6= 0 be a normalized left Perron-Frobenius

eigenvector3 of S. Let Ω = diag {ω1, · · · , ωm} and H = Ω−S>ΩS. Since Ω is diagonal

3A Perron-Frobenius eigenvector is an eigenvector of S corresponding to the 1 eigenvalue, fur-

thermore it is positive with entries summing to 1.

35

and positive; and all elements of S are non-negative, then all the off-diagonal elements

of H are non-positive. Further note that the row sums of H have the property:

H · 1m = (Ω− S>ΩS)1m

= π − S>Ω1m

= π − S>π = 0

Thus, H must be a Laplacian matrix of a certain graph so that H = Ω− S>ΩS ≥ 0.

Recall that the graph G for our problem is strongly connected, which means πi > 0,

thus, Ω is positive. By left/right multiplying by Ω−1/2 in the expression for H, one

has

Ω−1/2S>ΩSΩ−1/2 ≤ Im. (2.54)

It follows that

σmax(Ω̄−1/2S̄>Ω̄S̄Ω̄−1/2) ≤ 1 (2.55)

where Ω̄ = Ω ⊗ In, S̄ = S ⊗ In and σmax(·) denotes the largest singular value of a

matrix. Note that Pi is the projection to kerAi and P̄ = diag {P1, · · · , Pm}, then

one must have σmax(P) ≤ 1. This, along with (2.55), leads to

σmax(P̄ Ω̄−1/2S̄>Ω̄S̄Ω̄−1/2P̄) ≤ 1

Furthermore, since Ω̄ = Ω⊗In where Ω is a diagonal matrix and P̄ is a block-diagonal

matrix with each block Pi ∈ Rn×n, then one has P̄ Ω̄−1/2 = Ω̄−1/2P̄ . That is

σmax

(
(Ω̄−1/2P̄ S̄>Ω̄1/2)(Ω̄1/2S̄P̄ Ω̄−1/2)

)
≤ 1 (2.56)

This indicates that all the eigenvalues of Ω̄1/2S̄P̄ Ω̄−1/2 has magnitude less than or

equal to one. Since for all the eigenvalues, we have λ(P̄ S̄) = λ(S̄P̄) = λ(Ω̄1/2S̄P̄ Ω̄−1/2),

this completes the proof of statement (a).

(b) Note that the equality |λ(P̄ S̄)| = 1 holds if and only if there exist a vector u 6= 0

such that

P̄ S̄u = λ?u with |λ?| = 1 (2.57)

36

Thus, S̄u 6= 0 and

Ω̄1/2S̄P̄ Ω̄−1/2Ω̄1/2S̄u = λ?Ω̄1/2S̄u. (2.58)

Let q = Ω̄1/2S̄u, since P̄ Ω̄−1/2 = Ω̄−1/2P̄ , then (2.58) can be rewritten as

Ω̄1/2S̄Ω̄−1/2P̄q = λ?q (2.59)

The equality of (2.59) holds only if

‖Ω̄1/2S̄Ω̄−1/2P̄q‖ = ‖λ?q‖ = |λ?| · ‖q‖ = ‖q‖ (2.60)

Recall that σmax(P̄) ≤ 1 and σmax(Ω̄1/2S̄Ω̄−1/2) ≤ 1, thus,

‖Ω̄1/2S̄Ω̄−1/2P̄q‖ ≤ ‖P̄q‖ ≤ ‖q‖. (2.61)

Then, (2.60) holds if and only if ‖P̄q‖ = ‖q‖. Further, recall that P̄ is a projection

matrix; then additionally

P̄q = q (2.62)

Bringing (2.62) into (2.59) leads to

Ω̄1/2S̄Ω̄−1/2q = λ?q, with |λ?| = 1. (2.63)

Note that Ω̄1/2S̄Ω̄−1/2 and S̄ are similar matrices with identical eigenvalues. Further,

recall the definition of S̄ = S⊗In and the fact that |λ(S)| = 1 if and only if λ(S) = 1,

thus, one has λ? = 1. Bringing this into equation (2.57) leads to

P̄ S̄u = u (2.64)

To continue, recall that q = Ω̄1/2S̄u and P̄ Ω̄1/2 = Ω̄1/2P̄ . Then equation (2.62)

implies

Ω̄1/2P̄ S̄u = P̄ Ω̄1/2S̄u = Ω̄1/2S̄u (2.65)

Since Ω̄1/2 is positive definite, one has

P̄ S̄u = S̄u (2.66)

37

Equations (2.64) and (2.66) implies

S̄u = u. (2.67)

Thus, u = 1m ⊗ u, u ∈ Rn. Bringing (2.67) back to (2.64) yields P̄u = u. This,

along with u = 1m ⊗ u implies that u ∈
⋂m
i=1 kerAi = kerA. Since Ax = b is

under-determined, kerA 6= ∅ and such u exists. Till now, we have validated that

|λ(P̄ S̄)| = 1, which happens if and only if P̄ S̄u = λ?u with u = 1m ⊗ u, u ∈ kerA,

and λ? = 1.

Now, we prove that the eigenvalues of P̄ S̄ equal to 1 must be non-defective by

contradiction. Suppose the matrix P̄ S̄ has defective eigenvalues equal to 1. Then so

must the matrix Ω̄1/2S̄P̄ Ω̄−1/2 since they are similar. From the definition of defective

eigenvalues, there always exist vectors v1 6= v2, with ‖v1‖ = ‖v2‖ = 1, and v>1 v2 ≥ 0

such that

(Ω̄1/2S̄P̄ Ω̄−1/2 − I)v1 = 0 (2.68)

(Ω̄1/2S̄P̄ Ω̄−1/2 − I)v2 = v1 (2.69)

Since ‖v1‖ = ‖v2‖ = 1 and v1 6= v2, one can always find a vector ‖v̂‖ = 1 such that

v̂ = r1v1 + r2v2 with r1 + r2 > 1. Then one has

‖Ω̄1/2S̄P̄ Ω̄−1/2v̂‖
‖v̂‖

= ‖Ω̄1/2S̄P̄ Ω̄−1/2(r1v1 + r2v2)‖

= ‖(r1 + r2)v1 + r2v2‖ (2.70)

Recall that r1 > 0, r2 > 0 and v>1 v2 ≥ 0, then

‖(r1 + r2)v1 + r2v2‖ ≥ ‖(r1 + r2)v1‖ = r1 + r2 > 1.

This indicates σmax

(
Ω̄1/2S̄P̄ Ω̄−1/2

)
> 1, which contradicts with equation (2.56).

Thus, the eigenvalues of P̄ S̄ equal to 1 must be non-defective. This completes the

proof.

Proof of Lemma 2.4.2

(a) Since the matrix S is row stochastic, it has an eigenvalue equal to 1. Let π> =

38

limk→∞
(
1>mS

k
)
; then one has π>S = limk→∞

(
1>mS

k+1
)

= π>. Thus, π> is a left

eigenvector of S corresponding to eigenvalue 1. Further since S is primitive (due to

the strong connectedness of the graph), then by the Perron-Frobenius theorem [78] ,

all entries of π are positive and the corresponding eigenvalue at 1 is simple.

Now, recall that z(t) = 1m ⊗ z(t), x∗ = 1m ⊗ x∗, thus, ε(t) = z(t) − x∗ =

1m ⊗ (z(t) − x∗) = 1m ⊗ ε(t). Furthermore, since both z(t) and x∗ are solutions to

Ax = b, one has Piε(t) = ε(t), that is,
(
v> ⊗ ε(t)>

)
P̄ =

(
v> ⊗ ε(t)>

)
, for any v ∈ Rm.

With this in mind, by the definition of M in (2.29), one has,

ε(t)>MP̄ sgn (x(t))

= lim
k→∞

(
1>m ⊗ ε(t)>

)
(P̄ S̄)kP̄ sgn (x(t))

= lim
k→∞

(
1>m ⊗ ε(t)>

)
(S ⊗ In)(P̄ S̄)(k−1)P̄ sgn (x(t))

= lim
k→∞

(
1>mS ⊗ ε(t)>

)
(P̄ S̄)(k−1)P̄ sgn (x(t)>)

= lim
k→∞

(
1>mS

k ⊗ ε(t)>
)
P̄ sgn (x(t))

=
(
π> ⊗ ε(t)>

)
sgn (x(t))

= ε(t)>Π̄ sgn (x(t)) (2.71)

This completes the proof.

(b) Consider a function G(ξ) = ‖Π̄ξ‖1, where ξ ∈ Rmn. G(ξ) is convex because the

l1-norm is convex. It follows that

[
sgn (Π̄ξ1)

]>
Π̄(ξ1 − ξ2) =

[
∂G(ξ)

∂ξ

∣∣∣∣
ξ=ξ1

]>
(ξ1 − ξ2)

≥ G(ξ1)−G(ξ2) = ‖Π̄ξ1‖1 − ‖Π̄ξ2‖1

Recall that Π̄ is a diagonal matrix with all entries being positive, which means

sgn (Π̄ξ1) = sgn (ξ1); then by letting x(t) = ξ1 and x∗ = ξ2 one has

[sgn (x(t))]> Π̄(x(t)− x∗) ≥ ‖Π̄x(t)‖1 − ‖Π̄x∗‖1 (2.72)

This completes the proof.

39

(c) Since z(t) = 1m ⊗ z(t), x∗ = 1m ⊗ x∗, by the definition of Π̄, one has

‖Π̄z(t)‖1 = ‖ (diag {π1, π2, · · · , πm} ⊗ In) (1m ⊗ z(t)) ‖1

= ‖col {π1, π2, · · · , πm} ⊗ z(t)‖1 = ‖π ⊗ z(t)‖1

= 1>mπ‖z(t)‖1 =
1>mπ

m
‖z(t)‖1 (2.73)

Similarly,

‖Π̄x∗‖1 =
1>mπ

m
‖x∗‖1 (2.74)

This completes the proof.

(d) Let [·]j denote the jth entry of a vector. Using the Cauchy-Schwarz inequality,

one has

|‖Π̄x(t)‖1 − ‖Π̄z(t)‖1| =

∣∣∣∣∣∣
mn∑
j=1

|[Π̄x(t)]j | −
mn∑
j=1

|[Π̄z(t)]j |

∣∣∣∣∣∣
=

mn∑
j=1

∣∣|[Π̄x(t)]j | − |[Π̄z(t)]j |
∣∣ ≤ mn∑

j=1

∣∣[Π̄x(t)]j − [Π̄z(t)]j
∣∣

=

mn∑
j=1

∣∣[Π̄e(t)]j
∣∣ ≤ max{πi}

mn∑
j=1

∣∣[e(t)]j
∣∣ · 1

≤max{πi}

mn∑
j=1

∣∣[e(t)]j
∣∣2 1

2
mn∑
j=1

12

 1
2

= max{πi}
√
mn‖e(t)‖2 = max{πi}

√
mnβ

t+1

This completes the proof.

Proof of Lemma 2.4.3

If z(t)− x∗ = ε(t) = 0, then V (ε(t)) = 0. Thus, (2.45) holds. If ε(t) 6= 0, recall that

z(t) = 1m⊗z(t), x∗ = 1m⊗x∗, then, ε(t) = z(t)−x∗ = 1m⊗ (z(t)−x∗) = 1m⊗ ε(t).

Since both z(t) and x∗ are solutions to Ax = b, one has ε(t) ∈ kerA. Let κ be a

positive scalar whose value can be made arbitrarily small. Let

h , κ · ε(t)

‖ε(t)‖1

, (2.75)

40

obviously, ‖h‖1 = κ and h ∈ kerA. Since ‖ · ‖1 is piece-wise linear, and given that x∗

is fixed, then κ can always be chosen small enough such that for any h in the form of

(2.75), the function value of ‖x‖1 varies linearly along the line segment {x∗+µh | µ ∈

(0, 1]}. That is, for y = µh with µ ∈ (0, 1], one has sgn (x∗ + y) = sgn (x∗ + h) and

‖x∗ + y‖1 − ‖x∗‖1 = sgn (x∗ + h)>y. (2.76)

Recall that y
‖y‖1 = h

‖h‖1 , then equation (2.76) can be further written as

‖x∗ + y‖1 − ‖x∗‖1 = η(x∗, h)‖y‖1. (2.77)

where

η(x∗, h) =
sgn (x∗ + h)>h

‖h‖1

∈ R. (2.78)

Since y ∈ kerA and x∗ is the unique minimum l1-norm solution to Ax = b, from

(2.77), one has η(x∗, h) > 0. Further since the h in (2.78) is chosen from a compact

set such that h ∈ kerA and ‖h‖1 = κ, the values of η(x∗, h) must have a lower bound

η̂, which is strictly positive. Thus, from (2.77), one has

‖x∗ + y‖1 − ‖x∗‖1 ≥ η̂‖y‖1. (2.79)

Based on inequality (2.79), we will consider two possibilities, depending on the mag-

nitude of ‖ε(t)‖1. First, if ‖ε(t)‖1 ≤ κ, that is ‖ε(t)‖1
κ
≤ 1, we let µ = ‖ε(t)‖1

κ
, which

leads to y = µh = ‖ε(t)‖1
κ
· κ ε(t)
‖ε(t)‖1 = ε(t). Then from (2.79), one has

‖z(t)‖1 − ‖x∗‖1 = ‖x∗ + ε(t)‖1 − ‖x
∗‖1 ≥ η̂‖ε(t)‖1. (2.80)

Second, if ‖ε(t)‖1 > κ, it follows (because of (2.75) and y = µh) that ε(t) = ‖ε(t)‖1
µκ

y,

where ‖ε(t)‖1
µκ

> 1. Then due to the convexity of ‖ · ‖1, one has

‖z(t)‖1 − ‖x∗‖1 =

∥∥∥∥x∗ +
‖ε(t)‖1

µκ
y

∥∥∥∥
1

− ‖x∗‖1

≥ ‖ε(t)‖1

µκ
(‖x∗ + y‖1 − ‖x

∗‖1) ≥ ‖ε(t)‖1

µκ
η̂‖y‖1

= η̂‖ε(t)‖1. (2.81)

41

where the last equality follows because y = µh and ‖h‖1 = κ. Then equations (2.80)

and (2.81), along with the fact that z(t) = 1m ⊗ z(t), x∗ = 1m ⊗ x∗, lead to

‖z(t)‖1 − ‖x∗‖1 ≥ η̂‖ε(t)‖1.

Recall that ‖ε(t)‖1 ≥ ‖ε(t)‖2 [79] and ‖ε(t)‖2 ≤ ∆, then

‖z(t)‖1 − ‖x∗‖1 ≥ η̂
‖ε(t)‖2

2

‖ε(t)‖2

≥ η̂

∆
V (t)

Let α =
η̂

∆
. This completes the proof.

42

3. SCALABLE, DISTRIBUTED ALGORITHMS FOR

SOLVING LINEAR EQUATIONS VIA

DOUBLE-LAYERED NETWORKS1

3.1 Introduction

In Chapter 2, we have introduced the consensus-based distributed algorithms for

solving linear equations. In this chapter, we introduce another type of coordination

that can further improve the scalability of distributed algorithms for solving linear

equations. Actually, elegant and powerful as the idea of consensus is, there has

been rather limited application of consensus-based algorithms into situations when

coordination among agents requires more than reaching consensus, especially when

conservation requirements are involved. Different from consensus, conservation is a

constraint that the sum of certain functions of agents’ states needs to be constant [31].

Various types of conservation arise in many engineering applications, including con-

servation of resources in distributed allocation [80], conservation of total energy in

controlling hybrid vehicles [81], conservation of flows in traffic control [82], conserva-

tion of linear and angular momentum in formation control, and so on. Recognition

of the potential of conservation in complementing consensus has motivated us to in-

tegrate both consensus and conservation together in one framework with the goal of

combining their advantages together for achieving efficiency and scalability of dis-

tributed coordination.

One natural way to achieve such integration is by layered coordination [83, 84],

which has been proven to be a powerful tool in many similar situations. For example,

practical tasks involving a large number of robots can be achieved by coordination in

the planning layer, executive layer and/or behavior layer [85]. Complicated optimiza-

1Resarch in this section has been published in the papers [6] with me as the leading author.

43

tion problems can be solved by coordination through layers, each of which iterates

on its own subsets of decision variables using local information to achieve individ-

ual optimality [86]. Deep learning algorithms can be established by grouping neural

nodes into multiple layers to achieve different functions including feature extrac-

tion, collection, comparison, and fusion [87]. Compared with single-layered networks,

double-layered networks provide a natural description for quantifying the intercon-

nectivity between different categories of connections [88], improve accuracy [89] and

efficiency [90]. This has motivated us to employ double-layered frameworks for the

integration of consensus and conservation.

In this chapter, we consider a double-layered multi-agent network composed of

clusters where each cluster consists of one aggregator and a network of agents (as

will be detailed later in Fig. 3.1). Double-layered structures have played a signifi-

cant role in distributed consensus [91–95] as well as distributed synchronization under

communication delays or disturbances [96–98]. By selecting one or more agents as

leaders from each cluster and sparsely connecting these leaders, clusters are able to

coordinate for achieving unconstrained consensus [93–95]. This approach is, however,

not directly applicable to developing distributed linear equation solvers, the goal of

which is not only to achieve a consensus but a consensus subject to a group of linear

constraints. Thus, we introduce one aggregator in each cluster, which has no compu-

tational burden but is able to collect and distribute information within the cluster.

Information exchange between clusters is achieved through the upper-level network

of aggregators. Such a technique of mixed use of heterogeneous agents has proved its

efficiency in mobile communication networks [99]. The double-layered framework en-

ables achieving two different types of coordination simultaneously, namely, one layer

taking care of consensus while the other for conservation. This allows us to develop

distributed algorithms for solving linear equations, which outperform existing dis-

tributed linear equation solvers [12, 13, 16, 62], in a number of aspects, including but

not limited to the following:

44

• each agent does not have to know as much as a complete row or column of the

overall equation;

• each agent only needs to control as few as two scalar states when the number

of clusters and the number of agents in each cluster (rather than in the whole

network), are equal to the number of rows and columns of the overall equation,

respectively;

• the dimensions of agents’ state vectors do not have to be the same, which

is in contrast to algorithms based on the idea of standard consensus. These

consensus-based algorithms inherently require all agents’ states to be of the

same dimension [12,13,16,62];

3.2 Problem Formulation

Consider a double-layered multi-agent network consisting of a number of c clus-

ters. Each cluster i is composed of one aggregator denoted by i and a number of

ci agents denoted by i1, i2, · · · , ici . An aggregator is able to collect and distribute

information with all agents in the same cluster. Further, we suppose each aggregator

i is also able to receive information from certain other aggregators which are called

i’s aggregator-neighbors and denoted by Ni; also, we assume i ∈ Ni. The neighbor

relations of aggregators can be characterized by a c-node graph G, in which there is

an arc from ī to i if and only if ī ∈ Ni. Here, aggregators, which are not required

to perform any computations, are introduced only for the purpose of information ex-

change among clusters including collecting information and distributing information

within the cluster where the aggregator is located. In order to minimize the informa-

tion overheads and the work load of aggregators, we do not require all information

in a cluster to be shared with other clusters through communications between aggre-

gators, as will be seen later, in Remark 3.3.1 and 3.4.1. Within each cluster i, each

agent ij, j = 1, · · · , ci, is able to receive information from certain agents, which are

called agent ij’s agent-neighbors denoted by Nij, specially ij ∈ Nij. The neighbor

45

relations within cluster i can be characterized by a ci-node graph Gi, in which there

is an arc from ij̄ to ij if and only if ij̄ ∈ Nij. Suppose all Gi, i = 1, 2, · · · , c and

G are connected and bidirectional2. One example of such a double-layer multi-agent

network is shown in Fig. 4.1. Consistently with the description above, we emphasize

that no aggregator is a node of Gi and no agent is a node of G.

Cluster 1

𝑖 Aggregator node of
Cluster 𝒊

Agent communication

Cluster communication

Cluster 2

1

3

2

Cluster 3

𝑖𝑗 Agent 𝒋 of Cluster 𝒊

State Aggregation

Figure 3.1. An Example of a Double-layered Multi-Agent Network

Consider an overall linear equation

Ax = b

where A ∈ Rm×n and b ∈ Rm. Suppose Ax = b has at least one solution. Suppose

each agent ij knows part of the overall linear equation (in accord with rules given in

the next section), which might not be as much as a complete row or column of A. Let

each agent ij control a state vector xij(t), while the cluster aggregators do not control

any state and only play the role of providing communications. The problem of

interest is to develop a distributed update for each agent such that all xij(t) converge

to constant vectors x∗ij, j = 1, 2, · · · , ci and i = 1, 2, · · · , c, which jointly, via an

arrangement set out in the next section, form a solution to Ax = b.

2Here we use the term bidirectional instead of undirected to emphasize the two-way nature of

information flows.

46

3.3 Global-Consensus and Local-Conservation

Suppose each agent ij in a cluster i knows Aij ∈ Rmi×nij and bij ∈ Rmi such that

the collection of them[
Ai1 Ai2 · · · Aici

]
= Ai ∈ Rmi×n,

ci∑
j=1

bij = bi ∈ Rmi (3.1)

are a block row of the overall equation, where

A =

A1

A2

...

Ac

 , b =

b1

b2

...

bc

 . (3.2)

Here, bi result from a partition of b. The bij could be any vectors that satisfy the

equation (3.1). One simple choice of such bij is obtained by setting one bij equal to

bi and the others equal to zero. In addition, one has

ci∑
j=1

nij = n, i = 1, 2, · · · , c,
c∑
i=1

mi = m. (3.3)

Note that nij = 1 and mi = 1 are permitted, but are of course not required. Con-

sistent with the set-up of Fig. 3.1, an example of how each agent’s locally available

information Aij, bij is related to the overall equation Ax = b is shown in Fig. 3.2.

Suppose each agent ij controls a state vector xij(t) ∈ Rnij . In this section, we aim

to devise a distributed update for each agent ij’s state xij(t) to converge exponentially

fast to a constant vector x∗ij such that:

• All x∗ij, j = 1, 2, · · · , ci within each cluster i, i = 1, 2, · · · , c, satisfy the following

Local Conservation:

ci∑
j=1

(Aijx
∗
ij − bij) = 0. (3.4)

• All x∗i = col {x∗i1, · · · , x∗ici}, i = 1, 2, · · · , c, among all clusters in the network

reach a consensus x∗, that is,

Global Consensus: x∗1 = x∗2 = · · · = x∗c = x∗ (3.5)

47

Figure 3.2. An example of the relation between agents’ locally avail-
able information and the overall equation for the network of Fig. 3.1.
The various sub-matrices and sub-vectors do not have to be scalar.

From (3.1) and (3.4) one has Aix
∗
i = bi. This and the global consensus in (3.5) imply

Ax∗ = b. All x∗ij satisfying the local conservation (3.4) and the global consensus (3.5)

are said to form a consensus-conservation solution x∗ to Ax = b. Note that however

large the matrix A may be, it is always possible to conceive of a network structure

in which the state vector size and the degree of every agent in each subnetwork are

bounded independently of the size of A. This is a crucial scalability property.

3.3.1 The Update

Let xi(t) ∈ Rn denote a column collection of agent states in cluster i, i =

1, 2, · · · , c, that is,

xi(t) = col {xi1(t), · · · , xici(t)}. (3.6)

Aggregator i, through communication with the agents ij maintains a copy of xi(t).

This vector of course does depend on the size of A; it is inevitable that if one is solving

Ax = b some part of the network must be designed to hold the solution x. In our

case, all aggregators will hold the solution in the limit as t goes to infinity. To achieve

a consensus-conservation solution x∗, it is sufficient to achieve Aixi(t) = bi while all

xi(t), i = 1, 2, · · · , c, reach a consensus. In order to allow the aggregator to decompose

48

the global consensus of xi(t) into relations involving agents’ states, we let Eij ∈ Rnij×n

denote a matrix consisting of rows from In such that col {Eij, j = 1, 2, · · · , ci} = In

and

Aij = AiE
′
ij.

Then one has

xij(t) = Eijxi(t).

It follows that all xi(t) reaching a consensus is equivalent to requiring that ∀i =

1, · · · , ci and ∀k ∈ Ni,

xij(t)→ Eijxk(t). (3.7)

To achieve the local conservation (3.4), one also introduces an additional coordination

state zij(t) ∈ Rmi associated with and stored by each agent ij. As noted earlier, mi

may even be 1, and in any case, the inclusion of zij(t) as a quantity managed by agent

ij does not destroy the scalability property associated with the arrangement, either

by virtue of its dimension or, as will be seen below, by virtue of its calculation. Then

we propose the following update for each agent ij, i = 1, 2, · · · , c and j = 1, 2, · · · , ci:

ẋij =− A′ij

Aijxij − bij − ∑
ik∈Nij

(zij − zik)

−
∑
k∈Ni

(xij − Eijxk) (3.8)

żij =Aijxij − bij −
∑
ik∈Nij

(zij − zik) (3.9)

where the first line of update (3.8) and (3.9) aim to achieve the local conservation

(3.4) while the second line of update (3.8) aims to achieve the global-consensus (3.5).

One natural generalization to the proposed updates (3.8)-(3.9) is achievable by assign-

ing different weights to controls for the local conservation and the global consensus,

respectively, with the aim of achieving faster convergence. Achieving optimal choice

of such weights might however require more than locally available information, which

will not be discussed in this section.

49

Remark 3.3.1 Note immediately that in implementation of (3.8)-(3.9), information

about xij is only shared between clusters while information about zij is only shared

among agents within the same cluster. That is, each aggregator i is able to access

xk(t) for some k, depending on the graph G, through aggregator communications. Of

course, xk(t) is collected by its aggregator neighbor k ∈ Ni; aggregator i distributes

Eijxk(t) to each agent ij of cluster i. Note that |Ni| can be bounded independently

of the size of A through the design of the aggregator network with graph G. Within

each cluster i, each agent ij only needs to access its neighbors’ coordination state

zik, ik ∈ Nij, through agent-agent communication in cluster i. Thus, the proposed

updates (3.8)-(3.9) are obviously distributed in the sense that only communications

among aggregator-neighbors and agent-neighbors are involved. Compared with exist-

ing consensus-based distributed linear equation solvers [12,13,16], distributed updates

(3.8)-(3.9)

• individual agents in the distributed solvers require much less knowledge of

the overall equation and control states of much smaller dimension. For a

given A ∈ Rm×n of fixed size, each agent ij knows Aij ∈ Rmi×nij and bij ∈ Rmi,

and controls states xij(t) ∈ Rnij , and zij(t) ∈ Rmi. Sizes of all these locally

available matrices and state vectors might change with respect to the number of

clusters and the number of agents in each cluster (but as already noted, can be

bounded independently of the size of A). To see why this is so, we note from

(3.3) and partitions in Fig. 3.2 that increasing c and ci leads to the decreases

of mi and nij, respectively. Specially, when the number of clusters is m and the

number of agents within each cluster is n, that is, c = m and ci = n, each agent

only needs to know two scalar entries Aij ∈ R, bij ∈ R and updates two

scalar states, namely xij(t) ∈ R, zij(t) ∈ R.

• allow all agents’ state vectors to be of different dimensions while in contrast

consensus-based distributed linear equation solvers require all agents to control

50

states of the same size. Thus the proposed updates might be applied in networks

of heterogeneous agents with different capabilities of storage.

3.3.2 Main result

Before proceeding, we first derive a compact form of (3.8)-(3.9). Towards this end,

we let zi(t) ∈ Rcimi denote the column collection of all agents’ coordination states in

cluster i, that is,

zi(t) = col {zi1(t), · · · , zici(t)}, i = 1, 2, · · · , c. (3.10)

Let

Āi = diag {Ai1, · · · , Aici}, b̄i = col {bi1, · · · , bici} (3.11)

and

L̄Gi = LGi ⊗ Imi , i = 1, 2, · · · , c (3.12)

with LGi the Laplacian matrix of the ci-node connected and bidirectional graph Gi.

Recalling col {Eij, j = 1, 2, · · · , ci} = In and (3.6), one can write equations (3.8) and

(3.9) as:

ẋi =− Ā′i
(
Āixi − b̄i − L̄Gizi

)
−
∑
k∈Ni

(xi − xk) (3.13)

żi =Āixi − b̄i − L̄Gizi (3.14)

for i = 1, 2, · · · , c. Each equation pair in the above describes what is occurring at a

particular cluster. Now let x = col {x1, · · · ,xc}, z = col {z1, · · · , zc},

Â = diag {Ā1, · · · , Āc}, b̂ = col {b̄1, · · · , b̄c}, (3.15)

L̂ = diag {L̄G1 , · · · , L̄Gc}, L̂G = LG ⊗ In (3.16)

with LG Laplacian matrix of the c-node connected graph G. Equations (3.13)-(3.14)

can be further rewritten in the following compact form:

ẋ =− Â′
(
Âx− b̂− L̂z

)
− L̂Gx (3.17)

ż = Âx− b̂− L̂z (3.18)

51

Or equivalently, ẋ
ż

 = Q

x
z

+

Â′b̂
−b̂

 (3.19)

with

Q =

−Â′Â− L̂G Â′L̂

Â −L̂

 . (3.20)

To analyze the convergence of (3.19) we need the following lemma to characterize

eigenvalues of Q.

Lemma 3.3.1 Let

M =

−M ′

1M1 −M2 M ′
1M3

M1 −M3

where the Mi are real, i = 1, 2, 3, and M2 and M3 are positive semi-definite. Then

all eigenvalues of M are real negative or 0. Moreover, if 0 is an eigenvalue of M , it

must be non-defective3.

The proof of Lemma 3.3.1 will be given in the Appendix. By this lemma and by

establishing the convergence of the linear time-invariant system (3.19) to a constant

steady state, one has the following main result.

Theorem 3.3.1 Suppose Ax = b has at least one solution, and the graphs Gi, i =

1, 2, · · · , c, and G are connected and bidirectional. Then under the distributed updates

(3.8)-(3.9), all xij(t) with i = 1, 2, · · · , c and j = 1, 2, · · · , ci converge exponentially

fast to constant vectors x∗ij satisfying (3.4)-(3.5), which jointly form a consensus-

conservation solution x∗ to Ax = b.

3An eigenvalue is non-defective if any only if its algebraic multiplicity equals its geometric mul-

tiplicity. In other words, the Jordan block corresponding to a non-defective eigenvalue is diagonal.

52

Proof of Theorem 3.3.1: We first prove that there exists a constant vector col {x̂, ẑ}

which is an equilibrium of (3.19). Recall there exists a constant vector y ∈ Rn such

that Ay = b. From the definitions of Aij, bij in (3.1)-(3.2) and Eij, one has

ci∑
j=1

(AijEijy − bij) = 0, i = 1, 2, · · · , c,

This equation and definitions of Āi, b̄i in (3.11) lead to(
1′ci ⊗ Imi

) (
Āiy − b̄i

)
= 0, i = 1, 2, · · · , c. (3.21)

Note that L̄Gi = LGi ⊗ Imi , where LGi is the Laplacian matrix of a ci-node connected

and bidirectional graph Gi. Then

image L̄Gi = ker
(
1′ci ⊗ Imi

)
, i = 1, 2, · · · , c (3.22)

From (3.21) and (3.22), one has(
Āiy − b̄i

)
∈ image L̄Gi , i = 1, 2, · · · , c. (3.23)

Then there exists a constant vector ẑi ∈ Rcimi such that

Āiy − b̄i − L̄Gi ẑi = 0, i = 1, 2, · · · , c. (3.24)

Let x̂ = 1c⊗ y. Note that L̂G = LG⊗ In with LG the Laplacian matrix of the c-node

connected and bidirectional graph G. Then

L̂Gx̂ = 0 (3.25)

Let ẑ = {ẑ1, ẑ2, · · · , ẑc}. From (3.24) and definitions of Â, b̂ in (3.15), one has

Âx̂− b̂− L̂ẑ = 0, (3.26)

This equation and (3.25) imply that col {x̂, ẑ} is an equilibrium of (3.19).

Second, we analyze the convergence of the error

e(t) =

x(t)

z(t)

−
x̂
ẑ

 . (3.27)

53

From (3.19) and the fact that col {x̂, ẑ} is an equilibrium of (3.19), one has

ė = Qe (3.28)

From Lemma 3.3.1, the structure of Q in (3.20) and the fact that the Laplacian

matrices L̂ and L̂G are symmetric and positive semi-definite, one concludes that all

eigenvalues of Q are real negative or 0. Moreover, if 0 is an eigenvalue of Q, it must

be non-defective. Thus there exists a constant vector q ∈ kerQ such that e(t) of

the linear time-invariant system (3.28) converges to q exponentially fast [100]. Thus

col {x(t), z(t)} converges exponentially fast to a constant vector col {x̂∗, ẑ∗}, wherex̂∗
ẑ∗

 =

x̂
ẑ

+ q, q ∈ kerQ. (3.29)

Partition the constant vector x̂∗ such that

x̂∗ = col {x∗1, · · · ,x∗c} (3.30)

where x∗i ∈ Rn is further partitioned as

x∗i = col {x∗i1, x∗i2, · · · , x∗ici} (3.31)

with x∗ij ∈ Rnij . Evidently, we have that xij(t) converges to x∗ij exponentially fast. In

the following, one only needs to show that all these x∗ij satisfy the local conservation

in (3.4) and the global consensus in (3.5).

From (3.29) and the property that col {x̂, ẑ} is an equilibrium of (3.19), one

concludes that col {x̂∗, ẑ∗} is also an equilibrium of (3.19). It follows that

0 =− Â′
(
Âx̂∗ − b̂− L̂ẑ∗

)
− L̂Gx̂

∗ (3.32)

0 = Âx̂∗ − b̂− L̂ẑ∗ (3.33)

Partition ẑ∗ = col {z∗1 , z∗2 , · · · , z∗c} with z∗i ∈ Rcimi . From (3.33) and the definitions

of Â, b̂, L̂ in (3.15)-(3.16), one has

Āix
∗
i − b̄i − L̄Giz

∗
i = 0, i = 1, 2, · · · , c. (3.34)

54

From the definitions of Āi, b̄i, L̄Gi in (3.11)-(3.12), one can rewrite (3.34) as
Ai1x

∗
i1

Ai2x
∗
i2

...

Aicix
∗
ici

−

bi1

bi2
...

bici

− (LGi ⊗ Imi)z∗i = 0. (3.35)

Premultiplying by 1′ci ⊗ Imi on both sides of (3.35), one has

ci∑
j=1

(Aijx
∗
ij − bij)− [(1′ciLGi)⊗ Imi]z∗i = 0.

Since LGi is the Laplacian of ci-node connected bidirectional graph Gi, one has

1′ciLGi = 0. Thus

ci∑
j=1

(Aijx
∗
ij − bij) = 0. (3.36)

In addition, from (3.32)-(3.33), one has

L̂Gx̂
∗ = 0

where L̂G = LG ⊗ Im with LG the Laplacian matrix of the c-node connected and

bidirectional graph G. Thus there exists a constant vector x∗ such that

x̂∗ = 1c ⊗ x∗ (3.37)

Together with (3.30), this implies

x∗1 = x∗2 = · · · = x∗c = x∗ (3.38)

with x∗i a collection of x∗ij as defined in (3.31). From (3.36) and (3.38) one concludes

that all x∗ij satisfy the local conservation in (3.4) and the global consensus in (3.5).

Therefore, the xij(t) converge exponentially fast to constant vectors x∗ij which

form a consensus-conservation solution x∗ to Ax = b. This completes the proof.

55

3.3.3 Validation

We utilize the double-layer network as in Fig. 3.1 to solve the following linear

equation Ax = b, which is partitioned according to the structure as in Fig. 3.2

with details as follows: Suppose each agent ij knows Aij and bij, and we employ the

updates (3.8) and (3.9) with arbitrary initializations. Let

V (t) =
1

2

c∑
i=1

∥∥∥∥∥∥∥∥∥

xi1(t)

...

xici(t)

− x∗
∥∥∥∥∥∥∥∥∥

2

2

where x∗ =
[
0.77 2.79 1.98 −1.10 0.38

]′
is a solution to Ax = b. Thus V (t)

measures the closeness of all agent states to forming a consensus-conservation solution.

We then utilize the double-layer network as in Fig. 3.3, which results from adding

one additional cluster to Fig. 3.1, to solve the same linear equation with partitions

as follows (for clarity, the details of agent communications are depicted for only one

cluster.):

Simulations in Fig. 3.4 suggests that V (t) converges exponentially fast to 0 and

thus all xij(t) converge exponentially fast to constant vectors that form a consensus-

conservation solution x∗ in both cases. This is in accord with Theorem 3.3.1. More-

over, the convergence rate can also be affected by the number of partitions and the

network topology. Intuitively, more partitions of the overall linear equations require

more clusters for implementing the proposed updates, which leads to slower conver-

gence as suggested by Fig. 3.4.

56

𝑖 Aggregator node of
Cluster 𝒊

Agent communication

Cluster communication

1

3

2

𝑖𝑗 Agent 𝒋 of Cluster 𝒊

State Aggregation

4

Cluster 4

Figure 3.3. Another Double-layered Multi-Agent Network. For clar-
ity, the details of agent communications are depicted for only one
cluster.

0 50 100 150 200 250 300 350 400

t

10-8

10-6

10-4

10-2

100

102

V (t)

Network in Fig. 1
Network in Fig. 3

Figure 3.4. Evolution of V (t) under the proposed updates (3.8)-(3.9)

3.4 Global-Conservation and Local-Consensus

In the previous section, agents in the same cluster collectively know a block row of

the overall matrix A as indicated in Fig. 3.2. In this section, we consider a different

57

situation in which agents in the same cluster collectively know a block column of A,

for which a different coordination arrangement will be required in the cluster-layer

and the agent-layer, as will be shown later.

Suppose each agent ij in cluster i knows Aij ∈ Rmij×ni , bij ∈ Rmij such that the

collection of them
Ai1

Ai2
...

Aici

 = Ai ∈ Rm×ni

bi1

bi2
...

bici

 = bi ∈ Rm (3.39)

are parts of the overall linear equation Ax = b, where

A =
[
A1 A2 · · · Ac

]
, b =

c∑
i=1

bi. (3.40)

Note that while b is given, the bi’s are not; they can be any vectors that satisfy (3.40)

(a particular case is that one bi equals b and the others are zero). Besides, one has

ci∑
j=1

mij = m, i = 1, 2, · · · , c,
c∑
i=1

ni = n. (3.41)

An example of the relation between agents’ locally available information Aij, bij and

the overall equation Ax = b is shown in Fig. 3.5. Note that the symbols Aij and

bi here are used differently from their use in previous sections but the notation is

convenient.

Suppose each agent ij controls a state vector xij(t) ∈ Rni . In this section, we aim

to devise a distributed update for each agent ij’s state xij(t) to converge exponentially

fast to a constant vector x∗ij, i = 1, 2, · · · , c and j = 1, 2, · · · , ci, such that

• All x∗ij, j = 1, 2, · · · , ci, within each cluster i reach a consensus x∗i , that is,

Local Consensus: x∗i1 = x∗i2 = · · · = x∗ici = x∗i (3.42)

• All x∗i , i = 1, 2, · · · , c among all clusters in the network satisfy the following

Global Conservation:
c∑
i=1

(Aix
∗
i − bi) = 0 (3.43)

58

Figure 3.5. An example of the relation between agents’ locally avail-
able information and the overall equation for the network of Fig. 3.1.

Let x∗ = col {x∗1, x∗2, · · · , x∗c} be the column collection of the consensus value to which

all agents in the same cluster converge. From (3.40) and (3.43) one has Ax∗ = b.

Thus the x∗ij satisfying the local consensus (3.42) and the global conservation (3.43)

are said to form a conservation-consensus solution x∗ to Ax = b.

Note that here all x∗ij in the same cluster are the same, which is part of the solution

to the overall equation, while, in contrast, in the consensus-conservation solution

defined in the previous section, the x∗ij in each cluster i jointly form a solution to the

overall equation Ax = b.

3.4.1 The Update

In order to achieve the global conservation, we employ the networks G and Gi

described in the section of Problem Formulation and introduce an additional state

zij(t) ∈ Rmij at each agent ij. Let Eij ∈ Rmij×m consist of rows of the identity matrix

Im such that col {Eij, j = 1, 2, · · · , ci} = Im and

Aij = EijAi.

Let zi(t) ∈ Rm denote the column of all coordination states in cluster i, i = 1, 2, · · · , ci,

that is,

zi = col {zi1, zi2, · · · , zici}.

59

Then

zij = Eijzi.

Suppose each cluster aggregator i is able to access its neighbor aggregator’s coor-

dination state zk(t), k ∈ Ni through aggregator communication and then distributes

Eijzk(t) to each agent ij of cluster i. Within each cluster i, each agent ij is able

to access to its neighbors’ state xik, ik ∈ Nij, through agent-agent communication in

cluster i. Then one proposes the following update for each agent ij, i = 1, 2, · · · , c

and j = 1, 2, · · · , ci:

ẋij =− A′ij

(
Aijxij − bij −

∑
k∈Ni

(zij−Eijzk)

)

−
∑
ik∈Nij

(xij − xik) (3.44)

żij = Aijxij − bij −
∑
k∈Ni

(zij − Eijzk) (3.45)

where the first line of update (3.44) and (3.45) aim to achieve global conservation in

(3.43) while the second line of (3.44) aims to achieve the local consensus in (3.42).

Remark 3.4.1 Note immediately that in implementation of (3.44)-(3.45), informa-

tion about zij is only shared between clusters while information about xij is only shared

among agents within the same cluster. Thus, each aggregator i is able to access zk(t)

through aggregator communications when zk(t) is collected by its aggregator neigh-

bor k ∈ Ni; aggregator i distributes Eijzk(t) to each agent ij of cluster i. Within

each cluster i, each agent ij only needs to access its neighbors’ coordination state

xik, ik ∈ Nij, through agent-agent communication in cluster i. And thus the proposed

updates (3.44)-(3.45) are obviously distributed in the sense that only communica-

tions among aggregator-neighbors and agent-neighbors are involved. Moreover, the

agents ij have storage and communication requirements which are fully scalable with

the size of A. As before, the aggregator nodes will store vectors of dimension deter-

mined by the dimension of A. However, as already noted, the number of neighbors of

an aggregator node does not need to grow with the dimension of A. Compared with

60

existing consensus-based distributed linear equation solvers [12,13,16], distributed up-

dates (3.8)-(3.9)

• individual agents in the distributed solvers require much less knowledge of

the overall equation and control states of much smaller dimension. For a

given overall linear equation with A ∈ Rm×n, each agent ij knows Aij ∈ Rmij×ni

and bij ∈ Rmij , and controls states xij(t) ∈ Rni, and zij(t) ∈ Rmij . Sizes of

these locally available matrices and state vectors could change with respect to

the number of clusters and the number of agents in each cluster. From (3.41)

and partitions in Fig. 3.5, one has that increasing ci and c leads to the decreases

of mij and ni, respectively. Specially, when the number of clusters is n and the

number of agents within each cluster is m, that is, c = n and ci = m, each

agent only needs to know two scalar entries Aij ∈ R, bij ∈ R and updates

two scalar states, namely xij(t) ∈ R, zij(t) ∈ R.

• allow all agents’ state vectors to be of different dimensions, which is the

same as the distributed updates (3.8)-(3.9) in the previous section.

3.4.2 Main result

Before proceeding, we first derive a compact form of (3.44)-(3.45). Towards this

end, we let xi ∈ Rcini denote the column collection of all agents’ states in cluster i,

i = 1, 2, · · · , c, that is,

xi = col {xi1, xi2, · · · , xici}.

Let

Āi = diag {Ai1, · · · , Aici}, L̄Gi = LGi ⊗ Ini (3.46)

61

with LGi the Laplacian matrix of the ci-node connected graph Gi. From equations

(3.44)-(3.45) and col {Eij, j = 1, 2, · · · , ci} = Im, one has

ẋi =− Ā′i

(
Āixi − bi −

∑
k∈Ni

(zi − zk)

)
− L̄Gixi (3.47)

żi =Āixi − bi −
∑
k∈Ni

(zi − zk) (3.48)

for i = 1, 2, · · · , c. Let x = col {x1, · · · ,xc} and z = col {z1, · · · , zc},

Â = diag {Ā1, · · · , Āc}, b̂ = col {b1, · · · , bc}, (3.49)

L̂ = diag {L̄G1 , · · · , L̄Gc}, L̂G = LG ⊗ Im (3.50)

with LG the Laplacian matrix of the c-node connected graph G. Equations (3.47)-

(3.48) can be written in the following compact form:

ẋ =− Â′
(
Âx− b̂− L̂Gz

)
− L̂x (3.51)

ż = Âx− b̂− L̂Gz (3.52)

which is ẋ
ż

 = Q

x
z

+

Â′b̂
−b̂

 (3.53)

with

Q =

−Â′Â− L̂ Â′L̂G

Â −L̂G

 . (3.54)

Theorem 3.4.1 Suppose Ax = b has at least one solution, and the graphs Gi,

i = 1, 2, · · · , c and G are connected and bidirectional. Then under the distributed

updates (3.44) and (3.45), all xij(t) with i = 1, 2, · · · , c and j = 1, 2, · · · , ci converge

exponentially fast to constant vectors x∗ij which satisfy the local consensus (3.42) and

the global conservation (3.43) and thus form a conservation-consensus solution x∗ to

Ax = b.

62

Proof of Theorem 3.4.1: We first prove that there exists a constant vector col {x̂, ẑ}

which is an equilibrium of (3.53). Since there exists a constant vector y ∈ Rn such

that Ay = b, using the definition of Ai, bi in (3.40), one has[
A1 A2 · · · Ac

]
y =

c∑
i=1

bi

Partition y = col {y1, · · · , yc} with yi ∈ Rni . Then one has

c∑
i=1

(Aiyi − bi) = 0

It follows from this and (3.39) that

c∑
i=1

Ai1

...

Aici

 yi −

bi1
...

bici

 = 0

This and the definitions of Āi in (3.46) imply

c∑
i=1

(Āiyi − bi) = 0 (3.55)

with yi = 1ci ⊗ yi. Let x̂ = col {y1, · · · ,yc}. From (3.55) and the definitions of Â, b̂

in (3.49), one has

(1′c ⊗ Im)
(
Âx̂− b̂

)
= 0 (3.56)

Recall that L̂G = LG ⊗ Im with LG the Lapalacian matrix of a c-node connected,

bidirectional graph G. Then

image L̂G = ker (1′c ⊗ Im) (3.57)

which with (3.56) implies (
Âx̂− b̂

)
∈ image L̂G. (3.58)

Then there exists a constant vector ẑ such that

Âx̂− b̂− L̂Gẑ = 0 (3.59)

63

In addition, since L̄Gi = LGi ⊗ Ini with LGi ⊗ Ini the Laplacian matrix of the ci-node

connected graph Gi, and since yi = 1ci ⊗ yi, one has

L̄Giyi = 0, i = 1, 2, · · · , c.

Then because L̂ = diag {L̄G1 , · · · , L̄Gc} and x̂ = col {y1, · · · ,yc}, one has

L̂x̂ = 0 (3.60)

together with (3.59), this implies that col {x̂, ẑ} is an equilibrium of (3.53).

Second, we analyze the convergence of the error

e(t) =

x(t)

z(t)

−
x̂
ẑ

 . (3.61)

From (3.53) and the fact that col {x̂, ẑ} is an equilibrium of (3.53), one has

ė = Qe (3.62)

From Lemma 3.3.1, the structure of Q in (3.54) and the fact that Laplacian matrices

L̂ and L̂G are symmetric and positive semi-definite, one has all eigenvalues of Q are

real negative or 0. Moreover, if 0 is an eigenvalue of Q, it must be non-defective. Thus

there exists a constant vector q ∈ kerQ such that e(t) of the linear time-invariant

error system (3.62) converges to q exponentially fast [100]. Thus col {x(t), z(t)}

converges exponentially fast to a constant vector col {x̂∗, ẑ∗}, wherex̂∗
ẑ∗

 =

x̂
ẑ

+ q, q ∈ kerQ. (3.63)

Partition the constant vector x̂∗ such that

x̂∗ = col {x̄∗1, · · · , x̄∗c} (3.64)

where x̄∗i ∈ Rcini is further partitioned as

x̄∗i = col {x∗i1, x∗i2, · · · , x∗ici} (3.65)

64

with x∗ij ∈ Rni . Evidently, xij(t) converges to x∗ij exponentially fast. In the following,

one only needs to show that all these x∗ij satisfy the local consensus (3.42) and the

global conservation (3.43).

From (3.63) and the property that col {x̂, ẑ} is an equilibrium of (3.53), one has

col {x̂∗, ẑ∗} is an equilibrium of (3.53). Then

0 =− Â′
(
Âx̂∗ − b̂− L̂Gẑ

∗
)
− L̂x̂∗ (3.66)

0 = Âx̂∗ − b̂− L̂Gẑ
∗ (3.67)

It follows that

L̂x̂∗ = 0 (3.68)

From this, (3.64) and the definition of L̂, one has

L̄Gix̄
∗
i = 0, i = 1, 2, · · · , c. (3.69)

Note that L̄Gi = LGi⊗ Ini with LGi the Laplacian matrix of a connected bidirectional

graph Gi. Then there must be a constant vectors x∗i ∈ Rni such that

x̄∗i = 1ci ⊗ x∗i . (3.70)

This and (3.65) imply

x∗i1 = x∗i2 = · · · = x∗ici = x∗i (3.71)

for i = 1, 2, · · · , c.

From (3.70), the partition of Ai in (3.39) and Āi = diag {Ai1, · · · , Aici} in (3.46),

one has

Āix̄
∗
i = Aix

∗
i (3.72)

From (3.67) and the definitions of Â, b̂, L̂G, one has
Ā1x̄

∗
1

Ā2x̄
∗
2

...

Ācx̄
∗
c

−

b1

b2

...

bc

− (LG ⊗ Im)ẑ = 0 (3.73)

65

This equality and (3.72) imply
A1x

∗
1

A2x
∗
2

...

Acx
∗
c

b1

b2

...

bc

− (LG ⊗ Im)ẑ = 0 (3.74)

Premultiplying by 1′c ⊗ Im on both sides of (3.74), one has

c∑
i=1

(Aix
∗
i − bi)− [(1′cLG)⊗ Im]ẑ = 0. (3.75)

Note that LG is the Laplacian matrix of a c-node connected and bidirectional graph

G, one has 1′cLG = 0. Thus

c∑
i=1

(Aix
∗
i − bi) = 0. (3.76)

From (3.71) and (3.76), one sees all x∗ij satisfy the local consensus (3.42) and the

global conservation (3.43). Therefore all xij(t) converge to constant vectors and thus

form a conservation-consensus solution x∗ to Ax = b. This completes the proof.

3.4.3 Validation

We utilize the double-layer network as in Fig. 3.1 to solve the linear equation

Ax = b, which is partitioned according to the structure in Fig. 3.5 with details as

follows:

Suppose each agent ij knows Aij and bij, and we employ the updates (3.44) and

(3.45) with arbitrary initializations. Let

V (t) =
1

2

c∑
i=1

ci∑
j=1

‖xij(t)− x∗i ‖2
2

66

where x∗ =
[
0.77 2.79 1.98 −1.10 0.38

]′
is a solution to Ax = b. Thus, V (t)

measures the closeness of all agent states to forming a conservation-consensus solution.

We again utilize the double-layer network as in Fig. 3.3, with the following partition:

Simulations are shown in Fig. 3.6, which suggests that V (t) converges exponen-

tially fast to 0 and thus all xij(t) converge exponentially fast to constant vectors

that form a conservation-consensus solution x∗ in both cases. This is in accord with

Theorem 3.4.1. Again, more partitions require more clusters for implementing the

proposed updates, and this is expected to lead to slower convergence, as suggested

by Fig. 3.6.

0 50 100 150 200 250 300 350 400

t

10-6

10-4

10-2

100

102

V (t)

Network in Fig. 1
Network in Fig. 3

Figure 3.6. Evolution of V (t) under distributed updates (3.44)-(3.45)

67

3.5 A Simplified Network Structure under Homogeneous Partition

In this section, we will consider a homogeneous partition of the overall equation

Ax = b as in Fig. 3.7 and will show that the two distributed algorithms developed

in previous sections boil down to be identical; moreover, it can be implemented in a

single-layered grid network G as in Fig. 3.8.

Let A be partitioned into r blocked rows and c blocked columns with each Aij ∈
Rmi×nj for i = 1, 2, · · · , r and j = 1, 2, · · · , c; correspondingly, the b vector is par-

titioned into sub-vectors bij such that b = col {b1, · · · , br} = b with
∑c

j=1 bij = bi.

One example of such a homogeneous partition is shown in Fig. 3.7 with r = 3 and

c = 4. Consider a grid network G consisting of a number of rc agents labeled as

ij with i = 1, 2, · · · , r and j = 1, 2, · · · , c, as in Fig. 3.8. Let GR
i denote the ith

row-subnetwork of G, which consists of agents i1, i2, · · · , ic and all edges among these

agents; and let GC
j denote the jth column-subnetwork of G, which consists of agents

1j, 2j, · · · , rj and all edges among these agents. Suppose GR
i , i = 1, 2, · · · , r, and

GC
j , j = 1, 2, · · · , c, are all undirected and connected. Suppose each agent ij knows

Aij ∈ Rmi×nj and bij ∈ Rmi , and controls a state vector xij(t) ∈ Rni . The problem

of interest in this section is to develop a distributed update for each xij(t) converges

exponentially fast to a constant x∗ij such that

Row-Conservation:
c∑
j=1

(Aijx
∗
ij − bij) = 0, ∀i = 1, 2, · · · , r. (3.77)

and

Column-Consensus: x∗1j = · · · = x∗rj = x∗j , ∀j = 1, 2, · · · , c. (3.78)

68

Figure 3.7. A homogeneous partition of the equation, with r = 3, c = 4.

11 12 13 14

21 22 23 24

31 32 33 34

Figure 3.8. A single-layered grid network without clusters or aggregators.

3.5.1 The Update

Motivated by the two distributed updates developed in previous sections, we pro-

pose the following

ẋij =− A′ij

Aijxij − bij − ∑
ik∈NRij

(zij − zik)

−
∑

kj∈NCij

(xij − xkj) (3.79)

żij =Aijxij − bij −
∑
ik∈NRij

(zij − zik) (3.80)

69

where zij ∈ Rmi is an additional state vector introduced agent at ij for achieving

row-conservation; NR
ij and NC

ij denote the neighbor set of agent ij in GR
ij and GC

ij,

respectively.

3.5.2 Main result

Note that the only difference between distributed updates (3.79)-(3.80) and dis-

tributed updates (3.8)-(3.9) is that
∑

kj∈NCij
(xij − xkj) replaces

∑
k∈Ni (xij − Eijxk).

By looking at each GR
i in the single-layered grid as a cluster i, one sees that Eijxk

plays the same role as xkj. Thus distributed updates (3.8)-(3.9) become the dis-

tributed updates (3.79)-(3.80) in the single-layered grid network. By Theorem 3.3.1,

one has local conservations in (3.4) and the global consensus (3.5) , which are equiv-

alent to (3.77) and (3.78), respectively, in the single-layered grid network. It follows

that x∗ = col {x∗1, · · · , x∗c} is a solution to Ax = b. Similar conclusion can also be

drawn by looking at distributed updates (3.79)-(3.80) as a special case of (3.44)-(3.45).

To sum up, one has

Corollary 3.5.1 Under the distributed updates (3.79) and (3.80) in a single-layered

grid network, all xij(t) with i = 1, 2, · · · , r; j = 1, · · · , c converge exponentially fast

to constant vectors x∗ij satisfying (3.77) and (3.78) and thus x∗ = col {x∗1, · · · , x∗c} is

a solution to Ax = b.

Remark 3.5.1 The distributed updates in a single-layered grid network in this sec-

tion can only be applied to the case that the overall linear equation is partitioned

homogeneously and the number of agents is equal to the number of partitions. For

more general partitions, one needs to go back to (3.8)-(3.9) or (3.44)-(3.45), for which

dimensions of xij or zij are not the same.

70

3.5.3 Validation

According to the pattern of Fig. 3.7, we utilize a network of 100 agents with r =

c = 10. Consider a random linear equation Ax = b, where A ∈ R1000×1000, b ∈ R1000.

The matrix A is partitioned into 100 blocks with each Aij ∈ R10×10, the vector b is

partitioned accordingly with each bij ∈ R10. Define

V (t) =
1

2

10∑
i=1

10∑
j=1

‖xij(t)− x∗i ‖2
2

where x∗ = col {x∗1, · · · , x∗c} is the true solution to the linear equation. Simulations

Figure 3.9. A single-layered network without clusters or aggregators.

are shown in Fig. 3.9, which suggests that V (t) converges exponentially fast to 0.

This validates Corollary 3.5.1.

Appendix

Proof of Lemma 3.3.1: Let λ denote any eigenvalue of M with a non-zero eigen-

vector col {u, ū}. Then

M

u
ū

 = λ

u
ū

 (3.81)

71

with

M =

−M ′

1M1 −M2 M ′
1M3

M1 −M3

 .

Let M̄ =

I 0

0 M ′
3

M . Then one has

M̄ =

−M ′

1M1 −M2 M ′
1M3

M ′
3M1 −M ′

3M3

which can be written as

M̄ = −

 M ′
1

−M ′
3

[M1 −M3

]
−

M2 0

0 0

 . (3.82)

Thus, M̄ is negative semi-definite. Premultiplying by

u
ū

′ I 0

0 M ′
3

 on both sides

of (3.81), one has u
ū

′ M̄
u
ū

 = λ

u
ū

′ I 0

0 M3

u
ū

 (3.83)

First, we prove that λ must be real by contradiction. Suppose λ = α + βi where

β 6= 0. Since M̄ is negative semi-definite, then the imaginary part of the left-hand

side of (3.83) is 0. So therefore is the imaginary part of the right-hand side. It follows

that

β

u
ū

′ I 0

0 M3

u
ū

 = 0

Since β 6= 0 there follows u′u + ū′M3ū = 0. Recall that M3 positive semi-definite.

Hence u = 0, M3ū = 0. Taken with (3.81) and noting λ 6= 0 since β 6= 0, one has

ū = 0. This and the assumption that u = 0 contradict to the fact that col {u, ū}

is non-zero. Thus β = 0. Therefore, λ is real. From this, (3.83), M̄ is negative

semi-definite and M3 is positive semi-definite, one further has λ ≤ 0.

72

Second, if λ = 0 is an eigenvalue of M , we prove that it must be non-defective

by contradiction. Suppose λ = 0 is defective, then there exists a non-zero vector

col {v, v̄} such that

M

v
v̄

 =

u
ū

 (3.84)

and

M

u
ū

 = 0 (3.85)

Premultiplying by

u
ū

′ I 0

0 M ′
3

 on both sides of (3.84), one has

u
ū

′ M̄
v
v̄

=(u′u+ ū′M ′
3ū) (3.86)

Premultiplying by

I 0

0 M ′
3

 on both sides of (3.85), one has

M̄

u
ū

= 0 (3.87)

This and the fact that M̄ is symmetric imply that the left hand side of (3.86) is 0.

Then

(u′u+ ū′M ′
3ū) = 0 (3.88)

from which, using the fact that M3 is positive semi-definite, one has

u = 0, M ′
3ū = 0. (3.89)

Premultiplying by

v
v̄

′ I 0

0 M ′
3

 on both sides of (3.84) one has

v
v̄

′ M̄
v
v̄

=

 v′u

v̄′M ′
3ū

73

The right-hand side is 0 by (3.89). Thusv
v̄

′ M̄
v
v̄

 = 0, (3.90)

Together with (76), this yields

M1v −M3v̄ = 0, M2v = 0. (3.91)

From this and the definition of M , one has

M

v
v̄

 = 0,

By (3.84), this yields col {u, ū} = 0, contradicting the assumption that col {u, ū} is

a non-zero eigenvector. Thus, λ = 0 is non-defective.

74

4. CONSENSUS-BASED DISTRIBUTED OPTIMIZATION

FOR MULTI-AGENT SYSTEMS 1

4.1 Introduction

Distributed optimization is one of the key problems in multi-agent coordination,

where the goal is to minimize the sum of local objective functions, there being one

function associated with each agent [62, 102–104]. Specifically, consider a network of

m agents, in which each agent i is able to communicate with certain other nearby

agents called its neighbors, denoted by Ni. The neighbor relations can be described

by a graph G such that there is an edge from j to i if and only if j ∈ Ni. Then under

network G, a distributed optimization problem has the following characteristics:

Global Optimization Objective: min
m∑
i=1

fi(xi) ∈ R. (4.1)

subject to

Consensus Rule: x1 = x2 · · · = xm, (4.2)

where fi(·) is is associated with the local performance index for each agent, which is

usually assumed to be convex and continuously differentiable. Considering the fact

that each state xi, in some cases, can only be chosen from a certain domain, we also

introduce the following

Local Constraints: xi ∈ Xi ⊂ Rn, i = 1, 2, ...,m. (4.3)

where each local constraint Xi is convex and
⋂m
i=1Xi 6= ∅.

1Resarch in this section has been published in the papers [62,101] with me as the leading author.

75

Among the abundant literature, great efforts have been made, attempting to solve

the distributed optimization problem characterized by (4.1)-(4.3). The key idea to

enable distributed coordination is consensus (4.2), which has the following form [105]

ẋi = −
∑
j∈Ni

(xi − xj), (4.4)

where each agent in the network tries to reduce the distances between itself and its

neighbors. Update (4.4) will drive all states to a consensus value, i.e. there exists a

certain x∗ = 1m⊗x∗, such that xi−x∗ → 0 for all i and the convergence is exponen-

tially fast. Then, to handle the optimization goal (4.1), the common method to solve

the optimization problem is gradient descent. Thus, Leaving aside temporarily the

constraints (4.3), the attempt to find an algorithm also achieving the optimization

objective (4.1) requires the introduction of a gradient term, so that the update of

each agent becomes

ẋi = −α(t)∇fi(xi)−
∑
j∈Ni

(xi − xj), (4.5)

where α(t) is a positive step-size shared by all the agents and ∇fi(xi) is a sub-

gradient2 of fi(xi). Note that if α(t) is chosen as a fixed positive constant, unless all

fi are minimized by a common vector, it is clear that there can be no steady state x∗

satisfying this equation which also has the consensus property.

In order to solve this issue, a novel algorithm is presented in [37–39], where the

authors smartly apply a diminishing step-size α(t) to the discrete-time version of (4.5)

to eliminate the consensus error. Furthermore, by an additional projection operator,

this algorithm is also able to handle local constraints. A continuous version the

algorithm developed in [37–39] is

ẋi = −Pi

[
−α(t)∇fi(xi)−

∑
j∈Ni

(xi − xj)

]
, (4.6)

2For a given convex function fi(·) : Rn → R, ∇fi(xi) is called a sub-gradient of fi(·) at xi if

fi(xi +a) ≥ fi(xi)+a>∇fi(xi) holds for all vectors a in its domain. Specially, if fi(·) is continuously

differentiable at xi, there holds ∇fi(xi) , ∂fi(xi)
∂xi

, and it is unique.

76

where Pi[·] is a projection operator that projects any vector to the tangent space3 of

the agent’s local constraint at the point xi(t), this guarantee that xi always satisfies

the local constraint of agent i. By letting all agents to share a diminishing step-size

such that α(t) → 0 and
∫∞

0
α(t) → ∞, it has been theoretically proved that the

states will asymptotically reach a consensus at the minimizer of
∑n

i=1 fi(x) subject

to all agents’ local constraints [37, 38]. Meanwhile, since the effect of gradient term

is discounted by the diminishing step-size, the convergence rate of the algorithm is

at most O(1/
√
t). Except for these, many recent works have shown that by doubling

the dimension of the state vector, the exponential convergence rate and exact opti-

mal solution can be achieved simultaneously in a fully distributed fashion [41–43].

However, this idea will lead to the following sides effects

• For the distributed algorithms equipped with doubled state vectors, since the

primal and dual vectors are interactive, it is very difficult to choose step-sizes

to guarantee that the algorithm is stable.

• In these algorithms, the extra states have to be exchanged across the network,

necessitating duplication of the network bandwidth requirement.

In this chapter, we aim to propose new approached that can solve the mentioned

issues.

4.2 A Distributed Algorithm for Least Squares Solutions

4.2.1 The Problem

In Chapters 2-3, we have introduced distributed algorithms for solving linear equa-

tions. These results are based on a critical assumption that is the original linear

equation has at least one solution. Thus, these algorithms are not directly applicable

3For the linear constraints Aixi = bi, one has Pi[s] = Pi · s, where Pi ∈ Rn×n is a projection

matrix to kerAi

77

to over-determined linear equations, which usually arise in many engineering appli-

cations such as parameter estimation [8], mode estimation in power networks [106]

and real-time data fitting of financial models [107]. One idea for dealing with over-

determined linear equations is briefly discussed in [19], in which the size of an agent’s

state increases with the number of agents in the network; this does not scale well with

the network size. The projection-consensus flow proposed in [40, 108, 109] achieves a

least squares solution only in a neighborhood of an exact one. A distributed algo-

rithm for a least squares solution in [110] introduces a decaying weight to the local

gradient, which causes the loss of exponential convergence.

minimize
1

2

m∑
i=1

|Aixi − bi|22 (4.7)

subject to x1 = x2 = · · · = xm. (4.8)

Another common approach to achieve a least squares solution is distributed op-

timization. Along this direction, ADMM [9, 111] could be applied here, but usu-

ally needs a centralized agent for coordination. By a combination of consensus and

ADMM, researchers have developed a fully distributed ADMM [112], which requires

a specific order for all agents to perform updates and does not converge exponentially

fast. Recent distributed optimization algorithms [37,113–115] are able to achieve ex-

act least squares solutions exponentially fast, but the convergence relies on all agents

to share a common, time-varying small step size. Such a requirement is also usu-

ally introduced when discretizing classical continuous algorithms for least squares

solutions in [41,116,117].

4.2.2 The Update

In this section, we present a discrete-time, distributed algorithm for all agents in

a multi-agent network to achieve a common least squares solution exponentially fast.

78

Let Ni denote the set of neighbors of agent i. Since i is a neighbor of itself, i ∈ Ni.

Define W ∈ Rm×m to be an adjacency matrix for the graph G, that is,

wij

 > 0 if j ∈ Ni
= 0 if j /∈ Ni

(4.9)

We assume that wji = wij for all i, j, that is, W is symmetric and each diagonal

element of W is positive. Let D ∈ Rm×m be the diagonal matrix with the i-th

diagonal entry di given by

di =
n∑
j=1

wij =
∑
j∈Ni

wij (4.10)

Then, the Laplacian (matrix) for G is given by

L = D −W (4.11)

which is symmetric and positive semi-definite. Since G is connected, the kernel of L

is spanned by 1m [118]. Let L̄ = L ⊗ In ∈ Rmn×mn where ⊗ denotes the Kronecker

product. It follows that the kernel of L̄ is the image of 1m ⊗ In. Then x∗ satisfies

L̄x∗ = 0 (4.12)

if and only if

x∗ = 1m ⊗ x∗ (4.13)

for some x∗ ∈ Rn. Our first result motivates our proposed algorithm.

Lemma 4.2.1 A vector x∗ ∈ Rn is a least squares solution to (4.7)-(4.8) if and only

if for any arbitrary positive constant c, there exists a vector z∗ ∈ Rn such that

c(Ā′Āx∗ − Ā′b) + L̄′z∗ = 0 (4.14)

with x∗ is given by (4.13) and

Ā = diag {A1, A2, · · · , Am}. (4.15)

79

A proof of Lemma 4.2.1 is in the Appendix. Since x∗ has the structure given (4.13)

if and only if it satisfies (4.12), Lemma 4.2.1 implies that the problem of obtaining a

least squares solution x∗ to (4.7)-(4.8) is equivalent to finding x∗ and z∗ satisfying

(4.14) and (4.12). Letting x∗ = col {x∗1, x∗2, · · · , x∗m} and z∗ = col {z∗1 , z∗2 , · · · , z∗m}

with each x∗i , z
∗
i ∈ Rn, and noticing that L̄ is symmetric, (4.14) and (4.12) are equiv-

alent to

c(A′iAix
∗
i − A′ibi) +

∑
j∈Ni

wij
(
z∗i − z∗j

)
= 0 (4.16)

∑
j∈Ni

wij
(
x∗i − x∗j

)
= 0 (4.17)

for i = 1, 2, · · · ,m. So, we have reduced the original problem to that of solving

(4.16) and (4.17) in a distributed fashion. To accomplish this we have introduced one

additional state vector zi(t) ∈ Rn at each agent i.

A distributed solution to (4.16)-(4.17) can be achieved by using the following

continuous-time saddle-point dynamics [41]:

ẋi(t)=−c [A′iAixi(t)−A′ibi]−
∑
j∈Ni

wij [zi(t)−zj(t)] (4.18)

żi(t)=
∑
j∈Ni

wij [xi(t)− xj(t)] (4.19)

for i = 1, · · · ,m where c is an arbitrary positive constant. A simple discretization

of (4.18)-(4.19) can be achieved by replacing ẋi(t) and żi(t) with xi(t+1)−xi(t)
∆t

and

zi(t+1)−zi(t)
∆t

, respectively. This method usually requires a careful choice of a sufficiently

small step size ∆t for convergence [119], which can hardly be accomplished in a

distributed way. Moreover, such a discretization usually comes with the cost of losing

exponential convergence. In the following, we present a way to remove such small step

size while maintaining exponential convergence of the proposed distributed algorithm.

Motivated by the implicit-explicit iteration methods (IMEX) of [120], we replace

xi(t) and zi(t) in the right-hand side of (4.18)-(4.19) with xi(t+ 1) and zi(t+ 1),

respectively. The mixed use of xi(t+ 1), zi(t+ 1) and xj(t), zj(t), j ∈ Ni on the right-

hand side to (4.18)-(4.19) enables us to replace ẋi(t) and żi(t) in the left-hand side by

80

xi(t+1)−xi(t)
∆t

and zi(t+1)−zi(t)
∆t

, respectively, where ∆t = 1
di

. This results in the following

discrete-time algorithm. Let c be an arbitrary positive constant and for i = 1, · · · ,m,

xi (t+ 1) = xi (t)−
c

di
[A′iAixi (t+ 1)− A′ibi]

− 1

di

∑
j∈Ni

wij [zi (t+ 1)− zj (t)] (4.20)

zi (t+ 1) = zi (t) +
1

di

∑
j∈Ni

wij [xi (t+ 1)− xj (t)] (4.21)

that is, xi(t+ 1)

zi(t+ 1)

 = F−1
i

dixi(t) +
∑
j∈Ni

wijzj(t) + cA′ibi

−
∑
j∈Ni

wijxj(t) + dizi(t)

 (4.22)

where

Fi =

diIn + cA′iAi diIn

−diIn diIn

 (4.23)

Note that the state update includes a matrix multiplicity of F−1
i ∈ R2n×2n, where

F−1
i always exists and can be achieved by simply computing the inverse of a ni × ni

matrix. As

Fi = di

 In In

−In In

+

A′i
0

 cIni [Ai 0
]

Using the Woodbury matrix identity [121], we obtain that

F−1
i =− 1

4d2
i

In
In

A′i(1

c
Ini +

1

2di
AiA

′
i

)−1

Ai

[
In In

]

+
1

2di

In −In
In In

 (4.24)

The matrix in parentheses is invertible because it is positive definite. Equation (4.24)

implies that computing F−1
i involves computing the inverse of a ni×ni matrix. Here

ni is the number of rows of Ai, which is usually small, and can even be equal to 1.

Moreover, this inverse only needs to be computed once by each agent since Fi is fixed

81

for each agent. Another possible way of implementing update (4.22) is to factorize

Fi and then solve triangular systems instead of computing F−1
i explicitly [121].

Remark 4.2.1 Note immediately that the update (4.22) is distributed since each

agent i only uses Ai, bi and the states of its neighbors. The number of state vari-

ables controlled by each agent is 2n, which is independent of the underlying network

size. Although it is a discrete-time algorithm, a small step-size is not required for

convergence. The positive parameter c introduced here is for adjusting the conver-

gence rate, which can be simply chosen as c = 1. As long as c is strictly positive,

exponential convergence is guaranteed as shown in next section.

4.2.3 Main Result

In this section, we demonstrate the exponential convergence of the proposed dis-

tributed algorithm (4.22). With

W̄ = W ⊗ In, D̄ = D ⊗ In (4.25)

and

x = col {x1, x2, · · · , xm}, z = col {z1, z2, · · · , zm}, (4.26)

algorithm (4.22), or equivalently (4.20)-(4.21), can be written as

x (t+ 1) = x(t)− cD̄−1
[
Ā′Āx (t+ 1)− Ā′b

]
− D̄−1

[
D̄z (t+ 1)− W̄z (t)

]
(4.27)

z (t+ 1) = z (t) + D̄−1
[
D̄x (t+ 1)− W̄x (t)

]
(4.28)

or Fy(t+ 1) = Q̄y(t) + h̄ where y = col {x, z} and

F =

D̄ + cĀ′Ā D̄

−D̄ D̄

 , Q̄ =

 D̄ W̄

−W̄ D̄

 , h̄ =

cĀ′b
0

 . (4.29)

82

We see that F has the same structure as Fi in (4.23) and one may readily show that

it is invertible. Thus,

y(t+ 1) = Qy(t) + h (4.30)

where

Q = F−1Q̄, h = F−1h̄ (4.31)

Convergence of system (4.30) depends on the properties of Q, which are summa-

rized as follows.

Lemma 4.2.2 (a) For any λ ∈ eig (Q), if λ 6= 1, then |λ| < 1.

(b) 1 ∈ eig (Q) and is non-defective, that is, its algebraic multiplicity is equal to its

geometric multiplicity.

A proof of Lemma 4.2.2 is in the Appendix. This lemma tells us that all non-unity

eigenvalues of Q have magnitudes less than one, that is,

ρ2(Q) := max{|λ| : λ ∈ eig (Q), λ 6= 1} < 1 . (4.32)

We now have the main result of the section.

Theorem 4.2.1 Suppose G is undirected and connected, and c > 0 is any positive

constant. Then under the distributed algorithm (4.22), all xi(t), i = 1, 2, ...,m,

converge exponentially fast to the same least squares solution to (4.7)-(4.8), as fast

as ρ2(Q)t → 0.

The effectiveness of the proposed distributed algorithm (4.22) is validated by The-

orem 4.2.1. Detailed comparisons with existing distributed algorithms for achieving

least squares solutions are given in Table I.

Proof of Theorem 4.2.1: Suppose that xi(t), zi(t), i = 1, · · · ,m is any solution to

(4.22). Then, y(t) = col {x(t), z(t)} is a solution to (4.30) where x and z are given

by (4.26). Since L̄ = D̄ − W̄ and (4.30) is equivalent to (4.27)-(4.28), we see that

83

y∗ = col {x∗, z∗} is an equilibrium state to (4.30) if and only if x∗ and z∗ satisfy

(4.14) and (4.12). By Lemma 4.2.1 and noting that (4.12) is equivalent to (4.13), one

has proving Theorem 4.2.1 can be achieved by showing that there exists a constant

vector ȳ∗ such that

y(t)→ ȳ∗ as fast as ρ2(Q)t → 0. (4.33)

and

(I −Q)ȳ∗ = h (4.34)

Let x∗ be any least squares solution to (4.7)-(4.8). Then Lemma 4.2.1 tells us that

there exists z∗ such that x∗ = 1m⊗x∗ and z∗ satisfy (4.14). Thus y∗ = col {x∗, z∗}

is an equilibrium state for (4.30). Hence

(I −Q)y∗ = h. (4.35)

and recalling (4.30), the evolution of e(t) = y(t)− y∗ is governed by

e(t+ 1) = Qe(t). (4.36)

Lemma 4.2.2 tells us that one is a non-defective eigenvalue of Q and the magnitude

of any other eigenvalue of Q is less than one. This implies that exists a non-singular

matrix T such that

Q = T

I 0

0 R

T−1 (4.37)

Table 4.1. Comparing Algorithm (4.27)-(4.28) with existing algorithms

Algorithm Distributed Network Convergence Rate Step Size

The proposed algorithm applicable Exponential not required

ADMM [9,111] require centralized agent Exponential fixed, assigned by central agents

Distributed-ADMM [112] specific update order O(1/t) fixed, shared by all agents

Projection Flow [40,108,109] applicable, not exact solution Exponential fixed, require global information

Improved Projection Flow [37] applicable O(1/t) time-varying

Methods of [113–115] applicable Exponential time-varying, global information

84

and the eigenvalues of R are the eigenvalues of Q which are not equal to 1. Then

e(t) = e∗ + η(t) with

e∗ = T

I 0

0 0

T−1e(0), η(t) = T

0 0

0 Rt

T−1e(0) (4.38)

where Rt → 0 as fast as ρ2(Q)t → 0. Thus one has (4.33) with ȳ∗ = y∗ + e∗.

Equations (4.37) and (4.38) imply that Qe∗ = e∗, which and (4.35) imply (4.34). We

complete the proof.

4.2.4 Validation

In this section, we provide numerical simulations for a five-agent network as shown

in Fig. 4.1 to illustrate Theorem 4.2.1. The weights of all edges are set to be 1. We

1

3

4 52

Figure 4.1. A five-agent connected network

wish to solve the least squares problem (4.7)-(4.8) in a distributed fashion with

A1 =
[
1 2 1 1

]
, b1 = 10

A2 =
[
2 −1 −1 1

]
, b2 = 20

A3 =
[
1 −2 4 −1

]
, b3 = 15

A4 =
[
−1 −0.6 0.4 1.8

]
, b4 = 17

A5 =
[
2 2 −2 1

]
, b5 = 11.

85

Here (4.7)-(4.8) has a unique solution x∗ =
[
5.51 −3.38 2.91 10.10

]
. Suppose

each agent i in the multi-agent network in Fig. 4.1 updates its state according to the

proposed distributed update (4.22). Let

V (t) =
1

2m

m∑
i=1

|xi(t)− x∗|22 (4.39)

measure the average distance between agents’ states and the unique least squares

solution x∗. Simulation results with different choices of c are as shown in Fig. 4.2, in

which the vertical axis uses a log scale, and the curve marked by IPF represents the

convergence of the Improved Projection Flow method proposed in [37].

IPF

𝑐 = 0.1
𝑐 = 3

𝑐 = 1
𝑐 = 0.5

PF

D-ADMM

Figure 4.2. Simulations in the case of unique least squares solutions
with different choices of c.

The evolution of V in Fig. 4.2 suggests that the proposed distributed update

(4.22) drives all agents’ states exponentially fast to the unique least squares solution

x∗. Note that the choice of c impacts the rate of convergence, which results from

the fact that the choice of c impacts the eigenvalues of Q in (4.30). For simplicity,

one could always choose c = 1 and still guarantee exponential convergence. To find

an optimal choice for c to achieve the fastest rate of exponential convergence, one

needs to find c to minimize ρ2(Q), which is not trivial and usually requires global

information such as the whole matrix Q. Moreover, the simulations in Fig. 4.2

indicates that the proposed algorithm in (4.22) converges faster than the Distributed-

ADMM (β = 0.2) and Improved Projection Flow (IPF), whose convergence rate are

86

O(1/t) [37, 112]. Even though the Projection Flow (PF) method has an exponential

convergence rate [40], it can only achieve an approximation but not the exact least

squares solution to the equation.

The simulations in Fig. 4.2 show the effectiveness of the proposed algorithm in

(4.22) when the least squares solution is unique. To demonstrate the effectiveness

of the algorithm in the case of multiple least squares solutions, we replace A2, A3

with A2 =
[
1 1.4 −1.6 2.8

]
and A3 =

[
3 3.4 −3.6 3.8

]
, respectively. Then

(4.7)-(4.8) has multiple least squares solutions. Simulations in Fig. 4.3 suggests that

𝑐 = 1

Figure 4.3. Simulations in the case of multiple least squares solutions with c = 1

all xi(t) converges to the same x∗ =
[
−1.34 1.14 1.89 7.18

]
, which is one least

squares solution to (4.7)-(4.8).

Appendix

Proof of Lemma 4.2.1. We first note that x∗ satisfies (4.7)-(4.8) if and only if

x∗ = arg min
x∈Rnm

1

2
|Ax− b|22 (4.40)

where

A = col {A1, A2, · · · , Am}, b = col {b1, b2, · · · , bm} (4.41)

87

Also x∗ satisfies (4.40) if and only if A′Ax∗ = A′b, that is,

m∑
i=1

(A′iAix
∗ − A′ibi) = 0. (4.42)

With x∗ = 1m ⊗ x∗, (4.42) is equivalent to

(1′m ⊗ In)(Ā′Āx∗ − Ā′b) = 0. (4.43)

that is,

Ā′Āx∗ − Ā′b ∈ ker(1′m ⊗ In) (4.44)

Recall that the kernel of L̄ = L⊗ In is the image of 1m ⊗ In; hence

ker(1′m ⊗ In) = image L̄′ (4.45)

It now follows from (4.44) and (4.45) that (4.42) is equivalent to

Ā′Āx∗ − Ā′b ∈ image L̄′. (4.46)

This is equivalent to that for any c > 0, there exists a vector z∗ such that

c(Ā′Āx∗ − Ā′b) + L̄′z∗ = 0. (4.47)

Proof of Lemma 4.2.2. For any λ ∈ eig (Q), there is a nonzero vector v such that

Qv = λv. Since Q = F−1Q̄ with F and Q̄ given in (2.52), we must have D̄ W̄

−W̄ D̄

v = λ

D̄ + cĀ′Ā .̄D

−D̄ D̄

v
that is,

[
D̄ − λ

(
D̄ + cĀ′Ā

)]
u =

(
λD̄ − W̄

)
ū (4.48)(

λD̄ − W̄
)
u = (λ− 1) D̄ū. (4.49)

where v = col {u, ū}.

88

Proof of (a) Suppose λ 6= 1 is an eigenvalue of Q. Then (4.49) and (4.48) are

equivalent to

ū =
1

λ− 1
D̄−1

(
λD̄ − W̄

)
u (4.50)

M(λ)u = 0 (4.51)

where

M(λ) = λ2M2 + λM1 +M0 (4.52)

and

M0 = W̄ D̄−1W̄ + D̄

M1 =− 2(D̄ + W̄)− cĀ′Ā (4.53)

M2 = 2D̄ + cĀ′Ā

are symmetric and M2 > 0 since D̄ > 0. Equation (4.51) implies that u′M(λ)u = 0,

that is,

p(λ) := c2λ
2 + c1λ+ c0 = 0 (4.54)

where

ci = u′Miu for i = 0, 1, 2 (4.55)

are real and c2 > 0 since M2 > 0. Since c2 > 0, using properties of second order

polynomials (Jury stability criterion) , |λ| < 1 if and only if

c0 − c2 < 0 (4.56)

|c1| < c0 + c2 (4.57)

From (4.53) and (4.55), one has |c1| = u′(2D̄ + 2W̄ + cĀ′Ā)u and c0 + c2 =

u′(W̄ D̄−1W̄ + 3D̄ + cĀ′Ā)u. Hence, (4.57) holds if and only if

u′(W̄ D̄−1W̄ − 2W̄ + D̄)u > 0

89

that is.

((D̄ − W̄)u)′D̄−1((D̄ − W̄)u) > 0 (4.58)

Inequality (4.58) holds unless W̄u = D̄u. In this case, (4.54) implies that

p(λ) =
(
(u′D̄u+ cuĀ′Āu)λ− u′D̄u

)
(λ− 1) = 0 (4.59)

Since λ 6= 1 the above equation is not satisfied unless Āu 6= 0 in which case it is

satisfied with |λ| < 1.

From (4.53) and (4.55), inequality (4.56) is equivalent to

u′
(
D̄ − W̄ D̄−1W̄

)
u+ cu′

(
Ā′Ā

)
u > 0. (4.60)

Recall that D̄ − W̄ = L̄ ≥ 0; hence D̄ + W̄ = L̄+ 2D̄ > 0.

Thus −I ≤ D̄−
1
2 W̄ D̄−

1
2 < I and

(D̄−
1
2 W̄ D̄−

1
2)2 ≤ I . (4.61)

Pre- and post-multiplying (4.61) by D̄
1
2 yields

D̄ − W̄ D̄−1W̄ ≥ 0. (4.62)

Thus, inequality (4.60) holds unless

(D̄ − W̄ D̄−1W̄)u = 0 (4.63)

Āu = 0 (4.64)

Since D̄− W̄ D̄−1W = (D̄+ W̄)D̄−1(D̄− W̄) and D̄+ W̄ > 0, (4.63) is equivalent to

W̄u = D̄u (4.65)

Recalling (4.59) we obtain that

p(λ) = u′D̄u(λ− 1)2 = 0

Since λ 6= 1 and u 6= 0, this inequality does not hold; hence inequality (4.56) holds

and |λ| < 1.

90

Proof of (b) It follows from (4.48) and (4.49) and D̄ − W̄ = L̄ that one is an

eigenvalue of Q if and only if there is a vector col {u, ū} 6= 0 such that

−cĀ′Āu = L̄ū (4.66)

L̄u = 0 (4.67)

Clearly this is satisfied with u = 0 and ū = 1m ⊗ z for any z ∈ Rn. Thus one is an

eigenvalue for Q

To prove that one is non-defective, suppose on the contrary that it is defective.

Then there is a vector col {v, v̄} 6= 0 [121] such that

(Q− I)

v
v̄

 =

u
ū

 (4.68)

where col {u, ū} is an eigenvector corresponding to eigenvalue one. Recalling the

definition of Q in (4.31) and (2.52), (4.68) implies that

−cD̄−1Ā′Āv−
(
D̄−1W̄−Imn

)
v̄=

(
Imn + cD̄−1Ā′Ā

)
u+ū

(Imn − D̄−1W̄)v =−u+ ū

and using, L̄ = D̄ − W̄ ,

−cĀ′Āv + L̄v̄ =
(
D̄ + cĀ′Ā

)
u+ D̄ū (4.69)

L̄v = −D̄u+ D̄ū (4.70)

Pre-multiplying (4.69) by u and (4.70) by ū′, using (4.66) and (4.67) and the sym-

metry of L̄ results in

ū′L̄v̄ = cu′Ā′Āu+ u′D̄u+ u′D̄ū

ū′L̄v̄ = −ū′D̄u+ ū′D̄ū.

Hence

u′D̄u+ ū′D̄ū = −cu′Ā′Āu ≤ 0 (4.71)

Since D̄ > 0, we obtain the contradiction that u = ū = 0. Thus one is a non defective

eigenvalue.

91

4.3 Distributed Optimization Enhanced by Integral Feedback

4.3.1 The Problem

In this Section, we propose a distributed algorithm for constrained optimization

that is neither based on diminishing step-sizes nor a doubled dimension of the vectors

shared between agents. Actually, by comparing the very fundamental mechanisms of

these algorithms, we notice that the common reason why the latter category of the

algorithms can achieve an improved convergence performance arises from elevating

the type of the update to the second order, and thereby can effectively eliminate

the accumulated consensus error. Inspired by this, in this section, we propose a

continuous-time consensus-based algorithm for constrained distributed optimization

based on integral feedback within each agent’s controller, and with the integrated sig-

nal not being shared with other agents. Without a time-variant step-size that needs

to be shared by agents, the algorithm is capable of achieving the optimum solution

with an exponential convergence rate. Furthermore, inherited from the benefit of inte-

gral feedback, the proposed algorithm has good robustness against disturbance. Note

that the algorithm of this section is evidently related to a discrete-time algorithm

for unconstrained optimization [42]. These authors increased the state dimension by

using a form of gradient descent including the last two iterates. On the other hand as

noted already, our algorithm is motivated by the very old principle of using integral

feedback to cancel steady state errors. Different from [42], our algorithm can addi-

tionally handle local linear constraints, which commonly exists in many engineering

application [122, 123]. Also, apart from requiring the storing at each agent of the

integral of the state vector in addition to the state vector itself, the algorithm does

not introduce an extra state vector which has to be exchanged among the agents of

the network. This further distinguishes the work with the existing results based on

(primal–dual) saddle point dynamics in [44–46].

Consider a network of m agents, we assume G is connected and undirected. As-

sociated with each agent is a local state xi ∈ Rn; a convex function fi(·) : Rn → R;

92

and a linear constraint Aixi = bi, where Ai ∈ Rni×n and bi ∈ image Ai ⊂ Rni . The

problem of interest is to develop a distributed algorithm which enables all nodes of G

to reach a consensus value such that

minimize
n∑
i=1

fi(xi). (4.72)

subject to Aixi = bi, (4.73)

x1 = x2 = · · · = xm. (4.74)

Remark 4.3.1 The linear constraint in (4.73) arises naturally from many engineer-

ing applications [122, 123]. Here, to avoid trivialities, we assume bi ∈ image Ai,

and rank (A) < n, where A = col {A1, · · · , Am}. This guarantees the optimization

domain defined by equations (4.73)-(4.74) is non-empty and non-unique.

4.3.2 The Update

Here, instead of using a diminishing step-size or an additional state vector to each

agent which has to be exchanged with neighbors, our key idea stems from introducing

an additional integral term to effectively eliminate the steady state error on consensus.

We propose the following continuous-time distributed algorithm,

ẋi = −Pi

(
∇fi(xi) +

∑
j∈Ni

(xi − xj) +

∫ t

0

∑
j∈Ni

(xi − xj)

)
(4.75)

where xi(0) are initialized such that Aixi(0) = bi; and Pi ∈ Rn×n is a projection

matrix to kerAi.

Table 4.2. Comparing Algorithm (4.75) with existing algorithms

Algorithm Key idea State Local constraints Update Exponential Convergence

The proposed algorithm Integral Feedback Dime. n Linear, closed Continuous Yes

Algorithms in [38] Diminishing step-size Dim. n Compact Discrete No, O(1/
√
t)

Algorithms in [42] Gradient tracking Dim. 2n Not applicable Discrete Yes

Algorithm in [41] Saddle point dynamics Dim. 2n Not applicable Continuous Yes

Algorithms in [44–46] Saddle point dynamics Dim. 2n Closed Continuous No theoretical guarantee

93

Remark 4.3.2 Obviously, the proposed algorithm is distributed, because the state

update of each agent only relies on the information of itself and that of its neighbors.

In update (4.75), the projection matrix Pi and the special initialization on xi(0) are

used to handle the linear constraint (4.73). As a special case, if for one or more

agents, the linear constraint does not exist, then one can correspondingly initialize

xi(0) as an arbitrary value and replace the projection matrix by an identity matrix.

4.3.3 Main Result

Algorithm (4.75) allows us to propose the main result by the following Theorem.

Theorem 4.3.1 Suppose G is connected and undirected, fi(x) is convex for i =

1, · · · ,m and F (x) =
∑m

i=1 fi(x) is strongly convex 4 and twice differentiable at x∗,

where x∗ is the minimizer of
∑n

i=1 fi(x) subject to Aix
∗ = bi, i = 1, · · · ,m. Then

given any xi(0) such that Aixi(0) = bi, update (4.75) drives the states of each agent

exponentially fast to x∗.

In the following, we will prove Theorem 4.3.1.

Steady-state Analysis

We first propose the following lemma, which characterizes the existence and

uniqueness properties of the equilibrium point of (4.75).

Lemma 4.3.1 Consider the updates (4.75), where G is connected and undirected;

fi(x) is convex for i = 1, · · · ,m and F (x) =
∑m

i=1 fi(x) is strongly convex and twice

differentiable at x∗, where x∗ is the minimizer of
∑n

i=1 fi(x) subject to Aix
∗ = bi,

i = 1, · · · ,m. Then an equilibrium point x∗i of the equations exists and is unique.

Furthermore, for all i = 1, · · · ,m, there holds x∗i = x∗, ensuring that the equilibrium

4A differentiable function F (·) is called strongly convex at x∗ with parameter ω > 0 if a>[∇F (a+

x∗)−∇F (x∗)] ≥ ω‖a‖22 holds for all vectors a in its domain.

94

point obeys the consensus property and optimizes the constrained optimization problem

(4.72)-(4.74).

For simplicity in analyzing the proposed algorithm from a global prospect define

x = col {x1, · · · , xm} ∈ Rmn, P̄ = diag {P1, · · · , Pm} ∈ Rmn×mn and L̄ = L ⊗ In ∈

Rmn×mn, where L ∈ Rm×m is the Laplacian matrix of the graph G. [We will frequently

use below the property of L that it is symmetric with kernel spanned by 1m, the m-

vector of all 1’s.] Then update (4.75) can be rewritten as

ẋ = −P̄
(
∇f(x) + L̄x+

∫ t

0

L̄x

)
. (4.76)

This is further equivalent to

ẋ = −P̄
(
∇f(x) + L̄x+ y

)
(4.77)

ẏ = L̄x (4.78)

where y ∈ Rmn and y(0) = 0.

Remark 4.3.3 Evidently the dynamics (4.77)-(4.78) is equivalent to (4.75), where

the integral term implicitly introduces an extra state y. Each component of this extra

state can be obtained via local computations and stored by each agent, and does not

have to be exchanged across the network. For existing algorithms characterized by

saddle-point dynamics, the extra states must be exchanged across the network [41,124].

Proof of Lemma 4.3.1: In order to prove Lemma 4.3.1, since (4.77)-(4.78) and

(4.75) are equivalent, it is sufficient to show that there exist equilibrium points (x∗,y∗)

with unique x∗ for (4.77)-(4.78) such that

0 = −P̄
(
∇f(x∗) + L̄x∗ + y∗

)
(4.79)

0 = L̄x∗ (4.80)

where x∗ = 1m⊗x∗ and x∗ is the minimizer of F (x) =
∑m

i=1 fi(x) subject to Aix
∗ = bi

for all i; ∇f(x∗) is the column stack of the vectors ∂fi(xi)
∂xi

∣∣∣
x∗

. Furthermore, note that

95

in (4.79), the value of y∗ cannot be taken arbitrarily. Since y(0) = 0, the integration

of y in equation (4.78) indicates that for all t, y(t) ∈ image L̄. Hence, y∗ ∈ image L̄.

In the following, we first assume the equilibrium (x∗,y∗) described in (4.79)-(4.80)

exists and show that x∗ is unique, taking the form set out in the lemma statement.

Since ker L̄ = image (1⊗ In), from equation (4.80), one has x∗1 = · · · = x∗m, which is

the consensus property. Next, recall that image Pi = kerAi, then kerPi = image A>i .

Let Ā = diag {A1, · · · , Am}. From equation (4.79) and P̄ = diag {P1, · · · , Pm}, there

exists a z∗ = col {z∗1 , · · · , z∗m}, z∗i ∈ Rni such that

∇f(x∗) + L̄x∗ + y∗ = Ā>z∗. (4.81)

Further recall that ∇f(x∗) is the column stack of the vectors ∂fi(xi)
∂xi
|x∗ , then multi-

plying equation (4.81) on the left by (1m ⊗ In)> yields

(1m ⊗ In)>∇f(x∗) =
m∑
i=1

∇fi(x∗) =
m∑
i=1

A>i zi. (4.82)

This, by standard Lagrange multiplier theory, tells us x∗ is a critical point for F (x) =∑n
i=1 fi(x) on the manifold defined by Aix

∗ = bi for all i. Because we have assumed

that
∑n

i=1 fi(x) is strongly convex at x∗, x∗ is unique and is a minimizer.

Now we establish the existence of (x∗,y∗) as an equilibrium point, which is an

assumption we previously made in the proof. Because x∗ minimizes
∑

i fi(x) subject

to Aix
∗ = bi, by standard Lagrange multiplier theory, there exist Lagrange multipliers

z∗i [125] such that
m∑
i=1

∇fi(x∗)−
m∑
i=1

A>i z
∗
i = 0 (4.83)

Using the z∗i , we now make the definition

y∗i = A>i z
∗
i −∇fi(x∗) (4.84)

As a side remark, we observe that the uniqueness, or otherwise, of y∗i does not influence

the result of Lemma 4.3.1, as it does not originally appear in the update (4.75).

Note immediately that in (4.83), if
[
A>1 , · · · , A>m

]
does not have linearly independent

96

columns, the value of z∗i is non-unique [125]. Consequently, the value of y∗i is also

non-unique.

From equation (4.84), we have ∇fi(x∗) + y∗i = A>i z
∗
i , or

∇f(x∗) + y∗ = Ā>z∗ (4.85)

and indeed

∇f(x∗) + L̄x∗ + y∗ = Ā>z∗ (4.86)

From this, since P̄ Ā> = 0, we obtain

0 = −P̄ (∇f(x∗) + L̄x∗ + y∗) (4.87)

This ensures the satisfaction of (4.79). Furthermore, from (4.83) and (4.84) one has

m∑
i=1

y∗i =
m∑
i=1

[
A>i z

∗
i −∇fi(x∗)

]
= −

(
m∑
i=1

∇fi(x∗)−
m∑
i=1

A>i z
∗
i

)
= 0

This ensures the satisfaction of y∗ ∈ image L̄ and completes the proof.

Change of coordinate frame

In order to examine the transient behavior of (4.77)-(4.78), it is convenient to

make a coordinate transformation which ensures that in the new coordinates, the

equilibrium point corresponding to x∗ is moved to zero. Here, we change the origin

of updates (4.77)-(4.78), by defining vectors x̃, ỹ as follows:

x̃ = x− x∗

ỹ = y − y∗ (4.88)

97

where, as above, x∗ = 1m ⊗ x∗ and y∗ satisfies (4.87) with a certain Lagrange multi-

plier z∗. Note that when y∗ is non-unique, one can make an arbitrary choice consistent

with (4.84). Evidently,

˙̃x =− P̄
(
∇f(x̃+ x∗)− L̄(x̃+ x∗)− (ỹ + y∗)

)
=− P̄

(
[∇f(x̃+ x∗)−∇f(x∗)]− L̄x̃− ỹ

)
(4.89)

˙̃y = L̄(x̃+ x∗) = L̄x̃ (4.90)

To continue, we further modify updates (4.89)-(4.90) by a frame transformation.

Since the linear equitation set Aix = bi, i = 1, · · · ,m has multiple solutions, there

exists a single nonzero vector in the kernel of every Ai, i.e. in the range of every

Pi. Observe then that if v = Piyi is such a vector, then Piv = v, ∀i ∈ {1, · · · ,m}.

Recalling that ker L̄ = image (1⊗ In), then, P̄ L̄P̄ (1⊗ v) = 0, which means P̄ L̄P̄ is

singular. Thus, there exists an orthogonal matrix Q =
[
R1 R2

]
, with R1 ∈ Rmn×n̄1 ,

R2 ∈ Rmn×n̄2 , n̄1 + n̄2 = mn, such that

Q>P̄ L̄P̄Q =

0 0

0 R>2 P̄ L̄P̄R2

 , (4.91)

where the matrix R>2 P̄ L̄P̄R2 is non-singular. Now define new vectors X, Y by the

transformations

X = Q>x̃, Y = Q>P̄ ỹ. (4.92)

Multiplying the differential equations (4.89)-(4.90) on the left, by Q> and Q>P̄ ,

respectively, yields

Ẋ =−Q>P̄ [∇f(QX + x∗)−∇f(x∗)]−Q>P̄ L̄P̄QX

− Y (4.93)

Ẏ = Q>P̄ L̄P̄QX (4.94)

Note that in the derivation of (4.93)-(4.94), we have replaced QX with P̄QX. This

equality holds because both xi(t) for all t and x∗ are solutions to Aix = bi; then

98

Pi(x1−x∗) = (x1−x∗), that is, P̄QX = P̄ x̃ = col {P1(x1−x∗), · · · , Pm(xm−x∗)} =

x̃ = QX. Based on (4.93)-(4.94), further partition the vectors X, Y as

X =

X1

X2

 , Y =

 Y1

Y2

 (4.95)

where X1, Y1 ∈ Rn̄1 and X2, Y2 ∈ Rn̄2 . Consider now the equations for X1, Y1 alone.

Using equation (4.91), there results

Ẋ1 =−R>1 P̄ ([∇f(x̃+ x∗)−∇f(x∗)]− Y1) (4.96)

Ẏ1 = 0 (4.97)

and

Ẋ2 =−R>2 P̄ [∇f(QX+x∗)−∇f(x∗)]

−R>2 P̄ L̄P̄R2X2 − Y2 (4.98)

Ẏ2 = R>2 P̄ L̄P̄R2X2 (4.99)

Now observe that Y1(0) = 0. [The argument is as follows. Because Q =
[
R1 R2

]
and P̄ L̄P̄ , from equation (4.91), one has R>1 P̄ L̄ = 0. Recall that y(0) = 0 and

y∗ ∈ image L̄, then Y1(0) = R>1 P̄ ỹ(0) = R>1 P̄ (y(0)− y∗) = 0.] In light of (4.97),

this means that Y1 = 0 for all t, furthermore, X>Y = X>1 Y1 +X>2 Y2 = X>2 Y2.

Stability questions concerning (4.89) and (4.90) thus can be treated as stability

questions concerning the equations (4.96), (4.98) and (4.99), leaving out (4.97).

Proof of Theorem 4.3.1

The proof comprises two main steps. In the first step, Lyapunov theory is used

to establish asymptotic stability of (4.96), (4.98) and (4.99). In the second step, the

equilibrium is shown to be locally exponentially stable through examination of the

linearization of the system at the equilibrium point. Together, this implies that all

trajectories of the nonlinear system converge exponentially fast to the equilibrium.

99

First, noting that R>2 P̄ L̄P̄R2 is symmetric positive definite, we can define a pos-

itive definite function V of X and Y2 as follows:

V =
1

2

[
X>X + Y >2 (R>2 P̄ L̄P̄R2)−1Y2

]
. (4.100)

We will show V is a Lyapunov function from which asymptotic stability can be con-

cluded. Computing the derivative along motions of equations (4.93)-(4.94) gives us

V̇ =−X>Q>P̄ [∇f(QX+x∗)−∇f(x∗)]−X>Q>P̄ L̄P̄QX

−X>Y + Y >2 (R>2 P̄ L̄P̄R2)−1(R>2 P̄ L̄P̄R2)X2

=−X>Q>[∇f(QX+x∗)−∇f(x∗)]−X>Q>L̄QX (4.101)

Note that the last equality holds because QX = P̄QX and X>Y = X>1 Y1 +X>2 Y2 =

X>2 Y2.

Since ∇f(x) = col {∇f1(x1), · · · ,∇fm(xm)} and each fi(xi) is convex, one has

−X>Q>[∇f(QX+x∗)−∇f(x∗)] ≤ 0. Thus, V̇ in (4.101) is non-positive. We will now

apply LaSalle’s Theorem [126]. Observe that, V̇ = 0 if and only if X>Q>[∇f(QX +

x∗) − ∇f(x∗)] = 0, and L̄QX = 0. Because ker L̄ = image (1m ⊗ In), one has

QX = 1m ⊗ u, u ∈ Rn. Recall also that F (x) =
∑m

i=1 fi(x) is strongly convex at x∗,

thus, there exists a positive ω such that for any q ∈ Rn,

m∑
i=1

[
q>(∇fi(q + x∗)−∇fi(x∗))

]
= (1m ⊗ q)> (∇F (q + x∗)−∇F (x∗)) ≥ ω‖q‖2

2 (4.102)

Due to the convexity of each fi(xi) such that q>(∇fi(q + x∗) − ∇fi(x∗)) ≥ 0, in

(4.102), there exists at least one j ∈ {1, · · · ,m} such that

q>(∇fj(q + x∗)−∇fj(x∗)) ≥
ω

m
‖q‖2

2.

Thus, for QX = 1m ⊗ u, u 6= 0,

X>Q>[∇f(QX+x∗)−∇f(x∗)]=
m∑
i=1

u>[∇fi(u+x∗)−∇fi(x∗)]

≥ u>[∇fj(u+ x∗)−∇fj(x∗)] ≥
ω

m
‖u‖2

2 > 0 (4.103)

100

From equation (4.103) and the fact that Q is nonsingular, we know that V̇ is strictly

negative when X 6= 0. Then, by LaSalle’s Theorem, the update (4.93)-(4.94) will

converge asymptotically to the trajectories whereX = col {X1, X2} is identically zero.

Since Q is non-singular, one concludes that the x̃ in (4.89) converges asymptotically

to the trajectories where x̃ = 0. Hence, update (4.75) converges asymptotically

to its equilibrium point. Then by Lemma 4.3.1, the states of each agent converge to

constant vectors x∗i which obeys the consensus property such that for all i = 1, · · · ,m,

x∗i = x∗ and x∗ is the minimizer of F (x) =
∑n

i=1 fi(x). Note that at this point, by

the asymptotic convergence of x̃ → 0 in (4.89)-(4.90), one can conclude that P̄ ỹ

converges asymptotically to 0. However, this is not sufficient to assert that ỹ, nor

that
∫ t

0
L̄x(τ)dτ = y = ỹ + y∗ in (4.76), converges to a constant. In the following,

we further establish the exponential convergence rate of the proposed update and

with such result, show that the
∫ t

0
L̄x(τ)dτ in update (4.76) converges exactly to a

constant.

To further establish the exponential convergence rate of the proposed update,

consider the following linear time-invariant system, which linearizes the X dynamics

of (4.93)-(4.94) at its equilibrium point obtained in Lemma 4.3.1:

˙̃
X =−Q>P̄Hf(0)QX̃ −Q>P̄ L̄P̄QX̃ − Ỹ (4.104)

˙̃
Y = Q>P̄ L̄P̄QX̃ (4.105)

where X̃, Ỹ ∈ Rmn; Hf(0) ,
∂2f(x)
∂x2

∣∣∣
x=x∗

∈ Rmn×mn. Furthermore, according to the

property of X of the nonlinear dynamics, X̃ satisfies P̄QX̃ = QX̃. Partition the

vectors X̃, Ỹ as X̃ = col {X̃1, X̃2} and Ỹ = col {Ỹ1, Ỹ2}, where X̃1, Ỹ1 ∈ Rn̄1 and

X̃2, Ỹ2 ∈ Rn̄2 . As for the nonlinear system, we can drop consideration of Ỹ1 and we

define a positive definite Lyapunov function of X̃ and Ỹ2 by

Ṽ =
1

2

[
X̃>X̃ + Ỹ >2 (R>2 P̄ L̄P̄R2)−1Ỹ2

]
(4.106)

101

Computing the derivative along motions of equations (4.104)-(4.105) and using the

property of P̄QX̃ = QX̃ gives us

˙̃
V = −X̃>Q>Hf(0)QX̃ − X̃>Q>L̄QX̃ (4.107)

Note that
˙̃
V = 0 if and only if Hf(0)QX̃ = 0 and L̄QX̃ = 0. Because ker L̄ =

image (1m ⊗ In), one has QX̃ = 1m ⊗ ũ, ũ ∈ Rn. Recall that F (x) =
∑m

i=1 fi(x) is

strongly convex at x∗, thus ∑m
i=1 ∂

2fi(x)

∂x2

∣∣∣∣
x=x∗

> 0 (4.108)

That is, for any QX̃ 6= 0,

X̃>Q>Hf(0)QX̃ = (1m ⊗ ũ)>Hf(0) (1m ⊗ ũ)

= ũ>
(∑m

i=1 ∂
2fi(x)

∂x2

∣∣∣∣
x=x∗

)
ũ > 0 (4.109)

This, along with the fact that Q is non-singular, tells us
˙̃
V < 0 for any nonzero

X. Once again, LaSalle’s Theorem delivers asymptotic stability of the system with

state vector comprising the entries of X̃1, X̃2, Ỹ2. But since the system is linear

and time-invariant, such stability is also exponential. This, along with Hartman-

Grobman theorem [127], gives us the local exponential stability of the non-linear

dynamics (4.93)-(4.94) associated with X1, X2, Y2. That is, there exists certain a

δ > 0, such that if ‖[X>1 (0), X>2 (0), Y >2 (0)]‖2 ≤ δ, then X1(t), X2(t), Y2(t) converges

to zero exponentially fast. Recall also that the update equations for X1(t), X2(t), Y2(t)

are globally asymptotically stable; thus, given any initial state outside the ball of

radius δ surrounding the origin, the associated trajectory converges to the boundary

of the ball in a finite time. More generally (and as a result), given an arbitrary but

fixed compact set K of possible initial conditions [X>1 (0), X>2 (0), Y >2 (0)], it follows

that there exists a finite time T , depending on K, such that every trajectory from

any initial condition in K has reached the ball at or before time T . The combination

of this and the local exponential stability implies the exponential convergence rate of

102

the nonlinear equations for X1, X2, Y2 for all initial conditions in a fixed but arbitrary

compact set K, with the decay rate depending on K.

To further show that the
∫ t

0
L̄x(τ)dτ in update (4.76) converges to a constant,

note that by equation (4.92), the exponential convergence of X = col {X1, X2} leads

to the exponential convergence of x̃. Thus, from (4.90), the exponential decaying

of ˙̃y implies that ỹ converges to a constant exponentially fast, which also holds for∫ t
0
L̄x(τ)dτ . This completes the proof.

4.3.4 Validation

In this section, we provide numerical simulations to validate Theorem 4.3.1. Let

m = 5, n = 20, ni = 3, for i = 1, · · · , 5. Consider the five-agent network shown

in Fig 4.4. Suppose each agent i knows a local objective function fi(x) and a local

1

3

4

5

2

Figure 4.4. An undirected connected network of five agents.

constraint Aix = bi such that

f1(x) = ‖x‖2
2 f2(x) = ‖x− c2‖2

2

f3(x) =
20∑
k=1

ex[k] f4(x) =
20∑
k=1

e−2x[k] (4.110)

f5(x) = ‖x− c5‖4
2

where x[k] denotes the kth entry of vector x; Ai ∈ R3×20, bi ∈ image Ai ⊂ R3 and

c2, c5 ∈ R20 are constant matrices/vectors. Given the convex fi(x) defined in (4.110)

and the fact that the constraint set Aix = bi, i = 1 · · · , 5 is under-determined, there

exists a unique solution x∗ ∈ R20 that minimizes F (x) =
∑n

i=1 fi(x). Furthermore,

103

since F (x) is strictly convex and twice differentiable everywhere in R20, it is also

strictly convex and twice differentiable at x∗.

The exponential convergence rate

In order to validate Theorem 4.3.1, we let each agent initialize its local state

xi ∈ R20 as Aixi(0) = bi and then update its state by equation (4.75). Define the

following function:

W (t) =
5∑
i=1

‖xi(t)− x∗‖2
2, (4.111)

for which W (t) = 0 if and only if all xi(t) = x∗ for all i = 1, · · · , 5, where x∗ is

the unique minimizer of F (x) =
∑n

i=1 fi(x) subject to Aix = bi, i = 1 · · · , 5. The

simulation result is given by the Ode45 solver of MATLAB, and is shown in Fig. 4.5,

where the Y-axis is scaled by log(·). The constant slope of the curve W (t) (with

W (t) converging to 0) indicates the exponential convergence of the algorithm, which

validates Theorem 4.3.1. Note that Fig. 4.5 corresponds to the particular objective

function in (4.110) of a 5-agent network, as well as a certain choice of initial states

xi(0) which satisfy Aixi(0) = bi. The convergence property shown here is absolutely

representative of what happens with almost all randomly chosen examples and initial

states.

𝑡

𝑊(𝑡)

Figure 4.5. The exponential convergence rate of the proposed algorithm.

104

Robustness towards disturbance

In practice, due to sensor error and measurement mismatch, multi-agent systems

are usually accompanied by disturbances. In this sub-section, as in [128], we inves-

tigate the impact of constant disturbance to the proposed algorithm. Consider a

constant vector v ∈ R100, where entry of the vector v is randomly and uniformly

chosen from [0, 0.05]. We introduce t he constant disturbance v to the state x(t)

when it is transferred through the network.

ẋ = −P̄
(
∇f(x) + L̄(x+ v) +

∫ t

0

L̄(x+ v)

)
, (4.112)

ẋ = −P̄
(
α(t)∇f(x) + L̄(x+ v)

)
, (4.113)

where α(t) is chosen as 1/t, L̄ = L ⊗ In is the augmented Laplacian matrix of the

network, and v 6= 0 is the constant disturbance we have introduced. Note that the

update (4.112) corresponds to the proposed algorithm in this section, and the update

(4.113) corresponds to the algorithm (4.6), where the discrete-time versions of the

update are proposed in [37,38].

𝑡

𝑊(𝑡)

The proposed algorithm

Figure 4.6. An undirected connected network of five agents.

For both algorithms, we use the same initial state the Ode45 solver of MATLAB

to simulate the dynamics of (4.112) and (4.113), where obtained error curves W (t) are

shown in Fig. 4.6. It can be observed that for the update with diminishing step-size,

the non-zero disturbance will accumulate with time t and finally leads the curve W (t)

105

to blow up. This means the agents’ states are not able to converge to the optimum

point x∗. For the proposed update, the curve of W (t) does not grow with time t,

instead, it converges to a constant value that is close to 0. This means that the states

of all agents will converge to a small neighborhood of x∗ (They do not converge to

the exact optimum value due to the existence of the constant disturbance). By such

comparison, it can be validates that update (4.112) has strikingly better robustness

against disturbance than update (4.113).

106

5. A RESILIENT CONVEX COMBINATION FOR

CONSENSUS-BASED DISTRIBUTED ALGORITHMS 1

5.1 Introduction

Consensus-based distributed algorithms for multi-agent networks enable all agents

in the network to reach an agreement regarding a certain quantity of interest, which

could be an unconstrained value [129, 130], an average of all agents’ initial states

[131, 132] a solution to a group of linear equations [12, 13, 16, 17, 40], or a constant

for optimizing an objective function [37, 39, 115]. Success of these updates heavily

depends on the utilization of convex combinations of nearby neighbors’ states. When

one or more agents become malicious under cyber-attacks, false information will be

injected into the convex combination and usually lead to failures of consensus-based

distributed algorithms [47, 53, 133]. Considering the fact that many multi-agent net-

works in practice such as distributed power grids or robotic networks, are large-scale

and often operate in open and hostile environments, the exposure to cyber-attacks is

inevitable. Moreover, in a fully distributed scenario, the lack of global information

makes it significantly challenging (and in some cases, impossible) to identify or isolate

those malicious agents, especially when the cyber-attack is very sophisticated such

as Byzantine attack [134]. Although significant progress has recently been achieved

by a combination of cyber and system-theoretic approaches in [135–137], these meth-

ods are either computationally expensive, assume the network topology to be fully

connected, or require the normal nodes to be aware of nonlocal information such

as independent paths between themselves and other nodes. Recognition of this has

motivated us to achieve a resilient convex combination, which refers to the convex

combination of normal states that have not been manipulated by cyber-attacks, only

1Resarch in this section has been published in the papers [59] with me as the leading author.

107

knowing the upper bound to the number of malicious agents. Very nice results for

achieving such a resilient convex combination have recently been developed based on

Tverberg points [54–56,58,138]. As mentioned in [57], except for some specific values

of n [57, 138], the computational complexity of achieving exact Tverberg points is

usually high. Thus, one major goal of this paper is to develop an algorithm with

low computational complexity for achieving a resilient convex combination. We will

also apply the resilient convex combination in providing safety for consensus-based

distributed algorithms in the adversarial environment.

5.2 Problem Formulation

Let xA = {x1, x2, · · · , xm} denote a set of vectors in Rn, where A = {1, 2, ...,m}.

Suppose one knows that at most a number of κ vectors in xA are malicious, but

the labels of malicious vectors are not known. Then there are at least a number of

p = m−κ normal vectors in xA. Suppose one knows a subset Ā ⊂ A, which is empty

or only contains labels of normal vectors in xA but

|Ā| = σ ≤ p. (5.1)

The problem of interest is to develop an algorithm with low-computational com-

plexity to achieve a resilient convex combination, which is defined as follows

Definition 5.2.1 (resilient convex combination) A vector is a resilient convex com-

bination of xA, if it is a convex combination of only normal vectors in xA.

The problem is trivial when κ = 0, for which a resilient convex combination simply

becomes a convex combination of xA. When κ > 0, a resilient convex combination

can technically place nonzero weights only on a small number (< p) of normal vectors,

and so trivially taking any convex combination of the elements of xĀ would yield such

a combination. However, the approach that we discuss in the paper can also, in some

cases, yield non-trivial convex combinations of a large number of normal vectors than

just those contained in xĀ, with applications in a variety of scenarios (as discussed

108

in the simulations section). One way to achieve such a non-trivial resilient convex

combination is through Tverberg points as in [54–56, 58, 138]. For any S ⊂ A, let

H(xS) denote the convex hull of vectors in xS , that is,

H(xS) = {
|xS |∑
k=1

αksk : sk ∈ xS , αk ≥ 0,

|xS |∑
k=1

αk = 1}. (5.2)

Then the existence of Tverberg points is guaranteed by the following theorem.

Tverberg Theorem [139]: Suppose m ≥ κ(n + 1) + 1 for the given set xA. Then

there must exist a partition of A into κ+ 1 disjoint subsets B1, · · · ,Bκ+1 such that

T =
κ+1⋂
j=1

H(xBj) 6= ∅, (5.3)

where
κ+1⋃
j=1

Bj = A

and

Bj ∩ Bk = ∅, ∀j 6= k.

Points in the non-empty intersection T in (5.3) are called Tverberg points of the

(κ+ 1)-partition of A.

While results in [54, 55, 58] are elegant, one major concern of applying Tverberg

points lies in the requirement of high computational complexity. As mentioned in [57],

except for some specific values of n, the computational complexity of calculating

Tverberg points grows exponentially with the dimension n. In the following, we will

develop a low-complexity algorithm for achieving resilient convex combinations based

on the intersection of convex hulls.

109

5.3 Resilient Convex Combination

5.3.1 A Resilient Convex Combination through Intersection of Convex

Hulls

Let

R =
r⋂
j=1

H(xAj), (5.4)

where r =
(

m−σ
m−σ−κ

)
and Aj, j = 1, 2, ..., r, denote all subsets of A such that

Ā ⊂ Aj ⊂ A, |Aj| = m− κ. (5.5)

Then one has the following lemma:

Lemma 5.3.1 If R 6= ∅, then any point in R is a resilient convex combination.

Proof of Lemma 5.3.1: Since the number of malicious points in xA is upper

bounded by κ, there must exist at least one subset Aj∗ which consists of only normal

points. As long as R 6= ∅, for any vector q ∈ R, it must be true that q ∈ H(xAj∗).

Thus, q is a resilient convex combination.

Compared with the Tverberg points set in (5.3), the R in (5.4) defines a larger

set for choosing resilient convex combinations, as indicated by the following lemma.

Lemma 5.3.2 The set T in (5.3) and the set R in (5.4) satisfy

T ⊂ R. (5.6)

Proof of Lemma 5.3.2: We first claim that for each Aj, j = 1, 2, ..., r, defined

in (5.5), one of B1, · · · ,Bκ+1 must be its subset. We prove this by contradiction.

Suppose there exists a Aj† such that none of B1, · · · ,Bκ+1 is a subset of Aj† . Then

each Bj, j = 1, 2, · · · , κ+ 1, must have at least one element that is not in Aj† . Note

that the sets B1, · · · ,Bκ+1 are disjoint. Then there are at least κ + 1 elements that

are not in Aj† . Then |Aj†| ≤ m−κ−1, which contradicts the fact that |Aj†| = m−κ.

Thus for each Aj, one of B1, · · · ,Bκ+1 must be a subset of Aj. From this and the

110

definition of R in (5.4), one has
⋂κ+1
j=1 H(xBj) ⊂ R, which is (5.6). This completes

the proof.

To guarantee that R is not empty, one has the following lemma:

Lemma 5.3.3 If Ā 6= ∅, then R 6= ∅; If Ā = ∅, but m ≥ (κ(n+ 1) + 1), then R 6= ∅.

Proof of Lemma 5.3.3: For the case of Ā 6= ∅, recall equation (5.5) that Ā ⊂ Aj.

Then for any j = 1, 2, ..., r, one has

H(xĀ) ⊂ H(xAj).

It follows that

H(xĀ) ⊂
r⋂
j=1

H(xAj) = R

Thus, Ā 6= ∅ leads to R 6= ∅.

For the case of Ā = ∅, if m ≥ (κ(n+ 1) + 1), one has from the Tverberg Theorem

that T 6= ∅. Thus, Lemma 5.3.2 leads to

T ⊂ R 6= ∅

This completes the proof.

5.3.2 A Low-Complexity Algorithm to Calculate R

Since any point in R is a resilient convex combination (by Lemma 5.3.1), it is

desirable to calculate the set R, which by (5.4) is the intersection of a group of

convex hulls. Existing approaches for the computation of intersection of convex hulls

are usually computationally complex (#p-hard in [140]). Thus, in this section, we

will develop an algorithm with low computational complexity for calculating a point

in R.

First, we will propose an equivalent expression of the set R in terms of equality

and inequality constraints. For each Aj = {j1, j2, · · · , jp}, j = 1, 2, ..., r, we define

the following matrix

Yj =
[
xj1(t) xj2(t) · · · xjp(t)

]
∈ Rn×p. (5.7)

111

We call

X = diag{Yj, j = 1, 2, ..., r} ∈ Rnr×pr (5.8)

the coordinate matrix. For example, suppose A = {1, 2, 3}, Ā = {1} and κ = 1,

then p = 2, r = 2 and one has:

A1 = {1, 2}, A2 = {1, 3}

Y1 =
[
x1 x2

]
, Y2 =

[
x1 x3

]
X =

Y1 0

0 Y2

 .
This coordinate matrix allows us to characterize the set R with the following lemma

Lemma 5.3.4 Let C ∈ Rr×r be the circulant matrix with the first row in the form of[
1 −1 0 · · · 0

]
. Then

R =

{
1

r
(1′r ⊗ In)Xβ

}
, (5.9)

for all β ∈ Rpr that satisfies

(C ⊗ In)Xβ = 0 (5.10)

(Ir ⊗ 1′p)β = 1r (5.11)

β ≥ 0. (5.12)

Before proving Lemma 5.3.4, note that if we let β = col {βj, j = 1, 2, ..., r} and

yj = Yjβj ∈ Rn, with βj ∈ Rp, then

Xβ = col {yj, j = 1, 2, ..., r}. (5.13)

This indicates that the components yj of Xβ are linear combinations of vectors stored

in Yj according to the coefficient vector βj. With this, we carry out the following proof.

Proof of Lemma 5.3.4: From (5.13), the definition of the circulant matrix C, and

(C ⊗ In)Xβ = 0 in (5.10), one has for all j = 1, 2, ..., r, there exists a y∗ such that

yj = y∗. (5.14)

112

Let Yj denote the set of yj for all β satisfying (5.11)-(5.12). Note that these equa-

tions ensure βj is a nonnegative vector with entries summing to 1, which guarantees

the combinations yj = Yjβj are convex. Then, given the definitions (5.2) and (5.7),

it is true that

Yj = H(xAj), j = 1, 2, ..., r. (5.15)

This along with (5.14) indicate that the set of all feasible y∗ is given by

{y∗} =
r⋂
j=1

Yj =
r⋂
j=1

H(xAj) = R. (5.16)

Recall that (1′r ⊗ In)Xβ = y1 + y2 + ...+ yr = ry∗. Thus,{
1

r
(1′r ⊗ In)Xβ

}
= R.

This completes the proof.

Lemma 5.3.4 tells us that computing the set R is equivalent to solving equations

(5.9)-(5.12). However, to obtain a particular resilient convex combination, one does

not necessarily have to find all points in this set. Here, we consider a point u, which

tends to equally use all vectors in xA, namely

u =
1

r
(1′r ⊗ In)Xβ∗ (5.17)

where β∗ is computed by the following quadratic programming problem:

minimize J(β) =
1

p
‖β − 1

p
1pr‖2

2 (5.18)

subject to constraints (5.10)-(5.12). Specially when κ = 0, one has r = 1, p = m.

Then β∗ = 1
m

1m, and u = 1
m

∑m
j=1 xj, which is the average of all vectors in xA.

To reveal the mechanism of (5.18), note that

1

p
‖β − 1

p
1pr‖2

2 =
1

p

r∑
j=1

‖βj −
1

p
1r‖2

2

which minimizes the sum of variances of coefficient vectors βj. Recall that since the

entries of βj sum up to 1, its average should be 1
p

so when the value of J(β) approaches

113

0, the weights are equally distributed to all states. In this way, the u in (5.17) can

be viewed as an unbiased choice of the resilient convex combination that lies in the

region R. It is worth mentioning that the complexity of achieving the β∗ in (5.18) is

O(n · (mr)3) [141].

5.3.3 Main Result

The main result of the paper is the following theorem, which summarizes Lemmas

5.3.1-5.3.4:

Theorem 5.3.1 Consider a set xA = {x1, x2, · · · , xm} of m vectors in Rn, where

A = {1, 2, ...,m}. Suppose at most κ vectors in xA are malicious and Ā is a known

label set that only contains normal vectors, which can also be empty. If Ā 6= ∅ or

m ≥ (κ(n + 1) + 1), any point in the non-empty set R defined in (5.4) is a resilient

convex combination. One specific point u ∈ R defined in (5.17) can be computed by

solving the quadratic programming problem (5.18) subject to constraints (5.10)-(5.12).

Recall that the set of Tverberg points T , which is a subset of R, also provides

a region for choosing resilient convex combinations. Comparisons between T and R

are provided as follows:

• First, determining Tverberg points requires high computational complexity. Al-

though the Tverberg Theorem provides a sufficient condition for the existence

of a partition leading to Tverberg point, the theorem does not provide an algo-

rithm for finding the partition for achieving Tverberg points, apart from enu-

merating all possible partitions and checking the intersection of convex hulls

for each partition. As mentioned in [57], except for some specific values of n,

the computational complexity of achieving Tverberg points is O(mn−1) [57],

which grows exponentially with n − 1, where n is the dimension. In contrast,

it has been shown that the resilient convex combination proposed in (5.17) can

be computed by solving a standard quadratic programming problem, whose

computational complexity is polynomial in n.

114

• Second, the existence of an non-empty Tverberg point set T requires that

m ≥ κ(n + 1) + 1, while one has R 6= ∅ if Ā 6= ∅ or m ≥ κ(n + 1) + 1.

In achieving resilience for distributed algorithms, one aims to guarantee all nor-

mal agents’ states to converge to a consensus. Then each normal agent at least

has one element (which is itself) in Ā. Then the existence of an non-empty R is

automatically guaranteed. Please refer to Fig. 5.1. (A) and (B) for an example

when R is non-empty while T = ∅, and an example T ⊂ R, respectively.

1

2

3

4

5

6

Figure 5.1. Finding Tverberg point T (yellow) in a 2-D space, with
Ā = {1}. [κ = 2, m = 6, m < (κ(n+ 1) + 1)]

1

2

3

4

Figure 5.2. Finding R (red) in a 2-D space, with Ā = {1}. [κ = 1,
m = 4, m = (κ(n+ 1) + 1)]

115

5.4 Application of the Resilient Convex Combination into Consensus-

Based Distributed Algorithms

Consider a network of m̄ agents in which each agent i is able to sense or receive

information from certain other nearby agents, termed agent i’s neighbors. We suppose

agent i is always a neighbor of itself and we let Ni(t) denote the set of agent i’s

neighbors at time t, i = 1, 2, · · · , m̄. The neighbor relations can be described by a

time-dependent graph G(t) such that there is a directed edge from j to i in G(t) if and

only if j ∈ Ni(t). Suppose each agent i controls a state vector xi(t) ∈ Rn. Consensus-

based distributed algorithms have been proposed in the literature that solve problems

that are unconstrained, constrained by linear or nonlinear constraints [12], and/or

minimize a global objective function [37]. These algorithms share a common form

xi(t+ 1) = fi(xi(t), vi(t)) (5.19)

where vi(t) is a convex combination of all agent i’s neighbors’ states, that is,

vi(t) =
∑

j∈Ni(t)

wij(t)xj(t)

with
∑
j∈Ni

wij(t) = 1.

Since each agent updates its state by a convex combination of all its neighbors’

states, when one or more neighbors are malicious, the convex combination also con-

tains false information, which may prevent the overall consensus goal from being

reached. This motivates the key idea to replace the convex combination vi(t) with

a resilient convex combination ui(t) defined in (5.17). To be more specific, in each

time step, we assume that agent i knows A = Ni(t), Ā = {i} and the upper bound of

agent’s malicious neighbors κ. Then it computes ui(t) by solving the quadratic pro-

gramming problem (5.18) under constraints (5.10)-(5.12). In this way, the malicious

information is automatically isolated by ui(t).

116

5.5 Validation

In this section, we provide simulations for an 11-agent time-varying network con-

sisting of both directed and undirected edges as indicated in Fig. 5.3, in which agent

10 and 11 are malicious agents and connect themselves to different normal agents as

time evolves. By replacing vi(t) in (5.19) with ui(t), the problem of interest is to

check whether all normal agents from 1 to 9 under this update still reach the desired

consensus in the presence of malicious agents. In the following examples, we suppose

each xi(t) ∈ R2, κ = 1 (even though there are two malicious agents, for each agent,

the upper bound of malicious neighbor is 1). Each malicious agent sends a state to

its neighbors which is randomly chosen from the set [0, 2]× [0, 2].

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

(𝑎)

10

11

10

10

10

11

11 11

(𝑏)

(𝑑)(𝑐)

Figure 5.3. A network of 11 agents with malicious agents marked in red.

Example 1 (Unconstrained Consensus).

117

We first consider the unconstrained consensus problem, in which all xi(t) ∈ R2,

i = 1, 2, · · · , 9, aim to reach consensus by the following update

xi(t+ 1) =
1

di(t)

∑
j∈Ni(t)

xi(t) (5.20)

with initialization xi(0) randomly chosen from the areas of [0, 2]× [0, 2]. Let

V (t) =
1

2

9∑
i=1

‖xi(t)− xi+1(t)‖2
2 (5.21)

which measures the closeness of all normal agents’ states to a consensus.

A. Under Fixed Graph

Suppose the network is a fixed one as in Fig. 5.3-(a). Simulation results for the

consensus update (5.20) with and without the presence of malicious agents are shown

in Fig. 5.4, which indicates unsurprisingly that the traditional consensus update

(5.20) could easily fail in the presence of malicious agents.

0 5 10 15 20 25 30 35 40 45 50

t

0

1

2

3

4

5

6

7

8

9

V (t)

Figure 5.4. Simulations of normal agents under the consensus update
(5.20) without malicious agents (blank line) and with malicious agents
10 and 11 (red line).

By introducing a new resilient convex combination ui(t) at each agent i, which is

a convex combination of normal agents, one could employ the following update

xi(t+ 1) = ui(t) (5.22)

118

where ui(t) could be chosen as Tverberg points or as the resilient convex combination

in (5.17). Consensus is reached in the presence of malicious agents in both cases as

shown by simulations in Fig. 5.5. It is also worth mentioning that using ui defined in

(5.17) to replace the original convex combination vi(t) could lead to faster convergence

than using Tverberg points as also indicated in Fig. 5.5

0 10 20 30 40 50 60 70

t

0

1

2

3

4

5

6

7

8

9

V (t)

Figure 5.5. Consensus is reached by introducing ui(t) as Tverberg
points (indicated by the dashed line) or as the resilient convex com-
bination (5.17) (indicated by the solid line).

B. Under Time-varying Graph

We perform simulations of unconstrained consensus on a periodic sequence of

time-varying networks as in Fig. 5.3. The method based on Tverberg point is not

applicable here since the number of each agent’s neighbors is not always greater

than the condition required by the Tverberg Theorem. However, one could still

reach consensus by introducing the resilient convex combination (5.17) into (5.22).

Simulation results are shown in Fig. 5.6.

Example 2 (Constrained Consensus).

We consider the distributed algorithm for solving linear equations. Suppose each

agent i knows

Aixi = bi

119

0 10 20 30 40 50 60 70

t

0

1

2

3

4

5

6

7

8

9

V (t)

Figure 5.6. Simulations by using the resilient convex combination
ui(t) of (5.17) into (5.22).

where

A1 = A2 = A3 =
[
3 −1

]
b1 = b2 = b3 = 2

A4 = A5 = A6 =
[
0 1

]
b4 = b5 = b6 = 1

A7 = A8 = A9 =
[
−1 3

]
b7 = b8 = b9 = 2

and updates its state according to

xi(t+ 1) = xi(t)− Pi(xi(t)− vi(t)) (5.23)

where Pi is the orthogonal projection on the kernel of Ai and vi(t) = 1
di(t)

∑
j∈Ni

xi(t).

Simulations are still performed on a periodic sequence of time-varying networks as in

Fig. 5.3. Let x∗ =
[
1 1 1

]′
denote a solution to Ax = b, which is also the desired

consensus value. Let

V (t) =
1

2

9∑
i=1

‖xi(t)− x∗‖2
2

which measures the closeness between all agents’ states to x∗. Simulation results are

as shown in Fig. 5.7 for the cases with and without malicious agents, respectively.

The presence of malicious agents also disrupts the distributed algorithm (5.23) for

solving linear equations. By using the resilient convex combination ui(t) of (5.17) at

120

0 10 20 30 40 50 60 70 80 90 100

t

0

1

2

3

4

5

6

7

8

V (t)

Figure 5.7. Simulation results under the update (5.23) with no ma-
licious agents (indicated by the black line) or with malicious agents
(indicated by the red line).

each agent i in (5.23), one still enables all agents to achieve x∗ exponentially fast in

the presence of malicious agents as shown in Fig. 5.8.

0 50 100 150 200 250

t

0

1

2

3

4

5

6

7

V (t)

Figure 5.8. Simulations by using the resilient convex combination
ui(t) of (5.17) in (5.23).

121

6. CONCLUSION REMARKS AND FUTURE

DIRECTIONS

6.1 Conclusion Remarks

This dissertation introduces new distributed algorithms to address the distributed

computation, distributed optimization and resilient distributed consensus in multi-

agent systems.

• Consensus-based distributed algorithms for solving linear equations.

In this chapter, we have further improved an existing distributed algorithm for

solving linear equations (DALE) in three ways. First, for agents with limited

computation capability, the improved DALE enables all agents to achieve expo-

nentially fast a solution to the whole linear equations without any initialization

step. Second, if the linear equation to be solved has more than one solution,

with a modified initialization step, the improved algorithm can find the solu-

tion with minimum l2 norm. Third, by combining the projection-consensus

and sub-gradient descent aspects, the improved algorithm can find the solution

with minimum l1 norm, if the linear equation to be solved has more than one

solution.

• Scalable, Distributed Algorithms for Solving Linear Equations via

Double-Layered Networks. This chapter has devised distributed algorithms

in a double-layered multi-agent framework for solving linear equations, which

consists of clusters and each cluster is composed of an aggregator and a network

of agents. In these distributed algorithms, each agent is not required to know as

much as a complete row or column of the overall linear equation. Both analytical

proof and simulation results are provided to validate exponential convergence.

122

• Consensus-based Distributed Optimization for Multi-agent Systems

The first part of this chapter has proposed a distributed algorithm for multi-

agent networks to achieve least squares solutions exponentially fast when the

networks are undirected and connected. Although the proposed algorithm is in

discrete-time, its exponential convergence does not rely on any time-varying or

small step-size. In the second part of this chapter, by incorporating the idea of

integral feedback, we proposed a continuous-time distributed algorithm which

is able to solve a constrained distributed optimization problem. This algorithm

does not impose an additional burden on the communication bandwidth, ensures

exponentially fast convergence, and offers robustness against disturbance.

• A Resilient Convex Combination for consensus-based distributed al-

gorithms. In this chapter, given a set of vectors that includes both normal

and malicious information, this paper has proposed a way to determine a re-

silient convex combination by using the intersection of convex hulls. By for-

mulating the set of such combinations as linear constraints, a vector inside this

set can be computed by quadratic programming. It has been shown that the

obtained resilient convex combination can isolate harmful state information in-

jected by cyber-attacks. In addition, since no identification process is required,

the method has promise for dealing with time-varying attacks for consensus-

based distributed algorithms, as shown by simulations.

6.2 Future Directions

Originated from my Ph.D. research progress, my future research goal mainly fo-

cuses on bridging the gap between the theoretical advances and engineering practice of

multi-agent control, and further applies these techniques in AI-based machine learn-

ing/data driven control applications, achieving network resilience under sophisticated

cyber-attacks, and studying the Human in loop for multi-agent systems. Towards

123

these ends, the major issues that I identify and seek to address are summarized as

follows.

6.2.1 Distributed Data-driven Multi-agent Learning and Control

The field of control and autonomy is evolving from model-based control to non-

model based autonomy, where the key techniques to fill the gap are machine learn-

ing and data-driven control. Modern machine learning algorithms are challenged by

both model complexity and training efficiency. This has motivated many research

teams and companies, including Google-DistBelief, Microsoft-DMTK, Apache-Spark,

OpenAI-ADAM, and Tencent-Angel, to develop distributed machine learning algo-

rithms, which allow the modes being cooperatively trained by multiple computational

agents within a distributed network. Here, we want to tackle this problem from the as-

pect of distributed optimization as it shares a same mathematic nature with machine

learning and data-driven control. i.e., the local objection function in optimization

problems, can be replaced by the risk function for distributed learning or the reward

function for data-driven control.

Challenges: One of the challenges in distributed data-driven multi-agent learning

and control is to effectively synchronize the large parameter set of learning models

in large-scale multi-agent systems. In addition, for learning based algorithms, one

usually uses a sampled gradient, which is usually computed from one or a batch of

samples, to estimate the true gradient, so the second challenge is how to handle the

uncertainty created during such sampling process.

Payoffs: By incorporating multi-agent systems to data-driven control and learning,

key benefits one can expect are a more abundant distributed data set for training and

better learning efficiency. This is achieved by assigning the overall computation/data

storage load to different agents.

124

6.2.2 The Cyber-Security of Autonomous Multi-agent Systems

Cyber-attack resilience is a fundamental demand for multi-agent systems, espe-

cially with applications in large-scale autonomous multi-agent swarms. Although the

existing paradigms of data encryption, access control, and fault-tolerant control can

provide certain level resilience, these approaches will become ineffective as the attack-

ing methods are becoming more difficult to identify and can impact a larger number

of other normal agents. To further elevate the resilience of multi-agent systems, based

on the resilient consensus technique we have developed in [59], the idea is to enhance

the adaptation of this technique by incorporating learning-based features(AI), which

allow the algorithm to learn from the dynamics of attackers and repeatedly improve

its performance over time.

Challenges: First, sophisticated cyber-attacks are usually not constrained by geog-

raphy. A malicious agent under such attacks could change its location over time and

connect itself to different normal agents. Second, achieving resilience in a distributed

scenario relies on greater connectivity and redundancy, which may be challenging to

maintain in a dynamic network where agents are free to join and leave. Third, it is

known that learning approaches rely critically on data availability. However, since

the agents in multi-agent systems suffer limited sensing capability, the learning model

only has partial access to the behaviors of a cyber-attack.

Payoffs: The proposed research will establish a resilient framework for multi-agent

coordination, which is the building block for the development of a wide range of future

distributed algorithms. Further, it has the potential to significantly impact certain

engineering areas, where reliability is the main concern that blocks the deployment

of multi-agent systems.

6.2.3 Human in the Loop for Multi-agent Systems

The current concept of multi-agent system is only defined as a group of hetero-

geneous autonomous agents. However, it is also quite intuitive that human can also

125

join the network and play some roles in the decision making of the overall systems.

Motivated by this, one of my future research direction aims to study:

• What are the roles a human can play in a multi-agent system.

• How Human-machine interaction can improve the performance and intelligence

of multi-agent systems.

Challenges: One key challenge of this project is the interface between the human

and the machine. Secondly, it is difficult to find a measure that can simultaneously

parameterize the behaviors of both humans and machines. Finally, the impact of the

human to the system should greatly depend on the network topology of the multi-

agent system, which is difficult to quantify and analyze.

Payoffs: The result of this research will build the fundamental of the methodologies

for the collaboration of humasn and machines under a same environment, allowing

humans to use their high level knowledge to assist the connected autonomous agents

in completing highly sophistic tasks.

126

REFERENCES

[1] F. Bullo, J. Cortes, and S. Martinez. Distributed Control of Robotic Networks.
Princeton University Press, 2009.

[2] Ming Cao, A Stephen Morse, and Brian DO Anderson. Reaching a consensus
in a dynamically changing environment: A graphical approach. SIAM Journal
on Control and Optimization, 47(2):575–600, 2008.

[3] Xudong Chen, Mohamed-Ali Belabbas, and Tamer Başar. Controllability of
formations over directed time-varying graphs. IEEE Transactions on Control
of Network Systems, 4(3):407–416, 2015.

[4] Chuan Yan and Huazhen Fang. A new encounter between leader–follower track-
ing and observer-based control: Towards enhancing robustness against distur-
bances. Systems & Control Letters, 129:1–9, 2019.

[5] M. Mesbahi and M. Egerstedt. Graph Theoretic Methods in Multi-Agent Net-
works. Princeton University Press, 2010.

[6] X. Wang, S. Mou, and B. D. O. Anderson. Scalable, distributed algorithms
for solving linear equations via double-layered networks. IEEE Transactions on
Automatic Control, 65(3):1132–1143, 2020.

[7] J. A. Fax and R.M. Murray. Information flow and cooperative control of vehicle
formations. IEEE Transactions on Automatic Control, 49(9):1465–1476, 2004.

[8] S. Kar, J. M. F. Moura, and K. Ramanan. Distributed parameter estimation in
sensor networks: Nonlinear observations models and imperfect communication.
IEEE Transactions on Information Theory, 58(6):1–52, 2012.

[9] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Foundations and Trends R© in Machine Learning, 3(1):1–122, 2011.

[10] D. H. Lee, S. A. Zaheer, and J. H. Kim. Ad hoc network-based task allocation
with resource-aware cost generation for multirobot systems. IEEE Transactions
on Industrial Electronics, 61(12):6871–6881, Dec 2014.

[11] F. Dorfler, M. Chertkov, and F. Bullo. Synchronization in complex oscillator
networks and smart grids. Proceedings of the National Academy of Sciences,
110(6):2005–2010, 2013.

[12] S. Mou, J. Liu, and A. S. Morse. A distributed algorithm for solving a linear
algebraic equation. IEEE Transactions on Automatic Control, 60(11):2863–
2878, 2015.

127

[13] B. D. O. Anderson, S. Mou, U. R. Helmke, and A. S. Morse. Decentralized
gradient algorithm for solution of a linear equation. Numerical Algebra, Control
and Optimization, 6(3):319–328, 2016.

[14] Jie Lu and Choon Yik Tang. A distributed algorithm for solving positive definite
linear equations over networks with membership dynamics. IEEE Transactions
on Control of Network Systems, 5(1):215–227, 2018.

[15] J. Wang and N. Elia. Distributed solution of linear equations over unreliable
networks. Proceedings of American Control Conference, pages 6471–6476, July
2016.

[16] Xuan Wang, Shaoshuai Mou, and Dengfeng Sun. Improvement of a distributed
algorithm for solving linear equations. IEEE Transactions on Industrial Elec-
tronics, 64(4):3113–3117, 2017.

[17] S. Mou, Z. Lin, L. Wang, D. Fullmer, and A. S. Morse. A distributed algorithm
for efficiently solving linear equations and its applications (special issue jcw).
Systems & Control Letters, 91:21–27, 2016.

[18] Shaoshuai Mou and Brian D. O. Anderson. Eigenvalue invariance of inhomoge-
neous matrix products in distributed algorithms. IEEE control systems letters,
1(1):8–13, 2017.

[19] J. Liu, A. S. Morse, A. Nedić, and T. Başar. Exponential convergence of a
distributed algorithm for solving linear algebraic equations. Automatica, 83:37–
46, 2017.

[20] S Sh Alaviani and Nicola Elia. A distributed algorithm for solving linear alge-
braic equations over random networks. In 2018 IEEE Conference on Decision
and Control (CDC), pages 83–88. IEEE, 2018.

[21] J. Liu, S. Mou, and A. S. Morse. Asynchronous distributed algorithms for
solving linear algebraic equations. IEEE Transactions on Automatic Control,
63(2):372–385, 2018.

[22] Wenlong Shen, Bo Yin, Xianghui Cao, Yu Cheng, and Xuemin Sherman Shen.
A distributed secure outsourcing scheme for solving linear algebraic equations
in ad hoc clouds. IEEE Transactions on Cloud Computing, 2019.

[23] Qingchen Liu, Yang Liu, Deming Yuan, and Jiahu Qin. Distributedly solving
network linear equations with event-based algorithms. IET Control Theory &
Applications, 2019.

[24] Bo Yin, Wenlong Shen, Xianghui Cao, Yu Cheng, and Qing Li. Securely
solving linear algebraic equations in a distributed framework enhanced with
communication-efficient algorithms. IEEE Transactions on Network Science
and Engineering, 2019.

[25] J. Zhou, X. Wang, S. Mou, and B. D. O. Anderson. Finite-time distributed
linear equation solver for solutions with minimum l1-norm. IEEE Transactions
on Automatic Control, 65(4):1691–1696, 2020.

128

[26] Peng Wang, Wei Ren, and Zhisheng Duan. Distributed algorithm to solve a
system of linear equations with unique or multiple solutions from arbitrary
initializations. IEEE Transactions on Control of Network Systems, 6(1):82–93,
2019.

[27] Jie Lu and Choon Yik Tang. A distributed algorithm for solving positive definite
linear equations over networks with membership dynamics. IEEE Transactions
on Control of Network Systems, 5(1):215–227, 2018.

[28] Navid Azizan-Ruhi, Farshad Lahouti, Amir Salman Avestimehr, and Babak
Hassibi. Distributed solution of large-scale linear systems via acceler-
ated projection-based consensus. IEEE Transactions on Signal Processing,
67(14):3806–3817, 2019.

[29] Qianqian Cai, Zhaorong Zhang, and Minyue Fu. A fast converging distributed
solver for linear systems with generalised diagonal dominance. arXiv preprint
arXiv:1904.12313, 2019.

[30] Xianlin Zeng, Shu Liang, Yiguang Hong, and Jie Chen. Distributed computa-
tion of linear matrix equations: An optimization perspective. IEEE Transac-
tions on Automatic Control, 64(5):1858–1873, 2019.

[31] Xuan Wang and Shaoshuai Mou. A distributed algorithm for achieving the
conservation principle. In 2018 Annual American Control Conference (ACC),
pages 5863–5867, 2018.

[32] F. Dorfler and F. Bullo. Synchronization in complex networks of phase oscilla-
tors: a survey. Automatica, 50(6):1539–1564, 2014.

[33] R. Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithms and
theory. IEEE Transactions on Automatic Control, 51(3):401–420, 2006.

[34] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile
sensing networks. IEEE Transactions on Robotics and Automation, 20(2):243–
255, 2004.

[35] Naman Agarwal, Ananda Theertha Suresh, Felix Yu, Sanjiv Kumar, and Bren-
dan McMahan. cpsgd: Communication-efficient and differentially-private dis-
tributed sgd. In Advances in Neural Information Processing Systems, pages
7575–7586, 2018.

[36] Ryan McDonald, Keith Hall, and Gideon Mann. Distributed training strategies
for the structured perceptron. In Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter of the Association for Compu-
tational Linguistics, pages 456–464. Association for Computational Linguistics,
2010.

[37] Angelia Nedic, Asuman Ozdaglar, and Pablo A Parrilo. Constrained consensus
and optimization in multi-agent networks. IEEE Transactions on Automatic
Control, 55(4):922–938, 2010.

[38] Peng Lin, Wei Ren, and Yongduan Song. Distributed multi-agent optimization
subject to nonidentical constraints and communication delays. Automatica,
65:120–131, 2016.

129

[39] Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for
multi-agent optimization. IEEE Transactions on Automatic Control, 54(1):48–
61, 2009.

[40] Guodong Shi, Brian D. O. Anderson, and Uwe Helmke. Network flows that solve
linear equations. IEEE Transactions on Automatic Control, 62(6):2659–2674,
2017.

[41] Bahman Gharesifard and Jorge Cortés. Distributed continuous-time convex
optimization on weight-balanced digraphs. IEEE Transactions on Automatic
Control, 59(3):781–786, 2014.

[42] Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order
algorithm for decentralized consensus optimization. SIAM Journal on Opti-
mization, 25(2):944–966, 2015.

[43] Ying Sun, Amir Daneshmand, and Gesualdo Scutari. Convergence rate of dis-
tributed optimization algorithms based on gradient tracking. arXiv preprint
arXiv:1905.02637, 2019.

[44] Zhirong Qiu, Shuai Liu, and Lihua Xie. Distributed constrained optimal con-
sensus of multi-agent systems. Automatica, 68:209–215, 2016.

[45] Xianlin Zeng, Peng Yi, and Yiguang Hong. Distributed continuous-time algo-
rithm for constrained convex optimizations via nonsmooth analysis approach.
IEEE Transactions on Automatic Control, 62(10):5227–5233, 2016.

[46] Qingshan Liu and Jun Wang. A second-order multi-agent network for bound-
constrained distributed optimization. IEEE Transactions on Automatic Con-
trol, 60(12):3310–3315, 2015.

[47] Shreyas Sundaram and Bahman Gharesifard. Distributed optimization un-
der adversarial nodes. IEEE Transactions on Automatic Control, 2018. DOI:
10.1109/TAC.2018.2836919.

[48] Martin E Liggins, Chee-Yee Chong, Ivan Kadar, Mark G Alford, Vincent Vanni-
cola, and Stelios Thomopoulos. Distributed fusion architectures and algorithms
for target tracking. Proceedings of the IEEE, 85(1):95–107, 1997.

[49] Michael Ben-Or. Another advantage of free choice (extended abstract): Com-
pletely asynchronous agreement protocols. In Proceedings of the second annual
ACM symposium on Principles of distributed computing, pages 27–30. ACM,
1983.

[50] Gabriel Bracha. An asynchronous [(n − 1)/3]-resilient consensus protocol. In
Proceedings of the third annual ACM symposium on Principles of distributed
computing, pages 154–162. ACM, 1984.

[51] Seyed Mehran Dibaji and Hideaki Ishii. Resilient consensus of second-order
agent networks: Asynchronous update rules with delays. Automatica, 81:123–
132, 2017.

[52] Peva Blanchard, Rachid Guerraoui, Julien Stainer, et al. Machine learning
with adversaries: Byzantine tolerant gradient descent. In Advances in Neural
Information Processing Systems, pages 119–129, 2017.

130

[53] H. J. LeBlane, H.Zhang, X.Koutsoukos, and S.Sundaram. Resilient asymptotic
consensus in robust networks. IEEE Journal on Selected Areas in Communica-
tions, 31(4):766–781, 2013.

[54] H. Mendes, M. Herlihy, N. Vaidya, and V.K. Garg. Multidimensional agreement
in byzantine systems. Distributed Computing, 28(6):423–441, 2015.

[55] Nitin H Vaidya. Iterative byzantine vector consensus in incomplete graphs.
In International Conference on Distributed Computing and Networking, pages
14–28. Springer, 2014.

[56] Hyongju Park and Seth A Hutchinson. Fault-tolerant rendezvous of multirobot
systems. IEEE transactions on robotics, 33(3):565–582, 2017.

[57] W. Mulzer and D. Werner. Approximating tverberg points in linear time for
any fixed dimension. Discrete & Computational Geometry, 50(2):520–535, 2013.

[58] L. Tseng and N. H. Vaidya. Asynchronous convex hull consensus in the presence
of crash faults. In ACM symposium on Principles of distributed computing,
pages 396–405, 2014.

[59] Xuan Wang, Shaoshuai Mou, and Shreyas Sundaram. A resilient convex combi-
nation for consensus-based distributed algorithms. Numerical Algebra, Control
& Optimization, 9(3):269–281, 2019.

[60] Jingqiu Zhou, Xuan Wang, Shaoshuai Mou, and Brian DO Anderson. Dis-
tributed algorithm for achieving minimum l1 norm solutions of linear equation.
In 2018 Annual American Control Conference (ACC), pages 5857–5862, 2018.

[61] Xuan Wang, Shaoshuai Mou, and Dengfeng Sun. Further discussions on a
distributed algorithm for solving linear algebra equations. In 2017 American
Control Conference (ACC), pages 4274–4278, 2017.

[62] Xuan Wang, Jingqiu Zhou, Shaoshuai Mou, and Martin J Corless. A distributed
algorithm for least squares solutions. IEEE Transactions on Automatic Control,
64(10):4217–4222, 2019.

[63] Xuan Wang, Jingqiu Zhou, Shaoshuai Mou, and Martin J Corless. A distributed
linear equation solver for least square solutions. In 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), pages 5955–5960, 2017.

[64] Xuan Wang, Shaoshuai Mou, and Shreyas Sundaram. Towards resilience for
consensus-based multi-agent learning/planning. In 57th Annual Allerton Con-
ference on Communication, Control, and Computing, Sep. 2019.

[65] Xuan Wang, Shaoshuai Mou, and Brian DO Anderson. A discrete-time dis-
tributed algorithm for minimum l1-norm solution of an under-determined linear
equation set. In 21st IFAC World Congress, Jul. 2020. Accepted.

[66] Ori Shental, Paul H. Siegel, Jack K. Wolf, Danny Bickson, and Danny
Dolev. Gaussian Belief Propagation Solver for Systems of Linear Equations.
arXiv:0810.1736 [cs, math], pages 1863–1867, July 2008.

[67] Christina E. Lee, Asuman Ozdaglar, and Devavrat Shah. Asynchronous
Approximation of a Single Component of the Solution to a Linear System.
arXiv:1411.2647 [cs], November 2014.

131

[68] M. F. Iacchetti, R. Perini, M. S. Carmeli, F. Castelli-Dezza, and N. Bressan.
Numerical integration of odes in real-time systems like state observers: Stability
aspects. IEEE Transactions on Industry Applications, 48(1):132–141, Jan 2012.

[69] C. O. Martinez and V. Puig. Piece-wise linear functions-based model predictive
control of large-scale sewage systems. IET Control Theory Applications, 4:1581–
1593, 2010.

[70] Peter M Shearer. Improving local earthquake locations using the l1 norm
and waveform cross correlation: Application to the whittier narrows, cali-
fornia, aftershock sequence. Journal of Geophysical Research: Solid Earth,
102(B4):8269–8283, 1997.

[71] Yadolah Dodge. Statistical data analysis based on the L1-norm and related
methods. Birkhäuser, 2012.

[72] Roland Beucker and HA Schlitt. On minimal lp-norm solutions of the bio-
magnetic inverse problem. Technical report, Zentralinstitut für Angewandte
Mathematik, 1996.

[73] H. H. Bauschke and J. M. Borwein. Dykstra’s alternating projection algorithm
for two sets. Journal of Approximation Theory, 79(3):418–443, 1994.

[74] Dongdong Ge, Xiaoye Jiang, and Yinyu Ye. A note on the complexity of l p
minimization. Mathematical programming, 129(2):285–299, 2011.

[75] E. J. Candes and T. Tao. Decoding by linear programming. IEEE Transactions
on Information Theory, 51(12):4203–4215, Dec 2005.

[76] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[77] Alejandro D Dominguez-Garcia and Christoforos N Hadjicostis. Distributed
matrix scaling and application to average consensus in directed graphs. IEEE
Transactions on Automatic Control, 58(3):667–681, 2013.

[78] Oskar Perron. Zur theorie der matrices. Mathematische Annalen, 64(2):248–
263, 1907.

[79] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university
press, 2012.

[80] D. A. Schmidt, C. Shi, R. A. Berry, M. L. Honig, and W. Utschick. Distributed
resource allocation schemes. IEEE Signal Processing Magazine, 26(5):53–63,
2009.

[81] J. Liu and H. Peng. Modeling and control of a power-split hybrid vehicle. IEEE
Transactions on Control Systems Technology, 16(6):1242–1251, Nov 2008.

[82] M. Treiber and A. Kesting. Traffic flow dynamics: data, models and simulation.
Springer Science & Business Media, 2012.

[83] M. D. Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M. A.
Porter, S. Gómez, and A. Arenas. Mathematical formulation of multilayer
networks. Physical Review X, 3(4):041022, 2013.

132

[84] Stefano Boccaletti, Ginestra Bianconi, Regino Criado, Charo I Del Genio, Jesús
Gómez-Gardenes, Miguel Romance, Irene Sendina-Nadal, Zhen Wang, and Mas-
similiano Zanin. The structure and dynamics of multilayer networks. Physics
Reports, 544(1):1–122, 2014.

[85] R. Simmons, T. Smith, M. D. Dias, D. Goldberg, D. Hershberger, A. Stentz, and
R. Zlot. A layered architecture for coordination of mobile robots. Multi-Robot
Systems: From Swarms to Intelligent Automata, pages 103–112, 2002.

[86] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle. Layering as op-
timization decomposition: A mathematical theory of network architechtures.
Proceedings of the IEEE, 95(1):255–312, 2007.

[87] J. Schmidhuber. Deep learning in neural networks: An overview. Neural net-
works, 61:85–117, 2015.

[88] S. Gomez, A. Diaz-Guilera, J. Gomez-Gardenes, C. J. Perez-Vicente,
Y. Moreno, and A. Arenas. Diffusion dynamics on multiplex networks. Physical
review letters, 110(2):028701, 2013.

[89] J. M. Jeanne and R. I. Wilson. Convergence, divergence, and reconvergence in a
feedforward network improves neural speed and accuracy. Neuron, 88(5):1014–
1026, 2015.

[90] K. I. Tsianos and M. G. Rabbat. Multiscale gossip for efficient decentralized
averaging in wireless packet networks. IEEE Transactions on Signal Processing,
61(9):2137–2149, 2013.

[91] J. Chow and P. Kokotovic. Time scale modeling of sparse dynamic networks.
IEEE Transactions on Automatic Control, 30(8):714–722, August 1985.

[92] I. C. Morărescu, S. Martin, A. Girard, and A. Muller-Gueudin. Coordination
in Networks of Linear Impulsive Agents. IEEE Transactions on Automatic
Control, 61(9):2402–2415, September 2016.

[93] Marcos Cesar Bragagnolo, Irinel-Constantin Morărescu, Jamal Daafouz, and
Pierre Riedinger. Reset strategy for consensus in networks of clusters. Auto-
matica, 65:53–63, March 2016.

[94] Emrah Bıyık and Murat Arcak. Area aggregation and time-scale modeling for
sparse nonlinear networks. Systems & Control Letters, 57(2):142–149, February
2008.

[95] D. Romeres, F. Dörfler, and F. Bullo. Novel results on slow coherency in consen-
sus and power networks. In 2013 European Control Conference (ECC), pages
742–747, July 2013.

[96] Aihua Hu, Jinde Cao, Manfeng Hu, and Liuxiao Guo. Cluster synchronization
in directed networks of non-identical systems with noises via random pinning
control. Physica A: Statistical Mechanics and its Applications, 395:537–548,
February 2014.

[97] Yangling Wang and Jinde Cao. Cluster synchronization in nonlinearly coupled
delayed networks of non-identical dynamic systems. Nonlinear Analysis: Real
World Applications, 14(1):842–851, February 2013.

133

[98] W. He, B. Zhang, Q. L. Han, F. Qian, J. Kurths, and J. Cao. Leader-Following
Consensus of Nonlinear Multiagent Systems With Stochastic Sampling. IEEE
Transactions on Cybernetics, 47(2):327–338, February 2017.

[99] G. Mao, Z. Zhang, and B. D. O. Anderson. Cooperative content dissemina-
tion and offloading in heterogeneous mobile networks. IEEE Transactions on
Vehicular Technology, 65(8):6573–6587, 2016.

[100] M. Hautus H. Trentelman, A. A. Stoorvogel. Control theory for linear systems.
Springer Science & Business Media, 2012.

[101] X. Wang, S. Mou, and B. D. O. Anderson. Consensus-based distributed op-
timization enhanced by integral feedback. IEEE Transactions on Automatic
Control, 2020. Submitted.

[102] Guannan Qu and Na Li. Harnessing smoothness to accelerate distributed opti-
mization. IEEE Transactions on Control of Network Systems, 5(3):1245–1260,
2017.

[103] Tao Yang, Xinlei Yi, Junfeng Wu, Ye Yuan, Di Wu, Ziyang Meng, Yiguang
Hong, Hong Wang, Zongli Lin, and Karl H Johansson. A survey of distributed
optimization. Annual Reviews in Control, 2019.

[104] Kevin Scaman, Francis Bach, Sébastien Bubeck, Laurent Massoulié, and
Yin Tat Lee. Optimal algorithms for non-smooth distributed optimization in
networks. In Advances in Neural Information Processing Systems, pages 2740–
2749, 2018.

[105] Luc Moreau. Stability of continuous-time distributed consensus algorithms. In
2004 43rd IEEE conference on decision and control (CDC), volume 4, pages
3998–4003, 2004.

[106] S. Nabavi, J. Zhang, and A. Chakrabortty. Distributed optimization algorithms
for wide-area oscillation monitoring in power systems using interregional pmu-
pdc architectures. IEEE Transactions on Smart Grid, 6(5):2529–2538, Sept
2015.

[107] F.A. Longstaff and E.S. Schwartz. Valuing american options by simulation:
a simple least-squares approach. Review of Financial studies, 14(1):113–147,
2001.

[108] C. G. Lopes and A. H. Sayed. Diffusion least-mean squares over adaptive net-
works: Formulation and performance analysis. IEEE Transactions on Signal
Processing, 56(7):3122–3136, July 2008.

[109] G. Mateos, I. D. Schizas, and G. B. Giannakis. Distributed recursive least-
squares for consensus-based in-network adaptive estimation. IEEE Transactions
on Signal Processing, 57(11):4583–4588, Nov 2009.

[110] Anit Kumar Sahu, Soummya Kar, José MF Moura, and H Vincent Poor. Dis-
tributed constrained recursive nonlinear least-squares estimation: Algorithms
and asymptotics. IEEE Transactions on Signal and Information Processing
over Networks, 2(4):426–441, 2016.

134

[111] R. Zhang and J. Kwok. Asynchronous distributed admm for consensus opti-
mization. In International Conference on Machine Learning, pages 1701–1709,
2014.

[112] E. Wei and A. Ozdaglar. Distributed alternating direction method of multipli-
ers. In Decision and Control (CDC), 2012 IEEE 51st Annual Conference on,
pages 5445–5450. IEEE, 2012.

[113] J. C. Duchi, A. Agarwal, and M. J. Wainwright. Dual averaging for distributed
optimization: Convergence analysis and network scaling. IEEE Transactions
on Automatic Control, 57(3):592–606, 2012.

[114] D. Jakovetic, J. M. F. Moura, and J. Xavier. Fast distributed gradient methods.
IEEE Transactions on Automatic Control, 59(5):1131–1146, 2014.

[115] Tsung-Hui Chang, Angelia Nedić, and Anna Scaglione. Distributed con-
strained optimization by consensus-based primal-dual perturbation method.
IEEE Transactions on Automatic Control, 59(6):1524–1538, 2014.

[116] J. Wang and N. Elia. Distributed least square with intermittent communica-
tions. In 2012 American Control Conference (ACC), pages 6479–6484, June
2012.

[117] J. Wang and N. Elia. A control perspective for centralized and distributed
convex optimization. In 2011 50th IEEE Conference on Decision and Control
and European Control Conference, pages 3800–3805, Dec 2011.

[118] F.R. Chung. Spectral graph theory, volume 92. American Mathematical Soc.,
1997.

[119] J. Wang and N. Elia. Control approach to distributed optimization. In 2010
48th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 557–561, Sept 2010.

[120] U.M. Ascher, S.J. Ruuth, and R.J. Spiteri. Implicit-explicit runge-kutta meth-
ods for time-dependent partial differential equations. Applied Numerical Math-
ematics, 25(2):151–167, 1997.

[121] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. JHU Press,
2012.

[122] Jo Bo Rosen. The gradient projection method for nonlinear programming. part
i. linear constraints. Journal of the society for industrial and applied mathe-
matics, 8(1):181–217, 1960.

[123] Jiliang Luo and Kenzo Nonami. Approach for transforming linear constraints
on petri nets. IEEE Transactions on Automatic Control, 56(12):2751–2765,
2011.

[124] Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence
for distributed optimization over time-varying graphs. SIAM Journal on Opti-
mization, 27(4):2597–2633, 2017.

[125] Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Re-
search Society, 48(3):334–334, 1997.

135

[126] Hassan K Khalil. Nonlinear systems. Upper Saddle River, 2002.

[127] Stephen Wiggins. Introduction to applied nonlinear dynamical systems and
chaos, volume 2. Springer Science & Business Media, 2003.

[128] Tansel Yucelen and Magnus Egerstedt. Control of multiagent systems under
persistent disturbances. In 2012 American Control Conference (ACC), pages
5264–5269. IEEE, 2012.

[129] A Jadbabaie, J Lin, and AS Morse. Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules. IEEE Transactions on Automatic
Control, 48(6):988–1001, 2003.

[130] S. Sundaram and C. N. Hadjicostis. Finite-time distributed consensus in graphs
with time-invarient topologies. In Proceedings of American Control Conference,
pages 711–716, July 2007.

[131] S. Mou and M. Cao. Distributed averaging using compensation. IEEE Com-
munication Letters, 17(8):1672–1675, 2013.

[132] X. Chen, M. A. Belabbas, and T. Basar. Distributed averaging with linear
objective maps. Automatica, 70(3):179–188, August 2016.

[133] S. Sundaram and C. N. Hadjicostis. Distributed function calculation via linear
iterative strategies in the presence of malicious agents. IEEE Transactions on
Automatic Control, 56(7):1495–1508, 2011.

[134] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(2):382–401, 1982.

[135] Z. Bouzid, M. G. Potop-Butucaru, and S. Tixeuil. Optimal byzantine resilient
convergence in uni-dimensional robot networks. Theoretical Computer Science,
411(34):3154–3168, 2010.

[136] F. Pasqualetti, A. Bicchi, and F. Bullo. Consensus computation in unreliable
networks: a system theoretic approach. IEEE Transactions on Automatic Con-
trol, 57(1):90–104, 2012.

[137] N. H. Vaidya, L. Tseng, and G. Liang. Iterative approximate byzantine con-
sensus in arbitrary directed graphs. In Proceedings of ACM Symposium on
Principles of Distributed Computing, pages 365–374, 2012.

[138] Hyongju Park and Seth Hutchinson. An efficient algorithm for fault-tolerant
rendezvous of multi-robot systems with controllable sensing range. In IEEE
International Conference on Robotics and Automation (ICRA), pages 358–365,
2016.

[139] H. Tverberg. A generalization of radon’s theorem. Journal of the London
Mathematical Society, 41:123–128, 1966.

[140] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull algorithm
for convex hulls. ACM Transactions on Mathematical Software (TOMS),
22(4):469–483, 1996.

[141] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university
press, 2004.

136

VITA

Xuan Wang was born in Luanxian, Hebei Province, China. At the age of 4, he

moved with his family to the city of Harbin, Heilongjiang Province, and grew up

there. In 2010, he joined the Harbin Institute of Technology and received his bache-

lor’s degree with first-class honors in Aerospace Engineering in 2014. Then he kept

studying at the same university, under the guidance of Prof. Huijun Gao and Okyay

Kaynak, and received his master’s degree in Control Science and Engineering in 2016.

In August 2016, he joined the School of Aeronautics and Astronautics, Purdue Uni-

versity as a Ph.D. student. He has played the leading role in several projects funded

by Northrop Grumman Corp., AFRL and CRISP, covering the areas of autonomy

and intelligence in networked multi-agent systems; Resilient cyber-physical systems;

and the resources/task allocation in multi-robot swarms. He is the receiver of the

Outstanding Research Award, Koerner Scholarship and Bilsland Fellowship, Purdue

University. He also serves as the reviewer for a number of journals, including IEEE

Transactions on Automatic Control, Control of Network Systems, Intelligent Trans-

portation Systems, Automatica.

