
REIMAGINING HUMAN-MACHINE INTERACTIONS

THROUGH TRUST-BASED FEEDBACK

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Kumar Akash

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2020

Purdue University

West Lafayette, Indiana



ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Neera Jain, Chair

School of Mechanical Engineering

Dr. Inseok Hwang

School of Aeronautics and Astronautics

Dr. Robert W. Proctor

Department of Psychological Sciences

Dr. Tahira Reid Smith

School of Mechanical Engineering

Approved by:

Dr. Nicole Key

Head of the Graduate Program



iii

Dedicated to my family

for their constant and unwavering support throughout this incredible journey



iv

ACKNOWLEDGMENTS

I would like to extend my heartfelt gratitude and thanks to my advisor, Prof.

Neera Jain, for her invaluable guidance and support throughout my journey at Pur-

due. Not only did she provide a conducive environment to perform and disseminate

effective research, but she also ensured that I have all the necessary resources and

knowledge required for this dissertation. I have learned a lot from her hardworking

nature as well as encouraging and productivity-building approach towards her stu-

dents. The freedom she has consistently extended to work on new ideas has been a

great motivation for me. I am forever indebted to her for all the career advice and

the numerous opportunities she has provided me with throughout the journey.

I am also incredibly thankful to Prof. Tahira Reid Smith for her great ideas,

invaluable guidance, and advice throughout my research. Collaboration between the

Jain Research Lab and the Reid Lab is great for fostering an incredible research

environment, which I feel is second to none. I would also like to thank the members

of my advisory committee—Prof. Inseok Hwang and Prof. Robert Proctor—for their

valuable insights, constructive comments, and warm encouragement.

The work presented in this dissertation was not undertaken by me alone. I would

like to acknowledge my talented collaborators, Dr. Wan-Lin Hu, Katelyn Polson, and

Griffon McMahon for their contributions toward achieving the research goals. The

members of the Jain Research Lab have contributed immensely to my personal and

professional time at Purdue. I am grateful to Rian, Austin, Ana, Trevor, Aaron, Jian-

qui (Jack), Karan, Katie, and Matthew for the stimulating discussions, their unfailing

support, feedback, and encouragement. Additionally, I would like to acknowledge the

Herrick community for providing a warm and collaborative working environment.

A special thanks to Yeshaswi for her support, encouragement, and patience and

for always helping me bring out my best. Finally, I am profoundly grateful to my



v

parents for all their love and continuous encouragement throughout my years of study

and their support in all my pursuits. To my brother, Ankur Kumar, I simply wouldn’t

be where I am today without you. Thank you for always standing by me through

thick and thin. I also thank Bhabhi and Riyansh for their love and support.



vi

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Levels of Automation and Transparency . . . . . . . . . . . . . . . . . 3
1.3 Effects of Transparency on Trust and Workload . . . . . . . . . . . . . 5
1.4 Dissertation Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Objective 1: Dynamic Modeling and Estimation of Human Trust 7
1.4.2 Objective 2: Human State-based Feedback Control . . . . . . . 9

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. DYNAMIC MODELING AND ESTIMATION OF HUMAN TRUST . . . . 11
2.1 Modeling Effects of Automation Reliability . . . . . . . . . . . . . . . . 11

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.4 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Estimating Human Trust using Psychophysiological Measurements . . . 43
2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.3 Methods and Procedures . . . . . . . . . . . . . . . . . . . . . . 45
2.2.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2.5 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.2.6 Model Training and Validation . . . . . . . . . . . . . . . . . . 61

2.3 Combining Behavioral and Psychophysiological Measurements . . . . . 70
2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.3.3 Probabilistic Classification Algorithm . . . . . . . . . . . . . . . 73
2.3.4 Classification of Human Trust in HMI . . . . . . . . . . . . . . 77
2.3.5 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . 82

2.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3. TRANSPARENCY-BASED FEEDBACK CONTROL OF HUMAN TRUST 89



vii

Page
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.2 Modeling Human Trust and Workload . . . . . . . . . . . . . . . . . . 90

3.2.1 POMDP Model of Human Trust and Workload . . . . . . . . . 92
3.2.2 Human Subject Study . . . . . . . . . . . . . . . . . . . . . . . 98

3.3 Model Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . 101
3.3.1 Trust Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.3.2 Workload Model . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.4 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.4.1 Decision Reward Function . . . . . . . . . . . . . . . . . . . . 109
3.4.2 Response Time Reward Function . . . . . . . . . . . . . . . . 113
3.4.3 POMDP Control Policy . . . . . . . . . . . . . . . . . . . . . 115

3.5 Validation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4. COUPLED MODELS OF TRUST AND WORKLOAD . . . . . . . . . . . 126
4.1 Description of Coupled Models . . . . . . . . . . . . . . . . . . . . . . 127

4.1.1 Independent Model . . . . . . . . . . . . . . . . . . . . . . . . 128
4.1.2 Coupled-Transition Model . . . . . . . . . . . . . . . . . . . . 129
4.1.3 Coupled-Emission Model . . . . . . . . . . . . . . . . . . . . . 130
4.1.4 Coupled-State Model . . . . . . . . . . . . . . . . . . . . . . . 131
4.1.5 Complete-Coupled Model . . . . . . . . . . . . . . . . . . . . 132

4.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.3 Model Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . 134

4.3.1 Coupled-Transition Model . . . . . . . . . . . . . . . . . . . . 135
4.3.2 Coupled-Emission Model . . . . . . . . . . . . . . . . . . . . . 138

4.4 Model Validation and Results . . . . . . . . . . . . . . . . . . . . . . 142
4.4.1 Stimuli and Procedure: . . . . . . . . . . . . . . . . . . . . . 143
4.4.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.4.3 Decision Reward and Response Time Reward . . . . . . . . . 145
4.4.4 Total Reward . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.1 Summary of Research Contributions . . . . . . . . . . . . . . . . . . . 152
5.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . 154

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A. TRUST AND WORKLOAD POMDP MODELS . . . . . . . . . . . . . . . 170

B. CONTROL POLICIES TO VARY AUTOMATION TRANSPARENCY . . 189

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204



viii

LIST OF TABLES

Table Page

2.1 Estimated mean parameter values with 95% CI for all participants and
each demographic bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Rise times (in number of trials) for step responses calculated using the
estimated parameter values for all participants and each demographic bin . 29

2.3 Estimated mean parameter values with 95% CI for the cry-wolf factor β
for all participants and each demographic bin . . . . . . . . . . . . . . . . 37

2.4 Wavelet decompositions and their corresponding frequency ranges. The
closest classical frequency band for each decomposition is also shown. . . . 55

2.5 Features to be used as input variables for the general trust sensor model . 59

2.6 The most common features that are significant for at least four partici-
pants. Features marked with an asterisk (∗) are also significant for the
general trust sensor model. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.7 The accuracy, sensitivity, and specificity (%) of the general trust sensor
model for training-sample participants with a 95% confidence interval . . . 64

2.8 The accuracy, sensitivity, and specificity (%) of the general trust sensor
model for validation-sample participants with a 95% confidence interval . . 64

2.9 The accuracy, sensitivity, and specificity (%) of the customized trust sensor
model for all participants with a 95% confidence interval . . . . . . . . . . 65

2.10 Comparison of General Trust Sensor Model and Customized Trust Sensor
Model for implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.11 Features used as input variables for trust classification . . . . . . . . . . . 81

3.1 Similarities between a Partially Observable Markov Decision Process (POMDP)
and a discrete-time state-space model. . . . . . . . . . . . . . . . . . . . . 94

3.2 Definition of the trust-workload POMDP model. Human trust and work-
load are modeled as hidden states that are affected by actions correspond-
ing to the characteristics of the decision-aid’s recommendations. The ob-
servable characteristics of the human’s decisions are modeled as the ob-
servations of the POMDP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



ix

Table Page

3.3 Confusion matrix representation for the decision-aid system’s and the hu-
man’s inference. Each row of the matrix represents the true situation,
while each column represents the inference made by the decision-aid sys-
tem or the human. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.4 Reliability characteristics of the decision-aid system in the reconnaissance
mission study representing the probabilities of the decision-aid’s inference
given the true situation. Since the decision-aid is 70% reliable, the prob-
ability of the decision-aid making a correct inference is 0.7. . . . . . . . . 110

3.5 Decision reward function based on the inference made by the human. The
reward function is defined as penalties equivalent to the expected amount
of time, in seconds, that the human has to expend as a result of their
decision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.1 Summary of the four closed-loop studies used to compare the performance
of the independent and the coupled models of interest. . . . . . . . . . . 144



x

LIST OF FIGURES

Figure Page

1.1 Simple four-stage model of human information processing and the corre-
sponding types of automation (adapted from [13]). Each stage of human
information processing has its equivalent in system functions that can be
automated, thereby leading to four types of automation. . . . . . . . . . . 4

1.2 Block diagram depicting a trust and workload-based feedback control ar-
chitecture for optimizing human-machine interactions. The human be-
havior model is used to estimate the non-observable human states of trust
and workload using the machine outputs, the interaction context, and
the observable human responses. An optimal control policy dynamically
varies automation transparency based on the estimated human states to
maximize a context specific performance objective. . . . . . . . . . . . . . 7

2.1 Sequence of events in a single trial. The time length marked on the bottom
right corner indicates the time interval that the information appeared on
the screen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 The actual scenario and the system response form a 2 × 2 matrix. A
system response of ‘clear road’ in the presence of an obstacle constitutes
a miss, and a system response of ‘obstacle detected’ in the absence of an
obstacle constitutes a false alarm. . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Participants were randomly assigned to one of the two groups. The order-
ing of the three experimental sections (databases), composed of reliable
and faulty trials, were counterbalanced across groups. . . . . . . . . . . . . 21

2.4 The trust level (probability of trust response) and the experience for all
participants. The top figure (a) shows the variation of trust level as a
function of trial number. The bottom figure (b) shows the variation of
experience as a function of trial number. Faulty trials are highlighted in
gray, and black lines mark the breaks. Participants showed trust in reliable
trials and distrust in faulty trials. . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Participants’ trust level (blue dots) and the prediction (red curve) based on
past behavioral responses and the experience of all participants. Subfigure
(a) corresponds to group 1 participants with R2 = 95.74% and subfigure
(b) corresponds to group 2 participants with R2 = 92.53%. Faulty trials
are highlighted in gray, and black lines mark the breaks between databases. 30



xi

Figure Page

2.6 Step response of the trust model with expectation bias BX = 0 for all
participants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Participants grouped by national culture. Blue dots are the reported trust
level while the red curve is the prediction from model. Subfigure (a) cor-
responds to US group 1 participants with R2 = 94.51% and subfigure (b)
corresponds to Indian group 1 participants with R2 = 92.00%. Subfigure
(c) corresponds to US group 2 participants with R2 = 87.56% and sub-
figure (d) corresponds to Indian group 2 participants with R2 = 90.08%.
Faulty trials are highlighted in gray, and black lines mark the breaks be-
tween databases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Participants grouped by gender. Blue dots are the reported trust level
while the red curve is the prediction from model. Subfigure (a) corre-
sponds to female group 1 participants with R2 = 91.57% and subfigure
(b) corresponds to male group 1 participants with R2 = 93.98%. Subfig-
ure (c) corresponds to female group 2 participants with R2 = 88.94% and
subfigure (d) corresponds to male group 2 participants with R2 = 89.22%.
Faulty trials are highlighted in gray and black lines mark the breaks be-
tween databases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.9 The trust level (probability of trust response) for all participants and the
probability of misses/false alarms that affect the experience. The top
figure (a) shows the variation of trust level as a function of trial number.
The bottom figure (b) shows the variation of misses/false alarms as a
function of trial number. Faulty trials consisting of misses are highlighted
in pink, and trials with false alarms are highlighted in yellow. Faulty trials
highlighted in gray consist of half misses and half false alarms. Black lines
mark the breaks. Participants showed trust in reliable trials and distrust
in faulty trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.10 Participants were randomly assigned to one of the two groups. The system
reliability was varied between databases and groups. A consisted of reliable
trials (miss = 0%, false alarm = 0%); B1 consisted of faulty trials with
misses (miss = 50%, false alarm = 0%); B2 consisted of faulty trials with
false alarms (miss = 0%, false alarm = 50%); B3 consisted of faulty trials
with both misses and false alarms (miss = 25%, false alarm = 25%) . . . . 36



xii

Figure Page

2.11 Participants’ trust level (blue dots) and the prediction (red curve) based on
past behavioral responses and the experience of all participants. Subfigure
(a) corresponds to group 1A participants with R2 = 91.83% and subfigure
(b) corresponds to group 1B participants with R2 = 91.25%. Faulty trials
consisting of misses are highlighted in pink, and trials with false alarms
are highlighted in yellow. Faulty trials highlighted in gray consist of half
misses and half false alarms. Black lines mark the breaks between databases.38

2.12 Participants grouped by national culture. Blue dots are the reported trust
level while the red curve is the prediction from model. Subfigure (a) corre-
sponds to US group 1A participants with R2 = 90.67% and subfigure (b)
corresponds to Indian group 1A participants with R2 = 82.41%. Subfigure
(c) corresponds to US group 1B participants with R2 = 87.46% and sub-
figure (d) corresponds to Indian group 1B participants with R2 = 87.14%.
Faulty trials consisting of misses are highlighted in pink, and trials with
false alarms are highlighted in yellow. Faulty trials highlighted in gray
consist of half misses and half false alarms. Black lines mark the breaks
between databases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.13 Participants grouped by gender. Blue dots are the reported trust level
while the red curve is the prediction from model. Subfigure (a) corresponds
to female group 1A participants with R2 = 93.87% and subfigure (b) cor-
responds to male group 1A participants with R2 = 89.88%. Subfigure (c)
corresponds to female group 1B participants with R2 = 80.24% and sub-
figure (d) corresponds to male group 1B participants with R2 = 90.83%.
Faulty trials consisting of misses are highlighted in pink, and trials with
false alarms are highlighted in yellow. Faulty trials highlighted in gray
consist of half misses and half false alarms. Black lines mark the breaks
between databases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.14 The framework of the proposed study. The key steps include data col-
lection from human subject studies, feature extraction, feature selection,
model training, and model validation. . . . . . . . . . . . . . . . . . . . . . 46

2.15 Experimental setup with participant wearing EEG Headset and GSR Sensor.48

2.16 Sequence of events in a single trial. The time length marked on the bot-
tom right corner of each event indicates the time interval for which the
information appeared on the computer screen. . . . . . . . . . . . . . . . . 48

2.17 Example screenshots of the interface of the experimental study. The left
screenshot (a) shows the stimuli, the middle screenshot (b) shows the re-
sponse, and the right screenshot (c) shows the feedback. These screens
correspond to three of the events shown in Figure 2.16: obstacle de-
tected/clear road, trust/distrust, and correct/incorrect, respectively. . . . . 49



xiii

Figure Page

2.18 Participants were randomly assigned to one of two groups. The ordering
of the three experimental sections (databases), composed of reliable and
faulty trials, were counterbalanced across Groups 1 and 2. . . . . . . . . . 50

2.19 The averaged response from online participants collected via Amazon Me-
chanical Turk. Subfigure (a) corresponds to the 295 participants from
group 1 and subfigure (b) corresponds to the 228 participants from group
2. Faulty trials are highlighted in gray. Participants showed a high trust
level in reliable trials and a low trust level in faulty trials regardless of the
group they were in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.20 A schematic depicting the feature selection approach used for reducing
the dimension of the feature set. The ReliefF (filter method) was used
for an initial shortlisting of the feature subset followed by SFFS (wrapper
method) for the final feature subset selection. . . . . . . . . . . . . . . . . 57

2.21 The actual class and the predicted class form a 2 × 2 confusion matrix.
The outcomes are defined as true or false positive/negative. . . . . . . . . 64

2.22 Classifier predictions for participant 44 in group 1. The top figure (a)
shows the general trust sensor model predictions with an accuracy of
90.52%. The bottom figure (b) shows the customized trust sensor model
predictions with an accuracy of 93.97%. Faulty trials are highlighted in
gray. Trust sensor models had a good accuracy for this participant. The
classifier output of posterior probability was smoothed using a median
filter with window of size 15. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.23 Classifier predictions for participant 10 in group 2. The top figure (a)
shows the general trust sensor model predictions with an accuracy of
91.12%. The bottom figure (b) shows the customized trust sensor model
predictions with an accuracy of 96.45%. Faulty trials are highlighted in
gray. Trust sensor models had good accuracy for this participant. The
classifier output of posterior probability was smoothed using a median
filter with window of size 15. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.24 Classifier predictions for participant 8 in group 1. The top figure (a) shows
the general trust sensor model predictions with an accuracy of 61.26%.
The bottom figure (b) shows the customized trust sensor model predic-
tions with an accuracy of 72.07%. Faulty trials are highlighted in gray.
Trust sensor models did not have good accuracy for this participant. The
classifier output of posterior probability was smoothed using a median
filter with window of size 15. . . . . . . . . . . . . . . . . . . . . . . . . . . 68



xiv

Figure Page

2.25 A framework for adaptive probabilistic classification of human dynamic
trust behavior. A Markov decision process model is used for estimat-
ing prior probability using the behavioral responses of participants. Psy-
chophysiological measurements from the participants are used for estimat-
ing the conditional probability for each trust state. . . . . . . . . . . . . . 77

2.26 Participants’ trust level (blue dots). Subfigure (a) corresponds to group 1
participants and subfigure (b) corresponds to group 2 participants. Faulty
trials are highlighted in gray, and black lines mark the breaks between
databases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.27 Training-set participants’ trust level predictions using AQDA-MDP and
AQDA algorithms. The top figure (a) shows the prediction of trust for par-
ticipant 5 in the training set. The bottom figure (b) shows the prediction
of trust for participant 7 in the training set. Faulty trials are highlighted
in gray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.28 Validation-set participants’ trust level predictions using AQDA-MDP and
AQDA algorithms. The top figure (a) shows the prediction of trust for
participant 36 in the validation set. The bottom figure (b) shows the
prediction of trust for participant 34 in the validation set. Faulty trials
are highlighted in gray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.29 Mean Trial accuracy for ADQA and AQDA-MDP algorithms. Subfigure
(a) corresponds to training-set participants and subfigure (b) corresponds
to validation-set participants. . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.1 A simplified representation of a partially observable Markov decision pro-
cess (POMDP) model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.2 Empirical probability density function representing the response time RT
distribution for the aggregated human subject study data described in
Section 3.2.2. RT distributions are attributed with a positively skewed
unimodal shape with a rapid rise on the left and a long positive tail on
the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3 Example screenshots of robot reports corresponding to the three levels
of transparencies. The top screenshot (a) shows a low transparency case
with the robot’s report (Gunmen Present) along with the armor recom-
mendation (Heavy Armor). The middle screenshot (b) shows a medium
transparency case that additionally includes a sensor bar on the left that
indicates the level of potential danger perceived by the robot. The bottom
screenshot (c) shows a high transparency case that further includes seven
thermal images collected from inside the building, which the human can
evaluate themselves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



xv

Figure Page

3.4 The sequence of events in a single trial. The time length marked on the
bottom right corner of each event indicates the time interval for which the
information appeared on the computer screen. . . . . . . . . . . . . . . . 101

3.5 Emission probability function ET (oC |sT ) for the trust model. Probabili-
ties of observation are shown beside the arrows. Low Trust has a 99.71%
probability of resulting in participants disagreeing with the recommenda-
tion and High Trust has a 97.87% probability of resulting in participants
agreeing with the recommendation. . . . . . . . . . . . . . . . . . . . . . 103

3.6 Transition probability function TT (s′T |sT , a) for the trust model. Proba-
bilities of transition are shown beside the arrows. The top-left diagram
(a) shows the transition probabilities when the decision-aid’s recommen-
dation is Light Armor S−A and the participant had a Faulty last experi-
ence E−. The top-right diagram (b) shows the transition probabilities
when the decision-aid recommends Light Armor S−A and the participant
had a Reliable last experience E+. Both cases (a) and (b) can be con-
sidered relatively high-risk situations in this context because incorrectly
complying with a faulty recommendation—that is, wearing Light Armor
in the presence of gunmen—can result in injury. The bottom-left diagram
(c) shows the transition probabilities when the decision-aid recommends
Heavy Armor S+

A and the participant had a Faulty last experience E−.
The bottom-right diagram (d) shows the transition probabilities when the
decision-aid recommends Heavy Armor S+

A and the participant had a Re-
liable last experience E+. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.7 Emission probability function EW (oRT |sW ) for the workload model. For
Low Workload, the response time (oRT ) PDF fORT |W↓(oRT |W↓) is char-
acterized by an ex-Gaussian distribution with µW↓ = 0.2701, σW↓ =
0.2964, and τW↓ = 0.4325. For High Workload, the response time (oRT )
PDF fORT |W↑(oRT |W↑) is characterized by an ex-Gaussian distribution with
µW↑ = 0.7184, σW↑ = 0.2689, and τW↑ = 2.2502. Low Workload W↓ is
more likely than High Workload to result in a response time of less than
approximately 1.19 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . 106



xvi

Figure Page

3.8 Transition probability function TW (s′W |sW , a) for the workload model.
Probabilities of transition are shown beside the arrows. The top-left dia-
gram (a) shows the transition probabilities when the decision-aid recom-
mends Light Armor S−A and the participant had a Faulty last experience
E−. The top-right diagram (b) shows the transition probabilities when the
decision-aid recommends Light Armor S−A and the participant had a Reli-
able last experience E+. The bottom-left diagram (c) shows the transition
probabilities when the decision-aid recommends Heavy Armor S+

A and the
participant had a Faulty last experience E−. The bottom-right diagram
(d) shows the transition probabilities when the decision-aid recommends
Heavy Armor S+

A and the participant had a Reliable last experience E+. 107

3.9 Closed-loop control policy corresponding to the reward function with ζ =
0.50. In this case, the reward function gives equal importance to the
decision and response time rewards. Subfigure (a) corresponds to aSA =
S−A , aE = E−, (b) corresponds to aSA = S−A , aE = E+, (c) corresponds to
aSA = S+

A , aE = E−, and (d) corresponds to aSA = S+
A , aE = E+. When

ζ = 0.50, high transparency is never adopted because it would result in a
significant increase in response time. . . . . . . . . . . . . . . . . . . . . 119

3.10 The closed-loop control policy corresponding to the reward function with
ζ = 0.91. In this case, higher importance is given to the decision rewards
as compared to the response time rewards. Subfigure (a) corresponds to
aSA = S−A , aE = E−, (b) corresponds to aSA = S−A , aE = E+, (c) corre-
sponds to aSA = S+

A , aE = E−, and (d) corresponds to aSA = S+
A , aE = E+.

This control policy adopts high transparency for very high probabilities
of High Trust to reduce the number of incorrect decisions the human may
make due to their over-trust in the decision-aid system. . . . . . . . . . . 120

3.11 The closed-loop control policy corresponding to the reward function with
ζ = 0.95. In this case, a very high importance is given to the decision
rewards as compared to the response time rewards. Subfigure (a) corre-
sponds to aSA = S−A , aE = E−, (b) corresponds to aSA = S−A , aE = E+,
(c) corresponds to aSA = S+

A , aE = E−, and (d) corresponds to aSA =
S+
A , aE = E+. This control policy again adopts high transparency for high

probabilities of High Trust to reduce the number of incorrect decisions the
human may make due to their over-trust in the decision-aid. . . . . . . . 121



xvii

Figure Page

3.12 Effect of the proposed control policies on the total decision and total re-
sponse time rewards. Error bars represent the standard error of the mean
across participants. The closed-loop control policies are highlighted in
gray. The performance of the closed-loop policies lies between that of high
and low transparency in terms of both reward metrics. With higher values
of the reward weight ζ, the performance of the closed-loop policy is more
similar to that of high transparency. Depending on the requirements of the
context, ζ can be tuned to achieve the required trade-off between decision
and response time performance. . . . . . . . . . . . . . . . . . . . . . . . 123

4.1 A representation of the independent model of trust and workload. The
observations compliance and response time are only dependent on trust
and workload, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.2 A representation of the coupled-transition model of trust and workload.
The transition probabilities of trust and workload are dependent on both
of the previous states of trust and workload. . . . . . . . . . . . . . . . . 130

4.3 A representation of the coupled-emission model of trust and workload.
The emission probability functions of compliance and response time are
dependent on both the trust and workload states. . . . . . . . . . . . . . 131

4.4 A representation of the coupled-state model for trust and workload. . . . 132

4.5 A representation of the complete-coupled model of trust and workload.
No independence assumptions are made in this model. . . . . . . . . . . 133

4.6 Average five-fold cross-validation log-likelihood and number of parameters
of the models for ten iterations. Error bars represent the standard error
of the mean accuracy across ten iterations and five folds. . . . . . . . . . 135

4.7 Emission probability function ET (oC |sT ) for trust in the independent and
coupled-transition model. The left diagram (a) shows the emission proba-
bility function for the independent model and the right diagram (b) shows
the emission probability function for the coupled-transition model. Prob-
abilities of observation are shown beside the arrows. . . . . . . . . . . . . 136



xviii

Figure Page

4.8 Transition probability function TT (s′T |sT , sW = W↓, a) for trust in the
coupled-transition model. Probabilities of transition are shown beside the
arrows. The top-left diagram (a) shows the transition probabilities when
the decision-aid’s recommendation is Light Armor S−A and the participant
had a Faulty last experience E−. The top-right diagram (b) shows the
transition probabilities when the decision-aid recommends Light Armor
S−A and the participant had a Reliable last experience E+. The bottom-
left diagram (c) shows the transition probabilities when the decision-aid
recommends Heavy Armor S+

A and the participant had a Faulty last experi-
ence E−. The bottom-right diagram (d) shows the transition probabilities
when the decision-aid recommends Heavy Armor S+

A and the participant
had a Reliable last experience E+. . . . . . . . . . . . . . . . . . . . . . 138

4.9 Transition probability function TT (s′T |sT , sW = W↑, a) for trust in the
coupled-transition model. Probabilities of transition are shown beside the
arrows. The top-left diagram (a) shows the transition probabilities when
the decision-aid’s recommendation is Light Armor S−A and the participant
had a Faulty last experience E−. The top-right diagram (b) shows the
transition probabilities when the decision-aid recommends Light Armor
S−A and the participant had a Reliable last experience E+. The bottom-
left diagram (c) shows the transition probabilities when the decision-aid
recommends Heavy Armor S+

A and the participant had a Faulty last experi-
ence E−. The bottom-right diagram (d) shows the transition probabilities
when the decision-aid recommends Heavy Armor S+

A and the participant
had a Reliable last experience E+. . . . . . . . . . . . . . . . . . . . . . 139

4.10 Emission probability function EW (oRT |sW ) for workload in the indepen-
dent model. For LowWorkload, the response time (oRT ) PDF fORT |W↓(oRT |W↓)
is characterized by an ex-Gaussian distribution with µW↓ = 0.0047, σW↓ =
0.0062, and τW↓ = 0.7917. For High Workload, the response time (oRT )
PDF fORT |W↑(oRT |W↑) is characterized by an ex-Gaussian distribution with
µW↑ = 0.5581, σW↑ = 0.1745, and τW↑ = 2.2544. . . . . . . . . . . . . . . 140

4.11 Emission probability function EW (oRT |sW ) for workload in the coupled-
transition model. For LowWorkload, the response time (oRT ) PDF fORT |W↓(oRT |W↓)
is characterized by an ex-Gaussian distribution with µW↓ = 0.0108, σW↓ =
0.0149, and τW↓ = 0.7708. For High Workload, the response time (oRT )
PDF fORT |W↑(oRT |W↑) is characterized by an ex-Gaussian distribution with
µW↑ = 0.5566, σW↑ = 0.1717, and τW↑ = 2.2179. . . . . . . . . . . . . . . 140



xix

Figure Page

4.12 Emission probability function ET (oC |sT , sW ) for trust in the coupled-emission
model. Probabilities of observation are shown beside the arrows. The left
diagram (a) shows the emission probabilities when the workload state is
W↓. The right diagram (b) shows the emission probabilities when the
workload state is W↑. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.13 Emission probability function EW (oRT |sT , sW ) for workload in the coupled-
emission model. The left diagram (a) shows the emission probabilities
when the trust state is T↓. For Low Trust and Low Workload, the re-
sponse time (oRT ) PDF fORT |T↓,W↓(oRT |T↓,W↓) is characterized by an ex-
Gaussian distribution with µT↓,W↓ = 0.0018, σT↓,W↓ = 0.0034, and τT↓,W↓ =
0.8804. For Low Trust and High Workload, the response time (oRT )
PDF fORT |T↓,W↑(oRT |T↓,W↑) is characterized by an ex-Gaussian distri-
bution with µT↓,W↑ = 0.9845, σT↓,W↑ = 0.4138, and τT↓,W↑ = 2.8825.
The right diagram (b) shows the emission probabilities when the trust
state is T↑. For High Trust and Low Workload, the response time (oRT )
PDF fORT |T↑,W↓(oRT |T↑,W↓) is characterized by an ex-Gaussian distribu-
tion with µT↑,W↓ = 0.0063, σT↑,W↓ = 0.0067, and τT↑,W↓ = 0.7439. For High
Trust and HighWorkload, the response time (oRT ) PDF fORT |T↑,W↑(oRT |T↑,W↑)
is characterized by an ex-Gaussian distribution with µT↑,W↑ = 0.5578,
σT↑,W↑ = 0.2603, and τT↑,W↑ = 0.6510. . . . . . . . . . . . . . . . . . . . 142

4.14 Effect of the control policies on the total decision and total response time
rewards. Error bars represent the standard error of the mean across par-
ticipants. The closed-loop control policies are highlighted in gray. . . . . 146

4.15 Effect of the control policies based on the independent and coupled models
on the total reward for ζ = 0.50. Error bars represent the standard error
of the mean across participants. . . . . . . . . . . . . . . . . . . . . . . . 148

4.16 Effect of the control policies on the total reward based on the independent
and coupled models for ζ = 0.85. Error bars represent the standard error
of the mean across participants. . . . . . . . . . . . . . . . . . . . . . . . 149

4.17 Effect of the control policies based on the independent and coupled models
on the total reward for ζ = 0.95. Error bars represent the standard error
of the mean across participants. . . . . . . . . . . . . . . . . . . . . . . . 150

A.1 Emission probability function ET (oC |sT ) for trust in the independent model.
Probabilities of observation are shown beside the arrows. . . . . . . . . . 171



xx

Figure Page

A.2 Transition probability function TT (s′T |sT , a) for trust in the independent
model. Probabilities of transition are shown beside the arrows. The top-
left diagram (a) shows the transition probabilities when the decision-aid’s
recommendation is Light Armor S−A and the participant had a Faulty last
experience E−. The top-right diagram (b) shows the transition probabil-
ities when the decision-aid recommends Light Armor S−A and the partici-
pant had a Reliable last experience E+. The bottom-left diagram (c) shows
the transition probabilities when the decision-aid recommends Heavy Ar-
mor S+

A and the participant had a Faulty last experience E−. The bottom-
right diagram (d) shows the transition probabilities when the decision-aid
recommends Heavy Armor S+

A and the participant had a Reliable last
experience E+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.3 Emission probability function EW (oRT |sW ) for workload in the indepen-
dent model. For LowWorkload, the response time (oRT ) PDF fORT |W↓(oRT |W↓)
is characterized by an ex-Gaussian distribution with µW↓ = 0.0047, σW↓ =
0.0062, and τW↓ = 0.7917. For High Workload, the response time (oRT )
PDF fORT |W↑(oRT |W↑) is characterized by an ex-Gaussian distribution with
µW↑ = 0.5581, σW↑ = 0.1745, and τW↑ = 2.2544. . . . . . . . . . . . . . . 173

A.4 Transition probability function TW (s′W |sW , a) for workload in the indepen-
dent model. Probabilities of transition are shown beside the arrows. The
top-left diagram (a) shows the transition probabilities when the decision-
aid recommends Light Armor S−A and the participant had a Faulty last ex-
perience E−. The top-right diagram (b) shows the transition probabilities
when the decision-aid recommends Light Armor S−A and the participant
had a Reliable last experience E+. The bottom-left diagram (c) shows the
transition probabilities when the decision-aid recommends Heavy Armor
S+
A and the participant had a Faulty last experience E−. The bottom-

right diagram (d) shows the transition probabilities when the decision-aid
recommends Heavy Armor S+

A and the participant had a Reliable last
experience E+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.5 Emission probability function ET (oC |sT ) for trust in the coupled-transition
model. Probabilities of observation are shown beside the arrows. . . . . . 175



xxi

Figure Page

A.6 Transition probability function TT (s′T |sT , sW = W↓, a) for trust in the
coupled-transition model. Probabilities of transition are shown beside the
arrows. The top-left diagram (a) shows the transition probabilities when
the decision-aid’s recommendation is Light Armor S−A and the participant
had a Faulty last experience E−. The top-right diagram (b) shows the
transition probabilities when the decision-aid recommends Light Armor
S−A and the participant had a Reliable last experience E+. The bottom-
left diagram (c) shows the transition probabilities when the decision-aid
recommends Heavy Armor S+

A and the participant had a Faulty last experi-
ence E−. The bottom-right diagram (d) shows the transition probabilities
when the decision-aid recommends Heavy Armor S+

A and the participant
had a Reliable last experience E+. . . . . . . . . . . . . . . . . . . . . . 176

A.7 Transition probability function TT (s′T |sT , sW = W↑, a) for trust in the
coupled-transition model. Probabilities of transition are shown beside the
arrows. The top-left diagram (a) shows the transition probabilities when
the decision-aid’s recommendation is Light Armor S−A and the participant
had a Faulty last experience E−. The top-right diagram (b) shows the
transition probabilities when the decision-aid recommends Light Armor
S−A and the participant had a Reliable last experience E+. The bottom-
left diagram (c) shows the transition probabilities when the decision-aid
recommends Heavy Armor S+

A and the participant had a Faulty last experi-
ence E−. The bottom-right diagram (d) shows the transition probabilities
when the decision-aid recommends Heavy Armor S+

A and the participant
had a Reliable last experience E+. . . . . . . . . . . . . . . . . . . . . . 177

A.8 Emission probability function EW (oRT |sW ) for workload in the coupled-
transition model. For LowWorkload, the response time (oRT ) PDF fORT |W↓(oRT |W↓)
is characterized by an ex-Gaussian distribution with µW↓ = 0.0108, σW↓ =
0.0149, and τW↓ = 0.7708. For High Workload, the response time (oRT )
PDF fORT |W↑(oRT |W↑) is characterized by an ex-Gaussian distribution with
µW↑ = 0.5566, σW↑ = 0.1717, and τW↑ = 2.2179. . . . . . . . . . . . . . . 178



xxii

Figure Page

A.9 Transition probability function TW (s′W |sT = T↓, sW , a) for workload in the
coupled-transition model. Probabilities of transition are shown beside the
arrows. The top-left diagram (a) shows the transition probabilities when
the decision-aid recommends Light Armor S−A and the participant had a
Faulty last experience E−. The top-right diagram (b) shows the transition
probabilities when the decision-aid recommends Light Armor S−A and the
participant had a Reliable last experience E+. The bottom-left diagram
(c) shows the transition probabilities when the decision-aid recommends
Heavy Armor S+

A and the participant had a Faulty last experience E−.
The bottom-right diagram (d) shows the transition probabilities when the
decision-aid recommends Heavy Armor S+

A and the participant had a Re-
liable last experience E+. . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A.10 Transition probability function TW (s′W |sT = T↑, sW , a) for workload in the
coupled-transition model. Probabilities of transition are shown beside the
arrows. The top-left diagram (a) shows the transition probabilities when
the decision-aid recommends Light Armor S−A and the participant had a
Faulty last experience E−. The top-right diagram (b) shows the transition
probabilities when the decision-aid recommends Light Armor S−A and the
participant had a Reliable last experience E+. The bottom-left diagram
(c) shows the transition probabilities when the decision-aid recommends
Heavy Armor S+

A and the participant had a Faulty last experience E−.
The bottom-right diagram (d) shows the transition probabilities when the
decision-aid recommends Heavy Armor S+

A and the participant had a Re-
liable last experience E+. . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.11 Emission probability function ET (oC |sT , sW ) for trust in the coupled-emission
model. Probabilities of observation are shown beside the arrows. The left
diagram (a) shows the emission probabilities when the workload state is
W↓. The right diagram (b) shows the emission probabilities when the
workload state is W↑. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182



xxiii

Figure Page

A.12 Transition probability function TT (s′T |sT , sW = W↓, a) for trust in the
coupled-emission model. Probabilities of transition are shown beside the
arrows. The top-left diagram (a) shows the transition probabilities when
the decision-aid’s recommendation is Light Armor S−A and the participant
had a Faulty last experience E−. The top-right diagram (b) shows the
transition probabilities when the decision-aid recommends Light Armor
S−A and the participant had a Reliable last experience E+. The bottom-
left diagram (c) shows the transition probabilities when the decision-aid
recommends Heavy Armor S+

A and the participant had a Faulty last experi-
ence E−. The bottom-right diagram (d) shows the transition probabilities
when the decision-aid recommends Heavy Armor S+

A and the participant
had a Reliable last experience E+. . . . . . . . . . . . . . . . . . . . . . 183

A.13 Transition probability function TT (s′T |sT , sW = W↑, a) for trust in the
coupled-emission model. Probabilities of transition are shown beside the
arrows. The top-left diagram (a) shows the transition probabilities when
the decision-aid’s recommendation is Light Armor S−A and the participant
had a Faulty last experience E−. The top-right diagram (b) shows the
transition probabilities when the decision-aid recommends Light Armor
S−A and the participant had a Reliable last experience E+. The bottom-
left diagram (c) shows the transition probabilities when the decision-aid
recommends Heavy Armor S+

A and the participant had a Faulty last experi-
ence E−. The bottom-right diagram (d) shows the transition probabilities
when the decision-aid recommends Heavy Armor S+

A and the participant
had a Reliable last experience E+. . . . . . . . . . . . . . . . . . . . . . 184

A.14 Emission probability function EW (oRT |sT , sW ) for workload in the coupled-
emission model. The left diagram (a) shows the emission probabilities
when the trust state is T↓. For Low Trust and Low Workload, the re-
sponse time (oRT ) PDF fORT |T↓,W↓(oRT |T↓,W↓) is characterized by an ex-
Gaussian distribution with µT↓,W↓ = 0.0018, σT↓,W↓ = 0.0034, and τT↓,W↓ =
0.8804. For Low Trust and High Workload, the response time (oRT )
PDF fORT |T↓,W↑(oRT |T↓,W↑) is characterized by an ex-Gaussian distri-
bution with µT↓,W↑ = 0.9845, σT↓,W↑ = 0.4138, and τT↓,W↑ = 2.8825.
The right diagram (b) shows the emission probabilities when the trust
state is T↑. For High Trust and Low Workload, the response time (oRT )
PDF fORT |T↑,W↓(oRT |T↑,W↓) is characterized by an ex-Gaussian distribu-
tion with µT↑,W↓ = 0.0063, σT↑,W↓ = 0.0067, and τT↑,W↓ = 0.7439. For High
Trust and HighWorkload, the response time (oRT ) PDF fORT |T↑,W↑(oRT |T↑,W↑)
is characterized by an ex-Gaussian distribution with µT↑,W↑ = 0.5578,
σT↑,W↑ = 0.2603, and τT↑,W↑ = 0.6510. . . . . . . . . . . . . . . . . . . . 186



xxiv

Figure Page

A.15 Transition probability function TW (s′W |sT = T↓, sW , a) for workload in the
coupled-emission model. Probabilities of transition are shown beside the
arrows. The top-left diagram (a) shows the transition probabilities when
the decision-aid recommends Light Armor S−A and the participant had a
Faulty last experience E−. The top-right diagram (b) shows the transition
probabilities when the decision-aid recommends Light Armor S−A and the
participant had a Reliable last experience E+. The bottom-left diagram
(c) shows the transition probabilities when the decision-aid recommends
Heavy Armor S+

A and the participant had a Faulty last experience E−.
The bottom-right diagram (d) shows the transition probabilities when the
decision-aid recommends Heavy Armor S+

A and the participant had a Re-
liable last experience E+. . . . . . . . . . . . . . . . . . . . . . . . . . . 187

A.16 Transition probability function TW (s′W |sT = T↑, sW , a) for workload in the
coupled-emission model. Probabilities of transition are shown beside the
arrows. The top-left diagram (a) shows the transition probabilities when
the decision-aid recommends Light Armor S−A and the participant had a
Faulty last experience E−. The top-right diagram (b) shows the transition
probabilities when the decision-aid recommends Light Armor S−A and the
participant had a Reliable last experience E+. The bottom-left diagram
(c) shows the transition probabilities when the decision-aid recommends
Heavy Armor S+

A and the participant had a Faulty last experience E−.
The bottom-right diagram (d) shows the transition probabilities when the
decision-aid recommends Heavy Armor S+

A and the participant had a Re-
liable last experience E+. . . . . . . . . . . . . . . . . . . . . . . . . . . 188

B.1 Closed-loop control policy corresponding to the reward function with ζ =
0.50 for the independent model. In this case, the reward function gives
equal importance to the decision and response time rewards. Subfigure (a)
corresponds to aSA = S−A , aE = E−, (b) corresponds to aSA = S−A , aE =
E+, (c) corresponds to aSA = S+

A , aE = E−, and (d) corresponds to aSA =
S+
A , aE = E+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.2 Closed-loop control policy corresponding to the reward function with ζ =
0.85 for the independent model. In this case, higher importance is given to
the decision rewards as compared to the response time rewards. Subfigure
(a) corresponds to aSA = S−A , aE = E−, (b) corresponds to aSA = S−A , aE =
E+, (c) corresponds to aSA = S+

A , aE = E−, and (d) corresponds to aSA =
S+
A , aE = E+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191



xxv

Figure Page

B.3 Closed-loop control policy corresponding to the reward function with ζ =
0.95 for the independent model. In this case, a very high importance is
given to the decision rewards as compared to the response time rewards.
Subfigure (a) corresponds to aSA = S−A , aE = E−, (b) corresponds to
aSA = S−A , aE = E+, (c) corresponds to aSA = S+

A , aE = E−, and (d)
corresponds to aSA = S+

A , aE = E+. . . . . . . . . . . . . . . . . . . . . . 192

B.4 Closed-loop control policy corresponding to the reward function with ζ =
0.50 for the coupled-transition model. In this case, the reward func-
tion gives equal importance to the decision and response time rewards.
Subfigure (a) corresponds to aSA = S−A , aE = E−, (b) corresponds to
aSA = S−A , aE = E+, (c) corresponds to aSA = S+

A , aE = E−, and (d)
corresponds to aSA = S+

A , aE = E+. . . . . . . . . . . . . . . . . . . . . . 193

B.5 Closed-loop control policy corresponding to the reward function with ζ =
0.85 for the coupled-transition model. In this case, higher importance is
given to the decision rewards as compared to the response time rewards.
Subfigure (a) corresponds to aSA = S−A , aE = E−, (b) corresponds to
aSA = S−A , aE = E+, (c) corresponds to aSA = S+

A , aE = E−, and (d)
corresponds to aSA = S+

A , aE = E+. . . . . . . . . . . . . . . . . . . . . . 194

B.6 Closed-loop control policy corresponding to the reward function with ζ =
0.95 for the coupled-transition model. In this case, a very high importance
is given to the decision rewards as compared to the response time rewards.
Subfigure (a) corresponds to aSA = S−A , aE = E−, (b) corresponds to
aSA = S−A , aE = E+, (c) corresponds to aSA = S+

A , aE = E−, and (d)
corresponds to aSA = S+

A , aE = E+. . . . . . . . . . . . . . . . . . . . . . 195

B.7 Closed-loop control policy corresponding to the reward function with ζ =
0.50 for the coupled-emission model. In this case, the reward function gives
equal importance to the decision and response time rewards. Subfigure (a)
corresponds to aSA = S−A , aE = E−, (b) corresponds to aSA = S−A , aE =
E+, (c) corresponds to aSA = S+

A , aE = E−, and (d) corresponds to aSA =
S+
A , aE = E+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

B.8 Closed-loop control policy corresponding to the reward function with ζ =
0.85 for the coupled-emission model. In this case, higher importance is
given to the decision rewards as compared to the response time rewards.
Subfigure (a) corresponds to aSA = S−A , aE = E−, (b) corresponds to
aSA = S−A , aE = E+, (c) corresponds to aSA = S+

A , aE = E−, and (d)
corresponds to aSA = S+

A , aE = E+. . . . . . . . . . . . . . . . . . . . . . 197



xxvi

B.9 Closed-loop control policy corresponding to the reward function with ζ =
0.95 for the coupled-emission model. In this case, a very high importance is
given to the decision rewards as compared to the response time rewards.
Subfigure (a) corresponds to aSA = S−A , aE = E−, (b) corresponds to
aSA = S−A , aE = E+, (c) corresponds to aSA = S+

A , aE = E−, and (d)
corresponds to aSA = S+

A , aE = E+. . . . . . . . . . . . . . . . . . . . . . 198



xxvii

ABSTRACT

Akash, Kumar Ph.D., Purdue University, August 2020. Reimagining Human-Machine
Interactions through Trust-Based Feedback. Major Professor: Neera Jain, School
of Mechanical Engineering.

Intelligent machines, and more broadly, intelligent systems, are becoming increas-

ingly common in the everyday lives of humans. Nonetheless, despite significant ad-

vancements in automation, human supervision and intervention are still essential

in almost all sectors, ranging from manufacturing and transportation to disaster-

management and healthcare. These intelligent machines interact and collaborate with

humans in a way that demands a greater level of trust between human and machine.

While a lack of trust can lead to a human’s disuse of automation, over-trust can result

in a human trusting a faulty autonomous system which could have negative conse-

quences for the human. Therefore, human trust should be calibrated to optimize

these human-machine interactions. This calibration can be achieved by designing

human-aware automation that can infer human behavior and respond accordingly in

real-time.

In this dissertation, I present a probabilistic framework to model and calibrate

a human’s trust and workload dynamics during his/her interaction with an intelli-

gent decision-aid system. More specifically, I develop multiple quantitative models

of human trust, ranging from a classical state-space model to a classification model

based on machine learning techniques. Both models are parameterized using data

collected through human-subject experiments. Thereafter, I present a probabilistic

dynamic model to capture the dynamics of human trust along with human workload.

This model is used to synthesize optimal control policies aimed at improving context-

specific performance objectives that vary automation transparency based on human

state estimation. I also analyze the coupled interactions between human trust and
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workload to strengthen the model framework. Finally, I validate the optimal con-

trol policies using closed-loop human subject experiments. The proposed framework

provides a foundation toward widespread design and implementation of real-time

adaptive automation based on human states for use in human-machine interactions.
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1. INTRODUCTION

Automation has become prevalent in the everyday lives of humans. However, de-

spite significant technological advancements, human supervision and intervention are

still necessary in almost all sectors of automation, ranging from manufacturing and

transportation to disaster-management and healthcare [1]. Therefore, we expect that

the future will be built around human-agent collectives [2] that will require efficient

and successful interaction and coordination between humans and machines. It is

well established that to achieve this coordination, human trust in automation plays

a central role [3–5]. For example, the benefits of automation are lost when humans

override automation due to a fundamental lack of trust [3,5], and accidents may occur

due to human mistrust in such systems [6]. Therefore, trust should be appropriately

calibrated to avoid disuse or misuse of automation [4].

These negative effects can be overcome by designing autonomous systems that can

adapt to a human’s trust level. One way to adapt automation based on human trust

is to augment the user interface with more information—either raw data or processed

information—to help the human make an informed decision. This “amount of infor-

mation” has been defined as automation transparency in the literature. Transparency

has been defined as “the descriptive quality of an interface pertaining to its abilities to

afford an operator’s comprehension about an intelligent agent’s intent, performance,

future plans, and reasoning process” [7]. With higher levels of transparency, humans

have access to more information to aid their decisions, which has been shown to in-

crease trust [8, 9]. Therefore, adaptive automation can be implemented by varying

automation transparency based on human trust. However, because high transparency

requires communicating more information, it can also increase the workload of the

human [10]. In turn, high levels of workload can lead to fatigue and therefore reduce

the human’s performance. Therefore, we need to design an adaptive automation
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that can vary automation transparency to accommodate changes in human trust and

workload in real-time to achieve optimal or near-optimal performance. This requires

a dynamic model of human trust-workload behavior to design and implement control

policies.

1.1 Background

Human trust is a multidisciplinary concept. Each discipline characterizes a dif-

ferent type of relationship with the term “trust”. While disciplines like social sciences

often study the trust between individuals or organizations, other fields like computing

and networking evaluate trust with respect to artificial intelligence and communica-

tion networks; in other words, the definition of trust varies drastically. Nonetheless,

in most disciplines, trust captures the interaction between two entities, a trustor who

relies on a trustee in a situation consisting of uncertainty and risk. Cho et al. sum-

marized trust across disciplines as “the willingness of the trustor to take risk based

on a subjective belief that a trustee will exhibit reliable behavior to maximize the

trustor’s interest under uncertainty of a given situation based on the cognitive assess-

ment of past experience with the trustee [11].” With respect to automation, trust is

defined as “the attitude that one agent will achieve another agent’s goal in a situa-

tion where imperfect knowledge is given with uncertainty and vulnerability [4]." For

an interaction between a human and an automated system, the human expects and

therefore trusts the automated system to achieve a desired goal in an uncertain and

risky environment.

In the context of autonomous systems, human trust can be classified into three

categories: dispositional, situational, and learned [12]. Dispositional trust refers to

the component of trust that is dependent on demographics such as gender and cul-

ture, whereas situational and learned trust depend on a given situation (e.g., task

difficulty) and past experience (e.g., machine reliability), respectively. While all of

these trust factors influence the way humans make decisions when interacting with



3

automation, situational and learned trust factors “can change within the course of a

single interaction” [12]. Therefore, I am interested in using feedback control principles

to design adaptive automation that is capable of calibrating the human’s trust in the

automation in real time so that it maintains a successful interaction; here, “success”

is context specific.

1.2 Levels of Automation and Transparency

Automation can be differentiated by levels, with higher levels of automation

(LOAs) representing increased machine autonomy. Parasuraman et al. proposed

that most systems involve four stages of sequential tasks, with each successive stage

dependent on successful completion of the previous one. They correspond to the

four information-processing stages of humans: (1) information acquisition (sensory

processing), (2) information analysis (perception), (3) decision and action selection

(decision-making), and (4) action implementation (response selection) [13, 14]. This

four-stage model of human information processing has its equivalence in system func-

tions that can be automated, leading to four types of automation as shown in Fig-

ure 1.1. These can be conveniently called acquisition, analysis, decision, and action

automation, respectively. Within this four-stage model, each type of automation can

have different degrees or levels of automation (LOA), depending on the context.

Information sources are inherently uncertain due to factors including sensor impre-

cision and unpredictable events. Nevertheless, even imperfect acquisition and analysis

automation at a reliability as low as 70%, can improve performance as compared to

unaided human performance [15]. On the other hand, the utility of decision and

action automation is more sensitive to adequately calibrated human trust in the au-

tomation than acquisition and analysis automation. This is because in the case of

decision automation, the human is typically being asked to comply, or not comply,

with the decision proposed by the automation. Similarly, in the case of action au-

tomation, the human is being asked to rely, or not rely, on the actions being taken
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Figure 1.1. Simple four-stage model of human information processing and
the corresponding types of automation (adapted from [13]). Each stage of
human information processing has its equivalent in system functions that
can be automated, thereby leading to four types of automation.

by the automation. In both cases, how strongly the human trusts the automation

will affect their compliance with the automation (or the lack thereof). This can

be dangerous in cases when the human’s trust is not adequately calibrated to the

reliability of the automation, such as when a human trusts an automation’s faulty

decision. It is possible to mitigate this issue by varying the LOA depending on situ-

ational demands during operational use; this has been classically defined as adaptive

automation [16–18]. For decision-aid systems, adaptive automation can be realized

by adjusting, or controlling, the amount of raw or processed information given to the

human—in other words, controlling transparency. With higher levels of transparency,

the operator has access to more information from lower LOAs, which has been shown

to increase human trust [8, 9]. See [19] for a review on system transparency during

human automation interactions.
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1.3 Effects of Transparency on Trust and Workload

Several researchers have investigated the effect of transparency on trust, where

systems with higher transparency have been shown to enhance humans’ trust in sys-

tems [20–22]. Studies described in [23–25] showed that only the robot’s reliability

influenced trust; however, the studies also highlighted the limitation of the use of

self-reported trust data. Notably, researchers have argued that high transparency

can even reduce trust if the information provided is not interpretable or actionable

to humans [26]. Furthermore, too much detail communicated through higher trans-

parency can increase the time required to process the information [20] and distract

the human from critical details [27]. Researchers have shown that cognitive difficulty,

and thereby cognitive workload, increases with an increase in information [28]. Find-

ings in [9] suggest that increased system transparency increases trust in the system

but also causes workload to increase. Although a recent study based on the findings

of [9] found that workload need not necessarily increase with greater transparency,

several researchers agree that a trade-off between increased trust and increased work-

load exists when considering increased transparency [19].Typically, for decision-aid

systems, this trade-off can be observed via the speed-accuracy tradeoff (SAT). Since

trust calibration results in better decision making during human-machine interac-

tions, the accuracy of human responses is better when human trust is calibrated.

Moreover, increased workload due to an increase in transparency is often charac-

terized by a longer response time required for processing more information [9, 29];

therefore, human response time also increases with an increase in transparency. SAT

is a well-studied problem with established theoretical frameworks as well as neuro-

biological basis [30, 31]. It has been shown that, for simple stimuli, humans rapidly

adjust their SAT to maximize rewards; however, humans deviate from the optimal

SAT in complex situations [32]. An optimal choice of automation transparency based

on human trust and workload estimates can aid in addressing the SAT while interact-
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ing with decision-aid systems. Therefore, to optimally vary automation transparency,

I model both human trust as well as human workload in a quantitative framework.

1.4 Dissertation Objectives

My main contribution in this dissertation is the design of a trust-based feedback

control framework to improve context-specific performance objectives using automa-

tion transparency during human-machine collaborations. The overall framework is

represented by Figure 1.2. Achieving this requires a predictive, reliable, and quanti-

tative framework to estimate and calibrate human trust in automation. I demonstrate

that human trust can be modeled and predicted based on a human’s behavioral re-

sponses to the automation’s decision-aids. I also develop a model to estimate human

trust using their psychophysiological measurements. I subsequently present the use

of the modeled human trust and workload dynamics to optimally vary automation

transparency by closing the loop between human and machine. In this dissertation, I

will restrict the work to decision automation only, but the framework can be extended

to action automation as well.

The following two sub-objectives will be achieved in order to satisfy the disserta-

tion objective:

Objective 1: Dynamic Modeling and Estimation of Human Trust and

Workload. Develop control-oriented models to estimate and predict the dynam-

ics of human trust and workload behavior during an interaction with an autonomous

system.

Objective 2: Human State-based Feedback Control. Synthesize a closed-loop

controller that calibrates human trust and reduces workload to improve a context-

specific performance objective during human-machine interactions.
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Figure 1.2. Block diagram depicting a trust and workload-based feedback
control architecture for optimizing human-machine interactions. The hu-
man behavior model is used to estimate the non-observable human states
of trust and workload using the machine outputs, the interaction context,
and the observable human responses. An optimal control policy dynami-
cally varies automation transparency based on the estimated human states
to maximize a context specific performance objective.

1.4.1 Objective 1: Dynamic Modeling and Estimation of Human Trust

Researchers have studied trust behavior in human-machine interactions (HMI) [3,

33,34] and analyzed the statistical significance of demographic factors (e.g., age, gen-

der) on trust behaviors [35,36]. However, while identifying factors that induce changes

in trust is a critical step towards characterizing trust behavior, it is alone insufficient

for characterizing a quantitative model of this behavior. Moreover, studies have shown

that the trust level of humans varies with time due to changing experiences [33, 37]

and, as such, any quantitative trust model should be dynamic.

In order to derive a quantitative dynamic model of human trust behavior suitable

for HMI contexts, an appropriate experimental design, modeling approach, and model

verification are necessary. To accomplish Objective 1, I first develop the modeling

and experimental methods to capture dynamic changes in human trust with varying

automation reliability, specifically in a Stage 3 automation context. I also systemat-
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ically analyze the effects of demographic factors, consisting of national culture [38]

and gender, as well as system error type.

Furthermore, in some uncertain and unstructured environments, it is not practical

to retrieve human behavior continuously for use in a feedback control algorithm.

Specifically, in uncertain environments, we may not always be able to associate human

responses to certain behaviors. In other instances, human responses can simply be lost

due to faults in communication. Similarly, in unstructured environments, it may not

be possible to characterize specific cognitive behaviors of a human (e.g., trust) based

upon observations of their physical behavior or actions alone. In such scenarios, an

alternative is the use of psychophysiological signals to estimate trust level [39]. While

these measurements have been correlated to human trust level [40,41], they have not

been studied in the context of real-time trust sensing.

There are few psychophysiological measurements that have been studied in the

context of human trust. I focus here on electroencephalography (EEG) and galvanic

skin response (GSR) which are both noninvasive and whose measurements can be

collected and processed in real time. EEG is an electrophysiological measurement

technique that captures the cortical activity of the brain [42]. Some researchers have

studied trust via EEG measurements [40] but their methodology is infeasible for

real-time trust level sensing. GSR is a classical psychophysiological signal that cap-

tures arousal based upon the conductivity of the surface of the skin. It is not under

conscious control but is instead modulated by the sympathetic nervous system. Re-

searchers have examined GSR in correlation with human trust level [43]. However,

the use of GSR for estimating trust has not been explored and was noted as an area

worth studying [39]. With respect to both GSR and EEG, a fundamental gap remains

in determining a static model that not only estimates human trust level using these

psychophysiological signals but that is also suitable for real-time implementation. In

this dissertation, I develop a framework for a human trust sensor model using these

psychophysiological measurements. The model is based upon data collected through a

human subject study and the use of classification algorithms. I also present a prelimi-
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nary sensor fusion technique to combine the psychophysiological measurements-based

and behavioral data-based trust estimates.

In spite of the fact that 1) human trust is strongly dependent on automation

reliability and 2) the modeled relationship between reliability and trust can be used

to predict trust, autonomous systems cannot (and should not) vary their reliability to

affect human trust. Instead, automation transparency can be varied to affect human

trust. Moreover, although higher transparency can increase human trust [8,9], it also

can increase human workload [10, 28]. Therefore, to complete Objective 1, I model

the dynamic effects of machine transparency on human trust and workload behavior

so that it can be used for improving human-machine collaboration. Additionally, I

develop models that explore multiple degrees of coupled interactions between human

trust and workload and analyze their performance.

1.4.2 Objective 2: Human State-based Feedback Control

Although researchers have developed various models of human trust [44–47] and

workload [48,49], there does not exist a closed-loop framework for influencing human

trust and workload to improve human-machine collaboration. Furthermore, published

studies have shown that transparency affects both human trust [8, 9] and workload

[10, 28] but has not been systematically used to calibrate trust-workload behavior.

Therefore, a fundamental gap remains in using machine transparency to dynamically

improve human-machine collaboration.

With the dynamic models of human trust and workload developed in Objective 1,

the human state of trust and workload can be estimated as well as predicted. Using

the developed models, I establish a systematic method for synthesizing a feedback

controller to close the loop between human and machine. I design and synthesize

control policies that vary machine transparency based on real-time estimation of

human trust and workload to improve a context-specific performance metric. These

control policies are validated using a reconnaissance mission study in which human
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subjects are aided by a virtual robotic assistant. I show that this framework provides

a tractable methodology for using human behavior as a real-time feedback signal to

optimize human-machine interactions through dynamic modeling and control.

1.5 Outline

The rest of the document is organized as follows. In Chapter 2, I describe method-

ologies to model and estimate human trust using behavioral as well as psychophys-

iological measurements. In Chapter 3, I present a probabilistic framework to model

human trust and workload dynamics. In addition, I present closed-loop policies that

vary machine transparency based on real-time estimation of human trust and work-

load to improve a context-specific performance metric. I further extend this frame-

work by considering the coupled interactions between human trust and workload in

Chapter 4. Finally, conclusions are drawn from this work in Chapter 5 and potential

future work is discussed.
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2. DYNAMIC MODELING AND ESTIMATION OF HUMAN TRUST

Researchers have studied trust behavior in human-machine interactions (HMI) and

human-computer interactions (HCI) using experimental methods and modeling tech-

niques from social psychology [3,33,34]. Some studies focused on analyzing the statis-

tical significance of demographic factors (e.g. age, gender) on trust behaviors [35,36].

However, while identifying factors that induce changes in trust is a critical step to-

wards characterizing trust behavior, it is alone insufficient for characterizing a quan-

titative model of this behavior. Moreover, studies have shown that the trust level

of humans varies with time due to changing experiences [33, 37] and, as such, any

quantitative trust model should be dynamic. In Section 2.1, we will first develop a

quantitative dynamic model of human trust that captures the effects of automation

reliability and error type (miss or false alarm). We will also systematically analyze

the effects of demographic factors, consisting of national culture [38] and gender, as

well as system error type on human trust dynamics. Thereafter, in Section 2.2, we

will develop a classification model to estimate human trust using psychophysiological

measurements, specifically EEG and GSR. Finally, we will present an adaptive classi-

fication framework that will combine psychophysiological measurements and human

behavioral dynamics to estimate human trust in real time in Section 2.3.

2.1 Modeling Effects of Automation Reliability

The contents of this section were previously published by Hu, Akash, Reid, and

Jain in IEEE Transactions on Human-Machine Systems [47] and are reported here

with minor modifications.
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2.1.1 Introduction

In order to derive a quantitative dynamic model of human trust behavior suitable

for HMI contexts, an appropriate experimental design, modeling approach, and model

verification are necessary. There is no experimentally verified model for describing

the dynamics of human trust level in HMI contexts that (1) incorporates demographic

factors and time-varying experiences and (2) is built on experiments that elicit multi-

ple transitions in trust level. Existing quantitative models either assume that human

trust behavior is fully based on rationale [33] or are nonlinear [37, 50]. While the

influence of accumulated effects of past interactions on the future trust level have

been modeled in multi-agent system contexts, they have not been modeled for inde-

pendent human-machine interactions [50,51]. Furthermore, existing models of human

trust in autonomous systems have not taken into account human bias nor attitudes

toward the system response bias; here the system response bias is defined in terms of

signal detection theory, i.e., liberal (false-alarm-prone) and conservative (miss-prone)

system bias.

Finally, human behavior is highly influenced by one’s surroundings and past ex-

periences [52, 53] with the automation’s reliability, which in turn, are strongly in-

fluenced by demographic factors. With the spread of automation across the globe,

it is necessary to model human behavior for different demographics. Several types

of autonomous systems such as cars, smart thermostats, and tour-guide robots are

designed to interact with unspecified users. In these contexts, a model that describes

the trust dynamics of a population (general or grouped by demographics) instead of

an individual would facilitate the design of such systems. Unfortunately, a generalized

model that is suitable for capturing these variations in human trust behavior does

not exist in the current literature.

In this section, we describe the modeling and experimental methods used to cap-

ture dynamic changes in human trust, specifically in a HMI context. We devise two

sets of human subject experiments that elicit multiple dynamic transitions in human
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trust behavior, and the data collected from these experiments is then used to esti-

mate and validate the parameters of the proposed model. We establish a linear model

motivated by literature on computational models for the dynamic variation of human

trust [33, 54]; the linearity allows for easier control analysis and synthesis aimed at

designing adaptive human-machine interfaces, thus enabling autonomous systems to

respond to human trust variations in real-time. Furthermore, we systematically ana-

lyze the effects of demographic factors, consisting of national culture [38] and gender,

as well as system error type.

This section is organized as follows. First, we provide background on trust mod-

eling and significant factors that affect human trust. In Section 2.1.3, we describe

experiment 1 along with the development of a generalized model of human trust

dynamics; we further examine the effects of national culture and gender on these dy-

namics. In Section 2.1.4, we describe experiment 2 in which we incorporate the effects

of misses and false alarms into the model. Afterward, we discuss the implications of

the estimated parameter values of the trust model in the context of HMI.

2.1.2 Background

Comprehensive reviews of the influence of trust in HMI and HCI contexts are

provided by Lee and See [4] and Hoff and Bashir [12]. Hoff and Bashir classified

trust into three categories: dispositional, situational, and learned [12]. Dispositional

trust is based on characteristics of the human. Factors that influence dispositional

trust do not vary with time, but they still impact human decision-making during

interactions with the autonomous system. Studies have shown differences in trust be-

havior between people of different cultures, age groups, and personality types [55–57].

Situational trust consists of factors that are external to the operator (e.g., task diffi-

culty, potential risks) and those that are internal to the operator (e.g., self-confidence,

domain knowledge) [12]. Finally, learned trust is based upon an operator’s overall

experience with an autonomous system and influences their initial mindset. During
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a new interaction with an autonomous system, the human’s experience affects their

established trust level. In this section, we present a dynamic model that can cap-

ture variations in human trust level with respect to automation reliability for various

demographic groups, thus, capturing both learned and dispositional trust character-

istics.

In the remainder of this section, we first introduce studies that have modeled

human trust in various contexts. Second, we review literature on determining the

effect of automation reliability and system error types (i.e., misses or false alarms)

on human trust. These factors influence learned trust. Last, we review studies on

examining dispositional trust factors, specifically gender and national culture.

Studies on Human Trust Modeling

Researchers have developed models for predicting human trust based on past ex-

periences, which strongly influence learned trust. Jonker and Treur suggested two

types of functions to model trust dynamics: trust update functions and trust evolu-

tion functions [33]. Trust update functions use the current trust level and current

experience to update the future trust level, while trust evolution functions map a

sequence of trust related events (experiences) to a current trust level. In order to

verify the proposed trust dynamics, Jonker et al. conducted follow-up human subject

experiments which presented participants with a sequence of short stories for two sce-

narios: a photocopier and a travel agency [58]. Each scenario consisted of five positive

and five negative stories, and participants reported their trust level after reading each

story. The results suggested that trust dynamics are dependent on positive and nega-

tive experiences. However, limited by the number of trials (10 trials in each scenario),

these studies only induced a single transition in trust level; therefore, the model did

not capture the variations in trust dynamics involving multiple transitions.

Some studies have modeled human trust in the context of HMI. Lee and Moray

studied changes in human trust level using a simulated semi-automatic juice plant
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environment. It was observed that the human trust level was affected by the perfor-

mance of the system, past trust levels, and faults [34]. The authors used an ARMAV

(Auto Regressive Moving Average Vector) analysis to model the input-output rela-

tionship of the trust behavior. They later showed that humans use automation when

their trust in the automation exceeds their self-confidence [59]. These early efforts

demonstrated the effect of situational and learned trust on the interactions between

humans and autonomous systems. However, due to a small sample size (i.e., four

to five participants in each group) and a large standard deviation of the data, the

accuracy of their model was limited.

Within the simulation context proposed by Moray and his colleagues, Lewandowsky

et al. compared trust in automation with trust in human partners in equivalent situa-

tions [60]. Similar to the findings of Lee and Moray [59], Lewandowsky et al. identified

that faults in auxiliary control actions have a strong effect on trust and self-confidence

of the human operator, and the difference between trust and self-confidence is a strong

predictor of the human operator’s reliance on automation as well as his/her reliance

on human colleagues.

Factors that are significant in predicting trust level may also be dependent on

the application context. Sadrfaridpour et al. proposed a time-series model for the

dynamics of human-robot trust in assembly lines based on the robot performance,

human performance, and fault occurrences [61]. More specifically, the performances

were quantified by the robot working speed and the human’s state of muscle fatigue

and recovery. How well the robot met the human’s pace influenced the workload and

trust perceived by the human. The researchers’ experimental results also suggested

that the current trust is mainly dependent on the previous trust if there is no dramatic

change in performance.

More recently, elements that are not based on rationale have been incorporated

into a human trust model. Li et al. used the structural equation modeling technique

to identify the significance of human attitudes and subjective norm on “trusting in-

tentions” [62]. Hoogendoorn et al. developed models with biased experience and/or
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trust to account for this human behavior [37]. They validated their models using

a geographical area classification task and showed that a model with a bias term

is capable of estimating trust more accurately than models without an explicit bias.

However, their model was nonlinear in trust and experience, rendering it more difficult

for analysis than linear models.

The Effect of Misses and False Alarms in Automation

Automation reliability significantly influences human trust in autonomous systems

and in turn influences human use of these systems [34, 63]. According to signal

detection theory, automation errors can be classified as misses or false alarms; failing

to detect the presence of a signal constitutes a miss, and incorrectly alerting humans to

an absent stimulus constitutes a false alarm [64]. Existing literature shows that these

two types of errors have different effects on human trust in automation. Specifically,

these error types affect reliance and compliance to a different degree. Reliance is

when humans, in the absence of any signal from the system, continue to trust the

system and refrain from a response. On the other hand, compliance is exhibited by

a human trusting and responding to a signal when the system presents one [65]. An

increase in the miss rate reduces reliance, while an increase in false alarms reduces

compliance [5, 66]. This distinction is important as it leads the human to react to a

signal. For example, a compliance-oriented system (i.e., gives warning when there is

a malfunction) increases awareness in humans especially when warnings are spaced

close to other indicators [67].

Humans may choose to ignore warnings if they experience high rates of false

alarms, which is known as the ‘cry wolf’ effect [68]. This behavior represents humans’

mistrust of autonomous systems and induces disuse of these systems [69]. Some

studies suggest that false alarms cause greater negative effects on human trust in

automation as they divert humans’ attention, causing them to monitor unnecessary

information [70]. Pervasive false alarms may make humans respond slower or less
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frequently to future similar alerts [71, 72]. However, the high false-alarm rate does

not appear to negatively impact trust in the context of en route Air Traffic Controller

conflict alerts [73]. Indeed, some studies showed contrary results where false alarm-

prone systems were more trustworthy than miss-prone systems [74, 75]. In addition,

there are studies suggesting that false alarms and misses lead to similar effects on

trust [76, 77] or that the effect is dependent on humans’ cognitive capabilities [78].

Existing literature shows evident differences in opinions of the effects of misses

and false alarms on human trust in automation. In order to resolve these differences,

a model for human trust behavior with respect to false alarms and misses is needed.

Moreover, the alarm threshold is determined based on the costs associated with each

type of error, which means the optimal rate of misses/false alarms varies between sys-

tems. Therefore, a model of trust dynamics that connects human trust to autonomous

system reliability can help us better understand how reliability-induced trust changes

over time. Furthermore, it would allow us to understand how trust recovers with a

hit (i.e., system correctly detects the presence of a signal) and/or a correct rejection

(i.e., system not alerting the human to an absence of a signal).

Demographic Factors that Influence Trust

Autonomous system reliability and error type are external factors that influence

learned trust. Apart from experiences accumulated from past interactions with au-

tonomous systems, human trust behavior is also influenced by demographic factors

including culture and gender. This is described as dispositional trust and is indepen-

dent of a specific system or the context of an interaction [12].

Gender differences in trust behavior have been studied thoroughly in economic

contexts [35, 79, 80]. Furthermore, some studies have shown gender differences in

human-robot interaction (HRI) contexts and technology adoption behavior [36,81,82].

For example, males were more likely to develop trust and positive attitudes toward

female robots, while women showed little preference [83]. The attitudes of children
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toward humanoid robots are also influenced by gender. Tung showed that girls favored

human-like, female robots more than boys [84]. In addition, females perceived highly

automated driving systems as significantly less trustworthy than males did [85].

Values and social norms shared by members of a nation that guide people’s be-

haviors and beliefs can be defined as the national culture for each country [86]. These

factors also have an influence on the cognitive process of trust formation in humans.

Therefore, people from different cultures are likely to use different mechanisms to

form trust [87] and show particular trust behavioral intentions [88]. To date, only

a few studies have examined the effect of national culture on trust in automation.

Rice et al. observed that Americans tended to trust less in automated systems as

compared to Indians in the context of “auto-pilots” [89]. In another study, Ameri-

cans were found to trust autonomous (decision-aid) systems less than Mexicans in a

fraud investigation scenario [90]. Trust can also be seen as “the willingness to take

risk” [91]. Considering the influence of national culture, Uncertainty Avoidance Index

(UAI) defined in Hofstede’s six cultural dimensions [86,92] is relevant to the construct

of trust. Uncertainty avoidance tendency has been found to be significant in influenc-

ing trust in web design attributes [93], mobile commerce [94], information technology

infrastructure [95], and in the context of simulated unmanned air vehicle control [96].

The higher the UAI number for a country, the less likely their people will tolerate

uncertainty or risk.

In summary, published quantitative dynamic trust models do not explicitly con-

sider a number of different factors, including the nature of human bias toward the

system’s response criteria (i.e., liberal and conservative), demographics, and false

alarms and misses in autonomous systems. Moreover, although literature in the area

of multi-agent systems has analyzed the effects of past experiences on future trust

level, this effect needs to be modeled for independent human-machine interactions.

Therefore, the influence of these factors on human trust dynamics remains unex-

plored. To address these key gaps, we present two experiments that test the trust

factors mentioned above and aid us in establishing a dynamic model of human trust.
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2.1.3 Experiment 1

The first experiment was designed to understand human trust dynamics induced

by the autonomous system performance and to identify the effects of humans’ national

culture and gender on trust behaviors. The rates of misses and false alarms were

controlled, so participants encountered approximately equal numbers of these two

error types. In addition, the order of these two error types was randomized within

faulty trials. Therefore, the trust behavior induced by a specific error type was

neutralized in experiment 1.

Method

Stimuli and procedures. The experiment was conducted online, and each partic-

ipant accessed the study through a computer interface. Participants were told that

the experiment was a simplified simulation of driving a car equipped with an obstacle

detection sensor. The sensor was based on an image-recognition algorithm that would

detect obstacles on the road in front of the car. During each trial, participant’s task

was to decide whether or not to trust the algorithm report, based on their previ-

ous experience with the algorithm. The instructions informed participants that the

image-recognition algorithm used in the sensor was in beta testing.

An experiment session consisted of four initial practice trials followed by 100

trials comprising a sequence of events including stimulus, response, and feedback

(see Figure 2.1). There were two stimuli: ‘obstacle detected’ and ‘clear road’, each

having a 50% probability of occurrence. After receiving the stimulus, participants

were asked to determine whether they ‘trust’ or ‘distrust’ the report provided by the

algorithm. The system then gave feedback to the participants on the correctness

of their responses (i.e., ‘correct’ and ‘incorrect’). In order to examine how system

reliability influences human trust level, the system was ‘reliable’ in half of the trials

and was ‘faulty’ in the remaining half. Here reliability is defined as the degree to

which the algorithm report can be depended on to be accurate. In reliable trials, the
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algorithm correctly identified the road condition. This meant that ‘obstacle detected’

was a hit, and ‘clear road’ was a correct rejection. Accordingly, it would be marked

as ‘correct’ if the participant trusted the report, and ‘incorrect’ if the participant

distrusted the report. In faulty trials, there was a 50% probability that the algorithm

incorrectly identified the road condition. A report of ‘obstacle detected’ could be a

false alarm, and ‘clear road’ could be a miss (see Figure 2.2). For the participant,

this meant that responding ‘trust’ to a false alarm or a miss would be marked as

‘incorrect’. We implemented the 100% accuracy condition for reliable trials because

it is the ideal performance a sensor can achieve. On the other hand, 50% accuracy

for a binary decision would be a pure random chance. Therefore, it should result in

the lowest possible trust level that a human has in the simulated sensor.

0.5 s

Your Choice?

(Respond)

TRUST / 

DISTRUST
4.0 s

(Feedback)

CORRECT / 

INCORRECT
1.5 s

(Blank Screen)

1.0 s

OBSTACLE 

DETECTED / 

CLEAR ROAD

(Blank Screen)
The Outcome 

is...

Detecting 

Obstacle

1.3 s1.0 s0.8 s1.0 s

Figure 2.1. Sequence of events in a single trial. The time length marked
on the bottom right corner indicates the time interval that the information
appeared on the screen.

All of the trials in the study (100 in total) were divided into three phases, called

‘databases’, as shown in Figure 2.3. There was a 30-second break before the start of

each database. Databases 1 and 2 were used to induce responses to constant system

reliability—either reliable or faulty. Database 3 was used to excite all possible dy-

namics of the participants’ trust responses by switching the accuracy of the algorithm

between reliable and faulty according to a pseudo-random binary sequence (PRBS).

Stimuli in each trial were individually randomized for each participant and database.
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Actual Scenario 

Obstacle 
Present 

Obstacle 
Absent 

System 
Response 

Obstacle 
Detected Hit 

False 
Alarm 

Clear 
Road Miss 

Correct 
Rejec�on 

False 
Alarm 

Miss 

Figure 2.2. The actual scenario and the system response form a 2 × 2
matrix. A system response of ‘clear road’ in the presence of an obstacle
constitutes a miss, and a system response of ‘obstacle detected’ in the
absence of an obstacle constitutes a false alarm.

Participants were randomly assigned to one of two groups which differed in the order

of reliable and faulty trials to counterbalance possible ordering effects.

Algorithm Evaluation

Database 1
A (20 trials)

Database 3
A-B-A-B (15-12-15-18 trials)

Database 2
B (20 trials)

Group

1

Group 

2

A: reliable trials

B: faulty trials

Database 1
B (20 trials)

Database 3
B-A-B-A (15-12-15-18 trials)

Database 2
A (20 trials)

Figure 2.3. Participants were randomly assigned to one of the two groups.
The ordering of the three experimental sections (databases), composed of
reliable and faulty trials, were counterbalanced across groups.

Participants. A total of 581 individuals (ages 20–73) were recruited using Ama-

zon Mechanical Turk [97] to participate in the study. Among the participants, 340

were males, 235 were females, and six did not provide gender information. These

participants were randomly assigned to one of two experimental groups. Participants

in groups 1 and 2 were initially faced with reliable trials and faulty trials, respec-

tively. The participants were each paid $0.50 for their participation in the study.
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Before starting the study, participants electronically provided their consent. The

Institutional Review Board at Purdue University approved the study. We collected

participants’ demographic information via a post-study survey which included ques-

tions about their gender along with the country in which they grew up. The latter is

defined as national culture in this study.

Data processing. To pre-process the collected data, we identified and removed

outliers from the data set. Each participant completed all 100 trials, but they were

allowed to skip a trial if they could not make a decision within the given time frame

(4 seconds). We considered excessive “no responses” (i.e., when participants skipped

a trial) as well as excessive trust or distrust responses as outliers, determined by

the interquartile range (IQR) rule (the 1.5×IQR rule) [98]. As a result, we removed

63 outliers from the dataset (out of 581 participants) which resulted in 518 valid

participants.

To investigate the effects of national culture and gender on human trust, we cate-

gorized the collected data into four demographic bins; two were based on nationality:

United States (US) and India, and two were based on gender: male and female.

Ideally, the selected sample would be representative of the population it came from.

However, practically it was not possible to have an equal representation of each de-

mographic group in the collected sample. In order to correct this anomaly in the

selection probability of each demographic group in the population, the variables of

each bin were adjusted using sampling weights such that each group had an equal

representation in the sample population [99]. We calculated sampling weights for

each demographic group in all of the bins as follows:

Sampling weight =
Population percentage
Sample percentage

. (2.1)

Trust model description. For groups 1 and 2, we computed the probability of trust

response for each trial and across all subjects in each of the groups. This probability

is defined as the percentage of people in the group who trust the algorithm report.
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At each trial, for calculating this probability, we assume that the response of each

participant is like a Bernoulli trial with ‘trust’ response as success and ‘distrust’

response as failure. Given that for each trial, the responses of all participants are

independent from one another, the random variable X, defined as the number of

participants responding ‘trust’ on a given trial, has a binomial distribution, B(k, p).

The parameter k is the total number of participants in the bin and the parameter

p, binomial proportion, can be estimated using a normal approximation as p̂ = kS
k
.

Here kS is the number of successes, i.e., number of trust responses in the given trial

across participants. Therefore, at each trial, the probability of trust response can

be estimated as p̂ for that trial. The range of estimated probabilities was 0.5 to

1, where 0.5 represented low trust (i.e., the report was perceived as random by the

participants; therefore, they responded randomly) and 1 represented high trust. These

trust probabilities varied as the decision scenario changed with time and represent the

trust level for the sample population. Henceforth, the trust probability will be labeled

as trust level T (n), where n ∈ [1, 100] is the trial number. Similarly, we calculated

the probability of misses M(n) and the probability of false alarms F (n) for each trial,

across all subjects, in groups 1 and 2. For experiment 1, M(n) = F (n) and varied

from approximately 0 to 0.25, with 0.25 representing faulty trials leading to negative

experience and 0 representing reliable trials leading to positive experience. Therefore,

we define experience E(n) as a function of M(n) and F (n) given by

E(n) = 1− [(1− β)M(n) + βF (n)]. (2.2)

Here, β ∈ (0, 1) is the weighting factor for evaluating the relative effect of misses and

false alarms on experience. Beta is the coefficient of the probability of false alarms

in the model and thus can be called the cry-wolf factor. The higher the value of the

cry-wolf factor β, the greater the effect of false alarms on the experience, and the
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less the effect of misses on the experience. Since, the probability of misses and false

alarms was equal for experiment 1 (M(n) = F (n) = K(n)), (2.2) reduces to

E(n) = 1−K(n). (2.3)

where K(n) is the probability of a miss or a false alarm. Thus we obtain the dynamic

variation of trust level T (n) with experience E(n) for all participants as shown in

Figure 2.4. In order to reduce noise from the dynamically varying signal T (n), we

used the Savitzky-Golay filter with order 3 and a window of size 5 [100].
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Figure 2.4. The trust level (probability of trust response) and the ex-
perience for all participants. The top figure (a) shows the variation of
trust level as a function of trial number. The bottom figure (b) shows
the variation of experience as a function of trial number. Faulty trials are
highlighted in gray, and black lines mark the breaks. Participants showed
trust in reliable trials and distrust in faulty trials.

Most of the existing human trust models showed trust to be directly related to

experience. Jonker and Treur presented change in trust to be directly proportional to

the difference of experience and past trust [33]. However, along with experience, we
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identified the significance of cumulative perception of trust and the human’s expecta-

tions of the autonomous system in formulating human trust behavior. Therefore, we

adapt the model used by Jonker and Treur and introduced two additional terms—

Cumulative Trust (CT ) and Expectation Bias (BX)—to propose a second order model

as shown in (2.4). The states of the model are defined as trust level T (n) and cumu-

lative trust CT (n), and the input is defined as experience E(n) along with a constant

input disturbance called expectation bias BX .

T (n+ 1)− T (n) = αe[E(n)− T (n)] (2.4a)

+ αc[CT (n)− T (n)] (2.4b)

+ αb[BX − T (n)] (2.4c)

CT (n+ 1) = [1− γ]CT (n) + γT (n) (2.4d)

In the model (2.4), change in trust T (n+1)−T (n) depends linearly on three terms:

E(n)− T (n) (2.4a), CT (n)− T (n) (2.4b), and BX − T (n) (2.4c), where each term is

bounded between -1 and 1. We call the parameters αe, αc, and αb the experience rate

factor, cumulative rate factor, and bias rate factor, respectively, since they control

the rate by which each individual difference affects the predicted trust level. Details

on the estimation of these parameters are described in the Parameter Estimation

subsection.

As shown in (2.4d), we define cumulative trust CT as an exponentially weighted

moving average of past trust level. Cumulative trust incorporates the learned trust

in the model using a weighted history of past trust levels. A higher value of the

parameter γ discounts older trust levels faster, and thus γ can be called the trust

discounting factor. The expectation bias BX accounts for a human’s expectation of

a particular interaction with an autonomous system. This is modeled as an input

disturbance which remains constant during an interaction. The state T (n) represents

a probability, and the state CT (n) represents an exponentially weighted moving aver-

age of probability; therefore both belong to [0, 1]. BX(n) must belong to [0, 1] so that
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T (n + 1) remains bounded within [0, 1] in (2.4a). Moreover, E(n) belongs to [0, 1],

based on (2.2).

The linearity of the proposed model allows us to represent the model in state

space form as

x(n+ 1) =

1− α αc

γ 1− γ

x(n) +

αe
0

u(n) +

αb
0

 d(n)

y(n) =
[
1 0

]
x(n)

(2.5)

where x =
[
T CT

]T
, u = E, d = BX , and α = αe + αc + αb. The linearity of the

model also simplifies analysis of the trust dynamics as well as potential synthesis of

model-based control algorithms for improved human-machine interactions.

Proposition 1 The linear state-space model given in (2.5) is stable if the parameters

αe, αc, αb, α, and γ belong to (0, 1).

Proof The eigenvalues of the proposed discrete model are given by

λ1,2 = 1− α + γ

2
±
√
α− γ

2
+ αcγ (2.6)

and must lie inside the unit circle, i.e., |λ1,2| < 1 to guarantee asymptotic stability.

Therefore, it is sufficient to prove that

λ1 = 1− α + γ

2
−

√(
α− γ

2

)2

+ αcγ > −1 , (2.7a)

λ2 = 1− α + γ

2
+

√(
α− γ

2

)2

+ αcγ < 1 . (2.7b)
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By rearranging and squaring both sides, (2.7a) and (2.7b) can be reduced to show

that ∀ γ ∈ (0, 1),

2 > α + αc and (2.8a)

0 < αe + αb . (2.8b)

Equations (2.8a) and (2.8b) are satisfied if αe, αc, αb ∈ (0, 1) and α ∈ (0, 1). Therefore,

the trust model (2.5) is asymptotically stable.

Remark 1 The physical interpretation of these bounds on the parameters can be ob-

tained by closer examination of (2.4). The parameters αe, αc, and αb are weighting

factors for each of the terms and should be less than 1 so that the trust level remains

stable. The variable γ is an exponential weighting factor that belongs to (0, 1). Addi-

tionally, α = αe+αc+αb belongs to (0, 1). This ensures that the net coefficient of the

term T (n) for calculating T (n + 1), i.e., 1− α, belongs to (0, 1) and is not negative.

Consequently, a higher previous trust level will have a positive influence on current

trust level.

Proposition 2 The steady-state values of trust, Tss, and cumulative trust, CTss, for

a stable system given by (2.5) are a weighted average of steady-state experience Ess

and expectation bias BX . The weights are proportional to αe and αb.

Proof By substituting x(n + 1) and x(n) with xss = [Tss CTss]
> and u(n) with

uss = Ess, in (2.5), we can solve for the steady-state values Tss and CTss as follows:

Tss = CTss =
αe

αe + αb
Ess +

αb
αe + αb

BX . (2.9)

Here the subscript •ss represents the steady-state value of the variable.

Remark 2 Consider the case when Ess = 1 which indicates that the system inter-

acting with the human is consistently accurate. If the expectation bias is less than 1
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(BX < 1), the steady-state trust level Tss of the human will be less than 1. Alterna-

tively, consider the case when Ess = 0, which indicates that the system interacting

with the human is consistently faulty. If BX > 0, the steady-state trust level Tss will

also be greater than 0. Therefore, the inclusion of human bias in the proposed model

enables us to characterize this important effect on human trust level.

Parameter Estimation. For estimating the optimal set of model parameters, we

used a nonlinear least squares estimation function nlgreyest from MATLAB 2016a.

We identified the parameters using 1) the data of all participants and 2) the data in

each of the four demographic bins. Each dataset consisted of data from each of the

three ‘databases’ in both group 1 (in which participants were initially faced with reli-

able trials) and group 2 (in which participants were initially faced with faulty trials).

It is well known that the quality of any empirical parameter estimation is dependent

on the data itself. A sample of human subject data cannot completely represent the

human population, and the derived inferences may vary based on the selected sam-

ple. Therefore, in order to verify the robustness of the parameter estimation relative

to the sample selection, we iterated the estimation 1000 times, with each iteration

using a new randomly selected subset of data representing 90% of the total dataset

for all participants and each demographic bin. There was less than 2.5% error in

the estimated parameter values caused by the variation in sample selection for a 95%

confidence interval (CI) (see Table 2.1), signifying a robust estimation.

Table 2.1.
Estimated mean parameter values with 95% CI for all participants and
each demographic bin

Bin Experience rate Cumulative rate Bias rate Trust discounting Fit% Fit%
factor αe factor αc factor αb factor γ Grp 1 Grp 2

All 0.2169± 0.0007 0.0755± 0.0005 0.0428± 0.0004 0.1148± 0.0012 95.71 92.56
US 0.2157± 0.0007 0.0635± 0.0007 0.0394± 0.0004 0.1270± 0.0029 94.59 87.59
India 0.2177± 0.0010 0.0996± 0.0011 0.0515± 0.0007 0.0942± 0.0008 91.97 90.14
Female 0.2277± 0.0009 0.0783± 0.0007 0.0373± 0.0005 0.1042± 0.0017 91.48 89.12
Male 0.2085± 0.0009 0.0817± 0.0007 0.0491± 0.0005 0.1375± 0.0018 93.93 89.17
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Results

In order to verify whether our proposed model of trust level is valid, we estimated

the model parameters for a general population, which included all 518 valid partici-

pants in our experiment. The fit between the trust model and the experimental data

is shown in Figure 2.5. Table 2.1 shows the optimal parameter values and the good-

ness of fit between the data and the model calculated using R-squared. The goodness

of fit was 95.71% and 92.56% for all participants in groups 1 and 2, respectively.

Note that all of the estimated parameter values satisfy the stability criteria defined

in Proposition 1.

We observed that participants from different demographic groups required differ-

ent amounts of time to adapt to changes in the system performance and attained

different steady-state trust levels. In order to analyze these differences, we simulated

the step response of each parameterized model. A sample step response for all partic-

ipants with expectation bias BX = 0 is shown in Figure 2.6. The calculated rise time

for the step response (shown in Table 2.2) is an indicator of the rate of change of the

trust dynamics. Rise time is defined as the time required for the response to increase

from 10% to 90% of its final value. Therefore, a longer rise time implies slower trust

dynamics.

Table 2.2.
Rise times (in number of trials) for step responses calculated using the
estimated parameter values for all participants and each demographic bin

Bin Rise Time (Number of Trials)
T CT

All 15 27
US 13 24
India 20 34
Female 13 27
Male 15 23
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Figure 2.5. Participants’ trust level (blue dots) and the prediction
(red curve) based on past behavioral responses and the experience of
all participants. Subfigure (a) corresponds to group 1 participants with
R2 = 95.74% and subfigure (b) corresponds to group 2 participants with
R2 = 92.53%. Faulty trials are highlighted in gray, and black lines mark
the breaks between databases.
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Figure 2.6. Step response of the trust model with expectation bias BX = 0
for all participants.

Figure 2.7 shows the experimentally obtained trust level and the predicted trust

level of participants grouped by their national culture. Upon visual inspection, US
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Figure 2.7. Participants grouped by national culture. Blue dots are
the reported trust level while the red curve is the prediction from model.
Subfigure (a) corresponds to US group 1 participants with R2 = 94.51%
and subfigure (b) corresponds to Indian group 1 participants with R2 =
92.00%. Subfigure (c) corresponds to US group 2 participants with R2 =
87.56% and subfigure (d) corresponds to Indian group 2 participants with
R2 = 90.08%. Faulty trials are highlighted in gray, and black lines mark
the breaks between databases.
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participants trusted the system report less during the trials in database 3, than dur-

ing trials in databases 1 and 2, in which the accuracy of the algorithm was switched

between reliable and faulty; see Figure 2.7(a) and 2.7(c). Moreover, in response to

changes in system reliability, the trust level of US participants changed at a faster

rate, and approached an overall lower level, than that of Indian participants. These

observations are supported by the calculated rise time of the models (Table 2.2).

The rise time of the state T for Indian participants is 53.8% higher than that of US

participants. This implies that Indian participants’ trust level increased or decreased

more slowly than that of US participants after the system performance changes. Ad-

ditionally, the rise time of the state CT for US participants is 29.4% shorter than that

of Indian participants, which implies that their cumulative trust changed relatively

faster. This observation can also be attributed to the trust discounting factor γ,

which is 34.8% larger for US participants, indicating that US participants relied on

their recent trust level and experience more as compared to Indian participants.

Figure 2.8 shows the experimentally obtained trust level and the prediction of

participants grouped by their gender. The plots show that male participants exhibited

greater trust in the system than female participants, especially when the system did

not perform well (see Figure 2.8(b) and 2.8(d)). On the other hand, the trust level of

female participants changed more rapidly than that of male participants. Similarly,

when comparing the step responses, the rise time of state T for male participants is

15.4% longer than that of female participants, implying that the trust level of male

participants changed more slowly than that of female participants. Furthermore, the

rise time of the state CT for male participants is 14.8% shorter than that of female

participants, which implies that their cumulative trust changed relatively faster. This

observation can also be attributed to the trust discounting factor γ, which is 32.0%

larger for male participants, indicating that they relied on their recent trust level

more as compared to female participants.

Based upon the high fit percentages achieved between the model and experi-

mental data after parameter estimation, these results suggest that human trust in



33

  1  21  41  56  68  83 100

Trial number

0.4

0.6

0.8

1

T
ru

s
t 
L
e
v
e
l

(P
ro

b
a

b
ili

ty
 o

f

tr
u

s
t 

re
s
p

o
n

s
e

)

Data

Model

(a)

  1  21  41  56  68  83 100

Trial number

0.4

0.6

0.8

1

T
ru

s
t 
L
e
v
e
l

(P
ro

b
a

b
ili

ty
 o

f

tr
u

s
t 

re
s
p

o
n

s
e

)
Data

Model

(b)

  1  21  41  56  68  83 100

Trial number

0.4

0.6

0.8

1

T
ru

s
t 
L
e
v
e
l

(P
ro

b
a

b
ili

ty
 o

f

tr
u

s
t 

re
s
p

o
n

s
e

)

Data

Model

(c)

  1  21  41  56  68  83 100

Trial number

0.4

0.6

0.8

1

T
ru

s
t 
L
e
v
e
l

(P
ro

b
a

b
ili

ty
 o

f

tr
u

s
t 

re
s
p

o
n

s
e

)

Data

Model

(d)

Figure 2.8. Participants grouped by gender. Blue dots are the reported
trust level while the red curve is the prediction from model. Subfigure (a)
corresponds to female group 1 participants with R2 = 91.57% and subfig-
ure (b) corresponds to male group 1 participants with R2 = 93.98%. Sub-
figure (c) corresponds to female group 2 participants with R2 = 88.94%
and subfigure (d) corresponds to male group 2 participants with R2 =
89.22%. Faulty trials are highlighted in gray and black lines mark the
breaks between databases.
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autonomous systems can be modeled as a function of their experience (which varies

with system performance), cumulative trust, and expectation bias. Moreover, the es-

timated model parameters capture the effects of national culture and gender on trust

behaviors.

2.1.4 Experiment 2

As an extension of experiment 1, we designed experiment 2 to conduct an in-depth

study on the effects of misses and false alarms on participants’ trust levels. In this

experiment, we present participants with trials containing 100% of misses and 100%

of false alarms, unlike the 50-50 split used in experiment 1 (see Figure 2.9).

Method

We followed the same methodologies from experiment 1 in terms of data collection,

data processing, and modeling. We revised the stimuli to elicit trust reactions in

response to misses and false alarms and analyzed the resulting data that was collected.

We then expanded the general trust model to incorporate the effects of misses and

false alarms.

Stimuli and procedures. In comparison to experiment 1, the only additional factor

incorporated into experiment 2 was the error type during faulty trials. More specif-

ically, we manipulated the probability of misses and false alarms in faulty trials. In

experiment 1, a system error was equally probable to be a miss or a false alarm in

each faulty trial. In experiment 2, we examined the following three conditions: 1) an

error was always a miss in a session of faulty trials; 2) an error was always a false

alarm in a session of faulty trials; and 3) an error was equally probable to be a miss

or a false alarm in a session of faulty trials. Figure 2.10 shows the condition and trial

orders in each database. Participants were randomly assigned to one of two groups

in the interest of testing whether the experience of misses or false alarms affects the

other.
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B1: Miss B2: False Alarm 

A: Reliable B3: Miss/False Alarm 

Figure 2.9. The trust level (probability of trust response) for all partic-
ipants and the probability of misses/false alarms that affect the experi-
ence. The top figure (a) shows the variation of trust level as a function of
trial number. The bottom figure (b) shows the variation of misses/false
alarms as a function of trial number. Faulty trials consisting of misses
are highlighted in pink, and trials with false alarms are highlighted in yel-
low. Faulty trials highlighted in gray consist of half misses and half false
alarms. Black lines mark the breaks. Participants showed trust in reliable
trials and distrust in faulty trials.

Participants. A total of 333 individuals (ages 19–74) participated in experiment

2. Among the participants, 171 were males, 158 were females, and four did not

provide gender information. These participants were randomly assigned to one of

two experimental groups. The recruitment procedure and the survey used to collect

demographic information were the same as in experiment 1.

Data processing. We used the interquartile range (IQR) rule as introduced in

experiment 1 to identify and remove outliers. The procedure resulted in 293 valid

data sets (out of a total of 333 participants) to be analyzed.
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Algorithm Evaluation with miss and false alarm

Database 1
A (20 trials)

Database 3
A-B2-A-B3 (15-12-15-18 trials)

Database 2
B1 (20 trials)

Group 

1A

Group 

1B
Database 1
A (20 trials)

Database 3
A-B1-A-B3 (15-12-15-18 trials)

Database 2
B2 (20 trials)

Figure 2.10. Participants were randomly assigned to one of the two
groups. The system reliability was varied between databases and groups.
A consisted of reliable trials (miss = 0%, false alarm = 0%); B1 consisted
of faulty trials with misses (miss = 50%, false alarm = 0%); B2 consisted
of faulty trials with false alarms (miss = 0%, false alarm = 50%); B3
consisted of faulty trials with both misses and false alarms (miss = 25%,
false alarm = 25%)

.

Parameter Estimation. Using the data collected in experiment 2, we estimated the

cry-wolf factor β by setting all other factors (experience rate factor αe, cumulative rate

factor αc, bias rate factor αb, and trust discounting factor γ) to the values estimated

in experiment 1. The robustness of the estimated value of β was verified by 1000

iterative estimations, with each iteration using a new randomly selected subset of

data representing 90% of the total dataset for all participants and each demographic

bin. The errors caused by the variation in sample selection for a 95% confidence

interval (CI) were less than 2.5%. Table 2.3 shows the parameter values and the

goodness of fit.

Results

We first investigated whether the system error type (i.e., miss and false alarm)

affects the trust dynamics of the general population, which included all 293 valid par-

ticipants in the experiment. Figure 2.11 shows the experimental trust level compared

against the model. Participants responded differently to misses and false alarms, and
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Table 2.3.
Estimated mean parameter values with 95% CI for the cry-wolf factor β
for all participants and each demographic bin

Bin Cry-wolf factor Fit% Grp 1 Fit% Grp 2
β

All 0.3956± 0.0012 91.7593 91.2061
US 0.3209± 0.0016 90.6699 87.4562
India 0.4758± 0.0019 82.4059 87.1428
Female 0.4276± 0.0015 83.8733 80.2373
Male 0.3623± 0.0018 89.8757 90.8326

in some cases, the experience of one error type affected later responses to the other

error type. The proposed trust model was able to predict the trust dynamics while

taking into account the rate of misses and false alarms. The goodness of fit was mea-

sured using the R-squared value of the data; the result was 91.76% and 91.20% for

all participants in groups 1 and 2, respectively.

The results suggest an interaction effect between risk-taking behavior and demo-

graphic factors on trust. Figure 2.12 shows the experimentally obtained trust level

and model predictions for participants grouped by their national culture. US par-

ticipants trusted less than Indian participants when encountering system misses (see

Figure 2.12(a) and 2.12(b)). Moreover, US participants trusted less in miss-prone tri-

als than false alarm-prone trials regardless of whether they encountered false alarms

first or not (see Figure 2.12(a) and 2.12(c)). By contrast, Indian participants trusted

less in miss-prone trials than false alarm-prone trials only when they encountered

misses first (see Figure 2.12(b)); their trust level in miss-prone trials decreased less

if they encountered system false alarms prior to misses (see Figure 2.12(d)). The

cry-wolf factor β of the model is 48.3% larger for Indian participants than that of US

participants. The larger the value of β, the weaker the negative effect of misses on

trust, indicating that misses have a stronger negative effect on trust for US partici-

pants as compared with Indian participants.



38

  1  21  41  56  68  83 100

Trial number

0.4

0.6

0.8

1

T
ru

s
t 
L
e
v
e
l

(P
ro

b
a

b
ili

ty
 o

f

tr
u

s
t 

re
s
p

o
n

s
e

)

Data

Model

(a)

  1  21  41  56  68  83 100

Trial number

0.4

0.6

0.8

1

T
ru

s
t 
L
e
v
e
l

(P
ro

b
a

b
ili

ty
 o

f

tr
u

s
t 

re
s
p

o
n

s
e

)
Data

Model

(b)
 

B1: Miss B2: False Alarm 

A: Reliable B3: Miss/False Alarm 

Figure 2.11. Participants’ trust level (blue dots) and the prediction
(red curve) based on past behavioral responses and the experience of all
participants. Subfigure (a) corresponds to group 1A participants with
R2 = 91.83% and subfigure (b) corresponds to group 1B participants
with R2 = 91.25%. Faulty trials consisting of misses are highlighted in
pink, and trials with false alarms are highlighted in yellow. Faulty trials
highlighted in gray consist of half misses and half false alarms. Black lines
mark the breaks between databases.

We also observed gender differences in response to system misses and false alarms.

Figure 2.13 shows the experimental trust level and the prediction of participants

grouped by their gender. Male participants trusted less in miss-prone trials than

female participants if they had not encountered system false alarms first (compare

Figure 2.13(a) and 2.13(b)). On the other hand, if participants encountered false

alarms first, females reached a lower trust level than males (compare Figure 2.13(c)

and 2.13(d)). In general, male participants were more sensitive to system misses. The

cry-wolf factor β of the trust model supports this observation; β is 18.0% larger for
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B1: Miss B2: False Alarm 

A: Reliable B3: Miss/False Alarm 

Figure 2.12. Participants grouped by national culture. Blue dots are
the reported trust level while the red curve is the prediction from model.
Subfigure (a) corresponds to US group 1A participants with R2 = 90.67%
and subfigure (b) corresponds to Indian group 1A participants with R2 =
82.41%. Subfigure (c) corresponds to US group 1B participants with R2 =
87.46% and subfigure (d) corresponds to Indian group 1B participants
with R2 = 87.14%. Faulty trials consisting of misses are highlighted in
pink, and trials with false alarms are highlighted in yellow. Faulty trials
highlighted in gray consist of half misses and half false alarms. Black lines
mark the breaks between databases.

female participants than male participants, which implies that misses have a stronger

negative effect on trust for male participants as compared with female participants.

2.1.5 Discussion

Here, we provide a more in-depth discussion of the main results of the two ex-

periments. The two experiments presented in this section elicited the variation of a

human’s trust response to system reliability. Participants attained a high trust level
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B1: Miss B2: False Alarm 

A: Reliable B3: Miss/False Alarm 

Figure 2.13. Participants grouped by gender. Blue dots are the reported
trust level while the red curve is the prediction from model. Subfigure (a)
corresponds to female group 1A participants with R2 = 93.87% and sub-
figure (b) corresponds to male group 1A participants with R2 = 89.88%.
Subfigure (c) corresponds to female group 1B participants with R2 =
80.24% and subfigure (d) corresponds to male group 1B participants with
R2 = 90.83%. Faulty trials consisting of misses are highlighted in pink,
and trials with false alarms are highlighted in yellow. Faulty trials high-
lighted in gray consist of half misses and half false alarms. Black lines
mark the breaks between databases.

in reliable trials and a low trust level in faulty trials; this was achieved without train-

ing the participants or providing them with specific information (e.g., a game rule

or background stories). The trust dynamics were modeled based on past behavioral

responses of the human, human trust bias, and the system reliability. The system

reliability was further described by the rate of misses and false alarms. The model

was verified using the collected human subject data that accounted for ordering ef-

fects with respect to system reliability. In other words, the prediction capability of

the model was consistent for both groups 1 and 2. Thus, the model can describe
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human trust irrespective of the initial condition of the system reliability. Moreover,

the interaction between the human and machine was the most significant factor in

temporal variations in trust level. Therefore, the developed study is effective for

modeling dynamic human trust behavior in HMI contexts.

The proposed study design induced trust dynamics by manipulating multiple tran-

sitions between positive and negative experiences. We observed that it took approxi-

mately eight to ten trials for participants to establish a new trust level. Moreover, in

some cases (e.g., Figure 2.13(a)) the trust response still increased or decreased near

this newly attained level in both reliable and faulty trials. This finding was contrary

to Jonker et al. who asserted that “after a negative experience an agent will trust less

or the same amount, but never more” [58]. Jonker’s study was composed of only two

sets of five trials, each with one transition in between. However, we found this to be

less than the required number of trials to reach a new trust level.

The aggregated trust response and the trust model enhanced our understanding

of dispositional trust and learned trust in autonomous systems. Participants from the

US exhibited a lower trust level than Indian participants. This is consistent with the

findings from Huerta et al. and Rice et al. that Americans trust autonomous systems

less than Mexicans and Indians, respectively [89,90]. Moreover, system misses induced

stronger distrust in US participants than in Indian participants, suggesting that US

participants are less willing to take risks. This agrees with the smaller Uncertainty

Avoidance Index of Indian culture as compared to that of US culture (40 vs. 46) [38],

where the literature demonstrated that humans from higher uncertainty avoidance

cultures are less likely to trust or implement new technology [94,95].

Regarding gender, male participants appeared to trust more than female partici-

pants, especially when the system was not reliable. This is supported by Feldhütter

et al. [85], but is contrary to the findings of Haselhuhn et al. [101] which showed that

women’s trust decreases less than men after transgressions as they prefer to maintain

interpersonal relationships. These results highlight that the dynamics of human trust

behavior in HMI contexts is different from interpersonal trust behavior between hu-
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mans, thus creating a need for human trust models in HMI contexts. Additionally, the

variation in trust responses of female participants was noticeably higher than that of

male participants. This variation indicates that the female participants have diverse

perceptions of autonomous systems and therefore, other factors such as personality

and expertise should be investigated in future studies. Finally, there were gender

differences in the responses to misses and false alarms as discussed in Section 2.1.4.

Along with the observations of US and Indian participants, demographic effects can

partially explain the inconsistency between previously published results on the effects

of system error type on human trust.

We identified the significance of cumulative trust and expectation bias through

experiments that elicited multiple dynamic transitions in human trust, and then in-

corporated these two variables in the proposed linear model. In addition to proposing

a general trust model structure, we characterized the effects of both dispositional and

learned trust factors, specifically national culture, gender and system error type, us-

ing estimated model parameters. We also characterized the effects of misses and

false alarms on the dynamics of human trust behavior and compared differences be-

tween demographics. While the proposed model is representative of a population

of individuals rather than trained to a specific human, such a model could be used

to design machines that are required to interact with unspecified users grouped by

demographics.

One limitation of this study is that a computer-based interface system was used in

the experiment, and therefore, the ecological validity could be improved by conducting

experiments in real-life settings. The model could also be generalized for use in

a wider range of domains by expanding the definition of experience to incorporate

other significant factors beyond the probability of misses and false alarms, such as

system transparency or the level of automation. In the next section, we will discuss

the use of human psychophysiological measurements, specifically EEG and GSR, for

estimation of human trust in real time.
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2.2 Estimating Human Trust using Psychophysiological Measurements

The contents of this section were previously published by Akash, Hu, Jain, and

Reid in ACM Transactions on Interactive Intelligent Systems [102] and are reported

here with minor modifications.

2.2.1 Introduction

In the last section, we presented a dynamic model of human trust that captures

the effects of automation reliability and error type (miss or false alarm). Other

researchers have also attempted to predict human trust using dynamic models that

rely on the experience and/or self-reported behavior of humans [33, 34]. However,

it is not practical to retrieve human self-reported behavior continuously for use in a

feedback control algorithm. Other than dynamic quantitative models, an alternative

is the use of psychophysiological signals to estimate trust level [39]. While these

measurements have been correlated to human trust level [40,41], they have not been

studied in the context of real-time trust sensing.

In this section we present a human trust sensor model based upon real-time psy-

chophysiological measurements, primarily galvanic skin response (GSR) and elec-

troencephalography (EEG). The model is based upon data collected through a hu-

man subject study and the use of classification algorithms to estimate human trust

level using psychophysiological data. The proposed methodology for real-time sensing

of human trust level will enable the development of a machine algorithm aimed at

improving interactions between humans and machines.

This section is organized as follows. In Section 2.2.2 we introduce related work

in human-machine interaction, psychophysiological measurements, and their applica-

tions in trust sensing. We then describe the experimental study and data acquisition

in Section 2.2.3. The data pre-processing technique for noise removal is presented

in Section 2.2.4 along with EEG and GSR feature extraction. In Section 2.2.5, we

demonstrate a 2-step feature selection process to obtain a concise and optimal feature
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set. The selected features are then used for training Quadratic Discriminant Analysis

classifiers in Section 2.2.6, followed by model validation.

2.2.2 Background

There are few psychophysiological measurements that have been studied in the

context of human trust. We focus here on electroencephalography (EEG) and galvanic

skin response (GSR) which are both noninvasive and whose measurements can be

collected and processed in real-time. EEG is an electrophysiological measurement

technique that captures the cortical activity of the brain [42]. These brain activities

exhibit changes in human thoughts, actions, and emotions. Brain-Computer Interface

(BCI) technology utilizes EEG to design interfaces that enable a computer or an

electronic device to understand a human’s commands [103,104]. The most extensive

approach used to identify EEG patterns in BCI design includes feature selection and

classification algorithms as they typically provide good accuracy [105].

Some researchers have studied trust via EEG measurements, but only with event-

related potentials (ERPs). ERPs measure brain activity in response to a specific

event. An ERP is determined by averaging repeated EEG responses over many tri-

als to eliminate random brain activity [42]. Boudreau et al. found a difference in

peak amplitudes of ERP components in human subjects while they participated in

a coin toss experiment that stimulated trust and distrust [40]. Long et al. further

studied ERP waveforms with feedback stimuli based on a modified form of the coin

toss experiment [41]. The decision-making in the “trust game” [106] has been used to

examine human-human trust level. Although ERPs can show how the brain function-

ally responds to a stimulus, they are event-triggered. It is difficult to identify triggers

during the course of an actual human-machine interaction, thereby rendering ERPs

impractical for real-time trust level sensing.

GSR is a classical psychophysiological signal that captures arousal based upon the

conductivity of the surface of the skin. It is not under conscious control but is instead
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modulated by the sympathetic nervous system. GSR has also been used in measuring

stress, anxiety, and cognitive load [107, 108]. Researchers have examined GSR in

correlation with human trust level. Khawaji et al. found that average GSR values,

and average GSR peak values, are significantly affected by both trust and cognitive

load in the text-chat environment [43]. However, the use of GSR for estimating trust

has not been explored and was noted as an area worth studying [39]. With respect to

both GSR and EEG, a fundamental gap remains in determining a static model that

not only estimates human trust level using these psychophysiological signals but that

is also suitable for real-time implementation.

2.2.3 Methods and Procedures

In this section we describe a human subject study that we conducted to identify

psychophysiological features that are significantly correlated to human trust in intelli-

gent systems, and to build a trust sensor model accordingly. The experiment consisted

of a simple HMI context that could elicit human trust dynamics in a simulated au-

tonomous system. Our study used a within-subjects design wherein both behavioral

and psychophysiological data were collected and analyzed. We then used the data to

build an empirical model of human trust through a process involving feature extrac-

tion, feature selection, and model training, that is described in Sections 2.2.4, 2.2.5,

and 2.2.6, respectively. Figure 2.14 summarizes the modeling framework.

Participants

Participants were recruited using fliers and email lists. All participants were com-

pensated at a rate of $15/hr. The sample included forty-eight adults between 18 and

46 years of age (mean: 25.0 years old, standard deviation: 6.9 years old) from West

Lafayette, Indiana (USA). Of the forty-eight adults, sixteen were females and thirty-

two were males. All participants were healthy and one was left-handed. The group

of participants were diverse with respect to their age, professional field, and cultural
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Figure 2.14. The framework of the proposed study. The key steps include
data collection from human subject studies, feature extraction, feature
selection, model training, and model validation.

background (i.e., nationality). The Institutional Review Board at Purdue University

approved the study.

EEG and GSR Recording

EEG: The participant’s brain waves were measured using a B-Alert X-10 9-channel

EEG device (Advance Brain Monitoring, CA, USA), at a frequency of 256 Hz from 9

scalp sites (Fz, F3, F4, Cz, C3, C4, POz, P3, and P4 based on the 10-20 system). All

EEG channels were referenced to the mean of the left and right mastoids. The surface

of all sensor sites was cleaned with 70% isopropyl alcohol. Conductive electrode

cream (Kustomer Kinetics, CA, USA) was then applied to each electrode including

the reference. The contact impedance between electrodes and skin was kept to a value
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less than 40 kΩ. The EEG signal was recorded via iMotions (iMotions, Inc., MA,

USA) on a Windows 7 platform with Bluetooth connection.

GSR: The skin conductance was measured from the proximal phalanges of the

index and the middle fingers of the non-dominant hand (i.e., on the left hand for 43 out

of 44 participants) at a frequency of 52 Hz via the Shimmer3 GSR+ Unit (Shimmer,

MA, USA). Locations for attaching Ag/AgCl electrodes (Lafayette Instrument, IN,

USA) were prepared with 70% isopropyl alcohol. The participants were asked to keep

their hands steady on the desk to minimize the influence of movement on the measured

signals. The environment temperature was controlled at 72-74◦F to minimize the

effect of temperature. The GSR signal was also recorded via iMotions so that it

would be synchronized with the recorded EEG signals using the common system-

timestamps between these two signals.

Experimental Procedure

After the participants read and signed the informed consent, they were equipped

with the EEG headset and the GSR sensor as shown in Figure 2.15. All participants

finished a 9-minute EEG baseline task provided by Advanced Brain Monitoring and

were then instructed to interact with our custom-designed computer-based simulation.

Participants were told that they would be driving a car equipped with an image–based

obstacle detection sensor. The sensor would detect obstacles on the road in front of

the car, and the participant would need to repeatedly evaluate the algorithm report

and choose to either trust or distrust the report based on their experience with the

algorithm. Detailed instructions were delivered on the screen following four practice

trials. Participants could have their questions answered while instructions were given

and during the practice session.

Each trial consisted of: a stimulus (i.e., report on sensor functionality), the partici-

pant’s response, and feedback to the participants on the correctness of their response.

There were two stimuli, ‘obstacle detected’ and ‘clear road’, and both had a 50%
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EEG 
Headset

GSR 
Sensor

Figure 2.15. Experimental setup with participant wearing EEG Headset
and GSR Sensor.

probability of occurrence. Participants had the option to choose ‘trust’ or ‘distrust’

in response to the sensor report after which they received the feedback of ‘correct’ or

‘incorrect’. Figure 2.16 shows the sequence of events in a single trial, and Figure 2.17

shows example screenshots of the computer interface.

0.5 s

Your Choice?

(Respond)

TRUST / 

DISTRUST
4.0 s

(Feedback)

CORRECT / 

INCORRECT
1.5 s

(Blank Screen)

1.0 s

OBSTACLE 

DETECTED / 

CLEAR ROAD

(Blank Screen)
The Outcome 

is...

Detecting 

Obstacle

1.3 s1.0 s0.8 s1.0 s

Figure 2.16. Sequence of events in a single trial. The time length marked
on the bottom right corner of each event indicates the time interval for
which the information appeared on the computer screen.

The independent variable was the participants’ experience due to the sensor per-

formance, and the dependent variable was their trust level. The sensor performance

was varied to elicit the dynamic response in each participant’s trust level. There were

two categories of trials: reliable and faulty. In reliable trials, the sensor accurately
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(a) (b) (c)

Figure 2.17. Example screenshots of the interface of the experimental
study. The left screenshot (a) shows the stimuli, the middle screenshot (b)
shows the response, and the right screenshot (c) shows the feedback. These
screens correspond to three of the events shown in Figure 2.16: obstacle
detected/clear road, trust/distrust, and correct/incorrect, respectively.

identified the road condition with 100% probability; in faulty trials, there was only

a 50% probability that the sensor correctly identified the road condition with sensor

faults presented in a randomized order. We implemented the 50% accuracy for faulty

trials because pilot studies indicated that it would be perceived as a pure random

chance by the participants. This should conceivably result in the lowest possible

trust level that a human has in the simulated sensor. The participants received ‘cor-

rect’ as feedback when they indicated trust in reliable trials, but there was a 50%

probability that they received ‘incorrect’ as feedback when they indicated trust in

faulty trials.

Each participant completed 100 trials. The trials were divided into three phases,

called ‘databases’ in the study, as shown in Figure 2.18. Participants were randomly

assigned to one of two groups for counterbalancing any possible ordering effects.

Databases 1 and 2 consisted of either reliable (A) or faulty (B) trials (see details in

Figure 2.18). The number of trials in each of these two databases was chosen so that

the trust or distrust response of each human subject would approach a steady-state

value [41]. Steady-state ensures that the trust level truly reaches the desired state



50

(i.e., trust for reliable trials and distrust for faulty trials) which is essential for labeling

the trials as trust or distrust. On the other hand, the accuracy of the algorithm was

switched between reliable and faulty according to a pseudo-random binary sequence

(PRBS) in Database 3. This was done in order to excite all possible dynamics of the

participant’s trust response required for dynamic behavior modeling, which was the

subject of related work by the authors [46]. Therefore, only the data from databases

1 and 2 (i.e., the first 40 trials) were analyzed.

Algorithm Evaluation

Database 1
A (20 trials)

Database 3
A-B-A-B (15-12-15-18 trials)

Database 2
B (20 trials)

Group
1

Group 
2

A: reliable trials
B: faulty trials

Database 1
B (20 trials)

Database 3
B-A-B-A (15-12-15-18 trials)

Database 2
A (20 trials)

Figure 2.18. Participants were randomly assigned to one of two groups.
The ordering of the three experimental sections (databases), composed of
reliable and faulty trials, were counterbalanced across Groups 1 and 2.

We collected psychophysiological measurements in order to identify any latent

indicators of trust and distrust. In general, latent emotions are those which cannot

be easily articulated. Latent distrust may inhibit the interactions between human and

intelligent systems despite reported trust behaviors. We hypothesized that the trust

level would be high in reliable trials and be low in faulty trials, and we validated this

hypothesis using responses collected from 581 online participants (58 were outliers)

via Amazon Mechanical Turk [97]. The experiment elicited expected trust responses

based on the aggregated data as shown in Figure 2.19 [46]. Therefore, data from

reliable trials were labeled as trust, and data from faulty trials were labeled as distrust.

The data analysis and feature extraction methodologies will be discussed further in

Section 2.2.4.
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Figure 2.19. The averaged response from online participants collected via
Amazon Mechanical Turk. Subfigure (a) corresponds to the 295 partici-
pants from group 1 and subfigure (b) corresponds to the 228 participants
from group 2. Faulty trials are highlighted in gray. Participants showed
a high trust level in reliable trials and a low trust level in faulty trials
regardless of the group they were in.

2.2.4 Data Analysis

In this section we discuss the methods used to pre-process the data (collected

during the human subject studies) so as to reduce noise and remove contaminated

data. We then describe the process of feature extraction applied to the processed

data.



52

Pre-processing

We used the automatic decontaminated signals provided by the B-Alert EEG

system for artifact removal. This decontamination process minimizes the effects of

electromyography, electrooculography, spikes, saturation, and excursions. Before fur-

ther processing the data, we manually examined the spectral distribution of EEG

data for each participant. We removed the participants having anomalous EEG spec-

tra, possibly due to bad channels or dislocation of EEG electrodes during the study.

This process resulted in 45 participants to analyze. Finally, EEG measurements from

channel F3 and F4 were excluded from the data analysis due to contamination with

eye movement and blinking [109]. For GSR measurements, we used adaptive Gaussian

smoothing with a window of size 8 to reduce noise [110].

Feature Extraction

In order to estimate trust in real-time, we require the ability to continuously ex-

tract and evaluate key psychophysiological measurements. This could be achieved

by continuously considering short segments of signals for calculations. Levy sug-

gests using short epoch lengths for identifying rapid changes in EEG patterns [111].

Therefore, we divided the entire duration of the study into multiple 1-second epochs

(periods) with 50% overlap between each consecutive epoch. Assuming that the deci-

sive cognitive activity occurs when the participant sees the stimuli, we only considered

the epochs lying completely between each successive stimulus (obstacle detected/clear

road) and response (trust/distrust). Consequently, approximately 129 epochs were

considered for each participant. We labeled each of these epochs as one of two classes,

namely Distrust or Trust, based on whether the epoch belonged to faulty or reliable

trials, respectively. The number of epochs varied depending on the response time of

the human subject for each trial.
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EEG: Existing studies have shown the importance of both time-domain features

and frequency-domain features for successfully classifying cognitive tasks [112]. To

utilize the benefits of both, we extracted an exhaustive set of time- and frequency-

domain features from EEG.

We extracted six time-domain features from all seven channels (Fz, C3, Cz, C4,

P3, POz, and P4) for each epoch of length N . For this study in which EEG signals

were sampled at 256 Hz, each 1-second epoch had a length of N = 256. Letting

k ∈ (1, n), where n is the total number of epochs and xk represents the kth epoch of

channel chx. These features were defined as:

1. mean µk(chx), where

µk(chx) =
1

N

N∑
i=1

xki, (2.10)

2. variance σ2
k(chx), where

σ2
k(chx) =

1

N − 1

N∑
i=1

|xki − µk|2, (2.11)

3. peak-to-peak value ppk(chx), where

ppk(chx) = max
1≤i≤N

xki − min
1≤i≤N

xki, (2.12)

4. mean frequency f̄k(chx), defined as the estimate of the mean frequency from

the power spectrum of xk,

5. root mean square value rmsk(chx), where

rmsk(chx) =

√√√√ 1

N

N∑
i=1

|xki|2, (2.13)

and
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6. signal energy Ek(chx), where

Ek(chx) =
N∑
i=1

|xki|2 . (2.14)

Therefore, we extracted 42 (6 features × 7 channels) time-domain features for each

epoch. Moreover, the interaction between the different regions of the brain was also

considered by calculating the correlation between pairs of channels for each epoch.

The correlation coefficient between two channels (e.g., chx and chy) of the kth epoch

ρk(chx, chy) is defined as

ρk(chx, chy) =
cov(xk, yk))√
var(xk)var(yk)

, (2.15)

where xk and yk are the kth epochs of channels chx and chy respectively. The ex-

pressions cov(.) and var(.) are the covariance and variance functions, respectively.

Therefore, 21 additional time-domain features were extracted (combinations of 2 out

of 7 channels, C7
2).

Next we extracted features from four frequency bands across all seven channels

for each epoch. Classically, EEG brain waves have been categorized into four bands

based on frequency, namely, delta (0.5 - 4 Hz), theta (4 - 8 Hz), alpha (8 - 13 Hz),

and beta (13 - 30 Hz). However, because of the non-stationary characteristics of EEG

signals (i.e., their statistics vary in time), analyzing the variations in frequency com-

ponents of EEG signal with time (i.e., time-frequency analysis) is more informative

than analyzing the frequency content of the entire signal at a time. The Discrete

Wavelet Transform (DWT) is an extensively used tool for time-frequency analysis of

physiological signals, including EEG [113]. Therefore, we used DWT decomposition

to extract the frequency-domain features from the EEG signals.

DWT uses scale-varying basis functions to achieve good time resolution of high fre-

quencies and good frequency resolution for low frequencies. The DWT decomposition

consists of successive high pass and low pass filtering of the signal with downsam-
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pling by a factor of 2 in each successive level [114]. The high pass filter uses a discrete

mother wavelet function, and the low pass filter uses its mirror version. We used the

mother wavelet function of the Daubechies wavelet (db5) for frequency decomposition

of the EEG signal. The first low pass and high pass filter outputs are called approxi-

mation A1 and detailed coefficients D1, respectively. A1 is further decomposed, and

the steps are repeated to achieve the desired level of decomposition. Since the highest

frequency in our signal was 128 Hz (sampling frequency fs = 256 Hz), each channels’

signal was decomposed to the fifth level to achieve the decomposition corresponding

to the classical bands as shown in Table 2.4.

Table 2.4.
Wavelet decompositions and their corresponding frequency ranges. The
closest classical frequency band for each decomposition is also shown.

Level Wavelet coefficient Frequency range Classical band
3 D3 16 - 32 Hz Beta
4 D4 8 - 16 Hz Alpha
5 D5 4 - 8 Hz Theta
5 A5 0 - 4 Hz Delta

Three features, namely mean (Equation 2.10), variance (Equation 2.11), and en-

ergy (Equation 2.14) were calculated from each of the four decomposed band de-

composition coefficients shown in Table 2.4 for each channel’s epoch. Therefore, 84

frequency-domain features were extracted (3 features × 4 bands × 7 channels).

GSR: GSR is a superposition of the tonic (slow-changing) and the phasic (fast-

changing) components of the skin conductance response [115]. We used Continuous

Decomposition Analysis from Ledalab to separate the tonic and phasic components

of the signal [115]. Since the time-scale of the study and the decision making tasks

are, in general, much faster as compared to the tonic component, we only used the

phasic component of the GSR. We calculated the Maximum Phasic Component and

the Net Phasic Component for each epoch, thus extracting 2 features from GSR.
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2.2.5 Feature Selection

Following the feature extraction described in Section 2.2.4, we next describe the

process of feature selection. The selected features were considered to be potential

input variables for the trust sensor model, of which the output would be the probability

of trust response. We define the probability of trust response as the probability of

the human trusting the intelligent system at the next time instant. In this section

we discuss feature selection algorithms used for selecting optimal feature sets for two

variations of our trust sensor model, followed by a discussion of the significance of

the features in each of the final feature sets.

Feature Selection Algorithms

The complete feature set consisted of 149 features (42 + 21 + 84 + 2) that

were extracted for each epoch for every participant. These features were considered

potential variables for predicting the Trust or Distrust classes. Out of this large

feature set, it was necessary to downselect a smaller subset of features as predic-

tors to avoid ‘the curse of dimensionality’ (also called Hughes phenomenon), which

occurs for high-dimensional feature spaces with a limited number of samples. Not

doing feature selection leads to a reduction in the predictive power of learning algo-

rithms [112]. Therefore, feature selection was achieved by removing irrelevant and

redundant features from the feature set according to feature selection algorithms.

Feature selection algorithms are categorized into two groups: filter methods and

wrapper methods. Filter methods depend on general data characteristics such as

inter-class distance, results of significance tests, and mutual information, to select the

feature subsets without involving any selected prediction model. Since filter methods

do not involve any assumptions of a prediction model, they are useful in estimating

the relationships between the features. Wrapper methods use the performance (e.g.,

accuracy) of a selected prediction model to evaluate possible feature subsets. When

the performance of a particular type of model is of importance, wrapper methods
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result in a better fit for a selected model type; however, they are typically much

slower than filter methods [116]. We used a combination of filter and wrapper meth-

ods for feature selection to manage the trade-off between training speed and model

performance. We used a filter method called ReliefF for initially shortlisting features

followed by a wrapper method called Sequential Forward Floating Selection (SFFS)

for the final feature selection as shown in Figure 2.20.

Feature subset 

using ReliefF
Performance

Best feature subset selection using SFFS

Feature subset 

selection

Prediction 

model

Complete 

feature set

Figure 2.20. A schematic depicting the feature selection approach used
for reducing the dimension of the feature set. The ReliefF (filter method)
was used for an initial shortlisting of the feature subset followed by SFFS
(wrapper method) for the final feature subset selection.

ReliefF: The basic idea of ReliefF is to estimate the quality of the features based

on their ability to distinguish between samples that are near each other. Kononenko

et al. proposed a number of improvements to existing work by Kira and Rendell

and developed ReliefF [117, 118]. For a data set with n samples, the algorithm iter-

ates n times for each feature. For our study, there were approximately 129 samples

corresponding to each epoch as mentioned in Section 2.2.4. At each iteration for a

two-class problem, the algorithm selects one of the samples and finds k nearest hits

(same-class sample) and k nearest misses (different-class sample), where k is a param-

eter to be selected. Kononenko et al. suggested that k could be safely set to 10 for

most purposes. We used k =10 and calculated the ReliefF weights for all extracted

features of each individual participant. The weight of any given feature is penalized
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for far-off near-hits and improved for far-off near-misses. Far-off near misses implies

well-separated features, and far-off near-hits implies intermixed classes.

Sequential Forward Floating Selection (SFFS): The SFFS is an enhancement

of the Sequential Feature Selection algorithm for addressing the ‘nesting effect’ [119].

The nesting effect means that a selected feature cannot be discarded when the forward

method is implemented and the discarded feature cannot be re-selected when the

backward method is implemented. In order to avoid this effect, SFFS builds the

feature set with the best predictive power by continuously adding a dynamically

changing number of features at each step to the existing subset of features. This

operation occurs iteratively until no further increase in performance is observed. In

this study we defined the performance as the misclassification rate of the Quadratic

Discriminant Analysis (QDA) classifier. We have examined that a QDA classifier

achieved the highest accuracy for another data set based on the same experimental

setup [120], and its output posterior probability is also suitable for interpreting trust.

Therefore, we used the QDA classifier and calculated the misclassification rate using

5-fold cross validation [121]. This validation technique randomly divides the data into

five sets and predicts each set using a model trained for the remaining four sets.

Feature Selection for the Trust Sensor Model

The differences between humans could introduce differences in their trust behavior.

This leads to two approaches for selecting features for sensing trust level: 1) to select

a common set of features for a general population, which results in a general trust

sensor model ; and 2) to select a different set of features for each individual, which

results in customized trust sensor model for each individual.

Feature Selection for the General Trust Sensor Model: A general trust sen-

sor model is desirable so that it can be used to reflect trust behavior in a general

adult population. This model correlates significant psychophysiological features with
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human trust in intelligent systems based on data obtained from a broad range of adult

human subjects. Since a general trust sensor model requires a common list of fea-

tures for all participants, we randomly divided the participants into two groups: the

training-sample participants (33 out of 45 participants), which were used to identify

the common list of features, and the validation-sample participants (12 out of 45 par-

ticipants), which were used to validate the selected list of features. We calculated the

median of the ReliefF weights across the training-sample participants for all features.

The median was used instead of mean to avoid outliers [122]. Finally, we shortlisted

features with the top 60 median weights and used SFFS for selecting the final set of

features. For each training-sample participant’s data, a separate classifier was trained

and the average value of the misclassification rate for all training-sample participants

was used as the predictive power for feature subsets for SFFS. We obtained a feature

set with 12 features consisting of both time- and frequency-domain features of EEG

along with net phasic components of GSR. Table 2.5 shows the final list of selected

features for the general trust sensor model using training-sample participants.

Table 2.5.
Features to be used as input variables for the general trust sensor model

Feature Measurement Domain
1 Mean Frequency - Fz EEG Time
2 Mean Frequency - C3 EEG Time
3 Mean Frequency - C4 EEG Time
4 Peak-to-peak - C3 EEG Time
5 Energy of Theta Band - P3 EEG Frequency
6 Variance of Alpha Band - P4 EEG Frequency
7 Energy of Beta Band - C4 EEG Frequency
8 Energy of Beta Band - P3 EEG Frequency
9 Mean of Beta Band - C3 EEG Frequency
10 Correlation - C3 & C4 EEG Time
11 Correlation - Cz & C4 EEG Time
12 Net Phasic Component GSR Time
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Feature Selection for the Customized Trust Sensor Model: We followed a

similar approach to that used for feature selection in Section 2.2.5, but the list of

features was selected individually for each of the 45 participants. We used ReliefF

weights and shortlisted a separate set of features for each participant consisting of

the top 60 weights. Then, for each participant, SFFS was used with the misclassifica-

tion rate as determined by the quadratic discriminant classifier to select a final set of

features from the shortlisted feature set. We obtained a relatively smaller feature set

for each individual participant, with an average of 4.33 features in each participant’s

feature set, as compared to 12 features when all of the participants’ data was aggre-

gated into a single data set. Table 2.6 shows each of the features that are significant

for at least four of the participants. We observed that there is great diversity in

the significant features for each individual which supports the usage of a customized

trust sensor model. However, it is important to note that even within this diversity,

more than half of the most common features (e.g., mean frequency at C4) are also

significant for the general trust sensor model.

Table 2.6.
The most common features that are significant for at least four partici-
pants. Features marked with an asterisk (∗) are also significant for the
general trust sensor model.

Feature Measurement Domain
1 Mean Frequency - POz EEG Time
2 Mean Frequency - C4∗ EEG Time
3 Mean Frequency - P3 EEG Time
4 Mean Frequency - Fz∗ EEG Time
5 Mean Frequency - C3∗ EEG Time
6 Peak-to-peak - C3∗ EEG Time
7 Variance of Beta Band - P3 EEG Frequency
8 Mean of Beta Band - P3 EEG Frequency
9 Correlation - Cz & C4∗ EEG Time
10 Net Phasic Component∗ GSR Time
11 Maximum Value of Phasic Activity GSR Time
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Discussion on Significant Features in Trust Sensing

Several time-domain EEG features were found to be significant, especially the

mean frequency of the EEG power distribution and the correlations between the sig-

nals from the central regions of the brain (C3, C4, Cz). Time-domain EEG features

have been discovered to be significant in brain activities [112]. Moreover, our obser-

vation that activities at sites C3 and C4 play an important role in trust behaviors is

supported by existing studies that have suggested that central regions of the brain are

related to processes associated with problem complexity [123], anxiety in a sustained

attention task [124], and mental workload [125].

Among the frequency domain EEG features, the measurements from the left pari-

etal lobe, particularly in a high frequency range (i.e., the beta band), responded most

strongly to the discrepancy between reliable and faulty stimuli. This is consistent with

the finding that cognitive task demands have a significant interaction with hemisphere

in the beta band for parietal areas [126]. The beta band is also an important feature

that has been shown to be related to emotional states in the literature [127] and may

represent the emotional component of human trust.

Finally, the results also showed that the phasic component of GSR was a signifi-

cant predictor of trust levels for the general trust sensor model as well as for several

customized trust sensor models. This aligns with the existing literature that shows

that the GSR features could significantly improve the classification accuracy for men-

tal workload detection [128] and could index difficulty levels of decision making [129].

The importance of phasic GSR to trust sensing was also supported by Khawaji’s study

in which the average of peak GSR values was affected by interpersonal trust [43].

2.2.6 Model Training and Validation

The selected features discussed in Section 2.2.5 were considered as input variables

for each of the trust sensor models; the output variables were the categorical trust

level, namely the classes ‘Trust’ and ‘Distrust’. In this section we introduce the
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training procedure of a quadratic discriminant classifier that was used to predict the

categorical trust class using the psychophysiological features. We then present and

discuss the results of the model validation.

Classifier Training

The quadratic discriminant classifier was implemented using the Statistics and

Machine Learning Toolbox in MATLAB R2016a (The MathWorks, Inc., USA). The

low training and prediction time of quadratic discriminant classifiers is advantageous

for real-time implementation of the classifier [130]. Moreover, the posterior probability

calculated by the classifier for the class ‘Trust’ was used as the probability of trust

response, thus resulting in a continuous output. The continuous output of probability

of trust response would be particularly beneficial for implementation of a feedback

control algorithm for managing human trust level in an intelligent system. In order

to avoid large and sudden fluctuations in the trust level, the continuous output was

smoothed using a median filter with a window of size 15. The general trust sensor

model and customized trust sensor models were developed with the same training

procedure but with different feature sets (i.e., input variables). The former was based

on the common feature set, and the latter was based on customized feature sets, as

described in Sections 2.2.5 and 2.2.5.

Model Validation Techniques

We used 5-fold cross-validation to evaluate the performance of classifiers. The

data, consisting of approximately 129 samples for each participant, was randomly

divided into 5 sets. Each set was predicted using a model trained from the other

four datasets. We used these predictions to evaluate the accuracy of the binary

classification. Accuracy is defined as the proportion of correct predictions among the

total number of samples and is given as
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accuracy =
Correct Predictions
Total population

. (2.16)

Moreover, prediction performance of a classifier may be better evaluated by examining

the confusion matrix shown in Figure 2.21. We calculated two statistical measures

called sensitivity (true positive ratio) and specificity (true negative ratio) that are

defined as follows.

1. Sensitivity: the proportion of actual trust (positives) that are correctly pre-

dicted as such, where

sensitivity =
True positives

True positives + False negatives
. (2.17)

2. Specificity: the proportion of actual distrust (negatives) that were correctly

predicted as such, where

specificity =
True negatives

True negatives + False positives
. (2.18)

In order to examine the robustness of the classifier to the variation in training data,

we performed 10,000 iterations with a different random division of the five sets in each

iteration and calculated the performance measures for each iteration. Table 2.7 and

Table 2.8 show the mean, maximum (Max), minimum (Min), and standard deviation

(SD) values for each of the performance measures for the general trust sensor model.

This is shown for both training-sample participants (Table IV) and validation-sample

participants (Table V) along with the 95% confidence interval (CI) obtained using the

iterations. Table 2.9 shows the performance statistics of the customized trust sensor

model for all participants. The confidence intervals obtained for both models were

very narrow, indicating that models were robust to the selection of training data.
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Figure 2.21. The actual class and the predicted class form a 2 × 2 confu-
sion matrix. The outcomes are defined as true or false positive/negative.

Table 2.7.
The accuracy, sensitivity, and specificity (%) of the general trust sensor
model for training-sample participants with a 95% confidence interval

Accuracy Sensitivity Specificity
Mean 70.52± 0.007 64.17± 0.010 75.49± 0.009
Max 93.72± 0.013 96.75± 0.020 96.38± 0.015
Min 54.67± 0.042 31.18± 0.040 44.92± 0.039
SD 11.29± 0.006 18.96± 0.009 14.35± 0.008

Table 2.8.
The accuracy, sensitivity, and specificity (%) of the general trust sensor
model for validation-sample participants with a 95% confidence interval

Accuracy Sensitivity Specificity
Mean 73.13± 0.010 65.35± 0.015 79.49± 0.013
Max 99.89± 0.006 99.92± 0.006 99.85± 0.011
Min 59.29± 0.035 34.35± 0.081 57.04± 0.050
SD 10.91± 0.007 17.03± 0.016 12.26± 0.015
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Table 2.9.
The accuracy, sensitivity, and specificity (%) of the customized trust sen-
sor model for all participants with a 95% confidence interval

Accuracy Sensitivity Specificity
Mean 78.55± 0.005 72.83± 0.007 82.56± 0.007
Max 100.00± 0.000 100.00± 0.000 100.00± 0.000
Min 61.59± 0.041 34.77± 0.044 45.89± 0.040
SD 9.69± 0.005 17.02± 0.008 11.18± 0.007

Discussion on Performance of Classification Models

The mean accuracy was 70.52±0.007% for training-sample participants. Simi-

larly, the mean accuracy for the validation-sample participants was 73.13±0.010%.

The fact that the performance of the general trust model was consistent for both

training-sample and validation-sample participants suggests that the identified list of

features could estimate trust for a broad population of individuals. Moreover, the

mean accuracy was 78.58±0.0005% for the customized trust sensor models for all

participants. Recall that the customized trust senor models were based on a cus-

tomized feature set for each participant. There were 12 significant features to predict

trust for the general trust sensor models, while less than 5 features were needed for

the customized trust sensor models. These findings support the hypothesis that a

customized trust sensor model could enhance the prediction accuracy with a smaller

feature set. For some individual participants, the mean accuracy increased to 100%.

Figures 2.22 and 2.23 are examples of good predictions for participants in groups

1 and 2, respectively. The customized trust sensor models performed better for both

participants, specifically at the transition state at the beginning of database 2. Fig-

ure 2.22(b) shows an example of a transition state at the beginning of database 2; it

took five trials for this participant to establish a new trust level. The classification

accuracy was low for some participants as shown in Figure 2.24. The classifier had

difficulty correctly predicting trust (database 1), which may imply that this partic-
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ular participant was not able to conclude whether or not to trust the sensor report,

even in reliable trials. Another potential reason could be that trust variations of this

participant did not result in significant changes in their physiological signals. Nev-

ertheless, the customized trust sensor model still showed a higher accuracy than the

general trust sensor model.
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Figure 2.22. Classifier predictions for participant 44 in group 1. The
top figure (a) shows the general trust sensor model predictions with an
accuracy of 90.52%. The bottom figure (b) shows the customized trust
sensor model predictions with an accuracy of 93.97%. Faulty trials are
highlighted in gray. Trust sensor models had a good accuracy for this
participant. The classifier output of posterior probability was smoothed
using a median filter with window of size 15.

The general trust sensor model resulted in mean specificity of 75.49±0.009% and

79.49±0.013% for training-sample and validation-sample participants, respectively.

The customized trust sensor model resulted in 82.56±0.007% for all participants.

This indicates that the models are capable of correctly predicting distrust in hu-
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Figure 2.23. Classifier predictions for participant 10 in group 2. The
top figure (a) shows the general trust sensor model predictions with an
accuracy of 91.12%. The bottom figure (b) shows the customized trust
sensor model predictions with an accuracy of 96.45%. Faulty trials are
highlighted in gray. Trust sensor models had good accuracy for this par-
ticipant. The classifier output of posterior probability was smoothed using
a median filter with window of size 15.

mans. The models are less likely to predict a distrust response as trust (i.e., less

false positives). The mean sensitivity was 64.17±0.010% and 65.35±0.015% for the

general trust sensor model for training-sample and validation-sample participants,

respectively. The customized trust sensor model resulted in 72.83±0.007% for all

participants. Low sensitivity (more false negatives) occurs when the model often pre-

dicts trust as distrust. In the context of using this trust sensor model to design an

intelligent system that could be responsive to a human’s trust level, low sensitivity

would arguably not have an adverse effect since the goal of the system would be to

enhance trust.
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Figure 2.24. Classifier predictions for participant 8 in group 1. The
top figure (a) shows the general trust sensor model predictions with an
accuracy of 61.26%. The bottom figure (b) shows the customized trust
sensor model predictions with an accuracy of 72.07%. Faulty trials are
highlighted in gray. Trust sensor models did not have good accuracy
for this participant. The classifier output of posterior probability was
smoothed using a median filter with window of size 15.

There is a fundamental trade-off that exists between the general and customized

models in terms of the time spent on model training and model performance as shown

in Table 2.10. The results show that the selected feature set (Table 2.5) for the general

trust sensor models is applicable for a general adult population with a 71.22% mean

accuracy (i.e., the mean accuracy calculated across all participants). Furthermore, by

applying this common feature set, feature selection is not required while implementing

the general model. This would reduce the model training time and potentially make

the model adaptable to various scenarios. However, the common feature set for a

general population is larger than feature sets optimized for each individual because it
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attempts to accommodate an aggregated group of individuals. Therefore, in scenarios

where the speed of the online prediction process is the priority, the customized trust

sensor model, with a smaller feature set, would be preferred. The customized trust

sensor model also enhances the prediction accuracy. Nonetheless, it is worth noting

that implementing the customized trust sensor model would still require extraction of

a larger set of features initially for training followed by a smaller feature set extraction

for real-time implementation. This would increase the time required for training the

model as an additional feature selection step would need to be performed.

While we focused on situational and learned trust, dispositional trust factors, such

as demographics, may have partially contributed to the observed lower accuracy of the

general trust sensor model due to individual differences in trust response behavior [46,

131]. Incorporating these additional factors and other psychophysiological signals

may increase the trust estimation accuracy of the trust sensor model, as the features

included in the present model inherently represent only a subset of many non-verbal

signals that correlate to trust level.

In summary, the proposed trust sensor model could be used to enable intelligent

systems to estimate human trust and in turn respond to, and collaborate with, hu-

mans in such a way that leads to successful and synergistic collaborations. Potential

human-machine/robot collaboration contexts include robotic nurses that assist pa-

tients, aircrafts that exchange control authority with human operators, and numerous

others [1].

The results presented in this section show that psychophysiological measurements

can be used to estimate human trust in intelligent systems in real-time. We proposed

two approaches for developing classifier-based empirical trust sensor models that esti-

mate human trust level using psychophysiological measurements. These models used

human subject data collected from 45 participants. The first approach was to consider

a common set of psychophysiological features as the input variables for any human

and train a classifier-based model using this feature set, resulting in a general trust

sensor model with a mean accuracy of 71.22%. The second approach was to consider
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Table 2.10.
Comparison of General Trust Sensor Model and Customized Trust Sensor
Model for implementation

Model Characteristics General Trust Customized Trust
Sensor Model Sensor Model

Required training time Less More
Size of final feature set 12 4.33 (Average)
Prediction Time More Less
Mean Prediction Accuracy 71.22% 78.55%

a customized feature set for each individual and train a classifier-based model using

that feature set; this resulted in a mean accuracy of 78.55%. The primary trade-off

between these two approaches was shown to be training time and performance (based

on mean accuracy) of the classifier-based model. That is to say, while it is expected

that using a feature set customized to a particular individual will outperform a model

based upon the general feature set, the time needed for training such a model may be

prohibitive in certain applications. Moreover, although the criteria used for feature

selection and classifier training in this study was mean accuracy, a different criterion

could be chosen to adapt to various applications. In the next section, we present an

adaptive classification framework that combines psychophysiological measurements

and human behavioral dynamics to estimate human trust in real time.

2.3 Combining Behavioral and Psychophysiological Measurements

The contents of this section were previously published by Akash, Reid, and Jain

in the Proceedings of the 2018 American Control Conference (ACC) [132] and are

reported here with minor modifications.
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2.3.1 Introduction

In the last section, we discussed the use of classification algorithms to estimate

human trust using psychophysiological measurements. However, in the application

of most classification algorithms, it is assumed that data samples are independent,

identically distributed, and are characterized by a stationary distribution. Numerous

classification algorithms have been developed for data that satisfy these assumptions

(see [133] for a review). However, many real-world problems are characterized by

data with temporal variations and a non-stationary distribution. One example is

the use of human behavioral responses and psychophysiological data for prediction of

human behavior, in particular, human trust. In this section, we present an adaptive

probabilistic classification algorithm which incorporates the temporal dynamics of the

human trust behavior with EEG measurements to estimate trust.

Human behavior and emotion estimation is becoming an important segment in the

fields of modern human-machine interaction, brain-computer interface (BCI) design,

and medical care [134], among others. Human behavior inference for decision making

is critical for building synergistic relationships between humans and autonomous sys-

tems. Researchers have attempted to predict human behavior using dynamic models

that rely on the behavioral responses or self-reported behavior of humans [33, 54].

An alternative is the use of psychophysiological signals like the electroencephalogram

(EEG) that represents the electrical activity of the brain. In order to infer human

behavior from psychophysiological signals, different brain activity patterns must be

identified. A common approach for this identification is the use of classification algo-

rithms [112]. However, most of the EEG-based classification algorithms in literature

are based on static classifiers that do not account for the dynamic characteristics of

human behavior [112]. Therefore, our goal is to use both behavioral responses and

psychophysiological measurements to create a more accurate and robust classification

algorithm that considers the dynamics of human behavior.
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Most existing classification algorithms do not consider the temporal dynamics

of the process under consideration. For classification of dynamic processes such as

human behavior, inclusion of the temporal dynamics will improve prediction accuracy.

However, dynamic classification algorithms (e.g., hidden Markov models) are typically

computationally expensive to train adaptively, and therefore, cannot be used for data

with non-stationary characteristics [135–137].

In this section, we present an adaptive probabilistic classification algorithm which

incorporates the temporal dynamics of the underlying process under consideration.

We use a generative model with the prior probability modeled using a Markov de-

cision process and the conditional probability modeled using an existing adaptive

quadratic discriminant analysis classifier. We implement the proposed algorithm for

classification of human trust in automation using psychophysiological measurements

along with human behavioral responses. Finally, we cross-validate the classifier and

show the improvement in its performance as compared to the adaptive classification

algorithm alone.

This section is organized as follows. Section 2.3.2 provides background on clas-

sification algorithms using EEG. The proposed classification model framework is de-

scribed in Section 2.3.3. The implementation of the proposed model for predicting

human trust is presented in Section 2.3.4. Results and discussions are presented in

Section 2.3.5.

2.3.2 Background

There are several classification algorithms which are used in BCI applications and

human behavior predictions. These include a variety of algorithms, including lin-

ear classifiers (e.g. linear discriminant analysis, support vector machines), nonlinear

Bayesian classifiers, artificial neural networks, and k-nearest neighbors [112]. These

classifiers can be categorized using two taxonomies: Generative vs. Discriminative

and Static vs. Dynamic.
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Generative classifiers, e.g., Bayes quadratic discriminant analysis (QDA), learn the

distribution of each class and compute the likelihood of each class for classification.

Discriminative classifiers, e.g., support vector machines (SVM), only learn the explicit

decision boundaries between the classes, which are then used for classification [138].

Since the EEG signals have non-stationary distributions, data collected on-line may

be characterized by different underlying distributions than the training data. There-

fore, for an adaptive implementation, it is preferable to identify the changes in the

underlying distribution and update a generative model accordingly than to update the

decision boundary in a discriminative classifier. Furthermore, generative models are

typically specified as probabilistic models; this enables a richer description between

features and classes than can be achieved using discriminative models by providing a

distribution model of how the data are actually generated.

Static classifiers, e.g., SVM, do not account for temporal information during clas-

sification as they classify a single feature vector. In contrast, dynamic classifiers,

e.g., hidden Markov models (HMM), account for temporal dynamics by classifying

a sequence of feature vectors. HMMs have been used for classification of temporal

sequences of EEG features as described in [135–137]. While these studies showed that

they were promising classifiers for BCI systems, the Viterbi algorithm used for train-

ing HMM is both computationally expensive and memory intensive [139]. Therefore,

HMM is undesirable for use as an adaptive algorithm. Instead, to design an adaptive

probabilistic classifier, we will use a generative model, namely, the Bayesian quadratic

discriminant analysis (QDA) classifier. To include temporal dynamics in the classi-

fication, we propose to supplement the QDA classifier with a dynamic behavioral

model using Markov decision process.

2.3.3 Probabilistic Classification Algorithm

Probabilistic classifiers predict a probability distribution over the classes, instead

of just predicting the most likely class. For predicting the probability of a class
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label Ck using the feature vector x, we use training data to learn a model for the

posterior class probability P (Ck|x). A subsequent decision state uses these posterior

class probabilities to assign class labels. Generative models initially determine the

class-conditional probabilities P (x|Ck) for each class Ck and also presume the prior

class probabilities P (Ck). Then, they use Bayes’ theorem,

P (Ck|x) =
P (x|Ck)P (Ck)

P (x)
(2.19)

to estimate the posterior class probabilities P (Ck|x). The denominator P (x) is a

normalization constant.

We consider generative models in this work and incorporate dynamic characteris-

tics using the prior class probabilities based on Markov decision process as discussed

in Section 2.3.3. In Section 2.3.3, we provide the mathematical foundations for the

QDA classifier as well as an adaptive implementation of it based on [140].

Adaptive Quadratic Discriminant Analysis Classifier

A Quadratic Discriminant Analysis (QDA) classifier uses a generative approach for

classification. The posterior probability that a point x belongs to class Ck is calculated

using (2.19) as the product of the prior probability (P (Ck)) and the multivariate

normal density (P (x|Ck)) [141]. The density function of the multivariate normal

distribution with mean µk and covariance Σk at a point x is

P (x|Ck) =
1√

2π|Σk|
exp

(
− 1

2
(x− µk)TΣ−1

k (x− µk)
)
, (2.20)

where |Σk| is the determinant of Σk [141]. The Quadratic Discriminant Analysis

(QDA) classifies x to a class Ck so as to maximize a posteriori probability of the

class, i.e.,

Ĉk = argmax
i=1,...,K

P̂ (Ci|x) . (2.21)
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Therefore, to train a QDA classifier, we need to estimate the means (µk) and covari-

ance matrices (Σk) for each class label. This estimation is given by the Maximum

Likelihood Estimate (MLE) as µ̂ = 1
n

∑n
i=1 xi, and Σ̂ = 1

n

∑n
i=1 xix

T
i − µ̂2. More-

over, the prior probabilities for each class, P (Ck), are estimated using the sample

frequency of each class in the training data. The parameters are typically estimated

using a training dataset offline and then used for prediction. However, an adaptive

implementation of the QDA classifier developed by Anagnostopoulos et al. [140] uses

online learning with forgetting factor λ as shown in (2.22).

µ̂t =
(

1− 1

t

)
µ̂t−1 +

1

t
xt, µ̂0 = 0 (2.22a)

Π̂t =
(

1− 1

t

)
Π̂t−1 +

1

t
xtx

T
t , Π̂0 = 0 (2.22b)

Σ̂t = Π̂t − µ̂tµ̂Tt (2.22c)

nt = λt−1nt−1 + 1 (2.22d)

Here, •t refers to the tth discrete time value of the variable •. The prior probabilities

can be calculated as

(
P (Ck)

)
t

=
(

1− 1

nt

)(
P (Ck)

)
t−1

+
1

nt
I((Ck)t = Ck), (2.23)

where I(x = k) is the indicator function that is equal to 1 when the value of x is equal

to that of k; else it is 0. A complete derivation can be found in [140].

Dynamic probabilistic model for prior probability

Apart from model adaptation, the adaptive QDA classifier is static in nature; that

is, the classifier only considers the present data without considering the dynamics

of the data. Though past data could be used as a part of x, it would significantly

increase the dimension of parameters to be estimated. Instead, we propose a dynamic

probabilistic model to estimate the prior probability P (Ck) that would supplement
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the estimation of posterior probability P (Ck|x) using (2.19). The input to this model

could include variables from x and/or other variables that were not used for the

classifier. The modeling frameworks for this dynamic probabilistic model can include

state space models (SSM), Markov decision processes (MDP), or HMMs. Here we

will consider the use of MDP for modeling the prior probability for classification.

A MDP is a 5-tuple (S,A, T,R, γ), with a finite set of states S, a finite set of

actions A, state transition probability function T (s′|s, a) = P [St+1 = s′|St = s, At =

a], reward function R, and discount factor γ ∈ [0, 1]. MDPs are typically used

for reinforcement learning to identify the best policy that maximizes the reward.

Policy identification is outside the scope of this work. Therefore, for our application

of probabilistic dynamic modeling, the reward function R and the reward discount

factor γ will not be considered.

If T (s′|s, a) is not known, it can be empirically estimated, based upon data con-

sisting of actions and corresponding state transitions, using the MLE given as

T̂ (i, j, k) =
Nijk∑
j Nijk

(2.24)

Nijk =
n∑
t=1

I(st = i)I(st+1 = j)I(at = k) ,

where I(st = i) is the indicator function which is equal to 1 when the state s at time

t is i, else it is 0. The other two indicator functions are similarly defined. Once the

state transition probability function T (s′|s, a) is known, the probability for the next

state s′ is based on the present state s and action a as T (St = s, St+1 = s′, At = a).

Further, the n step ahead transition matrix Tn can be calculated given the series of

actions at, at+1, ..., at+i, ..., at+n−1, as

Tn =
n−1∏
i=0

T (:, :, at+i) , (2.25)

and thereafter, the n-step ahead probabilities of states pn can be calculated as pn =

p0Tn, where p0 are the initial probabilities of states. These probabilities pn will be used
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as the prior probability P (Ck) in (2.19) with each state s of the MDP corresponding

to the labels Ck in the QDA classifier.

2.3.4 Classification of Human Trust in HMI

In this section, we describe the classification of human trust behavior using psy-

chophysiological measurements of participants, specifically EEG, along with their

behavioral responses. We used behavioral responses to model the prior probability

P (Ck) as described in Section 2.3.3. The features extracted from the psychophysi-

ological measurements were then used as the input x for the adaptive QDA model

described in Section 2.3.3. The framework for our adaptive classification model for

human trust is shown in Fig. 2.25.

Markov Decision Process using 
Behavioral Response

Experience
(Machine 

Performance)
P(Trust)

Feature 
Extraction

Multivariate Normal Distribution

Conditional Probability using 
Psychophysiological Data

x

Psycho-
physiological 

Data
P(x|Trust)

Bayesian Probability Estimation

P(Trust|x)

Distrust

pF-D
1-pF-D
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pR-D

1-pR-D

pR-T
1-pR-T

Faulty

Reliable

Trust

Figure 2.25. A framework for adaptive probabilistic classification of hu-
man dynamic trust behavior. A Markov decision process model is used
for estimating prior probability using the behavioral responses of partici-
pants. Psychophysiological measurements from the participants are used
for estimating the conditional probability for each trust state.
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Methods and Procedures

In Sections 2.1 and 2.2, we developed an experiment to elicit human trust dynamics

in a simulated autonomous system. The participants interacted with a computer

interface in which they were told that they would be driving a car equipped with

an image-based obstacle detection sensor. The sensor would detect obstacles on the

road in front of the car, and the participant would need to evaluate the algorithm

reports and choose to either trust or distrust the report based on their experience

with the algorithm. The study used a within-subjects design with respect to trust

wherein both behavioral and psychophysiological data were collected. We used the

data to estimate and validate the classification model for each participant. A detailed

description of the study design and methods is presented in Sections 2.1 and 2.2.

Five hundred eighty-one participants (340 males, 235 females, and 6 unknown)

recruited using Amazon Mechanical Turk [97], participated in our study online. The

compensation was $0.50 for their participation, and each participant electronically

provided their consent. The Institutional Review Board at Purdue University ap-

proved the study. These data only consisted of the behavioral responses and were

used to estimate the MDP model parameters.

Forty-eight adults between 18 and 46 years of age (mean: 25.0 years old, standard

deviation: 6.9 years) from West Lafayette, Indiana (USA) were recruited using fliers

and email lists and participated in an in-lab study. All participants were compensated

at a rate of $15/hr. The group of participants were diverse with respect to their age,

professional field, and cultural background (i.e., nationality). Psychophysiological

data along with behavioral data were collected from these participants and used for

modeling and validation of the proposed trust classification algorithm. We removed

data for three participants that had anomalous EEG spectra, possibly due to bad

channels or dislocation of EEG electrodes during the study, resulting in 45 participants

to analyze.
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Trust behavior modeling using MDP

At each trial, each participant was presented with a stimuli (obstacle detected or

clear road) to which they had to respond ‘trust’ or ‘distrust’ based on their previous

experience (reliable or faulty trial) and from the feedback they received about the

sensor after they responded. For this experiment, we define human trust behavior as

the process we will model using an MDP as described below:

• The trust decision of the humans is the finite set of states, i.e., S : {Distrust,Trust}

• The decision process of human trust is influenced by the actions of the machine

that lead to the machine performance (experience) as the finite set of actions,

i.e., A : {Reliable,Faulty}

• The experience from trial t acts as an action for the new process state at t+ 1.

Therefore, the human state s of trust at t moves to a new state s′ at t+ 1 due

to the action (i.e., machine performance or experience) at t.

• The state transition probability function T (s′|s, a) can be represented as a 2×

2 × 2 matrix, such that T (i, j, k) represents the transition probability from ith

state to jth state given the action k. Therefore, each of P (:, :, k) represents the

state transition matrix for the kth action.

We estimated the transition probability function as well as the initial state prob-

abilities using the behavioral data collected from Amazon Mechanical Turk. We used

an aggregated data of 581 participants for the estimation, and therefore assumed

that a single transition probability function is representative of general human trust

behavior. The estimated probability matrices are given as

T (s, s′, a = Faulty) =

0.5343 0.4857

0.3131 0.6869

 ,

T (s, s′, a = Reliable) =

0.3177 0.6823

0.1191 0.8809

 . (2.26)
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where s and s′ are initial and final states, respectively with each consisting of S :

{Distrust,Trust}. For example, the transition from state Trust to Distrust after a

reliable trial has a probability of 0.8809. Estimated initial state probabilities for

Distrust and Trust are

p0(Distrust) = 0.1985 p0(Trust) = 0.8015 . (2.27)

Adaptive QDA model using Psychophysiological Data

Adaptive implementation of the classification algorithm inherently requires pro-

cessing the data and estimating trust in real-time. Therefore, we need to continuously

extract features from psychophysiological measurements, which is achieved by contin-

uously considering short segments of signals for calculations. We divided the entire

duration of the study into multiple 4-second epochs (segments) with 50% overlap be-

tween each consecutive epoch. We assume that the decisive cognitive activity occurs

after the participant sees the feedback based upon their previous response. Therefore,

we only considered the epochs which were in between each successive beginning of

a trial and response (trust/distrust) for training the classifier. All epochs were used

for prediction. We extracted an exhaustive set of potential features from the data

for each epoch. We then reduced the dimension of this feature set to include only

the statistically significant variables of trust. This reduced feature set was used for

classifier modeling and validation.

Feature Extraction: For each of the seven channels (Fz, C3, Cz, C4, P3, POz,

and P4) of EEG data, we extracted both frequency and time domain features from

each epoch as described in [102]. For frequency domain features, we decomposed each

channel’s data into four spectral bands, namely delta (0 Hz - 4 Hz), theta (4 Hz - 8 Hz),

alpha (8 Hz - 16 Hz), and beta (16 Hz - 32 Hz) and calculated the mean, variance, and

signal energy for each band of each epoch. This introduced 84 (7 × 4 × 3) potential

features. For time domain features, we included mean, variance, peak-to-peak values,
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mean frequency, root-mean-square, and signal energy of each epoch, thus introducing

42 (7× 6) more potential features. Furthermore, to consider the interaction between

different regions of the brain, we calculated the correlation between pairs of channels

for each epoch, adding another 21 features.

Feature Selection: The EEG data resulted in 147 (84 + 42 + 21) potential fea-

tures. To avoid “the curse of dimensionality” [112], these features were reduced to a

smaller feature set using a filter approach feature selection algorithm [141]. Partic-

ipants were randomly divided into two sets, namely, a training-set consisting of 23

participants and a validation-set consisting of 22 participants. Using only training-set

participants’ data, we selected the best 15 features using the Scalar Feature Selection

technique [120, 141]. Fisher Discriminant Ratio (FDR) was used as the class separa-

bility criterion with a penalty proportional to the cross-correlation between features.

This penalty ensures that the selected features are least correlated, therefore reducing

redundancy between features. The selected features are shown in Table 2.11.

Table 2.11.
Features used as input variables for trust classification

Feature Domain
1 Mean Frequency - P4 Time
2 Mean Frequency - C4 Time
3 Mean Frequency - P3 Time
4 Peak-to-peak - C4 Time
5 Peak-to-peak - C3 Time
6 Root Mean Square - Fz Time
7 Energy - Fz Time
8 Variation - Fz Time
9 Correlation - C4 & P4 Time
10 Energy of Beta Band - P3 Frequency
11 Energy of Beta Band - Cz Frequency
12 Energy of Beta Band - C3 Frequency
13 Variation of Beta Band - P3 Frequency
14 Variation of Beta Band - Cz Frequency
15 Variation of Beta Band - C3 Frequency
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Modeling and validation: The selected feature set was extracted from EEG data

to construct the input x to evaluate P (x|Ck) using (2.20). It should be noted that

for each class label Ck, µk ∈ Rn×1 and Σk ∈ Rn×n, where n is the cardinality of

the feature set. Therefore, for each class label, n(n + 3)/2 parameters need to be

estimated. This is a relatively large number of parameters given our number of

data points. For example, for a two class problem with 15 features, the number of

parameters to be estimated is 270 using approximately 270 data points in our study.

This leads to significant variations in the estimated covariance matrices and often

leads to ill-conditioned matrices which cannot be inverted. This is particularly a

challenge during the initial estimation period when even fewer data are available.

Therefore, to avoid inversion of ill-conditioned matrices and reduce the number of

parameters to be estimated, we assume that the features are independent of each

other. This results in covariance matrices that are diagonal and easily invertible.

Furthermore, this reduces the number of parameters to be estimated to 2n for each

class label (i.e. 60 parameters in our example above).

We included psychophysiological measurements in order to identify any latent

indicators of trust and distrust. We hypothesized that the trust level would be high

in reliable trials and be low in faulty trials, which was validated using responses

collected from 581 online participants via Amazon Mechanical Turk [97] as shown in

Fig. 2.26 [46]. Therefore, data from reliable trials were labeled as trust, and data

from faulty trials were labeled as distrust. In the next section, we use these features

extracted from psychophysiological data, along with the dynamic behavioral model

derived in Section 2.3.3, to implement the proposed classification algorithm.

2.3.5 Results and Discussions

We implemented the Adaptive Quadratic Discriminant Analysis classifier with

Markov Decision Process-based prior probability (hereafter called AQDA-MDP) us-

ing the selected features x shown in Table 2.11, class labels Ck ∈ {Distrust,Trust},
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Figure 2.26. Participants’ trust level (blue dots). Subfigure (a) corre-
sponds to group 1 participants and subfigure (b) corresponds to group 2
participants. Faulty trials are highlighted in gray, and black lines mark
the breaks between databases.

state transition matrix as given in (2.26), and the initial state probability as given

in (2.27). For comparison, we also consider the Adaptive Quadratic Discriminant

Analysis classifier (hereafter, called AQDA) exclusively with the prior probability es-

timated using (2.23). The forgetting factor λ was taken as 1, i.e., no forgetting was

used. The algorithms were used for online training and validation of trust classifica-

tion models from the real-time data for each participant individually.

The results for two different training-set participants and for two different validation-

set participants are shown in Fig. 2.27 and Fig. 2.28, respectively. Faulty trials are

highlighted in gray, and reliable trials are highlighted in white. A high probability of

trust is expected in reliable trials, and a low probability of trust is expected in faulty

trials. To observe the benefits of adaptation and to compare the performance of each

models, we calculate the mean trial accuracy for each trial. Mean trial accuracy is

calculated as the average, across participants, of the percentage of correct prediction
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Figure 2.27. Training-set participants’ trust level predictions using
AQDA-MDP and AQDA algorithms. The top figure (a) shows the predic-
tion of trust for participant 5 in the training set. The bottom figure (b)
shows the prediction of trust for participant 7 in the training set. Faulty
trials are highlighted in gray.

for epochs for each trial. The variation of mean trial accuracy for training-set and

validation-set participants are shown in Fig. 2.29(a) and Fig. 2.29(b), respectively. It

can be seen that the performance of the classifier is consistent between training-set

and validation-set participants. Therefore, the selected set of features are capable of

predicting trust behavior.

We see that the accuracy of the classifier is high for the first 20 trials (see Fig. 2.29).

This is the consequence of the experiment design, which has data for one of the classes

(either trust or distrust) initially, therefore making the classifier biased towards the

initial training data. Consequently, the classifier accuracy just after the 20th trial is



85

20 40 55 67 82 100

Trial Number

0

0.5

1

P
ro

ba
bi

lit
y 

of
T

ru
st

 r
es

po
ns

e

AQDA
AQDA-MDP

(a)

20 40 55 67 82 100

Trial Number

0

0.5

1

P
ro

ba
bi

lit
y 

of
T

ru
st

 r
es

po
ns

e

AQDA
AQDA-MDP

(b)

Figure 2.28. Validation-set participants’ trust level predictions using
AQDA-MDP and AQDA algorithms. The top figure (a) shows the pre-
diction of trust for participant 36 in the validation set. The bottom figure
(b) shows the prediction of trust for participant 34 in the validation set.
Faulty trials are highlighted in gray.

poor, and it takes approximately 4-5 trials to eliminate the bias effect and have a

considerable sample size for both classes. After the 55th trial, the classifier prediction

accuracy decreases as shown in Fig. 2.29. One of the potential reasons is improper

class labeling of the data. We assumed that the participants trusted the obstacle

detection sensor during the reliable trials and distrusted it during the faulty trials.

However, in the later trials during which the sensor reliability changes more rapidly,

participants may have been unsure about the system performance. Therefore, our

assumption for class labeling may not hold for data collected during these trials. As

a result, the adaptive algorithm incorrectly trains itself in the later trials, resulting in
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Figure 2.29. Mean Trial accuracy for ADQA and AQDA-MDP algo-
rithms. Subfigure (a) corresponds to training-set participants and subfig-
ure (b) corresponds to validation-set participants.

accuracy approximately between 40% and 65% as shown in Fig. 2.29. A better way to

label the trials as trust or distrust could improve the performance of the classifier and

is the subject of future work. The mean trial accuracy for AQDA-MDP is, in general,

higher than that of AQDA. Despite the limitations of class labeling for our experiment,

the proposed algorithm enables the combination of two different types of modeling

frameworks, a static QDA classifier and a dynamic MDP, systematically using a

Bayesian approach to yield a classifier with improved accuracy. More generally, this

algorithm can be used for classification of other human behaviors measured using
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psychophysiological data and behavioral responses, as well as other dynamic processes

characterized by data with non-stationary distributions.

2.4 Chapter Summary

In this chapter, we presented multiple approaches to model and estimate human

trust based on human behavioral responses and psychophysiological measurements.

We first established a quantitative trust model based on human behavior, motivated

by literature on computational models and parameterized using human subject data.

This model was verified using data collected from over 800 participants and has a

prediction accuracy higher than 92% for the general population. We introduced the

effect of cumulative trust, expectation bias, and misses/false alarms, to accurately

capture human trust dynamics during human-machine interactions. While the state-

space trust model is representative of a population of individuals rather than trained

to a specific human, such a model could be used to design machines that are required

to interact with unspecified users grouped by demographics.

However, in some uncertain and unstructured environments, it may not be prac-

tical to retrieve human behavior continuously for use in a feedback control algorithm.

Therefore, for these scenarios, we developed a classification model to estimate human

trust using an individual’s psychophysiological measurements, specifically EEG and

GSR. These models used human subject data collected from 45 participants. The

first approach was to consider a common set of psychophysiological features as the

input variables for any human and train a classifier-based model using this feature

set, resulting in a general trust sensor model with a mean accuracy of 71.22%. The

second approach was to consider a customized feature set for each individual and

train a classifier-based model using that feature set; this resulted in a mean accuracy

of 78.55%. While it is expected that using a feature set customized to a particular in-

dividual will outperform a model based upon the general feature set, the time needed

for training such a model may be prohibitive in certain applications.
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A limitation of the proposed classification algorithm is that it does not consider

the temporal dynamics of human behavior and the non-stationary characteristics of

psychophysiological signals. Therefore, we described an adaptive probabilistic classi-

fication algorithm which uses a dynamic MDP model to incorporate these temporal

dynamics. First, we estimated the parameters for a MDP using behavioral responses.

We then extracted an exhaustive set of features from psychophysiological data from 23

training-set participants and reduced the dimension of the feature space using scalar

feature selection. We trained a real-time adaptive QDA-based classifier using data

collected online for these 23 participants. The classifiers were validated against human

subject data from another 22 validation-set participants, and an improved estimation

accuracy was achieved using the classifier augmented with a dynamic MDP.

For all of the modeling approaches, to elicit the dynamics of trust, we varied au-

tomation reliability and then modeled and estimated the resulting trust dynamics.

However, although automation reliability strongly affects human trust, and the mod-

eled relationship can be used to predict trust, automation reliability should not be

considered a control variable for the purpose of affecting human trust. As discussed

in Chapter 1, automation transparency can instead be varied to affect human trust

and human workload. Therefore, we model the dynamic effects of an automation’s

transparency on human trust and workload in the next chapter so that it can be used

as a control variable for improving human-machine collaboration.
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3. TRANSPARENCY-BASED FEEDBACK CONTROL OF HUMAN

TRUST

The contents of this chapter have been accepted for publication in the IEEE Control

Systems Magazine [142] and are reported here with minor modifications.

3.1 Introduction

Published studies have shown that human trust in automation is an important

factor that affects the outcome of the interactions and that it can be improved by

increasing the transparency of an automation’s decisions [8, 9]. Chen et al. (2014)

defines transparency as “the descriptive quality of an interface pertaining to its abil-

ities to afford an operator’s comprehension about an intelligent agent’s intent, per-

formance, future plans, and reasoning process.” [7] Therefore, greater transparency

allows humans to make informed judgments and accordingly make better choices. In

this chapter, we model the dynamic effects of an automation’s transparency on human

behavior and use it as a control variable for improving human-machine collaboration.

High levels of trust are not always desirable and can lead to humans trusting

an error-prone system. Instead, trust should be appropriately calibrated according

to the system’s capability [4]. Moreover, high transparency involves communicating

more information to the human and thus can increase the workload of the human [10].

In turn, high levels of workload can lead to fatigue, which can reduce the human’s

performance. Therefore, we aim to design intelligent systems that can respond to

changes in human trust and workload in real-time to achieve optimal or near-optimal

performance. For intelligent systems, a user interface (UI) is generally the means

through which communication with the human is achieved. Therefore, the system
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must understand how the transparency of its communication through the UI affects

the human’s cognitive state.

Although researchers have developed various models of human trust behavior [44,

45] and established the effect of transparency on trust [8,9,23], there does not exist a

quantitative model that captures the dynamic effect of transparency on human trust.

Furthermore, published studies considering the effects of transparency on workload

do not model its dynamics. Therefore, a fundamental gap remains in capturing the

dynamic effect of machine transparency on human trust-workload behavior so that it

can be used for improving human-machine collaboration.

In this chapter, we present a partially observable Markov decision process (POMDP)

model framework for capturing dynamics of human trust and workload for contexts

that involve interaction between a human and an intelligent decision-aid system. We

specifically consider a reconnaissance mission study adapted from the literature in

which human subjects are aided by a virtual robotic assistant in completing a se-

ries of reconnaissance missions. We use the collected human subject data to train

the POMDP model. We further study the effects of transparency and experience

on human trust and workload using the estimated parameters. In Section 3.4, the

trained model is used to estimate human trust and workload and to develop a near-

optimal control policy that varies machine transparency to improve outcomes of the

human-machine collaboration.

3.2 Modeling Human Trust and Workload

Researchers have developed various models for human trust. Qualitative mod-

els [143–146] are useful for defining which variables affect trust but are insufficient

for making quantitative predictions. On the other hand, regression models [147,148]

quantitatively capture trust but do not consider its dynamic response characteristics.

To fill this gap, researchers have proposed both deterministic models [4,34,37,46,47,

59, 149, 150] and probabilistic models [143, 151, 152] of human trust dynamics. With
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respect to probabilistic approaches, several researchers have modeled human trust be-

havior using Markov models, particularly hidden Markov models (HMMs) [44,45,153].

While HMMs can be used for intent inference and to incorporate human behavior

related uncertainty [154–157], they do not include the effects of inputs or actions

from autonomous systems that affect human behavior. On the other hand, models

based on Markov decision processes (MDP) do consider the effect of inputs or ac-

tions and have been used to model human behavior for human-in-the-loop control

synthesis [158]. However, MDPs do not account for the unobserved nature of human

cognitive constructs like trust and associated uncertainties. A useful extension of

HMMs and MDPs, called partially observable Markov decision processes (POMDPs),

provides a framework that accounts for actions/inputs as well as unobserved states

and also facilitates calculating the optimal series of actions based on a desired re-

ward function. Recent work has demonstrated the use of a POMDP model with

human trust dynamics to improve human-robot performance [159]. POMDPs have

also been used in HMI for automatically generating robot explanations to improve

performance [23–25] and estimating trust in agent-agent interactions [160]. For exam-

ple, the POMDP model in [23–25] is used to simulate only the dynamics of the robot’s

decisions and generates recommendations of different transparency levels. However,

the model does not capture human trust-workload behavior nor the dynamic effects

of automation transparency on that behavior. In this work, we model the human

trust-workload behavior as a POMDP and optimally vary automation transparency

to improve human-machine interactions.

Trust and workload levels of humans have been classically obtained using self-

reported surveys. Trust surveys involve questions customized to an experiment along

with a Likert scale for the participants to report how much they trusted the system

and understood the scenario [145]. Workload is commonly assessed using the NASA

TLX survey [161]. In the context of real-time feedback algorithms, however, it is

not practical to use surveys for human measurements because continuously inquiring

humans is generally not feasible. Alternatively, we can use behavioral metrics that
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are readily available in real time and correlate to human trust-workload behavior,

including compliance and response time. Compliance is defined as the human agreeing

to the automation’s recommendation when one is issued. Human response time is the

time a human takes to respond to a stimulus [162]. These metrics can be implicitly

used to infer the underlying trust and workload states of the human.

Several studies have shown a strong correlation between human trust and com-

pliance. For example, researchers have shown that perception of trust is associ-

ated with improved compliance [163]. Furthermore, studies showed that trust and

compliance exhibited similar patterns with variations in system accuracy [164, 165].

Studies in [24] also confirmed the correlation between trust and compliance during

human-robot interaction. Similarly, other studies have shown a correlation between

workload and response time [9, 29]. The peripheral detection task (PDT) method

based on human response time has been shown to be a sensitive measure of cognitive

workload [166,167]. Newell and Mansfield showed that with environmental stressors,

as participants’ reaction times slowed down, simultaneously their workload demands

based on the NASA TLX assessment also increased [168]. Therefore, in this work, we

assume a causal relationship of trust affecting compliance and propose to use response

times as observations corresponding to workload.

3.2.1 POMDP Model of Human Trust and Workload

Here we consider contexts that involve human interaction with a decision-aid

system that gives recommendations based on the presence or absence of a stimulus.

During such an interaction, the final decision and action is taken by the human;

the decision-aid system only provides a recommendation to the human. Although

such systems are a subset of autonomous systems, they are widely used in safety-

critical situations, such as assistive robots used for threat detection in the military

theater or health recommender systems used for detecting diseases. When interacting

with a decision-aid system, the human is typically choosing to either comply with, or
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reject, the system’s recommendation. This human decision has an associated response

time (RT ). Since we cannot directly observe human trust and workload states, we

use human observations—compliance and response time—to estimate the states. We

further assume that human trust and workload are influenced by characteristics of the

decision-aid system’s recommendations. In particular, we consider the effects of the

system’s recommendation and transparency, and the human’s past experience with

the system. Also, the previous states of trust and workload affect the current state.

Therefore, with an assumption that the dynamics of human trust and workload follow

the Markov property [169], we use a POMDP to model the human trust-workload

behavior.

A Partially Observable Markov Decision Process (POMDP) is an extension of

a Markov decision process (MDP) that accounts for partial observability through

hidden states. It is similar in structure to the classic discrete-time state-space model

as described in Table 3.1 but with a discrete state-space. Formally, a POMDP is a

7-tuple (S,A,O, T , E ,R, γ) where S is a finite set of states, A is a finite set of actions,

and O is a set of observations and can be represented as shown in Figure 3.1. The

transition probability function T (s′|s, a) governs the transition from the current state

s to the next state s′ given the action a. The emission probability function E(o|s)

governs the likelihood of observing o given the process is in state s. Finally, the

reward function R(s′, s, a) and the discount factor γ are used for finding an optimal

control policy. A detailed description of MDPs and POMDPs can be found in [170].

We define the finite set of states S consisting of tuples containing the Trust state

sT and the Workload state sW , respectively, where each state can take on a low ( r↓)
or high ( r↑) value. The characteristics of the system recommendations are defined as

the finite set of actions A, consisting of tuples containing Recommendation, Experi-

ence, and Transparency. Here, Recommendation of the automation aSA can be either

Stimulus Absent S−A or Stimulus Present S+
A ; Experience aE, which depends on the

reliability of the last recommendation, can be either Faulty E− or Reliable E+; and

transparency aτ can be either Low Transparency τL, Medium Transparency τM , or
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Table 3.1.
Similarities between a Partially Observable Markov Decision Process
(POMDP) and a discrete-time state-space model.

POMDP State-space model
States s ∈ S x ∈ Rx

Actions/Inputs a ∈ A u ∈ Ru

Observations/Outputs o ∈ O y ∈ Ry

Transition function p(s′) = T (s′|s, a) xt+1 = f(xt, ut)
Emission/Output function p(o) = E(o|s) yt = g(xt)
Reward/Cost function R(s′, s, a) L(xt, ut)

Optimal control policy (a∗/u∗) argmax
a∈A

∞∑
t=0

γtR(st+1, st, at) argmin
u∈Ru

∞∑
t=0

L(xt, ut)

Figure 3.1. A simplified representation of a partially observable Markov
decision process (POMDP) model.

High Transparency τH . The three levels of transparency depend on the context and

the automation. The observable characteristics of the human’s decision are defined

as the set of observations O consisting of tuples containing compliance and Response

Time. Here, Compliance oC can be either Disagree C− or Agree C+ and Response

Time oRT ∈ R+ is defined as the time the human takes to respond after receiving the

decision-aid’s recommendation. The definition of our trust-workload POMDP model

is summarized in Table 3.2.
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Table 3.2.
Definition of the trust-workload POMDP model. Human trust and work-
load are modeled as hidden states that are affected by actions correspond-
ing to the characteristics of the decision-aid’s recommendations. The
observable characteristics of the human’s decisions are modeled as the
observations of the POMDP.

States
s ∈ S s =

[
Trust sT
Workload sW

] sT ∈ T

T =

{
Low Trust T↓,
High Trust T↑

}
sW ∈ W

W =

{
Low Workload W↓,
High Workload W↑

}

Actions
a ∈ A a =

Recommendation aSA
Experience aE
Transparency aτ


aSA ∈ SA

SA =

{
Stimulus Absent S−A ,
Stimulus Present S+

A

}
aE ∈ E

E =

{
Faulty last experience E−,
Reliable last experience E+

}
aτ ∈ τ

τ =


Low Transparency τL,
Medium Transparency τM ,
High Transparency τH


Observations
o ∈ O o =

[
Compliance oC
Response Time oRT

] oC ∈ C

C =

{
Disagree C−,
Agree C+

}
oRT ∈ R+

We assume that human trust and workload behavior are conditionally independent

given an action. Furthermore, we assume that trust only affects compliance, and

workload only affects response time. This enables the trust and workload models to be

identified independently. Moreover, it significantly reduces the number of parameters

in each model and in turn, the amount of human data needed for training each model.
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The transition probability functions for the trust model, TT : T ×T ×A → [0, 1], and

for the workload model, TW : W ×W × A → [0, 1], are represented by 2 × 2 × 12

matrices mapping the probability of transitioning between the states of trust sT ∈ T

or workload sW ∈ W after an action a ∈ A. For the trust model, the emission

probability function ET : C×T → [0, 1] is represented by a 2×2 matrix, mapping the

probability of observing Compliance oC ∈ C given the state of trust sT . Similarly,

for the workload model, the emission probability function EW : R+ ×W → [0, 1] is

represented by two probability density functions, each representing the probability of

observing a response time oRT ∈ R+ given the state of workload sW . Human reaction-

time has been shown to have a distribution similar to the ex-Gaussian distribution

[162, 171, 172], which is a convolution (mixture) of a Gaussian and an exponential

distribution. Here we assume that each workload state has a characteristic response

time distribution defined by an ex-Gaussian distribution.

Human response time RT (also called reaction time or latency [172]) is the time

duration between the presentation of stimulus to a human and the human’s re-

sponse [162]. Response time analysis has a long history in experimental psychology

and still is used as a dominant dependent measure to identify the processes that affect

the human’s response. Statistically, RT is often treated as a random variable because

it typically varies between trials for the same human within a given context. Fur-

thermore, RT distributions are attributed with a positively skewed unimodal shape

(see Figure 3.2) that cannot be effectively captured by only mean and variance [173].

Therefore, a RT distribution cannot be modeled as a Gaussian distribution.

To describe a typical RT distribution, standard distributions like gamma distri-

bution and log-normal distribution have been used in the literature [174,175]. One of

the most widely employed distribution for RT data has been an exponentially modi-

fied Gaussian (or ex-Gaussian) distribution [171,176–182], defined as the convolution

of an exponential distribution with a Gaussian distribution. This distribution is char-

acterized by three parameters, µ, σ and τ , with µ and σ characterizing the average

and standard deviation of the Gaussian component and τ characterizing the decay
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Figure 3.2. Empirical probability density function representing the re-
sponse time RT distribution for the aggregated human subject study data
described in Section 3.2.2. RT distributions are attributed with a posi-
tively skewed unimodal shape with a rapid rise on the left and a long
positive tail on the right.

rate of the exponential component. For σ and τ greater than zero, the probability

density function for the ex-Gaussian distribution is

f(x) =
1

2τ
exp

(
σ2

2τ 2
− x− µ

τ

)
erfc

(
σ2

τ
− (x− µ)

)
,

where erfc is the complementary error function defined as

erfc(x) =
2√
π

∫ ∞
0

e−t
2

dt .

Researchers have attempted to specify the underlying process for RT that leads to

the ex-Gaussian distribution by attributing the exponential component to decision

processes and the normal component to residual processes [183]. However, this ratio-

nale still remains unproven [184]. Nonetheless, the ex-Gaussian distribution has been

found to fit the RT distribution better than gamma and log-normal distributions.
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3.2.2 Human Subject Study

To parameterize the human trust and workload models, we collect human subject

data in a specific decision-aid system context. The experiment presented here is

adapted from an earlier study [25]. The modified experiment captures the effects of

different levels of system transparency on human trust and workload behavior along

with the human-robot interaction performance.

Stimuli and Procedure: A within-subjects study was performed in which par-

ticipants were asked to interact with a simulation consisting of multiple reconnais-

sance missions. Each participant performed three missions while being assisted by a

decision-aid robot. In each mission, participants were required to search 15 buildings

and mark them as safe or unsafe based on the presence or absence of gunmen. The

goal of each mission was to search all of the buildings as fast as possible. Prior to

entering each building, the participant needed to decide if they would use light armor

or heavy armor while searching the building. They were informed that searching a

building with heavy armor would take approximately 7 seconds but would ensure

that they would not be injured if gunmen were present. On the other hand, searching

with light armor would take only 3 seconds, but if gunmen were present, the par-

ticipant would be injured and penalized with a 20-second recovery time. To assist

the participant, the decision-aid robot would survey each building first and make a

recommendation on which armor to use.

In each mission, the participant was assisted by a robot that used a different

transparency level for its recommendation. The interface for each of the levels of

transparency is shown in Figure 3.3. The low transparency robot reported if gunmen

were present or absent along with the armor recommendation (see Figure 3.3(a)).

The medium transparency robot additionally included a sensor bar indicating the

level of potential danger as perceived by the robot (see Figure 3.3(b)). The sensor

reading was below the robot’s threshold when no gunmen were detected and above

the threshold when gunmen were detected. The high transparency robot included
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all of the information provided by the medium transparency robot, along with seven

thermal images collected from inside the building (see Figure 3.3(c)). Note that this

is only one way of defining different levels of transparency and can vary based on

feasibility, context, and automation.

Before the participants began the actual mission, they completed a tutorial mis-

sion consisting of six trials that helped familiarize them with the study interface and

the three levels of transparency. The tutorial mission was uniform across all partici-

pants. For the experiment itself, the order of missions for each transparency level was

randomized across participants to reduce ordering effects [185]. This randomization

reduces the impact of factors like experience, practice from previous missions, and

fatigue on the analysis. The presence or absence of gunmen was equally probable

in each trial. The robots’ recommendations were 70% accurate. When the robot’s

recommendation was incorrect, it was a false alarm (false positive) or miss (false

negative) with equal probability. The sequence of events in each trial is shown in

Figure 3.4.

Participants: Two hundred and twenty-one participants from the United States

participated in, and completed, the study online. They were recruited using Amazon

Mechanical Turk [97], with the criteria that they must live in the US and have com-

pleted more than 1000 tasks with at least a 95% approval rate. The compensation

was $1.50 for their participation, and each participant electronically provided their

consent. The Institutional Review Board at Purdue University approved the study.

Since the participants were not monitored while completing the study, we suspect

that some participants were not sufficiently engaged with the study, reflected by their

unusually high response times to stimuli. Therefore, we filtered data from partici-

pants who had any response time longer than the threshold at 99.5 percentile of all

response times, which was approximately 40.45 seconds. As a result, 25 outlying

participants were removed from the dataset.
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(a)

(b)

(c)

Figure 3.3. Example screenshots of robot reports corresponding to the
three levels of transparencies. The top screenshot (a) shows a low trans-
parency case with the robot’s report (Gunmen Present) along with the
armor recommendation (Heavy Armor). The middle screenshot (b) shows
a medium transparency case that additionally includes a sensor bar on
the left that indicates the level of potential danger perceived by the robot.
The bottom screenshot (c) shows a high transparency case that further
includes seven thermal images collected from inside the building, which
the human can evaluate themselves.
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Figure 3.4. The sequence of events in a single trial. The time length
marked on the bottom right corner of each event indicates the time interval
for which the information appeared on the computer screen.

3.3 Model Parameter Estimation

We assume that the trust and workload behavior of the general population can

be represented by a common model. Therefore, we used the aggregated data from

all participants to estimate the transition probability function, observation probabil-

ity function, and the prior probabilities of states for the trust and workload models.

For this study, the system recommendation that indicates Light Armor is defined as

Stimulus Absent S−A and the recommendation that indicates Heavy Armor is defined

as Stimulus Present S+
A . We define a sequence of action-observation data for a partici-

pant as the interaction between the participant and robot in each mission. Therefore,

we have 196× 3 sequences of data to estimate the parameters of each model.

The problem of model parameter estimation for POMDP models using sequences

of data is defined as finding optimal parameters that maximize the likelihood of ob-

serving the sequences of observation for the given sequences of actions. For estimating

the parameters of the discrete observation-space trust model, we use an extended ver-

sion of the Baum-Welch algorithm, which is typically used for hidden Markov model
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(HMM) estimation (see [186] for details). However, the continuous non-Gaussian

distribution of the emission probability function of the workload model makes it in-

feasible to be estimated using the Baum-Welch algorithm. Therefore, we implement

a genetic algorithm using Matlab to optimize the parameters for the workload model

in which the algorithm aims to find a set of parameters that maximize the likelihood

of the sequences given the model parameters. The likelihood of the sequences is cal-

culated using the forward algorithm [186]. Given the model parameters, the forward

algorithm computes the joint probability of a state sk at time k, observations until

time k (i.e., o1:k), and actions until time k (i.e., a1:k), that is, p(sk, o1:k, a1:k), recur-

sively over time by taking advantage of the conditional independence. The likelihood

of the sequence is then calculated as the sum of p(sN , o1:N , a1:N) across all states at

the end of the sequence at time N , therefore giving the probability of the action-

observation sequence p(o1:N , a1:N). The forward algorithm reduces the computational

complexity of this evaluation from O(NnNs ), if we use the ad hoc method of marginal-

izing over all possible state sequences, to O(Nn2
s), where ns is the number of states

and N is the length of the sequence. The estimated POMDP models of trust and

workload models are presented and analyzed in the next section.

3.3.1 Trust Model

The estimated trust model consists of initial state probabilities π(sT ), an emis-

sion probability function ET (oC |sT ), and a transition probability function TT (s′T |sT , a).

Based on the emission probability function for trust ET (oC |sT ), we define the High

Trust state sT = T↑ as that in which there is a higher probability of observing the

human comply with the automation’s recommendation, oC = C+. The estimated

initial probabilities of Low Trust T↓ and High Trust T↑ are π(T↓) = 0.1286 and

π(T↑) = 0.8714, respectively. This is consistent with findings that recent widespread

use of automation has led to humans trusting a system when they have no experience

with it [187]. The emission probability function ET (oC |sT ) is depicted in Figure 3.5
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and characterizes the probability of a participant’s compliance with the system’s rec-

ommendations given the participant’s state of trust. Both states, Low Trust and

0.9971

0.0029

0.0213

0.9787

Figure 3.5. Emission probability function ET (oC |sT ) for the trust model.
Probabilities of observation are shown beside the arrows. Low Trust has
a 99.71% probability of resulting in participants disagreeing with the rec-
ommendation and High Trust has a 97.87% probability of resulting in
participants agreeing with the recommendation.

High Trust, have more than 97% probability to result in participants disagreeing and

agreeing with the recommendation, respectively. However, there is still a small proba-

bility of participants disagreeing while in a state of High Trust as well as participants

agreeing while in a state of Low Trust. This inherently captures the uncertainty in

human behavior.

Figure 3.6 represents the transition probability function TT (s′T |sT , a) showing the

probability of transitioning from the state sT to s′T (where sT , s′T ∈ T ) given the

action a ∈ A. The cases when the recommendation suggests Light Armor S−A can be

considered relatively high-risk situations in our context because incorrectly comply-

ing with a faulty recommendation—that is, wearing Light Armor in the presence of

gunmen—can result in getting injured and a penalty of 20 seconds (see (Figures 3.6(a)

and 3.6(b)). On the other hand, the cases when the recommendation suggests Heavy

Armor S+
A are low-risk situations (Figures 3.6(c) and 3.6(d)) as incorrect compliance

only leads to an extra 4 seconds of search time. We observe that the probability of

transitioning to High Trust T↑ as well as staying in High Trust T↑ is higher for low-

risk situations (Figure 3.6(c) and 3.6(d)) as compared to the corresponding high-risk
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Figure 3.6. Transition probability function TT (s′T |sT , a) for the trust
model. Probabilities of transition are shown beside the arrows. The top-
left diagram (a) shows the transition probabilities when the decision-aid’s
recommendation is Light Armor S−A and the participant had a Faulty last
experience E−. The top-right diagram (b) shows the transition proba-
bilities when the decision-aid recommends Light Armor S−A and the par-
ticipant had a Reliable last experience E+. Both cases (a) and (b) can
be considered relatively high-risk situations in this context because incor-
rectly complying with a faulty recommendation—that is, wearing Light
Armor in the presence of gunmen—can result in injury. The bottom-left
diagram (c) shows the transition probabilities when the decision-aid rec-
ommends Heavy Armor S+

A and the participant had a Faulty last experi-
ence E−. The bottom-right diagram (d) shows the transition probabilities
when the decision-aid recommends Heavy Armor S+

A and the participant
had a Reliable last experience E+.

situations (Figure 3.6(a) and 3.6(b)). Given that the robot was only 70% reliable in

the study, this over-trust during low-risk situations, with transition probabilities to
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High Trust T↑ being greater than 91% (see Figure 3.6(c) and 3.6(d)), indicates the

inherent conservative behavior of participants. The participants preferred to comply

with the robot (by choosing Heavy Armor) and risk an effective penalty of 4 seconds

instead of risking a penalty of 20 seconds. It should be noted that the participants

did not know about the failure rate of the robot.

Interestingly, we observe that high transparency τH has the highest probability

of causing a transition from High Trust T↑ to Low Trust T↓ as compared to lower

transparencies in most cases (except Figure 3.6(c)). This is because high transparency

enables the participant to make a more informed decision and avoid errors that would

result from trusting a faulty recommendation. Therefore, high transparency helps the

participant to calibrate their trust correctly in these cases. Moreover, in most cases

(except Figure 3.6(c)), low transparency τL has the lowest probability of causing a

transition from Low Trust T↓ to High Trust T↑. However, low transparency can offer

the best strategy for maintaining a state of high trust (see Figure 3.6(b)). In summary,

our findings suggest that transparency does not directly affect human trust; instead,

factors such as the human’s current trust state, assessment of risk, and the reliability

of the automation affect how transparency changes trust.

3.3.2 Workload Model

Similar to the trust model, based on the emission probability function for workload

EW (oRT |sW ), we define the High Workload state sW = W↑ as that in which the

expected response time IE [oRT |sW ] is longer. We estimated the initial probabilities

of Low Workload W↓ and High Workload W↑ to be π(W↓) = 0.3097 and π(W↑) =

0.6903, respectively. The high initial probability of High Workload W↑ is expected

because participants initially need to familiarize themselves with the system. The

emission probability function EW (oRT |sW ) is represented in Figure 3.7, which shows

the probability density functions (PDFs) of observing participants’ response time as

oRT given their state of workload sW . We observe that Low Workload W↓ is more
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Figure 3.7. Emission probability function EW (oRT |sW ) for the workload
model. For Low Workload, the response time (oRT ) PDF fORT |W↓(oRT |W↓)
is characterized by an ex-Gaussian distribution with µW↓ = 0.2701,
σW↓ = 0.2964, and τW↓ = 0.4325. For High Workload, the response time
(oRT ) PDF fORT |W↑(oRT |W↑) is characterized by an ex-Gaussian distribu-
tion with µW↑ = 0.7184, σW↑ = 0.2689, and τW↑ = 2.2502. Low Workload
W↓ is more likely than High Workload to result in a response time of less
than approximately 1.19 seconds.

likely than High Workload to result in a response time of less than approximately

1.19 seconds. High Workload is more likely to lead to high response times.

The transition probability function TW (s′W |sW , a) is represented in Figure 3.8 and

shows the probability of a participant transitioning from the state sW to s′W based on

the action a ∈ A, where sW , s′W ∈ W . We observe that in most cases, the probability

of transitioning from Low Workload W↓ to High Workload W↑ is greater for higher

transparencies for a given recommendation and experience (except Figure 3.8(c)).

Therefore, it is more likely that higher transparencies will increase participants’ work-

load if they are in a state of Low WorkloadW↓ because they need to process even more

information for decision-making. However, if a participant is in a state of High Work-

load W↑, medium transparency τM has a lower probability than low transparency τL

to keep them in a High Workload W↑ state. This may occur because in such cases,

low transparency may not provide enough information for the participants to make

a decision, leaving them confused. This results in participants using more time and
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Figure 3.8. Transition probability function TW (s′W |sW , a) for the work-
load model. Probabilities of transition are shown beside the arrows. The
top-left diagram (a) shows the transition probabilities when the decision-
aid recommends Light Armor S−A and the participant had a Faulty last ex-
perience E−. The top-right diagram (b) shows the transition probabilities
when the decision-aid recommends Light Armor S−A and the participant
had a Reliable last experience E+. The bottom-left diagram (c) shows the
transition probabilities when the decision-aid recommends Heavy Armor
S+
A and the participant had a Faulty last experience E−. The bottom-

right diagram (d) shows the transition probabilities when the decision-aid
recommends Heavy Armor S+

A and the participant had a Reliable last
experience E+.

effort to reach a decision. Overall, high transparency τH has the highest probability

of keeping the participant in a state of High Workload W↑ for a given recommenda-

tion and experience. Finally, it is worth noting that the probability of transitioning

to High Workload W↑ from any workload state is higher when the decision-aid rec-
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ommends Light Armor S−A (see Figure 3.8(a) and 3.8(b)) as compared to when the

decision-aid recommends Heavy Armor S+
A (see Figure 3.8(c) and 3.8(d)) for a given

experience and transparency. This is because a recommendation suggesting Light

Armor S−A has a higher risk as discussed previously, leading humans to consider their

decision more carefully.

In summary, we have created a POMDP model for estimating human trust and

workload in the context of a human interacting with a decision-aid system. We

observe that a higher transparency is not always the most likely way to increase trust

in humans nor is it always more likely to increase workload. Instead, the optimal

transparency depends on the current state of human trust and workload along with

the recommendation type and the human’s past experiences. In other words, higher

transparency is not always beneficial, and instead, system transparency should be

controlled based upon all these factors. In the next section, we use the POMDP

model to develop an optimal control policy that varies system transparency to improve

human-machine interaction performance objectives.

3.4 Controller Design

In the last section, we developed a partially observable Markov decision process

(POMDP) framework for estimating human trust and workload as it changes with

machine transparency. The model captures changes in trust and workload for contexts

that involve interaction between a human and an intelligent decision-aid system. In

this section, we establish a systematic method for shaping the reward function for

the trust-workload POMDP model framework so as to close the loop between human

and machine. We implement these control policies in a reconnaissance mission study

in which human subjects are aided by a virtual robotic assistant. Finally, we analyze

the performance of these two control policies against an open-loop baseline.

Before we synthesize an optimal control policy, we need to define the context-

specific performance objectives relevant in this study. We focus on two critical per-
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formance objectives: 1) the human should make correct decisions irrespective of the

robot’s reliability and 2) the human should make their decision in the shortest amount

of time. Based on these performance objectives, we define the reward function for

the POMDP, which is used to obtain the optimal control policy.

3.4.1 Decision Reward Function

The primary goal of calibrating trust and workload during human-machine inter-

actions is to achieve the goals that are specific to the interaction. Since any given

decision-aid system is never completely reliable, it is not always beneficial for the

human to comply with the system. Instead, the human should make correct deci-

sions; that is, the human should comply with the system when its recommendation

is reliable and not comply when the system’s recommendation is faulty. The deci-

sion reward function aims to enforce this behavior by appropriately penalizing the

human’s decisions. In order to characterize this behavior formally, we first define a

few terms.

Earlier we defined the recommendation aSA ∈ SA := {S−A , S
+
A} of the decision-aid

system depending on its inference about a given situation. However, we also need to

distinguish the human’s inference about the situation from the true situation. For

example, in our reconnaissance mission, it is possible for the decision-aid robot to

correctly recommend the use of Light Armor, indicating the absence of gunmen, i.e.,

S−A , but for the human to believe that the robot is faulty. In this case, the human may

infer that there are gunmen present and choose to wear Heavy Armor. To account

for this situation, we additionally define the true absence or presence of the stimulus

as āS ∈ S := {S−, S+} and the human’s inference as āSH ∈ SH := {S−H , S
+
H}. Note

that terms with ā should not be confused with actions a of the POMDP model. Also,r− and r+ represent the absence and presence of a stimulus, respectively. Typically,

the prior probability of the true situation p(āS) is known. Moreover, the presence or

absence of gunmen is equally probable in our study, so p(S−) = p(S+) = 0.5.
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Table 3.3.
Confusion matrix representation for the decision-aid system’s and the hu-
man’s inference. Each row of the matrix represents the true situation,
while each column represents the inference made by the decision-aid sys-
tem or the human.

Decision-aid system’s or human’s inference
aSA = S−A or āSH = S−H aSA = S+

A or āSH = S+
H

True Situation āS = S−
True Negative

TN
False Positive

FP

āS = S+ False Negative
FN

True Positive
TP

Table 3.4.
Reliability characteristics of the decision-aid system in the reconnaissance
mission study representing the probabilities of the decision-aid’s inference
given the true situation. Since the decision-aid is 70% reliable, the prob-
ability of the decision-aid making a correct inference is 0.7.

Decision-aid robot’s inference
aSA = S−A aSA = S+

A

True Situation āS = S−
1− α
= 0.7

α
= 0.3

āS = S+ β
= 0.3

1− β
= 0.7

The decision-aid’s recommendations, and the human’s decisions with respect to

the true situation, are each characterized by the confusion matrix shown in Table 3.3.

In practice, a decision-aid system’s reliability is a system characteristic and known

a priori ; therefore, we define the reliability function as a probability of the system’s

recommendation given the true situation, i.e., p(aSA|āS); we denote the probability of

the decision-aid system making a false negative as p(S−A |S+) = β and the probability

of the decision-aid system making a false positive as p(S+
A |S−) = α. These reliability

characteristics of the decision-aid system with 70% reliability in our reconnaissance

mission study are summarized in Table 3.4. To help the human make correct decisions,

we define a decision reward functionRD : SH×S → R in terms of the human inference
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Table 3.5.
Decision reward function based on the inference made by the human. The
reward function is defined as penalties equivalent to the expected amount
of time, in seconds, that the human has to expend as a result of their
decision.

Human’s inference
āSH = S−H āSH = S+

H

True Situation āS = S− −3 −7
āS = S+ −23 −7

and the true situation, which is summarized in Table 3.5. The reward function is

defined in terms of penalties equivalent to the expected amount of time, in seconds,

that the human has to expend as a result of their decision. In particular, the human

has to wait 3 seconds to search the building with Light Armor S−H if there are no

gunmen present S−. However, if gunmen are present S+ and the human chooses Light

Armor S−H , an additional 20 second penalty due to injury will be applied, resulting in

a total wait time of 23 seconds. Moreover, a choice of Heavy Armor S+
H will always

result in a wait of 7 seconds to search the building irrespective of the true situation.

This reward function is specific to the reconnaissance study context and should be,

in general, defined based on the context under consideration.

Although, the decision reward function RD(āSH , āS) is intuitive to design, the

standard form of the reward function for a POMDP R : S × S × A → R is defined

as the reward for transitioning from state s ∈ S to s′ ∈ S due to action a ∈ A.

Therefore, we transformRD(āSH , āS) to derive the expected standard reward function.

As decision rewards are only dependent on human compliance behavior and therefore

only on trust behavior, we derive the expected reward function for the trust POMDP

model as RT : T × T ×A → R by calculating IE [R|sT , s′T , a], where random variable

R is the reward and IE [ r] is the expected value of r.
Proposition 3 Given the reward function RD(āSH , āS) as shown in Table 3.5, trust

emission probability function ET (oC , sT ), and automation reliability characteristics
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defined as p(aSA|āS), an equivalent expected reward function in the form RT (sT , s
′
T , a)

is

RT (sT , s
′
T , [aSA , aE, aτ ]) =

∑
o′C∈C

∑
āS∈S

ET (o′C |s′T ) p (āS|aSA)RD (g (aSA , o
′
C) , āS) ,

(3.1)

where p (āS|aSA) is the posterior probability calculated from Table 3.4 and Bayes’

theorem as

p (āS|aSA) =
p (aSA|āS) p (āS)∑

āS∈S
p (aSA|āS) p (āS)

,

and g : SA×C → SH is a function mapping human compliance oC ∈ C in response to

the system’s recommendation aSA ∈ SA to the human inference/decision āSH ∈ SH .

Specifically,

g
(
S−A , C

−) = S+
H , g

(
S−A , C

+
)

= S−H , g
(
S+
A , C

−) = S−H , and g
(
S+
A , C

+
)

= S+
H .

For example, the human not complying oC = C− with a recommendation of Light Ar-

mor aSA = S−A effectively means that the human is inferring the presence of gunmen,

and thereby, choosing Heavy Armor āSH = S+
H .

Proof Let the reward R be a random variable, which has been defined in terms of

human inference āSH ∈ SH and the true situation āS ∈ S (see Table 3.5). We derive

the expected reward function for the trust POMDP model as RT : T × T ×A → R

by calculating IE [R|sT , s′T , a], where IE [ r] is the expected value of r. Therefore, using
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the law of total expectation repeatedly, as well as conditional independence between

states, actions, and observations, we obtain

RT (sT , s
′
T , [aSA , aE, aτ ]) = IE [R|sT , s′T , aSA , aE, aτ ]

= IE [R|s′T , aSA ]

=
∑
o′C∈C

p (o′C |s′T , aSA) IE [R|s′T , aSA , o′C ]

=
∑
o′C∈C

p (o′C |s′T ) IE [R|aSA , o′C ]

=
∑
o′C∈C

∑
āS∈S

ET (o′C |s′T ) p (āS|aSA , o′C) IE [R|aSA , o′C , āS]

=
∑
o′C∈C

∑
āS∈S

ET (o′C |s′T ) p (āS|aSA)RD (g (aSA , o
′
C) , āS) .

3.4.2 Response Time Reward Function

In most scenarios, apart from ensuring that the human makes correct decisions, the

time the human takes to make the decision is also critical. Therefore, to minimize the

human’s response time, we define the response time reward function RRT : R+ → R

as RRT (oRT ) = −oRT to proportionally penalize longer response times. Similar to

the decision reward function, the response time reward function is transformed to

derive the expected standard reward function for the POMDP. As the response time

reward function is only dependent on human response time behavior, and therefore,

only on workload behavior, we derive the expected reward function for the workload

POMDP model as RW : W × W × A → R by calculating IE [R|sW , s′W , a], where

random variable R is the reward and IE [ r] is the expected value of r.
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Proposition 4 Given the reward function RRT (oRT ) = −oRT and workload emission

probability function EW (oRT |sW ) as represented in Figure 3.7, an equivalent expected

reward function in the form RW (sW , s
′
W , a) is

RW (sW , s
′
W , [aSA , aE, aτ ]) = −(µs′W + τs′W ), (3.2)

where µs′W and τs′W are the parameters of the ex-Gaussian distribution corresponding

to state s′W ∈ W .

Proof Let the reward R be a random variable, which has been defined in terms of

human response time oRT ∈ R+. We derive the expected reward function for the

workload POMDP model as RW : W ×W ×A → R by calculating IE [R|sW , s′W , a],

where IE [ r] is the expected value of r. Therefore, using the law of total expectation

repeatedly, as well as conditional independence between states, actions, and observa-

tions, we obtain

RW (sW , s
′
W , [aSA , aE, aτ ]) = IE [R|sW , s′W , aSA , aE, aτ ]

=

∫
R+

p (o′RT |sW , s′W , aSA , aE, aτ ) IE [R|o′RT , sW , s′W , aSA , aE, aτ ] do′RT

=

∫
R+

p (o′RT |s′W ) IE [R|o′RT ] do′RT

=

∫
R+

p (o′RT |s′W ) (−oRT ) do′RT

= − IE [o′RT |s′W ]

= −(µs′W + τs′W ) .
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We define the total reward function R for human trust-workload behavior as a

convex combination of (3.1) and (3.2) with weight ζ as

R = ζRT + (1− ζ)RW . (3.3)

As the weight ζ increases, more importance is given to the trust reward than the

workload reward. For situations in which a correct decision is more important than

a faster response time, a higher value of ζ should be used. Lastly, the discount factor

γ is selected based on the number of trials per mission in our study, i.e., N = 15. We

select the discount factor γ such that the reward of the 15th trial has a weight of e−1;

such a value of γ can be approximated as

γ =
N

N + 1
= 0.9375 . (3.4)

With the defined reward function and discount factor, we calculate the control policy

for the POMDP model using the Q-MDP method as described in the next section.

3.4.3 POMDP Control Policy

Using the reward function defined in the previous section, we determine the op-

timal control policy for updating the decision-aid’s transparency by solving the com-

bined trust-workload model to maximize the reward function defined in the previous

section. Although it is possible to obtain the exact solution of the optimization

through dynamic programming using value iteration, the time complexity increases

exponentially with the cardinality of the action and observation spaces. Since a real-

world scenario can involve a much larger set of actions and observations, obtaining

the exact optimal solution may be intractable. Therefore, we adopt an approximate

greedy approach called the Q-MDP method [188] to obtain a near optimal trans-

parency control policy. The Q-MDP method solves the underlying MDP by ignoring

the observation probability function to obtain the Q-function QMDP : S × A → R.
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QMDP(s, a) is the optimal expected reward given an action a is taken at the current

state s. Then, using the belief state b(s), which can be iteratively calculated as

b′(s′) = p(s′|o, a, b(s)) =

p(o|s′, a)
∑
s∈S

p(s′|s, a)b(s)∑
s′∈S

p(o|s′, a)
∑
s∈S

p(s′|s, a)b(s)
, (3.5)

the optimal action a∗ is chosen as

a∗ = argmax
a

∑
s∈S

b(s)QMDP(s, a) . (3.6)

Essentially, the Q-MDP method approximates the optimal solution by assuming that

the POMDP becomes completely observable after the next action. In order to solve

the POMDP using the Q-MDP method, we calculate the Q-function of the under-

lying MDP using value iteration [169]. Nevertheless, as with any other method, the

solution assumes that the decision-aid system can take any action a ∈ A in the

future. But, in our model, only transparency aτ is a controllable action; the other

actions—recommendation aSA and experience aE—depend on the context and cannot

be explicitly controlled by the policy. To account for these “uncontrollable” actions

while solving for the control policy in the Q-MDP method, we calculate an expected

Q-function of the form Qτ : S × τ → R. This intermediate Q-function is only depen-

dent on the controllable actions and considers the probabilities of the uncontrollable

actions. Finally, we iteratively solve (3.7) until convergence is achieved to obtain

QMDP(s, a).

QMDP(s, a) =
∑
s′∈S

T (s′|s, a) (R(s′|s, a) + γV (s′))

Qτ (s, τ) =
∑

aSA∈SA,aE∈E

p(aSA , aE)QMDP(s, [aSA , aE, aτ ])

V (s) = max
τ

Qτ (s, τ)

(3.7)
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Furthermore, p(aSA , aE) = p(aSA)p(aE) because the present recommendation aSA and

experience aE due to the reliability of the last recommendation are independent.

Therefore, p(aSA) and p(aE) are calculated as

p(SA
−) = βd+ (1− α)(1− d) ,

p(SA
+) = 1− p(S−A ) ,

p(E−) = α(1− d) + βd ,

p(E+) = 1− p(E−) .

(3.8)

For our human subject study, d = 0.5, α = 0.3, and β = 0.3. For implementation,

once aSA and aE are known in a trial, near-optimal transparency a∗τ can be determined

as

a∗τ = argmax
aτ

∑
s∈S

b(s)QMDP(s, [aSA , aE, aτ ]) . (3.9)

We calculate the total reward function R and the corresponding control policy for

three values of reward weights ζ = 0.50, ζ = 0.91, and ζ = 0.95.

The control policies corresponding to each of the reward weights are depicted

in Figures 3.9, 3.10, and 3.11, respectively. We first consider the case with ζ =

0.50 shown in Figure 3.9. Here, the reward function gives equal importance to the

decision and response time rewards. Each of the four figures represents the optimal

choice of transparency based on the estimated probability of High Trust T↑ and High

Workload W↑ for a given recommendation aSA and experience aE. We first consider

the case when the recommendation suggests Light Armor aSA = S−A as shown in

Figures 3.9(a) and 3.9(b). This case represents a high risk situation for over-trust

because an incorrect human decision of complying with the recommendation can lead

to the human using Light Armor in the presence of gunmen, resulting in injury and an

extra penalty of 20 seconds. The control policy adopts medium transparency τM when

the probabilities of High Trust and High Workload are high. Medium transparency

can help the human to make a more informed decision than low transparency, thereby
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avoiding over-trust in these cases when the human’s trust is too high. Also, if the

human’s experience was reliable from the last trial (aE = E+), the chance of over-trust

is higher. In this case, medium transparency is adopted at even lower probabilities

of High Trust as seen in Figure 3.9(b). Furthermore, as seen in Figure 3.8, medium

transparency is best at transitioning a human from a state of High Workload to a state

of Low Workload. Therefore, medium transparency will help to reduce the expected

response time when the probability of High Workload is high.

For the case when the decision-aid recommends Heavy Armor aSA = S+
A , shown

in Figures 3.9(c) and 3.9(d), the situation risk is low given that an incorrect compli-

ance only leads to an extra 4 seconds of search time. Therefore, the control policy

always aims to increase trust in this case. Since medium transparency has the high-

est probability of causing a transition from Low Trust to High Trust (Figure 3.6(c))

and 3.6(d)), the control policy adopts medium transparency when the probability

of High Trust is low. When the probability of High Trust is high and the human’s

prior experience with the decision aid was Faulty, medium transparency has a higher

probability of maintaining a high trust level as compared to low transparency (Fig-

ure 3.6(c)); therefore, the control policy adopts medium transparency in this case

(Figures 3.9(c)). Note that high transparency is not adopted by the control policy in

this case due to the large response time penalty associated with high transparency.

When the human’s prior experience with the decision aid was reliable, low trans-

parency has the highest probability of maintaining high trust level (Figure 3.6(d));

therefore, low transparency is preferred with low levels of workload (Figures 3.9(d)).

Moreover, medium transparency is adopted when the probability of High Workload

is high as discussed above. In general, medium transparency dominates the control

policy for ζ = 0.50 because in most cases it provides a good trade-off between trust

calibration based on informed decision-making and increased workload.

For the cases with ζ = 0.91 and ζ = 0.95, higher importance is given to the decision

rewards as compared to the response time rewards. In these cases, as represented in

Figure 3.10 and 3.11, we observe that the control policies adopt high transparency for
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(a) (b)

(c) (d)

Figure 3.9. Closed-loop control policy corresponding to the reward func-
tion with ζ = 0.50. In this case, the reward function gives equal im-
portance to the decision and response time rewards. Subfigure (a) corre-
sponds to aSA = S−A , aE = E−, (b) corresponds to aSA = S−A , aE = E+,
(c) corresponds to aSA = S+

A , aE = E−, and (d) corresponds to aSA =
S+
A , aE = E+. When ζ = 0.50, high transparency is never adopted be-

cause it would result in a significant increase in response time.

a very high probability of High Trust; this ensures that the human does not over-trust

the automation and instead makes the most informed decision possible. With higher

values of ζ, the use of high transparency is further increased since the associated

weight for the response time reward is significantly reduced. In the next section,

these control policies are implemented to dynamically vary transparency based on the

participant’s current trust and workload estimates in a reconnaissance mission study.
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(a) (b)

(c) (d)

Figure 3.10. The closed-loop control policy corresponding to the reward
function with ζ = 0.91. In this case, higher importance is given to the
decision rewards as compared to the response time rewards. Subfigure (a)
corresponds to aSA = S−A , aE = E−, (b) corresponds to aSA = S−A , aE =
E+, (c) corresponds to aSA = S+

A , aE = E−, and (d) corresponds to
aSA = S+

A , aE = E+. This control policy adopts high transparency for
very high probabilities of High Trust to reduce the number of incorrect
decisions the human may make due to their over-trust in the decision-aid
system.

3.5 Validation and Results

To experimentally validate the performance of the proposed control policies rep-

resented in Figures 3.9, 3.10, and 3.11, we conducted two human subject studies.

These experiments were identical to the one used to collect open-loop data for each
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(a) (b)

(c) (d)

Figure 3.11. The closed-loop control policy corresponding to the reward
function with ζ = 0.95. In this case, a very high importance is given to the
decision rewards as compared to the response time rewards. Subfigure (a)
corresponds to aSA = S−A , aE = E−, (b) corresponds to aSA = S−A , aE =
E+, (c) corresponds to aSA = S+

A , aE = E−, and (d) corresponds to
aSA = S+

A , aE = E+. This control policy again adopts high transparency
for high probabilities of High Trust to reduce the number of incorrect
decisions the human may make due to their over-trust in the decision-aid.

transparency but with transparency controlled using the control policies based on

human trust and workload estimation.

Stimuli and Procedure: Two within-subject studies were performed in which

participants were asked to interact with a simulation of three reconnaissance missions

as described in the earlier study description. However, instead of fixed transparency
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in each mission, the transparency was controlled based on a feedback control policy

for some missions. For the first study, high transparency was always used in one of

the three missions, and in the other two missions, the transparency was dynamically

varied based on control policies corresponding to ζ = 0.50 (Figure 3.9) and ζ = 0.95

(Figure 3.11), respectively. In the second study, the transparency was dynamically

varied based on the control policy corresponding to ζ = 0.91 (Figure 3.10) in one

mission, and the other two missions used fixed medium transparency and fixed high

transparency, respectively. Three missions in each study ensured that the studies

were short enough to avoid participant fatigue and were consistent in structure with

the study used to collect open-loop data. Moreover, the order of missions was again

randomized across participants to reduce ordering effects [185].

Participants: One hundred and twenty participants for the first study, and one

hundred and four participants for the second study, participated in and completed

the study online. They were recruited using Amazon Mechanical Turk [97] with the

same criteria used for the earlier study. To account for participants who were not

sufficiently engaged in the study, we filtered data that had any response time higher

than 40.45 seconds. As a result, 20 outlying participants were removed from the

dataset for the first study, and 7 outlying participants were removed from the dataset

for the second study, leading to a remaining 100 and 97 participants, respectively.

Using the collected human subject data from the two validation studies along with

the open-loop study discussed earlier, we quantify and evaluate participants’ perfor-

mance for the dynamically varying transparency missions and the fixed transparency

mission. We compare two metrics: total decision reward and total response time

reward for each type of mission. We use linear mixed effects analysis and likelihood

ratio tests to determine whether the use of trust-workload behavior-based feedback

had any significant effect on these metrics. We used the statistical computing lan-

guage R [189] and lme4 library [190] to perform a linear mixed model approach to

analyze the relationship between each of the metrics and the transparency policies.

As a fixed effect, we used the transparency policy in the models. To account for
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variations in the metrics calculated for different participants, the models considered

each individual as a random effect. P-values were obtained using likelihood ratio

tests of the full model that includes the transparency policy as a fixed effect against

the model that does not include the transparency policy. Figure 3.12 shows the ef-

fect of the transparency policies (open-loop: Low, Medium, and High; closed-loop:

ζ = 0.50, 0.91, and 0.95) on the total decision rewards and on the total response time

rewards across participants.

Figure 3.12. Effect of the proposed control policies on the total decision
and total response time rewards. Error bars represent the standard error
of the mean across participants. The closed-loop control policies are high-
lighted in gray. The performance of the closed-loop policies lies between
that of high and low transparency in terms of both reward metrics. With
higher values of the reward weight ζ, the performance of the closed-loop
policy is more similar to that of high transparency. Depending on the re-
quirements of the context, ζ can be tuned to achieve the required trade-off
between decision and response time performance.

The total decision reward is defined as the sum of all decision rewards based on

Table 3.5 accrued by the participant in a mission. A likelihood ratio test using linear

mixed effects models indicated that the transparency policies significantly affected to-

tal decision rewards (χ2(6) = 229.62, p ≈ 0.0000). The total response time reward is
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defined as the negative of the sum of all response times in seconds accrued by the par-

ticipant in a mission. A likelihood ratio test indicated that the transparency policies

significantly affected total response time rewards (χ2(6) = 230.07, p ≈ 0.0000).

To analyze the performance and benefit of the closed-loop control policies, we

compare them with the performance of the open-loop cases (that consider a static

transparency). Furthermore, we analyze the effects of the reward weight ζ on the

closed-loop performance. From Figure 3.12, considering open-loop fixed transparency

policies, we see that high transparency has the best performance in terms of decision

rewards, followed by medium and low transparency. However, low and medium trans-

parency perform better in terms of response time rewards; this indicates a trade-off

between the correctness of the human’s decision versus the corresponding response

time. Although the use of high transparency can result in the highest number of

correct decisions, high response times indicate higher workload levels for the human.

Furthermore, some time-critical contexts may favor fast response times in lieu of

perfect decisions.

Given this trade-off, we see that the performance of our closed-loop policies lies

between that of high and low transparency in terms of both reward metrics (see gray-

highlighted region in Figure 3.12). We see that with higher values of the weight ζ,

the performance of the closed-loop policy is more similar to that of high transparency

used all the time. The control policy corresponding to ζ = 0.91 performs better

than the medium transparency in terms of decision rewards but has lower response

time rewards. Therefore, depending on the requirements of the context, the proposed

control policy enables the controls engineer to trade off between decision and response

time performance.

3.6 Chapter Summary

In this chapter, we developed a model of human trust and workload dynamics as

they evolve during a human’s interaction with a decision-aid system. Furthermore,
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we designed and validated a model-based feedback control policy aimed at dynam-

ically varying the automation’s transparency to improve the overall performance of

the human-machine team. The model, which was parameterized using human subject

data, captured the effects of the decision-aid’s recommendation, the human’s previous

experience with the automation, and automation transparency on the human’s trust-

workload behavior. The model is capable of estimating human trust and workload in

real time using recursive belief-state estimates. Experimental validation showed that

the closed-loop control policies were successfully able to manage the human decision

versus response time performance tradeoff based on a tuning parameter in the reward

function. This framework provides a tractable methodology for using human behav-

ior as a real-time feedback signal to optimize human-machine interactions through

dynamic modeling and control.

It should be noted that the overall performance of the control policy could be

improved by addressing a few limitations of the proposed trust-workload model. We

assumed that human trust and workload behavior are conditionally independent to

simplify the model structure and complexity. However, trust and workload may be

coupled, and therefore, changes in the trust state could directly impact the workload

state and vice-versa. In the next chapter, we will explore and analyze coupled models

of trust and workload by relaxing multiple independence assumptions.
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4. COUPLED MODELS OF TRUST AND WORKLOAD

In the previous chapter, we demonstrated the use of a POMDP based framework to

model the dynamics of human trust and workload. We then used this model to design

a feedback policy to optimally vary automation transparency. As we noted, a poten-

tial limitation of this framework is that it assumes that human trust and workload

dynamics are independent, an assumption that is accompanied by the notion that

human compliance is not affected by workload and response time is not affected by

trust. However, studies in existing work contradict some of these assumptions. First,

researchers have shown that workload can have an impact on human trust behav-

ior [69,191], and that trust can facilitate reliance and reduce the workload associated

with monitoring the automation [192]. Additionally, [66] notes that compliance affects

the response time and accuracy to an announced system failure (higher compliance

leads to shorter response time), both under high workload conditions. Therefore, we

need to analyze the coupling interactions between human trust and workload in the

context of human-machine interactions.

In this chapter, we model this coupling in a POMDP framework for a human

interacting with an automated decision-aid. We specifically consider a simulated re-

connaissance mission scenario where the human is assisted by a robot as discussed

in Chapter 3. We explore and analyze multiple models with varying complexities by

relaxing assumptions on trust and workload independence. Finally, the performance

of two of these coupled models are compared to that of the independent model by val-

idating the optimal control policy for dynamically varying automation transparency

based on each model’s trust and workload estimates.
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4.1 Description of Coupled Models

The trust-workload POMDP model as defined in Chapter 3 is as follows. The set

of states S is defined as tuples containing the Trust state sT and the Workload state

sW , i.e., s =
[
sT , sW

]
. Here,

sT ∈ T :=
{
Low Trust T↓,High Trust T↑

}
and

sW ∈ W :=
{
Low Workload W↓,High Workload W↑

}
.

The set of actions A is defined as the characteristics of the system recommendation

that consists of tuples containing Recommendation of the automation aSA , Expe-

rience aE that depends on the reliability of the last recommendation, and Trans-

parency aτ , i.e., a =
[
aSA , aE, aτ

]
. Here,

aSA ∈ SA :=
{
Stimulus Absent S−A , Stimulus Present S+

A

}
,

aE ∈ E :=

Faulty last experience E−,

Reliable last experience E+

 , and

aτ ∈ τ :=


Low Transparency τL,

Medium Transparency τM ,

High Transparency τH

 .

The observable characteristics of the human’s decision are defined as a set of observa-

tions O consisting of tuples containing Compliance oC and Response Time oRT , i.e.,

o =
[
oC , oRT

]
. Here,

oC ∈ C :=
{
Disagree C−,Agree C+

}
and oRT ∈ R+ is defined as the time the human takes to respond after receiving

the decision-aid’s recommendation. The transition from the current state s ∈ S

to the next state s′ ∈ S given the action a ∈ A is characterized by the transition
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probability function T (s′|s, a). The emission probability function E(o|s) characterizes

the likelihood of observing o ∈ O given the process is in state s. The transition

probability function and the emission probability function for our trust-workload

model are given by

T (s′|s, a) = T (s′T , s
′
W |sT , sW , a) and

E(o|s) = E(oC , oRT |sT , sW ) .

We will explore four types of coupled models of trust and workload by relaxing the

independence assumptions established in Chapter 3. These models are described in

order of increasing number of parameters and thereby, increasing complexity.

4.1.1 Independent Model

The model we defined in Section 3.2 has the lowest complexity; hereafter, we refer

to this model as the independent model. For the independent model, we assumed

that the states of trust and workload are independent. We also assumed that the

observations compliance and response time are only dependent on trust and workload,

respectively. Therefore, the transition and emission probability functions can be

simplified as:

T (s′|s, a) = T (s′T |sT , a)T (s′W |sW , a)

E(o|s) = E(oC |sT )E(oRT |sW )
(4.1)

This model is represented in Figure 4.1. Here, the transition and observation prob-

ability functions consisting only of discrete variables, i.e., T (s′T |sT , a), T (s′W |sW , a),

and E(oC |sT ), are modeled as multinomial distributions. The observation probability

function consisting of continuous response time, i.e., E(oRT |sW ), is modeled as a set

of two (one for each state of workload) exponentially modified Gaussian distributions

as described in Chapter 3. For the multinomial distributions, due to the constraint

that the probabilities sum to one for a given starting state (and action for the transi-
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tion probability function), the number of independent parameters is smaller than the

absolute number of parameters. Considering this constraint, the effective number of

parameters in this model is 58.

Trust Workload

Action

Compliance Response Time

Figure 4.1. A representation of the independent model of trust and work-
load. The observations compliance and response time are only dependent
on trust and workload, respectively.

4.1.2 Coupled-Transition Model

In this model, we relax one of the independence assumptions and allow the tran-

sition of trust and workload to be dependent on both of the previous states of trust

and workload. Therefore, the transition and emission probability functions can be

represented as:

T (s′|s, a) = T (s′T |sT , sW , a)T (s′W |sT , sW , a)

E(o|s) = E(oC |sT )E(oRT |sW )
(4.2)

This model is represented in Figure 4.2. Again, T (s′T |sT , sW , a), T (s′W |sT , sW , a), and

E(oC |sT ) are modeled as multinomial distributions, and E(oRT |sW ) is modeled as a set



130

of two (one for each state of workload) exponentially modified Gaussian distributions.

The effective number of parameters in this model is 106.

Trust Workload

Action

Figure 4.2. A representation of the coupled-transition model of trust
and workload. The transition probabilities of trust and workload are
dependent on both of the previous states of trust and workload.

4.1.3 Coupled-Emission Model

In this model, we relax another independence assumption and allow the emis-

sion probability functions of compliance and response time to be dependent on both

the trust and workload states. Therefore, the transition and emission probability

functions can be represented as:

T (s′|s, a) = T (s′T |sT , sW , a)T (s′W |sT , sW , a)

E(o|s) = E(oC |sT , sW )E(oRT |sT , sW )
(4.3)

The model is represented in Figure 4.3. Again, T (s′T |sT , sW , a), T (s′W |sT , sW , a), and

E(oC |sT , sW ) are modeled as multinomial distributions, and E(oRT |sT , sW ) is modeled

as a set of four (one for each combination of trust and workload state) exponentially
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modified Gaussian distributions. The effective number of parameters in this model is

114.

Trust Workload

Action

Figure 4.3. A representation of the coupled-emission model of trust and
workload. The emission probability functions of compliance and response
time are dependent on both the trust and workload states.

4.1.4 Coupled-State Model

In this model, we further relax the assumption that the states of trust and work-

load, at any given time, are independent. Therefore, the transition and emission

probability functions can be represented as:

T (s′|s, a) = T (s′T , s
′
W |sT , sW , a)

E(o|s) = E(oC |sT , sW )E(oRT |sT , sW )
(4.4)

This model is represented in Figure 4.4. Again, T (s′T , s
′
W |sT , sW , a) and E(oC |sT , sW )

are modeled as multinomial distributions, and E(oRT |sT , sW ) is modeled as a set of

four (one for each combination of trust and workload state) exponentially modified

Gaussian distributions. The effective number of parameters in this model is 163.
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Trust Workload

Action

Figure 4.4. A representation of the coupled-state model for trust and
workload.

4.1.5 Complete-Coupled Model

In this model, we assume that both states (trust and workload) are coupled and

that both observations (compliance and response time) are also coupled. Therefore,

the transition and emission probability functions can be represented as:

T (s′|s, a) = T (s′T , s
′
W |sT , sW , a)

E(o|s) = E(oC , oRT |sT , sW )

= E(oC |sT , sW )E(oRT |oC , sT , sW )

(4.5)

This model is represented in Figure 4.5. Again, T (s′T , s
′
W |sT , sW , a) and E(oC |sT , sW )

are modeled as multinomial distributions, and E(oRT |oC , sT , sW ) is modeled as a set

of eight (one for each combination of compliance, trust, and workload) exponentially

modified Gaussian distributions. The effective number of parameters in this model is

175.
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Trust Workload

Action

Figure 4.5. A representation of the complete-coupled model of trust and
workload. No independence assumptions are made in this model.

4.2 Model Selection

Among the five trust-workload models described above, we now identify the models

that best capture the trust-workload behavior exhibited by the participants in the

collected data. We use the open-loop data collected in the reconnaissance mission

study as described in Section 3.2.2. The data consists of 196× 3 sequences of input-

output data (196 participants with 3 missions each) where each sequence has a length

of 15 trials. Each sequence is the action-observation data for a participant in the

interaction between the participant and the robot in a given mission.

To obtain a model with the best generalizability given the available data, we

calculate the five-fold cross validation log-likelihood for each model. Five-fold cross

validation is done as follows. The data is randomly divided into five equal sets (called

folds). This division is done by randomly creating five subsets out of the 196 par-

ticipants; each fold comprises the data from one subset. For each fold, the model

parameters are estimated using the aggregated data from the rest of the folds, and

the log-likelihood of observing the sequences in the fold given the estimated model

is calculated. The cross-validation log-likelihood is defined as the average of the log-

likelihoods across the five folds. Furthermore, in order to increase the robustness of
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the obtained validation log-likelihood values to variations in training and testing data

sets, we repeat this process ten times to obtain the average five-fold cross validation

log-likelihood for each model.

We use the genetic algorithm with the forward algorithm, using the methodology

described in Section 3.3, to estimate the model parameters and obtain the average five-

fold cross-validation log-likelihood for the five models. The results from ten iterations

are shown in Figure 4.6. Two-sample t-tests show that the log-likelihood of the inde-

pendent model is not significantly different from that of the coupled-transition model

(t(98) = 0.4245, p = 0.6722) nor the coupled-emission model (t(98) = −0.5975, p =

0.5516). Moreover, the log-likelihood of the independent model is significantly bet-

ter than that of coupled-state model (t(98) = 3.9470, p = 0.0001) and complete-

coupled model (t(98) = 7.4955, p ≈ 0.0000). This suggests that the coupled-state

and complete-coupled models are too complex and are actually overfit to the training

data, leading to a lower cross-validation accuracy.

Based on this cross-validation analysis of our data, we can conclude that at a

given time sample, it is reasonable to assume that

• the human trust and workload states are conditionally independent given the

previous trust-workload states and actions, and

• human compliance and response time are conditionally independent given the

trust and workload states.

4.3 Model Parameter Estimation

Since the independent, coupled-transition, and coupled-emission models are not

significantly different from each other (in terms of their cross-validation likelihoods

based on open-loop human subject study data), we now evaluate their performance in

a closed-loop human subject study. To do so, we conduct parameter estimation for the

three models using the entire open-loop data with the methodology discussed in Sec-

tion 3.3. Complete details about the estimated models are presented in Appendix A.
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Figure 4.6. Average five-fold cross-validation log-likelihood and number
of parameters of the models for ten iterations. Error bars represent the
standard error of the mean accuracy across ten iterations and five folds.

Here, we present some key observations about the estimated coupled models. Note

that the independent models have been discussed in detail in Chapter 3.

4.3.1 Coupled-Transition Model

The coupled-transition model represented in Figure 4.2 consists of two coupled

POMDP models: a trust model and a workload model, which interact in their transi-

tion probabilities. When compared to the independent model, the coupled-transition

model consists of a similar structure for the observation probability functions for trust

and workload.

Considering the trust model, we observe that the emission probability function

(Figure 4.7(b)) for the coupled-transition model has relatively similar values to that of

the independent model (Figure 4.7(a)). The probability of the human complying with
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the automation’s recommendation when they are in the state of High Trust is approxi-

mately the same for the independent model (0.9787) and the coupled-transition model

(0.9805). Interestingly, the probability of the human not complying with the automa-

tion’s recommendation when they are in the state of Low Trust is slightly different

(1.0000 vs. 0.8411); nonetheless, both probabilities are relatively high. Therefore, in

both cases, the models suggest that it is highly likely that the human will not comply

with the automation’s recommendation if they are in the Low Trust state.

1.0000

0.0000

0.0213

0.9787

(a)

0.8411

0.1589

0.0195

0.9805

(b)

Figure 4.7. Emission probability function ET (oC |sT ) for trust in the in-
dependent and coupled-transition model. The left diagram (a) shows the
emission probability function for the independent model and the right
diagram (b) shows the emission probability function for the coupled-
transition model. Probabilities of observation are shown beside the ar-
rows.

We now compare the trust transition probability function of the coupled-transition

model in the case when the human was previously in a state of Low Workload W↓

(Figure 4.8) to that when the human was previously in a state of High Workload W↑

(Figure 4.9). Recall that in contrast to the independent model, the trust transition

probability function for the coupled-transition model is not only dependent on the

previous state of trust and the action, but it also depends on the previous state of

workload. In the high risk case (i.e., when the recommendation suggests Light Armor

aSA = S−A ), the probability of transitioning to a state of High Trust T↑ from any state

of trust is higher for the High Workload W↑ case than for the Low Workload W↓ case

for a given transparency and experience (compare Figure 4.9(a) with Figure 4.8(a)
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and Figure 4.9(b) against Figure 4.8(b)). Note that the decision aid suggesting Light

Armor represents a high risk situation for over-trust because an incorrect human

decision of complying with the recommendation can lead to the human using Light

Armor in the presence of gunmen, resulting in injury and an extra penalty of 20

seconds. Nonetheless, for the low risk case (i.e., when the recommendation suggests

Heavy Armor aSA = S+
A ), the trust transition probabilities are almost similar between

the High Workload W↑ case and the Low Workload W↓ case for a given transparency

and experience (compare Figure 4.9(c) with Figure 4.8(c) and Figure 4.9(d) with

Figure 4.8(d)). This means that the human’s trust is higher for the high workload

situation as compared to the low workload situation when the risk is high. This

observations is consistent with the recent finding in [193] that trust is comparable

between high and low workload conditions, but higher risk elevates trust in high

workload conditions. In [193], the authors observe that humans have higher levels of

trust when 1) in a multitasking environment that demands greater attention and 2)

their perceived risk is high, regardless of the true reliability of automated systems.

Findings in [194] also suggest that trust in automation declines when the primary

task demands more attention. Therefore, the coupled-transition model is successfully

able to capture these nuanced effects of workload on human trust dynamics.

Considering the workload model, we observe that the emission probability func-

tion (Figure 4.11) for the coupled-transition model has similar values to that of the

independent model (Figure 4.10). Therefore, the probability density functions (PDFs)

of human response time, given a state of workload, are essentially the same for the

independent model and the coupled-transition model. Again, similar to the trust

transition probability function, the workload transition probability function for the

coupled-transition model is not only dependent on the previous state of workload

and the action, but it also depends on the previous state of trust. As with the trust

model, the coupled-transition model also captures subtle differences between the tran-

sition probabilities of workload states for low and high trust states. Please refer to

Appendix A for a more detailed description of the coupled-transition model.
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Figure 4.8. Transition probability function TT (s′T |sT , sW = W↓, a) for
trust in the coupled-transition model. Probabilities of transition are
shown beside the arrows. The top-left diagram (a) shows the transition
probabilities when the decision-aid’s recommendation is Light Armor S−A
and the participant had a Faulty last experience E−. The top-right dia-
gram (b) shows the transition probabilities when the decision-aid recom-
mends Light Armor S−A and the participant had a Reliable last experience
E+. The bottom-left diagram (c) shows the transition probabilities when
the decision-aid recommends Heavy Armor S+

A and the participant had
a Faulty last experience E−. The bottom-right diagram (d) shows the
transition probabilities when the decision-aid recommends Heavy Armor
S+
A and the participant had a Reliable last experience E+.

4.3.2 Coupled-Emission Model

The coupled-emission model represented in Figure 4.3 considers the interaction

between compliance and workload as well as response time and trust in the emis-
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Figure 4.9. Transition probability function TT (s′T |sT , sW = W↑, a) for
trust in the coupled-transition model. Probabilities of transition are
shown beside the arrows. The top-left diagram (a) shows the transition
probabilities when the decision-aid’s recommendation is Light Armor S−A
and the participant had a Faulty last experience E−. The top-right dia-
gram (b) shows the transition probabilities when the decision-aid recom-
mends Light Armor S−A and the participant had a Reliable last experience
E+. The bottom-left diagram (c) shows the transition probabilities when
the decision-aid recommends Heavy Armor S+

A and the participant had
a Faulty last experience E−. The bottom-right diagram (d) shows the
transition probabilities when the decision-aid recommends Heavy Armor
S+
A and the participant had a Reliable last experience E+.

sion probability functions, apart from the interactions in the transition probability

functions as discussed in the coupled-transition model. Therefore, the emission prob-

ability of compliance is dependent on both the trust and workload states, and the

emission probability of response time is also dependent on both states.
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Figure 4.10. Emission probability function EW (oRT |sW ) for workload
in the independent model. For Low Workload, the response time (oRT )
PDF fORT |W↓(oRT |W↓) is characterized by an ex-Gaussian distribution
with µW↓ = 0.0047, σW↓ = 0.0062, and τW↓ = 0.7917. For High Work-
load, the response time (oRT ) PDF fORT |W↑(oRT |W↑) is characterized by
an ex-Gaussian distribution with µW↑ = 0.5581, σW↑ = 0.1745, and
τW↑ = 2.2544.

Figure 4.11. Emission probability function EW (oRT |sW ) for workload
in the coupled-transition model. For Low Workload, the response time
(oRT ) PDF fORT |W↓(oRT |W↓) is characterized by an ex-Gaussian distribu-
tion with µW↓ = 0.0108, σW↓ = 0.0149, and τW↓ = 0.7708. For High
Workload, the response time (oRT ) PDF fORT |W↑(oRT |W↑) is character-
ized by an ex-Gaussian distribution with µW↑ = 0.5566, σW↑ = 0.1717,
and τW↑ = 2.2179.
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We now consider the emission probability functions for the estimated model. Com-

paring emission probabilities for compliance for Low Workload W↓ (Figure 4.12(a))

to that for High Workload W↑ (Figure 4.12(b)), we see that participants are more

likely to comply with the recommendation in the High Workload state even when

they are in a state of Low Trust, as compared when they are in a Low Workload

state. This observation agrees with the findings in [66] that suggest compliance is

higher in high workload situations. Similarly, comparing the response time emission

probability function for the Low Trust state T↓ (Figure 4.13(a)) to that for the High

Trust state T↑ (Figure 4.13(b)), we observe that High Trust has a higher probability

of faster response time than Low Trust even for the state of High Workload. It means

that the participants responded faster when their trust was high even with higher

workload. Further details about this model is presented in Appendix A.

0.8908

0.1092

0.0076

0.9924

(a)

0.2781

0.7219

0.0166

0.9834

(b)

Figure 4.12. Emission probability function ET (oC |sT , sW ) for trust in the
coupled-emission model. Probabilities of observation are shown beside
the arrows. The left diagram (a) shows the emission probabilities when
the workload state is W↓. The right diagram (b) shows the emission
probabilities when the workload state is W↑.

In summary, the proposed coupled models provide a rich framework for capturing

the dynamics of human trust and workload behavior while also considering the subtle

interactions between them. These models are able to quantitatively model these

interactions, which have been discussed only qualitatively in the existing literature.

In the next section, we leverage these estimated models to calculate optimal control
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(a) (b)

Figure 4.13. Emission probability function EW (oRT |sT , sW ) for workload
in the coupled-emission model. The left diagram (a) shows the emission
probabilities when the trust state is T↓. For Low Trust and Low Work-
load, the response time (oRT ) PDF fORT |T↓,W↓(oRT |T↓,W↓) is characterized
by an ex-Gaussian distribution with µT↓,W↓ = 0.0018, σT↓,W↓ = 0.0034,
and τT↓,W↓ = 0.8804. For Low Trust and High Workload, the re-
sponse time (oRT ) PDF fORT |T↓,W↑(oRT |T↓,W↑) is characterized by an
ex-Gaussian distribution with µT↓,W↑ = 0.9845, σT↓,W↑ = 0.4138, and
τT↓,W↑ = 2.8825. The right diagram (b) shows the emission probabil-
ities when the trust state is T↑. For High Trust and Low Workload,
the response time (oRT ) PDF fORT |T↑,W↓(oRT |T↑,W↓) is characterized by
an ex-Gaussian distribution with µT↑,W↓ = 0.0063, σT↑,W↓ = 0.0067, and
τT↑,W↓ = 0.7439. For High Trust and High Workload, the response time
(oRT ) PDF fORT |T↑,W↑(oRT |T↑,W↑) is characterized by an ex-Gaussian dis-
tribution with µT↑,W↑ = 0.5578, σT↑,W↑ = 0.2603, and τT↑,W↑ = 0.6510.

policies and conduct closed-loop validation using real-time trust and workload state

estimation.

4.4 Model Validation and Results

To experimentally validate and compare the performance of the estimated inde-

pendent and coupled models, we calculate the control policies for each of the three

models using the reward functions presented in Section 3.4 with ζ = 0.50, ζ = 0.85,

and ζ = 0.95. Note that the reward functions with higher values of ζ have higher

weights for decision rewards (which penalize incorrect decisions) than response time
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rewards (which penalize slower response times). The control policies are evaluated

using the methodology described in Section 3.4.3. The control policies are presented

in Appendix B. Using these control policies, we conducted four human subject stud-

ies. These experiments are identical to the one used to collect open-loop data for each

transparency but with transparency now controlled using the control policies based

on human trust and workload estimation.

4.4.1 Stimuli and Procedure:

Four within-subject studies were performed in which participants were asked to

interact with a simulation of three reconnaissance missions as described in Section

3.2.2. However, instead of fixed transparency in each mission, the transparency was

controlled based on a feedback control policy for some missions. The details of the

four studies are summarized in Table 4.1. For the first study, low transparency

was always used in one of the three missions, and in the other two missions, the

transparency was dynamically varied based on control policies corresponding to ζ =

0.50 for the independent model and coupled-transition model, respectively. In the

second study, medium transparency was always used in one of the three missions,

and in the other two missions, the transparency was dynamically varied based on

control policies corresponding to ζ = 0.85 for the independent model and coupled-

transition model, respectively. In the third study, high transparency was always

used in one of the three missions, and in the other two missions, the transparency

was dynamically varied based on control policies corresponding to ζ = 0.95 for the

independent model and coupled-transition model, respectively. Finally, in the fourth

study, in the three missions, the transparency was dynamically varied based on the

control policy corresponding to ζ = 0.50, ζ = 0.85, and ζ = 0.95, respectively, for

the coupled-emission model. Three missions in each study ensured that the studies

were short enough to avoid participant fatigue and were consistent in structure with
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the study used to collect open-loop data. Moreover, the order of missions was again

randomized across participants to reduce ordering effects [185].

Table 4.1.
Summary of the four closed-loop studies used to compare the performance
of the independent and the coupled models of interest.

Control policy in the three missions for varying
transparency

Number of partici-
pants

Study 1

• Fixed low transparency

• Independent model with ζ = 0.50

• Coupled-transition model with ζ = 0.50

• Total: 56

• Outlying: 9

• Remaining: 47

Study 2

• Fixed medium transparency

• Independent model with ζ = 0.85

• Coupled-transition model with ζ = 0.85

• Total: 52

• Outlying: 3

• Remaining: 49

Study 3

• Fixed high transparency

• Independent model with ζ = 0.95

• Coupled-transition model with ζ = 0.95

• Total: 54

• Outlying: 10

• Remaining: 44

Study 4

• Coupled-emission model with ζ = 0.50

• Coupled-emission model with ζ = 0.85

• Coupled-emission model with ζ = 0.95

• Total: 53

• Outlying: 5

• Remaining: 48

4.4.2 Participants

Fifty-six participants for the first study, fifty-two participants for the second study,

fifty-four participants for the third study, and fifty-three participants for the fourth

study, participated in and completed the study online. They were recruited using

Amazon Mechanical Turk [97] with the same criteria used for the earlier study. To
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account for participants who were not sufficiently engaged in the study, we filtered

out data that had any response time higher than 40.45 seconds (the 99.5 percentile

value of all response times for the open-loop study data). The number of participants

removed from the datasets as a result of this filtering is shown in Table 4.1.

4.4.3 Decision Reward and Response Time Reward

Using the data collected from the four validation studies, we quantify and evaluate

the participants’ performance for the fixed transparency missions and the dynamically

varying transparency missions for different models. We first compare two metrics: to-

tal decision reward and total response time reward for each type of mission. We use

linear mixed effects analysis and likelihood ratio tests to determine whether the use

of trust-workload behavior-based feedback has any significant effect on these metrics.

We use the statistical computing language R [189] and lme4 library [190] to perform

a linear mixed effect model approach to analyze the relationship between each of the

metrics and transparency policies. As a fixed effect, we use the transparency pol-

icy in the models. To account for variations in the metrics calculated for different

participants, the models considered each individual as a random effect. P-values are

obtained using likelihood ratio tests of the full model that includes the transparency

policy as a fixed effect against the model that does not include the transparency

policy. Figure 4.14 shows the effect of the transparency policies (open-loop: Low,

Medium, and High; closed-loop: independent model, coupled-transition model, and

coupled-emission model with ζ = 0.50, 0.85, and 0.95, respectively) on the total deci-

sion reward and on the total response time reward across participants.

The total decision reward is defined as the sum of all decision rewards, based on

Table 3.5, accrued by the participant in a mission. A likelihood ratio test using linear

mixed effects models indicates that the transparency policies significantly affected

total decision reward (χ2(11) = 40.193, p ≈ 0.0000). The total response time reward

is defined as the negative of the sum of all response times, in seconds, accrued by
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the participant in a mission. A likelihood ratio test indicates that the transparency

policies did not significantly affect total response time reward (χ2(11) = 14.932, p =

0.1856). Nonetheless, there are some trends in the mean response time reward across

the control policies.

Considering open-loop fixed transparency policies, we see from Figure 4.14 that

high transparency has the best performance in terms of decision rewards, followed

by medium and low transparency. Furthermore, control policies with higher values

of ζ achieve a higher decision reward for a given model. This is expected because

with higher values of ζ, the control policies have a higher weight to maximize decision

rewards. Interestingly, the independent model based policies achieve a higher (if not

equal) decision reward than that of coupled models for a given value of ζ.

In terms of response time rewards, considering open-loop fixed transparency poli-

cies, we observe that medium transparency has the highest mean value. This is possi-

bly because high transparency requires the participant to process more information,

which takes more time, and conversely, low transparency does not provide enough

information to the participants, thereby leading to confusion and a longer response

time. For the closed-loop policies, the response time rewards are not significantly dif-

ferent across different values of ζ. However, we observe that the control policies based

on the coupled models, in particular, the coupled-emission model, achieves a better

(if not equal) response time reward for a given value of ζ. This is possibly because

the coupled models capture the effect of both trust and workload on response time.

4.4.4 Total Reward

To objectively compare the performance of the independent and coupled models,

we compare the total reward metric between the models from the collected closed-loop
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data for each value of ζ. The total reward is the actual value of the reward function

attained in the closed-loop study (see Section 3.4) and is defined as

R = ζRT + (1− ζ)RW .

Note that the control policies were calculated such that they maximize the reward

function. Therefore, the model whose control policy is able to attain a higher value

of total reward has an objectively better performance for a given ζ.

Again, we use linear mixed effects analysis and likelihood ratio tests as discussed

earlier to determine whether the control policies based on the different models have

any significant effect on the total reward for each ζ. Figure 4.15 shows the effect

of the control policies, based on the independent and coupled models, on the total

reward across participants for ζ = 0.50. A likelihood ratio test using linear mixed

effects models indicates that the control policies do not have a statistically significant

effect on the total reward for ζ = 0.50 (χ2(2) = 1.5029, p = 0.4717). Nonetheless,

Figure 4.15. Effect of the control policies based on the independent and
coupled models on the total reward for ζ = 0.50. Error bars represent the
standard error of the mean across participants.
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based on the trends, the coupled-emission model achieves slightly better performance

than the independent model. Figure 4.16 shows the effect of the control policies based

on the independent and coupled models on the total reward across participants for

ζ = 0.85. A likelihood ratio test using linear mixed effects models indicates that the

Figure 4.16. Effect of the control policies on the total reward based on
the independent and coupled models for ζ = 0.85. Error bars represent
the standard error of the mean across participants.

control policies have a statistically significant effect on the total reward for ζ = 0.85

(χ2(2) = 5.4904, p = 0.06423). We see that the independent model outperforms the

coupled models.

Figure 4.17 shows the effect of the control policies on the total reward across

participants based on the independent and coupled models for ζ = 0.95. A likelihood

ratio test using linear mixed effects models indicates that the control policies do

not have a statistically significant effect on the total reward for ζ = 0.95 (χ2(2) =

1.0253, p = 0.5989). Nonetheless, we see that the coupled models result in a lower, if

not equal, total reward than the independent model.
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Figure 4.17. Effect of the control policies based on the independent and
coupled models on the total reward for ζ = 0.95. Error bars represent the
standard error of the mean across participants.

Based on the total rewards, we conclude that there is possibly no explicit benefit

in terms of improved closed-loop performance with the use of coupled models. In

particular, for improved decision making, which is obtained using a higher value of

ζ, the independent model performs better, if not equal, than coupled models. This is

possibly because the human’s decisions are directly related to human trust behavior

and are relatively less influenced by workload. However, in time-critical contexts

where decision time is just as important as making the correct decision, closed-loop

policies based on the coupled-emission model can achieve better performance as they

potentially capture the interaction dynamics between human trust and workload.

4.5 Chapter Summary

In this chapter, we modeled the coupling between human trust and workload in a

context involving a human interacting with an automated decision-aid. We explored
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and analyzed multiple models with varying complexities by relaxing assumptions

on trust and workload independence. We found that the proposed coupled models

were successfully able to capture the nuanced interactions between human trust and

workload dynamics. Finally, we compared the performance of two of the coupled

models to that of the independent model by validating the optimal control policy

for dynamically varying automation transparency based on each model’s trust and

workload estimates. We concluded that there is possibly no explicit benefit in terms

of improved closed-loop performance with the use of coupled models, except in time-

critical contexts. It should be noted that with the increase in complexity of the

coupled models, the sample size of the data required for parameter estimation also

increases. Additionally, the increased complexity of the model reduces the model

interpretability based on the parameter values. Therefore, one should consider this

tradeoff while employing coupled models of trust and workload.

The model evaluation presented here could be improved by addressing a few lim-

itations. The models were trained using data from 196 participants; a larger sample

size may potentially improve the performance of the models. Additionally, while we

assume that the trust-workload behavior of the population can be captured using one

model, clustering algorithms could be used to determine whether there are fundamen-

tal behavioral differences in the population. Nevertheless, the framework presented

here provides a substantial step forward toward the development of quantitative dy-

namic models of human behavior and their use for implementing adaptive automation

in human-machine interaction contexts.
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5. CONCLUSIONS

5.1 Summary of Research Contributions

Interactions between humans and automation can be improved by designing au-

tomation that can infer human behavior and respond accordingly. In this dissertation,

I developed a framework to model the dynamics of human trust and workload as they

evolve during a human’s interaction with a decision-aid system. I further designed

and validated a model-based feedback control policy aimed at dynamically varying

the automation’s transparency to improve the overall performance of the human-

machine team. More specifically, I developed both a classical state-space model and

machine learning model to quantitatively predict and estimate human trust in real

time. I showed how some of these models can be combined to predict human trust

based on a combination of human behavioral and psychophysiological measurements.

Thereafter, I developed a probabilistic dynamic model to capture the dynamics of

human trust along with human workload. I used this model to synthesize optimal

control policies and validated the policies in closed-loop using human subject experi-

ments. Finally, I explored and analyzed the dynamic coupling between human trust

and workload to strengthen the model framework.

While developing my state-space model of trust, I identified the significance of

cumulative trust and expectation bias through experiments that elicited multiple

dynamic transitions in human trust, and then incorporated these two variables in the

proposed linear model. In addition to proposing a general trust model structure, I

characterized the effects of both dispositional and learned trust factors, specifically

national culture, gender and system error type, using estimated model parameters. I

also characterized the effects of misses and false alarms on the dynamics of human

trust behavior and compared differences between demographics. While the proposed
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model is representative of a population of individuals rather than trained to a specific

human, such a model can be used to design machines that are required to interact

with unspecified users grouped by demographics.

For the machine learning model of human trust, I developed two approaches for

classifier-based empirical trust sensor models that estimate human trust level using

psychophysiological measurements. The first approach was to consider a common

set of psychophysiological features as the input variables for any human and train a

classifier-based model using this feature set, resulting in a general trust sensor model

with a mean accuracy of 71.22%. The second approach was to consider a customized

feature set for each individual and train a classifier-based model using that feature set;

this resulted in a mean accuracy of 78.55%. The primary trade-off between these two

approaches is between training time and performance (based on mean accuracy) of the

classifier-based model. Later, I demonstrated an approach to incorporate behavioral

dynamics in these static classification algorithms.

Next I presented a partially observable Markov decision process (POMDP) model

for human trust and workload. The model, which was parameterized using human

subject data, captured the effects of the decision-aid’s recommendation, the human’s

previous experience with the automation, and automation transparency on the hu-

man’s trust-workload behavior. The model is capable of estimating human trust and

workload in real time using recursive belief-state estimates. Furthermore, experimen-

tal validation showed that the closed-loop control policies were successfully able to

manage the human decision versus response time performance tradeoff based on a

tuning parameter in the reward function. At last, I also extended the framework to

explore and analyze the coupling interactions between human trust and workload. I

found that although there is no explicit closed-loop performance benefit of modeling

the coupling between the two states, the coupled model does captures some nuanced

characteristics of trust and workload interactions. My proposed framework provides

a tractable methodology for using human behavior as a real-time feedback signal to

optimize human-machine interactions through dynamic modeling and control.
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5.2 Future Research Directions

This dissertation presented a human state-based feedback framework that focused

on human trust and workload during an interaction with an automation in a decision-

aid context. However the model framework also lays the groundwork for multiple

impactful future research directions. Some of these directions should include (1) val-

idating the performance of the framework while combining both psychophysiological

and behavioral measurements to estimate human states, (2) extending and validating

the proposed framework in other contexts, (3) customizing the framework to capture

individual differences between humans, and (4) augmenting the framework to include

other control variables to influence human states such as control authority. Each of

these directions would not only expand the applicability of the presented framework,

but also demonstrate its efficacy in designing human-aware automation.

With the developed framework for the human trust sensor model using real-time

psychophysiological measurements, we can estimate human trust level using psy-

chophysiological data even in the absence of the behavioral data required for POMDP

model-based trust estimation. However, the estimated trust from psychophysiologi-

cal measurements still needs to be incorporated in the closed-loop framework. In the

absence of either of the two trust estimates (psychophysiological measurements-based

or behavioral data-based), the available estimate of human trust can be used in the

closed-loop framework described in Chapter 3.4. Moreover, in situations when both

trust estimates are available, a combined trust estimate could be more robust to un-

certainties in the environment and in the nature of the human-machine interaction

itself. In this direction, further validation is required to evaluate the performance and

robustness of the framework.

Moreover, while this dissertation focused on a case study considering a reconnais-

sance mission task, the model framework could be used in a variety of other decision-

aid contexts, such as health recommender systems and other assistive robot applica-

tions, by retraining the model using new context-specific data. Future work could con-
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sider extensions of the framework to action automation by re-defining context-specific

observations, actions, and reward function(s). Furthermore, since a computer-based

simulated interface was used in the experiment, the ecological validity could be im-

proved by testing the established framework in both immersive environments, for

example, flight or driving simulators, as well as real-life settings.

The presented framework further assumes a single model for the general popu-

lation, even though the model and the corresponding optimal control policy might

also depend on factors based on the demographics of each individual. Future work

could carefully investigate the effect of these individual-specific factors. Furthermore,

another research direction could be identifying clusters of people with similar trust-

workload behavior and creating customized models for each cluster.

Finally, we only used automation transparency to influence human behavior. How-

ever, other variables such as the amount of control the automation shares with human

and degree of conservativeness of the automation in a risky situation also impact hu-

man behavior. Therefore, effects of these variables along with other context-specific

variables can also be modeled; thereafter, these variables can be optimally controlled

to improve human-machine interactions.
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A. TRUST AND WORKLOAD POMDP MODELS

We present the estimated independent, coupled-transition, and coupled-emission POMDP

models of human trust-workload behavior discussed in Chapter 4.

A.1 Independent Model

The independent model for trust and workload behavior represented in Figure 4.1

consists of two independent POMDP models: a trust model and a workload model.

Trust Model

The estimated trust model consists of initial state probabilities π(sT ), an emission

probability function ET (oC |sT ), and a transition probability function TT (s′T |sT , a).

Based on the emission probability function for trust ET (oC |sT ), we define the High

Trust state sT = T↑ as that in which there is a higher probability of observing the

human comply with the automation’s recommendation, oC = C+. The estimated

initial probabilities of Low Trust T↓ and High Trust T↑ are π(T↓) = 0.1283 and

π(T↑) = 0.8717, respectively. The emission probability function ET (oC |sT ) is depicted

in Figure A.1 and characterizes the probability of a participant’s compliance with the

system’s recommendations given the participant’s state of trust.

Figure A.2 represents the transition probability function TT (s′T |sT , a) showing the

probability of transitioning from the state sT to s′T (where sT , s′T ∈ T ) given the

action a ∈ A.
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0.9787

Figure A.1. Emission probability function ET (oC |sT ) for trust in the inde-
pendent model. Probabilities of observation are shown beside the arrows.
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Figure A.2. Transition probability function TT (s′T |sT , a) for trust in the
independent model. Probabilities of transition are shown beside the ar-
rows. The top-left diagram (a) shows the transition probabilities when the
decision-aid’s recommendation is Light Armor S−A and the participant had a
Faulty last experience E−. The top-right diagram (b) shows the transition
probabilities when the decision-aid recommends Light Armor S−A and the
participant had a Reliable last experience E+. The bottom-left diagram
(c) shows the transition probabilities when the decision-aid recommends
Heavy Armor S+

A and the participant had a Faulty last experience E−.
The bottom-right diagram (d) shows the transition probabilities when the
decision-aid recommends Heavy Armor S+

A and the participant had a Reli-
able last experience E+.
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Workload Model

The workload model consists of initial state probabilities π(sW ), an emission prob-

ability function EW (oRT |sW ), and a transition probability function TW (s′W |sW , a).

Similar to the trust model, based on the emission probability function for workload

EW (oRT |sW ), we define the High Workload state sW = W↑ as that in which the ex-

pected response time IE [oRT |sW ] is longer. We estimated the initial probabilities of

Low WorkloadW↓ and High WorkloadW↑ to be π(W↓) = 0.3487 and π(W↑) = 0.6513,

respectively. The emission probability function EW (oRT |sW ) is represented in Fig-

ure A.3, which shows the probability density functions (PDFs) of observing partici-

pants’ response time as oRT given their state of workload sW .

Figure A.3. Emission probability function EW (oRT |sW ) for workload in
the independent model. For Low Workload, the response time (oRT )
PDF fORT |W↓(oRT |W↓) is characterized by an ex-Gaussian distribution with
µW↓ = 0.0047, σW↓ = 0.0062, and τW↓ = 0.7917. For High Workload, the re-
sponse time (oRT ) PDF fORT |W↑(oRT |W↑) is characterized by an ex-Gaussian
distribution with µW↑ = 0.5581, σW↑ = 0.1745, and τW↑ = 2.2544.

The transition probability function TW (s′W |sW , a) is represented in Figure A.4 and

shows the probability of a participant transitioning from the state sW to s′W based

on the action a ∈ A, where sW , s′W ∈ W .
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Figure A.4. Transition probability function TW (s′W |sW , a) for workload in
the independent model. Probabilities of transition are shown beside the
arrows. The top-left diagram (a) shows the transition probabilities when
the decision-aid recommends Light Armor S−A and the participant had a
Faulty last experience E−. The top-right diagram (b) shows the transition
probabilities when the decision-aid recommends Light Armor S−A and the
participant had a Reliable last experience E+. The bottom-left diagram
(c) shows the transition probabilities when the decision-aid recommends
Heavy Armor S+

A and the participant had a Faulty last experience E−.
The bottom-right diagram (d) shows the transition probabilities when the
decision-aid recommends Heavy Armor S+

A and the participant had a Reli-
able last experience E+.
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A.2 Coupled-Transition Model

The coupled-transition model for trust and workload behavior represented in Fig-

ure 4.2 consists of two coupled POMDP models: a trust model and a workload model,

which interact in their transition probabilities.

Trust Model

The estimated trust model consists of initial state probabilities π(sT ), an emission

probability function ET (oC |sT ), and a transition probability function TT (s′T |sT , sW , a).

Based on the emission probability function for trust ET (oC |sT ), we define the High

Trust state sT = T↑ as that in which there is a higher probability of observing the

human comply with the automation’s recommendation, oC = C+. The estimated

initial probabilities of Low Trust T↓ and High Trust T↑ are π(T↓) = 0.1662 and

π(T↑) = 0.8338, respectively. The emission probability function ET (oC |sT ) is depicted

in Figure A.5 and characterizes the probability of a participant’s compliance with the

system’s recommendations given the participant’s state of trust.

0.8411

0.1589

0.0195

0.9805

Figure A.5. Emission probability function ET (oC |sT ) for trust in the
coupled-transition model. Probabilities of observation are shown beside
the arrows.

Figure A.6 represents the transition probability function TT (s′T |sT , sW = W↓, a)

showing the probability of transitioning from the state sT to s′T (where sT , s′T ∈ T )

given the workload state is W↓ and the action a ∈ A.
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Figure A.6. Transition probability function TT (s′T |sT , sW = W↓, a) for trust
in the coupled-transition model. Probabilities of transition are shown be-
side the arrows. The top-left diagram (a) shows the transition probabilities
when the decision-aid’s recommendation is Light Armor S−A and the par-
ticipant had a Faulty last experience E−. The top-right diagram (b) shows
the transition probabilities when the decision-aid recommends Light Armor
S−A and the participant had a Reliable last experience E+. The bottom-left
diagram (c) shows the transition probabilities when the decision-aid recom-
mends Heavy Armor S+

A and the participant had a Faulty last experience
E−. The bottom-right diagram (d) shows the transition probabilities when
the decision-aid recommends Heavy Armor S+

A and the participant had a
Reliable last experience E+.

Figure A.7 represents the transition probability function TT (s′T |sT , sW = W↑, a)

showing the probability of transitioning from the state sT to s′T (where sT , s′T ∈ T )

given the workload state is W↑ and the action a ∈ A.
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Figure A.7. Transition probability function TT (s′T |sT , sW = W↑, a) for trust
in the coupled-transition model. Probabilities of transition are shown be-
side the arrows. The top-left diagram (a) shows the transition probabilities
when the decision-aid’s recommendation is Light Armor S−A and the par-
ticipant had a Faulty last experience E−. The top-right diagram (b) shows
the transition probabilities when the decision-aid recommends Light Armor
S−A and the participant had a Reliable last experience E+. The bottom-left
diagram (c) shows the transition probabilities when the decision-aid recom-
mends Heavy Armor S+

A and the participant had a Faulty last experience
E−. The bottom-right diagram (d) shows the transition probabilities when
the decision-aid recommends Heavy Armor S+

A and the participant had a
Reliable last experience E+.
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Workload Model

The workload model consists of initial state probabilities π(sW ), an emission prob-

ability function EW (oRT |sW ), and a transition probability function TW (s′W |sT , sW , a).

Similar to the trust model, based on the emission probability function for workload

EW (oRT |sW ), we define the High Workload state sW = W↑ as that in which the ex-

pected response time IE [oRT |sW ] is longer. We estimated the initial probabilities of

Low WorkloadW↓ and High WorkloadW↑ to be π(W↓) = 0.3342 and π(W↑) = 0.6658,

respectively. The emission probability function EW (oRT |sW ) is represented in Fig-

ure A.8, which shows the probability density functions (PDFs) of observing partici-

pants’ response time as oRT given their state of workload sW .

Figure A.8. Emission probability function EW (oRT |sW ) for workload in
the coupled-transition model. For Low Workload, the response time (oRT )
PDF fORT |W↓(oRT |W↓) is characterized by an ex-Gaussian distribution with
µW↓ = 0.0108, σW↓ = 0.0149, and τW↓ = 0.7708. For High Workload,
the response time (oRT ) PDF fORT |W↑(oRT |W↑) is characterized by an ex-
Gaussian distribution with µW↑ = 0.5566, σW↑ = 0.1717, and τW↑ = 2.2179.

The transition probability function TW (s′W |sT = T↓, sW , a) is represented in Fig-

ure A.9 and shows the probability of a participant transitioning from the state sW to

s′W given the trust state T↓ and the action a ∈ A.
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Figure A.9. Transition probability function TW (s′W |sT = T↓, sW , a) for
workload in the coupled-transition model. Probabilities of transition are
shown beside the arrows. The top-left diagram (a) shows the transi-
tion probabilities when the decision-aid recommends Light Armor S−A and
the participant had a Faulty last experience E−. The top-right diagram
(b) shows the transition probabilities when the decision-aid recommends
Light Armor S−A and the participant had a Reliable last experience E+.
The bottom-left diagram (c) shows the transition probabilities when the
decision-aid recommends Heavy Armor S+

A and the participant had a Faulty
last experience E−. The bottom-right diagram (d) shows the transition
probabilities when the decision-aid recommends Heavy Armor S+

A and the
participant had a Reliable last experience E+.

The transition probability function TW (s′W |sT = T↑, sW , a) is represented in Fig-

ure A.10 and shows the probability of a participant transitioning from the state sW

to s′W given the trust state T↑ and the action a ∈ A.
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Figure A.10. Transition probability function TW (s′W |sT = T↑, sW , a) for
workload in the coupled-transition model. Probabilities of transition are
shown beside the arrows. The top-left diagram (a) shows the transi-
tion probabilities when the decision-aid recommends Light Armor S−A and
the participant had a Faulty last experience E−. The top-right diagram
(b) shows the transition probabilities when the decision-aid recommends
Light Armor S−A and the participant had a Reliable last experience E+.
The bottom-left diagram (c) shows the transition probabilities when the
decision-aid recommends Heavy Armor S+

A and the participant had a Faulty
last experience E−. The bottom-right diagram (d) shows the transition
probabilities when the decision-aid recommends Heavy Armor S+

A and the
participant had a Reliable last experience E+.
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A.3 Coupled-Emission Model

The coupled-emission model for trust and workload behavior represented in Fig-

ure 4.3 consists of two coupled POMDP models: a trust model and a workload model,

which interact in their transition as well as their emission probabilities.

Trust Model

The estimated trust model consists of initial state probabilities π(sT ), an emission

probability function E(oC |sT , sW ), and a transition probability function T (s′T |sT , sW , a).

In this case, identifying the Low Trust and High Trust states is not trivial using the

emission probability function E(oC |sT , sW ). Since the emission probability function is

dependent on two sets of states, one corresponding to trust states and the other cor-

responding to the workload states, we first need to identify each set of states as being

the set of trust states or workload states. We define the set of states having a larger

variation across the probability of compliance as the set of trust states. This is based

on the assumption that trust has a stronger influence on compliance as compared to

workload. Then among this set of states, we define the High Trust state sT = T↑ as

that in which there is a higher probability of observing the human comply with the

automation’s recommendation, oC = C+. The estimated initial probabilities of Low

Trust T↓ and High Trust T↑ are π(T↓) = 0.4877 and π(T↑) = 0.5123, respectively. The

emission probability function ET (oC |sT , sW ) is depicted in Figure A.11 and character-

izes the probability of a participant’s compliance with the system’s recommendations

given the participant’s state of trust and workload.

Figure A.12 represents the transition probability function TT (s′T |sT , sW = W↓, a)

showing the probability of transitioning from the state sT to s′T (where sT , s′T ∈ T )

given the workload state is W↓ and the action a ∈ A.

Figure A.13 represents the transition probability function TT (s′T |sT , sW = W↑, a)

showing the probability of transitioning from the state sT to s′T (where sT , s′T ∈ T )

given the workload state is W↑ and the action a ∈ A.
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Figure A.11. Emission probability function ET (oC |sT , sW ) for trust in the
coupled-emission model. Probabilities of observation are shown beside the
arrows. The left diagram (a) shows the emission probabilities when the
workload state is W↓. The right diagram (b) shows the emission probabili-
ties when the workload state is W↑.
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Figure A.12. Transition probability function TT (s′T |sT , sW = W↓, a) for
trust in the coupled-emission model. Probabilities of transition are shown
beside the arrows. The top-left diagram (a) shows the transition prob-
abilities when the decision-aid’s recommendation is Light Armor S−A and
the participant had a Faulty last experience E−. The top-right diagram
(b) shows the transition probabilities when the decision-aid recommends
Light Armor S−A and the participant had a Reliable last experience E+.
The bottom-left diagram (c) shows the transition probabilities when the
decision-aid recommends Heavy Armor S+

A and the participant had a Faulty
last experience E−. The bottom-right diagram (d) shows the transition
probabilities when the decision-aid recommends Heavy Armor S+

A and the
participant had a Reliable last experience E+.
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Figure A.13. Transition probability function TT (s′T |sT , sW = W↑, a) for
trust in the coupled-emission model. Probabilities of transition are shown
beside the arrows. The top-left diagram (a) shows the transition prob-
abilities when the decision-aid’s recommendation is Light Armor S−A and
the participant had a Faulty last experience E−. The top-right diagram
(b) shows the transition probabilities when the decision-aid recommends
Light Armor S−A and the participant had a Reliable last experience E+.
The bottom-left diagram (c) shows the transition probabilities when the
decision-aid recommends Heavy Armor S+

A and the participant had a Faulty
last experience E−. The bottom-right diagram (d) shows the transition
probabilities when the decision-aid recommends Heavy Armor S+

A and the
participant had a Reliable last experience E+.
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Workload Model

The workload model consists of initial state probabilities π(sW ), an emission prob-

ability function E(oRT |sT , sW ), and a transition probability function T (s′W |sT , sW , a).

As we have already identified which set of states corresponds to the trust states, the

other set of states is therefore the workload states. Then, based on the emission

probability function for response time E(oRT |sT , sW ), we define the High Workload

state sW = W↑ as that in which the expected response time IE [oRT |sW ] is longer. We

estimated the initial probabilities of Low Workload W↓ and High Workload W↑ to be

π(W↓) = 0.2349 and π(W↑) = 0.7651, respectively. The emission probability function

EW (oRT |sT , sW ) is represented in Figure A.14, which shows the probability density

functions (PDFs) of observing participants’ response time as oRT given their state of

trust sT and workload sW .

The transition probability function TW (s′W |sT = T↓, sW , a) is represented in Fig-

ure A.15 and shows the probability of a participant transitioning from the state sW

to s′W given the trust state T↓ and the action a ∈ A.

The transition probability function TW (s′W |sT = T↑, sW , a) is represented in Fig-

ure A.16 and shows the probability of a participant transitioning from the state sW

to s′W given the trust state T↑ and the action a ∈ A.
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(a) (b)

Figure A.14. Emission probability function EW (oRT |sT , sW ) for workload
in the coupled-emission model. The left diagram (a) shows the emission
probabilities when the trust state is T↓. For Low Trust and Low Work-
load, the response time (oRT ) PDF fORT |T↓,W↓(oRT |T↓,W↓) is characterized
by an ex-Gaussian distribution with µT↓,W↓ = 0.0018, σT↓,W↓ = 0.0034, and
τT↓,W↓ = 0.8804. For Low Trust and High Workload, the response time
(oRT ) PDF fORT |T↓,W↑(oRT |T↓,W↑) is characterized by an ex-Gaussian dis-
tribution with µT↓,W↑ = 0.9845, σT↓,W↑ = 0.4138, and τT↓,W↑ = 2.8825. The
right diagram (b) shows the emission probabilities when the trust state
is T↑. For High Trust and Low Workload, the response time (oRT ) PDF
fORT |T↑,W↓(oRT |T↑,W↓) is characterized by an ex-Gaussian distribution with
µT↑,W↓ = 0.0063, σT↑,W↓ = 0.0067, and τT↑,W↓ = 0.7439. For High Trust
and High Workload, the response time (oRT ) PDF fORT |T↑,W↑(oRT |T↑,W↑)
is characterized by an ex-Gaussian distribution with µT↑,W↑ = 0.5578,
σT↑,W↑ = 0.2603, and τT↑,W↑ = 0.6510.
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Figure A.15. Transition probability function TW (s′W |sT = T↓, sW , a) for
workload in the coupled-emission model. Probabilities of transition are
shown beside the arrows. The top-left diagram (a) shows the transi-
tion probabilities when the decision-aid recommends Light Armor S−A and
the participant had a Faulty last experience E−. The top-right diagram
(b) shows the transition probabilities when the decision-aid recommends
Light Armor S−A and the participant had a Reliable last experience E+.
The bottom-left diagram (c) shows the transition probabilities when the
decision-aid recommends Heavy Armor S+

A and the participant had a Faulty
last experience E−. The bottom-right diagram (d) shows the transition
probabilities when the decision-aid recommends Heavy Armor S+

A and the
participant had a Reliable last experience E+.
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Figure A.16. Transition probability function TW (s′W |sT = T↑, sW , a) for
workload in the coupled-emission model. Probabilities of transition are
shown beside the arrows. The top-left diagram (a) shows the transi-
tion probabilities when the decision-aid recommends Light Armor S−A and
the participant had a Faulty last experience E−. The top-right diagram
(b) shows the transition probabilities when the decision-aid recommends
Light Armor S−A and the participant had a Reliable last experience E+.
The bottom-left diagram (c) shows the transition probabilities when the
decision-aid recommends Heavy Armor S+

A and the participant had a Faulty
last experience E−. The bottom-right diagram (d) shows the transition
probabilities when the decision-aid recommends Heavy Armor S+

A and the
participant had a Reliable last experience E+.
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B. CONTROL POLICIES TO VARY AUTOMATION

TRANSPARENCY

We present the control policies for the independent, coupled-transition, and coupled-

emission POMDP models of human trust-workload behavior discussed in Chapter 4.

The control policies are calculated for three values of ζ: 0.50, 0.85, and 0.95. Each of

the policies describe the optimal choice of transparency (low transparency τL, medium

transparency τM , or high transparency τH) given the belief state estimates of trust

and workload stated based on the corresponding model, the current recommenda-

tion (stimulus absent S−A or stimulus present S+
A ), and the experience based on last

reliability of the automation (faulty E− or reliable E+).

B.1 Independent Model

We calculate the total reward function R and the corresponding control policy for

three values of reward weights ζ = 0.50, ζ = 0.85, and ζ = 0.95. The control policies

corresponding to each of the reward weights for the independent model are depicted

in Figures B.1, B.2, and B.3.
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(a) (b)

(c) (d)

Figure B.1. Closed-loop control policy corresponding to the reward func-
tion with ζ = 0.50 for the independent model. In this case, the reward
function gives equal importance to the decision and response time rewards.
Subfigure (a) corresponds to aSA = S−A , aE = E−, (b) corresponds to
aSA = S−A , aE = E+, (c) corresponds to aSA = S+

A , aE = E−, and (d)
corresponds to aSA = S+

A , aE = E+.
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(a) (b)

(c) (d)

Figure B.2. Closed-loop control policy corresponding to the reward func-
tion with ζ = 0.85 for the independent model. In this case, higher impor-
tance is given to the decision rewards as compared to the response time
rewards. Subfigure (a) corresponds to aSA = S−A , aE = E−, (b) corresponds
to aSA = S−A , aE = E+, (c) corresponds to aSA = S+

A , aE = E−, and (d)
corresponds to aSA = S+

A , aE = E+.
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(a) (b)

(c) (d)

Figure B.3. Closed-loop control policy corresponding to the reward func-
tion with ζ = 0.95 for the independent model. In this case, a very high
importance is given to the decision rewards as compared to the response
time rewards. Subfigure (a) corresponds to aSA = S−A , aE = E−, (b) corre-
sponds to aSA = S−A , aE = E+, (c) corresponds to aSA = S+

A , aE = E−, and
(d) corresponds to aSA = S+

A , aE = E+.
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B.2 Coupled-Transition Model

We calculate the total reward function R and the corresponding control policy for

three values of reward weights ζ = 0.50, ζ = 0.85, and ζ = 0.95. The control policies

corresponding to each of the reward weights for the coupled-transition model are

depicted in Figures B.4, B.5, and B.6.

(a) (b)

(c) (d)

Figure B.4. Closed-loop control policy corresponding to the reward func-
tion with ζ = 0.50 for the coupled-transition model. In this case, the
reward function gives equal importance to the decision and response time
rewards. Subfigure (a) corresponds to aSA = S−A , aE = E−, (b) corresponds
to aSA = S−A , aE = E+, (c) corresponds to aSA = S+

A , aE = E−, and (d)
corresponds to aSA = S+

A , aE = E+.
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(a) (b)

(c) (d)

Figure B.5. Closed-loop control policy corresponding to the reward func-
tion with ζ = 0.85 for the coupled-transition model. In this case, higher
importance is given to the decision rewards as compared to the response
time rewards. Subfigure (a) corresponds to aSA = S−A , aE = E−, (b) corre-
sponds to aSA = S−A , aE = E+, (c) corresponds to aSA = S+

A , aE = E−, and
(d) corresponds to aSA = S+

A , aE = E+.
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(a) (b)

(c) (d)

Figure B.6. Closed-loop control policy corresponding to the reward func-
tion with ζ = 0.95 for the coupled-transition model. In this case, a very
high importance is given to the decision rewards as compared to the re-
sponse time rewards. Subfigure (a) corresponds to aSA = S−A , aE = E−, (b)
corresponds to aSA = S−A , aE = E+, (c) corresponds to aSA = S+

A , aE = E−,
and (d) corresponds to aSA = S+

A , aE = E+.
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B.3 Coupled-Emission Model

We calculate the total reward function R and the corresponding control policy for

three values of reward weights ζ = 0.50, ζ = 0.85, and ζ = 0.95. The control

policies corresponding to each of the reward weights for the coupled-emission model

are depicted in Figures B.7, B.8, and B.9.

(a) (b)

(c) (d)

Figure B.7. Closed-loop control policy corresponding to the reward func-
tion with ζ = 0.50 for the coupled-emission model. In this case, the re-
ward function gives equal importance to the decision and response time
rewards. Subfigure (a) corresponds to aSA = S−A , aE = E−, (b) corresponds
to aSA = S−A , aE = E+, (c) corresponds to aSA = S+

A , aE = E−, and (d)
corresponds to aSA = S+

A , aE = E+.
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(a) (b)

(c) (d)

Figure B.8. Closed-loop control policy corresponding to the reward func-
tion with ζ = 0.85 for the coupled-emission model. In this case, higher
importance is given to the decision rewards as compared to the response
time rewards. Subfigure (a) corresponds to aSA = S−A , aE = E−, (b) corre-
sponds to aSA = S−A , aE = E+, (c) corresponds to aSA = S+

A , aE = E−, and
(d) corresponds to aSA = S+

A , aE = E+.
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(a) (b)

(c) (d)

Figure B.9. Closed-loop control policy corresponding to the reward func-
tion with ζ = 0.95 for the coupled-emission model. In this case, a very high
importance is given to the decision rewards as compared to the response
time rewards. Subfigure (a) corresponds to aSA = S−A , aE = E−, (b) corre-
sponds to aSA = S−A , aE = E+, (c) corresponds to aSA = S+

A , aE = E−, and
(d) corresponds to aSA = S+

A , aE = E+.



199

VITA

Kumar Akash
EDUCATION

Ph.D. in Mechanical Engineering August 2020
Purdue University, West Lafayette, IN, USA
GPA: 4.00/4.00
Advisor: Dr. Neera Jain
Thesis: Reimagining Human-Machine Interactions through Trust-based Feedback

M.S. in Mechanical Engineering May 2018
Purdue University, West Lafayette, IN, USA
GPA: 3.93/4.00
Advisor: Dr. Neera Jain

B.Tech. in Mechanical Engineering May 2015
Indian Institute of Technology, Delhi, India
GPA: 9.09/10.00
Advisor: Dr. Sudipto Mukherjee
Thesis: Growth Plate Preserving Intramedullary Nail for Pediatric Patients

RESEARCH INTERESTS

Deterministic and Probabilistic Dynamic Modeling; Optimal Control; Human-Machine

Interaction; Machine Learning

RELEVANT COURSEWORK

Human Factors in Engineering, Machine Learning, System Identification, Multidis-

ciplinary Design Optimization, Optimal Control & Estimation, Adaptive Control,

Nonlinear Feedback Control, Hybrid Systems



200

AWARDS AND RECOGNITION

• Bilsland Dissertation Fellowship, Purdue University, Aug 2019. Awarded

by the Dean of the Graduate School to provide support to outstanding Ph.D.

candidates in the final year of doctoral degree completion.

• Batch of Sixty Seven (BOSS) Award, IIT Delhi, May 2015. Awarded for the

best experimental project in mechanical engineering discipline submitted during

the session 2014–2015.

• Summer Undergraduate Research Award, IIT Delhi, May 2013. Awarded

by Industrial Research and Development Unit of IIT Delhi for exceptional re-

search potential displayed at the undergraduate level.

SKILLS

• Software: MATLAB, Simulink, NI LabVIEW (Real-Time & FPGA), Solid-

Works, Unreal Engine

• Languages: Python, C++, JavaScript, LaTeX

INDUSTRIAL EXPERIENCE

1. Research Intern May 2019–August 2019

Honda Research Institute, San Jose, CA, USA

Adaptive Transparency Framework for Level 2 Autonomous Driving

• Analyzed the effects of augmented reality-based transparency cues on driver’s

cognitive states using eye-tracking, galvanic skin response, and manual takeover

tendencies.

• Developed models to capture the dynamic effects of transparency on driver’s

cognitive states.

• Established optimal control policies to improve driving performance by dy-

namically varying transparency based on driver’s estimated cognitive states.



201

2. Mechanical Intern May 2014–July 2014

Dover India Innovation Center, Bangalore, India

Designing a 15000 lbf Hydraulic Planetary Winch for Tulsa Winch Group, Ok-

lahoma, USA

• Reinforced design decisions using structural analysis of critical components

to optimize the weight-to-strength trade-off.

• Designed hydraulic circuit of the winch along with selection and validation

of hydraulic motor required to power the hydraulic winch.

RESEARCH EXPERIENCE

1. Graduate Research Assistant August 2015–August 2020

Purdue University, IN, USA

Reimagining Human-Machine Interactions through Trust-based Feedback

• Designed multiple human subject studies to analyze human trust and work-

load behavior during interactions with an automated decision-aid and col-

lected data using in-person experiments as well as using online experiments

conducted through Amazon Mechanical Turk.

• Created machine-learning-based and control-oriented models to estimate

and predict human trust and workload based on human behavior.

• Developed a classification-based framework to estimate human trust us-

ing extracted features from psychophysiological signals including electroen-

cephalogram (EEG) and galvanic skin response (GSR).

• Synthesized optimal control algorithms that enable machines to respond to

changes in human trust in real time to improve human-machine collabora-

tion and validated closed-loop performance through human subject experi-

mentation.

2. Undergraduate Researcher July 2014–May 2015

Indian Institute of Technology Delhi, India

Growth Plate Preserving Intramedullary Nail for Pediatric Patients



202

• Modeled and simulated fractured pediatric femur bone.

• Designed a segmented nailing solution with sufficient rigidity to support

human body weight.

• Analyzed the stability of the bone and implant system, followed by proto-

typing and testing for design validation.

3. Undergraduate Researcher January 2014–January 2015

Indian Institute of Technology Delhi, India

Design of Internal Hub Gear for Bicycles

• Developed a robust and economical 2-speed hub gear system for Hero Cycles

Limited, India’s largest cycle manufacturer, to be used in cycles for rural

areas.

• Conceptualized two separate designs based on epicyclic gears; one to be

mounted on the rear-wheel and the other on pedals.

• Validated the designs by simulations followed by prototyping and testing.

4. Undergraduate Researcher January 2013–May 2014

Indian Institute of Technology Delhi, India

Design and Development of Active Magnetic Bearing System

• Developed a frictionless and lubricant free bearing and its controller by

implementing a magnetically levitated rotor.

• Optimized the core design of the electromagnet and developed a prototype

of the active magnetic bearing system.

• Designed a Result Adaptive PID controller algorithm that could be heuris-

tically tuned and validated it using a National Instruments Real-Time and

FPGA controller.

TEACHING EXPERIENCE

1. Systems, Measurements, and Control (ME 365) Fall 2019

Purdue University, IN, USA

Substitute lecturer; covered the topic of noise characterization and reduction.



203

2. Systems, Measurements, and Control (ME 365) Fall 2015

Purdue University, IN, USA

Graduate teaching assistant for one laboratory section with an enrollment of 22

undergraduate students.

3. Design of Machines (MCL 211) Spring 2015

Indian Institute of Technology Delhi, India

Undergraduate teaching assistant for the course with an enrollment of 180 un-

dergraduate students.

PROFESSIONAL ACTIVITIES

Journal Reviewer

• IEEE Transactions on Control Systems Technology 2019–Present

• IEEE Transactions on Human-Machine Systems 2017–Present

• IEEE Access 2017–Present

Conference Reviewer

• IEEE Conference on Intelligent Transportation Systems 2020–Present

• IFAC Conference on Cyber-Physical & Human Systems 2018–Present

• American Control Conference (ACC) 2016–Present

• IEEE Conference on Decision and Control (CDC) 2016–Present

Professional Society Memberships

• American Society of Mechanical Engineers (ASME)

• Institute of Electrical and Electronics Engineers (IEEE)



204

PUBLICATIONS

Journal Articles

• Kumar Akash, Tahira Reid, and Neera Jain, "Dynamic Coupling of Human
Trust and Workload in Human-Machine Interactions." (In Preparation)

• Kumar Akash, Griffon McMahon, Tahira Reid, and Neera Jain, "Human
Trust-based Feedback Control: Dynamically varying automation transparency to
optimize human-machine interactions." IEEE Control Systems Magazine, 2020.
(Accepted)

• Kumar Akash, Wan-Lin Hu, Neera Jain, Tahira Reid, “A Classification Model
for Sensing Human Trust in Machines Using EEG and GSR,” ACM Transactions
on Interactive Intelligent Systems, 2018. doi: 10.1145/3132743

• Wan-Lin Hu,Kumar Akash, Tahira Reid, Neera Jain, Tahira Reid, Neera Jain,
“Computational Modeling of the Dynamics of Human Trust During Human-
Machine Interactions,” IEEE Transactions on Human-Machine Systems, 2018.
doi: 10.1109/THMS.2018.2874188

Conference Articles

• Kumar Akash, Neera Jain, and Teruhisa Misu, “Towards Adaptive Trust Cali-
bration for Level 2 Driving Automation,” in 22nd ACM International Conference
on Multimodal Interaction, Oct. 2020. (Submitted)

• Nayara Faria, Coleman J Merenda, Richard Greatbatch, Kyle Tanous, Chihiro
Suga, Kumar Akash, Teruhisa Misu, and Joseph L Gabbard, “The Effect of
Augmented Reality Cues on Glance Behavior and Driver-initiated Takeover in
Conditionally Automated Driving,” in 12th International ACM Conference on
Automotive User Interfaces and Interactive Vehicular Applications (Automo-
tiveUI), Sept. 2020. (Submitted)

• Kumar Akash, Katelyn Polson, Tahira Reid, and Neera Jain, “Improving
Human-Machine Collaboration Through Transparency-based Feedback — Part
I: Human Trust and Workload Model,” in 2nd IFAC Conference on Cyber-
Physical & Human Systems, Dec. 2018.

• Kumar Akash, Tahira Reid, and Neera Jain, “Improving Human-Machine Col-
laboration Through Transparency-based Feedback — Part II: Control Design



205

and Synthesis,” in 2nd IFAC Conference on Cyber-Physical & Human Systems,
Dec. 2018.

• Kumar Akash, Tahira Reid, and Neera Jain. “Adaptive Probabilistic Classifi-
cation of Dynamic Processes: A Case Study on Human Trust in Automation.”
In 2018 Annual American Control Conference (ACC), pp. 246-251. IEEE, 2018.

• Kumar Akash, Wan-Lin Hu, Tahira Reid, and Neera Jain. “Dynamic modeling
of trust in human-machine interactions.” In 2017 American Control Conference
(ACC), pp. 1542-1548. IEEE, 2017.

• Wan-Lin Hu, Kumar Akash, Neera Jain, and Tahira Reid, “Real-Time Sensing
of Trust in Human-Machine Interactions,” in 1st IFAC Conference on Cyber-
Physical & Human Systems, pp. 48-53. Dec. 2016.

Invited Talks

1. Kumar Akash, Tahira Reid, and Neera Jain, “A Classification Model for Sens-
ing Human Trust in Machines Using EEG and GSR.” ACM Intelligent User
Interfaces (IUI) Conference 2019, Los Angeles, CA, March 16-20, 2019.

2. Kumar Akash, Tahira Reid, and Neera Jain, “Reimagining Human-Machine
Interactions Through Trust-Based Feedback.” Student Lightning Talks, 2019
Southwest Robotics Symposium, Arizona State University, Tempe, AZ, January
24-25, 2019.


	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Background
	Levels of Automation and Transparency
	Effects of Transparency on Trust and Workload
	Dissertation Objectives
	Objective 1: Dynamic Modeling and Estimation of Human Trust
	Objective 2: Human State-based Feedback Control

	Outline

	Dynamic Modeling and Estimation of Human Trust
	Modeling Effects of Automation Reliability
	Introduction
	Background
	Experiment 1
	Experiment 2
	Discussion

	Estimating Human Trust using Psychophysiological Measurements
	Introduction
	Background
	Methods and Procedures
	Data Analysis
	Feature Selection
	Model Training and Validation

	Combining Behavioral and Psychophysiological Measurements
	Introduction
	Background
	Probabilistic Classification Algorithm
	Classification of Human Trust in HMI
	Results and Discussions

	Chapter Summary

	Transparency-based Feedback Control of Human Trust
	Introduction
	Modeling Human Trust and Workload
	POMDP Model of Human Trust and Workload
	Human Subject Study

	Model Parameter Estimation
	Trust Model
	Workload Model

	Controller Design
	Decision Reward Function
	Response Time Reward Function
	POMDP Control Policy

	Validation and Results
	Chapter Summary

	Coupled Models of Trust and Workload
	Description of Coupled Models
	Independent Model
	Coupled-Transition Model
	Coupled-Emission Model
	Coupled-State Model
	Complete-Coupled Model

	Model Selection
	Model Parameter Estimation
	Coupled-Transition Model
	Coupled-Emission Model

	Model Validation and Results
	Stimuli and Procedure: 
	Participants
	Decision Reward and Response Time Reward
	Total Reward

	Chapter Summary

	Conclusions
	Summary of Research Contributions
	Future Research Directions

	REFERENCES
	Trust and workload POMDP models
	Control policies to vary automation transparency
	VITA
	PUBLICATIONS



