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ABSTRACT 

Millions of households around the world rely on intermittent water supply systems (IWS), where 

piped water supply is limited to specific hours during the day or on specific days during the week. 

Households relying on IWS systems, as their primary water source, often adapt to supply 

intermittency by installing in-house water storage and/or supplying water from non-piped sources 

(for instance, in the form of water tanker trucks). The piped water distribution network (WDN) in 

IWS systems is subject to short-term disruptions that cause dynamic behavior and interactions of 

the system’s stakeholders, including households, vendors of non-piped water, and the water utility. 

During disruptions of the WDN, households make decisions about obtaining water from different 

non-piped sources at different prices and wait times. These decisions, made by a large number of 

households, have an impact on the dynamics (in particular, the prices and availability) of the non-

piped water market, which may in turn affect each household decision. Prior studies on the 

literature of the analysis of IWS systems focused on analyzing each of the components (namely 

the WDN, households, vendors of non-pied water, and the water utility) of the IWS in isolation, 

assuming static behavior of the other components. 

The overreaching objective of this dissertation is to bridge the gap in knowledge and practice in 

analyzing the short-term dynamics within each component of the IWS system (focusing on the 

WDN and the households) and the interactions among all components of the IWS system when 

responding to physical disruptions of the WDN. First, a new framework for quantifying and 

analyzing the resilience of intermittent WDNs is presented. The framework incorporates the 

aspects of intermittent supply (including household storage and supply scheduling) into a hydraulic 

model that examines the network’s hydraulic performance and its topology to assess three 

resilience capacities: absorptive, adaptive, and restorative, against various types of physical 

disruptive events. The evaluation of the model, using the IWS network of a case study city in the 

Middle East, shows that household storage capacities, timing and length of the disruption, supply 

inequity, and the supply scheduling are significant factors in determining the resilience of the 

WDN, and the interactions of these variables result in different combinations of direct and post 

effects on households. The framework was also used to evaluate the impact of temporary 

modifications of the supply schedule on the network’s resilience. The results show that this short-
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term utility adaptive measure can significantly improve the resilience of the network. The proposed 

framework can assist utilities in the operation of the intermittent WDN under normal conditions 

and in the evaluation of the impact of different short- and long-term resilience enhancement 

strategies. 

Next, based on empirical data from a survey of households in a city in the Middle East, the 

households’ decision-making in response to disruptions of the WDN was evaluated using 

econometric methods. A set of Binary Probit models were developed to model the decision of 

households regarding their risk attitudes toward running out of water (represented by the timing of 

their response actions), their willingness to pay for faster delivery of non-piped water, and their 

willingness to wait in-line to obtain water from a non-piped source. The results show how variables 

related to household characteristics, wealth, age and occupation of the household’s manager, 

knowledge of household manager about their households’ water situation, and prior experience 

with disruptions affect the households’ decisions when the piped-network is disrupted. The outputs 

of the econometric models can assist the city’s water managers in understanding the behavior of 

households that affect the demand and prices of different non-piped water sources. 

The final component in this research integrates the two previous components into an Agent-Based 

Model (ABM) to evaluate the dynamics of the stakeholders’ interactions in response to disruptions 

of the WDN and to evaluate the impact of these interactions on the resilience of the whole system. 

The ABM examines the interactions between households and vendors of water tankers under 

utility’s policies that regulate the water tanker market while integrating variables that describe the 

response of the WDN to the disruption. The demonstration of the model using a representative 

subset of the IWS system in the case study city shows dynamic behavior patterns in: (a) the 

dynamics of households, and (b) the performance of the non-piped water market under different 

deterministic and stochastic scenarios of disruptions of the WDN. 

The results of this research address many IWS systems in the Middle East and around the world 

that are characterized by household storage, as well as households’ dependency on the piped 

network as the main water supply. The models developed in this dissertation are expandable to 

adopt various systems’ configurations in terms of types and capacities of household storage, types 

and attributes of non-piped water sources, and attributes and preferences of households. The results 
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of this doctoral research can assist water managers in cities in understanding the behavior of their 

IWS system (including the WDN and the system’s stakeholders), evaluating long-term resilience 

enhancement policies, and planning for short-term response to disruptions of the WDN. 
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 INTRODUCTION 

The Urban Water Supply Infrastructure System (referred to as the Piped Water Distribution 

Network WDN) is the physical system that derives and pumps water from sources such as 

reservoirs and groundwater, treats it, transports it, and distributes it through a piped network for 

residential, commercial, and some industrial purposes. It includes treatment plants, pumping 

stations, pipelines, valves, storage tanks, and supporting control and monitoring systems that are 

essential for the operation of water treatment, transporting, and distribution. The WDN is one of 

the critical infrastructures identified by the Homeland Security and national disaster management 

plans. Other critical infrastructures (e.g., electric generation, healthcare, etc.) depend on water 

supply for their operation. According to a U.S. Department of Homeland Security study in 2014, 

the services of other critical infrastructures are degraded by more than 50% within 8 hours of losing 

drinking water supply (DHS 2014). After the terrorist attacks of September 11, 2001, Hurricane 

Katrina in 2005, Superstorm Sandy 2012, and other significant disasters, the study of the resilience 

of critical infrastructures (including water supply infrastructures) has garnered increased attention 

as part of a larger strategy for homeland security.  

The Urban Water Supply System (WSS) is a broader system that includes the physical water 

network, its operation and management, and the behavior of the users of its services. In addition, 

the WSS includes non-piped potable water supply modes, such as private wells, mobile tankers, 

and bottled water. Hence, the WSS includes the WDN, other supply modes, and the stakeholders, 

including water consumers, water utility, and entities in the market for non-piped drinking water. 

Urban water supply systems in many parts of the world, especially in developing countries, face 

many challenges in supplying water continuously (i.e., for 24 hours, 7 days a week) to their 

consumers. Alternatively, utilities use an intermittent water supply strategy to adapt to these 

challenges. Intermittent Water Supply Systems (IWS Systems) are defined in this research as piped 

water distribution systems that supply water to their customers for less than 24 hours a day or less 

than 7 days a week under normal operating conditions. This definition implies that the 

intermittency of supply in the IWS systems is a chosen strategy by the system operator (i.e., the 

water utility) due to obstacles that prevent continuous water supply.  
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More than 1 billion people around the world are supplied by intermittent water supply (IWS) piped 

systems that provide water intermittently (Kaminsky and Kumpel 2018). Klingel (2012) roughly 

estimated the percentages of the water supply systems that operate intermittently in different parts 

of the world to be 30% in Africa, 50% in Asia, 60% in Latin America, 90% in Southeast Asia, and 

almost 100% in India. IWS systems are often designed to supply water continuously in the first 

place, but they are operated under IWS due to economic, ecological, technical, and/or institutional 

obstacles (Klingel 2012). The predominant cited reason for these IWS system is the scarcity of 

water resources. However, other factors (such as those related to the behavior of consumers, local 

governance, and financial constraints) also play a significant role in causing or reinforcing 

intermittent supply (Galaitsi et al. 2016). 

1.1 Research Motivation 

The analysis of IWS systems is different from the analysis of water supply systems with continuous 

water supply (CWS) due to several reasons. In terms of the analysis of the water network (WDN), 

the traditional analysis approaches of CWS systems cannot be used for the hydraulic analysis of 

IWS systems due to the existence of features unique to the IWS, such as the periodic filling and 

emptying cycles of pipes, the significant fluctuations in pressure, and the existence of local 

household water storage. In addition, the analysis of the behavior of consumers is different and 

more complicated in IWS systems. Consumers often adapt to the intermittency in water supply by 

storing water, supplying water from other sources, and changing their water use patterns to adapt 

to the water supply. Furthermore, many IWS systems in developing countries have unconnected 

consumers, illegal connections, and no water metering. Therefore, the analysis of WSS systems 

with intermittent supply requires the consideration of other non-piped water supply sources, the 

dynamic behavior of different types of consumers, and special hydraulic considerations. 

1.2 Problem Statement   

The disruption of the piped water network causes more dynamic changes in the behavior of the 

system stakeholders in IWS systems compared to CWS systems, since stakeholders in IWS 

systems have a wider range of adaptive actions they can choose from to manage their temporary 

situation. Consumers of CWS systems often do not have local water storage, and they have very 
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limited access to non-piped water sources during times of disruption. The main disruption-

response action available to consumers in CWS systems is water conservation. Similarly, the utility 

behavior during disruptions of CWS systems is limited to the restoration efforts of the system 

components.  

Prior research efforts on the analysis of the resilience of WDN (the piped network) are limited to 

continuous water supply. In addition, current resilience analysis frameworks do not include the 

dynamic behavior of consumers and assume static demand patterns before and during disruptions. 

Consumer behavior and utility actions are even more dynamic (in terms of obtaining non-piped 

water) in the case of IWS. Furthermore, even without considering the dynamic behavior of 

stakeholders, current resilience analysis frameworks that are developed for CWS cannot be used 

in the case of IWS due to the major differences in the network operation and the existence of 

unique components. 

1.3  Research Questions 

This research aims to answer questions related to the analysis of the resilience of IWS systems and 

the behavior of the systems’ stakeholders during disruptions. The following research questions are 

addressed in this dissertation: 

- How can the resilience of WDN, in the context of IWS, be quantified? What system 

performance measures can explain the system behavior at all stages of the disruption-

recovery cycle? What metrics can explain the contribution of each resilience capacity to 

the overall system’s resilience?  

- As an adaptive resilience measure, what is the effectiveness of modifying the utility’s 

supply schedule during system disruptions? 

- What are the factors that affect the decision-making of households in IWS systems 

related to obtaining non-piped water in response to disruptions? 

- What are the dynamics of the interactions between the system’s stakeholders during 

disruptions? How is community resilience affected by these dynamics? 
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1.4 Research Hypotheses 

This research evaluates three main hypotheses related to the resilience of IWS systems under short-

term disruptions: 

1. IWS systems can be robust against short-term acute disruptions due to the available buffer 

in the form of local household storage. However, their robustness depends on household 

storage capacity, the level of supply inequity, and the intensity and the length of the 

disruption. 

2. When obtaining non-piped water during disruptions, households are heterogeneous in 

terms of their preferences regarding the risk of running out of water, their willingness to 

pay for faster delivery, and their willingness to pay for convenient non-piped sources.  In 

addition, the knowledge and the awareness of the household manager about their water 

situation and their previous experience with the multi-mode water supply system have an 

impact on their preferences related to obtaining non-piped water. 

3. The behavior of stakeholders in the IWS system is affected by the dynamics of the WDN 

where the network supply to consumers changes throughout the duration of the disruption, 

and the dynamic interactions between stakeholders during system disruptions may result 

in emergent behavior in the system. 

1.5 Research Objectives 

To address these research questions, the following research objectives were developed: 

1. Develop and evaluate a framework for assessing and quantifying the resilience of physical 

water infrastructure systems within the context of IWS 

2. Evaluate the short-term behavior of consumers during physical disruptions in the piped 

water network 

3. Evaluate the dynamics of the interactions of stakeholders (consumers, utility, and entities 

in the non-piped water market) during disruptions in the piped network and the impact of 

those interactions on the resilience of the system 
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1.6 Research Scope and Boundaries 

Figure 1.1 explains the interactions between the four main components of the IWS system (namely, 

piped distribution system, water manager/operator, water consumers, and the market of non-piped 

water) during both normal operations and during disruptions of the physical infrastructures. 

 

Figure 1.1. Problem Boundaries (Arrows represent the relationships between components, blue: 

during normal operation, red: during disruptions) 

IWS systems can have various configurations based on different supply schemes (i.e., mechanisms 

to distribute the supply between different parts of the network) and consumers’ adaptations (e.g., 

types of water storage, water conservation). This dissertation focuses on IWS systems that are 

characterized by local household storage with greater consumer dependence on the piped network,  

and evaluates the resilience of IWS networks against acute physical network disruptions. 

Additionally, it addresses the short-term behavior of the stakeholders of IWS systems in response 

to these disruptions. The following subsections define the terms resilience, disruptive events, and 

stakeholders’ behavior, and explain the scope of this dissertation.  

1.6.1 Resilience of Water Supply Infrastructure Systems 

There is no universal definition of the term resilience, and across research disciplines, there are 

many definitions and perceptions of resilience. In the field of physical infrastructures, resilience is 
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defined as “The ability to prepare for and adapt to changing conditions and withstand and recover 

rapidly from disruptions” (Presidential Policy Directive/PPD–21 2013). Similarly, the National 

Infrastructure Advisory Council defines infrastructure resilience as the “ability to anticipate, 

absorb, adapt to, and/or rapidly recover from a potentially disruptive event” (National 

Infrastructure Advisory Council 2016). These definitions address three different capacities of 

resilience: Absorptive, Adaptive, and Restorative/Recovery resilience (Francis and Bekera 2014):   

• Absorptive capacity is the degree to which a system can absorb the impacts of system 

perturbations and minimize consequences with little effort (Vugrin et al. 2010). Pre-

disruption characteristics of the system, such as robustness and reliability, are used to 

represent absorptive capacity. Designing a system with a buffer capacity, for example, 

addresses the absorptive capacity of the system (Francis and Bekera 2014).  

• Adaptive capacity is the ability of the system to undergo some changes to adjust to 

undesirable situations, and it differs from absorptive capacity in that adaptive systems 

undergo changes in response to disruptions, especially if absorptive capacity has been 

exceeded. An adaptive system is a system that is prepared for adverse events and that 

is able to anticipate disruptions, recognize unanticipated shocks, and re-organize after 

the occurrence of a disruptive event (Francis and Bekera 2014).  

• Restorative capacity is the rapidity of return to normal or an improved level of 

performance and system reliability. It is usually assessed against a predefined desirable 

level of service.  

This dissertation has adopted the approach of conceptualizing the resilience of the WDN using 

three resilience capacities: Absorptive, Adaptive, and Restorative. 

Physical infrastructures by themselves can only have robustness/resistance (in the form of 

redundancy, buffer capacity, and strength), and they cannot have resilience in the sense of 

adaptation or recovery. Resilience is provided by utilities and households who have the capacity 

to implement adaptive strategies to cope and recover from failures (Krueger et al. 2019). Hence, 

this research evaluates the resilience of IWS systems at two levels: operational resilience and 

community resilience. Operational resilience includes the built-in robustness/resistance of the 

physical WDN and the adaptive behavior of the utility required for recovering from disruptions. 

Long-term households’ adaptations, in the form of water storage, are considered as part of the 
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built-in robustness of the WDN. On the other hand, community resilience integrates operational 

resilience with the short-term adaptive behavior of households in response to disruptions (e.g., 

obtaining non-piped water). In other words, operational resilience assumes the absence of short-

term adaptations of households, while community resilience considers the inclusion of households’ 

short-term adaptations. Operational resilience is of interest to the utility in terms of the technical 

operation of the network, and it provides insights about the operation of IWS networks during 

disruptions. On the other hand, community resilience is of interest to the city’s water managers 

(which can be the utility or the city) to assess the impact of the network disruption on households 

considering other modes of water supply. Figure 1.2 provides an illustration of the scope of the 

two levels of resilience, showing the components of the IWS system and their interactions. 

 

Figure 1.2 Illustration of the components of the IWS system and their interactions for the 

operational resilience and the community resilience 

Disruptive Events  

The resilience of WDN is assessed against disruptive events (equivalent terms used in the literature 

include hazards, threats, shocks, perturbations, disturbances, and disasters). Disruptive events of 

the WDN can be physical or non-physical. Physical disruptive events include:  

1. Random failures: a collective name for the failures of system’s components due to aging, 

accidents, human errors, equipment failures, or triggered by vegetation (trees) or animals 

(Ouyang et al. 2012) 
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2. Natural hazards (such as earthquake, hurricanes, floods, etc.) 

3. Deliberate attacks: planned attacks that target parts of the system (e.g., terrorist attacks) 

4. Cascading failures: failure of physical components due to capacity exceedance when the 

flow is redistributed following a disruption triggered by other events  

5. Interdependence effects: perturbations caused by failures on another system that transfer 

to the system of interest due to the interdependence relationship 

Non-physical disruptive events include community-based disruptions and economic shocks. An 

example of community-based disruptions is the change in households’ water-related behaviors that 

affects the water demand patterns. Another example of community-based disruptions is the 

dramatic changes in served population that either put more pressure on the infrastructure system 

in the case of dramatic increase in population (e.g., people arriving to a city fleeing from a natural 

disaster) or making the operation of the whole system financially stressful in the case of dramatic 

declining in population (e.g., shrinking cities (Faust et al. 2016)). Economic shocks impact 

financing and budgeting the operation, maintenance, and enhancement of the water supply 

infrastructure. One distinction between physical and non-physical disruptive events that has 

implications on resilience analysis is that non-physical disruptions usually occur over longer 

periods of time (since they are usually indirect) compared to physical disruptive events. Physical 

disruptive events occur within seconds, minutes, or hours, whereas the impacts of non-physical 

events may take days, years, and sometimes decades to manifest on system performance. 

The focus of this research is the analysis of the impacts of physical disruptive events on the 

resilience of IWS systems. Disruptive events can be classified as initial (random failures, natural 

hazards, and deliberate attacks) and secondary (cascading failures and Interdependence effects). 

Initial disruptive events are hazards whose occurrence and level of intensity are independent of the 

condition of the system. Secondary disruptive events are triggered by changes in the condition of 

the WDN (i.e., cascading failures) or the condition of the infrastructure system upon which the 

WDN depends on (i.e., interdependence effects). This research currently addresses initial (direct) 

disruptive events, but it can be expanded to include secondary disruptive events. 
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1.6.2 Behavior of IWS Systems Stakeholders 

The key stakeholders of the IWS system considered in this research are: 

o Water Manager: includes the water utility that is responsible for the operation and 

management of the physical water distribution network and/or, in some cases, the 

operation and management of other modes of water distribution (e.g., water tankers). In 

some cases, the water manager may also include governing entities that are responsible 

for water planning and policies. 

o Stakeholders in the Market Non-piped Water: includes entities in the informal market of 

residential potable water in the form of water tankers, bottled water, and other forms of 

water supply that are not provided by the water utility. This component includes 

regulated and unregulated (or sometimes illegal) residential water markets. 

o Water Consumers: the residential users of the water who receive the service from the 

water utility and/or buy the water from the private water market for household uses. 

The behavior of stakeholders in the IWS system can be analyzed in the long term and in the short 

term. The long-term analysis considers the actions of the stakeholders to manage their future 

situations based on their past experience with the system. On the other hand, the short-term 

analysis considers the actions of system stakeholders to manage their current situations without 

necessarily considering improvements to their future conditions. Consumers in IWS systems take 

long-term and short-term water management actions to adapt to the intermittency in the water 

supply. Long-term actions are in the form of investment decisions in water storage, water 

conservation, and water supply, to manage consumers’ water supply and consumption in the 

future. Long-term decisions are often costly and have a lasting effect on the consumer’s water 

situation (i.e., for months or years). On the other hand, short-term actions are temporary decisions 

that aim to manage the consumer’s day-to-day water supply and demand. Short-term actions 

improve the consumer’s water situation only for several days (or weeks at most). The water 

manager also makes long-term (e.g., investing in water storage, changing water tariffs, or investing 

in increasing the capacity of the system) and short-term decisions (e.g., modifying supply durations 

or schedules in response to available water resources). Similarly, stakeholders in the market of 

non-piped water respond to the long-term and short-term changes in demand by changes in the 

price, availability, and capacity of the private market. This dissertation addresses the short-term 
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behavior of the stakeholders in IWS systems in response to physical disruptions of the piped 

network. 

1.7 Research Overview 

Figure 1.3 describes the research activities to achieve each research objective. The inputs, outputs, 

and processing research tools are described for each activity.  A framework for quantifying and 

assessing the resilience of IWS systems is developed by building a resilience quantification model 

using tools of hydraulic modeling and graph theory. The framework is then evaluated using a case 

study of a real IWS network. The IWS resilience model is then used to evaluate the adaptive utility 

operational actions on the piped network during disruptions. 

Furthermore, the research analyzes the consumers’ short-term decision making in response to 

network’s physical disruptions. Using the results of a developed household survey, consumers’ 

behaviors are modeled using econometric methods (Binary Probit Models). The final component 

of the research integrates the outputs of the other components to analyze the dynamics of the 

interactions between the IWS system’s stakeholders using an Agent-Based Model, and to assess 

the effects of these dynamics on the resilience of the system. 
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Figure 1.3. Research Framework 

1.8 Description of the Water System Testbed  

The research components of this dissertation are developed/evaluated within the context of a case 

study of a subnetwork from the water supply network in a city in the Middle East. The city is 

located at the center of the country and at an elevation of 612 m (2008 ft). The city is approximately 

1800 km2 (700 sq mi) in area, with a population of about 8 million. There are approximately 1.3 

million households in the city, with an average size of 5.9 people per household. The per capita 

average daily water consumption is one of the highest in the world at 350 liters (around 94 gallons). 

The city is located in a hot and dry region with low average annual precipitation of around 100 

mm (3.94 in). Hence, the city has no surface water resources, and 60% of the city’s supply comes 

from desalination plants at the seacoast (located at almost 450 km (280 mi) from the city) while 

the remaining 40% of the demand is supplied by groundwater from government-owned wells. 
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Water consumers in the city receive their water supply through the piped network that is owned 

and operated by the water utility. Due to the limited water resources, the utility has long adopted 

intermittent water supply by alternating the supply between zones in the network following weekly 

schedules. Consumers have adapted to the supply intermittency by installing/constructing in-house 

water storage tanks with various capacities. Almost 100% of the households in the city have some 

type of water storage tank. 

1.9 Dissertation Organization 

This dissertation consists of five chapters and follows the “multiple publications” format. Each of 

the Chapters 2, 3, and 4 has its own introduction, literature review, methodology, results and 

discussion, and conclusion sections. Significant portions of these chapters have been submitted or 

are in preparation for submission for review and publication in peer-reviewed journals and/ or 

refereed conferences. Chapter 1 includes the introduction of the dissertation and discusses the 

research motivation, the problem statement, and research objectives. Chapter 2 introduces a new 

framework for the assessment of the resilience of intermittent water supply infrastructure systems 

and discusses the implementation of the framework in the context of the IWS system in the case 

study city. This chapter is reprinted in part from the conference paper published in the ASCE 

Construction Research Congress 2018, Saad I. Aljadhai, Dulcy M. Abraham, Quantifying the 

Resilience of Water Supply Infrastructure Systems: The Role of Infrastructure Interdependency, 

pp. (496-506). Tables and figures captions were modified to maintain the form of the dissertation. 

Chapter 3 analyzes households’ decision-making behavior in response to disruptions in the water 

distribution network. This chapter models the preferences-related households’ decision-making 

and discusses the factors that affect households’ decisions regarding obtaining non-piped water. A 

version of this chapter was published in the proceedings of ASCE World Environmental and 

Water Resources Congress 2020, Saad I. Aljadhai, Dulcy M. Abraham, Modeling Dynamic 

Consumer Decision during Disruptions of Intermittent Water Supply Systems, pp. (360-373). 

Tables and figures captions were modified to maintain the form of the dissertation. 

Chapter 4 discusses the evaluation of the dynamics of the interactions between the stakeholders of 

the IWS system in response to the disruptions of the water distribution network. This chapter 

discusses the Agent Based Model developed to model and evaluate the dynamics and the 
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interactions of stakeholders of the IWS system, and it discusses the results of the model 

implementation in the context of the IWS system in the case study city. Chapter 5 presents the 

conclusions of the dissertation, the contributions to the body of knowledge and practice, the 

limitations of the current research, and recommendations for future research. 
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 RESILIENCE ANALYSIS OF INTERMITTENT WATER SUPPLY 

INFRASTRUCTURE SYSTEMS 

[Sections of this chapter were published in the proceedings of the ASCE Construction Research 

Congress 2018.]0F

1 

This chapter introduces a new framework for quantifying and evaluating the resilience of IWS 

infrastructure networks (i.e., WDN) and their operation against network physical disruptions. 

Resilience quantification is important to guide network resilience enhancement strategies done by 

the network manager (i.e., the utility). Resilience metrics can be used for evaluating the 

effectiveness of different resilience enhancement strategies for both short term (e.g., temporary 

operational modifications) and long term (e.g., designing new parts of the network or modifying 

the current network). As discussed in Section 1.1, analyzing the resilience of IWS infrastructure 

networks requires unique hydraulic and performance assessment considerations due to the way 

these networks operate (i.e., periodic filling and emptying cycles of pipes, significant fluctuation 

in pressure) and unique consumer adaptive behaviors (i.e., local household water storage). 

The resilience of the IWS network depends on both the network configuration (i.e., network 

components and topology) and its operational management. The behavior of the utility plays an 

important role in the resilience of the water network. In CWS networks, the utility’s adaptive 

response to network disruptions is limited to restoring the damaged network components (e.g., 

damaged pipes) and limited temporary flow diversions. However, more options are available to 

the utility in the case of IWS since many IWS networks operate with available buffer in the system 

(in the form of household water storage). This storage buffer gives the utility more room to modify 

the operation of the network to maximize its performance since network supply can be diverted 

from households with available stored water to the affected parts of the network. The option of 

modifying supply schedules to maximize the network’s resilience is an idea that has not been 

investigated in prior research.  

 
1 Aljadhai, S. and Abraham, D. (2018). “Quantifying the Resilience of Water Supply Infrastructure Systems: The Role 

of Infrastructure Interdependency”. Construction Research Congress 2018. New Orleans, LA. (pp. 496-506) (With 

permission from ASCE). 
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This chapter introduces a new framework for quantifying the resilience of IWS infrastructure 

networks (Research Objective 1.a). The framework assesses three resilience capacities; absorptive, 

adaptive, and restorative against physical disruptive events. In addition, the short-term adaptive 

behavior of the utility during network disruptions (in the form of supply schedule modifications) 

is modeled, and its impact on operational resilience of the network is evaluated (Research 

Objective 1.b)  

First, a discussion of the prior work on analyzing the resilience of water supply networks 

(developed for CWS systems) and prior work on analyzing IWS networks is presented to highlight 

the existing gaps related to the resilience assessment of IWS networks. Second, the methodology 

for the proposed resilience assessment framework is discussed. The resilience framework is then 

implemented and evaluated within the context of a real water network. Finally, the operational 

resilience of the utility is addressed by analyzing the utility’s adaptive measures to enhance the 

performance of the network during disruptions. Different proposed strategies for modifying the 

supply schedule are evaluated and their impact on the network’s resilience is assessed. 

2.1 Literature Review 

This section gives an overview of the prior research on resilience assessment of water supply 

networks (for CWS) to define the existing gaps in resilience quantification for water supply 

networks. It also gives an overview of the prior research on the analysis of water networks in the 

context of IWS to highlight the absence of consideration of network disruptions in prior studies. 

2.1.1 Prior Research in Resilience Assessment for Water Supply Networks 1F

2 

An examination of the literature in the resilience assessment of infrastructure systems suggests 

that resilience assessment frameworks are developed to achieve different objectives. These 

objectives include identification of vulnerable components in the system, quantification of overall-

system vulnerability, testing resilience improvement strategies, investigating the effect of 

interdependencies, and/or effectively quantifying the system’s resilience. 

 
2 Section adapted from Aljadhai and Abraham (2018) 



 

 

30 

Resilience quantification is a common important step in the development of most frameworks that 

address infrastructure resilience. There are three main general approaches to quantify the resilience 

of critical infrastructures. The first approach quantifies the resilience by measuring the loss of 

infrastructure performance due to disruptions. The performance of the water network can be 

measured by many metrics (e.g., pressure, number of affected nodes, and water quality). In this 

approach, a resilient system is a system that minimizes the impacts of disruptions on the system’s 

performance (by reducing the failure consequences and/or recover rapidly from disruptions). 

Studies that have used this approach usually measure the loss of system performance by: 

(1) comparing the system performance before and immediately-after the disruption 

(applied for absorptive and adaptive capacities) (Gay and Sinha 2012; Francis and 

Bekera 2014); 

(2) comparing the disrupted infrastructure performance to the original performance at 

different times during the disruption (Francis and Bekera 2014); or  

(3) calculating the area between the targeted (original) performance curve and the 

disrupted performance curve (Vugrin et al. 2010; Ouyang et al. 2012; Ouyang and 

Dueñas-Osorio 2012) (Figure 2.1). 

 

Figure 2.1. Conceptual illustration of the area that represents the performance loss (PL) 

(adopted from: Vugrin et al. 2010) 

The second approach is a probabilistic approach where the resilience is measured as the probability 

that the system will meet pre-defined standards (Chang and Shinozuka 2004; Gay and Sinha 2012). 

These standards can be related to the loss of system performance (e.g., maximum acceptable 

Infrastructure 
performance 

Original (targeted) performance 

Disrupted performance curve 

 

PL 
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performance loss) or related to the system’s recovery efforts and time (e.g., maximum acceptable 

recovery time and/or cost). 

The first and second approaches measure the resilience in terms of how the system output is 

affected by disruptions. However, in the third approach, system resilience is measured as the 

system’s vulnerability to disruptions (Adachi and Ellingwood 2008; Yazdani and Jeffrey 2012; 

Wang et al. 2012; Farahmandfar et al. 2015). In this approach, a more resilient WDN is a system 

whose characteristics make it less vulnerable to disruption. Prior studies of this approach focused 

on one or more of the following system’s attributes: 

a) components’ conditions (for instance, condition of pipelines), 

b) topology,  

c) hydraulic characteristics,  

d) and/or interdependencies configurations 

Table 2.1 summarizes the approaches of prior research and their methods or focus. Most of the 

quantification frameworks in the literature in the resilience of water supply infrastructure systems 

address only one or two of the three resilience capacities (i.e., absorptive, adaptive, and restorative) 

and/or limited to one specific disruptive event. Even though few frameworks addressed all 

resilience capacities (e.g., Vugrin et al. 2010; Ouyang et al. 2011, 2012; Francis and Bekera, 2014; 

Guidotti et al. 2016), the resilience metrics used cannot explain the contribution of each resilience 

capacity. For instance, the quantification method of the area of the deviation from the targeted 

performance curve (as in Figure 2.1) captures all resilience capacities; however, it gives a 

combined value that cannot explain which capacity has a greater or lesser contribution towards 

system resilience. Identifying the contribution of each capacity is important to guide resilience 

enhancement decisions and efforts. On the other hand, quantifying each capacity separately might 

lead to missing some resilience effects (i.e., interdependencies between and among resilience 

capacities).  There is a need for the integration of multiple methods that can jointly explain the 

resilience of the system and the contribution of each resilience capacity.  

There is also a need to incorporate the appropriate system performance measures that explain the 

system behavior at each stage of the system’s response cycle (i.e., disaster prevention → damage 

propagation → recovery). For example, using measures such as the proportion of surviving nodes 
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(Adachi and Ellingwood 2008; Ouyang et al. 2012) or proportion of nodes that meet a threshold 

(Guidotti et al. 2016) to assess the system performance cannot explain the system response to 

disruptive events in a situation where the system has a buffer that absorbs the shock and all nodes 

survive or meet the threshold. In this case, other performance measures such as the average surplus 

nodal head (Farahmandfar et al. 2015) can capture the pressure drop and explain how the system 

prevented service loss at demand nodes. A combination of two or more measures might be helpful 

since each measure may explain more about a particular stage of the system’s response cycle. 
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Table 2.1.  Summary of Approaches of Prior Research in Resilience Assessment for 

Infrastructure Systems 

Study 

System(s) – disruptive event(s) addressed 

(Approach 1) 

Analysis of 

performance 

loss 

(Approach 2) 

Probability of 

meeting pre-

defined standards 

(Approach 3) 

Vulnerability-

based 

analysis 

Chang and Shinozuka (2004) 

WDN – seismic hazard 

 AB, R  

Adachi and Ellingwood (2008) 

WDN – seismic hazard and 

interdependency with the electric power 

system 

  AB, AD 

(b), (c) 

Vugrin et al. (2010) 

General framework for infrastructure 

systems 

AB, AD, R 

(3) 

  

Ouyang et al. (2011, 2012) 

Power transmission grid – random hazards 

and hurricanes 

AB, AD, R 

(3) 

  

Wang et al. (2011) 

Interdependent electric power and water 

system – random failures and deliberate 

attacks on the power system 

  AB 

(b), (d) 

Yazdani and Jeffrey (2012) 

WDN – no evaluation of disruptive events 

  AB 

(b), (c) 

Gay and Sinha (2012) 

WDN – any disruptive event 

 R  

Francis and Bekera (2014) 

General framework – applied to power 

distribution system against hurricanes 

AB, AD, R 

(1), (2) 

  

Farahmandfar et al. (2015) 

WDN – seismic hazard 

  AB 

(a), (b), (c) 

- AB: Absorptive capacity 

- AD: Adaptive capacity 

- R: Recovery capacity 

- Numbers in parenthesis refer to the methods for measuring the loss of system performance 

- Letters in parenthesis refer to the focus of vulnerability-based studies 
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2.1.2 Prior Research in the Analysis of Intermittent Water Supply Networks 

The prior research in the analysis of water supply systems has focused more on continuous water 

supply systems. Less attention has been given to the analysis of water supply systems in the context 

of intermittent water supply (Ilaya-Ayza et al. 2017). Relevant studies in the analysis of the IWS 

physical network are summarized and discussed in this section. 

The analysis of the physical piped network has been the scope of the majority of prior research 

that studied IWS systems. These studies analyze different aspects of piped networks that operate 

under an intermittent water supply mode. These aspects include the performance of the network in 

terms of pressure, flow rates, leakage rates, and/or supply satisfaction (Andey and Kelkar 2007; 

Gheisi and Naser 2015; Mohapatra et al. 2014; Soltanjalili et al. 2013). Another aspect is the 

impact of water intermittency (i.e., pressure fluctuation and pipes emptying and filling cycles) on 

the physical condition of the pipe network (Agathokleous and Christodoulou 2016; Christodoulou 

and Agathokleous 2012). In addition, some studies focused on modeling and analyzing the detailed 

process of pipe filling and emptying (Lieb et al. 2015; de Marchis et al. 2010). 

Another part of the literature that is related to the IWS piped network focuses on the issue of supply 

equity. In some IWS systems, consumers who are close to the water source get their supply faster 

and for longer time periods with greater pressure than those who are distant from the water source. 

This problem of inequity of supply is manifest in large networks where the water entering the 

network could take several hours to reach distant consumers (Ameyaw et al. 2013). Ameyaw et al. 

(2013) developed a multi-objective model to measure and improve supply equity and minimize 

the cost of additional source tanks in IWS networks. Gottipati and Nanduri (2014) proposed an 

index for measuring the supply equity in IWS networks and studied the effect of various design 

factors on the equity index. These two studies analyze physical design modifications to the network 

in order to address inequity. On the other hand, Ilaya-Ayza et al. (2017) analyzed operational 

modifications, in the form of optimizing supply schedules, to improve the equity of water supply. 

Therefore, their work can be considered an example of the analysis of the coupling between the 

piped network and the network manager/operator (i.e., the utility).  

These research efforts focus on analyzing IWS networks under normal operation conditions. To 

the knowledge of the author, no previous study has analyzed IWS networks from a resilience point 
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of view where the network’s performance is assessed against physical disruptions. The unique 

aspects of IWS networks (including household tanks, supply schedules, and supply inequity) are 

expected to produce a network resilience behavior that is different from that of CWS networks. 

2.2 Resilience Quantification Framework for IWS Networks 2F

3 

The framework developed in this study quantifies the resilience of IWS physical networks that are 

characterized by local household water storage. The framework focuses on larger IWS systems 

where the network is divided into zones with different supply schedules. The framework is 

generalizable in terms of the forms of household water storage, the strategies for water 

rationing/scheduling, and the types of disruptive events and their intensities. The framework 

components are shown in Figure 2.2, along with tools used for analyzing each component. The 

proposed framework assesses three resilience capacities: absorptive, adaptive, and restorative 

capacities. 

 

Figure 2.2. Framework Components and Modeling Tools 

 
3 Section adapted from Aljadhai and Abraham (2018) 
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2.2.1 Disruptive Events Modeling 

The first component in this framework is the modeling of disruptive events that translates the 

occurrence of initial disruptive events into failure scenarios of the network components. The 

failure of network components is governed by vulnerabilities of components (the probability of 

failure given the intensity of the disruptive event). These vulnerabilities vary across different types 

of disruptive events, thus requiring different probability functions to be defined for each type of 

disruptive event. The output of this component is a matrix of failure scenarios where the failed 

network components are identified. Each failure scenario represents one realization (one set of 

draws) of the probability functions of different components vulnerabilities. 

2.2.2 WDN Performance Simulation and Analysis 

This component simulates the failure and recovery processes of the WDN. The simulation tracks 

specific hydraulic attributes of the network during the failure and recovery simulation. Although 

graph-theory based simulation has been widely used in the literature (e.g., Adachi and Ellingwood 

2008; Wang et al. 2012; Yazdani and Jeffrey 2012) to simulate the performance of water 

distribution networks, it only provides an abstract representation of the flow in the network. On 

the other hand, hydraulic simulation provides an actual representation of the network performance 

by modeling the physical process of the water flow in the network.  In addition, hydraulic 

simulation has the advantage of tracking the pressure in the network, which is crucial for 

determining the amount of water each consumer receives since the demand in many IWS systems 

is a function of the pressure (Ameyaw et al. 2013; Mohapatra et al. 2014). 

2.2.3 IWS Network Performance Measures 

Two main system measures are tracked for assessing the system’s performance during disruptions: 

serviceability index, SI and network-average tank filling ratio, ATFR. Prior studies (Wang 2006; 

Shi and O’Rourke 2008) that focused on CWS networks defined the serviceability index (also 

known as demand satisfaction) as the ratio of total delivered demand to the total required demand 

for all demand nodes in the network. However, the concept of demand satisfaction is different in 

IWS networks since the supplied demand will not be evaluated only in terms of the volume of 

water delivered to the household, but also by considering the water available at the household 
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storage. Hence, Serviceability Index, SI (taking a value between 0 and 1), is defined here as the 

ratio of the total volume of accessible water in households’ storage (limited by the volume of 

household demand) to the total required demand for all households. Serviceability Index, SI, is 

calculated using Equation 2.1. Calculating the demand satisfaction for each household separately 

normalizes the household demands, which ignores the actual volume of the unsatisfied demand. 

 

𝑆𝐼𝑡 =
∑ (𝑄𝑎𝑐𝑐𝑒𝑠𝑠,𝑡,𝑖)

𝑁
𝑖=1

∑ (𝑄𝑟𝑒𝑞,𝑖)
𝑁
𝑖=1

 (2.1) 

 

Where SIt is the system serviceability index at time t, (0 ≤ St ≤ 1), Qreq,t,i is the required demand at 

household node i, and N is the number of household nodes in the network. Qaccess,t,i is the accessible 

water in the household storage (limited by the household demand at time t) at node i at time t, and 

it is determined using Equation 2.2. In other words, SI calculates how much of the required demand 

was satisfied by stored water in the household (takes a value between 0 and 1).  

 

𝑄𝑎𝑐𝑐𝑒𝑠𝑠,𝑡,𝑖 = {

0, 𝑄𝑠𝑡𝑜𝑟𝑒𝑑,𝑡,𝑖 ≤ 0

𝑄𝑠𝑡𝑜𝑟𝑒𝑑,𝑡,𝑖, 0 < 𝑄𝑠𝑡𝑜𝑟𝑒𝑑,𝑡,𝑖 < 𝑄𝑟𝑒𝑞,𝑖

𝑄𝑟𝑒𝑞,𝑖, 𝑄𝑠𝑡𝑜𝑟𝑒𝑑,𝑡,𝑖 ≥ 𝑄𝑟𝑒𝑞,𝑖

 (2.2) 

 

Where 𝑄𝑠𝑡𝑜𝑟𝑒𝑑,𝑡,𝑖 is total volume of stored water in household i at time t.  

 

ATFR is the network-average of the ratio of the volume of the stored water to the maximum volume 

capacity of water storage for all households in the network. In the case of uniform-shaped tanks 

(rectangular or circular), ATFR can be calculated as the ratio of the water depth in the household’s 

tank (ℎw) to the tank’s depth (ℎt) averaged across all tanks in the network, as shown in Equation 

2.3. 

 

𝐴𝐹𝑇𝑅 =
∑ (

ℎw

ℎt
)𝑁

𝑖=1

𝑁
 

(2.3) 
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The first performance measure, SI, assesses the network performance in terms of consumers’ 

demand satisfaction and explains the performance of the network during the damage propagation 

and the recovery stages of the disruption-recovery cycle. However, during the disaster prevention 

stage, the system uses its absorptive capacity to withstand shocks and continue the normal 

operation with no service disruption. Performance measures that focus on the impact of the 

disruptions on the end users (such as SI, proportion of surviving nodes, or proportion of nodes that 

meets a threshold) fail to explain the system response at the prevention stage where there is no 

service disruption for the end users. Therefore, a performance measure that can examine the 

changes in water storage in the system could explain the absorptive capacity of the system that 

allowed the system to prevent a service disruption during the prevention stage. The ATFR 

represents the available water storage buffer in the system that helps the system to absorb the 

shocks and minimize the impact on consumers. 

2.2.4 Resilience Metrics 

Serviceability Index, SI, gives an overall indication of system performance in terms of the service 

received by the end users at the terminal nodes. When plotted across time, SI can explain the 

combined effect of the system’s resilience capacities. On the other hand, ATFR is an indicator of 

the available absorptive capacity in the system (i.e., capacity of storage buffer). Using these two 

performance measures, two resilience quantities are proposed in this framework: Overall System 

Resilience (OSR) and Capacity-Specific Resilience (CSR).  

2.2.4.1 Overall System Resilience (OSR) 

OSR captures the collective effect of all three resilience capacities, which is represented by the SI. 

OSR takes a value between zero and one and is calculated by comparing the area under the 

disrupted-system’s SI curve to the area under the targeted performance curve. It is assumed that 

the targeted SI is always equal to one (i.e., all supply nodes have 100% demand satisfaction). 

Therefore, the targeted SI curve will be a straight line, as shown in Figure 2.3. OSR is calculated 

using Equation 2.4. 
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𝑂𝑆𝑅 =
∫ 𝑆𝐼(𝑡)𝑑𝑡

𝑡𝑓

𝑡0

(𝑡𝑓 − 𝑡0)
 

(2.4) 

 

Where t is time, t0 the start time of the disruption, and tf is the time where the system returned to 

normal operation.  

 

Figure 2.3. Illustration of Serviceability Index curves for undamaged and damaged networks 

2.2.4.2 Capacity-Specific Resilience (CSR) 

CSR represents a set of three resilience quantities for the three resilience capacities. CSR has a 

value between zero and one and is calculated for each resilience capacity separately. Absorptive 

capacity has two dimensions: the ability to withstand and prevent a disruption and the ability to 

minimize the consequences of the disruption. Absorptive CSR is calculated by a weighted sum of 

two parameters (Equation 2.5). The first parameter is the ratio of the area under the ATFR curve 

of the damaged network to the area under the ATFR curve of the undamaged network. This 

parameter captures the system’s ability to withstand shocks and prevent disruptions. The second 

parameter is the performance retained post-disruption (shown in Figure 2.3). This parameter 
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represents the system’s ability to minimize the consequences of the disruption. The weight w in 

Equation 2.5 represents the importance of the retained SI to the system’s analyzer in determining 

the system’s absorptive resilience.  

 

𝐶𝑆𝑅𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑣𝑒 =  𝑤 𝑆𝐼𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑 + (1 − 𝑤) 
 (∫ 𝐴𝑇𝐹𝑅𝑑𝑎𝑚𝑎𝑔𝑒𝑑   𝑑𝑡

𝑡𝑓

𝑡=0
 )

 (∫ 𝐴𝑇𝐹𝑅𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑   𝑑𝑡
𝑡𝑓

𝑡=0
)

 
(2.5) 

 

Adaptive capacity is calculated by estimating the contribution of the adaptive measures in reducing 

the loss of OSR. The loss of OSR is calculated by comparing the OSR of a baseline scenario 

(without adaptive measures) to the OSR of the same scenario with adaptive measures, as shown in 

Equation 2.6. Adaptive measures (e.g., modifications to the operation of the network) are 

temporary recovery management actions that bring the system to an improved (intermediate) 

performance level during the disruption. 

 

𝐶𝑆𝑅𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 = 1 −  
𝑂𝑆𝑅𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠

𝑂𝑆𝑅𝑤𝑖𝑡ℎ 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠
 

(2.6) 

 

Restorative capacity can be assessed by the probability of the system to meet predefined recovery 

time and cost constraints when a probabilistic simulation is applied (Gay and Sinha 2012). In this 

framework, restorative capacity is defined as the probability of meeting pre-defined recovery time 

limits as shown in Equation 2.7. 

𝐶𝑆𝑅𝑅𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑣𝑒 =
∑(𝑟𝑢𝑛𝑠 𝑤𝑖𝑡ℎ 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒 ≤ 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒 𝑡𝑎𝑟𝑔𝑒𝑡)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠
 

(2.7) 

 

CSRs explain the contribution of each resilience capacity on the overall resilience of the system, 

and hence, can guide the resilience enhancement decisions. However, there is an overlap between 

the effects of resilience capacities. For example, an enhanced absorptive capacity will have a 



 

 

41 

positive impact on the restorative capacity of the system. Therefore, the OSR is used along with 

CSRs to account for the interdependencies between different resilience capacities. 

2.2.5 Stochastic Simulation 

There are several sources of uncertainties in quantifying the resilience of WDN. The main 

uncertainty is the one related to the initial failure of system components, which is characterized by 

the component’s vulnerability. For natural hazards, fragility curves are used to specify the 

probabilities of reaching different failure states for network components giving the intensity of the 

hazard. Fragility curves are used for network components other than pipelines (tanks, treatment 

facilities, pumping stations, and wells). For pipelines, the probability of failure is estimated by 

calculating the repair rate (number of breaks per kilometer). Different fragility curves and repair 

rates have been developed in the literature for different types of natural hazards (earthquakes, 

floods, hurricanes, etc.). For initial failures caused by other disruptive events, probability 

distributions are often used to represent the vulnerabilities of components. Another source of 

uncertainty in the resilience quantification framework is the uncertainty in recovery durations for 

system components, which can also be characterized by probability functions. 

To address these uncertainties, a Monte Carlo simulation is implemented in the resilience 

quantification framework. The Monte Carlo approach is best suited for simulation-based problems 

where a complex behavior of system parameters is present. In this framework, the limited number 

of uncertain parameters (including the initially failed network components and the recovery times) 

make the Monte Carlo simulation less complex, thus justifying its use for addressing uncertainties. 

2.3 Evaluation and testing of the framework 

The framework is implemented in the context of household-storage-based IWS networks. The 

simulation of the performance of the physical water network against disruptive events is developed 

in Python 3.6 environment. Figure 2.4 shows the simulation flowchart that describes the steps of 

the simulation of the water network failure and recovery, along with resilience calculations. 

Traditional hydraulic simulation software (such as EPANET, which was developed by the 

Environmental Protection Agency (EPA)) are designed to analyze water networks under normal 

operation conditions. Also, they have limited capabilities to manipulate the network parameters to 
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analyze the network’s resilience. This framework uses the Water Network Tool for Resilience 

(WNTR) to carry out the hydraulic simulation. WNTR is an open-source Python library that was 

developed by Sandia National Labs and the Environmental Protection Agency (EPA) (Klise et al. 

2017). WNTR contains functions to add and remove network components, introduce damages to 

pipelines, modify network parameters, run hydraulic simulations, and carry out stochastic 

simulations. The usage of WNTR in this framework is shown in the simulation flowchart (Figure 

2.4).  

The recovery process for damaged pipes follows a method suggested by HAZUS-MD, a multi-

hazard loss estimation methodology and software (FEMA 2015). This method prioritizes damaged 

pipes in a network, based on their diameters, and estimates the restoration times based on the 

productivity of restoration teams. This method requires specifying the number of available workers 

and assigns available teams to the repair of damaged pipes. When pipes are restored, the team(s) 

are reassigned to the restoration of other damaged pipes until all damaged pipes are restored. 

   

Figure 2.4 IWS Network Resilience Simulation Flowchart 

WDN 
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2.3.1 Demand-Driven (DD) versus Pressure-Dependent-Demand (PDD) Simulation 

Traditional hydraulic modeling software (such as EPANET) uses a demand-driven (DD) 

simulation approach where the demand for all consumers is assumed to be met, and then the 

pressure in the network is calculated accordingly. This assumption does not hold in damaged or 

pressure-deficient networks (even in CWS networks) where the demand supplied to consumers is 

a function of the pressure at their ends. Pathirana (2011) and Abdy Sayyed et al. (2015) proposed 

quasi-PDD methods by modifying the DD simulation in EPANET to model damaged networks. 

However, assessing the resilience of WDNs requires constant modifications to the network 

characteristics (adding and removing components) requiring flexibility and computational 

efficiency to carry out stochastic simulations that are not provided by quasi-PDD methods. On the 

other hand, WNTR introduced its stand-alone PDD simulation engine that solves the set of non-

linear equations (Equation 2.8) to calculate the delivered demand at consumer nodes. 

 

(2.8) 

Where d is the actual demand (m³/s), Df is the desired demand (m³/s), p is the pressure (Pa), Pf is 

the pressure above which the consumer should receive the desired demand (Pa), and P0 is the 

pressure below which the consumer cannot receive any water (Pa). 

2.3.2 IWS Modeling 

The hydraulic simulation of IWS networks requires some special considerations to address unique 

aspects of IWS networks. These aspects are, namely, household storage, special demand patterns, 

and supply cycles. The following sections explain each aspect and show how it is considered in 

the hydraulic simulation. 

Modeling Household Storage 

In many IWS systems, consumers have long adapted to the supply intermittency by storing water 

at their households during supply times. Household storage can be in different forms ranging from 

constructed or installed tanks to simple containers. The way the water is extracted from the network 



 

 

44 

(i.e., rate, duration, and quantities) varies accordingly. In this framework, the IWS network is 

characterized by underground household tanks that are operated using floating valves. Since the 

function of underground household tanks in the hydraulic model is limited to receiving water with 

no backflow to the network, they are modeled as artificial reservoirs connected to the demand 

nodes (Mohapatra et al. 2014). Reservoirs are hydraulic model components used primarily as the 

water source in the network, but they can be used as water bodies for network discharge. A check 

valve is added to the pipe connected to the artificial reservoir to prevent water backflow to the 

network. WNTR have the capability of pausing and resuming the simulation, which allows the 

tracking and recording of water levels in household tanks outside the hydraulic model (by tracking 

the inflow to the artificial reservoirs), which makes the hydraulic simulation faster.  

Special Demand Simulation 

In contrast to demand patterns in CWS networks that are distributed over time with little 

fluctuations, the hydraulic demand in IWS networks does not follow a smooth demand pattern, 

and it is characterized by peaks in demand over shorter periods of time since households try to 

store as much water as they can during the supply time. In the context of this framework 

demonstration, the water from the network is fed directly to the household’s underground tank 

until the tank is full, then the water is shut-off using a floating valve. As a result of having many 

household underground tanks in the network, the water discharge at the household’s tank is a 

function of the water pressure at that node in the network. This feature of IWS networks stresses 

the importance of using a pressure-dependent demand (PDD) simulation not only for the damaged 

network (as previously discussed for CWS networks) but also during the simulation of the normal 

operation of the IWS network. 

Modeling Supply Cycles 

In larger IWS networks, the network is often divided into sectors (also called district metered 

zones, DMZs) and different supply schedules are assigned to those zones (Ilaya-Ayza et al. 2017). 

To model this feature of IWS systems, the cycles of opening/closing the control valves that control 

the water flow for these zones are implemented in the hydraulic simulation by constantly checking 

the supply schedules. 
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Figure 2.5 illustrates the method for incorporating these aspects of IWS networks in the hydraulic 

simulation. At each time step, the supply schedule is checked to update the status of the isolation 

links (i.e., open or closed) for each DMZ. The hydraulic simulation then solves the hydraulic 

equations to calculate the pressure-dependent inflow for the artificial reservoirs (i.e., household 

tanks). A separate matrix (Household Tanks matrix), which contains the water level for each 

household tank at each time step, is updated by adding the inflow for the artificial reservoir to the 

tank’s previous water level. To simulate water withdrawal from household tanks, the water levels 

in tanks are updated by subtracting the actual water demand for the household. Finally, the 

household tanks that are completely filled are shut-off and isolated, preparing the network for the 

simulation of the next time step. This process is repeated for each time step until the end of the 

simulation duration.  

 

Figure 2.5. Modeling the Aspects of IWS Networks in the Hydraulic Simulation 

2.3.3 Case Study 

The framework is evaluated using a case study of a subnetwork from the water supply network in 

a city in the Middle East (described earlier in Section 1.8). Figure 2.6 illustrates the typical 

household water system in the city where consumers rely on underground (or on-ground) storage 

tanks that are operated using floating valves and an electrical pump to elevate the water to a roof-

top tank, and the water then runs through the house by gravity. Only the underground tank is 

included in the hydraulic analysis since the other components of the household system have no 

effect on the hydraulics of the water network. 
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Figure 2.6. Typical household water system in case study city 

The water network in the case study city runs mainly on gravity due to a 90-meter elevation 

difference between the city and the main network source tanks. Booster pumping stations exist in 

some low-pressure areas in the network. The chosen subnetwork was suggested by the water utility 

as a representative subset of the whole network in terms of network configuration, elevations, 

pressure, and household storage capacities.  

Data Processing 

The sub-network is connected to the city’s network through two water mains (300 millimeters in 

diameter). Two reservoirs were added in the hydraulic model to represent these two sources with 

appropriate water heads that reflect the actual water pressure in the network during normal 

operation. The evaluated network consists of 1068 junctions (out of which 605 are demand 

junctions), 1258 pipes, and two sources reservoirs. Each demand junction represents 3-5 houses. 

A network skeletonization process provided by WNTR was applied to abstract the network 

structure while preserving its operational characteristics (Figure 2.7). The number of pipes and 

junctions in the original network was reduced by around 40%. The skeletonized network consists 

of 384 demand junctions, where each junction represents 6-10 houses. Figure 2.8 shows the actual 

demand for the nodes in the skeletonized network (i.e., aggregated demand for households sharing 

the node). To include household underground tanks in the hydraulic model, each demand junction 
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was connected to an artificial reservoir with a dummy junction and a check valve to prevent 

backflow from the household tank (i.e., artificial reservoir) to the network as shown in Figure 2.9. 

The demand of the original node (that represents the households) is set to zero.  

 

Figure 2.7. Network Skeletonization Results (left: original network, right: skeletonized network) 

 

Figure 2.8. Demand for nodes in the skeletonized network 

m3/hour 
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Figure 2.9. Modeling household tanks as artificial reservoirs 

Within the chosen network, four DMZs were established, representing four isolatable zones 

(Figure 2.10). The pipes that control the flow to each zone were identified using topological 

processing that identifies the links that isolate the zone.  

 

Figure 2.10. Demand Metered Zones (DMZs) and the network’s two water sources 



 

 

49 

Analysis Setup 

The capacity of household storage tanks is not included in the acquired network data. However, it 

was assumed that tank sizes correspond to the households’ demands. Therefore, tank storage 

capacity (SC) is expressed in terms of the number of days it can supply the household demand. 

For example, if the household demand is 2 m3/day and the tank volume is 20 m3, the storage 

capacity will be 10 days. In order to isolate the effect of the variability of storage capacity among 

households, all tanks in the network were given equal capacities (in terms of days of supply), while 

having different volumes that correspond to the households’ demands. By using this measure of 

storage capacity, the effects on the network performance will be limited to other variables of 

interest (e.g., damage intensity, recovery efforts, and the timing of the disruption).  

In terms of the operation of the network, a representative supply schedule was established (Figure 

2.11) to represent a typical household supply in the city (i.e., typical pressure and time required to 

fill tanks). The supply schedule is based on a 2-day supply duration for each zone. Under this 

supply schedule, the network always operates with 100% satisfaction for all consumers under 

normal operating conditions. Figure 2.12 is a visualization of the process of filling tanks in the 

network for one cycle (showing the tank filling ratio at the end of each day) following the supply 

schedule and starting with empty tanks with a storage capacity of 5 days. 

 

Figure 2.11. The weekly supply schedule  
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Figure 2.12. Example of tank filling ratio over time during normal operation (5-day storage 

capacity) 
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2.3.3.1 Analysis of the network under normal operation conditions 

Using the weekly supply schedule in Figure 2.11, a set of baseline scenarios for the performance 

of the IWS network under normal operation conditions are analyzed. The normal operation of the 

network means that all consumers’ demands are satisfied by the network at all times. Storage 

capacities are set to be greater than or equal to 6 days to ensure a 100% demand satisfaction. These 

baseline scenarios (for different storage capacities) are used later to evaluate the resilience of the 

network during disruptions. Figure 2.13 shows an example of the simulation results for 8 days of 

storage capacity (for all tanks in the network). The results include the performance curves for the 

serviceability index (SI) and the network-average of tanks filling ratios for the simulation of three 

weeks. Different coloring shades are used to denote the duration of the supply of the zones 

following the supply schedule (an overlap exists between the supply durations for DMZ-2 and 

DMZ-3). The SI remains at 100% throughout the simulation, where consumers’ actual demand is 

always satisfied.  The average tank filling ratio (AFTR) starts with a value of one since household 

tanks were set to be completely full at the beginning of the simulation. However, given the 

intermittent supply to households, household tanks will not be completely full.  Hence, the average 

of the ratio of tank filling declines until it reaches a steady-state pattern after one cycle of the 

supply schedule (i.e., one week). 

 

Figure 2.13. Sample results of the performance (SI and AFTR) of the IWS network for three 

weeks of normal operation for 8-day storage capacity 
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Table 2.2 summarizes the attributes of the zones during normal operation. These attributes show 

the variability in the water supply to different zones in the network. For example, DMZ-2 and 

DMZ-3 have hydraulic and topological attributes (i.e., the number and size of the zone’s inlet pipes 

and pressure at the inlets) that resulted in greater inflow rates to the zones. The hydraulic attributes 

of zones depend on the topology of the network and the zone’s connectivity to the water sources. 

These attributes help in explaining the variation in the performance of different zones both during 

normal operation and during disruptions, as discussed in the following sections.  

 

Table 2.2. Attributes of Demand Metered Zones (DMZs) during normal operation 

Zone 

Number 

of 

household 

tanks 

Elevation (m) Number 

of inlet 

pipes 

Average 

diameter 

of inlet 

pipes (m) 

Avg. 

pressure 

head at 

inlets (m) 

Total 

inflow 

rate* 

(m3/s) Mean Std. 

DMZ-1 84 620.2 1.85 4 0.16 13.53 0.13 

DMZ-2 91 620.2 1.63 6 0.143 12.69 0.61 

DMZ-3 83 620.6 1.30 6 0.16 15.18 0.59 

DMZ-4 92 620.4 1.74 5 0.188 10.34 0.29 

* During normal operation  

2.3.3.2 Analysis of Supply Inequity 

Supply inequity is one of the common issues reported in IWS networks with household water 

storage. Household tanks that are far from the source obtain water at a lower pressure (or do not 

get water at all) until the tanks that are closer to the source get filled and are shut off. As a result, 

there is a variation in the time at which tanks get completely filled, resulting in the inequitable 

distribution of the water, especially if the supply duration is not sufficient. Supply inequity is a 

result of the variability of supply at two levels: the network level and the zone level. Figure 2.14 

shows the probability distribution of the time required to completely fill tanks in each of the four 

zones in the analyzed network (given a 7-day storage capacity as an example). These zone-wise 

curves are generated for each zone separately, starting with empty tanks and assuming supply to 

the zone until all tanks in the zone are completely filled while isolating other zones. As shown in 

Figure 2.14, tank filling times follow a normal distribution. For a given tank size (7 days in Figure 

2.14), the difference in the means of the normal distribution curves represents the variability in 

supply among network zones. This network-level variability is attributed to the location of the 
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zone within the network (i.e., the pressure at the zone inlets) and its connectivity to the network 

(i.e., number and size of the inlet pipes), resulting in different inflow rates to the zone. For this 

example, household tanks in DMZ-2 get full at a faster rate compared to the other zones reflecting 

the higher total inflow to DMZ-2, as shown in Table 2.2. On the other hand, the standard deviations 

of the normal distributions represent the variability in supply between households within each 

zone. This zone-level variability is attributed to the layout of the zone (i.e., the connectivity among 

nodes within the zone).  The results show that both variabilities (i.e., among zones and within the 

zone) are important to describe the supply pattern for individual households. For example, 

although DMZ-4 has a faster rate of filling tanks than DMZ-1 (i.e., a lower mean value), it has a 

more spread curve (i.e., a higher value of standard deviation), which causes a longer time required 

to fill all tanks in DMZ-4. 

 
Figure 2.14. Sample of probability distributions of the time required to completely fill tanks 

following a zone-wise unlimited supply (storage capacity= 7 days) 

To analyze the effect of varying the storage capacity on supply inequity, Figure 2.15 shows the 

distribution of the time required to completely fill tanks in each zone at different storage capacities. 

As shown in Figure 2.15, the average time required to completely fill the tanks increases as the 

storage capacity increases, which is a direct effect of longer times required to fill individual larger 

tanks. In addition, the standard deviation also increases with the increase in tank sizes, which 

reinforces the supply inequity within the zone since larger tanks cause a further delay of supply to 

the tanks that are far from the zone sources. 
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Figure 2.15. Effect of varying the storage capacity on the probability distributions of the time 

required to completely fill individual tanks for each zone 

Figure 2.16 shows the increase in the mean and the standard deviation of the time required to 

completely fill individual tanks in each zone. Both the mean and the standard deviation increase 

in a linear fashion with the increase of storage capacity, which shows that the underlying 

interdependency relationship between households’ tanks does not change with the increase in 

storage capacity as long the variation in tank sizes is fixed. This finding suggests that the zone-

level supply inequity can be described by the zone’s topology and the variation in the sizes of 

household tanks. 

The results of this analysis show that although supply is divided between zones based on time 

scheduling, the supply is divided between households within the zone in a rather sequential basis 

(where tanks start filling when other tanks are full). This behavior is a result of the demand pattern 

of households withdrawing water from the network for storage purposes. 
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(a) (b) 

Figure 2.16. Effect of tank size on (a) the mean of the time to completely fill individual tanks, 

and (b) the standard deviation of the time to completely fill individual tanks 

2.3.3.3 Analysis of Disruption Scenarios 

In order to evaluate the resilience of the IWS network, two scenarios of disruptions are identified: 

pipe-damage disruptions and source disruptions. These two scenarios differ in terms of the 

intensity of the disruption (i.e., partial vs. whole-network impact), and represent two different sets 

of disruptive events. 

Scenario 1: Pipe-Damage Disruption 

Pipe-damage disruptions represent internal physical disruptive events that result in damaging some 

pipes in the network.  Such disruptive events include natural events (e.g., earthquakes, flooding, 

flash floods), deliberate attacks, and random failures that may damage some pipes in the network. 

The pipe-damage disruption can also represent planned/anticipated disruptions to the network 

(e.g., pipelines maintenance, inspection or replacement). In this analysis, a stochastic pipe-damage 

scenario is used where 10% of the critical pipes in the network (i.e., those greater than 300 mm in 

diameter) are assumed to fail in a random manner. Figure 2.17 shows these critical pipes that 

connect the zones to the water sources in the network. 
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Figure 2.17. Critical pipes in the network (> 300 mm in diameter) 

Scenario 2: Source Disruption 

While the pipe-damage scenario affects the network partially, disruptions at sources represent 

disruptive events that occur externally and impact the whole network. Source disruptions are 

considered to evaluate the response of the network to wide-spread, longer disruptions. Source 

disruptions can represent any disruptive event (natural event, deliberate attack, or random failure) 

that affects the operation of the water sources (e.g., water reservoir and/or treatment plant), and 

that results in a partial or full shutoff of the water supply. In this case study, the scenario of source 

disruptions represents the impact of disruptions of other parts of the city’s whole network that 

affect the supply to the subnetwork under study. Source disruptions are assumed to completely 

disable the two water sources in the subnetwork.  

Scenarios Combinations 

The resilience of the IWS network depends on both the attributes of the network (e.g., structure, 

household storage characteristics, and supply scheduling) and the attributes of the disruption (e.g., 

timing of occurrence, intensity, and duration). Table 2.3 gives a brief description of the variables 

that affect the resilience of the IWS network. 
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Table 2.3 Description of the variables that determine the resilience of the IWS network 

Variable Description 

Household Storage Capacity (SC) 
The capacity of household water storage expressed as the number 

of days it can supply the household’s demand 

Recovery Duration (RD) 
The time required for completing all restoration efforts of 

damaged network components 

Supply Inequity 

The variation in tanks filling within a zone (i.e., the standard 

deviation of the time required to completely fill an individual tank 

in the zone)  

Supply Scheduling and Supply 

Durations (SS) 
The original scheduling of supply between zones 

For this part of the analysis, the supply schedule is set to be static throughout the analysis, assuming 

that the water utility does not change the supply schedule during the disruption and that the utility’s 

response is limited to restoring the failed network components.  

Figure 2.18 shows the different combinations of the network and the disruption variables. Each of 

the two disruption scenarios can have different combinations of household storage capacity, timing 

of the disruption (with respect to the supply schedule), and recovery duration/speed. In this case 

study, household storage capacity is expressed in terms of the number of supply days, as explained 

earlier. 

 

Figure 2.18. Scenario combinations 
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In IWS networks, the timing of the occurrence of the disruption (with respect to the supply 

schedule) has an effect on the network resilience because of the variation in the response of 

different zones to the disruption (due to the zone’s hydraulic performance and supply inequity). If 

the disruption is extended beyond the length of the supply schedule (i.e., one week), the timing of 

the disruption will have less effect on the network’s response since the disruption will affect all 

zones. For each zone in the network, the worst timing of the disruption would be the time where 

the zone has the lowest volume of stored water in household tanks (i.e., at the beginning of the 

supply to the zone). In this analysis, the four worst-case timings of the disruption are identified, 

which corresponds to the timings of the beginning of the supply to each zone (i.e., beginning of 

Day 1, Day 3, Day 4, and Day 6). 

The recovery duration is the time required to restore the water supply to the network. The length 

of the recovery depends on the recovery process and strategy (i.e., priority and resources). For the 

pipe-damage scenario, a modified version of the recovery method suggested by HAZUS (software 

developed for FEMA) is used where recovery teams are assigned to damaged pipes based on 

priorities established based on pipe size. The variation of the recovery length is expressed in terms 

of the available recovery resources (four scenarios of the number of recovery teams are used). 

Therefore, the uncertainty in the recovery duration depends on the uncertainty of the pipes that 

failed. For the source disruption scenario, deterministic scenarios of the recovery length for 

restoring the water supply are assumed to represent the recovery of any component(s) outside the 

analyzed subnetwork.  

2.3.3.4 Results Generation and Sample Results 

A total of 96 stochastic combinations of the pipe-damage scenario were simulated using a Monte-

Carlo simulation of 100 runs for each combination to address the uncertainty in the initially 

damaged pipes. It was observed that the mean value of OSR reaches a steady-state (change in the 

mean is less than 0.001) after around 50 runs. For the source disruption scenario, a total of 120 

deterministic combinations were simulated. A sample of the results of one simulation combination 

for each scenario is presented here to illustrate the results of the two performance measures (SI 

and AFTR) and to explain their interpretations.  
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A sample of one simulation combination for the pipe-damage disruption (10-day storage capacity, 

disruption occurs at the beginning of Day 6 of the supply schedule, and 3 recovery teams) is 

presented in Figure 2.19. The top part of Figure 2.19 shows the mean, the 75th-25th percentiles, and 

the 90th-10th percentiles for the performance profile of the network’s serviceability index (SI) for 

the 100 simulation runs. The bottom part of the figure shows the profile for the network-average 

tank filling ratio (AFTR) for the 100 simulation runs. Network disruptions are always introduced 

during the second supply cycle (i.e., second week) to ensure a normal steady-state performance 

condition when the disruption is introduced. The results of the SI show a delay in the network 

response to the disruption due to the available storage buffer in household tanks in the affected 

zones. For this example, the disruption occured at the time where DMZ-4’s supply began (the 

beginning of day 6 in the supply schedule). Most households in DMZ-4 had a 5-day supply 

available in their tanks when the disruption occurred. Therefore, the network’s SI remained at 

100% until around 104 hours after the disruption when household tanks in DMZ-4 started to run 

out of water, since they missed the supply during this cycle. The network performance (i.e., SI) 

drops to an average of 85% five days after the disruption (the beginning of day 17 in the figure). 

Although the pipe recovery (on average) was completed three days after the disruption (end of day 

14 in the figure), the network’s SI has not improved until the supply was resumed to DMZ-4 in 

the following cycle. The SI curve also shows that the network performance dropped again during 

the following supply cycle (after the end of supply duration to DMZ-4, end of day 20 in the figure) 

since the supply duration for the zone (i.e., 2 days) was not sufficient to fill all tanks in the network 

due to the greater supply inequity associated with greater storage capacities (i.e., 10-day capacity). 

The SI performance went back to 100% when the supply was resumed to DMZ-4 on day 26. In 

this example, the disruption affected only one zone (DMZ-4), given the combination of storage 

capacity, recovery speed, and timing of the disruption. However, for other combinations, the 

disruption impact can extend to more than one zone, causing a greater drop in the SI curve. 

The curves of the network-average tank filling ratio, AFTR, (the bottom part of Figure 2.19) shows 

the drop in network’s storage buffer following the disruption, compared to the network’s storage 

buffer during normal operation. Starting from the time of the disruption (day 12 in the figure), 

households in DMZ-4 start to use the storage buffer in their tanks, causing the network-average 

buffer to decline. As the recovery of damage pipes progresses, the average tank filling ratio 

converges to the original normal operation profile (reaches normal operation at day 28). Different 
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scenario runs (with different damaged pipes) result in a variation in the network’s response in 

terms of the drop and the recovery of the network’s average household storage. 

Figure 2.20 shows the result for one deterministic simulation of one combination of the source 

disruption scenario (10-day storage capacity, 6-day recovery duration, and disruption occurs at the 

beginning of Day 6 of the supply schedule). The SI results show a similar delay in the effect of the 

disruption on the network performance due to the available water storage. The longer (6-day) 

recovery duration caused a complete shut-off for the supply for DMZ-4, DMZ-1, and DMZ-2. The 

drops in the SI values on days 17, 19, and 21 in the figure represent the tanks running out of stored 

water in these zones, respectively. The SI curve also shows the post (secondary) disruption that 

occurs during day 31 as some tanks in DMZ-4 and DMZ-1 did not have enough time to sufficiently 

fill during the previous supply cycle given the issue of supply inequity. The tank filling curve 

(bottom of Figure 2.20) that tracks the changes in the value of ATFR helps in explaining the 

network’s SI performance. The negative slope of the ATFR curve indicates the shut-off of the 

supply to the network, while the positive slope indicates a normal supply (that follows the supply 

schedule). 
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Figure 2.19. Sample results (for 100 runs) for one combination of the pipe-damage disruption 

(SC= 10 days, Recovery resources= 3 teams, and disruption timing= Day 6) 
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Figure 2.20. Sample results for one deterministic combination of the source disruption (SC= 10 

days, recovery duration= 6 days, and disruption timing= Day 6) 

2.3.3.5 Results of Disruption Scenarios 

In household-storage-based IWS networks such as the one analyzed in this study, interactions 

between the four variables that characterize the resilience of the IWS network (namely storage 

capacity, recovery duration, the timing of the disruption, and the supply scheduling) result in 

different behavior of the network performance. Figure 2.21 summarizes the results of the network 

performance over time for different combinations of storage capacities and recovery durations of 

the two disruption scenarios. The figure shows the results for disruptions that occur on Day 1 of 

the supply schedule (the beginning of supply to DMZ-1). The results for other disruption timings 

can be found in Figure A.1, Figure A.2, and Figure A.3 in Appendix A.   
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Figure 2.21. Network’s Serviceability Index (SI) for different disruption scenarios and household 

storage capacities (disruption occurs at the beginning of Day 1 of the supply schedule) 

All four variables that affect the network resilience are expressed in terms of time and/or duration 

(timing and duration of the disruption, the duration of supply by tanks, and times and durations of 

network supply from the supply schedule). The different interactions between these times and/or 

durations result in different behavior of the network. For example, greater storage capacities that 

provide longer backup supply (longer than the recovery duration) would improve the network 

performance, SI. However, greater storage capacities may require longer supply duration to ensure 
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sufficient supply available to all tanks in the zone to survive through the supply cycle. Therefore, 

the supply scheduling for each zone becomes relevant in addressing the supply inequity. The 

timing of the disruption impacts the supply duration required for filling the tanks in the zone due 

to the heterogeneity of supply inequity among zones in the network. 

Comparing Disruption Patterns of IWS and CWS Networks 

Due to supply rationing and the existence of household storage tanks, there are three main observed 

features that distinguish the disruption patterns (i.e., performance loss curves) of IWS networks 

from the disruption patterns of CWS networks that have been discussed in the literature (e.g., Diao 

et al. 2016; Guidotti et al. 2016; Aydin 2018; Khatavkar et al. 2019). These features include 

disruption lag, zone-sensitive performance loss, and post-disruption effects. 

• Disruption Lag 

While disruption effects are immediate in CWS networks, disruption patterns in IWS networks 

show a time lag between the occurrence of the disruption and the time of the performance drop. 

The disruption lag is the result of the storage buffer available in households, and its length depends 

on the capacity of household storage. If the storage capacity is large enough, households may never 

experience any disruption of water supply, depending on the length of the network damage. 

• Zone-Sensitive Performance Loss 

Performance loss in IWS networks is characterized by multiple sharper drops in performance as 

the impact of disruptions extends to additional zones in the network. While the variation in the 

quantities of available stored water is low between households within a zone, there is a significant 

variation in the average quantities of water available in households across different zones (due to 

supply rationing). This variation across zones results in a larger number of households running out 

of water within a shorter period of time. This feature can be seen in the form of the step-wise 

performance loss in Figure 2.21, where each drop in performance represents an additional zone 

being affected. This feature of IWS networks suggests that the speed of recovery is significant if 

the disruption of additional zones is to be minimized. 
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• Direct and Post Disruption Effects 

The most significant feature of the disruption patterns in IWS networks is the existence of post-

disruption effects, in addition to direct effects that are also found in CWS networks. The difference 

between direct and post-disruption effects is as follows: 

• Direct disruptions (i.e., primary disruptions): household tanks run out of water as a result 

of the absence of water supply during the designated supply times during the recovery 

process. The occurrence and the length of direct disruptions depend on the storage capacity 

with respect to the recovery duration. 

• Post disruptions (i.e., secondary disruptions): household tanks run out of water due to 

insufficient designated time of supply after the completion of the recovery (i.e., not 

sufficient supply to allow tanks to get full). Therefore, tanks get empty before they receive 

the supply of the following cycle(s) (i.e., following week(s)). Greater storage capacities 

and greater zone’s supply inequity contribute to the occurrence and the length of post 

disruptions. A disruption scenario might have multiple post disruptions until all tanks in 

the affected networks get sufficiently filled. 

Different disruption scenarios might result in one or both of these types of disruptions. Figure 2.22 

provides a visualized illustration of the different cases of direct and post disruptions given different 

interactions of storage capacity, supply scheduling, and network damage for a specific disruption 

timing. Although the types of disruption effects (direct and post) may be easily expected for a 

specific disruption scenario combination by comparing these three factors, the magnitude of the 

loss in network performance depends on interactions that are captured by hydraulic modeling. 

Direct disruptions are irrelevant to supply inequity, and thus the impact of direct disruption on a 

household depends only on the storage capacity of household tanks. In this example, the impact of 

direct disruptions is equally distributed between households in the zone since all tanks have equal 

storage capacity. On the other hand, the impact of post disruptions depends on both the storage 

capacity at individual households and the storage capacity of other households in the zone. 

Therefore, each type of these disruption effects should be addressed differently when planning for 

resilience enhancement of the network. 
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Figure 2.22. Illustration for different cases of direct and post disruptions for a specific zone 

 

Analysis of Overall System Resilience (OSR) 

The OSR represents the ratio of the network performance (in terms of the actual demand 

satisfaction) during the disruption to the normal operation performance (using Equation 2.4). For 

each scenario run, the area under the disrupted performance curve is calculated and divided by the 

time (assuming 100% normal operation performance). The time span in which the OSR is assessed 

within (i.e., the duration that is used to calculate the OSR) has an impact on the scale of the values 

of the OSR. For this analysis, a time span of 3 weeks, starting from the beginning of the network 

disruption, was used to allow comparisons between all scenarios’ combinations. As a result, 

differences between the results of shorter disruptions (e.g., those lasting a week or so) may appear 

to be small in magnitude since the effects are evaluated over a 3-week performance period. Figure 

2.23 summarizes the OSR results for all pipe-damage scenario combinations (varying the storage 

capacity and the recovery resources) and for all source disruption combinations (varying the 

storage capacity and the deterministic recovery durations). 
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Figure 2.23. OSR vs. Storage Capacity for different recovery resources/durations (Each point in 

the figure on the left represents the mean of Monte Carlo simulation) 

For all recovery scenarios, Figure 2.23 shows that the network resilience increases (on average) as 

the storage capacity increases as expected. In addition, it is also intuitive that network resilience 

increases with faster recovery, as shown in the figure. However, the results show that when the 

network has lower household storage capacities, the improvement in resilience resulting from 

having faster recovery is greater. In other words, the effectiveness of increasing the speed of 

recovery (in terms of improving the resilience of the network) is a function of the current network’s 

performance, and the lower performance of the network, the greater the effectiveness of speeding 

up the recovery. This behavior reflects the fact that disruptions of the greater-storage-capacity 

network are mainly post-disruptions that depend on supply inequity in addition to the length of the 

network damage. On the other hand, a lower-storage-capacity network is more prone to direct 

disruptions that depend only on the speed of recovery. This result is shown clearer in Figure 2.24 

that details the results for different timings of the disruption (where each timing represents the 

worst timing for a zone), for different combinations of storage capacities and recovery resources 

for the pipe-damage scenario (and for the source disruption scenario in Figure 2.25). As can be 

seen in both figures, the 6-day storage capacity (orange bars) shows a greater increase in the OSR 

value as the recovery resources increase, and the rate of increase in improvement in OSR decreases 

with greater storage capacities.  
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The network shows a variation in the OSR for different timings of the network damage. For a 

given recovery speed, zones in the network show different responses to the same damage. This 

variation is attributed to the zone hydraulic and topology attributes, in addition to the supply 

inequity within the zone, as explained earlier. For example, network disruptions that target DMZ-

1 and DMZ-4 result in a relatively greater impact on network performance since these two zones 

have a higher supply inequity compared to DMZ-2 and DMZ-3. The results also show that 

although on average, the rate of resilience improvement is correlated with lower storage capacities, 

different zones (experiencing different timings of the network disruption) respond differently in 

terms of the rate of improvement in the network’s resilience when speeding up the recovery 

process. For example, for the 6-day storage capacity in Figure 2.24 (in orange), disruption timings 

of Day-1 and Day-6 for one team of recovery resources (top-left part of the figure) resulted in 

closely similar values of OSR (around 85%) but the OSR for Day-1 timing improved by 5% when 

2 teams of recovery were used, while the OSR for Day-6 improved only by 2.5%. This variation 

between different disruption times depends on which zones’ scheduled supply gets affected during 

the disruption, especially if the disruption extends to affect more than one zone. This finding shows 

that the supply order of the zones in the supply schedule have an impact on determining the 

network’s resilience and the effectiveness of speeding up the recovery process. 
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Figure 2.24. OSR for all combinations of the pipe-damage disruption scenario (SC: storage 

capacity in days) 
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Figure 2.25. OSR for all combinations of the source disruption scenario (SC: storage capacity in 

days) 

Analysis of the Related Network Performance Measures 

In addition to the two performance measures that are used in the resilience calculations (SI and 

ATFR), there are other measures of network disruption that are of interest to the utility. One 

commonly used measure is the number of affected consumers. When compared to the OSR, this 

measure shows the distribution of the impact of the disruption among households. Figure 2.26 

shows the number of affected consumers (those whose water storage is completely depleted) for 

each combination of the damage-pipe scenario and the source disruption scenario. The results 

show that the number of affected consumers increases as the recovery duration increases since the 
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disruption will extend to more than one zone. However, for a certain scenario of damage duration, 

the storage capacity seems at first irrelevant to the number of affected consumers (the number of 

affected consumers starts at a higher value at 6-day storage capacity then stays at an almost 

constant value until dropping when reaching a storage capacity of 14 days). However, this trend 

can be explained by the relationship between the storage capacity and the supply schedule. As the 

storage capacity extends to a new supply cycle (every 7 days), a reduction in the number of affected 

consumers is expected. As shown in Figure 2.26, source disruptions of 2, 4, and 6 days affect one 

supply cycle, and a 14-day storage capacity would limit the effect of these disruptions to a limited 

number of affected consumers (less than 50). However, source disruptions of 8 and 10 days affect 

two supply cycles, and thus a storage capacity greater than 21 days will be required to bring the 

number of affected consumers below 50. 

Another measure of network performance related to consumers is the duration when consumers 

are affected. If the storage capacity increases, the network resilience (OSR) improves even if the 

number of affected consumers does not change because consumers experience shorter disruptions 

(i.e., water runouts). Figure 2.27 shows the total consumer disruption hours (aggregated number 

of hours each consumer spent without water) for each combination of the damage-pipe scenario 

and the source disruption scenario (different storage capacities and different recovery durations). 

The results in the figure show that total consumer disruption hours decrease with greater storage 

capacities even when the number of affected consumers is unchanged, which explains the 

improvement in the network’s resilience with greater storage capacities. 

 

 

Figure 2.26. Number of affected consumers for different combinations of storage capacities and 

damage durations for the two disruption scenarios 
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Figure 2.27. Total consumer disruption hours for different combinations of storage capacities and 

damage durations for the two disruption scenarios 

Another network performance measure that is of interest to the utility is the disruption duration. 

Disruption duration is defined as the duration during which the network performance (i.e., SI) was 

below 99%. As seen in the results of the analyses in previous sections, the network-disruption 

duration can be greater (or less) than the network-damage duration. Figure 2.28 shows the 

disruption duration for each combination of the damage-pipe scenario and the source disruption 

scenario. The results in Figure 2.28 show that increasing the storage capacity can result in either 

an increase or decrease in the disruption duration since this behavior is a result of the interplay 

between storage capacity and the recovery duration. In general, increasing the storage capacity 

decreases the disruption duration, as seen in the curves for the pipe-damage scenario and the 2-

day curve for the source disruption scenario. However, when the post-disruption effect is 

introduced, the disruption duration increases accordingly until the storage capacity becomes 

sufficient enough to minimize the overall effect of the disruption. 

 These three performance measures have different implications in the decision-making for the 

utility. For example, the utility may aim to minimize the number of affected consumers (even if it 

results in longer durations of inconvenience to consumers) by providing water from a non-piped 

source. On the other hand, the utility may be interested more in having an overall shorter disruption 

duration for the whole network regardless of who is being affected and for how long. The utility 

could also examine different recovery scenarios to balance these three measures in addition to the 

resilience metrics to suit their objectives.  
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Figure 2.28. Results of disruption duration for different combinations of storage capacities and 

damage durations for the two disruption scenarios 

Analysis of the Absorptive Resilience Capacity 

Absorptive resilience is determined by the retained ATFR (that captures the ability of the network 

to withstand disruptions) and the retained SI (that captures the ability of the network to minimize 

the impact of disruptions). Figure 2.29 shows the results of the absorptive capacity as the storage 

capacity increases for different recovery durations for the two disruption scenarios. Each point in 

the figure is the absorptive capacity calculated by Equation 2.5 assuming equal weights for the 

retained SI and the ATFR. The sharper increase in some of the curves arises from the sudden 

improvement of the retained SI as a sign that the increase in storage capacity (and/or in the 

recovery speed) resulted in avoiding disruption in one of the zones. The results in Figure 2.29 can 

be adjusted by assuming different weights of the SI and the ATFR in order to evaluate a disruption 

scenario. If the utility is more interested in preventing disruptions, they could assign greater weight 

to the AFTR. On the other hand, if the utility cares more about maintaining a minimum level of 

performance during the disruption, a higher weight can be assigned to the retained SI.  
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Figure 2.29. Results of absorptive resilience capacity (CSR-AB) for different combinations of 

storage capacities and damage durations for the two disruption scenarios 

Analysis of the Restorative Resilience Capacity 

Restorative capacity is the probability of the network to meet a pre-defined target of recovery time 

for a given disruption scenario. The network is considered recovered when the level of 

performance of the network returns to the pre-disruption level (i.e., at least SI =99%). The recovery 

time is calculated from the time where the network’s performance drops below 100% until the 

time it reaches back to above 99%. Restorative capacity is only relevant to stochastic disruptive 

events (e.g., pipe-damage scenario), and the variation in the recovery times for a given recovery 

strategy is due to the uncertainty in the location and the criticality of the initially failed pipes. For 

the source-disruption scenario, the restorative capacity will be deterministic (similar to the 

disruption itself). The results for the restorative capacity for the pipe-damage scenario are shown 

in Figure 2.30. While varying the predefined target for the recovery time, each curve in the figure 

shows the probability of meeting the time target for a certain storage capacity and recovery 

resources. The probability of meeting a time target is calculated (using Equation 2.7) based on the 

100 stochastic-simulation runs and averaged for the four disruption timings. The results show that 

with faster recovery, the network is more likely to meet the predefined time targets (i.e., reach a 

value of 99%). However, for the storage capacity, the relationship is more complicated and 

depends on the interactions between the storage capacity and the recovery resources that result in 

different cases of direct and post disruptions (Figure 2.22). 
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The results of the restorative capacity in Figure 2.30 can assist the utility in evaluating the 

effectiveness of different recovery strategies. The current practice of utilities focuses mainly on 

the speed of recovery when planning for recovery strategies. However, when recovery resources 

are limited, the analysis of restorative capacity can assist in planning to maximize the effectiveness 

of these resources. For example, if the recovery time target is 8 days and the storage capacity is 10 

days, the probability that the network would recover before 8 days would increase from 0.35 to 

0.63 if recovery resources are increased from two to three teams.  

The analysis of the restorative capacity can also assist utilities in understanding the variation in 

the criticality of the network’s pipes and their repair requirements. In addition, it can help the 

utility in the long-term planning by estimating the impact of increased/decreased household 

storage capacity on the ability of the network to meet the recovery time targets.  

 

 

Figure 2.30. Restorative resileicne capacity for changing recovery time target for different 

storage capacities and recovery resources 
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The reliability of the results of the restorative capacity depends mainly on the representativeness 

of the recovery strategy. For this research, a generalizable recovery strategy proposed by HAZUS-

MD (a multi-hazard loss estimation methodology developed for FEMA) is used. Average 

restoration times were validated using actual restoration data for the analyzed sub-network 

obtained from the utility in the case study city. However, the utility can use its own recovery 

strategy (i.e., based on pipe prioritization, number and productivity of recovery teams, etc.) to 

estimate the restorative capacity. 

2.3.4 Analysis of the Utility Adaptive Behavior during Disruptions 

Since prior studies on the analysis of the resilience of water supply networks have focused on CWS 

systems, the behavior of the utility during network disruptions was limited to the restoration efforts 

of the failed system’s components. However, in addition to recovering the damaged components 

of the network, the water utility in IWS networks can take temporary adaptive measures to improve 

the network’s performance during the disruption. This section analyzes the short-term supply 

schedule modification as the utility adaptive measure to define the parameters that determine the 

effectiveness of such strategy.  

The strategy of extending the supply to affected zones is evaluated as a practical measure that 

extends the supply for the affected zone(s) without changing the supply for other zones. Supply 

extension is a practical strategy in terms of implementation since it requires no additional human 

effort to apply (given that the zones’ isolation values are operated manually in most IWS networks. 

Supply extension takes effect right after the completion of the restoration efforts, assuming that 

affected zone(s) cannot benefit from any changes in the supply schedule during the network 

damage. 

The resilience quantification model for IWS networks was modified to allow dynamic changes to 

the static supply schedule to provide affected zone(s) with an extended supply of 24 hours after 

the completion of the restoration efforts while keeping the supply to the unaffected zones 

unchanged. No changes to the supply schedule were implemented for simulation runs that resulted 

in no affected zones. The idea of supply modification relies on the storage buffer in the network. 

Therefore, disruptions that impact the performance of all zones were excluded from the analysis 

(i.e., the scenarios of using only one recovery team).  
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Figure 2.31 shows the results of OSR, the number of affected customers, and the total consumers’ 

disruption hours for the original and the modified schedule. The supply extension resulted in 

improved network resilience for all evaluated combinations of storage capacities and recovery 

resources. The results of the OSR show that it is possible, by modifying the schedule, to achieve a 

network-resilience that is greater than the improvement resulting from increasing the recovery 

resources (e.g., from 2 teams to 3 teams). The improvement in the OSR depends on the storage 

capacity where lower storage capacities benefited more from the 24-hour supply extension due to 

the lower effect of supply inequity. The results also indicate that the mechanism in which the 

network benefitted from the supply extension is different based on the storage capacity. For greater 

storage capacities (e.g., 8 days, 10 days, and 12 days), the network benefited from the supply 

extension mainly by decreasing the number of affected consumers. On the other hand, for lower 

storage capacities (e.g., 6 days and 7days) there was no (or very limited) reduction in the number 

of affected consumers, but the reduction in the total consumers’ disruption hours show that affected 

consumers experienced shorter disruption durations due to supply extension. 
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(a) (b) 

 
(c) 

Figure 2.31. Results of (a) OSR, (b) number of affected consumers, and (c) total consumers 

disruption hours for the original and the modified schedule (supply extension for the affected 

zone(s)) 

2.4 Verification and Validation 

The verification and validation for the developed framework were done in three steps: validating 

the conceptual model, verification of the computerized model, and external validation with 

relevant studies in the literature. Validating the conceptual model was done through face-to-face 

meetings with water experts from the city in December 2018 and in January 2019. A total of 8 

experts of the water supply system, including university professors, utility engineers and managers, 

hydraulic modelers, and water consultants) with at least 8-year experience with the systems, were 

involved in the verification and validation. The experts verified the model assumptions, logic, and 

relationships as logical and representative. The chosen subnetwork for the case study was verified 
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as a representative subset of the city’s water network. The assumed supply schedule was based on 

the utility’s practice. 

The verification of the computerized model was done first by verifying the intermediate results for 

each model step. In addition, the model was developed in three stand-alone phases. In the first 

phase, a model for quantifying the resilience of CWS systems was developed, which allowed the 

verification of the disruption-recovery simulation. A hydraulic model was then developed to 

simulate the normal operation of the IWS network, and the process of supply scheduling and the 

filling of household tanks was verified. Finally, the two models were combined to assess the 

resilience of IWS systems against physical disruptions. The results of varying the model 

parameters (storage capacity, recovery speed, and disruption timings) were consistent and logical. 

Testing of extreme values was done to ensure a consistent model response. The detailed results of 

each of the combinations of the two disruption scenarios were carefully examined, and the 

explanation of any unexpected behavior was tested and verified.   

Regarding external validation, one of the main challenges in modeling the resilience of water 

supply networks is the very limited availability of real-system data to validate the resilience 

analysis model. Resilience models of water supply networks often require detailed data about the 

performance of the network at a greater resolution (e.g., in hours), which are either never collected 

by the utility during normal operation, or the data is limited to the restoration times for failed pipes. 

Another challenge in validating resilience models is that these models simulate the behavior of the 

water network against some disruptive events. Although performance data such as the flow and 

the pressure can be theoretically available for some nodes in the network (using the data from flow 

and pressure gages), data related to failure assessment and recovery efforts (such as number and 

location of pipe breaks and the timing of correcting failures) are less likely to be recorded.  

 

Another type of data that is usually available by the utility is the supply and demand data in the 

form of the readings of water meters that record the inflow from the WDN to household tanks. 

Aggregated supply and demand data over time may reveal some useful patterns for the validation 

of the network’s performance under normal operation conditions. However, supply and demand 

data are often not linked to disruption data. In other words, disruption data recorded by the utility 

does not indicate which households were affected by the disruption and/or the duration of the 
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disruption for the household. In addition, the supply intermittency makes it difficult to differentiate 

household supply shut-offs that are due to disruptions from those due to changes in supply 

scheduling since supply scheduling often changes (as indicated by the responses of the household 

survey in Chapter 3). In addition, household supply includes the supply from non-piped sources, 

which is not recorded (and may be unknown) by the utility, and which makes the data from water 

meters not representative of the actual household supply during disruptions. 

A sample pipe failure data for the studied subnetwork was acquired from the utility in the case 

study city. This data was used to validate the recovery process in the model in terms of average 

times of pipe repairs. However, the pipe failure data was limited to the location of failed pipes and 

their required repair times, and it was not linked to the household supply data. 

The resilience model was validated by confirming the consistency of the results with published 

literature (Table 4.4). In addition, three of the subject matter experts validated the results of filling 

times for household tanks as being reasonable.  

Table 2.4. External validation 

Relevant Finding/Discussion Study(s) 

The existence of household storage affected the network’ 

operation due to the unique demand pattern of storing as 

much water as possible during the supply period 

Ingeduld et al. 2006; Mohapatra et 

al. 2014 

Supply to consumers is inequitable in IWS networks due 

to excess water withdrawal by households 

Ameyaw et al. 2013; Soltanjalili et 

al. 2013; Gottipati and Nanduri 

2014; Mohapatra et al. 2014  

Supply inequity exists within and between demand zones Guragai et al. (2017) 

The impact of pipe failures is not equally distributed 

among consumers in the network 
Gheisi and Naser 2015 

Changes in the supply schedule can improve the network 

performance in terms of demand satisfaction 
Ilaya-Ayza et al. 2017 
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2.5 Conclusions 

This chapter introduced a new framework for assessing the resilience of IWS networks. The 

framework addresses IWS systems that are characterized by household storage where consumers 

rely on the piped network as the main source of water supply. Two resilience metrics, namely 

overall system resilience and capacity-specific resilience, were introduced to evaluate the overall 

system resilience and to explain the contribution of the three resilience capacities (absorptive, 

adaptive, and restorative) against acute physical disruptive events. Two performance measures (the 

Serviceability Index and the Network-Average Tank Filling Ratio) were used to estimate the 

resilience metrics, and to explain the network’s response at all stages of the disruption-recovery 

cycle. The framework was evaluated and its viability was validated in the context of a case study 

from the water network in a city in the Middle East. 

The framework was able to explain the system behavior at all stages of the disruption-recovery 

cycle. The analysis of the results explained how the two different performance measures, SI and 

ATFR, can explain the network behavior at different points on the disruption-recovery cycle. The 

SI is helpful in understanding the extent of the disruption on the consumers’ end. SI, as a 

performance measure, is of importance to the network operator as it is an indicator of the reliability 

of the water service. However, the SI fails to capture the effect of some of the disruptions that were 

absorbed by the available household storage, and this effect was only explained by the reduction 

in the ATFR. 

The resilience metrics (OSR, CSR-AB, CSR-AD, and CSR-R) were able to quantify the different 

resilience capacities of the water network. The OSR have shown the collective effect of all types 

of resilience aspects in the system, which include robustness, reliability, adaptability, and 

resourcefulness. On the other hand, CSRs explain how each type of these resilience aspects 

contributed to the overall system resilience. Robustness and reliability are captured by the 

absorptive capacity, adaptability is captured by adaptive capacity, and resourcefulness is captured 

by the restorative capacity. The CSRs represent the contribution of each resilience capacity toward 

the overall system capacity. 
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2.5.1 Summary of Findings 

The analyses in this chapter revealed new insights regarding the resilience of IWS infrastructure 

systems. The findings in this chapter are related to (1) supply inequities, (2) direct and post 

disruption effects, and (3) the influence of interdependent factors affecting the resilience of the 

system. 

The supply inequity in IWS networks occurs at the zone-level and at the network-level. The zone-

level supply inequity between households depends on household storage capacities and the 

network layout within the zone. Greater household storage capacities lead to greater supply 

inequity as a result of longer tanks’ filling times. The network layout within the zone affects the 

degree of interdependency between the filling times for household tanks. The network-level 

inequity depends on the zone’s location and connectivity to the water sources of the whole 

network. Greater number and sizes of zone’s inlet pipes and greater pressure at the zone’s inlets 

result in a faster filling of household tanks and lower supply inequity among households. 

The occurrence and the intensity of direct and post disruption effects depend on the interactions of 

storage capacity, supply scheduling and the length of network damage. Different combinations of 

these three factors can result in direct and/or post disruption effects. Direct disruptions were found 

dependent on the storage capacity of households with respect to the length of the network damage. 

Therefore, direct disruptions were found associated with smaller household storage capacities. On 

the other hand, post disruptions are caused by supply inequity among households. Thus, larger 

storage capacities resulted in more post disruptions due to the greater impact of supply inequity. 

The response of the IWS network to disruptions show that household storage capacity, recovery 

speed, supply scheduling, and the timing of the occurrence of the disruption (with respect to the 

supply schedule) determine the resilience of the network. The interactions between these variables 

caused different combinations of direct and post disruptions, which in turn creates non-linear 

trends of the number of affected consumers and disruption duration. By changing the timing of the 

occurrence of the disruption, the results showed that each zone response differently when being 

affected by the disruption due to having different levels of supply inequity. Thus, the loss of 

performance for the network is affected by the timing of the occurrence of the damage. 
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Greater household storage capacity and faster recovery both found to improve the network’s 

overall resilience (OSR), but the level of improvement was found to be associated with the current 

network’s performance (the lower the performance, the greater the improvement). The resilience 

of the network improves as a result of the reduction of the number of affected households and/or 

the reduction of the household’s duration of being affected. 

The results in this chapter highlighted a possible trade-off between the resilience of the network 

and the duration of the effect of the disruptions. For instance, the combination of longer damage 

durations (greater than one supply cycle) and greater storage capacity resulted in greater network’s 

resilience but led to longer durations of disruption (i.e., longer durations during which demand 

satisfaction was below 99%). This trade-off is caused by the re-emergence of post disruptions 

(even after reaching 100% demand satisfaction). The results showed that it may take more than 3 

weeks of normal operation of the network following the disruption in order to completely eliminate 

the effect of post disruptions depending on the level of supply inequity. 

2.5.2 Contributions to the body of knowledge 

The main contribution of this chapter to the body of knowledge is the development, evaluation, 

and validation of a framework for the analysis of the resilience of IWS systems. The framework 

makes the contribution of defining and evaluating resilience measures that assess the overall effect 

of resilience aspects along with the contribution of each resilience capacity. The framework also 

adopts a combination of performance measures that capture the system’s behavior at all stages of 

the disruption-recovery cycle. The evaluation of the framework also contributes to the body of 

knowledge by identifying the interactions of main factors that determine the system’s resilience.  

 

2.5.3 Contribution to the body of practice 

The framework can assist the water utility in the operation of the IWS network under normal 

conditions. IWS networks are often operated based on personal experience of utility personnel 

simple demand and supply trade-off analysis (Ilaya-Ayza et al. 2017). However, the utility can use 

the hydraulic simulation process provided in this framework and the analysis of supply inequity to 

explore different operation strategies to improve the network performance. These strategies may 
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include decreasing water demand at nodes very close or far away from the source, increasing the 

diameter and addition or elimination of some key linking pipes in the WDN (Gottipatiand and 

Nanduri, 2014). The framework can also assist water managers in testing different scenarios of 

network disruptions (different disruptive events, supply schedules, household storage capacities) 

and assess their impact on the network’s resilience to plan for long-term resilience enhancement 

strategies. In addition, the results of the presented analyses can assist the utility in the short-term 

response to network disruptions (recovery resources, modification of supply schedules). The utility 

can use the proposed framework and the evaluated variables in the planning for anticipated or 

planned disruptions of the IWS network (e.g., pipelines maintenance, inspection or replacement) 

by choosing the timing and the length of the disruption and identifying affected parts of the 

network in order to minimize the consequences of the disruption. Another contribution to the body 

of practice is that the framework can assist in determining the critical assets in the network that 

have higher priority for enhancement/rehabilitation due to the greater impact of their failure on the 

network performance. 

2.5.4 Limitations and Future Work 

The presented work in this chapter has some limitations. First, the framework is implemented in 

an IWS network that relies on underground household tanks controlled by floating valves. The 

framework can be modified to address the specific configurations of household storage and/or 

supply scheduling schemes of other IWS systems. In addition, the network damage in the 

demonstrated case study was limited to pipelines. However, the framework is expandable to allow 

the modeling of the damage and the recovery of other network components (such as pumping 

stations, tanks, and treatment plants) 

The capacity of household storage was assumed to be equal for all household tanks in the network. 

This allows a variation in filling the tanks (since tanks have different volumes) but limits the 

variation in the running-out of water (since households have similar storage capacity in terms of 

the number of days) to make it possible to interpret the effect of other variables. Nevertheless, the 

framework allows one to specify different capacities of household storage tanks. 

One of the limitations is that the analysis is based on one representative supply schedule and 

duration that is fixed for all combinations of scenarios in order to limit the variation in the results 
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to other variables, namely, household storage capacity, recovery speed, and the timing of the 

occurrence of the disruption. Nevertheless, similar underlying relationships may be expected for 

different supply schedules. However, testing different intermittent water distribution schemes (e.g., 

time-based at the zone-level, time-based at the household-level, quantity-based at the household-

level) will be important to confirm and further analyze these results. This type of analysis will be 

relevant to smart water networks since some of these schemes could be soon realized by the 

advancement in smart water metering. 

Future research can expand the analysis of the resilience of the IWS networks against a wider 

range of disruptive events. For example, different percentages of the initially failed pipes can be 

evaluated to test the network’s sensitivity to the damage intensity. In addition, the framework can 

be expanded to include disruption events to other infrastructures that can cascade to the IWS 

network due to the interdependency relationship. One particular example is the analysis of the IWS 

network dependency on the power network both in the supply side (the operation of the water 

network) and on the demand side (the household dependency on electricity for water extraction 

from household tanks). 

Future work can also include the analysis of a city-scale IWS network with a greater number of 

demand zones and greater variation in zones’ attributes (such as size, elevations, and topology) to 

confirm and/or enhance the results of the presented analyses. The demonstration of the presented 

model on a small sub-network helps in determining the significant factors that can be used to 

abstract the whole city’s network while preserving the functional aspects of the network. For 

instance, supply inequity for zones can be described using normal distributions requiring only the 

mean and the standard deviation of the time required to fill tanks in the zone. Thus, zones can be 

represented as one “giant” node in the network. This aggregation of the network attributes allows 

the analysis of the whole network while preserving household heterogeneity in terms of supply 

inequity. 

One of the limitations of hydraulic modeling is the need for computational power. In this study, 

the average computational time required to complete one run of the simulation of the network 

damage and recovery (for 4 weeks of simulation time and at one-hour time step) was 2.6 minutes 

(using Intel Core i7-8665U with 32 GB RAM). Another limitation of hydraulic modeling is the 

need for detailed information about the network parameters such as pipe diameters, elevations, and 
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connections. These limitations of hydraulic modeling suggest that developing simpler models that 

can simulate the water supply and demand in WDN operated with IWS. These simpler models 

should capture the household heterogeneity in terms of supply inequity and storage capacity. One 

of the recent modeling approaches that has the potential of capturing and explaining the aspects of 

IWS is network functional mapping (dual-mapping) (Krueger et al. 2017), where network pipes 

are modeled as nodes and pipe connections are modeled as links. Krueger et al. (2017) concluded 

that functional mapping provides a more accurate representation of the water  network (compared 

to conventional network modeling) that can explain the network’s resilience. Although some of 

the findings in this chapter could have been reached using functional mapping, there are two 

pressure-dependent aspects of IWS that required the use of hydraulic modeling: (1) pressure-

dependent filling of household tanks and (2) the resulting supply inequity among households. 

These two aspects are the source of the unique behavior of IWS networks discussed in this chapter. 

For instance, post-disruption effects (which depend on supply inequity) would not have been 

observed without hydraulic modeling. The results of this research, using hydraulic modeling, 

assists in determining the parameters that characterize the supply inequity, and provides a method 

for explaining supply inequity among households within zones using the normal distribution of 

the time required for filling household tanks. This abstraction of supply inequity can help future 

applications of simpler network models (such as functional mapping) while preserving the 

heterogeneity in supply for households. Thus, this framework serves as a starting point towards 

developing a robust, scale-free resilience model for IWS systems. 
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 ANALYSIS OF SHORT-TERM BEHAVIOR OF HOUSEHOLDS IN 

INTERMITTENT WATER SUPPLY SYSTEMS DURING 

DISRUPTIONS 

[A version of this chapter was published in the proceedings of the World Environmental and 

Water Resources Congress 2020.]3F

4 

 

During physical disruptions of the IWS network, the variables that affect consumer decisions 

related to obtaining non-piped water are dynamic, and consumer decisions are affected by the 

attributes (in particular, length and intensity) of the disruption. This chapter analyzes the short-

term decision-making process of residential water consumers in a city in the Middle East. In this 

city, households have long adapted to the intermittency of water supply by installing household 

water storage with various capacities. However, the volumes of the stored water are often not 

sufficient to supply the regular household demand for the duration of the disruption, and 

households have to take actions regarding their water supply and/or water consumption. Based on 

the results of a survey of more than 250 households in this city, a set of Binary Probit Models were 

developed to model consumer’s decisions related to the timing of their responses to the disruption, 

their willingness to pay for faster delivery of water using tankers, and their willingness to pay to 

avoid waiting in-line at the tankers’ location. The results of the analysis show how variables such 

as household characteristics, tankers’ prices and waiting times, household managers’ knowledge 

of their households’ water situation, prior experience with disruptions, and socioeconomic 

parameters affect the households’ decisions when the piped IWS is disrupted. 

3.1 Introduction 

Households of IWS systems often adapt to the intermittency in water supply by storing water, 

obtaining water from other sources, and/or changing their water use patterns to adapt to the water 

supply (Majuru et al. 2016). Under normal operation conditions of the IWS system (i.e., static 

water supply durations and quantities), households’ behaviors tend to be steady, and are governed 

 
4 Aljadhai, S. and Abraham, D. (2020). “Modeling Dynamic Consumer Decision during Disruptions of Intermittent 

Water Supply Systems.” World Environmental and Water Resources Congress 2020. Henderson, NV. (pp. 360-373) 

ASCE (With permission from ASCE). 
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by their long-established adaption strategies. However, during disruption events, the variables that 

affect consumer decisions (e.g., non-piped water prices, availability, and quality) are more 

dynamic, and the household behavior is affected by the length and intensity of the disruption. 

Therefore, households may need to obtain water from sources that are different from, or at different 

prices and involving different waiting times, from what they are used to during normal operation 

of the IWS network. Investigating the variables that affect households’ response to disruptions is 

important in understanding the demand for non-piped water sources for further analysis of the 

dynamics of the non-piped water market when responding to disruptions.  

Prior research on analyzing households’ choices of different sources of water supply focuses on 

two themes. Some prior studies analyzed households’ choices of water sources to estimate 

household water demand in IWS systems. One approach for consumer demand estimation is using 

statistical analysis of historical data and/or survey observations to estimate the volume of 

household water use and analyzing the price elasticity of demand for a single source (Mimi and 

Smith 2000; Salman et al. 2008; Tabieh et al. 2012). In such studies, proxy indicators such as water 

price, household income, family size, house age, and weather have been used to build demand 

functions that explain residential consumption. Other studies used the same approach to estimate 

the consumer water demand from more than one source (for a detailed overview, see (Whittington 

and Nauges 2010)). These approaches focus on understanding the volumetric consumption and the 

price elasticity of demand rather than explaining the underlying consumer behaviors that drive 

their choices. 

The second theme of prior research on analyzing consumer behavior focuses on explaining the 

consumer coping decisions considering alternative modes of water supply, conservation actions, 

and/or local storage. These studies analyze the consumer choice of water sources, the demand 

volume from each source, and/or cross-price and own-price elasticities of demand from different 

sources. Two-step statistical selection models (Acharya and Barbier 2002; Cheesman et al. 2008; 

Nauges and Van Den Berg 2009; Coulibaly et al. 2014) and cost-minimization optimization 

models (Rosenberg et al. 2007; Srinivasan et al. 2010a) are the main methods used to model the 

consumer choice of water sources. Acharya and Barbier (2002) used two-step Seemingly 

Unrelated Regression models to estimate the demand for water purchased from vendors and the 

water that is collected by households in rural regions of Nigeria. Cheesman et al. (2008) estimated 
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the demand for municipal water and household well water in Vietnam. They used a Probit model 

to estimate the probability of having a household well and a Seemingly Unrelated Regression 

model to estimate the demand for both municipal and well water. Nauges and van den Berg (2009) 

used a selection model for the decision to connect to the piped network and then estimated the 

water demand from piped and non-piped (aggregated) sources in Sri Lanka. Coulibaly et al. (2014) 

developed a two-step model to estimate the consumer demand from four sources of water (piped 

system, water tankers, treated water purchased from small shops, and bottled water) in Zarqa, 

Jordan. The first step in their model determines the probability of using a water source (using a 

Probit model), and the second step determines the demand share of the source if chosen. These 

statistical models rely on observation data sets and/or surveys of consumer preferences to explain 

the consumer choice. The surveys in these studies are designed to (1) collect data about consumer 

behaviors during normal operation of the system (the system’s steady-state) and, in some studies 

(e.g., Acharya and Barbier 2002; Cheesman et al. 2008) (2) collect information about households’ 

revealed and stated preferences toward hypothetical scenarios of price changes. These models can 

assist in understanding consumer behavior during predictable normal operation scenarios but are 

not capable of explaining consumer behavior during unexpected system disruptions. In addition, 

these studies focus only on price elasticity of demand (i.e., how the demand would react to changes 

in prices) as an external variable to the consumer. Other external variables such as those related to 

water sources availability and reliability are not addressed. 

Rosenberg et al. (2007) expanded the modeling of household water use in IWS systems by 

integrating multiple sources with different costs, availabilities, reliabilities, and qualities, and by 

including many conservation options as user actions. They used a stochastic optimization model 

that minimizes users’ annual water management costs to estimate the household water use in 

Amman, Jordan, and to study the demand response to water pricing and conservation campaigns. 

In their model, households adopt long-term (i.e., irreversible) and short-term (i.e., reversible) 

supply enhancement and conservation actions in response to events of decreased quantities of 

available water from the source given probabilities of the event’s occurrence. Although this work 

addresses a wide variety of short and long-term households’ actions, the cost minimization model 

in Rosenberg et al. (2007) ignores households’ heterogeneity in preferences (i.e., related to waiting 

times, the risk of running out of water, and inconvenience of obtaining non-piped sources), 

knowledge and awareness (of household water situation and/or non-piped sources), and prior 
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experience with the IWS. In addition, their model does not explain the significant factors that drive 

households’ decisions. 

Prior research, except the work of Rosenberg et al 2007, focused on modeling households’ 

behavior in IWS systems focused on households’ long-term, static adaptations, assuming steady-

state conditions of the water supply, and focused on modeling households’ choices based on their 

history with the IWS system. In addition, less attention has been given to analyzing households’ 

preferences about water conservation, waiting times, and inconvenience (due to affected water 

supply and/or related to obtaining non-piped water). 

This study analyzes the short-term (i.e., temporary and dynamic) decision-making process of 

residential water consumers in a city in the Middle East that is supplied by an IWS system. Rather 

than focusing solely on consumer choice of alternate water sources, the study addresses other 

relevant decisions, including: (1) households’ risk tolerance (related to the timing of their response 

to the disruption), (2) households’ willingness to pay for the faster delivery of non-piped water 

supply, and (3) willingness of households’ managers to pay to avoid the inconvenience of waiting 

in line to get water from a non-piped source. These three household decisions collectively (made 

by a large number of households) have an impact on the dynamics of the non-piped water market 

(e.g., prices, availability, and quality), which may in turn affect each consumer’s decision. The 

study incorporates variables related to households’ preferences, expectations, knowledge and 

awareness, and prior experience in addition to variables related to cost, housing characteristics, 

and socioeconomics that have been addressed in prior research. Variables related to households’ 

previous decisions and experience with the IWS system are also analyzed. The hypotheses tested 

in this study are: 

 - When obtaining non-piped water during disruptions, households are heterogeneous in terms 

of their preferences regarding the risk of running out of water, their willingness to pay for 

faster delivery, and the willingness to pay for convenient non-piped sources. 

- The knowledge and the awareness of the household manager about their water situation and 

their previous experience with the multi-mode water supply system have an impact on their 

preferences related to obtaining non-piped water. 



 

 

91 

3.2 Survey Design and Deployment  

In IWS systems, the supply and consumption behavior of households is not easily readily 

discernible for many reasons. Utility billing information is less effective in understanding 

households’ behavior since households are supplied with water from several sources. In addition, 

non-connected consumers and unmetered consumption are often present in IWS systems in 

developing countries.  

Survey and observation methods have been widely used to understand and analyze households’ 

water behavior in IWS systems (Whittington and Nauges 2010). A household survey was 

developed and deployed to understand the water management behavior of residential consumers 

in a city in the Middle East (described earlier in Section 1.8). Households in the city have adapted 

to the supply intermittency by installing/constructing in-house water storage tanks with various 

capacities and/or, in some cases, by supplying water from a utility-regulated market of water tanker 

trucks. However, during disruptions of the water network, the water stored in the household tank 

is often not sufficient to satisfy the household demand for the duration of the disruption, and 

households rely mainly on tanker trucks as an alternative mode of water supply. Typically, there 

are three types of water tankers in the city: free tankers provided by the utility, tankers at the 

regulated price (equivalent to $50), and tankers that are either unregulated or regulated but sell at 

unregulated (higher) prices. Households can get a water tanker by either placing a phone call, 

submitting an online request, using social media or by physically going to the tankers’ location. 

Tanker locations (or tanker filling stations) are places where households can go and wait in-line to 

request a water tanker for immediate delivery. 

In addition to increased supply from new desalination plants, the utility in the city has recently 

invested in network water storage that provides the capacity to transfer from IWS to continuous 

water supply (CWS) for many parts of the city. Nevertheless, the utility often switches the supply 

back to IWS in response to disruptions, especially during events that affect water quantities 

(particularly due to the disruption of sources). 

The developed survey serves two functions. First, it assists in understanding the consumer’s 

consumption and supply patterns during normal operation of the network to better gauge factors 

influencing the system under study (e.g., the volume of the private market, the intensity of 
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disruptions, available actions for households, and factors affecting consumer’s decision). Second, 

it extracts the consumer’s stated and revealed preferences to be evaluated in modeling the 

consumer’s decision. The survey collected data about: (1) the characteristics of the housing unit 

(to study their effect on consumer decision),  (2) supply and consumption behavior during normal 

operation (to study the effect of consumer knowledge and previous experiences on their decision),  

(3) consumer supply and consumption behavior during disruptions (to reveal households’ 

expectations and preferences), (4) consumer preferences such as willingness to pay, ability and 

willingness to conserve water, willingness to wait in line for free water, and (5) general 

socioeconomic information. The survey included two questions to filter the targeted respondents 

based on whether they live in the city and whether they are the managers of the household, and 

hence the decision-makers related to the household’s water supply. 

The estimated number of required responses is around 271 responses (assuming a 90% confidence 

level, 5% margin of error, and a sample size of 1.3 million households). Qualtrics, a web-based 

survey software, was used to format the survey and collect the responses. Internal validation of the 

survey has been done through reviews by subject-matter experts who have knowledge and 

experience with the water supply system and consumer behavior in the city. The survey was pre-

deployed to household managers who have little knowledge about the IWS system to ensure that 

the survey was easy to understand by all classes of households and that they would be able to 

provide responses. The survey questionnaire was approved for exemption by the Institutional 

Review Board (IRB) of Purdue University with an IRB protocol number of 1810021257 (see 

Appendix B). 

A total of 442 completed household responses were collected between February and March 2019. 

About 57% of the responses (251 responses) were for households living in single-family houses 

and having full control over their water supply and usage, while 43% (191 responses) were for 

households living in apartments where water storage is shared with other households. Respondents 

in the latter group do not have full control over the supply and/or consumption of the stored water 

in their building since the landlord of the building or a residents’ association is usually in charge 

of supplying water to the building.  
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This study focuses on residents of single-family houses who have the capacity to make the 

decisions of interest. The responses were well distributed over different household sizes, income 

groups, and age, education level, and occupations of household managers. Table 3.1 shows the 

descriptive statistics of the relevant variables to the four dependent variables, all of which are 

indicator variables (i.e., zero or one). The results of the survey show that 85% of the respondents 

own their houses, while 15% are renters, living with family, or living in work-provided housing. 

In addition, 17% of the respondents receive continuous water supply for 24/7, 40% receive 

intermittent supply for 1 or 2 days a week, 14% receive between 3 to 4 days a week of intermittent 

supply, 10% think their supply mode is changing and has no apparent pattern, while 19% do not 

know what mode of supply they get in their houses. Most of the respondents (92%) live in houses 

with 4 or more bedrooms, while 42% of the households have more than 4 bathrooms that are used 

in a daily basis. 43% of household managers have had an experience of ordering a water tanker in 

the past three years, and 22% of households had to supply 3 tankers or more per year for the past 

three years. Regarding the knowledge and the awareness of the household manager about their 

household water situation, 78% of respondents know the size of their household’s water storage 

tanks, and 20% of respondents indicated that they are likely to know about network supply shut-

off since they regularly check their underground tanks. 

A significant proportion (71%) of the respondents stated that they are likely to supply a water 

tanker even if they have water in their household storage (that can supply the regular household 

demand for two days or more) while the remaining 28% think they are likely to get a tanker only 

when they know that they will run out of water by the end of the day. Answering the question of 

the willingness to pay more for a faster delivery, 64% of the respondents are willing to pay twice 

the regular price of the water tanker in order to get the tanker on the same day or on the following 

day while 36% of respondents would rather wait two days or more before getting a water tanker 

at the regular price (equivalent to $50). When asked about their willingness to pay to avoid waiting 

in-line at the tankers’ location, 56% of respondents stated that they are willing to pay the regular 

price of a water tanker and avoid waiting in-line for one to two hours for a free tanker. However, 

a lower percentage of respondents (48%) are still willing to pay as much as twice the regular price 

of a tanker in order to avoid a wait of more than three hours to get a free tanker. 
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Table 3.1. Descriptive statistics of exploratory variables related to households’ decisions 

Variable Description Mean 
Std. 

Dev. 
Obs. 

Variables related to ordering a water tanker early (Model-1) 

Indicator of willingness to pay twice the regulated price of the water tanker for a 

faster delivery (1 if yes, 0 if no) 

0.637 0.482 251 

Knowledge of water supply shut-off indicator (1 if household manager knows 

about supply shut-off, 0 otherwise) 

0.203 0.403 246 

Garden indicator (1 yes, 0 if no) 0.406 0.492 251 

Higher tanker experience indicator (1 if greater than 2 tankers/year in the past 

three years, 0 otherwise) 

0.221 0.416 244 

House size indicator (1 if 4 bedrooms or greater, 0 otherwise) 0.916 0.277 251 

Private employee indicator (1 if yes, 0 if no) 0.195 0.397 251 

Maid of driver indicator (1 if household has a housemaid or a private driver, 0 

otherwise) 

0.789 0.409 251 

 

Variables related to willingness to pay more for faster delivery (Model-2) 

House ownership indicator (1 if owner, 0 otherwise) 0.848 0.359 251 

Retired indicator (1 if yes, 0 if no) 0.339 0.474 251 

Water runout experience indicator (1 if 2 times or more in the past 3 years, 0 

otherwise) 
0.441 0.497 240 

House size indicator (1 if 4 bedrooms or greater, 0 otherwise) 0.916 0.277 251 

Higher water use for bathrooms indicator (1 if the house has greater than 4 

bathrooms used on a daily basis, 0 otherwise) 
0.418 0.494 251 

Indicator for high monthly income with no preference of ordering tankers early 

(1 if greater than the equivalent of $4,000 and likely to order tankers only 

when running out of water, 0 otherwise) 

0.198 0.399 251 

 

Variables related to willingness to pay to avoid waiting in-line at the tankers’ location (Model-3 and Model-

4) 

High monthly income indicator (1 if greater than the equivalent of $5,300, 0 

otherwise) 
0.451 0.499 251 

Knowledge about tank size indicator (1 if knows the tank size, 0 otherwise) 0.777 0.417 238 

Less supply reliability opinion indicator (1 if less reliable, 0 otherwise)  0.275 0.448 251 

Higher frequency of experience of going to the tankers’ location (1 if greater than 

50% of the times, 0 otherwise) 
0.325 0.471 83 

Thirties age category indicator (1 if 30-39 years old, 0 otherwise) 0.106 0.309 251 

Planning of investing in household storage indicator (1 if yes, 0 if no) 0.333 0.472 251 

House ownership indicator (1 if owner, 0 otherwise) 0.848 0.359 251 

Intermittent supply indicator (1 if supply is for 1-2 days a week, 0 otherwise) 0.399 0.491 251 

Children (1 if has children younger than 6-year old, 0 otherwise) 0.400 0.491 251 

Greater than median monthly income indicator (1 if greater than the equivalent of 

$4,000, 0 otherwise) 
0.676 0.469 251 

Long-term actions consideration indicator (1 if considers a long-term action to 

manage water supply/consumption (except investing in water storage), 0 

otherwise) 

0.747 0.435 251 
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3.3 Methodological Approach 

This research addresses three aspects of household decisions during disruptions; the timing of 

households’ responses to the disruption (i.e., related to their preferences of the risk of running out 

of water), their willingness to pay for faster delivery of non-piped water, and their willingness to 

pay to avoid the hassle of waiting in-line for a non-piped water source. The responses of household 

managers to four questions with binary outcomes are analyzed and modeled in this study: 

Model-1 Are you likely to order a water tanker even if you have stored water in your 

household (that can supply more than two days of regular household demand)? (1 if 

yes, 0 if no)  

Model-2 Will you be willing to pay twice the regular price of a water tanker in order to get it 

faster (i.e., on the same day or the following day)? (1 if yes, 0 if no) 

Model-3 Will you be willing to pay the regular price of a water tanker to avoid waiting in-

line for 1 to 2 hours for a free water tanker? (1 if yes, 0 if no) 

Model-4 Will you be willing to pay more than double the regular price of a water tanker to 

avoid waiting in-line for more than 3 hours for a free water tanker? (1 if yes, 0 if no) 

Model-3 and Model-4 address the willingness of household managers to pay to avoid waiting in-

line (at the tankers’ location) at different prices and waiting times to evaluate the impact of longer 

waiting times on their responses. 

Econometric and statistical methods are appropriate and commonly used for modeling household 

water management choices (Whittington and Nauges 2010). In this study, a set of four Binary 

Probit models are developed to statistically model these four responses since the responses are 

binary discrete variables, and the decisions are independent of each other. Binary probit models 

estimate the likelihood of a binary outcome occurring depending on the observable estimated 

parameters assuming normally distributed disturbances (Washington et al. 2010). For instance, 

Equation 3.1 estimates the probability of choosing to order a water tanker early (even if the 

household has a two-day supply of stored water) rather than waiting until running out of water (i.e., 

Model-1). 
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Where: 𝑃𝑜𝑟𝑑𝑒𝑟_𝑒𝑎𝑟𝑙𝑦 ,𝑛 is the probability of a household manager (n) choosing to order a water 

tanker early, 𝛽𝑜𝑟𝑑𝑒𝑟_𝑒𝑎𝑟𝑙𝑦 ,𝑛 is a vector of estimable parameters for the order_early 

outcome, 𝑋𝑜𝑟𝑑𝑒𝑟_𝑒𝑎𝑟𝑙𝑦 ,𝑛 is a vector of the independent parameters related to the outcome, 𝛷 is the 

standardized cumulative normal distribution, and 𝜎 is the variance (set to equal one). 

The parameter vector (𝛽) is estimated using maximum likelihood methods (Washington et al. 

2010). Marginal effects are used to estimate the effect of the independent variable that is 

statistically significant on the probability of the occurrence of the outcome (Washington et al. 

2010). To evaluate the overall statistical significance of the model, the likelihood ratio test is used, 

as shown in Equation 3.2. 

 

 

Where 𝐿𝐿(0) is the log-likelihood at convergence of the restricted model (i.e., all parameters are 

set to zero except the constant), 𝐿𝐿(𝛽) is the log-likelihood at convergence of the unrestricted 

model, and χ2 is the chi-squared statistic with a degree of freedom equal to the difference between 

the number of the parameters of the restricted and the unrestricted models (Washington et al. 2010). 

3.4 Estimation Results 

Table 3.2 shows the estimation results, including the significant variables and their marginal 

effects on the likelihood of a household manager to supply a water tanker even if they have more 

than two-days of supply in their household storage tanks. Table 3.3 shows the estimation results 

for the decision to pay more to get the water tanker in the same day or the following day (rather 

than waiting for more than two days for a water tanker at the regular price). Table 3.4 and Table 

3.5 provides the estimation results for the willingness to pay to avoid waiting in-line at the tankers’ 

location. Table 3.4 shows the estimation results for the decision to pay the regular price of a tanker 

in order to avoid waiting for 1 to 2 hours in-line for a free tanker. Table 3.5 shows the results of 

the decision to pay twice the regular price of a tanker in order to avoid waiting for more than 3 

𝑃𝑜𝑟𝑑𝑒𝑟_𝑒𝑎𝑟𝑙𝑦 ,𝑛 = 𝛷 (
𝛽𝑜𝑟𝑑𝑒𝑟_𝑒𝑎𝑟𝑙𝑦 ,𝑛 𝑋𝑜𝑟𝑑𝑒𝑟_𝑒𝑎𝑟𝑙𝑦 ,𝑛

𝜎
) 

 

 

(3.1) 

 

χ2 = 2[𝐿𝐿(0) − 𝐿𝐿(𝛽)] (3.2) 
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hours in-line for a free tanker. All four models were found to be statically significant at 95% 

confidence level based on the examination of the chi-squared statistics. All independent variables 

in the models are statically significant at 99%, 95%, or 90% confidence levels. 

Based on the results in Table 3.2 for the significant variables affecting the consumer’s willingness 

to order a water tanker even before two days of running out of water (Model-1), consumers living 

in a larger house (4 bedrooms or greater) are more likely to avoid the risk of running out of water 

and order a water tanker early. In this study, running out of water is defined as having no water in 

the household storage tanks. The marginal effect of the house-size variable indicates that living in 

a larger house increases the likelihood of the consumer to order early by 0.25 (on average). The 

results also show that working in the private sector increases the consumer’s likelihood to order 

the water tanker early by an average of 0.12. A possible explanation is that, in this city, private 

employees tend to be busier and work for longer hours than individuals in other job categories. 

Hence, they would prefer to avoid the wasted time and the inconvenience related to obtaining a 

water tanker. In addition, more than 70% of private-sector employees in the survey indicated that 

they regularly check their underground tanks and are more likely to know about supply shutdowns 

compared to a lower percentage of respondents who know about the supply shutdowns in other 

job categories (less than 50%).  

The garden indicator and the maid-or-driver indicator in Table 3.2 can be seen as signs of 

household wealth, and they both have a negative impact on the likelihood of early ordering of a 

water tanker. Having a garden in the house decreases the probability of early ordering of water 

tankers by an average of 0.12 since households with gardens can conserve water if they stopped 

watering their gardens. In the survey, about 66% of households with gardens indicated that they 

would stop watering their gardens during disruptions in water supply. This effect of having a 

garden is in line with the findings of Coulibaly et al. (2014), who reported that households with a 

garden in the house have a lower consumption of water tankers. The likelihood of early-ordering 

of water tankers for households with a housemaid or a private driver (i.e., living in the house) is 

decreased by 0.19 on average. From the survey results, 80% of households with maids or drivers 

have a higher monthly income (more than the equivalent of $4,000), which suggests that even if 

they run out of water, they can afford getting a supply from water tankers in a relatively short time.  

Consumers who are willing to pay more (as much as twice the regular price) for faster delivery 
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(i.e., on the same day or the day after) are less likely to order early, and their likelihood of ordering 

early is decreased by (0.12) on average.  

The past experience of tanker orders (more than 2 tankers/year in the past three years) has a low 

positive effect on the likelihood of households’ early-ordering by (0.0003), suggesting that the 

knowledge about the prices, the availability, and the waiting times of tankers leads households to 

order tankers early to avoid paying higher prices or experiencing longer waiting times. The effect 

of the personal experience of households on their perception of risk and on their averting actions 

has been reported in the literature of water supply. For instance, Nastiti et al. (2017) stated that 

personal experience of households is one of the factors that shape their perception of health risks 

and their averting actions related to water quality. Finally, consumers’ knowledge about supply 

shutdowns to their houses shows an increase of (0.0003) in their likelihood of ordering early as 

they are more aware of their household’s water situation and can take actions before running out 

of water. 

Table 3.2. Binary probit model estimation results for Model-1 (ordering a water tanker early 

even if the household has a two-day supply of available stored water) 

Variable Description 
Parameter 

Estimate 
t-statistic 

Marginal 

Effect 

Constant  0.872  2.61***  

Willingness to pay double the regulated price of the water tanker 

for faster delivery (1 if yes, 0 if no) 

-0.417  -2.18** -0.1253 

Knowledge of water shut-off (1 if the household manager knows 

about supply shut-off, 0 otherwise) 

 0.001   2.00**  0.0003 

Garden indicator (1 yes, 0 if no) -0.390  -2.17** -0.1230 

Higher tanker experience indicator (1 if greater than 2 

tankers/year in the past three years, 0 otherwise) 

 0.001   1.94*  0.0003 

Private employee indicator (1 if yes, 0 if no)  0.413    1.77*  0.1190 

House size indicator (1 if 4 bedrooms or greater, 0 otherwise)  0.741   2.30**  0.2514 

Maid-or-driver indicator (1 if the household has a housemaid or 

a private driver, 0 otherwise) 

-0.679 -2.62*** -0.1859 

Number of observations 

Log-likelihood at zero, LL(0) 

Log-likelihood at convergence, LL(β) 

𝛘𝟐 = 𝟐[𝑳𝑳(𝟎) − 𝑳𝑳(𝜷)] 

252 

-151.67 

-137.69 

27.95 

***, **, *:  Significance at 1%, 5%, 10% level  
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Table 3.3. Binary probit model estimation results for Model-2 (willing to pay as much 

as twice the regular price of a water tanker to get the tanker on the same day 

or the following day) 

Variable Description 
Parameter 

Estimate 
t-statistic 

Marginal 

Effect 

Constant  0.420 1.90*  

House ownership indicator (1 if owner, 0 otherwise) -0.539 -2.19** -0.174 

Retired indicator (1 if yes, 0 if no)  0.456 2.46**  0.157 

Higher water use for bathrooms indicator (1 if house 

has greater than 4 bathrooms used in a daily 

basis, 0 otherwise) 

 0.373 2.14**  0.130 

Indicator for above-median monthly income with no 

preference of ordering tankers early (1 if greater 

than the equivalent of $4,000 and likely to order 

tankers only when running out of water, 0 

otherwise) 

 0.539 2.43**  0.178 

Number of observations 

Log-likelihood at zero, LL(0) 

Log-likelihood at convergence, LL(β) 

𝛘𝟐 = 𝟐[𝑳𝑳(𝟎) − 𝑳𝑳(𝜷)] 

252 

-154.74 

-164.82 

20.16 

**, *:  Significance at 5%, 10% level  
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Table 3.4. Binary probit model estimation results for Model-3 (willingness to pay the regular 

price of a water tanker to avoid waiting in-line for 1 to 2 hours) 

Variable Description 
Parameter 

Estimate 
t-statistic 

Marginal 

Effect 

Constant 0.633 1.92*  

House ownership indicator (1 if owner, 0 otherwise) 0.635 2.41** 0.2200 

Intermittent supply indicator (1 if supply is for 1-2 days 

a week, 0 otherwise) 

-0.376 -2.23** -0.1287 

Children (1 if there are children younger than 6-year old 

in the household, 0 otherwise) 

-0.404 -2.19** -0.1405 

Lower than median monthly income indicator (1 if less 

than the equivalent of $4,000, 0 otherwise) 

-0.560 -3.15*** -0.1918 

Thirties age category (1 if 30-39 years old, 0 otherwise) 0.723 2.24** 0.2477 

Planning of investing in household storage indicator (1 if 

yes, 0 if no) 

0.319 1.67* 0.1093 

Other long-term actions consideration indicator (1 if 

considers a long-term action to manage water 

supply/consumption, 0 otherwise) 

-0.639 -2.99*** -0.2116 

Higher frequency of experience of going to the tankers’ 

location (1 if greater than 50% of the times, 0 

otherwise) 

0.0003 1.76* 0.0001 

Number of observations 

Log-likelihood at zero, LL(0) 

Log-likelihood at convergence, LL(β) 

𝛘𝟐 = 𝟐[𝑳𝑳(𝟎) − 𝑳𝑳(𝜷)] 

252 

-181.62 

-159.17 

44.91 

***, **, *:  Significance at 1%, 5%, 10% level 



 

 

101 

 

Regarding the decision to pay twice the price of a regular tanker for same-day or following-day 

delivery (Model-2), the estimation results in Table 3.3 indicates that ownership of the house 

decreases the probability of choosing to pay more for faster tanker delivery by (0.17) on average. 

Households who own their houses are more likely to take long-term water management actions 

(such as investing in household storage or in water conservation devices) since they have full 

control over their houses, and hence they are more likely to be able to wait longer for a tanker 

delivery.  

Being retired increases the consumer’s likelihood of paying more for faster delivery by (0.16). 

Retired individuals are more affected by water supply disruptions since they are older and tend to 

stay home and are not as able to seek alternate water sources, as opposed to individuals who are 

still in the workforce.  The results also show that a higher number of bathrooms that are used on a 

Table 3.5. Binary probit model estimation results for Model-4 (willingness to pay double the 

regular price of a water tanker to avoid waiting in-line for more than 3 hours) 

Variable Description 
Parameter 

Estimate 

t-

statistic 

Marginal 

Effect 

Constant -0.3759 -2.78***  

High monthly income indicator (1 if greater than the 

equivalent of $5,300, 0 otherwise) 
0.7251  4.34*** .2594 

Knowledge about tank size indicator (1 if knows the tank 

size, 0 otherwise) 
0.0009  2.16** 0.0003 

Less supply reliability opinion indicator (1 if less reliable, 

0 otherwise)  
-0.4021 -2.21** -0.1432 

Thirties age category indicator (1 if 30-39 years old, 0 

otherwise) 
0.5111  1.87* 0.1828 

Planning of investing in household storage indicator (1 if 

yes, 0 if no) 
0.3671  2.09** 0.1313 

Number of observations 

Log-likelihood at zero, LL(0) 

Log-likelihood at convergence, LL(β) 

𝛘𝟐 = 𝟐[𝑳𝑳(𝟎) − 𝑳𝑳(𝜷)] 

252 

-183.53 

-166.16 

34.75 

***, **, *:  Significance at 1%, 5%, 10% level  
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daily basis (greater than 4 bathrooms) increases the probability of the homeowner paying more for 

faster delivery (by an average of (0.13)). The number of bathrooms used on a daily basis reflects 

both the size of the dwelling and the size of the family. Finally, households with income above the 

median (the equivalent of $4,000) and also indicating that they would order tankers only when 

they run out of water, were found to be more likely to pay more for faster delivery. The marginal 

effect of this variable indicates that those households have an increase of (0.18) on average in the 

likelihood of paying more for faster tanker delivery.  

The results in Table 3.4 and Table 3.5 that are related to the decision to pay to avoid waiting in-

line at the tankers’ location (Model-3 and Model-4) indicate that household income has an effect 

on the willingness of the household manager to pay to avoid waiting in-line. Having a high monthly 

income (greater than the equivalent of $5,300) increases the likelihood of choosing to pay twice 

the regular price for a water tanker (to avoid waiting in-line for more than 3 hours) by 0.26 on 

average. Similarly, having a monthly income lower than the median (less than the equivalent of 

$4,000) decreases the probability of choosing to pay the regular price of a water tanker (to avoid 

waiting for 1 to 2 hours in-line) by 0.19.  

The results also show that two variables (age of household manager between 30-39 and the 

consideration of investing in household water storage) have positive effects on the willingness to 

pay to avoid waiting in-line for both situations. These effects suggest that younger household 

managers are less willing to accept the inconvenience of waiting in-line at the tankers’ location. 

Additional examination of this variable could explain whether this effect (related to younger 

household managers) is due to their lack of experience, being busier in general, or due to other 

factors. Also, if household manager considers investing in household water storage, their 

likelihood of deciding to pay the regular price to avoid 1-2 hours of in-line waiting and the 

likelihood of deciding to pay twice the regular price to avoid 3 hours of in-line waiting are 

increased by an average of 0.11 and 0.13, respectively. 

For Model-3 (willingness to pay the regular tanker price to avoid waiting in-line for 1-2 hours), 

the results in Table 3 shows that house ownership increases the likelihood to pay (by 0.22) to avoid 

waiting for 1-2 hours at the tankers’ location, reflecting the fact that house owners have a higher 

disposable income in general compared to renters. The estimation results also show that having 
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intermittent water supply (for 1-2 days a week) decreases the probability of paying for avoiding 

waiting in-line for 1-2 hours (by an average of 0.13). One possible explanation of this effect is that 

households with shorter supply durations are often supplied by free tankers by the utility, which 

may explain their unwillingness to pay for the water tanker. Having children under the age of six 

in the household causes a decrease (of 0.14) in the likelihood of paying to avoid 1-2 hours of 

waiting at the tankers’ location. Similarly, if the consumer considers a long-term water 

management action (including installing water conservation devices, digging a well, or moving to 

another house), their probability of paying to avoid the 1-2 hours of waiting in line for water 

tankers decreases (by 0.21) on average. Finally, household managers who regularly go to the 

tankers’ location to procure the water tanker are slightly more likely (by 0.0001) to pay to avoid 

the waiting time of 1-2 hours since they are used to an average waiting time of 30 minutes during 

normal situations (as stated in the survey responses). 

For Model-4 (willingness to pay twice the regular tanker price to avoid waiting in-line for more 

than 3 hours), the results in Table 3.5 show that if the consumer considers water supply to their 

house as less reliable in the past three years (higher frequency of supply interruptions and/or longer 

durations of interruptions), their likelihood of paying to avoid waiting in-line for more than 3 hours 

decreases by an average of (0.14). Households with a higher frequency of disruptions are used to 

procuring water tankers at the regular price, which may explain their lower likelihood of paying 

double the price to avoid waiting in line. Finally, the results for Model-4 show that the consumer’s 

knowledge about the size of their household storage tanks slightly increases (by 0.0003) their 

likelihood of being willing to pay twice the regular price of a water tanker to avoid more than 3 

hours of waiting. 

The results of the survey indicated that the number of household managers who are willing to pay 

to avoid waiting in line at the tankers’ location decreases when the waiting times increase 

(assuming higher prices for avoiding long waiting times). By comparing the results of Model-3 

and Model-4 in Table 3.4 and Table 3.5, it can be concluded that as the price to avoid waiting in 

line is double the regular price of a water tanker, the consumer’s income becomes more relevant 

while the experience of going to the tankers’ location becomes irrelevant. This finding suggests 

that households are more sensitive to the increase in the price of avoiding waiting in line for tankers 
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rather than to the increase in waiting times at tanker locations. However, more analysis of different 

scenarios of increased prices and waiting times will be required to confirm this finding. 

Although the analyzed decisions are theoretically independent (i.e., the choice of one decision does 

not directly depend on the choices in other decisions), the results show a partial effect of the 

willingness to pay for faster delivery on the likelihood of early-ordering of water tankers. This 

effect may be due to common unobserved data captured by the two choices in addition to the 

plausible logical effect explained earlier. 

The results show that variables related to the household managers’ previous experience and 

knowledge are also statically significant in modeling consumer decisions (including knowledge of 

tank size, awareness of water shutoffs, previous experience of ordering tankers, and previous 

experience of going to the tanker location). Despite the lower marginal effects of variables related 

to knowledge and prior experience, their inclusion in the models improved the overall model fit 

and improved the statistical significance of other variables. 

Although using explicit variables instead of proxy variables may lead to a clearer interpretation of 

the results (e.g., replacing the maid-or-driver indicator by an income variable), the limited 

categories provided for the explicit variables in the survey might not be able to capture the effect 

of the variable on households’ decisions. In addition, proxy variables can capture unobserved data 

(for example, having a housemaid or a private driver captures the household’s income in addition 

to capturing some of their spending behaviors). 

3.5 Verification and Validation 

Verification and validation of the household decision-making models developed in this chapter 

include the validation of the household survey and the validation of the results with those of prior 

studies. The questions of the household survey were developed based on in-person interviews with 

utility personnel in July 2017. The different types of tanker options were determined based on 

these interviews, and the responses of households in the survey confirmed the types of tanker 

orders as the available options for households. The survey questionnaire was internally validated 

by reviews of six subject matter experts (SMEs) from the case study city, including university 

professors, utility engineers and managers, and water consultants with at least 8-year of experience 
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with the system. The survey questions were discussed with the SMEs through in-person and phone 

interviews in December 2018 and in January 2019. The SMEs provided feedback regarding the 

sizes of tankers, sizes of household tanks, and the wording of some questions. The SMEs also 

suggested that the decision-making of households living in houses may be different from those 

living in apartments, which was considered in the modeling of household decision making. Two 

SMEs validated the Arabic translation of the survey questionnaire. The survey was externally 

validated by pre-deploying the survey to 15 household managers who have little knowledge about 

the IWS system to ensure that the survey was easy to understand by all classes of households and 

that they would be able to provide responses. Based on the external validation responses, some 

questions related to the household’s prior experience of ordering tankers were edited and clarified. 

The responses collected during the external validation were excluded from the analyzed results. 

The results of the survey showed well-distributed responses over different household sizes and 

income in addition to education level, age, and occupation of the household manager. The results 

of the survey were validated by two of the SMEs as reasonable and representative of the 

households’ behavior of water supply and consumption in the city. The results of the survey 

showed a difference between households living in houses and those living in apartments similar to 

the findings of Coulibaly et al. (2014) where households who have their own water meters have a 

greater number of people, higher income, and more likely to have gardens than those who share a 

water meter. As indicated in the results of the household survey, households living in apartments 

mostly share the water meter with other households while households living in houses have their 

own water meters. 

To validate the results of household decision-making models, the findings from relevant studies in 

the literature are compared to those of this study. Some of the variables that were found to be 

significant in the households’ decisions were investigated in prior studies. Nauges and Strand 

(2007), Coulibaly et al. (2014), and Thneibat (2015) show a positive effect of household income 

on the consumption of water vended from tanker trucks, which supports the findings in this study 

that higher income increases the probability of paying for faster delivery of tanker trucks. In 

addition, Larson et al. (2006) found that higher income increases the probability of paying to avoid 

the inconvenience of collecting water from non-piped sources, reflecting the finding in this study 

of the effect of higher income on increasing the probability of paying to avoid the inconvenience 
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of waiting in line at the tankers’ location. These findings related to household income and wealth 

are in line with the economic theory that the demand for a commodity is affected by income, and 

was also found in the greater willingness to pay for improving piped water service for high-income 

households in IWS systems compared to low-income households (Asim and Lohano 2015)  

Prior studies (Nauges and Strand 2007; Thneibat 2015) found positive effects of the 

dwelling/household size on demand for water tankers, suggesting that households with more 

members or larger houses are more willing to pay for improved water supply. Cook et al. (2016) 

reported that having a larger household increases the coping costs of poor piped-water supply 

associated with obtaining water from non-piped sources. These findings from the literature are 

similar to what was found in this study (for the variables related to the number of bedrooms and 

the number of bathrooms in the house). 

3.6 Conclusions 

This chapter analyzes the dynamic short-term behavior of households in IWS systems. The results 

of the econometric analysis of 252 responses to the household survey show that households in the 

analyzed IWS system are heterogeneous in terms of their preferences regarding obtaining non-

piped water during disruptions. Households’ decisions during network disruptions are affected by 

household characteristics (e.g., number of bedrooms, number of bathrooms, having children at 

home), wealth (e.g., income, ownership of the house, having a garden, having a housemaid or 

private driver), age and occupation (e.g., retired, private sector employee). In addition, the results 

show a statistical significance of variables related to households’ previous experience with the 

system (including the experience of ordering tankers, the experience of going to tanker location, 

and intermittent vs. continuous supply). Some variables related to household managers’ knowledge 

and awareness were found to be significant as well (knowledge about supply shutoffs, knowledge 

about tank size, and the consideration of future water management actions). These findings 

confirm the research hypotheses tested in this chapter. 

One of the main contributions of this study to the body of knowledge is that, rather than simply 

modeling households’ choices of different water sources, the study addresses the dynamics in 

households’ responses to disruptions that have an effect on the prices, availabilities and waiting 

times of non-piped water sources. These analyzed dynamic decisions address households’ 
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preferences about water conservation, waiting times, and inconvenience associated with obtaining 

non-piped sources. In addition, this study expands the evaluation of households’ short-term 

decisions to address the heterogeneity in households’ knowledge and prior experience. 

The results of this study can assist the city’s water managers in estimating the changes in the 

demand for each type of non-piped water source when the system is disrupted. In addition, the 

results can assist water managers in the city in regulating, coordinating, and utilizing the market 

of water tankers. For example, increasing the number of tankers’ locations would not only decrease 

the waiting times but also would lead to more household managers willing to pay to avoid waiting 

(as the price for avoiding waiting decreases), which also decreases the waiting time at tankers’ 

locations. 

This study has some limitations. First, the survey data was collected in a specific geographic 

location. Households’ opinions and preferences are shaped by the current and the past conditions 

of the water supply system in this particular city. Data from other cities (even with similar system 

configurations) might result in different variables of significance that affect households’ decisions. 

Second, the analysis and the findings of this study are limited to households living in houses. The 

results of the study suggest that the water supply and consumption behavior of households living 

in apartments are different from the behavior of residents of houses. Models that explain the 

behavior of apartment households were tested based on the survey responses, but the results were 

not conclusive. This suggests that additional data specific to apartment households (e.g., related to 

the management of supply and demand in apartment buildings, the inclusion of bottled water as 

an alternative supply, consideration of temporary moving) will be required to develop models 

specific to this class of households. 
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 ANALYSIS OF THE DYNAMICS OF STAKEHOLDERS DURING 

DISRUPTIONS OF INTERMITTENT WATER SUPPLY SYSTEMS 

This chapter analyzes the dynamics of the stakeholders in IWS systems in response to disruptions 

of the piped water distribution network (WDN), as well as the impact of these dynamics on the 

community resilience at the household level. While the resilience assessment framework presented 

in Chapter 2 considers the piped network as the only water supply available to households, this 

chapter investigates the impact of additional non-piped sources on the households’ ability to 

maintain water supply. The stakeholders of the IWS system identified in this study are the 

households, the water utility, and the entities in the private market of non-piped water. Physical 

disruptions to the WDN have multiple effects on the stakeholders of the IWS system. Household 

consumers may experience various levels of water shortages, depending on their households’ 

consumption, supply, and storage attributes. The water utility may take temporary measures to 

improve, coordinate, manage, and/or control the non-piped sources of water supply (e.g., water 

tankers) for the benefit of affected consumers. Disruptions to the piped system also have an effect 

on the market for other sources of water supply due to changes in demand and changes in prices 

and availabilities. 

The two main hypotheses tested in this chapter are: 

- The behavior of stakeholders is affected by the dynamics of the WDN where the network 

supply to consumers changes throughout the duration of the disruption. 

- The dynamic interactions between stakeholders during system disruptions may result in 

emergent behavior in the system. Emergent behavior can be defined as the complex outcomes 

as a result of the collective effect of simple rules.  

The behavior of the stakeholders in response to disruptions is modeled using Agent-Based 

Modeling (ABM) that also integrates the dynamics of the WDN during disruptions. The model is 

implemented and evaluated using a case study of the IWS system in the city in the Middle East, 

described in Section 1.7. The primary output of the model is the average duration during which 

households had no water in their household storage. The emergent behavior of interest is the 

change in the distribution of the demand for different types of water tankers in the city during the 

disruption of the WDN and the ability of the tanker market to fulfill the demand. 
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4.1 Literature Review 

This section provides a discussion of the prior studies on analyzing the coupling of components of 

IWS systems. The focus of this literature review is on prior studies that address the interactions 

between the system’s stakeholders to identify the current research gaps.  

4.1.1 Prior Studies on Analyzing the Interactions between the Components of IWS Systems 

A significant portion of the prior research on the analysis of IWS systems narrowly addresses one 

of the four main components of the IWS system (namely, WDN, households, the utility, and the 

private market of non-piped water). Reviews of the literature focusing on the WDN and on the 

households were provided in Chapter 2 and Chapter 3, respectively.  Regarding the private market 

of non-piped water, prior studies focused mainly on the estimation of the households’ demand for 

water tankers. 

Fewer studies analyzed the coupling of two or more of these components, where the interactions 

between the coupled components are captured and addressed. Table 4.1 summarizes the context, 

tools used, contribution, and shortcomings of the prior work that analyzed the dynamics of the 

interactions between two or more of the IWS system components. 

Urban water management approaches are largely based on a utility-centric view of the urban water 

supply system (Srinivasan et al. 2010b). On the other hand, the demand-side analysis takes a 

decentralized approach, which better explains the consumers’ behavior in an IWS system, where 

consumers regularly rely on sources of water supply that are not provided by the utility. However, 

analyzing these approaches in isolation from each other fails to capture or explain the inter-

component interactions within the water supply system. Analyzing IWS systems requires an 

integrated system approach that has the capacity to explain the effect of the dynamics of 

subsystems on each other and on the system as a whole. Few research studies in the literature have 

adopted an integrated analysis of the IWS systems. 
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Table 4.1. Prior Research on the Coupling of IWS System Components 

Study 

 

IWS system 

Components 

Context Research 

tool(s) 

Main 

contribution(s) 

Shortcomings 

Rosenberg et al. 

(2007)  

 

 

• Consumers 

• Water 

manager 

Estimation of 

household water 

use 

 

Long-term analysis 

Stochastic 

optimization of 

user actions 

(minimize 

user’s annual 

water 

management 

cost) 

- Integration of 

multiple sources 

with different 

costs, 

availabilities, 

reliabilities, and 

qualities 

- Inclusion of 

many 

conversation 

options as user 

actions 

- Utility actions are 

limited to water 

pricing and 

conservation 

campaigns 

- The effects of 

consumer’s decision 

on the water system 

are not addressed 

Srinivasan et al. 

(2010a) 

 

• Consumers 

• Water 

manager 

• Non-piped 

private market 

System analysis of 

urban water supply 

 

Long-term analysis 

Hydrologic-

economic 

model 

Five system 

modules 

-  Analyzing the 

interactions 

between the 

consumers and 

the water 

resources 

- Water distribution by 

the piped network is 

analyzed without 

actual simulation of 

water hydraulics  

- Analysis of one-way 

interaction between 

the water manager 

and the consumers 

Klassert et al. 

(2015) 

 

 

• Consumers 

• Water 

manager 

Analysis of the 

distribution of the 

burden imposed by 

piped-water pricing 

policies 

 

Long-term analysis 

Agent Based 

Modeling of 

households 

-  Analyzing the 

socio-economic 

heterogeneity of 

household 

consumers 

- Static tanker market 

- Low-resolution 

estimation of water 

distribution by the 

piped network 

(assumes equal water 

supply distribution 

among households) 

Thneibat, 

(2016) 

Analysis of 

interactions 

between different 

water sources with 

efforts of water 

conservation 

 

Long-term analysis 

System 

Dynamics 

-  Assessing the 

impact of the 

private tanker 

market on the 

efforts of water 

conservation 

- Addressing the 

dynamics in the 

tanker market 

- Assumes static piped 

supply 

- Does not consider 

disruptions to the 

piped network    
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To the knowledge of the author, the work of Srinivasan et al. (2010b; a) is the only analysis that 

used a system modeling approach to study the dynamics of IWS systems. Srinivasan et al. (2010a) 

developed a system-approach hydro-economic model to analyze the dynamics of the urban water 

supply system in Chennai, India. Five sub-systems were modeled (four water resources, namely, 

reservoir, groundwater, water utility, and tanker market, and the consumers). A modular-

simulation approach was used to model these sub-systems and link them with feedback channels. 

In doing so, the authors were able to integrate and calibrate modules with different temporal and 

spatial scales in one interconnected system. 

The focus of Srinivasan et al. (2010b) was on the interaction between the supply and demand of 

the system. They analyzed how consumption behavior of the consumers affects the water resources 

(the reservoir and the groundwater) and vice-versa. The primary goal of the water utility module 

in this study was to calculate the share of the supply extracted from each water resource. The utility 

model used a Hierarchical Distribution Algorithm to distribute the available supply to different 

consumer categories, considering only the duration of the supply and the network shutdown. 

However, other dynamics and issues of the piped system (such as physical disruptions, pressure 

fluctuations, supply inequity, and others) that determine the quantities of water delivered to 

customers were not included. 

4.1.2 Gaps in the Literature of the Analysis of IWS 

The main gap in the literature of IWS systems is the lack of research work that addresses the 

dynamic coupling between all IWS system components. During a physical disruption of the piped 

network, the four system components (namely, the piped network, households, vendors of non-

piped water, and the utility) show an interconnected dynamic behavior especially when consumers 

rely greatly on intermittent piped water supply. 

In particular, the analysis of the interactions between the dynamics of the piped system (WDN) and 

the dynamics of stakeholders is missing in prior research. The prior studies that analyzed the 

dynamics of the piped system assumed static inputs regarding consumer demand and utility policy. 

On the other hand, the studies that analyzed the dynamics of the stakeholders assume static 

characteristics of the piped system. When analyzing the response of the IWS system to physical 

disruptions, the dynamics of the piped system play a significant role in the behavior of stakeholder 
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and vice versa. For instance, the recovery process of the piped network will greatly affect the short-

term demand of the tanker market. However, due to the lack of short-term resilience analysis (i.e., 

analysis of the IWS system’s response to physical disruptive events), the literature in IWS systems 

appears to ignore these interactions to simplify the process of water distribution by the piped 

network. Furthermore, abstracting the piped network model might be intentional (for instance, in 

the case of ABM development of the consumer decision), and simple assumptions are used instead 

to limit the source of complexity in the system to the interactions between the components in order 

to have a clearer interpretation of the results (Klassert et al. 2015b). This strategy can be justified 

when the piped network tends to have static behavior. However, in situations where the behavior 

of the piped network is dynamic (due to disruptions), the network should be modeled in sufficient 

depth to track and study stakeholders’ reactions to such disruptions. 

4.2 Methodology 

The proposed modeling approach (Figure 4.1) captures the dynamics of the four components of 

the IWS system and their interactions. The dynamics of the physical WDN are analyzed using the 

WDN Resilience Assessment Model (discussed in Chapter 2) to determine the impact of physical 

disruptions on household consumers and assess the impact of utility response on the recovery of 

the physical network.  

The interactions between stakeholders in the IWS system when responding to network disruptions 

are modeled using Agent-Based Modeling (ABM). Households are modeled as autonomous agents 

who react to the disruptions of network supply by supplying water from different non-piped 

sources with different prices and waiting times. ABM, as a micro-modeling approach, is 

appropriate to model the dynamic decisions of household consumers in IWS systems and captures 

the heterogeneity in their water demand, storage capacity, risk taking, ability and willingness to 

conserve water, and willingness to pay for non-piped water sources. 

 

In general, households in IWS systems have four categories of non-piped water sources that may 

be available: 

• Private household wells 
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• Public (mainly free) water access points that involve waiting in lines and/or traveling time, 

cost, and/or inconvenience 

• Water tanker trucks private vendors 

• Bottled water 

These different types of non-piped sources have different availability, water quality, price, 

convenience, and waiting times. The preferences of the household consumers that determine their 

decisions are based on empirical data from a household survey (described in Chapter 3). 

Entities in the market of non-piped water are modeled as another class of agents who react to the 

changes in the demand by changing the prices. The behavior of the water manager (e.g., utility) is 

implicitly captured by the static parameters that represent the policies of the water manager during 

network disruptions (policies for both the household consumers and the market of non-piped 

water). An example of the policies related to households is that, in some IWS systems, the water 

manager may provide consumers with free non-piped water during disruptions. An example of the 

policies for the market for non-piped water is that the water manager may have the capacity to 

control the prices, the sources, and/or the quality of water in the non-piped market. The policies of 

the water manager/utility are assumed to be long-term, and they do not change within the short-

term analysis of stakeholders’ behavior during a disruption. The dynamic interaction between 

stakeholders of the IWS system (i.e., household consumers and the non-piped market entities) 

occurs at the ABM-environment level, which contains the variables that get updated based on the 

decisions of stakeholders. 

The WDN resilience assessment model is integrated into the ABM model by two parameters that 

determine the number of affected households and the duration of the household-supply disruption. 

This simplification in representing the impacts of the disruption on households limits the 

complexity in the model to the interactions between agents (as suggested by Klassert et al. (2015)), 

while preserving the dynamics of the WDN during the disruption. 
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Figure 4.1. Schematic modeling of the dynamics of stakeholders in IWS systems during network 

disruptions 

4.2.1 Model Implementation 

The proposed model was implemented in the context of the IWS system of a city in the Middle 

East (described earlier in Section 1.7). The implemented model demonstrates the viability of the 

integrated WDN Resilience-ABM modeling approach in evaluating the interdependencies and 

dynamics of the components of the IWS system. 

4.2.1.1 Description of the IWS System of the Case Study City  

The IWS system in the case study city consists of four components: the physical intermittent WDN, 

household consumers, the water utility, and the private water tankers vendors. The water utility in 

the city is a government-owned corporation that owns, manages, and operates the WDN. The water 

utility, with the authority provided by the Ministry of Water, controls and operates the water 

tankers market. The fragmented tankers market consists of individuals or small firms who own the 

tanker trucks and get their water mainly from utility-controlled tanker filling stations at a fixed 

price that is set by the utility. The filling stations supply water either from the WDN or from utility-

owned wells. A smaller portion of these tankers supply water from privately-owned wells that are 
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licensed by the utility. Utility-independent private water companies who have their own tanker 

trucks and have their own licensed water sources, constitute another class of tankers. The size of 

all types of tankers (those controlled from the utility and those controlled by independent 

companies) ranges between 8 to 32 m3 with the most common size of 24 m3.  

For utility-controlled tankers (who are served at the filling stations owned by the utility), the utility 

sets a fixed selling price for the unit volume of water provided by tankers to households based on 

the highest rate in the utility’s water block-rating structure (equivalent to $1.8/m3). However, 

during disruptions of the network supply that result in longer waiting times at the filling stations, 

utility-controlled tankers may increase prices due to the lack of enforcement of the price policy 

since the utility relies on consumers (who are not always aware of the prices) to report tankers’ 

pricing violations. The utility pricing policy does not apply to utility-independent tanker 

companies, and their price follows supply-demand relationships. During normal operational 

conditions (where there are no disruptions to the WDN), the utility-independent tankers mainly 

supply water to commercial and industrial consumers, but they may supply to households when 

prices increase during disruptions. 

The preferences of household consumers in the city are obtained from the results of a survey of 

440 households (the total of those living in houses and in apartments). As discussed earlier in 

Chapter 3, households obtain water tankers either by waiting in person at the tankers’ filling station 

(for free most of the time), by ordering a tanker at the regular price (i.e., utility-regulated price) or 

by ordering a tanker at a price higher than the regular prices. 

4.2.1.2 Description of the Integrated ABM Model 

The modeling approach described in Figure 4.1 was applied to the IWS system in the case study 

city. The developed ABM model addresses the dynamics and interactions between the four 

components of the IWS system. The ABM includes the household consumer and the water tanker 

as the two main agent classes. Figure 4.2 describes the structure of the ABM and its integration 

with the other components of the IWS system (i.e., the WDN and the water manager/utility). Figure 

4.2 also includes the beliefs, knowledge, and information (BKI) diagrams for the household and 

the water tanker agents. The model was implemented in AnyLogic 7.1. 
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Figure 4.2. Structure of the ABM including the BKIs of the Household Agent and the Tanker 

Agent 

The household agent represents household managers who try to manage their water consumption 

and/or demand to avoid or minimize the time of running out of water (where they have no water 

in their household storage tanks). At the beginning of the simulation, all household agents start at 

the state where their demand is completely satisfied. Household agents move to the state of 

“considering a water tanker” based on the probability of being affected by the disruption (estimated 

by the WDN resilience model). Affected households do not consider getting a water tanker until 

two days before their household tanks runout (as observed in the household survey). Figure 4.3 

explains the decision-making process employed by household agents when choosing between 
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different types of water tankers. Based on their risk taking/aversion preferences, household agents 

either order a water tanker early or wait until they have completely run out of water. Household 

agents observe information from the ABM environment related to the available options of water 

tankers and their associated waiting times to make decisions based on their preferences of 

willingness to wait in person at the filling station and/or willingness to pay for faster tanker 

delivery.  In this study, it was assumed that household agents consider tankers of higher prices 

only if the estimated delivery time for regular-price tankers exceeds 24 hours. The price of the 

higher-price tankers is assumed to be equal to the double of the regular price that is set by the 

utility since the results of the survey indicate that the household’s decision is only sensitive to 

prices that are double the regular price or greater. Household agents are allowed to change their 

decisions as they constantly update the information about the available tanker types and their 

waiting times.  

 

 

Figure 4.3. Decision-making structure for the household agent 

The tanker agent represents tanker truck owners who try to maximize their profits by supplying 

water to as many households as possible and by increasing the prices of tankers if households are 

willing to pay. There are two types of tanker agents: one represents the utility-controlled tankers 

and the other represents the tankers of utility-independent tanker companies. The main difference 

between the two types of tanker agents is that utility-independent tankers supply to households 
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only when prices are higher than the regulated tanker price (i.e., when requests of higher-price 

tankers are created by households). When a household agent decides to get a water tanker of a 

specific type, they create a tanker request that is stored in a waitlist in the model environment. 

Utility-regulated tanker agents choose tanker requests from the three waitlists (one waitlist for 

each tanker type) on a first-come-first-served basis. Tanker agents give priority to the requests of 

higher price tankers in order to maximize their earnings. When a tanker chooses a request, they 

move from the “available” state to the “delivery” state to represent the time required for the 

traveling trip and the filling time of household storage tanks (assuming a uniform distribution 

between 2 to 4 hours for the tanker delivery). Based on the sizes of household tanks in the case 

study city, tankers are assumed to fill only one household tank per trip. When a tanker completes 

the request of a household, they send a message to the household agent to move to the state 

“satisfied”, and the tanker agent moves to the state “filling” which simulates the process of filling 

utility-controlled tankers at filling stations. The process of filling tankers is determined by the 

capacity of the filling station (number of tankers per hour) that depends on the number and the 

capacity of filling stations provided by the utility. 

The behavior of the utility is limited to the parameters that describe the utility policies related to 

the households and to the tanker market. One policy related to households is that the utility in the 

case study city provides free tankers at the filling station for households who run out of water. For 

the tanker market, utility-controlled tankers are required by the utility policy to give priority to 

free-tanker requests for household consumers waiting at the filling stations(s). The behavior of the 

utility is assumed static during the short-term analysis (2-3 weeks). 

4.3 Results and Discussion 

The dynamics of the stakeholders in the IWS in the case study city were evaluated using the 

developed ABM. The analysis is based on the behavior of households within a representative sub-

network of the city’s WDN (described in Section 1.7) using the city-scale distributions of 

household attributes obtained from the household survey. Table 4.2 describes the values and the 

justifications for the model’s parameters for the IWS in the city. The stakeholder’s dynamics are 

evaluated by running the ABM model in AnyLogic for different combinations of WDN disruption 

scenarios (Figure 2-18). For each WDN disruption combination, the household’s probability of 
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being affected (i.e., percentage of affected consumers) and their average length of network-supply 

disruption are estimated from the WDN resilience model and used as inputs for the ABM. 

The main evaluated output of the ABM model is the average household’s water runout duration, 

which is the duration between the time when the household runs out of water until the time where 

water was supplied to the household either by a water tanker or by the return of the network supply. 

The average household’s water runout duration is an indication of the overall performance (in 

terms of household demand satisfaction) of the IWS system, including the water tanker market. 

The evaluated outputs also include the number of completed orders of each tanker type in addition 

to the number of incomplete orders. The number of completed orders of each tanker type shows 

the distribution of the cost burden of the recovery of the system among households and the utility. 

Incomplete orders represent tanker orders that were generated by households; however, the 

network supply returned to the household before the order was chosen or completed by the tanker 

agent. The higher the number of incomplete orders indicates the higher intensity of the disruption 

and/or the shorter duration of the impact, while lower values of incomplete orders indicate lower 

intensity and/or longer duration of impact. Incomplete orders are not used to evaluate the capacity 

of the tanker market in fulfilling the households’ demands because each combination run has a 

different time of network supply recovery that terminates the simulation. Incomplete orders are 

presented to reflect the total number of generated tanker orders. Another evaluated output of ABM 

is the average waiting time for completed orders, which reflects the supply-demand gap of the 

tanker marke
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Table 4.2. Parameters for the evaluated IWS system in the case study city 

Parameter 

type 

Parameter Value (unit) Source/rationale 

Parameters of 

the disruption 

of the WDN 

given a 

disruption 

scenario (type 

and intensity) 

Household’s probability of being 

affected 

Variable IWDN Resilience 

assessment model 

Length of the disruption of WDN 

supply to households (mean) 

Normal distribution 

(hours) 

Variable 

IWDN Resilience 

assessment model 

IW
S

 s
y
st

em
 p

ar
am

et
er

s 

Households’ probability of 

vending water early by tanker 

truck 

(i.e., consumer’s risk aversion 

attitude) 

0.71 Household survey 

Probability of the willingness of 

the household manager to pay 

more for faster delivery (arrives 

the same day) 

0.64 Household survey 

Probability of the willingness of 

household manager to wait in line 

(for more than 1 hour) to obtain a 

free tanker 

0.44 Household survey 

Maximum waiting time before 

willing to pay high for faster 

delivery 

24 (hours) Household survey 

Number of households 2000 (0.1% of 

population) 

Number of house 

connections in the 

analyzed sub-network 

Number of utility-regulated 

tankers 

15 

(133 

consumers/tanker) 

Proportional number of 

tankers for the analyzed 

sub-network 

Number of utility-independent 

tankers 

5 

(33% of number of 

utility-regulated 

tankers) 

Proportional number of 

tankers for the analyzed 

sub-network 

Capacity of filling station 4 (tankers/hour) Proportional capacity of 

filling stations for the 

analyzed sub-network 

Tankers delivery trip 

(including the trip to the consumer 

and filling household tank) 

Uniform 

distribution (2-4) 

(hours) 

Estimated by the utility 

(based on interviews with 

utility personnel) 
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The results of all combinations of household tank capacity and recovery resources for the pipe-

damage disruption scenario are shown in Figure 4.4.  For the source-disruption scenario, Figure 

4.5 shows the results of all combinations of household tank capacity and the length of the source 

disruption. Figure 4.4 and Figure 4.5 show the household dynamics (the change in the number of 

households waiting for each type of tanker orders) over time. The curves in the figures show 

similar patterns that scale with the changes in the intensity and the duration of the disruption. The 

number of households ordering different types of tankers deceases as households switch to another 

order type, receive water supply through a tanker, or network supply is restored to the household. 

The sharp decline in the number of households ordering regular-price tankers reflects the behavior 

of households switching to either free or high-price tanker types when households run out of water.  

 

Figure 4.4 Household dynamics over time for all combinations of the pipe-damage disruption 

scenario showing the change in the number of households waiting for different types of tanker 

orders 

 

Figure 4.5. Household dynamics over time for all combinations of the source-disruption scenario 

showing the change in the number of households waiting for different types of tanker orders  

To assess the impact of the interactions between stakeholders on the performance of the IWS 

system, Figure 4.6 summarizes the results of all combinations for the pipe damage disruption 

scenario. The top part of Figure 4.6 shows the total number of different types of tanker orders 

generated by households for each combination run. The bottom part of Figure 4.6 shows the 

resulted average water runout duration for households and the average waiting time for completed 
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orders in addition to the attributes of the WDN disruption (the percentage of affected households 

and the average household’s network-supply disruption). A similar set of results is provided for 

different combinations of household tank capacities and source disruption duration for the source-

disruption scenario in Figure 4.7. 

The resulting number of generated tanker orders is linked directly to the percentage of affected 

households. However, the variation in the distribution of different types of completed orders 

represents the impact of the interactions between the households and the tanker market. The 

number of completed orders of high-price tankers (in general) is correlated with the average 

waiting for completed orders (orange bars in the bottom part of Figure 4.6 and Figure 4.7) because 

orders for high-price tankers emerge during the simulation when estimated waiting times of new 

orders exceeds 24 hours. The number of free tanker orders is positively correlated with the average 

household runout duration (Figure 4.6), reflecting the effect of utility policy. However, the change 

in the number of completed free tanker orders in Figure 4.7 is a result of the interdependency 

between the demand of different types of tankers being intensified with a greater number of 

affected consumers and longer durations of households’ network-supply disruption. The results 

show that, as the disruption’s intensity increases, households tend to move to either to high-price 

or free tanker options over the regular-price tankers as an emergent households’ response to the 

tankers’ behavior of favoring these two types of orders. It was observed that this behavior of 

households emerges when the household’s probability of being affected exceeds 20%, after which 

the tanker market becomes overwhelmed. This finding suggests that the utility should target a 

recovery process of the disrupted WDN that minimized the number of affected households even if 

it results in longer durations of households’ network-supply disruptions. The results of the 

household survey indicated that regular-price tankers constitute the majority of the demand in the 

tanker market in the case study city during the period of 2016-2019. During this period, disruptions 

of the WDN were limited and isolated, resulting in less than 10% of affected households. However, 

the results in this analysis reveal that, if the city experiences more intense disruptions (>20% 

affected households), the tanker market will mostly operate on free and high-price types of orders. 

This behavior of the tanker market indicates longer waiting times for completing orders and longer 

water runout durations of households. 
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The difference between the resulted average household runout duration and the average household 

network-supply disruption (orange and grey bars in the bottom of Figure 4.6 and Figure 4.7) shows 

the positive effect of the tanker market in reducing the impact of the WDN disruption (taking into 

account the percentage of affected households). The results show that the tanker market always 

improves the demand satisfaction for the affected households, and affected households may never 

experience water runout in some cases where the capacity of the tanker market is able to fulfill the 

household demand in a timely manner.  

The results in Figure 4.6 and Figure 4.7 show that both the number of affected households and the 

length of being affected have an impact on determining the effectiveness of the tanker market in 

minimizing the consequences of the disruption of the WDN. A larger number of affected 

households results in longer waiting times, which increases the demand for high-price tankers and 

the ability of the tanker market to fulfill the household supply. However, the ultimate effect of the 

disruption on households in terms of the duration of running out of water is also determined by the 

length of the household’s network-supply disruption. 
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(a) 

 
(b) 

Figure 4.6. Results of the ABM for different combinations of the pipe-damage disruptions of the 

WDN, including (a) number of different types of tanker orders, and (b) average household’s 

runout durations, average waiting for completed orders, and the attributes of the disruption of the 

WDN (household’s probability of being affected and the average length of the disruption of the 

household’s network-supply) 
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(a) 

 
(b) 

Figure 4.7. Results of the ABM for different combinations of the source-disruption scenarios of 

the WDN including (a) number of different types of tanker orders, and (b) average household’s 

runout durations, average waiting for completed orders, and the attributes of the disruption of the 

WDN (household’s probability of being affected and the average length of the disruption of the 

household’s network-supply) 
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4.3.1 Analysis of the uncertainty in the disruption of the WDN 

To further examine the effect of the uncertainty in the disruption of WDN on the dynamics of the 

stakeholders, a Monte Carlo simulation was performed in AnyLogic where the values of the two 

input parameters that describe the intensity and the length of the WDN disruption are varied. The 

value of the households’ probability of being affected is randomly drawn from a uniform 

distribution with a minimum value of zero and a maximum value of one. The average duration of 

households’ network-supply disruption is randomly drawn from a uniform distribution between 

one day and 21 days (as the maximum value observed in the WDN resilience simulation for the 

scenarios of disruptions analyzed). Figure 4.8 shows the resulting distributions of the number of 

different types of tanker orders in addition to the average waiting time for completed orders and 

the average duration of households’ water runout. The vertical axis in the sub-figures in Figure 4.8 

represents the probability of the occurrence of the values in the horizontal axis based on 1000 runs 

of the simulation.  

The results in Figure 4.8 show that the number of completed free orders and the number of 

completed high-price orders are more sensitive to the variation in the disruption of WDN. On the 

other hand, the number of completed regular orders is less sensitive to the variation in the attributes 

of the disruption of the WDN, suggesting that the effect of the interplay between the household 

and the tanker agents is reflected in the demand for free and high-price tankers. Another reason 

for the relatively lower variability in the results for completed regular tanker orders is that this type 

of order is given the least priority by tankers as a result of both the profit-seeking behavior of both 

classes of tankers and the utility-policy of giving priority to free tanker orders. As a result, most 

of the regular tanker orders end up among the uncompleted orders.  

The results in Figure 4.8 also show that as the average household’s runout duration increases, its 

probability of occurrence generally decreases. However, it may take the IWS system (i.e., the 

WDN and the tanker market) up to 190 hours (7.9 days) to provide all households with running 

water. Almost 15% of the time, the tanker market was able to completely eliminate the effects of 

the disruption of the WDN on households, resulting in no household water runout. The average 

waiting time for completed orders represents the collective effect of the interactions between the 

behavior of the stakeholders, and it directly affects the average duration of the household’s runout. 
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However, the average waiting time for completed orders tends to be greater since some households 

generate requests for tankers before running out of water. 

 

Figure 4.8. Impact of stochastically varying the attributes of the disruption of the WDN on the 

number of completed free, regular-price, and high-price tanker orders, number of incomplete 

orders, average waiting time for completed orders, and the average household water runout 

duration based on 1000 simulation runs 

To analyze the dynamics of household agents during stochastic disruptions, Figure 4.9 shows the 

changes in the percentages of households in the five states where the household agents exist (see 

household agent state chart in Figure 4.2) over the simulation time. The darker the color in the 

graphs, the higher the probability of being closer to the median of all simulations. The results for 

the regular and the high-price tankers show more dynamic behavior as households switch between 

different types of tanker orders as the attributes of the tanker market change. The sudden drops in 

the percentages of household agents in the graphs of the regular tankers and the high-price tankers 

are due to the introduction of free tankers as an option to households when running out of water. 

The IWS system is most likely to completely recover (i.e., all households are satisfied either by 

tankers or by returning network-supply) anytime between 5.4 days and 9.1 days, but may take up 

to 18.7 days.  

The variation in the results in Figure 4.9 indicates that the IWS system is sensitive to the intensity 

of the disruption of the WDN and the duration of the impact on households’ network-supply. 
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Higher intensity of the disruption increases the number of affected consumers and the demand for 

water tankers, while a longer duration of the disruption of WDN-supply to households increases 

the dependency of households on the tanker market as the only way for recovery. 

 

Figure 4.9. Impact of stochastically varying the attributes of the disruption of the WDN on the 

number of percentage of households in each state of the household agent based on 1000 

simulation runs 

4.3.2 Parameter Variation 

The purpose of the parameter variation analysis is to assess the impact of the input parameters on 

the ABM using the parameter variation features in AnyLogic. To study the impact of a specific 

parameter, the parameter is deterministically varied within a user-defined range and at user-defined 

increments while fixing other parameters at the base value. Table 4.3 specifies the ranges of the 
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parameters included in the parameter variation along with the rationale for their variation. Many 

cities in the Middle East have an IWS system configuration similar to the one of the case study 

city (e.g., Klassert et al. 2015). Therefore, analyzing the impact of the variation of the parameters 

related to household preferences and to the tanker market can reveal different behaviors that may 

emerge in other cities. 

Since the uncertainty in the disruption of the WDN affects the outcomes of the ABM, the parameter 

variation is performed for two disruption scenarios to assess whether the change in the disruption 

attributes would affect the impact of varying the parameters. A low-intensity disruption (25% of 

households are affected) and a high-intensity disruption (100% of households are affected) are 

considered representing the disruption of one DMZ of the WDN and the disruption of all four 

DMZs, respectively. For both disruption scenarios, the median value of the average duration of 

household network-disruption is assumed (=250 hours). Parameter variation is carried out for each 

disruption scenario separately. 
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4.3.2.1 Household Preferences Parameters 

Household preferences include three parameters, the probability of ordering a water tanker early 

(before running out of water), the probability of paying higher prices for faster tanker delivery, 

and the probability of the willingness to wait in line for a free tanker at the filling station. The 

Table 4.3. Parameters evaluated in the parameter variation analysis 

Parameter 

group 

Parameter Base value 

(unit) 

Range 

(increment) 

Rationale 
H

o
u
se

h
o
ld

 P
re

fe
re

n
ce

s 
 

Households’ 

probability of vending 

water early by tanker 

truck 

(i.e., consumer’s risk 

aversion attitude) 

0.71 0.1-1 (0.1) Household preferences may 

change over time as households 

adapt (in the long term) to the 

WDN disruption. The 

household survey indicates that 

household behavior changes if 

they have previous 

experience(s) with disruptions. 

Household preferences also 

change from one city to 

another.   

Probability of the 

willingness of the 

household manager to 

pay more for faster 

delivery (arrives the 

same day) 

0.64 0.1-1 (0.1) 

Probability of the 

willingness of 

household manager to 

wait in line (for more 

than 1 hour) to obtain 

a free tanker 

0.44 0.1-1 (0.1) 

T
an

k
er

 M
ar

k
et

/U
ti

li
ty

 P
o
li

cy
 

Number of utility-

regulated tankers 

15 

 
5-25 (5) The number of tankers in the 

city changes over time. As the 

utility improves the network 

supply (which is the current 

utility plan), the demand for 

tankers during normal operation 

conditions decreases, and fewer 

tankers will be available during 

disruptions. 

The number of tankers available 

during partial disruptions of the 

WDN may be greater since 

tankers from all over the city 

can supply to the affected 

households. 

Capacity of filling 

station 

4 

(tankers/hour) 
2-10 (1) 

tankers/hour 

Proportional capacity of filling 

stations for the analyzed sub-

network 
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results of the household survey suggest that household preferences change over time and that 

households’ prior experience with the tanker market affects their preferences. The results of the 

parameter variation of the household preferences parameters are shown in Figure 4.10, Figure 4.11, 

and  Figure 4.12, showing the impact of the parameter variation on the average household’s runout 

duration and on the proportion of completed orders of each tanker type for both the low-intensity 

and the high-intensity disruption scenarios. 

The probability of ordering early has an impact on the distribution of the different types of tanker 

orders both before and after the time when households run out of water. Increased number of 

households ordering early helps flatten the demand curve for tankers and decreases the demand-

supply gap when households run out of water. Figure 4.10 summarizes the results of the impact of 

varying the probability of ordering early on the outputs of the ABM. For both disruption scenarios, 

the average runout duration decreases (to a certain point) as the probability of ordering early 

increases. A 10% increase in the probability of ordering early may result in a reduction in the 

average runout duration of up to 15 hours. However, increasing the probability of early ordering 

can minimize the runout duration up to a certain point where the volume of early orders exceeds 

the capacity of the tanker market. This breaking point is explained by the change in the trend of 

the number of regular-price and high-price tanker orders.  

The behavior of households switching from higher-price to regular-price tankers indicates 

decreasing waiting times for orders (and decreasing runout durations) and visa-versa. The impact 

of varying the households’ probability of paying more is greater for the low-intensity disruption 

scenario where the early demand of the tanker market is not as overwhelming as in the high-

intensity disruption scenario. Similar to the average runout duration, the number of free tanker 

orders is indirectly affected by the change in the probability of early ordering since free tankers 

are not an option for households before running out of water. 

The difference between the variance for the low-intensity and for the high-intensity scenarios is 

found to be statistically significant for both the number of completed free, regular, high-price 

orders (using the F-Test of variance at 5% confidence interval). This suggests that the intensity of 

the disruption affects the impact of the change in the households’ probability of ordering early on 
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the distributions of different types of tanker orders. The lower the intensity of the disruption, the 

greater the impact of the change in the households’ probability of ordering early. 

The results in Figure 4.10 show that, depending on the intensity of the disruption, increasing the 

households’ willingness to order early can have an impact in reducing the average runout duration 

for households. The utility can maximize the reduction in runout durations by increasing the 

number of early orders and/or increasing the duration during which households order early. One 

possible utility policy to increase the number of early orders is to provide free tankers as an option 

for early orders. On the other hand, increasing the duration for early orders can be achieved by 

having an effective communication with affected households to inform them about the scale of the 

disruption and the expected time for supply recovery. Based on the results of the household survey, 

households tend to consider water tankers only one or two days before their water storage runs out 

since they usually have no information about the time of supply recovery. Some households may 

be willing to order earlier than two days before running out of water to avoid longer waiting times 

and possible water runout if they are provided with sufficient information about the disruption by 

the utility. 
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Figure 4.10. Impact of varying the probability of household’s willingness to order early on the 

network-average household runout duration, the number of completed high-price orders and the 

number of completed regular orders for (a) low-intensity disruption and (b) high-intensity 

disruption 

Increasing the probability of households’ willingness to pay higher for faster delivery of water 

tankers shows a reduction in the average runout duration (Figure 4.11). Greater household demand 

for high-price tankers draws the utility-independent tankers to the household tanker market, which 

increases its supply capacity. However, the limited number of utility-independent tankers can 

provide improvement to the system’s performance to a certain point, after which the percentage of 

high-price orders increases but with no reduction in the average runout duration. 

Although the increase in the percentage of high-price orders may help in reducing the overall 

average runout duration, it may introduce an inequality among high-income and low-income 

households in terms of the waiting times for tanker orders. Households who are willing to pay 

higher for water tankers (driven by their financial well-being, as found in Chapter 3) get the water 

tankers at shorter waiting times while causing longer waiting times for households ordering 

regular-price tankers. 
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Both the low-intensity and high-intensity scenarios show a similar level of sensitivity to the change 

in the households’ willingness to pay more for tankers, except for the number of free tanker orders. 

The variance in the number of completed free orders for the two scenarios was found to be 

statistically significantly different (using F-test of variance at 5% confidence interval). The greater 

the intensity of the disruption, the greater the impact of the change in the households’ probability 

of paying more on the number of completed free orders. 

 

 

Figure 4.11. Impact of varying the probability of household’s willingness to pay more for faster 

delivery of tankers on the network-average household runout duration, the number of completed 

high-price orders and the number of completed regular orders for (a) low-intensity disruption and 

(b) high-intensity disruption 

The results in Figure 4.12 show that increasing the probability of the household managers’ 

willingness to wait in-line at the filling station negatively impacts the performance of the tanker 

market by the slight increase in the average runout duration. The increasing demand for free 

tankers decreases the percentage of households ordering high-price tankers, which minimizes the 

effect of utility-independent tankers in improving the supply capacity of the tanker market. 
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Increasing the households’ willingness to wait in-line for free tankers could not completely 

eliminate the demand for other tanker types since free tankers are not available for early tanker 

orders. The results show a lower share of completed regular-price tanker orders as the willingness 

to wait in-line increases, reflecting the behavior of more households switching to free tankers while 

waiting for regular-price tankers. The same trend is observed for the percentage of the completed 

high-price tankers for the high-intensity disruption scenario (blue bars). However, the impact of 

greater demand for free tankers on completed high-price orders is less significant in the low-

intensity disruption scenario (orange bars) since most of these orders were completed before 

households run out of water. Using the F-test of variance, the difference between the variances in 

the number of completed high-price orders for the low-intensity and high-intensity disruptions is 

found to be statistically significant at a 5% confidence interval. 

The results of varying the probability of the willingness to wait in-line further stresses the trade-

off between the households’ runout durations and the equality in waiting times. Obtaining free 

tankers at the filling station ensures equality among high- and low-income households based on a 

first-come-first-served basis, but it may result in a longer overall average runout duration. The 

utility can explore these tradeoffs to test different policies for the tanker market. 



 

 

136 

 

 

Figure 4.12. Impact of varying the probability of the household’s willingness to wait in-line for 

free tanker on the network-average household runout duration, the number of completed high-

price orders and the number of completed regular orders for (a) low-intensity disruption and (b) 

high-intensity disruption  

4.3.2.2 Tanker Market Parameters 

The two parameters of the ABM that determine the capacity of the tanker market are the number 

of the available tanker trucks and the capacity of the tanker filling station(s). The base value for 

the number of available tankers represents a proportional number appropriate to the analyzed 

number of household agents based on the total number of available tankers in the city. However, 

during partial disruptions of the WDN, tankers from all over the city can provide supply to the 

affected households within the impacted areas of the network, resulting in a greater number of 

available tankers. On the other hand, the utility’s long-term improvement of the supply of the 

WDN could reduce the demand for tankers during normal operation conditions, which results in 

fewer available tankers during disruptions. The outputs of the ABM are analyzed to assess the 

impact of scenarios of the increased and decreased number of available tankers.  
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The parameter of the capacity of filling station(s) can represent the system’s ability to fill tankers 

from water sources available to tankers both provided by the utility or from private wells. When 

tanker demand is high and prices are increased, tanker agents may obtain from water sources other 

than the filling station(s) that is provided by the utility due to the longer waiting times for filling.  

Figure 4.13 shows the impact of varying the number of available utility-controlled tankers on the 

percentage of households for different types of tanker orders over time. The effect of the increased 

number of tankers is two-fold.  A greater number of tankers shortens the waiting times for all order 

types. Subsequently, the behavior of households ordering high-price tankers may change as they 

switch to regular-price orders if waiting times are shorter than 24 hours. The main evaluated 

outcome of the ABM is the percentage of satisfied households over time (Figure 4.14). The results 

show that the curves of the number of satisfied households over time are linear for low-intensity 

disruptions but tend to follow a Gaussian distribution for high-intensity disruptions. In both cases, 

these distributions are scalable with the change in the number of available tankers. The results 

show that increasing the number of tankers can improve the speed of recovery for affected 

households until the system becomes limited by the capacity of the filling station(s) (when the 

number of tankers is 20 or greater).  

 
(a) 

 
(b) 

Figure 4.13. Impact of varying the number of tankers on the percentage of households waiting 

for different types of tankers over time for (a) low-intensity disruption and (b) high-intensity 

disruption 
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           (a)         (b) 

Figure 4.14. Impact of varying the number of utility-controlled tankers on the percentage of 

satisfied households for (a) low-intensity disruption and (b) high-intensity disruption 

 

 
(a) 

 
(b) 

Figure 4.15. Impact of varying the capacity of the filling station on the percentage of 

households waiting for different types of tankers over time for (a) low-intensity disruption and 

(b) high-intensity disruption 
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           (a)         (b) 

Figure 4.16. Impact of varying the capacity of the filling station on the percentage of satisfied 

households for (a) low-intensity disruption and (b) high-intensity disruption 

 

Varying the capacity of filling tankers shows a small variation on the percentage of different types 

of tanker orders (Figure 4.15). Increasing the capacity of filling tankers (while fixing the number 

tankers at the base value) can improve the recovery of affected households until the system 

becomes limited by the number of available tankers (when the filling capacity is five tankers/hour 

or greater) (Figure 4.16). The results suggest that the system under base values is operating close 

to its full capacity in terms of the number of tankers given the diminishing impact of varying the 

filling capacity. The curves in Figure 4.16 are also scalable, similar to the trends resulting from 

varying the number of available tankers. 

The results show that the number of tankers and the capacity of filling are both limiting factors for 

the capacity of the system to fulfill households’ demand in a timely manner. The effectiveness of 

increasing the resources for one factor is dependent on the available room of improvement 

determined by the other factor. Theoretically, when both the number of available tankers and the 

capacity of the filling station are systematically varied (within the defined ranges and increments 

in Table 4.3), the results show further possible improvement in the recovery of affected households 

(Figure 4.17). The policy interventions to improve these two parameters are different and involve 

different costs and implementation considerations. Increasing the number of tankers may be 

achieved by lifting the thresholds on the selling price to draw more investors to the tanker market 

while increasing the capacity of filling stations would require long-term investment in installing 
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new filling stations or improving existing ones. Therefore, the utility should explore a mixture of 

policy interventions that optimize these aspects of performance and cost. 

 
          (a)                (b) 

Figure 4.17. Impact of varying the number of tankers and the filling station’s capacity on the 

percentage of satisfied households for (a) low-intensity disruption and (b) high-intensity 

disruption (results for all 42 possible combinations) 

4.4 Verification and Validation 

The verification and validation were carried out throughout the model development using four 

steps: (1) validating the conceptual model, (2) verification of the computerized model, (3) data 

validity, and (4) external validation (Sargent 2010). Validating the conceptual model ensures that 

the logic, structure and assumptions of the conceptual model represent the real IWS system. To 

validate the conceptual model, face-to-face meetings were conducted in December 2018 and in 

January 2019 with Subject Matter Experts (SMEs) who have knowledge and experience with the 

water supply system in the case study city. Six SMEs, including university professors, utility 

engineers and managers, and water consultants with at least 8-year of experience with the system, 

were involved in the verification and validation. The SMEs verified the model assumptions, logic, 

and relationships, including the objectives and the decision rules for the household and the tanker 

agents. The SMEs validated the model representation of the system as reasonable for the intended 

purpose of the ABM. The consideration of utility-independent tankers in the ABM was based on 

the suggestions of two of the SMEs since they often supply to households during network 
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disruptions. The SMEs also validated the model assumptions that were obtained from the 

household survey as reasonable and representative.  

Computerized model verification refers to ensuring that the computer programming and 

implementation of the conceptual model is correct (Sargent 2010). The verification of the 

computerized model was done by first building a simple version of the model and verifying its 

results by running different scenarios. More components were gradually added to the model while 

validating and testing the intermediate results for each model step. The visualization tools provided 

in AnyLogic allowed tracing of the status of the household and the tanker agents to verify their 

behavior and their transitions between states. The detailed results of each of the combinations of 

the two disruption scenarios were carefully examined and the explanation of any unexpected 

behavior was tested and verified. In addition, the analysis included stochastic simulation and 

parameter variation (i.e., sensitivity analysis), and the model responses to these experiments 

(including the behavior of households and the measures of the performance of the tanker market 

such as the average waiting time for completed tanker orders and the average household’s runout 

duration) were consistent and logical. Multiple runs of the stochastic simulation were performed 

to ensure that the level of stochastic variability in the model is minimal, reflecting the consistency 

of the model (Sargent 2010). The testing of extreme values of the model parameters was also done 

to ensure a consistent model response. 

Data validity ensures that the data used for model development, testing and experimenting are 

correct and accurate (Sargent 2010).  Data used in the ABM are based on the household survey, 

in-person and phone interviews with utility personnel, the utility website, and some news articles. 

Household preferences were identified and estimated based on the results of the household survey. 

The validation of the household survey was presented earlier in Chapter 3. As discussed in Section 

3.5, the different types of tanker orders were determined based on personal interviews with utility 

personnel in July 2017. The responses of households in the survey confirmed the types of tanker 

orders as the available options for households. The structure of the household agent, including the 

agent states and transitions, were based on the results of the survey as well. The number of tankers 

and capacity of the filling stations were estimated based on phone interviews with utility personnel. 

The policies of the water utility were determined based on the utility website, news articles, and 

phone interviews with utility personnel. 
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The external validation of the model findings was done by confirming the results with relevant 

studies in the literature (Table 4.4).  

Table 4.4. External Validation 

Relevant Finding/Discussion Study(s) 

The utility-independent tankers (sometimes illegal) 

have a positive contribution in performance of the IWS 

system  

Srinivasan et al. (2010c); Klassert 

et al. (2015); Cain (2018); 

Zozmann et al. (2019) 

Inequality in the supply of water tankers between low-

income and high-income households 
Raina et al. (2018) 

During disruptions of the water supply infrastructures, 

the capacity of filling stations may become a limiting 

factor for the tankers market 

Gupta and Quick (2006) 

Higher demand for tankers promotes unregulated (or 

illegal) tanker operations 

Gupta and Quick (2006); Mustafa 

and Talozi (2018); Zozmann et al. 

(2019) 

 

4.5 Summary and Conclusions 

This chapter introduced an Agent-Based model to analyze the dynamics and the interactions of the 

stakeholders in the IWS system when responding to disruptions in the WDN. The ABM models 

the decision making of household managers to choose between non-piped water sources with 

different prices and waiting times. Household managers aim to minimize the time of running out 

of water given their preferences related to their attitude towards the risk of running out of water 

(which affects the timing of their decision), their willingness to pay, and their willingness to wait 

in-line. The model assesses the dynamic interactions between households’ decisions and the 

response of agents in the water tanker market and vice versa. The model also assesses the impact 

of the utility’s policies both related to affected households and related to the tanker market on the 

overall performance of the IWS system represented by the duration of households’ water runout. 

The proposed modeling approach integrates the resilience analysis of the WDN into the ABM 

using two input parameters: the number of affected households and the average duration of the 

household’s network-supply disruption.  

The ABM was implemented in the context of the IWS system in a city in the Middle East using a 

representative subset of the whole network. Household preferences were obtained from empirical 
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data based on a household survey of 442 households in the city. The dynamics of households and 

the impact of their interactions with the tanker market (given the policies of the water utility) were 

analyzed under deterministic and stochastic scenarios of the disruption of the WDN. In addition, 

a parameter variation analysis was carried out to assess the impact of the input parameters on the 

outputs of the ABM to assess the possible variation of input parameters across time and location 

(i.e., different cities with similar system configuration).  

One of the main findings related to the first hypothesis in this chapter is the impact of the intensity 

and the length of the disruption of the WDN on the dynamics of households and the performance 

of the IWS system. The results of both the deterministic and the stochastic scenarios of the 

disruptions of the WDN show that, with greater intensity and/or duration of the WDN disruption, 

households tend to divert from regular-price tankers and concentrate their order patterns more on 

the free or high-price tanker categories. In addition, the intensity and the length of the disruption 

of the WDN are positively correlated the numbers of completed free and high-price tanker orders 

while negatively correlated with the number of regular-price tanker orders, showing that it is less 

likely for regular-price orders to be completed in scenarios that exhibit greater disruption intensity 

and/or duration. 

Another finding that has implications on future research is that short-term households’ behavior in 

the multi-mode IWS system in response to disruptions is mainly logical and follows simple 

scalable patterns, despite the interdependencies of households’ decision making and households’ 

heterogeneity in terms of preferences related to obtaining non-piped water. Households’ behavior, 

in the form of the distribution of different types of tanker orders, scale linearly with the intensity 

and the duration of the disruption of the WDN. This finding suggests that the second hypothesis 

in this chapter, which states that stakeholders’ interactions can lead to an emergent behavior, 

should be rejected under the current assumptions of the ABM model. This resulting logical 

behavior may be due to the interactions between household agents being indirect (occurs through 

the changes in the model environment of the ABM model). Therefore, part of the future work of 

this research is to modify the ABM model to consider other configurations of IWS systems where 

households have direct interactions (tanker sharing, sharing of stored water, etc.) in which 

emergent behavior may exist. In addition, analyzing stakeholder interactions on the long-term over 
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multiple disruptions, where stakeholders learn from and adapt to repeated disruptions, may result 

in an emergent behavior.  

 

Another important finding is related to the trade-off between supply inequality and the overall 

system performance. The results of the parameter variation analysis revealed that greater demand 

for high-price tankers reduces the overall average household runout duration, but it causes longer 

waiting times for households with regular-price orders. Moreover, the majority of incomplete 

orders are comprised of regular-price tanker orders since they are given the least priority in the 

tanker market. One of the reasons for the utility’s price policy is to ensure the supply of tankers to 

all households at affordable prices. The results of the variation of the willingness to wait in-line 

also show that when all households were forced to wait in-line for free tankers as the only option 

(which ensures equality among low-income and high-income households), the system’s average 

runout duration increased due to the absence of the incentive for the utility-independent tankers to 

enter the household tanker market. The utility should balance these trade-offs when planning for 

policies related to the tankers supply in the city.  

One of the findings from the parameter variation analysis is that the improvement of one parameter 

can lead to a limited impact on the overall system performance since the system becomes limited 

by the value of other parameters.  The performance of the system (in terms of the average 

household’s runout duration) is a result of the interdependencies among the parameters of the 

households’ preferences and the parameters of the tanker market. For instance, the impact of 

increasing the households’ willingness to pay more for faster delivery is dependent on the capacity 

of utility-independent tankers. Similarly, the impact of increasing the number of utility-regulated 

tankers is dependent on the capacity of filling stations. 

4.5.1 Significance of the Study 

Previous research on IWS systems has focused on analyzing the long-term dynamics of different 

components of the system (namely, the WDN, households, the market of non-piped water, and the 

utility) in isolation, assuming static behavior of the other components. The short-term interactions 

between the four components of the IWS system in response to disruptions were not addressed in 

prior studies. The main contribution of this chapter to the body of knowledge is the modeling, 
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evaluation, and validation of the interactions between the behavior of stakeholders in IWS systems 

in response to disruptions. The proposed modeling approach contributes to the body of knowledge 

by considering the coupling of the WDN and the stakeholders of the IWS system. This coupling 

addresses the heterogeneity among households in terms of the impact on the WDN and enables 

the evaluation of the impact of the dynamics in the disrupted WDN on the behavior and interactions 

of stakeholders in the IWS system. In addition, the model addresses the heterogeneity in 

households’ preferences related to their willingness to pay and/or wait for non-piped water sources. 

The analyses presented in this chapter highlighted how the variation of households’ preferences 

affects the overall performance and the supply equality of the non-piped water market. 

The developed ABM provides insights regarding the operation of the non-piped water market. 

Water utilities can use the ABM to assess the impact of different policies related to managing, 

coordinating, and/or controlling the operation of non-pied water sources during disruptions of the 

WDN. The results in this chapter showed possible improvements to the performance of the tanker 

market that can be achieved by implementing policies to encourage households to act early to 

disruptions, increase the number of available tankers, and/or increase the capacity of filling 

stations. The model can also assist utilities in evaluating the impact of different policies on utility-

independent tankers and their contribution to the overall system performance. In addition, the 

utility can use the model and its results to balance the trade-off between system performance and 

supply inequality and assess the impact of different policies on these two outputs. The utility can 

also vary the input parameters to identify the systems’ limiting factors (such as the number of 

tankers and the capacity of filling stations) that can be targeted to improve the system’s 

performance. The coupling of the WDN and the non-piped market enables water utilities to assess 

the impact of recovery strategies for the disrupted WDN on the non-piped market. 

4.5.2 Limitations and future work 

The work presented in this chapter has some limitations. First, the implemented model is, in part, 

specific to the IWS in the case study city. However, the main findings from the case study are 

generalizable for IWS systems with similar configurations in terms of the types of non-piped 

sources and their interdependencies. The analysis of the parameter variation described possible 

behaviors that may emerge in similar IWS systems. In addition, the proposed model considers 
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three general categories of non-piped sources: a faster high-priced source, a slower low-priced 

source, and a free source involving traveling and/or waiting in-line. Thus, the proposed model can 

be applied to any IWS system that has similar categories of non-piped sources by changing their 

waiting times and changing the values of the input parameters related to households’ preferences 

and the tanker market. The model can also be modified to incorporate any utility policy specific to 

the IWS under study. 

Another limitation related to the modeling approach is that the ABM assumes a one-way effect of 

the dynamics of the disruption on the behavior of stakeholders. The impact of the supply provided 

by the tankers on the hydraulics of the WDN during the disruption is not addressed. In future work, 

feedback from the ABM to the WDN can be used to update the water levels in households’ storage 

tanks (after obtaining supply from water tankers), and thereby explore the impact on the hydraulic 

performance of the WDN during the disruption by reducing the demand for the piped-water.  

The ABM assumes a static behavior of the water utility in the form of utility policies regarding the 

affected households and the tanker market. However, the behavior of the utility can be dynamic 

during system disruptions (e.g., in the form of communicating with households and/or providing 

supply from emergency storage tanks). Future research could include incorporating the dynamic 

behavior of the utility and testing other possible utility policies, including communicating with 

affected consumers to provide information about the scale and the duration of the disruption, 

controlling households’ tanker supply by tanker sharing, and lifting price-controlling policies for 

tankers. 

A known limitation of Agent Based Modeling, as a micro-modeling approach, is the requirement 

of higher computational power. However, the ABM developed in this research took between 5 and 

15 seconds to complete one run of a deterministic scenario (using Intel Core i7-8665U with 32 GB 

RAM). The variation in computational time depends on the intensity and the duration of the 

disruption (i.e., number of affected households and the average duration of being affected). This 

relatively low computational time allows the future applications of this ABM model at a greater 

scale (for instance, at the city scale) with a greater number of household and tanker agents. It also 

allows the inclusion of other classes of water consumers (such as commercial and industrial water 

consumers) and/or additional agent interactions. 
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Future research is also recommended to include the analysis of the cost burden of the disruptions 

of the IWS. The presented analysis in this chapter does not address the distribution of the financial 

burden of the disruption among households and between households and the utility. Although 

some scenarios of input parameters may improve the system’s performance, they may shift the 

financial pressure from the utility to households or vice versa. The household cost burden is 

determined by aggregating the expenses incurred by households throughout the duration of being 

out of water in addition to the cost of the tanker if obtained. These costs can be estimated by 

considering the increase in the demand for bottled water for households waiting for tanker supply. 

In addition, a detailed demand-supply pricing relationship for water tankers should be established 

to estimate the cost of tankers for households. On the other hand, the utility’s cost burden could 

include the cost of free tankers provided to affected households. 
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 CONCLUSIONS AND RECOMMENDATIONS 

The analysis of the resilience of intermittent water supply (IWS) systems requires special 

considerations related to the hydraulics of the water distribution network (WDN) and the dynamics 

of the stakeholders of the IWS system. The intermittent WDN is characterized by household water 

storage, significant pressure fluctuation, and pressure-dependent household demand, which results 

in supply inequity among households, especially during disruptions of the WDN. Stakeholders of 

the IWS system (including households, the utility, and non-piped water providers) respond to the 

disruptions of the WDN in a dynamic way due to the existence of the non-piped water market. 

This dissertation aimed to bridge the gap in the body of knowledge and practice regarding the 

assessment of the resilience of IWS systems and the impact of the dynamics and the interactions 

among the system’s stakeholders on the resilience of the system. The first section of this chapter 

provides an overview and summary of the research. The second section summarizes the results of 

this dissertation for each research objective. A discussion of the significance of the research to the 

body of knowledge and practice is presented in the third section of this chapter, followed by a 

discussion of the underlining limitations of the research. Finally, the chapter concludes by 

proposing recommendations for future research. 

5.1 Summary of the Research 

The overall objective of this dissertation is to evaluate the resilience of IWS systems by modeling 

and evaluating the dynamics of the system’s component (focusing on the WDN and the household 

consumers) and the interactions within components under disruptions of the WDN. The research 

activities in this dissertation were demonstrated in the context of the IWS system in a case study 

city in the Middle East, where households rely on in-house water storage to adapt to the supply 

intermittency. A survey of 442 households in the city was used to understand households’ 

characteristics and preferences and to model the household’s decision during events of disruption 

of the piped WDN. The dynamics and the interactions between the stakeholders of the IWS in 

response to disruptions are modeled and evaluated using agent-based modeling. Subject matter 

experts, with background and experience with the IWS system in the case study city, were involved 

in the development and validation of models developed in this research. 
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The first component of this dissertation presented a new framework for assessing the resilience of 

the WDN in IWS systems against acute physical disruption. The framework incorporates the 

aspects of IWS by modeling the filling and emptying processes of household storage tanks and by 

modeling supply cycles to network zones based on pre-defined schedules. The framework uses 

hydraulic modeling and network analysis tools to track two performance measures (Serviceability 

Index and Network-Average Tank filling Ratio) to assess the overall system resilience in addition 

to capacity-specific resilience for the absorptive, adaptive, and restorative resilience capacities. 

The framework was implemented and evaluated using a representative subset of the WDN in the 

case study city. Two disruption scenarios (pipe-damage and source-disruption) were analyzed to 

evaluate the network response to internal (partial) and external (network-wide) disruptions. A set 

of combinations of household tank capacity, the timing of the occurrence of the disruption (with 

regard to the supply schedule), and the length of the damage for both disruption scenarios were 

simulated. The sensitivity of the network performance outputs (including overall-system resilience, 

the number of affected households, and the duration of being affected) to the input parameters was 

evaluated and discussed. In addition, the framework was used to evaluate the adaptive response of 

the utility in terms of modifying the supply schedule during the disruption, and its impact on the 

network resilience was assessed. 

The second component of this dissertation addressed the decision-making behavior of households 

in response to disruptions in the WDN. The main objective of this research component is to identify 

and evaluate the factors that affect the decision-making for household managers regarding 

obtaining water from non-piped sources. A household survey was developed, evaluated, and 

deployed to households in the case study city to obtain information about their water supply and 

consumption behavior during normal operation and during disruptions of the WDN. Based on the 

results of the survey, a set of binary probit models were developed to model the decision of the 

household manager regarding the timing of their response to the disruption (which represents their 

attitude toward the risk of running out of water), their willingness to pay more for faster delivery 

of water tankers, and their willingness to pay to avoid waiting in-line at the tanker station/location. 

The estimation results of the binary probit models where evaluated and the impacts of the 

independent variables, including household characteristics, wealth, age and occupation of 

household’s manager, their knowledge about their households’ water situation, and their prior 

experience with disruptions were discussed. 
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The third component of this dissertation analyzed the dynamics and the interactions between the 

components of the IWS system, including the WDN and the stakeholders, when responding to 

disruptions to piped water supply. An Agent-Based Model (ABM) was developed to model the 

decision making of household managers and non-piped water vendors and their interactions with 

each other at the model-environment level given the policy set by the water utility to manage the 

market of non-piped water. Household managers make decisions to choose between different types 

of non-piped water sources at different prices and waiting times. The model was implemented in 

the context of the IWS system in the case study city. Households in the case study city have the 

choice of three main types of non-piped water sources; water tankers at a utility-regulated price, 

tankers at higher prices, and free tankers provided by the utility at the tanker filling stations which 

involves waiting in-line. The results of the household survey were used to estimate the distribution 

of households’ preferences parameters regarding the household’s likelihood of obtaining a tanker 

before running out of water, the household’s willingness to pay for faster delivery of tankers, and 

the willingness of the household’s manager to wait in person at the tanker filling station. The ABM 

model was integrated with the resilience analysis of the WDN by considering the household’s 

probability and duration of being affected by the piped-network disruption. The impact of the 

uncertainty in the disruption of the WDN on the dynamics of households and on the model’s 

outputs was evaluated by performing a stochastic simulation of the WDN disruption parameters. 

In addition, the sensitivity of the model’s outputs to the variation of the input parameters (related 

to the households’ preferences and to the tanker market) was evaluated to address the possible 

variation of input parameters over time and across different locations of IWS systems. 

5.2 Summary of the Results 

The research conducted in this dissertation addresses the research questions and achieves the 

research objectives outlined in Chapter 1. Table 5.1 summarizes the research objectives, analysis 

performed and the main findings from the analysis. 
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Table 5.1. Research objectives, analyses performed and summary of the findings 

Research 

objectives 

Analyses 

performed 
Summary of the findings 

Evaluating the 

resilience of IWS 

infrastructures  

• Resilience 

assessment 

framework 

• Disruption 

scenarios 

analysis 

• Supply inequity among households in a supply zone 

depends on household storage capacity, the zone’s 

network layout, and the zone’s location and connectivity 

to the water sources of the whole network 

• Greater household storage capacity results in greater 

supply inequity as a result of longer tanks’ filling times 

• Household storage capacity, recovery speed, supply 

scheduling, and the timing of the occurrence of the 

disruption (with respect to the supply schedule) determine 

the resilience of the network 

• Different combinations of direct and post disruptions 

result from the interactions between these four variables, 

which in turn creates non-linear trends of the number of 

affected consumers and disruption duration 

• Due to having different levels of supply inequity, 

different supply zones respond differently when being 

affected by the disruption. Thus, the network performance 

is affected by the timing of the occurrence of the damage 

• Direct disruptions were associated with smaller household 

storage capacities while larger storage capacities resulted 

in more post disruptions due to the greater impact of the 

supply inequity 

• The combination of longer damage durations (greater than 

one supply cycle) and greater storage capacity resulted in 

longer durations of disruption, although it resulted in 

greater network’s resilience 
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Table 5.1 continued 

Evaluating the 

short-term 

behavior of 

households in 

response to 

disruptions of the 

WDN 

Households 

preferences (from 

the household 

survey) 

• Majority of households (>50%) in the case study city 

are likely to obtain a tanker early, willing to pay for 

faster delivery, and willing to pay to avoid waiting in-

line  

Binary-probit 

modeling 
• Wealthier households are more likely to accept the risk of 

running out of water as they are willing to pay higher 

prices for faster delivery of tankers if needed  

• Awareness of the house’s supply situation and past 

experience of ordering tankers increases the likelihood of 

avoiding the risk of running out of water 

• Households’ likelihood of paying higher for faster delivery 

is based on household characteristics (such as house 

ownership status, income, size, and occupation of the 

household manager) 

• Likelihood of paying to avoid waiting in-line is based on 
demographic characteristics (such income and age) as well 

as the prior experience with the system (such as frequency 

and reliability of intermittent supply, prior experience of 

waiting in-line, and considerations of long-term actions 

regarding water supply/consumption) 

• Understanding the effects of household characteristics on 

household decisions assists water managers in the city to 

develop policies specific to groups of households to 

encourage/discourage specific household behaviors (for 

instance, policies to encourage high-income households to 

order early) 

Evaluate the 

dynamics of the 

interactions of 

stakeholders 

during 

disruptions in the 

piped network 

• Analysis of the 

simulation of the 

ABM using 

deterministic 

disruption 

scenarios for the 

WDN 

• The number of completed orders of high-price tankers (in 

general) is correlated with the average waiting for 

completed orders 

• The number of free tanker orders is positively correlated 

with the average household runout duration reflecting the 

effect of utility policy 

• As the disruption’s intensity and duration of impact 

increase, households tend to move to either high-price or 

free tanker options over the regular-price tankers 

• Both the number of affected households and the length of 

being affected determine the effectiveness of the tanker 

market in minimizing the consequences of the disruption 

of the WDN 

 • Analysis of the 

uncertainty in the 

disruption of the 

WDN using 

stochastic 

simulation of the 

ABM 

- Probability of 

being affected  

• The number of completed free orders and the number of 

completed high-price orders are more sensitive to the 

variation in the disruption of WDN 

• The number of completed regular orders is less sensitive, 

and most regular orders are not completed as a result of 

both the profit-seeking behavior tankers and the utility-

policy of giving priority to free tanker orders 

•  

 
Table 5.1 continued 
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 - (between 0 and 

1) 

• Average duration 

of households’ 

network-supply 

disruption 

(between 1 to 21 

days) 

• For 15% of the times, the tanker market was able to 

completely eliminate the effects of the disruption of the 

WDN 

• The IWS system is most likely to completely recover (i.e., 

all households are satisfied either by tankers or by 

returning network-supply) typically between 5.4 days and 

9.1 days, but may take up to 18.7 days 

 • Parameter 

variation 

(sensitivity 

analysis) of the 

ABM 

- Low-intensity 

disruption 

(25% affected 

households) 

- High-intensity 

disruption 

(100% affected 

households) 

• A 10% increase in the probability of ordering early may 

result in up to 15 hours reduction in the average runout 

duration, but it has no further effect when the volume of 

early orders exceeds the capacity of the tanker market 

• Greater impact of varying the households’ probability of 

paying more for the low-intensity disruption scenario since 

the early demand of the tanker market is not overwhelming 

• Increasing the probability of households’ willingness to 

pay higher for faster delivery decreases the average runout 

duration (limited by the capacity of utility-independent 

tankers), but it may introduce inequality of tanker supply 

among low- and high-income households 

• Increasing the probability of household managers’ 

willingness to wait in line at the filling station ensures 

equality between low- and high-income households, but 

may increase the average runout duration  

 

5.3 Limitations of the Research 

The focus of the current research was on the short-term analysis of the resilience of IWS systems 

subjected to acute physical disruptions. IWS systems are also subject to long-term (chronic) 

disruptions that cause different dynamics of the stakeholders. Long-term analysis of IWS would 

consider households’ learning and adaptation (e.g., investing in increasing storage capacity) due 

to repeated experience of acute disruptions and/or due to the effect of continuous chronic stress 

(e.g., degradation of the WDN, long-term changes in availability and prices of non-piped water, 

and the changing policies of the water manager). In addition, the utility behavior would be treated 

as being dynamic in the long-term as the utility learn from disruptions and adapts over time. 

Although households’ prior experience with the WDN and the non-piped sources were considered 

in this research, the households’ dynamics over the long-term were not addressed. 

 Table 5.1 continued 
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The models developed in this doctoral research and their evaluation address IWS systems that are 

based on household water storage with greater households’ dependence on piped-water, similar to 

the IWS system in the case study city. In addition, the analysis of the behavior of stakeholders 

assumes the existence of a non-piped water market. IWS systems can have different levels of 

households’ dependency on different water sources (both piped and non-piped). For example, 

households in some IWS systems rely on private wells as the main water supply, and some 

households may have no connection to the piped network. In addition, the results from the case 

study city are limited to IWS systems with similar configurations to the case study city in terms of 

the types and capacities of household water storage and their operation, the operation of the 

intermittent supply (times and durations), and the types of non-piped water sources. Nevertheless, 

the developed models in this research can be modified to address different types of household 

storage and different types of non-piped water sources. In addition, household behavior that may 

exist in other IWS such as water storage sharing and water reselling can be incorporated into the 

ABM.  

The scope of this research was limited to residential water consumers. Other categories of urban 

water consumers, such as commercial, industrial, and/or critical facilities, were not addressed. 

These types of water consumers may have behaviors different from those of households due to 

different objectives, priorities, preferences, and/or utility policy. For example, during disruptions 

of the WDN, the utility may give supply priority to critical facilities (such as hospitals) and 

households over commercial or industrial consumers.  

The resilience analysis in this dissertation was limited to the quantity of water supply. The quality 

of the water supplied by the piped-network and the quality of different non-piped sources were not 

addressed in this research. One of the common issues in IWS is the risk of water contamination 

due to the process of emptying and filling pipes and due to low pressure in some areas of the 

network. In addition, household tanks can be a source of water contamination due to the issue of 

water age. Therefore, having a greater capacity of household storage poses a continuous risk of 

water contamination due to reduced water circulation, although it increases the network’s 

resilience during disruptions. In addition, the quality of water in the non-piped market may affect 

the decision of the household. 



 

 

155 

As discussed in Chapter 2, this study did not include validation of the results related to the network 

performance and household behavior during disruptions, using real-world data. Acquiring actual 

data related to disruptions and their recovery is challenging since performance data related to 

disruptions (both for the water network and for the non-piped resources) are often not recorded by 

the utility at sufficient resolution that can allow the validation of the results presented in this 

research. However, the validation of results can be improved by conducting a face-to-face model 

demonstration and evaluation of the results with SMEs from the utility to evaluate different aspects 

of the model. This type of validation is part of the future work planned for this study. 

5.4 Contributions of the Research 

This dissertation makes various contributions to the body of knowledge and the body of practice 

in the area of the resilience of IWS systems. The main contribution of this research is the 

development and evaluation of a modeling approach that allows the analysis of the dynamics 

within components of IWS systems and the interactions among components in the context of short-

term disruptions. This modeling approach tries to bridge several gaps in the research on IWS 

systems. In addition, the demonstration of the developed models in Chapter 2, Chapter 3 and 

Chapter 4 provides new insights and/or introduces new analysis approaches to support utilities’ 

decision-making in the operation and the management of both the WDN and the non-piped water 

sources. 

5.4.1 Contributions to the Body of Knowledge 

This research contributes to the body of knowledge in the analysis of the resilience of the piped 

network in IWS systems. The resilience assessment framework (presented in Chapter 2) 

contributes to bridging the gap between the analysis of IWS systems under normal operation 

conditions and the analysis of CWS under disruptions. The developed framework contributes to 

the modeling of intermittent WDNs by incorporating household storage and supply scheduling in 

the simulation of network disruption and recovery. The framework also contributes to the analysis 

of intermittent WDNs by defining and evaluating network performance measures that are 

appropriate to IWS including the Serviceability Index and the Network-Average Tank Filling 

Ratio, which collectively can explain the network behavior at all stages of the disruption-recovery 
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cycle. In addition, the framework adopted and evaluated four resilience metrics to assess the 

overall system resilience and the contribution of each resilience capacity (i.e., absorptive, adaptive, 

and restorative). The evaluation of the framework contributed to the body of knowledge by 

evaluating the impact of the supply inequity on the resilience of intermittent WDNs. In addition, 

the demonstration of the framework highlighted the trade-offs between network resilience, the 

number of affected households, and disruption duration. The evaluation of the framework also 

contributes to the body of knowledge by identifying the interactions of the main factors (namely 

household storage capacity, the timing of the occurrence of the disruption, the length of the 

disruption, and supply scheduling) that determine the system’s resilience. 

The analysis of the behavior of households in response to disruptions of the WDN (presented in 

Chapter 3) contributes to the body of knowledge in modeling the household decision making in 

IWS systems. Instead of modeling the household’s behavior as simple choice from different non-

piped sources, this research addressed other household behaviors related to their attitude towards 

the risk of running out of water (i.e., the timing of household’s decision), the household’s 

willingness to pay for faster delivery of non-piped water, and their preferences of waiting in-line 

for non-piped water. The analysis of the ABM in Chapter 4 shows that these household preferences 

have an impact on the performance of the market of non-piped water. In addition, the modeling of 

household behavior in this research adds to the body of knowledge by evaluating the impact of the 

household’s knowledge about their water supply and storage and their prior experience with the 

system on their decisions. 

The modeling and evaluation of the dynamics of the interactions between the stakeholders of the 

IWS system (Chapter 4) have several contributions to the body of knowledge. While prior studies 

in the analysis of the coupling of the components of the IWS focused on the long-term dynamics 

and interactions of stakeholders, the main contribution of the developed ABM is the analysis of 

the stakeholders’ dynamics and interactions in the short-term in response to acute disruptions of 

the WDN. The evaluation of the ABM in the context of the case study city showed that short-term 

behavior and interactions of stakeholders have an impact on the performance of the IWS system 

under disruptions.  
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The proposed modeling approach for evaluating stakeholders’ dynamics and interactions addresses 

the heterogeneity among households in terms of the impact of the disruption of the WDN and the 

heterogeneity in households’ preferences related to timing, willingness to pay, and waiting times 

when obtaining non-piped water. In addition, the ABM incorporated the dynamics of the disrupted 

WDN and assessed their impact on the performance of the non-piped water market through the 

interactions of households, non-piped water vendors, and the utility’s policy. The evaluation of the 

ABM contributed to the body of knowledge by evaluating the impact of the attributes of 

stakeholders on the trade-offs between the performance and the supply equality of the non-piped 

water market. 

5.4.2 Contributions to the Body of Practice 

This research contributes to the body of practice regarding both the operation and management of 

the intermittent WDN and the management of the non-piped water market. The resilience 

assessment framework described in Chapter 2 can assist the water utility in the operation of the 

IWS network under normal operation and under disruptions. Many IWS networks are operated, 

under normal operation conditions, based on personal experience of utility personnel and/or case 

by case demand-and-supply analysis. For the normal operation of the IWS network, the developed 

hydraulic simulation and the analysis of supply inequity can assist the utility in evaluating different 

operation strategies to improve the network performance. The framework can also be used by the 

utility to evaluate the impact of different disruption scenarios to be used in the decision-making 

for long-term resilience enhancement of the network. The utility can also use the framework to 

plan for short-term adaptive measures to improve network performance during disruptions. 

Another contribution to the body of practice is that the framework can assist in determining the 

critical assets in the network that have a higher priority for enhancement/rehabilitation due to the 

greater impact of their failure on the network performance. 

Utilities can utilize the approach described in Chapter 3 by identifying the factors that affect the 

households’ decisions during disruptions. The utility can use the results of the binary probit models 

to plan for policies aiming to change households’ preferences (in the long-term) in order to 

improve the performance of the non-piped market during disruptions. For example, improving the 



 

 

158 

process of obtaining water tankers at filling stations may affect the household manager’s 

preferences about waiting in-line at the filling station. 

The modeling of the dynamics and interactions of stakeholders in the IWS system makes several 

contributions to the body of practice. The developed ABM can be used by the city’s water 

managers to assess the capacity of the non-piped water market, given different scenarios of 

intensities and durations of network disruptions in order to plan for intervention policy measures 

to improve the performance of the market. The results of the ABM indicate that possible 

improvements in the performance of the non-piped market can be achieved by implementing 

policies to encourage households to act early to disruptions, increase the number of available 

tankers, and/or increase the capacity of filling stations. Such policies include establishing effective 

communication with households during disruptions to provide information about the scale and the 

length of the disruption, providing free tankers to early orders to reduce the demand when 

households run out of water, and sharing water tankers between households. 

The results of the ABM highlighted the importance of balancing the trade-off between the 

performance and the supply equality of the non-piped market. Greater demand for high-price 

tankers may increase the performance of the non-piped market, but it results in greater supply 

inequality among low- and high-income households. Similarly, increased demand for free tankers 

ensures greater supply equality, but it may affect the performance of the non-piped water market. 

The utility can use the ABM to test different policies to balance these trade-offs.  

5.5 Recommendations for Future Work 

Future research can focus on areas related to the limitations of this research. The components of 

this research, including the resilience assessment model, the modeling of households’ decision 

making, and the ABM for the analysis of stakeholders’ dynamics and interactions, were developed 

and evaluated in the context of one case study city in the Middle East. Future research can explore 

the applicability of this research in other IWS systems of similar system configurations in other 

cities. Future research may also modify and/or expand the developed models in this research to 

address IWS systems with different system configurations in terms of types of household storage 

and types of non-piped water sources. 
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One of the main areas for future research is related to the synthesis and the scaling analysis of the 

results of this research. Many of the results in this research, including the disruption patterns for 

IWS networks and the households’ behavior during disruption, show repeated scalable patterns. 

Future research can further identify scalable functions and distributions that can approximate these 

patterns and analyze how they scale with the attributes of the disruption and the recovery of the 

network. Identifying scaling rules for the behavior of IWS systems under disruptions can help in 

expanding the results of this research to larger IWS networks with a greater number of households. 

Future research can consider other variables that may affect the decision-making of households 

during disruptions. The results in Chapter 3 suggest that the water supply and consumption 

behavior of consumers living in apartments are different from the behavior of residents of houses. 

Variables specific to apartment consumers (related to the management of supply and demand in 

apartment buildings, the inclusion of bottled water as an alternative supply, consideration of 

temporary moving) are suggested for developing models specific to this class of households. 

Furthermore, the possibility of expanding the modeling of households’ decision-making to other 

classes of water consumers (e.g., commercial water consumers) can be part of future research. 

In analyzing the dynamics and interactions of stakeholders of the IWS system, it is recommended 

for future research to incorporate more dynamic utility behavior that changes during the time of 

the disruption. Additionally, future research can include the evaluation of the impact of additional 

utility policies suggested in this research (e.g., tanker sharing, providing free tankers for early 

orders, lifting price-controlling policies for tankers) that aim to manage and coordinate the non-

piped water supply on the performance of the non-piped market. 

Finally, this research adopted a household-level (bottom-up) approach in analyzing the resilience 

of IWS systems (by using hydraulic modeling and ABM) to account for the heterogeneity in 

network supply, disruption damage, and preferences among households. One of the disadvantages 

of these decentralized modeling approaches is the higher computational requirements. However, 

the results from this research suggest that the household heterogeneity can be abstracted using 

appropriate distributions. This abstraction of household heterogeneity allows future research to 

explore the use of macro-scale system analysis tools (such as network analysis tools and system 

dynamics) to analyze the resilience of IWS systems at the city-scale.  
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APPENDIX A. RESULTS OF NETWORK PERFORMANCE FOR ALL 

DISRUPTION SCENARIOS 

  

  

 

 

Figure A.1 Network’s Serviceability Index (SI) for different disruption scenarios and household 

storage capacities (disruption occurs at the beginning of Day 3 of the supply schedule) 
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Figure A.2 Network’s Serviceability Index (SI) for different disruption scenarios and household 

storage capacities (disruption occurs at the beginning of Day 4 of the supply schedule) 
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Figure A.3 Network’s Serviceability Index (SI) for different disruption scenarios and household 

storage capacities (disruption occurs at the beginning of Day 6 of the supply schedule) 
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APPENDIX B. AMERICAN SOCIETY OF CIVIL ENGINEERS REPRINT 

PERMISSION (CONSTRUCTION RESEARCH CONGRESS 2018) 



 

 

170 

 



 

 

171 

 



 

 

172 

  



 

 

173 

APPENDIX C. AMERICAN SOCIETY OF CIVIL ENGINEERS REPRINT 

PERMISSION (WORLD ENVIRONMENTAL AND WATER RESOURCES 

CONGRESS 2020) 
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APPENDIX D. INSTITUTIONAL REVIEW BOARD EXEMPTION 
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