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Oriol, Pau, and Victor and Jorge, Peca, Mikel, Sandra, Stefano, Pol, Albert, and Xavi.



v

The material of chapter 2 and chapter 3 is based on research sponsored by HP Inc.

The material of chapter 4 and chapter 5 is based on research sponsored by DARPA and

Air Force Research Laboratory (AFRL) under agreement number FA8750-16-2-0173. The

U.S. Government is authorized to reproduce and distribute reprints for Governmental pur-

poses notwithstanding any copyright notation thereon. The views and conclusions con-

tained herein are those of the authors and should not be interpreted as necessarily repre-

senting the official policies or endorsements, either expressed or implied, of DARPA and

Air Force Research Laboratory (AFRL) or the U.S. Government.



vi

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Multimedia Analytics And Machine Learning . . . . . . . . . . . . . . . . 1

1.2 Object And Logo Detection And Segmentation . . . . . . . . . . . . . . . 2

1.3 Pose Estimation And Tracking . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Media Forensics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Contributions Of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Publications Resulting From This Work . . . . . . . . . . . . . . . . . . . 8

2 OBJECT DETECTION AND SEGMENTATION . . . . . . . . . . . . . . . . . 10

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Background In Object Detection And Segmentation . . . . . . . . . 15

2.2.2 Previous Works In Logo Detection . . . . . . . . . . . . . . . . . 24

2.2.3 Previous Works In Data Augmentation And Image Synthesis . . . . 26

2.3 Object Detection And Image Synthesis . . . . . . . . . . . . . . . . . . . 27

2.3.1 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 SynthLogo Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.1 Dataset Generation . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Two-Step Logo Detection With Bootstrapping . . . . . . . . . . . . . . . . 48



vii

Page

2.5.1 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 52

2.6 Head Detection For Sleep Analysis . . . . . . . . . . . . . . . . . . . . . 54

2.6.1 Videosomnography . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6.2 Auto-VSG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 POSE ESTIMATION FOR AUGMENTED REALITY . . . . . . . . . . . . . . 59

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Multi-View Matching Network . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.1 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Extra-FAT: 3D Pose Estimation Dataset . . . . . . . . . . . . . . . . . . . 78

3.4.1 Dataset Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4.2 Dataset Generation . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 DEEPFAKES DETECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Deepfake Detection Challenge Dataset . . . . . . . . . . . . . . . . . . . 89

4.4 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.1 Face Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.3 Training Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.4 Boosting Network . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.5 Test Time Augmentation . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 SATELLITE IMAGE MANIPULATION DETECTION . . . . . . . . . . . . . 103

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



viii

Page

5.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.1 Autoregressive Models . . . . . . . . . . . . . . . . . . . . . . 109

5.4.2 Generative Ensembles . . . . . . . . . . . . . . . . . . . . . . . 110

5.4.3 Training and Testing Setup . . . . . . . . . . . . . . . . . . . . 111

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.6 Splicing, Background, And Likelihood Analysis . . . . . . . . . . . . . . 116

6 SUMMARY AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . 123

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Complete List Of Publications . . . . . . . . . . . . . . . . . . . . . . . 126

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



ix

LIST OF TABLES

Table Page

2.1 Performance of different methods for logo recognition . . . . . . . . . . . . . 36

2.2 Performance of ZF with different amount of poses used in data synthesis . . . . 38

2.3 Performance of ZF for different amount of images used in data synthesis . . . . 39

2.4 Performance of logo detection methods trained with SynthLogo . . . . . . . . 46

2.5 Summary of datasets containing logo images . . . . . . . . . . . . . . . . . . 47

2.6 Performance of the two-step logo detection method trained with SynthLogo
and bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Performance of MV-Net and previous works on LINEMOD dataset . . . . . . . 78

3.2 ExtraFAT dataset specification . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Comparison of different 3D datasets. Table adapted from [109]. . . . . . . . . 84

4.1 Balanced accuracy of multiple deepfake detection methods in DFDC dataset . 100

4.2 Balanced accuracy of different configurations for deepfakes detection . . . . . 100

4.3 Log-likelihood error of the deepfakes detection method . . . . . . . . . . . . 102

5.1 AUC scores (%) of the P/R curves for the localization task. The subscript
(P/R×) denotes the manipulation size. . . . . . . . . . . . . . . . . . . . . . 114

5.2 AUC scores (%) of the P/R curves for the localization task with testing images
containing backgrounds of different complexity. . . . . . . . . . . . . . . . . 118

5.3 AUC scores (%) of the P/R curves for the localization task with testing images
containing different spliced objects. . . . . . . . . . . . . . . . . . . . . . . 120



x

LIST OF FIGURES

Figure Page

1.1 Machine learning and deep learning approaches to image classification . . . . . 3

1.2 Image classification, object detection and object segmentation . . . . . . . . . 4

1.3 Pose estimation with neural networks . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Deepfake generation with autoencoders . . . . . . . . . . . . . . . . . . . . . 7

2.1 Examples of logo images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 R-CNN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Faster R-CNN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Anchors in Faster R-CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 PVANet architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Mask R-CNN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Residual block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Feature Pyramid Network architecture . . . . . . . . . . . . . . . . . . . . . . 24

2.9 Examples of FlickrLogos-32 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.10 Multiple logo versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.11 logos segmented from FlickrLogos-32 . . . . . . . . . . . . . . . . . . . . . . 29

2.12 Examples of different poses . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.13 Examples of toys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.14 Examples from MIT-Places dataset . . . . . . . . . . . . . . . . . . . . . . . 31

2.15 Examples of generated images . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.16 Examples of logos detected in the wild . . . . . . . . . . . . . . . . . . . . . 36

2.17 Examples of toys testing set . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.18 Examples of object detection with ZF . . . . . . . . . . . . . . . . . . . . . . 38

2.19 Diagram of the image synthesis pipeline . . . . . . . . . . . . . . . . . . . . . 40

2.20 Examples of background images in SynthLogo . . . . . . . . . . . . . . . . . 41



xi

Figure Page

2.21 Image samples of SynthLogo dataset . . . . . . . . . . . . . . . . . . . . . . 44

2.22 Different versions of the same logo in SynthLogo dataset . . . . . . . . . . . . 45

2.23 DenseNet architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.24 Dense block of DenseNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.25 Two-stage logo detection pipeline . . . . . . . . . . . . . . . . . . . . . . . . 50

2.26 Examples of logo detections . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.27 Auto-VSG Detection System . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.28 Example of motion detection . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.29 Examples of head detections . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1 Pose estimation with neural networks . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Example of six views of a rendered object . . . . . . . . . . . . . . . . . . . . 61

3.3 FlowNetS architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 3D object models in YCB dataset . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 3D object models in LINEMOD dataset . . . . . . . . . . . . . . . . . . . . . 66

3.6 3D object models in TYO-L, TUD-L, IC-MI, RU-APC, and T-LESS datasets . . 67

3.7 Proposed pose estimation pipeline . . . . . . . . . . . . . . . . . . . . . . . . 68

3.8 Multi-View Matching Network and Single-View Matching Network . . . . . . 71

3.9 Pose refinement diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.10 Pose tracking diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.11 Examples of photorealistic images and domain randomized images . . . . . . . 77

3.12 Example of an image and a segmentation mask from Extra FAT dataset . . . . . 79

3.13 Examples of rendered images from Extra FAT dataset . . . . . . . . . . . . . . 80

3.14 Examples of linear interpolation trajectory from candidate location points . . . 82

3.15 Pixel coordinate constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1 Example of images from DFDC dataset . . . . . . . . . . . . . . . . . . . . . 86

4.2 Block Diagram of the proposed deepfakes detection system . . . . . . . . . . . 90

4.3 Diagram of the proposed deepfakes detection method including the boosting
network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



xii

Figure Page

4.4 Examples of faces with manipulations from DFDC . . . . . . . . . . . . . . 101

5.1 Proposed ensemble of PixelCNNs . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Examples of satellite images and its corresponding manipulation masks . . . 108

5.3 Different convolutional masks and the respective transformation (flipping and
rotation) performed to the input image to obtain the equivalent effect. . . . . . 112

5.4 Example of input images, manipulation masks, and estimated negative loglike-
lihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 Example of manipulated images containing backgrounds with different level
of complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.6 Example of manipulated images containing dark objects and the estimated ma-
nipulation localization mask . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.7 Example of manipulated images containing bright objects and the estimated
manipulation localization mask . . . . . . . . . . . . . . . . . . . . . . . . 122



xiii

NOMENCLATURE

6DoF 6 Degrees of Freedom

AI Artificial Intelligence

AFRL Air Force Research Laboratory

AP Average Precision

AUC Area Under the Curve

CNN Convolutional Neural Network

DARPA Defense Advanced Research Projects Agency

FC Fully Connected

GAN Generative Adversarial Network

GPU Graphic Processing Unit

GRU Gated Recurrent Unit

HSV Hue, Saturation and Value

LSTM Long-Short Term Memory

mAP Mean Average Precision

NGA National Geospatial-Intelligence Agency

PR Precision Recall

RGB Red, Green and Blue

ReLU Rectified Linear Unit

ROC Receiver Operating Characteristic

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

VAE Variational Autoencoder



xiv

ABSTRACT

Mas Montserrat, Daniel Ph.D., Purdue University, August 2020. Machine Learning-Based
Multimedia Analytics. Major Professor: Edward J. Delp.

Machine learning is widely used to extract meaningful information from video, images,

audio, text, and other multimedia data. Through a hierarchical structure, modern neural

networks coupled with backpropagation learn to extract information from large amounts

of data and to perform specific tasks such as classification or regression. In this thesis,

we explore various approaches to multimedia analytics with neural networks. We present

several image synthesis and rendering techniques to generate new images for training neu-

ral networks. Furthermore, we present multiple neural network architectures and systems

for commercial logo detection, 3D pose estimation and tracking, deepfakes detection, and

manipulation detection in satellite images.
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1. INTRODUCTION

1.1 Multimedia Analytics And Machine Learning

Multimedia has become a key element of our daily lives. Multimedia consumption is a

major form of entertainment and its production is a big industry. New multimedia content is

now generated faster than ever before. Text, image, audio, video, and animation have been

the main multimedia formats of the previous decades. Recently, new formats are becoming

more popular and accessible due to the inexpensive price of smartphone devices and easy

access to the internet. Some examples include Virtual Reality (VR) and Augmented Reality

(AR), that complement the traditional mediums of multimedia.

In this scenario, a new set of tools to analyze, create, and improve all types of multime-

dia are required. These tools need to be able to process and extract information from large

quantities of data in a fast and accurate way. Artificial Intelligence (AI) systems, specifi-

cally Machine Learning (ML) and Deep Learning (DL) algorithms are well fitted for such

tasks as they can learn statistical patterns from training data to perform specific pre-defined

tasks. In this thesis we study the use of neural networks, the basis of deep learning, in

order to extract information from different formats of multimedia, including images and

videos. Neural networks are composed of multiple layers of linear and non-linear opera-

tions, providing end-to-end systems that differ from traditional machine learning systems

where hand-crafted feature extractors, designed by domain experts, are combined with sta-

tistical methods. Figure 1.1 represents two different approaches to image classification:

machine learning, composed of two different steps of feature extraction and classification,

and deep learning, composed by a neural network-based end-to-end method.

Neural networks have proved of being highly accurate in many fields of engineering

and science, in many cases surpassing the performance of expert-designed ad-hoc meth-

ods. An area that has highly benefited from a large amount of data available on the internet
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and the new machine learning algorithms, such as neural networks, is computer vision.

Nowadays, many tasks like image classification or object localization can be performed

more accurately than humans by neural networks. The success of deep learning, specifi-

cally neural network-based methods, has been fueled by two main aspects: First, the in-

crease of the number of available data, specifically labeled data, and second, the hardware

improvement of graphical processing units (GPUs) allowing a highly parallelized process-

ing. Modern GPUs enable that, through gradient-based optimization methods coupled with

back-propagation, neural networks are capable of learning from huge amounts of labeled

data.

This thesis presents some examples of how machine learning algorithms can be used to

analyze images and videos to extract meaningful information and perform tasks including

object detection, pose estimation and tracking, satellite image manipulation detection, and

deepfakes detection.

1.2 Object And Logo Detection And Segmentation

Object detection consists of localizing and classifying the elements (objects) of interest

present in an image or video. Object segmentation consists of assigning a category for each

pixel of every element detected in an image or video. Figure 1.2 shows a representation of

image classification and object detection and segmentation. Object detection and segmen-

tation are steps present in many applications, including smart home, autonomous driving,

robotics, surveillance, biomedicine, media forensics, photography, entertainment, and mul-

timedia analytics. For example, object detection methods are used for detecting vehicles

and pedestrians in self-driving cars, detecting, tracking and identifying people in surveil-

lance applications, or detecting and classifying cancerous cells in medical imaging. While

a large number of methods have been presented in the last decades to perform such tasks,

convolutional neural networks, a deep learning method, have proved to be highly effective.

By learning a set of hierarchical convolutional filters combined with non-linear operations,
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Fig. 1.1. Traditional machine learning systems rely on hand-crafted fea-
tures and statistical classifiers that learn from data while deep learning
systems learn in an end-to-end manner to extract and classify features.

convolutional neural networks are able to successfully detect and identify objects within

images and videos.

In this thesis, we use convolutional neural networks for object detection and segmenta-

tion in order to detect commercial logotypes. Logotypes, or logos, are an important form of

multimedia. They can be found in commercial products, billboards, webpages, TV adver-

tisements, and clothes. Their abundance and their importance in our social and economic

life generate a need for tools to detect and classify them in an automated manner. The

detection of logos in images or videos can be highly useful when studying the presence

of a product or brand on the internet or TV. The analysis of how often and where logos
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are located can help companies to improve the placement of their logos and to study their

consumers in order to augment the visibility of the brand.

In chapter 2 we present multiple approaches to generate images containing logos and to

train convolutional neural networks to detect logos in the wild. Additionally, we show how

the same techniques can be applied to other applications such as detecting human heads for

sleep analysis.

Fig. 1.2. Image classification is the task of assigning one label per image.
Object detection is the task of localizing and classifying the objects com-
posing an image. Object segmentation consists of estimating a pixel-level
segmentation mask for each object composing the image.

1.3 Pose Estimation And Tracking

Pose estimation is the task of inferring the position and pose of an object in the 3-

dimensional world from 2D RGB images, depth information files, videos, or other mul-

timedia formats. The pose of an object can be represented with 6 parameters: 3 rotation

angles and 3 coordinates. 6 Degrees of Freedom (DoF) pose estimation and tracking is an

important step for applications in augmented reality, robotics, surveillance, videogames,

product maintenance, and design, and autonomous driving and navigation. For example, in

order to properly place a virtual object in an augmented reality scenario, the pose and loca-
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tion of the objects in the scene need to be properly estimated. In order to properly grab and

manipulate an object, a robot needs to detect the target object in the scene and accurately

predict its pose and position in the 3D world. With the increasing number of products (e.g.

smart glasses) and applications (e.g. interactive videogames) that rely on augmented reality

and virtual reality technologies, techniques to infer the pose of the physical world in a fast

and accurate way are needed.

6D Pose estimation has been commonly performed by extracting visual features from

images and matching them to 3D models of the objects of interest. However, these ap-

proaches tend to fail when the target objects do not contain discernible visual features, they

are occluded, fast-moving, or in challenging illumination conditions. Recently, convolu-

tional neural networks have been successful in estimating and tracking the pose of objects,

even if they are textureless, highly occluded, or in unfavorable illumination settings. Fig-

ure 1.3 presents a diagram of pose estimation with a neural network. While depth infor-

mation can be highly informative when estimating 6D pose, devices that capture images

with depth information are not highly available (e.g. consumer cameras or smartphones).

Therefore, we focus on pose estimation and tracking from RGB color images and videos

(without depth information). The shape of the target object can be known beforehand or,

if unknown, can be estimated through 3D shape estimation techniques during the pose es-

timation process. We focus on pose estimation when the 3D model of the object is known

as it is common in many applications (e.g. augmented reality for industrial product support

and maintenance).

In chapter 3, we present multiple approaches on how to infer the location and pose of

objects in the physical world from RGB images by using multiple convolutional neural

networks.

1.4 Media Forensics

Media forensics is the field that studies the integrity of multimedia and explores how

manipulations can be detected. Altered and manipulated multimedia is increasingly present
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Fig. 1.3. Convolutional neural networks can be used to estimate the pose
of multiple objects present in an image.

and widely distributed via social media platforms. Advanced and highly accessible video

manipulation tools enable the generation of highly realistic-looking altered multimedia.

Furthermore, machine learning techniques enable the automation of manipulating multi-

media and social media allows for the uncontrolled spread of manipulated content at a

large scale. In this thesis, we focus on manipulations within images and videos. These

manipulations vary largely in nature. Common manipulations include copying elements of

the image and duplicating them (copy-move), taking elements of other sources and placing

them on the image or video (splicing), or face manipulations such as swapping faces or

expression manipulation. Deepfakes, or manipulations performed with deep learning tech-

niques, are becoming increasingly realistic and difficult to detect. Figure 1.4 presents how

deepfakes can be generated with autoencoders.

We focus on two types of manipulations: deepfake manipulations performed within

faces and splice manipulations performed in satellite images. Human facial manipulations

are among the most common deepfake forgeries. Through face swaps, an individual can be

placed at some location he or she was never present at, and by altering the lip movement

and the associated speech signal, realistic videos can be generated of individuals saying

words they actually never uttered. This type of manipulation can be damaging when used

to generate graphic adult content or fake news that can alter public opinion. In fact, many

images and videos with deepfake forgeries are already present on adult content web sites,
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news articles, and social media. Satellite imagery can be easily manipulated. Through sim-

ple manipulation techniques, an element of the image (such as an airplane or vehicle) can

be removed or inserted. These types of manipulations can spread misinformation if used

improperly. Furthermore, they can damage downstream applications that rely on satellite

images, such as meteorological prediction algorithms, agricultural planning systems, or

surveillance technologies.

In chapter 4, we show how convolutional and recurrent neural networks can be used

to detect deepfakes manipulations within images and videos. In chapter 5 we show how

generative networks can be used to detect manipulation within satellite imagery.

Fig. 1.4. Deepfake generation with autoencoders.
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1.5 Contributions Of This Thesis

• We present multiple methods for image synthesis and data augmentation.

• We propose multiple methods to automatically detect logos in the wild.

• We introduce a method to generate training samples from 3D models of target ob-

jects.

• We show how neural nets can be used to detect, segment and estimate and track the

pose of objects.

• We present a technique to detect deepfake face manipulations within videos.

• We introduce a method based on generative ensembles to detect manipulations within

satellite images.
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2. OBJECT DETECTION AND SEGMENTATION

2.1 Overview

Object detection, recognition, and segmentation are some of the most important tasks

in computer vision since they are key steps for many applications including multimedia

analytics, biomedical imaging, smart home, smart office, surveillance, autonomous driving,

and robotics. First, we will define the terms of image classification, object detection, and

object segmentation. Image classification is the task of assigning a label or category (also

referred to as class) to an image. Such category (commonly from a finite and predefined

set) typically consists of a semantic representation of the image. Object detection is the

task of estimating the locations (typically represented as bounding boxes) and categories of

the objects composing the image. In this scenario, the object detection system will output a

bounding box and a label for each object detected. The task of object segmentation consists

of providing a pixel-level category for the objects detected within the image. An object

segmentation system will typically output a label and a segmentation mask for each element

detected within the image. While object detection is used in many applications, in this

chapter we focus on one scenario: detecting commercial logos in the wild. Additionally,

we briefly discuss how the same set of techniques can be applied in a different application:

Videosomnography (section 2.6).

A logotype, or logo, is a graphic mark or symbol used to represent and identify a con-

cept or thing (such as a company or a commercial product). We are constantly exposed

to visual symbols, especially to commercial logos. Logos are a crucial part of market-

ing and advertisement. They are found on billboards, web-pages, magazines, commercial

products, clothes, and on most objects people interact with on a daily basis. These sym-

bols can represent a company, a product, an institution (e.g. Purdue University), a sports

team, a nationality (e.g. USA flag), etc. They are an important element of our social and
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economical life therefore companies spend large amounts of money to design meaningful

and appealing logos. These logos are usually simple and contain a small number of colors

(typically between one and four). Logos might or might not contain text and if they do

is typically text with a small number of characters. Figure 2.1 presents some examples of

different commercial logos.

Fig. 2.1. Examples of commercial logo images.

Logo detection is an important part of the validation of product placement, online brand

management, consumer analysis, and contextual ad placement (placing relevant ads on

webpages, images, and videos) [1]. In the era of big data and social media, large amounts

of multimedia data are generated daily on the internet. Placing products and logotypes in

images and videos of social media and TV has become a standard marketing technique.

Analyzing the presence of brands and logos in social media, television or printed media

can be a tedious task if done manually. This creates the need for analysis tools to locate

and identify products and logos within images and videos in an automated manner.

New advances in artificial intelligence (AI), specifically machine learning (ML) and

deep learning (DL) provide new methods to automatically identify objects within an im-

age. These methods have provided state-of-the-art results when applied to the task of logo

detection and recognition. Deep learning methods use artificial neural networks that learn

from a large amount of labeled (groundtruth) data instead of using complex engineered
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handcrafted visual features. Therefore, obtaining large amounts of data/label pairs is im-

portant to obtain accurate results. The same techniques used for common object detection

and recognition can be used for detecting logos within images. Several API services using

AI technology are capable to detect commercial logos [2–5]. One example where a logo de-

tection system has been used as a tool for brand analysis in social media is presented in [6],

where beer brand logos are detected in images extracted from Twitter [7] and are combined

with male/female face detection to study the presence of the brands on the internet and its

relation with the gender of the consumers.

Our work makes use of deep learning methods, in particular, the Faster R-CNN (Region-

based Convolutional Neural Network) [8]. This network is composed of three main parts: a

feature extractor, a region proposal network, and a classifier. Such a network, described in

detail in the following section, learns from training datasets to detect multiple objects in a

scene. However, available datasets containing logo images are usually limited in the num-

ber of logos (classes) and the number of images [9–11]. This can be a problem as methods

based on deep learning typically require large amounts of training images (around 5,000

training samples per class [12]) to have a good performance. Also, real-world applications

require to work with a large variety of logos (classes) and the possibility of easily adding

new ones. Data augmentation, image synthesis, and bootstrapping methods can provide

useful and scalable alternatives to the tedious and expensive task of manually collecting

and labeling large amounts of images. In this chapter, we present multiple methods to au-

tomatically obtain new images containing logos and show how can they be used to train

multiple Convolutional Neural Networks (CNNs). Specifically, we will present two dif-

ferent techniques of image synthesis and a method of bootstrapping to obtain new training

samples.

Data augmentation methods typically apply linear and nonlinear transformations on the

training data to create new samples. Transformations can include color changes, spatial

rotations, warping, and other deformations. This set of transformations do not change the

labels of the training samples. Image synthesis methods consist of creating new images

from scratch or by combining other images. One or multiple labels can be assigned to
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the generated images. Several methods have been presented to synthesize images to train

object detectors [13, 14]. Bootstrapping techniques can be used to obtain new training

images from the internet in an automated way. Weakly labeled images can be obtained

from the web using image search engines. Typically, the images obtained by the search

engines contain the logos used in the search query. Some images might contain different

logos or not contain any at all. The locations of the logos within the images are unknown.

Therefore, the search term from the search query can be considered as a noisy label. In

addition, a localization method must be included to obtain noisy locations of the logos.

In section 2.2 we present a background on neural networks for image classification, ob-

ject detection, and object segmentation. Specifically, we describe a family of Region-based

Convolutional Neural Networks (R-CNN) composed by R-CNN [15], Fast R-CNN [16],

Faster R-CNN [8], and Mask R-CNN [17]. Additionally, we will review previous work for

data generation and image synthesis and previous methods and datasets for logo detection.

In section 2.3, our first image synthesis method used to train Faster R-CNN is presented.

In this method, simple image transformations are applied to objects and logo images and

placed on top of background images. Then Faster R-CNN is trained using the generated

images and evaluated with logo datasets containing real images.

In section 2.4, SynthLogo, a dataset generated with a complex image synthesis method,

is presented. Our method is based on the technique used in SynthText [18]. SynthText is

a dataset containing images with text created by blending rendered text into background

images. In this method, images are created by applying transformations to images of logos

and then blending them into background images using their depth and segmentation infor-

mation. Then, we use the synthesized images to train the Faster R-CNN (Region-based

Convolutional Neural Network) [8] and a variant named PVANet [19]. Both networks are

composed of a feature extractor, a region proposal network, and a classifier. The networks

are able to accurately locate and classify multiple logos in an image.

In section 2.5 we present a two-step approach. In this method, we combine bootstrap-

ping and image synthesis to train a logo detection system to automatically localize and label

logos in images. While recent work [20] also uses bootstrapping techniques, it does not in-
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clude the ability to automatically localize the logos. Our method starts by first training

the Faster R-CNN [8] model, with the synthetic images of SynthLogo (described in section

2.4). We then use the regions containing logos in the ground truth of the synthetic dataset to

train a second-stage classifier, the DenseNet [21] network, described in section 2.5.1. With

the second-stage classifier, we can achieve a significant increase in classification accuracy.

We can further boost the performance of our logo detection system by using weakly labeled

data collected from the web. We detect and locate logos with Faster R-CNN on the weakly

labeled images and use the detections to train the DenseNet classifier. During inference,

we first use the Faster R-CNN algorithm to get the proposed logo locations. We then crop

the pixels from the original image in the proposed locations and classify them using the

second-stage classifier. While Faster R-CNN architecture is capable of classifying each

region, it does so by using low resolution features obtaining bad classification results. By

using the second-stage classifier, we can achieve much higher logo detection results. The

main advantage of this method is that it is highly automated and requires minimal human

supervision. While we conducted our experiments using logo images, the detection system

described in this chapter can be used to train other objects such as text, signs, and flags.

The only step that involves manual interaction is the acquisition of logo (or object) images

for the image synthesis processes.

In section 2.6, we show how the same set of techniques used to detect logos can be used

in different applications. Specifically, we briefly describe how object detection networks

can be used to detect heads of children in order to analyze their sleep patterns in a video-

somnography (VSG) application. Videosomnography includes video-based methods used

to analyze if an individual is sleeping or awake. Manually assessing if the individual is sleep

or awake can be a highly time-consuming task that needs to be performed by trained techni-

cians (also referred to as coders). However, by using video analysis techniques, this process

can be automated. We present an automated VSG sleep detection system that makes use of

motion analysis to accurately determine sleep/awake states in infants. We show how Faster

R-CNN can be trained to detect the head of the individual within the video. Then, the size
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of the detected head, combined with a motion index computed with the difference between

frames, can be used as a proxy measure that indicates if the individual is awake or asleep.

2.2 Related Work

2.2.1 Background In Object Detection And Segmentation

Before the popularization of deep learning, the main approach for object detection and

other image processing and computer vision tasks was the use of handcrafted visual features

like SIFT [22] and texture descriptors [23], combined with statistical classifiers, such as k-

Nearest Neighbor (k-NN) [24] or Support Vector Machines (SVM) [25].

In the last several years, deep learning methods have shown to provide higher accuracy

compared to traditional approaches [8, 16, 26–28]. This improvement has been possible

mainly by advances in hardware (e.g. more powerful GPUs) and the availability of large

labeled datasets (e.g. ImageNet [26] contains more than 14M images). Deep learning

methods have demonstrated impressive results in speech recognition, object recognition,

and detection and in other domains such as drug discovery and genomics [29–33]. One

deep learning approach that has achieved high accuracy in classification and detection is

the Convolutional Neural Network (CNN) [12,28,29]. Convolutional Neural Networks are

the core element of deep learning methods. These networks can be used in many different

settings. The networks can typically be divided into two elements: a feature extraction

subnet and a task-specific subnet (i.e. decision subnet in a classification problem). A con-

volutional neural network combines convolutional filter layers and non-linearity layers to

learn and extract features (feature extraction subnet) and fully-connected layers to classify

them (decision subnet) [28,34]. Methods using CNNs are the leading approaches in image

classification competitions (e.g. ImageNet [26]) and object detection competitions (e.g.

Pascal VOC [35] and MS COCO [36]).

The feature extraction subnet can contain many convolutional layers and each layer

contains multiple filters. When the network is trained to perform object classification or

detection in natural images, the filters of the first convolutional layers are able to detect
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simple features such as color or edges. Filters in deeper layers learn more complex features

(e.g. some layers can detect complex shapes such as faces, wheels, and animals). Between

convolutional layers, non-linear layers such as the Rectified Linear Unit (ReLU) or Max-

pooling are included. ReLU layers compute the maximum between 0 and their input value.

Max-pooling layers perform a non-linear down-sampling. The down-sampling process

consists of partitioning the input image into non-overlapping rectangles and selecting the

maximum value inside each rectangle. The outputs of the convolutional layers are usually

known as feature or activation maps. In the scenario of object detection and classification,

the convolutional layers are able to encode a representation of the objects to be detected or

classified. These representations can be analyzed by observing which filters are activated

when presented with visuals elements.

The decision subnet can contain multiple fully connected layers. Fully connected layers

consist of a set of matrix multiplications followed by non-linear operations (typically a

ReLU). The size of the last fully connected layer output is equivalent to the number of

classes. The network outputs a probability or confidence value for each class. The decision

subnet usually requires a fixed input size, therefore it is required an initial step of cropping

or resizing the input images before the feature extraction subnet. This subnet is able to

combine the features or visual representations extracted by the feature extraction subnet

and produce an estimation of the object or class present in the picture.

The weights and parameters of the convolutional and fully connected layers are learned

from training samples using backpropagation [29] in combination with gradient-based

methods such as Stochastic Gradient Descent (SGD) [30] or Adaptive Moment Estima-

tion (Adam) [37]. The learning process starts by assigning random values to the weights

and parameters of the network. Then, two different stages, propagation, and weight update

are repeated over a fixed number of iterations. First, an input image is propagated forward

through the network until it reaches the output layer. Then, the output of the last layer is

compared with the ground truth value using a loss function. The loss function is a function

that generates an error measure. If the predicted output is close to the desired output, the

error measure will be small. If the predicted output differs a lot from the desired one, the
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error will be large. The error value is backpropagated through the whole network using an

optimization method (for example SGD). The optimization method updates the values of

the weights and parameters of the network in order to minimize the loss function.

The training error, computed with the loss function, represents how well the network

fits the training data. Typically, the training error underestimates the testing error. Testing

error is the error that results when the network is used for a new observation that was not

seen in the training process. If the gap between test and training error is large, we say that

the network is overfitting. That means that the network has learned the training data but is

not able to generalize to new examples.

A common practice in deep learning is to first train the CNN with a large generic dataset

(e.g. ImageNet) and then use the weights and parameters obtained in the training process

as an initialization. This process is known as fine-tuning or transfer learning.

In our work, we make use of two common CNN models: the Zeiler & Fergus (ZF)

net [38] and the VGG16 (Visual Geometry Group) net [39]. The ZF Network has 5 pairs of

convolutional and ReLU layers followed by 2 fully connected layers. The 1st convolutional

layer has 96 filters with size 7× 7, the 2nd convolutional layer has 256 filters of size 5× 5,

the 3rd, 4th, and 5th convolutional layers have 256, 384 and 384 filters respectively. Each

filter has a kernel size of 3 × 3. VGG16 is a deeper model containing 5 sets of layers.

Each set contains two convolutional and ReLU layers followed by a max-pooling layer.

The number of filters in the convolutional layers is 65, 128, 256, 512, and 512 respectively.

All the filters have a size of 3 × 3. VGG16 ends with 3 fully connected layers.

Vanilla CNN architectures are good for image classification but they can have problems

while localizing multiple objects inside an image. The Region-Based Convolutional Neural

Network (R-CNN) [15] is a network able to locate and classify several objects in images

of any size by combining CNNs and external region proposal methods. A region proposal

method is a method that finds a set of regions, typically defined with bounding boxes, that

might contain objects of interest. Typical region proposal methods are Selective Search [40]

and EdgeBoxes [41]. Selective Search splits the image into several regions of interest by

using similarity measures based on color and visual features. EdgeBoxes finds regions
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of interest using object contours information. In the R-CNN, each region of interest is

cropped and resized to 227× 277 pixels. Then, the resized image is used as input of a CNN

consisting of five convolutional layers and two fully connected layers. The CNN assigns

to each region of interest a class and a confidence score. However, this approach can be

extended to any region proposal method and any image classification CNN architecture.

Fig. 2.2. R-CNN architecture. Figure adapted from [15].

The R-CNN, and many other object detection methods, processes the bounding boxes

generated by region proposals methods using Non-Maximum Suppression (NMS) [15].

NMS rejects a bounding box if it has a large overlap with another bounding box with

higher confidence. If the overlap is higher than a threshold, the bounding box is rejected.

Typically, the threshold is a hyper-parameter assigned during the training process.

The main drawback of R-CNN is that it is computationally intensive since every image

is processed as many times as the number of regions of interest detected. Previous work

such as the Spatial Pyramid Pooling Network (SPPnet) [27] addresses this problem by using

pooling. SPPnet starts with a CNN (e.g. VGG16 or ZF) followed by a spatial pyramid

pooling layer and fully connected layers. The spatial pyramid pooling layer uses max-

pooling for each region of interest using grids of multiple sizes. The regions of interest are

computed using Selective Search. The images are processed only one time by the CNN.
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Then, spatial pyramid pooling is used to generate the output of the last convolutional layer

(the last feature map) that is later classified by the fully connected layer.

The Fast R-CNN [16] is a network with the same structure as SPPnet but substitutes the

spatial pyramid pooling with an RoI (Region of Interest) pooling layer. The RoI pooling

layer is a simplified version of the spatial pyramid pooling, where instead of using a grid

with multiple sizes, only one size (typically 7 × 7) is used. Fast R-CNN also introduces

a more effective method for training the CNN and adds a bounding box regressor. The

network is trained using multiple regions per image instead of using only one as it is done

in SPPnet. The bounding box regressor is a layer that fine-tunes the locations of bounding

boxes where objects of interest might be located (initially provided by Selective Search).

Fig. 2.3. Faster R-CNN combines a feature extractor, a Region Proposal
Network, and a classifier.

In our work, we use Faster R-CNN, an improved version of the Fast R-CNN. The

network, shown in figure 2.3, combines the Fast R-CNN with an RPN (Region Proposal

Network). The RPN is a neural network that uses the output of the last convolutional layer

of the CNN, the feature map, to generate regions of interest. The RPN consist of a 3 ×

3 sliding window that outputs a set of 9 bounding boxes containing regions of interest

(also referred to as anchors). Each bounding box has a different size and a different aspect

ratio. A fully connected layer assigns a binary class (foreground or background) to each

bounding box. Figure 2.4 presents the anchor system. Following the steps in the Fast
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R-CNN, each region of interest is applied to the RoI pooling layer and is later classified

by a fully connected layer. In the classification step, a confidence score is assigned to

each bounding box. The confidence value ranges from 0 to 1 where the confidence of 1

represents that the network is almost certain that the class assigned is correct. A threshold

is usually set to a high value (e.g. 0.7) in a deployment stage and all the bounding boxes

below the threshold are discarded. The network can be trained end-to-end and provides an

almost real-time performance. With the addition of RPN, there is no need to use external

region proposals methods. The Faster R-CNN is the basis of several 1st-place entries in the

ImageNet and MS COCO competitions [8]. It is also used in commercial systems such as

Pinterest [42].

Fig. 2.4. Anchors in Faster R-CNN. Figure adapted from [8].

In our work, we also use PVANet [19], shown in figure 2.5. PVANet is a lightweight

version of Faster R-CNN. The model is smaller with only 5 convolutional layers and 3 fully

connected layers. While Faster R-CNN only uses the features of the last convolutional

layer to localize and classify, this network combines the features of the last 3 convolutional

layers. This method is faster than Fast R-CNN but can produce lower accuracy in some

scenarios.
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Fig. 2.5. PVANet architecture. Figure adapted from [19].

Other methods for image detection such as You Only Look Once (YOLO) [43] and

YOLOv2 [44] provide real-time performance by compromising accuracy. Recent methods

such as Single Shot Multibox Detector (SSD) [45] provide real-time performance and good

accuracy but seem to perform poorly detecting small objects since it resizes the input im-

ages to a fixed size (typically of 300 × 300 pixels) and resolution is lost. Both methods

divide the image into a fixed number of regions and predict bounding boxes and probabili-

ties for each region using fully connected layers.

Mask R-CNN [17] is an extension of Faster R-CNN designed to perform object seg-

mentation. Faster R-CNN and Mask R-CNN [17] have been so widely used, adapted, and

transformed that they are referred to as a meta-architecture in the recent literature. A major

appeal of these networks is that their capabilities can be extended by adding new layers

while sharing most of the weights for each task is trained to perform. Figure 2.6 presents

Mask R-CNN architecture.

Mask R-CNN [17], and all its variations, share three key components: a backbone or

feature extractor, a region proposal method, and some task-specific networks (typically

referred to as heads). The backbone (previously referred to as “feature extraction subnet”)

consists of a set of convolutional layers and non-linearities. The backbone does not contain

any fully-connected layer, only using convolutional or sliding-based operations, therefore

allowing to have any input image size. A widely used backbone is ResNet [46]. ResNet
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Fig. 2.6. Mask R-CNN architecture. Figure adapted from [17].

is a network formed by many residual blocks. A residual block is a set of convolutions

combined with an identity additive mapping from the input to the output. This identity

connection solves the vanishing gradient problem found in many architectures (gradients

collapsing to 0 during the training process). This structure allows us to have larger networks

and a better training process due to a better flow of the gradient information. Figure 2.7

shows an example of a residual block. When working with a network based on Mask/Faster

R-CNN, is a common practice and highly advised to first train the backbone network for

a simpler task such as classification with lager datasets like ImageNet. Many pre-trained

weights are publicly available on the internet. If the network is trained from scratch, many

problems might arise as the region proposal methods will fail to find regions of interest and

the task-specific heads will not generate a loss signal to train the network.

The features extracted from the backbone network are used to perform specific tasks

like classification or segmentation. In order to select which regions of the feature map

contain useful features, a region proposal method is needed. As previously described,

many methods have been proposed for such tasks. Selective search [40] is used in Fast R-

CNN [16]. Selective search looks for regions of interest within an image and then map them

to the last feature map. Faster R-CNN [8] introduced the Region Proposal Network (RPN).

The RPN is a convolution window that finds regions of interest from a feature map. The

RPN removes the need for external methods (i.e. Selective Search) and allows them to train
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Fig. 2.7. Diagram of a Residual block in ResNet architectures. Figure adapted from [46].

the network in an end-to-end fashion. The main problem of RPN is that regions of interest

are estimated using only the last feature map of the backbone. Objects of multiple sizes can

not be properly detected by using the features of only one layer of the backbone. In order to

solve that, a system of pre-defined windows with multiple scales and aspect ratios named

anchors, are estimated. The anchor system allowed to find objects of different scales and

aspect ratios, but as only the features of the last convolutional layer are used, some spatial

information is lost, damaging the performance of the detection of small objects. Mask

R-CNN [17] substitutes the RPN by a Feature Pyramid Network (FPN) [47]. The feature

pyramid network follows the same philosophy as the RPN but instead of using the features

of the last convolutional layer, it uses the features of multiple layers. The anchor system is

still used, but as multiple layers are used to estimate regions, a smaller number of anchors

is required. The FPN is a faster approach and gives higher detection accuracy. Figure 2.8

shows multiple approaches to region proposal. The RPN follows the single feature map

approach (b) while the FPN uses multiple feature maps (d).

As in Faster R-CNN, after the regions of interest are detected, a non-linear max-pooling

is performed to the features inside the region of interest. The max-pooling is performed in a

fixed size grid obtaining always the same number of features. The number of extracted fea-

tures might change on the application (e.g. classification, segmentation...). These features

are used as input for the task-dependent networks or heads. In Fast and Faster R-CNN,

only one head is used (the classifier network combined with a bounding box regressor to
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Fig. 2.8. Different approaches to region proposals. Figure adapted from [47].

refine the region of interest location). Mask R-CNN includes two extra heads. One head

consists of a set of convolutional and deconvolutional layers to perform segmentation, and

the other head is a human pose keypoint estimator.

2.2.2 Previous Works In Logo Detection

Typically, logo detection is performed by adapting object detection methods to the do-

main of commercial logos [1, 9] (i.e. treating each logo as a different object or class).

Several previous works have been presented for logo detection and recognition using hand-

crafted visual features [9] and based on deep learning [1, 48]. The work presented in [1]

makes use of Fast R-CNN with VGG16 and selective search for logo detection with and

without localization obtaining a mean average precision of 74.4%. The work presented

in [48] uses Faster R-CNN obtaining a 81.1% of accuracy. The work presented in [49] also

uses Faster R-CNN with VGG16 and a smaller network named ZF [38] combined with

data augmentation techniques obtaining a mean average precision of 85.4% on logo recog-

nition with localization. The work presented in [50] uses an approach similar to R-CNN

trained with a large number of images obtaining an accuracy of 96%. The works presented

in [20, 51] apply bootstrapping techniques for logo detection. Several commercial API
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services enable detection of logos [2–5] in real scenes. The work presented at [52] uses

an object detector network named YOLOv2 [44]. Faster R-CNN and R-CNN, described

in section 2.2.1, are adapted and used in our work. The work presented in [20] applies

bootstrapping techniques for logo detection.

Fig. 2.9. Image samples from FlickrLogos-32.

There are several available labeled datasets with images containing logos in the wild.

FlickrLogos-32 [9] dataset is the most used in recent works for training and testing. This

dataset contains 32 different brands (classes), each with various versions. The dataset is

composed of 8240 images mined from the Flickr image search engine [53]. The dataset is

divided into a training set with 1280 images (40 per class) containing one or more logos

and 3000 images with no logo content, and a testing set with 960 images (30 per class)

containing genuine logos and 3000 without logo content. The images without logo content

are also referred to as background images or distractors. The ground truth consists of a label

(class) and a binary segmentation mask assigned to each image that contains a logo. A new

version of the dataset, FlickrLogos-47, is also publicly available. FlickrLogos-47 contains

the same images as FlickrLogos-32 but the labeling has been improved. In FlickrLogos-32,

the logos composed by a symbol and text, only the symbol is treated as a logo, while in

FlickrLogos-47 each part is treated as a different class (e.g. adidas-text, adidas-symbol).
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In our work, we use FlickrLogos-32 for evaluation purposes. Figure 2.9 and figure 2.10

presents some image examples of the dataset.

Other datasets include FlickrLogos-27 [54], which is composed of 27 different logos

with a total of 810 annotated images (30 images per class) and 4207 distractor images.

BelgaLogos [10] is a dataset with 37 different logos composed of 10,000 images with a

binary label (1 if the logo is present and 0 otherwise) and 1321 of them contain bounding

boxes indicating the location of the logos. MICC-Logos [55] contains a total of 720 images

with 13 different logos. TopLogo-10 [11] is a dataset containing 700 labeled images of 10

different clothing brands. Logos-32plus [56] is a dataset containing a total of 7830 images

with logos from the same corpus of FickrLogos-32. Logos in the Wild Dataset [57] is

a new dataset containing the largest available number of training samples with a total of

11,054 images with 871 different brands. LOGO-Net [48] is a dataset with 160 different

logos with a total of 73,414 labeled images. However, LOGO-Net is not currently available

to the public. WebLogo-2M [20] is a dataset with 194 logos present in 2,190,757 labeled

images. This dataset does not contain bounding boxes but only the label of the logos

present in the image. It has been labeled in an unsupervised manner so the labels might

be incorrectly assigned. Currently, Logos in the Wild Dataset (LitW) [57] is the largest

manually labeled dataset. LitW contains 11,054 labeled images and 871 logos. Later in

the chapter, we introduce the SynthLogo [49] dataset. SynthLogo is a dataset that contains

280,000 images synthetically created with 604 different logos.

2.2.3 Previous Works In Data Augmentation And Image Synthesis

Data augmentation techniques, such as random cropping, flipping or color changes [26],

have been used for object detection using handcrafted visual features [9, 58] and for deep

learning [13]. Typical data augmentation techniques used in deep learning include image

cropping, flipping, and color changes [26] to create the augmented or synthesized images.

More complex techniques can include noise addition, geometric transformations, or im-

age compression. These techniques, usually help the network to avoid overfitting and to
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generalize better obtaining a higher accuracy. The method presented in [58] combines mul-

tiple transformations to the training set. After the data augmentation process, an accuracy

increase of 3.5% in 2010 ImageNet competition was reported.

Image synthesis has been used to create new training samples for deep learning meth-

ods. One common approach is to use image compositing by adding foreground images

(objects to be detected) into background images. This approach is used in [18] for text

localization. The work presented in [11, 14] uses this approach for logo detection. Flickr-

BelgaLogos [59] is a public dataset synthetically created using image compositing with the

logos extracted from BelgaLogos.

Synthesized images from 3D virtual simulations have been used for training neural

networks for self-driving vehicles [60] or other tasks based on reinforced learning [61].

Methods such as [62] use Recurrent Neural Networks (RNN) to generate new training

samples using information extracted from a training dataset. Generative Adversarial Net-

works (GANs) are networks able to generate new images that resemble the images used in

the training process. The work presented in [63] uses this approach to create new training

samples. In the following chapter, techniques based on photorealistic rendering will be

introduced.

Bootstrapping techniques have been used in many deep learning methods for image

classification [64] and logo detection [20]. A bootstrapping method aims to increase the

number of training samples by automatically assigning labels (with a CNN, for example)

to unlabeled data and then using the weakly labeled data to train CNNs.

2.3 Object Detection And Image Synthesis

2.3.1 Proposed Approach

In this section, we describe our method for synthesizing images and how they can be

used to train a CNN. In order to show the flexibility of this approach, we apply the method

in the scenario of object detection (specifically in the detection of toys and logos).
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Our approach is based on the work described in [13,58] which blends images of objects

with real-world background images. The images of objects and logos undergo several

transformations as described in the following sections. Images of objects are essential to

data augmentation. For logo detection, the images are extracted from the FlickrLogos-32

[9] dataset. We selected FlickrLogos-32 for our training and evaluation purposes because

it contains a decent number of labeled images and is the one commonly used in previous

works of logos in the wild detection.

FlickrLogos-32, as previously described, consists of 32 different brands (classes) each

with various versions. The dataset contains 8240 images mined from Flickr [53]. Figure

2.9 shows samples from the FlickrLogos-32 dataset. The dataset is divided into training and

testing parts. Training data is comprised of 1280 images (40 per class) containing genuine

logos and 3000 images with no logo content. The 3000 images are used as background

images (distractors). Testing data includes 960 (30 per class) images containing genuine

logos and 3000 background images. Each image with a genuine logo is provided with the

true class and a binary segmentation mask indicating the logo location.

In the case of object (toys) detection, high-quality images are captured using a high-

definition camera contained in the HP Sprout 1. The HP Sprout is a desktop computer

released in November 2014 that has a projector, an HD camera, a 3D camera, a touch mat,

and a LED desk lamp [65].

Logo Extraction

Logo images are extracted from the FlickrLogos-32 training set using the binary seg-

mentation masks and labels provided. Each image may include more than one logo. In

total, we obtain between 60 and 80 images per brand. Images smaller than 20 × 20 pixels

are discarded since they are very difficult to detect after data augmentation. Figure 2.11

shows examples of extracted logos from the FlickrLogos-32 dataset.

1HP Sprout, HP Inc ®
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Fig. 2.10. Different logo versions for Adidas (left), Corona (center) and Starbucks (right).

Fig. 2.11. Six different logos from FlickrLogos-32.

The same brand can have different versions of logos. Figure 2.10 shows the inter-class

variation of three different brands. We do not make a distinction between logo versions and

we assign one class per brand.

Object Capture

A total of 20 high-quality images are captured for every object in a different pose. The

HP Sprout is used in the image acquisition process. The images are captured using the top

HD camera with white light projected to the touch mat and the LED desk lamp turned off.

In this work, no 3D information is captured or used.
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Multiple poses are captured. Figure 2.12 shows six examples of the same object with

different poses. As presented in the following sections, the number of poses used in the

data augmentation process will affect the detection and precision performance. Intuitively,

if more poses are available for training, the network will be more resistant to rotations

and change of poses. In this work, a set of 15 different toys was used. Figure 2.13 shows

examples of different toys. Some figures have minor differences between them (set of small

red and black toys). Despite that, the network is able to accurately differentiate them, as

presented in the next sections.

Fig. 2.12. Captures of different poses

Fig. 2.13. Examples of six different toys
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Synthetic Data Generation

We want to generate new training images containing the objects of interest (logos or

toys). To accomplish this, we start by randomly selecting a background image from the

MIT-Places dataset [66]. The MIT-Places dataset contains 205 scene categories and a total

of 2.5 million images recorded at various locations around the world. We utilize the testing

data within this dataset during the process of synthetic images generation. The testing data

contains 41,000 images. Figure 2.14 shows samples from the MIT-Places dataset. We

assume that the background image does not contain any object that we are trying to detect.

This is a reasonable assumption since the MIT-Places dataset is focused on real-world or

natural scenes. Then, several object or logo images are randomly selected (from 1 to 9

images). For each object or logo image, a set of transformations and deformations are used

as described below.

Fig. 2.14. Examples from MIT-Places dataset

Geometric Transformations

First, the images are randomly rotated with a degree selected uniformly between -40 and

40. Then, a random homographic projection is used as defined by the matrix 2.1. Where the

parameters h11 and h12 are randomly selected between -0.001 and 0.001. Next, the image

is randomly resized such that the new size is 0.1 to 0.25 times the size of the background

image. The parameters are manually selected in order to make the synthesized images
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look as real as possible. Therefore, extreme resizes and highly deforming homographic

transformations are unwanted.

H =


1 0 0

0 1 0

0 h11 h12

 (2.1)

Geometric transformations aim to model different poses of objects and logos. By rotat-

ing and resizing the training images, the network is able to be scale and rotation invariant.

By using perspective projections combined with capturing multiple poses in the object cap-

ture step, the network can be pose change invariant.

Color Transformation

After applying geometric transformations, a small color variation is performed to the

images. Following the steps in [26, 58] we compute the eigenvalues and eigenvectors of

the RGB values of the image. Each of the three eigenvectors is a 3D vector. We then find a

randomly chosen weight (uniform distribution between -0.1 and 0.1) for each eigenvector

and calculate the weighted sum. The weighted sum is a 3D vector and is added to the RGB

vector of each pixel. This color transformation aims to model small color variations that

objects or logos may present in the real world caused by different lighting conditions.

Blurring And Noise Addition

In this step, we use Gaussian blurring with a variance randomly selected between 0.001

and 0.1 and kernel size of 3 × 3. Then, we randomly select a noise model between Gaus-

sian, Salt & Pepper, Poisson, and Speckle noise. A small amount of noise is added to the

image.

Gaussian noise is commonly generated by capture devices during image acquisition.

In order to model Gaussian noise, we add different random RGB values to each pixel in

the image. The random values are sampled from a random variable with normal density
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function with mean 0 and a variance selected randomly between 1.2 and 2.4. The variance

range is selected empirically to introduce a reasonable amount of noise.

Salt & Pepper can originate as analog-to-digital converter errors or transmissions errors.

We model Salt & Pepper noise by changing the value of each pixel of the image with

probability 0.03. The pixel will be changed either to white, (255, 255, 255) in RGB value,

or to black, (0, 0 ,0) in RGB value, both cases with a probability of 0.015.

Poisson noise, or also known as shot noise, can be modeled by a Poisson process. In

order to generate Poisson noise, a random variable is created for each pixel. This random

variable has a Poisson distribution (Equation 2.2) with mean λ, where λ is equivalent to the

value of the pixel. A random sample is extracted from every random variable. The sample

is used to replace each original pixel. After this process, each pixel of the image has been

replaced by a random value from a Poisson distribution. This process modifies the image

in a non-linear way. Because the variance of the Poisson distribution is equal to its mean

λ, the darker pixels will not suffer much change while the brighter pixels will have more

variation. Finally, we make a weighted average with the original image and the distorted

image with weights 0.8 and 0.2 respectively. This average weight aims to avoid images too

distorted.

P (x) =
e−λλx

x!
(2.2)

Speckle noise is a granular multiplicative noise. We generate Speckle noise by multi-

plying each pixel of the image by a random value. The random values are extracted from a

random variable with normal density function with mean 1 and a variance of 0.2.

After blurring and noise addition, the noisy images are clipped to range between 0 to

255 before they are added to background images as presented in the next section.

Image Blending

Finally, the object or logo images are blended into the background in a random position

ensuring that there is no overlap between various objects or logos. The blending process
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consists of substituting the pixels of the background image with the pixels of the fore-

ground image. More complex blending techniques, such as Poisson Image Editing [67],

were discarded for simplicity and because they can produce undesired artifacts or distor-

tions to the foreground image. Figure 2.15 shows examples of generated images. Two

synthetic datasets are generated using the process described above. The first dataset con-

tains 16,000 images with logos extracted from FlickrLogos-32 and the second one contains

25,000 images with 15 different toys.

Fig. 2.15. Examples of generated images using logos (left) and toys (right).

2.3.2 Experimental Results

We describe several experiments here where we train the Faster R-CNN using ZF [38]

and VGG16 [39] models, presented in previous sections, with FlickrLogos-32 dataset and

synthetic data. In all the experiments the Mean Average Precision (mAP) is computed

using the Pascal VOC 2010 [35] procedure. mAP is defined later in this section. In the

Pascal VOC 2010 procedure, each predicted bounding box is compared with all the ground

truth bounding boxes of the same class for every image. If the Intersection over Union

(IoU) overlap (Equation 2.3) between the predicted bounding box Bp and some ground

truth bounding box Bgt is 50% or larger, the prediction is considered as a True Positive

(TP), if not, is considered as a False Positive (FP).
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IoUOverlap =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
(2.3)

To compute the mAP, the Precision (Equation 2.4) and Recall (Equation 2.5) are re-

quired [68, 69]. Precision is the ratio between the True Positives (TP) and the sum of True

Positives (TP) and False Positives (FP). Recall is the ratio between True Positives (TP) and

the number of ground truth bounding boxes (Nbbox).

Precision =
TP

TP + FP
(2.4)

Recall =
TP

Nbbox

(2.5)

For each class, a Precision/Recall curve is obtained by varying the threshold parameter

from 0 to 1. The Average Precision (AP) is defined as the area under the curve. The

previous process is repeated obtaining the AP for each class. The Mean Average Precision

(mAP) is the average of the AP.

In the following experiments, we start the training process using pre-trained models

with MS COCO for VGG16 and ImageNet for ZF.

Logo Recognition

In the first presented experiment, we train a Faster R-CNN with the VGG16 model.

The network is trained using various combinations of synthetic images and FlickrLogos-32

images: using only synthetic images, using only FlickrLogos-32 images, and using both

synthetic and FlickrLogos-32 images. The Faster R-CNN is trained for 100,000 iterations

and we evaluate it every 10,000 iterations using the testing set from FlickrLogos-32. In

Table 2.1 we present the best results for each combination of training data.

Our use of the Faster R-CNN instead of the Fast R-CNN appears to provide a significant

improvement. The use of synthetic data together with the original data (FlickrLogos-32)

provides an increase of 1.3% respect to only using original data. In Figure 2.16 we can see

some examples of detected logos. The use of synthetic data without any original image has
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Table 2.1.
Mean Average Precision (mAP) of different methods for logo recognition

Training data FL32 Synthetic FL32 + Synthetic Previous Work [1]

mAP 84.11% 65.55% 85.40% 74.40%

poor performance. We believe this is caused by the loss of information of the background

while synthesizing images (e.g. a Corona logo is more likely to be found in a bottle or a

Starbucks logo is more likely to be found in a cup of coffee).

Fig. 2.16. Examples of logos detected in the wild
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Object Recognition

While deploying applications using the HP Sprout the GPU memory can be a limiting

factor. In this set of experiments, we focus on the previously described ZF model since

it has a smaller size than VGG16 and can be used with the HP Sprout GPU. Since we

only have synthetic data for toys, a small test dataset was manually labeled using LabelMe

[70] for evaluation purposes. The dataset contains 35 labeled images containing up to 15

different toys. The images are captured using the HP Sprout camera with good lighting

conditions. Figure 2.17 shows some examples of testing images.

Fig. 2.17. Examples of toys testing set

First, we train the Faster R-CNN with VGG16 and ZF using the synthetic dataset con-

taining objects (toys). We train several networks using a different number of images from

synthetic toys dataset for each one: 25,000 images (100% of the synthetic dataset), 12,500

images (50% of the synthetic dataset), and 6,250 images (25% of the synthetic dataset).

Following the previous experiment, the network is trained over 100,000 iterations and it is

evaluated every 10,000 iterations. We present the best results using ZF and VGG16.

Note that the VGG16 model has a larger mAP than ZF. VGG16 is formed by more

layers and it allows the network to learn more complex features. Using only 12,500 images

in the training process seems to provide better performance. The use of a large number of

images for training might cause some overfitting and therefore a decrease in performance.

In Figure 2.18, some detection results are presented. Notice that the network is able to
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Table 2.2.
Performance (mAP %) using different amount of synthetic data using 20 different poses

Model 6,250 images 12,500 images 25,000 images

VGG16 94.32% 97.42% 96.36%

ZF 92.91% 92.41% 93.41%

differentiate each of the individual red and black toys despite having minor differences

between them.

Fig. 2.18. Original images (left) and objects detected (right) using ZF model

In the last experiment, we analyze the effect of the number of images used in the syn-

thetic generation process. We generate two extra toys datasets with 25,000 images using 10

and 5 clean images per class. We train ZF with the new datasets using a different number of

synthetic images (100%, 50%, and 25% of the dataset) and we compare it with the original

dataset made using 20 object images per class.

The results presented in Table 2.3 indicate that the number of original object images

used for data synthesis is related to the amount of data required to train the network to

achieve a good performance. If a low number of images is used in the synthesis process,

the synthesized images will contain less information and fewer images will be required
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Table 2.3.
Performance (mAP %) of ZF model using different amount of images for
data synthesis and training

Num. poses per object 6,250 images 12,500 images 25,000 images

20 92.91% 92.41% 93.41%

10 87.54% 90.43% 88.08%

5 83.32% 80.83% 80.87%

in the training process. In the example of toys recognition, if more points of view (more

images) are used for image synthesis, the synthetic images will contain more information

and the average precision will increase.

2.4 SynthLogo Dataset

2.4.1 Dataset Generation

In this section, we present our second and more complex method for synthesizing im-

ages. Because our approach is based on the synthesis pipeline used in SynthText [18], we

name our synthetic dataset as SynthLogo. The image synthesis process consists of estimat-

ing the depth and segmentation information of background images and blend logo images

accordingly. Each step is described in the following sections.

Logo Images Acquisition

The image synthesis starts by obtaining multiple logo images. Our dataset contains

a total of 604 different logos. These 604 logos include the ones that form FlickrLogos-

32, FlickLogos-27, BelgaLogos and MICC-Logos, and some extra classes including logos

from popular brands of food, drinks, clothing, technology, transportation, finance, etc. The

images are obtained from Google Search. We search for PNG images with alpha layer so
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Fig. 2.19. Image synthesis pipeline.

we can separate the part of the image that corresponds to the logo from the background.

Between 3 to 10 different images are obtained for each logo. We manually check them to

remove outliers or undesired images. The same brand can have different versions of logos

and some can contain both text and symbols. We do not make a distinction between logo

versions or text or symbol part and we assign one unique class per brand. Figure 2.1 shows

some example of logo images used.

Background Images

We use the same 8,000 background images as used in SynthText. The images are

obtained from Google Search and manually checked so they do not contain text and they

do not contain any logo from our corpus. Figure 2.20 shows some example of background

images used.

Then, depth information is estimated, and the background image is segmented as ex-

plained in the following sections. Pre-computed values of depth estimation and background
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segmentation are available together with the original background images and code [71]. We

choose to use pre-computed values.

Fig. 2.20. Examples of background images in SynthLogo.

Depth Estimation

Depth information is inferred using a CNN as described in [72]. This method starts by

dividing the image into superpixels. A superpixel is a set of neighboring pixels with similar

RGB values. Then, 244 × 244 patches are cropped for each superpixel and processed by

a CNN. The CNN contains 5 convolutional layers and 2 fully connected layers. This CNN

estimates the depth value of the superpixel located in the center of the crop. A regulariza-

tion factor is added to the loss function to accomplish pair-wise smoothness in the depth

prediction between neighboring superpixels.
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Background Segmentation

The background images are segmented by detecting the contours of the elements form-

ing the image as described in [73]. The contours are locally computed using brightness,

color, and texture gradients. Once the contours are detected, the Watershed algorithm is

used to segment the image. Watershed is a method that clusters all the pixels located in a

region defined by a contour. Then, small segments are merged using color similarities.

Image Blending

Next, a segment of a background image is selected. Small segments or segments with

extreme aspect ratios are discarded. Then, a logo image is randomly selected and resized

so the largest size is 0.9 times the largest side of the segment. Then, the logo image is

randomly rotated with a probability of 0.3 with a degree randomly selected between -90,

180 or 90 degrees. A small color jittering is randomly applied with a probability of 0.5 in

the HSV color space. A total of 3 random values are selected uniformly from -10 to 10 and

added to the hue, saturation, and value channels respectively. Color jittering aims to add

small color variations that logos may present in the real world caused by different lighting

conditions.

Then the logo is geometrically transformed using Random Sample Consensus (RANSAC)

[74]. RANSAC is a method that allows us to match and project a planar surface using

matching points. A planar surface is estimated within the selected segment of the back-

ground image using the depth information and a homographic projection is estimated so

the plane of the segment and the plane of the logo match.

Finally, the logo image is blended into the background. The blending is done by com-

bining the pixels of the background image with the pixels of the transformed logo image.

An alpha value, α, is selected randomly between 0.5 and 1, and alpha blending is performed

as specified in equation 2.6. Isynthetic is the generated image, Ilogo is the logo image and

Ibackground is the background image.
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Isynthetic = αIlogo + (1− α)Ibackground (2.6)

The complete process is repeated 1 to 5 times per synthetic image, therefore an image

will include one or more logos. A binary mask is used to check that there is no collision

between logos.

SynthLogo

Using the process previously described, we create a total of 280,000 images. Each

of the 8,000 background images is used several times. In Figure 2.21 some examples of

synthetic images are presented.

This process allows us to create an arbitrary number of images and new logos can be

easily added to the corpus by simply obtaining images from any image search engine. In

table 2.5 we compare our dataset with other existing datasets. One important aspect is how

easy it is to augment both the number of images and the number of logos. In the table, we

mark as ”Scalable” the datasets that can add more logos and images with minor or none

manual labeling efforts.

2.4.2 Experimental Results

We train Faster R-CNN+VGG16 [39] and PVANet [19] models, previously described,

with the SynthLogo dataset. We start the training process using pre-trained models with

MS COCO. FlickrLogos-32 is used as validation and testing set. We compute the Mean Av-

erage Precision (mAP), previously described, using the Pascal VOC 2010 [35] method. As

previously stated, in this evaluation method, each ground truth bounding box is compared

with all predicted bounding boxes. If predicted and true classes match, and the Intersection

over Union (IoU) (Equation 2.3) between the predicted bounding box Bp and the ground

truth bounding box Bgt is larger than 50%, the prediction is a True Positive (TP), otherwise

is a False Positive (FP). Remember that the last layer of Faster R-CNN and PVANet pro-

vides a probability or confidence measure between 0 and 1. A prediction is discarded (i.e.
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Fig. 2.21. Example of different synthetic images.
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Fig. 2.22. Example of different versions of the same logo in SynthLogo.
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consider as a background) if its confidence score is lower than a threshold and maintained

otherwise. For each class, a Precision/Recall curve is obtained by varying the threshold

parameter from 0 to 1. The Average Precision (AP) is the area under the curve. We average

the AP value of each class obtaining the Mean Average Precision (mAP).

We train a Faster R-CNN+VGG16 and PVANet for 200,000 iterations and evaluate the

model every 10,000 iterations with the training set of FlickrLogos-32. Then, we select the

best set of weights for each model and evaluate on the testing set of FlickrLogos-32. Table

2.6 presents the best results for validation and testing of both models. We can observe that

the mAP is lower than results reported in previous works where manually labeled images

have been used [14,56,57] but in our work the manual effort is minimum and the number of

logos can be easily increased. Some works present similar results when using an open set

of logos (arbitrarily large number of logos) and suggest using Faster R-CNN as an initial

stage of localization and then include CNN for classification [57]. A similar approach as

ours is presented in [11] where a synthetic dataset of 463 different logos is created and then

used to train Faster R-CNN obtaining a 25.0% mAP when only using synthetic data.

Table 2.4.
Mean Average Precision (mAP) of logo detection methods trained with
SynthLogo and tested on FlickrLogos-32.

Model train+val set testing set

Faster R-CNN+VGG16 49.46% 47.66%

PVANet 40.44% 38.56%
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2.5 Two-Step Logo Detection With Bootstrapping

2.5.1 Proposed Approach

In this section, we present our method for bootstrapping for logo detection. The pre-

sented bootstrapping process starts by obtaining a large number of unlabeled images from

the web. Then Faster R-CNN [8], described in previous sections, is used to automatically

detect logos within the images. Faster R-CNN is trained with the synthetic images from

SynthLogo dataset [49] described in the previous section. The detected images are cropped,

resized, and used to train the DenseNet [21] classification network, described later in this

section. During testing, a two-stage process is done. First, the Faster R-CNN generates

region proposals, and then, each region is classified with the DenseNet classifier.

Fig. 2.23. DenseNet architecture. Figure adapted from [21].

Our Datasets

In our work, we use two different sets of training images. The synthetic images from

the SynthLogo dataset are used to train both Faster R-CNN and DenseNet. The images

automatically obtained from the web are used to train DenseNet.

SynthLogo, described in the previous section, includes a total of 280,000 images with

719,326 logo instances. Figure 2.22 shows some examples. During the bootstrapping

process, a total of 480,000 images are automatically downloaded from the web. These

images have been obtained by using search queries with the form of logo name + keyword.

We select multiple keywords that define images that might contain logos. The keywords
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Fig. 2.24. Dense block of DenseNet. Figure adapted from [21].

include: advertisement, billboard, commercial, merchandising, and building. The number

of images containing logos varies depending on the logo and the keyword used in the

search query. For well-known trademarks, roughly between 70 to 80% of the first 100

search results contain one or more logos. When searching images for little known brands,

the number of resulting images including logos can be small and the bootstrapping process

might not be effective. In our work, we use the same 604 logos used in the SynthLogo

dataset.

Two-Stage Approach

The two-stage approach of combining a region proposal and a classifier is based on

the Region-Based Convolutional Neural Network (R-CNN) [15] method. As previously

described, R-CNN is an architecture that crops and resizes regions of interest and classi-

fies them with a CNN. The original work uses Selective Search [40] as a region proposal

method. Selective Search computes similarity measures based on visual features to propose

regions of interest. The original work uses a CNN with five convolutional layers and two
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Fig. 2.25. Proposed logo detection pipeline.

fully connected layers. In this work we use Faster R-CNN [8] as logo detector and region

proposal method and DenseNet [21] as a classifier. Figure 2.25 presents our two-stage

method.

Many end-to-end object detectors such as YOLO [43] and YOLOv2 [44] fail to cor-

rectly detect small objects. These methods resize the input image losing information and

leading to bad detection results [52]. Other methods such as Faster R-CNN [8] locates and

classifies logos using features of the last convolutional layers. By doing so, small objects

can be incorrectly classified. Our pipeline aims to solve these problems by cropping and

classifying regions from the original image instead of using features of the last convolu-

tional layers. The main downside of the presented two-stage process versus an end-to-end

method is that it is computationally less efficient.

Region Proposal And Logo Detection

We train the Faster R-CNN with the SynthLogo dataset [49]. Faster R-CNN is used as

an end-to-end logo detector during bootstrapping and as a region proposal method during

testing. During bootstrapping, we assume that a correct detection occurs when a logo

that matches the search query is detected with a confidence score higher than a threshold.

This assumption allows us to automatically label images while tolerating some incorrectly

labeled detections. The threshold used to discard detections allows us to select a trade-off

between the number of detections and the noise in the labels. The smaller the threshold,

the larger the number of detections, and the larger the noise in the labels. We manually
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inspected the results of detections and their confidence scores in over 500 images obtained

from the web. We select a threshold of 0.4 because around 80% of correct detections have

a confidence score equal to or higher than 0.4. During testing, we select all detections with

a confidence score higher than 0.1 as region proposals. We select a low threshold in order

to obtain a high recall. The DenseNet classifier will later discard the regions of interest

that do not contain any logo by classifying them as ”background.” Figure 2.26 shows some

examples of detections of Faster R-CNN.

Fig. 2.26. Examples of logo detections.

Logo Classification

DenseNet [21] is used to classify each region of interest generated by Faster R-CNN.

DenseNet is an architecture formed by multiple dense blocks. A dense block consists of

a set of convolutional layers where the feature maps of all previous layers are treated as

separate inputs and its feature maps are passed on as inputs to all following layers. This

connectivity provides a better information flow and better gradient propagation providing

higher accuracy than previous architectures [21]. The network used in this work is formed

by 4 dense blocks with 6, 12, 24, and 16 filters respectively. The network ends with a

fully-connected layer.
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Faster R-CNN can process images of any size and will output regions of interest of

multiple sizes and scales. DenseNet requires an input of size 224 × 224. Therefore, each

region detected by Faster R-CNN is cropped and resized before classification. Typically, a

crop of 224 × 224 pixels contains enough information to correctly classify a logo.

2.5.2 Experimental Results

We start our experiments by training Faster R-CNN using the SynthLogo dataset. Then,

we use Faster R-CNN to detect logos in the 480,000 images obtained from the web. A total

of 153,714 logos are found in 128,249 images. We crop and resize each detected logo.

We train two DenseNet models that are capable of classifying 33 (32 logos + back-

ground) and 605 (604 logos + background) classes respectively. The first model is capable

of classifying the 32 logos from the FL-32 dataset. The second model is capable of classi-

fying the 604 logos from the SynthLogo dataset. DenseNet is trained using 700,000 crops

extracted from SynthLogo and 153,714 crops from the 128,249 bootstrapping images. A

total of 30,000 random crops from the background images in SynthLogo are used as ”back-

ground” class. For validation purposes, we use 19,326 crops of the SynthLogo dataset. The

FL-32 dataset is used for testing purposes. The testing set of FL-32 consists of 960 images.

Note that in the model of 604 logos, only 32 of them are being evaluated. We assume that

the performance of the remaining 572 logos will be similar. Data augmentation techniques

available in the PyTorch framework [75] are applied to the crops during training. This in-

cludes random HSV jittering, random grayscale transform, random flipping, and random

crop and resize.

During testing, we observe that the region proposals of Faster R-CNN include all the

logos of the FL-32 testing set. However, the network suggests several undesired regions

that the classifier needs to discard. We compute the mean average precision (mAP) value

of the overall system using the Pascal VOC [35] procedure. This value is equivalent to the

area under the precision/recall curve. As previously described, Recall is the ratio between

True Positive (TP) and the total number of ground truth bounding boxes (Ngt). Precision
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is the ratio between TP and the number of detections. A true positive is a detection where

the Intersection over Union (IoU) between the predicted bounding box (Bp) and the ground

truth bounding box (Bgt) is larger than 50%.

Table 2.6 presents the mAP results. For the model trained to detect 604 logos, our pre-

vious experiments presented in [49] show that using Faster R-CNN trained with only with

synthetic images doesnt perform well, obtaining only a 47.66% mAP. By using Faster R-

CNN as an initial stage followed by DenseNet, we are able to increase the mAP to 73.96%.

With the boosting method, we obtain a mAP of 76.78%, an increase of an additional 2.82%

over two-stage detection and classification. When using bootstrapping images, the mAP

is higher than when only using synthetic images. Bootstrap images, despite having noisy

labels, are extracted from real scenes and contain real-world deformations that synthetic

images are not able to capture. For the model trained to detect 32 logos, our method ob-

tains a maximum of 80.12% of mAP. When detecting more classes, the mAP decreases

because similar logos can get misclassified. Some other methods report higher mAP values

(e.g. [11]) by using a large amount of manually labeled images from real scenes.

Table 2.6.
mAP results using synthetic and bootstrap images.

Method Training Data 32 Logos 604 Logos

[49] SynthLogo - 47.66%

Two-Step (ours) SynthLogo 74.85% 73.96%

Two-Step (ours) Bootstrap 77.54% 75.12%

Two-Step (ours) SynthLogo + Bootstrap 80.12% 76.89%
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2.6 Head Detection For Sleep Analysis

2.6.1 Videosomnography

In this section, we show another example of an application that benefits from object de-

tection methods: Videosomnography for pediatric sleep medicine. Pediatric sleep medicine

is a science that studies sleep patterns of children in order to detect typical and atypical

behaviors. The analysis of sleep patterns is an important aspect of medicine as abnor-

mal sleep patterns can be an indicator that some diseases or clinical conditions might be

present. In order to analyze the sleep patterns, physicians and researchers record and anno-

tate (also referred as “code”) the sleep pattern of children and analyze the sleep onset time,

the total sleep duration, and the presence or absence of night awakenings. This has been

commonly approached with videosomngraphy (VSG) techniques that analyze the sleep pat-

terns from recorded videos [76, 77]. Traditional manual behavioral videosomnography (B-

VSG) coding consist of the manual coding of awake and sleep states by a trained techni-

cian (also referred to as coder). However, B-VSG is highly time-consuming and requires

extensive training on the side of the technicians. In this section, we present an automated

VSG method (auto-VSG) that provides physicians and researchers with an automatic sleep

recording tool that is more time-efficient while maintaining high levels of coding precision.

2.6.2 Auto-VSG

The proposed auto-VSG system uses the motion of the child within the video to estimate

the awake/sleep state. Analyzing the motion as a proxy of the sleep state has already

been used in previous works. Motion can be estimated by frame differencing [78, 79]

or with motion vectors [76, 80]. However, most of the presented methods are performed

in a controlled setting and fail when faced with different camera positions and lighting

conditions. The auto-VSG method aims to provide robustness to the wide range of video

conditions. The presented auto-VSG method includes (1) a pre-processing step consisting

of a histogram equalization and an image resizing, (2) detecting the movements of the
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child using background subtraction, (3) detecting and estimating the size of the child with

an object detection CNN, and (4) normalizing the motion with respect of the size of the

child’s head in the frame. A label of awake or sleep is then assigned at each minute of the

video. Figure 2.27 shows the proposed system.

Fig. 2.27. Auto-VSG Detection System. Figure adapted from [81].

Motion Detection

We assume that during a typical sleep pattern there will be less motion during sleep

than awake states. Additionally, we assume that the camera is static and the only source

of motion in the video will be the children. The frames from the video are transformed

to grayscale and resized to 160 × 120 pixels. Then, histogram equalization is applied in

order to enhance grayscale contrasts. Next, the presented system detects the motion of the

children by computing the difference between frames. Specifically, the difference between

a background model (average of previous frames) and the current frame is computed. The

background model is computed as in equation 2.7.

Bi[x, y] =
1

h

i−1∑
k=i−h

Ik[x, y] (2.7)

Where i is the frame index, h is the number of previous frames used to compute the

background model, Ii[x, y] is the ith frame and Bi[x, y] is the ith background model frame.
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The model frame can be seen as a moving average of the previous frames. At each frame,

each pixel is considered to differ from the background model frame if their difference is

higher than a threshold as specified in:

|Bi[x, y]− Ik[x, y]| > T (2.8)

where T is a threshold empirically selected. In this work we select T = 30. Then,

the number of pixels nm, where their difference is higher than the threshold T , is averaged

among h:

mi =
1

h

h−1∑
k=0

nm[k] (2.9)

Where nm[k] is the number of pixels “moved” within frame k. The number of moved

pixels at instant i (temporal instant composed by h frames), mi can indicate if the baby is

moving and therefore if the baby is asleep or awake. However, this motion measure has

the drawback that is dependent on the distance between the child and the camera. When

the baby is closer to the camera, the number of moving pixels will increase, while when

it is further away, the number of moving pixels will decrease. In order to address this

mismatch, we detect the head of the child in order to normalize the movement with the size

of the detected head. Figure 2.28 shows an example of the motion detection.

Fig. 2.28. From left to right: Input image, background model image, and
moved pixels. Figure adapted from [81].
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Head Detection

In order to detect the head we use Faster R-CNN, previously described. In this scenario,

we select the Zeiler and Fergus (ZF) [38] network as a feature extractor because it has a

small number of parameters (only 5 convolutional layers) and can lead to better general-

ization when the training dataset is small. The RPN uses the information provided by the

features extracted from ZF to detect regions of the image where the head of a child might

be located. Then, the features within those regions are cropped and used by the classifier

that outputs a confidence value. Confidence of 1 represents that the network is almost cer-

tain that the region contains a head while confidence close to 0 represents that the network

identifies that region of the image as a background.

We train Faster R-CNN with the Casablanca dataset [82] which consists of a total of

1466 grayscale images containing multiple heads in different lighting conditions and poses.

Each image has a corresponding bounding box indicating where the head is located. Figure

2.29 shows an example of two heads detected with Faster R-CNN.

Fig. 2.29. Examples of head detections of two different childs. Figure adapted from [81].
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Sleep Scoring

After detecting heads within all frames with Faster R-CNN, the detected region with

the highest confidence score during the window of h frames is selected. The size of the

bounding box is used to estimate the number of pixels of the head Nmax:

Nmax = W ×H (2.10)

where W and H are the width and height of the detected bounding box in the resized

image. The number of moving pixels is normalized and scaled by a constant in order to

match the scale of the Sadeh Sleep Scoring method, which is commonly used for scoring

the Actigraphy motion index [83]. Therefore, the estimated final score that is used as a

proxy to indicate if the individual is sleeping or awake is:

m[j] = 400
min(mj, Nmax)

Nmax

(2.11)

where m[j] is the motion index at the jth time segment.
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3. POSE ESTIMATION FOR AUGMENTED REALITY

3.1 Overview

The main challenge when using technologies such as augmented reality, robot manip-

ulation, or autonomous driving is to obtain a clear and detailed understanding of the ge-

ometry of the objects appearing in the image or video to properly interact with them. For

example, in order to perform robot manipulation, the location of the objects in the physi-

cal world needs to be estimated to accurately grab, move, and manipulate the elements of

the scene. In autonomous driving applications, the position of other vehicles and pedes-

trians needs to be inferred in order to safely move or stop the autonomous vehicle. To

properly understand how the objects in the scene are placed, the pose and location of each

element need to be accurately inferred. 6 Degree of Freedom (DoF) or 6D pose estimation

techniques can be useful for such tasks. 6D pose estimation consists of inferring the 3D lo-

cation coordinates and 3D rotation angles of objects in the real world from images, videos,

or depth information. Figure 3.1 represents how pose estimation can be performed with a

neural network.

Many solutions have been presented for 6D pose estimation working with both RGB-D

(color and depth) and RGB (only color) images. However, RGB-D cameras are not highly

available (e.g. in smart-phones or laptops) and currently have many limitations of depth

range, resolution, and frame rate making it difficult to detect small, thin, or fast-moving

objects. On the other hand, methods that use RGB-only images can easily fail to correctly

estimate the pose of objects with different lighting conditions, occlusions, or objects that

lack texture or distinctive visual features. In this chapter, we will focus on RGB-only

techniques as they can be applied in a wider range of scenarios and is a challenging problem

that still remains unsolved.



60

Fig. 3.1. Pose estimation task with a neural network.

Traditional computer vision methods estimate the 6D pose by matching visual features

from the image to a 3D model of the object of interest [22]. These methods fail to cor-

rectly estimate the pose of textureless objects since only a small number of visual features

can be detected in the object. Recently, many methods based on deep learning have been

presented. These methods use neural networks to estimate the 6D pose of objects by de-

tecting keypoints [84], estimating a 3 dimensional bounding box [85–87], matching the

input image with rendered images [88, 89], or directly treating pose estimation as a classi-

fication [90] or regression [91, 92] problem. Textureless objects can be handled by using

methods that try to directly estimate 3D coordinates from pixels or pre-defined keypoints of

the objects of interest [93]. These methods typically adapt or extend object classification or

detection methods to solve pose estimation. Although they can handle textureless objects,

they are not highly accurate as typically the pose needs to be discretized into bins or the

methods rely on learning the visual appearance of the objects at different poses.

Recently, many methods of pose refinement have been presented showing considerable

improvements in accuracy. A common approach is to render an RGB image with an initial

pose estimate of the target object and then match the rendered image with the input (real)

image to obtain a new and more accurate pose estimate. This approach has been used using

hand-crafted visual features [22] and deep learning methods [88,92]. One of these methods

is DeepIM [88], a neural network that can successfully learn the SE(3) transformation of

an object in two different poses even with objects from previously unseen categories.
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Fig. 3.2. Six rendered views of an object.

With the increasing number of deep learning-based methods for pose estimation (mainly

based on RGB-only input images), there is a need for more data to train the neural net-

works. Because capturing and annotating real images is highly tedious, inaccurate, and

time-consuming, automated approaches are preferred. While some image synthesis meth-

ods have been presented [14, 49] to automatically generate new image samples to train

and evaluate neural networks, the synthesized images usually lack realistic appearance. A

growing popular alternative, highly efficient and effective, is photorealistic image render-

ing. Photorealistic rendering permits to easily generate a large number of images with

ground truth labels. Such images include realistic lighting, occlusions, and real-world dis-

tortions. This set of techniques can be especially useful in domains where training data is

scarce or non-existent.

In this chapter, we introduce a new set of neural networks: Multi-View Matching Net-

work (MV-Net) and Single View Matching Network (SV-Net) for 6D pose estimation, re-

finement, and tracking. These networks are based on DeepIM [88], a neural network that

performs pose refinement by estimating the pose difference between pairs of images. MV-

Net matches the input image with 6 RGB images containing the object of interest rendered

from different views (Figure 3.2) to obtain an initial estimate of the pose. Then, SV-Net
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refines the pose estimate in an iterative manner. The same iterative refinement can be used

to track the pose in a video sequence.

The main contributions of this work are as follows. First, we present the Multi-View

Matching Network and the Single View Matching network, a novel extension of DeepIM,

for pose estimation, refinement, and tracking, removing the need for an external initial

pose estimation method. Second, we show how these networks can be combined with

Mask R-CNN to have a complete object detection and pose estimation pipeline to support

AR applications. We evaluate and compare our method with previous pose estimation

methods.

The rest of the chapter is organized as follows. In section 3.2 an overview of the tasks of

pose estimation and an overview of the most commonly used datasets is presented. In sec-

tion 3.3 Multi-View Matching Network and Single View Matching Network are described

in detail. In section 3.4 the Extra FAT dataset is described.

3.2 Related Work

Many RGB-D based methods have been previously presented. A common approach

is to use depth information to obtain a 3D point cloud that is then matched against a 3D

model [94]. The methods presented in [94] regresses the 3D coordinates of each pixel in

the input image. Then, the estimated coordinates are matched to the 3D model to obtain the

6D pose. Additionally, the Iterative Closest Point (ICP) method is used for pose refinement.

Traditional computer vision methods estimate the 6D pose of an object by matching

visual features (e.g. [22]) from the image to a 3D model of the object. The main drawback

of this approach is that it fails with textureless objects since only a small number of visual

features can be detected on the image. Many approaches based on deep learning have been

recently proposed. These methods typically treat pose estimation as a pose classification

or pose regression task by extending object classification or detection networks [90–93].

Deep-6DPose [92] is a network that extends Mask R-CNN with a head that consists of a

regressor that estimates a 4D quaternion encoding the object rotation. The network 3D-
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RCNN [90] has 4 different heads: the first one estimates the bounding box containing the

object, the second one estimates the coordinate of the center of the object, the third one

estimates the 3 rotation angles and the fourth one a vector that defines the shape of the

object. DensePose [93] is a network that extends Mask R-CNN by adding an extra head

that estimates a dense mapping from the object (in this work objects are human bodies) to

a 3D surface. The method presented in [84] detects key points using neural networks and

estimates the pose by solving Perspective-n-Point (PnP). The methods presented in [86,87]

make use of neural networks to regress the 3-dimensional bounding box containing the

target object. The methods in [90,92] regress directly the rotation angles or quaternions and

translation parameters. Some multi-view methods have been used in pose related problems.

The method presented in [95] uses a multi-view convolutional neural network for shape

estimation. The method proposed in [96] uses a multi-view multi-class system for pose

estimation.

Recently, methods for pose refinement have been presented showing considerable im-

provements in accuracy [88, 97]. Such methods are typically combined with pose estima-

tion approaches: a pose estimation method provides an initial estimate that is later refined

with a pose refinement technique. A common approach is to render an RGB image with an

initial pose estimate and then match the rendered image with the input image to obtain an

updated pose estimate. The method presented in [98] uses a neural network to perform the

pose refinement based on the object contours. DeepIM [88], the basis of our work, is capa-

ble to provide highly accurate results by applying iterative pose refinement. The regression

of relative rotation and translation parameters was already studied in [97].

Deep Iterative Matching [88], or DeepIM, is a neural network for pose refinement. The

network is based on FlowNetSimple (FlowNetS) [99], presented in figure 3.3. FlowNetS

is a neural net that is able to estimate optical flow between two consecutive frames. In

DeepIM, FlowNetS is extended to estimate the pose difference between the two images.

Specifically, two fully-connected layers of dimension 256 are appended after the 10th con-

volutional layer of FlowNetS. Then, two linear regressors (Linear layers) are added to the
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FC layers to estimate the relative rotation and translation parameters respectively. Some

assumptions are made:

• Both images contain the same object in different poses

• A segmentation mask is available for both images

• The pose difference between the two images is small

• The 3D model of the object to be detected is known

The key element of the DeepIM network is its iterative nature. The method starts from

an initial pose estimate that is provided by some other method (e.g. [91]). With an initial

pose estimate, an image is rendered with the 3D model of the object. The inputs of the

network are the rendered image and the target (real) image. The network estimates the

pose difference between real and rendered images. Then, the pose difference is used to

update the previous pose estimate, obtaining a more accurate pose prediction. The updated

pose is used to render a new image and the process is repeated, usually for a fixed number

of iterations (e.g. 4 iterations).

Fig. 3.3. FlowNetS architecture. Figure adapted from [99].

Many datasets consisting of real-world images for 6D pose estimation are publicly

available. For example, T-LESS [100] is a dataset that contains a total of 48,900 im-

ages with 30 industrial objects which are textureless (mainly plain white or gray), and

many are symmetric and highly similar among them. The YCB dataset [101] is composed
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of 9,240 images, captured using the Google scanner and the BigBIRD Object Scanning

Rig, of 77 different common objects that are typically used for benchmarking robotic hand

grasping and manipulation tasks. Figure 3.4 shows rendered objects included in the YCB

dataset. The YCB-Video [91] dataset has around 134,000 video frames including a subset

of 21 household objects from the YCB dataset. The Rutgers APC [102] dataset contains

real images of textured products used in the first Amazon Picking Challenge. The IC-MI

dataset [103] contains images of 6 objects placed in a cluttered and occluded setting. The

LINEMOD dataset [104], composed of various toys and household objects, is a widely

used public dataset for 6D pose estimation benchmarking. Figure 3.5 shows rendered ob-

jects included in the LINEMOD dataset. The LINEMOD OCCLUSION dataset [105,106]

is a complementary dataset of LINEMOD dataset with around 10,000 images captured un-

der different occlusion and lighting conditions. MVTec Industrial 3D Object Detection

Dataset (MVTec ITODD) [107] includes 28 industrial objects and focuses on challenging

tasks such as 3D object inspection and industrial bin picking. Additionally, datasets with

photorealistic rendered images, such as Falling Things (FAT) [108], have been recently

presented. The FAT dataset contains synthetic images containing the 21 household ob-

ject models from YCB dataset. The objects are placed in different virtual scenarios with

different poses and lighting conditions.

Fig. 3.4. 3D object models in YCB dataset [101]. Figure adapted from [109].

The BOP benchmark [110] was presented to unify a large variety of datasets and eval-

uation metrics and solve the lack of a common benchmark procedure. The BOP includes a

total of 8 different datasets containing images and evaluation methodologies. Additionally,
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Fig. 3.5. 3D object models in LINEMOD dataset [104]. Figure adapted from [109].
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two new datasets, the TUD Light [110] dataset and TOYOTA Light [110], datasets are in-

troduced in the BOP dataset. The TUD Light dataset includes images of 3 objects without

occlusion under different illumination. The TOYOTA Light dataset has a total of 21 differ-

ent objects. The objects in TOYOTA Light are placed on top of a table with different table-

cloths and 5 different lighting conditions. Figure 3.6 shows rendered objects included in

the TYO-L [110], TUD-L [110], IC-MI [103], RU-APC [102], and T-LESS [100] datasets.

Fig. 3.6. 3D object models in TYO-L [110], TUD-L [110], IC-MI [103],
RU-APC [102], and T-LESS [100] datasets. Figure adapted from [109].

3.3 Multi-View Matching Network

3.3.1 Proposed Method

Our proposed method has multiple stages. First, we use Mask R-CNN [17] to detect

and segment the objects of interest in the input image. Next, we estimate the 6D pose of the
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objects with the Multi-View Matching Network. Then, the estimated pose is refined in an

iterative manner with Single View Matching Network, in a similar fashion than DeepIM.

When dealing with videos, the pose of the object can be tracked with the Single View

Matching Network. Figure 3.8 shows the MV-Net and SV-Net architectures. Figure 3.7

shows the complete pose estimation, refinement, and tracking pipeline.

Fig. 3.7. Proposed pose estimation pipeline.

Object Detection And Segmentation

Many deep learning-based methods for object detection and segmentation are currently

available [16, 17, 41, 43, 44]. Due to the modular nature of our system, we could combine

the Multi-View Matching Network and Single View Matching Network with any object

detection and segmentation method. We decide to use Mask R-CNN in our system as it

provides state-of-the-art results on detecting and segmenting common objects.

Mask R-CNN, described in the previous chapter, is a network capable to estimate the

bounding box and segmentation mask of multiple objects within an image. This network

uses a Feature Pyramid Network (FPN) [47] to obtain multiple regions of interest at differ-

ent scales where the objects might be located. The features inside the detected regions of

interest are used to assign a category to the object and estimate its segmentation mask. In
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our work we use a Mask R-CNN with a ResNet-50 [46] as a feature extractor (also referred

to as backbone).

We use the estimated bounding boxes to apply a zoom-in operation to the regions where

the objects have been detected. The zoom-in operation is performed by cropping and re-

sizing the region inside the bounding box containing the object. The cropped region is

expanded until it has a 4:3 ratio and it is resized so the final image has 640 × 480 pixels.

The same zoom-in operation is performed to the estimated segmentation mask.

Initial Pose Estimation

Our pose estimation method uses two neural networks that share almost all weights,

so it can be regarded as a unique two-in-one neural network. One network is trained to

estimate the initial pose of the object and the other is trained to refine and track the pose

estimate.

After detecting and segmenting the object with Mask R-CNN, the initial pose esti-

mation is obtained using the network we name Multi-View Matching Network (MV-Net).

This network takes as input 6 rendered images with the object in 6 different poses and the

zoomed target image. Then, the Single View Matching Network (SV-Net) is used for pose

refinement. This network takes as input the zoomed target image and a rendered image con-

taining the object with the previously estimated pose. MV-Net and SV-Net are represented

in figure 3.8.

Both networks are trained to estimate the relative SE(3) transformation between pairs

of images containing the same object in different poses. These neural networks are com-

posed of a set of convolutional layers, followed by several fully-connected layers, or heads.

Following the work presented in [88], we use the first 10 convolutional layers of FlowNet-

Simple (FlowNetS) as a starting point. Different heads are used in Multi-View Matching

Network and Single View Matching Network.

Multi-View Matching Network (MV-Net) takes as input 6 rendered images with the

object in 6 different poses and the zoomed target image (detected with Mask R-CNN) to
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estimate the initial pose of the object. MV-Net is composed of 6 parallel branches, each of

them consisting of the first 10 convolutional layers of FlowNetSimple network followed by

one fully-connected layer of dimension 256. The outputs of the fully-connected layers of

each 6 branches are concatenated and followed by one fully-connected layer of dimension

512. Finally, two fully-connected output layers of dimensions 4 and 3 are added to estimate

the relative rotation and translation parameters respectively. The weights of every layer in

the 6 branches are shared among them and with SV-Net.

Each branch has as input an 8 channel tensor that consists of the RGB zoomed target

image, its segmentation mask (obtained from Mask R-CNN), and an RGB rendered image

with its mask. This 8 channel input approach is the same as used in [88]. The rendered

image used at each branch has a different pose. In our method, we select the 6 equidistant

angles in the pitch and yaw dimensions, equivalent to the 6 views of all faces of a cube.

Figure 3.2 shows the rendered images of the 6 views of an object. The same approach

could be applied for a larger number of views as long as the network architecture is adapted

properly and the views used are consistent during training and testing time.

The estimated rotation and translation are represented as the relative pose of the target

image and the object placed with its frontal face facing the camera (the input of the 1st

branch of MV-Net). The initial location of the object is inferred from the center of the

bounding box. The network learns the relative pose with the same representation as in [88],

where the relative rotation is expressed with a quaternion and the relative translation is

expressed with an untangled representation independent from the coordinate system of the

object. Both quaternion and untangled translation parameters are normalized to have zero

mean and unit variance. Such representation is described in more detail later in this chapter.

Pose Refinement

Single View Matching Network (SV-Net) refines the initial pose estimate from MV-Net.

SV-Net consists of one single branch from MV-Net (composed by the 10 first convolutional

layers of FlowNetS) followed by one fully-connected layer of dimension 256. Then 3
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Fig. 3.8. Multi-View Matching Network (left) and Single-View Matching
Network (right).

fully-connected layers of dimensions 4, 3, and 1 are used to estimate the relative rotation,

translation, and angle distance respectively. The weights of the FlowNetS convolutional

layers and the first fully-connected layer are shared with MV-Net. Note that without the

angle distance estimation output, SV-Net is equivalent to DeepIM [88].

As in MV-Net, the input of the SV-Net consists of one 8 channel tensor composed by

the target RGB+mask image, and an RGB+mask rendered image. The rendered image

is obtained by rendering the object with the previously estimated pose. The refinement

process starts with the initial pose estimate of MV-Net. Then, SV-Net estimates the pose

difference between the rendered image and the zoomed input image. The pose difference is

used to update the previous pose estimate. A new image is rendered with the updated pose

and the refinement process is repeated until the estimated rotation angle, θ̂, between the

two images, is below a threshold Tref = 2°. If after 50 refinement iterations, the estimated

rotation angle isn’t below Tref , the pose estimate with the lowest estimated rotation angle is

selected. This policy to stop the refinement process differs from other methods (e.g. [88])
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where a fixed number of refinement iterations are used. Figure 3.9 shows the refinement

process.

Fig. 3.9. Our refinement process of SV-Net is based on the method [88].

Pose Tracking

MV-Net and SV-Net pose estimation and pose refinement can be easily extended for

pose tracking. After the pose is estimated and refined at the initial frame, the pose tracking

is performed by estimating the pose difference between the current pose estimate and the

next frame of the video. Then, the pose estimate is updated and the process is repeated for

the following frame. Figure 3.10 shows the tracking process. Note that the only difference

between pose refinement and pose tracking is the input frames: while pose refinement is

performed in an individual frame, pose tracking has as input consecutive frames.

The angle distance estimate of the SV-Net can be used to assess the tracking process. If

the angle distance estimate is higher than a threshold Thigh = 25°, we restart the tracking

process by estimating a new initial pose with MV-Net. If the angle distance estimate is

lower than a threshold Tlow = 2°, it is likely that the camera or object is not moving,

therefore the pose estimate is not updated.
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Fig. 3.10. SV-Net can track the pose of objects by performing pose refine-
ment within consecutive frames.
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Pose Transformation Representation

The representation of the SE(3) transformation used in this work is the same as the one

used in [88]. This untangled pose representation is independent of the coordinate system

of the object, thereby the network does not have to learn the geometry of the object. This is

accomplished by modeling the pose change that needs to be applied to the camera (instead

of the object). The SE(3) transformation between a source pose psrc = [Rsrc|tsrc] and a

target pose ptgt = [Rtgt|ttgt] is shown in equation 3.1.

Rtgt = R∆Rsrc

ttgt = R∆tsrc + t∆

(3.1)

Instead of training the neural networks to estimate directly R∆ and t∆, we estimate the

equivalent rotation quaternion q∆ and the untangled translation v∆. v∆ = (vx, vy, vz) is

defined in equation 3.2.

vx = fx(xtgt/ztgt − xsrc/zsrc),

vy = fy(ytgt/ztgt − ysrc/zsrc),

vz = log(zsrc/ztgt)

(3.2)

Where tsrc = (xsrc, ysrc, zsrc) and ttgt = (xtgt, ytgt, ztgt) are the source and target lo-

cation respectively, and fx and fy are the focal length of the camera. As we use multiple

training datasets captured with cameras with different intrinsic parameters, we assign the

adequate values of fx and fy during training and testing. v∆ and q∆ represent the pose

difference between the two input images when training SV-Net, and the pose difference

between the input and the frontal face of the object (input of the 1st branch) when training

MV-Net.

Training Process

Our networks are trained using the LINEMOD [104] dataset and synthetic images from

Extra FAT dataset, described in the following section. These datasets include the 3D models
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of multiple household objects and images containing such objects. We use as ground truth

the bounding box surrounding the objects of interest, their segmentation mask, and their

pose represented with a rotation quaternion, and the 3D location values.

We fine-tune Mask R-CNN using stochastic gradient descent (SGD) with a learning

rate of 0.005 for 10 epochs. We use pre-trained weights from the MS COCO dataset [36].

We train MV-Net and SV-Net using the loss functions in Equation 3.3 and Equation 3.4

respectively.

Lm(p, p̂) =
1

N
(‖1− qT q̂

‖q̂‖
‖+ ‖t− t̂‖+ ‖1− ‖q̂‖‖) (3.3)

Ls(p, p̂) = ‖1− qT q̂

‖q̂‖
‖+ ‖t− t̂‖+ ‖1− ‖q̂‖‖+ ‖θ − θ̂‖ (3.4)

Where p = [q|t] and p̂ = [q̂|t̂] are the ground truth and estimated rotation quaternion

and translation parameters respectively. θ and θ̂ are the ground truth and estimated angle

distance respectively. θ̂ is only estimated when training SV-Net. N is the number of views.

In this work, we use N = 6.

We follow a simultaneous end-to-end training approach. The training process starts by

estimating the initial pose with MV-Net. Then, the initial estimate is used to render a new

training sample for SV-Net. We perform a total of 3 refinement iterations during training

time. We compute the error between pose estimates and the ground truth pose for the initial

pose and each of the 3 refined poses. Finally, we backpropagate all the losses.

In order to avoid training SV-Net with really bad initial estimates, we generate a new

random rotation if the angle error of the initial estimate is higher than 25°. By doing so we

ease the training process of SV-Net as we only use examples where the pose difference is

small and allow the network to learn to refine and fix small differences.

We initialize the FlowNetS convolutional layers of MV-Net and SV-Net with pre-trained

weights for optical flow estimation. The fully-connected layers are initialized with random

weights as in [88]. We train the networks using SGD with a learning rate of 0.001 during

48 epochs.
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Our MV-Net and SV-Net simultaneous end-to-end training approach have several ad-

vantages. First, we can easily apply weight sharing between MV-Net and SV-Net and force

MV-Net to learn to detect pose differences between the target and rendered images. Sec-

ond, we present the training examples to the network in the same order that will be found

during testing time. Therefore, because SV-Net is trained with the pose estimates produced

by MV-Net, SV-Net learns to fix the specific mistakes that MV-Net produces. This differs

from techniques where different methods are used for pose estimation and for pose refine-

ment. In such techniques, the pose refinement methods might not be trained to specifically

fix the pose errors that are generated by the initial pose estimation method, leading to lower

accuracy.

Datasets

We use the LINEMOD (LM) dataset [104] for training and testing. This dataset con-

tains 15 objects but we only use 13 as in previous works [88]. We use the same training and

testing split as in [88]. In addition, we use two different rendered datasets for training: A

domain randomized dataset and a photorealistic dataset. Figure 3.11 shows some examples

of both rendered datasets.

The domain randomized dataset is generated by rendering the objects in random poses

and adding background images. The background images are randomly selected from Pascal

VOC [35] dataset. Additionally, we apply random blurring and color jittering to the image.

The segmentation mask is dilated with a square kernel with a size randomly selected from

0 to 40 in order to mimic errors in the segmentation mask during inference. We render

5,000 training images for each object.

We the 3D models of the LM dataset in virtual environments to generate photorealistic

images with Unreal Engine 4 (UE4) [111]. This includes a total of 5,000 images per object.

These images are a subset of Extra FAT dataset, described in the following section.
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Fig. 3.11. Examples of photorealistic images (left) and domain random-
ized images (right).
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3.3.2 Experimental Results

We evaluate our method using the (n°, n cm) accuracy metric with the LINEMOD

testing set. This metric considers an estimate correct if the error is smaller than n° and n

cm and incorrect otherwise. We evaluate our method for n = 2, 5, 10. Table 3.1 presents

our accuracy results.

Table 3.1.
Comparison with previous methods on LINEMOD dataset.

(n°, n cm)

Method (2, 2) (5, 5) (10, 10)

BB8 w/ ref. [87] - 69.0% -

PoseCNN [91] - 19.4% -

PoseCNN+DeepIM [88] 39.0% 85.2% 97.9%

MV-Net + SV-Net (Ours) 24.3% 73.1% 97.5%

We can observe that our accuracy results are comparable with previous state-of-the-art

RGB-only pose estimation methods such as PoseCNN+DeepIM [88].

Our method shows that pose refinement methods [88] can successfully be extended for

initial pose estimation. Therefore, initial pose estimation networks such as PoseCNN [91]

can be replaced by highly available object detection networks [17,44] which can be trained

with a large amount of training data.

3.4 Extra-FAT: 3D Pose Estimation Dataset

3.4.1 Dataset Overview

In this section, we describe the synthetic rendered dataset named Extra FAT [109]. The

dataset is named Extra FAT as it is generated following a similar approach as in the FAT

dataset [108]. However, Extra FAT includes more object models and more virtual scenes
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than FAT. This dataset includes photorealistic rendered images containing several 3D ob-

jects from the most commonly used datasets for 6D pose estimation. Table 3.3 presents an

in-depth comparison of the Extra FAT dataset with previously presented datasets.

The Extra FAT dataset includes rendered images of 640 × 480 pixels with the location

and rotation parameters for both the virtual camera and the 3D objects and a pixel-level

object segmentation mask. Figure 3.12 shows some examples of a rendered image and

its segmentation mask. The set of images, segmentation mask, and location and rotation

parameters can be used to train and evaluate methods for object detection, segmentation

and pose estimation and tracking.

Fig. 3.12. Example of an image and a segmentation mask from Extra FAT dataset [109].

The 3D objects are placed in 5 different virtual indoor scenes that have a wide range

of illumination and occlusion conditions. The virtual scenes include common indoor envi-

ronments such as office spaces, living rooms, and kitchens. A total of 825,000 images are

generated. The specifications for Extra FAT dataset are described in Table 3.2. Figure 3.13

shows multiple examples of rendered images.

The Extra FAT dataset includes a total of 110 different 3D object models: 15 objects

from the LINEMOD dataset, 21 household objects from the YCB dataset, 14 objects from

the Amazon Picking Challenge 2015 dataset, 30 objects from the T-LESS dataset, 6 objects

from the IC-MI dataset, 3 objects from the TUD Light dataset and 21 objects from the
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Table 3.2.
Dataset Specification. Table from [109].

Extra FAT Dataset

Image Resolution 640 × 480

Field of view 90◦

Number of frames 825k

Number of objects 110

Number of scenes 5

Fig. 3.13. Examples of rendered images with different objects and scene
types. Images from [109].
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TOYOTA Light. Figure 3.4, Figure 3.5 and Figure 3.6 show multiple examples of 3D

models used in Extra FAT.

3.4.2 Dataset Generation

Following the generation scheme of the FAT dataset, we use the Unreal Engine 4

(UE4) [112], a widely used tool for animation and game development, to render the 3D

object models in virtual indoor scenarios. Additionally, we use the open-source Unre-

alCV [112] plugin as a communication tool to generate photorealistic images and specify

the parameters of the camera pose and object pose.

Before starting the rendering process, we manually specify some candidate locations

within the virtual scenarios. The locations are selected so the 3D objects are not highly

occluded by some elements of the virtual scenario. During the image generation stage,

pairs of candidate pre-defined locations are selected randomly and the virtual camera and

the 3D object trajectories are specified by linearly interpolating between the two locations.

Figure 3.14 shows an example of multiple images rendered in the interpolated locations.

Additionally, we apply a uniformly random perturbation in the location and rotation of

the object and virtual camera during the interpolation stage. The distributions of Yaw,

Pitch, and Roll angles are uniform indicating that the poses of objects in the dataset are

representative for the general pose estimation task.

In order to always place the object within the visible range of the camera, we constrain

the relative location and rotation between the camera and objects. Figure 3.15 shows the

pixel coordinate (px, py) constraint, represented as:

−µx < px < µx,

−µy < py < µy,
(3.5)

where (px, py) are the pixel coordinate and µx = 200 and µy = 180.

The relation between the 3D coordinate location in the virtual scenario and the pixel

coordinate can be expressed as:
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Fig. 3.14. Linear interpolation trajectory from candidate location points.
Images from [109].
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tx = px
tz
fx

ty = py
tz
fy

(3.6)

Where fx, fy are the focal lengths in the x and y direction. tz, tz , tz are the 3D coor-

dinates in the virtual environment. The parameter tz is in the range (0.3, 0.8) to make sure

that the object is in front of the camera and not too far or too close to it.

Fig. 3.15. Pixel coordinate constraint. Figure adapted from [109].

In order to avoid having objects highly occluded by elements of the virtual scenario

(such as a wall or other objects), we add a constraint on the ratio of mask area to image

size. Specifically, we discard images where the segmentation mask area to image size ratio

is lower than a threshold.

∑
mask 1

w × h
> threshold (3.7)

In this work we use threshold = 0.05.
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4. DEEPFAKES DETECTION

4.1 Overview

Manipulated multimedia is rapidly increasing its presence on the Internet and social

media. Its rise is fueled by the mass availability of easy-to-use tools and techniques for

generating realistic fake multimedia content. Recent advancements in the field of deep

learning have led to the development of methods to create artificial images and videos that

are eerily similar to authentic images and videos. Manipulated multimedia created using

such techniques typically involving neural networks, such as Generative Adversarial Net-

works (GAN) [113] and Auto-Encoders (AE) [12], are generally referred to as Deepfakes.

While these tools can be useful to automate steps in movie production, video game de-

sign, or virtual reality rendering, they are potentially very damaging if used for malicious

purposes. As manipulation tools become more accessible, realistic, and undetectable, the

divide between real and fake multimedia is blurred. Furthermore, social media allows for

the uncontrolled spread of manipulated content at a large scale. This spread of misinforma-

tion damages journalism and news providers as it gets increasingly difficult to distinguish

between reliable and untrustworthy information sources.

Human facial manipulations are among the most common Deepfake forgeries. Through

face swaps, an individual can be placed at some location he or she was never present at.

By altering the lip movement and the associated speech signal, realistic videos can be

generated of individuals saying words they actually never uttered. This type of Deepfake

manipulation can be very damaging when used to generate graphic adult content or fake

news that can alter the public opinion. In fact, many images and videos containing such

Deepfake forgeries are already present on adult content web sites, news articles, and social

media.
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Fig. 4.1. Example of images from DFDC [114] dataset: original image
(left) and manipulated image with the swapped face (right).
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Image and video manipulations have been utilized for a long time. Before the advent of

Deepfakes, editing tools such as Photoshop [115] or GIMP [116] have been widely used for

image manipulations. Some common forgeries include splicing (inserting objects into im-

ages) [117], copy and moving parts within an image (copy-move forgery) [118], or shadow

removal [119]. While research on detecting such manipulations has been conducted for

more than a decade [117–125], many techniques fail to detect more recent and realistic ma-

nipulations, especially when the multimedia alterations are performed with deep learning

methods. Fortunately, there is an increasing effort to develop reliable detection technology

such as AWS, Facebook, Microsoft, and the Partnership on AIs Media Integrity Steering

Committee with the Deepfake Detection Challenge (DFDC) [114].

Advances in deep learning have resulted in a great variety of methods that have pro-

vided groundbreaking results in many areas including computer vision, natural language

processing, and biomedical applications [29]. While several neural networks that detect

a wide range of manipulations have been introduced [126–131], new generative methods

that create very realistic fake multimedia [132–136] are presented every year, leading to a

push and pull problem where manipulation methods try to fool new detection methods and

vice-versa. Therefore, there is a need for methods that are capable of detecting multimedia

manipulations in a robust and rapid manner.

In this chapter, we present a novel model architecture that combines a Convolutional

Neural Network (CNN) with a Recurrent Neural Network (RNN) to accurately detect facial

manipulations in videos. The network automatically selects the most reliable frames to

detect these manipulations with a weighting mechanism combined with a Gated Recurrent

Unit (GRU) that provides a final probability of a video being real or being fake. We train

and evaluate our method with the Deepfake Detection Challenge dataset, obtaining a final

score of 0.321 (log-likelihood error, the lower the better) at position 117 of 2275 teams (top

6%) of the public leader-board.
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4.2 Related Work

There are many techniques for face manipulation and generation. Some of the most

commonly used include FaceSwap [137], Face2Face [138], DeepFakes [135], and Neural-

Textures [136]. FaceSwap and Face2Face are computer graphics based methods while the

other two are learning based methods. In FaceSwap [137], a face from a source video is

projected onto a face in a target video using facial landmark information. The face is suc-

cessfully projected by minimizing the difference between the projected shape and the target

face’s landmarks. Finally, the rendered face is color corrected and blended with the target

video. In Face2Face [138], facial expressions from a selected face in a source video are

transferred to a face in the target video. Face2Face uses selected frames from each video

to create dense reconstructions of the two faces. These dense reconstructions are used to

re-synthesize the target face with different expressions under different lighting conditions.

In DeepFakes [135], two autoencoders [12] (with a shared encoder) are trained to recon-

struct target and source faces. To create fake faces, the trained encoder and decoder of the

source face are applied on the target face. This fake face is blended onto the target video

using Poisson image editing [139], creating a Deepfake video. Note the difference between

DeepFakes (capital F), the technique now being described, and Deepfakes (lowercase f),

which is a general term for fake media generated with deep learning-based methods. In

NeuralTextures [136], a neural texture of the face in the target video is learned. This infor-

mation is used to render the facial expressions from the source video on the target video.

In recent years, methods have been developed to detect such deep learning-based ma-

nipulations. In [126], several CNN architectures have been tested in a supervised setting

to discriminate between GAN generated images and real images. Preliminary results are

promising but the performance degrades as the difference between training and testing in-

creases or when the data is compressed. In [127–129], forensic analysis of GAN generated

images revealed that GANs leave some high frequency fingerprints in the images they gen-

erate.
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Additionally, several techniques to detect videos containing facial manipulations have

been presented. While some of these methods focus on detecting videos containing only

DeepFake manipulations, others are designed to be agnostic to the technique used to per-

form the facial manipulation. The work presented in [140, 141] use a temporal-aware

pipeline composed by a Convolutional Neural Network (CNN) and a Recurrent Neural Net-

work (RNN) to detect DeepFake videos. Current DeepFake videos are created by splicing

synthesized face regions onto the original video frames. This splicing operation can leave

artifacts that can later be detected when estimating the 3D head pose. The authors of [142]

exploit this fact and use the difference between the head pose estimated with the full set of

facial landmarks and a subset of them to separate DeepFake videos from real videos. This

method provided competitive results on the UADFV [143] database. The same authors pro-

posed a method [144] to detect DeepFake videos by analyzing the face warping artifacts.

The authors of [130] detect manipulated videos generated by the DeepFake and Face2Face

techniques with a shallow neural network that acts on mesoscopic features extracted from

the video frames to distinguish manipulated videos from real ones. However, the results

presented in [131] demonstrated that in a supervised setting, several deep network based

models [145–147] outperform the ones based on shallow networks when detecting fake

videos generated with DeepFake, Face2Face, FaceSwap, and NeuralTexture.

4.3 Deepfake Detection Challenge Dataset

The Deepfake Detection Challenge (DFDC) [114] dataset contains a total of 123,546

videos with face and audio manipulations. Each video contains one or more people and

has a length of 10 seconds with a total of 300 frames. The nature of these videos typically

includes standing or sitting people, either facing the camera or not, with a wide range

of backgrounds, illumination conditions, and video quality. The training videos have a

resolution of 1920×1080 pixels, or 1080×1920 pixels if recorded in vertical mode. Figure

4.1 shows some examples of frames from videos of the dataset. This dataset is composed

by a total of 119,146 videos with a unique label (real or fake) in a training set, 400 videos
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Fig. 4.2. Block Diagram of our proposed Deepfake detection system:
MTCNN detects faces within the input frames, then EfficientNet extracts
features from all the detected face regions, and finally the Automatic Face
Weighting (AFW) layer and the Gated Recurrent Unit (GRU) predict if the
video is real or manipulated.
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on the validation set without labels and 4000 private videos in a testing set. The 4000

videos of the test set can not be inspected but models can be evaluated on it through the

Kaggle system. The ratio of manipulated:real videos is 1:0.28. Because only the 119,245

training videos contain labels, we use the totality of that dataset to train and validate our

method. The provided training videos are divided into 50 numbered parts. We use 30 parts

for training, 10 for validation and 10 for testing.

A unique label is assigned to each video specifying whether it contains a manipulation

or not. However, it is not specified which type of manipulation is performed: face, audio,

or both. As our method only uses video information, manipulated videos with only au-

dio manipulations will lead to noisy labels as the video will be labeled as fake but faces

will be real. Furthermore, more than one person might be present in the video, with face

manipulations performed on only one of them.

The private set used for testing evaluates submitted methods within the Kaggle sys-

tem and reports a log-likelihood loss. Log-likelihood loss drastically penalizes being both

confident and wrong. In the worst case, a prediction that a video is authentic when it is

actually manipulated, or the other way around, will add infinity to your error score. In

practice, if this worst-case happens, the loss is clipped to a very big value. This evalua-

tion system poses an extra challenge, as methods with good performance in metrics like

accuracy, could have very high log-likelihood errors.

4.4 Proposed Method

Our proposed method (Figure 4.2) extracts visual and temporal features from faces by

using a combination of a CNN with an RNN. Because all visual manipulations are located

within face regions, and faces are typically present in a small region of the frame, using

a network that extracts features from the entire frame is not ideal. Instead, we focus on

extracting features only in regions where a face is present. Because networks trained with

general image classification task datasets such as ImageNet [148] have performed well

when transferred to other tasks [149], we use pre-trained backbone networks as our starting
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point. Such backbone networks extract features from faces that are later fed to an RNN to

extract temporal information. The method has three distinct steps: (1) face detection across

multiple frames using MTCNN [150], (2) feature extraction with a CNN, and (3) prediction

estimation with a layer we refer to as Automatic Face Weighting (AFW) along with a Gated

Recurrent Unit (GRU). Our approach is described in detail in the following subsections,

including a boosting and test augmentation approach we included in our DFDC submission.

4.4.1 Face Detection

We use MTCNN [150] to perform face detection. MTCNN is a multi-task cascaded

model that can produce both face bounding boxes and facial landmarks simultaneously.

The model uses a cascaded three-stage architecture to predict face and landmark locations

in a coarse-to-fine manner. Initially, an image pyramid is generated by resizing the input

image to different scales. The first stage of MTCNN then obtains the initial candidates of

facial bounding boxes and landmarks given the input image pyramid. The second stage

takes the initial candidates from the first stage as the input and rejects a large number of

false alarms. The third stage is similar to the second stage but with a larger input image

size and deeper structure to obtain the final bounding boxes and landmark points. Non-

maximum suppression and bounding box regression are used in all three stages to remove

highly overlapped candidates and refine the prediction results. With the cascaded structure,

MTCNN refines the results stage by stage in order to get accurate predictions.

We choose this model because it provides good detection performance on both real and

synthetic faces in the DFDC dataset. While we also considered more recent methods like

BlazeFace [151], which provides faster inferencing, its false positive rate on the DFDC

dataset was considerably larger than that of MTCNN.

We extract faces from 1 every 10 frames for each video. In order to speed up the

face detection process, we downscale the frame by a factor of 4. Additionally, we include

a margin of 20 pixels at each side of the detected bounding boxes in order to capture a

broader area of the head as some regions such as the hair might contain artifacts useful
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to detect manipulations. After processing the input frames with MTCNN, we crop all the

regions where faces were detected and resize them to 224 × 224 pixels.

4.4.2 Network Architecture

Face Feature Extraction

After detecting face regions, a binary classification model is trained to extract features

that can be used to classify the real/fake faces. The large number of videos that have to

be processed in a finite amount of time for the Deepfake Detection Challenge requires net-

works that are both fast and accurate. In this work, we use EfficientNet-b5 [152] as it

provides a good trade-off between network parameters and classification accuracy. Addi-

tionally, the network has been designed using neural architecture search (NAS) algorithms,

resulting in a network that is both compact and accurate. In fact, this network has out-

performed previous state-of-the-art approaches in datasets such as ImageNet [148] while

having fewer parameters.

Since the DFDC dataset contains many high-quality photo-realistic fake faces, discrimi-

nating between real and manipulated faces can be challenging. To achieve a better and more

robust face feature extraction, we combine EfficientNet with the additive angular margin

loss (also known as ArcFace) [153] instead of a regular softmax+cross-entropy loss. Ar-

cFace is a learnable loss function that is based on the classification cross-entropy loss but

includes penalization terms to provide a more compact representation of the categories.

ArcFace simultaneously reduces the intra-class difference and enlarges the inter-class dif-

ference between the classification features. It is designed to enforce a margin between the

distance of the sample to its class center and the distances of the sample to the centers of

other classes in an angular space. Therefore, by minimizing the ArcFace loss, the clas-

sification model can obtain highly discriminative features for real faces and fake faces to

achieve a more robust classification that succeeds even for high-quality fake faces.
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Automatic Face Weighting

While an image classification CNN provides a prediction for a single image, we need

to assign a prediction for an entire video, not just a single frame. The natural choice is to

average the predictions across all frames to obtain a video-level prediction. However, this

approach has several drawbacks. First, face detectors such as MTCNN can erroneously re-

port that background regions of the frames contain faces, providing false positives. Second,

some videos might include more than one face but with only one of them being manipu-

lated. Furthermore, some frames might contain blurry faces where the presence of ma-

nipulations might be difficult to detect. In such scenarios, a CNN could provide a correct

prediction for each frame but an incorrect video-level prediction after averaging.

In order to address this problem, we propose an automatic weighting mechanism to

emphasize the most reliable regions where faces have been detected and discard the least

reliable ones when determining a video-level prediction. This approach, similar to attention

mechanisms [154], automatically assigns a weight, wj , to each logit, lj , outputted by the

EfficientNet network for each jth face region. Then, these weights are used to perform a

weighted average of all logits, from all face regions found in all sampled frames to obtain a

final probability value of the video being fake. Both logits and weights are estimated using

a fully-connected linear layer with the features extracted by EfficientNet as input. In other

words, the features extracted by EfficientNet are used to estimate a logit (that indicates if

the face is real or fake) and a weight (that can provide information of how confident or

reliable is the logit prediction). The output probability, pw, of a video being false, by the

automatic face weighting is:

pw = σ(

∑N
j=1 wjlj∑N
j=1wj

) (4.1)

Where wj and lj are the weight value and logit obtained for the jth face region, re-

spectively and σ(.) is the Sigmoid function. Note that after the fully-connected layer, wj

is passed through a ReLU activation function to enforce that wj ≥ 0. Additionally, a very
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small value is added to avoid divisions by 0. This weighted sum aggregates all the estimated

logits providing a video-level prediction.

Gated Recurrent Unit

The backbone model estimates a logit and weight for each frame without using infor-

mation from other frames. While the automatic face weighting combines the estimates of

multiple frames, these estimates are obtained by using single-frame information. However,

ideally the video-level prediction would be performed using information from all sampled

frames.

In order to merge the features from all face regions and frames, we include a Recurrent

Neural Network (RNN) on top of the automatic face weighting. We use a Gated Recurrent

Unit (GRU) to combine the features, logits, and weights of all face regions to obtain a

final estimate. For each face region, the GRU takes as input a vector of dimension 2051

consisting of the features extracted from EfficientNet (with dimension 2048), the estimated

logit lj , the estimated weighting value wj , and the estimated manipulated probability after

the automatic face weighting pw. Although lj ,wj , pw, and the feature vectors are correlated,

we input all of them to the GRU and let the network itself extract the useful information.

The GRU is composed of 3 stacked bi-directional layers and a uni-directional layer with

a hidden layer with dimension 512. The output of the last layer of the GRU is mapped

through a linear layer and a Sigmoid function to estimate a final probability pRNN of the

video being manipulated.

4.4.3 Training Process

We use a pre-trained MTCNN for face detection and we only train our EfficientNet,

GRU, and the Automatic Face Weighting layers. The EfficientNet is initialized with weights

pre-trained on ImageNet. The GRU and AFW layers are initialized with random weights.

During the training process, we oversample real videos (containing only unmanipulated

faces) to balance the dataset. The network is trained end-to-end with 3 distinct loss func-
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tions: an ArcFace loss with the output of EfficentNet, a binary cross-entropy loss with

the automatic face weighting prediction pw, and a binary cross-entropy loss with the GRU

prediction pRNN .

The ArcFace loss is used to train the EfficientNet layers with batches of cropped faces

from randomly selected frames and videos. This loss allows the network to learn from a

large variety of manipulated and original faces with various colors, poses, and illumination

conditions. Note that ArcFace only trains the layers from EfficientNet and not the GRU

layers or the fully-connected layers that output the AFW weight values and logits.

The binary cross-entropy (BCE) loss is applied at the outputs of the automatic face

weighting layer and the GRU. The BCE loss is computed with cropped faces from frames

of a randomly selected video. Note that this loss is based on the output probabilities of

videos being manipulated (video-level prediction), while ArcFace is a loss based on frame-

level predictions. The BCE applied to pw updates the EfficientNet and AFW weights. The

BCE applied to pRNN updates all weights of the ensemble (excluding MTCNN).

While we train the complete ensemble end-to-end, we start the training process with

an optional initial step consisting of 2000 batches of random crops applied to the ArcFace

loss to obtain an initial set of parameters of the EfficientNet. This initial step provides the

network with useful layers to later train the automatic face weighting layer and the GRU.

While this did not present any increase in detection accuracy during our experiments, it

provided a faster convergence and a more stable training process.

Due to computing limitations of GPUs, the size of the network, and the number of

input frames, only one video can be processed at a time during training. However, the net-

work parameters are updated after processing every 64 videos (for the binary cross-entropy

losses) and 256 random frames (for the ArcFace loss). We use Adam as the optimization

technique with a learning rate of 0.001.
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Fig. 4.3. Diagram of the proposed method including the boosting network
(dashed elements). The predictions of the main and boosting network are
combined at the AFW layer and after the GRUs. We train the main net-
work with the training set and the boosting network with the validation
set.
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4.4.4 Boosting Network

The logarithmic nature of the binary cross-entropy loss (or log-likelihood error) used

at the DFDC leads to large penalizations for predictions both confident and incorrect. In

order to obtain a small log-likelihood error we want a method that has both good detection

accuracy and is not overconfident of its predictions. In order to do so, we use two main ap-

proaches during testing: (1) adding a boosting network and (2) applying data augmentation

during testing.

The boosting network is a replica of the previously described network. However, this

auxiliary network is not trained to minimize the binary cross-entropy of the real/fake clas-

sification, but trained to predict the error between the predictions of our main network

and the ground truth labels. We do so by estimating the error of the main network on the

logit domain for both the AFW and GRU outputs. When using the boosting network, the

prediction outputted by the automatic face weighting layer, pbw, is defined as:

pbw = σ(

∑N
j=1(wjlj + wbjl

b
j)∑N

j=1(wj + wbj)
) (4.2)

Where wj and lj are the weights and logits outputted by the main network and wbj and

lbj , are the weights and logits outputted by the boosting network for the jth input face region

and σ(.) is the Sigmoid function. In a similar manner, the prediction outputted by the GRU,

pbRNN , is:

pbRNN = σ(lRNN + lbRNN) (4.3)

Where lRNN is the logit outputted by the GRU of the main network, lbRNN is the logit

outputted by the GRU of the boosting network, and σ(.) is the Sigmoid function.

While the main network is trained using the training split of the dataset, described in

section 5.3, we train the boosting network with the validation split.

Figure 4.3 presents the complete diagram of our system when including the boosting

network. The dashed elements and the symbols with superscripts form part of the boosting

network. The main network and the boosting network are combined at two different points:
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at the automatic face weighting layer, as described in equation 4.2, and after the gated

recurrent units, as described in equation 4.3.

4.4.5 Test Time Augmentation

Besides adding the boosting network, we perform data augmentation during testing. For

each face region detected by the MTCNN, we crop the same region in the 2 previous and

2 following frames of the frame being analyzed. Therefore we have a total of 5 sequences

of detected face regions. We run the network within each of the 5 sequences and perform

a horizontal flip in some of the sequences randomly. Then, we average the prediction of

all the sequences. This approach helps to smooth out overconfident predictions: if the

predictions of different sequences disagree, averaging all the probabilities leads to a lower

number of both incorrect and overconfident predictions.

4.5 Experimental Results

We train and evaluate our method with the DFDC dataset, described in section 5.3.

Additionally, we compare the presented approach with 4 other techniques. We compare

it with the work presented in [140] and a modified version that only process face regions

detected by MTCNN. We also evaluate two CNNs: EfficientNet [152] and Xception [147].

For these networks, we simply average the predictions for each frame to obtain a video-

level prediction.

We use the validation set to select the configuration for each models that provides the

best balanced accuracy. Table 4.1 presents the results of balanced accuracy. Because it is

based on extracting features on the entire video, Conv-LSTM [140] is unable to capture

the manipulations that happen within face regions. However, if the method is adapted to

process only face regions, the detection accuracy improves considerably. Classification net-

works such as Xception [147], which provided state-of-the-art results in FaceForensics++

dataset [131], and EfficientNet-b5 [152] show good accuracy results. Our work shows
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that by including an automatic face weighting layer and a GRU, the accuracy is further

improved.

Table 4.1.
Balanced accuracy of the presented method and previous works.

Method Validation Test

Conv-LSTM [140] 55.82% 57.63%

Conv-LSTM [140] + MTCNN 66.05% 70.78%

EfficientNet-b5 [152] 79.25% 80.62%

Xception [147] 78.42% 80.14%

Ours 92.61% 91.88%

Additionally, we evaluate the accuracy of the predictions at every stage of our method.

Table 4.2 shows the balanced accuracy of the prediction obtained by the averaging the logits

predicted by EfficientNet, lj (logits), the prediction of the automatic face weighting layer,

pw (AFW), and the prediction after the gated recurrent unit, pRNN (GRU). We can observe

that every stage increases the detection accuracy, obtaining the highest accuracy with the

GRU prediction.

Table 4.2.
Balanced accuracy of at different stages of our method.

Method Validation Accuracy

Ours (logits) 85.51%

Ours (AFW) 87.90%

Ours (GRU) 92.61%

Figure 4.4 shows some examples of correctly (bottom) and incorrectly (top) detected

manipulations. We observed that the network typically fails when faced with highly-
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realistic manipulations that are performed in blurry or low-quality images. Manipulations

performed in high-quality videos seem to be properly detected, even the challenging ones.

Fig. 4.4. Examples of faces with manipulations from DFDC. The images
in the top are incorrectly classified by the network. The bottom images are
correctly classified.

We evaluate the effect of using the boosting network and data augmentation during

testing. In order to so, we use the private testing set on the Kaggle system and report our

log-likelihood error (the lower the better). Table 4.3 shows that by using both the boosting

and test augmentation we are able to decrease our log-likelihood down to 0.321. This place

the method in the position 117 of 2275 teams (5.1%) of the competition’s public leader-

board.
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Table 4.3.
The log-likelihood error of our method with and without boosting network
and test augmentation.

Method Log-likelihood

Baseline 0.364

+ Boosting Network 0.341

+ Test Augmentation 0.321
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5. SATELLITE IMAGE MANIPULATION DETECTION

5.1 Overview

Satellite imagery is used in a wide range of applications such as regional infrastructure

levels assessment [155, 156], agricultural crops classification [157, 158], forest characteri-

zation [159], scene classification [160, 161], soil moisture estimation [162, 163] and mete-

orological analysis, including precipitation prediction [164], thunderstorm detection [165]

and wind speed and direction estimation [166]. These applications are possible thanks

to the exponentially growing number of commercial satellites [167] (with many of those

having imaging capabilities). Many image datasets captured by satellites are available to

the public [168–170], such as Planet Labs or the European Space Agency image datasets

[171, 172].

Editing tools like GIMP [116] or Photoshop [115] can be used to forge and manipulate

satellite images in a realistic manner. Furthermore, manipulation generation can be auto-

mated by using machine learning techniques [173], removing the need for manual editing.

Such manipulation methods, combined with the ease of sharing data on the internet, can

difficult the institutions and companies that make use of images captured by satellites. In-

deed, several instances of manipulated images have surged in recent years, including the

nighttime flyovers of India during the Diwali festivals [174], the Malaysia Airlines Flight

incident [175], and the images of the spliced fake Chinese bridge [176].

There is a wide range of manipulations techniques that can be used to forge satellite

images. Some examples include splicing [177] (cropping and pasting regions from dif-

ferent image sources), copy-move [118] (cropping and pasting regions within the same

image), shadow removal [119], and machine learning-based forgeries, often generated us-

ing Generative Adversarial Networks (GANs) [173]. Multiple methods to detect image

manipulations have been proposed in recent years [178–180]. However, these methods are
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typically designed for images captured with consumer cameras and fail with images from

other imaging devices, such as satellite imagery, with different compression schemes, post-

processing, sensors, and color channels. Therefore, the detection of manipulations within

satellite imagery still remains an unsolved problem that requires the development of new

detection techniques that are accurate regardless of the nature of the manipulations and

image capturing technology.

In this work, we show how PixelCNN [181] and Gated PixelCNN [182], two generative

autoregressive models, can be used to detect pixel-level manipulations. These neural net-

works, commonly used to generate new images, can model the distribution of a pixel given

a set of previously seen pixels (neighboring pixels). These neural networks can assign a

conditional likelihood value to a given pixel, and in turn, a likelihood value to a complete

image. Through sampling from the pixel distribution, new images can be generated in a

sequential fashion. Furthermore, manipulated pixels can be detected by selecting the pixels

with a low likelihood assigned by the neural network. By averaging the likelihood esti-

mated by an ensemble of multiple networks, the method is able to obtain a more accurate

manipulation localization. Figure 5.1 presents the proposed ensemble where multiple net-

works process the input image and its flipped and rotated versions. Then, all predictions are

averaged in order to obtain a robust prediction. Finally, we evaluate the localization preci-

sion of the presented method using a dataset composed of images with splicing forgeries,

first introduced in [183].

The chapter is organized as follows. In section 5.2 we present previous work on manip-

ulation detection and autoregressive models. In section 5.3 we describe the dataset com-

posed by images captured by a satellite. In section 5.4 we describe the presented method.

In section 5.5 we show the experimental results.

5.2 Related Work

Many techniques to detect a wide range of image manipulations have been previously

presented. Some examples include techniques that detect manipulations by using embed-
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Fig. 5.1. Proposed ensemble of PixelCNNs: multiple models process the
input image after applying flip and rotations. The prediction of every net-
work is averaged obtaining a final robust and accurate likelihood estimate
for each pixel of the image.
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ded meta-data [125], finding double-JPEG compression artifacts [184], using neural net-

works with domain adaptation [185], using deepfakes detection neural networks [186] or

using saturation cues [187]. Several methods have proved to accurately detect spliced ob-

jects within images captured with consumer-level cameras [177, 188]. The method pre-

sented in [177] extracts a fingerprint from the camera model used to capture the image

in order to suppress the scene content and enhance camera model-related artifacts. The

method presented in [188] makes use of a feature-based technique that can detect splicing in

images without any prior information of the nature of the manipulations by detecting traces

left locally by processing steps within the capturing device. Unfortunately, many of these

methods perform poorly when applied to satellite imagery. The image acquisition process

differs between consumer cameras (including smartphone cameras) and satellites: different

sensor technologies and post-processing steps such as orthorectification, radiometric cor-

rections, and compression are used. Because of these differences, methods designed for

consumer cameras do not transfer properly to satellite imagery.

Recently, multiple methods designed to detect forgeries in satellite imagery have been

introduced. These include methods using hand-crafted features, like watermarking-based

techniques [189], and data-driven machine learning-based approaches including super-

vised [190] and unsupervised [183, 191, 192] methods. While supervised methods tend

to perform better, they might not generalize well to types of manipulations that were not

present in the training set. Therefore, unsupervised methods, which don’t make use of ma-

nipulated data during training, are preferred. The supervised method presented in [190]

makes use of a conditional GAN [193] to detect and localize splicing forgeries in satellite

images by estimating a forgery mask. The work introduced in [191] is based on a GAN

that encodes patches from the input image into a low dimensional vector that is later used

by a one-class support vector machine (SVM) to detect if a patch contains forgeries or

not. The method presented in [192], named Sat-SVDD, is a kernel-based one-class clas-

sification method that detects splicing forgeries by using a modified Support Vector Data

Description (SVDD) [194]. The SVDD encodes each patch from the original images (with-

out manipulations) to a latent space within a hypersphere. During testing, the latent vectors
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that are placed outside the hypersphere are considered as patches containing a forgery. The

method in [183] makes use of a deep belief network (DBN) [195] composed of two stacked

layers of restricted Boltzmann machines (RBM) [196] parametrized with uniform distribu-

tions. The deep belief network is used to reconstruct patches extracted from the image.

Then, the reconstruction error is used to detect if manipulations are present: patches with a

reconstruction error higher than a threshold are considered as forgeries.

In this work, we use generative autoregressive models, specifically PixelCNN [181]

and Gated PixelCNN [182], which are described in the following sections. Many autore-

gressive generative models have been presented in recent years [181, 197–199]. Autore-

gressive models are able to estimate the distribution of an image by estimating the con-

ditional distribution of each pixel. The distribution of each pixel is estimated given its

neighboring pixels. Then, the distribution of an image can be expressed as the product

of the conditional distributions. These models make use of masked convolutions in order

to respect autoregressive constraints: each pixel is reconstructed only from previous pix-

els in a given ordering. PixelCNN and its recurrent-based counterpart PixelRNN [181],

showed that autoregressive modeling can be successfully used to generate new images.

Many variations have been presented such as Gated PixelCNN [182], PixelCNN++ [200],

PixelSNAIL [201]. Furthermore, the same approach has been extended to video model-

ing in Video Pixel Network (VPN) [202], variational autoencoders in PixelVAE [203] and

PixelVAE++ [204], to generative adversarial networks in PixelGAN [205] and to Markov

random fields in PixelMRF [206].

Some works have studied the capability of likelihood models to detect outliers. The

work presented in [207] makes use of the Watanabe-Akaike Information Criterion (WAIC)

[208] to detect outliers. The work in [209] normalizes the likelihood estimate of an image

with a measure of complexity to detect outliers. However, most of these approaches focus

on image-level out of distribution (OoD) estimates (also referred to as anomaly detection),

and likelihood methods to detect pixel-level manipulations remain unexplored.
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5.3 Dataset

In order to train and evaluate our method, we use the dataset first introduced in [183].

This dataset is composed of orthorectified satellite images including regions of Slovenia

taken from the Sentinel program [210]. The images have a resolution of 1000×1000 pixel.

We use a subset of the dataset consisting of 98 original images (without manipulations) for

training and 500 manipulated images with their corresponding ground truth masks for test-

ing. Each manipulated image has one spliced object randomly selected among 19 different

objects, including clouds, planes, smoke, and drones. The objects are spliced with different

locations, rotation angles and sizes including 16 × 16, 32 × 32, 64 × 64, 128 × 128, and

256× 256 pixels. Figure 5.2 presents some examples of the dataset.

Fig. 5.2. Examples of images (left) from the dataset and its corresponding
manipulation masks (right).
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5.4 Proposed Method

5.4.1 Autoregressive Models

PixelCNN [181] and Gated PixelCNN [182] are neural networks composed by multiple

fully-convolutional residual layers and are trained to model the distribution of an image x

as the product of the conditional distributions of every pixel xi:

p(x) =
L∏
i=1

p(xi|x1, ..., xi−1) (5.1)

Where x is an image of L pixels and xi is the ith pixel of the image. The predicted

distribution of every pixel xi is conditional to the previous pixels x1, ..., xi−1 in a raster scan

order: row by row and pixel by pixel within every row (left to right and top to bottom).

In RGB images, each color channel (R, G, B) is modeled successively: first the red

channel, then the green channel conditioned to the red, and finally the blue channel condi-

tioned to the red and green. Therefore, the conditional probability of an RGB pixel is as

follows:

p(xi|x<i) = p(xi|x1, ..., xi−1) =

p(xi,R|x<i)p(xi,G|x<i, xi,R)p(xi,B|x<i, xi,R, xi,G)
(5.2)

The autoregressive constraints are achieved by masking the convolutions accordingly,

both within spatial dimensions and within features maps. The use of convolutions allows

the network to perform the likelihood predictions in parallel during training and testing but

the image generation remains a sequential process.

While our method is designed for RGB images, it is common for satellites to capture

multi-spectral images containing more than 3 channels. The presented approach can be

easily extended to any number of channels by assigning some arbitrary order within the

channels and estimating the conditional probability as follows:

p(xi|x<i) =
C∏
j=1

p(xi,j|x<i, xi,1, ..., xi,j−1) (5.3)
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Where xi,j is the ith pixel from the jth channel of an image with a total of K pixels and

C channels.

PixelCNN, and some of its variations, models the conditional probability p(xi|x<i) as a

multinomial (categorical) distribution through a softmax layer where each channel within

the image can take a value from 0 to 255. The network takes as input an image with

N × M × 3 dimensions (with N × M = L) and outputs a prediction with dimension

N ×M ×3×256. While the original PixelCNN is designed to work with 8-bit images, the

method can be adapted to work with images with different bit depths by properly changing

the range of values that the softmax layer can take. For example, when working with 11-bit

images, the softmax layer should output values from 0 to 2047. This is especially useful

for satellite imagery as many datasets have bit depths higher than 8-bits.

5.4.2 Generative Ensembles

We can obtain more accurate and robust predictions by combining multiple networks

within an ensemble. We average the predictions of multiple networks with different pa-

rameters and scan orderings. In order to obtain multiple model parameters, we save the

parameters of the network at different epochs during the training process. The parameters

θ of the network at each training epoch can be seen as an approximate proxy of posterior

samples of p(θ|D) (the distribution of the model parameters given the training set D). To

use different scan orderings during the autoregressive modeling (the order in which neigh-

boring pixels are observed) we can apply different masks to the convolutional filters, or

equivalently, rotate and flip the input image. Figure 5.3 shows the 8 different orderings

used and the transformations (flip and rotate) applied to the input image and the corre-

sponding convolutional mask to obtain equivalent results.

The average of the prediction of multiple networks with different parameters and scan

order can be understood as a Monte Carlo approximation of the marginal likelihood of each

pixel p(xi), where the effect of the model parameters θ and scan ordering x<i are smoothed

out:
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p(xi) = Eθ,x<i
[pθ(xi|x<i)] ≈

1

K

∑
ω∈Ω

pθ(xi|x<i) (5.4)

Where ω are samples of model parameters and scan ordering pairs (θ,x<i) from a set Ω

of size |Ω| = K. In other words, the average of the prediction of K networks with different

parameters and scan orderings are used to approximate the marginal likelihood p̂(xi) ≈

p(xi). In order to detect manipulations, we can use the negative log-likelihood, which in

turn is the information content (or Shannon information) quantity I(xi) = − log p(xi),

approximated as:

Î(xi) = − log[
1

K

∑
ω∈Ω

pθ(xi|x<i)] (5.5)

A pixel is considered to be manipulated if Î(xi) > T , where T is experimentally se-

lected. Ideally, the model will assign high likelihood values (and thus small information

values) to pixels that have not been manipulated, and small likelihood (and high informa-

tion) values to manipulated pixels.

5.4.3 Training and Testing Setup

In this work, we use a PixelCNN composed of 7 residual blocks and a Gated Pixel-

CNN composed of 6 gated blocks. We train the networks with the Adam optimizer with a

learning rate of 0.001. During the training process, we randomly rotate 0, 90, 180, or 270

degrees and horizontally flip the images. We train the network for 1000 epochs and we

store the model parameters every 20 epochs.

During testing, the ensemble is composed of K = 50 different models. We select

50 model parameters uniformly distributed from epoch 30 to epoch 1000 of the training

process. For each model parameters we use a scan ordering randomly selected from the 8

different scan orderings shown in figure 5.3.
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Fig. 5.3. Different convolutional masks and the respective transformation
(flipping and rotation) performed to the input image to obtain the equiva-
lent effect.

5.5 Experimental Results

We train and evaluate our method with the dataset presented in Section 5.3. The en-

semble of networks is trained only with original images and no manipulated images are

used during the training process. In order to evaluate the localization performance of the

presented method, we compute the area under the curve (AUC) and Precision/Recall (P/R)

curves by changing the threshold T used to the estimated manipulation mask. Table 5.1

presents our results compared with previous methods. Different Precision/Recall are shown

for each of the different sizes of the splice objects used. For example, P/R32 is the AUC of

the P/R curve for manipulated images with spliced objects of size 32× 32.

Our experimental results show that the generative ensemble of PixelCNNs and Gated

PixelCNNs outperform previously presented methods. While most of the methods fail



113

to detect objects smaller than 64 × 64, the presented generative ensembles are able to

properly detect small forgeries. While methods such as [191], [192], and [183] produce

estimates within patches of the input image, and therefore lacking enough resolution to

detect small forgeries, PixelCNN and Gated PixelCNN process the whole image in a fully-

convolutional manner and detects manipulations in a pixel-level. Figure 5.4 provides some

visual examples of the estimated manipulation mask (the information content Î(xi)) for

the presented methods. The estimated manipulation mask shows that the method is able

to properly distinguish between areas containing splicing manipulations and areas without

forgeries.

We can observe that Gated PixelCNN provides more accurate results than the regular

PixelCNN network, especially for objects smaller than 64 × 64 pixels. These results are

aligned with previous works [182] which have shown that Gated PixelCNN is able to model

the image distribution of the training images more accurately (with a lower negative log-

likelihood score) than PixelCNN.
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Fig. 5.4. Example of input images (left), manipulation masks (center), and
estimated negative loglikelihood Î(xi) (right).
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5.6 Splicing, Background, And Likelihood Analysis

We perform an analysis to study how the presented method performs when faced with

images containing spliced objects and backgrounds with different visual features. To do so,

we perform two experiments: First, we evaluate the ensemble of Gated PixelCNNs with

subsets of the test set divided by the visual complexity of the background, and second, we

evaluate the proposed method with the test set divided by the appearance of the spliced

objects. Additionally, we perform both experiments using two different functions of the

likelihood estimates.

In order to detect manipulations, we compare two functions of the estimated conditional

likelihood. The first function is the approximate information content, described in previous

sections:

Î(xi) = − log[
1

K

∑
ω∈Ω

pθ(xi|x<i)] ≈ − log E[pθ(xi|x<i)] = − log p(xi) (5.6)

Additionally, we evaluate another likelihood metric, which we refer to as Ĵ(xi), where

the averaging is performed in the logit space (after the log operation), instead of in the

probability space (as in Î(xi)). Furthermore, the standard deviation is subtracted to obtain

a more robust likelihood-based metric:

Ĵ(xi) = L(xi)− S(xi) (5.7)

Where L(xi), presented in equation 5.8, is the average of negative loglikelihoods, and

S(xi), presented in equation 5.9, is the standard deviation of negative loglikelihoods.

L(xi) =
1

K

∑
ω∈Ω

− log pθ(xi|x<i) ≈ −E[log pθ(xi|x<i)] (5.8)

S(xi) =

√
1

K − 1

∑
ω∈Ω

(− log pθ(xi|x<i)− L(xi))2 ≈
√

Var[log pθ(xi|x<i)] (5.9)

Note that for a random variable a, E[log a] ≈ log(E[a]) − Var[a]
2E[a]2

. Therefore, for small

values of S(xi), we have that Î(xi) ≈ Ĵ(xi). Using metrics based on averaged negative
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loglikelihood estimates for out-of-distribution has been previously explored in previous

work including [207].

The first experiment evaluates the detection performance of the proposed method with

different types of background images. We divide the test set in 3 subsets composed by

background images that are simple (lack texture and have small contrast), regular (images

with some texture and small regions with high contrast), and complex (images highly tex-

tured and with high contrast regions). For each subset of images, we compute the AUC of

the Precision/Recall curves, shown in table 5.2. The results presented in the table show that

the performance decreases as the complexity of the background increases. The main rea-

son for this decrease in the AUC score is an increase of false positives where the network

detects areas with high contrast or texture as possible manipulations. Results show that the

Î(xi) metric provides better manipulation detection results.

Figure 5.5 shows examples of images with simple (upper rows, 1), regular (middle

rows, 2), and complex backgrounds (bottom rows, 3). For each input image (a), the ground

truth manipulation mask (b) is shown. Additionally, the figure shows the estimated Î(xi)

(c), its thresholded version Î(xi) > Ti (d), the estimated Ĵ(xi) (e), and its thresholded

version Ĵ(xi) > Tj (f). Ti and Tj are selected per each image in order to obtain the

optimal F-1 score. We can observe that while Î(xi) and Ĵ(xi) have different dynamic

ranges (Ĵ(xi) tends to provide estimates with a larger dynamic range), after thresholding

both estimates are similar. The figures show that the manipulations are accurately detected

in images containing a simple background, however, the network struggles to properly

detect manipulations in complex background images. Specifically, the proposed method

properly detects the boundaries of manipulations but fails in differentiating between the

inside and outside of the spliced object, as shown in the examples of the middle and bottom

rows.

The second experiment consists of evaluating the proposed method with subsets of

images containing different types of objects. We divide the testing set in four different

subsets: images containing gray planes, gray clouds, white planes, and yellow clouds. We

compute the AUC of the Precision/Recall curve, shown in table 5.3, and show some visual
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Table 5.2.
AUC scores (%) of the P/R curves for the localization task with testing
images containing backgrounds of different complexity.

Method Simple Regular Complex

Ĵ(xi) 69.6 62.6 44.5

Î(xi) 75.1 66.7 45.2
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Fig. 5.5. Example of manipulated images containing backgrounds with
different level of complexity: simple background (1 - upper rows), regular
background (2 - middle rows), and complex background (3 - bottom rows).
From left to right, the figure includes: (a) input image, (b) ground truth
manipulation mask, (c) Î(xi), (d) Î(xi) > Ti, (e) Ĵ(xi), and (f) Ĵ(xi) >
Tj .
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examples in figure 5.6, and 5.7. The AUC values from table 5.3 show that the performance

of the method varies largely depending on the type of object present in the image. Objects

composed by darker colors, such as gray planes and gray clouds, tend to have a visual

appearance similar to the background images. On the other hand, objects like white planes

or yellow clouds are more visually distinctive and easier to detect.

Figure 5.6 and figure 5.7 show multiple examples of detected manipulations. Figure 5.6

shows examples of images containing gray clouds and gray planes. The images show that

the proposed method is capable to properly detect the edges of the spliced objects, however,

it tends to not properly classify the pixels inside the spliced objects as manipulated. Figure

5.7 shows examples of manipulated images containing white planes and yellow clouds

which are more visually distinct from the background images. The images show how the

network is capable to properly detect all the pixels of the spliced object as manipulated

pixels. These visual examples are aligned with the quantitative results shown in table 5.3.

Both experiments show that autoregressive-based methods can accurately detect edges

of splicing manipulations. However, the proposed method struggles to classify the pixels

inside the splicing manipulation as forged pixels when faced with challenging backgrounds

or spliced objects. Future work could include using the proposed method as an initial step of

edge manipulation detection, combined with a post-processing step to accurately segment

each pixel of the spliced object.

Table 5.3.
AUC scores (%) of the P/R curves for the localization task with testing
images containing different spliced objects.

Method Gray Planes Gray Cloud White Planes Yellow Clouds

Ĵ(xi) 31.9 47.1 66.9 89.7

Î(xi) 30.4 49.7 69.1 94.1
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Fig. 5.6. Example of manipulated images containing (1) gray clouds, and
(2) gray planes. From left to right, the figure includes: (a) input image, (b)
ground truth manipulation mask, (c) Î(xi), (d) Î(xi) > Ti, (e) Ĵ(xi), and
(f) Ĵ(xi) > Tj .
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Fig. 5.7. Example of manipulated images containing (3) white planes, and
(4) yellow clouds. From left to right, the figure includes: (a) input image,
(b) ground truth manipulation mask, (c) Î(xi), (d) Î(xi) > Ti, (e) Ĵ(xi),
and (f) Ĵ(xi) > Tj .
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6. SUMMARY AND FUTURE WORK

6.1 Overview

In this thesis, we have introduced multiple problems in the field of multimedia analytics

and solutions based on new machine learning methods.

In chapter 2, we stated the problem of logo detection and presented multiple solutions.

We first showed that object detection networks such as Faster R-CNN can be successfully

adapted to detect logos in the wild. Additionally, we showed that by combining object

detection networks with image classification networks such as DenseNet, the detection

accuracy can be further improved. In the scenario where the number of training samples

is small or non-existent, image synthesis techniques can be applied to create new training

samples. We presented two different techniques to create new images. The first technique

consists of randomly splicing logo images in a background image. The second technique

improves upon the first one and extracts information of the background image in order to

splice logo images in a realistic manner. In combination with image synthesis, we showed

that bootstrapping techniques can be used to further increase the logo detection accuracy.

As logos are largely found on the internet, using weakly-labeled images from the internet

is a useful approach for logo detection.

However, there is still a large gap in the accuracy of object detection methods trained

with synthetic images and object detection methods trained with real images. Therefore,

more research needs to be done in image synthesis techniques, in order to create realis-

tic images with the same statistical properties as the real-world images. It is important

to analyze which aspects of the image synthesis process (i.e. location of logos, distor-

tions, and transformations applied to the foreground and background images, statistical

variation...) are determining factors when it comes to train networks that generalize well.

Methods that find image synthesis pipelines in a data-driven manner instead of ad-hoc
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hand-crafted pipelines could generate more realistic images that in turn might provide a

significant increase in detection accuracy. Furthermore, semi-supervised, self-supervised,

and unsupervised techniques (e.g. triplet-loss, Siamese networks...) coupled with few-shot

and one-shot learning methods, should be included in the training process in order to fully

benefit of a large number of unlabeled images and videos containing logos available on the

internet.

In chapter 3, we presented the problem of pose estimation. We introduced the Multi-

View Matching Network (MV-Net) and the Single View Matching Network (SV-Net) to

perform pose estimation and tracking. The pair of networks provides an initial estimate

of the pose and then it refines the pose in an iterative manner. The same iterative process

can be used to track the pose within a video. Additionally, we showed how photorealistic

rendering techniques can be used to generate datasets that can be used to train the neural

networks, removing the need for manually annotating the 6D pose of images.

While these techniques provide promising results, most AR applications require to work

in real-time and typically in smartphone devices. These devices have memory and com-

puting limitations and require low-weight highly optimized neural networks. Therefore,

there is a need for neural networks that are highly accurate while being compact and fast.

Neural architecture search (NAS) has proved to be highly successful in image classifica-

tion and object detection task. Future work includes exploring NAS techniques to designed

novel neural networks for pose estimation. Furthermore, neural network-based techniques

to render images from 3D information could be coupled with 6D pose estimation methods

in order to further increase the estimation accuracy.

In chapter 4, we presented a new method to detect face manipulations within videos.

We showed that combining convolutional and recurrent neural networks achieves high de-

tection accuracies on the DFDC dataset. We described a method to automatically weight

different face regions and showed that boosting techniques can be used to obtain more ro-

bust predictions. The method processes videos quickly (in less than eight seconds) with

a single GPU. Although the results of our experiments are promising, new techniques to

generate deepfake manipulations emerge continuously. The modular nature of the proposed
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approach allows for many improvements, such as using different face detection methods,

different backbone architectures, and other techniques to obtain a prediction from features

of multiple frames.

Furthermore, this work focuses on face manipulation detection and dismisses any anal-

ysis of audio content which could provide a significant improvement of detection accuracy

in future works. Incorporating adversarial losses during training and making use of dis-

criminators from GANs could improve the manipulation detection accuracy. Additionally,

NAS techniques could be applied to obtain more compact and accurate architectures.

In chapter 5, we presented a new method to detect manipulations within satellite im-

ages. The wide range of manipulations that can be applied to images and the large diversity

of imaging technologies used in satellites makes their detection a challenging problem

that still remains unsolved. We introduced an unsupervised splicing detection method. The

method consists of an ensemble of generative autoregressive models that estimates the pixel

distribution of the image. The method is capable to accurately detect manipulated pixels

by selecting the regions of the image where the network predicts a low likelihood value.

The presented method is fully unsupervised and doesn’t use any prior knowledge from the

applied manipulation during training. Our experiments show that the localization accuracy

of our method surpasses the previous works and shows that generative models, specially

autoregressive-based networks, provide a promising approach to detect pixel-level manip-

ulations.

Future work includes exploring different generative approaches in order to detect ma-

nipulations. Methods that estimate the exact likelihood (autoregressive models, flow-based

models, etc), an approximate likelihood (variational autoencoders) or an implicit likelihood

(generative adversarial models) are well fitted to detect manipulations within images. By

combining multiple approaches the manipulation detection accuracy might be further im-

proved. For example, autoregressive likelihood models could be improved by including

adversarial losses.
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6.2 Complete List Of Publications

Following is an exhaustive list of the publications in which I have been involved during

my Ph.D. studies at Purdue University:

1. D. Mas Montserrat, Q. Lin, J. Allebach, and E. J. Delp, “Training object de- tection

and recognition CNN models using data augmentation”, Proceedings of the IS&T

International Symposium on Electronic Imaging, January 2017, Burlingame, CA.

2. D. Mas Montserrat, Q. Lin, J. Allebach, and E. J. Delp, “Logo detection and recog-

nition with synthetic images”, Proceedings of the IS&T International Symposium on

Electronic Imaging, January 2018, Burlingame, CA.

3. J. Choe, D. Mas Montserrat, A. J. Schwichtenberg, and E. J. Delp, “Sleep analysis

using motion and head detection”, Proceedings of the IEEE Southwest Symposium

on Image Analysis and Interpretation, April 2018, Las Vegas, NV.

4. D. Mas Montserrat, Q. Lin, J. Allebach, and E. J. Delp, “Scalable logo detection

and recognition with minimal labeling”, Proceedings of the IEEE International Con-

ference on Multimedia Information Processing and Retrieval, pp. 152-157, April

2018, Miami, FL.

5. S. K Yarlagadda, D. Guera, D. Mas Montserrat, F. M. Zhu, E. J. Delp, P. Bestagini

and S. Tubaro, “Shadow removal detection and localization for forensics analysis”,

Proceedings of the IEEE International Conference on Acoustics, Speech and Signal

Processing, May 2019, Brighton, United Kingdom.

6. D. Mas Montserrat, J. Chen, Q. Lin, J. Allebach, and E. J. Delp, “Multi-View

Matching Network for 6D Pose Estimation”, Proceedings of the IEEE Computer

Vision and Pattern Recognition Workshops, June 2019, Long Beach, CA.

7. Q. Lin, D. Mas Montserrat, J. Allebach, and E. J. Delp, “Selecting training symbols

for symbol recognition”, WO2019152017A1, 2019-08-08, PCT/US2018/016211.
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8. D. Mas Montserrat, C. Bustamante and A. Ioannidis, “Class-Conditional VAE-

GAN for Local-Ancestry Simulation”, Machine Learning for Computational Biology

at NeurIPS, December 2019, Vancouver, Canada.

9. J. Chen, D. Mas Montserrat, Q. Lin, E. J. Delp and J. P. Allebach, “Extra FAT:

A photorealistic dataset for 6D object pose estimation”, Proceedings of the IS&T

International Symposium on Electronic Imaging, January 2020, Burlingame, CA.

10. D. Mas Montserrat, A. Kumar, C. Bustamante and A. Ioannidis, “Addressing An-

cestry Disparities in Genomic Medicine: A Geographic-Aware Algorithm”, Inter-

national Conference on Learning Representations Workshops, April 2020, Addis

Ababa, Ethiopia.

11. A. Kumar, D. Mas Montserrat, C. Bustamante and A. Ioannidis, “XGMix: Local-

Ancestry Inference with Stacked XGBoost”, International Conference on Learn-

ing Representations Workshops, April 2020, Addis Ababa, Ethiopia (Best Paper

Award).

12. D. Mas Montserrat, C. Bustamante and A. Ioannidis, “LAI-Net: Local-Ancestry

Inference With Neural Networks”, Proceedings of the IEEE International Conference

on Acoustics, Speech and Signal Processing, May 2020, Barcelona, Spain.

13. J. Horváth, D. Mas Montserrat, H. Hao and E. J. Delp, “Manipulation Detection in

Satellite Images Using Deep Belief Networks”, Proceedings of the IEEE Computer
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[191] S. Kalyan Yarlagadda, D. Güera, P. Bestagini, F. Zhu, S. Tubaro, and E. Delp, “Satel-
lite image forgery detection and localization using gan and one-class classifier,” Pro-
ceedings of the IS&T International Symposium on Electronic Imaging, vol. 2018,
no. 7, pp. 214–1–214–9, February 2018, Burlingame, CA.

[192] J. Horvath, D. Guera, S. Kalyan Yarlagadda, P. Bestagini, F. Maggie Zhu, S. Tubaro,
and E. J. Delp, “Anomaly-based manipulation detection in satellite images,” Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition Work-
shops, pp. 62–71, June 2019, Long Beach, CA.

[193] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with con-
ditional adversarial networks,” Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5967–5976, July 2017, Honolulu, HI.

[194] D. M. J. Tax and R. P. W. Duin, “Support vector data description,” Machine Learn-
ing, vol. 54, no. 1, pp. 45–66, January 2004.

[195] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief
nets,” Neural Computer, vol. 18, no. 7, July 2006.

[196] P. Smolensky, Information Processing in Dynamical Systems: Foundations of Har-
mony Theory. Cambridge, MA: MIT Press, 1986.

[197] M. Germain, K. Gregor, I. Murray, and H. Larochelle, “MADE: Masked autoen-
coder for distribution estimation,” Proceedings of the International Conference on
Machine Learning, pp. 881–889, July 2015, lille, France.

[198] H. Larochelle and I. Murray, “The neural autoregressive distribution estimator,” Pro-
ceedings of the International Conference on Artificial Intelligence and Statistics, pp.
29–37, April 2011, Lauderdale, FL.

[199] K. Gregor, I. Danihelka, A. Mnih, C. Blundell, and D. Wierstra, “Deep autoregres-
sive networks,” Proceedings of the 31st International Conference on Machine Learn-
ing, vol. 32, no. 2, pp. 1242–1250, June 2014, Bejing, China.

[200] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “PixelCNN++: Improving
the pixelcnn with discretized logistic mixture likelihood and other modifications,”
arXiv preprint arXiv:1701.05517, 2017.

[201] X. Chen, N. Mishra, M. Rohaninejad, and P. Abbeel, “Pixelsnail: An improved
autoregressive generative model,” arXiv preprint arXiv:1712.09763, 2017.

[202] N. Kalchbrenner, A. van den Oord, K. Simonyan, I. Danihelka, O. Vinyals,
A. Graves, and K. Kavukcuoglu, “Video pixel networks,” Proceedings of the Inter-
national Conference on Machine Learning, pp. 1771–1779, August 2017, Sydney,
Australia.

[203] I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taiga, F. Visin, D. Vazquez, and
A. Courville, “PixelVAE: A latent variable model for natural images,” arXiv preprint
arXiv:1611.05013, 2016.

[204] H. Sadeghi, E. Andriyash, W. Vinci, L. Buffoni, and M. H. Amin, “Pixelvae++:
Improved pixelvae with discrete prior,” arXiv preprint arXiv:1908.09948, 2019.



143

[205] A. Makhzani and B. J. Frey, “Pixelgan autoencoders,” pp. 1975–1985, December
2017, Long Beach, CA.

[206] K. Migdol and J. Ventura, “PixelMRF: A Convolutional Markov Random Field for
Image Generation,” http://cs.uccs.edu/ jkalita/work/reu/REU2018/14Migdol.pdf.

[207] H. Choi, E. Jang, and A. A. Alemi, “WAIC, but why? generative ensembles for
robust anomaly detection,” arXiv preprint arXiv:1810.01392, 2018.

[208] S. Watanabe, “Asymptotic equivalence of bayes cross validation and widely applica-
ble information criterion in singular learning theory,” Journal of Machine Learning
Research, vol. 11, no. December, pp. 3571–3594, 2010.
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