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PREFACE

“The task of the theorist is to bring order into the chaos of the phenomena

of nature, to invent a language by which a class of these phenomena can be

described efficiently and simply.” – Clifford Truesdell (1965).

Theory is the language in which nature speaks to us. Theory provides the bridge of

abstraction between nature and human perception. A surgeon wields his scalpel, and a

butcher wields his knife. Likewise, scientists postulate theories to deconstruct nature, with

all the vagaries of her mind and the fickleness of her mien. This makes the theoretical

scientist a visionary and a prophet, who takes the first and the most significant step in the

taming the force of nature and making it a tool for being harnessed by rest of the humanity.

In this thesis, under the mentorship of my adviser Dr. Ivan Christov, we present solu-

tions to engineering problems involving the phenomena of fluid–structure interaction at the

microscale. Specifically, we formulate pressure drop–flow rate relationship for conduits

of different shapes, like rectangular and cylindrical, conveying fluids of different rheologi-

cal models, Newtonian and generalized Newtonian, and composed of different constituent

materials, linearly elastic, hyperelastic, viscoelastic.

The mechanics of solids, as well as that of fluids, at least at low Reynolds numbers, is

very well known, having been subjected to more than a century of research and analysis.

The governing equation of both subsets of continuum mechanics are well understood, and

they can be solved with aid of sophisticated software in machines of even moderate com-

putational powers. What then, one may ask, is so special about the interactions of fluids

and solids, as to warrant devoting a PhD thesis towards their exploration?

There are two ways to answer this question. The first, more utilitarian answer is to

realize that not all scientists working in continuum mechanics have access to or knowledge

of computational methods and resources. This answer is more pertinent for experimen-
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talists. In such scenarios, if a mathematical expression which consists of barely of a few

terms and is accessible with a pen and paper, captures the essential physics of the system

correctly, then the need of a high fidelity simulation, requiring special resources, is totally

obviated. And therefore, the scientist is spared of many otherwise wasted resources, in

terms of money, time and effort.

The second and the more idealistic answer, is that the goal of science is to simplify,

not to obfuscate. It is to unite and to generalize, not to segregate and to specialize. The

more generic and far reaching a theory is, the higher a pedestal it occupies in the hierarchy

of theories. When viewed through this lens, carrying out a computer simulation for each

and every problem seems to defeat the purpose of the scientific method. A succinct theory,

which encompasses a class of problems, is truer to the spirit of science and is more useful,

than a computer simulation which addresses just a single problem.
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ABSTRACT

Anand, Vishal Ph.D., Purdue University, August 2020. Microscale Fluid–Structure Inter-
actions between Viscous Internal Flows and Elastic Structures. Major Professor: Ivan C.
Christov.

This thesis examines the problem of low Reynolds number viscous fluid–structure in-

teractions (FSIs) at the microscale. A myriad of examples of such phenomena exist, both

in nature (blood flow in arteries, air flow in lungs), as well as in the laboratory (microflu-

idics devices, soft robotics). For this thesis, we restrict to internal flows in conduits with

deformable walls. Specifically, two types of conduits of different cross-sectional shapes are

considered: microchannels and microtubes. Both of these geometries are slender and thin.

Different types of material behavior are considered, via constitutive laws, in the solid do-

main, namely linearly elastic, hyperelastic and viscoelastic; and in the fluid domain, namely

Newtonian and power-law fluids with shear-dependent viscosity. Similarly, the geometry

and dimensions of the structures allow us to use shell and plate theories in the solid domain,

and the lubrication approximation of low Reynolds number flow in the fluid domain.

First, we study a rectangular microchannel with a deformable top wall of moderate

thickness, conveying a power-law fluid at steady conditions. We obtain a nonlinear differ-

ential equation for pressure as a function of imposed steady flow rate, consisting of infinite

expansions of hypergeometric functions. We also conduct simulations of FSI using the

commercial computer-aided engineering (CAE) software ANSYS, to both benchmark our

perturbative theory and to establish the limits of its applicability.

Next, we study fluid–structure interactions in a thin microtube constituted of a linearly

elastic material conveying a generalized Newtonian fluid. Here, we employ the Donnell

shell theory to model the deformation field in the structure of the tube. As a novel contri-

bution, we formulate an analytical expression for the (radial) deformation of the tube using
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the method of matched asymptotic expansions, taking into account the bending boundary

layers near the clamped ends. Using our perturbative theory, we also improve certain clas-

sical but partial results, like Fung’s model and the law of Laplace, to match with direct

numerical simulations in ANSYS.

Subsequently, we explore FSI in hyperelastic tubes via the Mooney–Rivlin model. In

a thin-walled vessel, we formulate a novel nonlinear relationship between (local) deforma-

tion and (local) pressure A similar approach for the thick-walled tube, yields a nonlinear

ODE to be solved numerically. Due to strain hardening, the hyperelastic tube appears stiffer

and supports higher pressure drops than a linearly elastic tube.

Finally, we study transient compressible flow being conveyed in a linearly viscoelastic

tube. By employing a double perturbation expansion (for weak compressibility and weak

FSI), a predictive relationship between the deformed radius, the flow rate and the (local)

pressure is obtained. We find that, due to FSI, the Stokes flow takes a finite time to adjust

to any changes emanating from the boundary motion. In the case of oscillatory pressure

imposed at the inlet, acoustic streaming is shown to arise due to FSI in this compressible

flow.

Fundamentally, the goal of the research in this thesis is to generate a catalog of flow

rate–pressure drop relationships for different types of fluid–structure interactions, depend-

ing on the combinations of fluid mechanics and structural mechanics models (behaviors).

These relationships can then be used to solve practical problems. We formulate a theory of

hydrodynamic bulge testing, through which the elastic modulus is estimated from the pres-

sure drop and flow rate measurements in a microchannel with a (thick and pres-stressed)

compliant top wall, without measuring the deformation. A sensitivity analysis, via Monte

Carlo simulation, shows that the hydrodynamic bulge test is only a slightly less accurate

than the traditional bulge test, but is less susceptible to uncertainty emanating from the

noise in measurements.
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1. INTRODUCTION

1.1 Background

Microfluidics is the study of the manipulation of microscopic volumes of fluids at small

scales [1]. The subfield of fluid mechanics pertaining to flows at small scales, i.e., low

Reynolds number hydrodynamics [2] is not a new field. Here, the Reynolds number is

defined as '4 = dV2ℓ2/`, where d, V2, ℓ2, ` are the fluid density, the characteristic flow

velocity, a characteristic length scale, and the fluid viscosity, respectively. On the other

hand, the emergence of flow technologies at the microscale (and thus the emergence of

the term “microfluidics”) occurred only in the 1990s [3]. Technological advancements

in microfabrication processes over the few past decades [4–6], also reviewed in [7], have

made microscale fluid mechanics more accessible experimentally. The insights gained from

latter studies have been harnessed for a variety of applications, which in turn sparked keener

interest in using microfluidics to solve global, medial and social problems [8]. For example,

technological applications of microfluidics include electronic chip cooling [9, 10], lab-on-

a-chip devices [11] such as lab-on-a-CD diagnostics [12, 13], in vitro isolation of cancer

cells [14] and clinical pathology [15], and various micro-total analysis (`TAS) systems

[16,17], amongst others. Microfluidic devices afford many advantages over their traditional

counterparts: portability, low reagent consumption and short analyses times, often at higher

resolutions than macroscopic counterparts [7].

Fittingly, the enthusiasm in the scientific world over microfluidics then inspires the

question: what really transpires at the microscale to set in motion such striking physical

phenomena and the ensuing scientific interest therein? The answer is the mathematical re-

sult that when a system shrinks in size, the ratio of the surface area to the volume increases,

and therefore effects that depend on the surface area are stronger than those that depend on

the volume. Perhaps, an inquisitive mind has observed tiny insects walking on water, and
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wondered how they are able to pull off a feat so impressive. Of course, this is explained

considering that the weight of the insect, which is related to its volume, is negligible in

comparison to the surface tension between the tiny, hydrophobic legs of the insect and wa-

ter [18]. Indeed, most of the phenomena observed at microscale can be explained using

this result [7]. Surface tension and capillary phenomena become important [19]. And, the

question of appropriate boundary condition, slip or no slip, becomes relevant once again at

the microscale [20]. It is possible, indeed desirable, to actuate fluid flows at the microscale

by using surface charge densities, leading to a complex interplay between electrostatics

and fluid mechanics [21]. The limitations imposed by macroscale mechanical devices for

fluid property measurements has fueled research into microfluidic rheometry [22, 23]. At

the microscale, materials are soft and fluid–structure interaction abound [24]. It is this last

aspect of microfludics that we focus on in this thesis.

1.2 Fluid–structure interactions: Definition and types

Definition A fluid–structure interaction (FSI) is the coupling between stress and deforma-

tion fields of a fluid and a solid continuum, due to the exchange of information between

them across their common interface.

The “information” that is exchanged at the interface may pertain to the stress field of

the flow (viscous stress and/or pressure) and the deformation field of the structure.

As with most phenomena in fluid mechanics, fluid–structure interactions can be classi-

fied on the basis of the Reynolds number (high vs. low), which generally translates to the

scale of the physical system (macro vs. micro). Another important aspect of FSIs relates to

the rheology of the fluid and solid continua. Fluid rheology is classified as Newtonian vs.

non-Newtonian; solids can be linearly elastic, hyperelastic, etc. Perhaps counter intuitively,

flow at low '4 can also be compressible, especially if it is a gas flow, as opposed to a liquid

flow. This realization ushers in a yet another classification of flows of FSIs as compressible

vs. incompressible FSI. The final category of classification of the FSIs, for our purposes,

relates to the nature of the confinement of the fluid: internal vs. external flow.
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The approach to modeling the structural mechanics problem introduces further need to

classify the FSI regimes: i.e., between those pertaining to small-strain theory, with their

linear strain–displacement relationships, and those pertaining to large-strain theory, with

their corresponding nonlinear strain–displacement relationships. For internal flows, the ge-

ometry of the conduit (e.g., cylindrical, rectangular, elliptical cross-section, etc.) becomes

another distinguishing characteristics of the problem. The constitutive laws governing ma-

terial response of the structure (e.g., linearly elastic, hyperelastic, viscoelastic, poroelastic,

etc.) introduces new possibilities for different types of FSI. Additionally, both the flow and

deformation fields may be steady or transient. In the case of transient FSI, other phenom-

ena like wave propagation and instabilities may also be relevant, which adds even more

variety to FSIs.

In this thesis, however, we restrict ourselves to internal flows at the microscale. Non-

Newtonian fluids with shear-dependent viscosity are considered. Both compressible and

incompressible flow regimes are analyzed. The material of the structure is modeled as

either (i) linearly elastic, (ii) hyperelastic or (iii) linearly viscoelastic, depending on the

physical context. For the linearly viscoelastic material, the deformation field is necessarily

transient, but for the other materials, only the static response will be analyzed.

1.3 Literature survey

1.3.1 Theoretical and experimental investigation

In confined flows at low '4, the flow conduit may be made of a deformable mate-

rial [25], such as polydimethylsiloxane (PDMS) (a polymeric gel) [4] or elastin (a con-

stituent of arteries) [26]. Such “creeping” flows can delaminate an elastic membrane from

a solid boundary, forming blisters [27] that are prone to a wealth of mechanical instabil-

ities [28] and whose inflation dynamics are sensitive to the contact line conditions [29].

The hydrodynamic pressure within such conduits is affected by the deformation of the

conduit as a result of two-way FSI. Specifically, the pressure drop across a soft microchan-

nel is significantly smaller compared to the rigid case [30]. Consequently, deviations are
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expected from the classical Hagen–Poiseuille law [31], which relates the viscous pressure

drop across a length of pipe to the volumetric flow rate, fluid properties and physical dimen-

sions. The goal of our study of microscale fluid–structure interactions is to mathematically

analyze and quantify such deviations.

Extensive experimental work over the past decade has sought to address FSI in mi-

crofluidics, specifically the effect of FSI on the flow rate–pressure drop relationship in a

soft microchannel [30, 32–36]. In one of the earliest works, [30] employed a scaling anal-

ysis to determine the relation between the maximal channel deformation and the hydrody-

namic pressure within a soft PDMS-based microchannel. The top wall of the microchannel

was allowed to be compliant, while the remaining three walls were held rigid. By inserting

the scaling relationship into the Hagen–Poiseuille law for a rectangular microchannel, Ger-

vais et al. [30] captured the observed nonlinear (quartic) relationship between the flow rate

and the pressure drop for a Newtonian fluid (water). However, the approach in [30] is not

predictive because it contains a fitting parameter (the unknown proportionality constant in

the scaling relationship), which has to be determined a posteriori by experiments.

Christov et al. [37] analyzed the problem of steady FSI in a microchannel via perturba-

tion methods. Specifically, they determined the flow rate–pressure drop relation for a long,

shallow microchannel with a compliant top wall by coupling a Kirchhoff–Love thin-plate

theory to viscous flow under the lubrication approximation. Confirming the general obser-

vation in [30] and matching the experimental measurement in [34], it was shown in [37] that

the flow rate–pressure drop relation is a quartic polynomial and the fitting parameter was

thus eliminated through mathematical analysis. This approach was extended in [38] to cap-

ture thick top walls, via the first-order shear deformation plate theory of Mindlin [39], and

extensively validated against fully-3D two-way coupled direct numerical simulations [38].

More recently, the flow-induced deformation measurements reported in [30] were fully ra-

tionalized by a theory [40] taking into account the “full” elasticity problem for the thick,

deformable top wall (i.e., dropping the assumption of a plate-like top wall). Importantly,

however, in [37,38,40] the cross-sectional deformation profile of the microchannel’s com-

pliant wall was determined. The perturbation approach’s generality is appealing as, in
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theory, higher-order corrections to the flow rate–pressure drop relation can be obtained fol-

lowing the calculation in [41], wherein an extended lubrication theory was developed. This

approach is valid for channels with modest aspect ratios and with shape changes on the

order of the channel height.

Recently, Raj and Sen [42] documented an initial foray into the experimental interroga-

tion of non-Newtonian FSIs in a microchannel. A rectangular microchannel with three rigid

walls and a compliant top wall was manufactured from polydimethylsiloxane (PDMS). A

0.1% polyoxyethylene (PEO) solution was used as a shear-thinning non-Newtonian fluid.

The pressure drop across 12 mm increments of the 30 mm-long microchannel was mea-

sured by a series of differential pressure sensors. (The microchannel was long and thin,

having a width between 0.5 and 2 mm and height of 83 `m in the cross-section.) The

deflection of the compliant top wall was measured using fluorescence imaging. Raj and

Sen [42] then proposed a modeling approach for capturing the pressure drop as a function

of the flow rate (and other material and geometric parameters) based on a modification of

the early work in [30]. As mentioned earlier, the original approach in [30] is based on scal-

ing arguments and, thus, contains a fitting parameter that cannot be predicted a priori. Due

to their use of narrowly-applicable correlation for stretching of thin shells [43, pp. 29–33],

Raj and Sen [42] do not obtain a flow rate–pressure drop prediction of much generality.

Moreover, since the theoretical predictions were for Newtonian fluids only, they could not

be compared with the experiments reported for non-Newtonian fluids.

The study of moderate-'4 instabilities due to FSIs in soft tubes is a time-honored sub-

ject [44–46] primarily due to their relevance in modeling biological flow in the arteries and

the lungs. Consequently, microtubes traditionally reside on the opposite end of the FSI

spectrum from microchannels, in terms of Reynolds number. Specifically, the study of col-

lapsible tubes interrogates the case of microtubes whose radius decreases owing to negative

transmural pressure difference and eventually can completely collapse [47, 48]. Here, the

flow field is one-dimensional, averaged across the cross section, but not developed [47].

Viscous effects are modeled using a pipe flow friction factor. A tube law is obtained to

relate the local transmural pressure difference to the change in area due to circumferential
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and axial bending and tension, from postulated simple relations [47] to rigorous deriva-

tions from shell theory [49]. Even though the problem of collapsible tubes involves liquid

flow, [47] elegantly explained the analogy to gas dynamics: a speed index, akin to the Mach

number, divides the flow into subcritical and supercritical regimes. The relevance of this

moderate-to-high-'4 FSI is soft tubes is evident in biofluid mechanics [50,51], for example

in the contraction of the trachea during bouts of coughs [44]. The mathematical analysis

of stability of such flows in three-dimensions is an ongoing challenge [52]. Nevertheless,

there is also a need to develop accurate models for low-'4 FSI in soft tubes due to the rel-

evance to blood flow through small arteries [53]. Meng et al. [54] studied such a problem

of drainage of liquids from collapsible tubes of circular and elliptical cross-sections. The

tubes had been stretched initially with a prescribed tension in the radial direction and then

filled with a fluid. The pressure built up inside the fluid is then a function of the prescribed

tension. Assuming plane-strain conditions inside the structure with zero net axial force

and the Hagen–Poiseuille law for the Newtonian flow within, a set of differential equations

governing the evolution of the tube axes was obtained in [54]. Neither the flow rate nor

pressure drop across the tube were specified initially, but they could be computed by this

approach.

For FSIs in soft tubes, most of the latter research has focused on Newtonian fluids. Most

of the biofluids are, however, non-Newtonian [55,56]. Blood is often modeled as a Casson

fluid, which has both a yield stress and a shear-dependent viscosity [57, Ch. 3]. Research

on microscale FSIs has only just begun to take into account the non-Newtonian nature of

the working fluids [42, 58–60]. Raj M et al. [59] performed experiments on FSIs in a mi-

crochannel with circular cross-section, which is more akin to a blood vessel. This conduit

was fabricated from PDMS using a pull-out soft lithography process from a large slab.

Xanthan gum was used as a non-Newtonian blood-analog fluid. Measurements of the pres-

sure drop at different inlet flow rates were shown to match a simple mathematical model of

one-way FSI, meaning that the pressure was calculated using the Hagen–Poiseuille law for

a rigid tube and then imposed as a load on the structure, without coupling the microchan-

nel shape change back into the hydrodynamics. Microtubes and microchannels of circular
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cross-section are now of significant scientific interest due to “a new, direct peeling-based

technique for building long and thin, highly deformable microtubes” [61], which can be

used in building bioinspired and biocompatible soft devices [62].

In a recent series of works [58,63,64], two-way FSI coupling was employed to analyze

the transient pressure and deformation characteristics of a shallow, deformable microtube.

Employing the Love–Kirchhoff hypothesis, a relation was obtained between the internal

pressure load in a soft tube and its radial and axial deformations, up to the leading order

in slenderness. Treating the structural problem as quasi-static, an unsteady diffusion-like

equation for the fluid pressure was obtained and analyzed for both Newtonian [63, 64] and

generalized Newtonian [58] fluids. However, the effect of non-trivial deformation on the

resulting flow rate–pressure drop relation for the tube (transient or steady-state) was not

considered or benchmarked against simulations and/or experiments. Meanwhile, Vedeneev

et al. [65] obtained results on moderate-'4 instabilities in collapsible tubes conveying gen-

eralized Newtonian fluids.

Hyperelastic materials have the “advantage” of being completely specified by a strain

energy functional from which the constitutive equation between stress and strain follows.

The structural response of complex soft solids, such as biological tissue and blood vessels,

can be appropriately described by a hyperelastic solid with a pseudo strain energy function

(see, e.g., [57, Ch. 8 and Ch. 9]). Similarly, due to its complex constituents, blood is a

non-Newtonian fluid and an appropriate rheological model (beyond the simple Newtonian

viscous fluid) should be used (see, e.g., [57, Ch. 3]).

While it is common to assume the flow at low '4 to be incompressible, perhaps counter

intuitively, compressible flow of gases, even for at low Mach number Ma → 0, have been

observed experimentally in the low '4 regime. For example, gas flows at the microscale

find applications in several micro-electro-mechanical systems (MEMS) for pneumatic flow

control and electronic cooling [66–68]. In these systems, sufficiently large pressure drops

across a channel may lead to compressibility effects in the flow. A hallmark of low Mach

number compressibility is the nonlinear axial pressure profile, as reported in the exper-

iments in [69, Fig. 10]. Compressible flow at the microscale has been studied experi-
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mentally in a straight, uniform-width channel [70]; in a channel that is straight but has

nonuniform cross-section, with contractions and expansions [71]; and in a channel that

has uniform cross-section but is not straight (has bends and junctions) [72]. Arkilic et

al. [73] performed experiments on helium flow in microchannels to demonstrate compress-

ible flow at low '4. The results of the experiments were explained by a theoretical analysis

of compressible flow. The lubrication theory formulation of the Navier–Stokes equations

was employed with a first-order slip velocity boundary condition expressed in terms of the

Knudsen number Kn = _/0, which is the ratio of the molecular mean free path of the gas

_ to a characteristic length 0 of the system at the macro scale. Various regimes of the flow

were delineated on the basis of the relative magnitudes of Ma and '4. The theory presented

therein was verified independently in [70,74], amongst others. A more recent experimental

study [75] accounted for both compressibility of the flow and the compliance (bulging) of

the channel.

Experimental investigations of compressible flow in channels have proceeded in tandem

with the theoretical studies [73, 76–82]. Prud’Homme et al. [76] analyzed the compress-

ible flow of a monoatomic ideal gas (with zero bulk viscosity) in a capillary with pressure

imposed at the inlet and the outlet. The results showed that due to compressibility, the

mass flow rate increases (in comparison to incompressible flow) for a fixed pressure drop

across the capillary. In [76, 78], the lubrication approximation was imposed explicitly, by

assuming negligible radial velocity and negligible radial pressure gradient. However, [78]

assumed an arbitrary equation of state and also accounted for non-zero bulk viscosity, ven-

turing beyond the monoatomic ideal gas model of compressible flow analyzed by [76].

These results can be used to account for compressibility effects while estimating viscosity

of gases using capillary viscometers [77]. However, as noted in [78, 79], in compressible

flow the absence of radial velocity does not generally imply the absence of a radial pressure

gradient. Therefore, instead of assuming zero radial velocity and zero radial pressure gradi-

ent a priori, [79] solved the full Navier–Stokes equation for compressible flow, employing

a perturbation expansion with the compressibility number (defined later) as the perturba-

tion parameter. The results showed the fluid’s convective inertia leads to a radial velocity
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in the flow while a radial pressure gradient arises from non-zero bulk viscosity. Similar

analysis was also carried out by [80] for compressible flow in a channel and by [81] for

both channels and tubes.

Recently, there has been a resurgence of interest in low ' compressibility effects, in-

cluding taking into account microscale fluid–structure interactions (FSIs) [83–85]. The

availability of new polymer-based materials like, polydimethylsiloxane (PDMS), a silicon-

based polymeric material that allows the rapid and precise manufacture of microdevices

[86], coupled with emergence of new manufacturing methods such as soft lithography [4],

have revolutionized the microfluidics industry [8]. PDMS is “soft,” meaning it has an elas-

tic modulus on the order of a few MPa, compared to a GPa or more for “hard” materials

such as steel. Therefore, PDMS-based microchannels and microtubes deform significantly

under the influence of hydrodynamic pressure forces induced by viscous stresses during

flow. The deformation in turn alters the cross-sectional shape, which modifies the velocity

profile and, thus, the viscous stress in the flow, which then induce the pressure load on

the structure. This feedback loop is an example of the two-way coupled nature of fluid–

structure interactions (FSIs) [87].

The current literature on FSIs involing compressible flows has only addressed the case

of linearly elastic structures [83–85]. However, in transient conditions, PDMS is known

to exhibit a viscoelastic response [88, 89]. In biomechanics, many soft tissues are vis-

coelastic [57, Ch. 7]. The mechanical properties of lung tissues can be modeled by a linear

viscoelastic model in the breathing frequency range [90]. In particular, the simplest useful

model is the Kelvin–Voigt (KV) element consisting of a linearly elastic spring in paral-

lel with a linearly viscous element. Under this modeling approach, [91] derived weakly

nonlinear governing equations for wave propagation due to pulsatile flows in linearly vis-

coelastic tubes. They emphasized that “viscoelastic effects are very important and should

be included in future studies” [91, p. 147], further motivating our work. Specifically, the

amplitude of the wave reduced by 17%, when the viscoelasticity of the wall was included,

compared to the purely elastic case. However, since their study addressed hemodynamics,

compressibility effects were not addressed by the model.
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Viscous damping of elastic structures is also a key design feature of soft robotic ac-

tuators [92–94]. Damping in a robotic actuator hastens stabilization by promoting energy

dissipation [92]. Specifically, excess energy introduced into the system during the impact

of a rigid object on a robotic hand performing grasping must be dissipated to ensure the

smooth functioning of actuators, and to prevent damage to attached sensors. This dissi-

pation of energy can be accomplished by using materials (such as rubbers, gels, sponges

etc.) that exhibit viscoelasticity [92, 93]. Furthermore, recently, attention has turned to

bio-inspired soft robotics [94]. As noted above, most biological tissues (like skin, muscles,

etc.) are viscoelastic [57, Ch. 7], thus biomimetic soft robots are also designed with a vis-

coelastic material response in mind [94]. Most soft robots are actuated pneumatically [95]

Thus, understanding compressible flows interacting with compliantviscoelastic structures

may provide insight into the design of pneumatically actuated biomimetic soft robots. So

far, however, the FSI literature on viscoelastic [91] or elastic [58, 63, 84] tubes with tran-

sient (inertial) response has only considered incompressible flow, while the FSI literature

on compressible flows has only dealt with linearly elastic structures [84, 96], except for

some systems-level modeling of wave speeds for water hammer phenomena in viscoelastic

tubes [97, 98] at large '4. The present work fills a knowledge gap on compressible flow in

viscoelastic tubes with transient response.

Elastic deformation of structure need not always be a peripheral, unwanted effect in

microscale flows. FSIs can also be employed for passive control of flows in microchan-

nels [99–101]. For example, Holmes et al. [100] carried out an experimental investigation

of mechanically-actuated flow control within a flexible microchannel through a series of

arches placed in the microchannel that function as valves to regulate and direct the flow.

Meanwhile, Gomez et al. [101] harnessed an elastic snap-through mechanism to design a

microfluidic fuse. In a microchannel with a thin elastic strip as one wall, buckling of the

arch by the viscous flow underneath allows passive rapid transition between a constricted

and an unconstricted flow state (with concomitant rapid changes in the flow conductivity

of the microchannel).
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A major phenomena pertaining to unsteady FSI in internal flows is peristalsis, wherein

wave propagation in the elastic structure actuates the internal fluid flow. Indeed, peristalsis

is the primary mechanisms of swallowing of food and its movement through esophagus in

vertebrates and can also be used to construct an elastohydrodynamic model of swallow-

ing [102]. Both single wave propagation [103] or propagation of a train of infinitesimally-

small-amplitude waves [104] can be considered. Reflux and trapping are two major mech-

anisms of wave propagation in peristalsis [104]. Frequently, to enhance the ability to ac-

tuate the flow, peristalsis is combined with other microscale phenomena, such as electo-

osmosis [103, 105] and interfacial slip, among others.

1.3.2 Applications

The theory of low '4 FSI in internal flows has applications beyond the modified pres-

sure drop–flow rate relationship. For example, low '4 FSI theory can be leveraged to

estimate the material property of a linear elastic solid through the framework of a novel

hydrodynamic bulge test. A (traditional) bulge test involves clamping a thin elastic sheet

over an orifice (or a window) and, then, measuring its deformation under a known (usually

uniform) pressure field [106–108]. The measured deformation as a function of the known

pressure load can then be converted to strain as a function of stress, by employing a suitable

structural mechanics model (e.g., the theory of linear elasticity). In turn, knowing the stress

as a function of the imposed strain allows for straightforward estimation of the elastic mod-

ulus of the material (assuming that the Poisson’s ratio is known) [106–108]. Knowledge

of the stress distribution within the structure is also used to estimate fracture properties of

the material [109–111]. Several techniques have been proposed to improve the accuracy

of “traditional” bulge tests. These improvements include, but are not limited to, account-

ing for the film’s bending stiffness [112], accounting for pre-stress in the film [106, 113],

considering the possibility of buckling [114] and better prediction of the stress distribution

near edges [115] by using elastically clamped (instead of the traditional rigidly clamped)

boundary conditions [109, 110].
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One of the main sources of uncertainty in bulge tests is the experimental measurement

of the film’s deformation [108]. Traditionally, deformation has been measured by inter-

ferometric techniques and, less frequently, by high-resolution microscopy. Both of these

measurement techniques have certain limitations. On the one hand, interferometers are

prone to errors induced from external sources of vibrations [108], which limits the spatial

resolution of the measurements and makes it difficult to accurately resolve deformations in

the small-strain regime relevant to bulge testing [106,108]. On the other hand, microscopes

are not well suited to analyze samples with high reflectance, such as PDMS [108]. Thus,

there is motivation for developing bulge testing techniques that bypass the deformation

measurement altogether.

Often, bulge testing techniques discussed in the literature have focused on circular

membranes [106], with only a few studies addressing the case of rectangular membranes

with pre-stress [109–111, 116] using energy minimization methods [113]. Residual pre-

stress (pre-tension) is common in samples being tested because the thin film of material

has to be stretched taut over an orifice (say, a rectangular microchannel) to ensure that it

is flat before the commencement of the experiment [117, 118]. Furthermore, most of the

bulge testing theories in the literature assume that the film has negligible thickness and

deformations due to shear along the transverse direction are, thus, not accounted for.

Using the theory of low '4 FSI, it is also possible to formulate an expression for friction

factor for a deformable channel or tube, and thus extend the Moody’s chart to hitherto un-

known domains. The friction factor is a dimensionless representation of the pressure drop

due to fully-developed flow through a rigid conduit. The traditional visual representation

of the friction factor, and its dependence upon other key dimensionless parameters, is the

Moody diagram [119], featured in every undergraduate textbooks on fluid mechanics [120].

The friction factor represented in the Moody diagram is obtained under the assumptions of

isothermal flow of an incompressible, Newtonian fluid in a rigid tube (for both laminar

and turbulent flows). It has been of interest to extend the calculation and prediction of the

friction factor beyond the “ideal” (textbook) cases. For example, the compressible flow

of gases, at large Mach number, engenders a pressure drop that cannot be accurately pre-
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dicted by the incompressible friction factor from the classical Moody diagram and therefore

the expression for friction factor should be modified to account for the flow compressibil-

ity [76, 78]. Similarly, the flow rate–pressure drop relationship for deformable channels

and tubes may also be re-formulated as an expression for friction factor. Besides being a

theoretical innovation, a novel expression for friction factor which takes into account the

deformation of the flow conveying conduits, may find practical uses in microscale rheom-

etry, for estimating the viscosity of a flowing fluid [121, 122].

1.4 Knowledge gaps and organization of the thesis

The literature survey presented in the previous section identifies the following key gaps

in the research on low Reynolds number FSI:

• While there have been limited experimental measurements of FSI of non-Newtonian

fluids in microchannel [42], the theoretical treatment has been restricted to Newto-

nian fluids. Thus, a clear gap remains in the non-Newtonian fluid mechanics litera-

ture: What is the flow rate–pressure drop relation when FSI, due to a non-Newtonian

fluid flow in a compliant rectangular microchannel, is taken into account? This ques-

tion has been addressed in Chapter 2 of this thesis.

• Beyond the fundamental knowledge gained about FSIs in microchannels through

the theory and simulations in Chapters 2, there remain some open questions about

how FSIs could be used in practice. A knowledge gap in the literature on materi-

als property characterization at the microscale exists regarding: How can we deter-

mine the elastic properties of thin sheets of materials, without the need for a precise

microscale deformation measurement? How can we take into account residual pre-

stresses in the membrane? To address these questions, in Chapter 3 of this thesis,

we demonstrate how to characterize the elastic properties of a soft material using a

mathematical model derived to relate the total pressure drop, at steady state, over

the length of the elastic sheet to the imposed volumetric flow rate of the fluid flow

underneath it.
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• Then, as far as non-Newtonian FSIs in microtubes go, the current theory captures

transient FSIs only, at the leading order ; the corresponding steady state theory is

still missing. Moreover, there has been few detailed validations of the existing the-

ory against either simulations or experiments. Therefore, a clear gap remains in the

literature pertaining to steady-state FSI in tubes: What is the corresponding flow

rate–pressure drop relationship due to non-Newtonian fluid flow in microtubes? Are

simple expression of the latter in textbooks valid when compared to direct numerical

simulations? How do we account for bending layers in the deformation profile near

clamped edges? These questions are addressed in Chapter 4 of this thesis.

• Since most biological tissues are hyperelastic, not linearly elastic, the flow rate–

pressure drop relation derived for elastic tubes in Chapter 4 may be suitable for

analyzing FSI in such tissues conveying low '4 flows. Therefore, this gap in the

literature pertains to: How does hyperelastic response of the elastic vessel, conveying

a non-Newtonian fluid, affect its hydrodynamic resistance? This question has been

addressed in Chapter 5 of this thesis.

• Many studies carried out pertaining to FSI, including the earlier chapters of this the-

sis, so far have tackled the incompressible flow problem. At the same time, compress-

ible flow has always been analyzed when interacting with linearly elastic channels

and tubes. Under unsteady conditions, linear viscoelasticity of tube can be important

in determining the dynamic response. Therefore, the gap in the literature remains re-

garding our understanding of transient low '4 compressible fluid flow in viscoelastic

tubes. Specifically, How do transient gas flow and viscoelastic tube deformation cou-

ple under transient conditions? What novel dynamical phenomena can be uncovered

by analyzing such FSIs? These questions are addressed in Chapter 6 of this thesis.
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2. DEFORMABLE MICROCHANNELS: STATIC RESPONSE TO
NON-NEWTONIAN FLOW

SUMMARY

We study fluid–structure interactions (FSIs) in a long and shallow microchannel, conveying

a non-Newtonian fluid, at steady state. The microchannel has a linearly elastic and compli-

ant top wall, while its three other walls are rigid. The fluid flowing inside the microchannel

has a shear-dependent viscosity described by the power-law rheological model. We employ

lubrication theory to solve for the flow problem inside the long and shallow microchannel.

For the structural problem, we employ two plate theories, namely Kirchhoff–Love theory of

thin plates and Reissner–Mindlin first-order shear deformation theory. The hydrodynamic

pressure couples the flow and deformation problem by acting as a distributed load onto the

soft top wall. Within our perturbative (lubrication theory) approach, we determine the re-

lationship between the flow rate and the pressure gradient, which is a nonlinear first-order

ordinary differential equation for the pressure. From the solution of this differential equa-

tion, all other quantities of interest in non-Newtonian microchannel FSIs follow. Through

illustrative examples, we show the effect of FSI coupling strength and the plate thickness

on the pressure drop across the microchannel. Through direct numerical simulation of

non-Newtonian microchannel FSIs using commercial computational engineering tools, we

benchmark the prediction from our mathematical theory for the flow rate–pressure drop re-

lation and the structural deformation profile of the top wall. In doing so, we also establish

the limits of applicability of our perturbative theory.

The material in this chapter was published in [V. Anand, J. David JR, and I. C. Christov,

“Non-Newtonian fluid–structure interactions: Static response of a microchannel due to

internal flow of a power-law fluid,” J. Non-Newtonian Fluid Mech., vol. 264, pp. 62–72,

2019] [60]
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2.1 Problem formulation and mathematical analysis

2.1.1 Fluid flow problem

The key assumptions imposed on the fluid flow problem are that an incompressible vis-

cous fluid flows in a channel that is (a) shallow (width F much greater than its undeformed

height ℎ0) and (b) long (undeformed height ℎ0 much smaller than its length ℓ); see Fig. 2.1

for notation. These assumptions lead to an ordering of length scales:

ℎ0 � F � ℓ, (2.1)

and the emergence of two small dimensionless parameters in the problem, i.e., n := ℎ0/ℓ

and X := ℎ0/F. Then, as shown in [37], for steady, fully developed conditions, the flow

obeys the classical lubrication approximation [3, 123] for n � X � 1. Specifically, to the

leading order in n and X, the flow field is unidirectional

v ∼ EI (G, H)k̂, (2.2)

and the ı̂ and ̂ flow components can be thus neglected. (Here, we use the standard notation

of ı̂, ̂ and k̂ being the unit normal vectors in the G, H and I coordinate directions.) Such

a flow automatically satisfies the conservation of mass (continuity) equation∇ · v = 0 for

an incompressible fluid.1

Similarly, the lubrication approximation dictates that we may neglect inertial forces

in comparison to viscous and pressure forces in the fluid. Then, as a consequence of the

kinematics, i.e., Eq. (2.2), the pressure becomes independent of G and H. This result is a

well known consequence of the flow geometry being “long and thin” [124]. Lubrication

flows of non-Newtonian fluids have been studied extensively, for example in the context of

rivulets [125, 126], but not as much in the microfluidics and FSI contexts.

Next, the fluid’s only nontrivial momentum balance is in the I-direction:

0 = −d?
dI
+
mgHI

mH
⇒ gHI =

d?
dI
H + �1. (2.3)

1This statement is true subject to the caveat that, due to FSI, EI will “pick up” a weak dependence on I, which
is still valid within the lubrication approximation [3, 123].
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Fig. 2.1. Schematic of the chosen microchannel geometry with three rigid and
one soft (top) wall. Notation used in the main text is labeled in the schematic.
Clamping of the plate along the inlet (I = 0) plane is not shown for clarity.

To fix the constant of integration, we must specify gHI somewhere. Consider the following:

for a rigid channel the centerline is at H = ℎ0/2, however, after the deformation of the upper

wall, the centerline shifts to H = (ℎ0 + DH)/2. Here, DH (G, I) is the absolute deformation

of the top wall in the H-direction, while ℎ0 = 2>=BC. is the undeformed (initial) height

of the channel (see Fig. 2.1). We require that the shear stress vanish at the centerline,

gHI |H=(ℎ0+DH)/2 = 0. Hence,

�1 = −
d?
dI

(
ℎ0 + DH

2

)
. (2.4)

Next, we must specify the constitutive equation between stress and shear rate-of-strain.

The rheological behavior of most biofluids is non-Newtonian [56]. Specifically, human

blood has been shown to exhibit a shear-thinning behavior [127], which can be described

by the power-law (also known as Ostwald–de Waele) model [128]. Under the lubrication

approximation [3, 123], it can be shown that the dominant term in the deviatoric stress

tensor is the shear stress. Under the latter approximation, the power-law rheological model

reduces to:

gIH = [
mEI

mH
= <

����mEImH ����=−1 (
mEI

mH

)
, (2.5)
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where [ = < |mEI/mH |=−1 is the apparent viscosity [129]. Here < is the consistency factor,

which reduces to the dynamic viscosity for a Newtonian fluid, and = is the power-law index

with a value of = = 1 for the special case of a Newtonian fluid.

Now, for the lower half of the channel, i.e., for 0 ≤ H ≤ (ℎ0 + DH)/2, we expect the

velocity gradient to be positive under our chosen sign convention:

mEI

mH
> 0 ⇒

����mEImH ���� = mEImH . (2.6)

Then, combining the momentum Eq. (2.3) with the appropriate simplification of the con-

stitutive Eq. (2.5) yields

<

(
mEI

mH

)=
=

(
d?
dI

) (
H −

ℎ0 + DH
2

)
⇒ mEI

mH
=

(
− 1
<

d?
dI

) (
ℎ0 + DH

2
− H

)1/=
. (2.7)

Integration of the last equation subject to no slip on the lower wall, i.e., EI = 0 at H = 0,

yields the expression for velocity profile in the lower half of the channel, i.e., 0 ≤ H ≤

(ℎ0 + DH)/2:

EI (G, H, I) =
1

1 + 1/=

(
− 1
<

d?
dI

)1/= (
ℎ0 + DH

2

)1+1/= 1 −
[
1 − H

(ℎ0 + DH)/2

]1+1/= . (2.8)

Now, for the upper half of the channel, i.e., for (ℎ0+DH)/2 ≤ H ≤ (ℎ0+DH), the velocity

gradient is negative:
mEI

mH
< 0 ⇒

����mEImH ���� = −mEImH . (2.9)

Consequently,

− <
(
−mEI
mH

)=
=

d?
dI

(
H −

ℎ0 + DH
2

)
⇒ −mEI

mH
=

(
− 1
<

d?
dI

)1/= (
H −

ℎ0 + DH
2

)1/=
.

(2.10)

Integration of the last equation subject to no slip at the upper wall, i.e., EI = 0 at H = ℎ0+DH
yields the expression for velocity profile in the upper half of the channel, i.e., (ℎ0+DH)/2 ≤

H ≤ ℎ0 + DH:

EI (G, H, I) =
1

1 + 1/=

(
− 1
<

d?
dI

)1/= (
ℎ0 + DH

2

)1+1/= 1 −
[

H

(ℎ0 + DH)/2
− 1

]1+1/= . (2.11)
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This completes the derivation of the velocity profile, which is piecewise defined by Eqs.

(2.8) and (2.11), of a power-law fluid in a microchannel with a deformed top wall shape

given by

ℎ(G, I) = ℎ0 + DH (G, I). (2.12)

Nondimensionalization

To make the governing equations dimensionless, we introduce the following dimen-

sionless variables:

?̄ = ?/P2, Ē Ī = EI/V2, Ḡ = G/F, H̄ = H/ℎ0, Ī = I/ℓ,

D̄ H̄ = DH/D2, V = D2/ℎ0, n = ℎ0/ℓ, X = ℎ0/F. (2.13)

Here, ℎ0, F and ℓ are, respectively, the undeformed height, fixed width and constant length

of the microchannel as in Fig. 2.1. Making the fluid’s momentum equation (2.3) dimension-

less and ensuring all terms are of order one, we can determine how the characteristic ve-

locity scale is related to the characteristic pressure scale, namelyV2 = [P2ℎ0/(<ℓ)]1/=ℎ0.

Then, the pressure scale can be taken to be P2 = Δ ? if Δ ? is known (pressure-controlled

experiment/simulation) or estimated as P2 = [@/(ℎ2
0F)]

=<ℓ/ℎ0 if @ is known (flow-rate-

controlled experiment/simulation). Each choice then yields a corresponding velocity scale

V2 = [Δ ? ℎ0/(<ℓ)]1/=ℎ0 or V2 = @/(ℎ0F), respectively. The characteristic scale of de-

flection D2 will be determined self-consistently below by coupling the flow and structural

deformation problems, from which we will then determine the ratio V. The two length

ratios, n and X, are key to satisfying the asymptotic requirements of the lubrication approx-

imation. Specifically, we require that a separation of scales exists, i.e., 0 < n � X � 1,

meaning the microchannel is long and shallow.
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In terms of the dimensionless variables from Eq. (2.13), the velocity profile from Eqs.

(2.8) and (2.11) above now takes the form:

Ē Ī (Ḡ, H̄, Ī) =
1

21+1/=

(
−d?̄

dĪ

)1/= (1 + VD̄ H̄)1+1/=

1 + 1/=

×


1 −

[
1 − H̄

(1 + VD̄ H̄)/2

]1+1/=

, H̄ < [1 + VD̄ H̄ (Ḡ, Ī)]/2,

1 −
[

H̄

(1 + VD̄ H̄)/2
− 1

]1+1/=

, H̄ ≥ [1 + VD̄ H̄ (Ḡ, Ī)]/2,

(2.14)

while the dimensionless microchannel height is

ℎ̄(Ḡ, Ī) ≡ ℎ(G, I)/ℎ0 = 1 + VD̄ H̄ (Ḡ, Ī). (2.15)

It is straightforward to verify that the velocity profile is continuous at H̄ = (1 + VD̄ H̄)/2.

2.1.2 Coupling flow and deformation: Finding the flow rate

We study steady flow, thus conservation of mass then requires that the volumetric flow

rate @ = 2>=BC. This flow rate is, by definition, given by

@ =

+F/2∫
−F/2

ℎ0+DH∫
0

EI (G, H, I) dG dH

=

+F/2∫
−F/2

(ℎ0+DH)/2∫
0

EI dG dH +
+F/2∫
−F/2

ℎ0+DH∫
(ℎ0+DH)/2

EI dG dH,

(2.16)

where we have split the integral over H to account for the velocity profile’s slope change at

H = (ℎ0 + DH)/2. A switch to dimensionless variables turns Eq. (2.16) into

@ = V2ℎ0F


+1/2∫
−1/2

(1+VD̄ H̄)/2∫
0

Ē Ī dḠ dH̄ +
+1/2∫
−1/2

1+VD̄ H̄∫
(1+VD̄ H̄)/2

Ē Ī dḠ dH̄

 . (2.17)
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Substituting the expressions for Ē Ī from Eq. (2.14) into Eq. (2.17) and re-arranging:

@

V2ℎ0F
=

1
21+1/= (1 + 1/=)

(
−d?̄

dĪ

)1/= +1/2∫
−1/2

(1 + VD̄ H̄)1+1/=

×


(1+VD̄ H̄)/2∫

0

©­«1 −
[
1 − H̄

(1 + VD̄ H̄)/2

]1+1/=ª®®¬ dH̄

+
1+VD̄ H̄∫

(1+VD̄ H̄)/2

©­«1 −
[

H̄

(1 + VD̄ H̄)/2
− 1

]1+1/=ª®®¬ dH̄

 dḠ. (2.18)

Let us now introduce the dimensionless flow rate @̄ = @/(V2ℎ0F).2 Then, performing the

integration in Eq. (2.18) along with the requisite substitution of limits yields

@̄ =
1

21+1/= (2 + 1/=)

(
−d?̄

dĪ

)1/= +1/2∫
−1/2

(1 + VD̄ H̄)2+1/= dḠ. (2.19)

To complete the calculation, we must specify the cross-sectional displacement profile D̄ H̄ =

D̄ H̄ (Ḡ, Ī).

2.1.3 Structural mechanics problem

Typical manufacturing techniques for PDMS-based microfluidics yield microchannels

and top walls that are rectangular [130]. Thus, assuming isotropic and quasi-static plate-

bending under steady fluid flow, the governing equations of the solid mechanics problems

can be taken to be those of either the zeroth-order (i.e., Kirchhoff–Love (KL) [131, 132])

or the first-order shear-deformation (i.e., Reissner–Mindlin (RM) [39, 133]) plate theory.

Kirchhoff–Love plate theory, which preserves all the assumptions of Love’s first postulate,

is the straightforward extension of Euler beam theory to two spatial dimensions. Thus,

KL theory only accounts for plane stress and plane strain condition inside the plate. More

specifically, the KL theory applies when the maximum top wall deformation DH,max is such

2Of course, since V2 = @/(ℎ0F) for a flow-rate-controlled experiment or simulation, this definition of @̄
would yield @̄ = 1 in this case. Nevertheless, we keep @̄ in the equations that follow to allow the reader to
easily use them under a pressure-drop-controlled situation, or with a differentV2 expression.
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that DH,max � C � F, i.e., the KL theory is a thin-plate theory. On the other hand, Reissner–

Mindlin theory allows for shear deformations (and strains) across a plate of finite thickness.

More specifically, the RM theory applies when DH,max � C ' F, i.e., the RM theory is a

thick-plate theory. Both these theories are linear, in the sense that strains (∼ DH,max/F)

are assumed small, so that the strain–displacement relations are linear, and the constitutive

equation relating the stress to the strain is also linear.

Under the same lubrication scaling (ℎ0 � F � ℓ) as for the fluid mechanics problem,

it was shown in [37, 38], that the flow-wise and span-wise displacements decouple. Then,

to the leading order in n and X, the displacement of the top wall is given by the solution

of a beam equation in the (G, H) cross-section (fixed I) subject to the applied (constant in

the cross-section) load ?(I). In terms of the dimensionless variables from Eq. (2.13), the

displacement profile is thus given by either

KL : D̄ H̄ (Ḡ, Ī) =
1

24

(
1
4
− Ḡ2

)2
?̄( Ī), (2.20a)

RM : D̄ H̄ (Ḡ, Ī) =
1

24

(
1
4
− Ḡ2

) [
2(C/F)2
^(1 − as)

+
(
1
4
− Ḡ2

)]
?̄( Ī). (2.20b)

Notice that Eq. (2.20a) can be understood simply as the C/F → 0+ limit of Eq. (2.20b),

which captures the effect of finite plate thickness C. In Eq. (2.20b), ^ is a shear-deformation

factor [134,135], which must be taken as unity (i.e., ^ = 1) based on previous mathematical

analysis [136] that was further justified in [38] through comparisons with simulations and

experiments.

From Eq. (2.20b), it is clear that D̄ H̄ increase with C/F (at a fixed load ?̄). To understand

this observation, we recall that RM plate theory allows the normal to the plate’s reference

surface to change direction (and, thus, no longer remain normal, as it would in the KL

theory) during deformation. Shear strains in the transverse (to the surface) direction are thus

allowed and accounted for. Then, since shear deformations are integrals of shear strains

along the thickness, increasing the thickness leads to larger shear strains and, thereby, larger

overall deformation in the normal direction, (see also [137, Ch. 13]).

An important feature of the asymptotic decoupling introduced in [37] is that the struc-

tural deformation equations, and the resulting deflection profiles, are not explicitly depen-
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dent on the fluid’s rheology! The only fluid quantity that enters Eqs. (2.20a) and (2.20b) is

the pressure ?̄. Of course, the latter is computed from the flow profile, which depends on

the rheological model at hand, but none of this information is required to write down the

deflection profiles explicitly. Here, we shall not expend any more effort on the structural

mechanics problem as it is already developed in full detail in [37, 38].

In both of the analyses [37, 38], the characteristic deformation scale turns out to be

D2 = F
4P2/�, where � = �C3/[12(1 − a2

s )] is the bending rigidity of a plate [132]. This

choice ensures a leading-order asymptotic balance [37]. Hence, we can now express V(> 0)

defined in Eq. (2.13) explicitly as

V :=
D2

ℎ0
=
F4P2
�ℎ0

≡ F
4−=ℓ<@=

�ℎ
2(1+=)
0

. (2.21)

Since V is a dimensionless ratio of the hydrodynamic forces applied on the solid (P2 ∝ Δ ?)

to its bending rigidity, we term V the FSI parameter. It should be clear from Eq. (2.15) that

V = 0 corresponds to a rigid (undeformable) top wall.

2.1.4 Completing the calculation

Although D̄ H̄, as given by Eqs. (2.20a) and (2.20b), is “simply” a quartic polynomial in

Ḡ, the remaining integral in the flow rate expression from Eq. (2.19) cannot be performed

in terms of elementary functions for arbitrary = because 2 + 1/= is a fractional power, even

for integer =. On the other hand, a binomial expansion of the integrand yields

(1 + VD̄ H̄)2+1/= =
∞∑
:=0

�:,= (VD̄ H̄): , �:,= :=
Γ(3 + 1/=)

Γ(: + 1)Γ(1/= − : + 3) , (2.22)

where �:,= is the binomial coefficient [138], and Γ(Z) :=
∫ ∞

0 BZ−1e−B dB is the Gamma

function. Clearly, if 2 + 1/= is an integer, then the expansion must terminate for : − 1 such

that 1/= − : + 3 = 0; for example, it terminates at : = 3 for = = 1.

For non-integer 2 + 1/=, the expansion in Eq. (2.22) is exact if taken as a convergent

infinite sum, which is the case only if VD̄ H̄ < 1. We expect (and the results below confirm)

that for the typical displacements and values of V relevant to microchannel FSI, the con-

vergence criterion is satisfied. Finally, in practice, the infinite sum in Eq. (2.22) must be
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truncated. We now undertake the endeavor of determining how and when this truncation

can be done.

Negligible plate thickness (C/F → 0)

Although it is possible to unify the cases of thin and thick plates from the start, by using

Eq. (2.20a) for the displacement, it is quite illustrative to perform the thin and thick plate

calculations separated, due to the simplifications arising in the integration of various terms.

To this end, substituting the expression for D̄ H̄ from Eq. (2.20a) into Eq. (2.22) yields

(1 + VD̄ H̄)2+1/= =
∞∑
:=0

�:,=

(
V?̄

24

) :
(Ḡ + 1/2)2: (Ḡ − 1/2)2: . (2.23)

Now, let us consider just the integral

+1/2∫
−1/2

(1 + VD̄ H̄)2+1/= dḠ

=

+1/2∫
−1/2

∞∑
:=0

�:,=

(
V?̄

24

) :
(Ḡ + 1/2)2: (Ḡ − 1/2)2: dḠ

=

∞∑
:=0

�:,=

(
V?̄

24

) : +1/2∫
−1/2

(Ḡ + 1/2)2: (Ḡ − 1/2)2: dḠ

=

∞∑
:=0

�:,=

(
V?̄

24

) :
:
√
c Γ(2:)

24: Γ(3/2 + 2:)
.

(2.24)

Then, Eq. (2.19) becomes

@̄ =
1

21+1/= (2 + 1/=)

(
−d?̄

dĪ

)1/= ∞∑
:=0

�:,=

(
V?̄

24

) :
:
√
c Γ(2:)

24: Γ(3/2 + 2:)
. (2.25)

Finally, we re-express the latter equation as a first-order ODE:

d?̄
dĪ

= −@̄=
{

1
21+1/= (2 + 1/=)

∞∑
:=0

�:,=

[
V

24
?̄( Ī)

] :
:
√
c Γ(2:)

24: Γ(3/2 + 2:)


−=

. (2.26)

All quantities, except ?̄, on the right-hand side of the latter equation are given constants,

thus Eq. (2.26) is indeed a first-order nonlinear ODE.
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The ODE (2.26) is obviously separable but the integration cannot be carried out, even

with special functions, due to the infinite sum over : . Instead, below we will integrate the

ODE (2.26) numerically, checking to see how many terms in the :-summation are needed

to obtain results insensitive to the truncation of the infinite sum.

Consistency checks

Although verifying that a mathematical expression reduces to a previous result in a

special case cannot speak to the veracity of said mathematical expression, considering some

limiting cases of our theory is of pedagogical value.

First, the rigid-channel limit is easy to take from Eq. (2.25) by letting V→ 0+:

@̄ =
1

21+1/= (2 + 1/=)

(
−d?̄

dĪ

)1/=
. (2.27)

This flow rate–pressure gradient expression for a power-law fluid in a slot can be matched

to the one given in the first row of Table 4.2-1 in [129].

Second, the Newtonian limit is also easy to take, starting from Eq. (2.25) and noting

that the sum terminates at : = 3 when = = 1, to obtain:

@̄ = − 1
12

d?̄
dĪ


3∑
:=0

�:,1

(
V?̄

24

) :
:
√
c Γ(2:)

24: Γ(3/2 + 2:)

 . (2.28)

Subjecting Eq. (2.28) to the outlet boundary condition ?̄(1) = 0, it can be separated and

integrated to yield:

@̄ =
1
12

?̄( Ī)
(1 − Ī)


3∑
:=0

�:,1

: + 1

[
V

24
?̄( Ī)

] :
:
√
c Γ(2:)

24: Γ(3/2 + 2:)

 . (2.29)

The implicit algebraic relation for ?̄( Ī) in Eq. (2.29) can be compared to [37, Eq. (4.3)],

matching the coefficients of ?̄: , : = 0, 1, 2, 3 (see 2.1.4 for more details).

Third, letting V → 0+ in Eq. (2.29) means that only the : = 0 term in the summation

“survives,” and we obtain

@̄ =
1

12
?̄( Ī)
(1 − Ī) lim

:→0

[
�:,1

: + 1
:
√
c Γ(2:)

24: Γ(3/2 + 2:)

]
. (2.30)
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The limit on the right-hand side can be shown to equal 1. Hence, we have recovered

the pressure profile for unidirectional flow in a slot of height ℎ0 and width F: ?̄( Ī) =

12@̄(1 − Ī). The latter, evaluated at Ī = 0 along with the definition of V2 substituted back

in, yields Δ ? = 12`ℓ@/(ℎ3
0F), where Δ ? := ?(0) − ?(1) is the full pressure drop across

the microchannel, as expected [3, §3.4.2].

Plates with considerable thickness (finite C/F)

As in Sec. 2.1.4, let us consider just the integral in Eq. (2.19) but with the top-wall

deformation from Eq. (2.20b) under the binomial series expansion from Eq. (2.22):

+1/2∫
−1/2

(1 + VD̄ H̄)2+1/= dḠ =
∞∑
:=0

�:,=

(
V?̄

24

) : +1/2∫
−1/2

(
1/4 − Ḡ2

) : [
2(C/F)2
^(1 − as)

+
(
1
4
− Ḡ2

)] :
dḠ

=

∞∑
:=0

�:,=

(
V?̄

24

) :
2−1−4:

(
1 + 8(C/F)2

^(1 − as)

) :
×
√
c Γ(: + 1) 2�̃1

©­­«
1
2
,−:;

3
2
+ :;

1

1 + 8(C/F)2
^(1−as)

ª®®¬ , (2.31)

where 2�̃1 is the regularized hypergeometric function [139]. Therefore, the flow rate be-

comes

@̄ =
1

21+1/= (2 + 1/=)

(
−d?̄

dĪ

)1/= 
∞∑
:=0

�:,=

(
V?̄
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Again, Eq. (2.32) can be put in the form of an ODE for the pressure:
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Consistency checks

First, the rigid-channel limit is obtained exactly as in Sec. 2.1.4 to yield Eq. (2.27).

Second, the Newtonian limit is easy to take starting from Eq. (2.32), noting that the sum

terminates at : = 3 when = = 1:
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For a pressure distribution subject to the outlet boundary condition ?̄(1) = 0, Eq. (2.34)

can be separated and integrated to yield:
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Equation (2.35) is an implicit algebraic equation for ?̄( Ī). It can be compared to [38,

Eqs. (17)–(20)], matching the coefficients of ?̄: , : = 0, 1, 2, 3 (see 2.1.4 for more details).

Third, the thickness contribution can be neglected by setting C/F ≡ 0. Then, Eq. (2.32)

reduces to Eq. (2.26), derived for a thin-plate top wall, upon taking into account the appro-

priate limiting behaviors of 2�̃1 [139].
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The special case of a Newtonian fluid

For a Newtonian fluid, = = 1. Then, the summation in Eq. (2.29) can be shown to

terminate at : = 2 + 1/= = 3. The non-zero coefficient in the summation are:

: = 0 : lim
:→0

�:,1
:
√
c Γ(2:)

24: Γ(3/2 + 2:)
= 1, (2.36a)
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as expected [37, Eq. (4.3)].

The non-zero coefficient in the summation in Eq. (2.35) for the thick-plate theory, in

the limit of a Newtonian fluid, are calculated similarly. However, we must further show

how the regularized hypergeometric function reduces to the functions denoted by 51, 52

and 53 in [38, Eqs. (18)–(20)]. To this end, consider the factor multiplying 1
:+1

(
V?̄

24

) :
in a

representative term in the series in Eq. (2.35):
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For integer : , the expression in the last equation evaluates to a polynomial in

b =
(C/F)2
^(1 − as)

(2.38)

via the properties of the regularized hypergeometric function 2�̃1. Specifically, we may

verify, e.g., using MATHEMATICA, that for : = 0, Eq. (2.37) reduces to 1. Then for : = 1,

Eq. (2.37) becomes
1

10
+ b, (2.39)

which is precisely the factor in the brackets multiplying ?(I) in [38, Eqs. (17)] after 1/48

is factored out. Likewise, for : = 1, Eq. (2.37) becomes

1
210
+ 3

35
b + 2

5
b2, (2.40)
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which is precisely the factor in the brackets multiplying ?(I)2 in [38, Eqs. (17)] after

1/1728 is factored out, and so on.

2.2 Results and discussion

2.2.1 Illustrative examples of the theoretical results

The ultimate objective of this chapter is to investigate steady-state FSIs due to internal

flow of a power-law fluid within a microchannel with a soft top wall. In this subsection,

we discuss and illustrate the interplay between the FSI parameter V [recall Eq. (2.21)], the

fluid’s power-law index =, and the thickness-to-width ratio C/F of the top wall. Specifi-

cally, we address how the latter interplay sets the dimensionless pressure drop Δ ?̄ over the

microchannel for a given dimensionless flow rate @̄.

Our mathematical analysis in Sec. 2.1.4 culminated in Eq. (2.33), an ODE for the di-

mensionless pressure profile ?̄( Ī). We integrate this ODE numerically using the odeint

subroutine in Python’s SciPy module [140]. Forty terms are taken in the series in Eq. (2.32)

to ensure an accurate estimate of the infinite series. It was verified that taking any more

than forty terms does not influence the numerical values for the pressure thus calculated.

In Fig. 2.2, we show the complete dimensionless pressure drop Δ ?̄ for different values

of V but a fixed C/F. We note that Δ ?̄ is larger for smaller values of V. This trend is similar

to one observed in [37,38] for Newtonian fluids. We understand that, because a large value

of V corresponds to stronger fluid–structure coupling and larger absolute deformations, the

flow impedance is lower, which culminates in a smaller Δ ?̄.

We also see that shear-thickening fluids (solid curves) lead to a larger Δ ?̄ than shear-

thinning fluids (dashed curves) for larger @̄, and vice versa for small @̄. This cross-over

is due to the shear-rate-dependent apparent viscosity of power-fluids. As discussed above,

the shear stress scales as ∼ <
(
V2/ℎ0

)= and V2 ∝ @. Therefore, depending on whether

V2/ℎ0 & 1 s−1 orV2/ℎ0 . 1 s−1 (1 s−1 for the sake of this argument), the shear stress will

increase or decrease with @, respectively. Therefore, in the first case, the shear stress in the

flow of a shear-thickening fluid (= > 1) is higher than the corresponding one in a shear-
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Fig. 2.2. The dimensionless pressure drop Δ ?̄ across the microchannel for
different values of the FSI parameters V and a fixed top wall thickness-to-
width ratio of C/F = 0.2. The dashed curves correspond to a shear-thinning
fluid (= = 0.7), while the solid curves correspond to a shear-thickening fluid
(= = 1.5).

thinning fluid (= < 1), resulting in a higher pressure drop; and, vice versa in the second

case. The precise cross-over is difficult to predict due to the coupled nature of the FSI

problem. For V = 0, however, we can immediately predict this cross-over from Eq. (2.27)

by solving [21+1/=1 (2+1/=1)@̄]=1 = [21+1/=2 (2+1/=2)@̄]=2 for @̄ with =1 = 0.5 and =2 = 1.5,

yielding @̄ ≈ 0.22964, in perfect agreement with Fig. 2.2.

Figure 2.3 shows Δ ?̄ across the microchannel for different values of C/F but fixed V.

Clearly, Δ ?̄ decreases with C/F because a thicker top wall has a larger absolute deforma-

tion at steady state [e.g., compare Figs. 2.5 and 2.8 below, and recall Eq. (2.20b)], thus

increasing the cross-sectional area, posing a lower impedance to the flow, and requiring a

smaller Δ ?̄ for the same V.
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Fig. 2.3. The dimensionless pressure drop Δ ?̄ across the microchannel for
different values of the top wall’s thickness-to-width ratio C/F and a fixed FSI
parameter of V = 50. The dashed curves correspond to a shear-thinning fluid
(= = 0.7), while the solid curves correspond to a shear-thickening fluid (= =
1.5).

2.2.2 Comparisons between theory and 3D direct numerical simulations of FSI

In this subsection, we compare the results of our mathematical theory with those of

“full” three-dimensional (3D) direct numerical simulations of non-Newtonian FSI in a

microchannel. We carry out simulations using the commercial software suite by AN-

SYS [141], building upon the success of previous computational analyses of microchan-

nel FSIs using ANSYS’ software [38, 142]. To ensure that the simulations capture all the

physics of the problem, a two-way coupling approach is employed. Specifically, the two

domains—fluid and solid—are separately meshed and each set of appropriate governing

equations (mass and momentum conservation for the fluid and force balance for the solid)

is solved separately. A coupling module transfers information between the two solvers to

ensure a fully two-way-coupled solution procedure. Although the “full” set of governing
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equations in the fluid and solid is solved, they are still assumed steady (i.e., time indepen-

dent), as above.

The governing equations of the solid mechanics problem are the force balance for a

linearly elastic continuum characterized by a Young’s modulus � and Poisson ratio as;

however, strains are computed from their “full” nonlinear (in terms of displacements) def-

inition. The bottom and two side walls of the microchannel (see Fig. 2.1) are considered

rigid (undeformable), and the solid mechanics problem for the soft (deformable) top wall is

initialized with a flat rectangular plate configuration. No displacements are allowed along

the planes G = ±F/2 and I = 0, ℓ to enforce clamping. For all the example cases in this

subsection, the microchannel’s top wall is considered to be made from PDMS, which is

modeled as a nearly incompressible linearly elastic isotropic solid with � = 1.6 MPa and

as = 0.499, along the lines of [38].

The governing equations of the fluid mechanics problem are the (steady) Navier–Stokes

equations with a variable (apparent) viscosity (i.e., the tensorial form of Eq. (2.5), see

[129]) with consistency factor < and power-law index = to account for the assumed power-

law rheology. To capture the flow behavior of human blood in a microchannel, we take

< = 0.018 Pa·s=, = = 0.7 [143], which are estimates obtained by fitting blood rheology to

the power-law model, and r = 1060 kg/m3 (in line with typical estimates for whole blood

(see, e.g., [144, Ch. 11]). The fluid mechanics problem is initialized with a fully-developed

flow profile. This velocity profile is obtained by performing a separate simulation in AN-

SYS Fluent of just the flow in an equivalent rigid microchannel with the same cross-section.

The equivalent microchannel was chosen to be sufficiently long to allow the flow to develop

fully from an initially uniform (in the cross-section) velocity with the imposed flow rate @.

The fully developed velocity profile at the outlet of the rigid microchannel is then extracted

and imposed along the inlet plane (I = 0) of the deformable microchannel, while the pres-

sure is set to gauge at the outlet: ?(ℓ) = 0. No slip (zero velocity in this steady problem)

boundary conditions are imposed on all solid and elastic channel walls.

The governing equations of fluid mechanics and structural mechanics are solved using

a finite volume and a finite element method (FEM), respectively. The finite volume solu-
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Table 2.1.
Force (�G , �H, �I) transfer and pressure drop Δ ? across the microchannel for
different values of the diffusion-based smoothing algorithm’s parameter U in
ANSYS Fluent.

U �G (`N) �H (N) �I (N) Δ ? (Pa)

0 −16.4 21827 295.38 1622.16

1.0 −15.5 21813 295.38 1622.12

1.5 −15.5 21809 295.39 1621.99

tion is provided by ANSYS Fluent, while the FEM solution is provided by the ANSYS

Static Structural module within ANSYS Mechanical. An iterative procedure couples the

two domains/solvers and ensures that traction forces from the flow simulation are imposed

onto the structural simulation as boundary conditions. Then, the displacements of the mi-

crochannel walls are calculated from the FEM analysis and transferred to the fluid problem

as changes in the domain (and mesh) shape. This two-way transfer of data between the fluid

and structural solvers continues till a specified (default) convergence criterion is reached.

The displacement of the nodes on the fluid-solid interface are calculated from the FEM

solution, then they are imposed onto the finite volume mesh for the fluid domain. Therefore,

in each iteration of the two-way coupling loop, the fluid mesh deforms. The deformed fluid

mesh requires smoothing to preserve its overall quality, and thereby the quality of the so-

lution to the fluid mechanics problem. Various mesh smoothing algorithms are available in

ANSYS Fluent: diffusion-based smoothing, Laplace smoothing and spring-based smooth-

ing. For FSI simulations, with hexahedral meshes, ANSYS recommends the diffusion-

based smoothing algorithm. This smoothing algorithm has a parameter, denoted U, which

determines how deep (roughly speaking) into the fluid domain mesh the effects of the de-

formed interface should be felt. In order to determine an optimal value of U, we ran several

test FSI simulation with different values of U. The results are shown in Table 2.1. For

different values of U, the pressure drop across the microchannel Δ ? and the force transfers

(�G in the G-direction, and so on) across the interface do not vary by more than 1%. There-
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fore, for our FSI simulations, the choice of U is not important in obtaining accurate results.

Thus, we choose U = 1 for all of our simulations reported in this channel.

Hexahedral elements were used for meshing the fluid and the solid domains of each

benchmark case above. The aspect ratio of the elements was kept close to 1. For the case

given in Table 2.2, the number of divisions of the grid was set to be 800 and 50 for the

fluid domain, and 500 and 40 for the solid domain, along the length and width dimensions,

respectively. Similarly, for the case given in Table 2.3, the number of divisions was set to be

1000 and 80 for the fluid domain, and 500 and 40 for the solid domain, along the length and

width dimensions, respectively. The total simulation run time for the highest flow rate in

each benchmark case was approximately 2 hours using 8 cores on our computational server

(with, specifically, Intel Xeon E5-2680 v4 processors with 14 cores each at 2.4GHz). We

also carried out various grid-independence tests, the details of which are similar to the ones

reported in [38].

The goal of a comparison between direct numerical simulation and theory is to validate

our mathematical results and to ascertain their range of validity. To explore the applicability

of the theory over a wide portion of the parameter space, we separate the simulations into

those suitably described by (a) thin-plate theory (Sec. 2.2.2), for which the thickness-to-

width ratio of the microchannel’s top wall is small (C/F = 0.075), and (b) thick-plate theory

(Sec. 2.2.2), for which the thickness-to-width ratio is not as small (C/F = 0.36). For each

of the latter cases, multiple numerical simulations are performed under the methodology

just described above. The material and geometric properties are fixed but the inlet flow rate

is varied from @ = 7 mL/min to 20 mL/min for the thin-plate example and from @ = 30

mL/min to 70 mL/min for the thick-plate example. These values were chosen to generally

represent the ranges in a typical experiment (e.g., [34, 42]).

Thin-plate example and validation

Consider a case in which the deformable top wall of the microchannel (see Fig. 2.1) is a

“thin” plate. The geometric parameters of this model microchannel are given in Table 2.2.
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Table 2.2.
Dimensions and geometric parameters for the thin-plate benchmark. All
lengths are given in mm.

ℎ0 F ℓ C X n C/F

0.244 2.44 24.4 0.183 0.1 0.01 0.075

These values were chosen to emulate the PDMS-based microchannels (labeled “S4” for

the thinner top wall and “S5” for the thicker top wall) manufactured in the experimental

study [34], which were also two of the examples for our Newtonian benchmark simulation

study [38].

Specifically, by thin we mean that that the plate’s thickness-to-width ratio is C/F =

0.075 � 1, and the plate’s bending rigidity can be calculated to be � = 7.36 `J. Fur-

thermore, as shown in Table 2.2, the lubrication theory separation of scales is respected,

i.e., n � X � 1, which validates the assumptions of shallowness and slenderness, respec-

tively, imposed on the theory developed above. For the flow rates chosen, we can calculate

a maximum n'4 ≈ 0.8, which is small enough to justify the lubrication approximation.

Here, '4 = rV2
2 /g2, g2 = <(V2/ℎ0)= is the stress scale for a power-law fluid, leading to

'4 = rV2−=
2 ℎ=0/< = r@2−=ℎ2=−2

0 F=−2/<.

Now, we are ready to validate our theory against direct numerical simulations. To this

end, in Fig. 2.4, we show the full dimensional pressure drop across Δ ? the microchannel as

a function of the imposed inlet dimensional flow rate @. For the range of parameters chosen,

significant FSI occurs in this microchannel with a soft top wall as the differences between

the ideal Hagen–Poiseuille (dashed), the theory curve (solid), and the simulation data in

Fig. 2.4 clearly show. More importantly, however, there is good quantitative agreement

between the theoretical prediction for the @–Δ ? relation under FSI and the direct numerical

simulation results. Overall, Fig. 2.4, shows that our mathematical model for the @–Δ ?

relation, i.e., the solution to the ODE (2.26), accurately captures the pressure drop due to

non-Newtonian FSI in a microchannel with a thin top wall, within 7% maximum pointwise
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error in this example. Also observe that FSI has a significant effect on the flow, reducing

Δ ? up to 40% compared to a rigid channel. Clearly, it is crucial to accurately capture this

quantitative difference between a deformable and a rigid microchannel when designing

microfluidic systems.

0 2 4 6 8 10 12 14 16 18 20 22
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4

Rigid Channel

FSI Theory

Simulations

Fig. 2.4. Flow rate–pressure drop relationship for a thin-plate top wall:
comparison between non-Newtonian FSI theory [i.e., Δ ? computed from
Eq. (2.26)], direct numerical simulation, and the rigid microchannel expres-
sion [i.e., Δ ? computed from Eq. (2.27)].

Switching to the structural domain, in Fig. 2.5, we show the self-similar collapse of the

ratio of the dimensionless transverse deflection to the dimensionless pressure, i.e., D̄ H̄/?̄,

for different @ and at different axial positions I. This self-similar form, in which the ratio

D̄ H̄/?̄ is a universal function of Ḡ alone is immediately apparent from the structural defor-

mation prediction in Eq. (2.20a). Figure 2.5 shows that there is good agreement between

the collapsed data points and the theoretical shape predicted by Eq. (2.20a). At higher flow

rates, however, the simulation data begins to “dip” below the theory curve, resulting in a

maximum error of 11%.

For a different perspective, and to further examine the collapse (or lack thereof), in

Fig. 2.6, we plot the same data but at a fixed-I cross-section, as a function of the FSI
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parameter V [recall Eq. (2.21)]. Again there is good agreement between the results from

direct numerical simulation and the theoretical prediction from Eq. (2.20a), with deviations

(and the “dip” below the theory curve) now clearly being attributable to V being large.3

Therefore, we have not only shown the high accuracy of our theory through this compar-

ison with direct numerical simulations, but we have also outlined the extent of the theory’s

applicability. Specifically, we observe that the systematic deviations from the theoretical

prediction in Figs. 2.5 and 2.6 occur at high @ and, equivalently, large V, irrespective of the

axial position. This observation is attributed to the fact that at higher @, the deformation

of the top wall enters a nonlinear stretching regime, which cannot be described by classi-

cal plate theories, as also discussed in [38]. This hypothesis is corroborated by Fig. 2.6,

in which the collapse worsens as the FSI parameter V increases—i.e., the load imposed

onto the plate by the fluid becomes larger compared to the plate’s bending rigidity. In

other words, as V increases, so does the effect of FSI, and the deformation of the top wall

becomes more significant, leaving the range of validity of our “linear” FSI model.

Thick-plate example and validation

Our benchmark microchannel for a thick-plate top wall has dimensions as given in

Table 2.3. The thickness-to-width ratio for this microchannel is C/F = 0.36, which is a

large enough value to warrant the deployment of the Reissner–Mindlin thick-plate theory.

This plate’s bending rigidity can be calculated to be � = 266 `J. Then, the displacement

of the top wall is predicted to obey Eq. (2.20b). As before, to ensure the proper asymptotic

regime of a long and shallow microchannel, we must have n � X � 1, which is indeed the

case for this microchannel as shown in Table 2.3.

For the flow rates chosen, we calculate a maximum n'4 ≈ 8.7, which is larger than

the corresponding value for the thin-plate example above. Although, strictly speaking, this

value of n'4 (and not n2'4 as in two-dimensional lubrication theory [37]) is beyond the

expected applicability of the lubrication approximation, we nevertheless obtain good agree-

3As discussed in [37, Appendix B], this type of “linear FSI” theory holds for V large, up to at least V =
O(1/X).
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Fig. 2.5. Self-similar collapse of the scaled dimensionless cross-sectional
displacement profiles, D̄ H̄ (Ḡ, Ī)/?̄( Ī), for different flow rates of the example
thin-plate case. The solid curve corresponds to the theoretical profile from
Eq. (2.20a), while the symbols correspond to direct numerical simulation. Col-
ors: red = 7 mL/min, yellow = 10 mL/min, gray = 13 mL/min, black = 15
mL/min, and orange = 18 mL/min; shapes: � is I = 21.4 mm, � is I = 19.4
mm, 4 is I = 16.4 mm, and B is I = 12.4 mm.

Table 2.3.
Dimensions and geometric parameters for the thick-plate benchmark. All
lengths are given in mm.

ℎ0 F ℓ C X n C/F

0.155 1.7 15.5 0.605 0.09 0.01 0.36

ment between the theoretical prediction and direct numerical simulations. This highlights

the extent to which lubrication theory can be “pushed beyond” its strict n'4 � 1 validity

range.

First, we compare the flow rate–pressure drop relation predicted by our theory, i.e.,

the solution of Eq. (2.33), to the results of direct numerical simulation. To this end, in

Fig. 2.7, we plot the pressure drop Δ ? across the microchannel for different values of

the imposed inlet flow rate @. The mathematical prediction for Δ ?, which is found from
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Fig. 2.6. Self-similar collapse of the scaled dimensionless cross-sectional dis-
placement profiles, D̄ H̄ (Ḡ, Ī)/?̄( Ī), from Fig. 2.6 for different values of the FSI
parameter V but at the fixed flow-wise cross-section I = 16.4 mm. Symbols
correspond to the computational results from two-way FSI simulations. The
solid curve corresponds to the theoretical profile from Eq. (2.20a).

integrating the ODE (2.33), is in excellent agreement with the direct numerical simulation

results within 2% maximum pointwise error, across a half a decade of range in the flow

rate. In this case, the pressure drops are significantly larger than in Sec. 2.2.2 because of

the much smaller (undeformed) cross-sectional area (see Table 2.3). Thus, while the thick

top wall deforms more than an equivalent thin one, which increases the cross-sectional area

and lowers the resistance to flow, the deformation in this case is not so large as to make

the pressure drops in this section comparable to those in Sec. 2.2.2, in which the channel

has larger (undeformed) cross-sectional area. Nevertheless, once again, FSI decreases Δ ?

in the microchannel, by up to 12% compared to an equivalent rigid conduit, through the

increase in the cross-sectional area engendered by the deformation of the top wall.

Next, we plot the ratio of dimensionless deflection to dimensionless pressure, i.e., D̄ H̄/?̄,

for different values the imposed inlet flow rate @ in our simulations. Figure 2.8 shows the

self-similar collapse of D̄ H̄/?̄ across @ and axial positions I in the flow-wise direction. There
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Fig. 2.7. Flow rate–pressure drop relationship for a thick-plate top wall:
comparison between non-Newtonian FSI theory [i.e., Δ ? computed from
Eq. (2.33)], direct numerical simulations, and the rigid microchannel expres-
sion [i.e., Δ ? computed from Eq. (2.27)].

is excellent collapse of the data in Fig. 2.8, with all data points being almost indistinguish-

able, onto the mathematically predicted dimensionless displacement profile is given by

Eq. (2.20b). In parallel, Fig. 2.9 shows the same data but at a fixed value of I and as a

function of the FSI parameter V. Given the smaller range of V values compared to the case

in Sec. 2.2.2 (well within the “linear” FSI theory developed herein), we cannot visually

distinguish any variation with V in Fig. 2.9.

In both Figs. 2.8 and 2.9, we observe good quantitative agreement between the theoret-

ical predictions and direct numerical simulation results across the range of @, equivalently

V values chosen. Nevertheless, there are systematic deviations between the collapsed sim-

ulation data and the D̄ H̄/?̄ profile from Eq. (2.20b) predicted by thick-plate theory. These

deviations are due to the fact that, in the direct numerical simulation, the 3D equations of

linear elasticity are solved, while our mathematical results are based on the assumptions

of the Reissner–Mindlin plate theory, which is necessarily approximate. Specifically, the

Reissner–Mindlin plate theory assumes that the normal strains, along the thickness of the
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Fig. 2.8. Self-similar collapse of the scaled dimensionless cross-sectional
displacement profiles, D̄ H̄ (Ḡ, Ī)/?̄( Ī), for different flow rates of the example
thick-plate case. The solid curve corresponds to the theoretical profile from
Eq. (2.20b), while the symbols correspond to direct numerical simulation. Col-
ors: red = 30 mL/min, yellow = 40 mL/min, gray = 50 mL/min, black = 60
mL/min, and orange = 70 mL/min; shapes: � is I = 12.5 mm, � is I = 10.5
mm, 4 is I = 7.5 mm, and B is I = 3.5 mm. Symbols might be hard to
distinguish due to the excellent collapse of the data.

plate, are small, while the shear deformations are not negligible. Therefore, every material

point along the thickness of the plate undergoes the same displacement in the normal di-

rection. This kinematic assumption may not always hold true, especially for plates that are

very thick. Then, a systematic deviations from Eq. (2.20b) (for the vertical displacements)

are expected, and an even-higher-order plate theory would be required to capture them.

2.3 Conclusion

In this chapter, we presented a theory of low Reynolds number fluid–structure inter-

actions (FSIs) between a generalized non-Newtonian fluid with shear-dependent viscos-

ity and a rectangular microchannel with a top compliant wall. The power-law model of

shear-dependent viscosity was employed for the fluid. The structural mechanics of the mi-
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crochannel’s top wall were modeled using two classical plate theories: the Kirchhoff–Love

theory of quasi-static flexural deformations of thin plates and the first-order shear deforma-

tion Reissner–Mindlin theory applicable to thick plates. Specifically, we showed that the

deformation of the structure is coupled to the fluid mechanics only through the hydrody-

namic pressure, and the fluid’s rheology does not explicitly affect the previously derived

displacement profiles [37, 38]. Then, through a perturbative analysis under the lubrication

approximation (i.e., a long and shallow microchannel), we reduced the coupled problem to

a single ordinary differential equation (ODE) for the hydrodynamic pressure:
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Once the pressure ?(I) is determined via Eq. (2.41), the deformed channel shape is given

by

ℎ(G, I) = ℎ0 +
F4

24�

[
1
4
−

(
G

F

)2
]  2(C/F)2

^(1 − as)
+

[
1
4
−

(
G

F

)2
] ?(I). (2.42)

Equations (2.41) and (2.42), technically derived under the Reissner–Mindlin plate theory,

unify both the plate theories considered herein because letting C/F → 0+ (recall Sec. 2.1.4)

reduces Eqs. (2.41) and (2.42) to the ones derived under the Kirchhoff–Love thin-plate

theory.

Next, we illustrated some trends predicted by our theory. A microchannel with a thicker

top wall is more compliant in the sense that the absolute deformation is larger for the

same undeformed cross-section. Therefore, the pressure drop, at a fixed inlet flow rate,

decreases with the thickness-to-width ratio C/F. The same trend was shown with respect to

the dimensionless FSI parameter

V =
F4P2
�ℎ0

, (2.43)

which quantifies the strength of the FSI coupling in the problem with V large corresponding

to significant compliance of the top wall. Recall that the choice of pressure scale P2 was

discussed after Eq. (2.13) above.
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Fig. 2.9. Self-similar collapse of the scaled dimensionless cross-sectional dis-
placement profiles, D̄ H̄ (Ḡ, Ī)/?̄( Ī), from Fig. 2.8 for different values of the FSI
parameter V but at the fixed flow-wise cross-section I = 7.5 mm. Symbols
correspond to the computational results from two-way FSI simulations. The
solid curve corresponds to the theoretical profile from Eq. (2.20b). Symbols
might be hard to distinguish due to the excellent collapse of the data.

Full-scale direct numerical simulations of non-Newtonian microfluidic FSI were carried

out using the commercial computer-aided engineering (CAE) platform by ANSYS [141].

The numerical simulations were used to confirm our theoretical predictions for flow and

deformation, and to also ascertain the theory’s range of validity. Specifically, the pressure

drop across the microchannel predicted by our theory was shown to closely match the

predictions of CAE simulations, across a range of flow rates, with an accuracy of 2% in the

best case and 7% in the worst case. Deviations between theory and simulations emerge only

when the structural response of the top wall of the microchannel enters a nonlinear regime

(V not small), i.e., when the deformation is too large to be adequately described within

the framework of the linear strain–displacement relationships of classical plate theories.

Perhaps more importantly, we note that pressure drop across the microchannel decreases

significantly, up to 40% in some cases, due to the presence of FSI. This result provides
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concrete new evidence for the early observations in [30] toward the fact that FSI must

be accurately accounted for, when formulating flow rate–pressure drop relationships for

compliant microchannels.
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3. HYDRODYNAMIC BULGE TEST FOR MATERIAL PROPERTY
CHARACTERIZATION OF LINEARLY ELASTIC THICK PLATES

SUMMARY

Characterizing the elastic properties of soft materials through bulge testing relies on ac-

curate measurement of deformation, which is experimentally challenging. To avoid mea-

suring deformation, we propose a hydrodynamic bulge test for characterizing the material

properties of thick, pre-stressed elastic sheets via their fluid–structure interaction with a

steady viscous fluid flow. Specifically, the hydrodynamic bulge test relies on a pressure

drop measurement across a rectangular microchannel with a deformable top wall. We

develop a mathematical model using first-order shear-deformation theory of plates with

stretching, and the lubrication approximation for Newtonian fluid flow. Specifically, a re-

lationship is derived between the imposed flow rate and the total pressure drop. Then, this

relationship is inverted numerically to yield estimates of the Young’s modulus (given the

Poisson ratio), if the pressure drop is measured (given the steady flow rate). Direct numeri-

cal simulations of two-way-coupled fluid–structure interaction are carried out in ANSYS to

determine the cross-sectional membrane deformation and the hydrodynamic pressure dis-

tribution. Taking the simulations as “ground truth,” a hydrodynamic bulge test is performed

using the simulation data to ascertain the accuracy and validity of the proposed methodol-

ogy for estimating material properties. An error propagation analysis is performed via

Monte Carlo simulation to characterize the susceptibility of the hydrodynamic bulge test

estimates to noise. We find that, while a hydrodynamic bulge test is less accurate in charac-

terizing material properties, it is less susceptible to noise, in the input (measured) variable,

than a hydrostatic bulge test.
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The material in this chapter has been published in [V. Anand, S. C. Machundinath, and

I. C. Christov, “Hydrodynamic Bulge Testing: Materials Characterization Without Measur-

ing Deformation,” ASME J. Appl. Mech., vol. 87, pp. 051012, 2020] [145]

3.1 Preliminaries

Consider the geometry depicted in Fig. 3.1. An elastic plate, clamped on all its edges,

is placed as the top wall over a rectangular channel that is long and wide. The plate’s

thickness is smaller than its spanwise width (C/F < 1), but it is not negligible (C/F 6→

0). Furthermore, the reference configuration of the plate is assumed to have an uniform

(isotropic) pre-tension ) , defined as a force per unit length (stress resultant). The structure

mechanics problem is analyzed using first-order shear deformation theory (FOSDT), also

known as thick-plate theory or the Reissner–Mindlin plate theory, that also accounts for the

h
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x = −w/2 x = w/2
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Fig. 3.1. Geometry of the problem and notation. A slender elastic membrane
(plate) represents the top wall of an otherwise rigid channel. A steady flow
is established in the I-direction, which gives rise to a pressure gradient that
leads to a deformation of the membrane in the H-direction. The membrane is
clamped on all ends (not shown at I = 0 for clarity).
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pre-tension/pre-stress/stretching in the elastic body (see the recent historical overview of

the development of these theories by Challamel and Elishakoff [146])

3.2 Structural mechanics

3.2.1 Kinematics

In FOSDT, the assumption that the transverse normals are straight and inextensible

leads to the following displacement field within the plate [147]:

DG (G, H, I) = DG0(G, I) + HqG (G, I), (3.1a)

DI (G, H, I) = DI0(G, I) + HqI (G, I), (3.1b)

DH (G, I, H) = DH0(G, I). (3.1c)

Here, DG0 and DI0 are the in-plane displacements, DH0 is the transverse displacement (hence-

forth denoted just as DH for simplicity and without fear of confusion), and qG and qI are

the rotations of the normal to the plate about the G- and the I-axis, respectively. Equa-

tions (3.1) are written assuming H = 0 is the mid-plane (neutral surface) of the plate, as

shown in Fig. 3.1. In FOSDT, the nonlinear terms in the strain tensor, which arise from von

Kármán strains, are neglected and the strain tensor is written in the column vector form as:

©­­­­­­­­­­­­­­«

WGG

WII

WHH

WGI

WGH

WIH

ª®®®®®®®®®®®®®®¬︸︷︷︸
W

=

©­­­­­­­­­­­­­­­«
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0
mDG0
mI
+ mDI0

mG

mDH
mG
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mDH
mI
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ª®®®®®®®®®®®®®®®¬︸          ︷︷          ︸
W0

+ H

©­­­­­­­­­­­­­­«

mqG
mG

mqI
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0
mqG
mI
+ mqI

mG

0

0

ª®®®®®®®®®®®®®®¬︸        ︷︷        ︸
Q

. (3.2)

Here, Q is the curvature strain tensor, which arises from bending, while W0 represents the

in-plane stretching and deformation due to transverse shear. It is a feature of FOSDT that
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the transverse shear strains remain constant across the thickness, while the in-plane strains

vary linearly with H.

3.2.2 Equations of static equilibrium

As is standard in plate theory, we integrate the stresses across the thickness and define

the corresponding stress resultants as

©­­­­­­­­­­­«

#GG

#II

#GI

&G

&I

ª®®®®®®®®®®®¬
=

∫ +C/2

−C/2

©­­­­­­­­­­­«
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ª®®®®®®®®®®®¬
dH, (3.3)

and the bending moments as

©­­­­­«
"GG
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"GI

ª®®®®®¬
=

∫ +C/2

−C/2

©­­­­­«
fGG

fII

fGI

ª®®®®®¬
H dH. (3.4)

There are only two independent variables in the plate theory: the in-plane coordinates G

and I. Thus, here, #GG and #II are the normal stress resultants in these, G and I directions,

respectively. Likewise, &G and &I are the transverse shear stress resultants acting on the

planes which have their outward normals in the G and I directions, respectively. Meanwhile,

#GI is the in-plane shear stress resultant. Similarly, "GG and "II are bending moments,

while "GI is the twisting moment. There are no moments due to the transverse stresses fGH

and fIH. Additionally, the assumption of a plane-stress state means that fHH = 0, and fHH

does not contribute to any stress resultants.

The equations of equilibrium, written in terms of the stress resultants [147, Ch. 10], are

m#GG

mG
+ m#GI

mI
= 0, (3.5a)
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m#GI

mG
+ m#II

mI
= 0, (3.5b)

m&G

mG
+ m&I

mI
+ N + ? = 0, (3.5c)

m"GG

mG
+ m"GI

mI
−&G = 0, (3.5d)

m"GI

mG
+ m"II

mI
−&I = 0, (3.5e)

where

N :=
m

mG

(
#GG

mDH

mG
+ #GI

mDH

mI

)
+ m

mI

(
#GI

mDH

mG
+ #II

mDH

mI

)
(3.6)

couples the displacement in the transverse direction (bending) to the in-plane displacements

(stretching). This term accounts for moderate rotations and originates from employing von

Kármán strains in the derivation of the equations of equilibrium [147].

Thus, we have neglected the nonlinear terms in the kinematics of the problem, but opted

to retain these terms in the equations of static equilibrium. Neglecting N in Eq. (3.5c),

would decouple the bending response from the stretching response. In other words, the

transverse deflection would not be affected by stretching (pre-stress) at all, which is valid

only when the stretching is negligible. Retaining N in the equations of static equilibrium

thus enlarges the scope of application of the theory, and allows for the consideration of pre-

stressed (pre-stretched) plates. On the other hand, if we had also incorporated the nonlinear

(moderate rotation) terms in the kinematics, and employed the von Kármán strains, then we

would have obtained the nonlinear von Kármán plate theory [148], which is difficult (if not

impossible) to solve analytically [147,148]. In the von Kármán plate theory, stretching and

bending responses are tightly coupled, unlike a linear plate theory in which N is dropped

altogether from the analysis.

To summarize: in this chapter, the coupling between stretching and bending is one-

way; stretching influences bending but the converse is not true. The influence of stretching

in the bending response is accounted for by incorporating N , given by Eq. (3.6), which

appears in Eq. (3.5c). On the other hand, however, Eqs. (3.5a) and (3.5b) that govern the

in-plane equilibrium (stretching) are decoupled from Eqs. (3.5c)–(3.5e) and do not contain

any terms corresponding to the bending response. The current theory may thus be regarded
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as “weakly nonlinear” in a sense, providing a suitable trade-off between the nonlinear von

Kármán plate theory (with stretching) and a linear FOSDT theory (in which stretching

decouples).

3.2.3 Constitutive equations

For the condition of plane stress, the constitutive equations reduce (see [147, 149]) to
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where a is the Poisson ratio and � is the Young’s modulus of the linearly elastic material.

Next, we substitute the expressions for the strains in terms of displacements from Eq. (3.2)

into Eq. (3.7), the result of which, upon being employed in Eq. (3.3), yields:
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Note that due to the assumption about linear strains, the in-plane stress resultants are only

functions of the in-plane strains, and they are independent of the transverse deflections and

rotations. Similarly, the bending moments from Eq. (3.4) are calculated to be
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where we observe that the bending moments are only a function of the rotations.

Next, the constitutive equations for the shear stresses are modified as:

fGH ≈ ^�WGH, (3.10a)

fIH ≈ ^�WIH, (3.10b)
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where � = �/[2(1 + a)] is the shear modulus, and ^ is Timoshenko’s “shear correction

factor” [150], which is commonly introduced to account for nonuniform distribution of the

transverse shear strain across the thickness [135, 136, 151]. Now, we substitute the expres-

sions for fGH and fIH from Eqs. (3.10) into Eq. (3.3) to relate the shear stress resultants to

the deformation and rotation of the normal:

&G = ^

∫ +C/2

−C/2
�WGH dH = ^�C

[
mDH

mG
+ qG

]
, (3.11a)

&I = ^

∫ +C/2

−C/2
�WIH dH = ^�C

[
mDH

mI
+ qI

]
. (3.11b)

Zhang [136] proved mathematically that the equations of linear elasticity and those of

the RM plate theory, both in the limit of C/F → 0, agree only when ^ = 1. Therefore, as in

our previous works [38,60], we take ^ = 1 when generating our results below. However, we

keep the variable ^ throughout our equations for consistency with the applied mechanics lit-

erature. This completes the derivation of the stress resultants in terms of the displacements

under the FOSDT.

3.2.4 Differential equations for the displacement

To define a FOSDT with both stretching and bending, one substitutes the stress resul-

tants from Eqs. (3.8), (3.9) and (3.11) into the equations of equilibrium (3.5), to obtain a set

of differential equations for the displacements (DG0, DH, DI0) and the rotations of the normal

(qG , qI):
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where �1 := �C3/[12(1 − a2)] is the bending rigidity, and �B := �C/(1 − a) is the exten-

sional rigidity, of the plate with Young’s modulus � and Poisson ratio a [148, 152].

Equations (3.12a) and (3.12b) completely describe the in-plane displacement field,

which is independent of the transverse deflection and/or rotations. In the analysis below,

this in-plane displacement field will not be necessary, thus we discard these two equations.

Finally, in this chapter, we assume that the stretching response of the plate is due to

a known isotropic, uniform pre-tension ) , i.e., the normal stress and in-plane shear stress

resultants are simply given by ©­­­­­«
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#II

#GI

ª®®®®®¬
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1
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0
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Then, Eq. (3.12c) becomes,

^�C

(
mqG
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mI

)
+ () + ^�C)

(
m2DH

mG2 +
m2DH

mI2

)
= −?. (3.14)

Together, Eqs. (3.14), (3.12d) and (3.12e) describe the transverse deflection and rotations

of the normal to the mid-plane of a thick, pre-stressed plate. A subtle consequence of

imposing the pre-stress on the model a priori, rather than computing it through internal

strains, is that the equations of the present weakly nonlinear theory become equivalent to

equations of von Kármán’s plate theory with given constant isotropic pre-tension [148,149].

3.2.5 Shallow, slender plates: Regimes of deformation

First, we rewrite the governing differential equations (3.14), (3.12d) and (3.12e) using

the following dimensionless variables:

- = G/F, / = I/ℓ, * = DH/U2,ΦG = qG/FG , ΦI = qI/FI % = ?/P2, (3.15)

Here, FG , FI and U2 are the characteristic scales for the rotation of the normal in the G

and I directions, and the characteristic scale for the deformation itself, respectively. These
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scales will be determined self-consistently through the mathematical analysis below. The

characteristic pressure scale is P2, which will be obtained from the analysis of the fluid

mechanics problem. For a long and wide microchannel, following [37], assume that

ℎ0 � F � ℓ ⇒ n � X � 1, (3.16)

where n := ℎ0/ℓ and X := ℎ0/F, and ℎ0 is the undeformed height of the channel (recall

Fig. 3.1). Substituting the dimensionless variables from Eq. (3.15) into Eqs. (3.14), (3.12d)

and (3.12e) yields a dimensionless set of governing equations:
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(3.17c)

In Eqs. (3.17b) and (3.17c), the terms involving m*/m- and m*/m/ arise from the trans-

verse shear resultant, meaning they are a key aspect of the FOSDT. To retain these terms

asymptotically, we take

FG =
U2

F
, FI =

U2

ℓ
=
F

ℓ
FG . (3.18)

Next, we substitute the expressions for FG and FG from Eq. (3.18) into Eq. (3.17b) and

multiply by ℎ2
0 to obtain:
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)
= 0. (3.19)

Under the assumed asymptotic scaling given in Eq. (3.16), we retain terms of O(X2) in the

last equation, while dropping the terms of O(n2) in Eq. (3.19), to obtain:
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2
0
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)
= 0. (3.20)



54

To balance all terms in the last equation, we must require that X2�1 ∼ ^�Cℎ2
0. This scaling

can be interpreted in two ways. First, in the “stiffness space,” it can be rewritten as

X2 ∼
^�Cℎ2

0
�1

=
transverse shear stiffness

bending stiffness
, (3.21)

which means that the ratio of the transverse shear stiffness to the bending stiffness, though

small, is still finite, unlike “thin-plate” (Kirchhoff–Love) theory [132, 153] (referred to as

“classical plate theory” in [147]), in which it is identically zero. Second, by using the

definition of the bending stiffness �1 and the shear modulus � given above, Eq. (3.21) can

be rewritten as

6^(1 − a) ∼ (C/F)2, (3.22)

which is an equivalent relation in the “dimensions space,” and portrays the relationship

between the thickness and the width of the plate in an order of magnitude sense.

Next, Eq. (3.20) can be rewritten as

T
m2Φ-

m-2 −
(
Φ- +

m*

m-

)
= 0, T :=

(C/F)2
6^(1 − a) , (3.23)

where a scaled dimensionless thickness T has been defined for convenience.

Similarly, for Eq. (3.17a), we substitute FG and FI from Eq. (3.18) and multiply by

ℎ2
0F

2/�1 to obtain:

1
T

(
X2 mΦ-

m-
+ n2 mΦ/

m/

)
+

(
)F2

�1

+ 1
T

) (
X2 m

2*

m-2 + n
2 m

2*

m/2

)
= −

ℎ2
0F

2P2
�1U2

%. (3.24)

Again, we neglect terms of O(n2) and retain terms of O(X2), arriving at

1
T

(
X2 mΦ-

m-

)
+

(
_ + 1

T

) (
X2 m

2*

m-2

)
= −

ℎ2
0F

2P2
�1U2

%, (3.25)

where _ := )F2/�1 has been defined as a dimensionless tension-to-bending number. Al-

though _ < 0 is possible as well (pre-compressed plate), we restrict ourselves to the case

of _ > 0 to avoid potentially having to deal with buckled states of the membrane [116].



55

To summarize, the FOSDT equations (in terms of the deformation* and the rotation of

the normalΦ-) for bending of a long and wide plate, initially subject to a uniform isotropic

pretension, are

T
m2Φ-

m-2 −
(
Φ- +

m*

m-

)
= 0, (3.26a)

1
T

mΦ-

m-
+

(
_ + 1

T

)
m2*

m-2 = −
ℎ2

0F
2P2

X2�1U2

%. (3.26b)

The corresponding (four) clamping boundary conditions (BCs) at the channel’s lateral side-

walls are

* |-=±1/2 = 0, Φ- |-=±1/2 = 0. (3.27)

The characteristic deformation scale U2 remains unknown. It will be determined by con-

sidering appropriate balances in Eq. (3.26b), depending on the order of magnitude of _.

3.2.6 Solution of the deformation equations

It was shown in [37] (see also Sec. 3.3 below) that, under the lubrication approximation,

the hydrodynamic pressure load can vary at most in the flow-wise direction; i.e., % =

%(/) only. Then, the governing differential equations Eqs. (3.26) for Φ- and * are a set

of coupled, inhomogeneous, ordinary differential equations (ODEs) in - with constant

coefficients.

Based on the definition of _ from Eq. (3.26b), we can delineate four regimes of struc-

tural deformation:

• Regime 1 (_ � 1): Pre-tension is negligible compared to transverse shear and bend-

ing, i.e., )F2/�1 � 1.

• Regime 2 (_ = O(1)): Pre-tension and transverse shear are comparable to bending:

)F2/�1 = O(1), or )ℎ2
0/�1 = O(X2).

• Regime 3a (_ = O(1/X2)): Pre-tension is much stronger that transverse shear and

bending: )F2/�1 = O(1/X2), or )ℎ2
0/�1 = O(1).
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• Regime 3b (_ � 1/X2): Again, pre-tension is much stronger that transverse shear

and bending, but there are no longer dominant balances involving _ in the governing

equation: )ℎ2
0/�1 � 1.

Regime 1 is bending dominated, and the problem reduces to the no-pre-tension case con-

sidered in previous work [38, 60]. In Regime 3b, the problem reduces to the trivial case of

biaxial stretching of a bar, without any FSI, which is not of interest either. In Regime 2,

both pre-tension and bending effects are important. Thus, Regime 2 is of primary interest

in this chapter, and a solution will be sought for the displacement in this regime. Then, the

displacement under Regimes 1 and 3a can be easily found from the solution in Regime 2

as special/limiting cases.

Next, Eq. (3.26b) can be solved for mΦ-/m-:

mΦ-

m-
= −T

[
F4P2
�1U2

% +
(
_ + 1

T

)
m2*

m-2

]
, (3.28)

which, in turn, can be differentiated twice with respect to - , to obtain:

m3Φ-

m-3 = −T
(
_ + 1

T

)
m4*

m-4 . (3.29)

Taking m/m- of Eq. (3.26a) and substituting into it the results from Eq. (3.28) and (3.29),

yields a single ODE for*:

− (_T + 1) m
4*

m-4 + _
m2*

m-2 +
F4P2
�1U2

% = 0, (3.30)

Thus, to balance all terms (and account for bending, stretching and pressure loading), we

must choose the scale of deformation to be

U2 =
F4P2
�1

. (3.31)

Equation (3.30) is subject to the four BCs from Eq. (3.27). Again, two of them need

to be converted from BCs on Φ- to corresponding BCs on *. To that end, differentiate

Eq. (3.28) to obtain an expression for m2ΦG/m-2, which is then substituted into Eq. (3.26a).

Next, evaluate the result at - = ±1/2 and impose the BCs Φ- |-=±1/2 = 0 to obtain the new

BCs [
1
T

m*

m-
+ (_T + 1) m

3*

m-3

] ������
-=±1/2

= 0. (3.32)
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By inspection, the particular solution of Eq. (3.30) is − 1
2_%(/)-

2. For the homoge-

neous problem, the characteristic polynomial is (_T + 1) A4 − _A2 = 0, the roots of which

are A =
{

0,±
√
_/(_T + 1)

}
, where A = 0 is a double root. Thus, the general solution of

Eq. (3.30) is

* (-, /) = −%(/)
2_

-2 + �1(/) exp

(
-

√
_

_T + 1

)
+ �2(/) exp

(
−-

√
_

_T + 1

)
+ �3(/) + �4(/)-, (3.33)

where �1,2,3,4(/) are arbitrary functions of integration.

The - ↦→ −- symmetry of the boundary-value problem (BVP) specified by Eq. (3.30)

and its BCs requires that �1(/) = �2(/) and �4(/) = 0. Thus, the general solution (3.33)

can be rewritten as

* (-, /) = 2�1(/) cosh

(
-

√
1

_T + 1

)
+ �3(/) −

%(/)
2_

-2, (3.34)

The BCs in Eq. (3.32) require that

�1(/) =
%(/)

4_
√
_(_T + 1) sinh

(
1
2

√
_

_T +1

) . (3.35)

Then, the BCs* |-=±1/2 = 0 require that

�3(/) =
%(/)

2_


1
4
− 1√

_(_T + 1)
coth

(
1
2

√
_

_T + 1

) . (3.36)

Thus, the complete solution for the cross-sectional deformation profile of the pre-

stressed plate is

* (-, /) = %(/)
2_


(
1
4
− -2

)
−


cosh

(
1
2

√
_

_T +1

)
− cosh

(
-

√
_

_T +1

)
√
_(_T + 1) sinh

(
1
2

√
_

_T +1

)


. (3.37)

As a consistency check, we also note that, in the limit of negligible thickness (T→ 0),

Eq. (3.37) reduces to the deformation profile of a pre-stressed thin membrane [116, Eq. (8)]

(see also [110, Eq. (10)]).
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On the other hand, in the limit _→ 0, Eq. (3.37) reduces to the solution for thick plate

without pre-tension, i.e., the solution for Regime 1 from [38],

In Regime 3a, _ = O(1/X2), i.e., _ � 1, and a straightforward Taylor series expansion

of Eq. (3.37) for _→∞ gives

* (-, /) = %(/)
2_


(
1
4
− -2

)
− 1
_

cosh
(

1
2
√

T

)
− cosh

(
-√
T

)
√

T sinh
(

1
2
√

T

) + O
(

1
_2

) . (3.38)

For future reference, Eq. (3.37) can be put back into its dimensional form:

D(G, I) = F
2?(I)
2)


[
1
4
−

(
G

F

)2
]
−


cosh

(
1
2

√
_

_T +1

)
− cosh

(
G
F

√
_

_T +1

)
√
_(_T + 1) sinh

(
1
2

√
_

_T +1

)


. (3.39)

Then, by G ↦→ −G symmetry, the maximum deformation over the cross-section is its value

at G = 0:

Dmax(I) = D(0, I) =
F2?(I)

2)


1
4
−

cosh
(

1
2

√
_

_T +1

)
− 1√

_(_T + 1) sinh
(

1
2

√
_

_T +1

)

. (3.40)

3.2.7 Deformation profile in other regimes

In this subsection, we derive the expression for deformation profile in Regime 1 and

Regime 3a directly, that is to say without considering the limits of Eq. (3.37).

Regime 1

In this regime, as _ � 1, we simply take the formal limit _ → 0, and Eq. (3.26b)

reduces to
1
T

(
mΦ-

m-
+ m

2*

m-2

)
= − F

4P2
�1U2

%(/). (3.41)

Eliminating Φ- between Eqs. (3.41) and (3.26a), we obtain a single ODE in*:

m4*

m-4 =
F4P2
�1U2

%(/). (3.42)
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Clearly, the appropriate choice for the deformation scale is

U2 =
F4P2
�1

, (3.43)

and, therefore, Eq. (3.42) becomes:

m4*

m-4 = %(/). (3.44)

Next, the BCsΦ- |-=±1/2 = 0 need to be converted to appropriate BCs on*. To this end,

differentiate Eq. (3.41) with respect to - to obtain an expression for m2ΦG/m-2, which can

be evaluated at - = ±1/2. Then, substituting the latter, along with imposingΦ- |-=±1/2 = 0,

into Eq. (3.26a) evaluated at - = ±1/2 yields:(
m*

m-
+ 1

T

m3*

m-3

)������
-=±1/2

= 0. (3.45)

The solution of Eq. (3.44) subject to Eq. (3.45) and* |-=±1/2 = 0 is easily found to be

* (-, /) = %(/)
24

[
-4 −

(
T + 1

2

)
-2 + 1

4

(
T + 1

4

)]
. (3.46)

This profile was already obtained in [38, Eq. (21)] in the absence of pre-tension.

Regime 3a

For Regime 3a, _ = O(1/X2), thus _ � 1 for X � 1. Keeping only the largest terms in

Eq. (3.30) for _ � 1, we obtain

T
m4*

m-4 −
m2*

m-2 =
1
_X2%(/). (3.47)

Retaining the pressure on the right-hand side of the last equation can be justified by arguing

that, in Regime 3a, we should choose the scale deformation

U2 =
ℎ2

0F
2P2

�1

, (3.48)

so that the coefficient of %(/) is now 1/(_X2) = O(1).
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The ODE (3.47) is still subject to the boundary conditions given in Eq. (3.27), which

means that, as before, we need to convert the BCs on Φ- to appropriate BCs on*. To that

end, we first insert Φ- |-=±1/2 = 0 in Eq. (3.26a) to obtain:(
T
m2Φ-

m-2 −
m*

m-

)������
-=±1/2

= 0. (3.49)

Next, we differentiate Eq. (3.26b), evaluate it at - = ±1/2, and insert the expression for

m2Φ-/m-2 from Eq. (3.49) into it to obtain:
(
X2

T

)
m*

m-
+ (_T + 1)X2 m

3*

m-3


�������
-=±1/2

= 0. (3.50)

Now, since _ = O(1/X2), the above equation to the leading order in X � 1 is

m3*

m-3

�����
-=±1/2

= 0. (3.51)

The solution of Eq. (3.47) subject to Eq. (3.51) and* |-=±1/2 = 0 is easily found to be

* (-, /) = %(/)
2_X2

(
1
4
− -2

)
, (3.52)

where, due to the differing choice inU2, the last equation contains a X2 not present in Eq.

(3.38). Note that neglecting bending rendered the deformation profile given in Eq. (3.52)

independent of the thickness of the structure. Thus, Eq. (3.52) is suitable for both thin and

thick plates. Equation (3.52) has been used in the literature to characterize the material

properties of thin membranes undergoing strong compression (_ < 0) and buckling (see

Eq. (8) and Table II in [116]).

3.3 Fluid mechanics

The slenderness of the channel allows us to invoke the lubrication approximation [154],

according to which the dimensionless velocity field (see [37] for details) is

+/ (-,., /) =
1
2

(
−d%

d/

) [
− C

2ℎ0
+ V* (-, /) − .

] [
. + C

2ℎ0
+ 1

]
(3.53)
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for no-slip boundary conditions at the rigid bottom. = −C/(2ℎ0)−1 and at the deformed top

. = −C/(2ℎ0) + V* (-, /) walls. The pressure % varies only in the flow-wise +/-direction

(meaning, d%/d/ < 0), thus a complete (not partial) derivative is featured in Eq. (3.53);

however, due to FSI, d%/d/ ≠ 2>=BC. as it would be in pipe flow [154]. Observe also

that in FOSDT, the vertical displacement * does not depend on . , thus it is the same at

. = −C/(2ℎ0) (the fluid–solid interface) and at . = 0 (the plate’s mid-plane).

In Eq. (3.53), +/ (-,., /) = EI (G, H, I)/VI is the dimensionless velocity in the stream-

wise direction (recall Fig. 3.1), while * (-, /) = DH (G, I)/U2 is the dimensionless defor-

mation of the top wall, as per Eq. (3.15). Here, on using Eq. (3.31), we have defined

V :=
U2

ℎ0
=
F4P2
�1ℎ0

(3.54)

as a dimensionless group, which we term the FSI parameter. This parameter quantifies the

compliance of the plate compared to the characteristic magnitude of the applied hydrody-

namic pressure load. Then, the height of the deformed fluid domain is

� (-, /) = ℎ(G, I)
ℎ0

=
ℎ0 + DH (G, I)

ℎ0
= 1 + V* (-, /). (3.55)

The dimensionless flow rate is evaluated as the area integral of the streamwise velocity

from Eq. (3.53), then written solely in terms of * (-, /) and %(/) via Eqs. (3.55) and

(3.37):

1 =
∫ +1/2

−1/2

∫ − C
2ℎ0
−1+� (-,/)

− C
2ℎ0
−1

+/ (-,., /) d. d- (3.56a)

= − 1
12

d%
d/

∫ 1/2

−1/2
� (-, /)3 d- (3.56b)

= − 1
12

d%
d/

∫ +1/2

−1/2

[
1 + 3VU(-)%(/) + 3V2U(-)2%(/)2

+ V3U(-)3%(/)3
]
d-, (3.56c)

where we have introduced the dimensionless deformation-to-pressure ratio

U(-) = * (-, /)
%(/) =

1
2_


(
1
4
− -2

)
−


cosh

(
1
2

√
_

_T +1

)
− cosh

(
-

√
_

_T +1

)
√
_(_T + 1) sinh

(
1
2

√
_

_T +1

)


. (3.57)
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The left-hand side of Eqs. (3.56) is unity because we have employed a flow-rate-based

velocity scale VI = @/(ℎ0F) as in prior work [37, 60], yielding a dimensionless flow rate

Q = @/@ = 1 under steady flow with imposed inlet @ = 2>=BC.

Performing the integration in Eq. (3.56c) reduces it to a first-order nonlinear ODE in

%(/):

− 12 =
d%
d/

[
1 + 3VI1%(/) + 3V2I2%(/)2 + V3I3%(/)3

]
, (3.58)

where, following [40], we have defined

I8 :=
∫ +1/2

−1/2
U(-)8 d-. (3.59)

Note that {I8}8=1,2,3 are known functions of _ and T (but not - or /), even if obtaining

them analytically might be challenging. As a further guide to the reader, the variation of

Is with _ for different values of T , has been plotted in Fig. 3.2.

Now, the ODE (3.58) is solved subject to the boundary condition that %(1) = 0 (outlet

gauge pressure) to obtain an implicit dimensionless relation for %(/):

12(1 − /) = %(/)
[
1 + 3

2
VI1%(/) + V2I2%(/)2 +

1
4
V3I3%(/)3

]
. (3.60)

Finally, the steady flow rate–pressure relation can be put in dimensional form by taking

P2 = V2`ℓ/ℎ2
0 = @`ℓ/(Fℎ3

0) [37] to be the viscous flow pressure scale for an imposed

flow rate:

@ =
Fℎ3

0?(I)
12`(ℓ − I)

[
1+ 3

2

(
F4

�1ℎ0

)
I1?(I) +

(
F4

�1ℎ0

)2

I2?(I)2+
1
4

(
F4

�1ℎ0

)3

I3?(I)3
]
, (3.61)

where ` is the (constant) dynamic viscosity of the Newtonian fluid.

3.4 Results

The previous sections were devoted to the derivation of the theory of steady-state fluid–

structure interaction (FSI) in a microchannel between the viscous fluid flow within and a

pre-stressed elastic top wall clamped on all edges. In this section, we compare the latter

theoretical results to direct numerical simulations (DNS) of FSI performed using the com-

mercial software suite by ANSYS [155]. The simulations are two-way coupled to ensure
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Fig. 3.2. Dependence of (a) I1, (b) I2, and (c) I3 on the dimensionless stretch
parameter _ for different values of the dimensionless plate thickness T .

full fidelity. Many of the details of such simulations have been presented in previous publi-

cations [37, 38, 60, 142]. Nevertheless, to ensure that this chapter is self-contained, a short

summary is provided next.

3.4.1 Computational approach

ANSYS employs a segregated solution procedure to perform FSI simulations, wherein

the mechanical deformation field is solved in the ‘Static Structural’ module, using the fi-
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nite element method (FEM), while the fluid flow field is solved separately in the ‘Fluent’

module, using the finite volume method (FVM).

In the Static Structural module, we have switched on the option of ‘large deformations.’

Therefore:

• The difference between deformed and undeformed coordinates is maintained.

• The logarithmic (Henky) strain and the true (Cauchy) stress are employed as the

strain and stress measures, respectively, instead of engineering strain and engineering

stress, which would have been employed in a small-strain analysis.

• The stiffness matrix in the FEM formulation is a function of the displacements and

results in a nonlinear governing equation for each node, which is solved by iterative

methods.

Importantly, the assumptions of the plate theory, from which the mathematical model in

Sec. 3.2 was derived, are not imposed on the numerical solution. Similarly, Fluent solves

the steady 3D incompressible Navier–Stokes equation on a deforming domain without any

a priori approximations. Previously, we carried out mesh refinement studies [38], and we

explored choices of algorithms for mesh smoothing [60], in similar FSI problems. We carry

over the lessons learned to the present study to obtain the right blend of numerical accuracy

and computational effort.

The distinguishing feature of the FSI simulations carried out in this chapter is the in-

clusion of pre-stress in the elastic wall. To this end, we employed two Static Structural

modules, instead of one. In the first Static Structural module, forces were imposed on the

edges of the structure to induce pre-stress in the elastic wall. The resulting pre-stress dis-

tribution was then written to a file. This file containing the information about pre-stress

at every node was then read into the second Static Structural module using the ‘inistate’

command.

The geometric details of the model are given in Table 3.1. The channel has a linearly

elastic top wall characterized by a Young’s modulus � = 1.6 MPa and a Poisson ratio

a = 0.4999, similar to PDMS [38]. Three values of the uniform pre-tension of the elastic
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Table 3.1.
Dimensions and relevant geometric parameters for DNS of FSI in ANSYS. All
lengths are given in mm.

ℎ0 F ℓ C X n C/F

0.155 1.7 15.5 0.605 0.09 0.01 0.36

top wall were considered: ) = 13.62, 27.24 and 68.11 N·mm, which correspond to _ ≡

)F2/�1 = 1, 2 and 5, respectively. The remaining three walls of the channel are rigid. The

fluid inside the channel was taken to be water with a constant density d = 997.3 kg/m3 and

dynamic viscosity ` = 9.14 × 10−4 Pa·s. The dimensions of the channel were chosen so

that the assumptions of a long and slender geometry, as stated in Eq. (3.16), are satisfied,

and thus the simulations may be compared to the theory.

3.4.2 Cross-sectional deformation profile

A major result of the proposed theory is the self-similar form of the dimensionless

cross-sectional deformation profiles scaled by the hydrodynamic pressure, i.e., the ratio

* (-, /)/%(/) from Eq. (3.37) is independent of the flow-wise coordinate / . This result

connects the local deformation with the local pressure, forming the theoretical foundation

for the hydrostatic bulge test. To verify this result of the theory, in Fig. 3.3 we plot the

results from ANSYS FSI simulations for * (-, /)/%(/) as a function of - alongside the

prediction from from Eq. (3.37). We observe that the simulations (represented by symbols

and colors, corresponding to the different flow rates @ and evaluated at different flow-

wise locations I) collapse neatly onto a single curve, which closely matches the theoretical

profile (solid curve). In practice, validation of this prediction cannot be carried out in

a noninvasive manner due to the need to measure the deformation at several flow-wise

locations.
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Fig. 3.3. Self-similar collapse of the scaled dimensionless deformation of the
channel’s elastic plate top wall, across the width of the channel, for different
flow rates @ and axial locations I; _ = 2. The solid curve represents the theoret-
ical prediction from Eq. (3.37), the symbols correspond to the results of DNS
of FSI in ANSYS. Colors correspond to flow rates: red is @ = 10 mL/min,
yellow is @ = 20 mL/min, gray is @ = 30 mL/min, black is @ = 40 mL/min,
green is @ = 50 mL/min, and orange is @ = 60 mL/min. Symbols correspond
to different axial locations: � is at I = 4 mm, © is at I = 8 mm, and 4 is at
I = 12 mm. Note that many symbols overlap due to the high quality of the
collapse.

Next, we carried out the simulations for fixed @ but different values of the pre-tension

) . In Fig. 3.4, the profile * (-, /)/%(/) from ANSYS simulation is compared to the

theoretical profile from Eq. (3.37), for different values of the bending-to-tension ratio _.

We observe good match between the theoretical prediction and the results of simulation, but

it worsens as _ increases. A possible explanation may be that significant stretching occurs

in the structure at high _, which invalidates the small strain assumption employed in the

FOSDT of plates. Also, the agreement is better at the center of the cross-section, compared

to the sides, which can be attributed to the use of clamped boundary conditions in the theory,

while a 3D zero-displacement boundary condition for the nodes along the G = ±F/2 planes
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Fig. 3.4. Self-similar scaled dimensionless deformation of the elastic plate
top wall of the channel, for different bending-to-tension ratios _, at an inlet
flow rate of @ = 30 mL/min. The curves represents the theoretical prediction
from Eq. (3.37), while the symbols correspond to the results of DNS of FSI in
ANSYS.

is imposed in simulations. Others have used the so-called “elastically clamped” boundary

conditions [109, 110] to improve the agreement near the edges. However, the elastically

clamped boundary conditions involve a free parameter, whose value must be determined

from additional numerical simulation of the particular plate geometry [156]. Therefore,

the use of elastically clamped boundary conditions pose their own set of challenges, while

yielding at a best a modest improvement in the already quite good match between the

theoretical and simulated deformation profiles.

3.4.3 Flow rate–pressure drop relationship

Next, we shift our focus to the flow rate–pressure drop relationship obtained in closed-

form from the theory as Eq. (3.61). This result involves variables that need to be measured

only at the inlet and/or the outlet of the microchannel; these measurements can be done non-
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Fig. 3.5. Comparison of flow rate–pressure drop relationship from numeri-
cal simulation (markers) and the theoretical dependence found from inverting
Eq. (3.61) (solid curves), for different values of the tension-to-bending ratio _
to highlight the effect of pre-tension in the plate.

invasively. Therefore, there is no need to measure quantities inside the system (channel) to

obtain an estimate of the material properties from Eq. (3.61). The latter idea underpins the

proposed hydrodynamic bulge test, which renders the system a “black box” for experimen-

tal materials characterization, unlike the hydrostatic bulge test, which requires measuring

Dmax(I) at some axial position I and inverting Eq. (3.40) to determine � (via �1 in _).

To illustrate our FSI theory, in Fig. 3.5, we plot the full pressure drop Δ ? = ?(0) −

?(ℓ) = ?(0), as calculated from Eq. (3.61), as a function of the volumetric flow rate @,

for different tension-to-bending ratios _. Additionally, the corresponding results from our

ANSYS FSI simulations are shown as symbols. Clearly, the theory agrees with the simu-

lations for the range of @ and _ considered. An increase in _ causes the pressure drop to

increase, because of the decrease in deformation as pre-tension “stiffens” the plate. The

match worsens at larger @ and _ due to “stronger” FSI. For each _, the maximum error

between theory and simulation occurs at the maximum flow rate @ = 60 mL/min; still, this

maximum relative error is just ≈ 2.53% for _ = 5.
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3.4.4 Characterization of material properties and range of validity of the theory

The goal of this chapter is to introduce a theory of hydrodynamic bulge testing, wherein

the material properties of a finite-thickness elastic membrane (plate) are characterized using

a pressure drop measurement and the relationship in Eq. (3.61), without measuring the

membrane’s transverse deformation. To achieve this goal, the measured pressure drop, the

imposed flow rate, and the known geometric dimensions are substituted into Eq. (3.61),

which is then solved using the bisection method [157, Ch. 5] in a Python script using

SciPy [140], to obtain the Young’s modulus � given the Poisson ratio a.

To demonstrate how a hydrodynamic bulge test might work, we carried out FSI simu-

lations for different values of the elastic modulus � of the top wall. The simulations were

carried out for flow rates of @ = 60 mL/min, 80 mL/min, and 100 mL/min for _ = 1, 2, and

5. The resulting pressure drop from the simulation was used to predict the value of � by

inverting Eq. (3.61). The results of this analysis are shown in Fig. 3.6.

Clearly, there is acceptable match between the actual (here, simulation) values and the

estimated (here, theoretical) values of � , for the chosen range that is typical of PDMS.

The quality of this match is gauged by the closeness of the symbols to the line with slope

1 passing through the origin. The maximum error is about 43% for the case of @ = 60

mL/min and � = 2.4 MPa. We note that the match is better for stiffer walls (larger values

of �) at higher flow rates, and for softer walls (smaller values of �) at lower flow rates.

This observation can be explained by considering the regime of validity of our theory,

which is given in mathematical terms as:

{C . F ∼ U2} � ℓ, (3.62)

where

U2 =
F4P2
�1

=
@`ℓF3

�1ℎ
3
0
=

12@`ℓ(1 − a2)F3

�C3ℎ3
0

. (3.63)

Here, the inequality C . F means that we have accounted for moderate (rather than vanish-

ing, C � F) plate thickness. The scalingU2 ∼ F means that we have accounted for moder-

ate rotations in the equilibrium equations, by inclusion of N and, thus, the plate’s bending

response is coupled with its stretching response. The inequality of F � ℓ is necessary to
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ensure that the lubrication approximation is valid (for the fluid mechanics problem), so that

cross-section deformation profiles are decoupled from each other in the flow-wise direction

(for the structural mechanics problem). Therefore, if the characteristic deformation U2 is

large compared to the dimensions of the channels, i.e., U2 > F, the structural mechanics

problem is no longer linear and our FSI theory breaks down. On the other hand, if U2 is

extremely small, i.e., U2 � F, and the FSI in the system is “weak,” the estimate of �

deteriorates. In the limiting case of a rigid channel, in which there is obviously no FSI, it

would not be possible to estimate � at all because there is no deformation.

To quantify the above-identified requirement of “sufficient FSI” via deformation that is

still in the linearly elastic regime, we can employ Eq. (3.62) to restrict the range of U2/F

values for which the hydrodynamic bulge test is expected to be accurate. Observing that

VX = U2/F, it is more convenient to write this restriction as one on the FSI parameter V

introduced in Eq. (3.54). Based on applying the hydrodynamic bulge test idea to simulation

data from the present study, as well as previous simulations [38] and experiments [158]

without pre-stress, we suggest the order-of-magnitude guideline:

1 . V ≡ 12@`ℓ(1 − a2)F3

�C3ℎ4
0

. 10, (3.64)

where the upper range of values is suitable for non-pre-stressed plates (_ = 0), while the

lower range of values should be preferred in the case of a plate stiffened by pre-stress

(_ = O(1)). This guideline is an important result in practice. Since one can control @, `, ℓ,

C, F and ℎ0, then it always possible to set up a sample, to be characterized by the proposed

hydrodynamic bulge test, such that the bulge test is accurate. However, since Eq. (3.64)

already contains � , it must be applied in a recursive manner to design the hydrodynamic

bulge test experiment, as show in Fig. 3.7. Importantly, the iteration process only requires

updating the flow rate @ in the experiment (easily controlled by a pump), thus it does not

require modification of the microchannel geometry, once it is manufactured.



71

0.5 1.0 1.5 2.0 2.5 3.0 3.5
E  (true)  MPa

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

E 
 (e

st
im

at
ed

)  
M

Pa

Fig. 3.6. Estimation of the elastic modulus � from a hydrodynamic bulge test
versus its “true” value (used in the simulations). Colors correspond to different
flow rates: orange is @ = 60 mL/min, blue is @ = 80 mL/min, and red is
@ = 100 mL/min. Symbols correspond to different values of the tension-to-
bending ratio _: © is _ = 5, � is _ = 2, and 4 is _ = 1. All other quantities are
as given in Table 3.1. The shaded area corresponds to an uncertainty of ±15%
in � .

3.5 Error propagation and sensitivity analysis

It is important to compare the hydrostatic and hydrodynamic bulge tests with respect

to error propagation via a sensitivity analysis. Due to measurement errors [159], any ex-

perimental observation has an uncertainty associated with it. The uncertainty in the in-

dependent (measured) variable propagates to an uncertainty in the dependent (estimated)

variable. In this section, we discuss examples of how errors propagate in the hydrostatic
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Fix geometry, viscosity and Poisson ratio: ℎ0, F, ℓ, C, `, a.

Guess �estimate (' 1MPa for PDMS).

Calculate a suitable @ for the experiment from Eq. (3.64).

Conduct experiment and measure Δ ?.

Calculate new �estimate from Eq. (3.61) using measured Δ ?.

Satisfy Eq. (3.64)?

Stop. �estimate obtained.

No

Yes

Fig. 3.7. Flow chart of how to iteratively apply the hydrodynamic bulge testing
methodology to estimate the Young’s modulus � of a plate, starting from a
guess.

and the hydrodynamic bulge testing theories. Specifically, we simulate how uncertainty

in the corresponding independent variables (Δ ? in the hydrodynamic case and Dmax in the

hydrostatic case) leads to an uncertainty in the dependent variable, the Young’s modulus � ,

and compare the two cases to each other.

In our theory from Sec. 3.3, the relationship between the dependent variable and the

independent variables is given by Eq. (3.61) in conjunction with Eqs. (3.57) and (3.59).

These set of coupled equations is not amenable to a standard uncertainty quantification

by analytical means, such as a Taylor series-based root-mean-squared error propagation

[159, Sec. 4.7]. This situation is unlike the hydrostatic case in which � is determined (via

�1 in _) by measuring Dmax(I) at some axial position I and inverting Eq. (3.40), which

is amenable to an error propagation analysis. Hence, we take a statistical approach and

perform Monte Carlo simulations of error propagation.

The Monte Carlo simulation of error propagation is straightforward. The independent

variables Dmax and Δ ? are replaced by random variables, which are sampled from a normal

distribution. The normal distribution is, in turn, determined from a nominal value, the
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Fig. 3.8. Realizations of the noisy distributions of the total pressure drop Δ ?
(top) and the maximum deformation Dmax (bottom) as an input to the Monte
Carlo simulation for error propagation under the hydrostatic and hydrodynamic
bulge test, respectively. Each shaded band has a width of one standard devia-
tion.

given mean Dmax or Δ ? in Table 3.2, and the upper and lower limits on uncertainty ±Υ as a

percentage, from which the standard deviations e of the distributions are

eDmax =

[
ΥDmax

�−1(0.9)

]
Dmax, eΔ ? =

[
ΥΔ ?

�−1(0.9)

]
Δ ?. (3.65)

The factor Υ/�−1(0.9) in Eqs. (3.65), where �−1(0.9) is the inverse of the normal

cumulative density function at the 90th quantile, ensures that 90% of the area under prob-

ability density function is below the specified upper limit (+Υ%) and similarly 90% of the

area under probability density function is above the specified lower limit (−Υ%). A to-

tal of 1000 samples were taken of the input random variables, as a trade-off between the

computational effort expended and the desired accuracy of probabilistic models. Example

distributions of the input variables are shown in Fig. 3.8.

The mean and the standard deviation of the output samples for � were computed for

both models. The results are shown in Fig. 3.9 and in Table 3.3. To gauge the sensitivity

of the estimate of � to the input distributions of Dmax and Δ ?, we employed a statistical

rank order correlation, specifically Kendall’s tau rank correlation coefficient, available in
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Table 3.2.
Statistics of the input distribution for the Monte Carlo simulation of error prop-
agation under the hydrostatic and hydrodynamic bulge tests. The mean values
of the independent variables are the ones used in the ANSYS simulation for
@ = 80 mL/min, _ = 2 and � = 1.60 MPa.

Bulge Test Input Mean (·) Uncertainty Υ

Hydrostatic Dmax 28.296 `m ±10%

Hydrodynamic Δ ? 27.691 kPa ±1%

Python’s SciPy module [140]. The value of Kendall’s tau rank correlation lies between

−1 and +1; a value of +1 denotes strong positive correlation, a value of −1 denotes strong

negative correlation, while a value of 0 denotes no correlation at all. From Fig. 3.9 and

Table 3.3, we conclude that estimates of elastic modulus obtained from the hydrostatic

bulge test are more accurate compared to those obtained from the hydrodynamic bulge test,

though the difference is not very large (≈ 2.5%). However, the noise in the estimates �

is much larger for the hydrostatic bulge test than for the hydrodynamic bulge test, as evi-

denced by the larger standard deviation of the hydrostatic bulge test’s output distribution.

The higher noise in the estimated variable � is attributed to the higher noise in the mea-

sured variable Dmax, as the absolute value of the rank correlation coefficient (Kendall’s g)

is approximately the same for both models.

The means match the deterministic values used in the ANSYS simulations correspond-

ing to a flow rate @ = 80 mL/min, a tension-to-bending ratio _ = 2, and Young’s modulus

� = 1.6 MPa. The uncertainty in the pressure drop measurement corresponds to that of

a standard off-the-shelf pressure measurement device like Omega PXM409-007BDWUI.

On the other hand, the uncertainty in the deformation has been taken to be an order of

magnitude larger, at 10%, which is close to the uncertainty in deformation measurements

extracted from the experimental data in [42, 108].
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Fig. 3.9. Distribution of the estimate of � obtained from the Monte Carlo
simulation of the hydrodynamic (top) and hydrostatic (bottom) bulge test. Each
shaded band has a width of one standard deviation.

Table 3.3.
Statistics for the estimate of the Young’s modulus � obtained from the Monte
Carlo simulation of the hydrostatic and hydrodynamic bulge tests; @ = 80
mL/min and _ = 2. �̄ is the mean, and e� is the standard deviation.

Bulge Test �̄ (MPa) e� (MPa) e�/�̄ Kendall’s g

Hydrostatic 1.61 0.14 0.087 −0.99

Hydrodynamic 1.57 0.07 0.045 1.0

3.6 Conclusion

In this chapter, we proposed a hydrodynamic bulge testing technique for soft materials

characterization problems relevant to design of microfluidic systems and devices. Specif-

ically, we derived a theory of the fluid–structure interaction (FSI) between a pre-stressed

linearly elastic plate with finite thickness and a viscous fluid flow underneath it. The flow

rate–pressure drop relationship for the case when the elastic plate is clamped as the top
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wall of a rectangular microchannel conveying a “slow” viscous Newtonian fluid flow (low

Reynolds number), was obtained in the form of Eq. (3.61). Then, we showed that this

relationship can be inverted numerically to characterize the material properties of the elas-

tic plate, specifically its Young’s modulus � , by only measuring the total pressure drop

across its length. We argued that, in microfluidics, a measurement of the pressure drop

is easier and/or more accurate than a measurement of the membrane deflection due to the

(hydrodynamic) pressure of the flow underneath it.

We also carried out three-dimensional direct numerical simulations of fluid–structure

interactions using the commercial computational engineering platform by ANSYS. These

simulations did not require any of the assumptions used to derive the mathematical model.

The deformation profile and pressure drop obtained from the simulations showed favorable

agreement with the predictions of our model, thus validating it.

Overall, from the mechanics point of view, pre-stressing the membrane makes it appear

“stiffer,” thus its deformation (induced by either hydrodynamic or hydrostatic pressure) is

smaller than a corresponding initially stress-free plate. To sustain the same flow rate in a

microchannel with an initially pre-stressed top wall thus requires a larger pressure drop.

These conclusions were drawn from the general displacement profile, Eq. (3.37), which we

believe is a novel result because the expression accounts for the non-negligible thickness of

the membrane (C/F 6→ 0), while the current literature on bulge testing concerns thin-film

membranes (C/F → 0) [116, Eq. (8)].

Next, the simulations were used as “ground truth” (in lieu of experiments) to establish

the predictive power of hydrodynamic bulge tests. Specifically, a region in the parame-

ter space was identified and represented as Eq. (3.62). Through Fig. 3.6, this parameter

space region of validity was quantified Eq. (3.64) was proposed as a guideline to the exper-

imentalist for obtaining accurate results from the hydrodynamic bulge test. Furthermore, a

sensitivity analysis, performed through Monte Carlo simulation, showed that the hydrody-

namic bulge test’s estimate is only slightly less precise than a hydrostatic bulge test, while

allowing a greater degree of “control” over error propagation.
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4. DEFORMABLE MICROTUBES: STATIC RESPONSE TO
NON-NEWTONIAN FLOW

SUMMARY

A flow vessel with an elastic wall can deform significantly due to viscous fluid flow within

it, even at vanishing Reynolds number (no fluid inertia). Deformation leads to an enhance-

ment of throughput due to the change in cross-sectional area. The latter gives rise to a

non-constant pressure gradient in the flow-wise direction and, hence, to a nonlinear flow

rate–pressure drop relation (unlike the Hagen–Poiseuille law for a rigid tube). Many bioflu-

ids are non-Newtonian, and are well approximated by generalized Newtonian (say, power-

law) rheological models. Consequently, we analyze the problem of steady low Reynolds

number flow of a generalized Newtonian fluid through a slender elastic tube by coupling

fluid lubrication theory to a structural problem posed in terms of Donnell shell theory. A

perturbative approach (in the slenderness parameter) yields analytical solutions for both

the flow and the deformation. Using matched asymptotics, we obtain a uniformly valid

solution for the tube’s radial displacement, which features both a boundary layer and a

corner layer caused by localized bending near the clamped ends. In doing so, we obtain

a “generalized Hagen–Poiseuille law” for soft microtubes. We benchmark the mathemat-

ical predictions against three-dimensional two-way coupled direct numerical simulations

(DNS) of flow and deformation performed using the commercial computational engineer-

ing platform by ANSYS. The simulations show good agreement and establish the range of

validity of the theory. Finally, we discuss the implications of the theory on the problem of

the flow-induced deformation of a blood vessel, which is featured in some textbooks.

The material in this chapter has been submitted for publication as [V. Anand and I. C.

Christov, “Revisiting steady viscous flow of a generalized Newtonian fluid through a slen-

der elastic tube using shell theory”] [160]
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Fig. 4.1. Schematic of the slender and thin tube geometry in its deformed
configuration. The notation for the flow and the deformation is also labeled.

4.1 Preliminaries

We consider an initially cylindrical flow conduit geometry. As shown in Fig. 4.1, the

geometry of the tube is slender, i.e., its streamwise dimension is much larger than its cross-

sectional dimension, and shallow (or, thin), i.e., its wall thickness is much smaller than its

cross-sectional dimension. The cylindrical coordinate system has its origin at the center of

the inlet of the tube but it is displaced in Fig. 4.1 for clarity. The wall of the tube has a

finite thickness, and it is soft; hence, it deforms elastically due to the fluid flow within it.

Specifically, the tube has an undeformed radius 0, a constant length ℓ, and constant (within

the classical shell theories to be discussed below) thickness C. The radial deformation of

the tube is denoted by DA (I) so that the radius of the deformed tube is '(I) = 0 + DA (I).

Axisymmetry ensures that the latter only depends on the streamwise coordinate I. The

tube’s wall is composed of a linearly elastic material with constant modulus of elasticity

(Young’s modulus) � and a constant Poisson ratio a.

Fully-developed steady flow of a non-Newtonian fluid enters the tube across the inlet

(I = 0 plane) at a constant flow rate @. The non-Newtonian behavior of the fluid is due to

its shear-dependent viscosity. Our main objective is to determine the relation between the

pressure drop Δ ?, across the length of the tube, and the imposed flow rate @. In other words,
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we seek to derive, mathematically, the Hagen–Poiseuille law for steady non-Newtonian

flow in a deformable tube. To this end, we simplify the fluid flow (§4.2) and structural

mechanics (§4.3) problems independently in the appropriate asymptotic limit(s). Then, we

solve the two sets of governing equations, which are coupled together by the hydrodynamic

pressure (the normal forces exerted by the fluid), which act as a load on the structure.

4.2 Fluid mechanics problem

The assumptions made pertaining to the fluid flow problem are:

1. Steady flow: m ( · )/mC = 0.

2. Axisymmetric flow without swirl: m ( · )/m\ = 0 and E\ = 0.

3. Slender tube: ℓ � 0 ⇔ _ := 0/ℓ � 1.

Assumption 3 is key to our analysis. Davis [124] highlights the “importance of being thin”

in making analytical progress on nonlinear fluid mechanics problems.

First, we determine the kinematics of the flow. In the cylindrical coordinates labeled in

Fig. 4.1, and under assumption 2 above, the fluid’s equation of continuity (conservation of

mass) is
1
A

m

mA
(AEA) +

mEI

mI
= 0. (4.1)

Let us now introduce the following dimensionless variables:

Ā = A/0, Ī = I/ℓ, ĒĀ = EA/VA , Ē Ī = EI/VI, ?̄ = ?/P2, (4.2)

Here,VI andVA are characteristic velocity scales in the axial and radial directions respec-

tively, while P2 is the characteristic pressure (stress) scale: e.g., the full pressure drop in

pressure-controlled scenarios or the viscous pressure scale in flow-rate-controlled situa-

tions. P2 can be determined from the velocity scale [see Eq. (4.17) below]. Introducing the

dimensionless variables from Eq. (4.2), Eq. (4.1) becomes

VA
0

1
Ā

m

mĀ
(Ā ĒĀ) +

VI
ℓ

mĒ Ī

mĪ
= 0. (4.3)



80

Balancing all terms in Eq. (4.3) yields the characteristic radial velocity scale: VA ≡ _VI.

Consequently, to the leading order in _, the velocity field is unidirectional: v̄ = Ē Ī (Ā)k̂,

where k̂ is the unit normal vector in the I-direction. Below, we show that, due to FSI, the

unidirectional profile “picks up” a weak Ī dependence as well, which is “allowed” under

the lubrication approximation [3].

Next, we consider the dynamics of the flow field. Since we are dealing with flow at the

microscale, the Reynolds number '4 (to be properly defined below upon introducing the

fluid’s rheology) is assumed to be small (i.e., '4 � 1), and the lubrication approximation

applies. Consequently, inertial forces in fluid are negligible in comparison to pressure and

viscous forces, and we begin our analysis with the following simplified equations express-

ing the momentum conservation in the (radial) A- and (axial) I-directions [129]:

0 =
1
A

m

mA
(AgAA) +

mgIA

mI
− m?
mA
, (4.4a)

0 =
1
A

m

mA
(AgAI) +

mgII

mI
− m?
mI
. (4.4b)

Here, g is the fluid’s shear stress tensor, and ? is the hydrodynamic pressure. We have

already made use of the assumptions of axisymmetry in Eqs. (4.4), by neglecting the cir-

cumferential stress and any derivatives with respect to \. The same assumption also leads

to the momentum equation in \ direction being reduced to zero identically.

Now, we need to express the rate-of-strain tensor ¤W in terms of the velocity components.

For axisymmetric flow with no swirl, the only non-vanishing rate-of-strain components are

¤WAA =
mEA

mA
=
_VI
0

mĒA

mĀ
, (4.5a)

¤WII = 2
mEI

mI
= 2

_VI
0

mĒ Ī

mĪ
, (4.5b)

¤WAI = ¤WIA =
mEA

mI
+ mEI
mA

=
_2VI
0

mĒA

mĪ
+ VI
0

mĒ Ī

mĀ
, (4.5c)

having used the dimensionless variables from Eq. (4.2). Clearly, (0/VI) ¤WII = O(_) and

(0/VI) ¤WAA = O(_), while (0/VI) ¤WAI = (0/VI) ¤WIA have one O(1) term. Therefore, to

the leading order in _, the rate-of-strain tensor has two components, consistent with the
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kinematic reduction to unidirectional flow; EA and its derivatives, as well as mEI/mI, are

negligible.

Next, we move onto the constitutive equations for the fluid under consideration. Keep-

ing biofluid mechanics applications in mind, we consider the fluid to be non-Newtonian

[161]. Blood is known to exhibit shear-dependent viscosity at steady state, and it is of-

ten modeled as a Casson fluid, which captures both a yields stress and a shear-dependent

viscosity [57, Ch. 3]. However, detecting the yield stress (at zero shear rate) in a suspen-

sion of blood cells is extremely difficult (perhaps even “controversial” [162]), and some

experiments [127] show it to be vanishing; see also [57, p. 65]. Therefore, we consider the

special case of zero yield stress, which reduces the Casson fluid model to the power-law

fluid (also known as Ostwald–de Waele [128]) model, which connects the stress tensor g to

the rate-of-strain tensor ¤W as

g = [ ¤W. (4.6)

For an incompressible shear flow, the apparent viscosity [ is a function of the invariants of

the rate-of-strain tensor [129]. Specifically, it depends solely on the second invariant 1
2 ��

(see, e.g., [163, §8.8]):

[( ¤W) = <
����12 �� ����(=−1)/2

, (4.7)

where < is the consistency factor (a non-negative quantity), and = is the power-law index

(also a non-negative quantity). Under the condition of axisymmetry, the second invariant

takes the form

1
2
�� = 2

(
mEA

mA

)2
+

(
mEI

mI

)2
+

(
mEA

mI
+ mEI
mA

)2

= 2
(
_VI
0

)2
[(
mĒĀ

mĀ

)2
+

(
mĒ Ī

mĪ

)2
]
+

(
VI
0

)2 (
_2 mĒĀ
mĪ
+ mĒ Ī
mĀ

)2

=

(
VI
0

)2 (
mĒ Ī

mĀ

)2
+ O(_2).

(4.8)

Now, the shear stress components are

gAI = gIA = [( ¤W)
(
mEI

mA
+ mEA
mI

)
. (4.9)
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Introducing T2 as the scale for the shear stress, Eq. (4.9) can be written in dimensionless

form:

gAI = T2 ḡĀ Ī = gIA = T2 ḡĪĀ = <
����12 �� ����(=−1)/2

(
_2VI
0

mĒA

mĪ
+ VI
0

mĒ Ī

mĀ

)
= <

(
VI
0

)= ����mĒ ĪmĀ ����=−1
mĒ Ī

mĀ
+ O(_=−1),

(4.10)

which suggest the choice of stress scale:

T2 = <
(
VI
0

)=
. (4.11)

Similarly, to the leading order in _, the normal stress components are

ḡĪĪ = _T2
����mĒ ĪmĀ ����=−1

mĒ Ī

mĪ
, (4.12a)

ḡĀ Ā = _T2
����mĒ ĪmĀ ����=−1

mĒĀ

mĀ
, (4.12b)

which are of order O(_) and, clearly, negligible compared to the shear stress components

in Eq. (4.10).

Next, we nondimensionalize the I-momentum equation (4.4b):

0 = T2
1
Ā

m

mĀ
(Ā ḡĀ Ī) + _2T2

mḡĪĪ

mĪ
− _P2

m ?̄

mĪ
, (4.13)

and observe that this equation has a leading-order balance only if

P2 =
T2
_
, (4.14)

i.e., P2 � T2, as expected under lubrication theory [123, Ch. 21]. It follows that the

gradient of the normal stress is negligible to the leading order in _ � 1.

Next, we employ all the information deduced so far to render the radial momentum

equation (4.4a) dimensionless:

0 = _2T2
1
Ā

m

mĀ
(Ā ḡĀ Ā) + _2T2

mḡĀ Ī

mĪ
− T2

m ?̄

mĀ
, (4.15)

where we have used Eq. (4.14) to replace P2 with T2/_. No undetermined scales remain to

attempt to balance the last equation; to the leading order in _, it simply becomes

0 =
m ?̄

mĀ
. (4.16)
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Therefore, the pressure is a function of neither Ā, from the last equation, nor \, by assump-

tion 2, hence it is at most a function of Ī, i.e., ?̄ = ?̄( Ī). From Eqs. (4.14) and (4.11), we

can re-express P2 in terms ofVI as

P2 =
<ℓV=

I

0=+1
. (4.17)

In a flow-rate-controlled experiment/simulation, we can choose a velocity scale VI =

@/(c02) based on the constant inlet flow rate @, then P2 = <ℓ@=/(03=+1c=).

For axisymmetric flow, we expect that the axial velocity will attain its maximum along

the centerline (A = 0), decreasing with the radius until it reaches zero at the tube wall

(due to no slip) in this steady flow. Consequently, the velocity gradient is negative and��mĒ Ī/mĀ �� = −mĒ Ī/mĀ. Then, Eq. (4.10) becomes

ḡĀ Ī = −
(
−mĒ Ī
mĀ

)=
. (4.18)

Substituting the latter expression for into the I-momentum equation (4.13), having ne-

glected the normal stresses of O(_2), yields

1
Ā

m

mĀ

[
Ā

(
−mĒI
mĀ

)=]
= −d?̄

dĪ
. (4.19)

Next, substituting Eq. (4.17) into Eq. (4.19) and integrating the resulting equation with

respect to Ā and requiring that Ē Ī be finite along the centerline, as well as enforcing no slip

along the tube’s inner wall, Ē Ī (Ā = '̄) = 0, yields

Ē Ī =

(
−1

2
d?̄
dĪ

)1/=
(
'̄1+1/= − Ā1+1/=

1 + 1/=

)
, (4.20)

where '̄ = '/0 is the dimensionless deformed tube radius. Note that '̄ is not necessarily

unity because we allow the tube to deform due to FSI, as discussed in the next section. As

a result, while ?̄ is at most a function of Ī, Ē Ī can depend upon both Ā and Ī.

4.3 Structural mechanics problem

In §4.2, the momentum conservation equations for a power-law fluid were reduced to

unidirectional flow. They explicitly depend only on the radial coordinate, up to the leading
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order under the assumptions of axisymmetry and the lubrication approximation. In a similar

manner, we now model the structural mechanics of the tube. To make the problem tractable

analytically, the equations stating the equilibrium of forces in the solid are simplified under

the following assumptions:

1. The tube is thin; its thickness is negligible compared to its radius: C � 0.

2. The tube is slender; its radius is small compared to its length: 0 � ℓ.

3. The material from which the tube is composed is isotropic and linearly elastic, with

elasticity (Young’s) modulus � and Poisson ratio a, so the relationship between stress

and strain is linear.

4. The strains are small, so the relationship between strain and displacement is linear.

5. The characteristic radial deformationU2 is small compared to the (smallest) charac-

teristic dimension of the tube: U2 � C.

Here, assumptions 3 and 4 ensure that the relation between stress and displacement is lin-

ear. Thus, the corresponding theory developed in this chapter pertains to what we shall

term linear FSI. The ramifications of assumptions 1 and 2 will be discussed in the context

of shell theories. Assumption 5 implies our theory is a small-deformation FSI theory, thus

we may work the problem in Eulerian coordinates. In general, soft elastic structures (e.g.,

blood vessels) can exhibit a nonlinear material (hyperelastic) response, as well as viscoelas-

ticity and even anisotropy (see, e.g., [57, Ch. 8 and 9]). Therefore, the linear FSI theory

developed in the present work, under the above five assumptions, must be understood as

the simplest mathematical model with the key FSI features.

A shell theory models the dynamics of a 3D entity in two dimensions, thus it by

definition an approximate theory. Approximations are introduced in every facet of shell

theory: in the strain–displacement relation (kinematics), in the stress equilibrium relation

(statics), and in the stress–strain relation (constitutive). There are many shell theories, of

varying degree of approximation, as discussed in the classic monographs by Kraus [164],
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Flugge [165], and Timoshenko and Woinowsky-Krieger [132]. We focus only on the “sim-

plest” shell theories capable of describing the FSI problem posed above.

4.3.1 Membrane theory

The thinness assumption (C � 0) allows us to analyze the tube using membrane theory

for sufficiently small C/0. Membrane theory of shells pertains to structures that sustain only

tension (in the axial and/or in the circumferential directions) but cannot support bending or

twisting moments [165, Ch. 3]. Furthermore, the radial stress developed inside the structure

is negligible, at the leading order in C/0, compared to the hoop and axial stress.

Owing to the slenderness of the geometry, i.e., _ = 0/ℓ � 1, we start our exposition of

the membrane theory by assuming a state of plane strain. In other words, YII = mDI/mI =

0. Next, since the edges are clamped, we conclude that DI = 0 along the length of the

tube. Indeed, most tubes in physiology, like arteries, tracheoles, urethra are longitudinally

constrained in situ [87,166]. Note that neglecting the axial displacement is a fairly common

assumption in the hemodynamics literature [167–170]; for a more rigorous derivation, see

[171].

From the constitutive equation of linear elasticity [see, e.g., Eqs. (3.17) and (3.18a)

in [165]], we then have:

YII =
1
�
(fII − af\\) = 0 ⇒ fII = af\\ , (4.21)

where f\\ is the hoop stress, while fII and YII are the axial stress and strain, respectively.

To find an expression for f\\ , we appeal to the equation of static equilibrium in the radial

direction:

#\ = 0?, (4.22)

where #\ is the stress resultant in the azimuthal direction of the tube. Here, the hydro-

dynamic pressure ?(I) provides the load, and we have shown in §4.2 that ? is, at most, a

function of I. Next, membrane theory assumes that due to the cylinder being thin, the stress
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across the thickness is uniform. Therefore, f\\ is simply the corresponding stress resultant

divided by the cylinder’s thickness C:

f\\ =
#\

C
=

(
0

C

)
?. (4.23)

Finally, under the assumption of axisymmetric deformation [165, Eq. (3.18b)] and

Eqs. (4.21) and (4.23), we obtain

DA (I) = Y\\0 =
1
�
(f\\ − afII)0 = (1 − a2)

(
02

�C

)
?(I) (4.24)

for the radial displacement. The most important conclusion to be drawn from the analysis

in this subsection is that, under the membrane theory, the tube’s radial displacement is

simply proportional to the local hydrodynamic pressure, with the geometric and elasticity

parameters setting the proportionality constant.

4.3.2 Donnell shell theory

From the several theories for thin shells of revolution based on the Love–Kirchhoff

hypothesis [131], perhaps the earliest and most “popular” is Donnell’s shell theory [172].

Donnell’s shell theory is a straightforward extension of thin-plate theory to shells [164],

which itself is an extension of Euler-beam theory to two dimensions. Furthermore, for

the special case of axisymmetric loads with zero curvature, Donnell’s shell theory reduces

identically to the Kirchhoff–Love thin-plate theory [164], which we have successfully em-

ployed to analyze microchannel FSIs [37, 60]. Improving upon the membrane theory of

§4.3.1, Donnell’s shell theory takes into account bending moments and the variation of the

stresses across the shell’s thickness [164, 165].

To be consistent with the membrane theory of §4.3.1, we again neglect the axial dis-

placement (DI ≡ 0). Then, following Dym [173, Ch. V], the equation expressing the mo-

mentum balance (for axisymmetric deformation and loading) of a Donnell shell is

d2"I

dI2 −
#\

0
= −?(I). (4.25)
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Here, the bending moment "I is expressed through the linear elastic law as

"I = − 
d2DA

dI2 , (4.26)

where  = �C3/[12(1 − a2)] is the bending (flexural) rigidity of the shell. The stress

resultant in the circumferential direction is

#\ = �

(
DA

0

)
, (4.27)

where � = �C/(1 − a2) is the extensional rigidity of the shell. Then, Eq. (4.25), when

written in terms of the displacement using Eqs. (4.26) and (4.27), and simplified by substi-

tuting the expressions for � and  , becomes an ordinary differential equation (ODE) for

the radial deflection DA (I) forced by the hydrodynamic pressure ?(I):

�C3

12(1 − a2)

(
d4DA

dI4 +
12
02C2

DA

)
= ?. (4.28)

To understand the dominant balance(s) in Eq. (4.28), we introduce dimensionless vari-

ables, some of which are restated from Eq. (4.2), as follows:

Ī = I/ℓ, D̄Ā = DA/U2, ?̄ = ?/P2 . (4.29)

The characteristic scale for the radial deflection of the tube, U2, is to be determined

self-consistently as part of this analysis. Substituting the dimensionless variables from

Eq. (4.29) into Eq. (4.28) yields(
C

0

)2 (
0

ℓ

)4 d4D̄Ā

dĪ4 + 12D̄Ā =
12(1 − a2)02P2

�CU2

?̄. (4.30)

For a thin and slender shell we can neglect, in an order of magnitude sense to the leading

order in C/0 and 0/ℓ, the first term on the left-hand side of Eq. (4.30) to obtain:

D̄Ā =
02P2
�CU2

(1 − a2) ?̄. (4.31)

Since Eq. (4.31) represents a leading-order balance, we are free to choose the deformation

scale in terms of the pressure scale as

U2 =
02P2
�C

. (4.32)
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Hence, the deformed tube radius is

'̄( Ī) ≡ 0 + DA (I)
0

= 1 + VD̄Ā ( Ī), (4.33)

where V := U2/0 is a dimensionless parameter that “controls” the fluid–structure interac-

tion. It is a measure of the magnitude of the characteristic radial deformationU2 compared

to the undeformed radius 0. A larger value of V corresponds to “stronger” fluid–structure

coupling and, thus, a larger deformation.

Thus, at the leading order in C/0 and 0/ℓ, Eq. (4.30) yields a simple deformation–

pressure relation:

D̄Ā ( Ī) = (1 − a2) ?̄( Ī). (4.34)

Note that Eq. (4.34) is identically the dimensionless version of our membrane theory result

in Eq. (4.24). Also, in obtaining Eq. (4.34), we have singularly perturbed Eq. (4.30), a

point that we revisit in §4.4.3.

Remark 4.3.1 Mathematical analogues to Eq. (4.28) exist in at least two different domains

of structural mechanics. First is the governing equation of bending of a beam placed on

an elastic foundation due to Winkler [174] (see also the book [175] and recent review

article [176]). The force generated by the elastic foundation is directly proportional to

the local displacement of the beam and this leads to the linear term in Eq. (4.28). The

fourth-order derivative term is due to the beam’s bending resistance. Second, is the gov-

erning equation of the quasi-static planar spreading of a fluid under an elastic beam (ig-

noring tension) driven by gravity—a problem that arises in geophysical fluid dynamics;

see [29, Eq. (4.2)] and [177, 178]. In this example, the fourth-order derivative term is

again due to bending resistance, but the term that is linear in the displacement arises from

the hydrostatic pressure due to gravity.

Remark 4.3.2 To the leading order in C/0 and 0/ℓ, bending in Donnell’s shell theory

is negligible and this theory leads to the same result as the membrane theory, namely

Eq. (4.24) [and its dimensionless counterpart, Eq. (4.34)], which dictates that the radial
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deflection of the tube is directly proportional to the pressure at a given flow-wise cross-

section. This result is also in agreement with the results of Elbaz and Gat [63, 64], taking

into account, of course, the different boundary conditions employed therein.

4.4 Coupling the fluid mechanics and structural problems: Flow rate–pressure drop

relation

We now turn to the main task, which is evaluating the pressure drop and thus generaliz-

ing the Hagen–Poiseuille law to deformable tubes. The flow rate in the tube is by definition

@ =

2c∫
0

'(I)∫
0

EI (A, I) A dA d\ = VI2c02
'̄( Ī)∫
0

Ē Ī (Ā , Ī) Ā dĀ , (4.35)

where the second equality follows from performing the (trivial) azimuthal integration and

introducing the dimensionless variables from Eq. (4.2). Now, substituting the expression

for Ē Ī from Eq. (4.20) into Eq. (4.35) yields:

@

VIc02 =

(
−1

2
d?̄
dĪ

)1/= ['̄( Ī)]3+1/=
3 + 1/= . (4.36)

In a steady incompressible flow, conservation of mass requires that the volumetric flow

rate is a constant independent of I. Then, owing to our choice of axial velocity scale,

@/(VIc02) = 1 [recall the discussion after Eq. (4.17)], and the above equation can be

rewritten as:
d?̄
dĪ

= −2[(3 + 1/=)]= ['̄( Ī)]−(3=+1) . (4.37)

This is an ODE for ?̄( Ī), subject to an appropriate closure relation for '̄( Ī).

4.4.1 Rigid tube

First, for completeness and future reference, consider the case of '̄ = 1 (rigid tube

of uniform radius). Equation (4.37) can be immediately integrated, subject to an outlet

boundary condition [?̄(1) = 0], to yield the usual linear pressure profile:

?̄( Ī) = 2[(3 + 1/=)]= (1 − Ī). (4.38)
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Since it is our convention that ?̄( Ī = 0) = Δ ?̄ is the full pressure drop across the length of

the tube, then Δ ?̄ = 2[(3 + 1/=)]=, which is the well-known Hagen–Poiseuille law for a

power-law fluid [129].

4.4.2 Leading-order-in-thickness (membrane) theory

Next, inserting the relation '̄ = 1+(1−a2)V?̄ [having employed Eqs. (4.33) and (4.34)]

into Eq. (4.37) yields:

d?̄
dĪ

= −2[(3 + 1/=)]= [1 + (1 − a2)V?̄]−(3=+1) . (4.39)

Separating variables and integrating subject to ?̄(1) = 0, we have:

?̄( Ī) = 1
(1 − a2)V

{[
1 + 2(3= + 2) (1 − a2)V[(3 + 1/=)]= (1 − Ī)

]1/(3=+2)
− 1

}
. (4.40)

Again, the full dimensionless pressure drop is obtained by evaluating Eq. (4.40) at Ī = 0:

Δ ?̄ =
1

(1 − a2)V

{[
1 + 2(3 + 1/=)= (3= + 2) (1 − a2)V

]1/(3=+2)
− 1

}
. (4.41)

Notice that Eqs. (4.40) and (4.41) are explicit relations for ?̄ and Δ ?̄, respectively, which

is unlike the case of microchannels [37, 38, 60].

Remark 4.4.1 Equation (4.39), when written in dimensional form, can be inverted to yield

the flow rate in terms of the pressure gradient:

@ = e (?)
(
−d?

dI

)1/=
, e (?) :=

1
3 + 1/=

(
0

2<

)1/= [
1 + (1 − a2) 0

�C
?

]3+1/=
. (4.42)

This equation is, clearly, a generalization of the classic result of Rubinow and Keller [179]

for steady low '4, Newtonian flow in a deformable tube. Importantly, we have self-

consistently derived the function e (?) that accounts for steady non-Newtonian FSI in a

tube.

Remark 4.4.2 The maximum radial displacement of the tube wall over its length is VD̄Ā (0)

[recall Eq. (4.33)]. Using Eqs. (4.34) and (4.40), it can then computed to be

max
0≤Ī≤1

VD̄Ā ( Ī) =
{
1 + 2(3= + 2) (1 − a2)V[(3 + 1/=)]=

}1/(3=+2) − 1. (4.43)
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Note that, once the solid and fluid properties (a and =) are fixed, the maximum displacement

is solely a function of the FSI parameter V.

Remark 4.4.3 To perform the consistency check of recovering the rigid-tube pressure pro-

file in Eq. (4.38) as the V → 0+ limit of the deformable-tube pressure profile in Eq. (4.40),

we must realize that V → 0+ in Eq. (4.40) is a “0/0” limit. L’Hôpital’s rule or a Taylor

series in V � 1 easily shows that Eq. (4.38) is indeed the V→ 0+ limit of Eq. (4.40).

Remark 4.4.4 For the special case of a Newtonian fluid (i.e., = = 1 and < = `), Eq. (4.40)

reduces to:

?̄( Ī) = 1
(1 − a2)V

{[
1 + 40(1 − a2)V(1 − Ī)

]1/5
− 1

}
. (4.44)

A Taylor series expansion in V � 1 of Eq. (4.44) yields the pressure distribution in

Poiseuille flow: ?̄( Ī) = 8(1 − Ī) + O(V).

4.4.3 Beyond leading-order-in-thickness theory

In §4.4.2, we obtained the flow rate–pressure drop relationship considering only the

leading-order deformation profile as given by Eq. (4.34). In this subsection, we venture be-

yond the leading-order approximation by solving the “full” ODE, namely Eq. (4.30) for the

deformation under Donnell’s shell theory. Equation (4.30) is coupled to Eq. (4.37), which

relates the pressure gradient and the tube’s radial deformation. Taking d/dĪ of Eq. (4.30),

eliminating d?̄/dĪ using Eq. (4.37), substituting '̄ and U2 from Eqs. (4.33) and (4.32),

respectively, we obtain a single nonlinear fifth-order ODE in the deformation:(
1 + VD̄Ā

)3=+1
[ (
C

0

)2 (
0

ℓ

)4 d5D̄Ā

dĪ5︸              ︷︷              ︸
bending

+ 12
dD̄Ā
dĪ︸ ︷︷ ︸

stretching

]
= −24(1 − a2)2 [(3 + 1/=)]=︸                            ︷︷                            ︸

loading

. (4.45)

The ODE (4.45) is subject to the following boundary conditions expressing clamping of the

shell at the inlet and outlet planes [Eqs. (4.46a) and (4.46b), respectively] and zero gauge

pressure at the outlet [Eq. (4.46c)]:

D̄Ā |Ī=0 =
dD̄Ā
dĪ

����
Ī=0

= 0, (4.46a)
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D̄Ā |Ī=1 =
dD̄Ā
dĪ

����
Ī=1

= 0, (4.46b)

d4D̄Ā

dĪ4

�����
Ī=1

= 0. (4.46c)

Equations (4.45) and (4.46) represent a nonlinear two-point (TP) boundary value problem

(BVP) [180], the solution of which fully characterizes the physics of steady FSI in an elastic

tube conveying a non-Newtonian fluid.

As alluded to in §4.3.2, for a slender (0 � ℓ) and thin (C � 0) structure, Eq. (4.45)

becomes an example of a singular perturbation problem in the limit of vanishing C/0 and

0/ℓ. Physically, “boundary layers” develop near the inlet and outlet of the tube, where

the bending due to clamping becomes significant, as opposed to the rest of the tube where

stretching dominates. A similar story unfolds for gravity-driven spreading of a viscous

fluid under an elastic beam [178]: an elasto-gravity length scale divides the domain into an

inner region, in which pressure is hydrostatic and due to gravity, and a peripheral region, in

which bending is also important.

As a singular perturbation problem, Eq. (4.45) is now amenable to treatment via match-

ed asymptotics [181, Ch. 2]. First, we introduce a dimensionless small parameter n =√
C0/ℓ2, such that n � 1, then Eq. (4.45) can be rewritten as:(

1 + VD̄Ā
)3=+1

(
n4 d5D̄Ā

dĪ5 + 12
dD̄Ā
dĪ

)
= −24(1 − a2)2 [(3 + 1/=)]=. (4.47)

As is standard, we first let n → 0+, thus singularly perturbing the ODE, and obtain the

governing equation for the solution in the outer region:(
1 + VD̄Ā

)3=+1 dD̄Ā
dĪ

= −2(1 − a2)2 [(3 + 1/=)]=. (4.48)

The outer solution must “respect” the first part of the clamping condition at Ī = 1, i.e.,

D̄Ā |Ī=1 = 0 from Eq. (4.46b). Then, the solution to the ODE (4.48) is

D̄Ā ( Ī) =
1
V

({
1 + 2V(3= + 2) (1 − a2)2 [(3 + 1/=)]= (1 − Ī)

}1/(3=+2)
− 1

)
. (4.49)

Note that Eq. (4.49) can also be obtained by combining Eqs. (4.34) and (4.40) from the

membrane theory, showing the consistency of our two structural mechanics models.
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To satisfy the clamped boundary condition at Ī = 0, i.e., Eq. (4.46a), we must introduce

a boundary layer near Ī = 0 wherein the highest-order derivative in Eq. (4.47) is dominant

and is retained. Then, an inner solution can be obtained. To this end, we introduce a scaled

spatial coordinate Z such that for Ī � 1, Z = O(1). A straightforward balancing argument

leads us to define Z = Ī/n . Then, the nonlinear ODE (4.47) becomes

d5D̄Ā

dZ5 + 12
dD̄Ā
dZ

= −n


24(1 − a2)2 [(3 + 1/=)]=(
1 + VD̄Ā

)3=+1

 . (4.50)

At the leading order in n � 1, we have

d5D̄Ā

dZ5 + 12
dD̄Ā
dZ

= 0 (4.51)

subject to the following boundary conditions:

D̄Ā |Z=0 =
dD̄Ā
dZ

����
Z=0

= 0, (4.52a)

D̄Ā |Z→∞ = D̄outer
Ā

��
Ī=0 , (4.52b)

where D̄outer
Ā

denotes the outer solution from Eq. (4.49). Here, the first two boundary condi-

tions (at Z = 0) are due to clamping, while the remaining boundary condition (as Z → ∞)

is necessary to match the inner solution to the outer solution.

The general solution to Eq. (4.51) that decays as Z →∞ is

D̄Ā (Z) = e−Z
4√3

[
�̃2 sin

(
Z

4√3
)
+ �̃4 cos

(
Z

4√3
)]
+ �0, (4.53)

Now, we apply the boundary condition D̄Ā |Z=0 = 0 to obtain �̃4 = −�0. Next, we use the

boundary condition (dD̄Ā/dZ) |Z=0 = 0 to find that �̃2 = �̃4. Finally, from the matching

condition in Eq. (4.52b), we find

�̃4 =
1
V

(
1 −

{
1 + 2V(3= + 2) (1 − a2)2 [(3 + 1/=)]=

}1/(3=+2)
)
. (4.54)

Thus, the final expression for the inner solution in the boundary layer near Ī = 0, to the

leading order in n , is

D̄Ā (Z) ∼ �̃4

{
e−Z

4√3
[
sin

(
Z

4√3
)
+ cos

(
Z

4√3
)]
− 1

}
. (4.55)
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Next, another boundary layer must exist near the outlet at Ī = 1 because, although

D̄outer
Ā
→ 0 as Ī → 1, dD̄outer

Ā
/dĪ 6→ 0 as Ī → 1, i.e., the clamping boundary condition is

not fully satisfied. Thus, we expect both the dependent (deformation) and the independent

(axial position) variables to be small in this layer. That is, we conjecture that the boundary

layer at Ī = 1 is actually a corner layer [181, §2.6] (sometimes termed a derivative layer

[182, pp. 85–93]). Indeed, [29] also observed boundary and corner layers in the related

problem of gravity-driven spreading of a viscous fluid under an elastic beam. The boundary

layers in their study were the result of the need for “regularization” of the contact line

at the advancing fluid front, accomplished by introducing a pre-wetting film. Unlike the

present model, however, the differential equation in the inner and outer regions, along

with the pertinent matching conditions, had to be solved numerically by [29], due to their

complexity.

Now, introducing the rescalings Z = (1 − Ī)/nU1 and D̂(Z) = D̄Ā ( Ī)/nU2 into Eq. (4.47),

we can balance all three terms if and only if U1 = U2 = 1. The first and last terms can be

balanced for any 4 − 5U1 + U2 = 0 as long as U1 < U2 but then there is a non-uniqueness of

the boundary layer thickness, so we discard this possibility. Thus, the nonlinear ODE (4.47)

becomes
d5D̂

dZ5 + 12
dD̂
dZ

=
24(1 − a2)2 [(3 + 1/=)]=(

1 + VnD̂
)3=+1 . (4.56)

Expanding in n � 1, we have, at the leading order,

d5D̂

dZ5 + 12
dD̂
dZ

= 12A, (4.57)

where for convenience we have defined A := 2(1 − a2)2 [(3 + 1/=)]=. The ODE (4.57)

must satisfy the remaining boundary conditions at Ī = 1, from Eqs. (4.46b) and (4.46c),

that are not satisfied by the outer solution, namely

dD̂
dZ

����
Z=0

=
d4D̂

dZ4

�����
Z=0

= 0, (4.58a)

D̂ |Z→∞ = D̄outer
Ā

��
Ī=1 . (4.58b)

The general solution to Eq. (4.57) that decays as Z →∞ is

D̂(Z) = e−Z
4√3

[
�̃2 sin

(
Z

4√3
)
+ �̃4 cos

(
Z

4√3
)]
+ �0 + AZ . (4.59)
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Now, we impose the boundary condition (dD̂/dZ) |Z=0 = 0 to find that �̃2 = �̃4 − A/
4√3.

Finally, the boundary condition (d4D̂/dZ4) |Z=0 = 0 requires that �̃4 = 0. Thus, we have

obtained a fully-specified corner layer (inner) solution:

D̂(Z) ∼ A
Z −

e−Z
4√3

4√3
sin

(
Z

4√3
) + �0. (4.60)

The inner solution in Eq. (4.60) must still be matched to the outer solution in Eq. (4.49),

which goes to zero as Ī → 1. Thus, we immediately conclude that �0 = 0, and the

common part of the inner and outer solutions isAZ [as can be confirmed by a Taylor series

expansion of Eq. (4.49) for Ī ≈ 1]. This argument can be made even more rigorous using

an intermediate variable matching procedure as in [181, §2.6].

Finally, adding together Eqs. (4.49), (4.55) and (4.60) (expressed in the original vari-

ables) and subtracting their mutual common parts, we obtain a composite solution uni-

formly valid on Ī ∈ [0, 1], to the leading order in n :

D̄Ā ( Ī) ∼
1
V

({
1 + 2V(3= + 2) (1 − a2)2 [(3 + 1/=)]= (1 − Ī)

}1/(3=+2)
− 1

)
+ �̃4e−

4√3Ī/n
[
sin

(
4√3

Ī

n

)
+ cos

(
4√3

Ī

n

)]
− n 2(1 − a2)2 [(3 + 1/=)]=

4√3
e−

4√3(1−Ī)/n sin
(

4√3
(1 − Ī)
n

)
, (4.61)

where the constant �̃4 is given in Eq. (4.54).

Remark 4.4.5 Čanic and Mikelić [53] discussed the formation of deformation “boundary

layers” in the context of viscous incompressible flow through a long elastic tube, as the as-

pect ratio 0/ℓ → 0+. Their approach was based on a priori estimates of the coupled PDEs.

Here, we have actually constructed the boundary (and corner) layers explicitly through

a matched asymptotic expansion, further showing that the relevant small parameter also

involves the tube’s thickness: n =
√
C0/ℓ2. Our result, then, is closer to some of the discus-

sion in textbooks on shell theory, wherein the (dimensional) thickness of boundary layers

(near the clamped ends of a Donnell shell subject to uniform internal pressure) is estimated

to be O(
√
C0) (see [173, Ch. V]).
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4.5 Results and discussion

4.5.1 Deviations from the Hagen–Poiseuille law due to FSI

Our objective is to quantify the deviation from the Hagen–Poiseuille law caused by FSI

in a tube. To this end, we plot the dimensionless pressure ?̄( Ī) across the tube for different

values of the FSI parameter V in Fig. 4.2(a) for Newtonian fluid and in Fig. 4.2(b) for a

shear-thinning fluid. Clearly, “stronger” FSI (increasing values of V) leads to a decrease in

the pressure everywhere, but especially near the inlet (Ī = 0). The decrease in pressure is

due to the increase in the flow area, which reduces the resistance to flow.

4.5.2 Comparison between analytical and numerical solutions for the flow-induced

deformation

Our results in §4.4, suggest the following possible ways for solving the coupled problem

of flow and deformation in an elastic tube: (i) using leading-order-in-thickness membrane

theory (§4.4.2), (ii) using a matched asymptotic expansion for beyond-leading-order-in-

thickness (i.e., Donnell shell) theory to capture bending and clamping (§4.4.3), and (iii) by

numerical integration of the nonlinear TPBVP for the displacement given by Eqs. (4.45)

and (4.46). We may conceptualize these approaches as a hierarchy: the leading-order per-

turbative solution is a less accurate version of the solution obtained by the matched asymp-

totic expansion, which in itself is a less accurate version of the solution found by solving

the TPBVP numerically.

Let us now compare the deformation profile obtained via matched asymptotic expan-

sion, i.e., Eq. (4.61) to the numerical solution of the original nonlinear TPBVP. The latter

profile is obtained using the solve bvp method in Python’s SciPy module [140] to solve

the TPBVP numerically. Figure 4.3 shows the results of such a comparison for different

values of the small parameter n =
√
C0/ℓ2 but fixed V, =, and a. There is very good agree-

ment between the composite solution obtained via a matched asymptotic expansion and the

numerical solution of the nonlinear TPBVP. As expected, the error in the composite solu-
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(a) Newtonian fluid.
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(b) Shear-thinning fluid.

Fig. 4.2. The dimensionless hydrodynamic pressure ?̄ in a elastic tube as a
function of the dimensionless axial coordinate Ī for different values of the FSI
parameter V for (a) Newtonian fluid (= = 1) and (b) shear-thinning fluid (= =
0.7). Both plots have been produced using Eq. (4.40) for an incompressible
solid (a = 1/2). Note the different scales on the vertical axes for both the plots.
Compliance of the tube reduces the pressure required to maintain steady flow.

tion increases with n , especially in the corner layer at Ī = 1. Nevertheless, the asymptotic

expression is clearly very accurate.

In addition, observe that the radial displacement profile exhibits an overshoot near the

inlet due to clamping. A similar profile has also been reported by Heil and Pedley [183]

in their numerical study of large-deformation, small-strain FSI in a collapsible tube, which
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Fig. 4.3. The dimensionless radial displacement D̄Ā ( Ī) as a function of the
dimensionless axial position Ī in the elastic microtube for V = 0.11, = = 0.7,
and a = 1/2. The solid curves are the numerical solution of TPBVP given
by Eqs. (4.45) and (4.46), while dashed curves are the matched asymptotic
solution from Eq. (4.61). Panel (a) shows the displacement over the whole
tube, while panels (b) and (c) show zoom-ins near the clamped ends. The
matched asymptotic solution is highly accurate, capturing the displacement
overshoot near the inlet as n → 0+.

they modeled using Poiseuille’s law and geometrically nonlinear shell theory (accounting

for axial pre-stretch). However, since Heil and Pedley [183] modelled buckling of collapsi-

ble tubes, as opposed to the inflated tubes studied herein, the deformation profile actually

exhibits an undershoot (compare [183, Fig. 6] with Fig. 4.3 above). Perhaps more impor-
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tantly, even though Heil and Pedley [183] accounted for bending stiffness of the tube, their

analysis does not yield an analytical solution to the deformation profile, i.e., a counterpart

to Eq. (4.61) derived above. We also observe that the deformation profile of a beam due to

quasi-static gravity-driven spreading of a viscous fluid underneath it exhibits this overshoot

near the edge [see the inset of [178, Fig. 2(a)(ii)]], as should be expected from the structure

of solutions to Eq. (4.28).

4.5.3 Comparison between theory and direct numerical simulations: Flow and de-

formation

To ascertain the validity of the theory developed in this chapter, we now compare our

theoretical results against 3D direct numerical simulations (DNS) of coupled flow and de-

formation in an elastic tube. To this end, we choose an illustrative set of physical and

geometric parameters, given in Table 4.1. The tube is assumed to be made of elastin, which

is a highly elastic protein found in all vertebrates and is major constituent of arteries [26].

Here, along the lines of the work in [26, 184, 185], elastin is modeled as an isotropic lin-

early elastic solid with a constant Young’s modulus of � = 0.5 MPa and a Poisson ratio

of a = 0.499 (i.e., a nearly incompressible material). The dimensions have been chosen to

ensure that the assumptions of shallowness and slenderness are satisfied. Specifically, the

thickness-to-radius ratio of the tube is fixed at C/0 = 0.1, consistent with the hemodynam-

ics literature [166, p. 60]. The radius-to-length ratio is chosen to be sufficiently smaller,

0/ℓ = 0.025 � C/0, and the length ℓ = 3.2 mm is chosen to be similar to microchannel

studies (see, e.g., [38]), from which the values of 0 and C in Table 4.1 follow.

The generalized Newtonian fluid inside the tube is assumed to be human blood. Blood

rheology is a topic of active research, as the rheological properties of blood depend on

various factors such as a patient’s age, health, concentration of plasma, etc. [55,143]. Here,

for the sake of simplicity, without sacrificing any physics, and to validate our theory for

both Newtonian and non-Newtonian rheology, blood plasma is chosen as our example of

a Newtonian fluid with constant shear viscosity of ` = 0.0012 Pa·s (i.e., < = ` and
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Table 4.1.
Geometric and material properties for a sample tube FSI problem.

0 (mm) ℓ (mm) 0/ℓ (–) C (mm) C/0 (–) � (MPa) a (–)

0.08 3.2 0.025 0.008 0.1 0.5 0.499

` (Pa·s) = (–) < (Pa·s=) r (kg/m3)

0.0012 0.7 0.0185 1 060

= = 1) [87], while whole blood is chosen as our example of a shear-thinning fluid with a

power-law index of = = 0.7 and a consistency index of < = 0.0185 Pa·s= [143]. In both

cases, a density of d = 1060 kg/m3 is used, which is within the range for both blood plasma

and whole blood (see, e.g., [186, Table 2.1.1]). Simulations were carried out for flow rates

up to @ = 2.00 mL/min, which corresponds to a maximum '4 ≈ 150 [⇒ _'4 ≈ 3.75,

which is reasonably small within the lubrication approximation and well below the onset

of unsteady effects closer to '4 ≈ 300 [187]] and a maximum FSI parameter value of

V ≈ 0.12 � 1.

For our computational approach, we employ a segregated solution strategy, as opposed

to a monolithic one (see, e.g., [188]). That is, the solid (resp. fluid) problem is solved in-

dependently of the fluid (resp. solid) problem, each on its own computational domain. The

displacements (resp. forces) from the solid (resp. fluid) domain are then transferred to the

fluid (resp. solid) domain via a surface traction boundary condition. Based on previous suc-

cessful computational microscale FSI studies [38, 60, 142], we have used the commercial

computer-aided engineering (CAE) software from ANSYS [141] to perform such two-way

coupled FSI DNS via a segregated approach. The domain geometry was created in ANSYS

SpaceClaim, and the computational grid was generated in ANSYS ICEM CFD. The steady

incompressible mass and momentum equations for the power-law fluid were solved using

ANSYS Fluent as the computational fluid dynamics (CFD) solver based on the finite vol-

ume method. The structural mechanics solver, based on the finite element method (FEM),
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under ANSYS Mechanical was employed for the structural problem, which solved the

static force-equilibrium equations for a linearly elastic isotropic solid with geometrically

nonlinear strains. In the static structural module, the option of “large deformations” had

been turned on. This feature allows the distinction between the deformed and undeformed

coordinates to be retained. Additionally, this feature means that that the Henky strain and

Cauchy stress are used as the strain and stress measures, respectively. Consequently, the

stiffness matrix in the resultant finite element method (FEM) formulation is not constant,

and it is a function of displacements, leading to a nonlinear algebraic problem. However,

there is no material nonlinearity in this problem, and the relationship between the stress

and strain tensors is described by linear elasticity with two material parameters (� and a).

The exchange of forces and displacements along the inner surface of the tube was achieved

by declaring the surface as an “FSI interface.” A nonlinear iterative procedure transfers

the loads and displacements incrementally until convergence is reached, ensuring two-way

coupling. Most importantly, beyond assuming a steady state, this DNS approach does not

make any of the approximations that the theory does, e.g., lubrication, Donnell shell, and

the various smallness assumptions.

To ensure that the numerical solutions computed are independent of the grid choice,

we performed a grid-independence (convergence) study. Two grids each were defined for

the fluid and the solid solvers, thus bringing the total number of grid arrangements to four.

The details of the grids are shown in Table 4.2. For the fluid grid, grid 2 was generated by

scaling the number of edge divisions across the model in grid 1 by a factor of 2. Similarly,

grid 2 for the FEM grid was generated by increasing the number of divisions on the lateral

surfaces from 500 to 800. The simulations were performed for the fluid and solid models

on all four grids described above, under the conditions in Table 4.1. However, for the grid

refinement study, the simulations were carried out only for a single flow rate of @ = 1

mL/min.

The results of the grid convergence study are shown in Table 4.3 for the displacement

at the midsection of the tube (averaged over the circumference) and the pressure drop over

the length of the microtube. The insignificant variation of these values across grid combi-
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Table 4.2.
Details for the four grids used for the grid-convergence study.

fluid grid 1 fluid grid 2 solid grid 1 solid grid 2

Number of nodes 1 348 768 10 626 967 1 090 584 1 743 984

Number of elements 1 387 365 10 467 576 198 000 316 800

Table 4.3.
Grid-independence (convergence) study for the ANSYS simulations, using the
circumferentially averaged displacement 〈DA〉 at the tube wall’s midsection and
the full pressure drop Δ ? as the metrics. The percent difference is computed
with respect to the reference values from the simulation on the combination of
fluid grid 2 and solid grid 2.

fluid grid/solid grid 1/1 2/1 1/2 2/2

〈DA〉 % difference 0.2 −0.4 −0.6 –

Δ ? % difference −0.08 0.08 0.04 –

nations shows that our simulation results, which were computed on the combination fluid

grid 1 and solid grid 1, are indeed grid independent and accurate.

Fluid mechanics benchmark

First, we benchmark the @–Δ ? relationships predicted by our mathematical models:

the leading-order FSI from the membrane theory [Eq. (4.41)] and the Donnell shell FSI

[Eqs. (4.45) and (4.46)]. The dimensional full pressure drop Δ ? as a function of the di-

mensional flow rate @ is shown in Fig. 4.4 for (a) a Newtonian fluid (blood plasma) and (b)

a shear-thinning fluid (whole blood). There is good agreement between theory and simu-

lation, particularly for the smaller flow rates. The maximum relative error, over the shown

range of @, is ≈ 10% for the Newtonian fluid and ≈ 5% for the shear-thinning fluid. The

higher relative error for the same flow rate for Newtonian fluid flow is attributed to the
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larger pressure (note the different vertical axis scales in the two plots). At larger @, small

but systematic differences emerge between theory and simulation because, at these flow

rates, the deformation of the tube starts to exhibit significant strains, which are beyond

the applicability of the linear shell theory employed herein. We also observe that there

is hardly any perceptible difference in Δ ? predicted by the membrane and Donnell shell

theories, which shows that, indeed, bending has a negligible effect on the total pressure

drop.

To justify the use of the power-law rheological model in the fluid mechanics problem,

we post-processed our simulation results, and we verified that the maximum shear stress in

the flow is much larger than the yield stress of the Casson model for blood. For example,

for the flow rate of 1 mL/min, the maximum wall shear stress on the tube was found to

be 35.14 Pa, which is two orders of magnitude higher than the 0.05 Pa yield stress of the

Casson model for blood [189].

Next, it is important to evaluate the theory developed herein in the context of the clas-

sical results, namely the law of Laplace [171, 190] and the model proposed by Fung in his

Biomechanics textbook [87, §3.4], which is often quoted in newer texts on biofluid me-

chanics [191, pp. e25–e27]. Fung’s model and that of Laplace take a large-deformation

approach, writing the stress equilibrium equations in the deformed configuration of the

tube, which requires reconsidering the structural mechanics calculation from §4.3.1. In or-

der not to belabor the discussion in this section, we have relegated the large-deformation

re-derivation of our main mathematical result [i.e., Eq. (4.40)] to Sec. 4.5.5.

Structural mechanics benchmark

Having compared and validated the theoretical prediction for the hydrodynamics por-

tion of the FSI problem, we now shift our focus to the solid domain. In Fig. 4.5, we plot

the ratio of dimensionless radial tube deformation, '̄( Ī) − 1, to the dimensionless pressure

?̄( Ī) along the tube’s length. Again, the results have been shown for both our chosen (a)

Newtonian and (b) shear-thinning fluid. Equations (4.33) and (4.34) predict this ratio to be
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Fig. 4.4. Full pressure drop Δ ? = ?(0) vs. flow rate @ in a deformable
tube. Fluid–structure interaction causes the pressure drop to decrease in the de-
formable tube compared to the rigid one. The perturbative analysis developed
herein, culminating in Eqs. (4.40) [power-law, (b)] and (4.44) [Newtonian, (a)]
captures the latter effect quite accurately, when compared to 3D direct numer-
ical simulations. Note the different scales on the vertical axes for both the
plots.
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['̄( Ī) − 1]/?̄( Ī) = V(1 − a2) (interestingly, a constant independent of Ī), to the leading

order in n =
√
C0/ℓ2. For the beyond-leading-order analysis, we integrated the fifth-order

nonlinear BVP from Donnell’s shell theory, i.e., Eq. (4.45) subject to Eqs. (4.46), using the

TPBVP solver method in Python’s SciPy module [140]. (We could have also plotted the

matched asymptotic solution to Eq. (4.45), i.e., Eq. (4.61), but it would be indistinguishable

for this value of n = 6.25 × 10−5 based on Table 4.1.)

Figure 4.5 shows good agreement between the results of DNS and the two proposed

mathematical models (i.e., leading-order FSI and the Donnell shell FSI). As predicted in

§4.4.3 there are extremely narrow regions (boundary layers) near the inlet (Ī = 0) and outlet

(Ī = 1) planes in which the full ODE solution deviates from the leading-order perturbative

solution. The thinness of these boundary layers, in comparison with the tube’s length, leads

us to conclude that almost the entire tube, except a sliver near each end, is in a membrane

state with negligible bending.

To verify our assumption about negligible (no) axial displacement, which was used

to arrive at Eq. (4.21), we post-processed the axial fII and hoop f\\ stresses from our

ANSYS simulations. For a Newtonian fluid, the ratio of the hoop stress to the axial stress

at the middle of the tube, where the effect of clamping at the edges and the resultant bending

is negligible, is (f\\/fII) |Ī=0.5 ≈ 2.20 for @ = 0.5 mL/min and (f\\/fII) |Ī=0.5 ≈ 2.45 for

@ = 2 mL/min. These two values, for the smallest and largest flow rates considered, can

be compared to the theoretical value of 1/a = 2 [from Eq. (4.21)], leading to a relative

error of 10% for @ = 0.5 mL/min and 22% for @ = 0.5 mL/min. Similarly, the ratio of

axial deformation to radial deformation at the middle of the tube is ≈ 0.004 for @ = 0.5

mL/min and ≈ 0.2 for @ = 2 mL/min. While nonzero, these errors are small enough to

justify having employed Eq. (4.21) in the mathematical analysis above.

4.5.4 Region of validity in the parameter space

The proposed theory of steady non-Newtonian FSI in slender elastic tubes hinges upon

on a set of intertwined assumptions:
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Fig. 4.5. Ratio of the dimensionless radial deformation '̄ − 1 to the hydro-
dynamic pressure ?̄, as a function of the axial position Ī in the tube. The
leading-order FSI theory is given by Eq. (4.34) (solid), the Donnell shell FSI
theory is the numerical solution of the TPBVP given by Eqs. (4.45) and (4.46)
(dashed), the simulation results are from ANSYS (symbols). Note the different
vertical scale of these plots. For both the plots, the results of the simulations
correspond to a flow rate of @ = 1 mL/min.

1. C/0 � 1: This requirement allows us to use thin-shell theory.

2. U2/0 � 1: This requirement represents the small-strain assumption of the shell

theory.
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3. 0/ℓ � 1: This slender-geometry requirement allows us to simplify both the fluid

mechanics and the structural mechanics problems. This requirement also ensures the

rotation of a shell element is negligible.

4. U2/C � 1: This requirement allows us to refer the analysis to the undeformed (Eu-

lerian) coordinates and also restricts the theory to small deformations.

A natural ordering of the length scales associated with FSI in a tube thus follows:

U2 � C � 0 � ℓ, (4.62)

which must hold for the present linear, small-deformation FSI theory to apply. Impor-

tantly, our DNS results form §4.5.2 show that this regime is accessible under realistic flow

conditions.

4.5.5 Large-deformation formulation and connections to the law of Laplace and to

Fung’s model

In §4.3, we termed the proposed FSI theory as small deformation due to our assump-

tions on the structural mechanics aspect of the FSI. We used small-deformation classical

shell theories, which assume that the (radial) deformation is considerably smaller than the

(smallest) characteristic dimension of the tube, i.e., U2/C � 1. This assumption ensures

the equivalence between the deformed and undeformed coordinates (i.e., between the Lan-

grangian and Eulerian frames). Then, the equations of static equilibrium, which are strictly

valid only when written in terms of deformed coordinates, can be written in terms of the

undeformed coordinates, as done above and in classical shell theory. However, some prior

work in the literature has used a mixture of frames of references by posing the equilibrium

equations of a small-deformation shell theory in the deformed configuration, while using

the undeformed coordinates in the subsequent calculation of deformations from strains.

Thus, in this section, we offer a critical discussion of this issue. The resulting theory may

be termed “large-deformation” theory.
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The membrane theory of §4.3.1, when referred to the tube’s deformed coordinates, leads

us to reformulate Eqs. (4.22) and (4.23) as

#\ = '(I)?(I) ⇒ f\\ =
'(I)
C
?(I). (4.63)

The assumption of no axial displacement leads to Eq. (4.21), which still applies and whence

the hoop strain (from the linear elastic law) is Y\\ = (1 − a2)f\\/� . Then, the radial

deformation, under the assumption of axisymmetry, is

DA (I) = Y\\0 = (1 − a2) '(I)0
�C

?(I). (4.64)

Equation (4.64) is the so-called law of Laplace, which relates the pressure at a given cross-

section to its radius in the deformed state [171, 190]. This result, in mixing frames of

reference without rigorous motivation for doing so, is not without criticism in the biome-

chanics literature [192]. Furthermore, observe that DA appears on both sides of Eq. (4.64)

because '(I) = 0 + DA (I).

Using the dimensionless variables from Eq. (4.29), Eq. (4.64) becomes

U2D̄Ā ( Ī) = (1 − a2) (0 + U2D̄Ā)0
�C

P2 ?̄( Ī). (4.65)

Now, for large deformations, the appropriate scale is U2 = C, which ensures consistency

with the results above by keeping the FSI parameter defined as V = 0P2/(�C). Thus,

solving for D̄Ā from Eq. (4.65), we obtain the pressure–deformation relationship:

D̄Ā ( Ī) =
(
0

C

) [
(1 − a2)V?̄( Ī)

1 − (1 − a2)V?̄( Ī)

]
. (4.66)

Note that, unlike the case of small-deformation theory leading to Eq. (4.34), this last

relationship between deformation and pressure is not linear in ?(I). Next, substituting

'̄( Ī) = 1 +
(
C/0

)
D̄Ā ( Ī) and Eq. (4.66) into Eq. (4.37) yields an ODE for the pressure ?̄( Ī).

Solving this ODE subject to ?̄(1) = 0, we obtain

?̄( Ī) = 1
(1 − a2)V

(
1 −

{
1 + 6=(1 − a2)V[(3 + 1/=)]= (1 − Ī)

}−1/3=
)
. (4.67)
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Next, we evaluate the full pressure drop Δ ?̄ = ?̄(0) from Eq. (4.67) and perform a

Taylor series expansion for V � 1, to obtain:

Δ ?̄ =

{
2
(
3 + 1/=

)= − (1 + 3=)
2

[(1 − a2)V]
[
2
(
3 + 1/=

)=]2

− (1 + 3=) (1 + 6=)
6

[(1 − a2)V]2
[
2
(
3 + 1/=

)=]3 + O(V3)
}
. (4.68)

On the other hand, a Taylor series expansion of Eq. (4.41) leads to

Δ ?̄ =

{
2
(
3 + 1/=

)= − (1 + 3=)
2

[(1 − a2)V]
[
2
(
3 + 1/=

)=]2

− (1 + 3=) (3 + 6=)
6

[(1 − a2)V]2
[
2
(
3 + 1/=

)=]3 + O(V3)
}
. (4.69)

Equations (4.68) and (4.69) agree to two terms, with the first discrepancy being the rela-

tively minor change of 1 + 6= becoming 3 + 6= in the coefficient of V2. This shows that the

pressure drop predicted by the law of Laplace is almost indistinguishable from the corre-

sponding one obtained from small-deformation theory given by Eq. (4.41).

Now, writing the pressure drop computed from Eq. (4.67) in dimensional variables and

specializing it to a Newtonian fluid (= = 1, < = `), we obtain

Δ ? =
�C

(1 − a2)0

1 −
[
1 + 24`@ℓ(1 − a2)

c03�C

]−1/3 . (4.70)

Equation (4.70) can be compared to the corresponding flow rate–pressure drop relation

from Fung’s textbook [87, §3.4, Eq. (8)]:

Δ ? =
�C

0

{
1 −

[
1 + 24`@ℓ

c03�C

]−1/3
}
. (4.71)

Clearly, Eqs. (4.70) and (4.71) are quite similar with Eq. (4.71) simply being the case of

a = 0 of Eq. (4.70). The physical reason for this mathematical fact is that, in Fung’s

analysis, the cylinder’s axial stresses and deformation are neglected (yielding a state of

uniaxial stress), which means that Fung’s result is a so-called independent-ring model.

This approximation is distinct from the shell models considered herein, in which both f\\
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and fII are taken into account. Therefore, Fung’s result, being independent of the Poisson

ratio, is strictly applicable only to highly compressible solids such as cork, rather than

rubber-like elastomers such as PDMS microtubes or blood vessels.

In Fig. 4.6, we compare the results of Fung’s model and the law of Laplace, alongside

those of our leading-order (membrane) and Donnell-shell FSI theories. The full dimen-

sional pressure drops Δ ? predicted by the different mathematical theories considered are

quite close. While Fung’s model first overpredicts then underpredicts the pressure drop, the

other theories over-predict the pressure drop with increasing error as @ increases, consis-

tent with the perturbation approach under which they were derived. As expected, given the

small deformation of the tube, the use of a large-deformation membrane theory does not

influence the predicted pressure drop. Therefore, we conclude that the assumptions about

the deformation and the stress made in Fung’s classic treatment of the problem coinciden-

tally yield good agreement at large @, while Fung’s model reduces to the theory derived

herein for small @.

We also carry out a comparison of the structural mechanics prediction, in Fig. 4.7, by

comparing the ratio ['̄( Ī) − 1]/?̄( Ī) of dimensionless deformation and pressure obtained

across the models. Here, the conflicting assumptions used to obtain the law of Laplace and

Fung’s model are quite apparent in this comparison. For both Newtonian and power-law

fluids, Fung’s model overpredicts ['̄( Ī)−1]/?̄( Ī). As explained above, Fung’s model is an

“independent ring” model that neglects the stress and strains in the streamwise direction.

These assumptions, in conjunction with those of large-deformation FSI, lead both Fung’s

model and the law of Laplace to predict an incorrect displacement profile for which ['̄( Ī)−

1]/?̄( Ī) slowly varies with I (outside the boundary and corner layers).

4.6 Conclusions and outlook

In this chapter, we formulated a theory of the low Reynolds number axisymmetric

fluid–structure interaction (FSI) between a generalized Newtonian fluid and an elastic tube

enclosing the flow. Specifically, we derived an analytical relation between the pressure
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Fig. 4.6. Flow rate–pressure drop relation for FSI in an elastic tube. The
difference between the results from the law of Laplace [large-deformation the-
ory, Eq. (4.67)] and the leading-order FSI theory [small-deformation theory,
Eq. (4.40)] is minute. Meanwhile, the results from Fung’s relation given by
Eq. (4.71) deviate significantly from the results of other theories. Note the
different the vertical scales in the plots.
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Fig. 4.7. Ratio of the dimensionless radial deformation '̄−1 to the dimension-
less hydrodynamic pressure ?̄, as a function of the dimensionless axial position
Ī in the elastic tube for @ = 1 mL/min. The leading-order FSI theory is given
by Eq. (4.34), the Donnell shell FSI theory is the numerical solution of the TP-
BVP given by Eqs. (4.45) and (4.46), the law of Laplace is given by Eq. (4.66),
Fung’s result is given by Eq. (4.66) with a = 0, and the simulation results are
from ANSYS. Note the different vertical scales in the plots.

drop across the tube and the imposed steady flow rate through it, taking into account both

the fluid’s shear-dependent viscosity (such as, e.g., whole blood) and the compliance of

the conduit (such as, e.g., a blood vessel). Although physiological flows occur across a

range of flow regimes (Reynolds numbers) [44–46, 50], previous research has focused on
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moderate-to-high Reynolds number phenomena, including collapse of the vessel, unlike

the present context. The proposed theory is also applicable to problems in microfluidics,

wherein soft (e.g., PDMS-based) microchannels of circular cross-section and microtubes

are now manufactured and FSI becomes relevant [59, 61].

Under the lubrication approximation for low Reynolds number flow, we showed how

to analytically couple a unidirectional flow field to an appropriate linear shell theory. This

led us to a fifth-order nonlinear ordinary differential equation (ODE), namely Eq. (4.45) for

the radial displacement, which fully describes the FSI. In a perturbative sense, we showed

that, at the leading order in slenderness and shallowness of the tube, the shell theory re-

duces to membrane theory and a linear relationship, given by Eq. (4.34), emerges between

the local radial deformation and the local hydrodynamic pressure at a given cross-section.

Then, a dimensionless “generalized Poiseuille law” was obtained in Eq. (4.41), which ex-

plicitly gives the pressure drop in terms of the solid and fluid properties. This relationship

rationalizes and updates certain arguments found in textbook discussions of physiological

flow [87, 191]. Specifically, Eq. (4.41) can be put into dimensional form to yield the total

pressure drop Δ ? due to flow of a generalized Newtonian (power-law) fluid in a slender

deformable tube:

Δ ? =
�C

(1 − a2)0


[
1 + 2(3 + 1/=)= (3= + 2) (1 − a2)

(
<ℓ

�C

) (
@

c03

)=]1/(3=+2)

− 1
 . (4.72)

The most important observation is that, due to FSI, Eq. (4.72) is nonlinear in @, even for a

Newtonian fluid (= = 1), in contrast to the Hagen–Poiseuille law.

Furthermore, we showed that a boundary layer (at the inlet) and a corner layer (at the

outlet) of the tube are required to enforce the clamping conditions on the structure. Using

the method of matched asymptotics, we obtained a uniformly valid (closed-form) expres-

sion, given by Eq. (4.61), for the deformation profile. The ability to solve for the tube’s

deformation as a function of the axial coordinate via a matched-asymptotics calculation is

in contrast with the case of low Reynolds number FSI in a microchannel of rectangular

cross-section [37, 60] (see also §4.6.1), but similar to planar low Reynolds number flow

under an elastic beam [29].
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Fig. 4.8. Shells versus plates in viscous FSI. (a) A slice of a soft microtube
represented as a Hookean spring. (b) A slice of a microchannel’s soft top wall
represented as an Euler beam. Under the perturbation theory, each slice is
uniformly loaded by the hydrodynamic pressure ? at flow-wise cross-section
I.

To ascertain the validity of our mathematical results, we carried out two-way-coupled

3D simulations using the commercial computer-aided engineering suite by ANSYS [141].

We showed that good agreement can be obtained between predictions from the theory (for

both the pressure drop and the radial deformation) and the corresponding direct numer-

ical simulations. Then, we specified, through Eq. (4.62), the region in the physical and

geometric parameter space in which our FSI theory applies.

4.6.1 Comparison between viscous FSI in a rectangular microchannel and an ax-

isymmetric microtube

As mentioned previously, the deformation of any infinitesimal transverse slice in the

streamwise direction of the elastic tube considered herein is akin to a Hookean spring be-

cause of the direct linear proportionality between the deformation and the pressure ex-

pressed by Eq. (4.34). This deformation is independent of neighboring slices, just as for

a slender microchannel with a soft top wall [37, 38, 60]. The mathematical reason for this

decoupling is the same for both geometries: the streamwise length scale of the micro-
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tube/channel is much larger than its cross-sectional dimension. However, the two cases

should also be contrasted: for a long and shallow microchannel, each slice of the top wall

acts like an Euler beam in the cross-sectional direction (due to clamping at the sidewalls);

while, for a slender microtube, each slice acts as a Hookean spring (due to axisymmetric

deformation), as illustrated schematically in Fig. 4.8. The maximum cross-sectional de-

formation of the microtube, from the dimensional versions of Eqs. (4.33) and (4.34), is

Dmax(I) = (1 − a2)02?(I)/(�C), while it is Dmax(I) = (1/2) (1 − a2)04?(I)/(�C3) for a

microchannel with equivalent width F = 20 [37]. Consequently, a microtube is more com-

pliant (and thus deforms more than a similar microchannel), with all other conditions being

the same, if C < 0/
√

2. This condition is satisfied in the distinguished limit considered

herein: C/0 � 1.
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5. DEFORMABLE MICROTUBES: HYPERELASTIC RESPONSE
AT STEADY STATE

SUMMARY

In this chapter, we analyze the steady-state microscale fluid–structure interaction (FSI)

between a generalized Newtonian fluid and a hyperelastic tube. Physiological flows, es-

pecially in hemodynamics, serve as primary examples of such FSI phenomena. The small

scale of the physical system renders the flow field, under the power-law rheological model,

amenable to a closed-form solution using the lubrication approximation. On the other hand,

negligible shear stresses on the walls of a long vessel allow the structure to be treated as

a pressure vessel. The constitutive equation for the microtube is prescribed via the strain

energy functional for an incompressible, isotropic Mooney–Rivlin material. We employ

both the thin- and thick-walled formulations of the pressure vessel theory, and derive the

static relation between the pressure load and the deformation of the structure. We harness

the latter to determine the flow rate–pressure drop relationship for non-Newtonian flow in

thin- and thick-walled soft hyperelastic microtubes. Through illustrative examples, we dis-

cuss how a hyperelastic tube supports the same pressure load as a linearly elastic tube with

smaller deformation, thus requiring a higher pressure drop across itself to maintain a fixed

flow rate.

The material in this chapter has been published as [V. Anand and I. C. Christov, “On

the Deformation of a Hyperelastic Tube Due to Steady Viscous Flow Within,” in Dynam-

ical Processes in Generalized Continua and Structures (H. Altenbach, A. Belyaev, V. A.

Eremeyev, A. Krivtsov, and A. V. Porubov, Eds.), Springer Nature (Cham, Switzerland),

2019, vol. 103, ch. 2, pp. 17–35] [193]



117

z = 0
z = ℓ

v
z

u
r

R
i

q

p(ℓ) = 0

t

R
oa z

θ

r

Fig. 5.1. Schematic of the microtube geometry, including notation used in this
chapter.

5.1 Fluid mechanics problem: Solving for the axial velocity

Consider a fluid flow v = EA r̂ + E\θ̂ + EIẑ in cylindrical coordinates. A diagram of

the deformed microtube geometry is shown in Fig. 5.1, specifically the tube has uniform

thickness C, undeformed inner radius 0, and length ℓ. Now, following [160], let us assume

that

1. The flow is steady: m
mC
( · ) = 0.

2. The flow is axisymmetric without swirl: m
m\
( · ) = 0 and E\ = 0.

3. The geometry of the flow vessel is a slender tube: ℓ � 0 ⇔ 0/ℓ = n � 1.

Assumption 3. is key to the mathematical analysis below. Specifically, this assumption

leads us to the appeal to the lubrication approximation of fluid mechanics (see, e.g., [123,

154]), which will allow us to solve for the flow profile analytically.

As shown with due diligence in our previous work [160], to the leading order in 0/ℓ,

the velocity field is unidirectional [154]: v̄ = Ē Ī ẑ but weakly varying with the (long)
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flow-wise direction i.e., Ē Ī = Ē Ī (Ā , Ī). Here, and henceforth, bars over quantities denote

dimensionless variables according to the following scheme:

Ā = A/0, Ī = I/ℓ, ĒĀ = EA/VA , Ē Ī = EI/VI, ?̄ = ?/P2, (5.1)

where the characteristic radial velocity scale is VA ≡ nVI, the characteristic axial velocity

scale isVI, and P2 is the characteristic pressure scale. Upon specifying the rheology of the

fluid (see below), P2 andVI will be related to each other.

Next, we specify the fluid’s rheological behavior. We are interested in biofluid mechan-

ics applications such as blood flow through a deformable artery or vein. Blood is known

to have a shear-dependent viscosity due to the fact that red blood cells deform. Haemorhe-

ology is a complex topic [57, Ch. 3], nevertheless experiments suggest [143] that blood

flow can be accurately fit to a power-law fluid model (a generalized Newtonian rheology

often going by the name Ostwald–de Waele [128]) at steady state. Now, the dominant shear

stress component is gAI; likewise the corresponding rate-of-strain tensor component is just

¤WAI = mEI/mA to the leading order in 0/ℓ (i.e., under the slenderness assumption). Thus the

fluid’s rheological model takes the “simple shear” form:

gAI = <

����mEImA ����=−1

︸       ︷︷       ︸
=[

mEI

mA
, (5.2)

where [ is the apparent viscosity, <(> 0) is the consistency factor, and =(> 0) is the

power-law index. On making Eq. (5.2) dimensionless using the variables from Eq. (5.1),

we obtain the relationship between the axial velocity VI scale and the pressure scale P2:

VI =
[
0=+1P2/(<ℓ)

]1/=.

The power-law rheological model captures the flow behavior of fluids that are shear

thinning ([ decreases with ¤WAI), such as blood [127, 143] as mentioned above, for = < 1.

It also captures the flow behavior of shear-thickening fluids ([ increases with ¤WAI) such as

as woven Kevlar fabrics impregnated with a colloidal suspension of silica particles [194]

used for ballistic armors, for = > 1. The viscous Newtonian fluid is obtained as the special

case of = = 1 in Eq. (5.2). Our motivation is mainly fluid mechanics of blood vessels, so

our examples consider = < 1, but the theory applies to both cases.
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Finally, considering the dynamics of the flow under the constitutive relationship in

Eq. (5.2), we found that the dimensionless axial velocity profile is [160]:

Ē Ī =

(
−1

2
d?̄
dĪ

)1/= ©­«
'̄

1+1/=
8

− Ā1+1/=

1 + 1/=
ª®¬ , (5.3)

where '̄8 = '8/0 is the dimensionless inner radius of the deformed microtube. More

importantly, '̄8 is not necessarily equal to unity because we allow the microtube to deform

due to FSI, as discussed in the next section. Likewise, the pressure gradient d?̄/dĪ is not

constant but, rather, varies with Ī. As a result, while ?̄ is at most a function of Ī (but not a

linear function), Ē Ī can depend upon both Ā and Ī.

5.2 Structural mechanics problem: Solving for the deformation

In this section, we address the structural mechanics aspect of the coupled FSI problem

posed above. To this end, we treat the structure as a pressure vessel, wherein the only

load acting on the structure is the hydrodynamic pressure from the fluid, and the load due

to viscous and shear stresses is neglected. This assumption stems from the lubrication

approximation for the fluid flow, wherein the viscous shear stress scale is ≈ n times the

hydrodynamic pressure scale [123, Ch. 22]. We begin our discussion by first analyzing a

thin-walled pressure vessel, then we move onto its thick-walled counterpart.

5.2.1 Thin-walled cylinder

Let us consider the case of a thin-walled initially cylindrical microtube with thickness

C � 0. This assumption allows us to consider the cylinder in a state of plane stress and

plane strain, thus simplifying the analysis of the structural mechanics problem. As a conse-

quence, the walls of the cylinder act like a membrane, which does not sustain any bending

or twisting moments. There is no variation of stress and deformation throughout the thick-

ness of the cylinder.
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Deformation

In the undeformed material coordinate system, the coordinates of a material point are

given by A = 0, \ ∈ [0, 2c], and I ∈ [0, ℓ]. Upon axisymmetric deformation, the coordi-

nates of the same material point become

' = '(A), Θ = \, / = UI. (5.4)

We further assume that the deformation is homogeneous along the axial direction, thus U =

!/ℓ, with ! being the deformed cylinder’s length and ℓ being the undeformed cylinder’s

length (as in Fig. 5.1). Now, since the cylinder is clamped at both its ends, its length does

not change and ! = ℓ. Hence, U = 1. The foregoing discussion reduces the coordinates of

the point in the spatial coordinate system to:

' = '(A), Θ = \, / = I. (5.5)

As the shell is considered (infinitesimally) thin in this theory, we denote the inner radius '8

by ' (in this section) without fear of confusion.

For the case of a deformation defined by Eq. (5.5), the deformation gradient tensor F

can be easily computed:

F =

©­­­­­«
m'/mA 0 0

0 '/A 0

0 0 1

ª®®®®®¬
. (5.6)

Since F is a diagonal tensor, then its principal axes are just the A, \, and I axes of the

cylindrical coordinate system. Indeed, we deduce from the deformation field introduced in

Eq. (5.5) that a line segment oriented along either the A, \ or I coordinate directions will,

at most, only stretch and cannot rotate.

Consequently, for this type of deformation, the rotation tensor R = I (the identity

tensor) and the stretch tensor is simply

U = F =

©­­­­­«
_1 0 0

0 _2 0

0 0 _3

ª®®®®®¬
. (5.7)
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Here, _1, _2, _3 are the principal stretches, which one can immediately write down by

comparison of Eqs. (5.6) and (5.7). Now, since the material is incompressible, detF =

_1_2_3 = 1, we can determine _1, and thus

_1 = A/', _2 = '/A, _3 = 1. (5.8)

Constitutive equation

We consider the material from which the cylindrical tube is composed to be an isotropic,

incompressible, hyperelastic material. For such a material, the constitutive equation is

specified through a strain energy functional , [195, 196], which depends upon the prin-

cipal stretches _8, i.e., , = , (_1, _2, _3). Specifically, we assume that the hyperelastic

material is defined by the incompressible Mooney–Rivlin constitutive equation [195–197]

with strain energy given by

, = C1

(
_2

1 + _
2
2 + _

2
3

)
+ C2

(
_2

1_
2
2 + _

2
2_

2
3 + _

2
3_

2
1

)
(_1_2_3 = 1). (5.9)

Here, C1 and C2 are two material constants characterizing the structural response of the

hyperelasic material; they are determined empirically by comparison to experiments [198].

Equation (5.9) is traditionally invoked to describe the response of highly elastic, i.e., rubber

like, materials under isothermal conditions [198]. In particular, setting C2 = 0 reduces the

Mooney–Rivlin model to the neo-Hookean solid. For most “rubber-like” materials, C1 > 0

and C2 ≤ 0 [199–201]. For compatibility with linear (i.e., small-strain) elasticity theory

(see [196, Eq. (6.11.29)]), we must have

� = 2(C2 + C1) (5.10)

as the shear modulus of elasticity. We also recall that, for a linearly elastic material,

2� (1 + a) = �, (5.11)

where a is the Poisson ratio, and � is Young’s modulus.
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Now, for isotropic materials, the principal Cauchy stresses are coaxial with the principal

stretches and are given by

f1 − f3 = _1
m,

m_1
− _3

m,

m_3
, (5.12a)

f2 − f3 = _2
m,

m_2
− _3

m,

m_3
. (5.12b)

Substituting Eq. (5.9) into Eqs. (5.12), we obtain

f1 − f3 = 2C1

(
_2

1 − _
2
3

)
− 2C2

(
_−2

1 − _
2
3

)
, (5.13a)

f2 − f3 = 2C1

(
_2

2 − _
2
3

)
− 2C2

(
_−2

2 − _
2
3

)
. (5.13b)

Static equilibrium

As mentioned above, our exemplar thin-walled cylinder acts as a pressure vessel, i.e.,

a structure that sustains only stretching and tension but no bending or twisting. For such a

structure, the equations of static equilibrium take the form:

f1 = fAA = −?, (5.14a)

f2 = f\\ =
?'

C
, (5.14b)

f3 = fII =
?'

2C
. (5.14c)

Since the tube is thin, i.e., C � 0 and ' = O(0), then f1 � f2 ≈ f3. Substituting

Eqs. (5.14) (stress balance) into Eqs. (5.13) (constitutive) and employing Eqs. (5.8) (defor-

mation), we obtain

− ?'
2C

= 2C1

(
02

'2 − 1

)
− 2C2

(
'2

02 − 1

)
, (5.15a)

?'

2C
= 2C1

(
'2

02 − 1

)
− 2C2

(
02

'2 − 1

)
. (5.15b)

Combining the last two equations, we arrive at the pressure–radius relation

?0

2C (C1 + C2)
=
'

0
− 0

3

'3 , (5.16)
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where ' = 0 + DA is the deformed tube radius, and DA is the radial deformation (recall

Fig. 5.1).

Notice that the cross-sectional area of the tube at some fixed axial location, I, is � =

c'2 [here, ' = '(I) due to FSI]. Then, Eq. (5.16) can be rewritten as a pressure–area

relationship:

?( �̄) = 2(C1 + C2)
C̄
√
�̄

(
�̄ − 1

�̄

)
, (5.17)

where C̄ = C/0 is the dimensionless (reduced) thickness of the tube, and �̄ = �/(c02) is the

dimensionless (reduced) area of the deformed tube under axisymmetric conditions (initial

circular cross-section remains circular under deformation). Equation (5.17) represent a

tube law [49] for microscale FSI in a hyperelastic pressure vessel. This “law” is often

used as a “constitutive” equation (closure) in unsteady FSI problems in which the flow is

cross-sectionally averaged [47]. Of interest is to note that ?( �̄) in Eq. (5.17) is nonlinear.

Finally, let us make Eq. (5.16) dimensionless using the following dimensionless vari-

ables

D̄Ā = DA/0, ?̄ = ?/P2, (5.18)

to yield

W ?̄ = (1 + D̄Ā) −
1

(1 + D̄Ā)3
, W :=

P2
2(C1 + C2) C̄

, (5.19)

where C̄ = C/0 as above, and we have defined W as a dimensionless parameter that captures

the “strength” of fluid–structure coupling, i.e., the so-called FSI parameter. In our previous

work on linearly elastic incompressible microtubes [160], the FSI parameter was defined

as V = P2/(�C̄). To connect the hyperelastic theory to the linearly elastic theory, we can

use Eqs. (5.10) and (5.11), taking a = 1/2 for an incompressible material, to find that

W = V/3. (5.20)

A few remarks are in order. Equation (5.19) represents the final dimensionless form of

the pressure–deformation relation for a thin-walled incompressible hyperelastic cylinder.

Second, note that, being a quartic (polynomial) equation in (1+D̄Ā), Eq. (5.19) can be solved

explicitly for D̄Ā as a function of ?̄ using, e.g., MATHEMATICA. However, the resulting
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expression is too lengthy to be worth including here. Third, observe that both ?̄ and D̄Ā

can (and do) depend on the dimensionless flow-wise coordinate Ī, but Ī does not feature

explicitly in the pressure–deformation relationship in Eq. (5.19).

5.2.2 Thick-walled cylinder

In this section, we account for the non-negligible thickness of a cylinder, i.e., the case

of thick-walled pressure vessel, also known as Lamé’s first problem (see, e.g., [202]).

Unlike the case of a thin-walled cylinder, the inner and outer radii of the thick-walled

cylinder differ. They are, thus, denoted by A8 and A> before deformation, and by '8 and '>

after deformation. Specifically,

A8 = 0, (5.21a)

A> = 0 + C, (5.21b)

'8 = 0 + DA , (5.21c)

where DA is the radial displacement of the inner surface of the cylinder. For the problem

that we have posed, the displacement of the outer surface is of no consequence to the flow

within the cylinder, hence we do not discuss it; then, denoting the displacement of the inner

surface by DA is unambiguous. Since the cylinder’s wall is assumed to be composed of an

incompressible material (constant volume), and it is clamped at both its ends (constant

length), its cross sectional area remains constant. Therefore,

'2
> − '2

8 = A
2
> − A2

8 . (5.22)

The cylinder kinematics (Sec. 5.2.1) and the hyperelastic constitutive equations (Sec.

5.2.1) developed for the thin-walled cylinder also apply to the thick-walled one. However,

unlike the previously discussed case, the stress and deformation fields are not constant for

a thick-walled cylinder. Specifically, the stress and deformation vary across the thickness

of the cylinder. Consequently, the equations for static equilibrium of a thick-walled tube

are differential equations. Neglecting body forces (due to the small scale of the posed FSI
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problem) and shear stresses, the equations for static equilibrium [164, 165, 173, 197] are

thus:

mfAA

m'
+ 1
'
(fAA − f\\) = 0, (5.23a)

mfII

m/
= 0. (5.23b)

The latter equations, when written in terms of material coordinates in association with the

deformation field described in Eq. (5.5), reduce to

m ('fAA)
mA

+ A
'
f\\ = 0, (5.24a)

mfII

mI
= 0. (5.24b)

Note that Eq. (5.24b) is satisfied identically.

As above, fAA (= f1) and f\\ (= f2) are also related by Eq. (5.13), i.e., the principal

stress relations for an isotropic, hyperelastic Mooney–Rivlin material. Thus, we can elim-

inate f\\ from the constitutive equation (5.13) and the static equilibrium equations (5.24).

Then, employing the expressions for the principal stretches _1 and _2 from Eq. (5.8), we

obtain the following differential equation governing fAA :

m ('fAA)
mA

+ A
'

fAA + 2(C1 + C2)
[(
'

A

)2
−

(
A

'

)2
] = 0. (5.25)

We solve Eq. (5.25) for fAA subject to the loading boundary conditions

fAA |A=A> = 0, (5.26a)

fAA |A=A8 = −?, (5.26b)

to obtain the pressure–radius relation

? =

 5
(
A2

1

'2
1

)
− 5

(
A2
8

'2
8

) (C1 + C2), (5.27)

where, for convenience, the function 5 is defined (see also [197]) as

5 (b) := b + ln b. (5.28)
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Note that Eq. (5.27) is equivalent to Eq. (3.4.3) in [197, Ch. 9]. It is relevant to remind the

reader that ? ≠ ?(A), so the integration of Eq. (5.25) is straightforward.

Finally, substituting the geometric relationships from Eqs. (5.21) and (5.22) into Eq.

(5.27), we obtain

?

C1 + C2
=

 5
(

(1 + C/0)2
(1 + C/0)2 − 1 + (1 + DA/0)2

)
− 5

(
1

(1 + DA/0)2

) . (5.29)

The last equation can be re-written in dimensionless form using the variables from Eq.

(5.18) as

2C̄W ?̄ =
 5

(
(1 + C̄)2

(1 + C̄)2 − 1 + (1 + D̄Ā)2

)
− 5

(
1

(1 + D̄Ā)2

) , (5.30)

where W is the FSI parameter as defined in Eq. (5.19) above. Equation (5.30) represents the

final dimensionless form of the pressure–deformation relation for a thick-walled incom-

pressible hyperelastic cylinder.

5.3 Coupling of the fluid and structural mechanics problems

We now turn to the main task, which is coupling the flow and deformation. As shown in

our previous work [160], this task is accomplished by computing the flow rate @ explicitly

using its definition for an axisymmetric cylindrical tube:

@ =

∫ 2c

0

∫ '8

0
EI A dA d\ = VI2c02

∫ '̄8

0
Ē Ī Ā dĀ , (5.31)

where we have also introduced the dimensionless variables from Eq. (5.1). Now, substitut-

ing the expression for Ē Ī from Eq. (5.3) into Eq. (5.31), we obtain the dimensionless flow

rate

@̄ ≡ @

VIc02 =

(
−1

2
d?̄
dĪ

)1/= '̄3+1/=
8

3 + 1/= , (5.32)

where '̄8 = 1 + D̄Ā is the dimensionless inner radius of the deformed tube.

Thus, since @̄ = 2>=BC. by conservation of mass in a steady flow [123], Eq. (5.32)

becomes an ordinary differential equation (ODE) for ?̄( Ī):

d?̄
dĪ

= −2[(3 + 1/=)@̄]= [1 + D̄Ā ( Ī)]−(1+3=) . (5.33)
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Now, we must specify the deformation profile D̄Ā to complete the calculation. Even in

the special case of a Newtonian fluid (= = 1), Eq. (5.33) represents a strongly nonlinear

pressure gradient–deformation coupling.

5.3.1 Thin-walled cylinder

To finish the derivation of the coupled FSI theory for a thin-walled cylinder, we differ-

entiate the pressure–deformation relation from Eq. (5.19) with respect to Ī to obtain

W
d?̄
dĪ

=

[
1 + 3
(1 + D̄Ā)4

]
dD̄Ā
dĪ
. (5.34)

Then, we eliminate d?̄/dĪ between Eqs. (5.33) and (5.34) to obtain an ODE for D̄Ā :

− 2W [(3 + 1/=)@̄]= =
[
(1 + D̄Ā)3=+1 + (1 + D̄Ā)3=−3

] dD̄Ā
dĪ
. (5.35)

Since conservation of mass dictates that @̄ = 2>=BC., and W and = are known constants,

the ODE (5.35) can be separated and directly integrated, subject to the boundary condition

(BC) D̄Ā ( Ī = 1) = 0,1 to yield:

2W [(3 + 1/=)@̄]= (1 − Ī) = [1 + D̄Ā ( Ī)]
3=+2

(3= + 2) + [1 + D̄Ā ( Ī)]
3=−2

(3= − 2) − 6=
(3= + 2) (3= − 2) . (5.36)

Equations (5.19) and (5.36) fully specify (albeit implicitly) the static response of a thin

hyperelastic cylinder due to internal flow of a generalized Newtonian fluid within it. For

example, the displacement at Ī = 0 found from Eq. (5.36) can be used in Eq. (5.19) to

determine ?̄(0) from which the full dimensionless pressure drop follows: Δ ?̄ := ?̄(0) −

?̄(1), where ?̄(1) = 0 is our chosen pressure gauge for the pressure at the outlet and also

in the surrounding medium exterior to the cylinder. Thus, the flow rate–pressure drop

relationship (@̄ as a function of Δ ?̄, or vice versa), i.e., a generalized Hagen–Poiseuille law,

in the presence of FSI can be obtained analytically.

1Note, more importantly, that although in general we cannot expect to satisfy clamping BCs, i.e., D̄Ā =
dD̄Ā/dĪ = 0 at Ī = 0 and Ī = 1 in this leading-order analysis of deformation, we must respect the pressure
outlet BC, i.e., ?̄( Ī = 1) = 0. From Eq. (5.19), it is then clear that the pressure BC requires that D̄Ā ( Ī = 1) = 0
as assumed.
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5.3.2 Thick-walled cylinder

For a thick-walled cylinder, we differentiate Eq. (5.30) with respect to Ī to obtain

W
d?̄
dĪ

= −
{

2(1 + C̄)2(1 + D̄Ā)
[(1 + C̄)2 + (D̄Ā)2 + 2D̄Ā]2

+ 2(1 + D̄Ā)
(1 + C̄)2 + (D̄Ā)2 + 2D̄Ā

− 2
(1 + D̄Ā)

− 2
(1 + D̄Ā)3

}
dD̄Ā
dĪ
. (5.37)

Then, we eliminate d?̄/dĪ between Eqs. (5.33) and (5.37) to obtain an ODE for the dimen-

sionless transverse deflection D̄Ā :{
2(1 + C̄)2(1 + D̄Ā)

[(1 + C̄)2 + (D̄Ā)2 + 2D̄Ā]2
+ 2(1 + D̄Ā)
(1 + C̄)2 + (D̄Ā)2 + 2D̄Ā

− 2
(1 + D̄Ā)

− 2
(1 + D̄Ā)3

}
dD̄Ā
dĪ

= C̄W [(3 + 1/=)@̄]= (1 + D̄Ā)−(1+3=) , (5.38)

subject to the BC that D̄Ā (1) = 0, as before. Unlike, Eq. (5.35), Eq. (5.38) cannot be

integrated directly, thus it must be solved numerically. We employ the odeint subroutine

of the Python package SciPy [140], with default error tolerances, for this integration.

Equations (5.30) and (5.38) fully specify the static FSI response of the thick-walled

hyperelastic cylinder due to the flow of the generalized Newtonian fluid within. Together

these two equations can be used to develop the flow rate–pressure relationship for a thick-

walled hyperelastic tube, however the calculation must be done via numerical quadratures,

unlike the case of the thin-walled cylinder (Sec. 5.3.1).

5.4 Linearly elastic thick-walled cylinder

In this section, we derive the flow rate–pressure drop relationship for steady flow of a

power-law fluid within a linearly elastic, thick-walled pressure vessel of thickness C, and

inner radius A8 = 0. The pressure vessel is subject only to an internal distributed pressure
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load ?, with zero external pressure. Then, the state of stress evaluated at the inner radius

(see [203]) is:

f\\ =

(
A2
> + A2

8

A2
> − A2

8

)
?, (5.39a)

fAA = −?, (5.39b)

fII =

(
A2
8

A2
> − A2

8

)
?. (5.39c)

The hoop strain is given by the constitutive equations of linear elasticity as:

Y\\ =
DA

A8
=

1
�

[
f\\ − a(fII + fAA)

]
. (5.40)

Using Eqs. (5.39) and (5.40) yields

DA

A8
=

1
�


(
A2
> + A2

8

A2
> − A2

8

)
? − a

(
A2
8

A2
> − A2

8

− 1

)
?

 , (5.41)

which, upon using Eqs. (5.18) and (5.21), becomes

DA

A8
= C̄

[
(1 + C̄)2(1 + a) + (1 − 2a)

(1 + C̄)2 − 1

]
V?̄; V =

P2
�C̄
. (5.42)

After deformation, the inner radius is '8 = A8 + DA (where, initially, A8 = 0). Thus, the

dimensionless inner radius is

'̄8 =
A8 + DA
A8

= 1 + DA
A8
= 1 +

[
(1 + C̄)2(1 + a) + (1 − 2a)

2 + C̄

]
V?̄. (5.43)

Substituting the expression for '̄8 from Eq. (5.43) into Eq. (5.33), we obtain an ODE for

the dimensionless pressure ?̄:

d?̄
dĪ

= −2[(3 + 1/=)@̄]=
(
1 + KV?̄

)−(1+3=)
, (5.44)

where we have defined K := [(1 + C̄)2(1 + a) + (1− 2a)]/(2 + C̄) for convenience. As usual,

the ODE (5.44) is separable and subject to a pressure outlet BC [i.e., ?̄(1) = 0], thus we

obtain:

?̄( Ī) = 1
KV

({
1 + 2(2 + 3=)KV[(3 + 1/=)@̄]= (1 − Ī)

}1/(2+3=) − 1
)
. (5.45)

Then, the full pressure drop is simply Δ ?̄ = ?̄( Ī = 0). Note that K = (1 − a/2) + O(C̄),

thus the expression for Δ ?̄ based on Eq. (5.45) [i.e., Eq. (5.47) above] reduces to Eq. (5.46)

(based on [160]) identically for thin shells (C̄ � 1).
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5.5 Results and discussion

Let us now illustrate the deformation–pressure and flow rate–pressure drop relation-

ships predicted by our FSI theory for the interaction between the steady flow of a power-

law fluid within a soft hyperelastic cylindrical vessel containing it. Specifically, in this

section, we wish to highlight the effect of hyperelasticity on the structural response of the

microtube.

In Fig. 5.2, we plot the dimensionless pressure drop Δ ?̄ across a thin-walled microtube

as a function of the dimensionless inlet flow rate @̄ for different values of the FSI parameter

V(= 3W). The curves (solid) for the thin-walled hyperelastic tube are obtained from the

present theory, namely Eqs. (5.19) and (5.36), while the curves (dashed) pertaining to the

thin-walled linearly elastic tube are calculated based on the results from our previous study

[160], namely:

Δ ?̄ =
1

(1 − a/2)V

({
1 + 2(2 + 3=) (1 − a/2)V[(3 + 1/=)@̄]=

}1/(2+3=) − 1
)
, (5.46)

We note that, for both linearly elastic and hyperelastic tubes, the pressure drop decreases

with V(= 3W). This observation is attributed to the very definition of V as the parameter

symbolizing the strength of the FSI coupling. For large V values, there is “stronger” FSI

coupling than at small V values and, hence, there is larger deformation of the tube. Conse-

quently, the cross-sectional area increases, lowers the resistance to the flow, and culminates

in a smaller pressure drop for large V compared to small V.

Perhaps more attuned to the thesis of this chapter is the difference in the response of a

hyperelastic and the responce of a linearly elastic tube for the same FSI coupling strength.

Thus, comparing the solid and dashed curves, respectively, in Fig. 5.2 at fixed W (i.e., same

color), we observe that a hyperelastic tube supports a higher pressure drop than a linearly

elastic tube. We explain this trend by noting that a hyperelastic tube, in general, is stiffer

and has a higher tendency to preserve its original configuration compared to a linearly

elastic tube. In other words, a hyperelastic material requires higher pressure than a linearly

elastic material to sustain the same deformations (see also [204, 205]).
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Fig. 5.2. The dimensionless (full) pressure drop across a thin-walled microtube
as a function of the dimensionless inlet flow rate @̄ for different values of FSI
parameter V = 3W. Hyperelastic thin-walled tubes correspond to solid curves,
while linearly elastic thin-walled tubes correspond to dashed curves for (a) a
Newtonian fluid with = = 1.0 (e.g., blood plasma), and (b) a shear-thinning
fluid with = = 0.7 (e.g., whole blood). For the hyperelastic tube, the corre-
sponding theory has been presented in Sec. 5.3.1, while for linearly elastic
tubes the predicted pressure drop is given by Eq. (5.46) derived in [160].
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Next, we move on to the case of thick-walled tubes and compare, in Fig. 5.3, the flow

rate–pressure drop relation in a thick-walled hyperelastic tube obtained from the present

theory, namely Eqs. (5.30) and (5.38), with the corresponding relationship for a thick-

walled linearly elastic tube calculated based on

Δ ?̄ =
1
KV

({
1 + 2(2 + 3=)KV[(3 + 1/=)@̄]=

}1/(2+3=) − 1
)
, (5.47)

which was derived from Eq. (5.45) ; K = [(1 + C̄)2(1 + a) + (1 − 2a)]/(2 + C̄) and C̄ = C/0.

For the same reason as above, an increase in V(= 3W) causes Δ ?̄ to decrease.

Things become more interesting, however, when the curves corresponding to same

value of the FSI parameter V are compared (solid vs. dashed) in Fig. 5.3. For small @̄

and small V, the linearly elastic tube deforms less and sustains a larger Δ ?̄ compared to

the hyperelastic one. However, this trend is reversed for large @̄ and large V, for which the

hyperelastic tube sustains a higher Δ ?̄ than the linearly elastic one. This interesting obser-

vation can be explained by the very nature of hyperelasticity. It is more difficult to deform

a hyperelastic material as the deformation increases, i.e., hyperelastic materials exhibit

strain-stiffening [199–201]. Mathematically, this resistance to deformation can be mea-

sured through the rate of change of the stress with respect to the strain (or deformation). To

this end, when we differentiate the constitutive equation for a hyperelastic material, namely

Eq. (5.13), with respect to the principal deformation along the “1” direction, whilst keeping

the deformations in the other directions constant for simplicity, to obtain:

mf1
m_1

= 4C1_1 + 4C2/_3
1. (5.48)

From the latter equation it follows that the resistance to deformation increases with defor-

mation (keeping in mind that C2 < 0). On the other hand, for a linearly elastic material,

the resistance to deformation is given by Young’s modulus � (at least for a uniaxial load),

which is a constant!

One could also interpret the much larger Δ ?̄ in hyperelastic (over linearly elastic) thin-

wall cylinders in Fig. 5.2 as a consequence of strain-hardening. However, in that case,

due to significant resistance to deformation of the thin-walled hyperelastic vessel (there is
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almost one order of magnitude difference in the vertical scales between Figs. 5.2 and 5.3),

the interplay between @̄ and V values just described is not present.

Finally, we also note that an increase in the cylinder thickness will lead to a correspond-

ing decrease in the pressure drop, although this is not shown in Fig. 5.3, in which all the

curves have been plotted for a constant ratio C̄ = C/0 = 0.3. This result is similar to the

one for thick linearly elastic plates, which was discussed in our previous work [60], and it

can be attributed to an increase in the normal stress throughout the structure’s thickness as

C̄ increases.

5.6 Conclusion

In this chapter, we have solved the problem of steady-state low Reynolds number fluid–

structure interaction (FSI) between a generalized Newtonian fluid and a hyperelastic cylin-

drical tube. The hydrodynamic pressure, which is needed to maintain a unidirectional flow

in a deformed cylindrical pipe, was transferred as a load onto the elastic structure, the

mechanics of which were analyzed using the thin and thick pressure vessels theories for

isotropic, incompressible Mooney–Rivlin materials. The fluid and solid mechanics were

brought together to yield a coupled equation relating the constant inlet flow rate @ to the

tube’s radial deformation DA (I). For a thin-walled pressure vessel, the latter relation takes

the implicit dimensional form

< [(3 + 1/=)@]=
(C1 + C2)C

(ℓ − I) = [0 + DA (I)]
(3=+2)

02(3= + 2)
+ 0

2 [0 + DA (I)] (3=−2)

(3= − 2)

− 6=03=

(3= + 2) (3= − 2) . (5.49)

As a special case, we have also found the flow rate–deformation relation for a Newtonian

fluid (= = 1, and < = ` is the shear viscosity):

4`@
(C1 + C2)C

(ℓ − I) = [0 + DA (I)]
5

502 + 02 [0 + DA (I)] −
603

5
, (5.50)
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Fig. 5.3. The dimensionless (full) pressure drop across a thick-walled micro-
tube as a function of the dimensionless inlet flow rate @̄ for different values of
FSI parameter V = 3W and C̄ = C/0 = 0.3. Hyperelastic thick-walled tubes cor-
respond to solid curves, while linearly elastic thick-walled tubes correspond to
dashed curves, for (a) a Newtonian fluid with = = 1.0 (e.g., blood plasma), and
(b) a shear-thinning fluid with = = 0.7 (e.g., whole blood). For a thick-walled
hyperelastic tube, the corresponding theory was presented in Sec. 5.3.2, while
for thick-walled linearly elastic tubes the predicted pressure drop is given by
Eq. (5.47).
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which is an implicit relation for DA (I) given @. Whence, the equation relating the pressure

?(I) at an axial location I with the deformation DA (I) is

?(I) = 2(C1 + C2)
(
C

0

) {
[1 + DA (I)/0] −

1
[1 + DA (I)/0]3

}
. (5.51)

Consonant with our previous FSI results [60, 160], the pressure–deformation relationship

is set by the structural mechanics alone, hence it does not explicitly depend upon the fluid’s

rheology.

Equations (5.49) [or (5.50)] and (5.51) fully specify the FSI problem for a thin-walled

hyperelastic cylinder. In deriving these equations, we arrived at the dimensionless FSI pa-

rameter W, which determines the “strength” of the coupling between flow and deformation

fields:

W :=
P2

2(C1 + C2)

(
0

C

)
(5.52)

for a hyperelastic cylinder with material constants C1 and C2. Here, the pressure scale

P2 depends on the nature of the physical scenario at hand. For a flow-rate-controlled

experiment and/or simulation, as considered in this chapter for example, we set P2 =

[@/(c02)]=<ℓ/0=+1, as dictated by the fluid’s momentum balance. On the other hand, for

a pressure-drop-controlled experiment or simulation, we can directly set P2 = Δ ?, which

means the fluids velocity scaleVI discussed above becomes a function of the dimensional

pressure drop Δ ?.

We compared the predicted @–Δ ? relation due to the hyperelastic FSI theory developed

in this chapter with the corresponding relation due to linearly elastic FSI theory form previ-

ous work [160]. In particular, we concluded that a hyperelastic microtube supports smaller

deformations than a linearly elastic microtube for the same hydrodynamic pressure, or con-

versely a hyperelastic microtube can sustain a higher pressure drop than a linearly elastic

one, for the same deformation. Finally, our observation in Sec. 5.5 that the pressure drop

across a soft microtube decreases with the wall thickness is in agreement with the case of

rectangular microchannels with a plate for a top wall, which we considered in our previous

work [60].
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6. DEFORMABLE MICROTUBES: TRANSIENT VISCOELASTIC
RESPONSE TO COMPRESSIBLE FLOW

SUMMARY

Motivated by problems arising in the pneumatic actuation of controllers (for MEMS, labs-

on-a-chip or biomimetic soft robots) and the study of microrheology of both gases and soft

solids, we analyze the transient fluid–structure interactions (FSIs) in an viscoelastic tube

conveying compressible flow at low. Under the lubrication approximation, the density of

the fluid is expressed as a linear function of the pressure. For small compressibility num-

bers, the flow is coupled to a structural mechanical problem, in which the correspondence

principle allows us to modify Donnell shell theory and account for Kelvin–Voigt-type linear

viscoelastic response. The resulting fluid and structural mechanics equations are coupled

through the deformed radius and the hydrodynamic pressure. For weak coupling, the equa-

tions are solved analytically via a perturbation expansion. Three illustrative sub-problems

are analyzed. First is steady flow, in which the structure behaves like a linearly elastic

tube, without inertia or dissipation. Second is the transient problem of impulsive pressur-

ization of the tube’s inlet. Third is the transient response to an oscillatory inlet pressure.

We show that the low Reynolds number flow in the tube requires a finite time to adjust to

transient forcing due to FSI. An oscillatory inlet pressure leads to acoustic streaming in

the tube, attributed to the nonlinear pressure gradient induced by FSI and compressibility.

We demonstrate an enhancement in the volumetric flow rate due to the coupling of com-

pressibility and FSI, which has a low-pass frequency response (when averaged over the

period of oscillations). On the other hand, the corresponding frequency response of the

tube deformation is similar to that of a band-pass filter.

The material in this chapter has been submitted for publication as [V. Anand and I. C.

Christov, “Transient compressible flow in a compliant viscoelastic tube”] [206]
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6.1 Mathematical formulation of the problem

6.1.1 Preliminaries

The flow domain of interest consists of an initially cylindrical tube (see Fig. 6.1) of

undeformed radius 0, thickness ℎ and length ℓ. The tube is assumed to be thin (ℎ � 0) and

slender (0 � ℓ). The tube is made of an isotropic, homogeneous, and linearly viscoelastic

material that obeys the KV material model, also sometimes referred to as just the ‘Voigt

model’ [57, Ch. 2].

Both the structural mechanical and fluid mechanical fields are considered axisymmet-

ric in \. The tube conveys a Newtonian gas. Since this gas flow can be (in general) both

unsteady and compressible, the flow rate @̄ is a function of both axial location Ī and time C̄,

i.e., @̄ = @̄( Ī, C̄). The density of the gas at the outlet is d0 corresponding to the (reference)

pressure at the outlet ?̄ = ?0. At the inlet, the pressure is imposed as a boundary condition.

Due to the hydrodynamic pressure exerted by the transient compressible flow, the tube de-

forms, and the deformed radius is '̄( Ī, C̄) = 0 + D̄Ā ( Ī, C̄), where D̄Ā is the radial displacement

of the structure.

Through a perturbative approach, we aim to establish a predictive relationship between

the key fluid mechanical and structural mechanical quantities: @̄( Ī, C̄), ?̄( Ī, C̄), '̄( Ī, C̄), and

D̄Ā ( Ī, C̄), as well as their spatiotemporal variations due to unsteady flow conditions.

Assumptions:

1. Newtonian gas, with zero bulk viscosity (exact for monoatomic gases).1

2. Axisymmetric flow without swirl: m ( · )/m\ = 0 and E\ = 0.

3. Slender tube: ℓ � 0 ⇔ n = 0/ℓ � 1.

4. Isothermal flow.
1The assumption of zero bulk viscosity is not crucial as the terms in the momentum equation dealing with
bulk viscosity are negligible under the lubrication approximation [73, 84].
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Fig. 6.1. Schematic of the microtube geometry. The origin of the coordinate
system is at the inlet of the tube, however, it has been displaced from the inlet
in the figure for clarity.

Continuity equation

For axisymmetric, transient flow of a gas, the equation of continuity in cylindrical co-

ordinates takes the form [123, 207]:

md̄

mC̄
+ 1
Ā

m

mĀ
(Ā d̄ĒĀ) +

m

mĪ
( d̄Ē Ī) = 0, (6.1)

where d̄(Ā , Ī, C̄) is the density of the gas and v(Ā , Ī, C̄) = (ĒĀ , 0, Ē Ī) is its axisymmetric

velocity field. We introduce the following dimensionless variables:

C = C̄/T5 , A = Ā/0, I = Ī/ℓ, EI = Ē Ī/VI, EA = ĒĀ/VA ,

d = d̄/d0, ? =
(
?̄ − ?0

)
/P2, (6.2)

where ?̄ is the absolute pressure. Here, P2 is the characteristic pressure scale to be deter-

mined from the boundary condition, since it is a pressure controlled system. VI andVA are

characteristic velocity scales in the axial and radial directions respectively, connected by

the conservation of mass, and related to the pressure scale by the conservation of momen-

tum equation. T5 is characteristic time scale, d0 is characteristic scale for density, which
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is the density at the outlet, where the (absolute) pressure is ?0. Substituting the variables

from Eqs. (6.2) into Eq. (6.1) yields

d0
T5
md

mC
+ d0VA

0

1
A

m

mA
(dAEA) +

d0VI
ℓ

m

mI
(dEI) = 0. (6.3)

Balancing the latter equation (in an order-of-magnitude sense), we obtain

VA = nVI, T5 = ℓ/VI . (6.4)

Momentum equation

For the compressible flow of a Newtonian gas with zero bulk viscosity, the conservation

of linear momentum equation in the axial, I-direction takes the form [123, 207]:

d̄

(
mĒ Ī

mC̄
+ ĒĀ

mĒ Ī

mĀ
+ Ē Ī

mĒ Ī

mĪ

)
=

1
Ā

m

mĀ

(
`Ā
mĒ Ī

mĀ
+ `Ā mĒĀ

mĪ

)
+ m

mĪ

(
2`
mĒ Ī

mĪ
− 2

3
`∇̄ · v̄

)
− m ?̄
mĪ
. (6.5)

By using the scales introduced in Eqs. (6.2) and (6.4), the dimensionless form of Eq. (6.5)

is

d0V2
I

ℓ
d

(
mEI

mC
+ EA

mEI

mA
+ EI

mEI

mI

)
=
`VI
02

1
A

m

mA

(
A
mEI

mA
+ An2 mEA

mI

)
+ `VI
ℓ2

m

mI

(
2
mEI

mI
− 2

3
∇ · v

)
− P2
ℓ

m?

mI
. (6.6)

As the flow is isothermal and compressible, a constitutive equation must be specified to

relate d̄ and ?̄. We use a linear equation of state [79, 80]:

d̄ = d0

(
1 + ?̄ − ?0

B)

)
, B) = d0

(
m ?̄

md̄

)
)

, (6.7)

where B) = 2>=BC. is the isothermal bulk modulus of the gas. The dimensionless form of

Eq. (6.7) is then

d = 1 + U?, U = P2/B) , (6.8)

where the dimensionless parameter U is termed the compressibility number. The chosen

equation of state (6.8) (and its dimensional counterpart, Eq. (6.7)) can be interpreted as a
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Taylor-series expansion of the density about the outlet value, in terms of the gauge pressure.

Compressibility effects are important in the flow if P2 ∼ B) , i.e., U = O(1). Therefore,

U herein fulfills the same role, for low-'4 viscous flow, as Ma does for high-'4 inertial

flow.2

Using Eq. (6.8), Eq. (6.6) can be rewritten as:

n'4(1 + U?)
(
mEI

mC
+ EA

mEI

mA
+ EI

mEI

mI

)
=

1
A

m

mA

(
A
mEI

mA
+ n2A

mEA

mI

)
+ n2 m

mI

(
2
mEI

mI
− 2

3
∇ · v

)
− P20

2

ℓVI`
m?

mI
, (6.9)

where

'4 =
d0VI0
`

(6.10)

is the Reynolds number. To the leading order in O(n2, n'4), Eq. (6.9) reduces to:

0 =
1
A

m

mA

(
A
mEI

mA

)
− P20

2

ℓVI`
m?

mI
. (6.11)

Balancing the last equation yields the axial velocity scale

VI =
P202

`ℓ
. (6.12)

We study pressure-controlled systems in which P2 is set by the boundary conditions, soVI
can be, in principle, calculated from Eq. (6.12).3 Thus, Eq. (6.11) is finally written as:

0 =
1
A

m

mA

(
A
mEI

mA

)
− m?
mI
. (6.13)

Using Eqs. (6.2), (6.4), (6.8), (6.10) and (6.12), the dimensionless A-momentum equa-

tion [123, 207] is

n3'4(1 + U?)
(
mEA

mC
+ EA

mEA

mA
+ EI

mEA

mI

)
= n2 1

A

m

mA

(
2A
mEA

mA
− 2

3
A∇ · v

)
+ n2 m

mI

(
mEI

mA
+ n2 mEA

mI

)
− m?
mA
. (6.14)

Neglecting small terms, we obtain:

0 =
m?

mA
. (6.15)

2Commensurate with the definition of Ma in terms of speed of sound, we can also express U in terms of speed
of sound 2 as U = WP2/d02

2, where W is the ratio of specific heats and 2 =
√
WB) /d0.

3We can also consider a system in which the inlet mass flow rate ¤< is specified. Then, VI ≡ ¤</(d0c0
2), in

which case P2 can be, in principle, calculated from Eq. (6.12).
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Velocity boundary conditions

We account for rarefaction effects by introducing a slip velocity boundary condition in

the flow-wise direction. This condition, which holds only at the tube’s deformed radius

Ā = '̄ is given by Navier’s slip equation [208–210]:

ĒI |Ā='̄ =
(
2 − fE
fE

)
_

`
ḡB

= −
(
2 − fE
fE

)
_

`

[
`

(
mĒ Ī

mĀ
+ mĒĀ
mĪ

)]
Ā='̄

.

(6.16)

Here, fE is the tangential momentum accommodation coefficient (dimensionless), _ is the

mean free path (length) of the gas and ḡB is the shear stress on the wall surface.

We also introduce Kn0 = _0/0 as the characteristic Knudsen number [208] correspond-

ing to the characteristic mean free path _0, which itself is related to the characteristic pres-

sure P2. Since the mean free path is inversely proportional to the pressure, we can write:

_ =
_0P2
?̄

=
_0
?

⇒  = =
_

0
=
_0
?0

=
Kn0
?
. (6.17)

Therefore, the velocity boundary condition (6.16) can be re-expressed as:

EI |A=' = −
(
2 − fE
fE

)
Kn0
?

mEI

mA

����
A='

+ O(n2). (6.18)

Next, no-slip in the radial direction leads us to the kinematic boundary condition [123],

which in dimensionless form is

EA |A=' = V
(
mDA

mC
+ EI

mDA

mI

)
A='

, (6.19)

where DA is the (dimensionless) radial deformation of the tube, and we have neglected axial

displacements (to be justified in Sec. 6.1.2 below). Here, V = U2/0 can be termed the

FSI parameter;U2 is the characteristic deformation scale, which is to be determined upon

analyzing the mechanical force balance on the structure. Then, the deformed radius '̄, can

be written in terms of the dimensionless variables as:

'(I, C) = '̄( Ī, C̄)
0

=
0 + D̄Ā ( Ī, C̄)

0
= 1 + VDA (I, C). (6.20)
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Velocity field

We solve Eq. (6.11) subject to Eq. (6.18) to obtain the axial velocity field:

EI (A, I, C) = −
1
2
m?

mI

[
(1 + VDA)2 − A2

2
+

(
2 − fE
fE

)
Kn0
?
(1 + VDA)

]
. (6.21)

Observe the flow is primarily axial but it is two-dimensional. Here, V, DA (I, C), and ?(I, C)

are independent of A. The volumetric flow rate is the area integral of the axial velocity from

Eq. (6.21):

@(I, C) ≡ @̄( Ī, C̄)
VIc02 =

'(I,C)∫
0

EI (A, I, C) A dA = −m?
mI

[
1
8
(1 + VDA)4 +

fKn0
2?
(1 + VDA)3

]
. (6.22)

As a consistency check, observe that for  =0 → 0 and V → 0, Eq. (6.22) reduces to

@ = −(1/8)m?/mI, which is the Hagen–Poiseuille law in dimensionless form [31].

In previous studies of steady incompressible flow and FSI in tubes [160], the flow rate @

was specified. Then, by conservation of mass @ = 2>=BC throughout the tube and, therefore,

Eq. (6.22) is simply an ordinary differential equation (ODE) in ?(I). In this paper, however,

since we deal with unsteady compressible flow, @ from Eq. (6.22) is not constant, i.e.,

@ = @(I, C).

To determine the governing equation for @, we integrate the continuity Eq. (6.3) across

the radial extent of the tube. Upon using the boundary conditions from Eqs. (6.18) and

(6.19), we obtain
m

mC

[
1
2
d(1 + VDA)2

]
+ m (d@)

mI
= 0. (6.23)

Observe that the unsteady term in Eq. (6.23) can be written out as

m

mC

[
1
2
d(1 + VDA)2

]
=

1
2

(
1 + D̄Ā

0

)2

︸     ︷︷     ︸
O(1)

m

mC̄

(
?̄ − ?0
P2

)
︸     ︷︷     ︸
O(1)

(
UT5

)
+

(
1 + ?̄ − ?0

B)

)
︸          ︷︷          ︸

O(1)

(
1 + D̄Ā

0

)
︸    ︷︷    ︸
O(1)

m

mC̄

(
D̄Ā

U2

)
︸︷︷︸
O(1)

(
VT5

)
. (6.24)

From the first term on the right-hand side of Eq. (6.24), we deduce that to retain the tran-

sient response of the pressure changes in the balanced continuity equation (6.23), we must
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choose time scale of compressibility as TU ∼ UT5 = Uℓ/VI = O(1). Likewise, from the

second term on the right-hand side of Eq. (6.24), we deduce that TV ∼ VT5 = Vℓ/VI = O(1)

is the time scale of FSI (transient deformation response). The latter is same time scale de-

duced in prior work on microchannels [211] and microtubes [63].

The fact that we have chosen to neglect the local acceleration of the fluid, but incorpo-

rated the transient effects of compressibility and FSI, leads us to the following requirement

on the dimensionless parameters:

n'4 � V � 1, n'4 � U � 1. (6.25)

These conditions must be satisfied for our quasi-steady lubrication theory. Observe that

Eq. (6.25) does not yield an ordering between the small parameters U and V. Thus, given

the lack of a priori scale separation, all quadratic terms in the perturbation expansions that

follow are neglected.

Equations (6.22) and (6.23) contain three unknowns, namely DA , ?, @. We need another

equation to uniquely determine these quantities. To that end, we turn our attention to the

structural mechanics problem.

6.1.2 Structural mechanics

For this chapter, our goal is to formulate a theory of transient FSIs due to compressible

flow being conveyed in a viscoelastic tube. Having delineated the fluid mechanical aspects

of the FSI problem in the previous sections, we shift our focus to the structural mechanical

domain. To this end, we begin by first extending Donnell’s theory of thin [172], linearly

elastic shells [164, 173] to include the viscoelastic response of the material.

Donnell’s shell theory for a linearly elastic solid

Linearly elastic Donnell shell

In what follows, the notation is the same as that described in the schematic of the

microtube in Fig. 6.1. Under the assumptions of an axisymmetric load with negligible
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axial displacement [212], the normal stress resultant in the circumferential direction and

the bending moment (see, e.g., [164, 173]) are

#̄\\ = ℎ�̂
D̄Ā

0
, (6.26a)

"̄ĪĪ = −
ℎ3

12
�̂
m2D̄Ā

mĪ2 , (6.26b)

respectively. Here, �̂ = �/(1−a2) is the plane strain Young’s modulus, and a is the Poisson

ratio, both at steady state. Meanwhile, the equation of equilibrium in the radial direction

(see, e.g., [164, 173]) is
m2"̄ĪĪ

mĪ2 −
#̄\\

0
+ ?̄ = dBℎ

m2D̄Ā

mC̄2
, (6.27)

where ?̄ is the radial load on the structure due to the fluid flow within, keeping in mind that

?̄ = ?̄( Ī, C̄), and dB is the constant density of the solid material.

Linearly viscoelastic Donnell shell

The correspondence between the constitutive equations of linear elasticity and the KV

model of viscoelasticity [213] allows us to analogously write the versions of the constitutive

relations (6.26), for a viscoelastic Donnell shell, as (see, e.g., [214, 215]):

#̄\\ =

(
ℎ

0

)
�̂D̄Ā +

(
ℎ

0

)
�E
mD̄Ā

mC̄
, (6.28a)

"̄ĪĪ = −
ℎ3

12
�̂
m2D̄Ā

mĪ2 −
ℎ3

12
�E

m3D̄Ā

mC̄mĪ2 . (6.28b)

In short, the corresponding linearly viscoelastic Donnell shell’s constitutive equations are

obtained by applying the relaxation operator 1 + (�E/�̂)m/mC̄ to the constitutive equa-

tions (6.26). Here, �E is a viscoelastic modulus analogous to �̂ .

Substituting Eqs. (6.28) into the equilibrium equation (6.27), yields the following tran-

sient PDE for the radial deformation of a thin cylindrical tube made from a linearly vis-

coelastic material (see also [216]):

ℎ3

12
�̂
m4D̄Ā

mĪ4 +
ℎ3

12
�E

m5D̄Ā

mC̄mĪ4 +
ℎ

02 �̂D̄Ā +
ℎ

02�E
mD̄Ā

mC̄
+ dBℎ

m2D̄Ā

mC̄2
= ?̄. (6.29)
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Next, we make the governing equation (6.29) dimensionless by introducing the dimension-

less variables from Eq. (4.2):

E4

12
m4DA

3I4︸   ︷︷   ︸
bending

+ E
4

12De
m5DA

mI4mC︸         ︷︷         ︸
damping

+ DA︸︷︷︸
stretching

+ 1
De

mDA

mC︸  ︷︷  ︸
damping

+ St
m2DA

mC2︸  ︷︷  ︸
inertia

=
P202

�̂ℎU2

?︸   ︷︷   ︸
loading

, (6.30)

whereU2 is the characteristic deformation scale to be determined. There are three dimen-

sionless numbers that determine the evolution of the deformation profile: E, De, and St.

First, E =
√
ℎ0/ℓ2 is a dimensionless number that determines the width of the bending

boundary layers in the tube near its clamped edges at I = 0, 1. For example, E � 1

means that most of the tube is in a stretching state, while E � 1 corresponds to the case

of a tube in a mostly bending-dominated state [173, Ch. 5]. Second, the Deborah num-

ber De = �̂T5 /�E [217] quantifies the viscoelastic response of the tube. For example, for

De � 1, the tube behaves like an elastic solid, while for De � 1 the viscous/damping

response of the tube dominates. We expect that De > 1 is sufficiently large to ensure that

the tube structure behaves like an elastic solid (with weak damping), rather than a (non-

Newtonian) liquid (with strong elasticity). Third, the Strouhal number St = dB0
2/(T 2

5
�̂)

quantifies the inertial response of the tube; for St � 1, the inertial response of the tube is

negligible.

The unknown scale of elastic deformationU2 is now chosen to make the coefficient of

the right-hand side of Eq. (6.30) equal to unity: U2 = P202/(�̂ℎ), which is as in previous

work on the steady problem [160], except here we have incorporated the factor (1 − a2)

into �̂ for convenience. Next, we neglect bending (i.e., E4 � 1⇒ E4/De � 1), which is

justified by the prior assumptions of slenderness and thinness [171, 173].

Then, the final form of the governing equation for the radial deformation of the thin

viscoelastic tube under hydrodynamic loading is

DA +
1

De
mDA

mC
+ St

m2DA

mC2
= ?. (6.31)

Importantly, observe that the Eq. (6.31) has a proper linearly elastic balance in the limit

De→ ∞. We also deduce from Eq. (6.31) that the tube’s damping time scale is Tdamping ∼

T5 /De, while the tube’s inertial time scale is Tinertial ∼
√

StT5 .
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6.1.3 Summary of the model’s governing equations

The fluid mechanics problem is governed by Eqs. (6.22) and (6.23), and the structural

mechanics problem is governed by Eq. (6.31). These are supplemented by the equation of

state, Eq. (6.8). This set of four coupled partial differential and algebraic equations governs

the evolution of fluid’s density d(I, C), flow rate @(I, C), hydrodynamic pressure ?(I, C),

and the radial deformation DA (I, C) of the tube. The model’s dimensionless parameters are

summarized in table 6.1, along with their relative orders of magnitude, wherever applicable.

The next step in our analysis is to solve the governing equations and analyze the dy-

namics of the transient FSI problem of compressible flow in a viscoelastic tube.

6.2 Exact and perturbative solutions to the coupled problem

6.2.1 Steady response

First, consider the steady-state problem, wherein the linearly viscoelastic tube model

reduces to a linearly elastic tube model. Setting m ( · )/mC = 0 in Eq. (6.23), we obtain that

the mass flow rate in any tube cross-section is the same constant:

m (d@)
mI

= 0 ⇒ d@ = ¤<0 = 2>=BC. (6.32)

Note that unlike the case of systems with imposed mass flow rates, here ¤<0 is an un-

known constant, whose value is to be determined from the imposed boundary conditions

for pressure.

The structural mechanics equation (6.31) at steady state is simply a linear deformation–

pressure relation: DA (I) = ?(I). Substituting this relation, @ from Eq. (6.22) and d from

Eq. (6.8) into Eq. (6.32b) leads to an ODE in ?(I):

1 + U?(I)
16?(I)

{
? [1 + V?(I)]4 + 4f =0 [1 + V?(I)]3

} (
−d?

dI

)
= ¤<0. (6.33)
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This ODE can be solved to yield an implicit solution for the pressure profile:

5UV4
[
1 − ?(I)6

]
+6V3 (

V + 4U
) [

1 − ?(I)5
]
+15V2 [

2V (Uf =0 + 1) + 3U
] [

1 − ?(I)4
]

+ 20V
[
V

(
2
(
V + 3U

)
f =0 + 3

)
+ 2U

] [
1 − ?(I)3

]
+ 15

[
4V

(
3
(
V + U

)
f =0 + 1

)
+ U

] [
1 − ?(I)2

]
+ 30

[
4
(
3V + U

)
f =0 + 1

] [
1 − ?(I)

]
− 120f =0 ln

��?(I)�� = 480 ¤<0I, (6.34)

where we have imposed the inlet boundary condition ?(0) = 1. Equation (6.34) can be

inverted to yield the pressure distribution ?(I) in a linearly elastic tube conveying steady,

compressible flow of a Newtonian fluid subject to rarefaction.

Note that because of the slip boundary condition, Eq. (6.34) cannot satisfy zero gauge

pressure at I = 1. To determine the unknown constant ¤<0, we can impose a non-zero outlet

pressure

?(1) = ?out,slip ∈ (0, 1). (6.35)

Consequently, for this problem, ?0 and d0 are not the pressure and the density at the outlet,

but at some other arbitrary location. Then, ¤<0 is found from Eq. (6.34) in terms of ?out,slip.

For the special case of no rarefaction ( =0 ≡ 0), Eq. (6.34) reduces to:

[1 + V]5
{
[6 + 5U]V − U

}
− [1 + V?(I)]5

{
[6 + 5U?(I)]V − U

}
= 480V2 ¤<0I (6.36)

This equation describes the pressure variation due to FSI between a compressible flow and

a linearly elastic tube. In this case, ¤<0 is found by imposing the usual boundary condition

at the outlet: ?(1) = 0.

6.2.2 Impulsively pressurization of the inlet

Next, we solve the transient problem driven by an impulsive inlet pressure boundary

condition. To solve this problems, we neglect rarefaction ( =0 → 0). To this end, first
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Eqs. (6.22) and (6.23) are written in terms of the deformed radius '(I, C) = 1 + VDA (I, C),

taking Kn0 ≡ 0, to yield:

@ = −'
4

8
m?

mI
, (6.37a)

m

mC

(
d'2

2

)
+ m (d@)

mI
= 0. (6.37b)

Substitution of Eq. (6.37a) into Eq. (6.37b) eliminates @ and yields:

d'
m'

mC
+ md
mC

(
'2

2

)
− m

2?

mI2
d'4

8
− '

4

8
md

mI

m?

mI
− 4'3

8
m'

mI

m?

mI
d = 0. (6.38)

Next, a perturbation expansion is introduced in the compressibility parameter U � 1:

? = ?0 + U?1 + · · · , (6.39a)

DA = D
0
A + UD1

A + · · · , (6.39b)

' = '0 + U'1 + · · · , (6.39c)

d = d0 + Ud1 + · · · (6.39d)

= 1 + U
(
?0 + U?1 · · ·

)
. (6.39e)

Substituting this perturbation expansion into Eq. (6.38) yields Eq. (6.40) as given below.

(
1 + U?0

) (
'0 + U'1

) m (
'0 + U'1

)
mC

+
m

(
1 + U?0

)
mC


(
'0 + U'1

)2

2


−
m2

(
?0 + U?1

)
mI2

(
1 + U?0

) (
'0 + U'1

)4

8
−

(
'0 + U'1

)4

8

m

(
1 + U?0

)
mI

m

(
?0 + U?1

)
mI

−
4
(
'0 + U'1

)3

8
m

[
'0 + U'1]
mI

m

(
?0 + U?1

)
mI

(
1 + U?0

)
= 0. (6.40)

At the leading order in U, from Eq. (6.40), we have,

'0 m'
0

mC
−

(
'0

)4

8
m2?0

mI2 −
1
2

(
'0

)3 m?0

mI

m'0

mI
= 0. (6.41)
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On the other hand, at O(U), Eq. (6.40)gives us Eq. (6.42) as given below:

(
'1 m'

0

mC
+ m'

1

mC
'0 + ?0'0 m'

0

mC

)
+

(
'0

)2

2
m?0

mC

−

(
'0

)4

8

(
4
'1

'0
m2?0

mI2 + ?
0 m

2?0

mI2 +
m2?1

mI2

)
−

(
'0

)4

8

(
m?0

mI

)2

− 1
8

[
12

(
'0

)2 m?0

mI
'1 m'

0

mI
+ 4

(
'0

)3 m?0

mI

m'1

mI

+ 4
(
'0

)3 m?0

mI

m'0

mI
?0 + 4

(
'0

)3 m?1

mI

m'0

mI

]
= 0. (6.42)

(see Appendix). The structural mechanics Eq. (6.31) does not explicitly involve U, thus at

every order of U 9 ( 9 = 0, 1, . . .) it keeps its form, providing us with

D
9
A +

1
�4

mD
9
A

mC
+ (C m

2D
9
A

mC2
= ? 9 (I). (6.43)

Leading-order solution

First, we solve the leading-order FSI problem, that is Eqs. (6.41) and (6.43). Since the

problem is still nonlinear, we address the nonlinearity by introducing a (second) perturba-

tion expansion in the small FSI parameter V:

?0 = ?0,0 + V?0,1 + · · · , (6.44a)

D0
A = D

0,0
A + VD0,1

A + · · · , (6.44b)

'0 = '0,0 + V'0,1 + · · · (6.44c)

= 1 + V
(
D0,0
A + VD0,1

A + · · ·
)
. (6.44d)
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Here, the first superscript denotes the perturbation order with respect to U, while the second

superscript, after the comma, denotes the perturbation order with respect to V. Substituting

the perturbation expansion (6.44) into Eq. (6.41) yields:

V
m'0,1

mC
+ V2'0,1 m'

0,1

mC
− 1

8

(
m2?0,0

mI2 + 4V'0,1 m
2?0,0

mI2 + V
m2?0,1

mI2

)
− 4V

m?0,0

mI

m'0,1

mI
+ O(V2) = 0. (6.45)

To the leading order in V, we simply have

m2?0,0

mI2 = 0, (6.46)

which, obviously, also holds for the pressure in an incompressible flow in a rigid tube

(U = V = 0). The tube is impulsively pressurized at the inlet, subject to zero gauge pressure

at the outlet, thus the boundary conditions for Eq. (6.46) are

?0,0
���
I=0

= � (C), ?0,0
���
I=1

= 0. (6.47)

Thus, the leading-order (in both U and V) solution for an impulsively pressurized tube is

simply

?0,0(I, C) = � (C) (1 − I). (6.48)

Next, substituting the perturbation expansion from Eq. (6.44) into the leading-order-

in-U structural mechanical equation (6.43) ( 9 = 0), and collecting the leading-order-in-V

terms, yields

D0,0
A +

1
�4

mD
0,0
A

mC
+ (C m

2D0,0
A

mC2
= ?0,0(I)

= � (C) (1 − I).
(6.49)

The initial conditions corresponding to starting from rest are:

D0,0
A |C=0 = 0,

mD
0,0
A

mC

�����
C=0

= 0. (6.50)

Equation (6.49) subject to the latter ICs has the following solution:

D0,0
A (I, C) =

1
(C
(1 − I)� (C)Ξ0(C), (6.51)
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where

Ξ0(C) = � +
[
−� cos (ΩC) +

(
�

Ω
+ �

t2Ω

)
sin (ΩC)

]
e−C/t2 , (6.52a)

� = (C, (6.52b)

� = − 1
�4

, (6.52c)

Ω =

√
1
(C
− 1

4(C2�42 . (6.52d)

Here, for convenience, we have introduced t2 = 2(C �4 as a dimensionless time constant.

Observe that for the above solution to allow oscillations, the term under the square root

in the expression for the damped frequency Ω from Eq. (6.52d) must be positive; i.e., the

“ratio of critical damping” Z = 1/(2�4
√
(C) < 1.4

To obtain the first-order-in-V correction to the pressure, namely ?0,1(I, C), we use Eq.

(6.45). Collecting all the terms of O(V), and substituting the expressions for mD0,0
A /mI,

mD
0,0
A /mC and m?0,0/mI calculated from Eqs. (6.51) and (6.48), we obtain:

1
(C
(1 − I)Ξ1(C) −

1
8
m2?0,1

mI2 −
1

2(C
� (C)Ξ0(C) = 0, Ξ1(C) =

m (� (C)Ξ0(C))
mC

. (6.53)

The solution of Eq. (6.53), subject to homogeneous boundary conditions, is

?0,1(I, C) = 8
(C
Ξ1(C)� (I) −

2
(C
� (C)Ξ0(C)� (I), (6.54)

where

� (I) = I
2

2
− I

3

6
− I

3
, � (I) = I2 − I. (6.55)

4 The overdamped case of Z > 1 is not of interest here, as we assumed �4 > 1 is sufficiently large so that the
tube is sufficiently elastic, and the viscous damping is small.
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First-order correction in U and V

Next, we solve the first-order equation (6.42). Again, we introduce a perturbation ex-

pansion in the FSI parameter V:

?1 = ?1,0 + V?1,1 + · · · , (6.56a)

D1
A = D

1,0
A + VD1,1

A + · · · , (6.56b)

'1 = '1,0 + V'1,1 + · · · , (6.56c)

= 0 + V
(
D1,0
A + VD1,1

A + · · ·
)
. (6.56d)

We substitute the perturbation expansion (6.56) into Eq. (6.42) to obtain

(
V'1,1

) m (
1 + V'0,1

)
mC

+
m

(
V'1,1

)
mC

(
1 + V'0,1

)
+

(
?0,0 + V?0,1

) (
1 + V'0,1

) m (
1 + V'0,1

)
mC

+

(
1 + V'0,1

)2

2

m

(
?0,0 + V?0,1

)
mC

−

(
1 + V'0,1

)4

8

[
4

(
V'1,1

)(
1 + V'0,1) m2

(
?0,0 + V?0,1

)
mI2 +

(
?0,0 + V?0,1

) m2
(
?0,0 + V?0,1

)
mI2

+
m2

(
?1,0 + V?1,1

)
mI2

]
−

(
1 + V'0,1

)4

8


m

(
?0,0 + V?0,1

)
mI


2

− 1
8

[
12

(
1 + V'0,1

)2 m
(
?0,0 + V?0,1

)
mI

(
V'1,1

) m (
1 + V'0,1

)
mI

+ 4
(
1 + V'0,1

)3 m
(
?0,0 + V?0,1

)
mI

m

(
V'1,1

)
mI

+ 4
(
1 + V'0,1

)3 m
(
?0,0 + V?0,1

)
mI

m

(
1 + V'0,1

)
mI

(
?0,0 + V?0,1

)
+ 4

(
1 + V'0,1

)3 m
(
?1,0 + V?1,1

)
mI

m

(
1 + V'0,1

)
mI

]
= 0. (6.57)

To the leading order in V, Eq. (6.57) reduces to:

1
2
m?0,0

mC
− 1

8
m2?1,0

mI2 −
1
8

(
m?0,0

mI

)2

= 0, (6.58)
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and its solution, subject to homogeneous boundary conditions for ?1,0(I, C), is

?1,0(I, C) = 4X(C)� (I) − 1
2
� (C)� (I). (6.59)

Summary of the perturbation solution

In summary, the solution for deformed radius in a viscoelastic tube conveying transient

compressible flow with suddenly imposed pressure at the inlet is

'(I, C) = 1 + VD0,0
A (I, C) + O(UV, V2, U2), (6.60)

D
0,0
A is given by Eq. (6.51). As discussed in Sec. 6.1.1, U � 1 and V � 1, therefore all

quadratic perturbation terms are neglected. The pressure distribution within the tube is

?(I, C) = ?0,0(I, C) + V?0,1(I, C) + U?1,0(I, C) + O(UV, V2, U2), (6.61)

where ?0,0 is given by Eq. (6.48), ?0,1 is given by Eq. (6.54), and ?1,0 is given by Eq. (6.59).

6.2.3 Oscillatory pressure at the inlet

Next, we consider an oscillatory pressure suddenly imposed at the inlet. Again, we

neglect rarefaction ( =0 → 0). Now, the boundary condition at the inlet, in dimensional

form, is

?̄ |Ī=0 = P2� (C) cos(l̄C̄), ?̄ |Ī=1 = 0. (6.62)

The angular frequency l̄ imposes a new time scale T> = 1/l̄ on the flow. Although, in

the nondimensionalization scheme in Sec. 6.1.1 we chose T5 = ℓ/VI, where VI was set

by P2 via Eq. (6.12), we could just as well set T5 = T> (while keeping VI set by P2 via

Eq. (6.12)). Then, the the dimensionless governing equations of the flow have the same

form as those derived in Sec. 6.1.1, except n'4 is replaced by,>2 [218], where,> is the

Womeresley number, conventionally defined as

,>2 =
d0l̄0

2

`
. (6.63)
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Consonant with our lubrication assumption that n'4 � 1, ,>2 � 1 is required. Physi-

cally, this assumption means that we the time scale of viscous diffusion to be much smaller

than the time scale of imposed oscillations, and the flow is quasi-static with respect to the

forcing (see also [154, Ch. 4]).

Leading-order solution

Following the double perturbation approach as in Sec. 6.2.2, the governing equation

for ?0,0(I, C) is still given by Eq. (6.46). Using Eq. (6.2), the dimensionless boundary

conditions are

? |I=0 = � (C) cos(lC), ? |I=1 = 0, (6.64)

where l = T5 l̄ is the dimensionless frequency. Thus, ?0,0 must satisfy Eqs. (6.64) and

higher perturbations satisfy homogeneous boundary conditions. Hence,

?0,0(I, C) = � (C) cos(lC) (1 − I). (6.65)

Similarly, from Eq. (6.49), the equation governing the leading-order (in U and V) radial

deformation profile D0,0
A is

D0,0
A +

1
�4

mD
0,0
A

mC
+ (C m

2D0,0
A

mC2
= ?0,0(I)

= � (C) cos(lC) (1 − I).
(6.66)

The solution of this equation, subject to homogeneous initial conditions (starting from rest),

as in Eq. (6.50), is

D0,0
A (I, C) =

1
(C
� (C)Ψ0(l, C) (1 − I), (6.67)
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where

Ψ0(l, C) = �̂(l) cos(lC) + �̂(l)
l

sin(lC) (6.68a)

+
−�̂(l) cos (ΩC) +

[
�̂ (l)
Ω
+ �̂(l)
t2Ω

]
sin (ΩC)

 e−C/t2 ,

�̂(l) =

(
1 − (C l2

)
�42(C(

�4 − (C l2�4
)2 + l2

, (6.68b)

�̂(l) = l2(C �4(
�4 − (C l2�4

)2 + l2
, (6.68c)

�̂ (l) = − �4(
�4 − (C �4 l2)2 + l2

, (6.68d)

and t2 = 2(C �4 as before.

First-order corrections in U and V

The governing equation for ?0,1(I, C) is obtained as in Sec. 6.2.2 (recall derivation of

Eq. (6.53)), and its solution, subject to homogeneous boundary conditions, is

?0,1(I, C) = 8
(C
� (I)Ψ1(l, C) +

2
(C
� (I)Ψ0(l, C)� (C) cos(lC),

Ψ1(l, C) =
m (� (C)Ψ0(l, C))

mC
. (6.69)

Similarly, ?1,0 is still governed by Eq. (6.58), and its solution, given the leading-order

solutions in Eqs. (6.65) and (6.67), is

?1,0(I, C) = � (I) [4X(C) cos(lC) − 4l sin(lC)] − 1
2
� (I) cos2(lC). (6.70)

Summary of the perturbation solution

In summary, the expression for the deformed radius of a viscoelastic tube conveying

transient flow with oscillatory pressure imposed at the inlet is

'(I, C) = 1 + VD0,0
A (I, C) + O(UV, V2, U2). (6.71)
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For our double perturbation expansion to be valid, U � 1 and V � 1, therefore all quadratic

perturbation terms are neglected. Here, D0,0
A is given by Eq. (6.67). The expression for the

pressure pressure distribution within the tube is

?(I, C) = ?0,0(I, C) + V?0,1(I, C) + U?1,0(I, C) + O(UV, V2, U2). (6.72)

Here, ?0,0 is given by Eq. (6.65) and ?0,1 is given by Eq. (6.69) and ?1,0 is given by

Eq. (6.70).

6.3 Results and discussion

Having derived a mathematical theory of FSI in a viscoelastic tube (Sec. 6.1), as well

as solutions to steady (Sec. 6.2.1) and unsteady problems (Sec. 6.2.2 and Sec. 6.2.3), in

several distinguished limits, we use these results to discuss the physics of the FSI response

in this section.

6.3.1 Steady response

In this subsection, we discuss the results pertaining to steady compressible flow (ac-

counting for rarefaction) in a linearly elastic tube, based on the analysis in Sec. 6.2.1.

First we illustrate the effect of rarefaction (slip) in Fig. 6.2. As a direct consequence

of the enhanced slip at the wall, the velocity increases with  =0 in Fig. 6.2(a). However,

the increase in velocity is not the same across all radial locations, i.e., slip affects not only

the velocity magnitude (momentum advection) but also the velocity gradients (momentum

diffusion). This observation is clearly related to the nonlinear nature of the slip law in

Eq. (6.18). Likewise, the pressure profiles in Fig. 6.2(b) are also clearly not linear.

Next, we explore the effect of FSI on the flow field through the dimensionless group V.

Higher values of V correspond to a wider tube and consequently higher throughput (flow

rate @), which results in an enhanced average axial velocity (consequently, larger centerline

velocity of the flow profile), as shown in Fig. 6.3(a). Thus, the fluid exerts more pressure

on the tube wall, on average, as supported by the example plot in Fig. 6.3(b).
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Finally, the effect of the compressibility parameter U on the flow field is shown in

Fig. 6.4. As explained earlier, the compressibility parameter U quantifies the “sensitivity”

of fluid’s density to the applied pressure. A larger value of U means a denser fluid. There-

fore, for the same pressure difference, the flow rate (and the velocity profile) reduces with

increase in U, as shown in Fig. 6.4(a). By similar arguments, since a larger pressure is

required to pump a denser fluid, the pressure profile increases with U in Fig. 6.4(b).

We have shown that, compared to incompressible flow in a rigid tube, both FSI and

compressibility alter the velocity field. In capillary viscometers, the classical Hagen–

Poiseuille law is employed for viscosity estimation of gases. Neglecting compressibil-

ity may lead to incorrect estimation of the viscosity in such devices [77]. Similarly, in

microscale rheometry, a conduit constituted of a soft material like PDMS may “pollute”

the viscosity estimation, thus necessitating the use of the steady FSI theory developed in

Sec. 6.2.1.

6.3.2 Impulsive pressurization of the inlet

Deformation and pressure response

For the case of a viscoelastic tube impulsively pressurized at the inlet, the deformed

radius is given by Eq. (6.60) and the pressure profile is given by Eq. (6.61), along with the

pertinent supporting equations. From Eqs. (6.60) and (6.61), we deduce that the solutions

for '(I, C) and ?(I, C) have a decaying transient on top of a steady state. The steady state

of the deformed radius is given by

lim
C→∞

'(I, C) = 1 + V(1 − I) + O(UV, U2, V2). (6.73)

The pressure profile at the steady state is given by

lim
C→∞

?(I, C) = (1 − I)
(
1 + 2VI + U

2
I

)
+ O(UV, U2, V2). (6.74)

The time evolution of ' and ? is shown in panels (a) and (b), respectively, of Figs. 6.5

and 6.6. Obviously, the steady states are independent of �4 and (C. The nonzero constant
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Fig. 6.2. Steady-state problem:  =0 dependence of (a) the axial velocity profile
EI (I) at I = 0.5, and (b) the pressure distribution ?(I) obtained by inverting
Eq. (6.34). In both panels: f = 1, U = ?out,slip = V = 0.1.

deformation at steady state, after a suddenly applied pressure load, is the result of the

bounded creep response of the chosen KV model [57, Ch. 2]. That is, the steady state

is characterized only by the elasticity (not viscoelasticity) of the system, and the ratio of
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Fig. 6.3. Steady-state problem: V dependence of (a) the axial velocity profile
EI (A, I) at I = 0.5, and (b) the pressure distribution ?(I), obtained by inverting
Eq. (6.34). In both panels: f = 1, U = ?out,slip = 0.1, and  =0 = 0.1.

applied load to the elastic constant determines the local deformation at the steady state,

which in this case is found from Eq. (6.49) to be = 1. In other words,

lim
C→∞

D0,0
A (I, C) = lim

C→∞
?0,0(I, C) = 1 − I. (6.75)
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Fig. 6.4. Steady-state problem: U dependence of (a) the axial velocity profile
EI (A, I) at I = 0.5, and (b) the pressure distribution ?(I) obtained by inverting
Eq. (6.34). In both panels: f = 1, V = ?out,slip = 0.1, and  =0 = 0.1.

Once the transients die out, the inertial and viscoelastic effects are gone, and, naturally,

Eq. (6.75) agrees with the steady-state result for a linearly elastic tube (without inertia)

[160].

Next, we focus on the relationship between the transient characteristics of the system

and (C and �4. We recall that the (C quantifies the inertial response of the tube, while �4
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quantifies the damping (dissipation) of the viscoelastic structure. Therefore, an increase in

either (C or �4 would prolong the transient response of the tube, by enhancing the capacity

of the tube to store energy, as opposed to its capacity to dissipate energy. Indeed, the

transient part of D0,0
A from Eq. (6.51) is

UA (I, C) = e−C/t2
1
(C

[
−� cos (ΩC) +

(
�

Ω
+ �

t2Ω

)
sin (ΩC)

]
(1 − I) (C > 0), (6.76)

where recall that t2 = 2(C �4 is a dimensionless time constant, and Ω is the damped fre-

quency of the system, given by Eq. (6.52d). Now, the straightforward observation about

the effect of (C and �4 on the transient is obvious and also corroborated by Fig. 6.5.

We observe from the plots in Fig. 6.5 that both (C and �4 also enhance the amplitude of

the oscillations. This is again attributed to the enhanced energy storing capacity of the tube

at higher values of (C and �4. To quantify this effect, we express the damped frequency as

Ω = l>

√
1 − Z2, (6.77)

where l> =
√

1/(C is the “natural” frequency of the system (without any damping) and

Z = 1/(2�4
√
(C) is the critical damping ratio of the system as above, which controls the

ratio of successive peaks at a location I in UA (I, C). A fluid particle reaches its consecutive

maximum (or minimum) location after a time period ) = 2c/Ω. So, we calculate the ratio

of the successive peaks in the transient response at a given location and separated by one

period ) = 2c/Ω to be
UA (I, C + ))
UA (I, C)

= exp

(
− 2cZ√

1 − Z2

)
. (6.78)

From Eq. (6.78), it follows that both �4 and (C influence the amplitude of oscillations,

through Z .

It is also instructive to consider the transient response of the pressure field, which is

found from Eq. (6.54) to be

P(I, C) = Ve−C/t2
8
(C

[ (
� + 2�

C2

)
cos (ΩC) +

(
�Ω − �

t22Ω
− �

t2Ω

)
sin (ΩC)

]
� (I)

− Ve−C/t2
2
(C

[
− � cos (ΩC) +

(
�

Ω
+ �

t2Ω

)
sin (ΩC)

]
� (I) (C > 0). (6.79)
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Fig. 6.5. Evolution of the deformed tube radius '(I = 0.5, C) and pressure
?(I = 0.5, C) at the midpoint of the tube, for different values of �4 and (C in
the case of an impulsively pressurized tube, obtained from Eqs. (6.60)–(6.61).
The solid curves correspond to (C = 5, while the dashed curves correspond to
(C = 1.

First, note that P(I, C) = O(V), thus this transient is solely due to FSI, and compressibility

has no effect on the transient pressure response. Stokes flow (in a rigid conduit) is inertia-

less and reacts instantaneously to any unsteadiness imposed by its boundaries [123, Ch. 21].

However, as Eq. (6.79) shows, FSI introduces a delay in the response of the fluid by perpet-
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Fig. 6.6. Evolution of the deformed radius and pressure at I = 0.5 for different
values of V and U, for the case of impulsively pressurized tube, as obtained
from Eqs. (6.60)–(6.61). The solid curves correspond to U = 0.1, while the
dashed curves correspond to U = 0.01. In both panels: �4 = 2 and (C = 1.

uating exponentially decaying transients in the flow. Figure 6.6 highlights the FSI-induced

transients, showing that the time taken by the system (both the deformed radius and the

pressure) to equilibrate increases with V. Of course, this equilibration time is independent

of U (compare the solid and dashed curves).
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In summary, there are different transient phenomena occurring in our FSI problem, due

to changes in density (with a time scale ∼ UT5 ), deformation of the wall (with a time scale

∼ VT5 ), inertia of the solid (with a time scale ∼
√
(CT5 ), and the damping of the solid (with

a time scale ∼ T5 /�4). The problem we are solving, in the limit of weak compressibility

and weak FSI, puts a limit on the magnitudes of U and V, both of which must be small

(� 1). However, no such constraint exists on (C and on �4, which are allowed to be

moderate, even large. Therefore, (C and �4, being associated with the largest time scale in

the system, set the time constant of the (whole) FSI system.

Flow rate enhancement

In flow-rate-controlled FSI problems [160, 211], a reduction in the deformation of the

tube (channel) leads to an increase in the pressure, which is attributed to the enhanced

resistance to flow on account of the reduction in flow area. On the other hand, in pressure-

controlled situations, such as those studied here and also in [211], an increase in pressure

is actually accompanied by an increase in the deformation. This observation leads to the

question: how is the flow rate across the tube influenced by FSI and compressibility in

pressure-controlled FSI systems? The expression for flow rate, assuming no rarefaction

(i.e., enforcing no slip,  =0 → 0), is found from Eq. (6.22):

@(I, C) = −1
8
m?

mI

[
1 + 4VDA (I, C)

]
+ O(V2). (6.80)

For post-transient steady flow in an impulsively pressurized tube, we substitute the

expressions from Eqs. (6.73) and (6.74) into Eq. (6.80) to obtain:

@(I) = −1
8
m?0,0

mI︸    ︷︷    ︸
@0,0

+ V
4
�′(I) + U

16
�′(I) − V

2
(1 − I) m?

0,0

mI
+ O(UV, U2, V2). (6.81)

Here, @0,0 denotes the flow rate in absence of FSI and compressibility. Therefore the “flow

rate enhancement” due to FSI and compressibility is given by

@∗(I) = @(I) − @0,0(I) = V

4
�′(I) + U

16
�′(I) − V

2
(1 − I) m?

0,0

mI

=
V

4
+ U

16
(2I − 1) .

(6.82)
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Fig. 6.7. The flow-wise profile of profile @∗(I) for enhancement in the flow
rate for the impulsively pressurized tube, from Eq. (6.82), for different values
of V and U. The solid curves are for U = 0.1, while the dashed curves are for
U = 0.01.

Note that even though the flow is steady, both @ and @∗ still vary along the axial I-

direction due to the compressibility of the flow; @∗(I) is shown in Fig. 6.7(a). For weak

compressibility (U � 1), the variation of @∗ across the tube is quite low (compare the

dashed curves with the solid curves). Note that @∗(0) = V/4 − U/16 so that @∗(0) < 0 for

V < U/4. Meanwhile @∗(1) = V/4+U/16 > 0 for all U and V. The strictly increasing nature

of @∗ with I follow from the fact that the pressure gradient in the tube gives rise to a density

gradient, and therefore the density decreases along the tube. By conservation of mass,

higher density at the inlet means lower volume flow rate there, and the conversely, and vice

versa at the outlet, as shown in Fig. 6.7. Finally, the enhanced mass flow rate at the outlet

is simply ¤<∗(1) ≡
(
d@∗

)
|I=1 = V/4 + U/16 since d(1) = 1 in our nondimensionalization.

In the post-transient FSI regime, the mass flow rate is constant, independent of I, and equal

to ¤<∗(1) throughout the tube.
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6.3.3 Oscillating pressure at the inlet

Next, we analyze the FSI due to an oscillating pressure imposed at the tube’s inlet.

For this case, the solution for the deformed radius '(I, C) is given by Eq. (6.71), while the

pressure profile ?(I, C) is given by Eq. (6.72).

Deformation response

As before, '(I, C) consists of an exponentially decaying transient and a post-transient

(i.e., quasi-steady) component. The exponentially decaying transient has the same time

constant t2 as the impulsively pressurized tube (Sec. 6.3.2), and the same oscillation fre-

quency Ω given in Eq. (6.77). Therefore, in this section, we concern ourselves only with

the post-transient response of the system, which has the same frequency l as the forcing

frequency.

After the transients die out, the post-transient deformed radius is given by

R (I, C) = 1 + VU 0,0
A (I, C) + O(UV, U2, V2), (6.83)

where

U 0,0
A (I, C) =

1
(C

[
�̂(l) cos(lC) + �̂(l)

l
sin(lC)

]
(1 − I). (6.84)

On inserting the relevant expressions for �̂ and �̂ from Eqs. (6.68b), (6.68c) into the

Eqs. (6.83),(6.84) and simplifying, the post-transient deformed radius is obtained as:

R (I, C) = 1 + V �4 (1 − I)√(
1 − (C l2)2

�42 + l2
sin (lC + q), q = tan−1

(
�̂(l)l
�̂(l)

)
. (6.85)

From Eq. (6.85), we observe that the tube radius maintains a phase difference with

respect to pressure imposed at the inlet. Due to the axial variation of the pressure, the

tube radius exhibits a maximum at the inlet, I = 0, and a minimum at the outlet, I = 1.

Combined with the oscillatory forcing, the tube wall sustains a standing wave; the inlet

I = 0 is antinode, whilst the outlet I = 1 is a node, as shown in Fig. 6.8(a).
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In the formulation of our FSI theory, we neglected bending and the boundary layers

required to enforce the clamped boundary conditions; thus, the latter cannot be satisfied by

our theory. Thus, unlike the more common case of vibrating strings and musical instru-

ments, the standing waves on the tube are not generated by the reflection of waves at the

clamped ends. The standing wave pattern is the direct consequence of FSI. Specifically,

the leading-order hydrodynamic pressure is itself in the form of a standing wave, as shown

Eq. (6.65). The pressure standing wave then induces a deformation standing wave on the

tube, at the same frequency but with a small phase difference (see Fig. 6.8(b)).

To that end, it is possible, indeed desirable, to interpret Eq. (6.85) in terms of the natural

frequency of the system l> = 1/
√
(C and its critical damping ratio Z = 1/(2�4

√
(C):

R (I, C) = 1 + VÛA

0,0
(I, l) sin (lC + q), (6.86a)

where

q = sin−1


1 −

(
l/l>

)2√[
1 −

(
l/l>

)2
]2
+ 4Z2 (

l/l>
)2


. (6.86b)

and

ÛA

0,0
(I, l) = (1 − I)√[

1 −
(
l/l>

)2
]2
+ 4Z2 (

l/l>
)2

(6.86c)

is the (positive) spatially varying amplitude of the tube deformation.

Observe that the amplitude of the response reaches a maximum value at the “resonant

frequency”

l = lres = l>

√
1 − 2Z2. (6.87)

Therefore, the viscoelastic tube conveying oscillatory flow may be construed as a band-

pass filter, which allows signals close to lres to pass through, but attenuates signals with

frequencies away from it, as shown in in Fig. 6.9.
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Fig. 6.9. Frequency response of the post-transient deformed tube for different
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√
(C), plotted from Eq. (6.86c). Resonance occurs when

the forcing frequency equals the resonant frequency of the system, given by
Eq. (6.87).

Pressure response

Now, we move on to the fluid mechanical aspect of the problem. Similar to the case

for impulsively pressurized inlet (Sec. 6.3.2), the pressure profile for imposed oscillatory

inlet pressure exhibits exponentially decaying transients of O(V). Using the results from

Sec. 6.2.3, we find that, once the transients die out, the post-transient pressure profile is

P (I, C) =
[
(1 − I) + V 8

(C
� (I)�̂(l)

]
cos (lC) −

(
4Ul + V8�̂(l)l

(C

)
� (I) sin(lC)

+
(
V
�̂(l)
(C
− U

4

)
� (I) cos(2lC) + V �̂(l)

(C l
� (I) sin(2lC) +

(
V
�̂(l)
(C
− U

4

)
� (I). (6.88)

Note that this expression has higher harmonic of frequency 2l, as well as time-independent

terms, at O(U, V) due to mode couplings cased by FSI and compressibility.
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Separating the different harmonics in Eq. (6.88), we define the first harmonic:

P1� (I, C) = (1 − I) cos (lC) − 4Ul� (I) sin (lC)

+ V 8l� (I)√[
1 −

(
l/l>

)2
]2
+ 4Z2 (

l/l>
)2

cos (lC + q),

q = tan−1

(
�̂(l)l
�̂(l)

)
.

(6.89)

Importantly, the term of O(V) has a frequency-dependent amplitude with resonant fre-

quency l = l>, which is the natural frequency of the system. The second harmonic can be

defined as:

P2� (I, C) = −
U

4
� (I) cos (2lC) + V � (I)√[

1 −
(
l/l>

)2
]2
+ 4Z2 (

l/l>
)2

sin (2lC + q),

(6.90)

where q is given in Eq. (6.89). Note that the envelope of the O(V) term in Eq. (6.90) has

the same frequency dependence as that of the deformed radius (recall Eq. (6.86a)) and,

therefore, has the same resonant frequency lres given in Eq. (6.87).

It is also instructive to note that, while both P1� and P2� exhibit similar frequency

response, the spatial variations of their envelopes are different. For P1� it follows that, the

spatial variation of the envelope is set by � (I), while for P2� , the spatial variation of the

envelope is given � (I). From Eq. (6.55), since both � (I) and � (I) have the same zeros in

(0, 1), the nodes of the two harmonics are also the same. On the other hand, the antinodes

are different. They are at I = (3 −
√

3)/3 for the first harmonic, and at I = 1/2 for the

second harmonic.

Acoustic streaming

Next, we move onto the velocity field inside the tube, which, for the case with negligible

rarefaction ( =0 → 0), is found from Eq. (6.21) to be

EI (A, I, C) = −
1
4
m?

mI

[
(1 − A2) + 2VDA)

]
+ O

(
V2

)
. (6.91)
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When we substitute the post-transient pressure profile from Eq. (6.88) into the latter, we

obtain the post-transient axial velocity profile:

VI (A, I, C) =
(1 − A2)

4

{
U
�′(I)

4
+ V �̂(l)

(C
�′(I) cos (lC)

[
1 − V 8

(C
�′(I)�̂(l)

]
+ sin (lC)

[
4Ul�′(I) + V8�̂(l)l

(C
�′(I)

]
+ cos (2lC)

[
U
�′(I)

4
− V �̂(l)

(C
�′(I)

]
− V sin (2lC)

[
�̂(l)
(C l

�′(I)
] }
+ V

4

[
cos q sin (2lC) + sin q cos (2lC) + sin q

]√[
1 −

(
l/l>

)2
]2
+ 4Z2 (

l/l>
)2

(1 − I).

(6.92)

Observe that the velocity profile in the fluid consists of higher harmonics as well as a

time-independent (steady-state) response. The time-independent part will lead to a nonzero

mean flow (after averaging over a period of forcing). This observation leads us to consider

acoustic streaming, which is commonly observed in oscillatory flows [219]. In the context

of flows in tubes, a secondary nonzero mean flow has been observed for tubes with slowly

varying radius [220], and in curved tubes [221] (see also [50, Ch. 4]). Such flows can

also be generated by preset periodic boundary motion (peristalsis) for MEMS applications

[222]. On the other hand, for the problem considered herein, streaming (and the underlying

oscillatory flow) is induced by the pressure boundary conditions via FSI.

In an ideal fluid undergoing oscillatory flow, a fluid particle oscillates about its position

with a constant amplitude. Therefore, the average displacement of the fluid particle over

a time period is zero. However, if a dissipative mechanism is introduced in the flow such

that the restoring force acting on the fluid particle does not remain the same on both the

sides of the mean position, then the mean position of the fluid particle undergoes a net

(time averaged) displacement. Traditionally, the dissipative effects in the fluid have been

introduced through viscous flow (e.g., Rayleigh streaming [223]) or by a non-conservative

body force [219]. However, our results show that it is also possible to create a streaming

flow through FSI. FSI couples the pressure gradient in the flow to the viscoelastic response

of the tube, due to which the restoring force acting on the fluid particle varies, and a net

displacement of the fluid particle occurs over a time period.
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To this end, the time-averaged acoustic streaming velocity is calculated to be

〈VI〉(A, I) =
(1 − A2)

4


U

4
− V

1 −
(
l/l>

)2[
1 −

(
l/l>

)2
]2
+ 4Z2 (

l/l>
)2

�
′(I)

+ V
4

1 −
(
l/l>

)2[
1 −

(
l/l>

)2
]2
+ 4Z2 (

l/l>
)2
(1 − I), (6.93)

where 〈 · 〉 ≡ 1
)

∫ C+)
C
( · ) dC, and, as before, ) = 2c/Ω is period of oscillation (see Eq.

(6.52d)). In the absence of FSI, V = 0, and 〈VI〉 vanishes wherever �′(I) = 0, which

are the pressure anti-nodes. Therefore, the pressure anti-nodes coincide with streaming

velocity nodes, as is common in the acoustic streaming systems [224]. But due to FSI, the

relative location of pressure and velocity nodes/antinodes in acoustic streaming changes.

This trend is more clearly shown in Fig. 6.10. We note that for no FSI (V = 0), the velocity

nodes are along the middle of the tubes (I = 0). However, for V ≠ 0, the position of nodes

shifts as well as the direction of the streaming velocity reverses.

Perhaps, the most striking feature of the streaming velocity profile due to FSI, is the

nonzero apparent slip velocity at A = 1. As seen in Fig. 6.10, the velocity vectors have finite

values at A = 1, for V ≠ 0. This observation is also corroborated by Eq. (6.93). At a cursory

level, this observation appears to be counter intuitive since we explicitly enforced a no-

slip boundary condition at the wall. However, we can explain this observation as follows.

The no-slip boundary condition is imposed at the deformed wall, i.e., at A = '(I, C) =

1 + VDA (I, C). But, since the time-averaged mean deformation is zero, 〈DA (I, C)〉 = 0 and

〈'(I, C)〉 = 1, the apparent boundary for the streaming velocity profile is at A = 1, where

the no-slip has not been imposed and the velocity is nonzero. Therefore, the streaming

velocity appears to slip at its boundary, A = 1.
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Fig. 6.10. Contour and vector plots for steady state acoustic streaming velocity
profile 〈VI〉(A, I) from Eq. (6.93), for different values of V with U = 0.1 and
l/l> = 0.1.

The stationary (time–independent) part of the pressure field is given from Eq. (6.88) as:

〈P〉(I) = −U� (I)
4
+ V �̂(l)

(C
� (I) =

−
U

4
+ V

1 −
(
l/l>

)2[
1 −

(
l/l>

)2
]2
+ 4Z2 (

l/l>
)2

� (I).
(6.94)

The nonzero mean pressure in an oscillatory field leads to acoustic radiation forces [225].

These forces can then be harnessed in many practical devices for varied uses like cell ma-

nipulation, droplet levitation etc., which are studied under the umbrella of acoustophore-

sis [226].

Acoustic radiation forces are thus expected to arise from 〈P〉(I) in Eq. (6.94), which

has a spatially varying envelope given by� (I). Therefore, the points of maximum pressure
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Fig. 6.11. (a) The period-averaged acoustic radiation pressure profile 〈P〉(I)
from Eq. (6.94) for U = 0 and V = 0.1. (b) Frequency response of
〈P〉(I) for negligible compressibility U → 0 and different values of Z , where
limU→0〈P〉(I)/� (I) is evaluated from Eq. (6.95).
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(i.e., the anti-nodes) are at I such that �′(I) = 0, i.e., at I = 1/2, while the points corre-

sponding to zero pressure (i.e., the nodes), are at I = 0, 1. These facts are illustrated in

Fig. 6.11(a). We also see from Eq. (6.94), that the O(V) term in the expression for 〈P〉(I)

has a frequency-dependent response:

lim
U→0

〈P〉(I)
� (I) = V

1 −
(
l/l>

)2[
1 −

(
l/l>

)2
]2
+ 4Z2 (

l/l>
)2
. (6.95)

Equation (6.95) is plotted in Fig. 6.11(b), showing an increasing trend as l → l>.

However, near l = l>, the profile undergoes a sharp dip to zero and becomes negative,

before tapering off back to zero for l � l>. The maximum is reached at l = l>
√

1 − 2Z .

Clearly, the time-averaged pressure in a viscoelastic tube can be harnessed as a low-pass

filter, where only the (pressure) signals with frequencies l < l>
√

1 − 2Z are allowed

through, and signals with higher frequencies are attenuated.

The period-averaged post-transient flow rate enhancement, neglecting the terms of

O(V2), is calculated (from Eqs. (6.80), (6.85) and (6.88)) as,

〈@∗〉 = −1
8

−
U

4
+ V

[
1 −

(
l/l>

)2
]

[
1 −

(
l/l>

)2
]2
+ 4Z2 (

l/l>
)2

�
′(I)

+ V
4

(1 − I)√[
1 −

(
l/l>

)2
]2
+ 4Z2 (

l/l>
)2

sin q. (6.96)

At the outlet (I = 1), the second term in Eq. (6.96) vanishes. Thus, for negligible com-

pressibility (U → 0), the nonzero mean enhanced flow at the outlet has the same fre-

quency response as the streaming pressure from Eq. (6.95). Consequently, the streaming-

enhanced flow rate at the outlet also exhibits the low-pass feature, with the cut-off fre-

quency l>
√

1 − 2Z .

6.4 Conclusion

In this paper, we studied compressible viscous flow at low '4 in a compliant viscoelas-

tic tube. The assumptions pertaining to the scale and geometry of the system render the
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flow inertialess, allowing us to invoke the lubrication approximation. The compressibility

effects are introduced through an equation of state, which relates the density to the pressure

through a compressibility parameter. Rarefaction effects can be accounted for at steady

state through an apparent slip boundary condition. For the structural mechanics domain,

we extended the classical (linearly elastic) Donnell shell theory to incorporate Kelvin–Voigt

(KV) linear viscoelasticity. We neglected bending, and obtained a deformation equation,

wherein the dimensionless Deborah number quantified the relative magnitude of structural

elasticity and structural viscosity, while a Strouhal number quantified the strength of (un-

steady) inertial effects in the tube.

The set of governing equations formulated were then solved within the framework of

three illustrative sub-problems. The first of these problems involved steady-state compress-

ible flow with rarefaction, wherein the viscoelastic structural model reduced to an elastic

structural model. The other two problems were concerned with transient dynamics, wherein

rarefaction (slip) had to be neglected to render the equations amenable to analytical solu-

tion. The first of these transient cases involved impulsive pressurization of the inlet, while

the second case involved an oscillatory pressure at the inlet. While the steady-state prob-

lem reduces to a nonlinear separable ODE, the transient problems involve nonlinear PDEs,

which require a double perturbation expansion in V and U to make analytical progress.

The interplay of different physical effects such as fluid–structure interaction (FSI), com-

pressibility, rarefaction, viscoelasticity, and inlet conditions was analyzed. The main results

of this paper are as follows. First, we find that, due to FSI, the Stokes flow takes a finite time

to adjust to any changes emanating from the boundary motion. Second, the time constant

pertaining to the exponentially-decaying transient response of the system is independent of

the inlet boundary condition (impulsive or oscillatory pressure). Third, we show that, in

the case of oscillatory pressure imposed at the tube’s inlet, FSI leads to acoustic streaming

in the flow. The acoustic streaming induces an enhancement in flow rate, which when aver-

aged over a period of oscillation, displays a frequency response like that of a low pass filter

with a cut-off frequency of l>
√

1 − 2Z . In particular, oscillatory flow in viscoelastic tubes
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leads to resonances at a particular value of the inlet pressure frequency, which maximize

the deformation of the tube.

Our study neglected the convective acceleration of the fluid since we assumed that

n'4 � 1, which yielded a unidirectional flow field and a pressure field depending only on

the flow-wise coordinate. However, the compressible flow inside both tubes and channels

has been analyzed in literature without neglecting the convective acceleration, for arbitrary

values of n'4, i.e. when the conduit is not necessarily slender [79–81]. Such an analysis

accounts for both transverse velocity as well as the variation of the pressure field in the

transverse direction. Perhaps, in the future, it may be of interest to extend their line of

research to include FSI in a deformable conduit, and explore the interactions of a radially

varying pressure field with a soft structure undergoing transient deformations, ultimately

resulting in a more accurate version of our FSI theory.
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7. SUMMARY AND OUTLOOK

This chapter summarizes the main accomplishments of this thesis and presents avenues for

future work.

7.1 Thesis summary

In this thesis, we have analyzed, through theoretical calculations and computer simula-

tions, the phenomena of fluid–structure interactions (FSIs) taking place due to an internal

flow inside a soft conduit. Specifically, as the stated aim of this research, we found the flow

rate–pressure drop relation for low '4 flow in elastic tubes and channels. Because of fluid–

structure interactions, the flow rate–pressure drop relation involves the material properties

of the structure, and thus may be interpreted as an extension to deformable conduits of the

classical Hagen–Poiseuille law.

The chapter-wise accomplishments of this thesis are:

• Chapter 2: We determined the flow rate–pressure drop relation for the flow of a

power-law fluid in a rectangular microchannel with a deformable top wall. We obtain

a nonlinear differential equation for pressure as a function of imposed steady flow

rate, consisting of infinite expansions of hypergeometric functions. In doing so, we

demonstrated that, under the lubrication approximation, the rheology of the fluid

does not explicitly enter into the coupling with structural mechanics problem.

• Chapter 3: We extended and applied the low-'4 theory of fluid–structure interac-

tions in microchannels to develop a technique for hydrodynamic bulge testing. We

demonstrated that this proposed experimental method allows the estimation of mate-

rial properties (such as the Young’s modulus), from the the flow rate–pressure drop

relation, given only a pressure drop measurement (i.e., without measuring the de-
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formation at all). A sensitivity analysis showed that the hydrodynamic bulge test

is only slightly less accurate than the traditional hydrostatic bulge test, but it is less

susceptible to noise in the measured quantity.

• Chapter 4: We formulated and analyzed the fluid–structure interaction problem for

a thin linearly elastic tube conveying a power-law fluid. We found the expressions for

the radial deformation of the tube, taking into account the bending boundary layers

near its clamped ends. We also improved upon the classical theories by Laplace

and Fung, and updated them to match with the computer simulations carried out in

ANSYS.

• Chapter 5: We formulated and analyzed the fluid–structure interaction problem for

hyperelastic tubes, extending some of the results of Chapter 4. Using the stretch-

ing dominant membrane theory to model the deformation of thin walled tube, we

obtained a closed form relationship between the imposed flow rate and local defor-

mation. Specifically, we showed that, due to strain hardening, the hyperelastic tube

is overall “less compliant” during FSI than a linearly elastic tube.

• Chapter 6: We formulated and analyzed the transient fluid–structure interactions

due to compressible internal fluid flow in a viscoelastic tube, taking into account the

tube’s inertia. A perturbation approach accounted for weak fluid–structure interac-

tion and weak compressibility. We found that a low-frequency oscillatory pressure

at the inlet leads to streaming in the flow. The ensuing enhancement in the flow

rate, when averaged over a period of oscillation, has a frequency response similar to

that of a low pass filter. Then, we demonstrated that oscillatory flow in viscoleastic

tubes leads to resonances at a particular value of the inlet pressure frequency, which

maximize the deformation of the tube.
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7.2 Future work

In future work pertaining to rectangular microchannels, it is of interest to determine

the first correction due to friction at the lateral side walls, i.e., to relax the assumption

X = ℎ0/F � 1. In [37], the latter calculation was accomplished by using the known

two-dimensional (2D) solution for flow of a Newtonian fluid in a rectangular channel. For

the power-law fluid considered in Chapter 2, however, the rate of shear strain becomes a

nonlinear function of the velocity gradient in 2D, thus an exact 2D flow solution is un-

available [227]. The latter fact makes the mathematical extension of [37, Appendix B] a

challenging open problem.

Our theoretical discussions largely considered flows actuated by a pressure difference.

On the other hands, in microfluidics, flows are frequently actuated electro-kinetically [21]

or magneto-hydrodynamically. How these modes of flow actuation affect the FSI in a tube

or channel may also be an area of research worth pursuing. In addition to actuation strate-

gies, a theory of FSI in microchannels with viscoelastic top walls (extending the results on

viscoelastic tubes from Chapter 6) could be developed to ultimately yield a hydrodynamic

bulge test for the estimation of viscoelastic properties (loss and storage moduli, for exam-

ple). Much like the hydrodynamic bulge test for estimation of linearly elastic properties

proposed in Chapter 3.

Our FSI theory of microchannels is hinged on the assumptions of small strains, which

allows us to linearize the differential equations in structural mechanical domain, and helps

to solve the equations analytically. Venturing into the domain of large strains would be

mathematically challenging, but also potentially rewarding. At larger strains, it is known

that PDMS may exhibit a hyperelastic response [228]. Thus, in future work, it would be

of interest to extend the proposed FSI theory of rectangular microchannels to capture this

nonlinear material behavior. The proposed hydrodynamic bulge testing technique from

Chapter 3 could also be extended to handle liquid blister tests [27], which are used to mea-

sure the strength of bonding (via the work of adhesion), if the fluid layer is made much

thinner than the solid film. Beyond bulge tests, the FSI between a viscous fluid and a
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pre-stressed plate-like elastic structure can be harnessed to create soft microfluidic actua-

tors [118]. Similar multiphysics problems can also be motivated by biomedical and phys-

iological applications, such as the reopening of strongly collapsed airways [117]. These

problems are unsteady [211], thus one must obtain dynamic equations for the motion of the

fluid front during expansion (or collapse) [29, 54, 64, 178]. Therefore, the present analysis

could be extended/become the foundation of further research on these problem as well.

In future work pertaining to microtubes, the FSI theory developed herein can be ex-

tended to incorporate further physical effects that arise in microscale fluid mechanics. For

example, the material composing the tube may not be only elastic but also porous (i.e.,

poroelastic) [229]. Moreover, the FSI of hyperelastic tubes analyzed in this chapter con-

cerned with only the leading order terms, where the bending terms were neglected. It may

be worthwhile to pursue a more nuanced approach wherein the bending of the tube at the

clamped ends are also accounted for.
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chanical model of swallowing for understanding the influence of saliva and food
bolus viscosity on flavor release,” J. Theor. Biol., vol. 280, pp. 180–188, 2011.

[103] P. Goswami, J. Chakraborty, A. Bandopadhyay, and S. Chakraborty, “Electrokineti-
cally modulated peristaltic transport of power-law fluids,” Microvascular Research,
vol. 103, pp. 41–54, 2016.

[104] A. H. Shapiro, M. Y. Jaffrin, and S. L. Weinberg, “Peristaltic pumping with long
wavelengths at low Reynolds number,” J. Fluid Mech., vol. 37, pp. 799–825, 1969.

[105] A. Bandopadhyay, D. Tripathi, and S. Chakraborty, “Electroosmosis-modulated
peristaltic transport in microfluidic channels,” Phys. Fluids, vol. 28, p. 052002, 2016.

[106] M. K. Small and W. D. Nix, “Analysis of the accuracy of the bulge test in deter-
mining the mechanical properties of thin films,” J. Mat. Res., vol. 7, pp. 1553–1563,
1992.

[107] W. P. Jackson, “Characterization of Soft Polymers and Gels using the Pressure-
Bulge Technique,” Ph.D. dissertation, California Institute of Technology, 2008.
[Online]. Available: https://thesis.library.caltech.edu/2322/

[108] J.-H. Huang, K. Haffey, A. Arefin, L. E. Akhadov, J. F. Harris, R. Iyer, and
P. Nath, “A microfluidic method to measure bulging heights for bulge testing of poly-
dimethylsiloxane (PDMS) and polyurethane (PU) elastomeric membranes,” RSC
Adv., vol. 8, pp. 21 133–21 138, 2018.

https://thesis.library.caltech.edu/2322/


190

[109] W. Zhou, J. Yang, G. Sun, X. Liu, F. Yang, and J. Li, “Fracture properties of sili-
con carbide thin films by bulge test of long rectangular membrane,” J. Microelec-
tromechan. Syst., vol. 17, pp. 453–461, 2008.

[110] W. Zhou, J. Yang, Y. Li, A. Ji, F. Yang, and Y. Yu, “Bulge testing and fracture
properties of plasma-enhanced chemical vapor deposited silicon nitride thin films,”
Thin Solid Films, vol. 517, pp. 1989–1994, 2009.

[111] J. Yang and O. Paul, “Fracture properties of LPCVD silicon nitride thin films from
the load-deflection of long membranes,” Sensors Actuators A: Physical, vol. 97-98,
pp. 520–526, 2002.

[112] J. Neggers, J. P. M. Hoefnagels, and M. G. D. Geers, “On the validity regime of the
bulge equations,” J. Mat. Res., vol. 27, pp. 1245–1250, 2012.

[113] J. J. Vlassak and W. D. Nix, “A new bulge test technique for the determination of
Young’s modulus and Poisson’s ratio of thin films,” J. Mat. Res., vol. 7, pp. 3242–
3249, 12 1992.

[114] S. Shafqat, O. van der Sluis, M. Geers, and J. Hoefnagels, “A bulge test based
methodology for characterizing ultra-thin buckled membranes,” Thin Solid Films,
vol. 660, pp. 88–100, 2018.

[115] L. Yang, S.-G. Long, Z.-S. Ma, and Z.-H. Wang, “Accuracy analysis of plane-strain
bulge test for determining mechanical properties of thin films,” Trans. Nonferrous
Metals Soc. China, vol. 24, pp. 3265–3273, 10 2014.

[116] V. Ziebart, O. Paul, U. Münch, J. Schwizer, and H. Baltes, “Mechanical properties of
thin films from the load deflection of long clamped plates,” J. Microelectromechan.
Syst., vol. 7, pp. 320–327, 1998.
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[170] S. Čanić, D. Lamponi, A. Mikelić, and J. Tambača, “Self-consistent effective
equations modeling blood flow in medium-to-large compliant arteries,” Multiscale
Model. Simul., vol. 3, pp. 559–596, 2005.
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[175] M. Hetényi, Beams On Elastic Foundation: Theory with Applications in The Fields
of Civil and Mechanical Engineering. Ann Arbor, MI: The University of Michigan
Press, 1946.

[176] D. A. Dillard, B. Mukherjee, P. Karnal, R. C. Batra, and J. Frechette, “A review of
Winkler’s foundation and its profound influence on adhesion and soft matter appli-
cations,” Soft Matter, vol. 14, pp. 3669–3683, 2018.

[177] A. P. Bunger and A. R. Cruden, “Modeling the growth of laccoliths and large mafic
sills: Role of magma body forces,” J. Geophys. Res. Solid Earth, vol. 116, p.
B02203, 2011.

[178] T. V. Ball and J. A. Neufeld, “Static and dynamic fluid-driven fracturing of adhered
elastica,” Phys. Rev. Fluids, vol. 3, p. 074101, 2018.

[179] S. I. Rubinow and J. B. Keller, “Flow of a viscous fluid through an elastic tube with
applications to blood flow,” J. Theor. Biol., vol. 34, pp. 299–313, 1972.

[180] H. B. Keller, Numerical Solution of Two Point Boundary Value Problems, ser.
CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia,
PA: SIAM, 1976, vol. 24.

[181] M. H. Holmes, Introduction to Perturbation Methods, ser. Texts in Applied Mathe-
matics. New York, NY: Springer Science+Business Media, 2013, vol. 20.

[182] J. C. Neu, Singular Perturbation in the Physical Sciences, ser. Graduate Studies in
Mathematics. Providence, RI: American Mathematical Society, 2015, vol. 167.

[183] M. Heil and T. J. Pedley, “Large axisymmetric deformation of a cylindrical shell
conveying a viscous flow,” J. Fluids Struct., vol. 9, pp. 237–256, 1995.

[184] T. Matsumoto, S. Sugita, and T. Yaguchi, “Biomechanics of blood vessels: Structure,
mechanics, and adaptation,” in Advances in Metallic Biomaterials, ser. Springer Se-
ries in Biomaterials Science and Engineering. Berlin/Heidelberg: Springer-Verlag,
2015, vol. 3, ch. 4, pp. 71–98.

[185] A. P. Ebrahimi, “Mechanical properties of normal and diseased cerebrovascular sys-
tem,” J. Vasc. Interv. Neurol., vol. 2, pp. 155–162, 2009.

[186] C. Kleinstreuer, Biofluid Dynamics: Principles and Selected Applications. Boca
Raton, FL: CRC Press, an imprint of Taylor & Francis Group, 2006.

[187] C. D. Bertram and J. Tscherry, “The onset of flow-rate limitation and flow-induced
oscillations in collapsible tubes,” J. Fluids Struct., vol. 22, pp. 1029–1045, 2006.

https://ntrs.nasa.gov/search.jsp?R=19930091553
https://www.google.com/books/edition/_/25E5AAAAcAAJ


195

[188] Y. Bazilevs, K. Takizawa, and T. E. Tezduyar, Computational Fluid-Structure In-
teraction Methods and Applications. Chichester, UK: John Wiley & Sons Inc.,
2013.

[189] G. Bugliarello and J. Sevilla, “Velocity distribution and other characteristics of
steady and pulsatile blood flow in fine glass tubes,” Biorheology, vol. 7, pp. 85–107,
1970.
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[213] W. Flügge, Viscoelasticity, 2nd ed. Berlin/Heidelberg: Springer-Verlag, 1975.

[214] H. T. Banks, R. C. Smith, and Y. Wang, “The modeling of piezoceramic patch in-
teractions with shells, plates, and beams,” Quart. Appl. Math., vol. 53, pp. 353–381,
1995.

[215] H. T. Banks, R. C. H. del Rosario, and R. C. Smith, “Reduced-order model feed-
back control design: numerical implementation in a thin shell model,” IEEE Trans.
Automat. Contr., vol. 45, pp. 1312–1324, 2000.

[216] Z. J. G. N. del Prado, M. Amabili, and P. B. Gonçalves, “Non linear vibrations
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