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ABSTRACT

Chen, Chin-Ning Ph.D., Purdue University, August 2020. Color Halftoning and Acoustic
Anomaly Detection for Printing Systems. Major Professor: Jan. P. Allebach.

In the first chapter, we illustrate a big picture of the printing systems and the concentra-
tion of this dissertation.

In the second chapter, we present a tone-dependent fast error diffusion algorithm for
color images, in which the quantizer is based on a simulated linearized printer space and
the filter weight function depends on the ratio of the luminance of the current pixel to the
maximum luminance value. The pixels are processed according to a serpentine scan instead
of the classic raster scan. We compare the results of our algorithm to those achieved using
the fixed Floyd-Steinberg weights and processing the image according to a raster scan
ordering.

In the third chapter, we first design a defect generator to generate the synthetic abnor-
mal printer sounds, and then develop or explore three features for sound-based anomaly
detection. In the fourth chapter, we explore six classifiers as our anomaly detection mod-
els, and explore or develop six augmentation methods to see whether or not an augmented
dataset can improve the model performance. In the fifth chapter, we illustrate the data ar-
rangement and the evaluation methods. Finally, we show the evaluation results based on
different inputs, different features, and different classifiers.

In the last chapter, we summarize the contributions of this dissertation.



1. INTROCUTION

Printing systems are important in our life. From a small A4 size paper documents to a large
size posters along the highway, they all need printing system to be realized. There are lots
of printing systems such as office and home printers, commercial printers, and 3D printers
which are popular recently. 3D printing is a process for making a physical object from a
three-dimensional digital model, typically by laying down many successive thin layers of
a material. 3D printing is out of scope in this dissertation, so we will focus on the most
common ones: home and office printers.

The difference between home and office printers and commercial printers is that home
printers refer to the actual piece of hardware including laser printers and ink jet printers. A
digital file is sent to a printer connected to a computer and the printed page is available in a
short while. On the other hand, the commercial printers is a business that are printing pro-
fessionals such as magazines. Usually, it is a print shop with a team of people, and printers
for digital printing and also printing presses for offset lithography and other commercial
printing processes.

For home printers, as we mentioned, include laser and inkjet printers. The difference
between laser and inkjet printers is as follow: Inkjet printing was developed in 1951. It
takes a traditional ink cartridge to eject droplets of ink onto paper, and it usually contain
black, cyan, magenta, and yellow ink. Inkjet printers can work well for photos and docu-
ments that are image-heavy. Generally, they are lighter and smaller than laser printers. On
the other hand, the laser printer was invented at Xerox in 1969. It melts toner powder onto
paper to create a print, and it is able to handle high print volumes with faster print speeds.
The advantage of a laser printer is to produce the perfect copy. For example, the laser
electrophotographic process allows the printed black text to look sharp and neat. However,
laser printers are more expensive than inkjet printers. If you are printing high-quality color

images, then inkjet printers will work well. On the other hand, if you are printing text-based



documents or medium-quality color images, laser printers will work well. If you mainly
print for a photo, recently, photo inkjet printers are also released. Photo inkjet printers are
designed to make pictures stand out while offering the opportunity to work with different
print sizes. These printers are usually a bit more expensive than the typical inkjet printers
because of the type of ink they use and the fact that they are usually both dye and pigment
based.

Multi-function and high printing quality printers need better and longer warranty. How
to manage the customer service would be another task for companies. Maintain a good
customer service not only keep the confidence from our customer to trust us, but also reduce
the cost from companies to replace possible malfunction parts.

To sum up, this dissertation is intended to study the printing algorithm for inkjet printer
and the customer service for laser electrophotographic printers based on acoustic-based

anomaly detection. The dissertation is structured as follow:

Chapter 2 focus on a novel aperiodic, dispersed-dot halftoning algorithm.

Chapter 3 develops a novel way to diagnose the printer health.

Chapter 4 introduces the anomaly detection models and data augmentation methods.

Chapter 5 shows the evaluation results.

Chapter 6 summarizes the contributions of this dissertation.



2. VECTOR MULTILEVEL TONE-DEPENDENT ERROR
DIFFUSION IN THE YYCXCZ COLOR SPACE

2.1 Introduction

Halftoning remains a critical aspect of contemporary printing devices. These devices
increasingly have multilevel capabilities. We develop a vector error diffusion solution that
operates in the YyCxCz linearzed uniform color space [1]. Our results are based on a
simulated CMY printer that uses inks from an Indigo 7000 press. We assume a 16-level
output for each of the C, M, Y channels; so each output pixel consists of a 4 bit word.

The classic error diffusion proposed by Floyd and Steinberg [2] is an algorithm that
generates a binary image by processing the continuous-tone image with neighborhood op-
erations moving through the image in raster scan order, quantizing each pixel in the scan
line, and diffusing the error ahead to the neighboring pixels. However, this algorithm also
generates worm-like artifacts and some visible structure. There are many papers propos-
ing to solve these problems. In this chapter, we are not going to mention how the artifact
problems are solved, but focus how the error diffusion is used in a multilevel color context,
rather than a monochrome binary context.

The previous works focusing on mutilevel halftoning and color halftoning are [3-7].
Monga et al. [4] and Yu et al. [7] both use a Neugebauer printer model. In [4], the Neuge-
bauer model was used in the middle step by transforming from CMY to YyCxCz first,
next to predict the colorimetric response of the printer and then further to train the error
diffusion filter to minimize the error metric. In [7], the authors utilized the Neugebauer
model in RGB color space by using trilinear interpolation based on Neugebauer primaries
to represent an arbitrary input color. Our method operates with gamut mapping [8, 9] first
and then quantizes the input pixel based on sampling the Neugebauer printer model. Both

the gamut mapping and the quantization operate in the YyCxCz color space.



Figure 2.1 shows our system pipeline. The input is an sSRGB image; and we transform
it from sRGB to CIE XYZ [10] to YyCxCz standing for our source gamut. Also, we are
given the destination gamut, which is the Indigo gamut; and then we do the gamut mapping
to fit the source gamut into the destination gamut. After gamut mapping, we do tone-
dependent fast error diffusion (TDFED), which is also in the YyCxCz color space. Finally,
we transform the result of TDFED from YyCxCz back to sRGB to display it.

Source Gamut Destination Gamut
TDFED
SRGB | T ] YyCxCz Gamut YyCxCz or YyCxCz |T| sRGB
(image) LI (image space) | Mapping | (Indigo Gamut) il LT T image)

Fig. 2.1.: System pipeline

The rest of parts are organized as follows. Section 2.2 outlines the process of gamut
mapping. Section 2.3 first introduce the YyCxCz color space and our printer output space,
and then nail into our TDFED algorithm. Also, we will compare our TDFED with classic
Floyd-Steinberg Error Diffusion (FSED). Section 2.4 shows and compares the resulting im-

ages after gamut mapping, TDFED, and FSED. Finally, Section 2.5 concludes this chapter.

2.2 Gamut Mapping

We want to generate a mapping so that given an sSRGB value, we can find its corre-
sponding printable value based on our printer output space. In our system, we are given the
destination gamut from the Indigo 7000 press. A brief description of overall process can

be split into five part:

Part 1 Soft compress the source lightness from input image to match the destination light-

ness.

Part 2 Let the source neutral axis and destination neutral axis to align with the Yy axis.



Part 3 Soft compress the source chroma to fit it into the bounding cylinder constructed by
the destination gamut. Unfortunately, so far, the source gamut is not actually fit into

the destination gamut at every hue angle.

Part 4 We do central compression for lightness and chroma on source gamut to let it actually

fit into the destination gamut within each hue sector.
Part 5 Finally, we rotate and shift to move the source gamut to the destination gamut.

The details of the gamut mapping can be seen in Figure 2.2. Also, refer to [8,9] .

2.3 Tone-Dependent Fast Error Diffusion

Our motivation to use tone-dependent fast error diffusion (TDFED) is based on the
comparison between Floyd-Steinberg algorithm and TDFED in binary image, as shown
in [3]. There are obvious artifacts in the sky in the figure generated by Floyd-Steinberg
but the figure generated by TDFED does not have this problem. As a result, we try to use

TDFED system on the color image.

2.3.1 YyCxCz Color Space

Before we go to the details of TDFED, here we explain the relation between different
color spaces and the reason why we operate in the YyCxCz color space.
The YyCxCz color space is the linearized CIE Lab color space which can be obtained

from the CIE XYZ color space, as shown in Equations (2.1), (2.2), (2.3)

Y
Yy=116——16 2.1)
Y,
X Y
= 500(= — — 2.2
Cx = 500(5- = 3-) (2.2)
Y Z
Cz=200(— — =) (2.3)

Y, Z,



The Yy value represents the luminance, and the Cx and Cz values are the red-green and
blue-yellow chrominance components, respectively. Because YyCxCz is a linearized trans-

formation, it can overcome the distortion problem mentioned in [1]

2.3.2 Printer Output Space

We assume a CMY printer with 16 levels per output channel, i.e., 12 bits/pixel. We sim-
ulate the printer output space by uniformly interpolating the space defined by the measured
8 Neugebauer Primaries (NPs) which are: W, Y, C, CY, M, MY, CM, CMY. The following
steps describe how we simulate our printer output space: First, we choose our target output
device, which is the Indigo 7000 press. Second, we print a constant-tone patch for each
of the 8 NPs. Third, we measure their CIE XYZ value by using hardware X-rite DTP70
and then convert the obtained XYZ value into YyCxCz value. Next, we uniformly sample
16 x 16 x 16 points along each edge of the CMY color cube as shown in Figure 2.3. Fi-
nally, we use tetrahedral interpolation to find their corresponding YyCxCz values as shown

in Figure 2.4.

2.3.3 Tone-Dependent Fast Error Diffusion

Figure 2.5 illustrate the block diagram of the TDFED system. In this system, f[m,n]
is the input image vector, ]%[m,n] is the modified input, and g[m,n| is the YyCxCz image
vector quantized according to Equation (2.4) where the set the C is the 16 x 16 x 16 set
of Neugebauer Primaries for the output device. This means that the current pixel will be
replaced by the one of the sampled Neugebauer Primary with the shortest between them.
After obtaining g[m,n], we can calculate the error vector according to Equation (2.5). Here,
the weight function W (Y,) depends on the position of the pixel to which the error is being
diffused relative to that of the pixel being processed and the ratio of the Yy value of the
current pixel to the maxmimum Yy value. Plots of the weight function are shown in Figure
2.6, where the star sign represents the current pixel. Moreover, the processing order of

TDFED is according to a serpentine scan.



lm,n] = argmin{le — flm,n]|} (24)
ce
élm,n| = glm,n| —]_?[m,n] (2.5)

2.3.4 Comparison with Floyd-Steinberg Error Diffusion

Figure 2.7 illustrates the block diagram of the FSED system. The overall system is
similar with TDFED but there are two differences. First, the weight filter H in FSED is
the fixed set of numbers where w1 is equal to 17—6, w2 is equal to %, w3 is equal to 1%, and
w4 is equal to 1—16. In the TDFED system, the weight filter W(Y,) is a function. Second, the
processing order of FSED is according to raster scan instead of the serpentine scan in the
TDFED system. In the experimental result, the comparisons are between FSED with raster

scan and TDFED with serpentine scan.

2.4 Experimental Result

Figure 2.8 shows the comparison of the original image, the gamut mapped image, the
TDFED image, and the FSED image. For the gamut mapped image, it is a little bit brighter
than the original image. But overall, it looks good. The color rendering results of the
TDFED image and the FSED image look very similar at this scale. So we need to zoom in
to see the detail of the halftone images. Figure 2.9 shows part of the figure in larger scale
to have the big picture of what is generated by halftoning. Figures 2.10 to 2.12 shows the
image detail in pixel scale. In FSED image, there are obvious checkerboard and texture
cliques artifact. But in some case as shown in Figure 2.12, FSED performs better than
TDFED. However, the overall image quality generated by TDFED is better than that of
FSED.



2.5 Conclusion

We have developed a halftoning solution for a simulated multilevel CMY printer with
16 levels per channel. Our proposed imaging pipeline consists of: First, transform input
sRGB to YyCxCz linearized uniform color space. Next, we do the gamut mapping to fit the
source gamut into the printer gamut also in the YyCxCz color space. Finally, we do vector
error diffusion that maps modified continuous-tone image values to the nearest output color
onal6x16x16 grid. It yields good quality output images but the improvement over FSED

provided by TDFED is not as significant as it is for a binary output device.
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16*16*16 grid points in CMY.space

CoLomye

Fig. 2.3.: Sampled points in CMY color space

16*16*16 grid points in YyCxCz space
120

100

80

20

0 =
200

Fig. 2.4.: Sampled points in YyCxCz color space

10



- F m,n g (m,n)
7 (m,n) +=® f( ) R VectF)r .
guantizer
i, .
~»X) e(mn)
w(Yy)
fYy(mJ n) 4

Fig. 2.5.: Tone-dependent fast error diffusion system

* wil
w2 w3 w4
i wl ; w2 i w3 ; w4

0.9+ 0.9 10.9 0.9
0.8t 0.8 10.8 0.8
0.7t 0.7 10.7 t 0.7
0.6 0.6 106 0.6
0.5 f 0.5 10.5 0.5
0.4t 0.4 104t 0.4
03¢ 0.3 10.3 0.3
0.2+ 0.2 10.2 0.2
0.1t 0.1 0.1 01

Fig. 2.6.: weight function for TDFED

11



12

z + o fmn) Vector
f (m.n) \E,E/ guantizer

Fig. 2.7.: Floyd-Steinber error diffusion system

Fig. 2.8.: Comparison of resulting image at three stages in the system pipeline. (a) Original
image (b) Gamut mapped image (c) TDFED image (d) FSED image
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(b)

Fig. 2.9.: The result zoom in for Figure 2.8 (c) and (d) respectively: (a) TDFED image (b)
FSED image.

(a) (b)

Fig. 2.10.: Comparison between (a) TDFED image and (b) FSED image. We can see the
obvious checkerboard artifact in FSED.
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(@) (b)

Fig. 2.11.: Comparison between (a) TDFED image and (b) FSED image. We can see the
texture cliques artifact in FSED.

(@) (b)

Fig. 2.12.: Comparison between (a) TDFED image and (b) FSED image. We can see that
in this case, FSED performs better than TDFED.
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3. FEATURES FOR SOUND-BASED ANOMALY DETECTION
3.1 Introduction

Anomaly detection is used in a variety of applications such as fraud detection for credit
card [11], security systems [12], and machine operational condition. Anomaly has differ-
ent definitions in different cases, but generally speaking, a behavior, which has obviously
different pattern compared with the normal behavior that was well defined by the system,
is called anomaly. In this chapter, we focus on the sound-based anomaly detection. Sound-
based system have been attracting more attention because of inexpensive microphone set-
tings and recordings [13]. Recent researches have also explored plenty of techniques for
modeling the acoustic signal in order to better capture its important features.

Basically, there are three types of sound-based system: supervised, semi-supervised,
and unsupervised. The key difference between them is the use of the labeled training
data. Supervised system uses labeled data for both normal and anomalous classes during
training process. Semi-supervised system only uses labeled data for normal class dur-
ing training process. Finally, unsupervised system doesn’t need training data. Supervised
system applications include Automatic speech recognition (ASR) [14, 15], acoustic event
detection (AED) [16], acoustic scene classification (ASC) [17, 18], and sound event detec-
tion (SED) [13]. Semi-supervised and unsupervised applications are mainly focusing on
anomaly/outlier detection [19,20].

The acoustic features are critical to different applications as mentioned previously. Var-
ious hand-crafted descriptors have been proposed such as Mel frequency cepstral coeffi-
cients (MFCCs) [21], filter bank [22, 23], spectrogram [24, 25], and bag-of-audio-words
[26,27]; and they were modeled with Support Vector Machine (SVM) [28]. But even
though we have multiple feature representations to fit the specific application, there still

has one problem: the lack of the acoustic data. Unlike image dataset, there are few public
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dataset that are suitable for various acoustic applications. As a result, based on the limited
data, data augmentation plays a critical role to expand the dataset size.
Figure 3.1 illustrates the system pipeline for printer sound-based anomaly detection.

Our goal is to use the acoustic signal to diagnose the machine health. The input of the

Input: Output:

Printer > Featurc—; » Classifier » Classification
extraction

sound result

Fig. 3.1.: System pipeline for printer sound-based anomaly detection.

system is printer sounds and the final output of the system is the classification result. The
purpose of data augmentation is to increase the number of the data and decrease feature
development cycle. We can have possible solution ready at product deployment and con-
firm with production data, instead of using production data for development. Note that
we are using different augmented datasets to train the models and test them with the same
real testing data. All of the dataset will go through the same pipeline and we can see the
comparison evaluation in Section 5.3.

We briefly introduce the hardware setting and how to collect the printer sound. The
detail information can refer [29]. Figure 3.2 shows the printer that we used to collect the
sound and its interior structure for the component and the path for the paper that rolling
inside the printer. Fig. 3.3 shows the setting of the microphone. Practically, as shown in
Figure 3.4, the printer has built-in microphone and detector. When the printer is working, it
will automatically generate a extracted feature, which is called feature matrix. The feature
matrix will be uploaded to HP cloud and do further process to diagnose whether the printer
is in good condition or it has some problem. The reason why the extracted feature matrix
is uploaded to HP cloud instead of the sound file is for the security issue. The microphone
inside the printer may record something important that you don’t want to share.

The remainder of the chapter is organized as follows. Section 3.2 illustrate the first

stage feature extraction with the detector and how to synthesize the abnormal acoustic
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Fig. 3.3.: (a) Measured point top view, (b) location of the microphone, (c) microphone used
for recording the printer sound, (d)analog to digital conversion [29]

signals. Section 3.3 illustrates three feature extraction methods. Section 4.1 reviews four
classifiers. Section 4.2 illustrates six augmentation methods. Section 5.1 demonstrates the
arrangement for training and testing data. Section 5.2 demonstrates the evaluation methods.

Finally, Section 5.3 shows the experiment results, and Section 5.4 is conclusion.

3.2 Feature Analysis

We have already known how the anomaly detection system works and the source of the

input data, but we still have a problem. The problem is that we only have collected normal
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Good condition
a o
Has some problem

Upload4ie’cloud

Feature matrix
(extracted by detector)

Printer has built-in microphone

and detector

printer sounds. As a result, the question here would be how to synthesize the abnormal

printer sounds.

Fig. 3.4.: How to diagnose the printer health.

In this section, first of all, we will introduce the detector [30], which is used for the first

stage feature extraction. Second, based on the feature distribution of the normal real printer

sounds, we can define what kind of features represent abnormal characteristic. Third, based
on feature distribution that we just defined in the second part, we can artificially synthesize

the abnormal printer sound. Figure 3.5 illustrates the pipeline for how to synthesize the

abnormal printer sounds.

Input:
Real normal ,| Feature -
printer sounds distribution
| Defect
generator

A 4

Output:
Define abnormal
feature

h 4

Output:
Synthetic abnormal
printer sounds

Fig. 3.5.: System pipeline for data pre-processing
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3.2.1 Detector

We use the detector based on [30] as our first stage feature extraction. Figure 3.6 shows
the pipeline of the detector. Basically, it is constructed in two parts by strong tone informa-

tion and modulation information.

Output 1:
Strong tone frequencies
Absolute PSD
Relative PSD
Peak width

Input: Welch’s PSD estimati Moving average filter Strong tone
acoustic signal method estimation and dynamic thresholding selection

Detector output:
Feature matrix

I 5 -

ic si Thresholding : utput 2:
4 Anz:’:;;f:al Modulation depth N;Z?:[';:sn ——> Modulation depth
I Butterworth and il Modulation frequencies

1 Hilbert transform

L e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e == Modulation
information

Fig. 3.6.: Detector pipeline.

For the strong tone information, we first calculate the power spectrum density (PSD)
estimation of the input printer sound by Welch’s method [31]. Next, we use a moving
average filter to smooth the PSD estimation in the first step and then to find the dynamic
threshold as shown in Figure 3.7. The blue curve represents PSD estimation, the green
curve represents the smoothed PSD, and the magenta curve is the dynamic threshold based
on the green curve. Finally, based on the dynamic threshold (magenta curve), we extract
strong tone frequencies, relative PSD, absolute PSD, and peak width. The extracted strong
tone frequencies are the blue peaks with peak width larger than 2 as shown in Figure 3.7.
The absolute PSD is the value of PSD at the strong tone frequencies. The relative PSD is
the difference between absolute PSD (blue curve) and smoothed PSD (green curve) at the
strong tone frequencies. Figure 3.8 is an example of the zoomed in version of Figure 3.7
at certain strong tone frequency 11.89 kHz. It explains more about peak width and relative
PSD.

With this information for each strong tone, we can step to the modulation information

part to generate the analytic signal by using a Butterworth filter and the Hilbert transform
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Fig. 3.7.: Power spectrum density (PSD) estimation.

as shown in Figure 3.9. The purpose of a Butterworth filter is to extract the neighbor infor-
mation which centers at a strong tone frequency, and the purpose of the Hilbert transform
is to phase shift 90 degree of the output from a Butterworth filter. We take the output of a
Butterworth filter as the real part of the analytic signal and take the output of the Hilbert
transform as the imaginary part of the analytic signal. As shown in Figure 3.9, the blue
curve is the analytic signal at a strong tone frequency 11.89 kHz and the orange curve is its
instantaneous amplitude, which is the absolute value of the analytic signal. Next, based on
the generated analytic signal, we can calculate its modulation depth as shown in Equation

3.1,

PSD of the instant litude x freqR 1
S [¢) € 1mstantancous amplu e X req X IOO%

3.1

dulation depth =
modtiation €ep PSD of its corresponding strong tone frequency x freqR2

where freqR1 is the frequency resolution when we calculate the PSD of the instantaneous

amplitude, and freqR2 is the frequency resolution when we calculate the PSD of the input

audio signal. If the calculated modulation depth exceeds the threshold line (red line) as
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Fig. 3.8.: The information of peak width and relative PSD at strong tone frequency 11.89
kHz.

shown in Figure 3.10, its corresponding modulation frequency and itself will be recorded.
Note that the threshold for modulation depth is 10%.

The final output of the detector, which includes strong tone and modulation informa-
tion, is called the feature matrix as shown in Figure 3.11. The first four columns are the
strong tone information: Strong tone frequencies, relative PSD, absolute PSD, and peak
width. The last two columns are the modulation information: Modulation frequencies and

modulation depth.

3.2.2 Feature Distribution

Because we only have collected real normal printer sounds, we would like to find some
characteristic of abnormal features based on the analysis of normal data. Figure 3.12 shows
the histogram of the strong tone frequencies from the collected normal printer sounds.

Based on the characteristic as shown in Figure 3.12, we will synthesize the synthetic ab-
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Strong Tone Relative PSD Absolute PSD Peak Modulation Modulation Depth (%)
Frequency (Hz) Width Frequency (Hz)
0 0

1992 26.72548 33.69137 4

11895 23.43187 24.94561 2 1 10.13539

13148 21.59192 22.21689 3 0 0

14414 15.23058 17.20906 4 1 45.88093

14414 15.23058 17.20906 4 2 12.84543
352 14.68129 23.71069 2 0 0

Fig. 3.11.: Example of the feature matrix.

normal printer sounds. We first use two normal distributions to fit the strong tone frequency
histogram as shown in Figure 3.13 and then define the frequency ranges that represent ab-
normal features. One of the property of normal distribution is that 20 contains up to
95.4% of the data. Based on the observation of Figure 3.11 and 3.13, the definition of the
abnormal features are: Strong tone frequency ranges from 3 kHz to 10 kHz and modulation

depth larger than 100%.
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600 .
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Count

400
300 =1
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Strong tone frequency (Hz)

Fig. 3.12.: Histogram of strong tone frequencies from real normal printer sound dataset.
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Fig. 3.13.: Fitting histogram of strong tone frequencies with two normal distributions.

3.2.3 Defect Generator

The purpose of the defect generator is to generate the synthetic abnormal acoustic signal
since we don’t have real abnormal printer sounds. Inspired by Figure 3.9, we would like
to mimic the waveform of the modulating signal. Based on the abnormal features that we
defined, the inspiration from Figure 3.9, and the concept of amplitude modulation (AM),
we can specify certain abnormal strong tone frequencies as the carrier signal to carry the
modulation frequency as the modulating signal as shown in Figure 3.14. Before go through
the defect generator, we first review the concept of amplitude modulation [32] and Fourier
series representation.

For amplitude modulation, we have two signals: Carrier signal and modulating signal

as shown in Equations 3.2 and 3.3

c(t) =Ac-sin(2rfet) (3.2)

m(t) = Ap - Sin(27 fint) (3.3)
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Fig. 3.14.: Defect generator pipeline.

where f. and f;, are the carrier frequency and the modulating frequency, respectively. The
artificial defect can further be written as in Equation 3.4
m(r)

y(t) = (1 + A—c> c(t) = (1+ - sin(2mfiut)) c(2) (3.4)

where u is the ratio of the amplitude of the modulating signal to the amplitude of carrier
signal. In our case, the carrier frequency f. is the strong tone frequency, and the modulat-
ing signal is the modulation frequency generated by the sinusoidal model. The sinusoidal
model combines a square wave and one sine wave with specific modulation frequency as
shown in Equation 3.3. A square wave can be simulated by multiple sine waves based on

Fourier Series representation as shown in Equation 3.5

s(t) =ap+ Z Apsin(2mk fot ) (3.5)
k=1
where
2 .
= kis odd.
Ag=3 ™ (3.6)
0, kiseven.
and

1
a =7, fo=1landk=1,.,19 (3.7)

Note that the modulating signal is the combination of the square wave and one additional

modulation frequency.
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We generate the synthetic abnormal printer sounds based on the abnormal features that
we defined in Section 3.2.2 and the the concept of amplitude modulation (AM). First of all,
we specify the strong tone frequency at 5 kHz as the carrier signal as shown in Figure 3.15
and Equation 3.8

c(t) = Ac - sin(2m5000¢) (3.8)

where A, is equal to 0.005. Next, one of the carried modulating signal is the simulated

Carrier signal

R
0.002 -
=0.002
el BANRARARARRARARRANAL

Time (second)

Fig. 3.15.: Carrier signal c(z).

square wave as shown in Figure 3.16 and Equation 3.9

1 19

my(t) = 5T ) %sm(zm) (3.9)
k=1

The other modulating signal is the carried modulation frequency at 5 Hz as shown in Figure
3.16 and Equation 3.10
2
my(t) = p -sin(275t) (3.10)

The final modulating signal combines the simulated square wave and the carried modula-
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Fig. 3.16.: Simulated square wave m; (t).
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Fig. 3.17.: Carried modulation frequency modulating signal m;(t).

tion frequency as shown in Figure 3.18 and Equation 3.11

m(t) =my(t)+mo(t) (3.11)



Finally, the final defect is shown in Figure 3.19 and Equation 3.12

Final modulating signal
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Fig. 3.18.: Final modulating signal m(r).

y(t) = (1 +m(1))e(t)
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(3.12)

The blue part is the carrier signal at 5 kHz and the red part is the modulating signal with

the combination of the simulated square wave and the carried modulation frequency. To

see whether this defect generator works or not, let’s see the feature matrix of the normal

acoustic signal and its synthetic abnormal acoustic signal. Figure 3.11 is the feature matrix

of the normal acoustic signal, we can see that the strong tone frequencies and modulation

depths are land in the range that we define as normal. Compare with Figure 3.20, the

feature matrix of the synthetic abnormal acoustic signal contains abnormal features, which

is the strong tone frequency at 5 kHz. Figure 3.21 shows the analytic signal of the synthetic

abnormal acoustic signal at strong tone frequency 5 kHz. Based on the comparison of

the feature matrix, we can justify that our defect generator can successfully synthesize the

abnormal acoustic signal.
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Fig. 3.19.: Final defect y(z).

Strong Tone Relative PSD Absolute PSD Peak Modulation
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Fig. 3.20.: Feature matrix of synthetic abnormal acoustic signal.

3.3 Feature Extraction
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In this section, we will introduce three features: Detector with principal component

analysis, Mel frequency cepstral coefficients (MFCCs), and detector with mean and stan-

dard deviation.
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3.3.1 Detector with Principal Component Analysis

We have already shown that the first stage feature extraction is the output of the detector
called the feature matrix in Section 3.2.1. The column dimension of the feature matrix is
fixed at 6. But the row dimension of the feature matrix varies for different printer sounds
according to the detector algorithm output. As a result, based on this feature matrix, we can
further extract a fixed-length feature vector during the intermediate steps in the principal
component analysis (PCA) [33, 34] to represent each printer sound.

PCA is an unsupervised linear transformation technique that widely used for feature ex-
traction, data compression, and dimension reduction [35—40]. It performs a linear mapping
from original high dimension data to a new lower dimension subspace with the maximum
variance in the original one. The orthogonal axes in the new subspace we call them prin-
cipal components. Although we lose some information due to the reduced dimension, the
new feature with lower dimension still retains the most important information because the
mapping is based on the maximum variance. Normally, people use PCA as following six

steps:

Step 1: Standardize the dataset X with dimension n X d, where n is the number of the obser-

vations and d is the number of the features.

Step 2: Construct the covariance matrix X as equation 3.14 based on equation 3.13

.M:
=

~
—_

(3.13)

=l
I
S| =

(% — )" (% — ) (3.14)
1

Y —

S| =

n

1

where X; is the i-th data.

Step 3: Find all of the eigenvalues, and their corresponding eigenvectors, of the covariance

matrix that satisfy the Eigen-equation 3.15.

Iw=Aw (3.15)
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Step 4: Sort the eigenvalues in descending order and its corresponding eigenvectors. The
sorted eigenvectors construct a projection matrix W with dimension d x d. Columns

inside the projection matrix are the principal components.

Step 5: Select k eigenvectors which correspond to the k largest eigenvalues (k < d) to con-

struct a new projection matrix W’.

Step 6: Project the original d-dimensional dataset X onto the new k-dimensional subspace

using the new projection matrix W',

In our work, we have some changes based on the normal pipeline of the PCA. For each
printer sound, detector can extract n x 6 feature matrix where each row is 6-tuple feature
vector, and n is the number of feature vectors. The number of » is varied for different

printer sound. Each printer sound has to go through the following steps:

Step 1: Based on the extracted feature matrix as shown in Figure 3.23, we normalize each

column into unit length with Euclidean norm as shown in Figure 3.24.

11895 23.24793 24.93256 3 0 0

2074 23.12136 29.61779 3 0 0

Xoriginal - 13148 21.12528 22.71245 3 0 0

14414 15.58967 18.45594 9 1 50.72735

352 13.73516 22.77757 3 0 0

Fig. 3.23.: Example of the feature matrix X before normalization.

0.518376 0.526056 0.465064 0.27735 0 0

0.090383 0.523192 0.552457 0.27735 0 0

Xnormalized - 0.572981 0.478023 0.423653 0.27735 0 0

0.628152 0.352758 0.344256 0.83205 1 1

0.01534 0.310792 0.424867 0.27735 0 0

Fig. 3.24.: Example of the normalized feature matrix.

Step 2: The same as the normal PCA process. Based on the normalized feature matrix, we

can find its mean vector [ and covariance matrix ¥ as shown by Equations 3.13 and
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3.14, respectively. In our work, X; is the i-th row feature vector within the feature

matrix instead of the i-th data.

Step 3: The same as the normal PCA process. Find all of the eigenvalues, and their corre-

sponding eigenvectors, of the covariance matrix that satisfy the Eigen-equation 3.15.

Step 4: The same as the normal PCA process. Sort the eigenvalues in descending order and

its corresponding eigenvectors.

Step 5: Finally, we choose the eigenvector that corresponds to the largest eigenvalue, which
is also called the first principal component, as our final feature to feed into our

anomaly detection model.

All of the printer sounds have to go through the same process from Step 1 to Step 5.
Even though the detector extracts feature matrices with different dimensions from different
printer sounds, we still can find a feature with fixed dimension to represent each printer
sound.

There are two differences between the normal PCA process and our PCA feature. First
of all, people normally use PCA on all the acoustic signals at one time. But in our case, we
use PCA separately on the feature matrix for each input acoustic signal. Second, people
normally use the reduced feature to do further processing. But in our work, we use the first
principal component as our feature to do further processing. However, in both cases, we
can find the features with fixed dimension to represent each acoustic signal.

Furthermore, the first principal components contains the largest variance from the orig-
inal data. The way that we calculate how much variance does each principal component
contribute is the ratio of the eigenvalue over the sum of them as shown in Equation 3.16.
Aj

Z?:l AJ'

variance = (3.16)

Because we sort the eigenvalues in descending order in Step 4, the chosen principal com-

ponent contains the largest variance of the data.
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3.3.2 Mel Frequency Cepstral Coefficients

There are several feature representations for the acoustic signal. For example, image
based time-frequency representation of spectrogram, Constant-Q Transform [41], and the
most popular spectral based parametric representation of Mel frequency cepstral coeffi-
cients [42] (MFCCs). MFCC:s is intuitively designed to represent the envelope of the short
time power spectrum, which is the shape of the vocal track. Although MFCCs is the dom-
inant feature dealing with speech recognition task [43—45], recently, it is also used in a
variety of different tasks that are totally different from speech recognition such as acous-
tic scene classification [46], environmental sound classification [47], energy management
system [48], bridge health monitoring system [49], leak detection of water pipeline [50],
and heart rate measurement [51]. The following paragraph will cover the introduction of
MFCCs and its extracted features.

We use four terms: Mel frequency, Cepstrum, Mel frequency cepstrum (MFC), and Mel
frequency cepstral coefficients (MFCCs) to explain MFCCs. First of all, Mel frequency is a
frequency scale that can closely approximate the human auditory system. The transforma-
tion between frequency in Hertz (f) and Mel-scale frequency (m) is as shown in Equations
3.17 and 3.18, and Figure 3.25. Note that the frequency below 1000 Hz is approximate a

linear transformation.

m

F=700- (et — 1) (3.17)
- f
m—1127-1n (1+m) (3.18)

Second, the cepstrum [52,53] is the inverse Fourier transform of the log-magnitude Fourier

spectrum as shown in Equation 3.19.

C =7 Ylog(|lZ{ft)}I*)} (3.19)

Third, Mel frequency cepstrum (MFC) is a representation of short term power spectrum
of linear cosine transform of a log power spectrum on Mel scale frequency. Each short

time signal has to go through the following steps: Take Fourier transform, take log of
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Mel-scale frequency (mi)
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Fig. 3.25.: Non-linear transformation between frequency in Hz (f) and Mel-scale frequency

(m).

power, and take discrete cosine transform (DCT). Finally, Mel frequency cepstral coeffi-
cients (MFCCs) is a collection of multiple MFCs based on multiple signal framings. Each
frame is 20 msec long and the frame step is 10 msec long. In other words, MFCCs is the
real cepstrum of a windowed short time signal derived from the FFT of the signal.

The MFCCs pipeline is shown in Figure 3.26. First, segments the input signal s[n| into i
frames and then calculate partial Discrete Fourier Transform (DFT) of each frame as shown
in Equation 3.20,

N1 _ 2mkn

Silkl| =Y silnle 7V, k=0,...,N—1 (3.20)
n=0

where N is the length of each frame. Second, calculate power spectral estimation of the i-th

frame as shown in Equation 3.21.

1
Pk = N|S,~[k]|2 (3.21)
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Fig. 3.26.: MFCCs pipeline.

Third, calculate the Mel scale filter bank energy as shown in Equation 3.22,
N—1
Eilm) =Y P[k|Huk], m=0,...M —1 (3.22)
k=0

where H,, k] is the m-th Mel filter as shown in Equation 3.23, and Figure 3.27,
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(3.23)

where M is the number of the Mel filters and f(-) is the list of M + 2 Mel-spaced frequen-

M—-1

cies. The filter design satisfies ), ) Hyy[k] = 1. Note that Hy[k] is equal to O as shown in

Figure 3.28. After calculating the Mel scale filter bank energy, the forth step is to take the

log of it as shown in Equation 3.24.

Ej[m] = log(E;[m])

(3.24)
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Fig. 3.28.: Explanation of H,,[k] and f(-).

Finally, take the discrete cosine transform (DCT) of E![m] as shown in Equation 3.25.

MZIE’ m]cos((m+0 5)— ) n=0,.,M—1 (3.25)
m=0
where M varies for different implementations. In our, we use the first 10 cepstrum coef-
ficients as the features to represent each audio sample. After taking DCT, we are finished
extracting MFCCs feature.
In order to have more mathematical connection with MFCCs, we will explain more
about DCT. A discrete cosine tranfsorm [54,55] (DCT) expresses a finite sequence of data
points in terms of a sum of cosine function oscillating at different frequencies as shown in

Equation 3.26

X[k] = a - i x[n) cos ((n-l—O.S)%k)  k=0,..,.N—1 (3.26)
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where a;, = \/% when k=0 and g = \/% when k # 0, and N is the length of signal x|n].
We can also say that a DCT is a Fourier-related transform similar to the discrete Fourier
transform (DFT), but using only real numbers. The definition of DFT is shown in Equation
3.27

X[k = Y x[nle N k=0,..,N—1 (3.27)
n=0

where N is the length of the discrete time signal x[n]. In DFT, as shown in Equation 3.27,
it has exponential term. On the other hand, in DCT, as shown in Equation 3.26, it only has
the cosine term. For an exponential term, it can be written as the combination of a cosine
term and a sine term for real and imaginary part, respectively. This is the reason why we
can illustrate that the DCT is a Fourier-related transform with only real numbers. There are
several reasons why taking DCT at the last step to extract MFCCs. First of all, based on
Equation 3.26, the resulting coefficients are real-valued. Second, because the Mel filters are
overlapping as shown in Figure 3.27, the filter energies are correlated with each other. The
purpose of DCT is to decorrelate the energies between filters. Furthermore, after taking
DCT, the filter energies are more robust to noise and spectral estimation errors.

Based on MFCCs, we further demonstrate what features will be extracted as the final
features. In some paper, for example, [56] directly take the result of MFCCs as an image to
do further processing. However, in our work, we use mean and standard deviation of each
coefficient with respect to time as the final feature [57]. Discarding the O-th coefficient,
the first tem MFCCs for each frame are used. Figure 3.29 shows an example of MFCCs
with the first 10 coefficients. In Figure 3.30, the vertical axis and horizontal axis represent
the order of the coefficient and time, respectively. The bottom row represents the first
coefficient with 938 frames across the time, and the top row is the tenth coefficient. For
each coefficient, we calculate its mean and standard deviation within these 938 frames with
respect to time. The final feature representation based on MFCCs is shown in Figure 3.31.
The dimension of it is 1 x 20. The first 10 values come from means and the following 10

values come from standard deviations for the first 10 MFCCs.
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Mean with respect to time

Standard deviation with respect to time

Fig. 3.31.: Final feature representation based on MFCCs.

3.3.3 Detector with Mean and Standard Deviation

As the same reason that we previously mentioned Section 5.3.1, in order to solve the
different dimension problem, we would like to extract a feature with fixed dimension to
represent each audio file. Based on the output of the detector, we calculate the mean and
standard deviation column by column as our final feature representation.

For each audio file, the detector can extract an n x 6 feature matrix where each row is
6-tuple feature vector, and n is the number of feature vectors. The number of 7 is varied for

different audio file. Each audio file has to go through the following steps:

Step 1: Based on the extracted feature matrix as shown in Figure 3.32, we normalize each

column into unit length with Euclidean norm as shown in Figure 3.33.

Step 2: Calculate the mean and standard deviation column by column. For each column
in the feature matrix, we use two values, the mean and standard deviation, as the

features to represent each extracted characteristic.

Step 3: Finally, we concatenate all calculated means and standard deviations into a one-row
feature vector as the final feature representation to represent each audio file as shown

in Figure 3.34

The detector with mean and standard deviation is inspired by MFCCs in Section 3.3.2.
The difference between Section 2.3.2 and 2.3.3 is that the feature introduced in Section

2.3.2 calculates the mean and standard deviation with respect to time. On the other hand,



Feature matrix

STfreq Rel PSD Abs PSD pw | mfreg mDepth
(Hz) (Hz) (%)
2074 23.49912 29.84816 3 0 0
11895 23.02643 24,8552 3 1 10.38167
13148 21.5791 22.64249 3 0 0
14414 15.60971 18.62646 11 1 79.39878
352 13.44703 22.72096 3 0 0

Fig. 3.32.: Example of the feature matrix. From the first to the last columns are: Strong tone
frequency, relative PSD, absolute PSD, peak width, modulation frequency, and modulation
depth, respectively.

Normalized Feature matrix

STfreq Rel PSD Abs PSD pw mfreg mDepth
(Hz) (Hz) (%)
0.090383 0.529097 0.555748 0.239426 0 0
0.518376 0.518454 0.462783 0.239426 | 0.707107 0.12965
0.572981 0.485867 0.421584 0.239426 0 0
0.628152 0.351462 0.346809 0.877896 | 0.707107 0.99156
0.01534 0.302768 0.423045 0.239426 0 0

Fig. 3.33.: Normalized feature matrix.

spect to different extracted characteristics based on the detector.

the feature illustrate in Section 2.3.3 calculates the mean and standard deviation with re-
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Fig. 3.34.: Final feature representation based on detector with mean and standard deviation.
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4. ANOMALY DETECTION MODELS AND DATA
AUGMENTATION METHODS

4.1 Classifier

We use the semi-supervised classifier one class support vector machine (OCSVM) [58]
and the supervised classifiers support vector machine (SVM) [59-61], random forest (RF)
[62], and k-nearest neighbor (k-NN) [63, 64] as our classifiers.

4.1.1 One Class Support Vector Machine

Semantically, one class support vector machine (OCSVM) only learns for one class.
Corresponding to our case, which is anomaly detection (or outlier detection), we can use
OCSVM as our classifier to classify the input audio as normal or not normal. The reason
why we are using OCSVM is that it only needs the training data for one class, which is
suitable for our situation that we only have collected normal printer sounds. The abnormal
sounds are synthesized by the defect generator. Because OCSVM only learns for one class,
practically, we train OCSVM with real normal printer sounds and the augmented normal
printer sounds separately. For testing, we use the real normal and the synthetic abnormal
printer sounds as our testing data. The testing data will be the same for different training
dataset.

The concept of OCSVM [58] is that it maps input data into a high dimensional feature
space via a kernel and finds the maximal margin hyperplane which best separates the train-
ing data from the origin in the mapped feature space. In mathematical terms, OCSVM is

solving the optimization problem stated in Equation 4.1 [58]
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R SR
min EHWH +ﬁi;5i—l)

W?éivp (41)
subject to (W ®(x;)) <p—&,i=1,..,1,&>0
where
W — Z o; - CD(X,‘)
! (4.2)
ZOC,' =1
The decision function is
f(x) = sign (W' ®(x;) — p) (4.3)

where v € (0,1] is the fraction of outliers, / is the number of data points, &; is the slack
variable, p is an offset parameter associated with the kernel, and ®(-) is the kernel function
that maps the training sample into another space. The way we categorize the data as normal
or abnormal is based on the decision function. If f(x) > 0, we label x as normal, and if

f(x) <0, we label x as abnormal.

4.1.2 Support Vector Machine

Support vector machine (SVM) [60] is a supervised classifier. The concept of it is
similar to OCSVM. The difference between SVM and OCSVM is that OCSVM separates
the training data from the origin in the mapped feature space. One the other hand, SVM
separates the multi-class training data in the mapped feature space. In mathematical terms,

SVM is solving the optimization problem stated in Equation 4.4 [60]

I DR
min —||w||“+C ;
i 2 1wl ;é 4.4)

subject to (W ¢ (x;)+b) <1-&,i=1,..,1, >0
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where
i (4.5)

The decision function is

l
f(x) =sign (Z yioiK (x;,X) +p> (4.6)
i=1

where C is a trade-off of misclassification of training samples against simplicity of the
separation hyperplane, b is offset of the hyperplane, and y; is the label of training data
xi. Also, as the same description in OCSVM, [ is the number of data points, K(x;,X) =
o (x;)" ¢(x) is the kernel, ¢(-) is the function that maps the training sample into higher
dimensional space, and &; is the slack variable. The way we categorize the data as normal
or abnormal is based on the decision function. If f(x) > 0, we label x as normal, and if
f(x) <0, we label x as abnormal.

If the data are linearly separable, then a linear kernel as shown in Equation 4.7 will
work well. However, if the data is not linearly separable, then a non-linear kernel, namely

the radial basis function (RBF) as shown in Equation 4.8, should be used. 4.8.
K(x;,x) = XiTX 4.7
K(xi,x) = e 7ixI” (4.8)

where x;,x € R¢, and d is the number of the feature dimension.

4.1.3 Random Forest

Random forest (RF) [62] is a supervised ensemble classifier, which is constructed by
a set of multiple decision trees. The more trees it has, the more robust the forest is. Each

decision tree will report class prediction. Finally, we follow the wisdom of crowds rule to
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classify the input to the class with the most votes. Take Figure 4.1 as an example, if the
forest has three decision trees, one of them predicts the input as class 1 and remaining two
of them predict the input as class 0. Based on the number of votes, we will categorized the

input as class 0.

Prediction 1

Prediction O Prediction O

Fig. 4.1.: Voting for multiple decision trees

Combination of multiple decision trees is not the only reason for why random forest is
powerful. Bagging, a method to generate a new training dataset by randomly choosing the
feature from the original dataset with replacement, is another reason.

Bagging (Bootstrap Aggregation) [62] is not extracting the subset from the original
dataset but the subset of the feature. Most important of all, even if we choose the subset of
the feature, the dimension of the subset of the feature still remains the same. For example,
if we have a data with dimension N = 4 as [1,2,3,4], the new training data still has the same
dimension of N = 4 but is constructed by the randomly selected feature with replacement

such as [1,1,3,3]. The dimension of the data is not changed but there are some randomly
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selected features repeated with replacement. In RF, each individual decision tree randomly

picks the subset of the features to decrease the correlation between trees.

4.1.4 K-Nearest Neighbor

The k-nearest neighbor (k-NN) [63] is a supervised classifier based on the similarity
measure to classify the data with the majority vote among the k-nearest neighbor. First
of all, calculate the distance between the testing sample with all of the training samples.
Second, sort the calculated distances in ascending order and the corresponding label of the
training data. Third, count the number of the label of each class from the first k sorted
distances. Finally, the testing sample will be classified to the class with the largest count.
In this dissertation, we use Euclidean distance as our similarity measurement method as
shown in Equation 4.9 to calculate the distance between the training samples and testing

sample.
N
Euclidean distance function = Z (x; — X)2 4.9)
i=1

where x; is the i-th training sample, x is the testing sample, and N is the number of the
training samples. For example, if kK = 1, then the testing sample will be categorized to the

class with the shortest distance.

4.2 Data Augmentation

There are three reasons for us to do data augmentation. First of all, different tasks
need different data. Typically, people are solving the problems such as ASR and ASC;
and currently, there is no suitable public dataset that we can use as a comparison baseline.
Second reason is the lack of the acoustic data. We utilize data augmentation to increase the
number of datasets. The third reason is to decrease feature development cycle. We use the
following six augmentation methods to generate ten augmented datasets.

The following methods are a brief overview of acoustic data augmentation methods

based on different feature. [65] transforms the spectrogram using a random linear warp-
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ing along the frequency dimensions. [66] uses the modified version of [65] with a fixed
gap of warping factor. [67] proposes Equalized Mixture Data Augmentation (EMDA) to
augment the sound by randomly mixing two sounds of a class, with randomly selected tim-
ings. Furthermore, this method perturbs the sound by amplifying/attenuating a particular
frequency band. Similarly, [68] makes the assumption that a combination of two or more
audio segments from the same scene is another sample of that scene with more complex
pattern end events. Also, [69, 70] mixes training samples together to do augmentation. In-
stead of mixing audio sequences, [71] inserts blank rectangles into the two-dimensional
Mel-spectrogram at a randomly chosen size and location to remove some information as

their augmentation method.

4.2.1 Pitch Shifting

For pitch shifting [72], we can choose higher or lower pitch of the audio sample. Take
Figure 4.2 as an example. If your basic tone of the audio is F, and you tune it from F to F*,
this process is called tuning audio file into higher pitch with one musical semitone. On the
other hand, if the basic tone of the audio is F*, and you tune it from F# to F, this process
is called tuning audio file into lower pitch with one musical semitone. More specifically,
in order to increase the pitch by n musical semitones, we will multiply the frequency by
a factor of 272, For example, if we double the frequency of the audio sample, then it will
increase the pitch of 12 semitones. For larger and smaller pitch shifting, we pitch shift with
values +1, 42 and 0.1, £0.2, respectively. Plus sign means higher pitch and minus sign
means lower pitch.

Figure 4.3 shows the information of the real printer sound as a comparison baseline.
The top two parts are the PSD, strong tone frequencies, and modulation frequencies infor-
mation, and the bottom table is the feature matrix. Figures 4.4, 4.5, and 4.6 show the infor-
mation of its augmented printer sounds with different pitch shifting parameters. Figures
4.4 and 4.5 illustrate the difference between larger and smaller pitch shifting, and Figures

4.4 and 4.6 illustrate the difference between higher and lower pitch shifting, respectively.
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Fig. 4.2.: Example of a piano.
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Fig. 4.3.: Extracted features from a real printer sound.
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For both Figures 4.4 and 4.5, their PSD will shift to right compared with Figure 4.3.

But with larger pitch shifting as shown in Figure 4.4, the PSD will shift to right more than

with smaller pitch shifting as shown in Figure 4.5. As a result, the extracted strong tone
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blank1 with larger and higher pitch +1
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Frequency (Hz) Width Frequency (Hz)
0 0

2051 25.80075 28.88793 4

12246 25.63686 23.68972 3 1 11.37195

13535 21.57925 18.37757 3 0 0

14836 15.99574 14.43045 4 1 47.92675

14836 15.99574 14.43045 4 2 12.44941
363 15.52885 20.76689 3 0 0

Fig. 4.4.: Extracted features with higher and larger pitch shifting.

frequencies with larger pitch shifting are higher than with smaller pitch shifting. With
higher pitch shifting as shown in Figure 4.4, the PSD would shift to right, and the PSD
would shift to left with lower pitch shifting as shown in Figure 4.6. As a result, higher
pitch shifting will extract higher strong tone frequencies and lower pitch shifting will ex-
tract lower strong tone frequencies. Based on the mentioned characteristics, pitch shifting

augmentation method will mainly affects the extracted strong tone frequencies.

4.2.2 Time Stretching

For time stretching [72], we can choose to speed it up or slow it down. We stretch with
values £0.01, £0.02. Plus sign means faster speed ratio and minus sign means slower
speed ratio. Figure 4.3 is a comparison baseline, and Figures 4.7 and 4.8 show the feature
with faster and slower speed ratio, respectively. With faster speed ratio as shown in Figure

4.7, the extracted modulation frequencies will increase. On the other hand, the extracted
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Fig. 4.5.: Extracted features with higher and smaller pitch shifting.

modulation frequencies will decrease with slower speed ratio as shown in Figure 4.8. Based
on the mentioned characteristics, time stretching augmentation method will mainly affects

the extracted modulation frequencies.

4.2.3 Mixture

For mixture, we follow the similar concept and assumption from [67-70,73-75]. Three
different types of mixture are used: Average mixture, alpha mixture, and filter bank alpha
mixture.

For average mixture, first, we randomly choose two audio files from the real printer

sound dataset. Next,in the time domain, we combine them as shown in Equation 4.10.

Xp = 0.5x; +0.5x; (4.10)
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340 14.87767 20.59619 3 0 0

Fig. 4.6.: Extracted features with lower and larger pitch shifting.

where x;, is the augmented mixture result and x; and x; are the audio files from the same
class. The augmented result keeps the same label as its mixture source.

For alpha mixture, we follow the similar concept of the mentioned average mixture,
but change its scaling factor from 0.5 to . First of all, we randomly choose two audio
files from the real printer sound dataset. Next, in the time domain, we combine them with

randomly selected scaling factor @ as shown in Equation 4.11

xn:(X~Xi+(1—OC)-xJ' “4.11)

where a € (0,1) , x, is the augmented alpha mixture result and x; and x; are the audio files
from the same class. We can see that if & is equal to half, then Equation 4.11 will be the
same as Equation 4.10. We can also say that average mixture is a special case in alpha

mixture.
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blank1 with faster speed 1+0.05
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Fig. 4.7.: Extracted features with faster speed ratio.

For filter bank alpha mixture, we first mention the concept of filter bank reconstruction,
and then further illustrate filter bank alpha mixture augmentation method. Figure 4.9 shows
the pipeline of filter bank reconstruction. The purpose of filter bank reconstruct is to let
output y[n] is equal to input s[n]. As shown in Figure 4.9, we use two channel filter banks,
low pass filter and high pass filter, as an example, and their amplitude of the frequency
response are shown in Figure 4.10. The process of filter bank reconstruction is: First,
design the filters. Second, convolve the input signal s[n] with the designed filters A [n]| and
hi[n]. The middle outputs would be yg[n]| and y;[n], respectively. Finally, sum all of the
middle outputs up to obtain the output y[n]. Note that the purpose of data augmentation is
to augment the similar sample, not the same one. As a result, we add some scaling factors

at the middle outputs as shown in Figure 4.11 and Equation 4.12.

yn=0+a) yo+(1—o) -y (4.12)
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Fig. 4.8.: Extracted features with slower speed ratio.

Filter 1: hy[n] }—-| Output 1: yp[n] = s[n] = ho[n]

Filter 2: hy[n] }—-| Output 2: y;[r] = s[n] * hy[nr]

Fig. 4.9.: Pipeline of filter bank reconstruction.

Final output:
ylnl = yolnl + y1[n]

where o belongs to normal distribution with ¢t = 0 and ¢ = 0.1, and excludes 0.

4.2.4 Concatenation

For concatenation, we have three steps. First of all, randomly choose two audio samples

from the real printer sound dataset with the same class. Next, randomly crop five seconds

time period from the chosen audio samples as shown in Figure 4.12. Finally, concatenate

two cropped audio samples into a ten-second augmented audio sample as shown in Figure

4.13. The reason to choose five seconds is based on printer’s print rate and the continuity.
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Fig. 4.10.: Frequency response of low pass filter on the left and high pass filter on the right

1+a)

Filter 1: hy[n] '—~| Output 1: yg[n] = s[n] * hy[n]

Input: s[n]

Final output: y[n]

Filter 2: hy[n] |——{ Output 2: y,[n] = s[n]  hy[n]

(1-a)

Fig. 4.11.: Pipeline of filter bank alpha mixture.

The print rate of the printer is 60 pages per minute (ppm), which means the shortest time
period that we can crop without loosing the continuity is one second. In order to keep the
high similarity between the real and augmented audio sample, we decide the cropped time

period is five seconds.

4.2.5 Random Erasing

For random erasing, we follow the core concept in [71], which proposes an image data
augmentation method. In [71], they randomly select a rectangle region in an image and
erases its pixels with random values. We utilize this idea for the image feature represen-

tation of the audio sample: Spectrogram. Spectrogram is a 3D information as shown in
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10 sec

0-5 sec

1-6 sec

5-10 sec

Fig. 4.12.: The second step for concatenation: Randomly crop five seconds time period of
the chosen audio sample.

From audio 2

1
0 sec ' ' 10 sec

1

From audio 1

Fig. 4.13.: The last step for concatenation: Concatenate two cropped audio samples into a
ten-second audio sample.

Figure 4.14. Vertical axis and horizontal axis represent frequency in hertz and time in sec-
ond, respectively. Furthermore, the decibel value represents the amplitude of the audio
sample in certain frequency band and at certain time. More specifically, instead of spectro-
gram, we use the result which is one step before we obtain the spectrogram: The short time
Fourier transform (STFT) complex-valued matrix. As shown in Figure 4.14, spectrogram

is the result after taking the absolute value of the STFT complex-valued matrix. Based
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on the STFT complex-valued matrix, we randomly select the size and the position of the

rectangle, and replace all pixels inside the rectangle region with the random value ranges

from O to 1 for both real and imaginary parts as shown in Figure 4.15. Note that the size

Erased
+0dB
8192

-10dB
4096

-20dB
2048

Hz

-30dB
1024

-40 dB
512

-50 dB

Erasel6
+0dB
8192

-10dB
4096

-20dB
2048
-30dB

s12 1o . b -40 dB

-50dB

Fig. 4.15.: Examples for random erasing augmentation method. The yellow circle part is

the erasing part.

of STFT complex-valued matrix is 1024 x 938, and the width and the height of the erasing

rectangle is randomly chosen from 30 to 70.
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4.2.6 Zoning Blending

For zoning blending, the zoning concept is inspired by [41,76,77]. In these papers, they
propose a zoning technique to obtain the local information by dividing the time frequency
representation (TFR) into n zones horizontally as shown in Figure 4.16(a). In this example,
the number of n is equal to 4. We go through the following four steps as shown in Figure
4.16 to do zoning blending. First, cut the STFT complex-valued matrix horizontally into
four zones as shown in Figure 4.16(a). The top zone is called zonel and the bottom zone is
called zone4. Note that we use spectrogram as an easier representation of STFT complex-
valued matrix. Next, randomly select four scaling factors: 1+ o, 1+ ap, 1+ a3, and
1 + oy, where o;,i = 1,...,4 belong to normal distribution with g4 = 0 and ¢ = 0.1, and
excludes 0 as shown in Figure 4.16(b). But in Figure 4.16(b), there may cause a sharp
transition between different zones. As aresult, in the third step, center at the zone boundary,
we extend the zone boundary from a line to a rectangle region as shown in Figure 4.16(c).
The last step for zoning blending is shown in Figure 4.16(d), the left hand side shows
our blending rule. For non-blending region, we multiply the fixed scaling factor as we
mentioned previously. For blending region, take the blue point as an example, because the
position is between zonel and zone2 with scaling factors 14 ¢ and 1 + oy, respectively,
the scaling factor at this frequency band is equal to %(1 +ap)+ %(1 + ). If the blue point
towards the higher frequency band, zonel, then the scaling factor for the blue point will
contain higher ratio from 1 + ; and less ratio from 1+ ¢,. In this case, we can avoid the

sharp transition between different zones.
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Fig. 4.16.: The procedures of zoning blending (a) Cut four zones horizontally (b) Ran-

domly select four scaling factors (c) Annotate blending region (d) The last step for zoning
blending.
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S. DATA ARRANGEMENT AND EXPERIMENTAL RESULTS

5.1 Data Arrangement

We use our collected 400 real normal printer sounds dataset as a comparison basedline.
We additionally synthesize 400 abnormal printer sounds as mentioned in Section 3.2.3.
Among these 400 synthetic abnormal printer sounds, all of them are used for RF and 40
of them are used for OCSVM. These 400 collected normal plus 40 synthesized abnormal
printer sounds are the data arrangement for OCSVM and 400 collected normal plus 400
synthesized abnormal printer sounds are the data arrangement for RF.

For semi-supervised classifier, OCSVM, we randomly choose 360 within the 400 real
normal printer sounds as the normal training data as shown in Figure 5.1. The remaining
40 real normal printer sounds and the 40 synthetic abnormal printer sounds are the testing

data as shown in Figure 5.2.

— -,

- - - o
Real normal printer
/( sounds: 360 )
/7 ~ ~ o _ - 7’
Real normal printer 4 _————
sounds: 400 ==
-7 =~
~ , Real normal printer
\ sounds: 40 )
~ rd
Synthetic abnormal
printer sounds: 400 - _ - -———— =
S o Synthetic abnormal ~
\ printer sounds: 40 )
~ _
-~ —-—

_—am =

Fig. 5.1.: Data arrangement part 1 for semi-supervised classifier.

For supervised classifiers, SVM, RF, and k-NN, we randomly choose 360 within the

400 synthetic abnormal printer sounds as the abnormal training data and randomly choose
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Fig. 5.2.: Data arrangement part 2 for semi-supervised classifier.

360 within the 400 real normal printer sounds as the normal training data. The remaining
40 real normal and 40 synthetic abnormal printer sounds are the testing data as shown

in Figure 5.3. Note that for supervised classifiers, they need both normal and abnormal

———
- -

“  Real normal printer S
)( sounds: 360
/ S~ -~ ——m e - -
/
! 4 ——— -
Real normal printer - -
sounds: 400 S~ “  Real normal printer S
\ sounds: 40 _ Training
S~o o e e =—" Testing Training
————— data data
s ~ -~
Synthetic abnormal - Synthetic abnormal S normal 40 360
printer sounds: 400 =™ printer sounds: 360 o Jesti
~ estin
\\ S~ =" € abnormal 40 360
\emTm T T e =~
¢ Synthetic abnormal ™

\ printer sounds: 40
~

-
~~————-_—

Fig. 5.3.: Data arrangement for supervised classifiers.

training data. On the other hand, semi-supervised classifier only needs normal training
data. However, the testing data for all classifiers are the same. Here, all of the evaluation
results are based on 10-fold cross validation as shown in Figure 5.4.

The data arrangement for the augmented dataset with semi-supervised classifier and

supervised classifiers are shown in Figures 5.5 and 5.6, respectively. The data arrangement
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10-fold cross validation

Testing Training
720

Fig. 5.4.: 10-fold cross validation

for the real printer sound dataset is below the red dash line and the data arrangement for
the augmented dataset is above the red dash line. For semi-supervised classifier, OCSVM,
the training data would be 360 augmented normal data and the testing data are the same as
the real printer sound dataset as shown in Figure 5.2. For supervised classifiers, SVM, RF,
and k-NN, the training data are 360 augmented normal data and 360 augmented abnormal.
Note that the testing data are the same as the real printer sound dataset as shown in Figure

5.3.

5.2 Evaluation Methods

We use F-measure based on precision and recall with different weights to evaluate clas-
sifiers’ performance. The value of F-measure is the higher the better. We will also show the
accuracy performance at the same time. Table 5.1 shows the confusion matrix that we are

using. Because we are dealing with anomaly detection task, the anomaly is more important

Data predication
Normal | Abnormal

Normal TN FP
Abnormal FN TP

Confusion Matrix

Data ground truth

Table 5.1.: Confusion Matrix
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Fig. 5.5.: Data arrangement for the augmented dataset in semi-supervised classifier.
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~

than normal. As a result, we take abnormal class as the positive case. Before look into the

classifier performances, we demonstrate the definition of all evaluation methods. First of
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all, precision (P) is the fraction of predicted abnormal sample is abnormal ground truth as

shown in Equation 5.1.
TP

Precision (P) = TP L FP

(5.1)

In other words, how confident can customers trust us? Next, recall is the fraction of abnor-

mal ground truth is predicted as abnormal as shown in Equation 5.2.

TP

Recall (R) = ’TP—|——FI\I

(5.2)

In other words, how confident can we trust the anomaly detection model? Based on Equa-
tions 5.1 and 5.2, we can further calculate the value of F-measure. F-measure [78, 79]
provides a way to consider precision and recall at the same time with the different weight

as shown in Equation 5.3,

P-R

F-measure = (1 +ﬁ2) . m

(5.3)

where f3 is chosen such that recall is considered f times as important as precision. If f is
less than 1, then precision is more important then recall. Vice versa, if f8 is larger than 1,
then recall is more important than precision. In this dissertation, we use 8 = 0.25 because
higher precision shows more persuasive evidence to our customers. Last evaluation method

is accuracy as shown in Equation 5.4.

TP+TN
A _ 5.4
Uy = TP Y FN+ TN+ EP SA

Based on the description in Section 5.1, we do all experiments with balanced dataset, which
means the number of the training data for both normal and abnormal class are the same.
Furthermore, the number of the testing data are also the same for both classes. As a result,

accuracy can also be considered as one of the evaluation method.
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5.3 Results

Based on our system pipeline as shown in Figure 3.1, it shows two comparisons: Fixed
feature with different inputs and different classifiers, and fixed input with different features

and different classifiers.
5.3.1 Different Inputs vs Different Classifiers

In the first comparison, the three fixed features are: Detector with PCA, detector with
mean and standard deviation, and MFCCs.

Evaluation Based on Detector with PCA

There are 660 different combinations of eleven training datasets and six classifiers based

on detector with PCA as shown in Figure5.7. For the real printer sound dataset, it has real

Fixed: Detector with PCA

|

Random Forest
K-Nearest Neighbor

Feature Classifi gIUtp.';.t' ti
A extraction assirier assification
result
= OCSVM-Linear " Precision
=  OCSVM-RBF = Recall
= SVM-Linear " F-measure
= SVM-RBF " Accuracy
]

Fig. 5.7.: Different inputs vs Different classifiers based on detector with PCA.

normal and synthetic abnormal audio samples. As the explanation in Section 5.1, we train

the classifiers with real printer sounds and test them with real printer sounds. For the
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following nine augmented datasets, we train the classifiers with augmented printer sounds
and test them with real printer sounds. For the last one, all augmented dataset, we train the
classifiers with these nine augmented datasets and test them with real printer sounds. In
other words, the first ten datasets train the classifiers with 360 normal and 360 abnormal,
and test them with 40 normal and 40 abnormal. The last dataset, all augmented datasets,
trains the classifiers with 3240 normal and 3240 abnormal, and test them with 40 normal
and 40 abnormal. The evaluation results of F-measure, precision, recall, and accuracy are
in Tables 5.2, 5.3, 5.4, and 5.5.

Based on the precision performance in Table 5.3, average mixture augmented dataset
have the best performance with OCSVM with linear kernel. Filter bank alpha mixture
augmented dataset has the best performance with OCSVM with RBF kernel, and random
erasing augmented dataset has the closest performance compared with the best one within
1%. Real printer sound dataset has the best performance with SVM with linear kernel, and
filter bank alpha mixture augmented dataset has the closest performance compared with the
best one within 1%. Filter bank alpha mixture augmented dataset has the best performance
with SVM with RBF kernel, and all augmented datasets have the closest performance com-
pared with the best one within 1%. All augmented datasets have the best performance with
REF, and alpha mixture augmented dataset has the closest performance compared with the
best one within 1%. All augmented datasets have the best performance with k-NN, and real
printer, alpha mixture, random erasing, and filter bank alpha mixture augmented datasets
have the closest performance compared with the best one within 1%.

Based on the recall performance in Table 5.4, larger pitch shifting, time stretching,
concatenation, alpha mixture, and random erasing augmented datasets have perfect recall
with OCSVM with linear kernel. Concatenation augmented dataset has the best perofor-
mance with OCSVM with RBF kernel. Real printer sound dataset has the best performance
with SVM with linear kernel, and time stretching and filter bank alpha mixture augmented
datasets have the closest performance compared with the best one within 1%. All aug-
mented datasets have the best performance with SVM with RBF kernel. Random erasing

augmented dataset has the best performance with RF, and larger pitch shifting and filter
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bank alpha mixture augmented datasets have the closest performance compared with the
best one within 1%. All augmented datasets have the best performance with k-NN.

Based on the F-measure performance in Table 5.2,average mixture augmented dataset
has the best performance with OCSVM with linear kernel. Random erasing augmented
dataset has the best performance with OCSVM with RBF kernel. Real printer sound dataset
has the best performance with SVM with linear kernel, and filter bank alpha mixture aug-
mented dataset has the closest performance compared with the best one within 1%. Filter
bank alpha mixture augmented dataset has the best performance with SVM with RBF ker-
nel, and all augmented datasets have the closest performance compared with the best one
within 1%. All augmented datasets have the best performance with RF, and alpha mix-
ture, random erasing, and filter bank alpha mixture augmented datasets have the closest
performance compared with the best one within 1%. All augmented datasets have the best
performance with k-NN, and real printer sound dataset, random erasing, and filter bank al-
pha mixture augmented datasets have the closest performance compared with the best one
within 1%.

Table 5.2 shows obviously that different combinations of augmentation method and
classifier can improve the model performance based on the detector with PCA. More obvi-
ously, when we increase the number of the training data, the performance is better than the

fewer one.

Evaluation Based on MFCCs

There are 660 different combinations of eleven training datasets and six classifiers based
on MFCCs as shown in Figure 5.8. The data arrangement for training and testing data
are the same in Section 5.3.1 The evaluation results of F-measure, precision, recall, and
accuracy are in Tables 5.6, 5.7, 5.8, and 5.9.

Based on the precision performance in Table 5.7, average mixture augmented dataset
has the best performance with OCSVM with linear kernel. All augmented datasets have

the best performance with OCSVM with RBF kernel. Average mixture and concatena-
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Fig. 5.8.: Different inputs vs Different classifiers based on MFCCs

tion augmented datasets have the best performance with SVM with linear kernel, and time
stretching, random erasing, and filter bank alpha mixture augmented datasets have the clos-
est performance compared with the best one within 0.1%. All augmented datasets have the
best performance with SVM with RBF kernel, and random erasing augmented dataset has
the closest performance compared with the best one within 0.1%. All augmented datasets
have the best performance with RF. All of the listed datasets have the perfect precision with
k-NN.

Based on the recall performance in Table 5.8, except time stretching, average mixture,
alpha mixture, and all augmented datasets, the remaining listed datasets have perfect re-
call with OCSVM with linear kernel. Except all augmented datasets, the remaining listed
datasets have perfect recall with OCSVM with RBF kernel. Real printer sound dataset has
the best performance with SVM with linear kernel, and random erasing and filter bank al-
pha mixture augmented datasets have the closest performance compared with the best one
within 0.1%. All of the listed datasets have perfect recall with SVM with RBF kernel. Real

printer sound dataset has the best performance with RF. Real printer sound dataset and all
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augmented datasets have the best performance with k-NN, and random erasing augmented
dataset has the closest performance compared with the best one within 0.1%.

Based on the F-measure in Table 5.6, average mixture augmented dataset has the best
performance with OCSVM with linear kernel. Real printer sound dataset has the best
performance with OCSVM with RBF kernel. Filter bank alpha mixture augmented dataset
has the best performance with SVM with linear kernel, and concatenation and random
erasing augmented datasets have the closest performance compared with the best one within
0.1 %. All augmented datasets have the best performance with SVM with RBF kernel, and
random erasing augmented datasets has the closest performance compared with the best
one within 0.1%. All augmented datasets have the best performance with RF, and alpha
mixture and filter bank alpha mixture augmented datasets have the closest performance
compared with the best one within 0.1%. Real printer sound dataset, random erasing, and
all augmented datasets have perfect F-measure with k-NN, and smaller pitch shifting, time
stretching, concatenation, alpha mixture, and filter bank alpha mixture augmented datasets
have the closest performance compared with the best one within 1%.

Table 5.6 shows obviously that different combinations of augmentation method and
classifier can improve the model performance based on MFCCs. More obviously, when we

increase the number of the training data, the performance is better than the fewer one

Evaluation Based on detector with mean and standard deviation

There are 660 different combinations of eleven training datasets and six classifiers based
on detector with mean and standard deviation as shown in Figure 5.9. The data arrangement
for training and testing data are the same as the illustration in Section 5.3.1. The evaluation
results of F-measure, precision, recall, and accuracy are in Tables 5.10, 5.11, 5.12, and
5.13.

Based on the precision performance in Table 5.11, all augmented datasets has the best
performance with OCSVM with linear kernel. All augmented datasets has the best per-

formance with SVM with both linear and RBF kernels, and zoning blending augmented
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Fixed: Detector with mean
and standard deviation

!
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Fig. 5.9.: Different inputs vs Different classifiers based on detector with mean and standard
deviation.

dataset has the closest performance compared with the best one within 1%. Filter bank
alpha mixture augmented dataset has the best performance with RF, and random erasing,
zoning blending, and all augmented datasets have the closest performance compared with
the best one within 1%. All augmented datasets have the best performance with k-NN.
Note that OCSVM with RBF kernel didn’t work for the detector with mean and standard
deviation feature.

Based on the recall performance in Table 5.12, average mixture, concatenation, and
alpha mixture augmented datasets have perfect recall with OCSVM with linear kernel.
Average mixture augmented dataset has the best performance with SVM with both linear
and RBF kernels. Random erasing augmented dataset has the best performance with RF,
and real printer sound dataset has the closest performance compared with the best one
within 1%. All augmented datasets has the best performance with k-NN, and filter bank
alpha mixture augmented dataset has the closest performance compared with the best one
within 1%. Note that OCSVM with RBF kernel didn’t work for the detector with mean and

standard deviation feature.
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Based on the F-measure in Table 5.10, all augmented datasets have the best perfor-
mance with OCSVM with linear kernel. All augmented datasets have the best performance
with SVM with both linear and RBF kernels, and zoning blending augmented dataset has
the closest performance compared with the best one within 1 %. Filter bank alpha mix-
ture augmented dataset has the best performance with RF, and random erasing augmented
dataset and all augmented datasets have the closest performance compared with the best
one within 1%. All augmented datasets have the best performance with k-NN.

Table 5.10 shows obviously that different combinations of augmentation method and
classifier can improve the model performance based on the detector with mean and stan-
dard deviation. More obviously, when we increase the number of the training data, the

performance is better than the fewer one.

5.3.2 Different Features vs Different Classifiers

There are 18 different combinations of three features and six classifiers based on the

input with real printer sound dataset as shown in Figure 5.10. The evaluation results of

Random Forest
K-Nearest Neighbor

Input: Output:
Printer |—— ) Classifier Classification
sound result
l =  QCSVM-Linear = Precision
Fixed: Real printer sound dataset =  OCSVM-RBF = Recall
= SVM-Linear "  F-measure
=  SVM-RBF = Accuracy

Fig. 5.10.: Different feature vs Different classifier based on real printer sound dataset.

F-measure, precision, recall, and accuracy are in Tables 5.14, 5.15, 5.16, and 5.17.
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Based on the precision performance in Table 5.15, MFCCs feature has the best perfor-
mance with all six classifiers. Based on the recall performance in Table 5.16, except RF,
MEFCCs feature has the best performance the remaining listed classifiers. Detector with
mean and standard deviation feature has the best performance with RE. Based on the F-
measure performance in Table 5.14, MFCCs feature has the best performance with all six
classifiers.

Table 5.14 shows obviously that different combinations of feature and classifier can
improve the model performance. Note that although the detector with mean and standard
deviation has lower F-measure value, the computation cost of it is the lowest one within
these three features. Here shows the trade-off between the computation cost and the model

performance.

5.4 Conclusion

We have developed an anomaly detection system to diagnose the printer health. Our
proposed anomaly detection pipeline consists of three parts: First, data preparation for
synthetic abnormal sounds and the augmented sounds; Second, feature extraction based
on detector with principal component analysis, Mel frequency cepstral coefficients, and
detector with mean and standard deviation; Third, use one of six different classifiers that
we explored; Fourth, categorize the input printer sound into normal or abnormal class. The
proposed augmented dataset can improve the performance of our anomaly detection model.
For the semi-supervised OCSVM with linear kernel, the average mixture augmented dataset
with detector with PCA and MFCCs has the largest improvement over the real printer
sound dataset. For the four fully supervised classifiers, the random erasing and filter bank
alpha mixture augmentation methods work well with all features, except for the detector
with mean and standard deviation. Finally, we investigated novel augmentation methods,
different features, and different classifiers to improve the model performance, and find the

most appropriate one.
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6. CONCLUSION AND CONTRIBUTION

We summarize the contributions of this dissertation as follows:

* We have developed a novel, aperiodic, dispersed-dot halftoning solution for a simu-

lated multilevel CMY printer with 16 levels per channel.
* Qur proposed imaging pipeline consists of:

— First, transform input sRGB to YyCxCz linearized uniform color space.

— Next, we do the gamut mapping to fit the source gamut into the printer gamut

also in the YyCxCz color space.
— Finally, we do vector error diffusion that maps modified continuous-tone image

values to the nearest output color on a 16 x 16 x 16 grid.

* It yields good quality output images but the improvement over FSED provided by

TDFED is not as significant as it is for a binary output device.
* We have expanded an anomaly detection system to diagnose the printer health.
* Our proposed anomaly detection pipeline consists three parts:

— Data preparation for synthetic abnormal sounds and the augmented sounds.
+ Explored or developed eight different augmentation methods
— Feature extraction based on

* Detector with principal component analysis
x Mel frequency cepstral coefficients

* Detector with mean and standard deviation

— Explored the accuracy of six different classifiers
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— Third, categorize the input printer sound into normal or abnormal class.

* The proposed augmented dataset can improve the performance of our anomaly de-

tection model:

— For the semi-supervised OCSVM with linear kernel, the average mixture aug-
mented dataset with detector with PCA and MFCCs has the largest improve-

ment over the real printer sound dataset.

— For the four fully supervised classifiers, the random erasing and filter bank al-
pha mixture augmentation methods work well with all features, except for the

detector with mean and standard deviation.

* Finally, we investigated novel augmentation methods, different features, and different

classifiers to improve the model performance, to find the most appropriate one.
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