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ABSTRACT

Ro, Dohyung Ph.D., Purdue University, August 2020. Multi-Electron Bubble Phases.
Major Professor: Gábor A. Csáthy.

Strong electronic correlations in many-body systems are cradles of new physics.

They give birth to novel collective states hosting emergent quasiparticles as well as in-

triguing geometrical charge patterns. Two-dimensional electron gas in GaAs/AlGaAs

under perpendicular magnetic field is one of the most well-known hosts in condensed

matter physics where a plethora of the collective states appear. In the strong mag-

netic field regime, strong Coulomb interactions among the electrons create emergent

quasiparticles, i.e. composite fermions and Cooper-paired composite fermions. In

the weak magnetic field regime, modified Coulomb interactions drive electron solid

phases having geometrical charge patterns in the shape of stripes and bubbles and

lower the spatial symmetry of the states.

The fascinating charge order in bubble geometry is the electron bubble phase pre-

dicted first by the Hartree-Fock theory. In a bubble phase, certain number of electrons

cluster as an entity called bubble and the bubbles order into a crystal of triangular

lattice. In addition to the Hartree-Fock theory, the density matrix renormalization

group and the exact diagonalization methods further support the formation of elec-

tronic bubbles.

Reentrant integer quantum Hall states are commonly accepted as the manifesta-

tions of the bubble phases in transport experiment. Soon after the first prediction of

the Hartree-Fock theory, the reentrant integer quantum Hall states were observed in

the third and higher Landau levels. Since then, the association to the bubble phases

has been tested with different experimental techniques for decades.
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Although the experimental results from different methods support the bubble

phase picture of the reentrant integer quantum Hall states, the electron confinement

under the quantum well structure hindered direct scanning of bubble morphology.

Thus none of the experiments could showcase the bubble morphology of the reentrant

integer quantum Hall states. Meanwhile, a significant discrepancy still remained in

between the bubble theories and the experiments. Even though the bubble theories

predict the proliferation of bubble phases with increasing orbital index, none of the

experiments could observe multiple reentrant integer quantum Hall states in a high

Landau level, which signify the multiple bubble formation. Therefore, the prolifera-

tion of bubble phases with increasing Landau level index was pessimistic.

In this Dissertation, I present my research on solving this discrepancy. In chapter

4, we performed a magnetotransport measurement of reentrant integer quantum Hall

states in the third and higher Landau levels at various different temperatures. Then,

we scrutinized how each of the reentrant integer quantum Hall states develops with

the gradual increase of the temperature. As a result, we observed multiple reentrant

integer quantum Hall states in the fourth Landau level which are associated with the

two- and three-electron bubble phases. This result strongly supports the bubble phase

picture of the reentrant integer quantum Hall states by confirming the possibility of

the proliferation of bubble phases in high Landau levels.

In chapter 5, I analyzed the energetics of newly resolved two- and three-electron

bubble phases in the fourth Landau level as well as those of two-electron bubble

phases in the third Landau level. Here, I first found, in the fourth Landau level,

the three-electron bubbles are more stable than the two-electron bubbles indicating

that the multi-electron bubbles with higher electron number are more stable within a

Landau level. Secondly, I found distinct energetic features of two- and three-electron

bubble phases which are independent of Landau level index throughout the third and

the fourth Landau levels. These results highlight the effect of the number of electrons

per bubble on the energetics of multi-electron bubble phases and are expected to

contribute on improving the existing Hartree-Fock theories.



1

1. CLASSICAL AND QUANTUM HALL EFFECTS

When the magnetic field is applied perpendicularly to the direction of current to a

material which current passes through, apart from the expected voltage drop along

the direction of the current, voltage drop transverse to the direction of the current

also occurs [1]. This voltage is called the Hall voltage and with the voltage drop along

the direction of the current, longitudinal voltage, it provides fruitful information to

characterize the electronic states of the material.

Vxx

Vxy 

I

Rxx = Vxx/I
Longitudinal Resistance

Rxy = Vxy/I
Hall Resistance

B

Figure 1.1. A Hall bar configuration to measure the longitudinal
voltage Vxx and the Hall voltage Vxy. From the longitudinal and Hall
voltage, the longitudinal resistance Rxx and the Hall resistance Rxy

are deduced respectively.



2

1.1 Classical Hall Effect

This phenomenon of induced Hall voltage due to a perpendicularly applied mag-

netic field is called Hall effect and was first discovered in a gold strip by Edwin Hall

in 1879 [1]. The emergence of Hall voltage is well described by the Lorentz force in

classical electromagnetism. As electrons experience the Lorentz force passing through

the perpendicular magnetic field, electrons deflect toward one side of the sample and

are piled up to the side. As a result, the voltage difference between the two sides of

the sample is created.

The signature of classical Hall effect is the linearly increasing Hall voltage with

respect to increasing magnetic field. The linear dependence is quantified Rxy = B/en,

where Rxy is the Hall resistance, B is the perpendicular magnetic field, e is the

electron charge, and n is the carrier density. Thus, by measuring the Hall resistance,

one can find the carrier density of the material, which is an important characteristic

of material.

1.2 Introduction to the Quantum Hall Effects

As the dimensions of electronic system reduce into two dimensions and the temper-

ature lowers down to liquid helium temperature, more interesting phenomena emerge.

For the two-dimensional electron gas (2DEG) confined in GaAs/AlGaAs quantum

well, plateaus appear on the Hall resistance Rxy vs perpendicular magnetic field plot

at low temperature. Surprisingly, these plateaus only appear at the quantized values

of the Hall resistance Rxy =
h

ie2
, where h is the Planck constant, e is the elementary

charge, and i are the quantized filling factors. These phenomena of the emergence

of novel electronic states corresponding to each of the quantized plateaus are called

quantum Hall effect (QHE) and divided into two categories: one with integer filling

factors, integer quantum Hall effect (IQHE), and the other with fractional filling fac-

tors, fractional quantum Hall effect (FQHE). Unlike the classical Hall effect which
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can be described classically, the quantum Hall effects require quantum mechanical

descriptions.
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Figure 1.2. Comparison between the (classical) Hall effect and quan-
tum Hall effects. The Hall resistance is plotted in the units of von
Klitzing constant h

e2
which is approximately 25.8 kΩ. The integers

and fractions marking each plateau are the filling factors. The fit-
ted red line shows the linearity of classical Hall effect behavior in the
measured trace of quantum Hall effects.

1.3 Integer Quantum Hall Effect

The IQHE was first discovered in an inversion layer of MOSFET (metal-oxide-

semiconductor field-effect transistor) by Klaus von Klitzing in 1980 [2]. The signature

of IQHE is the plateau at the integer-quantized value of the Hall resistance Rxy,

Rxy =
h

νe2
=

h

ie2
(1.1)
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where h is the Planck constant, ν is the filling factor, and i is an integer (i = 1, 2, 3...),

and the vanishing to zero longitudinal resistance Rxx.

Rxx = 0 (1.2)

Figure 1.3. The first observation of IQHE by K. von Klitzing et al. [2].
The plateaus in the Hall resistance as well as the vanishing longitu-
dinal resistance identify the integer quantum Hall states. Reprinted
figure with permission from Ref. [2]. Copyright c© 1980 by American
Physical Society.

The IQHE is understood through the quantization of the energy band in the

magnetic field. Before the perpendicular magnetic field is applied, the 2DEG has

the continuous energy band. As the perpendicular magnetic field is applied, the

continuous energy band quantizes into discrete energy levels called Landau levels. This

quantization of energy band into Landau levels is the analytical result of solving the



5

Schrödinger equation with the Hamiltonian describing one spin-less electron confined

in 2D, on the X-Y plane, with the perpendicular magnetic field in the Z-direction [3,4].

Hamiltonian:

Ĥ =
1

2m∗ (p̂+ eA)2 (1.3)

where m∗ is the effective mass of electron, p̂ is the momentum operator, e is the

elementary charge, and A = Bxŷ is the Landau gauge.

Wave Functions:

Ψ(x, y)n = eikyyun(x+ h̄ky/eB) (1.4)

where ky = 2πm/Ly, (m = 0, 1, 2..., Ly is the system width), un(x) is the solution of

1D simple harmonic oscillator.

Landau Levels:

En = (1/2 + n)h̄ωc (1.5)

where n = 0, 1, 2..., h̄ = h/2π, ωc = eB/m∗ is the cyclotron frequency of electrons

(e is the elementary charge, B is the perpendicular magnetic field, and m∗ is the

effective mass of electron.).

Number of Degenerate States (not per unit area)

N = eBA/h (1.6)

where e is the elementary charge, B is the perpendicular magnetic field, A is the area

of system, and h is the Planck constant.

Counting the spin of electron, a Landau level splits into two Zeeman energy levels.

Zeeman Energy Gap:

∆Zeeman = gµB (1.7)

where, g is the g-factor of the host material, µ is magnetic moment of electron, and B

is the perpendicular magnetic field. Zeeman energy gap indicates the energy difference

between the upper (spin-down) and lower (spin-up) spin branches within a Landau

level.

Each spin branch of Landau level or Zeeman energy level corresponds to one

integer filling factor. The lowest energy spin branch is ν = 1, which is the spin-up
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Spin ↓

Spin ↑
Spin ↓

Figure 1.4. Quantization of the energy band into the Landau lev-
els due to the perpendicular magnetic field. The 2DEG in GaAs
has parabolic energy band with single valley, unlike that in graphene
which has cone-shaped energy band with multiple valleys. The density
of states n(E) is constant with respect to energy in two-dimensions.

branch of the lowest Landau level. The second lowest energy spin branch is ν = 2,

which is the spin-down branch of the lowest Landau level. In GaAs, in ambient

pressure, the spin-up branch has lower energy than the spin-down branch within a

landau level due to the negative value of g-factor [5]. Thus, also for the other Landau

levels, spin-up branch has lower energy than the spin-down branch.
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the Landau levels expand and spread out towards the higher energy
regime. Figure adapted with permission from Ref. [7]. Copyrighted
by American Physical Society.
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The lowest Landau level (N=0 Landau level) has the energy of E0 =
1

2
h̄ωc and the

second lowest Landau level or the first excited Landau level or the N=1 Landau level

has the energy of E1 =
3

2
h̄ωc. Here, one needs to pay attention to the terminology

describing the second lowest Landau level. People use several different terminologies

to describe the second lowest and higher Landau levels. The energy difference between

two consecutive Landau levels is ∆Landau = h̄ωc.

The physical meaning of the filling factor is the total number of electrons/the

number of states in one spin branch of Landau level. The ν = 1 IQHS fills all the

available states of the lowest spin branch. The ν = 2 IQHS fills all the available states

of the two lowest spin branches.

E

n(E)

No Impurities With Impurities

n(E)

E

Extended States

Localized States

ν=1

ν=2

ν=3

ν=4

N=1

N=0

Figure 1.6. The Landau level broadening due to the impurity effect.
Thanks to the presence of impurities even in the purest sample, the
narrow Landau levels broaden and host more states as the extended
and the localized states.
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The IQHSs are heavily degenerate states since there are a number of combinations

of kx and ky within a Landau level. Semi-classically the number of degenerate states

(not per unit area) is equal to the number of the minimum area for an electron’s

cyclotron motion throughout the total area of the system. This number coincides

with the total number of the magnetic flux in the area of the system [3].

Owing to the effect of the impurities in the sample, extra states in between the

Landau levels which are called localized states are created and these states allow the

Fermi level to locate in between the Landau levels. If there is no state in between the

extended states, which are the conducting states inside the Landau levels, Fermi level

ν=1
ν=2
ν=3
ν=4

E

ν=1
ν=2
ν=3
ν=4

E

ν=1
ν=2
ν=3
ν=4

E

ν=1
ν=2
ν=3
ν=4

E

ν=1
ν=2
ν=3
ν=4

E

Elevation of conduction band 
due to vacuum potential

Fermi Level

Bulk EdgeEdge
Edge current 1 Edge current 2 Edge current 1Edge current 2

ν=2 Integer quantum Hall State

Figure 1.7. The origin of the edge current. The conduction band ele-
vates as it reaches to the edge of sample due to the vacuum potential.
As a result, the Fermi level crosses the elevated underlying Landau
levels at the edge. The number of Fermi level crossed Landau levels is
the number of edge current. The ν = 2 IQHS is shown as an example.
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will directly jump up to the next Landau level to conserve the number of electrons

and as a result, Rxy plot will lose the plateaus.

Looking into the quantized Landau levels in the conduction band, when the Fermi

level is in the extended states, the host material is metallic, since there are vacant

energy levels right above and below the Fermi level similar to a normal metal. As a

result, Rxy increases with increasing magnetic field. When the Fermi level is in the

localized states, the bulk of the host material is insulating, because the impurities

localize the carriers in the energy level right above or below the Fermi level. As a

result, Rxy creates the plateaus. Although the bulk is insulating, the edge of the

I

B

e
ee

Electrons localized with 
full cyclotron orbits

Electrons conducting with 
skipping orbits

Chiral edge current

Insulating bulk

Figure 1.8. The semi-classical picture of dissipation-less chiral edge
current of quantum Hall states. The skipping orbit trajectory sup-
presses backscattering only for one chiral direction at the edge. Mean-
while, in the bulk, the electrons in full cyclotron motion are localized.
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sample conducts. This is because the Landau levels skyrocket at the edge of the

sample due to the effect of the vacuum potential. This current at the edge is called

edge current and shows the dissipation-less nature, which is an important feature of

the quantum Hall states.

Dissipation-less nature of the edge current can be intuitively described through

semi-classically [8–10]. The 2DEG in perpendicular magnetic field is in cyclotron

motion in the semi-classical picture. Electrons in the bulk are localized through

the complete orbital motion. However, electrons at the edge are not able to finish

a complete circular motion due to the reflection to the edge of the sample. This

reflection suppresses the back-scattering of the electrons and yields the net translation

of the electrons along the edge of the sample towards the grounding contact. As a

result, there is no potential drop along the edge and Rxx becomes zero.

Although the four terminal measurement of the longitudinal resistance gives the

Rxx = 0 thanks to the dissipation-less chiral edge current, the two terminal measure-

ment in between the input contact (source) and the ground contact (drain) gives the

Hall resistance, Rxy not the longitudinal resistance, Rxx. This is because the input

contact shares its potential with one edge and the drain contact shares its potential

with the other edge [4].

1.4 Fractional Quantum Hall Effect

The FQHE was first discovered in a GaAs/AlGaAs heterostructure by Daniel C.

Tsui , Horst L. Stormer, and Arthur C. Gossard in 1982 [12]. The signature of the

FQHE is the plateau at the fraction-quantized value of the Hall resistance Rxy,

Rxy =
h

νe2
=

h

ie2
(1.8)

where h is the Planck constant, ν is the filling factor, and i is a fraction (i =

1/3, 2/3, 1/5, 2/5, ...), and the vanishing to zero longitudinal resistance Rxx.

Rxx = 0 (1.9)
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Unlike the IQHEs, which are the phenomena of non-interacting electrons, FQHEs

are phenomena of interacting electrons. These interacting electrons of different frac-

tional quantum Hall states (FQHSs) can be mapped into non-interacting or interact-

ing composite fermions, which are the quasiparticles made up of one electron and even

number of vortices [13]. A ”n vortex” is an topological object which gives 2nπ phase

on the wave function or order parameter when the particle completes one rotation [3].

Figure 1.9. The first observation of FQHE by D.C. Tsui et al. [12].
The plateau in the Hall resistance and the vanishing longitudinal re-
sistance at the filling factor ν = 1/3 capture the fractional quantum
Hall state. Reprinted figure with permission from Ref. [12]. Copyright
c© 1982 by American Physical Society.
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Roughly speaking, the FQHSs are divided into two categories: odd-denominator

states and even-denominator states. Odd-denominator states are the FQHSs of which

the denominators of the filling factors are odd. Odd-denominator states include

ν = 1/3, 2/3, 1/5, 2/5, 3/5, 4/5, ... (1.10)

which are identified with the equations

ν =
n

2pn± 1
(1.11)

ν = 1− n

2pn± 1
(1.12)

where n is positive integer (n=1, 2, 3...), and p is also positive integer (p=1, 2, 3,...)

which indicates the number of pairs of vortices attached on one electron [3]. p=1

indicates there are two vortices attached on one electron. p=2 indicates there are

four vortices attached on one electron. In the odd-denominator states, composite

fermions do not interact one another and Jainendra K. Jain’s composite fermion

theory can explain most of the odd-denominator states as the IQHE of composite

fermion [13].

Even-denominator states are the FQHSs of which the denominators of the filling

factors are even. Even-denominator states include

ν = 5/2, 7/2 (1.13)

In the even-denominator states, composite fermions interact one another and the

composite fermion theory requires additional interacting terms in Hamiltonian. As

a result, novel quasiparticles such as p-wave paired composite fermions have been

theorized to explain these exotic states [22]. In addition, these quasiparticles are

predicted to follow the non-Abelian braiding statistics [22], and with this property

one may realize the qubits of fault-tolerant topological quantum computer [23–25].

Thanks to this applicational importance as well as rich physics, FQHEs have been

one of the most actively investigated topics in the field of condensed matter physics

from the past decades.
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1.4.1 Odd-Denominator Fractional Quantum Hall States

Most of the odd-denominator FQHSs can be understood through both the inter-

acting electrons picture and non-interacting composite fermions picture. Laughlin’s

ansatz and the hierarchical expansion are based on the interacting electrons pic-

ture while Jain’s composite fermion theory is based on the non-interacting composite

fermions picture. Although the two approaches give the same mathematical results,

the composite fermion theory became the cornerstone for describing the fractional

quantum Hall states, since the composite fermion theory can cover more states in-

cluding the ν = 1/2, 3/2 composite fermion seas and the ν = 5/2, 7/2 paired com-

posite fermion states (even-denominator FQHSs) thanks to its simpler nature [3]. In

addition, the Laughlin’s states turn out to be the special cases in composite fermion

picture [3].

Figure 1.10. A variety of odd-denominator FQHSs measured by W.
Pan et al. [14]. Reprinted figure with permission from Ref. [14]. Copy-
right c© 2002 by American Physical Society.
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Laughlin States

The interacting electrons model was theorized earlier than the composite fermion

theory as one may expect. Robert B. Laughlin proposed the ground state ansatzs of

the ν = 1/m states, where m are the odd integers (m=3, 5, 7...) in 1983 [15].

Laughlin wave function:

ΨLaughlin
1/m (z1, ..., zN) =

N∏
j<k

(zj − zk)m exp

[
− 1

4l2B

N∑
j

|zj|2
]

(1.14)

where m are the odd integers (m = 3, 5, 7...), zj is the position of the jth particle

(zj = xj + iyj) , N is number of particles, and lB is the magnetic length [3, 15–17].

These wave functions are the variational solution of the Hamiltonian describing the

situation that N number of electrons are in the magnetic field corresponding to the

vector potential A with the coulomb interaction among the electrons while there is

background positive ion charge uniformly spread over the space.

Laughlin Hamiltonian:

ĤLaughlin =
N∑
j

1

2m
(p̂+ eA)2 +

N∑
j<k

e2

4πε|rj − rk|
+

N∑
j

Vion(~rj) (1.15)

where m is the mass of electron, p̂ is the momentum operator, −e is the electron

charge, A = B(xŷ − yx̂)/2, rj is the position of the jth particle, and Vion(~rj) is the

background positive potential [3,15–17]. The first term represents the kinetic energy

of electrons in magnetic field; the second term indicates the coulomb interaction

among the electrons; and the last term shows the back ground positive potential of

the jellium. In this way, Laughlin explained the emergence of the odd-denominator

FQHSs in the ν = 1/m filling factors, where m are the odd integers (n=3, 5, 7...).

Hierarchy States

After the first observation of ν = 1/m FQHSs, a variety of different odd denom-

inator FQHSs were also observed. Since the Laughlin ansatzs can explain only the
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ν = 1/m FQHSs, additional formalism is required to explain the existence of the

FQHSs of which the numerators of filling factors are bigger than 1. Duncan Hal-

dane and Bertrand Halperin solved this problem by theorizing the hierarchy among

the Laughlin and non-Laughlin odd-denominator FQHSs [18, 19]. In this hierarchy

model, the ν = 1/m Laughlin states are the parents states which give birth to their

daughter states ν = (1 + p)/(m + 2p), where p are the integers (p=0, 1, 2...). The

emergence of daughter states is explained by the condensation of new quasiparticles

in the parents states.

Composite Fermion Theory

With the combination of the Laughlin states and the Hierarchical expansion, most

of the odd denominator states are explained. However, there is a simpler and more

universal approach using a novel quasiparticle called composite fermion [13]. Com-

posite fermion theory explains the odd denominator FQHE (of electrons) as the IQHE

of composite fermions. In other words, the composite fermion theory maps the inter-

acting electrons of Laughlin picture into non-interacting composite fermions picture.

Composite fermion Hamiltonian

ĤCF =
N∑
j

1

2m
(p̂+ eA∗ + ea(rj))

2 (1.16)

where m is the mass of composite fermion, p̂ is the momentum operator, −e is the

composite fermion charge, A∗ is the corresponding effective vector potential for the

effective magnetic field B∗, rj is the position of the jth particle, and a(rj) is the

vector potential which attaches the magnetic flux quanta to each electron and make

an electron as a composite fermion [3]. The first and second term describe the particles

are place in the effective magnetic field and the third term indicates the particles are

the composite fermions not electrons.

Few steps of composite fermionization including changing the magnetic flux quanta

into vortices and the lowest Landau level projection, after the variational approach
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using the ground state wave function of the electrons, one can reach to the wave

function of composite fermion [3].

Composite fermion wave function

ΨCF
n/2pn±1 = PLLLΦ±n

N∏
j<k

(zj − zk)2p (1.17)

where n are the positive integers (n = 1, 2, 3...), PLLL is the lowest Landau level

projection operator, Φ±n is the ground state wave function of electrons in the effective
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Composite 
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Figure 1.11. The mapping of electron picture into composite fermion
picture. The ν = 1/3 FQHS of electron can be mapped into ν∗ = 1
IQHS of composite fermion, where the ν∗ is composite fermion filling
factor.



18

magnetic field B∗, (± sign indicates the direction of effective magnetic field), zj is the

position of the jth particle (zj = xj + iyj), and N is number of particles [3].

Each of these wave functions corresponds to the filling factors,

ν =
n

2pn± 1
(1.18)

ν = 1− n

2pn± 1
(1.19)

where n is positive integer (n=1, 2, 3...), and p is also positive integer (p=1, 2,

3,...) [3]. With the combination of n, p, and ±, one can get the wave functions of

most of the odd-denominator states. For example, (n=1, p=1, +) gives the wave

function of ν = 1/3 and ν = 2/3; and (n=2, p=1, +) earns ν = 2/5 and ν = 3/5.

Here, in the ν = 1/3 state, we can roughly think there is one composite fermion

(one electron plus two magnetic fluxes) per one left-over magnetic flux. The numer-

ator indicates the number of electrons and the denominator indicates the number

of magnetic flux. In the ν = 2/5 state, we can think there are two two-flux com-

posite fermions per one left-over magnetic flux. Likewise, in the ν = 3/7, there are

three two-flux composite fermions per one left-over magnetic flux. Thus, by adding

a composite fermion, a daughter state is created from its parents state. In this way,

composite fermion theory describes most of the odd-denominator FQHSs covering

both the Laughlin and hierarchy states.

1.4.2 Even-Denominator Fractional Quantum Hall States

The ν = 5/2 FQHS and its upper spin branch counter part ν = 7/2 FQHS

are the most important and actively researched states in the field of quantum Hall

physics. This is because the quasiparticle excitations in the states are predicted to

have non-Abelian anyonic braiding statistics [22] which is the prerequisite to realize

the decoherence-free topological quantum computer [23–25].

Although the even denominator FQHSs should not exist according to non inter-

acting composite fermion picture, R.L. Willett et al. [20] discovered the emergence
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of FQHS at ν = 5/2 in 1987 and W. Pan et al. [21] cofirmed its full development

later in 1999. In contrast to the odd-denominator FQHSs which are described with

non-interacting composite fermions, even-denominator FQHSs are formalized with

interacting- or paired-composite fermions.

Figure 1.12. The first observation of even-denominator FQHS at ν =
5/2 by R. Willett et al. [20]. Reprinted figure with permission from
Ref. [20]. Copyright c© 1987 by American Physical Society.
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However, the contrasting experimental results could not make coherent agreement

on the ground state of ν = 5/2 FQHSs among the candidate wave functions. The

most convincing candidates include 1) Pfaffian or Moore-Read Pfaffian state, 2) anti-

Pfaffian state, and 3) 331 state. The identity of these states is characterized with the

ground state spin-polarization, quasiparticle-excitation braiding statistics, quasipar-

ticle charge, and the wave function itself. Although a number of experiments have

been conducted to clarify those characteristics, the experimental results supported

different candidates.

In this subsection, I will first introduce the most popular candidates, Pfaffian

wave function and its particle-hole conjugate anti-Pfaffian wave function followed by

the Abelian candidate 331 state. Then, I will discuss how the paradigm of ν = 5/2

ground state changed towards the expanded parametric regime.

Pfaffian Wave Function

Pfaffian or Moore-Read Pfaffian wave function is the most popular candidate

among the others. It was proposed by Moore and Read in 1991 [22].

Pfaffian wave function

ΨPfaffian(z1, ..., zN) = Pf
( 1

zj − zk

)
ΨLaughlin

1/(m=2)(z1, ..., zN) (1.20)

Pf
( 1

zj − zk

)
=

1

z1 − z2

1

z3 − z4

1

z5 − z6

...− 1

z1 − z3

1

z2 − z4

1

z5 − z6

...+ ...− ... (1.21)

where ΨLaughlin is the Laughlin wave function with m = 2, and Pf
(

1
zj−zk

)
is the

Pfaffian operator [16,22].

Pfaffian wave function is basically a Laughlin wave function at ν = 1/2 with the

Pfaffian term attached on it [16]. Pfaffian term here describes the weak coulomb

interaction among the composite fermions. By attaching the Pfaffian term, the parti-

cles in Hamiltonian become the p-wave paired composite fermions from the unpaired

ones.
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Pfaffian wave function attracted its popularity mainly due to the numerical cal-

culation done by R. H. Morf in 1998 [26]. Morf numerically calculated for the spin-

polarized and unpolarized system with 18 or less electrons and found that the ground

state is 1) spin-polarized, 2) incompressible, and 3) overlapped largely with the the

Pfaffian wave function. Due to the Morf’s work, the Pfaffian became the most plausi-

ble states dominating against the other spin-unpolarized states including the Haldane-

Rezayi state and 331 state. Pfaffian has a spin-polarized and incompressible ground

state with non-Abelian quasiparticle excitation braiding statistics.

Anti-Pfaffian Wave Function

Although the ν = 5/2 FQHS is considered to be a particle-hole symmetric state,

Pfaffian wave function is the exact ground state of the Hamiltonian which is not

particle-hole symmetric [16]. The Hamiltonian has the three body interaction term

which breaks the particle-hole symmetry in addition to the two body interaction

term conserving the particle-hole symmetry. Thus the exact ground state of the

particle-hole conjugated Hamiltonian is different from its non-conjugated counterpart.

This particle hole conjugated wave function of Pfaffian is called anti-Pfaffian wave

function [27, 28]. Anti-Pfaffian has a spin-polarized and incompressible ground state

with non-Abelian quasiparticle excitation braiding statistics.

331 State

331 state is another candidate of the ground state of ν = 5/2 FQHS. It is first

proposed by B. I. Halperin in 1983 [29]. Unlike the Pfaffian or anti-Pfaffian, it is

spin-unpolarized state with Abelian quasiparticle excitation braiding statistics.
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Summary on the Ground States of ν = 5/2 FQHS

The initial paradigm of the competition among different candidate wave functions

was made upon assuming a single state emerging at the ν = 5/2. However, this

perspective could not explain the contrasting experimental results as well as the

broken particle-hole symmetry of Pfaffian and anti-Pfaffian wave functions. As a

result, the paradigm shifted to the expandend parametric regime picture with multiple

ground states.

After considering different correlation potentials in the Hamiltonian describing

even minor factors such as Landau level mixing and finite thickness effect, different

candidates are thought to describe the ground state of different parametric regime.

The broken particle-hole symmetry of Pfaffian and anti-Pfaffian wave functions could

also be justified from the broken particle-hole symmetry of three-body interaction

term describing the Landau level mixing. This expanded parametric regime picture

is further supported by the theoretical [27, 28, 31, 32] and experimental [30] works

predicting and observing the phase transition between Pfaffian and anti-Pfaffian by

tuning the Landau level mixing parameter. Moreover, the observation of the nematic

phase in high Landau level mixing and low adimensional width regime tuned by

hydrostatic pressure further concretes this picture [33–36].
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2. ELECTRON SOLIDS IN TWO DIMENSIONAL
ELECTRON GAS

In addition to the integer and fractional quantum Hall states we discussed in the

previous chapter, the 2DEG in GaAs/AlGaAs quantum well also hosts different

group of states which require different order parameters. They are the nematic

phases or stripe phases at the half-fillings of N=2 and higher Landau levels at ν =

9/2, 11/2, 13/2, 15/2, ...; reentrant integer quantum Hall states or bubble phases ap-

pearing at the flanks of IQHSs in the N=1 and higher Landau levels; and Wigner

Figure 2.1. A variety of states of 2DEG in GaAs/AlGaAs quantum
well. This figure portraying the N=1 and N=2 Landau levels con-
taining the integer and fractional quantum Hall states as well as the
nematic phases and the reentrant integer quantum Hall states shows
the rich physics of the quantum Hall system. Reprinted figure with
permission from Ref. [73]. Copyright c© 2012 by American Physical
Society.
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crystals at the low partial filling factors of the N=0 and higher Landau levels. In

these states, electrons are arranged periodically as atoms in solids in the shape of

stripes, bubbles, and crystal lattice and altogether they are called electron solids. The

emergence of electron solids of different morphology is the result of electron-electron

interactions.

The electron solid phases require the Landau symmetry breaking picture in addi-

tion to or rather than the topological picture which IQHSs and FQHSs are described.

IQHSs and FQHSs are the topological states of which the phase transition between

two different IQHSs or FQHSs is described by the topological order rather than the

traditional Landau symmetry breaking picture with the order parameters. Since the

topology of the Berry curvature in the k-space plays role of defining a state, IQHSs

and FQHSs are called topological states. On the other hand, the different geometrical

charge configurations of electron solids require the description of traditional Landau

symmetry breaking picture.

Figure 2.2. Electron solid phases predicted by A.A. Koulakov et al.
[61]. The (a) nematic phase, (b) bubble phase, (c) Wigner crystal are
schematically shown. Rc in (a) is the cyclotron radius and the circle
in (c) indicates the cyclotron orbit. Reprinted figure with permission
from Ref. [61]. Copyright c© 1996 by American Physical Society.
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2.1 Wigner Crystals

Wigner crystal is a solid phase of electrons which the localized electrons build a

triangular lattice to minimize the energy of the system [42–45]. The low filling factor

regime (ν < 1/5) in the N=0 Landau level where the longitudinal resistance diverges

with the temperature drop are commonly accepted as the Wigner crystal state. In

the state, the low density of electrons exposed to high magnetic field are localized

in small cyclotron motion avoiding the overlap of wave functions. As a result, the

constructed triangular Wigner crystal plane is pinned to disorders.

Figure 2.3. The resistive features of Wigner crystal in the N=0 Lan-
dau level. The rapidly increasing longitudinal and Hall resistances
with decreasing temperature suggest the formation of Wigner crystal
at the high magnetic field regime above ν = 1/5. Reprinted fig-
ure with permission from Ref. [46]. Copyright c© 1988 by American
Physical Society.
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Because the standard AC magnetotransport techniques are limited from examin-

ing different properties of Wigner crystals, multiple techniques including microwave

[47–52], DC-current [48, 53–55], and tunneling resonance [94] are used to investigate

the Wigner solid.

In addition to the Wigner crystal forming in the lowest Landau level, the filling

factor ranges slightly away from integers in high Landau levels are also predicted to

form the Wigner crystals as known as one-electron (M=1) bubble phases [89–94].

2.2 Reentrant Integer Quantum Hall States: Electron Bubble Phases

Reentrant integer quantum Hall states (RIQHSs) are the states of which the Rxy

and Rxx values reenter the nearest IQHS value. They locate at the flank of the IQHSs

commonly in the N=1 and higher Landau levels. As the Landau level index increases,

RIQHSs are faded and eventually washed out as the Shubnikov-de Hass oscillation

with other states due to the weak magnetic field. RIQHSs are widely accepted as the

bubble phases of the Hartree-Fock theory [61,63].

Electron bubble phases were first predicted in the Hartree-Fock theory by A.A.

Koulakov, M. M. Fogler, and B. I. Shklovskii in one paper [61] and R. Moessner and

J. T. Chalker in the other paper published in 1996 [63]. Later in 1999, the RIQHSs

were first observed in GaAs heterojunctions by M. P. Lilly et al. [66] and R. R. Du

et al. [67]. According to the Hartree-Fock theory, the electrons in the partially filled

high Landau levels form the electron solids in the shape of stripe, bubble, and crystal

lattice. The bubble shaped electron solids are the bubble phases, while the other two

are nematic phases and Wigner crystals. The emergence of the geometric patterns

attribute to the competition between the long-range repulsive term and the short-

range attractive exchange term in the Coulomb interaction in the weak magnetic

field regime. This competition becomes dramatic in high Landau levels due to the

presence and proliferation of nodes in the electron wave functions of high Landau

levels. The cohesive energy of the stripe, bubble, and Wigner crystal phases compete
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throughout the partial filling factor range and the one with the minimum cohesive

energy appears as the pattern of the phase.

Figure 2.4. One of the two earliest observations of RIQHSs by R.R.
Du et al. [67]. The association of RIQHSs to previously predicted
bubble phases was first made by this work. Reprinted figure with
permission from Ref. [67]. Copyright c© 1999 by Elsevier.
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In the bubble phases, the combination of a guiding center of electron cyclotron

orbit and the orbiting electrons is called a bubble [76]. These bubbles form trian-

gular lattice and the overall are pinned to disorders. More than one electron can

orbit one guiding center. One electron bubble phase which one electron is rotating

a guiding center in a bubble is also called Wigner crystal state. Two-, three-, and

multiple-electron bubble phases are called multi-electron bubble phases [120] which the

number of electrons per bubble are described with the index M. The M=2 and M=3

bubble phases indicate two- and three- electron bubble phases respectively. The dis-

Figure 2.5. The calculated density patterns (top) and the simpli-
fied schematic descriptions (bottom) of one-, two-, and three-electron
bubble phases are shown. The number of concentric-circular den-
sity patterns distinguishes the multi-electron (M=2 and M=3) and
the single-electron (M=1) bubble phases. Reprinted figures with per-
mission from Ref. [79] and Ref. [117]. Copyright c© 2013, 2019 by
American Physical Society.
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tance between two bubbles is approximately three cyclotron radii of the corresponding

magnetic field.

In addition to the Hartree-Fock theory, numerical calculations such as the density-

matrix renormalization group (DMRG) [78] and exact diagonalization [64] method

also predict the formation of bubble phases in the N=2 and higher Landau levels.

Figure 2.6. Competing cohesive energy of bubble and stripe phases
calculated by Hartree-Fock theory throughout the partial filling factor
range in the N=2, N=3, and N=5 Landau levels. The proliferation of
multi-electron bubble phases with the increasing Landau level index
can be identified. Reprinted figure with permission from Ref. [79].
Copyright c© 2003 by American Physical Society.
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After the discovery of the RIQHSs, the bubble phase description of the RIQHSs

has been investigated with different measurement techniques. The standard magne-

totransport measurements [66, 67, 102, 107] confirmed the integer-quantized Hall re-

sistance and the vanishing longitudinal resistance due to the localization in bulk and

the dissipation-less transport through the edge. The temperature-dependent mag-

netotransport measurements [37,73,110] revealed the unique temperature-dependent

signatures of the RIQHSs in the longitudinal resistance which distinguish the states

from the IQHSs and FQHSs and from which the onset temperatures are defined. The

studies on the DC-current breakdown of RIQHSs [38, 39, 68, 105, 106] and the mi-

crowave resonance of the bubbles [71] investigated the depinning and pinning mecha-

nism of the RIQHSs. Alternative to the standard electronic transport, the transport

in Corbino geometry [40,70,82], thermal transport [112], and the transport of surface

acoustic waves (SAW) [74, 75, 83] have been studied to reduce the conducting edge

effect and focus on the bulk localization of electron bubbles.

Although the results of different experimental techniques support the electron

bubble picture of the RIQHSs, the sandwich structure of quantum well restricts direct

observation of bubble morphology and none of the experiments could confirm the

formation of bubbles in the RIQHSs. Furthermore, not a negligible discrepancy still

lied in between the bubble theory and the experimental results. None of the predicted

multiple bubble phases within a high Landau level have been observed, and as a result

the proliferation of bubbles in higher Landau levels was unlikely.

My research in this thesis are the works on solving this problem. In the first work,

I observed the multiple RIQHSs in the N=3 Landau levels which are associated with

M=2 and M=3 bubble phases. This work confirms the possibility of proliferation of

bubbles in high Landau levels, as a result, strongly supports the bubble description

of the reentrant interger quantum Hall states. In the second work, I compare the

energetics of newly resolved M=2 and M=3 bubbles in the N=3 Landau level as well

as those of M=2 bubbles in the N=2 Landau level. Here, I first found the M=3

bubbles are more stable than M=2 bubbles in the N=3 Landau level indicating that
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the multi-electron bubbles with higher electron number M are more stable within

a Landau level. Secondly, I found distinct and Landau level independent energetic

features of M=2 and M=3 bubble phases throughout the N=2 and N=3 Landau

levels. These results underline the effect of the number of electrons per bubble M on

multi-electron bubble energetics and are expected to contribute on the development

of existing Hartree-Fock theories.

2.3 Nematic Phases

Nematic phases are the electron solids arranged in the shape of stripes in the

Hartree-Fock theory. The half-filled states from ν = 9/2 to ν = 11/2, 13/2, 15/2, ...

in the N=2 and higher Landau levels are the most representatively known nematic

phases.

The experimental discovery of nematic phases in the quantum Hall system was

first made at the filling factors of ν = 9/2, 11/2, 13/2, 15/2, ... by M. P. Lilly et

al. [66] and R. R. Du et al. [67] respectively in 1999. Here, they found the anisotropy

of the two longitudinal resistances along the two perpendicular crystal directions in

the half-fillings. The longitudinal resistance Ryy along the [110] crystal direction has

the minima which indicate the parallel to the direction of the electron stripes, and

the longitudinal resistance Rxx along the [11̄0] crystal direction has formidable values

making peaks implying the perpendicularity to the direction of the electron stripes.

The nematic phase is roughly divided into two categories based on the Landau

symmetry breaking picture, one smectic phase and the other nematic phase [87,103].

The terminology setting for the nematic phase is tricky in the sense. The smectic

phase looks more stripe like compare to the nematic phase. It has both broken

rotational symmetry and broken translational symmetry. On the other hand, the

nematic phase looks more randomly distributed but still in the shape of stripe. It

has broken rotational symmetry, but the translational symmetry is preserved. The
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Figure 2.7. One of the two earliest observations of nematic phases by
M.P. Lilly et al. [66]. Anisotropy of the two perpendicular longitudinal
resistances at the half-fillings from ν = 9/2 indicates the nematic
distributions of electrons. Reprinted figure with permission from Ref.
[66]. Copyright c© 1999 by American Physical Society.

smectic phase is predicted to appear at ultra-low temperature in ultra-pure samples

whereas the nematic phase to emerge at higher temperature and disorder condition.

Conventionally, the direction which electrons sit along and as a result has the

minima in the longitudinal resistance is called easy axis and the direction perpen-

dicular to the electron stripes and as a result possesses the peaks in the longitudinal

resistance is called hard axis. Although there is no symmetry breaking term in the

nematic theory, hard and easy axes are determined spontaneously and this is called

spontaneous symmetry breaking. Most time in the GaAs/AlGaAs quantum wells,

[110] direction is easy axis and [11̄0] direction is hard axis.
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However, with the tuning of different parameters such as in-plane B-field, elec-

tron density, and temperature, phase transitions between the nematic and isotropic

phases can be realized. Furthermore, tuning these parameters can even flip the easy

and hard axes. Investigating novel nematic phase transitions in the quantum Hall

system is getting more attention due to the close relation to the pairing potentials.

The emegence of nematicity in the vicinity of cooper paring phases in high temper-

ature superconductors as well as the recently observed topological to nematic phase

transitions in the ν = 5/2 FQHS support the idea. Further understanding on the

nematicity seems crucial to realize and manipulate the exotic paired states hosting

high temperature superconductivity and the non-Abelian quasiparticle excitations.
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3. EXPERIMENTAL METHODS

The area of study in condensed matter physics conducted in our lab is often referred

as low temperature physics. To realize and detect novel quantum phases and their

smallest behaviors, our lab is armed with different low temperature experimental

techniques. Quick and convenient 1K dipper system for preparatory experiments as

well as one of the coldest dilution refrigerators in the world equipped with home-made

3He immersion cell are the examples. Further with the samples grown by the cutting

edge technology of our collaborators, we expect to see novel quantum states and their

intriguing behaviors.

3.1 Two-Dimensional Electron Gas (2DEG)

3.1.1 GaAs/AlGaAs Quantum Well

Among the 2DEG confined in many different systems, we investigate the 2DEG

in GaAs/AlGaAs. GaAs/AlGaAs is the most traditional two-dimensional electron

system (2DES) which is in the frontier of 2DEG study. The legendary observations

of integer and fractional quantum Hall states as well as exotic electron solid phases

were observed in the GaAs/AlGaAs system for the first time.

The 2DEG in GaAs/AlGaAs is the purest non-relativistic two-dimensional elec-

trons with single valley. Among different materials, GaAs/AlGaAs achieves the high-

est mobility of 2DEG [56]. To explore novel strongly correlated phases, achieving high

mobility from reducing disorders in a system is critical, since disorder effects can dom-

inate the electron-electron interaction and prevent the emergence of resulting phases.

Since GaAs/AlGaAs achieves the highest mobility of 2DEG, so far the richest family

of strongly correlated phases are found in GaAs/AlGaAs compared to other materials

hosting 2DEG such as graphene, ZnO, transition metal dichalcogenides (TMDs), and
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Figure 3.1. (a) The 2DEG realized in GaAs/AlGaAs quantum well.
The conduction band profile in GaAs/AlGaAs makes a quantum well
structure. The higher energy level of AlGaAs confines the electrons in
the GaAs region and quantizes the kinetic energy of electrons along
the z-direction. The abundant charge density at GaAs region indicates
the presence of 2DEG. (b) ZnO and (c) GaAs mobility improvement
history. Reprinted figures with permission from Ref. [56] and Ref. [57].
Copyright c© 2014 by Annual Reviews. Copyright c© 2010 by Springer
Nature.
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the surface of 3D topological insulators (TIs). Furthermore, the dispersion relation

of 2DEG in GaAs is parabolic. This resembles that of free electron in space rather

than relativistic particles such as the photon or those in Dirac materials (graphene

and surface of 3D TI) which have linear dispersion relation. In addition, the sin-

gle valley structure of GaAs provides the simple condition for investigating novel

electron-electron interactions excluding multiple valley effects.

We typically use 30nm-wide modulation-doped GaAs/AlGaAs quantum well as

our sample. In our sample, the electron density varies in the order of n = 1010 to

1011 cm−2 and mobility varies µ = 106 to 107 cm2/Vs. For example, one of our low

density samples has density n = 6.13× 1010 cm−2 and mobility µ = 9.1× 106 cm2/Vs

while one of our high mobility samples has density n = 2.8× 1011 cm−2 and mobility

µ = 15 × 106 cm2/Vs. There are reasons that the quantum well width is decided to

be around 30 nm for a regular size quantum well. If the well is too narrow, different

impurity effects such as ionized impurities from doping layer and interface roughness

can affect on 2DEG energetics preventing the emergence of correlated states [57]. In

contrast, if the well is too wide, the subbands in quantum well describing the kinetic

energy of 2DEG along the z-direction become too close each other. As a result, there is

a risk of populating the second subband in the quantum well when the electron density

is high. If the second subband is populated, the electrons confined in GaAs cannot be

regarded as pure 2DEG anymore, since the distribution of probability density along

the z-direction is occurred through the wavefunction of the second subband which

has two antinodes.

3.1.2 Sample Preparation

Once we receive GaAs/AlGaAs wafers grown by our collaborators, the sample

preparation process, which is transforming a wafer into measurable devices, starts.

The first step of our sample preparation is cleaving a GaAs/AlGaAs wafer into a small

square piece. To cut a wafer into a smaller piece, we proceed the following steps. 1)
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Make a tiny scratch at the edge of the wafer with a diamond tip cutter. 2) Note the

orientation of crystal direction on the note. This process is very important especially

if one is planning to measure the anisotropy of resistances along two different crystal

axes. 3) Flip the wafer and cover it with filter paper. 4) Gently roll the roller on

the scratch covering with the filter paper. 5) When the wafer is cleaved, you can feel

it. Then stop the rolling and cut the other side. Since our GaAs/AlGaAs wafers is

a pure crystal, a little dent on the wafer can cut it into perfect straight line. We

typically use 4× 4 mm2 as sample size.

Once we have a 4 × 4 mm2 wafer, we start to make contacts. The first step of

contact fabrication is annealing process. To connect the surface of sample with the

2DEG confined in GaAs region which is isolated from the surface by AlGaAs, an-

nealing process is required. We first solder In/Sn (eutectic indium) on the surface of

sample. We use 360◦F or around as soldering temperature. Here, we use a vacuum

chuck to hold the sample to avoid possible contamination while holding the sample

using different method. In this step, sample cleanness is extremely important since

the sample will go through the high temperature annealing process. If contamination

is made especially on the surface of the sample, diffusion of the contaminator may

harm the quality of 2DEG. When In/Sn is soldered, it is important that each contact

touches the edge of the sample to measure the edge behavior of the quantum Hall

system. We either make 8 contacts for bigger sample or 4 contacts for smaller sample

in van der Pauw geometry. By making the sample geometry square instead of rect-

angle, the resistance becomes equivalent to the sheet resistance and we can avoid the

extra calculation to extract the resistivity which is same with the sheet resistance in

two-dimension.

After finishing soldering the In/Sn, we mount the sample on our home-made

annealing station in Fig 3.2(b). Here, the ultimate goal is to anneal the sample at

450◦C for target annealing time. We typically use 3 minutes for our sample but we

also use from 1 minute to 10 minutes depending on the location of 2DEG in the

sandwich structure. The annealing process is as follows. (1) Open the glass body,
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Figure 3.2. (a) Left: a GaAs/AlGaAs wafer and a cut sample on filter
paper. Right: cleaving tools. We use a diamond tip cutter to make a
scratch and a roller to gently push the scratch covering with a filter
paper. Carbon fiber tweezers are used for softer grab. (b) Home-
made annealing station: annealing gas, chamber, and power supply.
Eutectic In/Sn is shown in the inset. (c) Microscope station with
soldering tools. The tools include vacuum chuck, indium shot, gold
wire, soldering tip, a header, and a header holder (orange square). (d)
A well-made sample on a header for dipper experiment.
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put the sample on the annealing plate which has thermometer attached right below,

and close the glass body. (2) Flush out the air with the annealing gas (90% nitrogen

and 10% hydrogen) for 5 minutes with the flow rate of 5 SCFH (standard cubic feet

per hour). Keep the gas flowing for entire annealing process. (3) Heat the annealing

plate at 90◦C for 5 minutes for warming up the system. (4) Heat the annealing plate

at 110◦C for 5 minutes to evaporate the moisture remaining inside. (5) Heat the

annealing plate at 450◦C for 3 minutes (or target annealing time) to diffuse the In/Sn

into 2DEG. (6) Turn off the heating power immediately and flush the annealing gas

for about 10 more minutes to cool the system down to room temperature. (7) Wait

until the system cools down to 30◦C, open the glass body, and retrieve the sample.

The next step is attaching thin gold wires to each contact in the sample with

indium soldering and mounting the entire system on a header or a cell. For this

process, we can also use the vacuum chuck to hold the annealed sample; however,

I prefer to use the double-sided kepton tape since the vacuum chuck is limited to

rotation and too noisy. We use .001”/0.001inch/25µm thin gold wire and 99.9%

indium shots for the process. We use 360◦F or around as soldering temperature also

for the pure indium (not only for the eutectic indium). Since indium gets easily

oxidized, it is important to clean the tip frequently with glass slides. If indium is

oxidized, indium does not stick easily. Once the wire soldering process is done, you

can see the sample looking like a spider.

The next step is mounting this spider shaped sample on a header or a cell. Before

mounting the sample, a header should be trimmed properly to fit in our dipper

system which has constrained space. If a sample is mounted on non-trimmed header

accidentally, one need to unmount the sample, trim the header, and mount the sample

again to avoid the destruction of sample. To mount the sample on the trimmed header,

we first apply really tiny amount of rubber cement using the back side of a Q-tip.

Then, gently mount the spider shaped sample on the rubber cement, considering the

position of the gold wires. Here, if gold wires are arranged to touch each of the pins on

the header, it is very convenient when one solders the wires on the pins avoiding using
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two hands to hold a wire and the soldering tip simultaneously. To add a personal tip

for soldering, both hands should be used for holding the soldering tip to sensitively

control and to avoid the accident miscontrol of weaker hand. After soldering all the

gold wires on the pins stably, cut the wires with a small nail scissors. Finally, move

the sample header safely in a small plastic box equipped with conducting foam and

the wafer information labelled.

3.2 1K Dipper System

Once a sample is prepared to be measured, before we measure with dilution refrig-

erator, we first conduct the preparatory measurement using the 1K dipper system.

Measuring with dilution fridge is a time, energy, and money consuming process. The

complicated preparation process of dilution fridge including electrical check, vacuum

sealing, connecting hoses, inserting the fridge unit to dewar, and etc. takes at least

one day. Moreover, once the fridge unit is inserted in the dewar, liquid helium boils off

about 30% of the liquid helium capacity of our fridge per day which is about 15L/day.

Based on the market price of liquid helium, which is more or less $2000/100L, this

costs about $300 per day. In contrast, with the dipper system, we can finish the

preparation process within 2 hours including lowering the sample temperature down

to liquid helium temperature. Also, the similar amount of helium boils off when

the dipper is in, compare to the amount of helium boils off naturally in a dewar,

which is about 1.5L/day. Therefore, the dipper measurement is the first step of our

experiments to check the sample condition before measuring with the fridge.

3.2.1 Structure of 1K Dipper System

The dipper can be thought as small fridge without dilution unit. It is designed

to directly dip in the ubiquitously used commercial helium dewar to use the cooling

power of liquid helium. The outer part material of dipper is made of G-10, which is

an excellent thermal insulator and robust against thermal contraction and expansion.
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Figure 3.3. (a) The dipper and a liquid helium dewar. The dipper is
designed to directly dip in the helium dewar. The outer part is made
of G-10. A rotary pump is used to lower the temperature down to
1K. (b) The inner part of dipper. Brass disks are designed to prevent
the radiation. (c) Dipper magnet (black), magnet power supply (left),
and sample mount (right). (d) A sample is mounted. A red LED is
equipped for the 10K illumination for GaAs sample.
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The G-10 outer part thermally insulates the inner part from the room while keeping

its shape from the continuous cool downs. The inner part of dipper is made of stainless

steel. The inner part should be non- or less-conducting to thermally isolate the sample

from room temperature. It also should not be magnetic as all the other cryogenic

components possibly exposed to magnetic field. One of the interesting features of the

inner part is attached brass disks. The eight brass disks are equipped to block the

radiation from the room to sample. At the end of the inner part, sample mount area

exists. Here, a red LED is equipped for the 10K illumination technique for GaAs

sample.

At the end of the outer part of the dipper, a superconducting magnet is furnished.

This magnet is operated by the power supply in Fig. 4.3(c). The length of the

inner part is adjusted to perfectly locate the sample mount area in the middle of the

magnet. Below the magnet, there is a small hole where the liquid helium flows into.

The liquid helium flows into the space inside the magnet where the real outer part

of dipper is locating. Another smaller hole exists at the real outer part of dipper.

Through this smaller hole, the outer and inner parts of dipper are connected. The

liquid helium flows into the inner part of the dipper where sample is located. In this

way, liquid helium touches our sample directly. To control the amount of helium

flowing through the smaller hole, a thin wire impedance is plugged inside the smaller

hole.

With the above arrangement, a sample can cool down only to around 4K close to

the boiling point of liquid helium at 1 atm. However, to cool down the temperature

to around 1K, a rotary pump is required. Once the dipper is completely lowered down

to the bottom of the dewar, a rotary pump can be connected to the dipper through

a valve attached on the top of dipper. With the rotary pump, we can lower the

pressure inside the dipper, and as a result, the temperature of liquid helium touching

the sample inside the inner part of the dipper drops to around 1K.
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3.2.2 Operation of 1K Dipper System

The operation procedure of dipper system is similar to that of dilution fridge

without operating the dilution unit but much simpler. The procedure is as follows.

(1) Take the inner part of dipper out; plug in the sample header on the mount and

arrange the position of LED; conduct the electrical check on the sample and LED;

if everything looks good, put the inner part back inside the dipper and seal it with

a clamp. (2) Pump out the air inside the dipper and flush in the ultra high purity

99.999% helium gas inside the dipper. Repeat this process two more times. Filling

the helium in should be the last step not pumping the gas out. (3) Flush in the

pure helium to the small space inside the magnet through the small hole below the

magnet. (4) Connect the magnet wires to HP multimeter and start measuring the

magnet resistance as thermometer. (5) Open the dewar cap and place the dipper on

the top of the dewar with a clamp holder holding the body of dipper to prevent the

accidental sliding. (6) Lower the dipper slowly to the bottom of the dewar checking

the magnet resistance. This process should take more than 30 minutes to avoid

destruction of the system or sample from abrupt thermal contraction. (7) Once

the magnet resistance saturates to zero, connect the magnet wires to the magnet

power supply; and connect the HP multimeter to RuO thermometer equipped inside

the dipper and measure the temperature. (8) The experiment can start once the

resistance of RuO thermometer becomes stable. (9) To lower the temperature down

to around 1K, connect the rotary pump to a valve on the dipper. The air inside

the hose must be pumped out before opening the valve. Once the hose is cleaned,

open the valve slowly. The temperature will drop as the pressure drops. (10) To

increase the temperature of the system for shining the LED at 10K, pull the dipper

up accordingly checking the RuO thermometer. (11) Once the experiment is over, to

warm up the system, pull up the dipper half way from the dewar and wait for about

15 minutes. As soon as the dipper is pulled up, paper towers should be wrapped on

the body of dipper to prevent water from flowing inside the dewar. (12) Then, pull
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up the dipper all the way to the top and wait until the magnet resistance reaches

to 3.4 kΩ, which is nearly the room temperature resistance 3.8k Ω. Magnet should

be warmed up nearly to the room temperature before retrieving the dipper from the

dewar to prevent magnet getting moisturized. This step takes about 30-40 minutes.

(13) Once the magnet resistance reaches to 3.4 kΩ, retrieve the dipper out from the

dewar, put it on the table, and start drying the magnet with our air flowing setup as

soon as possible. When the magnet resistance reaches to 3.8k Ω, stop the air flow.

The sample can be retrieved from this point. Typically, we flow the air for about

30-40 minutes.

3.3 Dilution Refrigeration

In order to detect some of the most delicate changes of quantum states, tempera-

ture of a few millikelvin or lower is required. Up to date, dilution refrigeration using

the mixture of 3He and 4He is the most effective method to cool the temperature of a

bulk system below 100 mK. With our dilution refrigerator, one of the coldest dilution

refrigerator in the world achieving electron temperature down to around 4 mK, we

perform our experiments.

3.3.1 Principle of Dilution Refrigeration

The cooling power of dilution refrigeration comes from the latent heat required to

mix the two separated phases in the 3He and 4He mixture: 3He concentrated phase

and 3He dilute phase [58]. Below 867 mK, if the 3He concentration is larger than

a certain percentage, the 3He and 4He mixture separates into the two phases. One

is the 3He concentrated phase which is pure 3He and the other is 3He dilute phase

which is 4He mostly plus the certain percentage of 3He. This certain percentage is

temperature dependent; for example at 0K, this value is 6.6%.

One remarkable fact here is there is maximum percentage of 3He occupation in

the dilute phase, which is 6.6% of 3He at 0 K [58]. This means, at 0 K, if the 10% of
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Figure 3.4. Our lab’s dilution refrigerator system. Left: lock-in am-
plifiers. Middle: dilution refrigerator. Right: control panel.

mixture is 3He, the 6.36% is in the dilute phase and the rest of 3.64% exists separately

as the concentrated phase. This concentrated phase will be on the top of the dilute

phase due to its lower density. As the 3He in the concentrated phase passes through

the boundary of the two phases and mixes with the dilute phase, the latent heat

which is required for the mixing is supplied from the internal energy of the mixing

chamber [58,59].

The 3He in the concentrated phase can pass through the boundary of the two

phases only when there is a vacancy in the 6.6% of 3He in the dilute phase [58, 59].

In order to create the vacancy, the 3He in the dilute phase is evaporated in the place

called still and pumped out with a rotary (vane) pump. As the evaporated 3He is

pumped out, it goes out from the fridge, passes the 3He-rotary pump, passes the
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Figure 3.5. The phase diagram of 3He and 4He mixture. The phase
separation starts to occur at the highest temperature of 867 mK [58].
Reprinted figure with permission from Ref. [58]. Copyright c© 2007
by Springer Nature.

nitrogen trap, passes the helium trap, and comes back to a place called condenser

inside the fridge. In the condenser, the gas 3He condenses into liquid and drips down

to the mixing chamber passing the heat exchangers in different stages. Meanwhile

in the mixing chamber, as the vacancy of 3He in the dilute phase is created, the

3He in the concentrated phase crosses the boundary of the two phases and refill the

maximum percentage of 6.6%. Thanks to this circulation process of 3He, the cooling

power from the dilution of 3He in to the dilute phase can be constantly provided.
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In addition, to boost the circulating process to cool down the mixing chamber

temperature faster at lower temperature, still heater is used to evaporate the liquid

3He faster in the still and a roots pump is used in between the still line and the

3He-rotary pump to blow the gas 3He faster to the 3He-rotary pump.

3.3.2 Structure of Dilution Refrigerator

The structure of dilution refrigerator can be roughly categorized into three in-

dependent parts. They are the dilution unit, 1K pot, and 4He bath. Helium inside

each component is separated and does not mix with one another (except through the

needle valve connection between the 4He bath and 1K pot). The dilution unit and

1K pot are mechanically attached as one unit which I call here fridge unit. The fridge

unit is designed to be detachable from the 4He bath to prevent cooling and warming

of the whole system in the sample changing process. In this way, enormous amount

of expensive helium can be saved.

Dilution Unit

Dilution unit is the place inside the fridge where the mixture of 3He and 4He

circulates. This means the mixture does not pass through the other parts of fridge,

which is 1K pot and 4He bath. Dilution unit consists of the three major parts, mixing

chamber, still, and condenser.

Mixing chamber is where the dilution cooling process occurs. The phase boundary

of the dilute phase and the concentrated phase locates inside the mixing chamber. The

dilution process of 3He in the concentrated phase into the dilute phase absorbs heat

from the mixing chamber [58,59]. The mixing chamber locates at the end of the fridge

unit. Since the gas 3He should be liquefied and cooled down through different heat

exchanging process, the mixing chamber locates at the end of the heat exchanging

stages. Samples are mounted on a copper tail attached on the plate below the mixing

chamber. Since the mixing chamber is the coldest part of the fridge, the copper tail
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Dilution Unit

1K Pot

4He Bath Dilution Refrigerator

=
+

Figure 3.6. The three components of dilution refrigerator: the dilu-
tion unit, 1K pot, and 4He bath. Figures adapted with permission
from Ref. [59] and Ref. [60]. Image Courtesy to Oxford Instruments.
Copyrighted by Katherine A. Schreiber.

and samples are connected to the mixing chamber plate. A copper tail is used to

locate the sample in the middle of magnet. In addition, since the phase boundary

between the dilute and concentrated phases should locate inside the mixing chamber,

if the mixing chamber temperature does not drop to the target temperature, one can

suspect the shift of the phase boundary to the outside of the mixing chamber due to

the lack of 3He in the mixture.

Still is a chamber where the liquid 3He in the dilute phase evaporates in to gas. To

maintain the dilution of 3He into the dilute phase in the mixing chamber, a vacancy



49

needs to be created in the dilute phase. To evaporate 3He from the dilute phase,

the dilute phase needs to be heated up to around 700 mK to maximize the ratio of

the vapor pressure of 3He to that of 4He [58, 59]. Thus, a place called still exists,

which is connected to the mixing chamber to supply the dilute phase but placed far

above and thermally isolated to prevent heating the mixing chamber. As the 3He

in the dilute phase evaporates in the still, the 3He of the dilute phase in the mixing

chamber is sucked up to the still by osmotic pressure, and as a result, the 3He of

the concentrated phase crosses the phase boundary of the two phases and refill the

maximum percentage of 6.6% in the mixing chamber [58, 59]. The evaporated 3He

in the still is pumped outside the fridge by the 3He-rotary pump and comes back to

the condenser after passing through the roots pump, 3He-rotary pump, nitrogen trap,

and helium trap in the order. Below 300 mK, in order to boost the circulation process

to cool down the system faster, the still is heated with an attached heater typically

with 3 mW while the roots pump is turned on.

Condenser is a chamber where the gas 3He coming into fridge from outside con-

denses into liquid. It is physically attached to the 1K pot (above the still) and uses

the cooling power of the 1K pot to condense the gas 3He. Once the gas 3He condenses

into liquid, it drops down to the mixing chamber passing different heat exchanging

stages. To clarify, the evaporated 3He from the still condenses into liquid for the

first time in the condenser before dropping down to the mixing chamber. The room

temperature 3He and 4He mixture from the dump also condenses first typically in the

condenser (or still). This step is called condensing.

In addition, there are couple of heat exchangers to efficiently cool down the in-

coming 3He from the condenser to the mixing chamber and warm up the outgoing

dilute phase from the mixing chamber to still. The heat exchangers thermally connect

the warm incoming 3He (from condenser to mixing chamber) and the cold outgoing

dilute phase (from mixing chamber to still) in between the still and mixing chamber.

Through the heat exchanging process, an amount of power required for cooling the

warm 3He as well as heating the cold dilute phase can be saved. This heat exchanging
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process is the most crucial and sensitive part of the fridge design which directly affects

on the base temperature of the dilution fridge [58,59]. Our fridge has the extra heat

exchanger compare to standard model thus provides cooling power of 500 µW.

1K Pot

1K pot is a chamber which is the second powerful cooling source of the dilution

fridge. It exists to provide the cooling power to the condenser. By pumping out

the evaporated 4He in the 1K pot with a rotary pump, 1K pot pump or 4He-rotary

pump, the temperature of liquid 4He in the 1K pot drops from 4.2K to around 1.5K,

because the boiling point drops under the lower pressure. This is same with the

cooling principle of the 1K dipper system. The liquid 4He is constantly provided

from the 4He bath through the small needle valve and the 4He-rotary pump keeps

pumping while the fridge is running. The amount of provided liquid 4He from the

bath can be controlled manually by the needle valve. If the needle valve is completely

closed, the 1K pot will run out the liquid 4He. 1K pot and condenser are attached

closely thus they look as one chamber.

Sorb is a charcoal attached to the 1K pot. It absorbs the exchange gas used to

thermally connect the inner vacuum chamber (IVC) and the dilution unit to cool

down the dilution unit using the cooling power of 4He bath. Here, the IVC is dipped

in the 4He bath. Once the cooling process is done, the exchange gas is absorbed

into the sorb to thermally disconnect the dilution unit and the IVC to cool down

the dilution unit to lower temperature. Absorbing and releasing of exchange gas is

controlled from the temperature control of the sorb. To release the exchange gas, we

set the sorb temperature to 12K. And to absorb the exchange gas, we simply stop the

temperature control on the sorb which cools the sorb back to the 1K pot temperature.
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Figure 3.7. (a) Structure of the fridge unit. (b) The two components
of dilution fridge: fridge unit and 4He bath. (c) Samples mount on
the copper tail attached below the mixing chamber.
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4He Bath

4He Bath is the bath of liquid 4He at 4.2K inside the fridge. It is the main

protecting layer for the fridge unit from the room temperature heat. To insulate the

heat transfer from the room to the fridge unit, the fridge is shielded with a vacuum

jacket and after that covered with the 4He Bath. Filling up the 4He bath regularly is

the most labor and money requiring part of maintaining the wet dilution refrigerator

system. It needs to be filled up every two days when the fridge unit is inserted and

every five or six days when the fridge unit is out. These cost $2000 for every two

days (fridge unit in) and five or six days (fridge unit out) calculating with the market

price of liquid 4He ($2000/100L). Thus, most people purchasing new dilution fridge

these days choose cryo-free or dry dilution refrigerator system which has pulse-tube

cooling system instead of 4He bath.

External Units: Pumps, Traps, Dump, and Control Panel

There are three pumps in our dilution refrigerator system. They are 3He-rotary

pump, 4He-rotary pump, and roots pump. The 3He-rotary pump is necessary to

pump out the evaporated 3He from the still. It is constantly on once the circulating

is started. The thick still line is connected from the fridge to the 3He-rotary pump.

In the middle of the still line, the roots pump exists to boost the circulating process

faster below 500mK. The 4He-rotary pump is necessary to pump out the gas 4He from

the 1K pot to reduce the vapor pressure to drop the liquid 4He temperature down

around 1.5K.

There are two traps in our dilution fridge system. One is nitrogen trap and the

other is helium trap. The nitrogen trap is inserted in the liquid nitrogen dewar out

side fridge. Once the gas 3He passes the 3He-rotary pump, it heads to the nitrogen

trap. Nitrogen trap absorbs the impurities such as oil mist or air that the gas 3He

obtained outside the fridge. The nitrogen dewar is usually filled every 6 days when the

fridge is running. The helium trap is inserted in the 4He bath inside fridge. Once the
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Nitrogen
Trap
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Trap

Control PanelExternal Units of 
Dilution Fridge

Figure 3.8. (a) The three pumps (3He-rotary pump, 4He-rotary pump,
and roots pump) and the room temperature mixture storage, dump.
3He-rotary pump and roots pump are sealed in the closed path of
the mixture between the dump and dilution unit. In contrast, the
4He-rotary pump is connected in one way path to the recovery line.
The pumps are operated by the control panel in figure (d). (b) The
nitrogen trap is inserted in the nitrogen dewar outside the fridge.
The nitrogen dewar needs to be filled periodically when the fridge is
running. (c) The helium trap is inserted inside the 4He bath while the
fridge is running. In the warming up process, the helium trap must
be retrieved first before the fridge unit is retrieved from the 4He bath.
The pressure inside the helium trap measured at room temperature
indicates the amount of impurities absorbed. (d) The control panel.
Pumps and valves are controlled by this panel to convey different
gases through different channels.
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gas helium 3He passes nitrogen trap, before heading to the condenser line, it passes

the helium trap first. Similar to the nitrogen trap, helium trap absorbs the obtained

impurities in the gas 3He but is operated at the liquid 4He temperature.

Dump is a place where the 3He and 4He mixture is stored once they are retrieved

from the dilution unit and other connected lines after finishing an experiment. It is a

cylinder container sitting in room temperature. The maximum pressure in the dump

must be remembered and checked before finishing the retrieving process not to lose

the precious mixture. This value for our system is around 714-719 mbar depending

on the room temperature (AC on/off and seasons).

Control panel is where all the controlling valves are located. While the three

pumps provide the momentum of the gas transfer, the control panel decides the path

of gas by controlling the valves blocking different routes of the gas. The amount of

gas in each route can be identified from the pressure shown in the pressure gauge in

the path.

3.3.3 Operation of Dilution Refrigerator

The operation procedure of dilution fridge can roughly divided into three steps:

1) cooling the fridge, 2) condensing & circulating, and 3) warming the fridge.

Cooling the Fridge

There are two scenarios of cooling the fridge. One is cooling the fridge unit while

the fridge dewar is cold with 4He bath inside and the other is while the fridge dewar

is warm at room temperature. Since the former scenario is more frequently used, I

will start with the first scenario.

To insert the fridge unit into cold fridge dewar having 4He bath, we follow this

procedure. 1) Put a proper tail on the plate below the mixing chamber. 2) Figure out

the wire configuration for sample, thermometer, and heater. 3) Mount sample on the

tail and thermometer on the mixing chamber plate. 4) Conduct electrical check of
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sample, thermometer, and heater. 5) Arrange the coax cables and wires with teflon

tape to fit inside the copper shield. 6) Conduct electrical check once more. 7) Close

the copper shield and check whether the sample and tail touch the shield through a

hole below the shield. They should not touch the shield. 8) To close the inner vacuum

chamber (IVC), clean the interface on the fridge unit and on the IVC with ethanol

using Kimwipes. Once they are clean, in order to indium seal the interface, apply

grease on the proper length of pure indium wire and surround the IVC interface. 9)

Close the IVC on the fridge unit and tighten the screws. 10) Pump out the IVC

using the rotary pump until the pressure reaches 50 mTorr or below. It takes about

50 minutes. 11) Once the IVC is pumped out, re-tighten the screws. 12) Connect

the still and condenser with a tee pipe and pump them out simultaneously with the

turbo pump until the pressure reaches less than 2×10−5mbar. It takes more than 3

hours. 13) Clean the needle valve filter with acetone and sonicator. To dry it, flow

the ultra-pure helium through the filter until the acetone smell disappears. It takes

about 1-2 minutes. Put the filter back and seal the rod with aluminum tape. 14) Put

the G-10 shield on. 15) To prepare the 1K pot, pump out the 1K pot with a rotary

pump for 10 minutes; flow the ultra-pure helium for 10 minutes while the needle

valve is open; close the needle valve and pump out for another 10 minutes. In the

last step, 1K pot should be empty. 16) Put ultra-tiny amount of exchange gas using

the orange rubber bladder and needle holder. 17) Connect the recovery hose to G-10

and connect the ultra-pure helium hose to the recovery hose. 18) Flush the ultra-pure

helium through the G-10 to get rid of air while docking the fridge unit to the fridge

dewar. 19) Once the docking is done, connect the G-10 recovery hose to recovery

line. 20) Slowly lower the fridge to the bottom while keeping the eyes on the recovery

rate. When the fridge unit is stuck around the magnet docking point, pull and push

the fridge unit gently along the 11 o’clock direction. The complete lowering process

takes about 2 hours and should not be done faster than 1 hour to avoid destruction

of the system due to rapid thermal contraction. 21) Connect the pumping lines for

the still, condenser, and 1K pot and the electrical lines for the sample, thermometer,
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helium level meter, and ground. 22) Check out the pressure in the line in front and

behind the nitrogen trap which indicates the amount of impurities collected, record

it, and pump them out with 4He-rotary pump. 23) Insert the helium trap into the

4He bath. 24) Pump out the still line with the rotary pump and then with the turbo

pump until the pressure reaches below 9×10−4mbar. It takes more than 3 hours. 25)

Start condensing.

The second scenario is when the fridge dewar is at room temperature. The fridge

dewar is usually cold due to back to back experiments and is kept to be cold since a

significant amount of effort is required to cool the warm fridge dewar back to liquid

helium temperature. However, if the fridge dewar became warm and needs to be

cooled down, we follow this procedure. 1) Follow the 1-16 steps of the first scenario.

2) Insert the fridge unit directly inside the fridge dewar. Since the fridge dewar does

not have 4He bath at this moment, the lowering of fridge unit to the bottom can be

done immediately. 3) Connect the big pressure gauge, 4He-rotary pump hose, gas

nitrogen hose simultaneously at the end of the recovery pipe. Pump out the fridge

dewar with 4He-rotary pump and flush in the ultra-pure gas nitrogen. The fridge

dewar pressure should not exceed 2 psi. Repeat this two more times. At the end,

nitrogen gas should be filled in the fridge dewar. 4) Transfer 40L of liquid nitrogen

while the recovery pipe is partially open to the air partially covered with aluminum

foil. 5) Check the filling level of liquid nitrogen with the three resistors attached near

the fridge magnet. 6) Stop transferring when the gauge in the 100L liquid nitrogen

dewar positions in the middle of 1/2 and 3/4. 7) Attach the one way valve at the

end of the recovery pipe and wait until all the liquid nitrogen boils off. This takes as

much time as liquid helium boils off naturally in the fridge. with the 40L of liquid

nitrogen transferred, it takes about 24 hours. 8) Once the sorb temperature reaches

87K (+10K from the liquid nitrogen temperature), wait for 4 hours and then start

transferring the liquid helium. The most important thing in this process is boiling off

all the liquid nitrogen inside the fridge dewar. If some amount of liquid nitrogen is

left in the fridge dewar, enormous amount of liquid helium boils off to cool down the
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system, since the heat capacity of liquid nitrogen is significant. 9) Once the liquid

helium transfer is over, connect the pumping lines for the still, condenser, and 1K

pot. 10) Check out the pressure in the line in front and behind the nitrogen trap

which indicates the amount of impurities collected, record it, and pump them out

with 4He-rotary pump. 11) Insert the helium trap into the 4He bath 12) Pump out

the still line with the rotary pump and then with the turbo pump until the pressure

reaches below 9×10−4mbar. It takes more than 3 hours. 13) Start condensing.

Condensing & Circulating

Once the cooling the fridge process is done, the mixing chamber temperature is

stabilized around 7K. To lower the temperature further, the gas mixture in the dump

needs to be transported into the dilution unit and condensed into liquid. To transport

the gas mixture into the dilution unit, we slowly diffuse the gas from the dump to

condenser or still without using a pump. Although the fridge manual recommends

the diffusion process through the condenser, our lab diffuses the mixture through the

still. As the gas mixture diffuses into the still, from the cooling power of the 1K

pot, it condenses into liquid inside the still and drips down to the mixing chamber.

Since the 1K pot is thermally linked to the warm incoming gas mixture, 1K pot

temperature can increase and run out all the liquid helium inside, if too much gas

comes in abruptly. Therefore, we keep eyes on the 1K pot temperature maintaining

it below 1.8K while increasing the amount of incoming gas mixture by opening the

valve 12A. Once the pressure inside the dump and still reaches equilibrium, close the

connection between the dump and still. At this point, condensing is done and the

mixing chamber temperature stabilizes at around 1.5K. The process of transporting

the gas mixture from the dump to dilution unit and condensing into liquid is called

condensing and the condensing process takes approximately 4 hours.

To lower the mixing chamber temperature below the 1K pot temperature, the 3He

in the mixture needs to circulate. To circulate the 3He, the 3He-rotary pump sealed
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in a closed path is used primarily. Once the circulation starts, the mixing chamber

temperature drops relatively quickly down to 500 mK. However, as the temperature

drops further, the cooling speed becomes slower and the extra boosting of circulation

is necessary. To boost the circulation of 3He, from 500 mK, the roots pump locating

in the middle of the still line between the still and the 3He-rotary pump is turned on.

From 300 mK, the heater on the still is turned on typically with 3 mW of heating

power. The heater on the still boosts the evaporation of 3He from the dilute phase

inside the still. However, down to 100 mK, the temperature drops relatively fast only

with the roots pump without the still heater. In addition, without operating the roots

pump and the still heater, the temperature of mixing chamber can drop below 100

mK but very slowly. To sum up, this circulation process of 3He is called circulating

and controlled by 3He-rotary pump, roots pump, and the still heater.

To start a measurement, the temperature of mixing chamber must be stabilized.

This stability is achieved by the equilibrium between the cooling power of the dilution

process and the heating power from the heater near the mixing chamber. Once a

new temperature is set by a code, about 40-60 minutes take to stabilize the target

temperature with properly operating roots pump and still heater.

Warming the Fridge

Warming the fridge process is divided into following steps: retrieving the mixture

to dump, pulling out the fridge unit from the fridge dewar, and retrieving the sample.

Although the warming up process is rather straight forward compared to the cooling

and condensing & circulating process, equal amount of care is required since a small

mistake during the process can ruin the system.

The most important part in the warming the fridge process is fully retrieving the

mixture to dump. To retrieve the mixture, we follow these steps. 1) Turn off the

still heat and stop the roots pump. 2) Close the needle valve. 3) Close the 13A, the

valve connecting the dump and nitrogen trap. 4) Open the 9, the valve connecting
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the 3He-rotary pump and dump; and open the 5, the valve connecting condenser and

3He-rotary pump. 5) Start applying and increasing the heat on the mixing chamber

and still while keeping the P1, the pressure coming into 3He-rotary pump, less than

2. Preferably, it should maintain in between 1 and 2 mbar. P1 should not exceed 2

mbar all the time to prevent breaking the 3He-rotary pump from inhaling too much

gas. Once the G2, the pressure in the dump, exceeds 220 mbar, increase the mixing

chamber heat to 20 mW which is the maximum and apply 20 mW to still. Once the 1K

pot temperature exceeds 6K, turn off the still heat. 6) If there is an external heater,

put 16 mW of external heat on the mixing chamber. If P1 is still lower than 2 mbar

and the mixture is not retrieved fully, apply 100 mW of external heat. If an external

heater is not prepared, it is still ok. Just wait enough time to retrieve all the mixture.

7) The G2, the pressure in dump, indicates the amount of mixture retrieved. 714-719

mbar is the maximum dump pressure with full mixture. The maximum pressure is

room temperature dependent, thus it changes by seasons and whether AC operates or

not. Once the G2 saturates to the maximum values, wait 3 hours more and close the

9, the valve sealing the dump, and record the G2 pressure. 8) Close the condenser

valve and the gate valve for still. 9) Close all the dilution unit related electronic

valves: 12A (nitrogen trap to panel), 1 (condenser to panel), 5 (condenser to 3He-

rotary pump), and the manual valves: pink (nitrogen trap to panel), black (still line to

3He-rotary pump) on the panel. Do not turn off or close the 1K pot pump and valves.

10) Turn off the 3He-rotary pump. 11) Lower the mixing chamber and still power

to minimum and turn off the power. This procedure is important to prevent heating

the mixing chamber and still accidentally with excessive heat set at this moment in

the experiment. 12) Turn off the external heater. 13) Take the helium trap out from

the 4He bath; warm up the helium trap with a heat gun to touchable warm; open

the valve 1 and measure the G1 pressure (pressure inside the helium trap) which

indicates amount of impurities absorbed in the helium trap; close the valve 1. 14)

Close the 1K pot valve on the fridge unit; close the 4A and green valves, the valves

connecting 1K pot and 4He-rotary pump. 15) Close the red valve on the recovery line
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connected to 4He-rotary pump and disconnect the hose from the pump. 16) From

now, we will disconnect every connection to the fridge unit to pull the fridge unit

out from the fridge dewar. 17) Vent the still line. 18) Close and disconnect the G-10

hose from the fridge unit and recovery line, if connected. 19) Ground the sample and

thermometer using the box on the fridge unit; disconnect the ground cable, sample

cable, thermometer cable, IGH box cable, 1K pot line, condenser line, still line (thick

hose). 20) Connect the fridge unit to the hook from the ceiling and screw out the

screws on the fridge unit. 21) Pull up the fridge 1/3 and wait for 20 minutes; pull up

to 2/3 wait for 20 minutes; pull up almost all the way and wait for 20 minutes; take

the fridge unit out from the fridge dewar and hang it on for a day. 22) To retrieve

the sample, never forget to vent the IVC, before opening the IVC.

3.4 3He Immersion Cell

Instead of using a regular copper tail which is attached on the plate right below

the mixing chamber, we use 3He immersion cell to effectively stabilize the electron

temperature in the sample. Since the development of RIQHSs is extremely sensitive to

temperature change, delicate and stable temperature control is required to capture the

temperature dependent behaviors of RIQHSs, especially around the onset of RIQHSs.

By immersing the sample directly in the liquid 3He using the immersion cell, this can

be achieved.

The 3He immersion cell is a chamber which seals the 3He while the sample inside

is touching the 3He directly [118]. The chamber is made of half-transparent poly-

carbonate. With a polycarbonate cap having thread, the sample mount space where

the liquid 3He fills is sealed from the outside. Inside the immersion cell, the sample

is soldered to silver sintered silver wires and mounted on a copper pillar which is

in thermal contact with the wires. Here, the silver sinters are applied on wires to

increase the surface of the wires touching the liquid 3He to boost the thermaliza-

tion between the wires and the 3He. Once the electron temperature is controlled to
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He-3 Immersion Cell

(a) (b)

(c)

(d)

Figure 3.14. The 3He immersion cell used in our experiments. (a)
The exterior of immersion cell. The immersion cell is attached at the
end of the immersion cell copper tail. (b) The immersion cell and its
tail are attached below the mixing chamber plate. (c) The interior
of immersion cell. A sample is mounted on the copper pillar at the
middle of the cell. The contacts are made directly through the silver
sintered silver wires without extra wires connecting in between. (d)
The bottom sight of the immersion cell after closing the shield. The
sintered silver wires are connected to the copper wires outside the cell.
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the target temperature, thanks to the large heat capacity of liquid 3He, the electron

temperature can stably maintain.

To determine the sample temperature, we use an interesting technique [118]. By

using the quartz tuning fork attached inside the immersion cell, we can measure the

temperature of liquid 3He directly from its viscosity. Since the liquid 3He is directly

touching the sample, referring the sample temperature to the liquid 3He temperature

is more accurate than referring to the temperatures measured by the thermometers

attached on the mixing chamber plate. The viscosity of liquid 3He is high enough to be

measured at low temperature and sensitively changes depending on the temperature.

Hence, by measuring the viscosity of the liquid 3He from the resonance frequency of

the tuning fork, the sample temperature can be determined. This non-resistance based

thermometry has also other advantages on the measurement accuracy. It is immune

from the self-heating and high magnetic field effect which reduce the accuracy of

resistance-based thermometry.

3.5 Low Noise Measurement

In order to detect the most sensitive signals from an electronic state, signal to

noise ratio ought to be maximized. To achieve this, we perform our experiments with

measurement system of lock-in amplifier often times preceded with pre-amplifier to

amplify the incoming signal further. To examine the signal to noise ratio of a circuit,

spectrum analyzer is used to measure the signals coming from the cables which will be

eventually connected to the inputs of lock-in amplifier. To reduce background noise

such as the 60 Hz noise, we attach several ferrites on the sample cable bundle or any

cables connected on the circuit.
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3.5.1 Lock-in Amplifier

Lock-in amplifier is an amplifier which can measure the signal from only the

designated frequency. By measuring the signal from the single designated frequency,

lock-in amplifier removes the noise from different frequencies.

In our experiment, we use lock-in amplifiers as both current source and measure-

ment device. We normally attach a 1GΩ or 100MΩ resistor (at least 100 times larger

than the sample resistance) at the output of lock-in amplifier to make it as a current

source. We typically use 1 nA not to heat up the sample; however, when the signal to

noise ratio is too small and as a result the graph looks too noisy, we increase the cur-

rent to 10 nA or up to a current which will not heat up the sample. Once the circuit

is set up, we measure the voltage on the sample down to orders of nano-volt using the

coax cables which are connected on the inputs of the lock-in amplifier. To avoid the

60Hz noise from the U.S. commercial frequency, we avoid using the frequency which

are the multiples of 60 Hz. Typically, we use frequency between 4 Hz and 20 Hz.
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4. OBSERVATION OF MULTIPLE REENTRANCE IN A
HIGH LANDAU LEVEL AND THE STRUCTURE OF

THE ORBITAL WAVEFUNCTION

Stripe and bubble patterns form in various natural systems spontaneously when the

competition between long-range and short-range interactions break uniformity. Stripe

or nematic morphology are under intense investigation in numerous strongly corre-

lated electron systems. In contrast, the bubble morphology in electronic system is

rare. Some of the most fascinating bubbles develop in the two-dimensional electron

gas under perpendicular magnetic field. However, unlike the bubbles forming in clas-

sical systems including the Langmuir films and Turing activator-inhibitor reaction,

bubbles of electron gases emerge from quantum mechanical interactions: they are

stabilized while the individual electronic wavefunctions overlap. Here, we report a

proliferation of multi-electron bubble phases in a high Landau level and conclude the

richness is from the increasing nodal structures of the electronic wavefunction.

In this project, we measure the magnetotransport of the RIQHSs in high Lan-

dau levels of 2DEG in ultra-pure GaAs/AlGaAs. Consistent with earlier results, we

observe four RIQHSs in the N = 2 Landau level which were associated with single

type of bubble phase based on symmetry considerations. In contrast, in the N = 3

Landau level, we find eight distinct RIQHSs which indicates the family of RIQHSs

is richer than previous reports. This proliferation of the RIQHSs in a higher Landau

level was a missing puzzle of the bubble interpretation of the RIQHSs. Therefore, our

result significantly strengthens the bubble interpretation of the RIQHSs and identi-

fies the types of bubbles phases in the N = 2 and 3 Landau levels. Furthermore, we

find evidence of which the wavefunction structure of electrons determines the rich-

ness of multi-electron bubble phases in high Landau levels highlighting a fundamental

difference between quantum and classical bubbles.
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Additional Note. Observations from this chapter were reported at APS March

Meeting 2019 [98] earlier than the related observations in alloy disorder sample were

published by Fu et al. [84]. Later, our work in this chapter was published in Ref. [117].

4.1 Background: The Discrepancy between the Bubble Theories and Ex-

periments

The complex charge order of non-relativistic electrons in the topmost Landau level

of two-dimensional electron gas (2DEG) is predicted by the pioneering Hartree-Fock

theory [61–63]. The intriguing charge order emerges in bubble and stripe phases at

Landau level filling factors ν away and at from half integers, respectively. Bubble

phases are intricate solids of electrons. In the no disorder limit, several electrons clus-

ter into a unit called bubble and the bubbles arrange in a triangular lattice structure

forming a bubble crystal. The lattice constant of bubble crystal is approximately

three cyclotron radii [61, 62]. The Hartree-Fock theory is understood to be exact

for Landau levels with large orbital index N � 1 [63] and regarded to hold for

N ≥ 2 [61–63]. Since fluctuations are not considered in the mean-field level approach

of Hartree-Fock theory, the bubble formation is expected to be interrupted in the

N = 1 Landau level [61–63]. Density matrix renormalization group (DMRG) [65]

and exact diagonalization [64] studies also provide additional theoretical support for

the emergence of bubble phases.

Soon after the prediction of the Hartree-Fock theory, the complex charge or-

der was observed in the N = 2 and higher Landau levels of in 2DEGs confined

in GaAs/AlGaAs [66–69]. Reentrant integer quantum Hall states (RIQHSs) were

associated with bubble phases whereas anisotropic phases at half-filling were asso-
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ciated with stripe phases [66–69]. Later experiments of pinning resonance [71, 72],

Non-linear transport [68, 70], surface acoustic wave measurements [74, 75], and onset

temperature [73] in RIQHSs also supported the bubble interpretation.

Although the experimental results on the RIQHSs are consistent with the bubble

interpretation, they are certainly not conclusive. This is because the 2DEG is un-

derlying deep in the GaAs crystal and inaccessible to scanning probes, on one hand.

And the proliferation of RIQHSs in higher Landau levels, a hallmark of the bubble

theory, has not been observed, on the other hand. The Hartree-Fock theory pre-

dicts an increasing number of bubble phases with increasing Landau level index N at

N ≥ 2 [65, 76–81]. DMRG calculations also reached to similar conclusion comparing

N = 2 and N = 3 [65, 78]. However, so far in experiments including microwave

pinning resonance [71, 72], transport [66, 67, 75, 82–84], and surface acoustic wave

attenuation measurements [75, 83], the same number of RIQHSs was found in the

N = 2 and higher Landau levels. Even if single RIQHS associates with multiple

bubble phases, such an assumption could not be examined in the lack of direct scan-

ning of the morphology. The absence of the proliferation of RIQHSs at large Landau

indices is specifically unsettling since the Hartree-Fock theory is known to provide

better description as N increases [63].

4.2 Observation of M=2 and M=3 Reentrant Integer Quantum Hall

States in the N=3 Landau Level

In Fig 4.1, we present magnetotransport traces of the N = 2 and higher Landau

levels. Rxy is the Hall resistance whereas Rxx and Ryy are the longitudinal resistances

measured along mutually perpendicular crystal directions of GaAs. We measured a

sample of density n = 2.8× 1011cm−2 and mobility 15× 106cm2/Vs. More details on

this sample and the measurement setup are described in Ref. [73]. The quantization of

Hall resistance to Rxy = h/ie2 and vanishing longitudinal resistances Rxx = Ryy = 0

at integer filling factors ν = i, with i = 4, 5, 6, ..., are the signs of integer quantum
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Hall states (IQHS) [85]. The remarkably strong resistance anisotropies at half-fillings

ν = 9/2, 11/2, ..., 27/2 indicate the quantum Hall nematic phases [66,67] associated to

the stripe phases of the Hartree-Fock theory [61–63,86–88]. Presence of the nematic

phases in Landau levels as high as N = 6 is a fingerprint of ultra purity of sample.

Based on previous work, transport feature near ν = 4 may be understood as below.

At ν = 4, occurring at B = 2.90 T in our sample, the N = 0 and N = 1 Landau

levels are full while the N = 2 Landau level is empty. By reducing B, the N = 2

Landau level populates and therefore the areal density of electron quasiparticles in

the topmost Landau level n∗ increases. At low n∗, the electron quasiparticles are

localized by disorder, hence an integer plateau Rxy = h/4e2 and Rxx = 0 develop

in Fig 4.1 between B = 2.8 T and B = 2.90 T. As n∗ increases, the Coulomb

interactions of the electrons overcome disorder effects, leading a transition to a Wigner

solid [89]. The Wigner solid is not able to be distinguished by standard transport,

but its signatures were captured in compressibility [91], microwave resonance [89,90],

tunneling measurements [94], and resistively detected NMR [92,93]. A further increase

in n∗ induces the reentrance to the integer quantization: first a deviation from integer

quantization occurs, then a conspicuous return to quantization is realized [66–68].

Such behaviors appear in the regions near B = 2.44 and 2.68 T and other regions

colored in yellow in Fig 4.1. Because the reentrance is not expected from an Anderson

insulator, the reentrance signals a collective nature such as the electron bubble phase

[67,68].

Consistent with previous results, in the N = 2 Landau level, we observe four

RIQHSs locating at ν = 4 + 0.29, 5− 0.29, 5 + 0.29, and 6− 0.29 [67, 68, 73]. These

are shown in Fig 4.1. These four filling factors are in particle-hole symmetry relation,

thus the four RIQHSs are associated with single type of bubble phase. Calculations

found the M = 2 bubble phase at these filling factors [61,62,64,65,78–81].

Surprisingly, the magnetoresistance in the range of reentrance around B = 1.83 T

or ν = 6.3 in Fig 4.1 appears wider than expected and reveals an uncommon structure

in the N = 3 Landau level. We further examine the details of the structure more
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Figure 4.2. Panel a: Temperature evolution of the longitudinal resis-
tance Ryy in the filling factor range (6 < ν < 6.5) of the N = 3 LL
is plotted in waterfall style. Traces in consecutive temperatures are
shifted by 50 Ω. The local maximum labeled b distinguishes the two
distinct RIQHSs marked R6a and R6b which are colored in yellow
and blue respectively. Panel b: The waterfall style plot for the Hall
resistance in the reentrance region. The T = 78 and 97 mK traces
were dropped out to reduce clutter. Traces at T = 78 and 97 mK
were omitted to reduce clutter. Panels c and d: The ground state
phase diagrams of the N = 3 Landau level predicted by Hartree-
Fock theory [78–80] and DMRG calculations [78]. Two-, three-, four-
electron bubble phases are colored in blue, yellow, and pink respec-
tively. Reprinted figure with permission from Ref. [117]. Copyright
c© 2019 by American Physical Society.
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closely. In Fig 4.2, the T = 104 mK traces exhibit a quantized Hall resistance

Rxy = h/6e2 and a vanishing magnetoresistance Ryy at ν = 6.30 indicating the

development of the R6a labeled RIQHS. In the yellow colored region in Fig 4.2a, a

local minimum in the magnetoresistance is observed between the two local maxima

labeled a and b. However, as the temperature is lowered to T = 97 mK, another local

minimum appears at ν = 6.23. This second minimum appears in the blue colored

region between the two local maxima named b and c in Fig 4.2a. With further

temperature drop to T = 58 mK, Ryy at the second minimum vanishes and the Hall

resistance becomes quantized to Rxy = h/6e2. This data unveils a novel RIQHS at

ν = 6.23, which we labeled R6b in Fig 4.2a. Owing to the resistive feature b, the novel

RIQHS is distinct from R6a. Hence, we observed a dual reentrance of the ν = 6 IQHS

at the filling factor range of 6 < ν < 6.5 in the N = 3 Landau level. We encounter

two distinguishing RIQHSs instead of single RIQHS in the region. Therefore, the

number of RIQHSs proliferates in the N = 3 Landau level compare to that in the

N = 2 Landau level. Such proliferation of the RIQHSs is readily interpreted as the

proliferation of two distinct multi-electron bubble phases, a hallmark for the validity

of bubble interpretation. Our finding provides the first evidence of the proliferation of

multi-electron bubble phases in a high Landau level and strongly enhance the validity

of the bubble interpretation of the RIQHSs.

Our data show additional details that strengthen the bubble interpretation of

RIQHSs further. First, the Hartree-Fock [76–81] and of DMRG calculations [65, 78]

predict that the multiple bubble phases appearing in a Landau level must be close in

energy. Our data shows the RIQHSs R6a and R6b follow the case in Fig 4.2. The

two onset temperatures are estimated within 15% of each other. Second, the doubled

reentrance is an orbital effect in consistent with the Hartree-Fock theory. Data in Fig

4.3b indeed show the doubling of the reentrance behavior in both spin branches of

the N = 3 Landau level. This implies the physics is independent from spin quantum

number and thus the RIQHSs we observe in the N=3 Landau level including the
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Figure 4.3. Temperature evolution of the longitudinal resistance in
the N = 2 (panel a.) and N = 3 (panel b.) Landau levels. The
measured temperatures and the spin branches are shown in the top
legends. RIQHSs are colored in yellow and blue; stripe phases are
colored in green, and the IQHSs are uncolored. The distinct resistive
feature at several low temperatures distinguishes the two different
types of RIQHSs in the N = 3 Landau level. Reprinted figure with
permission from Ref. [117]. Copyright c© 2019 by American Physical
Society.

newly found R6b, R6c, R7b, and R7c precipitate due to orbital effects. The filling

factors of the groups of RIQHSs are in particle-hole symmetry.

We are able to assign bubble phases to the RIQHSs based on the results of the

Hartree-Fock and DMRG calculations. Fig 4.2c and Fig 4.2d presents the predicted
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ground states in the N = 3 Landau level of the Hartree-Fock [78–80] and DMRG [78]

calculations, respectively. The alignment of filling factor ranges of our RIQHSs are in

excellent agreement with those of the M = 2 and M = 3 bubble phases. Furthermore,

the range of M = 1 bubble phase or the Wigner solid overlaps with the measured

ν = 6 integer quantum Hall plateau, although it is considerably wider. We conclude

the R6a RIQHS emerging around ν = 6.30 is a bubble phase with 3 electrons per

bubble, while the weaker R6b emerging around ν = 6.23 is a bubble phase with 2

electrons per bubble. We find no evidence for the M = 4 bubble phase of the Hartree-

Fock theory [78–80]. We observe the quantum Hall nematic phase at the expected

filling factors instead. DMRG calculations more accurately capture the transition

between the M = 3 bubble phase and the nematic phase. In the same manner, the

RIQHSs in the N = 2 Landau level presented in Fig 4.3a are associated with M = 2

bubble phases.

Data in Fig 4.2a present that the onset temperature of R6a exceeds that of R6b.

These energy scales would favorably compare to the cohesive energies of the M = 2

and M = 3 bubble phases in the Hartree-Fock calculations. Our data agree with

the results in Refs. [79, 81] qualitatively which predict the M = 3 bubbles closer to

half filling are more stable. However, our data are not consistent with the results

in Refs. [76, 80]. The contradicting results of calculated cohesive energy is not from

different dielectric functions used: Refs. [76,81] include screening using a wavenumber-

dependent dielectric function while Refs. [79, 80] through a constant dielectric func-

tion. However, the Ref. [81] find the finite thickness effect of the electron layer has

a remarkable influence on cohesive energies. These results imply the finite thickness

or other effects modifying the short-range part of the Coulomb interaction can give a

strong impact on cohesive energies. Nevertheless, the contradiction on the calculated

cohesive energy, do not dim the observation of two RIQHSs in the N = 3 and the

interpretation of these RIQHSs as multi-electron bubble phases.
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4.3 The Origin of Multiple Bubble Formation in High Landau Levels:

Nodes of Orbital Wavefunctions

One finds competition between long-range and short-range interactions in the

origin of bubbles. For the bubble phases, the Coulomb interaction maintains its

bare form in the long-range, while it is modified by the overlap of wavefunctions

M=2 M=3M=1

M=2M=1

N=2

N=3
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Figure 4.4. The interaction energy in units of Coulomb energy
V0 = e2/(4πεlB) for the Landau indices N = 2 and N = 3. As
the electronic wavefunctions overlap, the interaction energies deviate
from the bare Coulomb expression. The inset associates the nodal
structure of the wavefunction |ψ|2 under the symmetric gauge with
the types of emerging bubble phases. In the N = 2 Landau level, the
wavefunction has two nodes and two different types of bubble phases
(M = 1 and M = 2) exist. In contrast, in the N = 3 Landau level,
the wavefunction has three nodes and three different types of bubble
phases (M = 1, M = 2, and M = 3) exist. Reprinted figure with
permission from Ref. [117]. Copyright c© 2019 by American Physical
Society.
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ψ of the electrons [61–63] in the short-range. In Fig 4.4 we present the |ψ|2 for

N = 2 and N = 3 of the symmetric gauge. When their geometric centers are close,

the overlap of the objects creates the bubbles. Since structure of the wavefunction is

dependent on the Landau index, the Coulomb interaction in short-range also depends

on the Landau index. Even though the shape of wavefunctions ψ depends on the

choice of the gauge potential [95], observables are the result of gauge-independent

property in wavefunctions. We suggest the gauge-independent property related to

bubble formation is the number of nodes in the electronic wavefunctions. It was

already discussed that nodal lines in the wavefunctions play a role in creating the

bubbles [69]. Our discovery of multiple reentrance in the N = 3 Landau level brings

the intriguing effects of multiple nodal lines to the fore in generating a rich set of multi-

electron bubble phases. In Fig 4.4, the nodal lines are presented as white circles. Our

results show the number of bubble phases in the N = 2 and N = 3 Landau levels

coincides with the number of nodal lines in the wavefunctions, which is the same with

the Landau index N , when the Wigner solids are included as the M = 1 electron

bubble phases. In contrast, the quantum Hall nematic phases in our experiment did

not show any particular dependence on the nodal structure of wavefunctions.

Our findings underline the fundamental differences between the quantum and

classical bubbles. Examples for the classical bubbles are found in the Langmuir films

or in the Turing activator-inhibitor system [96]. In classical systems only single type

of bubble exist; the density change of the system often creates the size change of the

bubbles. In contrast, in the quantum mechanical 2DEG, different types of bubbles are

allowed to form; the quasiparticle density change results in either a phase transition

or a crossover to different types of bubble phases.

The weak but distinctive resistive feature marked b in Fig 4.2a distinguishes the

R6a and R6b RIQHSs. It is noteworthy that a sharp phase transition is expected

between the two bubble phases in the Hartree-Fock theory [65, 76–81]. The resistive

feature having finite width may be appeared owing to the presence of disorder in our

sample, which is not counted in the theory. The resistive feature could also be the
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result of a backscattering channel providing the percolating paths between coexisting

two different bubble domains [77]. Interestingly, the resistive feature we observe has

a very good overlap with the uncolored range between the M = 2 and M = 3 bubble

phases where the ground state could not be identified in DMRG calculation [78].

The recent observations of RIQHSs in graphene provides the chance to study

electron bubbles in a novel platform [97]. Results highlight the host-independent

property of the physics and offer the opportunity to study new effects, such as the

effect on the valley degree of freedom on the RIQHSs.

4.4 Conclusion

In conclusion, we observed the doubled reentrance of the integer quantum Hall ef-

fect in the N = 3 Landau level of a ultra-pure 2DEG confined to GaAs/AlGaAs. Our

observation provides an evidence of the proliferation of the RIQHSs in high Landau

levels, hence strongly support the bubble interpretation of the RIQHSs. Our result

underlines the role of quantum mechanics in electronic bubble formation, particu-

larly, the attribution of the three nodal lines of the electronic wavefunctions to the

abundance of the bubble phases in the N = 3 Landau level.
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5. STABILITY OF MULTI-ELECTRON BUBBLE PHASES
IN HIGH LANDAU LEVELS

We investigate the multi-electron bubble phases in the N = 2 and N = 3 Landau

levels in a ultra-pure GaAs/AlGaAs sample. We found the longitudinal resistance

versus temperature curves exhibit sharp peaks in the multi-electron bubble regions

irrespective of the Landau level index. We interrelate these peaks with an increased

scattering occurred by thermally fluctuating domains of bubble phases and uncorre-

lated electron liquid at the onset temperatures of the bubble phases. We also found

the onset temperatures of three-electron bubble phases are systematically higher than

those of two-electron bubble phases within the N = 3 Landau level; and exhibit a

different trend with respect to the filling factor, regardless of Landau levels. Further-

more, the two-electron bubble phases across N = 2 and N = 3 Landau levels have

similar onset temperatures exhibiting an offset. Our measurements provide informa-

tion on bubble energetics which is expected to be a guide for improving the existing

theories and which reveals the impact of the short-range effective electron-electron

interaction on bubble formation.

Our measurement was supported by the NSF grant DMR 1904497. The sample

growth effort of M.J. Manfra was supported by the DOE BES award DE-SC0006671,

and that of L.N. Pfeiffer and K.W. West by the NSF MRSEC Grant No. DMR-

1420541 and the Gordon and Betty Moore Foundation Grant No. GBMF 4420.

Additional Note. Our work in this chapter was submitted as Ref. [120].

5.1 Background: Absence of Studies on the Number of Electrons per

Bubble M

The two-dimensional electron gas (2DEG) under perpendicular magnetic fields is

a system hosting rich physics that creates a variety of electronic phases. The most
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well known of the phases are, perhaps, the fractional quantum Hall states [100] which

carry topological order. Electron solids harboring charge order form another distinct

group of phases. Electronic solids include the Wigner solids [101], electron bubble

phases, and nematic or stripe phases [61–63,66–69,87,102,103].

Bubble phases are one of the most recently discovered states of 2DEGs which

their properties have not been revealed all yet. They were predicted by a Hartree-Fock

theory [61–63] first and further confirmed by the density matrix renormalization group

(DMRG) [65] and exact diagonalization [64] studies to be a periodic array of clusters

called electron bubbles. In linear transport, the reentrant integer quantum Hall states

are identified as bubble phases [67,68,102]. In addition, non-linear transport [68,70,82,

83,105,106], microwave resonance [71,72,104], temperature dependence [73,107–111],

surface acoustic wave [74, 75], and thermal transport measurements [112, 113] also

support the formation of bubbles. However, direct detection of the bubble morphology

is still absent.

Bubble phases are generally observed in 2DEGs in GaAs/AlGaAs [66–75, 82, 83,

102,104–113] and have also been found in graphene recently [97]. In the GaAs/AlGaAs

system, bubbles appear in the Landau levels having orbital index N ≥ 1. Theories

predict different type bubble phases exist within a Landau level [76–81,114–116]. The

types of bubble phases are differentiated by the number of electrons per bubble M

and a modest tuning of filling factor was expected to lead a phase transition between

two different types of bubbles. Experiments nearly for two decades could not resolve

such distinguishing bubble phases. The distinct bubble phases were observed only

recently in the N = 3 Landau level [99,117]. The filling factors range of these bubble

phases excellently agree with the predictions. These observations assigned the corre-

sponding bubble phases to the newly resolved two different types of reentrant integer

quantum Hall states (RIQHSs) and cemented the bubble phase interpretation of the

RIQHSs.

Recent resolution of two different multi-electron bubble phases within one Landau

level [99, 117], the N = 3 Landau level, facilitated the qualitative and quantitative
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study both within one Landau level and across different Landau levels. We found the

bubble phases in the N = 3 Landau level of our high mobility GaAs/AlGaAs sample

show sharp peak behavior in the longitudinal magnetoresistance versus temperature

traces at fixed magnetic fields. The peak behaviors were captured previously in the

N = 1 and N = 2 Landau levels in ultra-pure GaAs/AlGaAs [73, 110, 113] and

also in graphene [97]. However, such peaks were absent in an alloy disorder GaAs

sample having low mobility [99]. We think these peak behaviors are originated from

scattering through the bulk of the sample caused by fluctuating and interpenetrating

domains of bubbles and uncorrelated uniform liquid. Based on this interpretation,

the onset temperature of bubble phase which provides the maximum of the peak is

extracted. We found the onset temperatures of the bubble phases extracted with this

method have a surprising dependence on the number of electrons per bubble. Within

the N = 3 Landau level, the dimensionless reduced onset temperatures of M = 3

bubble phases are higher than those of M = 2 bubble phases and present different

trends with respect to the filling factor. Moreover, comparing the M = 2 bubble

phases across the N = 2 and N = 3 Landau levels, we found the dimensionless onset

temperatures are close each other yet having an offset. Our measurements provide

information on energetics of bubbles that facilitate a qualitative comparison to the

theories; and on details of the effective electron-electron interaction in short-range.

5.2 The Signatures and Criticality of Electron Bubbles: The Peak Be-

haviors and Onset Temperatures

We measured a magnetotransport of 2DEG in GaAs/AlGaAs quantum well of

30 nm width having an electron density n = 2.8 × 1011 cm−2 and mobility µ =

15× 106 cm2/Vs. In the experiment, the sample was mounted on a He-3 immersion

cell [118] to stabilize the sample temperature more effectively taking the advantage

of the large heat capacity of liquid He-3.
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Figure 5.1. The longitudinal magnetoresistance Ryy is plotted with
respect to the filling factor ν in the N = 2 (top panel) and N = 3
(bottom panel) Landau levels. The two-electron bubble phases (M =
2) are colored in yellow, while the three-electron bubble phases (M =
3) are colored in blue. Zero Ryy near integer filling factors signals
integer quantum Hall states, while areas colored in green at half-
integer filling factors are quantum Hall nematics. Data is collected
at T = 59 mK. Reprinted figure from the submitted manuscript Ref.
[120].

In Fig 5.1, we present the longitudinal magnetoresistance Ryy in the N = 2 and

N = 3 Landau levels against the Landau level filling factor ν. In the ν = hn/eB, h is

the Planck constant, e is the elementary charge, and B is the perpendicular magnetic

field. Regions where the longitudinal resistance Ryy vanishes in this figure associate

with diverse phases. Integer quantum Hall states [85] locate at integer filling factors

ν = i (i = 4, 5, 6, and 7), where the Ryy = 0 and the Hall resistance is quantized to

h/ie2. Quantum Hall nematics or stripe phases [66, 67] reside at half integer fillings

ν = i + 1/2. For the last, bubble phases form in the filling factor range between the

full and half integers. In the N = 2 Landau level, only one type of multi-electron
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bubble phase emerges [67, 68]. In contrast, in the N = 3 Landau level, two different

types of multi-electron bubble phases emerge as recently discovered [99, 117]. The

corresponding bubble phases were identified based on an excellent agreement of the

measured and predicted filling factors of the RIQHSs and bubble phases. In Fig 5.1,

we colored and marked the two-electron (M = 2) and three-electron (M = 3) bubble

phases. The two different multi-electron bubble phases in the N = 3 Landau level

are distinguished by a local magnetoresistive feature [99, 117] in between. The Hall

resistance of bubble phases was quantized to the integer values of the closest integer

quantum Hall plateaus [67,68,99,102,117] (not shown in Fig 5.1). Detecting with the

techniques other than standard transport, M = 1 bubble phases also emerge in these

Landau levels as part of the plateaus of the integer quantum Hall states [89–94].

However, since our transport measurements cannot differentiate them from other

localized states, the M = 1 bubble phases will not be discussed further in this Article.

In Fig 5.1, similarly colored bubble phases appear at the filling factors in particle-

hole symmetry relation [73, 99, 117]. We investigate this noticeable symmetry to a

greater detail in the following. Bubble phases form in a range of filling factors in

high mobility samples such as ours. We define the central filling factor νc of a bubble

phase as the filling factor of highest bubble stability. Hence, the local minimum of the

longitudinal resistance hosting the bubble phase at the highest possible temperature

locates at the central filling factor [73,110].

Table 5.1.
The central filling factors νc and onset temperatures Tc of the M = 2
and M = 3 bubble phases in the N = 3 Landau level. Reprinted table
from the submitted manuscript Ref. [120].

R6a R6b R6c R6d R7a R7b R7c R7d

νc 6.30 6.22 6.77 6.70 7.30 7.22 7.78 7.70

Tc[mK] 117 100 91 117 101 80 71 100
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Figure 5.2. (a) Thermal evolution of Ryy versus ν (B-field) for the R7a
and R7b bubble phases. Temperature in units of mK is marked on
each curve. Arrows point the central filling factor νc of each bubble
phase. (b) Thermal evolution of Ryy of the R7a and R7b bubble
phases with respect to T at their central filling factors νR7a

c = 7.30,
and νR7b

c = 7.22. Arrows point the onset temperature Tc of each
bubble phase at the peak region. Reprinted figure from the submitted
manuscript Ref. [120].

For example, we observe a local minimum in Ryy isotherms persists to temper-

atures as high as T = 97 mK for the R7a bubble phase in Fig 5.2a. This local

minimum is located at νR7a
c = 7.30. Similarly, a local resistance minimum develops

at νR7b
c = 7.22 at temperatures as high as T = 75 mK for the weaker R7b state.

The central filling factors of multi-electron bubble phases in the N = 3 Landau level
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are presented in Table 5.1. The error for filling factors are ±0.01. We recognize the

central filling factors of the M = 3 bubble family are able to be written in the form

of νc = 6 + 0.30, 7− 0.30, 7 + 0.30, 8− 0.30 for R6a, R6d, R7a, and R7d respectively.

Also, the filling factors of the M = 2 bubble family are able to be written in the form

of νc = 6 + 0.22, 7− 0.23, 7 + 0.22, 8− 0.22 for R6b, R6c, R7b, and R7c respectively.

Thus, we found the bubble phases in the N = 3 Landau level form at the central

filling factors in particle-hole symmetry [99], similarly to those in the N = 1 and 2

Landau levels [73, 110].

In Fig 5.2a, the isotherm at T = 104 mK exhibits a local maximum, while that

at T = 97 mK exhibits a local minimum near νR7a
c = 7.30. We define the onset tem-

perature of R7a, TR7a
c , as the average of highest temperature that a local minimum

exists in Ryy and the next higher measured temperature. The error in determining

Tc is extracted from the difference between these two temperatures. The onset tem-

peratures of the multi-electron bubble phases in the N = 3 Landau level are found

in Table 5.1. The Errors in Tc are ±5 mK. We remark the local maximum in the

T = 104 mK isotherm of Ryy near νR7a
c = 7.30 in Fig 5.2a still associate with the

bubble phase R7a. This local maximum signify the precursor behavior of the R7a

bubble phase [111].

In Fig 5.2b, we exhibit the evolution of Ryy with respect to T at the central filling

factor νc for the bubble phases R7a and R7b. We name such traces as Ryy(T )|ν=νc .

These Ryy(T )|ν=νc traces can be thought as profiles at single filling factor ν = νc in

the three dimensional Ryy(ν, T ) manifold having two independent parameters ν and

T . Ryy(T )|ν=νc is close to vanishing at the lowest measured temperatures as expected,

signifying stable development of bubble phases. At T > 200 mK, Ryy(T )|ν=νc has a

nearly T -independent finite value. However, around T = TR7a
c = 101 mK, Ryy(T )|ν=νc

for the R7a phase shows a sharp peak. Similar peak behaviors in Ryy(T )|ν=νc traces

were captured at the onset temperatures of bubble phases in the N = 1 and N = 2

Landau levels [73, 110, 113]. As presented in Fig 5.3, we now capture such peaks for

all the multi-electron bubble phases in the N = 3 Landau level. We conclude the
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peak behaviors present in the Ryy(T )|ν=νc traces at the onset of multi-electron bubble

phases irrespective of the Landau level in high mobility samples.

Data of bubble phases in the N = 3 Landau level of an alloy sample [99] provides

a chance for comparison. The alloy disorder sample in Ref. [99] has a mobility of

µ = 3.6 × 106 cm2/Vs due to the artificially introduced Al into the GaAs channel

when the sample was grown. Comparing to mobility of our sample, the value is about

a factor of 4 times less. Intriguingly, the multi-electron bubble phases in the N = 3

Landau level of the alloy sample emerge at the identical filling factors and in similar

temperature ranges compare to those of our bubbles [99]. The increased longitudinal

resistance of ≈ 80 Ω in the alloy sample [99] which is seen at temperature much
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above the onset of bubble is thought to be the consequence of the reduced mobility.

In our sample, that is ≈ 18 Ω. Another remarkable consequence is the absence of the

peak behavior in the Ryy(T )|ν=νc curves [99]. In the alloy disorder sample [99], the

longitudinal magnetoresistance of the bubble phase increases and saturates above 135

mK without the showing a sharp peak, indeed. Currently, the transport in bubble

regime is understood as follows: at T << Tc, the bubble phase is pinned by the

disorder in the sample, while at T >> Tc, a uniform uncorrelated liquid forms. In

this picture, around T = Tc, these two phases compete each other by building an

interpenetrating network of domains in the bulk of the sample. The peak behavior of

Ryy(T )|ν=νc in a narrow temperature range near T = Tc in our ultra-pure GaAs sample

as wells as in graphene [97] indicates the enhanced scattering due to the increased

thermal fluctuations between the two competing domains. We conjecture that thermal

fluctuations in this kind and the correlated peak behaviors are suppressed in the alloy

disorder sample by the presence of deliberately added disorders [99].

5.3 Difference in Stability of M=2 and M=3 Bubble Phases: Comparison

of Onset Temperatures and Cohesive Energies

We now scrutinize the two quantities closely related, the onset temperatures of

bubble phases and the corresponding cohesive energies calculated in Hartree-Fock

theories [73, 110]. We found the M = 2 and M = 3 bubble phases in the N =

3 Landau level have close onset temperatures. This feature is consistent with the

Hartee-Fock calculations [61–63,76,77,79–81,114]. However, quantitative comparisons

to the calculated cohesive energies are tenuous. This is partially owing to the idealized

conditions in the cohesive energies calculations which do not include the disorder

and Landau level mixing effects. Difference of more than two orders of magnitude

between the calculated cohesive energies [61–63, 76, 77, 79–81, 114] and the measured

onset temperatures [73, 110] in the N = 1 and N = 2 Landau levels were attributed
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to these idealized conditions indeed. We found that these discrepancies exist also in

the N = 3 Landau level [79–81].

Nevertheless, qualitative comparisons of onset temperatures and cohesive energies

offer precious insight. It is well-understood that the clustering of electrons into bub-

bles is fostered during competition of short-range and long-range electron-electron

interactions [61–63,69,117]. The long-range part is bare Coulomb in nature, whereas

the short-range part is softened Coulomb potential. We find that overlap of single

electronic wavefunctions [61–63,69,117] and the effect of finite layer thickness [81,119]

are in the origin of such a potential softening.

Although the onset temperatures of the N = 3 Landau level in Table 5.1 do not

seem to follow a special trend at the first sight, a closer investigation reveals two

intriguing features. First, onset temperatures of single type bubble families create an

approximately linear trend within one Landau level. In Fig 5.4, we present dimension-

less reduced onset temperatures tc = kBTc/EC of multi-electron bubble phases in the

N = 2 and N = 3 Landau levels. Here, kB is the Boltzmann constant, EC = e2/4πεlB

is the Coulomb energy, and lB is the magnetic length. In Fig 5.4, the three shaded

bands with two different colors show these linear trends of the M = 2 bubble phases

in the N = 2 and N = 3 Landau levels, and of the M = 3 bubble phases of the N = 3

Landau level. Because the data from different spin branches of a Landau level lie on

the same line, we conclude that onset temperatures are not affected by the spin quan-

tum number. Secondly, the linear trend of tc with respect to νc for the M = 2 bubble

phases have a similar slope across the different Landau levels: ∂tc/∂νc ≈ −2.5× 10−4

in both the N = 2 and N = 3 Landau levels. Hence, we found bubble phases hav-

ing the same number of electrons emerging in different Landau levels share a close

∂tc/∂νc. Contrastingly, the ∂tc/∂νc slope of the M = 3 bubble phases in the N = 3

Landau level is remarkably flattened, decreased by about a factor 5 compared to that

of the M = 2 bubble phases.

Details on the short-range part of electron-electron interaction, which induces

bubble formation, is revealed by identifying the dominating bubble phase in the N = 3
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Landau level. We remark that Hartree-Fock calculations do not offer consistent results

on the dominant or more stable bubble phase. In theN = 3 Landau level, Refs. [76,81]

predict the M = 3 bubbles to be more stable, while Refs. [79, 80] predict the M = 2

bubbles to be dominant. Our findings agree on the former results, while disagree on

the latter ones. A persuasive cause of the inconsistency on dominant bubble phase is

possibly due to different effective electron-electron interaction. Particularly, the work

of Ettouhami et al. [81] comprehensively elaborates this. In the work, the short-

range part of the electron-electron interaction is tuned through the layer thickness
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parameter λ, while maintaining the long-range part of the potential unchanged [81].

Here, the authors found the energy balance can be significantly changed in the N = 3

Landau level. The M = 3 bubbles are more stable at λ = 0, when the short-range

softening of electron-electron interaction is not considered, while the M = 3 bubbles

have nearly the same stability with M = 2 bubbles at λ = 1, when the softening

at short distances is considered [81]. Thus, we further conjecture that a stronger

softening of the potential may be able to reverse the energy hierarchy of the M = 2

and M = 3 bubble phases and may yield the experimental inconsistency.

Furthermore, comparing the M = 2 bubble energetics in the N = 2 and N = 3

Landau levels reveals dependence of the electronic short-range interaction on the

Landau level index N . The linear trend of dimensionless onset temperatures of M = 2

bubble phases with respect to νc was discussed earlier. In addition to the similarity of

slopes ∂tc/∂νc, the linear trends show a vertical offset when the Landau level index N

changes from 2 to 3 nearby ν = 6. As seen in Fig 5.4, the blue band of M = 2 bubble

phases in the N = 3 Landau level obtained an offset when comparing to that of M = 2

bubble phase in the N = 2 Landau level. We think this offset is mainly caused by the

variation of the short-range effective electron-electron interaction with the Landau

level index N . Although the finite layer thickness effects also soften the electron-

electron interaction, they are thought to be independent on the Landau level index

N . In contrast, the short-range part of the effective Coulomb potential which is an

outcome of the overlapping wavefunctions is Landau index dependent [61–63,69,117].

This is because the nodal structure in the wavefunctions directly affects on bubble

energetics. Thus, the comparison of the M = 2 bubble energetics in the N = 2 and

N = 3 Landau levels offers direct evidence that the electronic wavefunction overlap

plays a role in shaping the electron-electron interaction in the short-range.
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5.4 Conclusion

To conclude, we observed qualitative and quantitative characteristics of bubble

phases in the N = 2 and N = 3 Landau levels. We found the longitudinal resistance

versus temperature traces show sharp peaks in the multi-electron bubble regime both

in the N = 2 and N = 3 Landau levels of our high mobility sample. From these peaks,

we extract the onset temperatures of the bubble phases. The recent assignment of

corresponding bubble phases to the RIQHSs made an analysis of the measured onset

temperatures of the bubble phases possible. We first found the dimensionless onset

temperatures of M = 3 bubbles are higher than those of M = 2 bubbles and show

a different trend with respect to the filling factor, within the N = 3 Landau level.

Secondly, we found the dimensionless onset temperatures of M = 2 bubble phases

across the N = 2 and N = 3 Landau levels are close each other yet exhibiting an

offset. Our results provide information on bubble energetics which is expected to

refine the existing theories and provides evidence that short-range electron-electron

interactions which are critically influenced by overlap of wavefunction play role in

bubble formation.
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