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ABSTRACT

Kang Lu Ph.D., Purdue University, August 2020. Gaudin models associated to clas-
sical Lie algebras. Major Professor: Evgeny Mukhin.

We study the Gaudin model associated to Lie algebras of classical types.

First, we derive explicit formulas for solutions of the Bethe ansatz equations of
the Gaudin model associated to the tensor product of one arbitrary finite-dimensional
irreducible module and one vector representation for all simple Lie algebras of clas-
sical type. We use this result to show that the Bethe Ansatz is complete in any
tensor product where all but one factor are vector representations and the evaluation
parameters are generic. We also show that except for the type D, the joint spectrum
of Gaudin Hamiltonians in such tensor products is simple.

Second, using the result from [MTV09b], we define a new stratification of the
Grassmannian of N planes Gr(V, d). Following [MV04], we introduce a new subvari-
ety of Grassmannian, called self-dual Grassmannian, using the connections between
self-dual spaces and Gaudin model associated to Lie algebras of types B and C. Then

we use the result from [Ryb18] to obtain a stratification of self-dual Grassmannian.



1. INTRODUCTION

1.1 Motivation

Quantum spin chains are one of the most important models in integrable system.
They have connections with mathematics in many different aspects. To name a few,
for example

(1) Quantum groups, see [Dri85, CP94]: finite-dimensional irreducible represen-
tations of quantum affine algebras were classified in [CP91,CP95]. The character the-
ory of quantum group, was introduced for Yangians in [Kni95| and for quantum affine
algebras in [FR99]. It turns out to be one of the most important tool for studying the
representation theory of quantum groups. As described in [FR99], the g-character of
quantum affine algebras is essentially the Harish-Chandra image of transfer matrices
which are generating series of Hamiltonians of quantum spin chain. Conversely, the
g-character itself also carries information about the spectrum of transfer matrices
when acting on finite-dimensional irreducible representations, see [FH15, Theorem
5.11] and [FJMM17, Theorem 7.5].

(2) Algebraic geometry: in the work [MV04], it is shown that the Bethe ansatz
for Gaudin model of type A is related to the Schubert calculus in Grassmannian.
This connection was further established in the work [MTV09b], where the algebra
of Hamiltonians (Bethe subalgebra) acting on finite-dimensional irreducible repre-
sentation of the current algebra is identified with the scheme-theoretic intersection
of suitable Schubert varieties. This result gives the proof of the strong Shapiro-
Shapiro conjecture and transversality conjecture of intersection of Schubert varieties.
Moreover, a lower bound for the numbers of real solutions in problems appearing in

Schubert calculus for Grassmannian is given in [MT16].



(3) Center of vertex algebra and W-algebras: the algebra of Hamilto-
nians (Bethe algebra) for Gaudin model was described by Feigin-Frenkel center,
see [FFR94, Fre07, Mol18], which is the center of vacuum model over g at critical
level. This commutative algebra is also isomorphic to the classical W-algebra as-
sociated to 'g, the Langlands dual of g, via affine Harish-Chandra isomorphism.
There are also quantum analogues of relations between quantum integrable systems
and centers of quantum vertex algebra over quantum affine algebras and Yangians,
see [FJMR16, JKMY18] and references therein. Remarkably, shifted Yangians are
also deeply related to finite W-algebras, see e.g. [BKO0G].

(4) Quantum cohomology and quantum K-theory: it is shown in [GRTV12]
that the quantum cohomology algebra of the cotangent bundle of a partial flag va-
riety can be identified as the Bethe subalgebra of Yangian Y(gly). Moreover, the
idempotents of the quantum cohomology algebra can be determined by the XXX
Bethe ansatz method. There are also parallel results for equivariant cohomology and
quantum K-theory corresponding to Gaudin model and XXZ spin chains, respec-
tively, see [RSTV11,RTV15]. The literature on the connections between quantum
integrable system and quantum cohomology becomes immense and keeps growing.

(5) Combinatorics: the alternating sign matrix conjecture is proved by studying
six-vertex model using the Izergin-Korepin determinant for a partition function for
square ice with domain wall boundary, see [Kup96]. The number of alternating sign
matrices can also be described as the largest coefficient of the normalized ground
state eigenvector of the XXZ spin chain of size 2n + 1, see [RS01,RSZJ07]. Quantum
spin chains are also related to standard Young tableaux. A bijective correspondence
between the set of standard Young tableaux (bitableaux) and rigged configurations
was constructed in [KR86] , where rigged configurations “parameterize” the solutions
of Bethe ansatz equations.

(6) There are also other directions, for example orthogonal polynomial [MVO07],
hypergeometric functions, ¢KZ equations, Selberg type Integrals, arrangement of hy-

perplanes [SV91], etc, see [Var03] for a review.



All these connections and applications show that quantum spin chains play a
central role in mathematics. It is important to study quantum spin chains in a
mathematical and rigorous way. A modern approach to describe quantum integrable
systems is using the representation theory of various quantum algebras [FRTS8S8|. For
example, enveloping algebras of current algebras, Yangians, quantum affine algebras,
and elliptic quantum groups correspond to Gaudin model, XXX, XXZ, and XYZ spin

chains, respectively. We discuss the formulation of the problem below in more detail.

1.2 Main Problems

In general, Gaudin model and XXX spin chains can be described as follows. The
XXZ and XYZ spin chains can be described similarly with certain modifications.

Let g be a simple (or reductive) Lie algebra (or superalgebra). Let U(g) be the
universal enveloping algebra of g. Let A(g) be an algebra associated to g such that
U(g) can be identified as a Hopf subalgebra of A(g). For example, A(g) is the
universal enveloping algebra of the current algebra U(g[t]) for Gaudin model and
Yangian Y(g) associated to g for XXX spin chains. The Bethe algebra B(g) is a
certain unitial commutative subalgebra of A(g). The Bethe subalgebra depends on
an element 1 € g*. Here we only concentrate on the periodic case for simplicity of
exposition, namely p = 0. In general, similar results are also expected when p regular
semi-simple or even simply regular. The Bethe algebra commutes with the algebra
U(g). Take any finite-dimensional irreducible representation V' of A(g). Since B(g)
commutes with U(g), the Bethe subalgebra B(g) acts naturally on V"8, the singular
subspace with respect to the g-action. One would like to study the spectrum of B(g)
acting on V8,

Let £ : B(g) — C be a character, then the B(g)-eigenspace and generalized
vans — E(a))

yeing — & (a))m), respectively. We call £ an eigenvalue of

B(g)-eigenspace associated to € in V" are defined by ()
and (N,cp(q) (Um=, ker(a

acB(g) ker(a




B(g) acting on V"8 if the B(g)-eigenspace associated to £ is non-trivial. We call a

non-zero vector in a 3(g)-eigenspace an eigenvector of B(g).
Question 1.2.1. Find eigenvalues and eigenvectors of B(g) acting on V18,

The main approach to address Question 1.2.1 is the Bethe ansatz method, which
was introduced by H. Bethe back in 1931 [Bet31]. The Bethe ansatz usually works
well for the generic situation. For the degenerate situation, the problem is more
subtle.

Let By(g) be the image of B(g) in End(V®"8). A Frobenius algebra is a finite-
dimensional unital commutative algebra whose regular and coregular representations
are isomorphic. Based on the extensive study of quantum integrable systems, the

following conjecture is expected.

Conjecture 1.2.2 ( [Lu20]). The By (g)-module V"8 is isomorphic to a regular

representation of a Frobenius algebra.

When Conjecture 1.2.2 holds, we call the corresponding integrable system perfect
integrable. This conjecture has been proved for the following cases, (1) Gaudin model
of type A in [MTV08b, MTV09b]; (2) Gaudin model of all types in [Lu20] with the
help of [FF92,FFR10,Ryb18]; (3) XXX spin chains of type A associated to irreducible
tensor products of evaluation vector representations in [MTV14]; (4) XXX spin chains
of Lie superalgebra gl,; associated to cyclic tensor products of evaluation polynomial
modules in [LM19b].

The notion of perfect integrability (or Conjecture 1.2.2) is motivated by the follow-
ing corollary about general facts of regular and coregular representations, geometric

Langlands correspondence, and Bethe ansatz conjecture.

Corollary 1.2.3. For each eigenvalue &, the corresponding B(g)-eigenspace has di-
mension one. There exists a bijection between B(g)-eigenspaces and closed points
in spec(By(g)). Moreover, each generalized B(g)-eigenspace is a cyclic B(g)-module.
The image of Bethe algebra in End(V®"8) is a maximal commutative subalgebra of

dimension equal to dim Vs,



By the philosophy of geometric Langlands correspondence, one would like to un-

derstand the following question.

Question 1.2.4. Describe the finite-dimensional algebra By (g) and the corresponding
scheme spec(By(g)). Find the geometric object parameterizing the eigenspace of B(g)

when V' runs over all finite-dimensional irreducible representations.

It is well-known that if spec(By(g)) is a complete intersection, then By (g) is a
Frobenius algebra. Conversely if By (g) is Frobenius, it would be interesting to check

if spec(By(g)) is a complete intersection, see [MTV09b].

1.3 Gaudin Model

The Gaudin model was introduced by M. Gaudin in [Gau76] for the simple Lie
algebra sly and later generalized to arbitrary semi-simple Lie algebras in [Gau83,
Section 13.2.2].

Let g be a simple Lie algebra. Let A = (\;)"_; be a sequence of dominant integral
weight. Let z = (z;); be a sequence of pair-wise distinct complex numbers. Let
V be the tensor product of finite-dimensional irreducible representations of highest
weights A\, s = 1,...,n. Let {Xi}finfg be an orthonormal basis of g with respect to the
Killing form. For X € g, denote by X(® the operator 1204~ @ X @ 12"~ ¢ U(g)®".

The Gaudin Hamiltonians are given by

dim 7 j
Z POy X,g) & X,ij)

Zi—Zj

H; =

. i=1,...,n (1.3.1)

The Gaudin Hamiltonians commute, [H;, ;] = 0. In Gaudin model, we study the
spectrum of Gaudin Hamiltonians acting on V. The Gaudin Hamiltonians also com-

mute with the diagonal action g.



1.3.1 Feigin-Frenkel Center and Bethe Subalgebra

In the seminal work [FFR94|, Feigin, Frenkel, and Reshetikhin established a con-
nection between the center 3(g) of affine vertex algebra at the critical level and higher
Gaudin Hamiltonians in the Gaudin model. Let us discuss 3(g) in more detail.

Let g be a simple Lie algebra. Consider the affine Kac-Moody algebra g =
glt,t |®CK, g[t,t7'] = g C[t, t!]. We simply write X[s] for X ®@¢* for X € g and
s€Z. Let g = g®t'C[t'] and g[t] = g@C[t]. Let h¥ be the dual Cozeter number
of g. Define the module V_;v(g) as the quotient of U(g) by the ideal generated by
g[t] and K + hY. We call the module V_,v(g) the Vaccum module at the critical level
over g. The vacuum module V_,v(g) has a vertex algebra structure.

Define the center 3(g) of V_,v(g) by

3(9) = {v e Vou(g) | gltlo = 0}.

Using the PBW theorem, it is clear that V_,v(g) is isomorphic to U(g_) as vector
spaces. There is an injective homomorphism from 3(g) to U(g_). Hence 3(g) is
identified as a commutative subalgebra of U(g_). The algebra 3(g) is called the
Feigin-Frenkel center, see [FF92]. An element in 3(g) is called a Segal-Sugawara

vector. There is a distinguished element S; € 3(g) given by
dim g

Si=Y X,[-1]".

To obtain the Bethe subalgebra of g[t], one applies an anti-homomorphism to
3(g) which sends X[—s — 1] to 92X (u)/s!, where X (u) = X[0]u™ + X[1Ju™2+--- €
U(g[t])[[u"]]. One obtains generating series in u~!. Then the Bethe subalgebra B(g)
of g[t] is the unital subalgebra of U(g[t]) generated by all coefficients of generating
series corresponding to elements in 3(g). The Bethe algebra is considered as the
algebra of Hamiltonians. For instance, the Gaudin Hamiltonians #; (1.3.1) can be
obtained by taking the residues of the generating series corresponding to S; at z;
acting on V), (z1) ® - - ®@ Vi, (2,), where V), (z;) is the evaluation module of g[t] with

evaluation parameter z;. This procedure can be found for e.g. in [Mol13, MR14].



Let V be a finite-dimensional irreducible representation of g[t], namely a tensor
product of evaluation modules Vi, (21) ® - -+ ® Vi, (2,), where A = (AO)"_, and z =
(2)™, as before. We are interested in the spectrum of B(g) acting on Ve,

There is also a generalization of Gaudin model, which is called Gaudin model
with irregular singularities, see [Ryb06, FFTL10]. In this case, the Bethe algebra also

depends on an element p € g*.

1.3.2 Opers and Perfect Integrability

In this section, we discuss the known results posed in the introduction.

It was shown in [Fre05, Theorem 2.7] that By (g) is isomorphic to the algebra of
functions on the space of monodromy-free “g-opers on P! which has regular singu-
larities at the point z; of residues described by A; and also at infinity. Moreover, the
joint eigenvalues of the Bethe algebra acting on V¢ are encoded by these “g-opers.
It was also conjectured there that there exists a bijection between joint eigenvalues
of Bethe algebra acting on V*"¢ and monodromy-free “g-opers on P! stated above.

Similar statements are also obtained for Gaudin model with irregular singularities
in [FFTL10]. In this case, the difference is that the corresponding *g-opers now
have irregular singularities at infinity. It is then shown in [FFR10, Corollary 5] for
Gaudin model with irregular singularities associated to regular . € g* that the Bethe
algebra acts on V cyclically and there exists a bijection between joint eigenvalues of
Bethe algebra acting on V with monodromy-free Lg-opers on P! which has regular
singularities at the point z; of residues described by \; and a irregular singularity at
infinity.

Using the results of [FFTL10] and taking p to be the principal nilpotent element,
Rybnikov managed to prove the conjecture in [Fre05] for Gaudin model, see [Ryb18].
Namely, the Bethe algebra By (g) acts on V1 cyclically and there exists a bijection

between joint eigenvalues of Bethe algebra acting on V*"# with monodromy-free “g-



opers on P! which has regular singularities at the point z; of residues described by \;
and also at infinity.

These results give answers for Questions 1.2.1, 1.2.4 and the essential parts of
Conjecture 1.2.2 for Gaudin model, that is the By (g)-module V*"8 is isomorphic to
the regular representation of By (g).

To show Conjecture 1.2.2, it remains to show that By (g) is a Frobenius algebra.
Combining the results [FF92, FFR10,Ryb18] and using the Shapovalov form on V', we
are able to construct an invariant nondegenerate symmetric bilinear form on By (g),

which in turn shows that By (g) is Frobenius. Hence we obtain

Theorem 1.3.1 ( [Lu20]). Gaudin model for p = 0 and regular u € b* is perfectly

integrable.

In other words, we obtain the perfect integrability for Gaudin model with periodic
and regular quasi periodic boundaries. As a corollary, we also obtain that there
exists a bijection between common eigenvectors of Bethe algebra acting on V"8 with
aforementioned “g-opers. This can be thought as the proof of Bethe ansatz conjecture

of eigenvector form.

1.3.3 Grassmannian and Gaudin Model

A remarkable observation is the connections between Gaudin model of type A
and Grassmannian. This was first observed in [MV04] by studying the reproduction
procedure of solutions of Bethe ansatz equation. An invariant object for reproduc-
tion procedure is a differential operator whose kernel is a space of polynomials with
prescribed exponents at z; described by the corresponding partitions A; (dominant
weights). This differential operator can be explicitly written in terms of the corre-
sponding solution of Bethe ansatz equation. It is essentially the same as the sly-
opers, namely it describes the joint eigenvalues of the Bethe algebra acting on the
corresponding Bethe vector constructed from the solution of Bethe ansatz equation,

see [FFR94, MTVO06].



This connection leads to a proof of Shapiro-Shapiro conjecture in real algebraic
geometry, see [MTV09c|. This connection was made precise in [MTV09b] by in-
terpreting the Bethe algebra By (g) as the space of functions on the intersection of
suitable Schubert cycles in a Grassmannian variety. This interpretation gives a re-
lation between representation theory of gly and Schubert calculus useful in both
directions. In particular, the proofs of a strong form of Shapiro-Shapiro conjecture
and the transversality conjecture of intersection of Schubert varieties are deduced
from that, see [MTV09b].

We further study this connection in [LMV17]. To state our result, we make the
statement in [MTV09b] more precise. Let Q2 . be the intersection of Schubert cells
2y, .., with respect to the osculating flag at z; and the partition \;, see [LMV17, Section

3.1] for more detail.

Theorem 1.3.2 ( [MTV09b]). There exists a bijection between eigenvectors of the
Bethe algebra By (gly) in V& and Qy .

Note that, for generic z, By (gly) is diagonalizable and has simple spectrum on
Vsing Tet 2y be the disjoint union of all Qy . with z running over all tuples of distinct
coordinates. These €25 are constructible subsets in the Grassmannian. We show that
these 2y form a stratification of Grassmannian, see [LMV17, Section 3.3|, similar to
the well-known stratification consisting of Schubert cells. By taking closure of €2y, it

means we allow distinct z; and z; coinciding. Note that
Vi(2) @ Cx Va(z

where Clj,y are the Littlewood-Richardson coefficients, therefore we know how V' de-
composes if several z; coincide. Using Theorem 1.3.2, it tells us that the closure of
2y is exact a disjoint union of €2, and those p are determined by the representation
theory of gl and A. Therefore this shows these 25 form a new stratification of the
Grassmannian. This generalizes the standard stratification of the swallowtail, see for

example [AGZV85, Section 2.5 of Part 1].
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Since this connection is so important, it would be interesting to explore similar
connections by studying Gaudin model of other types. We are able to deal with types
B, C, Gy with the following reasons. Since the Bethe algebra can be obtained from
Feigin-Frenkel center 3(g), we need a complete set of explicitly generators of 3(g).
These generators are obtained for types A [CT06], BCD [Moll3], and G, [MRR16].
This method for type D is not applicable as the Dynkin diagram has branch. As
a result, after using the Miura transformation to the “g-opers, one obtains pseudo-
differential operators.

Let g be a simple Lie algebra of types B and C. Identifying a “g-oper as a sly-oper
of special form and using Miura transformation, one obtains a differential operator

in a symmetric form as follows depending type B or C,
(0r = fi(x)) -+ (Or — fu(@)) (00 + fu(2)) - - (O + f1(2)),
0z = fi(@)) -+ (0r — fu(@))0u(0x + fu(@)) -+ (On + fi(2)).

Therefore, the kernels of these differential operators have certain symmetry, which
are the same as the ones introduced in [MV04, Section 6]. Such spaces are coming
from the reproduction procedure for types BC and called self-dual spaces. The subset
of all self-dual spaces in the Grassmannian is called self-dual Grassmannian. The
self-dual Grassmannian is a new geometric object which is an algebraic subset in
Grassmannian and different from the orthogonal Grassmannian.

Using the main result of [Ryb18|, we managed to obtain a stratification for self-
dual Grassmannian described by the representation theory of Lie algebras of types
B and C similar to the one of type A for Grassmannian, see [LMV17, Section 4.4].
Combining [LMV17, Theorem 4.5] and the perfect integrability of Gaudin model, we

have

Theorem 1.3.3 ( [Lu20]). There exists a bijection between eigenvectors of By (g) in
Vsing and the subset of all self-dual spaces in Qy ;.

To be more precise, A has to be changed to the corresponding partitions, see

[LMV17, Section 4] for the definition. There is a similar study for type Gy in this
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direction. The corresponding geometric object is called self-self-dual Grassmannian
due to a further symmetry, see [LM19a].
Following the idea of [MT16], we obtain a lower bound for number of real self-dual

spaces in {2 , by analizing a modified Shapovalov form on Vj, see [Lul8].

1.3.4 Bethe Ansatz

The Bethe ansatz is the main method to find eigenvectors of quantum integrable
systems, see [Bet31]. The Bethe ansatz construction provides an eigenvector of the
Gaudin model from a solution to the Bethe ansatz equation. The Bethe ansatz
equation is a system of algebraic equations which is in general very difficult to solve.
We solve certain Bethe ansatz equation associated to tensor products of defining
representations for Gaudin model of types BCD [LMV16] and Gy [LM19a]. To solve
the Bethe ansatz equation, we use the reproduction procedure which allows us to
solve Bethe ansatz equation recursively. In particular, we obtain that for generic
evaluation parameters, the Bethe ansatz construction provides a basis of V¢ when
Vsing is a tensor product of defining representations. Moreover, when g is Lie algebras
of types BC and Gy, the spectrum of Gaudin Hamiltonians (1.3.1) on V"8 is simple.
We remark that for type D, the spectrum may not be simple as the Dynkin diagram

admits symmetry.
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2. ON THE GAUDIN MODEL ASSOCIATED TO LIE
ALGEBRAS OF CLASSICAL TYPES

2.1 Introduction

The Gaudin Hamiltonians are an important example of a family of commuting
operators. We study the case when the Gaudin Hamiltonians possess a symmetry
given by the diagonal action of g. In this case the Gaudin Hamiltonians depend on a
choice of a simple Lie algebra g, g-modules Vi, ..., V, and distinct complex numbers
21, ..y Zn, see (2.2.1).

The problem of studying the spectrum of the Gaudin Hamiltonians has received
a lot of attention. However, the majority of the work has been done in type A. In
this paper we study the cases of types B, C and D.

The main approach is the Bethe ansatz method. Our goal is to establish the
method when all but one modules V; are isomorphic to the first fundamental rep-
resentation V,,,. Namely, we show that the Bethe ansatz equations have sufficiently
many solutions and that the Bethe vectors constructed from those solutions form a

basis in the space of singular vectors of Vi1 ® --- ® V,.

The solution of a similar problem in type A in [MV05b] led to several important
results, such as a proof of the strong form of the Shapiro-Shapiro conjecture for Grass-
manians, simplicity of the spectrum of higher Gauding Hamiltonians, the bijection
betweem Fuchsian differential operators without monodromy with the Bethe vectors,
etc, see [MTV09b] and references therein. We hope that this paper will give a start
to similar studies in type B. In addition, the explicit formulas for simplest examples

outside type A are important as experimental data for testing various conjectures.

By the standard methods, the problem is reduced to the case of n = 2, with

Vi being an arbitrary finite-dimensional module, V5, =V, and 2; = 0, 2o = 1. The
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reduction involves taking appropriate limits, when all points z; go to the same number
with different rates. Then the n = 2 problems are observed in the leading order and
the generic situation is recovered from the limiting case by the usual argument of
deformations of isolated solutions of algebraic systems, see [MV05b] and Section 2.4
for details.

For the 2-point case when one of the modules is the defining representation V,,,
the spaces of singular vectors of a given weight are either trivial or one-dimensional.
Then, according to the general philosophy, see [MV00], one would expect to solve
the Bethe ansatz equations explicitly. In type A it was done in [MV00]. In the
supersymmetric case of gl(p|q) the corresponding Bethe ansatz equations are solved
in [MVY15]. The other known cases with one dimensional spaces include tensor
products of two arbitrary irreducible sl; modules, see [Var95] and tensor products
of an arbitrary module with a symmetric power V4, of the vector representation in
the case of sl.,1, see [MVO07]. Interestingly, in the latter case the solutions of the
Bethe ansatz equations are related to zeros of Jacobi-Pineiro polynomials which are
multiple orthogonal polynomials.

In all previously known cases when the dimension of the space of singular vectors of
a given weight is one, the elementary symmetric functions of solutions of Bethe ansatz
equations completely factorize into products of linear functions of the parameters.
This was one of the main reasons the formulas were found essentially by brute force.
However, unexpectedly, the computer experiments showed that in types B, C, D,
the formulas do not factorize, see also Theorem 5.5 in [MV04], and therefore, the
problem remained unsolved. In this paper we present a method to compute the

answer systematically.

Our idea comes from the reproduction procedure studied in [MVO08]. Let V; = V),
be the irreducible module of highest weight A, let V5,...,V, be finite-dimensional
irreducible modules, and let [, ...,[, be nonnegative integers, where r is the rank
of g. Fix distinct complex numbers z; = 0, 2;,...,2,. Consider the Bethe ansatz

equation, see (2.2.2), associated to these data. Set V = V5, ® --- ® V,,, denote the
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r

highest weight vector of V' by v, the weight of v* by p*, and set p = p*—=>""_, La;.
Here «; are simple roots of g.

Given an isolated solution of the Bethe ansatz equations we can produce two
Bethe vectors: one in the space of singular vectors in V\, ® V' of weight p + A and
another one in the space of vectors in V' of weight pu. The first Bethe vector, see
(2.2.3), is an eigenvector of the standard Gaudin Hamiltonians, see (2.2.1), acting
in V, ® V and the second Bethe vector is an eigenvector of trigonometric Gaudin
Hamiltonians, see [MV07]. The second vector is a projection of the first vector to the
space vT QV ~ V.

Then the reproduction procedure of [MVO07] in the j-th direction allows us to
construct a new solution of the Bethe ansatz equation associated to new data: repre-
sentations Vi = Vi .\, Va,...,V, and integers Iy, . .. ,l}, ..., [ so that the new weight
= pt — Z#j lio; — Zjaj is given by i = s;ju. This construction is quite general,
it works for all symmetrizable Kac-Moody algebras provided that the weight A is
generic, see Theorem 2.2.6 below. It gives a bijection between solutions correspond-
ing to weights p of V' in the same Weyl orbit.

Note that in the case u = ™, the Bethe ansatz equations are trivial. Therefore,
using the trivial solution and the reproduction procedure, we, in principal, can obtain
solutions for all weights of the form: u = wu™t. Note also that in the case of the vector
representation, V =V, all weights in V' are in the Weyl orbit of u™ = w; (with the
exception of weight 1 = 0 in type B). Therefore, we get all the solutions we need that

way (the exceptional weight is easy to treat separately).

In contrast to [MV07], we do not have the luxury of generic weight A, and we
have to check some technical conditions on each reproduction step. It turns out,
such checks are easy when going to the trivial solution, but not the other way, see
Section 2.3.3. We manage to solve the recursion and obtain explicit formulas, see
Corollary 2.3.10 for type B, Theorem 2.5.1 for type C and Theorem 2.5.4 for type D.

We complete the check using these formulas, see Section 2.3.5.
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To each solution of Bethe ansatz, one can associate an oper. For types A, B, C
the oper becomes a scalar differential operator with rational coefficients, see [MV04],
and Sections 2.3.6, 2.5.1. In fact, the coefficients of this operator are eigenvalues of
higher Gaudin Hamiltonians, see [MTV06] for type A and [MM17] for types B, C.
The differential operators for the solutions obtained via the reproduction procedure
are closely related. It allows us to give simple formulas for the differential operators
related to our solutions, see Propositions 2.3.11 and 2.5.3. According to [MV04], the
kernel of the differential operator is a space of polynomials with a symmetry, called
a self-dual space. We intend to discuss the self-dual spaces related to our situation

in detail elsewhere.

The paper is constructed as follows. In Section 2.2 we describe the problem and
set our notation. We study in detail the case of type B in Sections 2.3 and 2.4. In
Section 2.3 we solve the Bethe ansatz equation for n = 2 when one of the modules
is V,,,. In Section 2.4, we use the results of Section 2.3 to show the completeness
and simplicity of the spectrum of Gaudin Hamiltonians acting in tensor products
where all but one factors are V,,,, for generic values of z;. In Section 2.5 we give the

corresponding formulas and statements in types C and D.

2.2 The Gaudin Model and Bethe Ansatz
2.2.1 Simple Lie Algebras

Let g be a simple Lie algebra over C with Cartan matrix A = (a; ;) Denote the

ij=1-
universal enveloping algebra of g by U(g). Let D = diag{ds,...,d,} be the diagonal

matrix with positive relatively prime integers d; such that B = DA is symmetric.

Let h C g be the Cartan subalgebra. Fix simple roots ay,...,q, in h*. Let

ay, ..., € b be the corresponding coroots. Fix a nondegenerate invariant bilinear
Vv

form (,) in g such that (o, af) = a;;/d;. Define the corresponding invariant bilinear

forms in h* such that (a;, ;) = d;a;;. We have (\, o) = 2(\, o)/ (v, ;) for X €
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h*. In particular, (a;,a)) = a;;. Let wy,...,w, € h* be the fundamental weights,
(wj, o) = 0.

Let P = {X € b*|(\, o)) € Z} and P = {\ € b*|(\, ) € Z=o} be the weight
lattice and the set of dominant integral weights. The dominance order > on h* is
defined by: u > vif and only if p — v = 22:1 a;q, a; € Zsg fori=1,...,7r.

Let p € b* be such that (p, /) =1,i=1,...,r. We have (p, ;) = (v, ;) /2.

For A € b*, let V) be the irreducible g-module with highest weight A\. We denote

(A, @) by A; and sometimes write Viy, x,,..5,) for Vi.

-----

The Weyl group W C Aut(h*) is generated by reflections s;, i = 1,...,r,
siA) = A=\, o))y, AeEB
We use the notation
w-A=wA+p)—p, weW eED,

for the shifted action of the Weyl group.

Let Fy,...,E. €eén,, Hy,...,H. €b, Fy,..., F. € n_ be the Chevalley generators
of g.

The coproduct A : U(g) — U(g) @ U(g) is defined to be the homomorphism of
algebras such that Av =1®r+2®1, for all z € g.

Let (z;);co be an orthonormal basis with respect to the bilinear form (,) in g.

Let Qp = >
ufdo = Qou. Let Q=3 7, @1, € g®g CU(g) ®U(g). For any u € U(g), we have
A(u)Q = QA(u).

(
co i € U(g) be the Casimir element. For any u € U(g), we have

The following lemma is well-known, see for example [Hum78], Ex. 23.4.

Lemma 2.2.1. Let V) be an irreducible module of highest weight \. Then )y acts on
Vi by the constant (A + p, A+ p) — (p, p). O

Let V be a g-module. Let Sing V' = {v € V | n,v = 0} be the subspace of singular
vectors in V. For p € h* let Viu] = {v € V | hv = (u, h)v} be the subspace of V' of
vectors of weight p. Let Sing V[u] = (Sing V) N (V[u]) be the subspace of singular

vectors in V' of weight p.
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2.2.2 Gaudin Model

Let n be a positive integer and A = (Ay,...,A,), A; € b*, a sequence of weights.
Denote by Vi the g-module Vy, ® --- @ Vj .

If X € End(V},), then we denote by X € End(V}) the operator id® ' ® X ®
id®"~" acting non-trivially on the i-th factor of the tensor product. If X = > p Xk ®
Yy, € End(Vy, ® Vi,), then we set X9 =3, X(l ® Y( € End(Vy).

Let z = (21,...,2,) be a point in C" with distinct coordinates. Introduce linear

operators Hi(z), ..., Hn(z) on Vi by the formula

(916"
Hi(z)= Y ——, i=1...,n (2.2.1)
g T A

The operators Hq(z),...,H,(z) are called the Gaudin Hamiltonians of the Gaudin

model associated with V. One can check that the Hamiltonians commute,
[Hi(z), H;(z)] =0

for all 7,j5. Moreover, the Gaudin Hamiltonians commute with the action of g,
[Hi(z),xz] = 0 for all i and x € g. Hence for any p € b*, the Gaudin Hamiltoni-

ans preserve the subspace Sing Vi [u] C Vi.

2.2.3 Bethe Ansatz

Fix a sequence of weights A = (A;),, A; € b*, and a sequence of non-negative
integers I = (Iy,...,0,). Denote | =1l; +---+ 1, A=A +---+A,, and al) =
Lhog+ -+ o

Let ¢ be the unique non-decreasing function from {1,...,l} to {1,...,r}, such
that #c¢ (i) =1[; for i = 1,...,r. The master function ®(t, z, A,l) is defined by

otz A )= [ (z—z)™N ﬁﬁ t; — zg) et TT (1 — )00,
1<i<j<n i=1 s=1 1<i<j<l

The function ® is a function of complex variables t = (¢1,...,t), 2 = (21,...,2n),

weights A, and discrete parameters [. The main variables are ¢, the other variables

will be considered as parameters.
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We call A; the weight at a point z;, and we also call ¢(i) the color of variable t;.
A point t € Cl is called a critical point associated to z, A, 1, if the following system
of algebraic equations is satisfied,
— (aeq; As) (Qe(i); Qe(s)) :
—Z—JFJ%T@-_O’ i=1,...,1 (2.2.2)
In other words, a point ¢ is a critical point if

(cblgf) (t)=0, fori=1,...,1

Equation (2.2.2) is called the Bethe ansatz equation associated to A, z,1.

By definition, if ¢ = (¢1,...,t;) is a critical point and (o), ) # 0 for some
i,J, then t; # t;. Also if (acg, As) # 0 for some i, s, then ¢; # 2.

Let ¥, be the permutation group of the set {1,...,{}. Denote by 3; C ¥; the
subgroup of all permutations preserving the level sets of the function ¢. The subgroup
3} is isomorphic to ¥;, x -+ x ¥; . The action of the subgroup ¥; preserves the set
of critical points of the master function. All orbits of 3; on the critical set have
the same cardinality [1!...[,.!. In what follows we do not distinguish between critical
points in the same X;-orbit.

The following lemma is known.

Lemma 2.2.2 ( [MVO04]). If weight A — «(l) is dominant integral, then the set of

critical points is finite. O

2.2.4 Weight Function

Consider highest weight irreducible g-modules V,,,..., V4, , the tensor product
Va, and its weight subspace VA[A — «(l)]. Fix a highest weight vector vy, in Vj, for
1=1,...,n.

Following [SV91], we consider a rational map

w:C" x C — Vi[A — a(l)]
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called the canonical weight function.

Let P(l,n) be the set of sequences I = (if,... ,z'jl-l; -3, ..., 45 ) of integers in
{1,...,r} such that for all i = 1,...,r, the integer i appears in I precisely /; times.

For I € P(l,n), and a permutation o € ¥, set oy(i) = o(i) for i = 1,...,j; and
os(i)=0(j1+ -+ Jso1+1) fors=2,...,nand i =1,...,js. Define

S(UI)={ce% |closj) =i fors=1,....,nand j=1,... 5.}
To every I € P(l,n) we associate a vector
Fro=Fap.. . Fauvyn, @ - @ Fpn...Fpn vy
1 J1 1 Jn

in VA[A — «(1)], and rational functions

W i \Z) = .
e Z]( ) (t“ — tzz) e (ti]-_l — tz])(tz] — Z)

We set

wiz,t)= > > wi.F. (2.2.3)

IeP(l,n) oex(I)

Let t € C! be a critical point of the master function ®(-, z, A,1). Then the value
of the weight function w(z,t) € VA[A — «(l)] is called the Bethe vector. Note that
the Bethe vector does not depend on a choice of the representative in the ¥;-orbit of
critical points.

The following facts about Bethe vectors are known. Assume that z € C" has
distinct coordinates. Assume that ¢ € C! is an isolated critical point of the master

function (-, z, A, I).
Lemma 2.2.3 ( [MVO05b]). The Bethe vector w(z,t) is well defined. O

Theorem 2.2.4 ( [Varll]). The Bethe vector w(z,t) is non-zero. O
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Theorem 2.2.5 ( [RV95]). The Bethe vector w(z,t) is singular, w(z,t) € Sing VA[A—
a(l)]. Moreover, w(z,t) is a common eigenvector of the Gaudin Hamiltonians,

Hi(2)w(z, 1) = (@122) (£ 2)w(zt),  i=1,....n

2.2.5 Polynomials Representing Critical Points

Let t = (t1,...,1;) be a critical point of a master function ®(¢, z, A,1). Introduce

a sequence of polynomials y = (y1(z), ..., y-(z)) in a variable z by the formula
vilw) = J[ @—1.
Jre(g)=i

We say that the r-tuple of polynomials y represents a critical point t of the master
function ®(t, z, A,1). Note that the r-tuple y does not depend on a choice of the
representative in the 3;-orbit of the critical point ¢.

We have | = >0 deg y; = >.i_, ;. We call [ the length of y. We use notation
y® to indicate the length of y.

Introduce functions

Ty(z) = [J( — z) ), i=1,...r (2.2.4)

s=1
We say that a given r-tuple of polynomials y € P(C[z])" is generic with respect
to A, z if

G1 polynomials y;(x) have no multiple roots;
G2 roots of y;(z) are different from roots and singularities of the function 7Tj;

G3 if a;; < 0 then polynomials y;(z), y;(z) have no common roots.
If y represents a critical point of ®, then y is generic.

Following [MV07], we reformulate the property of y to represent a critical point
for the case when all but one weights are dominant integral.

We denote by W(f, g) the Wronskian of functions f and g, W(f,g9) = f'g — f¢'.
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Theorem 2.2.6 ( [MVO07]). Assume that z € C" has distinct coordinates and z; = 0.
Assume that A; € P, i =2,...,n. A generic r-tuple y represents a critical point
associated to A, z,l if and only if for every i = 1,...,r there exists a polynomial v;
satisfying

VY —(aj,0)
Wy, z005) = T [ v, e, (2.2.5)
J#i
Moreover, if the r-tuple g; = (y1, ..., Ui, - - -, Yr) 1S generic, then it represents a critical

point associated to data (s; - A1, Ao, ..., Ay), z,1;, where l; is determined by equation
A — A1 — O[(lz) = SZ(A — A1 — O!(l))
O

We say that the r-tuple g; (and the critical point it represents) is obtained from
the r-tuple y (and the critical point it represents) by the reproduction procedure in
the i-th direction.

Note that reproduction procedure can be iterated. The reproduction procedure
in the i-th direction applied to r-tuple y; returns back the r-tuple y. More generally,
it is shown in [MV07], that the r-tuples obtained from y by iterating a reproduction
procedure are in a bijective correspondence with the elements of the Weyl group.

We call a function f(x) a quasi-polynomial if it has the form z%p(x), where a €
C and p(z) € C[z]. Under the assumptions of Theorem 2.2.6, all T; are quasi-

polynomials.

2.3 Solutions of Bethe Ansatz Equation in the Case of V), ® V,,, for Type
B,

In Sections 2.3, 2.4 we work with Lie algebra of type B,.

Let g = s0(2r +1). We have (o, ) =4,1=1,...,7r — 1, and (a,, a;) = 2.

In this section we work with data A = (A, w;), z = (0,1). The main result of the
section is the explicit formulas for the solutions of the Bethe ansatz equations, see

Corollary 2.3.10.
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2.3.1 Parameterization of Solutions

One of our goals is to diagonalize the Gaudin Hamiltonians associated to A =
(A, w1), z = (0,1). It is sufficient to do that in the spaces of singular vectors of a
given weight.

Let A € P™. We write the decomposition of finite-dimensional g-module V, ® V.
We have

Vi ® Vi, =Vatw, @ Vatwi—ar @ - @ Vatrwr—a1——ar D Vatwr—a1——ar_1—20
© V)\+w1—a1—"'—ar72—201r71—26w SERRR VA+W1_20‘1_"'_20""*1_2Q’“
=Vout1e,00 @ Vou—100105,000) © Vi AL #1200
BB Viuda o —1042) D Vi e 10)
B Vi dsr Ao Ao 141,0,-2)
B Vi, Azt 1 a1-10) D B V10,000 (2:3.1)

with the convention that the summands with non-dominant highest weights are omit-
ted. In addition, if A, = 0, then the summand Vi_a,—...—a, = Va2, 01,2, 1S absent.

Note, in particular, that all multiplicities are 1.

By Theorem 2.2.5, to diagonalize the Gaudin Hamiltonians, it is sufficient to find a
solution of the Bethe ansatz equation (2.2.2) associated to A, z and I corresponding to
the summands in the decomposition (2.3.1). We call an r-tuple of integers I admissible
if Vigw—a@) CVA® V.

The admissible r-tuples I have the form

l=(1,...,1,0,...,0) or 1=(1,...,1,2,...,2), (2.3.2)
S—— ——

k ones k ones

where kK = 0,...,r. In the first case the length [ =1; +---+ 1, is k and in the second
case 2r — k. It follows that different admissible r-tuples have different length and,
therefore, admissible tuples I are parameterized by length [ € {0,1,...,2r}. We call
a nonnegative integer ! admaissible if it is the length of an admissible r-tuple I. More
precisely, a nonnegative integer [ is admissible if [ = O orif [ <7, \; > 0orifl =r+1,

A >Tlorifr+1<1<2r, Aypyyg > 0.
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In terms of y = (y1, - .., y,), we have the following cases, corresponding to (2.3.2).

For | < r, the polynomials y,...,y; are linear and y;.1,...,y, are all equal to
one.

For [ > r, the polynomials ¥, . .., y2,_; are linear and yo,_;11, .. ., Y, are quadratic.

Remark 2.3.1. For [ < r the Bethe ansatz equations for type B, coincide with the
Bethe ansatz equations for type A, which were solved directly in [MV00]. In what

follows, we recover the result for [ < r, and we refer to [MV00] for the case of | = r.

2.3.2 Example of B,

We illustrate our approach in the case of By, I = 4. We haven =2, A{ =\ € PT,
Ay =wiy, 21 = 0,20 = 1. We write A = (A1, \y), where \; = (\, o)) € Z>o.
Suppose the Bethe ansatz equation has a solution with [ = 4. Then it is repre-
(4

sented by quadratic polynomials ; ) and y§4). By Theorem 2.2.6, it means that there

exist polynomials g, 75 such that
4) - 4 4) - 4)\2
W ) =M@ -y, W ) =2 (uY)".

Note we have A\, \y € Z>o, but for Ay = 0 the first equation is impossible for
degree reasons. Therefore, there are no solutions with [ = 4 for Ay = 0 which is
exactly when the corresponding summand is absent in (2.3.1) and when [ = 4 is not
admissible.

Step 1: There exists a unique monic linear polynomial u; such that —A;y; =

(4)

MFLly, . Clearly, the only root of u; cannot coincide with the roots of 2 (x — 1)y,

x
therefore the pair (ul,y§4)) is generic. It follows from Theorem 2.2.6, that the pair
(uq, y§4)) solves Bethe ansatz equation with [ = 3 and A replaced by s1 - A = (=A; —
2,2\ + A2 + 2).

In terms of Wronskians, it means that there exist quasi-polynomials ¢; and

such that

W(ul’ yl) = x_)\l_Q(x - ]‘)y§4)7 W(yé4)7 @2) - $2A1+>\2+2U%,
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The procedure we just described corresponds to the reproduction in the first di-
rection, we have s1(w; — 201 — 2a) = wy — ag — 2as.

Note that sg(w; — 204 — 2a9) = w1 — 21 — 2a and the reproduction in the second
direction applied to (y§4), y§4)) does not change [ = 4. We do not use it.

Step 2: We apply the reproduction in the second direction to the | = 3 solution

(ula ygl))

By degree reasons, we have —(\g +2\; + 1) = 2227221531 Set uy = 1. Clearly,
the pair (uq,us) is generic. By Theorem 2.2.6, the pair (ug,us) solves Bethe ansatz
equation with [ =1 and Ay = (s251) - A= (A1 + Ao+ 1, =2X; — Ay — 4).

It means, we have sa(w; — a1 — 2an) = wy — a; and there exist quasi-polynomials

91, Y2 such that

W(ur, gn) = 22 (@ = Dug = 2N (@ 1), W(ug,50) = M2 Ml

Note that we also have \y; = x*’\1*1y£4). Therefore, we can recover the initial

solution (y§4),y§4)) from (ul,y§4)). In general, if we start with an arbitrary [ = 3
solution and use the reproduction in the first direction, we obtain a pair of quadratic
polynomials. If this pair is generic, then it represents an [ = 4 solution associated to
the data A = (\,w1), 2,1 = (2,2). However, we have no easy argument to show that
it is generic. Thus, our procedure gives an inclusion of all [ = 4 solutions to the [ = 3
solutions and we need an extra argument to show this inclusion is a bijection.

Step 3: Finally, we apply the reproduction in the first direction to the [ = 1
solution (uq,us).

We have —(A\; + Ao + 1), = 2™ T2+2. 1. Set vy = 1. Clearly, the pair (vi,us) =
(1,1) is generic and represents the only solution of the Bethe ansatz equation with
I =0and Ay = (515251) A = (=A1 — A2 —3, A2). We denote the final weight (s159571)-A
by 6 = (01, 6,).

It means, we have s;(w; — a1) = wy, and there exist quasi-polynomials gjl, @2 such

that

W (v, 4p) = 2~ 722 73 (2 — 1), W (ug, yo) = ™20y = 2.
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As before, we have (A;+ Ao+ 1)131 = 2772272y, - and therefore using reproduction

in the first direction to pair (v, us) we recover the pair (uq,us).

To sum up, we have the inclusions of solutions for [ = 4 tol =3 tol =1 to
[ = 0 with the A; varying by the shifted action of the Weyl group. Since for [ = 0
the solution is unique, it follows that for [ = 1, 3,4 the solutions are at most unique.
Moreover, if it exists, it can be computed recursively.

We proceed with the direct computation of y§4), ygl) . From step 3, we have v; =

uy = 1. Then we compute

= A+ +1
! M+ A +2

From step 2, we get

(4) 1'2 N 2(2>\1 + )\2 + 1)()\1 + )\2 + 1)$‘ (2)\1 + )\2 + 1)()\1 + )\2 + 1)2
Y2 a2+ e +2) 2 A3 A+ 2)2

Finally, from Step 1,

4) _. 2 (201 + Mg+ 1) (207 + 20 00 + 40 + A2 + 2)
BT T T R DO+ A+ 2) (20 + A 1 2)
)\1(/\1 + /\2 + 1)(2/\1 + )\2 -+ 1)
(M +1D(M+X+2)2N + A +3)

From the formula it is easy to check that the pair (y§4), y§4)) is generic if A; > 0 and

therefore represents a solution of the Bethe ansatz equation associated to A,z and
l=4.
Thus the Bethe ansatz equation associated to A, z,1 = (2, 2) has a unique solution

given by the formulas above.

2.3.3 The Recursion Lemmas

Let 1 € {0,...,7 — 1,7+ 2,...,2r}, we establish a reproduction procedure which
produces solutions of length [ — 1 from the ones of length [. For [ = r + 1, the
reproduction procedure goes from [ =17+ 1 to [ =r — 1. We recover the special case

[ = r directly from [MV00], see Remark 2.3.1. By Theorem 2.2.6 it is sufficient to
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check that the new r-tuple of polynomial is generic with respect to new data. It is
done with the help of following series of lemmas.

For brevity, we denote x — 1 by y, for this section.

The first lemma describes the reproduction in the k-th direction from [ = 2r—k+1
tol=2r —k, where k=1,...,r — 1.

Lemma 2.3.2. Letk € {1,...,r—1}. Let v = (vy,...,v,) be an integral weight such

that vy, > 0. Let yy1,...,yr_1 be linear polynomials and yy, . . ., y, be quadratic polyno-

mials. Suppose the r-tuple of polynomials y > —*+1) = (y1,...,y,) represents a critical

point associated to (v,wy),z and | = 2r — k + 1. Then there exists a unique monic

linear polynomaial uy such that W(yk,x”’““uk) = — %Y _1Yps1. Moreover, v > 0
2—k) _

and the r-tuple of polynomials y = (Y1, Yko1, Uk, Ykt 1, - - - Yp) TEPTESENLS O

critical point associated to (si-v,wi),z and |l =2r — k.

Proof. The existence of polynomial gy such that W (yx, Jx) = " yr_1yx41 implies v >
0. Indeed, if deg gy > 3, then deg W (yx, Jx) = 4; if deg g < 2, then deg W (yx, Jx) < 2.
Hence deg " y_1yr11 # 3, it follows that v # 0.

By Theorem 2.2.6, it is enough to show y* =% is generic. If y,_1y1 is divisible
by wuyg, then y;, has common root with y;_1yx1 which is impossible since (y1, ..., y,)

is generic. Since wy is linear, it cannot have a multiple root. O

Note that we do not have such a lemma for the reproduction in the k-th direction
which goes from [ — 1 to [ since unlike u; the new polynomial is quadratic and we
cannot immediately conclude that it has distinct roots. We overcome this problem
using the explicit formulas in Section 2.3.5.

The next lemma describes the reproduction in the r-th direction from [ = r 4+ 1

tol=r—1.

Lemma 2.3.3. Let v = (vy,...,1,) be an integral weight such that v, > 0. Let
Y1, -5 Yr_1 be linear polynomials and y. be a quadratic polynomial. Suppose the
r-tuple of polynomials y™) = (yi,...,y,) represents a critical point associated to

(v,wi),z andl =r+1. Then W(y,, 2" ) = —(v, — 1)z y?_,. Moreover, v, > 2 and
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the r-tuple of polynomials y™Y = (y1,...,Yr_2,Yr_1,1) represents a critical point

associated to (s, - v,wy),z and l =r — 1. O

Finally, we disuss the reproduction in the k-th direction from [ =k tol =k — 1,

where k =1,...,r — 1.

Lemma 2.3.4. Let k€ {1,...,r—1}. Letv = (v1,...,1,) be an integral weight such

that v, > 0. Let yy,...,yr be linear polynomials and yxy1 = -+ =y, = 1. Suppose
the r-tuple of polynomials y*) = (y1,...,y,) represents a critical point associated to
(v,wi),z and 1 = k. Then W (yg, 2") = —vpa yp_1ypy1. Moreover, v > 0 and

the r-tuple of polynomials y*=Y = (y1,...,ye—1,1,1,...,1) represents a critical point

associated to (sy - v,w1),z and | =k — 1. O

2.3.4 At Most One Solution

In this section, we show that there exists at most one solution of the Bethe ansatz
equation (2.2.2).
We start with the explicit formulas for the shifted action of the Weyl group.

Lemma 2.3.5. Let A = (\y,..., \.) € b*.
We have

(s1...86) A= (=AM —- =X —k—=1 A, .., 1, e+ Mer + 1, Mg, o, A),
where k =1,...,r — 2,
($1.0-8r—1)  A=(=A1— = A1 =7 A, A2, 201 + A+ 2),
($1...8) A=(=A— =X —r—=1A,..., 2,2\ 1 + A\ + 2),
and

(1.0 8pSp—1 .. Sor—g) " A
=(— M= = A1 = 2Xr = =20 = A — k-1,
ALy s Aoy Aot F Agpeie + 1 Agp g1, -5 ),

where k=r—+1,...,2r — 1.
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Proof. If k=1,...,r —2,r, the action of a simple reflection is given by
Sk A=A, Moy Memr AL = A — 2, 0+ A + 1 Akaay -, ).
In addition,
Spe1 A=A, A3 e AN L =N — 2,20 A+ 2).
The lemma follows. O

We also prepare the inverse formulas.

Lemma 2.3.6. Let 0 = (0y,...,60,) € b*. We have
(Sk...Sl)'9:(92,...,9k,—91—---—Qk—k—1,91—l—"'—{-ek_,_l—I—k,9k+2,...,9r),

where k=1,...,r — 2,

(Sr—l'--51>'0:(‘927-'-791”—17_01_"'_87‘—1_T72‘91+"'+2‘9r—1+9r+2r_2)~
(ST...Sl)'QZ(92,...,97~_1,01+"'+0T+’I"—1,—291—"'—2er_1—97«—27"),
and

(SQT,kSQT,kJrl e SpSp—1 .. 51) -0
= (92a s 7927"7]6717 91 +oe At 927“7]{271 + 2021”7](} +-+ 26r71 + 91“ +k— 17

— 0y — =0y — 200 1 — - =20,y — O — E,O02p iy, ..., 0y),
where k =r+1,...,2r — 1. In particular,
($182. .. 8pSp_1...81) -0 =(=01—205—--—20,_1—0,—2r+1,0,...,0,).
O

Lemma 2.3.7. Let A € P* and let I be as in (2.3.2). Suppose the Bethe ansatz
equation associated to A = (A\,w),z = (0,1),1, where X\ € P*, has solutions. Thenl
1s admissible. Moreover, if | = r+1, then we can perform the reproduction procedure
in the (2r—1+41)-th, (2r—1+2)-th, ..., (r—1)-th, r-th, (r—1)-th, ..., 1-st directions
successiwely. If 1 < r, we can perform the reproduction procedure in the l-th, (I—1)-th,

..., 1-st directions successively.
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Proof. We use Lemmas 2.3.2-2.3.4. The condition of the lemmas of the form v, > 0
follows from Lemmas 2.3.5 and 2.3.6. O

Corollary 2.3.8. Let A € PT andl as in (2.3.2). The Bethe ansatz equation (2.2.2)

associated to A, z,1, has at most one solution. Ifl is not admissible it has no solutions.

Proof. 1If I # r, then by Lemma 2.3.7, every solution of the Bethe ansatz equations by
a series of reproduction procedures produces a solution for [ = 0. These reproduction
procedures are invertible, and for [ = 0 we clearly have only one solution (1,...,1).
Therefore the conclusion.

For | = r the corollary follows from Theorem 2 in [MVO00], see also Remark

2.3.1. [l

2.3.5 Explicit Solutions

In this section, we give explicit formulas for the solution of the Bethe ansatz
equation corresponding to data A = (\,w1), z = (0,1) and [, A € P, 1 € {0,...,2r}.

We denote by 6 the weight obtained from A after the successive reproduction
procedures as in Lemma 2.3.7. Explicitly, if [ < r — 1, then 0 = (s1...5,.15) - A; if
I>r+1, then 0 = (s1...8-15:8—-1...S2—141) - A. We recover the solution starting
from data (0,w), z = (0,1) and [ = 0, where the solution is (1,...,1) by applying
the reproduction procedures in the opposite direction explicitly. In the process we
obtain monic polynomials (ygl), e ,yfnl)) representing a critical point.

Recall that for [ < 7, yq, ...,y are linear polynomials and y;,1, ..., %, are all equal
0 _

to one. We use the notation: y; T — cgl), 1=1,...,1

Recall further that for [ > r, the polynomials ¥, ..., yo.—; are linear and yo,_;11,
.., Y. are quadratic. We use the notation: yz(l) =1 — cz(»l), 1 =1,...,2r — [ and
yl(l) = (x — al(-l))(x - b@), i=2r—1+1,...,r.

2

Formulas for cgl), agl) and bl(-l) in terms of #;, clearly, do not depend on [, in such

cases we simply write ¢;, a; and b;.
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Denote y{) =2 — 1, ¢g = 1 and Ty (z) = 2. Also let

. it k<
A®)(9) — (Sg...s1)-0 if k<,

(Sor— - Sp15¢8r—1...51)-0 ifk>r+1.

Explicitly, A®)(6) are given in Lemma 2.3.6.

Constant Term of y; in Terms of 6

For brevity, we write simply A® for A®)(#). We also use Agk) for components of
the weight A®: A® = (AW AW).

For [ <7 —1, we have y' Y = (z —¢;,...,2 — ¢_1,1,...,1). It is easy to check

that if [ is admissible and A is dominant then Al(l_l) =0 +---+6+(1—-1)is a

negative integer.

We solve for g,‘H),

I-1) ~(I— I-1) (1-1) (i— (=1
Wy, g ) = 1y Py =T (- ).

In other words

_ (g(lfl))/ _ mAl“’l)H

(1-1)
1 I’Al .

— Cl—1

Choosing the solution which is a quasi-polynomial, we obtain

_(1-1) _—xAglfl)H ( B ATV 42 )
yl — x —1 .

G
Al(l—l) 19 Al(l—l) 1
Therefore, the reproduction procedure in the I-th direction gives y) = (x—cpy.. o x—
A 49 _
a,l,...,1), where ¢, = Lcl_l. Substituting the value for Al(l Y and using

Az(l_1)+1
induction, we have
. _H01+"'+9j+j+1
" O+ +0; + ]

)

fork=1,....,r—1.

For | =741 we have y"™V = (x —¢y,...,2 — ¢,_1,1) and ATTY —9g, 4. 4

20,1+ 0, +2r —2¢€ Z.y. We solve for gff‘”,

r—1) ~(r— r— r—1 (r=1)
Wy, 50 ) = TN = 47 (0 e, )2

T r—1
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This implies

1) _xA$T71)+1 ) 2(A£T_1) + 3) A(T 1) + 3
Yro T 0D o Ty, Gt W '
A +3 Ay +2 Ay +1

Therefore, after performing the reproduction procedure in r-th direction to y" =1, we

(r+1)

obtain the r-tuple y =(r—c,....,x —c_1,(x —a,)(x—b,)), where

2
- A(’“1>+3 ( 01+ - +9j+j+1> 201+ +20, 1+ 0, +2r+1
rYr —1_

oA 1>+1 01+ -+ 0;+ ] 200+ +20, 4 +0,+2r —1
For [ such that r +2 <[ < 2r, let £k = 2r — [, then y(%*k) =(r—cp,...,x —
¢k (T — apg1) (@ — bgs1), - -+, (2 —ap) (2 — b)) and A;(frikil) =01+ + 0 + 20,1 +
4+ 20,_140,4+2r—k—2¢€ Zy.
We have
(2r—k) ~(2r—k)y _  ACTRED (9p_ k) (2r—k)
W(y ) =z y

k » Yk k-1 Yk+1 >

substituting — (A Y 4 2)5rh) — xA22T7k71)+1(x —ag)(z — by), we get

(AP L 1) (2 — ) (2 — a) (@ — by) + 2(z — e)(z — ag)
+x(r — cg)(x — by) — x(x — ag)(x — by) (2.3.3)

=(AZ T £ 2) (@ = ) (@ = i) (3 — ).
Substituting = 0 into (2.3.3), we obtain
(Al(fr_k_l) + 1)ckakbk = (A](fr_k_l) + 2)ck_1a,k+1bk+1. (234)

It results in

200 +---+20,_1+0,+2r+1

201+"'+29r_1+97«+27"—1

r—k O+ +0, 1)+ O +60 1+ +01 ) +T+1
xH(

b+ +0_1)+ O +0 0+ -+ 0 )+r+i—1

agby =cr_1Cp—1

72914‘ +29r1+9 +27”+1H91+ +9 +]+1H91+ +0]+]+1
291+-"+29T,1+9r+27'—1 0+ -- +03+j 91+—|—9]+]

Xﬁ (01+-.-+9r—1)+(9r+0r—1+"'+9r+1_i)+r+i
(

T+ 0 )+ O+ O+ ) i — 1

(2.3.5)
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The Formula for a; + b, in Terms of 6

Comparing the coefficient of z? in (2.3.3), we obtain

(A,(fr_k_l) + 1) (ag + b + k) + 2¢1, = (A,(fr_k_l) + 2)(ags1 + brr1 + k1) (2.3.6)
Comparing the coefficient of = in (2.3.3), we obtain

(AR 4 1) (culan + bi) + axbi) + ex(ax + br) — axby

:(Al(fr_k_l) + 2)(ck_1(ak+1 + bk+1) + ak+1bk+1). (237)

Solving (2.3.6) and (2.3.7) for ay + by, one has

(AP 1 2) (apabpsr — G_y) + (AT 4 3)cpren — AT Vb,

ap + b, = —— ——

This gives the explicit formulas,

2y 4+ 20, 2+ 1 40 1

by, =
e g 26, 1 2 O+ +0,+j

J=1

r—1 .
O+ +0,+5+1
x |1 J X
<+H O+ +0;+7

1:[ O+ +0;+20; 14+ +20,_1+6,+2r—k
O+ +0;+201+-+20,_1+60, +2r—k—1]
These solutions indeed satisfy (2.3.3) for each k. This can be checked by a direct

computation.

Final Formulas

We use Lemma 2.3.5 to express 0; by A;. Here are the final formulas.
If I <r, then
O Tr Mt Ntl—i

“ :gAi+~-+Al+l—z‘+1’

j=1,...,1 (2.3.8)

We also borrow from [MV00] the | = r result.
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B TT ANt AF A2 —

g SR N A A2 =i T

j=1,....m (2.3.9)

Ifl>r+1, then

. (2.3.10)

(l)_ /\j+"'+/\27’—l+2/\21’—l+1+"'+2/\r—1+)\r+l_j_]-

PN A 2t 20+ A L=

for k=1,...,2r —[. Finally, for 2r — [ +1 < k < r, we have

_ 2
)b(l)_<2’“ lAj+~--+A2T_,+2>\2T_l+1+~~~+2AT_I+AT+l—j—1>

{1
a =
R i ANjt ot Ay 200+ F 20 A+

r—1

< I Mopcigt+ AN F 20 4 20+ A+l ——2
Aopoggr +o N2+ 2 AN -1

j=2r—l+1

y ’ﬁ Norcrgt oA A+ 20 2 A = 2

Mor_g1+ o N F2N 0+ 20 N - — 1

j=2r—I+1

r—k .
Aoy et N Fl—r—1—1
XH or—141 T + + r—1
=1

- Aor—gi1+ -+ N+l —1r—14
g1+ 200+ AN +20-2r =3

2.3.11
2N g1+ 20+ AN 2 —2r =17 ( )

and
72)\271_[4_1 —f- s —f- 2/\7«_1 —f- )\r —|— 2l — 27” — 3
21 b 20 A 20— 27 — 2

E T I VNS VTR PRI ) W I Wy Ry S |
ANt Ao 20+ 200+ A F L

a4 b

J=1

X ( ﬁ Agroigt + AN 200+ 20 A+ -2

j=2r—1+1 Ao+ N F 200+ 20+ -

r—1

n H Aogpggr+ o N H2N 0+ 2N A = =2
Aoroip1+ o+ A+ 2N+ 20 A+ -1

j=2r—I+1
r—k

)\2r—l+1+"'+>\r—i+l_T_7;_1
. 2.3.12
XH )\2r71+1+"'+)\7«71'+l—7“—2' ) ( )
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The Solutions Are Generic

In this section we show the solutions are generic.

Theorem 2.3.9. Suppose A\ € Pt and 1 is admissible, then y in Section 2.3.5

represents a critical point associated to A = (A, w1), z = (0,1), and L.

Proof. 1t is sufficient to show that y is generic with respect to A, z.

Let us first consider G2. For A € PT, G2 is equivalent to y%l)(l) # 0 and
yD(0) £ 0 if A; #£0.

If I < r—1, then the admissibility of I implies \; > 0. To prove G2, it suffices to
show cg.l) #0if \; # 0 and cgl) # 1, see (2.3.8). Note that if \; > 0, then

oo it Ntl—i
N+ NFl—i+1

for all i € {1,...,1}, therefore all cgl) € (0,1).

If [ = r, this is similar to the previous situation.

If I =r+ 1, the admissibility of I implies A\, > 2. G2 is obviously true.

If I > r+ 2, the admissibility of I implies Ay, ;11 > 0. One has y,gl)(O) # 0 since
we have a,(cl)b,(cl) # 0. As for yil)(l) = 0 in the case [ = 2r, we delay the proof until
after the case G1.

Now, we consider G1. Suppose a,(f) = b,(f) for some 2r — [+ 1 < k < r. Observe

that
0 ~( l l l
Wyl a0 =Ty yil.

By G2, y,gl) and Tkgl) have no common roots. In addition if [ = 2r and k£ = 1, we have
yy)(l) =0, then a\"b" = 1, while as above we have a\"b" € (0,1). It follows that
we must have ag) = agll or a,(cl) = a,(le(a,(f) = cgzl, if k=2r—10141).

We work in terms of #. We have a;, = b, = ag.1 or ap = by = ag_1 or a9, ;41 =

cor—. If ag = by = ag41, then substituting x = ¢ into (2.3.3), we get

—Ck(Ck — ak.+1) = (Ck — bk+1)(ck — Ck_1>(A](€2T_k_1) —+ 2) (2313)
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Solving (2.3.4) and (2.3.13) for ax,1 = ar, = by and byyq in terms of ¢, ¢,—1 and

Al(fr_k_l), we obtain

2
(AP R 4 3) g — (AP 2)%_1)

(2r—k—1) (2r—k—1)
apy1bri = (A +2)(A +1)er-1¢4 - r—k—
k k (AECQ k 1)+1>0k_A§€2 k 1)%_1

Comparing it with (2.3.5) and canceling common factors, we obtain

200+ +20,_1+60,+2r+1
200 +---+20,_1+0,4+2r—1

_H01+---+9i+z'+1 1:[1 O+ 4+ 0 +20 4420, 1+ 0, +2r —i+1
i=k

(A’(CZT—k—l) n 2)(Al(€2r—k—1) 4 1)

91++91+Z kg2 91+"'+6i—1+29i+"'+29r—1+‘9r+27ﬂ_i

Substituting 6; in terms of A;, we have

N1+ M+ hk+H1=2r—D(Agpyir +-- -+ M+ E+1—2r)
2)\2r—l+1+"'+2)\r—1+)\r+2l_27’_3
200 jp1F o+ 200+ AN+ 20—-2r — 1

T Ao AN F 2N 2N+ A L — =2

_j:k)\2rfl+1+"'—|—)\j+2)\j+1—|—'--—|—2)\r71_|_)\r_|_l_j_1

-1

)\27«_1+1+"'+>\7«_Z’+Z—T—Z'—1

X
,1_11: )\2r71+1+"'+)\772‘+l—7’—i

r—k
(2.3.14)

~

By our assumption, we have Ao, ;11 =2 1, k> 2r — 1+ 1and [l > r+ 2. It is easily

seen that

()\2r71+1+"'+)\k+k+l—27’—1)()\2r,l+1+"'+)\k+k+l—27’)
2/\2r—l+1+"‘+2/\r—1+)\r+2l_27"_3
2)\27~_l+1+"'+2/\7«_1—|—)\r+2[—27“—1

>1><2><§>1.

Therefore (2.3.14) is impossible. Similarly, we can exclude a,(cl) = a,(f)_l. As for
aglr)_l = cglg_l, by (2.3.4), it is impossible since each fractional factor is strictly
less than 1.

Finally, we prove G3. The nontrivial cases are a,(f) = a,(cl}rl and aé?fl = cé?fl for
[l >r+1, where k > 2r — [+ 1.

If a, = ag41, then by (2.3.3) we have that x — a;, divides z(z — ¢)(z — by). As we

already proved a; # by and ap # 0, it follows that a; = ¢;x. This again implies that
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(r—ay)? divides (r—ajpy 1) (x—bgy1)(z—cp1) as A,(frfkﬂ)—iﬂ £ 0. f by = ar = app1,
then we are done. If a = ¢,_1, then ¢;,_; = ¢;. It is impossible by the argument used
in G2.
If ar, = ck_1, then by (2.3.3) one has x — a; divides z(xz — ¢)(x — bg). Since [ is
admissible, a,(cl) # 0. Then a; # by, implies ¢;_1 = ¢;. It is also a contradiction.
(

In particular, this shows that yll) and y(()l) have no common roots, i.e., yy)(l) #

0. O

Corollary 2.3.10. Suppose A € P*. Then the Bethe ansatz equation (2.2.2) associ-
ated to A, z,l, wherel is admissible, has exactly one solution. Explicitly, forl < r—1,
the corresponding r-tuple y© which represents the solution is described by (2.3.8), for
l=rby (2.3.9), for2r 21 >r+1 by (2.3.10), (2.3.11) and (2.3.12). O

2.3.6 Associated Differential Operators for Type B

Let y be an r-tuple of quasi-polynomials. Following [MV04], we introduce a linear

differential operator D(y) of order 2r by the formula

L (TE...T* T,  (pTE...T? T,
Dy(y) = (3 In ( " )) (8 In ( o ))
< <a_1n/ (yQTlgTrngr>) <8—h’l/ (yr—lTl'”T'r'—lTr))
(RYAYD ur
X <8 —In’ (M)) (0 R (yr—lTl .. 'Tr—2>)
Yr—1 Yr—2

X (0 = In'(y1)),

where T;, i =1,...,r, are given by (2.2.4).

If y is an r-tuple of polynomials representing a critical point associated to integral
dominant weights Ay, ..., A, and points z1,...,z, of type B,, then by [MV04], the
kernel of D,(y) is a self-dual space of polynomials. By [MM17] the coefficients of
D, (y) are eigenvalues of higher Gaudin Hamiltonians acting on the Bethe vector
related to y.

For admissible [ and A € b*, define a(1),...,a}(r) as the following.
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Forl =0,....,r—1,i=1,...,0, set ak(i) = Ny + -+ N +1+1—14. For
1=0,....,r—1,i=1+1,...,r, set a\(i) = 0.
Forl=r+1,...,2r,set k=2r —1[. Then fori=1,... k, set

() =M+ F M F 2+ 2N N2 —k—
and fori =k +1,...,7 set a(i) = 2 1 + -+ 201 + A + 2r — 2k — 1.

Proposition 2.3.11. Let the r-tuple y represent the solution of the Bethe ansatz
equation (2.2.2) associated to A, z and admissible I, where A € Pt and | # r. Then
Dy(y) = Dy(zW ... 28 0),

Proof. The (2r — 1)-tuple (Y1, -, Yr—1,Yr, Yr—1,-- -, Y1) Tepresents a critical point of
type Ag,_1. Then the reproduction procedure in direction 7 of type B, corresponds
to a composition of reproduction procedures of type As,._; in directions ¢ and 2r — ¢
fori =1,...,r — 1, and to reproduction procedure of type A,,_; in direction r for

i =1, see [MV04], [MVO07]. Proposition follows from Lemma 4.2 in [MV07]. O

2.4 Completeness of Bethe Ansatz for Type B

In this section we continue to study the case of g = so(2r + 1). The main result

of the section is Theorem 2.4.5.

2.4.1 Completeness of Bethe Ansatz for V), ® V,,

Let A € P*. Consider the tensor product of a finite-dimensional irreducible
module with highest weight A, V), and the vector representation V,,,.

Recall that the value of the weight function w(z1, 22, t) at a solution of the Bethe
ansatz equations (2.2.2) is called the Bethe vector. We have the following result,

which is usually referred to as completeness of Bethe ansatz.

Theorem 2.4.1. The set of Bethe vectors w(z1, z9,t), where t runs over the solu-
tions to the Bethe ansatz equations (2.2.2) with admissible length 1, forms a basis of

Sing (V) ® V,,,).
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Proof. All multiplicities in the decomposition of V), ® V,, are 1. By Corollary 2.3.10
for each admissible length [ we have a solution of the Bethe ansatz equation. The

theorem follows from Theorems 2.2.4 and 2.2.5. OJ

2.4.2 Simple Spectrum of Gaudin Hamiltonians for V), ® V,,,

We have the following standard fact.
Lemma 2.4.2. Let u,v € PT. If u> v then (u+p,n+p) > (v+p,v+p).

Proof. The lemma follows from the proof of Lemma 13.2B in [Hum78]. O]

Proposition 2.4.3. Let w,w’ € V\®V,, be Bethe vectors corresponding to solutions
to the Bethe ansatz equations of two different lengths. Then w,w’ are eigenvectors of

the Gaudin Hamiltonian H := Hi, = —Ho with distinct eigenvalues.

Proof. Recall the relation
1
Q2 = 5 (A2 —180% - % e1).

Since {2y acts as a constant in any irreducible module, 1 ® Q¢ + 0y ® 1 acts as a
constant on V\ ® V,,,. It remains to consider the spectrum of the diagonal action of
AS)y. By Theorem 2.2.5, w and w’ are highest weight vectors of two non-isomorphic
irreducible submodules of V, ® V,,,. By Lemmas 2.2.1 and 2.4.2 the values of Ay on

w and ' are different. O

2.4.3 The Generic Case

We use the following well-known lemma from algebraic geometry.

Lemma 2.4.4. Let n € Z>, and suppose f,ge)(wl,...,xl) =0,k=1,...,n, 15 a
system of n algebraic equations for | complex variables x1,...,x;, depending on a

complex parameter € algebraically. Let (zgo), e ,IL‘Z(O)) be an isolated solution with



e = 0. Then for sufficiently small €, there exists an isolated solution (azge), e ,xl(e)),

depending algebraically on €, such that

:v,(f) = x,(co) +o(1).

Our main result is the following theorem.

Theorem 2.4.5. Let g = s0(2r +1), A € PT and N € Zso. For a generic (N +
1)-tuple of distinct complex numbers z = (zo, 21, ..., 2n), the Gaudin Hamiltonians
(Ho, H1, ..., Hn) acting in Sing (V,\ ® Vw‘%’N) are diagonalizable and have simple joint
spectrum. Moreover, for generic z there exists a set of solutions {t;, i € I} of the

Bethe ansatz equation (2.2.2) such that the corresponding Bethe vectors {w(z,t;), i €
I} form a basis of Sing (Vi ® VEN).

Proof. Our proof follows that of Theorem 5.2 of [MVY15], see also of Section 4
in [MVO05b].

Pick distinct non-zero complex numbers zi,...,Zy. We use Theorem 2.4.1 to
define a basis in the space of singular vectors Sing(V) ® Vw‘?N ) as follows.

We call a (k+ 1)-tuple of weights pq, pi1, ..., ux € PT admissible if g = X\ and for
i=1,...,k, we have a submodule V,,, C V. , ® V,,, see (2.3.1).

For an admissible tuple of weights, we define a singular vector v, ., € VA ® fok
of weight p, using induction on £ as follows. Let v,, = vy be the highest weight
vector for module V). Let k be such that 1 < k < N. Suppose we have the singular
vector Uy, e, € Va @ VEF1 Tt generates a submodule Vg C VA @ VEF! of
highest weight 1x_1.

Let t;, = (fg’z), where b=1,...,rand j = 1,..., s, be the solution of the Bethe
ansatz equation associated to V,, , ® V,,,, z = (0, %) and Iy = (lx1,...,l;,) such
that up_1 + wy — a(ly,) = pp. Note that £, depends on py_; and g, even though we
do not indicate this dependence explicitly. Note also that in all cases [, € {0,1,2}.

Then, define vy, . ,, to be the Bethe vector

Voo = W(0, Z t) € Vig e ® Vi, C VAR VIR,

3eeey
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We denote by V), . ., the submodule of V) ® Vfl’k generated by vy, .-
The vectors vy, ..y € Va @ VEN are called the iterated singular vectors. To each

iterated singular vector vy, .. we have an associated collection t = (¢i,...,ty)

SUN
consisting of all the Bethe roots used in its construction.

Clearly, the iterated singular vectors corresponding to all admissible (N +1)-tuples
of weights form a basis in Sing(Vy @ V), so we have

QN _
VA@VM - @ VHO:le-nU«N’

HO5-- s N
where the sum is over all admissible (IV + 1)-tuples of weights.

To prove the theorem, we show that in some region of parameters z for any
admissible (N + 1)-tuple of weights po, ..., pn, there exists a Bethe vector wy, . .\

which tends to v, when approaching a certain point (independent on ;) on the

s N

boundary of the region.

To construct the Bethe vector wy,, . ., associated to v, . we need to find a

YN
solution to the Bethe equations associated to Vy ® V2 with Bethe roots, t = (t;b)),
where b=1,...,r and j = 1,...,22\[:1116,,

We do it for z of the form
20=2z2 and z=z+e"*z k=1 N, (2.4.1)

for sufficiently small ¢ € C*. Here z € C is an arbitrary fixed number and z; are as

above.

Then, similarly to ¢ we write t = (¢1,...,ty) where t; = (t;b;), b=1,...,r and

Jj=1,...,lkp, is constructed in the form
) =+ VTR k=1 N, =1,y b=, (2.4.2)

The variables t( ; satisfy the system of Bethe ansatz equations:

N ls ,b
(A, o) —20p1 (ap, aup)
o t(b) + Z t(b) + Z

b)
kj R0 s=1 \lgj — Ps =1 tk:]_t(
(s,q #(k,a
lsbt1 (O./ o ls,b—1 (a o
by b+1 by p— 1
+ OS] + ROREACE))] (b 0 =0 (2.4.3)
q=1 tk;, _ts,q g=1 tk: _t

5J



41

forb=1,...,r,k=1,...,N,7=1,...,l;,. Here we agree that l;9 = s n+1 = 0 for
all s.

Consider the leading asymptotic behavior of the Bethe ansatz equations as e — 0.
We claim that in the leading order, the Bethe ansatz equations for ¢ reduce to the
Bethe ansatz equations obeyed by the variables .

Consider for example the leading order of the Bethe equation for tgj) Note that

M*i 2 _ ((A,a1)+2(k—1)+ 9 +O(€)> ——

(1) 1 (1) (1) (1) _ 5
N ls1 a o ) k1 (a o ) k—1 Is1 (CY o )
1, ¢1 o 1, &1 1, &1 —N—-1+k
2 OO 2 OO 1O | ¢ !
s=1 ¢=1 = 2J g s=1g¢=1 k.j
(s,:0)#(k.5) a#j
and similarly
N ls2 (Oé o g2 (a Oé) k—1 ls2 (Oé Oé)
1, 2 o 1, &2 1, &2 —N—1+k
yoys oo (35 o) | SR lonen) g ) v
s=1 ¢=1 “kj qu g=1 "k, “k,q s=1 g=1 k,j
Then by definition of the numbers [ ;, we have
r k-1 l.s,b
pp—1 = A+ (k— Dw; — ap
b=1 s=1 q=1

and, in particular,

(ier,on) = (an) + 20— 1) = (i(al,al)— ; (al,%)).

s=1 \g=1 q=1
Therefore
_(Mk—laal) _ +§ a1, ) lizj (a1, 00) O(e)
gl(clj) ~1w q#l tk] - tk,q =1 El(clg - g/(36)1 R
a#j

At leading order this is indeed the Bethe equation for fgj) from the set of Bethe
equations for the tensor product V,,, | ® V,,,, with the tensor factors assigned to the

points 0 and Zj, respectively. The other equations work similarly.
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By Lemma 2.4.4 it follows that for sufficiently small ¢ there exists a solution to
the Bethe equations (2.4.3) of the form f;“k) = f(a) +o(1).
Now we claim that the Bethe vector wy,, . ., = w(z,t) associated to t has leading

asymptotic behavior
Wty = 5K(Uu1,---,uzv +o(1)), (2.4.4)

as € = 0, for some K. Consider the definition (2.2.3) of w(z,t). We write wy, .y =
w1 + wo where wy contains only those summands in which every factor in the denom-
inator is of the form

(a) (b) (a)

tyy —t ty

ka OO0 Teg T ke

The term w, contains terms where at least one factor is of the form t,(ga; — tgc), or

t,(”) 25, § # k. After substitution using (2.4.1) and (2.4.2), one finds that

1+k Uk g
(H H ) Uﬂlv--wﬂN?

k=1 j=1
and that wy is subleading to w;, which establishes our claim.

Consider two distinct Bethe vectors wy, . ., and Wil ...y constructed as above.
By Theorem 2.2.5 both are simultaneous eigenvectors of the quadratic Gaudin Hamil-
tonians Ho, H1, ..., Hy. Let k, be the largest possible number in {1, ..., N} such that
w; = foralli =1,... k—1. Consider the Hamiltonian H;. When the z; are chosen
as in (2.4.1) then one finds

k1 k)
Hy, = VR (Z Q~ - 0(1)> : (2.4.5)

J=0

The sum Zk ! Q;k 2 coincides with the action of the quadratic Gaudin Hamiltonian

H of the spin chain V,,_, ® V,,, with sites at 0 and Z;, embedded in V3 @ (V,,,)®* via

Vukq ® le — Vul, Mk —1 ® Vw1 C VA ® (Vw1)®k'

k—1 Qk.3)
Zk

Since puy # [, Vpy,....p a0d Uyl ...y, A€ eigenvectors of Z with distinct eigen-
values by Proposition 2.4.3. By (2.4.4) and (2.4.5), we have that the eigenvalues of

Hy on wy, .y and Wyl ..y AT€ distinct.
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The argument above establishes that the set of points z = (zo, 21,...,2x) for
which the Gaudin Hamiltonians are diagonalizable with joint simple spectrum is non-

empty. It is a Zariski-open set, therefore the theorem follows. O]

2.5 The Cases of C, and D,
2.5.1 The Case of C,

Let g = sp(2r), be the simple Lie algebra of type C,, r > 3. We have («a;, ;) = 2,
i=1,...,7r—1,and (., ) = 4. We work with data A = (A\,w;), z = (0,1), where
Ae Pt

We have

® le :V>\+w1 S V)\+w1—a1 D---D V/\+w1—a1—~--—a,.
D V/\+w1—a1—~~~—ar72—2ar71—ar DD V)\+w1—2a1—~--—2ar,1—ar
=Viu+120,00) O Vou—1 01108000 @ Vi At A= 1A+ 1)
©---D ‘/()\17)\2’~--,)\7'71*1,)\r+1) ) V(Al,)\2,...,)\,.,2,)\,.,1+1,)\,«—1)

D Vo d—sd—at L 1—10) D B Vot o—120,0) @ Viau—102,....0)5
(2.5.1)
with the convention that the summands with non-dominant highest weights are omit-
ted. Note, in particular, all multiplicities are 1.
We call an r-tuple of integers I = (ly,...,[,) admissible if the V.., o) appears
in (2.5.1).
The admissible r-tuples I have the form
(1,...,1,0,...,0) or (1,...,1,2,...,2,1), (2.5.2)

~—— N——

k1 ones ko ones

where ky = 0,1,...,rand ks = 0,1,...,7r—2. In the first case the length | = [y +- - -+,
is k1 and in the second case 2r — ky — 1. It follows that different admissible r-tuples
have different length and, therefore, admissible tuples I are parametrized by length

1€{0,1,...,2r — 1}. We call a nonnegative integer [ admissible if it is the length of
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an admissible r-tuple I. More precisely, a nonnegative integer [ is admissible if [ = 0
orif I<r, \y>0o0rifr<i<2r—1, \y_; > 0.
Similarly to the case of type B,., see Theorem 2.3.9 and Corollary 2.3.10, we obtain

the solutions to the Bethe ansatz equations for V\ ® V.

Theorem 2.5.1. Let g = sp(2r). Letl be as in (2.5.2). Ifl is not admissible then the
Bethe ansatz equation (2.2.2) associated to A, z,l has no solutions. Ifl is admissible
then the Bethe ansatz equation (2.2.2) associated to A, z,l has exactly one solution
represented by the following r-tuple of polynomials y®

0] (l)’ 1.

Forl=0,1,...,7—1, we have yY = (x —¢;’,..., 2 —¢

given by (2.3.8).

.., 1), where c§l) are

Forl =1, we have y© = (z — ", ..., 2 — ), where

) ﬁ&+---+/\r_1+2x\r+r+1—i

T =1,...,r—1
C] 1:1)\Z+"+AT—1+2AT+T+2_Z’ j y ’T’ ,
Tfl Z .+)\7’*1+2)‘r+7ﬁ+1—i
7‘ )\+1z:l i _|_)\r_1+2>\r+r+2_7/
fort=r+1. 2r — 1, we h(l’()ey(l) (:B_Cgl)a"-;l'—cggflflv(x—aé?fl)(ﬁ—

bé?—l)a"'?('r 7(})1)(1._[)([11)71._05} )7 where

T

(l)_H)\i+"'+>\2r717l+2>\2r7l+"'+2)\r+l+1_i

i1 ——1,
e DYE N SR E) VAR YR B B A

2r—[—1

>\’i+."+)\27‘—1—l+2)\27‘—l+".+2>\7‘+l+1_i
" LA N A 2+ 2N F L2

=1

T

% H )\2r—l++)\z+2)\z+l++2)\r+l_l
Aorg o+ N+ 2N+ 20+l —i+ 1
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A0 —

] 2
e R WP, ) VRPN EPPPRTEY, ) Wy QNS ey’
Nt F A1+ 2+ 2N 2

« 1:[ Agpoi+ - F A F2 0+ 2N 1
Aari4 N2+ F2A +—i+1

i=2r—|
r

10 Moot 4 N+ 2N 4+ 20—
Moroi oo N+ 2N+ F 20 Fl—i+ 1

i=2r—1

XT*ﬁ’“AQT_l+---+/\T+1_i+l+1—z’—r

)\27_1+"'+>\T+1_i+l+2—i—r

i=1
and

2r—1—1

N+ F A1 g+ 20+ 2N+ L+ 11—
ag)ij(l): + + Ao + 2A9— + + + 1+ 1

S At A+ 20420 F T2 -0

. 'ﬁ Appoi o N+ 2+ 20
=2 l/\2

it AN 2N 2Nl — it 1
Mop 4o 20 42 =2 gy 4o 42N +2A 42— 2
Mor 1+ + 20 +2+1—2r g+ +2N +2+1—2r
Agpoi A A F2 0+ 2N -
Aari4 N+ 2N+ 2N+ —i+ 1

r
X
i=k

T

. Nori+ o F N+l +i—2r >

Z:k/\QT_l++/\z+l+Z+1—2T

fork=2r—1,...,r —1. O
Therefore, in parallel to Theorem 2.4.5, we have the completeness of Bethe ansatz.

Theorem 2.5.2. Let g = sp(2r) and A € PT. For a generic (N +1)-tuple of distinct
complex numbers z = (z9,21,...,2n), the Gaudin Hamiltonians (Ho, H1, ..., Hn)
acting in Sing (V)\ ® Vw‘?N) are diagonalizable and have simple joint spectrum. More-
over, for generic z there exists a set of solutions {t;, i € I} of the Bethe ansatz
equation (2.2.2) such that the corresponding Bethe vectors {w(z,t;), i € I} form a
basis of Sing (Vi ® VEN). O
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Similarly to Section 2.3.6, following [MV04], we introduce a linear differential
operator D(y) of order 2r + 1 by the formula

1—'2...1—'2 T2 leQ...TQ T2
Dy(y) = aqﬂ(&)) (a—ln’( i _1))
/\(y) ( Y Y211
" <a W (yrsz N .Tngg)) (a L (ymTf g -T31T3)>
yr_1T1 T o szl T

x (0 - (T}...T)) (a_ N (&))

Yr—1

(0w (BB ) ) (0w (20 )) 0 )

where T;, i =1,...,r, are given by (2.2.4).

If y is an r-tuple of polynomials representing a critical point associated with
integral dominant weights Ay, ..., A, and points z1, . .., z, of type C,., then by [MV04],
the kernel of D, (y) is a self-dual space of polynomials. By [MM17] the coefficients
of Dy(y) are eigenvalues of higher Gaudin Hamiltonians acting on the Bethe vector
related to y.

For admissible [ and A € b*, define a)(1),...,d}\(r) as follows.

Forl=0,....,r—1,i=1,... 0, set a\(i) = \i+-- -+ N+I+1—i. Forl =0,...,r,
i=1+1,...,r, set a\(i) = 0.

Forl =r,i=1,....,r—1,set (i) = \i+ -+ XNy + 2\, + 7+ 2 — i and
ai(r) = A\ + 1.

Forl=r+4+1,...;2r—1,set k=2r — 1 —1. Then fori=1,... k, set

a\() =N+ A M F 2+ 2N F 2N 21—k

and for i = k+1,...,r — 1, set a\ (i) = 2M\pq1 + - -+ + 201 + 2\, + 2r — 2k and
ad\(r)=Mep1+ -+ o1+ A+ — k.

Proposition 2.5.3. Let the r-tuple y represent the solution of the Bethe ansatz equa-
tion (2.2.2) associated to A, z and admissible I, where X € P*. Then Dy(y) =
DA(:ralA(l),...,x“lA(r)). O
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2.5.2 The Case of D,

Let g = s0(2r) be the simple Lie algebra of type D,, where r > 4. We have
(viyo) = 2,0 = 1,...,r, (1) = 1, ¢ = 1,...;r — 1, and (o, p—2) = 1,
(e, 1) = 0. We work with data A = (\,w1), z = (0,1), where X\ € P*.

We have

VA ® Vi, =Vt & Vatwr—ar @ - @ Vaijwr—ar——ar B Vaitwi—a1——ar_2—a,
D V)\+W170‘17"'7047'7372057"727047'717a7‘ S---D V>\+W1*2a1*"'*2047‘72*047'71*0‘7‘
=Vinu+120,00) D Vw1 0410800 @ B Vi d i A= Lt + LA 25 )
DD Vo da—T A1+ 100+1) D Vi dor A2 A1 =LA +1)
D Vi dar ot 1110 -1 D Vi g Arma Ao 141,00 —1)

D ‘/(Al7)\27-“7)\7‘747>\7‘73+17>\7‘72_17>\7‘717>\'r) S-S V(>\1 ~~~~~ Ae—2: A= 1+ LA =1L A kg 1500,20)

D---D ‘/(,\1+1,)\271,>\3,..,,AT) ©® ‘/()\171,)\2,...,)\,«)7 (2-5-3)

with the convention that the summands with non-dominant highest weights are omit-
ted. Note, in particular, all multiplicities are 1.

We call an r-tuple of integers I = (Iy,...,l,) admissible if the V.., _aq) appears
in (2.5.3).

The admissible r-tuple I have the form

(1,...,1,0,...,0) or (1,...,1,1,0) or (1,...,1,0,1) or (1,...,1,2,...,2,1,1),
S—— —— ~—— S——
k1 ones r—2 ones r—2 ones ko ones
(2.5.4)

where k; = 0,...,r — 2,7 and ko = 0,...,7 — 2. In the first case the length | =
ly+---+1,is k1, in the second and third cases r — 1 and in the forth case 2r — ko — 2.
It follows that different admissible r-tuples in the first and forth cases have different
length and, therefore, admissible tuples I of these types are parametrized by length [ €
{0,1,...,r—=2,7,...,2r—2}. We denote the lengths in the second and third cases by
r—1and r — 1, respectively. More precisely, for I € {0,1,....r—1,r —1,7,...,2r—2},

[ is a length of an admissible r-tuple Ll if [ =0or Il <r—1, \; >0orifl =r—1,
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Ar>0orifl=7r, A_qy>0and A\, >0o0rifl >r+1, Ag,_;—1 > 0. We call such [
admissible.
Similarly to the case of type B,., see Theorem 2.3.9 and Corollary 2.3.10, we obtain

the solutions to Bethe ansatz equations for V\ ® V,, .

Theorem 2.5.4. Let g = s0(2r). Letl be as in (2.5.4). Ifl is not admissible then the
Bethe ansatz equation (2.2.2) associated to A, z,l has no solutions. If l is admissible
then the Bethe ansatz equation (2.2.2) associated to A, z,l has exactly one solution
represented by the following r-tuple of polynomials y®

Forl=0,1,...,r—1, we have y" = (x—cgl),...,x—cl(l),l,...,l), where c§l) are

given by (2.3.8).

Forl=r—1, we have y b = (z — cgm), ce, T — cf,g), l,x — cﬁm)), where

(T_l):ﬁAer Aot A —1—i
A

C; , 7=1,...,r—2,
J i1 Z+ +)\7" 2+)\ +/’n_Z ]
and 2
D) H AN+ AN+ Tr—1—1
" A+1: et N N AT
Forl =r, we have y) = (x — cgr), T — c,(f)), where
J
T >\z )\r - .
cg-): te A AT Z,, jg=1...,r—=2
N+ +rt1—i
O Ar—1 = ANit+o AN +r—i
N e e A
and )
") Mo N AT
c

R R e
Forl=r+1,...,2r — 2, we have

l l l l
y(l) (x_cg)v"waj_cgr?—l—w (I aég - 1)(I—bg2_l_1),...,

(. —a) (@ —bly), a0 — o — D),

r—1
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(l)_li[ N Ao+ 20y 20+ Ay A =
T At Ao+ 20t 2N A A L L=

OB Aitoot Ao +2 g+ F 20 o+ N A T
! i=1 ANi+ ot Ao g +2X0 1+ F20 0+ A1 F AN FHIH+1—1
y ﬁ Mortg+ o XN+ 201 4+ 2o A A L —i— 1
i=2r—1—1 Agpoi—t N+ 200+ F 20 0 A AT
)\27«71714‘"'+)\r72+)\r71+l—’l"
A1+ Na+ N +Hl—r+ 1
c(z)_%i%l Ait ot Aoy F 20+ 20 0 F AN A L
' ST At A+ 200+ 20 o A A H I L

y f[2 Nrai 4 M A 2t 2 F A+ A I —i— ]

oy Azt A2 2 A A
/\2r7171+"'+)\7n72+)\r+l—7’
Ao+ NN H -4 1

r—l— . 2
aDp® _ e Nt Aoy +2 i+ 20 o A F A L=
F B A+ Ao+ 201+ 20 0+ AN A+ -0+ 1

y 1:[ Agrig XN+ 2 1+ 20 o+ A A =i
Aopcig N+ 200+ 20 A F AL

y H Aapci 4 AN F 2+ F 2N N A =i — 1

i=2r—1-1 Aopoiog+ N +F20 0+ 20 o F N A

H)\2rl1+ AN+l +i+1=2r
Agp—i—1 N +HI+I+2-2r

/\27"717["' P S R D T R AL I I o
T N N e T P D WD W e

and
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00 T A des 4 g b A 2 b A A
k k st Nt Agpa 20 20 A A =i+
y ’ﬁ Mort it A XN+ 4+ 20 o A A L —i— 1
il A1+ +FN+H200+ -+ 20 o+ AN+ AN FHL—1
2)\2T—l—1+"'+2)\r—2+/\7’—1+)\r+21_2r
2)\27«7171+"'+2)\7«,2+)\r,1+/\r+2l*27‘+1
221+ +20 0+ N1+ A F2—2r+ 2
2)\27«_1_1+"'+2>\7-_2+)\,«_1+/\r+2l—27"+1
XﬁAzr,l,l+-~-+Ai+2AZ—+1+-~+2Ar72+AT71+AT+l—z’—1
Py Aorig+ -+ N +20 00+ 20 o+ N F AL —1
Aopoig+ o+ M AN L= _ D A I D W oy e §
D B L I e S R e e e B B AU I P Wi o B A
Xﬁ)\2r7171+"'+/\i+l+i+1f2r
Aot NI +2 =20 )
k=2r—1—1,...,r—2. O

Note that the formulas above with r = 3 correspond to solutions of the Bethe
ansatz equations of type Az and A = (A, ws). These formulas were given in Theorem
5.5, [MVO05b].

Then we deduce the analog of Theorem 2.4.5.

Theorem 2.5.5. Let g = s0(2r) and A € P™. For a generic (N + 1)-tuple of distinct
complex numbers z = (z9,21,...,2n), the Gaudin Hamiltonians (Ho, Hi, ..., Hn)
acting in Sing (VA ® VLS?N) are diagonalizable. Moreover, for generic z there exists
a set of solutions {t;, i € I} of the Bethe ansatz equation (2.2.2) such that the
corresponding Bethe vectors {w(z,t;), i € I} form a basis of Sing (Va @ VZN). O

For type D, the algebra has a non-trivial diagram automorphism which leads to
degeneracy of the spectrum. For example, if \,_; = A., then the Bethe vectors
corresponding to the critical points y™ =1 and y"~1 are eigenvectors of the Gaudin
Hamiltonian H := H; = —H, with the same eigenvalue. In particular Proposition
2.4.3 is not applicable since the two corresponding summands in (2.5.3) have non-

comparable highest weights.
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3. SELF-DUAL GRASSMANNIAN, WRONSKI MAP,
AND REPRESENTATIONS OF gly, 5Py, 5021

3.1 Introduction

Grassmannian Gr(V, d) of N-dimensional subspaces of the complex d-dimensional
vector space has the standard stratification by Schubert cells €2, labeled by partitions
A= (d—N2>= X >... 2 Ay =2 0). A Schubert cycle is the closure of a cell .
It is well known that the Schubert cycle €, is the union of the cells ()¢ such that
the Young diagram of A is inscribed into the Young diagram of £. This stratification
depends on a choice of a full flag in the d-dimensional space.

In this paper we introduce a new stratification of Gr(N,d) governed by repre-
sentation theory of gly and called the gly-stratification, see Theorem 3.3.5. The
gly-strata Q4 are labeled by unordered sets A = (A1), ..., A\(") of nonzero partitions

AD = (d—=N= A" > > A0 >0) such that

n N
(@ Vi)™ #0, I I A =N(@d-N), (3.1.1)

i=1 j=1
where V() is the irreducible gly-module with highest weight A). We have dim Q, =
n. We call the closure of a stratum Q4 in Gr(N,d) a gly-cycle. The gly-cycle Qp
is an algebraic set in Gr(N,d). We show that Q4 is the union of the strata Qg,
E = (W, ... €M) such that there is a partition {Iy,...,L,} of {1,2,...,n} with
Homg, (Ve ®jer,Vaw) # 0 for i = 1,...,m, see Theorem 3.3.8.

Thus we have a partial order on the set of sequences of partitions satisfying
(3.1.1). Namely A > E if there is a partition {[,...,[,} of {1,2,...,n} with
Homg, (Ve ®jer, V)\(j)) # (0fort=1,...,m. An example of the corresponding graph
is given in Example 3.3.9. The gl,-stratification can be viewed as the geometrization

of this partial order.
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Let us describe the construction of the strata in more detail. We identify the
Grassmannian Gr(V,d) with the Grassmannian of N-dimensional subspaces of the
d-dimensional space Cy[z]| of polynomials in x of degree less than d. In other words,
we always assume that for X € Gr(N,d), we have X C Cylx]. Set P! = C U {o0}.
Then, for any z € P!, we have the osculating flag F(z), see (3.3.3), (3.3.4). Denote
the Schubert cells corresponding to F(z) by 2, (F(2)). Then the stratum Q4 consists
of spaces X € Gr(N,d) such that X belongs to the intersection of Schubert cells

Q) (F(2)) for some choice of distinct z; € P

o= (ﬂQW (]—"(zi))) c Gr(N, d).

A stratum €24 is a ramified covering over (P')" without diagonals quotient by the
free action of an appropriate symmetric group, see Proposition 3.3.4. The degree of
the covering is dim(®%_, Vy@))*™v.

For example, if N = 1, then Gr(1,d) is the (d — 1)-dimensional projective space
of the vector space Cy[z]. The strata Q,, are labeled by unordered sets m =
(myq, ..., my,) of positive integers such that m; +---+m, = d—1. A stratum €2, con-
sists of all polynomials f(x) which have n distinct zeros of multiplicities my, ..., m,.
In this stratum we also include the polynomials of degree d —1—m,; with n—1 distinct
roots of multiplicities my,...,m;_1,Mm;s1,...,m,. We interpret these polynomials as

having a zero of multiplicity m; at infinity. The stratum Q1) is open in Gr(1,d).

-----

The union of other strata is classically called the swallowtail and the gl,-stratification
is the standard stratification of the swallowtail, see for example Section 2.5 of Part 1

of [AGZVS5).

The gly-stratification of Gr(N,d) agrees with the Wronski map
Wr: Gr(N,d) = Gr(1, N(d — N) + 1)
which sends an N-dimensional subspace of polynomials to its Wronskian

det(di_lfj/dxi_l)]v

ij=1>
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where fi(z),..., fn(z) is a basis of the subspace. For any gl;-stratum €, of Grass-
mannian Gr(1, N(d — N) + 1), the preimage of €2, under the Wronski map is the
union of gly-strata of Gr(V, d) and the restriction of the Wronski map to each of those
strata Q4 is a ramified covering over €, of degree b(A) dim(®7_, V,) )*™, where b(A)

is some combinatorial symmetry coefficient of A, see (3.3.9).

The main goal of this paper is to develop a similar picture for the new object
sGr(N,d) C Gr(N,d), called self-dual Grassmannian. Let X € Gr(N,d) be an N-
dimensional subspace of polynomials in . Let XV be the N-dimensional space of

polynomials which are Wronski determinants of N — 1 elements of X:

N-1
i,j=1"

XY = {det (d" " f;/dz'™") fi(xz) € X}

The space X is called self-dual if XV = g - X for some polynomial g(z), see [MV04].
We define sGr(N, d) as the subset of Gr(N,d) of all self-dual spaces. It is an algebraic
set.

The main result of this paper is the stratification of sGr(V, d) governed by repre-
sentation theory of the Lie algebras go,41 := sp,y, if N = 2r + 1 and gy, := §09,41 if
N = 2r. This stratification of sGr(N,d) is called the gy-stratification, see Theorem
3.4.11.

The gn-stratification of sGr(N, d) consists of gn-strata sQ4 g labeled by unordered
sets of dominant integral gy-weights A = (A, ..., A(™) equipped with nonnegative
integer labels k = (ky, ..., k), such that (®,V\u)% # 0 and satisfying a condition
similar to the second equation in (3.1.1), see Section 3.4.3. Here V)¢ is the irreducible
gn-module with highest weight A\#). Different liftings of an sly-weight to a gly-weight
differ by a vector (k, ..., k) with integer k. Our label k; is an analog of this parameter
in the case of gy.

A gy-stratum sQp g is a ramified covering over (P!')" without diagonals quotient
by the free action of an appropriate symmetric group. The degree of the covering is
dim(®_,Vy ) and, in particular, dim s€25 , = n, see Proposition 3.4.9. We call the

closure of a stratum sQ4 g in sGr(N, d) a gy-cycle. The gn-cycle @AJ@ is an algebraic
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set. We show that sQ4 j is the union of the strata sQ=,;, E = (€W, ..., (™), such that
there is a partition {1y, ..., I} of {1,2,...,n} satisfying Homg, (V;, ®jeliv>\(j)) #0
for i =1,...,m, and the appropriate matching of labels, see Theorem 3.4.13.

If N = 2r, there is exactly one stratum of top dimension 2(d—N) = dim sGr (N, d).
For example, the sos-stratification of sGr(4,6) consists of 9 strata of dimensions 4, 3,
3,3,2,2,2, 2,1, see the graph of adjacencies in Example 3.4.14. If N = 2r+1, there
are many strata of top dimension d — N (except in the trivial cases of d = 2r + 1
and d = 2r 4+ 2). For example, the sp,-stratification of sGr(5,8) has four strata
of dimension 3, see Section 3.4.7. In all cases we have exactly one one-dimensional

stratum corresponding to n =1, A = (0), and k = (d — N).

Essentially, we obtain the gy-stratification of sGr(N,d) by restricting the gly-
stratification of Gr(N,d) to sGr(N,d).

For X € sGr(N, d), the multiplicity of every zero of the Wronskian of X is divisible
by r if N = 2r and by N if N = 2r + 1. We define the reduced Wronski map
Wr : sGr(N,d) — Gr(1,2(d—N)+1) if N = 2r and Wr : sGr(N,d) — Gr(1,d—N+1)
if N = 2r+1 by sending X to the r-th root of its Wronskian if N = 2r and to the N-th
root if N = 2r+1. The gy-stratification of sGr(N, d) agrees with the reduced Wronski
map and swallowtail gl;-stratification of Gr(1,2(d — N)+1) or Gr(1,d — N +1). For
any gl;-stratum €2,,, the preimage of €,, under Wr is the union of gy-strata, see
Proposition 3.4.17, and the restriction of the reduced Wronski map to each of those

strata s{la  is a ramified covering over €1,,,, see Proposition 3.4.18.

Our definition of the gly-stratification is motivated by the connection to the
Gaudin model of type A, see Theorem 3.3.2. Similarly, our definition of the self-
dual Grassmannian and of the gy-stratification is motivated by the connection to the
Gaudin models of types B and C, see Theorem 3.4.5.

It is interesting to study the geometry and topology of strata, cycles, and of self-

dual Grassmannian, see Section 3.4.7.
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The exposition of the material is as follows. In Section 3.2 we introduce the
gly Bethe algebra. In Section 3.3 we describe the gly-stratification of Gr(N,d). In
Section 3.4 we define the gy-stratification of the self-dual Grassmannian sGr(N,d).
In Section 3.5 we recall the interrelations of the Lie algebras sly, §09,..1, 5py,.. In
Section 3.6 we discuss g-opers and their relations to self-dual spaces. Section 3.7
contains proofs of theorems formulated in Sections 3.3 and 3.4. In Appendix A we
describe the bijection between the self-dual spaces and the set of gly Bethe vectors

fixed by the Dynkin diagram automorphism of gl .

3.2 Lie Algebras
3.2.1 Lie Algebra gl

Let €;;, 1,5 = 1,..., N, be the standard generators of the Lie algebra gl satisfy-
ing the relations [e;;, esk] = djs€ir — dikes;. We identify the Lie algebra sly with the
subalgebra of gly generated by the elements e; —e;; and e;; fori # j, 7,5 =1,..., N.

Let M be a gly-module. A vector v € M has weight A = (\y,...,\y) € CV if
e v =N Nvfori=1,...,N. A vector v is called singular if e;juv = 0 for 1 <i < j < N.

We denote by (M), the subspace of M of weight A\, by (M)*"8 the subspace of
M of all singular vectors and by (M )f\ing the subspace of M of all singular vectors of
weight .

Denote by V) the irreducible gly-module with highest weight .

The gly-module V(1. o)y is the standard N-dimensional vector representation of
gly, which we denote by L.

A sequence of integers A = (Aq,...,Ay) such that Ay > Ay > ... > Ay > 0 is
called a partition with at most N parts. Set |\| = S0, A;. Then it is said that A is
a partition of |\|. The gly-module L®" contains the module V) if and only if \ is a
partition of n with at most N parts.

Let A, be partitions with at most N parts. We write A C p if and only if A\; < p;
fori=1,...,N.
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3.2.2 Simple Lie Algebras

Let g be a simple Lie algebra over C with Cartan matrix A = (a;,) Let

ij=1-
D = diag{dy,...,d,} be the diagonal matrix with positive relatively prime integers
d; such that DA is symmetric.

Let h C g be the Cartan subalgebra and let g = n_®hPn, be the Cartan decompo-
sition. Fix simple roots ag,...,a, in h*. Let &q,..., &, € b be the corresponding co-
roots. Fix a nondegenerate invariant bilinear form (, ) in g such that (&, &;) = a, ;/d;.
The corresponding invariant bilinear form in h* is given by («;, ;) = d;a; ;. We have
(A, aq) = 2(\, o)/ (v, o) for X € b*. In particular, (a;, &;) = a; ;. Let wy, ..., w, € h*
be the fundamental weights, (w;, &) = d; ;.

Let P={Xeb*|(\&)€Z, i=1,...,r} and P ={\ € b*|(\,&;) € Z>o, i =
1,...,7} be the weight lattice and the cone of dominant integral weights.

For A € b*, let V) be the irreducible g-module with highest weight \. We denote
(A, &;) by A\; and sometimes write (A, Ag, ..., A,) for A.

Let M be a g-module. Let (M) = {v € M | n,v = 0} be the subspace of
singular vectors in M. For p € b* let (M), = {v € M | hv = u(h)v, for all h € b}
be the subspace of M of vectors of weight p. Let (M)5i"¢ = M*¢ 0 (M), be the
subspace of singular vectors in M of weight p.

Given a g-module M, denote by (M)?® the subspace of g-invariants in M. The
subspace (M)? is the multiplicity space of the trivial g-module in M. The following
facts are well known. Let A, u be partitions with at most N parts, dim(VA®V,)*™ =1
it \s =k—puni14,ie=1,..., N, for some integer k > p; and 0 otherwise. Let A, i
be g-weights, dim(V\ ® V,,)¢ = d,, for g = 502,41, 5P,

For any Lie algebra g, denote by U(g) the universal enveloping algebra of g.

3.2.3 Current Agebra gt

Let g[t] = g ® C[t] be the Lie algebra of g-valued polynomials with the pointwise
commutator. We call it the current algebra of g. We identify the Lie algebra g with
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the subalgebra g ® 1 of constant polynomials in g[t]. Hence, any g[t]-module has the
canonical structure of a g-module.

The standard generators of gly[t] are e;; ® t*, i,j = 1,...,N, p € Zs,. They
satisfy the relations [e;; @ 17, eg, ® 1] = djse;, @ tPTT — ipes; @ tPH.

It is convenient to collect elements of g[t] in generating series of a formal variable

x. For g € g, set

g(z) =D (g@t)z~". (3.2.1)

5=0
For gly[t] we have (r2 — x1)[ei (1), ear(72)] = djs(ein(1) — ew(z2)) — darles;(w1) —
€4y ().

For each a € C, there exists an automorphism 7, of g[t], 7, : g(x) — g(x—a). Given
a g[t]-module M, we denote by M (a) the pull-back of M through the automorphism
T,. As g-modules, M and M (a) are isomorphic by the identity map.

We have the evaluation homomorphism, ev : g[t] — g, ev : g(z) — ga~'. TIts
restriction to the subalgebra g C g[t] is the identity map. For any g-module M,
we denote by the same letter the g[t]-module, obtained by pulling M back through
the evaluation homomorphism. For each a € C, the g[t]-module M (a) is called an
evaluation module.

For g = sly, sp,,., §09,41, it is well known that finite-dimensional irreducible

g[t]-modules are tensor products of evaluation modules Vyu)(z1) ® «-+ @ Vi (2n)
with dominant integral g-weights AV, ... A\ and distinct evaluation parameters
Zlyevey”n-.

3.2.4 Bethe Algebra

Let S; be the permutation group of the set {1,...,l}. Given an N x N matrix B

with possibly noncommuting entries b;;, we define its row determinant to be

rdet B = Z (—=1)7b151)b20(2) - - - DNo(N)-

ocESN
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Define the universal differential operator D? by

DB = rdet(&j&t - Gji(ZL‘))N

i,j=1"

(3.2.2)

It is a differential operator in variable x, whose coefficients are formal power series in

7! with coefficients in U(gly[t]),
N
D =0+ Bi(x)o) ™, (3.2.3)
i=1

where
BZ(ZL') = Z Bijl‘_j
=i

and B;; € U(glylt]), i =1,...,N, j € Zs,;. We call the unital subalgebra of U (gly[t])
generated by B;; € U(gly[t]), i = 1,...,N, j € Zs;, the Bethe algebra of gl and
denote it by B.

The Bethe algebra B is commutative and commutes with the subalgebra U(gly) C
U(glyt]), see [Tal06]. As a subalgebra of U(gly[t]), the algebra B acts on any gly[t]-
module M. Since B commutes with U(gly), it preserves the subspace of singular
vectors (M) as well as weight subspaces of M. Therefore, the subspace (M)} is

B-invariant for any weight \.

We denote M (oc0) the gly-module M with the trivial action of the Bethe algebra
B. More generally, for a gly[t]-module M’, we denote by M’ ® M (o0) the gly-module
where we define the action of B so that it acts trivially on M(co). Namely, the
element b € B acts on M’ ® M(o0) by b® 1.

Note that for a € C and gly-module M, the action of e;;(x) on M(a) is given by
e;j/(x —a) on M. Therefore, the action of series B;(x) on the module M’ ® M (c0)
is the limit of the action of the series B;(x) on the module M’ ® M (z) as z — oo in
the sense of rational functions of x. However, such a limit of the action of coefficients
B,; on the module M’ ® M(z) as z — oo does not exist.

Let M = V) be an irreducible gly-module and let M’ be an irreducible finite-

dimensional gly[t]-module. Let ¢ be the value of the 3.  ¢;; action on M.
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Lemma 3.2.1. We have an isomorphism of vector spaces:

. - A
T (M@ V)™ — (M")3", where \; = Ct\[’ | — AN41—i»

giwen by the projection to a lowest weight vector in V. The map 7 is an isomorphism
of B-modules (M’ @ Vy(c0))*™ — (M’)Sj\ing. O
Consider P! := C U {oo}. Set
P, :={z=(z1,...,22) € (P)" | z # 2 for 1<i<j<n},
RP, :={z=(z1,...,2,) €P, | zz € Ror z; = 00, for 1<i<n}.

We are interested in the action of the Bethe algebra B on the tensor product
Q" Vi (25), where A = (AW ... AM) is a sequence of partitions with at most
N parts and z = (21,...,2,) € P,. By Lemma 3.2.1, it is sufficient to consider
spaces of invariants (Q"_, Vi (2s))*™V. For brevity, we write Vj , for the B-module
Q" Vi (zs) and Vi for the gly-module @7, V.

Let v € Va» be a common eigenvector of the Bethe algebra B, B;(x)v = h;(z)v,

i =1,...,N. Then we call the scalar differential operator
N
D, =0) +> hi(z)o) ™
i=1

the differential operator associated with the eigenvector v.

3.3 The gly-Stratification of Grassmannian

Let N, d € Z~q such that N < d.

3.3.1 Schubert Cells

Let Cylz] be the space of polynomials in x with complex coefficients of degree
less than d. We have dim Cy[x] = d. Let Gr(N,d) be the Grassmannian of all N-
dimensional subspaces in Cy[x]. The Grassmannian Gr(N,d) is a smooth projective

complex variety of dimension N(d — N).
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Let Ry[z] € Cg[z] be the space of polynomials in = with real coefficients of degree
less than d. Let Gr®(N,d) c Gr(IV,d) be the set of subspaces which have a basis
consisting of polynomials with real coefficients. For X € Gr(N,d) we have X €
Gr¥(N, d) if and only if dimg(X NRy[z]) = N. We call such points X real.

For a full lag F = {0 C [y C I, C --- C F; = Cylz]} and a partition \ =
(A1, ..., Ax) such that A\ < d — N, the Schubert cell Q2,(F) C Gr(V,d) is given by

O\(F) ={X € Gr(N,d) | dim(X N Fyj_ry ,)=N—7j,

dlm(X N Fd—j—)\N,j—l) =N —] - ]_}

We have codim Q) (F) = ||
The Schubert cell decomposition associated to a full flag F, see for example
[GH94], is given by
Gr(N.d)= || (). (3.3.1)

A, A1<d—N

The Schubert cycle 2 (F) is the closure of a Schubert cell Q2 (F) in the Grassmannian
Gr(N,d). Schubert cycles are algebraic sets with very rich geometry and topology. It
is well known that Schubert cycle €2, (F) is described by the formula

LF) = || ). (3.3.2)
ACqu,
pm<d—N
Given a partition A = (A, ..., Ay) such that \; < d— N, introduce a new partition

A=(d—N—Ay,d—N—=Ay_1,....,d— N — \y).

We have |\ + [A] = N(d — N).
Let F(c0) be the full flag given by

F(00) = {0 C Cyfz] € Cyfz] C -~ € Cyla]}. (3.3.3)

The subspace X is a point of Q,(F(oc0)) if and only if for every i = 1,... N, it

contains a polynomial of degree \; + N — i.
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For z € C, consider the full flag
F(z)={0C (z — 2)"'Cy[z] C (x — 2)42Cyz] C --- C Cylz]}. (3.3.4)

The subspace X is a point of Q\(F(z)) if and only if for every i = 1,..., N, it
contains a polynomial with a root at z of order \; + N — 1.

A point z € C is called a base point for a subspace X C C,[z] if g(z) = 0 for every
ge X.

3.3.2 Intersection of Schubert Cells

Let A = (AW, ... A™) be a sequence of partitions with at most N parts and
z=(21,...,2) €P,. Set |A] = 3" [\,

The following lemma is elementary.

Lemma 3.3.1. If dim(Va)*'™~ > 0, then |A| is divisible by N. Suppose further |A| =
N(d—N), then ) <d—N fors=1,... n. N

Assuming |A| = N(d — N), denote by Q4 . the intersection of the Schubert cells:
Qaz = [ ) Qo (F(24)). (3.3.5)
s=1

Note that due to our assumption, {24 , is a finite subset of Gr(N,d). Note also that

QA - is non-empty if and only if dim(V4)*'™ > 0.

Theorem 3.3.2. Suppose dim(Vp)*'™ > 0. Let v € (Va,)™™ be an eigenvector of the
Bethe algebra B. Then Ker D, € Q. Moreover, the assignment k : v — KerD,
1 a bijective correspondence between the set of eigenvectors of the Bethe algebra in

(Va2)*™ (considered up to multiplication by nonzero scalars) and the set Qp .

Proof. The first statement is Theorem 4.1 in [MTV09c| and the second statement is
Theorem 6.1 in [MTV09b]. O

We also have the following lemma, see for example [MTV06].
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Lemma 3.3.3. Let z be a generic point in IP’n Then the action of the Bethe algebra
B on (Va.)™ is diagonalizable. In particular, this statement holds for any sequence

z E]Rﬁ”n. O

3.3.3 The gly-Stratification of Gr(N,d)

The following definition plays an important role in what follows.

Define a partial order > on the set of sequences of partitions with at most N
parts as follows. Let A = AV, ... X)) 2 = (¢W . ¢0M) be two sequences of
partitions with at most NV parts. We say that A > Z if and only if there exists a
partition {/Iy,..., I} of the set {1,2,...,n} such that

Homg, (Ve ® Vi) #0, i=1,...,m.
JeL;
Note that A and Z are comparable only if |A| = |Z|.

We say that A = (A, ... ™)) is nontrivial if and only if (V,)*™ # 0 and
IA®)| > 0,s=1,...,n. The sequence A will be called d-nontrivial if A is nontrivial
and |[A| = N(d — N).

Suppose E is d-nontrivial. If A > = and |A\®)| > 0 for all s = 1,...,n, then A is
also d-nontrivial.

Recall that Q4 . is the intersection of Schubert cells for each given z, see (3.3.5),
define Q24 by the formula

Qp = Qa C Gr(N,d). (3.3.6)
zel,

By definition, Q4 does not depend on the order of A*) in the sequence
A=(\D, ),

Note that €24 is a constructible subset of the Grassmannian Gr(N, d) in Zariski topol-
ogy. We call Q4 with a d-nontrivial A a gly-stratum of Gr(N,d).
Let ¢, ..., 1@ be the list of all distinct partitions in A. Let n; be the number

of occurrences of u® in A, i =1,...,a, then > ¢ n; =n. Denote n = (n,...,n,).
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We shall write A in the following order: A = u@ for SV 1n, +1 <i < Y7 n,,
7=1,...,a.

Let Sp.n, be the subgroup of the symmetric group S,, permuting {n; +---+n,_1 +
1,...,n1+---+mn},i=1,...,a. Then the group Sp = Snmn, X Snmy X +*+ X Spon,
acts freely on Pn and on R]f”n. Denote by If”n /Sy and prn /Sp, the sets of orbits.

Proposition 3.3.4. Suppose A = (A1, ... \™) is d-nontrivial. The stratum Qu
1s a ramified covering of IP’n/Sn Moreover, the degree of the covering is equal to
dim(Vp)*'™. In particular, dim Qs = n. Over ]R]fbn/Sn, this covering is unramified of

the same degree, moreover all points in fibers are real.

Proof. The statement follows from Theorem 3.3.2, Lemma 3.3.3, and Theorem 1.1
of [MTV09c]. O

Clearly, we have the following theorem.

Theorem 3.3.5. We have

Gr(N,d)= || Qa. (3.3.7)

d-nontrivial A

]

Next, for a d-nontrivial A, we call the closure of Q4 inside Gr(N,d), a gly-cycle.
The gly-cycle Q4 is an algebraic set. We describe the gly-cycles as unions of gly-
strata.

Let A=AV ... A®)and 2 = (¢W), ... £m=D) be such that 2 < A. We call Qg
a simple degeneration of (2, if and only if both A and E are d-nontrivial. In view of
Theorem 3.3.2, taking a simple degeneration is equivalent to making two coordinates

of z collide.

Theorem 3.3.6. If Qz is a simple degeneration of Q2a, then Q= is contained in the

gly-cycle Q4.

Theorem 3.3.6 is proved in Section 3.7.1.
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Suppose © = (8, ... V) is d-nontrivial and A > ©. Then, it is clear that Qg is
obtained from 25 by a sequence of simple degenerations. We call g a degeneration

of QA.

Corollary 3.3.7. If Qg is a degeneration of Q5, then Qg is contained in the gly-
cycle Qa. [

Theorem 3.3.8. For d-nontrivial A, we have

ﬁA:|_|Q

Z<A,
d-nontrivial 2

(3.3.8)

i

Theorem 3.3.8 is proved in Section 3.7.1.

Theorems 3.3.5 and 3.3.8 imply that the subsets Q24 with d-nontrivial A give a
stratification of Gr(V,d). We call it the gly-stratification of Gr(N,d).

Example 3.3.9. We give an example of the gl,-stratification for Gr(2,4) in the fol-
lowing picture. In the picture, we simply write A for 25,. We also write tuples of
numbers with bold font for 4-nontrivial tuples of partitions, solid arrows for simple
degenerations between 4-nontrivial tuples of partitions. The dashed arrows go be-
tween comparable sequences where the set {2z corresponding to the smaller sequence

is empty.

((1,0),(1,0),(1,0),(1,0))

PN

((2,0),(1,0),(1,0)) ((1,1),(1,0),(1,0))

- ~ -
- ~ -
- ~ e
- ~ -
- ~ -
- ~ -
- ~ -
Vs N K

((3,0),(1,0))  ((2,0),(2,0)) ((2,0),(1,1)) ((2,1),(1,0)) ((1,1),(1,1))

|
|
|
!
]
l
|
RN Y

((4,0)) ((3,1)) ((2,2))
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In particular, Q((l,O),(1,0),(1,0),(1,0)) is dense in GI“<2, 4)
Remark 3.3.10. In general, for Gr(N,d), let ¢, = (1,0,...,0) and let

A= (61,61, c ,61).
—_——
N(d—N)
Then A is d-nontrivial, and 24 is dense in Gr(N,d). Clearly, Q4 consists of spaces

of polynomials whose Wronskian (see Section 3.3.4) has only simple roots.

Remark 3.3.11. The group of affine translations acts on C4[x] by changes of variable.
Namely, for a € C*,b € C, we have a map sending f(z) — f(ax + b) for all f(x) €

Cgylx]. This group action preserves the Grassmannian Gr(N,d) and the strata (4.

3.3.4 The Case of N =1 and the Wronski Map

We show that the decomposition in Theorems 3.3.5 and 3.3.8 respects the Wronski
map.
From now on, we use the convention that x — z, is considered as the constant

function 1 if z, = oco.
Consider the Grassmannian of lines Gr(1,d). By Theorem 3.3.5, the decom-

position of Gr(1,d) is parameterized by unordered sequences of positive integers
m = (my, ..., m,) such that |m|=d — 1.
Let z = (21,...,2n) € IP’n We have Cf € (), if and only if

n

f(z) = aH(m —2z)™, a#0.
s=1
In other words, the stratum €, of the gl;-stratification (3.3.7) of Gr(1,d) consists of
all points in Gr(1, J) whose representative polynomials have n distinct roots (one of
them can be 0o) of multiplicities myq, ..., m,,.
Therefore the gl;-stratification is exactly the celebrated swallowtail stratification.

For gi(x),...,qi(x) € Clz], denote by Wr(g1(x),...,q(x)) the Wronskian,

Wi(gi(2), ..., gix)) = det(dg; /da’™)} .
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Let X € Gr(N,d). The Wronskians of two bases of X differ by a multiplication by

a nonzero number. We call the monic polynomial representing the Wronskian the

Wronskian of X and denote it by Wr(X). It is clear that deg, Wr(X) < N(d — N).
The Wronski map

Wr: Gr(N,d) = Gr(1, N(d— N) + 1)

is sending X € Gr(N,d) to CWr(X).
The Wronski map is a finite algebraic map, see for example Propositions 3.1 and

4.2 in [MTV09a], of degree dim(L®N@=N))st ywhich is explicitly given by

0'112...(d=N—1)!
(N(d = NDt 3 (N+1)!(N+2)!...(d—1)

see [Sch86].
Let A = (AD, ..., A™) be d-nontrivial and z = (z1,...,2,) € Pp. If X € Qa,

then one has
n

Wr(X) = H(x - zs)ws)'.

s=1

Set d = N(d — N) + 1. Therefore, we have the following proposition.

Proposition 3.3.12. The preimage of the stratum Q,, of Gr(1, N(d— N)+1) under
the Wronski map is a union of all d-nontrivial strata Qa of Gr(N,d) such that |\*)| =

ms, S=1,...,n. ]

Let A = (AWM, ... A(™) be an unordered sequence of partitions with at most
N parts. Let a be the number of distinct partitions in A. We can assume that
A N@ are all distinet and let nq, . .., n, be their multiplicities in A, nq + - - - +
ne = n. Define the symmetry coefficient of A as the product of multinomial coeffi-

cilents:

(Zs:l a, |A()|=q n5>‘
bA) =] =— : . 3.3.9
( ) H Hs:l ..... a, |\ |=i (n5)| ( )

%

Proposition 3.3.13. Let A = (A1), ... ")) be d-nontrivial. Then the Wronski map
Wrla, : Qa — Qum is a ramified covering of degree b(A) dim(Va)*'~ .
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Proof. The statement follows from Theorem 3.3.2, Lemma 3.3.3, and Proposition

3.3.12. B

In other words, the gly-stratification of Gr(N,d) given by Theorems 3.3.5 and
3.3.8, is adjacent to the swallowtail gl;-stratification of Gr(1, N(d — N) + 1) and the

Wronski map.

3.4 The gy-Stratification of Self-Dual Grassmannian

It is convenient to use the notation: go,.+1 = 5ps,., and go, = §09,41, 7 = 2. We

also set g3 = sly. The case of g3 = sl, is discussed in detail in Section 3.4.6.

3.4.1 Self-Dual Spaces

Let A = (AM, ... A(")) be a tuple of partitions with at most N parts such that
IA| = N(d— N) and let z = (21,...,2,) € Py.
Define a tuple of polynomials T' = (T}, ...,Tx) by
Tw) = [J(@— =)0, i=1,.. N, (3.4.1)
s=1
where )\S{?Ll = 0. We say that T is associated with A, z.
Let X € QA . and ¢i,...,9; € X. Define the divided Wronskian Wr' with respect

to A, z by
Wil (g1, ..., ) :Wr(gl,...,gi)HT]{::j, i=1,...,N.

j=1
Note that Wr'(gy,...,¢;) is a polynomial in z.
Given X € Gr(N,d), define the dual space X' of X by

Xt ={Wil(g,...,gv-1) | s € X, i=1,...,N —1}.

Lemma 3.4.1. If X € Qp ., then X1 € Qz.. C Gr(N,d), where

d=Y A —d+2N,
s=1
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and A = (5\(1), ., AM) s a sequence of partitions with at most N parts such that
5O 0 NG m N, s=1...m
]

Note that we always have 5\5{? =0 for every s = 1,...,n, hence X' has no base
points.

Given a space of polynomials X and a rational function g in x, denote by g - X
the space of rational functions of the form ¢ - f with f € X.

A self-dual space is called a pure self-dual spaceif X = XT. A space of polynomials
X is called self-dual if X = g- XT for some polynomial g € C[z]. In particular, if
X € Q4 is self-dual, then X = Ty - XT, where Ty is defined in (3.4.1). Note also,
that if X is self-dual then g - X is also self-dual.

It is obvious that every point in Gr(2,d) is a self-dual space.

Let sGr(N, d) be the set of all self-dual spaces in Gr(N,d). We call sGr(N,d) the
self-dual Grassmannian. The self-dual Grassmannian sGr(V, d) is an algebraic subset
of Gr(N,d).

Let Q4 » be the finite set defined in (3.3.5) and Q4 the set defined in (3.3.6).
Denote by sQ2a . the set of all self-dual spaces in 25 , and by sQ2x the set of all

self-dual spaces in 24:
SOAz = QA (]sGr(N7 d) and sQp = QAﬂsGr(N, d).

We call the sets sQ5 gn-strata of the self-dual Grassmannian. A stratum s{2, does not
depend on the order of the set of partitions A. Note that each s{2, is a constructible
subset of the Grassmannian Gr(N, d) in Zariski topology.

A partition A\ with at most N parts is called N-symmetric if \; — \iy1 = Ayv_; —
AN_it1, i =1,..., N —1. If the stratum sQ, is nonempty, then all partitions \®) are
N-symmetric, see also Lemma 3.4.4 below.

The self-dual Grassmannian is related to the Gaudin model in types B and C,

see [MV04] and Theorem 3.4.5 below. We show that sGr(N,d) also has a remark-
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able stratification structure similar to the gly-stratification of Gr(N,d), governed by

representation theory of gy, see Theorems 3.4.11 and 3.4.13.

Remark 3.4.2. The self-dual Grassmannian also has a stratification induced from the
usual Schubert cell decomposition (3.3.1), (3.3.2). For z € P!, and an N-symmetric
partition A with A\; < d — N, set sQy\(F(2)) = QU (F(2)) NsGr(NV,d). Then it is easy

to see that
sGr(N,d) = || sQu(F(2)) and sQ\(F(2)) = || su(F(2).
N —symmetric pu, N —symmetric p,
p1<d—N p1<d—N, ACp

3.4.2 Bethe Algebras of Types B and C and Self-Dual Grassmannian

The Bethe algebra B (the algebra of higher Gaudin Hamiltonians) for a simple
Lie algebras g were described in [FFR94]. The Bethe algebra B is a commutative
subalgebra of U (g[t]) which commutes with the subalgebra /(g) C U(g[t]). An explicit
set of generators of the Bethe algebra in Lie algebras of types B, C, and D was given
in [Mol13]. Such a description in the case of gl is given above in Section 3.2.4. For
the case of gy we only need the following fact.

Recall our notation g(x) for the current of g € g, see (3.2.1).

Proposition 3.4.3 ( [FFR94,Moll13|). Let N > 3. There exist elements F;; € gn,
i,7=1,...,N, and polynomials G4(z) in d*F;(x)/dx*, s=1,...,N, k=0,...,N,
such that the Bethe algebra of gy is generated by coefficients of Gs(z) considered as

formal power series in x~'. O

Similar to the gly case, for a collection of dominant integral gy-weights A =
A A and 2 = (21,...,2,) € P, we set Vaz = QL Vi (2s), considered
as a B-module. Namely, if z € C", then V), is a tensor product of evaluation
gy [t]-modules and therefore a B-module. If, say, z, = oo, then B acts trivially on
Vi (00). More precisely, in this case, b € B acts by b ® 1 where the first factor acts
on ®"] Vi (2s) and 1 acts on Vi (00).
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We also denote V) the module Vj ., considered as a gy-module.
Let o be a dominant integral gy-weight and k& € Z>,. Define an N-symmetric
partition 14, with at most N parts by the rule: (4 )y = k and

(har)i — (Hag)ivr = (3.4.2)

(woan_g), if [§] <i<N-1
We call p14 the partition associated with weight p and integer k.

Let A = (AY, ... A™) be a sequence of dominant integral gy-weights and let

k = (ky,...,k,) be an n-tuple of nonnegative integers. Then denote
1 n
Ase =P 20)

the sequence of partitions associated with A®) and k,, s =1,...,n.

We use notation pg = pia0 and Ay = Ay 0,..0)-

Lemma 3.4.4. If 2 is a d-nontrivial sequence of partitions with at most N parts and
sQz is nonempty, then E has the form B = A for a sequence of dominant integral
an-weights A = (XY ... XM and an n-tuple k of nonnegative integers. The pair
(A, k) is uniquely determined by E. Moreover, if N = 2r, then > "_ (A\®), &,) is even.

Proof. The first statement follows from Lemma 3.4.1. If N = 2r is even, the second

statement follows from the equality

n r—1 n
N@d-N) =g =Y r(2 SO, @) + (A, a,,>) + NS k.. O
s=1 i=1 s=1

Therefore the strata are effectively parameterized by sequences of dominant inte-
gral gy-weights and tuples of nonnegative integers. In what follows we write s{4 g

for SQAA . and SQA,k,z for SQAA ksZ*

Define a formal differential operator
N
D =0) + ) Gi(x)o) .
i=1

For a B-eigenvector v € Vj ., Gi(x)v = hi(z)v, we denote D, = ON + SN | hy(z)oN~

x

the corresponding scalar differential operator.
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Theorem 3.4.5. Let N > 3. There exists a choice of generators G;(x) of the gy
Bethe algebra B (see Proposition 3.4.3), such that for any sequence of dominant inte-
gral gn-weights A = (A .. A™) any z € P,., and any B-eigenvector v € (Vaz)®,
we have Ker (Ty ... Tn)Y?-Dy-(Ty ... Tn)"Y?) € SQa, 2, where T = (Ty,. .., Ty) is
associated with A, z.

Moreover, if |Aa| = N(d — N), then this defines a bijection between the joint
eigenvalues of B on (Va )™ and sQa , » C Gr(N,d).

Proof. Theorem 3.4.5 is deduced from [Ryb18] in Section 3.7.2. O
The second part of the theorem also holds for N = 3, see Section 3.4.6.

Remark 3.4.6. In particular, Theorem 3.4.5 implies that if dim(V4)® > 0, then
dim(Va A,k)ﬁ[N > (. This statement also follows from Lemma 3.8.2 given in the Ap-

pendix.
We also have the following lemma from [Ryb18].

Lemma 3.4.7. Let z be a generic point in ]P’n Then the action of the gy Bethe
algebra on (V) is diagonalizable and has simple spectrum. In particular, this

statement holds for any sequence z € RP,,. [

3.4.3 Properties of the Strata

We describe simple properties of the strata s{2 .

Given A, k, z, define A, l;:, z by removing all zero components, that is the ones
with both \®) = 0 and k, = 0. Then SQAJ;E = QA k> and SQAJ; = sQj k. Also, by
Remark 3.4.6, if (Va )9 # 0, then dim(Va, , )*'~ > 0, thus |A 44| is divisible by N.

We say that (A, k) is d-nontrivial if and only if (V4)® # 0, |)\£i)k5] >0, s =
1,...,n,and |A k| = N(d — N).

If (A, k) is d-nontrivial then the corresponding stratum s{s, C sGr(V,d) is

nonempty, see Proposition 3.4.9 below.
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Note that |Aag| = |Aa|+ N|k|, where |k| = k; + - - - + k,. In particular, if (A, 0)
is d-nontrivial then (A, k) is (d 4 |k|)-nontrivial. Further, there exists a bijection

between Q4 . in Gr(N,d) and Q4 , . in Gr(N,d + |k|) given by

QAA,Z — QAA,k,za X = H(‘T - Zs)ks - X. (343)

s=1
Moreover, (3.4.3) restricts to a bijection of sQ, . in sGr(N,d) and s{24,, . in

sGr(N, d + |kl).

If (A, k) is d-nontrivial then A 4y is d-nontrivial. The converse is not true.

Example 3.4.8. For this example we write the highest weights in terms of fun-
damental weights, e.g. (1,0,0,1) = w; + wy. We also use sly-modules instead of
gly-modules, since the spaces of invariants are the same.

For N =4 and g, = so; of type B,, we have
dim(‘/(gyo) X ‘/(170) ® ‘/2270))94 =0 and dim(‘/@&g) X ‘/'(17071) X ‘/2270,2))5[4 = 2.

Let A = ((2,0),(1,0),(2,0)). Then A, is 9-nontrivial, but (A, (0,0,0)) is not.
Similarly, for N =5 and g5 = sp, of type Cq, we have

dim(Vi1,0) ® Vioa) ® Vio1))® =0 and  dim(Vi1.001) ® Vio1.1.0) ® Vio11,0))°" = 2.
Let A = ((1,0),(0,1),(1,0)). Then A4 is 8-nontrivial, but (A, (0,0,0)) is not.

Let pM, ... 1@ be all distinct partitions in A4r. Let n; be the number of
occurrences of u in Aay, then Y% n; = n. Denote n = (ny,...,n,), we shall
write Agyg in the following order: /\X?ki =y for Y0 ing+1 < i < Y n,,

7=1,...,a.

Proposition 3.4.9. Suppose (A, k) is d-nontrivial. The set sQa g is a ramified cov-
ering of ]f”n/Sn. Moreover, the degree of the covering is equal to dim(Va)9v. In
particular, dimsQp , = n. Over RI@’H/S", this covering is unramified of the same

degree, moreover all points in fibers are real.
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Proof. The proposition follows from Theorem 3.4.5, Lemma 3.4.7, and Theorem 1.1
of [IMTV09c¢]. O

We find strata sQp , C sGr(V, d) of the largest dimension.

Lemma 3.4.10. If N = 2r, then the d-nontrivial stratum sQa , C sGr(N,d) with
the largest dimension has (A, k,) = (w,,0), s = 1,...,2(d — N). In particular, the
dimension of this stratum is 2(d — N).

If N = 2r+1, the d-nontrivial strata sQa j, C sGr(N, d) with the largest dimension
have (A\®) k) equal to either (w;,,0) with some j, € {1,...,r}, or to (0,1), for
s=1,...,d— N. Fach such stratum is either empty or has dimension d — N. There
1s at least one nonempty stratum of this dimension, and if d > N + 1 then more than

one.

Proof. By Proposition 3.4.9, we are going to find the maximal n such that (A, k) is
d-nontrivial, where A = (A, ..., AX(") is a sequence of dominant integral gy-weights
and k = (ky,...,k,) is an n-tuple of nonnegative integers. Since A 4 is d-nontrivial,
it follows that A®) £ 0 or A® =0 and k, > 0, for all s =1,...,n.

Suppose N = 2r. If \®) £ 0, we have

r—1
Al = S = (220, ) + (A, @) >
=1

If ks > 0, then MS,)kJ > 2rks > 2r. Therefore, it follows that
rn <YL = 1Akl = (d— N)N.
s=1

Hence n < 2(d — N).
If we set A*) = w, and k, = 0 for all s = 1,...,2(d — N). Then (A, k) is
d-nontrivial since

dim(V,, ® V,, )0+t = 1.

Now let us consider N = 2 4+ 1, r > 1. Similarly, if A\(®) # 0, we have

T

>l =@r+1)> (A9 a) =20+ 1

=1

A
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If ky > 0, then [\, | > (2 + 1)k, > 2r + 1. It follows that

(2r 41 ZMM!—\AMI( N)N.

Hence n < d— N. Clearly, the equality is achieved only for the (A, k) described in the
statement of the lemma. Note that if (A\®), k) = (0,1) forall s =1,...,d — N, then
(A, k) is d-nontrivial and therefore nonempty. If d > N + 1 we also have d-nontrivial
tuples parameterized by 4 = 1,...,r, such that (A\®) k) = (0,1), s =3,...,d — N,
and (A k,) = (w;,0), s = 1,2. ]

3.4.4 The gy-Stratification of Self-Dual Grassmannian

The following theorem follows directly from Theorems 3.3.5 and 3.4.5.

Theorem 3.4.11. We have

sGr(N, d) = | ] SQA k- (3.4.4)

d-nontrivial (A,k)

O

Next, for a d-nontrivial (A, k), we call the closure of s g inside sGr(N, d), a gy-
cycle. The gy-cycles sQ4 j are algebraic sets in sGr(N, d) and therefore in Gr(N, d).
We describe gy-cycles as unions of gy-strata similar to (3.3.8).

Define a partial order > on the set of pairs {(A,k)} as follows. Let A =
AL A B = (M £0M) be two sequences of dominant integral gy-weights.
Let k = (k1,..., k), L = (I1,...,l,) be two tuples of nonnegative integers. We say
that (A, k) > (E,1) if and only if there exists a partition {Iy,..., I} of {1,2,...,n}
such that

Homg,, (Veeo, ® Vo) # 0, éﬁi)lz = Z |/\EZ,)1€J )

Jel; Jel;
fori=1,...,m.
If (A,k) > (E,1) are d-nontrivial, we call sQz; a degeneration of sQ . If we

suppose further that m = n — 1, we call sQ=; a simple degeneration of sl k.



76

Theorem 3.4.12. If sQz; is a degeneration of sQa g, then sQ=; is contained in the

gn-cycle S_QA,k.
Theorem 3.4.12 is proved in Section 3.7.2.

Theorem 3.4.13. For d-nontrivial (A, k), we have

@A,k = |_| SQEJ. (345)
(ED<S(AK),

d-nontrivial (E,l)

Theorem 3.4.13 is proved in Section 3.7.2.

Theorems 3.4.11 and 3.4.13 imply that the subsets s{24  with d-nontrivial (A, k)
give a stratification of sGr(N,d), similar to the gly-stratification of Gr(NV,d), see
(3.3.7) and (3.3.8). We call it the gx-stratification of sGr(N,d).

Example 3.4.14. The following picture gives an example for sos-stratification of
sGr(4,6). In the following picture, we write ((AM)g,,..., (A™), ) for sQx k. We
also simply write A(®) for (A(®)),. For instance, ((0,1)y, (0,1)) represents sQ24 » where
A =((0,1),(0,1)) and k = (1,0). The solid arrows represent simple degenerations.
Unlike the picture in Example 3.3.9 we do not include here the pairs of sequences

which are not 6-nontrivial, as there are too many of them.

((0,1),(0,1),(0,1), (0, 1))

((0,2), (0, 1), (0, 1)) ((0,0),(0,1),(0,1))

/1\4\ .

((0, ((0,1)1,(0,1)) ,0)1)

\\ //
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In particular, the stratum s€((,1,0,1),(0,1),(0,1)) is dense in sGr(4, 6).

Proposition 3.4.15. If N = 2r is even, then the stratum sQu with (\®) k,) =
(wr, 0), where s =1,...,2(d — N), is dense in sGr(N,d).

Proof. For N = 2r, one has the gy-module decomposition
Vwr ® Vwr - ‘/2“;74 @ le EB ttt EB Vw,r71 EB ‘/(O ..... 0)- (346)

It is clear that (A, k) is d-nontrivial. It also follows from (3.4.6) that if (E,1) is
d-nontrivial then (A, k) > (E,1). The proposition follows from Theorems 3.4.11 and
3.4.13. [

Remark 3.4.16. The group of affine translations, see Remark 3.3.11, preserves the

self-dual Grassmannian sGr(N,d) and the strata s g.

3.4.5 The gy-Stratification of sGr(N,d) and the Wronski Map

Let A = (AY ... A™) be a sequence of dominant integral gy-weights and let
k = (ki,...,k,) be an n-tuple of nonnegative integers. Let z = (21,...,2,) € P,.

Recall that /\58) = <)\(s), &;). If X € sQ4p k-, one has

n s s N
( [](z— ,755)>‘g A )+k5> ) if N =2r+1;
Wr(X) = =1 .
( H (:L‘ B ZS)2/\§s)+...+2>\£s_)1+)\$5)+2k5) ’ if N = 2r.
s=1

We define the reduced Wronski map Wr as follows.
If N =2r+ 1, the reduced Wronski map

Wr : sGr(N,d) — Gr(1,d — N + 1)

is sending X € sGr(N,d) to C(Wr(X))V/V.
If N = 2r, the reduced Wronski map

Wr : sGr(N,d) — Gr(1,2(d — N) + 1)
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is sending X € sGr(N,d) to C(Wr(X))'/".
The reduced Wronski map is also a finite map.
For N = 2r, the degree of the reduced Wronski map is given by dim(Vf,?Q(d*N))gN :

This dimension is given by, see [KLP12],

(N=1! ] ((j—i)(N—i—jJrl))l:[ (d_(i(iil_)'](\;tlj\)[)ik)r (3.4.7)
1<i<j<r k=0 ' '

Let d=d—-N+1if N=2r+1andd=2(d—N)+1if N =2r. Let m =
(mq,...,my) be an unordered sequence of positive integers such that |m| = d—1.

Similar to Section 3.3.4, we have the following proposition.

Proposition 3.4.17. The preimage of the stratum Q,, of Gr(1,d) under the reduced
Wronski map is a union of all strata sQa . of sGr(N,d) such that \)\fi)kJ = Nms,
s=1,...,n, if N is odd and such that |)\E§7)ks| =rmg, s=1,....n, if N = 2r s

even. O]

Let A = (AM,...,A") be an unordered sequence of dominant integral gy-
weights and k = (ki,...,k,) a sequence of nonnegative integers. Let a be the
number of distinct pairs in the set {(A\*),k,), s = 1,...,n}. We can assume that
AD k), ..., (A9 E,) are all distinct, and let ny, ..., n, be their multiplicities, n; +
4 ng =N

Consider the unordered set of integers m = (my, ..., m,), where Nmgy = |)\Ef7)k3] if
N is odd or rmg = |/\(§7)k5 if N = 2r is even. Consider the stratum ,, in Gr(1,d),

corresponding to polynomials with n distinct roots of multiplicities myq, ..., m,.

Proposition 3.4.18. Let (A k) be d-nontrivial. Then the reduced Wronski map
W@mk 0 8Qak — Qi is a ramified covering of degree b(A 4 ) dim(Va )9, where

b(Aag) is given by (3.3.9).

Proof. The statement follows from Theorem 3.4.5, Lemma 3.4.7, and Proposition

3.4.17. =
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In other words, the gy-stratification of sGr(N,d) given by Theorems 3.4.11 and

3.4.13, is adjacent to the swallowtail gl;-stratification of Gr(1,d) and the reduced

Wronski map.

3.4.6 Self-Dual Grassmannian for N =3

Let N = 3 and g3 = sl,. We identify the dominant integral sly-weights with
nonnegative integers. Let A = (A, ... A X) be a sequence of nonnegative integers
and z = (z1,...,2,,00) € IE’)nJrl.

Choose d large enough so that k :=d—3-Y""_ A& =X > 0. Let k = (0,...,0,k).

Then A 4 has coordinates

)\S) = (2A¥ A9 0), s=1,...,n,

A = (d_3—;)\(5)+)\,d—3—;)\(5),d—3—;)\(5)_)\).

Note that we always have |A4 x| = 3(d — 3) and spaces of polynomials in sQp g »

are pure self-dual spaces.

Theorem 3.4.19. There exists a bijection between the common eigenvectors of the

aly Bethe algebra B in (Va )™ and sQa g .

Proof. Let X € sQp k2, and let T = (T1(z), Ty(x), T5(x)) be associated with A4k, 2,
then

Ty(z) = Ty(z) = ﬁ(m — 2z,
s=1
Following Section 6 of [MV04], let w = (uy, uz, u3) be a Witt basis of X, one has
Wr(uy,ug) = Tyuy,  Wr(ug,us) = Thug,  Wr(ug,ug) = Thus.
Let y(x,c) = uy + cug + %u;),, it follows from Lemma 6.15 of [MV04] that

Wr (y(x, c), %(w, c)) = Ty(z,c).

Since X has no base points, there must exist ¢ € C such that y(z, ) and Ti(x) do

not have common roots. It follows from Lemma 6.16 of [MV04] that y(x, ') = p* and
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y(z,c) = (p+ (¢ — )q)? for suitable polynomials p(z), ¢(z) satisfying Wr(p, q) = 27T7.
In particular, {p? pq, ¢*} is a basis of X. Without loss of generality, we can assume

that degp < degq. Then

degp = %(i)\(s) —)\), degq = %(i)\(s) +)\) + 1.
s=1 s=1

Since X has no base points, p and ¢ do not have common roots. Combining with
the equality Wr(p, q¢) = 277, one has that the space spanned by p and ¢ has singular
points at z1,...,2, and oo only. Moreover, the exponents at z,, s = 1,...,n, are
equal to 0, A\®®) + 1, and the exponents at co are equal to — degp, — degq.

By Theorem 3.3.2, the space span{p, ¢} corresponds to a common eigenvector of

the gl, Bethe subalgebra in the subspace

- [
( ® V(,\<s>,0) (Zs> ® V(d—Q—degp,d—1—deg q)(OO))5 2

s=1

Conversely, given a common eigenvector of the gl, Bethe algebra in (Vj )2, by
Theorem 3.3.2, it corresponds to a space X of polynomials in Gr(2, d) without base
points. Let {p,q} be a basis of X, define a space of polynomials span{p?, pq, ¢*} in
Gr(3,d). Tt is easy to see that span{p?, pq, ¢*} € sQa k. is a pure self-dual space. [

Let X € Gr(2,d), denote by X? the space spanned by f? for all polynomials
f € X. Tt is clear that X? € sGr(3,2d — 1). Define

7 Gr(2,d) — sGr(3,2d — 1) (3.4.8)
by sending X to X?2. The map 7 is an injective algebraic map.

Corollary 3.4.20. The map 7 defines a bijection between the subset of spaces of

polynomials without base points in Gr(2,d) and the subset of pure self-dual spaces in

sGr(3,2d — 1). O

Note that not all self-dual spaces in sGr(3,2d — 1) can be expressed as X? for
some X € Gr(2,d) since the greatest common divisor of a self-dual space does not

have to be a square of a polynomial.
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3.4.7 Geometry and Topology

It would be very interesting to determine the topology and geometry of the strata
and cycles of Gr(N,d) and of sGr(/N,d). In particular, it would be interesting to
understand the geometry and topology of the self-dual Grassmannian sGr(N, d). Here

are some simple examples of small dimension.

Of course, sGr(N, N) = Gr(N, N) is just one point. Also, sGr(2r + 1,2r + 2) is
just PL.

Consider sGr(2r,2r + 1), 7 > 1. It has only two strata: s, ., ) 0,0 and sQ), 1)
Moreover, the reduced Wronski map has degree 1 and defines a bijection: Wr :
sGr(2r,2r + 1) — Gr(1,3). In particular, the so0y,,-stratification in this case is
identified with the swallowtail gl;-stratification of quadratics. There are two strata:
polynomials with two distinct roots and polynomials with one double root. Therefore
through the reduced Wronski map, the self-dual Grassmannian sGr(2r,2r + 1) can
be identified with P? with coordinates (ag : a; : as) and the stratum sQ0),1) 1s a

nonsingular curve of degree 2 given by the equation a? — 4agay = 0.

Consider sGr(2r+1,2r+3), r > 1. In this case we have r+ 2 strata: sQ,, w.),0,0)»
i = 1,...,7, 8Q0,0),1,1), and sy ). The reduced Wronski map Wr sGr(2r +
1,2r + 3) — Gr(1, 3) restricted to any strata again has degree 1. Therefore, through
the reduced Wronski map, the self-dual Grassmannian sGr(2r + 1,2r + 3) can be
identified with r + 1 copies of P? all intersecting in the same nonsingular degree 2
curve corresponding to the stratum sy o). In particular, every 2-dimensional sp,, -
cycle is just P2

Consider sGr(2r 4+ 1,2r +4), r > 1. We have dimsGr(2r + 1,2r +4) = 3. This
is the last case when for all strata the coverings of Proposition 3.4.9 have degree one.
There are already many strata. For example, consider sGr(5,8), that is r = 2. There
are four strata of dimension 3 corresponding to the following sequences of sp,-weights

and 3-tuples of nonnegative integers:

A = (Wlawla0)7 ki = (0;0, 1); Ay = (wl,w1,w2), ky = (07070);
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As = (w2,ws,0), ks=(0,0,1); Ay =(0,0,0), ky=(1,1,1).

By the reduced Wronski map, the stratum 24, x, is identified with the subset of
Gr(1,4) represented by cubic polynomials without multiple roots and the cycle §A4,k4
with Gr(1,4) = P3. The stratification of Q4 s, is just the swallowtail of cubic polyno-
mials. However, for other three strata the reduced Wronski map has degree 3. Using
instead the map in Proposition 3.4.9, we identify each of these strata with P; J(Z.)27)
or with the subset of Gr(1,3) x Gr(1,2) represented by a pair of polynomials (py, ps),
such that deg(p;) < 2, deg(p2) < 1 and such that all three roots (including infinity) of
p1p2 are distinct. Then the corresponding sp,-cycles ﬁAiyki , 1 =1,2,3, are identified

with Gr(1,3) x Gr(1,2) = P? x P.

A similar picture is observed for 3-dimensional strata in the case of sGr(2r, 2r+2).
Consider, for example, Gr(2,4), see Example 3.3.9. Then the 4-dimensional stratum
Q(1,0),(1,0),(1,0),(1,0) is dense and (relatively) complicated, as the corresponding covering
in Proposition 3.3.4 has degree 2. But for the 3-dimensional strata the degrees are
1. Therefore, €(2,0),(1,0),(1,00 and £(1.1),(1,0),(1,0) are identified with Iﬁ”g/(Z/ZZ) and the

corresponding cycles are just Gr(1,3) x Gr(1,2) = P? x P!

3.5 More Notation
3.5.1 Lie Algebras

Let g and h be as in Section 3.2.2. One has the Cartan decomposition g =
n_ @ h&n,. Introduce also the positive and negative Borel subalgebras b = § & n,
and b =hdn_.

Let ¢ be a simple Lie group, £ a Borel subgroup, and 4" = [£, 4| its unipotent
radical, with the corresponding Lie algebras n, C b C g. Let ¢ act on g by adjoint
action.

Let Ey,...,E. €n., aq,...,0,. € b, Fy,..., F. € n_ be the Chevalley generators
of g. Let p_; be the regular nilpotent element » ;| F;. Theset p_1+b = {p_1+b|b €
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b} is invariant under conjugation by elements of .#". Consider the quotient space
(p—1 + b)/.4" and denote the .4 -conjugacy class of g € p_; + b by [g],-

Let P = {\ e pl{a;, ) € Z, i=1,...,r} and P+ = {)\ € hl{as, \) € Zsy, i =
1,...,7} be the coweight lattice and the cone of dominant integral coweights. Let
p € h* and p € b be the Weyl vector and covector such that (p, &;) = 1 and (o, p) = 1,
1=1,...,7.

The Weyl group W C Aut(h*) is generated by simple reflections s;, i = 1,...,7,
$i(A) = A= (A di)oy, A €D

The restriction of the bilinear form (-,-) to b is nondegenerate and induces an iso-
morphism h = h*. The action of W on b is given by s;(f1) = ft — {ay, f1)c; for i € b.
We use the notation

w-A=wA+p)—p, w-A=w\+p)—p weW, A€h* Aeb,

for the shifted action of the Weyl group on h* and b, respectively.

Let ‘g = g(*A) be the Langlands dual Lie algebra of g, then ‘(s05,,1) = sp,, and
t(spy,) = 609,41. A system of simple roots of ‘g is ¢y, ..., &, with the corresponding
coroots av, . .., a,. A coweight A € h of g can be identified with a weight of *g.

For a vector space X we denote by M(X) the space of X-valued meromorphic
functions on P!. For a group R we denote by R(M) the group of R-valued meromor-

phic functions on P!

3.5.2 sp,, as a Subalgebra of sl,,

Let vy, ..., vs, be a basis of C?". Define a nondegenerate skew-symmetric form y
on C*" by
(v, v5) = (=) 9,014, d,5=1,...,2r
The special symplectic Lie algebra g = sp,,. by definition consists of all endomor-
phisms K of C?" such that y(Kwv,v')+x(v, Kv') = 0 for all v,0" € C*. This identifies

sp,, with a Lie subalgebra of sls,.
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Denote E;; the matrix with zero entries except 1 at the intersection of the i-th
row and j-th column.

The Chevalley generators of g = sp,,. are given by
Ei=FEij1+ Ey_jorp1—iy, Fi=FEi1;+FEyii 00—, t=1,...,7—1,

Er = Er,r+1> Fr = Er+1,7‘7
& = Ej—Ej jp+Eo_jor—j—FEoypi_jory1—j, G =E—FE. 1,41, 7=1,...,7—1

Moreover, a coweight A € h can be written as

T

A=) <<ozi, A+ (e, A) + (o, 5\>/2) (Eii — Forg1—iori1—i)- (3.5.1)

i=1

In particular,
T

2r —2i+1
) = E ————(Eii — Eorv1-iori1-4)-
P 2 5 ( 9r1—i2r4+1—i)
For convenience, we denote the coefficient of Ej; in the right hand side of (3.5.1) by

()\)u, fori=1,...,27".

3.5.3 509,71 as a Subalgebra of sl;,.

Let vy, ..., 0941 be a basis of C**!. Define a nondegenerate symmetric form y
on C**! by

X(UZ‘, Uj) = (—1>i+15i72r+2_]‘, Z,] = ]_, e 727" + 1.

The special orthogonal Lie algebra g = s04,,1 by definition consists of all endomor-
phisms K of C**! such that x(Kv,v') + x(v, Kv') = 0 for all v,v' € C**1. This
identifies s09,,1 with a Lie subalgebra of sly, ;.

Denote E;; the matrix with zero entries except 1 at the intersection of the i-th
row and j-th column.

The Chevalley generators of g = s09,,1 are given by

Ei=Fiix+ FEopi—iorio—i, Fi=FEi1;+Eyioiorp1—, 1=1,...,1,
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& = By — Ejp i+ Borpi—joryi—j — Borgojorio—y, J=1,...,m

Moreover, a coweight A € § can be written as

r

A=Y ((ai, A e+ (o R>) (Bji — Barioiorsoi). (3.5.2)

i=1
In particular,

p= Z(T +1—0)(Eii — Eyrqoigria—i)-
=1

For convenience, we denote the coefficient of Ej; in the right hand side of (3.5.2) by

()\)11, for i = 1,...,2T+1.

3.5.4 Lemmas on Spaces of Polynomials

Let A = (A® ... A(™ X) be a sequence of partitions with at most N parts such
that |A| = N(d — N) and let z = (21, ..., 2,00) € Py 1.

Given an N-dimensional space of polynomials X, denote by Dx the monic scalar
differential operator of order N with kernel X. The operator Dy is a monodromy-free

Fuchsian differential operator with rational coefficients.

Lemma 3.5.1. A subspace X C Cylx] is a point of Qa . if and only if the operator
Dx is Fuchsian, reqular in C\ {z1,...,2,}, the exponents at z5, s = 1,...,n, being
equal to )\g\s,), )\g\i)_l +1,..., Af) + N — 1, and the exponents at co being equal to 1 +
AN —d,24+ Ay —d,..., N+ )X —d. O

Let T = (Ty,...,Ty) be associated with A, z, see (3.4.1). Let I' = {uy,...,un}

be a basis of X € (14 ., define a sequence of polynomials
yn—i = Wrl(uy, ... u;), i=1,...,N —1. (3.5.3)

Denote (yi,...,yn—1) by yr. We say that yr is constructed from the basis I'.
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Lemma 3.5.2 ( [MV04]). Suppose X € Qp . and let I' = {uy,...,un} be a basis of
X. Ifyr = (y1,...,yn—1) is constructed from T, then

D= ot (17 o (2512))

X ((91 —In’ <M>) (&c — ln/(yN,lTN)).

YN-1

]

Let D = 9Y + ZZ]L hi(z)OYN =% be a differential operator with meromorphic coef-
ficients. The operator D* = 9N + S (—1)*0N~"h;(z) is called the formal conjugate
to D.

Lemma 3.5.3. Let X € Qp, and let {uy,...,un} be a basis of X, then

Wr(ug, ..., Uy uN)
Wr(uy, ..., uy)

i=1,...,N,

form a basis of Ker((Dx)*). The symbol w; means that u; is skipped. Moreover, given
an arbitrary factorization of Dx to linear factors, Dx = (Op+ f1)(0z+ f2) ... (Ox+fN),
we have (Dx)* = (0p — fn)(0r — fn-1) .- (O — f1)-

Proof. The first statement follows from Theorem 3.14 of [MTV08a]. The second
statement follows from the first statement and Lemma A.5 of [MV04]. O]

Lemma 3.5.4. Let X € Q.. Then
Dyi = (Ty---Ty) - (DX)* Ty Ty) ™t
Proof. The statement follows from Lemma 3.5.3 and the definition of XT. O

Lemma 3.5.5. Suppose X € Qa, is a pure self-dual space and z is an arbitrary
complex number, then there exists a basis I' = {uy,...,un} of X such that for yr =
(Y1, .-, yn—1) given by (3.5.3), we have y; = yn—; and y;(z) # 0 for every i =
1,...,N -1

Proof. The lemma follows from the proofs of Theorem 8.2 and Theorem 8.3 of [MV04].
O]
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3.6 g-Oper

We fix N, N > 4, and set g to be the Langlands dual of gy. Explicitly, g = sp,,
if N =2r and g = 509,71 if N =2r + 1.

3.6.1 Miura g-Oper

Fix a global coordinate x on C C P!. Consider the following subset of differential
operators

opy(P") = {0, + p-1 +v | v € M(b)}.

This set is stable under the gauge action of the unipotent subgroup A4 (M) C 4(M).
The space of g-opers is defined as the quotient space Opg(]Pl) 1= op, (PYHY/ AN (M). We
denote by [V] the class of V € opy(P') in Op,(P').

We say that V=0, +p_1+wv € opg(IF’l) is reqular at z € P! if v has no pole at z.
A g-oper [V] is said to be regular at z if there exists f € A4"(M) such that f~1-V- f
is regular at z.

Let V = 0, + p_1 + v be a representative of a g-oper [V]. Consider V as a
¢-connection on the trivial principal bundle p : ¢ x P! — P!. The connection has
singularities at the set Sing C C where the function v has poles (and maybe at
infinity). Parallel translations with respect to the connection define the monodromy
representation 71 (C \ Sing) — ¢. Its image is called the monodromy group of V. If
the monodromy group of one of the representatives of [V] is contained in the center
of 4, we say that [V] is a monodromy-free g-oper.

A Miura g-oper is a differential operator of the form V = 0, + p_; + v, where
v e M(b).

A g-oper V] has reqular singularity at z € P\ {oco}, if there exists a representative

V of [V] such that

(x_z)ﬁ.v.(x_z)—ﬁ:ax+w7

r—z
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where w € M(b) is regular at z. The residue of [V] at z is [p_1 + w(z)];. We denote
the residue of [V] at z by res.[V].
Similarly, a g-oper [V] has regular singularity at oo € P!, if there exists a repre-

sentative V of [V] such that

) ; 1+ w
a:p-V-x_p:(?x—l—pl—,
x

where w € M(b) is regular at co. The residue of [V] at oo is —[p_; + w(o0)];. We
denote the residue of [V] at co by resy[V].

Lemma 3.6.1. For any \, ji € b, we have [p_1 — p— Ny = [p_1 — p — jil if and only
if there exists w € W such that X\ = w - fi. [

Hence we can write [A]yy for [p_; — p — A]y. In particular, if [V] is regular at z,
then res,[V] = [0]w.

Let A = (A®, ... A" }) be a sequence of n 4 1 dominant integral g-coweights
and let z = (21,...,2p,00) € Poyr. Let Opg(Pl)gSz denote the set of all g-opers with

at most regular singularities at points z, and co whose residues are given by

res,. [V] = A, reseo[V] = —[Nw, s=1,...,n,

and which are regular elsewhere. Let Opy(P')z, C Op,(P")%° denote the subset

consisting of those g-opers which are also monodromy-free.

Lemma 3.6.2 ( [Fre05]). For every g-oper [V] € Op,(P')4 ., there exists a Miura

g-oper as one of its representatives. [

Lemma 3.6.3 ( [Fre05]). Let V be a Miura g-oper, then [V] € Opy(P")RS if and
only if the following conditions hold:

(i) V is of the form

vzaﬁp_l—in'X(S)—iwj'o (3.6.1)

Tr—z — r — 1
s=1 7=1

for some m € Zsg, ws € W for s =1,...,n and w; € W, t; € P\ z for

7=1...,m,



39

(i1) there exists wo € W such that
D we XY 0= we - A, (3.6.2)
s=1 j=1

(1it) [V] is reqular at t; for j=1,...,m.
O

Remark 3.6.4. The condition (3.6.2) implies that 3 "_ (a,, A®)) + (a,, \) is even if
N =2r.

3.6.2 Miura Transformation

Following [DS85], one can associate a linear differential operator Ly to each Miura
g-oper V =0, +p_1 +v(x), v(z) € M(bh).
In the case of sl,;1, v(z) € M(h) can be viewed as an (r 4 1)-tuple

(Ul(x)a s avr+1($>>
such that >/ v;(x) = 0. The Miura transformation sends V = 9, + p_; + v(z) to

7

the operator
Ly = (0; +v1(2)) ... (0 + vrp1(x)).

Similarly, the Miura transformation takes the form
Ly = (D +01(2) . (00 + 0:(2)) (D5 — v1(2)) ... (3% — 1 (x))
for g = sp,, and
Ly = (0x + 01(x)) .- (00 + 00(2)) 0002 — vp () ... (00 — v1())

for g = s09,,1. The formulas of the corresponding linear differential operators for the
cases of sp,,. and 504,41 can be understood with the embeddings described in Sections
3.5.2 and 3.5.3.

It is easy to see that different representatives of [V] give the same differential
operator, we can write this map as [V] — Ly

Recall the definition of (A); for A € b from Sections 3.5.2 and 3.5.3.
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Lemma 3.6.5. Suppose V is a Miura g-oper with [V] € Op,(P')4 ., then Liy) is
a monic Fuchsian differential operator with singularities at points in z only. The
exponents of Liy) at z,, s =1,...,n, are (X(S))ii + N — 1, and the exponents at co are

~(Nu—N+i,i=1,...,N.

Proof. Note that V satisfies the conditions (i)-(iii) in Lemma 3.6.3. By Theorem 5.11
in [Fre05] and Lemma 3.6.1, we can assume w; = 1 for given s. The lemma follows

directly. [

Denote by Z(¥) the center of ¢, then

{I2r+l} if g = 502741,

{1} if g = sp,,.

Z(9) =

We have the following lemma.

Lemma 3.6.6. Suppose V is a Miura g-oper with [V] € Opy(P')4 .. If g = 509,41,
then Liy) s a monodromy-free differential operator. If g = sp,,., then the monodromy

of Ly around zs is —Iy, if and only if (., A& s odd for given s € {1,...,n}. O

3.6.3 Relations with Pure Self-Dual Spaces

Let A = (A, ... A X) be a sequence of n + 1 dominant integral g-coweights
and let z = (21,...,2,,00) € P,

Consider A as a sequence of dominant integral gy-weights. Choose d large enough
so that k :=d—N—>""_ (A®));;—(N\)1; = 0. (We only need to consider the case that
S (A1 + (V) is an integer for N = 2r, see Lemma 3.4.4 and Remark 3.6.4.)

Let k = (0,...,0,k). Note that we always have |Asx| = N(d — N) and spaces of

polynomials in 524 , . (=584, .) are pure self-dual spaces.

Theorem 3.6.7. There exists a bijection between Opg(]P’l)M and s§24 ., given by
the map [V] — Ker(f~* - Ly - f), where T = (T4, ..., Ty) is associated with Ay, 2
and f = (Tl c TN)il/Q.
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Proof. We only prove it for the case of g = sp,,. Suppose [V] € Op,(P')4 ., by Lem-
mas 3.6.2 and 3.6.3, we can assume V has the form (3.6.1) satisfying the conditions
(i), (ii), and (iii) in Lemma 3.6.3.

Note that if <04T,5\(5)> is odd, f has monodromy —I5,. around the point z,. By
Lemma 3.6.6, one has that f~' - Ly] - f is monodromy-free around the point z, for
s =1,...,n. Note also that > (a, AN+ (a, A) is even, it follows that L f
is also monodromy-free around the point co. Hence f~'- Ly - f is a monodromy-free
differential operator.

It follows from Lemmas 3.5.1 and 3.6.5 that Ker(f™' - Lyy) - f) € Q4 4 4,2 Olnce

Ly) takes the form

(0r +v1(x)) ... (0 + v:(2)) (0 — V() ... (O — v1()),

it follows that Ker(f~' - Liy; - f) is a pure self-dual space by Lemma 3.5.4.

If there exist [V1], [Va] € Op,(P')4 , such that f~'- Lyg,)- f = f~'- Ly, - f, then
they are the same differential operator constructed from different bases of Ker(f~! -
Ly - f) as described in Lemma 3.5.2. Therefore they correspond to the same §09,1-
population by Theorem 7.5 of [MVO04]. It follows from Theorem 4.2 and remarks in
Section 4.3 of [MVO05a] that [V;] = [Va].

Conversely, give a self-dual space X € s{l4 , .. By Lemma 3.5.5, there exists a
basis I' of X such that for yr = (y1,...,yn_1) we have y; = yn_;, i =1,..., N — L.
Following [MVO05al, define v € M(h) by

(o, v) = —In’ <Tz Hyj_ai’j)7
j=1

then we introduce the Miura g-oper Vi = 0, + p_1 + v, which only has regular
singularities. It is easy to see from Lemma 3.5.2 that f~'- Ly, - f = Dx. It follows
from the same argument as the previous paragraph that [Vr| = [V] for any other
basis I of X and hence [Vr| is independent of the choice of I'. Again by Lemma
3.5.5, for any xy € C\ z we can choose I" such that y;(xg) # 0 foralli =1,... N —1,

it follows that [Vr] is regular at xy. By exponents reasons, see Lemma 3.6.5, we have

res,. [Vr] = A9y, reseo[Ve] = —[Aw, s=1,...,n.
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On the other hand, [Vr] is monodromy-free by Theorem 4.1 of [MV05a]. It follows
that [Vr] € Op,(P")4 ., which completes the proof. O

3.7 Proof of Main Theorems
3.7.1 Proof of Theorems 3.3.6 and 3.3.8

We prove Theorem 3.3.6 first.

By assumption, 2 = (£1), ..., £M™Y) is a simple degeneration of
A=W ),
Without loss of generality, we assume that €& = A® for i =1,...,n — 2 and

dim(VA(nfl) & V)\(ﬂ))zi(r;%U > 0.

Recall the strata (24 is a union of intersections of Schubert cells €24 ,, see (3.3.6).
Taking the closure of €25 is equivalent to allowing coordinates of z € PP, coincide.

Let zg = (21,...,2n-1) € Ifbn_l. Let X € Qg ,,. By Theorem 3.3.2, there exists a
common eigenvector v € (Va ,)*™ of the Bethe algebra B such that D, = Dx.

Let z{, = (#1,..., 2n—1, 2n—1). Consider the B-module VA=, then we have
n—2
Vaz, =) Vi (25)) @ (Va1 @ Va) (20-1)
s=1

n—2
- @ Cf\l(nflx,\(n) (® Vi (Zs)) & Vu(zn,l),
12 s=1

where ¢

D Am) = dim(Vyn-1) @ Vy(m) )fjng are the Littlewood-Richardson coefficients.

Since dim(Vym-1 ® V,\<n))zi<?fil> > 0, we have Vg », C V »r. In particular, (Vax)™ C
(Va,z)™'. Hence v is a common eigenvector of the Bethe algebra B on (V. )™ such
that D, = Dx.

It follows that X is a limit point of €24 , as z, approaches z,_;. This completes

the proof of Theorem 3.3.6.
Theorem 3.3.8 follows directly from Theorem 3.3.6.
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3.7.2 Proof of Theorems 3.4.5, 3.4.12, and 3.4.13

We prove Theorem 3.4.5 first. We follow the convention of Section 3.6.

We can identify the sequence A = (AM ... X" X) of dominant integral g-
coweights as a sequence of dominant integral gy-weights. Consider the gy-module
Vi =Vio®- - @Vim @ V5. It follows from Theorem 3.2 and Corollary 3.3 of [Ryb18]
that there exists a bijection between the joint eigenvalues of the gy Bethe algebra B
acting on (Vi) (21) ® - - ® Vi (2))"™ and the g-opers in Op,(P') 4 , for all possible
dominant integral g-coweight A. In fact, one can show that Theorem 3.2 and Corollary
3.3 of [Ryb18] are also true for the subspaces of (Vi) (z1) ® -+ ® V;\(m(zn))?\ing with
specific gy-weight A. Recall that k = (0,...,0, k), where k = d — N — 2221(5\(5))11 —

(M)11 = 0. Since one has the canonical isomorphism of B-modules

(VA,z)gN = (V;\u)(zl) ® -+ @ Vi (zn>)§ing’

by Theorem 3.6.7, we have the following theorem.

Theorem 3.7.1. There exists a bijection between the joint eigenvalues of the gn Bethe
algebra B acting on (Vi ,)* and $Qp 4, . C sGr(N, d) such that given a joint eigen-
value of B with a corresponding B-eigenvector v in (Vi )% we have Ker ((Ty ... Ty)"*-

Dy (Ty...Tn)"?) € Q4 4, .- O

The fact that Ker (71 ...Tn)"?-Dy-(T1 ... Ty)"*?) € sQ4 , ., for the eigenvector
v € (V) of the gy Bethe algebra (except for the case of even NV when there exists
s € {1,2,...,n} such that (a,, \*)) is odd) also follows from the results of [LMV16]
and [MM17].

Note that by Proposition 2.10 in [Ryb18], the i-th coefficient of the scalar dif-
ferential operator Ljy) in Theorem 3.6.7 is obtained by action of a universal series
Gi(z) € U(gn[t][[x7]]). Theorem 3.4.5 for the case of N > 4 is a direct corollary of
Theorems 3.6.7 and 3.7.1.

Thanks to Theorem 3.4.5, Theorems 3.4.12 and 3.4.13 can be proved in a similar
way as Theorems 3.3.6 and 3.3.8.
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3.8 Self-dual Spaces and w-Invariant Vectors
3.8.1 Diagram Automorphism w@
There is a diagram automorphism w : sl — sly such that
w(E;) = En—i, @w(F)=Fy., @ =1, @(ha)="ha
The automorphism w is extended to the automorphism of gl by
gly = aly, ey (_1)i_j_1€N+1fj,N+1fz’, i,j=1,...,N.

By abuse of notation, we denote this automorphism of gl also by w.
The restriction of w to the Cartan subalgebra h4 induces a dual map w@* : b —

b, A — A", by

for all A € b%,h € ha.

Let (h%)° = {\ € b% | \* = A} C b*. We call elements of (h%)° symmetric
weights.

Let hy be the Cartan subalgebra of gn. Consider the root system of type

An_1 with simple roots o', ... af_, and the root system of gy with simple roots

O[l,...7O[[1;1].

There is a linear isomorphism P* : b3 — (%)% A — A4, where A4 is defined by

Do a) = O ad V= (var), i=1,..., g} | (3.8.1)

Let A € b% and fix two nonzero highest weight vectors vy € (V))x, vas € (Vs )as.

Then there exists a unique linear isomorphism Z_ : V), — Vi« such that

T, (v)) =vxs, Zn(gv) =w(9)Zs(v), (3.8.2)

for all g € sly,v € V). In particular, if A is a symmetric weight, Z, is a linear

automorphism of V), where we always assume that vy = vy«.
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Let M be a finite-dimensional sly-module with a weight space decomposition
M = GauEhz(M)“‘ Let f: M — M be a linear map such that f(hv) = w(h)f(v)
for h € ha,v € M. Then it follows that f((M),) C (M), for all i € b%. Define a

formal sum

T5f = > Tr(flan,)elw),

pe(b)o

where Tr(f|(ar),) for p € (h%)° denotes the trace of the restriction of f to the weight
space (M),,.

Lemma 3.8.1. We have Tryg,n (f @ f) = (Ta5p f) - (Tefp f7). O

Let A = ()\(1), cee )\(”)) be a sequence of dominant integral gy-weights, then the
tuple A4 = ()\(Al), cee )\(:)) is a sequence of symmetric dominant integral sly-weights.
Let Vaa = Q1 Vi . The tensor product of maps Z in (3.8.2) with respect to )\S),

A
s=1,...,n, gives a linear isomorphism
Lo : Vaa = Vpa, (3.8.3)
of sly-modules. Note that the map Z,, preserves the weight spaces with symmetric

weights and the corresponding spaces of singular vectors. In particular, (Va4)®™™ is

invariant under Z.
Lemma 3.8.2. Let u be a gny-weight. Then we have

dim(VA)lsting - TI‘(Iw|(VAA)ii2g>, dlm(VA)N = Tr(Iw|(VAA)HA)'
In particular, dim(V, )8 = Tr(Iw\(VAA)er).

Proof. The statement follows from Lemma 3.8.1 and Theorem 1 of Section 4.4 of

[FSS96]. 0

3.8.2 Action of w on the Bethe Algebra

The automorphism w is extended to the automorphism of current algebra gl[t]
by the formula w(g ® t*) = w(g) ® t°, where g € gly and s =0,1,2,... . Recall the
operator DF| see (3.2.3).
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Proposition 3.8.3. We have the following identity
aN + Z aN ZB )

Proof. 1t follows from the proof of Lemma 3.5 of [BHLW17] that no nonzero elements
of U(gly[t]) kill all Q’_, L(zs) for all n € Z( and all z1,. .., z,. It suffices to show
the identity when it evaluates on @Q7_; L(zs).

Following the convention of [MTV10], define the N x N matrix

gh = gh(N,n,x,px,z,)\,X, P)

by the formula

n

Gn = <(px —X) i+ Y (1) TN PN e )N

T — 2z, ij=1

a=1

By Theorem 2.1 of [MTV10], it suffices to show that

rdet(Gp) H (x—2,) = Z H(pm—)\b) H(m—za) det(z4)°5 det(pap)S5. (3.8.4)
a=1

A,B,|A|=|B| bgA a¢B
The proof of (3.8.4) is similar to the proof of Theorem 2.1 in [MTV10] with the
following modifications.
Let m be a product whose factors are of the form f(z), p., pij, x;; where f(x) is
a rational function in . Then the product m will be called normally ordered if all
factors of the form p,, z;; are on the left from all factors of the form f(x), p;;.
Correspondingly, in Lemma 2.4 of [MTV10], we put the normal order for the first

1 factors of each summand. O
We have the following corollary of Proposition 3.8.3.

Corollary 3.8.4. The gly Bethe algebra B is invariant under w, that is w(B) =
B. O

Let A = (AW, ... A™) be a sequence of partitions with at most N parts and

z=(z,...,2) € P,.
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Let v € (Va.2)®™Y be an eigenvector of the gly Bethe algebra B. Denote the @ (D),
the scalar differential operator obtained by acting by the formal operator @ (D?) on

.

Corollary 3.8.5. Letv € (Va.2)™™ be a common eigenvector of the gly Bethe algebra;
then the identity @ (DP), = (D,)" holds. O

Let 2= (¢W ... ¢M) be a sequence of N-tuples of integers. Suppose
€6 N =m(1,...,1), s=1,...,n.

Define the following rational functions depending on my, s =1,...,n,

plo) = [[lr = =), i) =Wi(e(e) = 30 =

Here we use the convention that 1/(x — z;) is considered as the constant function 0

if z, = o0.

1

Lemma 3.8.6. For any formal power series a(x) in x~' with complex coefficients,

the linear map obtained by sending e;;(x) to e;;(x)+d;;a(x) induces an automorphism

of gly[t]. O
We denote the automorphism in Lemma 3.8.6 by 74(z).

Lemma 3.8.7. The B-module obtained by pulling Vi . via nyu) is isomorphic to
VE,z- U]

By Lemma 3.8.7, we can identify the B-module Vg , with the B-module Vj . as
vector spaces. This identification is an isomorphism of sly-modules. For v € (V4 )V

we use 7y () (v) to express the same vector in (Vz,)*™ under this identification.

Lemma 3.8.8. The following identity for differential operators holds

() (D®) = @(2)DP (p(x)) ",
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Proof. The lemma follows from the simple computation:

p(2)(0: — eii(2)) (p(2) ™ = 0 — ea(x) — P().
O

Proposition 3.8.9. Let v € (V)™ be an eigenvector of the Bethe algebra such
that D, = Dx for some X € Qp ., then D%(z)(v) = Dy(a).x -

Proof. With the identification between the B-modules Vz , and Vj ., we have

D) = (Mo@) (D7), = o(z)Dy(p(x)) ™" = @(2)Dx (¢(2)) ™" = Dy(a).x-

The second equality follows from Lemma 3.8.8. O

3.8.3 Z.-Invariant Bethe Vectors and Self-Dual Spaces

Let A = (AM ..., A™) be a tuple of dominant integral gy-weights. Recall the
map Z, : Vya — Vya, from (3.8.3).

Note that an sly-weight can be lifted to a gly-weight such that the N-th coor-
dinate of the corresponding gl,-weight is zero. From now on, we consider )\Ef) from
(3.8.1) as gly-weights obtained from (3.4.2), that is as the partitions with at most
N — 1 parts.

Let 2 = (¢€W, ..., M) be a sequence of N-tuples of integers such that

€0 2O =y a,..01), s=1,...n

Consider the sly-module V4 as the gly-module Vj ,, the image of V4, under Z in
(3.8.3), considered as a gly-module, is Vz. Furthermore, the image of (V4 ,)*™ under
T, is (Vz)*'v.

Let T = (T1,...,Ty) be associated with A 4, z, we have

n

T"1 .. TN — H(x _ ZS)(AEAS))l'

s=1
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Let p(z) = Ty --- Ty and let ¥(x) = ¢'(z)/p(z). Hence by Lemma 3.8.7, the pull-
back of V. through 7y is isomorphic to Vj, .. Furthermore, the pull-back of
(Va,2)*™ through 7y, is isomorphic to (Va, »)*™.

Theorem 3.8.10. Let v € (Va, )™ be an eigenvector of the gly Bethe algebra B
such that D, = Dx for some X € Qa, ., then D
self-dual if and only if Z,(v) = v.

NoeyoTle(w) = Dxt. Moreover, X is

Proof. Tt follows from Proposition 3.8.9, Corollary 3.8.5, and Lemma 3.5.4 that

Dy y0Zete) =0(2)Dro 0y (0(2)) " = () (D), (i0(2)) ™!
—(Ty...Tw)(Dx)*(Ty ... Tn)"" = Dxr.

Since (AS))N = 0 for all s = 1,...,n, X has no base points. Therefore X is
self-dual if and only if Dx = Dxi. Suppose X is self-dual, it follows from Theorem
3.3.2 that ny(,) 0 Z5(v) is a scalar multiple of v. By our identification, in terms of
an sly-module homomorphism, 7y,) is the identity map. Moreover, since Z is an
involution, we have Z,(v) = tw.

Finally, generically, we have an eigenbasis of the action of B in (Va, )™~ (for
example for all z € RIP’n) In such a case, by the equality of dimensions using Lemma

3.8.2, we have Z(v) = v. Then the general case is obtained by taking the limit. [

Acknowledgement. By courtesy of International Press of Boston, Inc, we ac-
knowledge that this chapter was previously published in Pure and Applied Mathe-

matics Quarterly, vol. 13 no. 2.
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4. LOWER BOUNDS FOR NUMBERS OF REAL
SELF-DUAL SPACES IN PROBLEMS OF SCHUBERT
CALCULUS

4.1 Introduction

It is well known that the problem of finding the number of real solutions to al-
gebraic systems is very difficult, and not many results are known. In particular, the
counting of real points in problems of Schubert calculus in the Grassmannian has
received a lot of attention, see [EG02, HHS13, HS, HSZ16, MT16,SS06, Sot10] for ex-
ample. In this paper, we give lower bounds for the numbers of real self-dual spaces
in intersections of Schubert varieties related to osculating flags in the Grassmannian.

We define the Grassmannian Gr(NV, d) to be the set of all N-dimensional subspaces
of the d-dimensional space Cy[z]| of polynomials in x of degree less than d. In other
words, we always assume for X € Gr(N,d), we have X C Cy[z]. Set P! = CU
{co}. Then, for any z € P!, we have the osculating flag F(z), see (3.3.3), (3.3.4).
Denote the Schubert cells corresponding to F(z) by Q¢(F(z)), where £ = (d — N >
& = & > -+ = &y > 0) are partitions. Then the set ¢, consists of spaces
X € Gr(N,d) such that X belongs to the intersection of Schubert cells Qi) (F(z;))
for z = (z,...,2,) and £ = (6(1), . ,f(”)), where all z; € P! are distinct and £€® are
partitions, see (3.3.5). A point X € Gr(N,d) is called real if it has a basis consisting
of polynomials with all coefficients real. A lower bound for the number of real points

in Q¢ , is given in [MT16].
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Let X € Gr(N,d) be an N-dimensional subspace of polynomials in . Let XV be
the N-dimensional space of polynomials which are Wronskian determinants of N — 1
elements of X

N-1

XY = {det (d"g;/da )} gy(w) € X ).

The space X is called self-dual if XV =1 - X for some polynomial ¢(x), see [MV04].
We define s{)¢ . the subset of €)¢ . consisting of all self-dual spaces. Our main result
of this paper is a lower bound for the number of real self-dual spaces in Qg ., see
Corollary 4.7.4, i.e., a lower bound for the number of real points in s{2 ., by following
the idea of [MT16].

Let gy be the Lie algebra soy,..1 if N = 2r or the Lie algebra sp,,. if N = 2r + 1.
We also set g3 = sly. It is known from [LMV16], see also [MV04, Section 6.1], that
if s{l¢ , is nonempty, then fz-(s) — fi(i)l = ](\f)ﬂ — £§§1i+1 forv=1,...,N — 1. Hence
the sly-weight corresponding to the partition £(*) has certain symmetry and thus
induces a gy-weight A®), cf. (4.4.4). Therefore, the sequence of partitions & with
nonempty s{2¢ . can be expressed in terms of a sequence of dominant integral gn-
weights A = ()\1, e ,)\(”)) and a sequence of nonnegative integers k = (ki,...,k,),
see Lemma 4.4.1. In particular, k; = fj(\z,) We call &, z or A\, k, z the ramification data.

As a subset of Qg ., s{¢ . can be empty even if ()¢ , is infinite. However, if sQ¢ .

is nonempty, then s{2¢ . is finite if and only if €)¢ , is finite. More precisely, if
€l :=) |69 = N(d - N),
i=1

then the number of points in s€)¢ , counted with multiplicities equals the multiplicity
of the trivial gy-module in the tensor product V 1) ® -+ ® Vi@ of irreducible gy-
modules of highest weights AV, ... A Since we are interested in the counting
problem, from now on, we always assume that |£| = N(d — N).

For brevity, we consider co to be real. If all z,..., 2, are real, it follows from
IMTV09c, Theorem 1.1] that all points in sQ¢ , are real. Hence the number of real
points is maximal possible in this case. Moreover, it follows from [MTV09b, Corollary

6.3] that all points in s€¢ . are multiplicity-free.
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Then we want to know how many real points we can guarantee in other cases.
In general, a necessary condition for the existence of real points is that the set
{z1,...,2,} should be invariant under the complex conjugation and the partitions
at the complex conjugate points are the same. In other words, ()\(i), k:l) = ()\(j), kj)
provided z; = Z;. In this case we say that z, A, k are invariant under conjugation.
Moreover, the greatest common divisor of X € s)¢ . in this case is a real polynomial.
Hence we reduce the problem to the case that k; =0, foralli=1,... n.

The derivation of the lower bounds is based on the identification of the self-dual
spaces of polynomials with points of spectrum of higher Gaudin Hamiltonians of types
B and C (gn, N > 4) built in [LMV16] and [MV04], see Theorem 4.5.2. We show that
higher Gaudin Hamiltonians of types B and C have certain symmetry with respect
to the Shapovalov form which is positive definite Hermitian, see Proposition 4.6.1. In

particular, these operators are self-adjoint with respect to the Shapovalov form for

real z1,..., 2, and hence have real eigenvalues. Therefore, it follows from Theorem
4.5.2 that self-dual spaces with real zy,..., z, are real.
If some of zi,...,z, are not real, but the data z, A, k are invariant under the

complex conjugation, the higher Gaudin Hamiltonians are self-adjoint with respect
to a nondegenerate (indefinite) Hermitian form. One of the key observations for
computing the lower bound for the number of real points in sl , is the fact that
the number of real eigenvalues of such operators is at least the absolute value of the
signature of the Hermitian form, see Lemma 4.6.4.

The computation of the signature of the form is reduced to the computation
of the character values of products of symmetric groups on products of commuting
transpositions. The formula for such character, similar to the Frobenius formula
in [Fro00] and [MT16, Proposition 2.1}, is given in Proposition 4.3.1. Consequently,
we obtain our main result, a lower bound for the number of real points in s{2¢ . for
N > 4, see Corollary 4.7.4. The case N = 2 is the same as that of [MT16] since every
2-dimensional space of polynomials is self-dual. By the proof of [LMV16, Theorem
4.19], the case N = 3 is reduced to the case of [MT16], see Section 4.7.2.
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Based on the identification of the self-self-dual spaces of polynomials with points
of spectrum of higher Gaudin Hamiltonians of type Gy built in [BM05] and [LM19a],
we expect that lower bounds for the numbers of real self-self-dual spaces in {2¢ ., with
N =7 can also be given in a similar way as conducted in this paper.

It is also interesting to find an algorithm to compute all (real) self-dual spaces with
prescribed ramification data. The solutions to the Bethe ansatz equations described
in [LMV16] can be used to find nontrivial examples of self-dual spaces.

The paper is organized as follows. We start with the standard notation of Lie
theory in Section 4.2 and computations of characters of a product of symmetric groups
in Section 4.3. Then we recall notation and definitions for osculating Schubert calculus
and self-dual spaces in Section 4.4. In Section 4.5 we recall the connections between
Gaudin model of types B, C and self-dual spaces of polynomials. The symmetry of
higher Gaudin Hamiltonians with respect to Shapovalov form and the key lemma
from linear algebra are discussed in Section 4.6. In Section 4.7 we prove our main
results, see Theorem 4.7.2 and Corollary 4.7.4. Finally, we display some simple data
computed from Corollary 4.7.4 in Section 4.8.

4.2 Simple Lie Algebras

Let g be a simple Lie algebra over C with Cartan matrix A = (a; ;) where

ij=1>
r is the rank of g. Let D = diag(dy,...,d,) be the diagonal matrix with positive
relatively prime integers d; such that DA is symmetric.

Let h C g be a Cartan subalgebra with the Cartan decomposition g =n_&hén,.
Fix simple roots aq,...,a, in h*. Let &q,...,&,. € h be the corresponding coroots.
Fix a nondegenerate invariant bilinear form ( , ) on g such that (&;,d&;) = a;;/d;.
The corresponding bilinear form on h* is given by (ay, ;) = d;a, ;. We have (A, &;) =
2(N\, o)/ (i, o) for A € b*. In particular, (o, &;) = a; ;. Let wy,...,w, € h* be the

fundamental weights, (w;, &;) = d; ;.
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Let P={ eb*|(\a&) €Z, i=1,...,r} and PT ={\ € b* | (\,&;) € Z>p, i =
1,...,r} be the weight lattice and the cone of dominant integral weights.

Let e1,...,e, € ny, &yq,....,q. € b, f1,..., fr € n_ be the Chevalley generators
of g.

Given a g-module M, denote by (M)® the subspace of g-invariants in M. The
subspace (M)? is the multiplicity space of the trivial g-module in M.

A sequence of nonnegative integers £ = (&;,...,&;) suchthat & > & > -+ > & >
0 is called a partition with at most k parts. Set |£| = i &

For A € bh*, let V) be the irreducible g-module WZl:til highest weight A\. For any
g-weights A and g, it is well known that dim(V) ® V},)? = 65, for g = 509,41, 5P,

For any Lie algebra g, denote by U(g) the universal enveloping algebra of g.

4.3 Characters of the Symmetric Groups

Let gy be the Lie algebra so0s,.,1 if N = 2r or the Lie algebra sp,,. if N = 2r + 1,
r > 2. We also set g3 = sl,. Let Gy be the respective classical group with Lie algebra
gN-

Let &; be the symmetric group permuting a set of k elements. In this section
we deduce a formula for characters of a product of the symmetric groups acting on a
tensor product of finite-dimensional irreducible gy-modules.

For each dominant integral gy-weight A, denote by A = (\y, ..., \.) the partition

with at most r parts such that

L . (A &,), if N=2r

2<)\7di>:/\i_>\i+17 izl,...,r—l, and )\r:
20\, &), if N=2r+1.

Define an anti-symmetric Laurent polynomial Ay in xq,...,z, as follows
Ay = det (@ F7H — gy VT (4.3.1)

We call Ay the Vandermonde determinant of gn-.
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Let XA be a dominant integral gn-weight. It is well known that the character of
the module V), is given by

Xj+N+1-2j —(AjHN+1=2j)\ 7
det (z;” g ]))

: : L=l (4.3.2)

S/]\V(xl,...,:pr):trVAXN: Ax ,

where Xy € Gy is given by

diag (z1,...,22, 1,22, ... ,27%), if N =2r,

r o

Xy =
diag(x%,...,ﬁx2...,x1_2), if N =2r+1.

ryr

We call 8 the Schur function of gy associated with the weight .

Note that S are symmetric Laurent polynomials in 1, ..., z,, namely

SV e (Clz2, ..., 2]

rrr

Let AU, ... \®) be a sequence of dominant integral gy-weights and k1, ..., ks a

sequence of positive integers. Consider the tensor product of gy-modules

I k2 ks

and its decomposition into irreducible gy-submodules

Va=EPV, @ My,

[

By permuting the corresponding tensor factors of V), the product of symmetric
groups G = Gy, X G, X -+ X G, acts naturally on V). Note that the Gp-action
commutes with the gy-action, therefore the group &, acts on the multiplicity space
My, for all p.

Foro =0y x09x---X05 € G, 0, € Si,. Suppose all o; are written as a product
of disjoint cycles. Denote by ¢; the number of cycles in the product representing o;
and l;;, j =1,...,¢;, the lengths of cycles. Note that [;; +--- 4+ l;., = ki.

We then consider the value of the character of Gy corresponding to the represen-

tation My, on 0. Let xy , = try, .
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Proposition 4.3.1. The character value X}\#(U) equals the coefficient of the mono-

mial

N-1 N— 3 i —
xllﬁl-i- xl;z-‘r x,lrir-‘rN-‘rl 2r

wn the Laurent polynomaial
HHSMZ ).
=1 j5=1

Proof. The proof of the statement is similar to that of [MT16, Proposition 2.1]. [

4.4 Osculating Schubert Calculus and Self-Dual Spaces
Let N, d € Z~( be such that N < d. Consider P! := C U {oo}. Set

P, = {z=(21,...,2:) € (BY)"| 2 # z; for 1 <i<j<n},

RP, := {z:(zl,...,zn)E]fDn\zieRorzi:oo, forlgign}.

4.4.1 Osculating Schubert Calculus

Let Cylz] be the space of polynomials in x with complex coefficients of degree
less than d. We have dim C4[z] = d. Let Gr(N,d) be the Grassmannian of all N-
dimensional subspaces in Cy[x]. The Grassmannian Gr(N,d) is a smooth projective
complex variety of dimension N(d — N).

Let Ry[z] C C4[x] be the set of polynomials in = with real coefficients of degree less
than d. Let Gr™(N, d) C Gr(N, d) be the set of subspaces which have a basis consisting
of polynomials with all coefficients real. For X € Gr(N,d) we have X € Gr®(N,d) if
and only if dimg(X NRy[xz]) = N. We call such points X real.
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For a complete flag F = {0 C %1 C %, C --- C Fy4 = Cylz]} and a partition
€ =(&,...,&y) such that & < d — N, the Schubert cell Q¢(F) C Gr(V,d) is given
by

Qe(F) = {X € Gr(N,d) | dim(X N Fyjey ;) = N —j,
dim(X N Fyjey ,-1) =N —j—1}.

Note that codim Q¢ (F) = [£].
Let F(c0) be the complete flag given by

F(o0) = {0 C Cy[z] C Cyz] C --- C Cylz]}. (4.4.1)

The subspace X is a point of €¢(F(oc0)) if and only if for every i = 1,..., N, it
contains a polynomial of degree d — i — Eny1;.

For z € C, consider the complete flag
F(2) ={0C (z — 2)"'Cy[z] C (x — 2)?Cy[z] C -+ C Cylz]}. (4.4.2)

The subspace X is a point of (¢(F(z)) if and only if for every ¢ = 1,..., N, it
contains a polynomial with a root at z of order exactly & + N — 1.

A point z € C is called a base point for a subspace X C Cy[z] if p(z) = 0 for every
peX.

Let &= (5(1), .. .,5(")) be a sequence of partitions with at most N parts and z =

(21, 20) €P,. Set €] = 3 |£(s)|.
s=1

Assuming || = N(d — N), denote by Q¢ . the intersection of the Schubert cells

Qe = () Qo (F=2)). (4.4.3)

Note that due to our assumption, € . is a finite subset of Gr(N, d).
Define a sequence of polynomials T' = (17, ...,Tx) by the formulas

E(ZE) :H(x_zs)&”_gﬁ}lv 1= ]-7"'7N7

s=1
where fﬁll = 0. Here and in what follows we use the convention that x — z, is
considered as the constant function 1 if z; = co. We say that T is associated with &,

z.
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4.4.2 Self-Dual Spaces

Let X € Gr(N,d) be an N-dimensional subspace of polynomials in z. Given a
polynomial ¥ in z, denote by v - X the space of polynomials of the form ) - ¢ for all
peX.

Let XV be the N-dimensional space of polynomials which are Wronskian deter-

minants of N — 1 elements of X
i— i—1\N—-1
XY = {det (d "¢;/dx 1)¢,j:1 , pi(z) € X}

The space X is called self-dual if XV =1 - X for some polynomial ¢)(x), see [MV04].
Let sGr(V, d) be the set of all self-dual spaces in Gr(N,d). We call sGr(N, d) the
self-dual Grassmannian. The self-dual Grassmannian sGr(N, d) is an algebraic subset
of Gr(N,d).
Denote by s€)¢ , the set of all self-dual spaces in Q¢ .

Q¢2 = Qe 2 [ sCGr(N, d).

Let 1 be a dominant integral gy-weight and k € Z>. Define a partition ji4 ; with

at most N parts by the rule: (pax)y = k and

(har)i — (Hak)ivr = (4.4.4)

(p.an—g), if [F] <i<N-1
We call p14 the partition associated with weight p and integer k.

Let A = ()\(1), cen )\(”)) be a sequence of dominant integral gy-weights and let

k = (ki,...,k,) be an n-tuple of nonnegative integers. Then denote

i = (A A0)

the sequence of partitions associated with A®) and k,, s =1,...,n.

We use the notation pg = pap and Ag = Xgo,...0)-

Lemma 4.4.1 ( [LMV16]). If € is a sequence of partitions with at most N parts
such that |§| = N(d — N) and sQ¢ . is nonempty, then § has the form & = Ay for
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a sequence of dominant integral gn-weights A = ()\(1), .. .,)\(")) and a sequence of

nonnegative integers k = (ky,...,k,). The pair (X, k) is uniquely determined by §.

In what follows we write (2x ., Qa2 SOxz, SQakz for Qx, 2, O,z SO, 2,
S0 4 1,2 Tespectively.

Note that [Aa k| = |Aa|+N|k|, where |k| = k1+- - -+k,. Suppose |As| = N(d—N),
there exists a bijection between 2 , in Gr(V,d) and Qx g . in Gr(N,d + |k|) given
by

Dz = Dkz X [Jz—2)% X (4.4.5)

s=1
Moreover, (3.4.3) restricts to a bijection between sQj , in sGr(N,d) and sQx, in

sGr(N, d + |kl).

4.5 Gaudin Model

Let g[t] = g ® C[t] be the Lie algebra of g-valued polynomials with the pointwise
commutator. We call it the current algebra of g. We identify the Lie algebra g with
the subalgebra g ® 1 of constant polynomials in glt].

It is convenient to collect elements of g[t] in generating series of a formal variable

x. For g € g, set

oo

g(x) = Z (g@th)aF . (4.5.1)

k=0

For each a € C, we have the evaluation homomorphism ev,: g[t] — g where ev,
sends g ®t° to a®g for all g € g and s € Zo. Its restriction to the subalgebra g C glt]
is the identity map. For any g-module M, we denote by M(a) the g[t]-module,
obtained by pulling M back through the evaluation homomorphism ev,. The g[t]-
module M (a) is called an evaluation module. The generating series g(x) acts on the
evaluation module M (a) by g/(x — a).

The Bethe algebra B (the algebra of higher Gaudin Hamiltonians) for a simple Lie
algebra g was described in [FFR94]. The Bethe algebra B is a commutative subalgebra
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of U(g[t]) which commutes with the subalgebra U(g) C U(g[t]). An explicit set of
generators of the Bethe algebra in Lie algebras of types B, C, and D was given
in [Mol13].

Proposition 4.5.1 ( [FFR94, Moll3]). Let N > 3. There exist elements F;; € gy,
i,j =1,...,N, and polynomials Bs(x) in d"F;;(x)/dz*, s =1,...,N, k=0,...,N,
such that the Bethe algebra B of gn is generated by the coefficients of Bs(x) considered

as formal power series in x~'.

We denote M (o0) the gy-module M with the trivial action of the Bethe algebra
B, see [LMV16] for more detail.
For a collection of gy-weights A = ()\(1), e )\(")) and z = (z1,...,2,) € If”n, we

set

Vaz = Q) Vi (20),
s=1

considered as a B-module. We also denote Vy the module V} . considered as a gn-
module.

Let 0, be the differentiation with respect to . Define a formal differential operator
N
D =0+ Bi(x)o) ™,
i=1
where
Bi(r) =) Byaz~ (4.5.2)
j=i

and B;; € U(gnlt]), j € Zsi, i = 1,...,N. The operator D¥ is called the universal
operator.

Let z = (21,...,2,) € P, and let A = ()\(1), . ,)\(”)) be a sequence of dominant
integral gy-weights. For every g € gy, the series g(x) acts on V,, as a rational
function of x.

Since the Bethe algebra B commutes with gy, B acts on the invariant space
(Vaz)®™. For b € B, denote by b(A, z) € End((Vx.)®) the corresponding linear

operator.
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Given a common eigenvector v € (Vi) of the operators b(, z), denote by

b(A, z;v) the corresponding eigenvalues, and define the scalar differential operator

N oo
D, =Y + Z Z Bij( X, z;0)z 79N

i=1 j=i
The following theorem connects self-dual spaces in the Grassmannian Gr(N,d)

with the Gaudin model associated to gy.

Theorem 4.5.2 ( [LMV16]). Let N > 3. There exists a choice of generators B;(x)
of the Bethe algebra B, such that for any sequence of dominant integral gy-weights

A= (A(l), . ,/\(”)), any z € P,, and any B-eigenvector v € (Vi ), we have
Ker (Ty -+ Tn)"? - Dy - (Th -+ Tiy) "2 € Qi 2,

where T = (T, ..., Ty) is associated with X4, z.
Moreover, if |[Aa| = N(d — N), then this defines a bijection between the joint
eigenvalues of B on (V)% and s , C Gr(N,d).

4.6 Shapovalov Form and the Key Lemma
4.6.1 Shapovalov Form

Define the anti-involution w: gy — gy sending ey, ....e., &1,..., &, f1,..., fr
to fi,..., fr, Q1,...,Qy, €1,...,€,., Trespectively.

For any dominant integral gn-weight A, the irreducible gy-module V) admits
a positive definite Hermitian form (-,-), such that (gv,w)y = (v,@(g)w), for any
v,w € V) and g € gy. Such a form is unique up to multiplication by a positive real
number. We call this form the Shapovalov form.

Let A = ()\(1), ey /\(")) be a sequence of dominant integral gy-weights. We define
the positive definite Hermitian form (-, ) on the tensor product Vy as the product

of Shapovalov forms on the tensor factors. The form (-, ) induces a positive definite

Hermitian form (-|-)x on (Vy )%V
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Proposition 4.6.1. Foranyi=1,...,N, j € Z>;, and any v,w € (Vy ), we have

(Bij(A, z)v|w)>\ = (U|Bi]‘(}\, Z)UJ)

A?
where B;; are given by (4.5.2), 2 = (%,...,2,) and the bar stands for the complex
conjugation.
Proof. We prove the proposition in Section 4.6.3. n

If = € RP,, then Bij(, z) are self-adjoint with respect to the Shapovalov form.
Therefore all B;;(A, z) are simultaneously diagonalizable. Moreover, all eigenvalues
of B;;(A, z) are real.

The following statement is also known.

Theorem 4.6.2 ( [Rybl18]). For generic z € P,,, the action of the Bethe algebra B
on (Vaz)®™ is diagonalizable and has simple spectrum. In particular, this statement

holds for any sequence z € RI@’H.

If some of the partitions A(V), ..., A coincide, the operators b(\, z) admit addi-
tional symmetry. Assume that A = A0+ for some i. Let P; € End(Vy) be the flip

of the i-th and (i + 1)-st tensor factors and 2% = (21, ..., 2i_1, Zip1, Zis Zig2, - - - 5 2n)-

Lemma 4.6.3. For any b € B, we have Pb(X, z)P; = b(X, 27).

4.6.2 Self-Adjoint Operators with Respect to Indefinite Hermitian Form

In this section we recall the key lemma from linear algebra, see [Pon44].
Given a finite-dimensional vector space M, a linear operator T € End(M), and a
number a € C, let Mz(a) = ker(T — o)™ M, When Mz(«) is not trivial, it is the

subspace of generalized eigenvectors of T with eigenvalue a.

Lemma 4.6.4 ( [Pond4]). Let M be a complex finite-dimensional vector space with
a nondegenerate Hermitian form of signature k, and let A C End(M) be a com-
mutative subalgebra over R, whose elements are self-adjoint operators. Let R =
Neea Bocr Mz(a). Then the restriction of the Hermitian form on R is nondegener-

ate and has signature k. In particular, dim R > |k|.
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4.6.3 Proof of Proposition 4.6.1

In this section, we give the proof of Proposition 4.6.1. We follow the convention
of [MM17]. We only introduce the necessary notation and refer the reader to [Mol13,
Section 5] and [MM17, Section 3] for more detail.

Proof of Proposition 4.6.1. We prove it for the case N = 2r first.

Let E;; with 4,7 = 1,...,2r+1 be the standard basis of gl,., ;. The Lie subalgebra
of gl generated by the elements F;; = E;j — Eo,49_jo,42-; is isomorphic to the
Lie algebra s09,.1 = gny. With this isomorphism, the anti-involution w: gy — gy
is realized by taking transposition, Fj; — [7};. To be consistent with the notation
in [MM17], we write g for gy. The number N in [MM17] is 2r + 1 in our notation.

We write Fj;[s] for Fj; @ ¢* in the loop algebra g[t,¢™!]. Consider the affine Lie
algebrag =g [t, t’l] @ CK, which is the central extension of the loop algebra g [t, t’l] ,

where the element K is central in g and

11k, g2[U]] = [91, 92][k + 1] + Kok, —1(g1, 92) K, g1,92 € @, k.l €Z.

Consider the extended affine Lie algebra g & Cr = g[t, t‘l] @® CK @ Cr, where 7

satisfies
[T, Fij[s]] = —sFi;[s — 1], [, K] =0, 5 € Z.

Set U = U(g® C7) and fix m € {1,...,N}. Introduce the element F[s], of the
algebra ( End (CQTH))@m ®@U, see [MM17, equation (3.5)], by

2r4+1
Flslo =Y 19"V ®e; @ 190" @ Fyls],

ij=1
where e;; € End (C**!) denote the standard matrix units. The map w induces an

anti-involution

w: U g[t™]) U gt™]),  Fylsle— Fulsl,  s€Z<.
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For 1 < a < b < m, consider the operators P, and Qq in (End ((CQ’”H))@m

defined as follows

2r+1
Pp=Y 190V ge; 150700 g o)y @ 190,
ij=1
2r+1
Qap = Z 1907D) @ ¢, @ 19079 D @ eg g 919 @ 19070,
ij=1

Set

1 Pab 2Qab
glm) — = 1 —
m! H ( +b—a 27‘+26—2a—1>’

" 1<a<b<m
where the product is taken in the lexicographic order on the pairs (a,b). The element
S(m) is the symmetrizer of the Brauer algebra acting on (CZ”“)@m. In particular, for

any 1 < a < b < m, the operator S satisfies
S(m)Qab - Qabs(m) - 07 S(m)Pab == PabS(m) = S(m)

Replacing 7 with 9, and Fj;[—¢ — 1] with —9¢F};(z) /¢!, where F;;(z) is defined in
(4.5.1), for £ € Z>, in the element

2r+m —1

mtrs(m>(r + F[=1]1) - (7 + F[~1]m),

see [MM17, formula (3.26)], where the trace is taken on all m copies of End (C**),

we get a differential operator
Do (2) 07 + Dyt ()07 + -+ Dy (),

where ¥,,;(x) is a formal power series in x~! with coefficients in U (g[t]). The Bethe
subalgebra B of U(g[t]) is generated by the coefficients of 0,,;(x), m = 1,..., N,
i=0,...,m, see [Moll3, Section 5.

Therefore, to prove the proposition, it suffices to show that the element

2r+m—1

oo 1 ST+ Fl=) - (7 4 Fl=1]m), (4.6.1)

is stable under the anti-involution w. Here @ maps 7 to 7.
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Applying transposition on a-th and b-th components to the commutator relation
FlklF(lly — Fll]pF[kla = (Pay — Q) F[k + 1y — Flk + Up(Pap — Qub),
see the proof of [MM17, Lemma 3.6], we get
FUKF [y = FTF T [Kla = F [k + Do(Pay — Qab) — (Pap — Qab) ' [k + Uy,

for all 1 < a < b < m. Here T stands for transpose, explicitly,

2r+1
Fllsle =) 1%V @ ey @ 190" @ Fys].

ij=1
Thus one can use the same argument as in the proof of [MM17, Lemma 3.2] to show
that the image of (4.6.1) under the anti-involution w equals

%usw (t+FT[=1]1) - (7 + FT[~1]m). (4.6.2)
By applying the simultaneous transposition e;; — e;; to all m copies of End ((CQT“)
we conclude that (4.6.2) coincides with (4.6.1) because the transformation takes each
factor 7+ F T [~1], to 74 F[—1], whereas the symmetrizer S(™ stays invariant. Hence

we complete the proof of Proposition 4.6.1 for the case N = 2r.

The case N = 2r + 1 is proved similarly, see for example [MM17, Lemma 3.9]. [

4.7 The Lower Bound

In this section we prove our main results — the lower bound for the number of real
self-dual spaces in (2 ,, see Theorem 4.7.2 and Corollary 4.7.4.

Recall the notation from Section 4.4. For positive integers N, d such that d > N
we consider the Grassmannian Gr(N,d) of N-dimensional planes in the space Cgy[x]
of polynomials of degree less than d. A point X € Gr(N,d) is called real if it has a

basis consisting of polynomials with all coefficients real.

4.7.1 The general case N > 4

Let us first consider the case N > 4.
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Let A = (/\(1), e ,/\(”)) be a sequence of dominant integral gy-weights, k =
(k1,...,k,) an n-tuple of nonnegative integers, and z = (z1,...,2,) € P,. Suppose
that [Aa x| = N(d— N). Denote by d(A, k, z) the number of real points counted with
multiplicities in sQy k. C Gr(N,d).

Clearly, d(X, k,z) = 0 unless the set {z1,...,2,} is invariant under the complex
conjugation and (A?, k;) = (AU, k;) whenever z; = z;. In particular, the polynomial

n

[T (z — 2,)* has only real coefficients. It follows from (3.4.3) that the number of real
;zolints in sQxk. C Gr(N,d) is equal to that of sQ ., C Gr(N,d — |k|). From now
on, we shall only consider the case that k = (0,...,0). We simply write d(X\, z) for
AN\ k,z)if k= (0,...,0).

Let T = (T1,...,Tn) be associated with A4 g, z. Note that if z, A, k is invariant
under conjugation, then the polynomial 77 - - - Ty also has only real coefficients.

In what follows we denote by ¢ the number of complex conjugate pairs in the set
{z1,...,2,} and without loss of generality assume that z; = 2y, ..., 29._1 = Za. while
Z9¢41, - - - 2n are real (one of them can be infinity). We will also always assume that
AD = \@) N1 = \(20),

Recall that for any A and generic z € ]IoDn, all points of (2 , are multiplicity-free.
The same also holds true with A imposed above for any c.

Consider the decomposition of Vy into irreducible gx-submodules

Va=EPV, @ My,

n
Then Myo = (Va)®¥. Since N#1 = X2) for 4 = 1,... ¢, the flip Py_; of the
(2¢ — 1)-st and 2i-th tensor factors of V commutes with the gy-action and thus acts
on (Vy)%. Denote by Py . € End((Vx)®) the action of the product Py Ps - -- Py, on
(Va)e~.

The operator Pj . is self-adjoint relative to the Hermitian form (-]-)x on (V)%
given in Section 4.6. Define a new Hermitian form (-, )x. on (Vy)®¥ by the rule: for

any v, w € (V)

(v, W)xe = (Prcv|w)a.
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Denote by ¢(, ¢) the signature of the form (-, -)x .

Proposition 4.7.1. The signature q(\, ¢) equals the coefficient of the monomial

N-1,N-3 N+1-2r
xl x2 ...l‘r ,

i the Laurent polynomaial
AN-HSi\(Qi)(x%,...,xf) H Sy (1, ..., 3y).
i=1 j=2c+1

Here Ay and S)Y,) are given by (4.3.1) and (4.3.2), respectively.

Proof. Since P, =1 and Mxg = (Va)®, we have q(X, ¢) = try, . Px., and the claim

follows from Proposition 4.3.1. O]

Theorem 4.7.2. The number d(X, z) of real self-dual spaces in Qy , is no less than
la(A, ).

Proof. Our proof is parallel to that of [MT16, Theorem 7.2].

By Proposition 4.6.1 and Lemma 4.6.3, the operators B;;(A, z) € End((Vy)?V) are
self-adjoint relative to the form (-,-)x.. By Lemma 4.6.4,

i (VD (3 5, 0@ > latx 0.
ij a€R

By Theorem 4.6.2, for any A and generic z € P, the operators Bij(X, z) are diag-
onalizable and the action of the Bethe algebra B on (V)% has simple spectrum.
The same also holds true with A imposed above for any c¢. Thus for generic z,
the operators B;;(, z) have at least |¢(, ¢)| common eigenvectors with distinct real
eigenvalues, which provides |g(, ¢)| distinct real points in sy , by Theorem 4.5.2.
Hence, d(\, z) = |q(A, ¢)| for generic z, and therefore, for any z, due to counting

with multiplicities. O

Remark 4.7.3. If dim (V)% is odd, it follows from Theorem 4.7.2 by counting parity
that

AN, z) = |g(X\ )] > 1.
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Therefore, there exists at least one real point in s{2 .. In particular, if dim(Vy)% = 1,

then the only point in s€2y . is always real.
The following corollary of Proposition 4.7.1 and Theorem 4.7.2 is our main result.

Corollary 4.7.4. The number d(X, z) of real self-dual spaces in Qy . (real points

in sQx ) is no less than |a(X,c)|, where a(A,c) is the coefficient of the monomial

N—-1_N-3

Ty Ty

. N+H1=2r
Ly

in the Laurent polynomial

(& n
AN-HSiYQi)(xf,...,:U?) H S (T, ).
i=1

j=2c+1

Here Ay is the Vandermonde determinant of gn and 8/]\\(’5

an associated with \*), s =1,... n, see (4.3.1) and (4.3.2).

, 45 the Schur function of

Remark 4.7.5. Recall that the total number of points (counted with multiplicities)
in sQ» equals dim(Vy)? = ¢(X,0). Hence if z € RP,, Theorem 4.7.2 claims that
all points in s, . are real. It is proved in [MTV09b, Corollary 6.3] that for z € RP,

all points in 2, , are real and multiplicity-free, so are the points in s{2j .

4.7.2 The case N = 2,3

Now let us consider the case N = 2, 3. Note that sGr(2,d) = Gr(2,d), this case is
the usual Grassmannian, which has already been discussed in [MT16].

Let N = 3 and g3 = sly. It suffices for us to consider the case that points in
s{2x . have no base points, see the beginning of Section 4.7.1 for more detail. We shall
consider sGr(3,2d — 1) instead of sGr(3, d), see [LMV17, Section 4.6]. We identify the
dominant integral slo-weights with nonnegative integers. Let A = ()\(1), cee )\(”)) be a

sequence of nonnegative integers and z = (z1,...,2,) € Pn Then A4 has coordinates
AP = (220090), s=1,...,n.

We also assume |[A4| = 6(d — 2).
Recall from [LMV17, Theorem 4.19], if X € sQ, ., then there exist monic poly-
nomials ¢ and 9 such that 2, @i, 1)? form a basis of X. Denote by v/ X the space
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of polynomials spanned by ¢ and 1. Let £ be the partitions with at most two parts
defined by ()\(i),O), i=1,...,n. Set & = (5(1),...,5(”)), then || = 2(d —2). It
follows from the proof of [LMV17, Theorem 4.19] that VX € Q¢ . C Gr(2,d). The
map (¢, — s{2y » given by VX — X is bijective.

Lemma 4.7.6. The self-dual space X is real if and only if VX is real.

Proof. 1t is obvious that X is real if v/ X is real.
Conversely, if X is real, then there exist complex numbers a;, b;, ¢;, © = 1,2, 3,

such that
aigpz +b1807/)+01¢2> 1= 17273a

are real polynomials and form a basis of X. Without loss of generality, we assume
deg p < degt. Since deg p < deg, we have ¢; € R, 1 = 1,2,3. At least one of ¢; is
nonzero. We assume c3 # 0. By subtracting a proper real multiple of azp? + bspt) +
c3p?, we assume further ¢; = ¢, = 0. Continuing with the previous step, we assume
that by = 0, by # 0, a; # 0 and hence obtain that a;, by, c3 € R. Then a,¢? is a real
polynomial, so is . Therefore, asp + bet) is also a real polynomial, which implies

that the space of polynomials v/ X is also real. O

Because of Lemma 4.7.6, the case N = 3 is reduced to the lower bound for the
number of real solutions to osculating Schubert problems of Gr(2,d), see [MT16].
Moreover, Corollary 4.7.4 also applies for this case by putting N = 3, r = 1, and

gy = sls.

4.8 Some data for small N

In this section, we give some data obtained from Corollary 4.7.4 when N is small.
Since the cases N = 2,3 reduce to the cases of [MT16], we start with N = 4.

We always assume that A, k, z are invariant under conjugation. By Remark 4.7.3,
we shall only consider the cases that dim (V)% > 2. We also exclude the cases that

z e Rff”n. In particular, the cases that all pairs ()\(S), k’s), s=1,...,n, are different.
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We write the highest weights in terms of fundamental weights, for example
(1, 0, O, 1) = W1 + Wy.

We also write (A(l))kl, o ()\(”))kn for (X, k) and simply write A®) for (A®)),. We
use ()\(15),/\28)),;@& to indicate that the pair ((/\gs),/\gs)),krs) appears in (A k) ex-
actly m times. For instance, (0,1),(0,1)®? represents the pair (A, k) where A =
((0,1),(0,1),(0,1),(0,1)) and k = (1,0,0,0).

4.8.1 The case N =4,5

For each g4-weight A = (A1, A2), denote by Ac the gs-weight (A2, A1). Note that
g4 = 505 is isomorphic to g5 = sp,, the lower bound obtained from the ramification
data A = ()\(1), - )\(")) and k = (ki, ..., k) of g4 is the same as that obtained from
the ramification data Ag = ()\(Cl), - )\(C")) and k = (k1,..., k) of gs.

In Table 4.1, we give lower bounds for the cases from Gr(4,7) and Gr(5,10). By
the observation above, we transform the case from Gr(5,10) to its counter part in
Gr(4,d) for some d depending on the ramification data. The number in the column
of dimension is equal to dim (V)% for the corresponding ramification data A in each
row. The numbers in the column of ¢ = i equal the lower bounds computed from
Corollary 4.7.4 with the corresponding c.

For a given ¢, there may exist several choices of complex conjugate pair corre-
sponding to different pairs of gy-weights. If the corresponding lower bounds are the
same, we just write one number. For example, in the case of (0,2)%? (0,1)®? and
¢ =1 of Table 4.1, the complex conjugate pair may correspond to the weights (0, 2)®?
or (0,1)*2. However, they give the same lower bound 1. Hence we just write 1 for
¢ = 1. If the bounds are different, we write the lower bound with the conjugate
pairs corresponding to the leftmost 2¢ weights first while the one with the conjugate
pairs corresponding to the rightmost 2c weights last, in terms of the order of the
ramification data displayed on each row. Since we have at most 3 cases, the possible

remaining case is clear. For instance, in the case (0,1,0)%*, (0,0,1)®* and ¢ = 2 of
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Table 4.1.
The case N =4,5.
ramification data | dimension | ¢c=1|c=2|c=3
(0, 1)%° 14 2 2 6
(1,0)%3,(0,1)®2 4 0,2 2
(1,0)%%,(1,0); 3 1
(1,0)%4,(0,0); 3 1 3
(0,2), (0,1)** 6 0 2
(0,01, (0, 1)** 3 1 3
(1,0),(0,1)®4 5 1 1
(1,1),(0,1)®3 2 0
(0,1)1,(0,1)®3 3 1
(0,2)%2,(0,1)®2 3 1 3
(1,0)%2,(0,1)®2 2 0 2
(0,2),(1,0),(0,1)®? 2 0
(1,0)4, (1,0), (0, 1)%? 2 0
(1,0)%2,(0,1)1,(0,1) 2 0
(1,1),(1,0)%%,(0,1) 2 0

Table 4.2, the two complex conjugate pairs corresponding to (0, 1,0)®?* give the lower
bound 12 while the two complex conjugate pairs corresponding to (0,0, 1)®* give the
lower bound 24. The remaining case, where the two conjugate pairs corresponding to

(0,1,0)%% and (0,0, 1)®2, gives the lower bound 2.

4.8.2 The case N =6

In what follows, we give lower bounds for ramification data consisting of funda-

mental weights when N = 6. We follow the same convention as in Section 4.8.1.



Table 4.2.
The case N = 6.
ramification data dimension | ¢c=1| ¢=2 |c=3|c=14
(0,0,1)®4 4 4
(0,1,0)%* 6 2 6
(1,0,0)%* 3 1 3
(0,0,1)®2%,(0,1,0)®2 3 1 3
(0,0,1)®2%,(1,0,0)®2 2 0 2
(0,1,0)%%,(1,0,0)%? 3 1 3
(0,0,1)%5 30 2 2 10
(0,1,0)%5 130 8 14 36
(1,0,0)%5 15 3 3 7
(0,1,0)%2(0,0,1)%* 34 4,2 0,6 16
(0,1,0)®%,(0,0,1)%? 55 3,1 3,7 19
(1,0,0)%% (0,0, 1)%* 16 2 0,4 10
(1,0,0)%%,(0,0,1)%? 10 0,2 2,0 6
(1,0,0)%% (0,1,0)%* 46 2 6 18
(1,0,0)%%,(0,1,0)%? 21 1,3 5,3 11
(1,0,0)%% (0,1,0)%% (0,0, 1)%? 20 2 0,4,0 10
(0,0,1)®8 330 20 6 0 50
(0,1,0)®8 6111 69 59 113 | 311
(1,0,0)®® 105 15 9 7 25
(0,1,0)%4,(0,0,1)%* 984 2228 112,224 | 0,38 | 108
(1,0,0)%4,(0,0,1)%* 116 6,12 | 8,2,12 | 0,10 32
(1,0,0)%%,(0,1,0)** 510 6,12 | 224,18 | 28,18 | T4
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