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ABSTRACT

Kang Lu Ph.D., Purdue University, August 2020. Gaudin models associated to clas-
sical Lie algebras. Major Professor: Evgeny Mukhin.

We study the Gaudin model associated to Lie algebras of classical types.

First, we derive explicit formulas for solutions of the Bethe ansatz equations of

the Gaudin model associated to the tensor product of one arbitrary finite-dimensional

irreducible module and one vector representation for all simple Lie algebras of clas-

sical type. We use this result to show that the Bethe Ansatz is complete in any

tensor product where all but one factor are vector representations and the evaluation

parameters are generic. We also show that except for the type D, the joint spectrum

of Gaudin Hamiltonians in such tensor products is simple.

Second, using the result from [MTV09b], we define a new stratification of the

Grassmannian of N planes Gr(N, d). Following [MV04], we introduce a new subvari-

ety of Grassmannian, called self-dual Grassmannian, using the connections between

self-dual spaces and Gaudin model associated to Lie algebras of types B and C. Then

we use the result from [Ryb18] to obtain a stratification of self-dual Grassmannian.
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1. INTRODUCTION

1.1 Motivation

Quantum spin chains are one of the most important models in integrable system.

They have connections with mathematics in many different aspects. To name a few,

for example

(1) Quantum groups, see [Dri85,CP94]: finite-dimensional irreducible represen-

tations of quantum affine algebras were classified in [CP91,CP95]. The character the-

ory of quantum group, was introduced for Yangians in [Kni95] and for quantum affine

algebras in [FR99]. It turns out to be one of the most important tool for studying the

representation theory of quantum groups. As described in [FR99], the q-character of

quantum affine algebras is essentially the Harish-Chandra image of transfer matrices

which are generating series of Hamiltonians of quantum spin chain. Conversely, the

q-character itself also carries information about the spectrum of transfer matrices

when acting on finite-dimensional irreducible representations, see [FH15, Theorem

5.11] and [FJMM17, Theorem 7.5].

(2) Algebraic geometry: in the work [MV04], it is shown that the Bethe ansatz

for Gaudin model of type A is related to the Schubert calculus in Grassmannian.

This connection was further established in the work [MTV09b], where the algebra

of Hamiltonians (Bethe subalgebra) acting on finite-dimensional irreducible repre-

sentation of the current algebra is identified with the scheme-theoretic intersection

of suitable Schubert varieties. This result gives the proof of the strong Shapiro-

Shapiro conjecture and transversality conjecture of intersection of Schubert varieties.

Moreover, a lower bound for the numbers of real solutions in problems appearing in

Schubert calculus for Grassmannian is given in [MT16].
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(3) Center of vertex algebra and W-algebras: the algebra of Hamilto-

nians (Bethe algebra) for Gaudin model was described by Feigin-Frenkel center,

see [FFR94, Fre07, Mol18], which is the center of vacuum model over ĝ at critical

level. This commutative algebra is also isomorphic to the classical W-algebra as-

sociated to Lg, the Langlands dual of g, via affine Harish-Chandra isomorphism.

There are also quantum analogues of relations between quantum integrable systems

and centers of quantum vertex algebra over quantum affine algebras and Yangians,

see [FJMR16, JKMY18] and references therein. Remarkably, shifted Yangians are

also deeply related to finite W-algebras, see e.g. [BK06].

(4) Quantum cohomology and quantum K-theory: it is shown in [GRTV12]

that the quantum cohomology algebra of the cotangent bundle of a partial flag va-

riety can be identified as the Bethe subalgebra of Yangian Y(glN). Moreover, the

idempotents of the quantum cohomology algebra can be determined by the XXX

Bethe ansatz method. There are also parallel results for equivariant cohomology and

quantum K-theory corresponding to Gaudin model and XXZ spin chains, respec-

tively, see [RSTV11, RTV15]. The literature on the connections between quantum

integrable system and quantum cohomology becomes immense and keeps growing.

(5) Combinatorics: the alternating sign matrix conjecture is proved by studying

six-vertex model using the Izergin-Korepin determinant for a partition function for

square ice with domain wall boundary, see [Kup96]. The number of alternating sign

matrices can also be described as the largest coefficient of the normalized ground

state eigenvector of the XXZ spin chain of size 2n+ 1, see [RS01,RSZJ07]. Quantum

spin chains are also related to standard Young tableaux. A bijective correspondence

between the set of standard Young tableaux (bitableaux) and rigged configurations

was constructed in [KR86] , where rigged configurations “parameterize” the solutions

of Bethe ansatz equations.

(6) There are also other directions, for example orthogonal polynomial [MV07],

hypergeometric functions, qKZ equations, Selberg type Integrals, arrangement of hy-

perplanes [SV91], etc, see [Var03] for a review.



3

All these connections and applications show that quantum spin chains play a

central role in mathematics. It is important to study quantum spin chains in a

mathematical and rigorous way. A modern approach to describe quantum integrable

systems is using the representation theory of various quantum algebras [FRT88]. For

example, enveloping algebras of current algebras, Yangians, quantum affine algebras,

and elliptic quantum groups correspond to Gaudin model, XXX, XXZ, and XYZ spin

chains, respectively. We discuss the formulation of the problem below in more detail.

1.2 Main Problems

In general, Gaudin model and XXX spin chains can be described as follows. The

XXZ and XYZ spin chains can be described similarly with certain modifications.

Let g be a simple (or reductive) Lie algebra (or superalgebra). Let U(g) be the

universal enveloping algebra of g. Let A(g) be an algebra associated to g such that

U(g) can be identified as a Hopf subalgebra of A(g). For example, A(g) is the

universal enveloping algebra of the current algebra U(g[t]) for Gaudin model and

Yangian Y(g) associated to g for XXX spin chains. The Bethe algebra B(g) is a

certain unitial commutative subalgebra of A(g). The Bethe subalgebra depends on

an element µ ∈ g∗. Here we only concentrate on the periodic case for simplicity of

exposition, namely µ = 0. In general, similar results are also expected when µ regular

semi-simple or even simply regular. The Bethe algebra commutes with the algebra

U(g). Take any finite-dimensional irreducible representation V of A(g). Since B(g)

commutes with U(g), the Bethe subalgebra B(g) acts naturally on V sing, the singular

subspace with respect to the g-action. One would like to study the spectrum of B(g)

acting on V sing.

Let E : B(g) → C be a character, then the B(g)-eigenspace and generalized

B(g)-eigenspace associated to E in V sing are defined by
⋂
a∈B(g) ker(a|V sing − E(a))

and
⋂
a∈B(g)

(⋃∞
m=1 ker(a|V sing − E(a))m

)
, respectively. We call E an eigenvalue of
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B(g) acting on V sing if the B(g)-eigenspace associated to E is non-trivial. We call a

non-zero vector in a B(g)-eigenspace an eigenvector of B(g).

Question 1.2.1. Find eigenvalues and eigenvectors of B(g) acting on V sing.

The main approach to address Question 1.2.1 is the Bethe ansatz method, which

was introduced by H. Bethe back in 1931 [Bet31]. The Bethe ansatz usually works

well for the generic situation. For the degenerate situation, the problem is more

subtle.

Let BV (g) be the image of B(g) in End(V sing). A Frobenius algebra is a finite-

dimensional unital commutative algebra whose regular and coregular representations

are isomorphic. Based on the extensive study of quantum integrable systems, the

following conjecture is expected.

Conjecture 1.2.2 ( [Lu20]). The BV (g)-module V sing is isomorphic to a regular

representation of a Frobenius algebra.

When Conjecture 1.2.2 holds, we call the corresponding integrable system perfect

integrable. This conjecture has been proved for the following cases, (1) Gaudin model

of type A in [MTV08b, MTV09b]; (2) Gaudin model of all types in [Lu20] with the

help of [FF92,FFR10,Ryb18]; (3) XXX spin chains of type A associated to irreducible

tensor products of evaluation vector representations in [MTV14]; (4) XXX spin chains

of Lie superalgebra gl1|1 associated to cyclic tensor products of evaluation polynomial

modules in [LM19b].

The notion of perfect integrability (or Conjecture 1.2.2) is motivated by the follow-

ing corollary about general facts of regular and coregular representations, geometric

Langlands correspondence, and Bethe ansatz conjecture.

Corollary 1.2.3. For each eigenvalue E, the corresponding B(g)-eigenspace has di-

mension one. There exists a bijection between B(g)-eigenspaces and closed points

in spec(BV (g)). Moreover, each generalized B(g)-eigenspace is a cyclic B(g)-module.

The image of Bethe algebra in End(V sing) is a maximal commutative subalgebra of

dimension equal to dimV sing.
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By the philosophy of geometric Langlands correspondence, one would like to un-

derstand the following question.

Question 1.2.4. Describe the finite-dimensional algebra BV (g) and the corresponding

scheme spec(BV (g)). Find the geometric object parameterizing the eigenspace of B(g)

when V runs over all finite-dimensional irreducible representations.

It is well-known that if spec(BV (g)) is a complete intersection, then BV (g) is a

Frobenius algebra. Conversely if BV (g) is Frobenius, it would be interesting to check

if spec(BV (g)) is a complete intersection, see [MTV09b].

1.3 Gaudin Model

The Gaudin model was introduced by M. Gaudin in [Gau76] for the simple Lie

algebra sl2 and later generalized to arbitrary semi-simple Lie algebras in [Gau83,

Section 13.2.2].

Let g be a simple Lie algebra. Let λ = (λi)
n
i=1 be a sequence of dominant integral

weight. Let z = (zi)
n
i=1 be a sequence of pair-wise distinct complex numbers. Let

Vλ be the tensor product of finite-dimensional irreducible representations of highest

weights λs, s = 1, . . . , n. Let {Xi}dim g
i=1 be an orthonormal basis of g with respect to the

Killing form. For X ∈ g, denote by X(a) the operator 1⊗(a−1)⊗X⊗1⊗(n−a) ∈ U(g)⊗n.

The Gaudin Hamiltonians are given by

Hi =
∑
j,j 6=i

∑dim g
k=1 X

(i)
k ⊗X

(j)
k

zi − zj
, i = 1, . . . , n. (1.3.1)

The Gaudin Hamiltonians commute, [Hi,Hj] = 0. In Gaudin model, we study the

spectrum of Gaudin Hamiltonians acting on Vλ. The Gaudin Hamiltonians also com-

mute with the diagonal action g.
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1.3.1 Feigin-Frenkel Center and Bethe Subalgebra

In the seminal work [FFR94], Feigin, Frenkel, and Reshetikhin established a con-

nection between the center z(ĝ) of affine vertex algebra at the critical level and higher

Gaudin Hamiltonians in the Gaudin model. Let us discuss z(ĝ) in more detail.

Let g be a simple Lie algebra. Consider the affine Kac-Moody algebra ĝ =

g[t, t−1]⊕CK, g[t, t−1] = g⊗C[t, t−1]. We simply write X[s] for X⊗ ts for X ∈ g and

s ∈ Z. Let g− = g⊗ t−1C[t−1] and g[t] = g⊗C[t]. Let h∨ be the dual Coxeter number

of g. Define the module V−h∨(g) as the quotient of U(ĝ) by the ideal generated by

g[t] and K + h∨. We call the module V−h∨(g) the Vaccum module at the critical level

over ĝ. The vacuum module V−h∨(g) has a vertex algebra structure.

Define the center z(ĝ) of V−h∨(g) by

z(ĝ) = {v ∈ V−h∨(g) | g[t]v = 0}.

Using the PBW theorem, it is clear that V−h∨(g) is isomorphic to U(g−) as vector

spaces. There is an injective homomorphism from z(ĝ) to U(g−). Hence z(ĝ) is

identified as a commutative subalgebra of U(g−). The algebra z(ĝ) is called the

Feigin-Frenkel center, see [FF92]. An element in z(ĝ) is called a Segal-Sugawara

vector. There is a distinguished element S1 ∈ z(ĝ) given by

S1 =

dim g∑
a=1

Xa[−1]2.

To obtain the Bethe subalgebra of g[t], one applies an anti-homomorphism to

z(ĝ) which sends X[−s− 1] to ∂suX(u)/s!, where X(u) = X[0]u−1 +X[1]u−2 + · · · ∈

U(g[t])[[u−1]]. One obtains generating series in u−1. Then the Bethe subalgebra B(g)

of g[t] is the unital subalgebra of U(g[t]) generated by all coefficients of generating

series corresponding to elements in z(ĝ). The Bethe algebra is considered as the

algebra of Hamiltonians. For instance, the Gaudin Hamiltonians Hi (1.3.1) can be

obtained by taking the residues of the generating series corresponding to S1 at zi

acting on Vλ1(z1)⊗ · · · ⊗ Vλn(zn), where Vλi(zi) is the evaluation module of g[t] with

evaluation parameter zi. This procedure can be found for e.g. in [Mol13,MR14].
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Let V be a finite-dimensional irreducible representation of g[t], namely a tensor

product of evaluation modules Vλ1(z1) ⊗ · · · ⊗ Vλn(zn), where λ = (λ(i))ni=1 and z =

(zi)
n
i=1 as before. We are interested in the spectrum of B(g) acting on V sing.

There is also a generalization of Gaudin model, which is called Gaudin model

with irregular singularities, see [Ryb06,FFTL10]. In this case, the Bethe algebra also

depends on an element µ ∈ g∗.

1.3.2 Opers and Perfect Integrability

In this section, we discuss the known results posed in the introduction.

It was shown in [Fre05, Theorem 2.7] that BV (g) is isomorphic to the algebra of

functions on the space of monodromy-free Lg-opers on P1 which has regular singu-

larities at the point zi of residues described by λi and also at infinity. Moreover, the

joint eigenvalues of the Bethe algebra acting on V sing are encoded by these Lg-opers.

It was also conjectured there that there exists a bijection between joint eigenvalues

of Bethe algebra acting on V sing and monodromy-free Lg-opers on P1 stated above.

Similar statements are also obtained for Gaudin model with irregular singularities

in [FFTL10]. In this case, the difference is that the corresponding Lg-opers now

have irregular singularities at infinity. It is then shown in [FFR10, Corollary 5] for

Gaudin model with irregular singularities associated to regular µ ∈ g∗ that the Bethe

algebra acts on V cyclically and there exists a bijection between joint eigenvalues of

Bethe algebra acting on V with monodromy-free Lg-opers on P1 which has regular

singularities at the point zi of residues described by λi and a irregular singularity at

infinity.

Using the results of [FFTL10] and taking µ to be the principal nilpotent element,

Rybnikov managed to prove the conjecture in [Fre05] for Gaudin model, see [Ryb18].

Namely, the Bethe algebra BV (g) acts on V sing cyclically and there exists a bijection

between joint eigenvalues of Bethe algebra acting on V sing with monodromy-free Lg-
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opers on P1 which has regular singularities at the point zi of residues described by λi

and also at infinity.

These results give answers for Questions 1.2.1, 1.2.4 and the essential parts of

Conjecture 1.2.2 for Gaudin model, that is the BV (g)-module V sing is isomorphic to

the regular representation of BV (g).

To show Conjecture 1.2.2, it remains to show that BV (g) is a Frobenius algebra.

Combining the results [FF92,FFR10,Ryb18] and using the Shapovalov form on V , we

are able to construct an invariant nondegenerate symmetric bilinear form on BV (g),

which in turn shows that BV (g) is Frobenius. Hence we obtain

Theorem 1.3.1 ( [Lu20]). Gaudin model for µ = 0 and regular µ ∈ h∗ is perfectly

integrable.

In other words, we obtain the perfect integrability for Gaudin model with periodic

and regular quasi periodic boundaries. As a corollary, we also obtain that there

exists a bijection between common eigenvectors of Bethe algebra acting on V sing with

aforementioned Lg-opers. This can be thought as the proof of Bethe ansatz conjecture

of eigenvector form.

1.3.3 Grassmannian and Gaudin Model

A remarkable observation is the connections between Gaudin model of type A

and Grassmannian. This was first observed in [MV04] by studying the reproduction

procedure of solutions of Bethe ansatz equation. An invariant object for reproduc-

tion procedure is a differential operator whose kernel is a space of polynomials with

prescribed exponents at zi described by the corresponding partitions λi (dominant

weights). This differential operator can be explicitly written in terms of the corre-

sponding solution of Bethe ansatz equation. It is essentially the same as the slN -

opers, namely it describes the joint eigenvalues of the Bethe algebra acting on the

corresponding Bethe vector constructed from the solution of Bethe ansatz equation,

see [FFR94,MTV06].
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This connection leads to a proof of Shapiro-Shapiro conjecture in real algebraic

geometry, see [MTV09c]. This connection was made precise in [MTV09b] by in-

terpreting the Bethe algebra BV (g) as the space of functions on the intersection of

suitable Schubert cycles in a Grassmannian variety. This interpretation gives a re-

lation between representation theory of glN and Schubert calculus useful in both

directions. In particular, the proofs of a strong form of Shapiro-Shapiro conjecture

and the transversality conjecture of intersection of Schubert varieties are deduced

from that, see [MTV09b].

We further study this connection in [LMV17]. To state our result, we make the

statement in [MTV09b] more precise. Let Ωλ,z be the intersection of Schubert cells

Ωλi,zi with respect to the osculating flag at zi and the partition λi, see [LMV17, Section

3.1] for more detail.

Theorem 1.3.2 ( [MTV09b]). There exists a bijection between eigenvectors of the

Bethe algebra BV (glN) in V sing and Ωλ,z.

Note that, for generic z, BV (glN) is diagonalizable and has simple spectrum on

V sing. Let Ωλ be the disjoint union of all Ωλ,z with z running over all tuples of distinct

coordinates. These Ωλ are constructible subsets in the Grassmannian. We show that

these Ωλ form a stratification of Grassmannian, see [LMV17, Section 3.3], similar to

the well-known stratification consisting of Schubert cells. By taking closure of Ωλ, it

means we allow distinct zi and zj coinciding. Note that

Vµ(z)⊗ Vν(z) =
⊕
λ

Cλ
µ,νVλ(z),

where Cλ
µ,ν are the Littlewood-Richardson coefficients, therefore we know how V de-

composes if several zi coincide. Using Theorem 1.3.2, it tells us that the closure of

Ωλ is exact a disjoint union of Ωµ and those µ are determined by the representation

theory of glN and λ. Therefore this shows these Ωλ form a new stratification of the

Grassmannian. This generalizes the standard stratification of the swallowtail, see for

example [AGZV85, Section 2.5 of Part 1].
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Since this connection is so important, it would be interesting to explore similar

connections by studying Gaudin model of other types. We are able to deal with types

B, C, G2 with the following reasons. Since the Bethe algebra can be obtained from

Feigin-Frenkel center z(ĝ), we need a complete set of explicitly generators of z(ĝ).

These generators are obtained for types A [CT06], BCD [Mol13], and G2 [MRR16].

This method for type D is not applicable as the Dynkin diagram has branch. As

a result, after using the Miura transformation to the Lg-opers, one obtains pseudo-

differential operators.

Let g be a simple Lie algebra of types B and C. Identifying a Lg-oper as a slN -oper

of special form and using Miura transformation, one obtains a differential operator

in a symmetric form as follows depending type B or C,

(∂x − f1(x)) · · · (∂x − fn(x))(∂x + fn(x)) · · · (∂x + f1(x)),

(∂x − f1(x)) · · · (∂x − fn(x))∂x(∂x + fn(x)) · · · (∂x + f1(x)).

Therefore, the kernels of these differential operators have certain symmetry, which

are the same as the ones introduced in [MV04, Section 6]. Such spaces are coming

from the reproduction procedure for types BC and called self-dual spaces. The subset

of all self-dual spaces in the Grassmannian is called self-dual Grassmannian. The

self-dual Grassmannian is a new geometric object which is an algebraic subset in

Grassmannian and different from the orthogonal Grassmannian.

Using the main result of [Ryb18], we managed to obtain a stratification for self-

dual Grassmannian described by the representation theory of Lie algebras of types

B and C similar to the one of type A for Grassmannian, see [LMV17, Section 4.4].

Combining [LMV17, Theorem 4.5] and the perfect integrability of Gaudin model, we

have

Theorem 1.3.3 ( [Lu20]). There exists a bijection between eigenvectors of BV (g) in

V sing and the subset of all self-dual spaces in Ωλ,z.

To be more precise, λ has to be changed to the corresponding partitions, see

[LMV17, Section 4] for the definition. There is a similar study for type G2 in this
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direction. The corresponding geometric object is called self-self-dual Grassmannian

due to a further symmetry, see [LM19a].

Following the idea of [MT16], we obtain a lower bound for number of real self-dual

spaces in Ωλ,z by analizing a modified Shapovalov form on Vλ, see [Lu18].

1.3.4 Bethe Ansatz

The Bethe ansatz is the main method to find eigenvectors of quantum integrable

systems, see [Bet31]. The Bethe ansatz construction provides an eigenvector of the

Gaudin model from a solution to the Bethe ansatz equation. The Bethe ansatz

equation is a system of algebraic equations which is in general very difficult to solve.

We solve certain Bethe ansatz equation associated to tensor products of defining

representations for Gaudin model of types BCD [LMV16] and G2 [LM19a]. To solve

the Bethe ansatz equation, we use the reproduction procedure which allows us to

solve Bethe ansatz equation recursively. In particular, we obtain that for generic

evaluation parameters, the Bethe ansatz construction provides a basis of V sing when

V sing is a tensor product of defining representations. Moreover, when g is Lie algebras

of types BC and G2, the spectrum of Gaudin Hamiltonians (1.3.1) on V sing is simple.

We remark that for type D, the spectrum may not be simple as the Dynkin diagram

admits symmetry.
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2. ON THE GAUDIN MODEL ASSOCIATED TO LIE

ALGEBRAS OF CLASSICAL TYPES

2.1 Introduction

The Gaudin Hamiltonians are an important example of a family of commuting

operators. We study the case when the Gaudin Hamiltonians possess a symmetry

given by the diagonal action of g. In this case the Gaudin Hamiltonians depend on a

choice of a simple Lie algebra g, g-modules V1, . . . , Vn and distinct complex numbers

z1, . . . , zn, see (2.2.1).

The problem of studying the spectrum of the Gaudin Hamiltonians has received

a lot of attention. However, the majority of the work has been done in type A. In

this paper we study the cases of types B, C and D.

The main approach is the Bethe ansatz method. Our goal is to establish the

method when all but one modules Vi are isomorphic to the first fundamental rep-

resentation Vω1 . Namely, we show that the Bethe ansatz equations have sufficiently

many solutions and that the Bethe vectors constructed from those solutions form a

basis in the space of singular vectors of V1 ⊗ · · · ⊗ Vn.

The solution of a similar problem in type A in [MV05b] led to several important

results, such as a proof of the strong form of the Shapiro-Shapiro conjecture for Grass-

manians, simplicity of the spectrum of higher Gauding Hamiltonians, the bijection

betweem Fuchsian differential operators without monodromy with the Bethe vectors,

etc, see [MTV09b] and references therein. We hope that this paper will give a start

to similar studies in type B. In addition, the explicit formulas for simplest examples

outside type A are important as experimental data for testing various conjectures.

By the standard methods, the problem is reduced to the case of n = 2, with

V1 being an arbitrary finite-dimensional module, V2 = Vω1 and z1 = 0, z2 = 1. The
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reduction involves taking appropriate limits, when all points zi go to the same number

with different rates. Then the n = 2 problems are observed in the leading order and

the generic situation is recovered from the limiting case by the usual argument of

deformations of isolated solutions of algebraic systems, see [MV05b] and Section 2.4

for details.

For the 2-point case when one of the modules is the defining representation Vω1 ,

the spaces of singular vectors of a given weight are either trivial or one-dimensional.

Then, according to the general philosophy, see [MV00], one would expect to solve

the Bethe ansatz equations explicitly. In type A it was done in [MV00]. In the

supersymmetric case of gl(p|q) the corresponding Bethe ansatz equations are solved

in [MVY15]. The other known cases with one dimensional spaces include tensor

products of two arbitrary irreducible sl2 modules, see [Var95] and tensor products

of an arbitrary module with a symmetric power Vkω1 of the vector representation in

the case of slr+1, see [MV07]. Interestingly, in the latter case the solutions of the

Bethe ansatz equations are related to zeros of Jacobi-Pineiro polynomials which are

multiple orthogonal polynomials.

In all previously known cases when the dimension of the space of singular vectors of

a given weight is one, the elementary symmetric functions of solutions of Bethe ansatz

equations completely factorize into products of linear functions of the parameters.

This was one of the main reasons the formulas were found essentially by brute force.

However, unexpectedly, the computer experiments showed that in types B, C, D,

the formulas do not factorize, see also Theorem 5.5 in [MV04], and therefore, the

problem remained unsolved. In this paper we present a method to compute the

answer systematically.

Our idea comes from the reproduction procedure studied in [MV08]. Let V1 = Vλ

be the irreducible module of highest weight λ, let V2, . . . , Vn be finite-dimensional

irreducible modules, and let l1, . . . , lr be nonnegative integers, where r is the rank

of g. Fix distinct complex numbers z1 = 0, z1, . . . , zn. Consider the Bethe ansatz

equation, see (2.2.2), associated to these data. Set V = V2 ⊗ · · · ⊗ Vn, denote the
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highest weight vector of V by v+, the weight of v+ by µ+, and set µ = µ+−
∑r

i=1 liαi.

Here αi are simple roots of g.

Given an isolated solution of the Bethe ansatz equations we can produce two

Bethe vectors: one in the space of singular vectors in Vλ ⊗ V of weight µ + λ and

another one in the space of vectors in V of weight µ. The first Bethe vector, see

(2.2.3), is an eigenvector of the standard Gaudin Hamiltonians, see (2.2.1), acting

in Vλ ⊗ V and the second Bethe vector is an eigenvector of trigonometric Gaudin

Hamiltonians, see [MV07]. The second vector is a projection of the first vector to the

space v+ ⊗ V ' V .

Then the reproduction procedure of [MV07] in the j-th direction allows us to

construct a new solution of the Bethe ansatz equation associated to new data: repre-

sentations V1 = Vsj ·λ, V2, . . . , Vn and integers l1, . . . , l̃j, . . . , lr so that the new weight

µ̃ = µ+ −
∑

i 6=j liαi − l̃jαj is given by µ̃ = sjµ. This construction is quite general,

it works for all symmetrizable Kac-Moody algebras provided that the weight λ is

generic, see Theorem 2.2.6 below. It gives a bijection between solutions correspond-

ing to weights µ of V in the same Weyl orbit.

Note that in the case µ = µ+, the Bethe ansatz equations are trivial. Therefore,

using the trivial solution and the reproduction procedure, we, in principal, can obtain

solutions for all weights of the form: µ = wµ+. Note also that in the case of the vector

representation, V = Vω1 , all weights in V are in the Weyl orbit of µ+ = ω1 (with the

exception of weight µ = 0 in type B). Therefore, we get all the solutions we need that

way (the exceptional weight is easy to treat separately).

In contrast to [MV07], we do not have the luxury of generic weight λ, and we

have to check some technical conditions on each reproduction step. It turns out,

such checks are easy when going to the trivial solution, but not the other way, see

Section 2.3.3. We manage to solve the recursion and obtain explicit formulas, see

Corollary 2.3.10 for type B, Theorem 2.5.1 for type C and Theorem 2.5.4 for type D.

We complete the check using these formulas, see Section 2.3.5.
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To each solution of Bethe ansatz, one can associate an oper. For types A, B, C

the oper becomes a scalar differential operator with rational coefficients, see [MV04],

and Sections 2.3.6, 2.5.1. In fact, the coefficients of this operator are eigenvalues of

higher Gaudin Hamiltonians, see [MTV06] for type A and [MM17] for types B, C.

The differential operators for the solutions obtained via the reproduction procedure

are closely related. It allows us to give simple formulas for the differential operators

related to our solutions, see Propositions 2.3.11 and 2.5.3. According to [MV04], the

kernel of the differential operator is a space of polynomials with a symmetry, called

a self-dual space. We intend to discuss the self-dual spaces related to our situation

in detail elsewhere.

The paper is constructed as follows. In Section 2.2 we describe the problem and

set our notation. We study in detail the case of type B in Sections 2.3 and 2.4. In

Section 2.3 we solve the Bethe ansatz equation for n = 2 when one of the modules

is Vω1 . In Section 2.4, we use the results of Section 2.3 to show the completeness

and simplicity of the spectrum of Gaudin Hamiltonians acting in tensor products

where all but one factors are Vω1 , for generic values of zi. In Section 2.5 we give the

corresponding formulas and statements in types C and D.

2.2 The Gaudin Model and Bethe Ansatz

2.2.1 Simple Lie Algebras

Let g be a simple Lie algebra over C with Cartan matrix A = (ai,j)
r
i,j=1. Denote the

universal enveloping algebra of g by U(g). Let D = diag{d1, . . . , dr} be the diagonal

matrix with positive relatively prime integers di such that B = DA is symmetric.

Let h ⊂ g be the Cartan subalgebra. Fix simple roots α1, . . . , αr in h∗. Let

α∨1 , . . . , α
∨
r ∈ h be the corresponding coroots. Fix a nondegenerate invariant bilinear

form (, ) in g such that (α∨i , α
∨
j ) = ai,j/dj. Define the corresponding invariant bilinear

forms in h∗ such that (αi, αj) = diai,j. We have 〈λ, α∨i 〉 = 2(λ, αi)/(αi, αi) for λ ∈
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h∗. In particular, 〈αj, α∨i 〉 = ai,j. Let ω1, . . . , ωr ∈ h∗ be the fundamental weights,

〈ωj, α∨i 〉 = δi,j.

Let P = {λ ∈ h∗|〈λ, α∨i 〉 ∈ Z} and P+ = {λ ∈ h∗|〈λ, α∨i 〉 ∈ Z>0} be the weight

lattice and the set of dominant integral weights. The dominance order > on h∗ is

defined by: µ > ν if and only if µ− ν =
∑r

i=1 aiαi, ai ∈ Z>0 for i = 1, . . . , r.

Let ρ ∈ h∗ be such that 〈ρ, α∨i 〉 = 1, i = 1, . . . , r. We have (ρ, αi) = (αi, αi)/2.

For λ ∈ h∗, let Vλ be the irreducible g-module with highest weight λ. We denote

〈λ, α∨i 〉 by λi and sometimes write V(λ1,λ2,...,λr) for Vλ.

The Weyl group W ⊂ Aut(h∗) is generated by reflections si, i = 1, . . . , r,

si(λ) = λ− 〈λ, α∨i 〉αi, λ ∈ h∗.

We use the notation

w · λ = w(λ+ ρ)− ρ, w ∈ W , λ ∈ h∗,

for the shifted action of the Weyl group.

Let E1, . . . , Er ∈ n+, H1, . . . , Hr ∈ h, F1, . . . , Fr ∈ n− be the Chevalley generators

of g.

The coproduct ∆ : U(g) → U(g) ⊗ U(g) is defined to be the homomorphism of

algebras such that ∆x = 1⊗ x+ x⊗ 1, for all x ∈ g.

Let (xi)i∈O be an orthonormal basis with respect to the bilinear form (, ) in g.

Let Ω0 =
∑

i∈O x
2
i ∈ U(g) be the Casimir element. For any u ∈ U(g), we have

uΩ0 = Ω0u. Let Ω =
∑

i∈O xi⊗ xi ∈ g⊗ g ⊂ U(g)⊗U(g). For any u ∈ U(g), we have

∆(u)Ω = Ω∆(u).

The following lemma is well-known, see for example [Hum78], Ex. 23.4.

Lemma 2.2.1. Let Vλ be an irreducible module of highest weight λ. Then Ω0 acts on

Vλ by the constant (λ+ ρ, λ+ ρ)− (ρ, ρ).

Let V be a g-module. Let Sing V = {v ∈ V | n+v = 0} be the subspace of singular

vectors in V . For µ ∈ h∗ let V [µ] = {v ∈ V | hv = 〈µ, h〉v} be the subspace of V of

vectors of weight µ. Let Sing V [µ] = (Sing V ) ∩ (V [µ]) be the subspace of singular

vectors in V of weight µ.



17

2.2.2 Gaudin Model

Let n be a positive integer and Λ = (Λ1, . . . ,Λn), Λi ∈ h∗, a sequence of weights.

Denote by VΛ the g-module VΛ1 ⊗ · · · ⊗ VΛn .

If X ∈ End(VΛi), then we denote by X(i) ∈ End(VΛ) the operator id⊗i−1 ⊗ X ⊗

id⊗n−i acting non-trivially on the i-th factor of the tensor product. If X =
∑

kXk ⊗

Yk ∈ End(VΛi ⊗ VΛj), then we set X(i,j) =
∑

kX
(i)
k ⊗ Y

(j)
k ∈ End(VΛ).

Let z = (z1, . . . , zn) be a point in Cn with distinct coordinates. Introduce linear

operators H1(z), . . . ,Hn(z) on VΛ by the formula

Hi(z) =
∑
j, j 6=i

Ω(i,j)

zi − zj
, i = 1, . . . , n. (2.2.1)

The operators H1(z), . . . ,Hn(z) are called the Gaudin Hamiltonians of the Gaudin

model associated with VΛ. One can check that the Hamiltonians commute,

[Hi(z),Hj(z)] = 0

for all i, j. Moreover, the Gaudin Hamiltonians commute with the action of g,

[Hi(z), x] = 0 for all i and x ∈ g. Hence for any µ ∈ h∗, the Gaudin Hamiltoni-

ans preserve the subspace Sing VΛ[µ] ⊂ VΛ.

2.2.3 Bethe Ansatz

Fix a sequence of weights Λ = (Λi)
n
i=1, Λi ∈ h∗, and a sequence of non-negative

integers l = (l1, . . . , lr). Denote l = l1 + · · · + lr, Λ = Λ1 + · · · + Λn, and α(l) =

l1α1 + · · ·+ lrαr.

Let c be the unique non-decreasing function from {1, . . . , l} to {1, . . . , r}, such

that #c−1(i) = li for i = 1, . . . , r. The master function Φ(t, z,Λ, l) is defined by

Φ(t, z,Λ, l) =
∏

16i<j6n

(zi − zj)(Λi,Λj)

l∏
i=1

n∏
s=1

(ti − zs)−(αc(i),Λs)
∏

16i<j6l

(ti − tj)(αc(i),αc(j)).

The function Φ is a function of complex variables t = (t1, . . . , tl), z = (z1, . . . , zn),

weights Λ, and discrete parameters l. The main variables are t, the other variables

will be considered as parameters.
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We call Λi the weight at a point zi, and we also call c(i) the color of variable ti.

A point t ∈ Cl is called a critical point associated to z,Λ, l, if the following system

of algebraic equations is satisfied,

−
n∑
s=1

(αc(i),Λs)

ti − zs
+
∑
j,j 6=i

(αc(i), αc(j))

ti − tj
= 0, i = 1, . . . , l. (2.2.2)

In other words, a point t is a critical point if(
Φ−1∂Φ

∂ti

)
(t) = 0, for i = 1, . . . , l.

Equation (2.2.2) is called the Bethe ansatz equation associated to Λ, z, l.

By definition, if t = (t1, . . . , tl) is a critical point and (αc(i), αc(j)) 6= 0 for some

i, j, then ti 6= tj. Also if (αc(i),Λs) 6= 0 for some i, s, then ti 6= zs.

Let Σl be the permutation group of the set {1, . . . , l}. Denote by Σl ⊂ Σl the

subgroup of all permutations preserving the level sets of the function c. The subgroup

Σl is isomorphic to Σl1 × · · · × Σlr . The action of the subgroup Σl preserves the set

of critical points of the master function. All orbits of Σl on the critical set have

the same cardinality l1! . . . lr!. In what follows we do not distinguish between critical

points in the same Σl-orbit.

The following lemma is known.

Lemma 2.2.2 ( [MV04]). If weight Λ − α(l) is dominant integral, then the set of

critical points is finite.

2.2.4 Weight Function

Consider highest weight irreducible g-modules VΛ1 , . . . , VΛn , the tensor product

VΛ, and its weight subspace VΛ[Λ− α(l)]. Fix a highest weight vector vΛi in VΛi for

i = 1, . . . , n.

Following [SV91], we consider a rational map

ω : Cn × Cl → VΛ[Λ− α(l)]
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called the canonical weight function.

Let P (l, n) be the set of sequences I = (i11, . . . , i
1
j1

; . . . ; in1 , . . . , i
n
jn) of integers in

{1, . . . , r} such that for all i = 1, . . . , r, the integer i appears in I precisely li times.

For I ∈ P (l, n), and a permutation σ ∈ Σl, set σ1(i) = σ(i) for i = 1, . . . , j1 and

σs(i) = σ(j1 + · · ·+ js−1 + i) for s = 2, . . . , n and i = 1, . . . , js. Define

Σ(I) = {σ ∈ Σl | c(σs(j)) = ijs for s = 1, . . . , n and j = 1, . . . , js}.

To every I ∈ P (l, n) we associate a vector

FIv = Fi11 . . . Fi1j1
vΛ1 ⊗ · · · ⊗ Fin1 . . . FinjnvΛn

in VΛ[Λ− α(l)], and rational functions

ωI,σ = ωσ1(1),...,σ1(j1)(z1) . . . ωσn(1),...,σn(jn)(zn),

labeled by σ ∈ Σ(I), where

ωi1,...,ij(z) =
1

(ti1 − ti2) . . . (tij−1
− tij)(tij − z)

.

We set

ω(z, t) =
∑

I∈P (l,n)

∑
σ∈Σ(I)

ωI,σFIv. (2.2.3)

Let t ∈ Cl be a critical point of the master function Φ(·, z,Λ, l). Then the value

of the weight function ω(z, t) ∈ VΛ[Λ − α(l)] is called the Bethe vector. Note that

the Bethe vector does not depend on a choice of the representative in the Σl-orbit of

critical points.

The following facts about Bethe vectors are known. Assume that z ∈ Cn has

distinct coordinates. Assume that t ∈ Cl is an isolated critical point of the master

function Φ(·, z,Λ, l).

Lemma 2.2.3 ( [MV05b]). The Bethe vector ω(z, t) is well defined. �

Theorem 2.2.4 ( [Var11]). The Bethe vector ω(z, t) is non-zero. �
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Theorem 2.2.5 ( [RV95]). The Bethe vector ω(z, t) is singular, ω(z, t) ∈ Sing VΛ[Λ−

α(l)]. Moreover, ω(z, t) is a common eigenvector of the Gaudin Hamiltonians,

Hi(z)ω(z, t) =

(
Φ−1 ∂Φ

∂zi

)
(t, z)ω(z, t), i = 1, . . . , n.

�

2.2.5 Polynomials Representing Critical Points

Let t = (t1, . . . , tl) be a critical point of a master function Φ(t, z,Λ, l). Introduce

a sequence of polynomials y = (y1(x), . . . , yr(x)) in a variable x by the formula

yi(x) =
∏

j,c(j)=i

(x− tj).

We say that the r-tuple of polynomials y represents a critical point t of the master

function Φ(t, z,Λ, l). Note that the r-tuple y does not depend on a choice of the

representative in the Σl-orbit of the critical point t.

We have l =
∑r

i=1 deg yi =
∑r

i=1 li. We call l the length of y. We use notation

y(l) to indicate the length of y.

Introduce functions

Ti(x) =
n∏
s=1

(x− zs)〈Λs,α
∨
i 〉, i = 1, . . . , r. (2.2.4)

We say that a given r-tuple of polynomials y ∈ P (C[x])r is generic with respect

to Λ, z if

G1 polynomials yi(x) have no multiple roots;

G2 roots of yi(x) are different from roots and singularities of the function Ti;

G3 if aij < 0 then polynomials yi(x), yj(x) have no common roots.

If y represents a critical point of Φ, then y is generic.

Following [MV07], we reformulate the property of y to represent a critical point

for the case when all but one weights are dominant integral.

We denote by W (f, g) the Wronskian of functions f and g, W (f, g) = f ′g − fg′.
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Theorem 2.2.6 ( [MV07]). Assume that z ∈ Cn has distinct coordinates and z1 = 0.

Assume that Λi ∈ P+, i = 2, . . . , n. A generic r-tuple y represents a critical point

associated to Λ, z, l if and only if for every i = 1, . . . , r there exists a polynomial ỹi

satisfying

W (yi, x
〈Λ1+ρ,α∨i 〉ỹi) = Ti

∏
j 6=i

y
−〈αj ,α∨i 〉
j . (2.2.5)

Moreover, if the r-tuple ỹi = (y1, . . . , ỹi, . . . , yr) is generic, then it represents a critical

point associated to data (si · Λ1,Λ2, . . . ,Λn), z, li, where li is determined by equation

Λ− Λ1 − α(li) = si(Λ− Λ1 − α(l)).

�

We say that the r-tuple ỹi (and the critical point it represents) is obtained from

the r-tuple y (and the critical point it represents) by the reproduction procedure in

the i-th direction.

Note that reproduction procedure can be iterated. The reproduction procedure

in the i-th direction applied to r-tuple ỹi returns back the r-tuple y. More generally,

it is shown in [MV07], that the r-tuples obtained from y by iterating a reproduction

procedure are in a bijective correspondence with the elements of the Weyl group.

We call a function f(x) a quasi-polynomial if it has the form xap(x), where a ∈

C and p(x) ∈ C[x]. Under the assumptions of Theorem 2.2.6, all Ti are quasi-

polynomials.

2.3 Solutions of Bethe Ansatz Equation in the Case of Vλ ⊗ Vω1 for Type

Br

In Sections 2.3, 2.4 we work with Lie algebra of type Br.

Let g = so(2r + 1). We have (αi, αi) = 4, i = 1, . . . , r − 1, and (αr, αr) = 2.

In this section we work with data Λ = (λ, ω1), z = (0, 1). The main result of the

section is the explicit formulas for the solutions of the Bethe ansatz equations, see

Corollary 2.3.10.
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2.3.1 Parameterization of Solutions

One of our goals is to diagonalize the Gaudin Hamiltonians associated to Λ =

(λ, ω1), z = (0, 1). It is sufficient to do that in the spaces of singular vectors of a

given weight.

Let λ ∈ P+. We write the decomposition of finite-dimensional g-module Vλ⊗Vω1 .

We have

Vλ ⊗ Vω1 =Vλ+ω1 ⊕ Vλ+ω1−α1 ⊕ · · · ⊕ Vλ+ω1−α1−···−αr ⊕ Vλ+ω1−α1−···−αr−1−2αr

⊕ Vλ+ω1−α1−···−αr−2−2αr−1−2αr ⊕ · · · ⊕ Vλ+ω1−2α1−···−2αr−1−2αr

=V(λ1+1,λ2,...,λr) ⊕ V(λ1−1,λ2+1,λ3,...,λr) ⊕ V(λ1,...,λk−1,λk−1,λk+1+1,...,λr)

⊕ · · · ⊕ V(λ1,λ2,...,λr−2,λr−1−1,λr+2) ⊕ V(λ1,λ2,...,λr−1,λr)

⊕ V(λ1,λ2,...,λr−2,λr−1+1,λr−2)

⊕ V(λ1,...,λr−2+1,λr−1−1,λr) ⊕ · · · ⊕ V(λ1−1,λ2,...,λr), (2.3.1)

with the convention that the summands with non-dominant highest weights are omit-

ted. In addition, if λr = 0, then the summand Vλ−α1−···−αr = V(λ1,λ2,...,λr−1,λr) is absent.

Note, in particular, that all multiplicities are 1.

By Theorem 2.2.5, to diagonalize the Gaudin Hamiltonians, it is sufficient to find a

solution of the Bethe ansatz equation (2.2.2) associated to Λ, z and l corresponding to

the summands in the decomposition (2.3.1). We call an r-tuple of integers l admissible

if Vλ+ω1−α(l) ⊂ Vλ ⊗ Vω1 .

The admissible r-tuples l have the form

l = (1, . . . , 1︸ ︷︷ ︸
k ones

, 0, . . . , 0) or l = (1, . . . , 1︸ ︷︷ ︸
k ones

, 2, . . . , 2), (2.3.2)

where k = 0, . . . , r. In the first case the length l = l1 + · · ·+ lr is k and in the second

case 2r − k. It follows that different admissible r-tuples have different length and,

therefore, admissible tuples l are parameterized by length l ∈ {0, 1, . . . , 2r}. We call

a nonnegative integer l admissible if it is the length of an admissible r-tuple l. More

precisely, a nonnegative integer l is admissible if l = 0 or if l 6 r, λl > 0 or if l = r+1,

λr > 1 or if r + 1 < l 6 2r, λ2r−l+1 > 0.
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In terms of y = (y1, . . . , yr), we have the following cases, corresponding to (2.3.2).

For l 6 r, the polynomials y1, . . . , yl are linear and yl+1, . . . , yr are all equal to

one.

For l > r, the polynomials y1, . . . , y2r−l are linear and y2r−l+1, . . . , yr are quadratic.

Remark 2.3.1. For l 6 r the Bethe ansatz equations for type Br coincide with the

Bethe ansatz equations for type Ar which were solved directly in [MV00]. In what

follows, we recover the result for l < r, and we refer to [MV00] for the case of l = r.

2.3.2 Example of B2

We illustrate our approach in the case of B2, l = 4. We have n = 2, Λ1 = λ ∈ P+,

Λ2 = ω1, z1 = 0, z2 = 1. We write λ = (λ1, λ2), where λi = 〈λ, α∨i 〉 ∈ Z>0.

Suppose the Bethe ansatz equation has a solution with l = 4. Then it is repre-

sented by quadratic polynomials y
(4)
1 and y

(4)
2 . By Theorem 2.2.6, it means that there

exist polynomials ỹ1, ỹ2 such that

W (y
(4)
1 , ỹ1) = xλ1(x− 1)y

(4)
2 , W (y

(4)
2 , ỹ2) = xλ2

(
y

(4)
1

)2
.

Note we have λ1, λ2 ∈ Z>0, but for λ1 = 0 the first equation is impossible for

degree reasons. Therefore, there are no solutions with l = 4 for λ1 = 0 which is

exactly when the corresponding summand is absent in (2.3.1) and when l = 4 is not

admissible.

Step 1: There exists a unique monic linear polynomial u1 such that −λ1ỹ1 =

xλ1+1u1. Clearly, the only root of u1 cannot coincide with the roots of xλ1(x− 1)y
(4)
2 ,

therefore the pair (u1, y
(4)
2 ) is generic. It follows from Theorem 2.2.6, that the pair

(u1, y
(4)
2 ) solves Bethe ansatz equation with l = 3 and λ replaced by s1 · λ = (−λ1 −

2, 2λ1 + λ2 + 2).

In terms of Wronskians, it means that there exist quasi-polynomials ŷ1 and ŷ2

such that

W (u1, ŷ1) = x−λ1−2(x− 1)y
(4)
2 , W (y

(4)
2 , ŷ2) = x2λ1+λ2+2u2

1.
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The procedure we just described corresponds to the reproduction in the first di-

rection, we have s1(ω1 − 2α1 − 2α2) = ω1 − α1 − 2α2.

Note that s2(ω1−2α1−2α2) = ω1−2α1−2α2 and the reproduction in the second

direction applied to (y
(4)
1 , y

(4)
2 ) does not change l = 4. We do not use it.

Step 2: We apply the reproduction in the second direction to the l = 3 solution

(u1, y
(4)
2 ).

By degree reasons, we have −(λ2 + 2λ1 + 1)ŷ2 = xλ2+2λ1+3 · 1. Set u2 = 1. Clearly,

the pair (u1, u2) is generic. By Theorem 2.2.6, the pair (u1, u2) solves Bethe ansatz

equation with l = 1 and Λ1 = (s2s1) · λ = (λ1 + λ2 + 1,−2λ1 − λ2 − 4).

It means, we have s2(ω1 − α1 − 2α2) = ω1 − α1 and there exist quasi-polynomials

ȳ1, ȳ2 such that

W (u1, ȳ1) = xλ1+λ2+1(x− 1)u2 = xλ1+λ2+1(x− 1), W (u2, ȳ2) = x−2λ1−λ2−4u2
1.

Note that we also have λ1ŷ1 = x−λ1−1y
(4)
1 . Therefore, we can recover the initial

solution (y
(4)
1 , y

(4)
2 ) from (u1, y

(4)
2 ). In general, if we start with an arbitrary l = 3

solution and use the reproduction in the first direction, we obtain a pair of quadratic

polynomials. If this pair is generic, then it represents an l = 4 solution associated to

the data Λ = (λ, ω1), z, l = (2, 2). However, we have no easy argument to show that

it is generic. Thus, our procedure gives an inclusion of all l = 4 solutions to the l = 3

solutions and we need an extra argument to show this inclusion is a bijection.

Step 3: Finally, we apply the reproduction in the first direction to the l = 1

solution (u1, u2).

We have −(λ1 + λ2 + 1)ȳ1 = xλ1+λ2+2 · 1. Set v1 = 1. Clearly, the pair (v1, u2) =

(1, 1) is generic and represents the only solution of the Bethe ansatz equation with

l = 0 and Λ1 = (s1s2s1) ·λ = (−λ1−λ2−3, λ2). We denote the final weight (s1s2s1) ·λ

by θ = (θ1, θ2).

It means, we have s1(ω1−α1) = ω1, and there exist quasi-polynomials
◦
y1,

◦
y2 such

that

W (v1,
◦
y1) = x−λ1−λ2−3(x− 1)u2

2, W (u2,
◦
y2) = xλ2v1 = xλ2 .
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As before, we have (λ1+λ2+1)
◦
y1 = x−λ1−λ2−2u1, and therefore using reproduction

in the first direction to pair (v1, u2) we recover the pair (u1, u2).

To sum up, we have the inclusions of solutions for l = 4 to l = 3 to l = 1 to

l = 0 with the Λ1 varying by the shifted action of the Weyl group. Since for l = 0

the solution is unique, it follows that for l = 1, 3, 4 the solutions are at most unique.

Moreover, if it exists, it can be computed recursively.

We proceed with the direct computation of y
(4)
1 , y

(4)
2 . From step 3, we have v1 =

u2 = 1. Then we compute

u1 = x− λ1 + λ2 + 1

λ1 + λ2 + 2
.

From step 2, we get

y
(4)
2 = x2 − 2(2λ1 + λ2 + 1)(λ1 + λ2 + 1)

(2λ1 + λ2 + 2)(λ1 + λ2 + 2)
x+

(2λ1 + λ2 + 1)(λ1 + λ2 + 1)2

(2λ1 + λ2 + 3)(λ1 + λ2 + 2)2
.

Finally, from Step 1,

y
(4)
1 =x2 − (2λ1 + λ2 + 1)(2λ2

1 + 2λ1λ2 + 4λ1 + λ2 + 2)

(λ1 + 1)(λ1 + λ2 + 2)(2λ1 + λ2 + 2)
x

+
λ1(λ1 + λ2 + 1)(2λ1 + λ2 + 1)

(λ1 + 1)(λ1 + λ2 + 2)(2λ1 + λ2 + 3)
.

From the formula it is easy to check that the pair (y
(4)
1 , y

(4)
2 ) is generic if λ1 > 0 and

therefore represents a solution of the Bethe ansatz equation associated to Λ, z and

l = 4.

Thus the Bethe ansatz equation associated to Λ, z, l = (2, 2) has a unique solution

given by the formulas above.

2.3.3 The Recursion Lemmas

Let l ∈ {0, . . . , r − 1, r + 2, . . . , 2r}, we establish a reproduction procedure which

produces solutions of length l − 1 from the ones of length l. For l = r + 1, the

reproduction procedure goes from l = r + 1 to l = r− 1. We recover the special case

l = r directly from [MV00], see Remark 2.3.1. By Theorem 2.2.6 it is sufficient to
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check that the new r-tuple of polynomial is generic with respect to new data. It is

done with the help of following series of lemmas.

For brevity, we denote x− 1 by y0 for this section.

The first lemma describes the reproduction in the k-th direction from l = 2r−k+1

to l = 2r − k, where k = 1, . . . , r − 1.

Lemma 2.3.2. Let k ∈ {1, . . . , r−1}. Let ν = (ν1, . . . , νr) be an integral weight such

that νk > 0. Let y1, . . . , yk−1 be linear polynomials and yk, . . . , yr be quadratic polyno-

mials. Suppose the r-tuple of polynomials y(2r−k+1) = (y1, . . . , yr) represents a critical

point associated to (ν, ω1), z and l = 2r − k + 1. Then there exists a unique monic

linear polynomial uk such that W (yk, x
νk+1uk) = −νkxνkyk−1yk+1. Moreover, νk > 0

and the r-tuple of polynomials y(2r−k) = (y1, . . . , yk−1, uk, yk+1, . . . , yr) represents a

critical point associated to (sk · ν, ω1), z and l = 2r − k.

Proof. The existence of polynomial ỹk such that W (yk, ỹk) = xνkyk−1yk+1 implies νk >

0. Indeed, if deg ỹk > 3, then degW (yk, ỹk) > 4; if deg ỹk 6 2, then degW (yk, ỹk) 6 2.

Hence deg xνkyk−1yk+1 6= 3, it follows that νk 6= 0.

By Theorem 2.2.6, it is enough to show y(2r−k) is generic. If yk−1yk+1 is divisible

by uk, then yk has common root with yk−1yk+1 which is impossible since (y1, . . . , yr)

is generic. Since uk is linear, it cannot have a multiple root.

Note that we do not have such a lemma for the reproduction in the k-th direction

which goes from l − 1 to l since unlike uk the new polynomial is quadratic and we

cannot immediately conclude that it has distinct roots. We overcome this problem

using the explicit formulas in Section 2.3.5.

The next lemma describes the reproduction in the r-th direction from l = r + 1

to l = r − 1.

Lemma 2.3.3. Let ν = (ν1, . . . , νr) be an integral weight such that νr > 0. Let

y1, . . . , yr−1 be linear polynomials and yr be a quadratic polynomial. Suppose the

r-tuple of polynomials y(r+1) = (y1, . . . , yr) represents a critical point associated to

(ν, ω1), z and l = r+1. Then W (yr, x
νr+1) = −(νr−1)xνry2

r−1. Moreover, νr > 2 and
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the r-tuple of polynomials y(r−1) = (y1, . . . , yr−2, yr−1, 1) represents a critical point

associated to (sr · ν, ω1), z and l = r − 1. �

Finally, we disuss the reproduction in the k-th direction from l = k to l = k − 1,

where k = 1, . . . , r − 1.

Lemma 2.3.4. Let k ∈ {1, . . . , r−1}. Let ν = (ν1, . . . , νr) be an integral weight such

that νk > 0. Let y1, . . . , yk be linear polynomials and yk+1 = · · · = yr = 1. Suppose

the r-tuple of polynomials y(k) = (y1, . . . , yr) represents a critical point associated to

(ν, ω1), z and l = k. Then W (yk, x
νk+1) = −νkxνkyk−1yk+1. Moreover, νk > 0 and

the r-tuple of polynomials y(k−1) = (y1, . . . , yk−1, 1, 1, . . . , 1) represents a critical point

associated to (sk · ν, ω1), z and l = k − 1. �

2.3.4 At Most One Solution

In this section, we show that there exists at most one solution of the Bethe ansatz

equation (2.2.2).

We start with the explicit formulas for the shifted action of the Weyl group.

Lemma 2.3.5. Let λ = (λ1, . . . , λr) ∈ h∗.

We have

(s1 . . . sk) · λ = (−λ1 − · · · − λk − k − 1, λ1, . . . , λk−1, λk + λk+1 + 1, λk+2, . . . , λr),

where k = 1, . . . , r − 2,

(s1 . . . sr−1) · λ = (−λ1 − · · · − λr−1 − r, λ1, . . . , λr−2, 2λr−1 + λr + 2),

(s1 . . . sr) · λ = (−λ1 − · · · − λr − r − 1, λ1, . . . , λr−2, 2λr−1 + λr + 2),

and

(s1 . . . srsr−1 . . .s2r−k) · λ

= (− λ1 − · · · − λ2r−k−1 − 2λ2r−k − · · · − 2λr−1 − λr − k − 1,

λ1, . . . , λ2r−k−2, λ2r−k−1 + λ2r−k + 1, λ2r−k+1, . . . , λr),

where k = r + 1, . . . , 2r − 1.
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Proof. If k = 1, . . . , r − 2, r, the action of a simple reflection is given by

sk · λ = (λ1, . . . , λk−2, λk−1 + λk + 1,−λk − 2, λk + λk+1 + 1, λk+2, . . . , λr).

In addition,

sr−1 · λ = (λ1, . . . , λr−3, λr−2 + λr−1 + 1,−λr−1 − 2, 2λr−1 + λr + 2).

The lemma follows.

We also prepare the inverse formulas.

Lemma 2.3.6. Let θ = (θ1, . . . , θr) ∈ h∗. We have

(sk . . . s1) · θ = (θ2, . . . , θk,−θ1 − · · · − θk − k − 1, θ1 + · · ·+ θk+1 + k, θk+2, . . . , θr),

where k = 1, . . . , r − 2,

(sr−1 . . . s1) · θ = (θ2, . . . , θr−1,−θ1 − · · · − θr−1 − r, 2θ1 + · · ·+ 2θr−1 + θr + 2r − 2).

(sr . . . s1) · θ = (θ2, . . . , θr−1, θ1 + · · ·+ θr + r − 1,−2θ1 − · · · − 2θr−1 − θr − 2r),

and

(s2r−ks2r−k+1 . . . srsr−1 . . . s1) · θ

= (θ2, . . . , θ2r−k−1, θ1 + · · ·+ θ2r−k−1 + 2θ2r−k + · · ·+ 2θr−1 + θr + k − 1,

− θ1 − · · · − θ2r−k − 2θ2r−k+1 − · · · − 2θr−1 − θr − k, θ2r−k+1, . . . , θr),

where k = r + 1, . . . , 2r − 1. In particular,

(s1s2 . . . srsr−1 . . . s1) · θ = (−θ1 − 2θ2 − · · · − 2θr−1 − θr − 2r + 1, θ2, . . . , θr).

Lemma 2.3.7. Let λ ∈ P+ and let l be as in (2.3.2). Suppose the Bethe ansatz

equation associated to Λ = (λ, ω1), z = (0, 1), l, where λ ∈ P+, has solutions. Then l

is admissible. Moreover, if l > r+ 1, then we can perform the reproduction procedure

in the (2r− l+1)-th, (2r− l+2)-th, . . . , (r−1)-th, r-th, (r−1)-th, . . . , 1-st directions

successively. If l < r, we can perform the reproduction procedure in the l-th, (l−1)-th,

. . . , 1-st directions successively.
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Proof. We use Lemmas 2.3.2-2.3.4. The condition of the lemmas of the form νk > 0

follows from Lemmas 2.3.5 and 2.3.6.

Corollary 2.3.8. Let λ ∈ P+ and l as in (2.3.2). The Bethe ansatz equation (2.2.2)

associated to Λ, z, l, has at most one solution. If l is not admissible it has no solutions.

Proof. If l 6= r, then by Lemma 2.3.7, every solution of the Bethe ansatz equations by

a series of reproduction procedures produces a solution for l = 0. These reproduction

procedures are invertible, and for l = 0 we clearly have only one solution (1, . . . , 1).

Therefore the conclusion.

For l = r the corollary follows from Theorem 2 in [MV00], see also Remark

2.3.1.

2.3.5 Explicit Solutions

In this section, we give explicit formulas for the solution of the Bethe ansatz

equation corresponding to data Λ = (λ, ω1), z = (0, 1) and l, λ ∈ P+, l ∈ {0, . . . , 2r}.

We denote by θ the weight obtained from λ after the successive reproduction

procedures as in Lemma 2.3.7. Explicitly, if l 6 r − 1, then θ = (s1 . . . sl−1sl) · λ; if

l > r + 1, then θ = (s1 . . . sr−1srsr−1 . . . s2r−l+1) · λ. We recover the solution starting

from data (θ, ω1), z = (0, 1) and l = 0, where the solution is (1, . . . , 1) by applying

the reproduction procedures in the opposite direction explicitly. In the process we

obtain monic polynomials (y
(l)
1 , . . . , y

(l)
r ) representing a critical point.

Recall that for l 6 r, y1, . . . , yl are linear polynomials and yl+1, . . . , yr are all equal

to one. We use the notation: y
(l)
i = x− c(l)

i , i = 1, . . . , l.

Recall further that for l > r, the polynomials y1, . . . , y2r−l are linear and y2r−l+1,

. . . , yr are quadratic. We use the notation: y
(l)
i = x − c

(l)
i , i = 1, . . . , 2r − l and

y
(l)
i = (x− a(l)

i )(x− b(l)
i ), i = 2r − l + 1, . . . , r.

Formulas for c
(l)
i , a

(l)
i and b

(l)
i in terms of θi, clearly, do not depend on l, in such

cases we simply write ci, ai and bi.
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Denote y
(k)
0 = x− 1, c0 = 1 and T1(x) = xλ1 . Also let

A(k)(θ) =

(sk . . . s1) · θ if k 6 r,

(s2r−k . . . sr−1srsr−1 . . . s1) · θ if k > r + 1.

Explicitly, A(k)(θ) are given in Lemma 2.3.6.

Constant Term of yi in Terms of θ

For brevity, we write simply A(k) for A(k)(θ). We also use A
(k)
i for components of

the weight A(k): A(k) = (A
(k)
1 , . . . , A

(k)
r ).

For l 6 r − 1, we have y(l−1) = (x− c1, . . . , x− cl−1, 1, . . . , 1). It is easy to check

that if l is admissible and λ is dominant then A
(l−1)
l = θ1 + · · · + θl + (l − 1) is a

negative integer.

We solve for ỹ
(l−1)
l ,

W (y
(l−1)
l , ỹ

(l−1)
l ) = T

(l−1)
l y

(l−1)
l−1 y

(l−1)
l+1 = xA

(l−1)
l (x− cl−1).

In other words

−(ỹ
(l−1)
l )′ = xA

(l−1)
l +1 − cl−1x

A
(l−1)
l .

Choosing the solution which is a quasi-polynomial, we obtain

ỹ
(l−1)
l =

−xA
(l−1)
l +1

A
(l−1)
l + 2

(
x− A

(l−1)
l + 2

A
(l−1)
l + 1

cl−1

)
.

Therefore, the reproduction procedure in the l-th direction gives y(l) = (x−c1, . . . , x−

cl, 1, . . . , 1), where cl =
A

(l−1)
l + 2

A
(l−1)
l + 1

cl−1. Substituting the value for A
(l−1)
l and using

induction, we have

ck =
k∏
j=1

θ1 + · · ·+ θj + j + 1

θ1 + · · ·+ θj + j
,

for k = 1, . . . , r − 1.

For l = r + 1 we have y(r−1) = (x − c1, . . . , x − cr−1, 1) and A
(r−1)
r = 2θ1 + · · · +

2θr−1 + θr + 2r − 2 ∈ Z<0. We solve for ỹ
(r−1)
r ,

W (y(r−1)
r , ỹ(r−1)

r ) = T (r−1)
r (y

(r−1)
r−1 )2 = xA

(r−1)
r (x− cr−1)2.
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This implies

ỹ(r−1)
r =

−xA
(r−1)
r +1

A
(r−1)
r + 3

(
x2 − 2(A

(r−1)
r + 3)

A
(r−1)
r + 2

cr−1x+
A

(r−1)
r + 3

A
(r−1)
r + 1

c2
r−1

)
.

Therefore, after performing the reproduction procedure in r-th direction to y(r−1), we

obtain the r-tuple y(r+1) = (x− c1, . . . , x− cr−1, (x− ar)(x− br)), where

arbr =
A

(r−1)
r + 3

A
(r−1)
r + 1

c2
r−1 =

(
r−1∏
j=1

θ1 + · · ·+ θj + j + 1

θ1 + · · ·+ θj + j

)2

2θ1 + · · ·+ 2θr−1 + θr + 2r + 1

2θ1 + · · ·+ 2θr−1 + θr + 2r − 1
.

For l such that r + 2 6 l 6 2r, let k = 2r − l, then y(2r−k) = (x − c1, . . . , x −

ck, (x− ak+1)(x− bk+1), . . . , (x− ar)(x− br)) and A
(2r−k−1)
k = θ1 + · · ·+ θk + 2θk+1 +

· · ·+ 2θr−1 + θr + 2r − k − 2 ∈ Z<0.

We have

W (y
(2r−k)
k , ỹ

(2r−k)
k ) = xA

(2r−k−1)
k y

(2r−k)
k−1 y

(2r−k)
k+1 ,

substituting −(A
(2r−k−1)
k + 2)ỹ

(2r−k)
k = xA

(2r−k−1)
k +1(x− ak)(x− bk), we get

(A
(2r−k−1)
k + 1)(x− ck)(x− ak)(x− bk) + x(x− ck)(x− ak)

+ x(x− ck)(x− bk)− x(x− ak)(x− bk) (2.3.3)

=(A
(2r−k−1)
k + 2)(x− ak+1)(x− bk+1)(x− ck−1).

Substituting x = 0 into (2.3.3), we obtain

(A
(2r−k−1)
k + 1)ckakbk = (A

(2r−k−1)
k + 2)ck−1ak+1bk+1. (2.3.4)

It results in

akbk =cr−1ck−1
2θ1 + · · ·+ 2θr−1 + θr + 2r + 1

2θ1 + · · ·+ 2θr−1 + θr + 2r − 1

×
r−k∏
i=1

(θ1 + · · ·+ θr−1) + (θr + θr−1 + · · ·+ θr+1−i) + r + i

(θ1 + · · ·+ θr−1) + (θr + θr−1 + · · ·+ θr+1−i) + r + i− 1

=
2θ1 + · · ·+ 2θr−1 + θr + 2r + 1

2θ1 + · · ·+ 2θr−1 + θr + 2r − 1

r−1∏
j=1

θ1 + · · ·+ θj + j + 1

θ1 + · · ·+ θj + j

k−1∏
j=1

θ1 + · · ·+ θj + j + 1

θ1 + · · ·+ θj + j

×
r−k∏
i=1

(θ1 + · · ·+ θr−1) + (θr + θr−1 + · · ·+ θr+1−i) + r + i

(θ1 + · · ·+ θr−1) + (θr + θr−1 + · · ·+ θr+1−i) + r + i− 1
. (2.3.5)
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The Formula for ak + bk in Terms of θ

Comparing the coefficient of x2 in (2.3.3), we obtain

(A
(2r−k−1)
k + 1)(ak + bk + ck) + 2ck = (A

(2r−k−1)
k + 2)(ak+1 + bk+1 + ck−1). (2.3.6)

Comparing the coefficient of x in (2.3.3), we obtain

(A
(2r−k−1)
k + 1)(ck(ak + bk) + akbk) + ck(ak + bk)− akbk

=(A
(2r−k−1)
k + 2)(ck−1(ak+1 + bk+1) + ak+1bk+1). (2.3.7)

Solving (2.3.6) and (2.3.7) for ak + bk, one has

ak + bk =
(A

(2r−k−1)
k + 2)(ak+1bk+1 − c2

k−1) + (A
(2r−k−1)
k + 3)ck−1ck − A(2r−k−1)

k akbk

(A
(2r−k−1)
k + 2)ck − (A

(2r−k−1)
k + 1)ck−1

.

This gives the explicit formulas,

ak + bk =
2θ1 + · · ·+ 2θr−1 + 2r + 1

2θ1 + · · ·+ 2θr−1 + 2r

k−1∏
j=1

θ1 + · · ·+ θj + j + 1

θ1 + · · ·+ θj + j

×

(
1 +

r−1∏
j=k

θ1 + · · ·+ θj + j + 1

θ1 + · · ·+ θj + j
×

r−1∏
j=k

θ1 + · · ·+ θj + 2θj+1 + · · ·+ 2θr−1 + θr + 2r − k
θ1 + · · ·+ θj + 2θj+1 + · · ·+ 2θr−1 + θr + 2r − k − 1

)
.

These solutions indeed satisfy (2.3.3) for each k. This can be checked by a direct

computation.

Final Formulas

We use Lemma 2.3.5 to express θi by λj. Here are the final formulas.

If l < r, then

c
(l)
j =

j∏
i=1

λi + · · ·+ λl + l − i
λi + · · ·+ λl + l − i+ 1

, j = 1, . . . , l. (2.3.8)

We also borrow from [MV00] the l = r result.
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c
(r)
j =

j∏
i=1

λi + · · ·+ λr−1 + λr/2 + r − i
λi + · · ·+ λr−1 + λr/2 + r − i+ 1

, j = 1, . . . , r. (2.3.9)

If l > r + 1, then

c
(l)
k =

k∏
j=1

λj + · · ·+ λ2r−l + 2λ2r−l+1 + · · ·+ 2λr−1 + λr + l − j − 1

λj + · · ·+ λ2r−l + 2λ2r−l+1 + · · ·+ 2λr−1 + λr + l − j
, (2.3.10)

for k = 1, . . . , 2r − l. Finally, for 2r − l + 1 6 k 6 r, we have

a
(l)
k b

(l)
k =

(
2r−l∏
j=1

λj + · · ·+ λ2r−l + 2λ2r−l+1 + · · ·+ 2λr−1 + λr + l − j − 1

λj + · · ·+ λ2r−l + 2λ2r−l+1 + · · ·+ 2λr−1 + λr + l − j

)2

×
r−1∏

j=2r−l+1

λ2r−l+1 + · · ·+ λj + 2λj+1 + · · ·+ 2λr−1 + λr + l − j − 2

λ2r−l+1 + · · ·+ λj + 2λj+1 + · · ·+ 2λr−1 + λr + l − j − 1

×
k−1∏

j=2r−l+1

λ2r−l+1 + · · ·+ λj + 2λj+1 + · · ·+ 2λr−1 + λr + l − j − 2

λ2r−l+1 + · · ·+ λj + 2λj+1 + · · ·+ 2λr−1 + λr + l − j − 1

×
r−k∏
i=1

λ2r−l+1 + · · ·+ λr−i + l − r − i− 1

λ2r−l+1 + · · ·+ λr−i + l − r − i

× 2λ2r−l+1 + · · ·+ 2λr−1 + λr + 2l − 2r − 3

2λ2r−l+1 + · · ·+ 2λr−1 + λr + 2l − 2r − 1
, (2.3.11)

and

a
(l)
k + b

(l)
k =

2λ2r−l+1 + · · ·+ 2λr−1 + λr + 2l − 2r − 3

2λ2r−l+1 + · · ·+ 2λr−1 + λr + 2l − 2r − 2

×
2r−l∏
j=1

λj + · · ·+ λ2r−l + 2λ2r−l+1 + · · ·+ 2λr−1 + λr + l − j − 1

λj + · · ·+ λ2r−l + 2λ2r−l+1 + · · ·+ 2λr−1 + λr + l − j

×

(
k−1∏

j=2r−l+1

λ2r−l+1 + · · ·+ λj + 2λj+1 + · · ·+ 2λr−1 + λr + l − j − 2

λ2r−l+1 + · · ·+ λj + 2λj+1 + · · ·+ 2λr−1 + λr + l − j − 1

+
r−1∏

j=2r−l+1

λ2r−l+1 + · · ·+ λj + 2λj+1 + · · ·+ 2λr−1 + λr + l − j − 2

λ2r−l+1 + · · ·+ λj + 2λj+1 + · · ·+ 2λr−1 + λr + l − j − 1

×
r−k∏
i=1

λ2r−l+1 + · · ·+ λr−i + l − r − i− 1

λ2r−l+1 + · · ·+ λr−i + l − r − i

)
. (2.3.12)



34

The Solutions Are Generic

In this section we show the solutions are generic.

Theorem 2.3.9. Suppose λ ∈ P+ and l is admissible, then y(l) in Section 2.3.5

represents a critical point associated to Λ = (λ, ω1), z = (0, 1), and l.

Proof. It is sufficient to show that y is generic with respect to Λ, z.

Let us first consider G2. For λ ∈ P+, G2 is equivalent to y
(l)
1 (1) 6= 0 and

y
(l)
i (0) 6= 0 if λi 6= 0.

If l 6 r− 1, then the admissibility of l implies λl > 0. To prove G2, it suffices to

show c
(l)
j 6= 0 if λl 6= 0 and c

(l)
1 6= 1, see (2.3.8). Note that if λl > 0, then

0 <
λi + · · ·+ λl + l − i

λi + · · ·+ λl + l − i+ 1
< 1

for all i ∈ {1, . . . , l}, therefore all c
(l)
j ∈ (0, 1).

If l = r, this is similar to the previous situation.

If l = r + 1, the admissibility of l implies λr > 2. G2 is obviously true.

If l > r + 2, the admissibility of l implies λ2r−l+1 > 0. One has y
(l)
k (0) 6= 0 since

we have a
(l)
k b

(l)
k 6= 0. As for y

(l)
1 (1) 6= 0 in the case l = 2r, we delay the proof until

after the case G1.

Now, we consider G1. Suppose a
(l)
k = b

(l)
k for some 2r − l + 1 6 k 6 r. Observe

that

W (y
(l)
k , ỹ

(l)
k ) = T

(l)
k y

(l)
k−1y

(l)
k+1.

By G2, y
(l)
k and T

(l)
k have no common roots. In addition if l = 2r and k = 1, we have

y
(l)
1 (1) = 0, then a

(l)
1 b

(l)
1 = 1, while as above we have a

(l)
1 b

(l)
1 ∈ (0, 1). It follows that

we must have a
(l)
k = a

(l)
k+1 or a

(l)
k = a

(l)
k−1(a

(l)
k = c

(l)
k−1, if k = 2r − l + 1).

We work in terms of θ. We have ak = bk = ak+1 or ak = bk = ak−1 or a2r−l+1 =

c2r−l. If ak = bk = ak+1, then substituting x = ck into (2.3.3), we get

−ck(ck − ak+1) = (ck − bk+1)(ck − ck−1)(A
(2r−k−1)
k + 2). (2.3.13)
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Solving (2.3.4) and (2.3.13) for ak+1 = ak = bk and bk+1 in terms of ck, ck−1 and

A
(2r−k−1)
k , we obtain

ak+1bk+1 = (A
(2r−k−1)
k +2)(A

(2r−k−1)
k +1)ck−1ck

(
(A

(2r−k−1)
k + 3)ck − (A

(2r−k−1)
k + 2)ck−1

(A
(2r−k−1)
k + 1)ck − A(2r−k−1)

k ck−1

)2

.

Comparing it with (2.3.5) and canceling common factors, we obtain

(A
(2r−k−1)
k + 2)(A

(2r−k−1)
k + 1)

2θ1 + · · ·+ 2θr−1 + θr + 2r + 1

2θ1 + · · ·+ 2θr−1 + θr + 2r − 1

=
r∏
i=k

θ1 + · · ·+ θi + i+ 1

θ1 + · · ·+ θi + i

r−1∏
i=k+2

θ1 + · · ·+ θi−1 + 2θi + · · ·+ 2θr−1 + θr + 2r − i+ 1

θ1 + · · ·+ θi−1 + 2θi + · · ·+ 2θr−1 + θr + 2r − i
.

Substituting θi in terms of λj, we have

(λ2r−l+1 + · · ·+ λk + k + l − 2r − 1)(λ2r−l+1 + · · ·+ λk + k + l − 2r)

× 2λ2r−l+1 + · · ·+ 2λr−1 + λr + 2l − 2r − 3

2λ2r−l+1 + · · ·+ 2λr−1 + λr + 2l − 2r − 1

=
r−1∏
j=k

λ2r−l+1 + · · ·+ λj + 2λj+1 + · · ·+ 2λr−1 + λr + l − j − 2

λ2r−l+1 + · · ·+ λj + 2λj+1 + · · ·+ 2λr−1 + λr + l − j − 1

×
r−k−1∏
i=1

λ2r−l+1 + · · ·+ λr−i + l − r − i− 1

λ2r−l+1 + · · ·+ λr−i + l − r − i
. (2.3.14)

By our assumption, we have λ2r−l+1 > 1, k > 2r − l + 1 and l > r + 2. It is easily

seen that

(λ2r−l+1 + · · ·+ λk + k + l − 2r − 1)(λ2r−l+1 + · · ·+ λk + k + l − 2r)

× 2λ2r−l+1 + · · ·+ 2λr−1 + λr + 2l − 2r − 3

2λ2r−l+1 + · · ·+ 2λr−1 + λr + 2l − 2r − 1
> 1× 2× 3

5
> 1.

Therefore (2.3.14) is impossible. Similarly, we can exclude a
(l)
k = a

(l)
k−1. As for

a
(l)
2r−l+1 = c

(l)
2r−l, by (2.3.4), it is impossible since each fractional factor is strictly

less than 1.

Finally, we prove G3. The nontrivial cases are a
(l)
k = a

(l)
k+1 and a

(l)
2r−l+1 = c

(l)
2r−l for

l > r + 1, where k > 2r − l + 1.

If ak = ak+1, then by (2.3.3) we have that x− ak divides x(x− ck)(x− bk). As we

already proved ak 6= bk and ak 6= 0, it follows that ak = ck. This again implies that
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(x−ak)2 divides (x−ak+1)(x−bk+1)(x−ck−1) as A
(2r−k+1)
k +2 6= 0. If bk+1 = ak = ak+1,

then we are done. If ak = ck−1, then ck−1 = ck. It is impossible by the argument used

in G2.

If ak = ck−1, then by (2.3.3) one has x − ak divides x(x − ck)(x − bk). Since l is

admissible, a
(l)
k 6= 0. Then ak 6= bk implies ck−1 = ck. It is also a contradiction.

In particular, this shows that y
(l)
1 and y

(l)
0 have no common roots, i.e., y

(l)
1 (1) 6=

0.

Corollary 2.3.10. Suppose λ ∈ P+. Then the Bethe ansatz equation (2.2.2) associ-

ated to Λ, z, l, where l is admissible, has exactly one solution. Explicitly, for l 6 r−1,

the corresponding r-tuple y(l) which represents the solution is described by (2.3.8), for

l = r by (2.3.9), for 2r > l > r + 1 by (2.3.10), (2.3.11) and (2.3.12). �

2.3.6 Associated Differential Operators for Type B

Let y be an r-tuple of quasi-polynomials. Following [MV04], we introduce a linear

differential operator D(y) of order 2r by the formula

Dλ(y) =

(
∂ − ln′

(
T 2

1 . . . T
2
r−1Tr

y1

))(
∂ − ln′

(
y1T

2
1 . . . T

2
r−1Tr

y2T1

))
×
(
∂ − ln′

(
y2T

2
1 . . . T

2
r−1Tr

y3T1T2

))
. . .

(
∂ − ln′

(
yr−1T1 . . . Tr−1Tr

yr

))
×
(
∂ − ln′

(
yrT1 . . . Tr−1

yr−1

))(
∂ − ln′

(
yr−1T1 . . . Tr−2

yr−2

))
. . .

× (∂ − ln′(y1)),

where Ti, i = 1, . . . , r, are given by (2.2.4).

If y is an r-tuple of polynomials representing a critical point associated to integral

dominant weights Λ1, . . . ,Λn and points z1, . . . , zn of type Br, then by [MV04], the

kernel of Dλ(y) is a self-dual space of polynomials. By [MM17] the coefficients of

Dλ(y) are eigenvalues of higher Gaudin Hamiltonians acting on the Bethe vector

related to y.

For admissible l and λ ∈ h∗, define alλ(1), . . . , alλ(r) as the following.
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For l = 0, . . . , r − 1, i = 1, . . . , l, set alλ(i) = λi + · · · + λl + l + 1 − i. For

l = 0, . . . , r − 1, i = l + 1, . . . , r, set alλ(i) = 0.

For l = r + 1, . . . , 2r, set k = 2r − l. Then for i = 1, . . . , k, set

alλ(i) = λi + · · ·+ λk + 2λk+1 + · · ·+ 2λr−1 + λr + 2r − k − i

and for i = k + 1, . . . , r, set alλ(i) = 2λk+1 + · · ·+ 2λr−1 + λr + 2r − 2k − 1.

Proposition 2.3.11. Let the r-tuple y represent the solution of the Bethe ansatz

equation (2.2.2) associated to Λ, z and admissible l, where λ ∈ P+ and l 6= r. Then

Dλ(y) = Dλ(x
alλ(1), . . . , xa

l
λ(r)).

Proof. The (2r − 1)-tuple (y1, . . . , yr−1, yr, yr−1, . . . , y1) represents a critical point of

type A2r−1. Then the reproduction procedure in direction i of type Br corresponds

to a composition of reproduction procedures of type A2r−1 in directions i and 2r − i

for i = 1, . . . , r − 1, and to reproduction procedure of type A2r−1 in direction r for

i = r, see [MV04], [MV07]. Proposition follows from Lemma 4.2 in [MV07].

2.4 Completeness of Bethe Ansatz for Type B

In this section we continue to study the case of g = so(2r + 1). The main result

of the section is Theorem 2.4.5.

2.4.1 Completeness of Bethe Ansatz for Vλ ⊗ Vω1

Let λ ∈ P+. Consider the tensor product of a finite-dimensional irreducible

module with highest weight λ, Vλ, and the vector representation Vω1 .

Recall that the value of the weight function ω(z1, z2, t) at a solution of the Bethe

ansatz equations (2.2.2) is called the Bethe vector. We have the following result,

which is usually referred to as completeness of Bethe ansatz.

Theorem 2.4.1. The set of Bethe vectors ω(z1, z2, t), where t runs over the solu-

tions to the Bethe ansatz equations (2.2.2) with admissible length l, forms a basis of

Sing (Vλ ⊗ Vω1).
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Proof. All multiplicities in the decomposition of Vλ ⊗ Vω1 are 1. By Corollary 2.3.10

for each admissible length l we have a solution of the Bethe ansatz equation. The

theorem follows from Theorems 2.2.4 and 2.2.5.

2.4.2 Simple Spectrum of Gaudin Hamiltonians for Vλ ⊗ Vω1

We have the following standard fact.

Lemma 2.4.2. Let µ, ν ∈ P+. If µ > ν then (µ+ ρ, µ+ ρ) > (ν + ρ, ν + ρ).

Proof. The lemma follows from the proof of Lemma 13.2B in [Hum78].

Proposition 2.4.3. Let ω, ω′ ∈ Vλ⊗ Vω1 be Bethe vectors corresponding to solutions

to the Bethe ansatz equations of two different lengths. Then ω, ω′ are eigenvectors of

the Gaudin Hamiltonian H := H1 = −H2 with distinct eigenvalues.

Proof. Recall the relation

Ω(1,2) =
1

2
(∆Ω0 − 1⊗ Ω0 − Ω0 ⊗ 1) .

Since Ω0 acts as a constant in any irreducible module, 1 ⊗ Ω0 + Ω0 ⊗ 1 acts as a

constant on Vλ ⊗ Vω1 . It remains to consider the spectrum of the diagonal action of

∆Ω0. By Theorem 2.2.5, ω and ω′ are highest weight vectors of two non-isomorphic

irreducible submodules of Vλ⊗Vω1 . By Lemmas 2.2.1 and 2.4.2 the values of ∆Ω0 on

ω and ω′ are different.

2.4.3 The Generic Case

We use the following well-known lemma from algebraic geometry.

Lemma 2.4.4. Let n ∈ Z>1 and suppose f
(ε)
k (x1, . . . , xl) = 0, k = 1, . . . , n, is a

system of n algebraic equations for l complex variables x1, . . . , xl, depending on a

complex parameter ε algebraically. Let (x
(0)
1 , . . . , x

(0)
l ) be an isolated solution with
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ε = 0. Then for sufficiently small ε, there exists an isolated solution (x
(ε)
1 , . . . , x

(ε)
l ),

depending algebraically on ε, such that

x
(ε)
k = x

(0)
k + o(1).

�

Our main result is the following theorem.

Theorem 2.4.5. Let g = so(2r + 1), λ ∈ P+ and N ∈ Z>0. For a generic (N +

1)-tuple of distinct complex numbers z = (z0, z1, . . . , zN), the Gaudin Hamiltonians

(H0,H1, . . . ,HN) acting in Sing
(
Vλ ⊗ V ⊗Nω1

)
are diagonalizable and have simple joint

spectrum. Moreover, for generic z there exists a set of solutions {ti, i ∈ I} of the

Bethe ansatz equation (2.2.2) such that the corresponding Bethe vectors {ω(z, ti), i ∈

I} form a basis of Sing
(
Vλ ⊗ V ⊗Nω1

)
.

Proof. Our proof follows that of Theorem 5.2 of [MVY15], see also of Section 4

in [MV05b].

Pick distinct non-zero complex numbers z̃1, . . . , z̃N . We use Theorem 2.4.1 to

define a basis in the space of singular vectors Sing(Vλ ⊗ V ⊗Nω1
) as follows.

We call a (k+ 1)-tuple of weights µ0, µ1, . . . , µk ∈ P+ admissible if µ0 = λ and for

i = 1, . . . , k, we have a submodule Vµi ⊂ Vµi−1
⊗ Vω1 , see (2.3.1).

For an admissible tuple of weights, we define a singular vector vµ0,...,µk ∈ Vλ⊗V ⊗kω1

of weight µk using induction on k as follows. Let vµ0 = vλ be the highest weight

vector for module Vλ. Let k be such that 1 6 k 6 N . Suppose we have the singular

vector vµ0,...,µk−1
∈ Vλ ⊗ V ⊗k−1

ω1
. It generates a submodule Vµ0,...,µk−1

⊂ Vλ ⊗ V ⊗k−1
ω1

of

highest weight µk−1.

Let t̄k = (t̄
(b)
k,j), where b = 1, . . . , r and j = 1, . . . , lk,b, be the solution of the Bethe

ansatz equation associated to Vµk−1
⊗ Vω1 , z = (0, z̃k) and lk = (lk,1, . . . , lk,r) such

that µk−1 + ω1 − α(lk) = µk. Note that t̄k depends on µk−1 and µk, even though we

do not indicate this dependence explicitly. Note also that in all cases lk,b ∈ {0, 1, 2}.

Then, define vµ0,...,µk to be the Bethe vector

vµ0,...,µk = ω(0, z̃k, t̄k) ∈ Vµ0,...,µk−1
⊗ Vω1 ⊂ Vλ ⊗ V ⊗kω1

.
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We denote by Vµ0,...,µk the submodule of Vλ ⊗ V ⊗kω1
generated by vµ0,...,µk .

The vectors vµ0,...,µN ∈ Vλ ⊗ V ⊗Nω1
are called the iterated singular vectors. To each

iterated singular vector vµ0,...,µN we have an associated collection t̄ = (t̄1, . . . , t̄N)

consisting of all the Bethe roots used in its construction.

Clearly, the iterated singular vectors corresponding to all admissible (N+1)-tuples

of weights form a basis in Sing(Vλ ⊗ V ⊗Nω1
), so we have

Vλ ⊗ V ⊗Nω1
=

⊕
µ0,...,µN

Vµ0,µ1,...,µN ,

where the sum is over all admissible (N + 1)-tuples of weights.

To prove the theorem, we show that in some region of parameters z for any

admissible (N + 1)-tuple of weights µ0, . . . , µN , there exists a Bethe vector ωµ1,...,µN

which tends to vµ1,...,µN when approaching a certain point (independent on µi) on the

boundary of the region.

To construct the Bethe vector ωµ1,...,µN associated to vµ1,...,µN , we need to find a

solution to the Bethe equations associated to Vλ ⊗ V ⊗Nω1
with Bethe roots, t = (t

(b)
j ),

where b = 1, . . . , r and j = 1, . . . ,
∑N

k=1 lk,b.

We do it for z of the form

z0 = z, and zk = z + εN+1−kz̃k, k = 1, . . . , N, (2.4.1)

for sufficiently small ε ∈ C×. Here z ∈ C is an arbitrary fixed number and z̃k are as

above.

Then, similarly to t̄ we write t = (t1, . . . , tN) where tk = (t
(b)
k,j), b = 1, . . . , r and

j = 1, . . . , lk,b, is constructed in the form

t
(b)
k,j = z + εN+1−k t̃

(b)
k,j, k = 1, . . . , N, j = 1, . . . , lk,b, b = 1, . . . , r. (2.4.2)

The variables t
(b)
k,j satisfy the system of Bethe ansatz equations:

− (λ, αb)

t
(b)
k,j − z0

+
N∑
s=1

(
−2δb,1

t
(b)
k,j − zs

+

ls,b∑
q=1

(s,q) 6=(k,j)

(αb, αb)

t
(b)
k,j − t

(b)
s,q

+

ls,b+1∑
q=1

(αb, αb+1)

t
(b)
k,j − t

(b+1)
s,q

+

ls,b−1∑
q=1

(αb, αb−1)

t
(b)
k,j − t

(b−1)
s,q

 = 0 (2.4.3)
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for b = 1, . . . , r, k = 1, . . . , N , j = 1, . . . , lk,b. Here we agree that ls,0 = ls,N+1 = 0 for

all s.

Consider the leading asymptotic behavior of the Bethe ansatz equations as ε→ 0.

We claim that in the leading order, the Bethe ansatz equations for t reduce to the

Bethe ansatz equations obeyed by the variables t̄.

Consider for example the leading order of the Bethe equation for t
(1)
k,j. Note that

(λ, α1)

t
(1)
k,j − z0

+
N∑
s=1

2

t
(1)
k,j − zs

=

(
(λ, α1)

t̃
(1)
k,j

+
2(k − 1)

t̃
(1)
k,j

+
2

t̃
(1)
k,j − z̃k

+O(ε)

)
ε−N−1+k,

N∑
s=1

ls,1∑
q=1

(s,q)6=(k,j)

(α1, α1)

t
(1)
k,j − t

(1)
s,q

=

 lk,1∑
q=1
q 6=j

(α1, α1)

t̃
(1)
k,j − t̃

(1)
k,q

+
k−1∑
s=1

ls,1∑
q=1

(α1, α1)

t̃
(1)
k,j

+O(ε)

 ε−N−1+k,

and similarly

N∑
s=1

ls,2∑
q=1

(α1, α2)

t
(1)
k,j − t

(2)
s,q

=

 lk,2∑
q=1

(α1, α2)

t̃
(1)
k,j − t̃

(2)
k,q

+
k−1∑
s=1

ls,2∑
q=1

(α1, α2)

t̃
(1)
k,j

+O(ε)

 ε−N−1+k.

Then by definition of the numbers ls,b, we have

µk−1 = λ+ (k − 1)ω1 −
r∑
b=1

k−1∑
s=1

ls,b∑
q=1

αb

and, in particular,

(µk−1, α1) = (λ, α1) + 2(k − 1)−
k−1∑
s=1

(
ls,1∑
q=1

(α1, α1)−
ls,2∑
q=1

(α1, α2)

)
.

Therefore

−(µk−1, α1)

t̃
(1)
k,j

− 2

t̃
(1)
k,j − z̃k

+

lk,1∑
q=1
q 6=j

(α1, α1)

t̃
(1)
k,j − t̃

(1)
k,q

+

lk,2∑
q=1

(α1, α2)

t̃
(1)
k,j − t̃

(2)
k,q

= O(ε).

At leading order this is indeed the Bethe equation for t̄
(1)
k,j from the set of Bethe

equations for the tensor product Vµk−1
⊗ Vω1 , with the tensor factors assigned to the

points 0 and z̃k, respectively. The other equations work similarly.
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By Lemma 2.4.4 it follows that for sufficiently small ε there exists a solution to

the Bethe equations (2.4.3) of the form t̃
(a)
j,k = t̄

(a)
j,k + o(1).

Now we claim that the Bethe vector ωµ1,...,µN = ω(z, t) associated to t has leading

asymptotic behavior

ωµ1,...,µN = εK(vµ1,...,µN + o(1)), (2.4.4)

as ε→ 0, for some K. Consider the definition (2.2.3) of ω(z, t). We write ωµ1,...,µN =

w1 +w2 where w1 contains only those summands in which every factor in the denom-

inator is of the form

t
(a)
k,j − t

(b)
k,q or t

(a)
k,j − zk.

The term w2 contains terms where at least one factor is of the form t
(a)
k,j − t

(b)
s,q or

t
(a)
k,j − zs, s 6= k. After substitution using (2.4.1) and (2.4.2), one finds that

w1 =

(
N∏
k=1

r∏
j=1

(
ε−N−1+k

)lk,j) vµ1,...,µN ,

and that w2 is subleading to w1, which establishes our claim.

Consider two distinct Bethe vectors ωµ1,...,µN and ωµ′1,...,µ′N constructed as above.

By Theorem 2.2.5 both are simultaneous eigenvectors of the quadratic Gaudin Hamil-

toniansH0,H1, . . . ,HN . Let k, be the largest possible number in {1, . . . , N} such that

µi = µ′i for all i = 1, . . . , k−1. Consider the Hamiltonian Hk. When the zi are chosen

as in (2.4.1) then one finds

Hk = ε−N−1+k

(
k−1∑
j=0

Ω(k,j)

z̃k
+ o(1)

)
. (2.4.5)

The sum
∑k−1

j=0
Ω(k,j)

z̃k
coincides with the action of the quadratic Gaudin Hamiltonian

H of the spin chain Vµk−1
⊗ Vω1 with sites at 0 and z̃k, embedded in Vλ ⊗ (Vω1)⊗k via

Vµk−1
⊗ Vω1 ' Vµ1,...,µk−1

⊗ Vω1 ⊂ Vλ ⊗ (Vω1)⊗k.

Since µk 6= µ′k, vµ1,...,µk and vµ′1,...,µ′k are eigenvectors of
∑k−1

j=0
Ω(k,j)

z̃k
with distinct eigen-

values by Proposition 2.4.3. By (2.4.4) and (2.4.5), we have that the eigenvalues of

Hk on ωµ1,...,µN and ωµ′1,...,µ′N are distinct.
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The argument above establishes that the set of points z = (z0, z1, . . . , zN) for

which the Gaudin Hamiltonians are diagonalizable with joint simple spectrum is non-

empty. It is a Zariski-open set, therefore the theorem follows.

2.5 The Cases of Cr and Dr

2.5.1 The Case of Cr

Let g = sp(2r), be the simple Lie algebra of type Cr, r > 3. We have (αi, αi) = 2,

i = 1, . . . , r − 1, and (αr, αr) = 4. We work with data Λ = (λ, ω1), z = (0, 1), where

λ ∈ P+.

We have

Vλ ⊗ Vω1 =Vλ+ω1 ⊕ Vλ+ω1−α1 ⊕ · · · ⊕ Vλ+ω1−α1−···−αr

⊕ Vλ+ω1−α1−···−αr−2−2αr−1−αr ⊕ · · · ⊕ Vλ+ω1−2α1−···−2αr−1−αr

=V(λ1+1,λ2,...,λr) ⊕ V(λ1−1,λ2+1,λ3,...,λr) ⊕ V(λ1,...,λk−1,λk−1,λk+1+1,...,λr)

⊕ · · · ⊕ V(λ1,λ2,...,λr−1−1,λr+1) ⊕ V(λ1,λ2,...,λr−2,λr−1+1,λr−1)

⊕ V(λ1,λ2,...,λr−3,λr−2+1,λr−1−1,λr) ⊕ · · · ⊕ V(λ1+1,λ2−1,λ3,...,λr) ⊕ V(λ1−1,λ2,...,λr),

(2.5.1)

with the convention that the summands with non-dominant highest weights are omit-

ted. Note, in particular, all multiplicities are 1.

We call an r-tuple of integers l = (l1, . . . , lr) admissible if the Vλ+ω1−α(l) appears

in (2.5.1).

The admissible r-tuples l have the form

(1, . . . , 1︸ ︷︷ ︸
k1 ones

, 0, . . . , 0) or (1, . . . , 1︸ ︷︷ ︸
k2 ones

, 2, . . . , 2, 1), (2.5.2)

where k1 = 0, 1, . . . , r and k2 = 0, 1, . . . , r−2. In the first case the length l = l1+· · ·+lr
is k1 and in the second case 2r − k2 − 1. It follows that different admissible r-tuples

have different length and, therefore, admissible tuples l are parametrized by length

l ∈ {0, 1, . . . , 2r − 1}. We call a nonnegative integer l admissible if it is the length of
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an admissible r-tuple l. More precisely, a nonnegative integer l is admissible if l = 0

or if l 6 r, λl > 0 or if r < l 6 2r − 1, λ2r−l > 0.

Similarly to the case of type Br, see Theorem 2.3.9 and Corollary 2.3.10, we obtain

the solutions to the Bethe ansatz equations for Vλ ⊗ Vω1 .

Theorem 2.5.1. Let g = sp(2r). Let l be as in (2.5.2). If l is not admissible then the

Bethe ansatz equation (2.2.2) associated to Λ, z, l has no solutions. If l is admissible

then the Bethe ansatz equation (2.2.2) associated to Λ, z, l has exactly one solution

represented by the following r-tuple of polynomials y(l).

For l = 0, 1, . . . , r− 1, we have y(l) = (x− c(l)
1 , . . . , x− c

(l)
l , 1, . . . , 1), where c

(l)
j are

given by (2.3.8).

For l = r, we have y(l) = (x− c(r)
1 , . . . , x− c(r)

r ), where

c
(r)
j =

j∏
i=1

λi + · · ·+ λr−1 + 2λr + r + 1− i
λi + · · ·+ λr−1 + 2λr + r + 2− i

, j = 1, . . . , r − 1,

c(r)
r =

λr
λr + 1

r−1∏
i=1

λi + · · ·+ λr−1 + 2λr + r + 1− i
λi + · · ·+ λr−1 + 2λr + r + 2− i

.

For l = r + 1, . . . , 2r − 1, we have y(l) = (x− c(l)
1 , . . . , x− c

(l)
2r−l−1, (x− a

(l)
2r−l)(x−

b
(l)
2r−l), . . . , (x− a

(l)
r−1)(x− b(l)

r−1), x− c(l)
r ), where

c
(l)
j =

j∏
i=1

λi + · · ·+ λ2r−1−l + 2λ2r−l + · · ·+ 2λr + l + 1− i
λi + · · ·+ λ2r−1−l + 2λ2r−l + · · ·+ 2λr + l + 2− i

, j = 1, . . . , 2r − l − 1,

c(l)
r =

2r−l−1∏
i=1

λi + · · ·+ λ2r−1−l + 2λ2r−l + · · ·+ 2λr + l + 1− i
λi + · · ·+ λ2r−1−l + 2λ2r−l + · · ·+ 2λr + l + 2− i

×
r∏

i=2r−l

λ2r−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr + l − i
λ2r−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr + l − i+ 1

,
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a
(l)
k b

(l)
k =

(
2r−l−1∏
i=1

λi + · · ·+ λ2r−1−l + 2λ2r−l + · · ·+ 2λr + l + 1− i
λi + · · ·+ λ2r−1−l + 2λ2r−l + · · ·+ 2λr + l + 2− i

)2

×
k−1∏

i=2r−l

λ2r−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr + l − i
λ2r−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr + l − i+ 1

×
r∏

i=2r−l

λ2r−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr + l − i
λ2r−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr + l − i+ 1

×
r+1−k∏
i=1

λ2r−l + · · ·+ λr+1−i + l + 1− i− r
λ2r−l + · · ·+ λr+1−i + l + 2− i− r

and

a
(l)
k + b

(l)
k =

2r−l−1∏
i=1

λi + · · ·+ λ2r−1−l + 2λ2r−l + · · ·+ 2λr + l + 1− i
λi + · · ·+ λ2r−1−l + 2λ2r−l + · · ·+ 2λr + l + 2− i

×
k−1∏

i=2r−l

λ2r−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr + l − i
λ2r−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr + l − i+ 1

×
(

2λ2r−l + · · ·+ 2λr + 2l − 2r

2λ2r−l + · · ·+ 2λr + 2l + 1− 2r
+

2λ2r−l + · · ·+ 2λr + 2l + 2− 2r

2λ2r−l + · · ·+ 2λr + 2l + 1− 2r

×
r∏
i=k

λ2r−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr + l − i
λ2r−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr + l − i+ 1

×
r∏
i=k

λ2r−l + · · ·+ λi + l + i− 2r

λ2r−l + · · ·+ λi + l + i+ 1− 2r

)
,

for k = 2r − l, . . . , r − 1. �

Therefore, in parallel to Theorem 2.4.5, we have the completeness of Bethe ansatz.

Theorem 2.5.2. Let g = sp(2r) and λ ∈ P+. For a generic (N + 1)-tuple of distinct

complex numbers z = (z0, z1, . . . , zN), the Gaudin Hamiltonians (H0,H1, . . . ,HN)

acting in Sing
(
Vλ ⊗ V ⊗Nω1

)
are diagonalizable and have simple joint spectrum. More-

over, for generic z there exists a set of solutions {ti, i ∈ I} of the Bethe ansatz

equation (2.2.2) such that the corresponding Bethe vectors {ω(z, ti), i ∈ I} form a

basis of Sing
(
Vλ ⊗ V ⊗Nω1

)
. �
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Similarly to Section 2.3.6, following [MV04], we introduce a linear differential

operator D(y) of order 2r + 1 by the formula

Dλ(y) =

(
∂ − ln′

(
T 2

1 . . . T
2
r−1T

2
r

y1

))(
∂ − ln′

(
y1T

2
1 . . . T

2
r−1T

2
r

y2T1

))
. . .

×
(
∂ − ln′

(
yr−2T

2
1 . . . T

2
r−1T

2
r

yr−1T1 . . . Tr−2

))
. . .

(
∂ − ln′

(
yr−1T

2
1 . . . T

2
r−1T

2
r

y2
rT1 . . . Tr−1

))
× (∂ − ln′ (T1 . . . Tr))

(
∂ − ln′

(
y2
rT1 . . . Tr−1

yr−1

))
×
(
∂ − ln′

(
yr−1T1 . . . Tr−2

yr−2

))
. . .

(
∂ − ln′

(
y2T1

y1

))
(∂ − ln′(y1)),

where Ti, i = 1, . . . , r, are given by (2.2.4).

If y is an r-tuple of polynomials representing a critical point associated with

integral dominant weights Λ1, . . . ,Λn and points z1, . . . , zn of type Cr, then by [MV04],

the kernel of Dλ(y) is a self-dual space of polynomials. By [MM17] the coefficients

of Dλ(y) are eigenvalues of higher Gaudin Hamiltonians acting on the Bethe vector

related to y.

For admissible l and λ ∈ h∗, define alλ(1), . . . , alλ(r) as follows.

For l = 0, . . . , r−1, i = 1, . . . , l, set alλ(i) = λi+ · · ·+λl+ l+1−i. For l = 0, . . . , r,

i = l + 1, . . . , r, set alλ(i) = 0.

For l = r, i = 1, . . . , r − 1, set alλ(i) = λi + · · · + λr−1 + 2λr + r + 2 − i and

arλ(r) = λr + 1.

For l = r + 1, . . . , 2r − 1, set k = 2r − l − 1. Then for i = 1, . . . , k, set

alλ(i) = λi + · · ·+ λk + 2λk+1 + · · ·+ 2λr−1 + 2λr + 2r + 1− k − i

and for i = k + 1, . . . , r − 1, set alλ(i) = 2λk+1 + · · · + 2λr−1 + 2λr + 2r − 2k and

alλ(r) = λk+1 + · · ·+ λr−1 + λr + r − k.

Proposition 2.5.3. Let the r-tuple y represent the solution of the Bethe ansatz equa-

tion (2.2.2) associated to Λ, z and admissible l, where λ ∈ P+. Then Dλ(y) =

Dλ(x
alλ(1), . . . , xa

l
λ(r)).



47

2.5.2 The Case of Dr

Let g = so(2r) be the simple Lie algebra of type Dr, where r > 4. We have

(αi, αi) = 2, i = 1, . . . , r, (αi, αi−1) = 1, i = 1, . . . , r − 1, and (αr, αr−2) = 1,

(αr, αr−1) = 0. We work with data Λ = (λ, ω1), z = (0, 1), where λ ∈ P+.

We have

Vλ ⊗ Vω1 =Vλ+ω1 ⊕ Vλ+ω1−α1 ⊕ · · · ⊕ Vλ+ω1−α1−···−αr ⊕ Vλ+ω1−α1−···−αr−2−αr

⊕ Vλ+ω1−α1−···−αr−3−2αr−2−αr−1−αr ⊕ · · · ⊕ Vλ+ω1−2α1−···−2αr−2−αr−1−αr

=V(λ1+1,λ2,...,λr) ⊕ V(λ1−1,λ2+1,λ3,...,λr) ⊕ · · · ⊕ V(λ1,...,λk−1,λk−1,λk+1+1,λk+2,...,λr)

⊕ · · · ⊕ V(λ1,λ2,...,λr−2−1,λr−1+1,λr+1) ⊕ V(λ1,λ2,...,λr−2,λr−1−1,λr+1)

⊕ V(λ1,λ2,...,λr−2+1,λr−1−1,λr−1) ⊕ V(λ1,λ2,...,λr−2,λr−1+1,λr−1)

⊕ V(λ1,λ2,...,λr−4,λr−3+1,λr−2−1,λr−1,λr) ⊕ · · · ⊕ V(λ1,...,λk−2,λk−1+1,λk−1,λk+1,...,λr)

⊕ · · · ⊕ V(λ1+1,λ2−1,λ3,...,λr) ⊕ V(λ1−1,λ2,...,λr), (2.5.3)

with the convention that the summands with non-dominant highest weights are omit-

ted. Note, in particular, all multiplicities are 1.

We call an r-tuple of integers l = (l1, . . . , lr) admissible if the Vλ+ω1−α(l) appears

in (2.5.3).

The admissible r-tuple l have the form

(1, . . . , 1︸ ︷︷ ︸
k1 ones

, 0, . . . , 0) or (1, . . . , 1︸ ︷︷ ︸
r−2 ones

, 1, 0) or (1, . . . , 1︸ ︷︷ ︸
r−2 ones

, 0, 1) or (1, . . . , 1︸ ︷︷ ︸
k2 ones

, 2, . . . , 2, 1, 1),

(2.5.4)

where k1 = 0, . . . , r − 2, r and k2 = 0, . . . , r − 2. In the first case the length l =

l1 + · · ·+ lr is k1, in the second and third cases r− 1 and in the forth case 2r−k2− 2.

It follows that different admissible r-tuples in the first and forth cases have different

length and, therefore, admissible tuples l of these types are parametrized by length l ∈

{0, 1, . . . , r−2, r, . . . , 2r−2}. We denote the lengths in the second and third cases by

r−1 and r − 1, respectively. More precisely, for l ∈ {0, 1, . . . , r−1, r − 1, r, . . . , 2r−2},

l is a length of an admissible r-tuple l if l = 0 or l 6 r − 1, λl > 0 or if l = r − 1,
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λr > 0 or if l = r, λr−1 > 0 and λr > 0 or if l > r + 1, λ2r−l−1 > 0. We call such l

admissible.

Similarly to the case of type Br, see Theorem 2.3.9 and Corollary 2.3.10, we obtain

the solutions to Bethe ansatz equations for Vλ ⊗ Vω1 .

Theorem 2.5.4. Let g = so(2r). Let l be as in (2.5.4). If l is not admissible then the

Bethe ansatz equation (2.2.2) associated to Λ, z, l has no solutions. If l is admissible

then the Bethe ansatz equation (2.2.2) associated to Λ, z, l has exactly one solution

represented by the following r-tuple of polynomials y(l).

For l = 0, 1, . . . , r− 1, we have y(l) = (x− c(l)
1 , . . . , x− c

(l)
l , 1, . . . , 1), where c

(l)
j are

given by (2.3.8).

For l = r − 1, we have y(r−1) = (x− c(r−1)
1 , . . . , x− c(r−1)

r−2 , 1, x− c(r−1)
r ), where

c
(r−1)
j =

j∏
i=1

λi + · · ·+ λr−2 + λr + r − 1− i
λi + · · ·+ λr−2 + λr + r − i

, j = 1, . . . , r − 2,

and

c(r−1)
r =

λr
λr + 1

r−2∏
i=1

λi + · · ·+ λr−2 + λr + r − 1− i
λi + · · ·+ λr−2 + λr + r − i

.

For l = r, we have y(r) = (x− c(r)
1 , . . . , x− c(r)

r ), where

c
(r)
j =

j∏
i=1

λi + · · ·+ λr + r − i
λi + · · ·+ λr + r + 1− i

, j = 1, . . . , r − 2,

c
(r)
r−1 =

λr−1

λr−1 + 1

r−2∏
i=1

λi + · · ·+ λr + r − i
λi + · · ·+ λr + r + 1− i

,

and

c(r)
r =

λr
λr + 1

r−2∏
i=1

λi + · · ·+ λr + r − i
λi + · · ·+ λr + r + 1− i

.

For l = r + 1, . . . , 2r − 2, we have

y(l) = (x− c(l)
1 , . . . , x− c

(l)
2r−l−2, (x− a(l)

2r−l−1)(x− b(l)
2r−l−1), . . . ,

(x− a(l)
r−2)(x− b(l)

r−2), x− c(l)
r−1, x− c(l)

r ),
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where

c
(l)
j =

j∏
i=1

λi + · · ·+ λ2r−2−l + 2λ2r−l−1 + · · ·+ 2λr−2 + λr−1 + λr + l − i
λi + · · ·+ λ2r−2−l + 2λ2r−l−1 + · · ·+ 2λr−2 + λr−1 + λr + l + 1− i

,

j = 1, . . . , 2r − l − 2,

c
(l)
r−1 =

2r−2−l∏
i=1

λi + · · ·+ λ2r−2−l + 2λ2r−l−1 + · · ·+ 2λr−2 + λr−1 + λr + l − i
λi + · · ·+ λ2r−2−l + 2λ2r−l−1 + · · ·+ 2λr−2 + λr−1 + λr + l + 1− i

×
r−2∏

i=2r−1−l

λ2r−1−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr−2 + λr−1 + λr + l − i− 1

λ2r−1−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr−2 + λr−1 + λr + l − i

× λ2r−1−l + · · ·+ λr−2 + λr−1 + l − r
λ2r−1−l + · · ·+ λr−2 + λr−1 + l − r + 1

,

c(l)
r =

2r−2−l∏
i=1

λi + · · ·+ λ2r−2−l + 2λ2r−l−1 + · · ·+ 2λr−2 + λr−1 + λr + l − i
λi + · · ·+ λ2r−2−l + 2λ2r−l−1 + · · ·+ 2λr−2 + λr−1 + λr + l + 1− i

×
r−2∏

i=2r−1−l

λ2r−1−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr−2 + λr−1 + λr + l − i− 1

λ2r−1−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr−2 + λr−1 + λr + l − i

× λ2r−1−l + · · ·+ λr−2 + λr + l − r
λ2r−1−l + · · ·+ λr−2 + λr + l − r + 1

,

a
(l)
k b

(l)
k =

(
2r−l−2∏
i=1

λi + · · ·+ λ2r−2−l + 2λ2r−l−1 + · · ·+ 2λr−2 + λr−1 + λr + l − i
λi + · · ·+ λ2r−2−l + 2λ2r−l−1 + · · ·+ 2λr−2 + λr−1 + λr + l − i+ 1

)2

×
r−2∏

i=2r−1−l

λ2r−1−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr−2 + λr−1 + λr + l − i− 1

λ2r−1−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr−2 + λr−1 + λr + l − i

×
k−1∏

i=2r−1−l

λ2r−1−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr−2 + λr−1 + λr + l − i− 1

λ2r−1−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr−2 + λr−1 + λr + l − i

×
r−2∏
i=k

λ2r−l−1 + · · ·+ λi + l + i+ 1− 2r

λ2r−l−1 + · · ·+ λi + l + i+ 2− 2r

× λ2r−1−l + · · ·+ λr−2 + λr−1 + l − r
λ2r−1−l + · · ·+ λr−2 + λr−1 + l − r + 1

· λ2r−1−l + · · ·+ λr−2 + λr + l − r
λ2r−1−l + · · ·+ λr−2 + λr + l − r + 1

,

and
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a
(l)
k + b

(l)
k =

2r−l−2∏
i=1

λi + · · ·+ λ2r−2−l + 2λ2r−l−1 + · · ·+ 2λr−2 + λr−1 + λr + l − i
λi + · · ·+ λ2r−2−l + 2λ2r−l−1 + · · ·+ 2λr−2 + λr−1 + λr + l − i+ 1

×
k−1∏

i=2r−1−l

λ2r−1−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr−2 + λr−1 + λr + l − i− 1

λ2r−1−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr−2 + λr−1 + λr + l − i

×
(

2λ2r−l−1 + · · ·+ 2λr−2 + λr−1 + λr + 2l − 2r

2λ2r−l−1 + · · ·+ 2λr−2 + λr−1 + λr + 2l − 2r + 1

+
2λ2r−l−1 + · · ·+ 2λr−2 + λr−1 + λr + 2l − 2r + 2

2λ2r−l−1 + · · ·+ 2λr−2 + λr−1 + λr + 2l − 2r + 1

×
r−2∏
i=k

λ2r−1−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr−2 + λr−1 + λr + l − i− 1

λ2r−1−l + · · ·+ λi + 2λi+1 + · · ·+ 2λr−2 + λr−1 + λr + l − i

× λ2r−1−l + · · ·+ λr−2 + λr−1 + l − r
λ2r−1−l + · · ·+ λr−2 + λr−1 + l − r + 1

· λ2r−1−l + · · ·+ λr−2 + λr + l − r
λ2r−1−l + · · ·+ λr−2 + λr + l − r + 1

×
r−2∏
i=k

λ2r−l−1 + · · ·+ λi + l + i+ 1− 2r

λ2r−l−1 + · · ·+ λi + l + i+ 2− 2r

)
,

k = 2r − 1− l, . . . , r − 2. �

Note that the formulas above with r = 3 correspond to solutions of the Bethe

ansatz equations of type A3 and Λ = (λ, ω2). These formulas were given in Theorem

5.5, [MV05b].

Then we deduce the analog of Theorem 2.4.5.

Theorem 2.5.5. Let g = so(2r) and λ ∈ P+. For a generic (N + 1)-tuple of distinct

complex numbers z = (z0, z1, . . . , zN), the Gaudin Hamiltonians (H0,H1, . . . ,HN)

acting in Sing
(
Vλ ⊗ V ⊗Nω1

)
are diagonalizable. Moreover, for generic z there exists

a set of solutions {ti, i ∈ I} of the Bethe ansatz equation (2.2.2) such that the

corresponding Bethe vectors {ω(z, ti), i ∈ I} form a basis of Sing
(
Vλ ⊗ V ⊗Nω1

)
. �

For type D, the algebra has a non-trivial diagram automorphism which leads to

degeneracy of the spectrum. For example, if λr−1 = λr, then the Bethe vectors

corresponding to the critical points y(r−1) and y(r−1) are eigenvectors of the Gaudin

Hamiltonian H := H1 = −H2 with the same eigenvalue. In particular Proposition

2.4.3 is not applicable since the two corresponding summands in (2.5.3) have non-

comparable highest weights.
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3. SELF-DUAL GRASSMANNIAN, WRONSKI MAP,

AND REPRESENTATIONS OF glN , sp2r, so2r+1

3.1 Introduction

Grassmannian Gr(N, d) of N -dimensional subspaces of the complex d-dimensional

vector space has the standard stratification by Schubert cells Ωλ labeled by partitions

λ = (d − N > λ1 > . . . > λN > 0). A Schubert cycle is the closure of a cell Ωλ.

It is well known that the Schubert cycle Ωλ is the union of the cells Ωξ such that

the Young diagram of λ is inscribed into the Young diagram of ξ. This stratification

depends on a choice of a full flag in the d-dimensional space.

In this paper we introduce a new stratification of Gr(N, d) governed by repre-

sentation theory of glN and called the glN -stratification, see Theorem 3.3.5. The

glN -strata ΩΛ are labeled by unordered sets Λ = (λ(1), . . . , λ(n)) of nonzero partitions

λ(i) = (d−N > λ
(i)
1 > . . . > λ

(i)
N > 0) such that

(⊗ni=1Vλ(i))slN 6= 0,
n∑
i=1

N∑
j=1

λ
(i)
j = N(d−N), (3.1.1)

where Vλ(i) is the irreducible glN -module with highest weight λ(i). We have dim ΩΛ =

n. We call the closure of a stratum ΩΛ in Gr(N, d) a glN -cycle. The glN -cycle ΩΛ

is an algebraic set in Gr(N, d). We show that ΩΛ is the union of the strata ΩΞ,

Ξ = (ξ(1), . . . , ξ(m)), such that there is a partition {I1, . . . , Im} of {1, 2, . . . , n} with

HomglN (Vξ(i) ,⊗j∈IiVλ(j)

)
6= 0 for i = 1, . . . ,m, see Theorem 3.3.8.

Thus we have a partial order on the set of sequences of partitions satisfying

(3.1.1). Namely Λ > Ξ if there is a partition {I1, . . . , Im} of {1, 2, . . . , n} with

HomglN (Vξ(i) ,⊗j∈IiVλ(j)

)
6= 0 for i = 1, . . . ,m. An example of the corresponding graph

is given in Example 3.3.9. The glN -stratification can be viewed as the geometrization

of this partial order.
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Let us describe the construction of the strata in more detail. We identify the

Grassmannian Gr(N, d) with the Grassmannian of N -dimensional subspaces of the

d-dimensional space Cd[x] of polynomials in x of degree less than d. In other words,

we always assume that for X ∈ Gr(N, d), we have X ⊂ Cd[x]. Set P1 = C ∪ {∞}.

Then, for any z ∈ P1, we have the osculating flag F(z), see (3.3.3), (3.3.4). Denote

the Schubert cells corresponding to F(z) by Ωλ(F(z)). Then the stratum ΩΛ consists

of spaces X ∈ Gr(N, d) such that X belongs to the intersection of Schubert cells

Ωλ(i)(F(zi)) for some choice of distinct zi ∈ P1:

ΩΛ =
⋃

z1,...,zn
zi 6=zj

( n⋂
i=1

Ωλ(i)(F(zi))
)
⊂ Gr(N, d).

A stratum ΩΛ is a ramified covering over (P1)n without diagonals quotient by the

free action of an appropriate symmetric group, see Proposition 3.3.4. The degree of

the covering is dim(⊗ni=1Vλ(i))slN .

For example, if N = 1, then Gr(1, d) is the (d − 1)-dimensional projective space

of the vector space Cd[x]. The strata Ωm are labeled by unordered sets m =

(m1, . . . ,mn) of positive integers such that m1 + · · ·+mn = d−1. A stratum Ωm con-

sists of all polynomials f(x) which have n distinct zeros of multiplicities m1, . . . ,mn.

In this stratum we also include the polynomials of degree d−1−mi with n−1 distinct

roots of multiplicities m1, . . . ,mi−1,mi+1, . . . ,mn. We interpret these polynomials as

having a zero of multiplicity mi at infinity. The stratum Ω(1,...,1) is open in Gr(1, d).

The union of other strata is classically called the swallowtail and the gl1-stratification

is the standard stratification of the swallowtail, see for example Section 2.5 of Part 1

of [AGZV85].

The glN -stratification of Gr(N, d) agrees with the Wronski map

Wr : Gr(N, d)→ Gr(1, N(d−N) + 1)

which sends an N -dimensional subspace of polynomials to its Wronskian

det(di−1fj/dx
i−1)Ni,j=1,
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where f1(x), . . . , fN(x) is a basis of the subspace. For any gl1-stratum Ωm of Grass-

mannian Gr(1, N(d − N) + 1), the preimage of Ωm under the Wronski map is the

union of glN -strata of Gr(N, d) and the restriction of the Wronski map to each of those

strata ΩΛ is a ramified covering over Ωm of degree b(Λ) dim(⊗ni=1Vλ(i))slN , where b(Λ)

is some combinatorial symmetry coefficient of Λ, see (3.3.9).

The main goal of this paper is to develop a similar picture for the new object

sGr(N, d) ⊂ Gr(N, d), called self-dual Grassmannian. Let X ∈ Gr(N, d) be an N -

dimensional subspace of polynomials in x. Let X∨ be the N -dimensional space of

polynomials which are Wronski determinants of N − 1 elements of X:

X∨ = {det
(
di−1fj/dx

i−1
)N−1

i,j=1
, fj(x) ∈ X}.

The space X is called self-dual if X∨ = g ·X for some polynomial g(x), see [MV04].

We define sGr(N, d) as the subset of Gr(N, d) of all self-dual spaces. It is an algebraic

set.

The main result of this paper is the stratification of sGr(N, d) governed by repre-

sentation theory of the Lie algebras g2r+1 := sp2r if N = 2r + 1 and g2r := so2r+1 if

N = 2r. This stratification of sGr(N, d) is called the gN -stratification, see Theorem

3.4.11.

The gN -stratification of sGr(N, d) consists of gN -strata sΩΛ,k labeled by unordered

sets of dominant integral gN -weights Λ = (λ(1), . . . , λ(n)), equipped with nonnegative

integer labels k = (k1, . . . , kn), such that (⊗ni=1Vλ(i))gN 6= 0 and satisfying a condition

similar to the second equation in (3.1.1), see Section 3.4.3. Here Vλ(i) is the irreducible

gN -module with highest weight λ(i). Different liftings of an slN -weight to a glN -weight

differ by a vector (k, . . . , k) with integer k. Our label ki is an analog of this parameter

in the case of gN .

A gN -stratum sΩΛ,k is a ramified covering over (P1)n without diagonals quotient

by the free action of an appropriate symmetric group. The degree of the covering is

dim(⊗ni=1Vλ(i))gN and, in particular, dim sΩΛ,k = n, see Proposition 3.4.9. We call the

closure of a stratum sΩΛ,k in sGr(N, d) a gN -cycle. The gN -cycle sΩΛ,k is an algebraic
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set. We show that sΩΛ,k is the union of the strata sΩΞ,l, Ξ = (ξ(1), . . . , ξ(m)), such that

there is a partition {I1, . . . , Im} of {1, 2, . . . , n} satisfying HomgN (Vξ(i) ,⊗j∈IiVλ(j)

)
6= 0

for i = 1, . . . ,m, and the appropriate matching of labels, see Theorem 3.4.13.

If N = 2r, there is exactly one stratum of top dimension 2(d−N) = dim sGr(N, d).

For example, the so5-stratification of sGr(4, 6) consists of 9 strata of dimensions 4, 3,

3, 3, 2, 2, 2, 2, 1, see the graph of adjacencies in Example 3.4.14. If N = 2r+ 1, there

are many strata of top dimension d − N (except in the trivial cases of d = 2r + 1

and d = 2r + 2). For example, the sp4-stratification of sGr(5, 8) has four strata

of dimension 3, see Section 3.4.7. In all cases we have exactly one one-dimensional

stratum corresponding to n = 1, Λ = (0), and k = (d−N).

Essentially, we obtain the gN -stratification of sGr(N, d) by restricting the glN -

stratification of Gr(N, d) to sGr(N, d).

For X ∈ sGr(N, d), the multiplicity of every zero of the Wronskian of X is divisible

by r if N = 2r and by N if N = 2r + 1. We define the reduced Wronski map

Wr : sGr(N, d)→ Gr(1, 2(d−N)+1) if N = 2r and Wr : sGr(N, d)→ Gr(1, d−N+1)

if N = 2r+1 by sending X to the r-th root of its Wronskian if N = 2r and to the N -th

root if N = 2r+1. The gN -stratification of sGr(N, d) agrees with the reduced Wronski

map and swallowtail gl1-stratification of Gr(1, 2(d−N) + 1) or Gr(1, d−N + 1). For

any gl1-stratum Ωm the preimage of Ωm under Wr is the union of gN -strata, see

Proposition 3.4.17, and the restriction of the reduced Wronski map to each of those

strata sΩΛ,k is a ramified covering over Ωm, see Proposition 3.4.18.

Our definition of the glN -stratification is motivated by the connection to the

Gaudin model of type A, see Theorem 3.3.2. Similarly, our definition of the self-

dual Grassmannian and of the gN -stratification is motivated by the connection to the

Gaudin models of types B and C, see Theorem 3.4.5.

It is interesting to study the geometry and topology of strata, cycles, and of self-

dual Grassmannian, see Section 3.4.7.
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The exposition of the material is as follows. In Section 3.2 we introduce the

glN Bethe algebra. In Section 3.3 we describe the glN -stratification of Gr(N, d). In

Section 3.4 we define the gN -stratification of the self-dual Grassmannian sGr(N, d).

In Section 3.5 we recall the interrelations of the Lie algebras slN , so2r+1, sp2r. In

Section 3.6 we discuss g-opers and their relations to self-dual spaces. Section 3.7

contains proofs of theorems formulated in Sections 3.3 and 3.4. In Appendix A we

describe the bijection between the self-dual spaces and the set of glN Bethe vectors

fixed by the Dynkin diagram automorphism of glN .

3.2 Lie Algebras

3.2.1 Lie Algebra glN

Let eij, i, j = 1, . . . , N , be the standard generators of the Lie algebra glN , satisfy-

ing the relations [eij, esk] = δjseik − δikesj. We identify the Lie algebra slN with the

subalgebra of glN generated by the elements eii−ejj and eij for i 6= j, i, j = 1, . . . , N .

Let M be a glN -module. A vector v ∈ M has weight λ = (λ1, . . . , λN) ∈ CN if

eiiv = λiv for i = 1, . . . , N . A vector v is called singular if eijv = 0 for 1 6 i < j 6 N .

We denote by (M)λ the subspace of M of weight λ, by (M)sing the subspace of

M of all singular vectors and by (M)sing
λ the subspace of M of all singular vectors of

weight λ.

Denote by Vλ the irreducible glN -module with highest weight λ.

The glN -module V(1,0,...,0) is the standard N -dimensional vector representation of

glN , which we denote by L.

A sequence of integers λ = (λ1, . . . , λN) such that λ1 > λ2 > . . . > λN > 0 is

called a partition with at most N parts. Set |λ| =
∑N

i=1 λi. Then it is said that λ is

a partition of |λ|. The glN -module L⊗n contains the module Vλ if and only if λ is a

partition of n with at most N parts.

Let λ, µ be partitions with at most N parts. We write λ ⊆ µ if and only if λi 6 µi

for i = 1, . . . , N .
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3.2.2 Simple Lie Algebras

Let g be a simple Lie algebra over C with Cartan matrix A = (ai,j)
r
i,j=1. Let

D = diag{d1, . . . , dr} be the diagonal matrix with positive relatively prime integers

di such that DA is symmetric.

Let h ⊂ g be the Cartan subalgebra and let g = n−⊕h⊕n+ be the Cartan decompo-

sition. Fix simple roots α1, . . . , αr in h∗. Let α̌1, . . . , α̌r ∈ h be the corresponding co-

roots. Fix a nondegenerate invariant bilinear form (, ) in g such that (α̌i, α̌j) = ai,j/dj.

The corresponding invariant bilinear form in h∗ is given by (αi, αj) = diai,j. We have

〈λ, α̌i〉 = 2(λ, αi)/(αi, αi) for λ ∈ h∗. In particular, 〈αj, α̌i〉 = ai,j. Let ω1, . . . , ωr ∈ h∗

be the fundamental weights, 〈ωj, α̌i〉 = δi,j.

Let P = {λ ∈ h∗|〈λ, α̌i〉 ∈ Z, i = 1, . . . , r} and P+ = {λ ∈ h∗|〈λ, α̌i〉 ∈ Z>0, i =

1, . . . , r} be the weight lattice and the cone of dominant integral weights.

For λ ∈ h∗, let Vλ be the irreducible g-module with highest weight λ. We denote

〈λ, α̌i〉 by λi and sometimes write (λ1, λ2, . . . , λr) for λ.

Let M be a g-module. Let (M)sing = {v ∈ M | n+v = 0} be the subspace of

singular vectors in M . For µ ∈ h∗ let (M)µ = {v ∈ M | hv = µ(h)v, for all h ∈ h}

be the subspace of M of vectors of weight µ. Let (M)sing
µ = M sing ∩ (M)µ be the

subspace of singular vectors in M of weight µ.

Given a g-module M , denote by (M)g the subspace of g-invariants in M . The

subspace (M)g is the multiplicity space of the trivial g-module in M . The following

facts are well known. Let λ, µ be partitions with at most N parts, dim(Vλ⊗Vµ)slN = 1

if λi = k − µN+1−i, i = 1, . . . , N , for some integer k > µ1 and 0 otherwise. Let λ, µ

be g-weights, dim(Vλ ⊗ Vµ)g = δλ,µ for g = so2r+1, sp2r.

For any Lie algebra g, denote by U(g) the universal enveloping algebra of g.

3.2.3 Current Agebra g[t]

Let g[t] = g⊗ C[t] be the Lie algebra of g-valued polynomials with the pointwise

commutator. We call it the current algebra of g. We identify the Lie algebra g with
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the subalgebra g⊗ 1 of constant polynomials in g[t]. Hence, any g[t]-module has the

canonical structure of a g-module.

The standard generators of glN [t] are eij ⊗ tp, i, j = 1, . . . , N , p ∈ Z>0. They

satisfy the relations [eij ⊗ tp, esk ⊗ tq] = δjseik ⊗ tp+q − δikesj ⊗ tp+q.

It is convenient to collect elements of g[t] in generating series of a formal variable

x. For g ∈ g, set

g(x) =
∞∑
s=0

(g ⊗ ts)x−s−1. (3.2.1)

For glN [t] we have (x2 − x1)[eij(x1), esk(x2)] = δjs(eik(x1) − eik(x2)) − δik(esj(x1) −

esj(x2)).

For each a ∈ C, there exists an automorphism τa of g[t], τa : g(x)→ g(x−a). Given

a g[t]-module M , we denote by M(a) the pull-back of M through the automorphism

τa. As g-modules, M and M(a) are isomorphic by the identity map.

We have the evaluation homomorphism, ev : g[t] → g, ev : g(x) → gx−1. Its

restriction to the subalgebra g ⊂ g[t] is the identity map. For any g-module M ,

we denote by the same letter the g[t]-module, obtained by pulling M back through

the evaluation homomorphism. For each a ∈ C, the g[t]-module M(a) is called an

evaluation module.

For g = slN , sp2r, so2r+1, it is well known that finite-dimensional irreducible

g[t]-modules are tensor products of evaluation modules Vλ(1)(z1) ⊗ · · · ⊗ Vλ(n)(zn)

with dominant integral g-weights λ(1), . . . , λ(n) and distinct evaluation parameters

z1, . . . , zn.

3.2.4 Bethe Algebra

Let Sl be the permutation group of the set {1, . . . , l}. Given an N ×N matrix B

with possibly noncommuting entries bij, we define its row determinant to be

rdet B =
∑
σ∈SN

(−1)σb1σ(1)b2σ(2) . . . bNσ(N).
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Define the universal differential operator DB by

DB = rdet(δij∂x − eji(x))Ni,j=1. (3.2.2)

It is a differential operator in variable x, whose coefficients are formal power series in

x−1 with coefficients in U(glN [t]),

DB = ∂Nx +
N∑
i=1

Bi(x)∂N−ix , (3.2.3)

where

Bi(x) =
∞∑
j=i

Bijx
−j

and Bij ∈ U(glN [t]), i = 1, . . . , N , j ∈ Z>i. We call the unital subalgebra of U(glN [t])

generated by Bij ∈ U(glN [t]), i = 1, . . . , N , j ∈ Z>i, the Bethe algebra of glN and

denote it by B.

The Bethe algebra B is commutative and commutes with the subalgebra U(glN) ⊂

U(glN [t]), see [Tal06]. As a subalgebra of U(glN [t]), the algebra B acts on any glN [t]-

module M . Since B commutes with U(glN), it preserves the subspace of singular

vectors (M)sing as well as weight subspaces of M . Therefore, the subspace (M)sing
λ is

B-invariant for any weight λ.

We denote M(∞) the glN -module M with the trivial action of the Bethe algebra

B. More generally, for a glN [t]-module M ′, we denote by M ′⊗M(∞) the glN -module

where we define the action of B so that it acts trivially on M(∞). Namely, the

element b ∈ B acts on M ′ ⊗M(∞) by b⊗ 1.

Note that for a ∈ C and glN -module M , the action of eij(x) on M(a) is given by

eij/(x − a) on M . Therefore, the action of series Bi(x) on the module M ′ ⊗M(∞)

is the limit of the action of the series Bi(x) on the module M ′ ⊗M(z) as z →∞ in

the sense of rational functions of x. However, such a limit of the action of coefficients

Bij on the module M ′ ⊗M(z) as z →∞ does not exist.

Let M = Vλ be an irreducible glN -module and let M ′ be an irreducible finite-

dimensional glN [t]-module. Let c be the value of the
∑N

i=1 eii action on M ′.



60

Lemma 3.2.1. We have an isomorphism of vector spaces:

π : (M ′ ⊗ Vλ)slN → (M ′)sing

λ̄
, where λ̄i =

c+ |λ|
N

− λN+1−i,

given by the projection to a lowest weight vector in Vλ. The map π is an isomorphism

of B-modules (M ′ ⊗ Vλ(∞))slN → (M ′)sing

λ̄
.

Consider P1 := C ∪ {∞}. Set

P̊n := {z = (z1, . . . , zn) ∈ (P1)n | zi 6= zj for 1 6 i < j 6 n},

RP̊n := {z = (z1, . . . , zn) ∈ P̊n | zi ∈ R or zi =∞, for 1 6 i 6 n}.

We are interested in the action of the Bethe algebra B on the tensor product⊗n
s=1 Vλ(s)(zs), where Λ = (λ(1), . . . , λ(n)) is a sequence of partitions with at most

N parts and z = (z1, . . . , zn) ∈ P̊n. By Lemma 3.2.1, it is sufficient to consider

spaces of invariants (
⊗n

s=1 Vλ(s)(zs))
slN . For brevity, we write VΛ,z for the B-module⊗n

s=1 Vλ(s)(zs) and VΛ for the glN -module
⊗n

s=1 Vλ(s) .

Let v ∈ VΛ,z be a common eigenvector of the Bethe algebra B, Bi(x)v = hi(x)v,

i = 1, . . . , N . Then we call the scalar differential operator

Dv = ∂Nx +
N∑
i=1

hi(x)∂N−ix

the differential operator associated with the eigenvector v.

3.3 The glN -Stratification of Grassmannian

Let N , d ∈ Z>0 such that N 6 d.

3.3.1 Schubert Cells

Let Cd[x] be the space of polynomials in x with complex coefficients of degree

less than d. We have dimCd[x] = d. Let Gr(N, d) be the Grassmannian of all N -

dimensional subspaces in Cd[x]. The Grassmannian Gr(N, d) is a smooth projective

complex variety of dimension N(d−N).
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Let Rd[x] ⊂ Cd[x] be the space of polynomials in x with real coefficients of degree

less than d. Let GrR(N, d) ⊂ Gr(N, d) be the set of subspaces which have a basis

consisting of polynomials with real coefficients. For X ∈ Gr(N, d) we have X ∈

GrR(N, d) if and only if dimR(X ∩ Rd[x]) = N . We call such points X real.

For a full flag F = {0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fd = Cd[x]} and a partition λ =

(λ1, . . . , λN) such that λ1 6 d−N , the Schubert cell Ωλ(F) ⊂ Gr(N, d) is given by

Ωλ(F) = {X ∈ Gr(N, d) | dim(X ∩ Fd−j−λN−j) = N − j,

dim(X ∩ Fd−j−λN−j−1) = N − j − 1}.

We have codim Ωλ(F) = |λ|.

The Schubert cell decomposition associated to a full flag F , see for example

[GH94], is given by

Gr(N, d) =
⊔

λ, λ16d−N

Ωλ(F). (3.3.1)

The Schubert cycle Ωλ(F) is the closure of a Schubert cell Ωλ(F) in the Grassmannian

Gr(N, d). Schubert cycles are algebraic sets with very rich geometry and topology. It

is well known that Schubert cycle Ωλ(F) is described by the formula

Ωλ(F) =
⊔
λ⊆µ,

µ16d−N

Ωµ(F). (3.3.2)

Given a partition λ = (λ1, . . . , λN) such that λ1 6 d−N , introduce a new partition

λ̄ = (d−N − λN , d−N − λN−1, . . . , d−N − λ1).

We have |λ|+ |λ̄| = N(d−N).

Let F(∞) be the full flag given by

F(∞) = {0 ⊂ C1[x] ⊂ C2[x] ⊂ · · · ⊂ Cd[x]}. (3.3.3)

The subspace X is a point of Ωλ(F(∞)) if and only if for every i = 1, . . . , N , it

contains a polynomial of degree λ̄i +N − i.
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For z ∈ C, consider the full flag

F(z) = {0 ⊂ (x− z)d−1C1[x] ⊂ (x− z)d−2C2[x] ⊂ · · · ⊂ Cd[x]}. (3.3.4)

The subspace X is a point of Ωλ(F(z)) if and only if for every i = 1, . . . , N , it

contains a polynomial with a root at z of order λi +N − i.

A point z ∈ C is called a base point for a subspace X ⊂ Cd[x] if g(z) = 0 for every

g ∈ X.

3.3.2 Intersection of Schubert Cells

Let Λ = (λ(1), . . . , λ(n)) be a sequence of partitions with at most N parts and

z = (z1, . . . , zn) ∈ P̊n. Set |Λ| =
∑n

s=1 |λ(s)|.

The following lemma is elementary.

Lemma 3.3.1. If dim(VΛ)slN > 0, then |Λ| is divisible by N . Suppose further |Λ| =

N(d−N), then λ
(s)
1 6 d−N for s = 1, . . . , n.

Assuming |Λ| = N(d−N), denote by ΩΛ,z the intersection of the Schubert cells:

ΩΛ,z =
n⋂
s=1

Ωλ(s)(F(zs)). (3.3.5)

Note that due to our assumption, ΩΛ,z is a finite subset of Gr(N, d). Note also that

ΩΛ,z is non-empty if and only if dim(VΛ)slN > 0.

Theorem 3.3.2. Suppose dim(VΛ)slN > 0. Let v ∈ (VΛ,z)
slN be an eigenvector of the

Bethe algebra B. Then KerDv ∈ ΩΛ,z. Moreover, the assignment κ : v 7→ KerDv
is a bijective correspondence between the set of eigenvectors of the Bethe algebra in

(VΛ,z)
slN (considered up to multiplication by nonzero scalars) and the set ΩΛ,z.

Proof. The first statement is Theorem 4.1 in [MTV09c] and the second statement is

Theorem 6.1 in [MTV09b].

We also have the following lemma, see for example [MTV06].
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Lemma 3.3.3. Let z be a generic point in P̊n. Then the action of the Bethe algebra

B on (VΛ,z)
slN is diagonalizable. In particular, this statement holds for any sequence

z ∈ RP̊n.

3.3.3 The glN -Stratification of Gr(N, d)

The following definition plays an important role in what follows.

Define a partial order > on the set of sequences of partitions with at most N

parts as follows. Let Λ = (λ(1), . . . , λ(n)), Ξ = (ξ(1), . . . , ξ(m)) be two sequences of

partitions with at most N parts. We say that Λ > Ξ if and only if there exists a

partition {I1, . . . , Im} of the set {1, 2, . . . , n} such that

HomglN (Vξ(i) ,
⊗
j∈Ii

Vλ(j)

)
6= 0, i = 1, . . . ,m.

Note that Λ and Ξ are comparable only if |Λ| = |Ξ|.

We say that Λ = (λ(1), . . . , λ(n)) is nontrivial if and only if (VΛ)slN 6= 0 and

|λ(s)| > 0, s = 1, . . . , n. The sequence Λ will be called d-nontrivial if Λ is nontrivial

and |Λ| = N(d−N).

Suppose Ξ is d-nontrivial. If Λ > Ξ and |λ(s)| > 0 for all s = 1, . . . , n, then Λ is

also d-nontrivial.

Recall that ΩΛ,z is the intersection of Schubert cells for each given z, see (3.3.5),

define ΩΛ by the formula

ΩΛ :=
⋃
z∈P̊n

ΩΛ,z ⊂ Gr(N, d). (3.3.6)

By definition, ΩΛ does not depend on the order of λ(s) in the sequence

Λ = (λ(1), . . . , λ(n)).

Note that ΩΛ is a constructible subset of the Grassmannian Gr(N, d) in Zariski topol-

ogy. We call ΩΛ with a d-nontrivial Λ a glN -stratum of Gr(N, d).

Let µ(1), . . . , µ(a) be the list of all distinct partitions in Λ. Let ni be the number

of occurrences of µ(i) in Λ, i = 1, . . . , a, then
∑a

i=1 ni = n. Denote n = (n1, . . . , na).



64

We shall write Λ in the following order: λ(i) = µ(j) for
∑j−1

s=1 ns + 1 6 i 6
∑j

s=1 ns,

j = 1, . . . , a.

Let Sn;ni be the subgroup of the symmetric group Sn permuting {n1 + · · ·+ni−1 +

1, . . . , n1 + · · · + ni}, i = 1, . . . , a. Then the group Sn = Sn;n1 × Sn;n2 × · · · × Sn;na

acts freely on P̊n and on RP̊n. Denote by P̊n/Sn and RP̊n/Sn the sets of orbits.

Proposition 3.3.4. Suppose Λ = (λ(1), . . . , λ(n)) is d-nontrivial. The stratum ΩΛ

is a ramified covering of P̊n/Sn. Moreover, the degree of the covering is equal to

dim(VΛ)slN . In particular, dim ΩΛ = n. Over RP̊n/Sn, this covering is unramified of

the same degree, moreover all points in fibers are real.

Proof. The statement follows from Theorem 3.3.2, Lemma 3.3.3, and Theorem 1.1

of [MTV09c].

Clearly, we have the following theorem.

Theorem 3.3.5. We have

Gr(N, d) =
⊔

d-nontrivial Λ

ΩΛ. (3.3.7)

Next, for a d-nontrivial Λ, we call the closure of ΩΛ inside Gr(N, d), a glN -cycle.

The glN -cycle ΩΛ is an algebraic set. We describe the glN -cycles as unions of glN -

strata.

Let Λ = (λ(1), . . . , λ(n)) and Ξ = (ξ(1), . . . , ξ(n−1)) be such that Ξ 6 Λ. We call ΩΞ

a simple degeneration of ΩΛ if and only if both Λ and Ξ are d-nontrivial. In view of

Theorem 3.3.2, taking a simple degeneration is equivalent to making two coordinates

of z collide.

Theorem 3.3.6. If ΩΞ is a simple degeneration of ΩΛ, then ΩΞ is contained in the

glN -cycle ΩΛ.

Theorem 3.3.6 is proved in Section 3.7.1.
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Suppose Θ = (θ(1), . . . , θ(l)) is d-nontrivial and Λ > Θ. Then, it is clear that ΩΘ is

obtained from ΩΛ by a sequence of simple degenerations. We call ΩΘ a degeneration

of ΩΛ.

Corollary 3.3.7. If ΩΘ is a degeneration of ΩΛ, then ΩΘ is contained in the glN -

cycle ΩΛ.

Theorem 3.3.8. For d-nontrivial Λ, we have

ΩΛ =
⊔

Ξ6Λ,
d-nontrivial Ξ

ΩΞ. (3.3.8)

Theorem 3.3.8 is proved in Section 3.7.1.

Theorems 3.3.5 and 3.3.8 imply that the subsets ΩΛ with d-nontrivial Λ give a

stratification of Gr(N, d). We call it the glN -stratification of Gr(N, d).

Example 3.3.9. We give an example of the gl2-stratification for Gr(2, 4) in the fol-

lowing picture. In the picture, we simply write Λ for ΩΛ. We also write tuples of

numbers with bold font for 4-nontrivial tuples of partitions, solid arrows for simple

degenerations between 4-nontrivial tuples of partitions. The dashed arrows go be-

tween comparable sequences where the set ΩΞ corresponding to the smaller sequence

is empty.

((1,0), (1,0), (1,0), (1,0))

((2,0), (1,0), (1,0)) ((1,1), (1,0), (1,0))

((2,1), (1,0))((2,0), (2,0)) ((1,1), (1,1))((3, 0), (1, 0)) ((2, 0), (1, 1))

((3, 1)) ((2,2))((4, 0))
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In particular, Ω((1,0),(1,0),(1,0),(1,0)) is dense in Gr(2, 4).

Remark 3.3.10. In general, for Gr(N, d), let ε1 = (1, 0, . . . , 0) and let

Λ = (ε1, ε1, . . . , ε1︸ ︷︷ ︸
N(d−N)

).

Then Λ is d-nontrivial, and ΩΛ is dense in Gr(N, d). Clearly, ΩΛ consists of spaces

of polynomials whose Wronskian (see Section 3.3.4) has only simple roots.

Remark 3.3.11. The group of affine translations acts on Cd[x] by changes of variable.

Namely, for a ∈ C∗, b ∈ C, we have a map sending f(x) 7→ f(ax + b) for all f(x) ∈

Cd[x]. This group action preserves the Grassmannian Gr(N, d) and the strata ΩΛ.

3.3.4 The Case of N = 1 and the Wronski Map

We show that the decomposition in Theorems 3.3.5 and 3.3.8 respects the Wronski

map.

From now on, we use the convention that x − zs is considered as the constant

function 1 if zs =∞.

Consider the Grassmannian of lines Gr(1, d̃). By Theorem 3.3.5, the decom-

position of Gr(1, d̃) is parameterized by unordered sequences of positive integers

m = (m1, . . . ,mn) such that |m| = d̃− 1.

Let z = (z1, . . . , zn) ∈ P̊n. We have Cf ∈ Ωm,z if and only if

f(x) = a

n∏
s=1

(x− zs)ms , a 6= 0.

In other words, the stratum Ωm of the gl1-stratification (3.3.7) of Gr(1, d̃) consists of

all points in Gr(1, d̃) whose representative polynomials have n distinct roots (one of

them can be ∞) of multiplicities m1, . . . ,mn.

Therefore the gl1-stratification is exactly the celebrated swallowtail stratification.

For g1(x), . . . , gl(x) ∈ C[x], denote by Wr(g1(x), . . . , gl(x)) the Wronskian,

Wr(g1(x), . . . , gl(x)) = det(di−1gj/dx
i−1)li,j=1.
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Let X ∈ Gr(N, d). The Wronskians of two bases of X differ by a multiplication by

a nonzero number. We call the monic polynomial representing the Wronskian the

Wronskian of X and denote it by Wr(X). It is clear that degx Wr(X) 6 N(d−N).

The Wronski map

Wr : Gr(N, d)→ Gr(1, N(d−N) + 1)

is sending X ∈ Gr(N, d) to CWr(X).

The Wronski map is a finite algebraic map, see for example Propositions 3.1 and

4.2 in [MTV09a], of degree dim(L⊗N(d−N))sln , which is explicitly given by

(N(d−N))!
0! 1! 2! . . . (d−N − 1)!

N ! (N + 1)! (N + 2)! . . . (d− 1)!
,

see [Sch86].

Let Λ = (λ(1), . . . , λ(n)) be d-nontrivial and z = (z1, . . . , zn) ∈ P̊n. If X ∈ ΩΛ,z,

then one has

Wr(X) =
n∏
s=1

(x− zs)|λ
(s)|.

Set d̃ = N(d−N) + 1. Therefore, we have the following proposition.

Proposition 3.3.12. The preimage of the stratum Ωm of Gr(1, N(d−N) + 1) under

the Wronski map is a union of all d-nontrivial strata ΩΛ of Gr(N, d) such that |λ(s)| =

ms, s = 1, . . . , n.

Let Λ = (λ(1), . . . , λ(n)) be an unordered sequence of partitions with at most

N parts. Let a be the number of distinct partitions in Λ. We can assume that

λ(1), . . . , λ(a) are all distinct and let n1, . . . , na be their multiplicities in Λ, n1 + · · ·+

na = n. Define the symmetry coefficient of Λ as the product of multinomial coeffi-

cients:

b(Λ) =
∏
i

(∑
s=1,...,a, |λ(s)|=i ns

)
!∏

s=1,...,a, |λ(s)|=i(ns)!
. (3.3.9)

Proposition 3.3.13. Let Λ = (λ(1), . . . , λ(n)) be d-nontrivial. Then the Wronski map

Wr|ΩΛ
: ΩΛ → Ωm is a ramified covering of degree b(Λ) dim(VΛ)slN .
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Proof. The statement follows from Theorem 3.3.2, Lemma 3.3.3, and Proposition

3.3.12.

In other words, the glN -stratification of Gr(N, d) given by Theorems 3.3.5 and

3.3.8, is adjacent to the swallowtail gl1-stratification of Gr(1, N(d−N) + 1) and the

Wronski map.

3.4 The gN -Stratification of Self-Dual Grassmannian

It is convenient to use the notation: g2r+1 = sp2r, and g2r = so2r+1, r > 2. We

also set g3 = sl2. The case of g3 = sl2 is discussed in detail in Section 3.4.6.

3.4.1 Self-Dual Spaces

Let Λ = (λ(1), . . . , λ(n)) be a tuple of partitions with at most N parts such that

|Λ| = N(d−N) and let z = (z1, . . . , zn) ∈ P̊n.

Define a tuple of polynomials T = (T1, . . . , TN) by

Ti(x) =
n∏
s=1

(x− zs)λ
(s)
i −λ

(s)
i+1 , i = 1, . . . , N, (3.4.1)

where λ
(s)
N+1 = 0. We say that T is associated with Λ, z.

Let X ∈ ΩΛ,z and g1, . . . , gi ∈ X. Define the divided Wronskian Wr† with respect

to Λ, z by

Wr†(g1, . . . , gi) = Wr(g1, . . . , gi)
i∏

j=1

T j−i−1
N+1−j, i = 1, . . . , N.

Note that Wr†(g1, . . . , gi) is a polynomial in x.

Given X ∈ Gr(N, d), define the dual space X† of X by

X† = {Wr†(g1, . . . , gN−1) | gi ∈ X, i = 1, . . . , N − 1}.

Lemma 3.4.1. If X ∈ ΩΛ,z, then X† ∈ ΩΛ̃,z ⊂ Gr(N, d̃), where

d̃ =
n∑
s=1

λ
(s)
1 − d+ 2N,
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and Λ̃ = (λ̃(1), . . . , λ̃(n)) is a sequence of partitions with at most N parts such that

λ̃
(s)
i = λ

(s)
1 − λ

(s)
N+1−i, i = 1, . . . , N, s = 1, . . . , n.

Note that we always have λ̃
(s)
N = 0 for every s = 1, . . . , n, hence X† has no base

points.

Given a space of polynomials X and a rational function g in x, denote by g · X

the space of rational functions of the form g · f with f ∈ X.

A self-dual space is called a pure self-dual space if X = X†. A space of polynomials

X is called self-dual if X = g · X† for some polynomial g ∈ C[x]. In particular, if

X ∈ ΩΛ,z is self-dual, then X = TN ·X†, where TN is defined in (3.4.1). Note also,

that if X is self-dual then g ·X is also self-dual.

It is obvious that every point in Gr(2, d) is a self-dual space.

Let sGr(N, d) be the set of all self-dual spaces in Gr(N, d). We call sGr(N, d) the

self-dual Grassmannian. The self-dual Grassmannian sGr(N, d) is an algebraic subset

of Gr(N, d).

Let ΩΛ,z be the finite set defined in (3.3.5) and ΩΛ the set defined in (3.3.6).

Denote by sΩΛ,z the set of all self-dual spaces in ΩΛ,z and by sΩΛ the set of all

self-dual spaces in ΩΛ:

sΩΛ,z = ΩΛ,z

⋂
sGr(N, d) and sΩΛ = ΩΛ

⋂
sGr(N, d).

We call the sets sΩΛ gN -strata of the self-dual Grassmannian. A stratum sΩΛ does not

depend on the order of the set of partitions Λ. Note that each sΩΛ is a constructible

subset of the Grassmannian Gr(N, d) in Zariski topology.

A partition λ with at most N parts is called N-symmetric if λi − λi+1 = λN−i −

λN−i+1, i = 1, . . . , N − 1. If the stratum sΩΛ is nonempty, then all partitions λ(s) are

N -symmetric, see also Lemma 3.4.4 below.

The self-dual Grassmannian is related to the Gaudin model in types B and C,

see [MV04] and Theorem 3.4.5 below. We show that sGr(N, d) also has a remark-
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able stratification structure similar to the glN -stratification of Gr(N, d), governed by

representation theory of gN , see Theorems 3.4.11 and 3.4.13.

Remark 3.4.2. The self-dual Grassmannian also has a stratification induced from the

usual Schubert cell decomposition (3.3.1), (3.3.2). For z ∈ P1, and an N -symmetric

partition λ with λ1 6 d−N , set sΩλ(F(z)) = Ωλ(F(z)) ∩ sGr(N, d). Then it is easy

to see that

sGr(N, d) =
⊔

N−symmetric µ,
µ16d−N

sΩµ(F(z)) and sΩλ(F(z)) =
⊔

N−symmetric µ,
µ16d−N, λ⊆µ

sΩµ(F(z)).

3.4.2 Bethe Algebras of Types B and C and Self-Dual Grassmannian

The Bethe algebra B (the algebra of higher Gaudin Hamiltonians) for a simple

Lie algebras g were described in [FFR94]. The Bethe algebra B is a commutative

subalgebra of U(g[t]) which commutes with the subalgebra U(g) ⊂ U(g[t]). An explicit

set of generators of the Bethe algebra in Lie algebras of types B, C, and D was given

in [Mol13]. Such a description in the case of glN is given above in Section 3.2.4. For

the case of gN we only need the following fact.

Recall our notation g(x) for the current of g ∈ g, see (3.2.1).

Proposition 3.4.3 ( [FFR94, Mol13]). Let N > 3. There exist elements Fij ∈ gN ,

i, j = 1, . . . , N , and polynomials Gs(x) in dkFij(x)/dxk, s = 1, . . . , N , k = 0, . . . , N ,

such that the Bethe algebra of gN is generated by coefficients of Gs(x) considered as

formal power series in x−1.

Similar to the glN case, for a collection of dominant integral gN -weights Λ =

(λ(1), . . . , λ(n)) and z = (z1, . . . , zn) ∈ P̊n, we set VΛ,z =
⊗n

s=1 Vλ(s)(zs), considered

as a B-module. Namely, if z ∈ Cn, then VΛ,z is a tensor product of evaluation

gN [t]-modules and therefore a B-module. If, say, zn = ∞, then B acts trivially on

Vλ(n)(∞). More precisely, in this case, b ∈ B acts by b⊗ 1 where the first factor acts

on
⊗n−1

s=1 Vλ(s)(zs) and 1 acts on Vλ(n)(∞).
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We also denote VΛ the module VΛ,z considered as a gN -module.

Let µ be a dominant integral gN -weight and k ∈ Z>0. Define an N -symmetric

partition µA,k with at most N parts by the rule: (µA,k)N = k and

(µA,k)i − (µA,k)i+1 =

〈µ, α̌i〉, if 1 6 i 6
[
N
2

]
,

〈µ, α̌N−i〉, if
[
N
2

]
< i 6 N − 1.

(3.4.2)

We call µA,k the partition associated with weight µ and integer k.

Let Λ = (λ(1), . . . , λ(n)) be a sequence of dominant integral gN -weights and let

k = (k1, . . . , kn) be an n-tuple of nonnegative integers. Then denote

ΛA,k = (λ
(1)
A,k1

, . . . , λ
(n)
A,kn

)

the sequence of partitions associated with λ(s) and ks, s = 1, . . . , n.

We use notation µA = µA,0 and ΛA = ΛA,(0,...,0).

Lemma 3.4.4. If Ξ is a d-nontrivial sequence of partitions with at most N parts and

sΩΞ is nonempty, then Ξ has the form Ξ = ΛA,k for a sequence of dominant integral

gN -weights Λ = (λ(1), . . . , λ(n)) and an n-tuple k of nonnegative integers. The pair

(Λ,k) is uniquely determined by Ξ. Moreover, if N = 2r, then
∑n

s=1〈λ(s), α̌r〉 is even.

Proof. The first statement follows from Lemma 3.4.1. If N = 2r is even, the second

statement follows from the equality

N(d−N) = |Ξ| =
n∑
s=1

r
(

2
r−1∑
i=1

〈λ(s), α̌i〉+ 〈λ(s), α̌r〉
)

+N
n∑
s=1

ks.

Therefore the strata are effectively parameterized by sequences of dominant inte-

gral gN -weights and tuples of nonnegative integers. In what follows we write sΩΛ,k

for sΩΛA,k and sΩΛ,k,z for sΩΛA,k,z.

Define a formal differential operator

DB = ∂Nx +
N∑
i=1

Gi(x)∂N−ix .

For a B-eigenvector v ∈ VΛ,z, Gi(x)v = hi(x)v, we denote Dv = ∂Nx +
∑N

i=1 hi(x)∂N−ix

the corresponding scalar differential operator.
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Theorem 3.4.5. Let N > 3. There exists a choice of generators Gi(x) of the gN

Bethe algebra B (see Proposition 3.4.3), such that for any sequence of dominant inte-

gral gN -weights Λ = (λ(1), . . . , λ(n)), any z ∈ P̊n, and any B-eigenvector v ∈ (VΛ,z)
gN ,

we have Ker ((T1 . . . TN)1/2 · Dv · (T1 . . . TN)−1/2) ∈ sΩΛA,z, where T = (T1, . . . , TN) is

associated with ΛA, z.

Moreover, if |ΛA| = N(d − N), then this defines a bijection between the joint

eigenvalues of B on (VΛ,z)
gN and sΩΛA,z ⊂ Gr(N, d).

Proof. Theorem 3.4.5 is deduced from [Ryb18] in Section 3.7.2.

The second part of the theorem also holds for N = 3, see Section 3.4.6.

Remark 3.4.6. In particular, Theorem 3.4.5 implies that if dim(VΛ)gN > 0, then

dim(VΛA,k)slN > 0. This statement also follows from Lemma 3.8.2 given in the Ap-

pendix.

We also have the following lemma from [Ryb18].

Lemma 3.4.7. Let z be a generic point in P̊n. Then the action of the gN Bethe

algebra on (VΛ,z)
gN is diagonalizable and has simple spectrum. In particular, this

statement holds for any sequence z ∈ RP̊n.

3.4.3 Properties of the Strata

We describe simple properties of the strata sΩΛ,k.

Given Λ,k, z, define Λ̃, k̃, z̃ by removing all zero components, that is the ones

with both λ(s) = 0 and ks = 0. Then sΩΛ̃,k̃,z̃ = sΩΛ,k,z and sΩΛ̃,k̃ = sΩΛ,k. Also, by

Remark 3.4.6, if (VΛ)gN 6= 0, then dim(VΛA,k)slN > 0, thus |ΛA,k| is divisible by N .

We say that (Λ,k) is d-nontrivial if and only if (VΛ)gN 6= 0, |λ(s)
A,ks
| > 0, s =

1, . . . , n, and |ΛA,k| = N(d−N).

If (Λ,k) is d-nontrivial then the corresponding stratum sΩΛ,k ⊂ sGr(N, d) is

nonempty, see Proposition 3.4.9 below.



73

Note that |ΛA,k| = |ΛA|+N |k|, where |k| = k1 + · · ·+ kn. In particular, if (Λ,0)

is d-nontrivial then (Λ,k) is (d + |k|)-nontrivial. Further, there exists a bijection

between ΩΛA,z in Gr(N, d) and ΩΛA,k,z in Gr(N, d+ |k|) given by

ΩΛA,z → ΩΛA,k,z, X 7→
n∏
s=1

(x− zs)ks ·X. (3.4.3)

Moreover, (3.4.3) restricts to a bijection of sΩΛA,z in sGr(N, d) and sΩΛA,k,z in

sGr(N, d+ |k|).

If (Λ,k) is d-nontrivial then ΛA,k is d-nontrivial. The converse is not true.

Example 3.4.8. For this example we write the highest weights in terms of fun-

damental weights, e.g. (1, 0, 0, 1) = ω1 + ω4. We also use slN -modules instead of

glN -modules, since the spaces of invariants are the same.

For N = 4 and g4 = so5 of type B2, we have

dim(V(2,0) ⊗ V(1,0) ⊗ V(2,0))
g4 = 0 and dim(V(2,0,2) ⊗ V(1,0,1) ⊗ V(2,0,2))

sl4 = 2.

Let Λ = ((2, 0), (1, 0), (2, 0)). Then ΛA is 9-nontrivial, but (Λ, (0, 0, 0)) is not.

Similarly, for N = 5 and g5 = sp4 of type C2, we have

dim(V(1,0) ⊗ V(0,1) ⊗ V(0,1))
g5 = 0 and dim(V(1,0,0,1) ⊗ V(0,1,1,0) ⊗ V(0,1,1,0))

sl5 = 2.

Let Λ = ((1, 0), (0, 1), (1, 0)). Then ΛA is 8-nontrivial, but (Λ, (0, 0, 0)) is not.

Let µ(1), . . . , µ(a) be all distinct partitions in ΛA,k. Let ni be the number of

occurrences of µ(i) in ΛA,k, then
∑a

i=1 ni = n. Denote n = (n1, . . . , na), we shall

write ΛA,k in the following order: λ
(i)
A,ki

= µ(j) for
∑j−1

s=1 ns + 1 6 i 6
∑j

s=1 ns,

j = 1, . . . , a.

Proposition 3.4.9. Suppose (Λ,k) is d-nontrivial. The set sΩΛ,k is a ramified cov-

ering of P̊n/Sn. Moreover, the degree of the covering is equal to dim(VΛ)gN . In

particular, dim sΩΛ,k = n. Over RP̊n/Sn, this covering is unramified of the same

degree, moreover all points in fibers are real.
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Proof. The proposition follows from Theorem 3.4.5, Lemma 3.4.7, and Theorem 1.1

of [MTV09c].

We find strata sΩΛ,k ⊂ sGr(N, d) of the largest dimension.

Lemma 3.4.10. If N = 2r, then the d-nontrivial stratum sΩΛ,k ⊂ sGr(N, d) with

the largest dimension has (λ(s), ks) = (ωr, 0), s = 1, . . . , 2(d − N). In particular, the

dimension of this stratum is 2(d−N).

If N = 2r+1, the d-nontrivial strata sΩΛ,k ⊂ sGr(N, d) with the largest dimension

have (λ(s), ks) equal to either (ωjs , 0) with some js ∈ {1, . . . , r}, or to (0, 1), for

s = 1, . . . , d−N . Each such stratum is either empty or has dimension d−N . There

is at least one nonempty stratum of this dimension, and if d > N + 1 then more than

one.

Proof. By Proposition 3.4.9, we are going to find the maximal n such that (Λ,k) is

d-nontrivial, where Λ = (λ(1), . . . , λ(n)) is a sequence of dominant integral gN -weights

and k = (k1, . . . , kn) is an n-tuple of nonnegative integers. Since ΛA,k is d-nontrivial,

it follows that λ(s) 6= 0 or λ(s) = 0 and ks > 0, for all s = 1, . . . , n.

Suppose N = 2r. If λ(s) 6= 0, we have

|λ(s)
A,ks
| > |λ(s)

A,0| = r
(

2
r−1∑
i=1

〈λ(s), α̌i〉+ 〈λ(s), α̌r〉
)
> r.

If ks > 0, then |λ(s)
A,ks
| > 2rks > 2r. Therefore, it follows that

rn 6
n∑
s=1

|λ(s)
A,ks
| = |ΛA,k| = (d−N)N.

Hence n 6 2(d−N).

If we set λ(s) = wr and ks = 0 for all s = 1, . . . , 2(d − N). Then (Λ,k) is

d-nontrivial since

dim(Vωr ⊗ Vωr)so2r+1 = 1.

Now let us consider N = 2r + 1, r > 1. Similarly, if λ(s) 6= 0, we have

|λ(s)
A,ks
| > |λ(s)

A,0| = (2r + 1)
r∑
i=1

〈λ(s), α̌i〉 > 2r + 1.
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If ks > 0, then |λ(s)
A,ks
| > (2r + 1)ks > 2r + 1. It follows that

(2r + 1)n 6
n∑
s=1

|λ(s)
A,ks
| = |ΛA,k| = (d−N)N.

Hence n 6 d−N . Clearly, the equality is achieved only for the (Λ,k) described in the

statement of the lemma. Note that if (λ(s), ks) = (0, 1) for all s = 1, . . . , d−N , then

(Λ,k) is d-nontrivial and therefore nonempty. If d > N + 1 we also have d-nontrivial

tuples parameterized by i = 1, . . . , r, such that (λ(s), ks) = (0, 1), s = 3, . . . , d − N ,

and (λ(s), ks) = (ωi, 0), s = 1, 2.

3.4.4 The gN -Stratification of Self-Dual Grassmannian

The following theorem follows directly from Theorems 3.3.5 and 3.4.5.

Theorem 3.4.11. We have

sGr(N, d) =
⊔

d-nontrivial (Λ,k)

sΩΛ,k. (3.4.4)

Next, for a d-nontrivial (Λ,k), we call the closure of sΩΛ,k inside sGr(N, d), a gN -

cycle. The gN -cycles sΩΛ,k are algebraic sets in sGr(N, d) and therefore in Gr(N, d).

We describe gN -cycles as unions of gN -strata similar to (3.3.8).

Define a partial order > on the set of pairs {(Λ,k)} as follows. Let Λ =

(λ(1), . . . , λ(n)), Ξ = (ξ(1), . . . , ξ(m)) be two sequences of dominant integral gN -weights.

Let k = (k1, . . . , kn), l = (l1, . . . , lm) be two tuples of nonnegative integers. We say

that (Λ,k) > (Ξ, l) if and only if there exists a partition {I1, . . . , Im} of {1, 2, . . . , n}

such that

HomgN (Vξ(i) ,
⊗
j∈Ii

Vλ(j)) 6= 0, |ξ(i)
A,li
| =

∑
j∈Ii

|λ(j)
A,kj
|,

for i = 1, . . . ,m.

If (Λ,k) > (Ξ, l) are d-nontrivial, we call sΩΞ,l a degeneration of sΩΛ,k. If we

suppose further that m = n− 1, we call sΩΞ,l a simple degeneration of sΩΛ,k.
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Theorem 3.4.12. If sΩΞ,l is a degeneration of sΩΛ,k, then sΩΞ,l is contained in the

gN -cycle sΩΛ,k.

Theorem 3.4.12 is proved in Section 3.7.2.

Theorem 3.4.13. For d-nontrivial (Λ,k), we have

sΩΛ,k =
⊔

(Ξ,l)6(Λ,k),
d-nontrivial (Ξ,l)

sΩΞ,l. (3.4.5)

Theorem 3.4.13 is proved in Section 3.7.2.

Theorems 3.4.11 and 3.4.13 imply that the subsets sΩΛ,k with d-nontrivial (Λ,k)

give a stratification of sGr(N, d), similar to the glN -stratification of Gr(N, d), see

(3.3.7) and (3.3.8). We call it the gN -stratification of sGr(N, d).

Example 3.4.14. The following picture gives an example for so5-stratification of

sGr(4, 6). In the following picture, we write ((λ(1))k1 , . . . , (λ
(n))kn) for sΩΛ,k. We

also simply write λ(s) for (λ(s))0. For instance, ((0, 1)1, (0, 1)) represents sΩΛ,k where

Λ = ((0, 1), (0, 1)) and k = (1, 0). The solid arrows represent simple degenerations.

Unlike the picture in Example 3.3.9 we do not include here the pairs of sequences

which are not 6-nontrivial, as there are too many of them.

((0, 1), (0, 1), (0, 1), (0, 1))

((0, 2), (0, 1), (0, 1)) ((1, 0), (0, 1), (0, 1)) ((0, 0)1, (0, 1), (0, 1))

((0, 0)1, (0, 0)1)((1, 0), (1, 0))((0, 2), (0, 2)) ((0, 1)1, (0, 1))

((0, 0)2)
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In particular, the stratum sΩ((0,1),(0,1),(0,1),(0,1)) is dense in sGr(4, 6).

Proposition 3.4.15. If N = 2r is even, then the stratum sΩΛ,k with (λ(s), ks) =

(ωr, 0), where s = 1, . . . , 2(d−N), is dense in sGr(N, d).

Proof. For N = 2r, one has the gN -module decomposition

Vωr ⊗ Vωr = V2ωr ⊕ Vω1 ⊕ · · · ⊕ Vωr−1 ⊕ V(0,...,0). (3.4.6)

It is clear that (Λ,k) is d-nontrivial. It also follows from (3.4.6) that if (Ξ, l) is

d-nontrivial then (Λ,k) > (Ξ, l). The proposition follows from Theorems 3.4.11 and

3.4.13.

Remark 3.4.16. The group of affine translations, see Remark 3.3.11, preserves the

self-dual Grassmannian sGr(N, d) and the strata sΩΛ,k.

3.4.5 The gN -Stratification of sGr(N, d) and the Wronski Map

Let Λ = (λ(1), . . . , λ(n)) be a sequence of dominant integral gN -weights and let

k = (k1, . . . , kn) be an n-tuple of nonnegative integers. Let z = (z1, . . . , zn) ∈ P̊n.

Recall that λ
(s)
i = 〈λ(s), α̌i〉. If X ∈ sΩΛ,k,z, one has

Wr(X) =


( n∏
s=1

(x− zs)λ
(s)
1 +···+λ(s)

r +ks
)N
, if N = 2r + 1;( n∏

s=1

(x− zs)2λ
(s)
1 +···+2λ

(s)
r−1+λ

(s)
r +2ks

)r
, if N = 2r.

We define the reduced Wronski map Wr as follows.

If N = 2r + 1, the reduced Wronski map

Wr : sGr(N, d)→ Gr(1, d−N + 1)

is sending X ∈ sGr(N, d) to C(Wr(X))1/N .

If N = 2r, the reduced Wronski map

Wr : sGr(N, d)→ Gr(1, 2(d−N) + 1)
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is sending X ∈ sGr(N, d) to C(Wr(X))1/r.

The reduced Wronski map is also a finite map.

For N = 2r, the degree of the reduced Wronski map is given by dim(V
⊗2(d−N)
ωr )gN .

This dimension is given by, see [KLP12],

(N − 1)!!
∏

16i<j6r

(
(j − i)(N − i− j + 1)

) r−1∏
k=0

(2(d−N + k))!

(d− k − 1)!(d−N + k)!
. (3.4.7)

Let d̃ = d − N + 1 if N = 2r + 1 and d̃ = 2(d − N) + 1 if N = 2r. Let m =

(m1, . . . ,mn) be an unordered sequence of positive integers such that |m| = d̃− 1.

Similar to Section 3.3.4, we have the following proposition.

Proposition 3.4.17. The preimage of the stratum Ωm of Gr(1, d̃) under the reduced

Wronski map is a union of all strata sΩΛ,k of sGr(N, d) such that |λ(s)
A,ks
| = Nms,

s = 1, . . . , n, if N is odd and such that |λ(s)
A,ks
| = rms, s = 1, . . . , n, if N = 2r is

even.

Let Λ = (λ(1), . . . , λ(n)) be an unordered sequence of dominant integral gN -

weights and k = (k1, . . . , kn) a sequence of nonnegative integers. Let a be the

number of distinct pairs in the set {(λ(s), ks), s = 1, . . . , n}. We can assume that

(λ(1), k1), . . . , (λ(a), ka) are all distinct, and let n1, . . . , na be their multiplicities, n1 +

· · ·+ na = n.

Consider the unordered set of integers m = (m1, . . . ,mn), where Nms = |λ(s)
A,ks
| if

N is odd or rms = |λ(s)
A,ks
| if N = 2r is even. Consider the stratum Ωm in Gr(1, d̃),

corresponding to polynomials with n distinct roots of multiplicities m1, . . . ,mn.

Proposition 3.4.18. Let (Λ,k) be d-nontrivial. Then the reduced Wronski map

Wr|sΩΛ,k
: sΩΛ,k → Ωm is a ramified covering of degree b(ΛA,k) dim(VΛ)gN , where

b(ΛA,k) is given by (3.3.9).

Proof. The statement follows from Theorem 3.4.5, Lemma 3.4.7, and Proposition

3.4.17.
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In other words, the gN -stratification of sGr(N, d) given by Theorems 3.4.11 and

3.4.13, is adjacent to the swallowtail gl1-stratification of Gr(1, d̃) and the reduced

Wronski map.

3.4.6 Self-Dual Grassmannian for N = 3

Let N = 3 and g3 = sl2. We identify the dominant integral sl2-weights with

nonnegative integers. Let Λ = (λ(1), . . . , λ(n), λ) be a sequence of nonnegative integers

and z = (z1, . . . , zn,∞) ∈ P̊n+1.

Choose d large enough so that k := d−3−
∑n

s=1 λ
(s)−λ > 0. Let k = (0, . . . , 0, k).

Then ΛA,k has coordinates

λ
(s)
A = (2λ(s), λ(s), 0), s = 1, . . . , n,

λA,k =
(
d− 3−

n∑
s=1

λ(s) + λ, d− 3−
n∑
s=1

λ(s), d− 3−
n∑
s=1

λ(s) − λ
)
.

Note that we always have |ΛA,k| = 3(d− 3) and spaces of polynomials in sΩΛ,k,z

are pure self-dual spaces.

Theorem 3.4.19. There exists a bijection between the common eigenvectors of the

gl2 Bethe algebra B in (VΛ,z)
sl2 and sΩΛ,k,z.

Proof. Let X ∈ sΩΛ,k,z, and let T = (T1(x), T2(x), T3(x)) be associated with ΛA,k, z,

then

T1(x) = T2(x) =
n∏
s=1

(x− zs)λ
(s)

.

Following Section 6 of [MV04], let u = (u1, u2, u3) be a Witt basis of X, one has

Wr(u1, u2) = T1u1, Wr(u1, u3) = T1u2, Wr(u2, u3) = T1u3.

Let y(x, c) = u1 + cu2 + c2

2
u3, it follows from Lemma 6.15 of [MV04] that

Wr
(
y(x, c),

∂y

∂c
(x, c)

)
= T1y(x, c).

Since X has no base points, there must exist c′ ∈ C such that y(x, c′) and T1(x) do

not have common roots. It follows from Lemma 6.16 of [MV04] that y(x, c′) = p2 and
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y(x, c) = (p+ (c− c′)q)2 for suitable polynomials p(x), q(x) satisfying Wr(p, q) = 2T1.

In particular, {p2, pq, q2} is a basis of X. Without loss of generality, we can assume

that deg p < deg q. Then

deg p =
1

2

( n∑
s=1

λ(s) − λ
)
, deg q =

1

2

( n∑
s=1

λ(s) + λ
)

+ 1.

Since X has no base points, p and q do not have common roots. Combining with

the equality Wr(p, q) = 2T1, one has that the space spanned by p and q has singular

points at z1, . . . , zn and ∞ only. Moreover, the exponents at zs, s = 1, . . . , n, are

equal to 0, λ(s) + 1, and the exponents at ∞ are equal to − deg p,− deg q.

By Theorem 3.3.2, the space span{p, q} corresponds to a common eigenvector of

the gl2 Bethe subalgebra in the subspace

( n⊗
s=1

V(λ(s),0)(zs)⊗ V(d−2−deg p,d−1−deg q)(∞)
)sl2 .

Conversely, given a common eigenvector of the gl2 Bethe algebra in (VΛ,z)
sl2 , by

Theorem 3.3.2, it corresponds to a space X̃ of polynomials in Gr(2, d) without base

points. Let {p, q} be a basis of X̃, define a space of polynomials span{p2, pq, q2} in

Gr(3, d). It is easy to see that span{p2, pq, q2} ∈ sΩΛ,k,z is a pure self-dual space.

Let X ∈ Gr(2, d), denote by X2 the space spanned by f 2 for all polynomials

f ∈ X. It is clear that X2 ∈ sGr(3, 2d− 1). Define

π : Gr(2, d)→ sGr(3, 2d− 1) (3.4.8)

by sending X to X2. The map π is an injective algebraic map.

Corollary 3.4.20. The map π defines a bijection between the subset of spaces of

polynomials without base points in Gr(2, d) and the subset of pure self-dual spaces in

sGr(3, 2d− 1).

Note that not all self-dual spaces in sGr(3, 2d − 1) can be expressed as X2 for

some X ∈ Gr(2, d) since the greatest common divisor of a self-dual space does not

have to be a square of a polynomial.
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3.4.7 Geometry and Topology

It would be very interesting to determine the topology and geometry of the strata

and cycles of Gr(N, d) and of sGr(N, d). In particular, it would be interesting to

understand the geometry and topology of the self-dual Grassmannian sGr(N, d). Here

are some simple examples of small dimension.

Of course, sGr(N,N) = Gr(N,N) is just one point. Also, sGr(2r + 1, 2r + 2) is

just P1.

Consider sGr(2r, 2r + 1), r > 1. It has only two strata: sΩ(ωr,ωr),(0,0) and sΩ(0),(1).

Moreover, the reduced Wronski map has degree 1 and defines a bijection: Wr :

sGr(2r, 2r + 1) → Gr(1, 3). In particular, the so2r+1-stratification in this case is

identified with the swallowtail gl1-stratification of quadratics. There are two strata:

polynomials with two distinct roots and polynomials with one double root. Therefore

through the reduced Wronski map, the self-dual Grassmannian sGr(2r, 2r + 1) can

be identified with P2 with coordinates (a0 : a1 : a2) and the stratum sΩ(0),(1) is a

nonsingular curve of degree 2 given by the equation a2
1 − 4a0a2 = 0.

Consider sGr(2r+1, 2r+3), r > 1. In this case we have r+2 strata: sΩ(ωi,ωi),(0,0),

i = 1, . . . , r, sΩ(0,0),(1,1), and sΩ(0),(2). The reduced Wronski map Wr : sGr(2r +

1, 2r + 3)→ Gr(1, 3) restricted to any strata again has degree 1. Therefore, through

the reduced Wronski map, the self-dual Grassmannian sGr(2r + 1, 2r + 3) can be

identified with r + 1 copies of P2 all intersecting in the same nonsingular degree 2

curve corresponding to the stratum sΩ(0),(2). In particular, every 2-dimensional sp2r-

cycle is just P2.

Consider sGr(2r + 1, 2r + 4), r > 1. We have dim sGr(2r + 1, 2r + 4) = 3. This

is the last case when for all strata the coverings of Proposition 3.4.9 have degree one.

There are already many strata. For example, consider sGr(5, 8), that is r = 2. There

are four strata of dimension 3 corresponding to the following sequences of sp4-weights

and 3-tuples of nonnegative integers:

Λ1 = (ω1, ω1, 0), k1 = (0, 0, 1); Λ2 = (ω1, ω1, ω2), k2 = (0, 0, 0);
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Λ3 = (ω2, ω2, 0), k3 = (0, 0, 1); Λ4 = (0, 0, 0), k4 = (1, 1, 1).

By the reduced Wronski map, the stratum ΩΛ4,k4 is identified with the subset of

Gr(1, 4) represented by cubic polynomials without multiple roots and the cycle ΩΛ4,k4

with Gr(1, 4) = P3. The stratification of ΩΛ4,k4 is just the swallowtail of cubic polyno-

mials. However, for other three strata the reduced Wronski map has degree 3. Using

instead the map in Proposition 3.4.9, we identify each of these strata with P̊3/(Z/2Z)

or with the subset of Gr(1, 3)×Gr(1, 2) represented by a pair of polynomials (p1, p2),

such that deg(p1) 6 2, deg(p2) 6 1 and such that all three roots (including infinity) of

p1p2 are distinct. Then the corresponding sp4-cycles ΩΛi,ki , i = 1, 2, 3, are identified

with Gr(1, 3)×Gr(1, 2) = P2 × P1.

A similar picture is observed for 3-dimensional strata in the case of sGr(2r, 2r+2).

Consider, for example, Gr(2, 4), see Example 3.3.9. Then the 4-dimensional stratum

Ω(1,0),(1,0),(1,0),(1,0) is dense and (relatively) complicated, as the corresponding covering

in Proposition 3.3.4 has degree 2. But for the 3-dimensional strata the degrees are

1. Therefore, Ω(2,0),(1,0),(1,0) and Ω(1,1),(1,0),(1,0) are identified with P̊3/(Z/2Z) and the

corresponding cycles are just Gr(1, 3)×Gr(1, 2) = P2 × P1.

3.5 More Notation

3.5.1 Lie Algebras

Let g and h be as in Section 3.2.2. One has the Cartan decomposition g =

n− ⊕ h⊕ n+. Introduce also the positive and negative Borel subalgebras b = h⊕ n+

and b− = h⊕ n−.

Let G be a simple Lie group, B a Borel subgroup, and N = [B,B] its unipotent

radical, with the corresponding Lie algebras n+ ⊂ b ⊂ g. Let G act on g by adjoint

action.

Let E1, . . . , Er ∈ n+, α̌1, . . . , α̌r ∈ h, F1, . . . , Fr ∈ n− be the Chevalley generators

of g. Let p−1 be the regular nilpotent element
∑r

i=1 Fi. The set p−1+b = {p−1+b | b ∈
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b} is invariant under conjugation by elements of N . Consider the quotient space

(p−1 + b)/N and denote the N -conjugacy class of g ∈ p−1 + b by [g]g.

Let P̌ = {λ̌ ∈ h|〈αi, λ̌〉 ∈ Z, i = 1, . . . , r} and P̌+ = {λ̌ ∈ h|〈αi, λ̌〉 ∈ Z>0, i =

1, . . . , r} be the coweight lattice and the cone of dominant integral coweights. Let

ρ ∈ h∗ and ρ̌ ∈ h be the Weyl vector and covector such that 〈ρ, α̌i〉 = 1 and 〈αi, ρ̌〉 = 1,

i = 1, . . . , r.

The Weyl group W ⊂ Aut(h∗) is generated by simple reflections si, i = 1, . . . , r,

si(λ) = λ− 〈λ, α̌i〉αi, λ ∈ h∗.

The restriction of the bilinear form (·, ·) to h is nondegenerate and induces an iso-

morphism h ∼= h∗. The action of W on h is given by si(µ̌) = µ̌− 〈αi, µ̌〉α̌i for µ̌ ∈ h.

We use the notation

w · λ = w(λ+ ρ)− ρ, w · λ̌ = w(λ̌+ ρ̌)− ρ̌, w ∈ W , λ ∈ h∗, λ̌ ∈ h,

for the shifted action of the Weyl group on h∗ and h, respectively.

Let tg = g(tA) be the Langlands dual Lie algebra of g, then t(so2r+1) = sp2r and

t(sp2r) = so2r+1. A system of simple roots of tg is α̌1, . . . , α̌r with the corresponding

coroots α1, . . . , αr. A coweight λ̌ ∈ h of g can be identified with a weight of tg.

For a vector space X we denote by M(X) the space of X-valued meromorphic

functions on P1. For a group R we denote by R(M) the group of R-valued meromor-

phic functions on P1.

3.5.2 sp2r as a Subalgebra of sl2r

Let v1, . . . , v2r be a basis of C2r. Define a nondegenerate skew-symmetric form χ

on C2r by

χ(vi, vj) = (−1)i+1δi,2r+1−j, i, j = 1, . . . , 2r.

The special symplectic Lie algebra g = sp2r by definition consists of all endomor-

phisms K of C2r such that χ(Kv, v′)+χ(v,Kv′) = 0 for all v, v′ ∈ C2r. This identifies

sp2r with a Lie subalgebra of sl2r.
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Denote Eij the matrix with zero entries except 1 at the intersection of the i-th

row and j-th column.

The Chevalley generators of g = sp2r are given by

Ei = Ei,i+1 + E2r−i,2r+1−i, Fi = Ei+1,i + E2r+1−i,2r−i, i = 1, . . . , r − 1,

Er = Er,r+1, Fr = Er+1,r,

α̌j = Ejj−Ej+1,j+1+E2r−j,2r−j−E2r+1−j,2r+1−j, α̌r = Err−Er+1,r+1, j = 1, . . . , r−1.

Moreover, a coweight λ̌ ∈ h can be written as

λ̌ =
r∑
i=1

(
〈αi, λ̌〉+ · · ·+ 〈αr−1, λ̌〉+ 〈αr, λ̌〉/2

)
(Eii − E2r+1−i,2r+1−i). (3.5.1)

In particular,

ρ̌ =
r∑
i=1

2r − 2i+ 1

2
(Eii − E2r+1−i,2r+1−i).

For convenience, we denote the coefficient of Eii in the right hand side of (3.5.1) by

(λ̌)ii, for i = 1, . . . , 2r.

3.5.3 so2r+1 as a Subalgebra of sl2r+1

Let v1, . . . , v2r+1 be a basis of C2r+1. Define a nondegenerate symmetric form χ

on C2r+1 by

χ(vi, vj) = (−1)i+1δi,2r+2−j, i, j = 1, . . . , 2r + 1.

The special orthogonal Lie algebra g = so2r+1 by definition consists of all endomor-

phisms K of C2r+1 such that χ(Kv, v′) + χ(v,Kv′) = 0 for all v, v′ ∈ C2r+1. This

identifies so2r+1 with a Lie subalgebra of sl2r+1.

Denote Eij the matrix with zero entries except 1 at the intersection of the i-th

row and j-th column.

The Chevalley generators of g = so2r+1 are given by

Ei = Ei,i+1 + E2r+1−i,2r+2−i, Fi = Ei+1,i + E2r+2−i,2r+1−i, i = 1, . . . , r,
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α̌j = Ejj − Ej+1,j+1 + E2r+1−j,2r+1−j − E2r+2−j,2r+2−j, j = 1, . . . , r.

Moreover, a coweight λ̌ ∈ h can be written as

λ̌ =
r∑
i=1

(
〈αi, λ̌〉+ · · ·+ 〈αr, λ̌〉

)
(Eii − E2r+2−i,2r+2−i). (3.5.2)

In particular,

ρ̌ =
r∑
i=1

(r + 1− i)(Eii − E2r+2−i,2r+2−i).

For convenience, we denote the coefficient of Eii in the right hand side of (3.5.2) by

(λ̌)ii, for i = 1, . . . , 2r + 1.

3.5.4 Lemmas on Spaces of Polynomials

Let Λ = (λ(1), . . . , λ(n), λ) be a sequence of partitions with at most N parts such

that |Λ| = N(d−N) and let z = (z1, . . . , zn,∞) ∈ P̊n+1.

Given an N -dimensional space of polynomials X, denote by DX the monic scalar

differential operator of order N with kernel X. The operator DX is a monodromy-free

Fuchsian differential operator with rational coefficients.

Lemma 3.5.1. A subspace X ⊂ Cd[x] is a point of ΩΛ,z if and only if the operator

DX is Fuchsian, regular in C \ {z1, . . . , zn}, the exponents at zs, s = 1, . . . , n, being

equal to λ
(s)
N , λ

(s)
N−1 + 1, . . . , λ

(s)
1 + N − 1, and the exponents at ∞ being equal to 1 +

λN − d, 2 + λN−1 − d, . . . , N + λ1 − d.

Let T = (T1, . . . , TN) be associated with Λ, z, see (3.4.1). Let Γ = {u1, . . . , uN}

be a basis of X ∈ ΩΛ,z, define a sequence of polynomials

yN−i = Wr†(u1, . . . , ui), i = 1, . . . , N − 1. (3.5.3)

Denote (y1, . . . , yN−1) by yΓ. We say that yΓ is constructed from the basis Γ.
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Lemma 3.5.2 ( [MV04]). Suppose X ∈ ΩΛ,z and let Γ = {u1, . . . , uN} be a basis of

X. If yΓ = (y1, . . . , yN−1) is constructed from Γ, then

DX =
(
∂x − ln′

(T1 · · ·TN
y1

))(
∂x − ln′

(y1T2 · · ·TN
y2

))
× . . .

×
(
∂x − ln′

(yN−2TN−1TN
yN−1

))(
∂x − ln′(yN−1TN)

)
.

Let D = ∂Nx +
∑N

i=1 hi(x)∂N−ix be a differential operator with meromorphic coef-

ficients. The operator D∗ = ∂Nx +
∑N

i=1(−1)i∂N−ix hi(x) is called the formal conjugate

to D.

Lemma 3.5.3. Let X ∈ ΩΛ,z and let {u1, . . . , uN} be a basis of X, then

Wr(u1, . . . , ûi, . . . , uN)

Wr(u1, . . . , uN)
, i = 1, . . . , N,

form a basis of Ker((DX)∗). The symbol ûi means that ui is skipped. Moreover, given

an arbitrary factorization of DX to linear factors, DX = (∂x+f1)(∂x+f2) . . . (∂x+fN),

we have (DX)∗ = (∂x − fN)(∂x − fN−1) . . . (∂x − f1).

Proof. The first statement follows from Theorem 3.14 of [MTV08a]. The second

statement follows from the first statement and Lemma A.5 of [MV04].

Lemma 3.5.4. Let X ∈ ΩΛ,z. Then

DX† = (T1 · · ·TN) ·
(
DX
)∗ · (T1 · · ·TN)−1.

Proof. The statement follows from Lemma 3.5.3 and the definition of X†.

Lemma 3.5.5. Suppose X ∈ ΩΛ,z is a pure self-dual space and z is an arbitrary

complex number, then there exists a basis Γ = {u1, . . . , uN} of X such that for yΓ =

(y1, . . . , yN−1) given by (3.5.3), we have yi = yN−i and yi(z) 6= 0 for every i =

1, . . . , N − 1.

Proof. The lemma follows from the proofs of Theorem 8.2 and Theorem 8.3 of [MV04].
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3.6 g-Oper

We fix N , N > 4, and set g to be the Langlands dual of gN . Explicitly, g = sp2r

if N = 2r and g = so2r+1 if N = 2r + 1.

3.6.1 Miura g-Oper

Fix a global coordinate x on C ⊂ P1. Consider the following subset of differential

operators

opg(P1) = {∂x + p−1 + v | v ∈M(b)}.

This set is stable under the gauge action of the unipotent subgroup N (M) ⊂ G (M).

The space of g-opers is defined as the quotient space Opg(P1) := opg(P1)/N (M). We

denote by [∇] the class of ∇ ∈ opg(P1) in Opg(P1).

We say that ∇ = ∂x + p−1 +v ∈ opg(P1) is regular at z ∈ P1 if v has no pole at z.

A g-oper [∇] is said to be regular at z if there exists f ∈ N (M) such that f−1 · ∇ · f

is regular at z.

Let ∇ = ∂x + p−1 + v be a representative of a g-oper [∇]. Consider ∇ as a

G -connection on the trivial principal bundle p : G × P1 → P1. The connection has

singularities at the set Sing ⊂ C where the function v has poles (and maybe at

infinity). Parallel translations with respect to the connection define the monodromy

representation π1(C \ Sing) → G . Its image is called the monodromy group of ∇. If

the monodromy group of one of the representatives of [∇] is contained in the center

of G , we say that [∇] is a monodromy-free g-oper.

A Miura g-oper is a differential operator of the form ∇ = ∂x + p−1 + v, where

v ∈M(h).

A g-oper [∇] has regular singularity at z ∈ P1\{∞}, if there exists a representative

∇ of [∇] such that

(x− z)ρ̌ · ∇ · (x− z)−ρ̌ = ∂x +
p−1 +w

x− z
,
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where w ∈M(b) is regular at z. The residue of [∇] at z is [p−1 +w(z)]g. We denote

the residue of [∇] at z by resz[∇].

Similarly, a g-oper [∇] has regular singularity at ∞ ∈ P1, if there exists a repre-

sentative ∇ of [∇] such that

xρ̌ · ∇ · x−ρ̌ = ∂x +
p−1 + w̃

x
,

where w̃ ∈ M(b) is regular at ∞. The residue of [∇] at ∞ is −[p−1 + w̃(∞)]g. We

denote the residue of [∇] at ∞ by res∞[∇].

Lemma 3.6.1. For any λ̌, µ̌ ∈ h, we have [p−1 − ρ̌− λ̌]g = [p−1 − ρ̌− µ̌]g if and only

if there exists w ∈ W such that λ̌ = w · µ̌.

Hence we can write [λ̌]W for [p−1 − ρ̌ − λ̌]g. In particular, if [∇] is regular at z,

then resz[∇] = [0]W .

Let Λ̌ = (λ̌(1), . . . , λ̌(n), λ̌) be a sequence of n + 1 dominant integral g-coweights

and let z = (z1, . . . , zn,∞) ∈ P̊n+1. Let Opg(P1)RS
Λ̌,z

denote the set of all g-opers with

at most regular singularities at points zs and ∞ whose residues are given by

reszs [∇] = [λ̌(s)]W , res∞[∇] = −[λ̌]W , s = 1, . . . , n,

and which are regular elsewhere. Let Opg(P1)Λ̌,z ⊂ Opg(P1)RS
Λ̌,z

denote the subset

consisting of those g-opers which are also monodromy-free.

Lemma 3.6.2 ( [Fre05]). For every g-oper [∇] ∈ Opg(P1)Λ̌,z, there exists a Miura

g-oper as one of its representatives.

Lemma 3.6.3 ( [Fre05]). Let ∇ be a Miura g-oper, then [∇] ∈ Opg(P1)RS
Λ̌,z

if and

only if the following conditions hold:

(i) ∇ is of the form

∇ = ∂x + p−1 −
n∑
s=1

ws · λ̌(s)

x− zs
−

m∑
j=1

w̃j · 0
x− tj

(3.6.1)

for some m ∈ Z>0, ws ∈ W for s = 1, . . . , n and w̃j ∈ W, tj ∈ P1 \ z for

j = 1, . . . ,m,
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(ii) there exists w∞ ∈ W such that

n∑
s=1

ws · λ̌(s) +
m∑
j=1

w̃j · 0 = w∞ · λ̌, (3.6.2)

(iii) [∇] is regular at tj for j = 1, . . . ,m.

Remark 3.6.4. The condition (3.6.2) implies that
∑n

s=1〈αr, λ̌(s)〉+ 〈αr, λ̌〉 is even if

N = 2r.

3.6.2 Miura Transformation

Following [DS85], one can associate a linear differential operator L∇ to each Miura

g-oper ∇ = ∂x + p−1 + v(x), v(x) ∈M(h).

In the case of slr+1, v(x) ∈M(h) can be viewed as an (r + 1)-tuple

(v1(x), . . . , vr+1(x))

such that
∑r+1

i=1 vi(x) = 0. The Miura transformation sends ∇ = ∂x + p−1 + v(x) to

the operator

L∇ = (∂x + v1(x)) . . . (∂x + vr+1(x)).

Similarly, the Miura transformation takes the form

L∇ = (∂x + v1(x)) . . . (∂x + vr(x))(∂x − vr(x)) . . . (∂x − v1(x))

for g = sp2r and

L∇ = (∂x + v1(x)) . . . (∂x + vr(x))∂x(∂x − vr(x)) . . . (∂x − v1(x))

for g = so2r+1. The formulas of the corresponding linear differential operators for the

cases of sp2r and so2r+1 can be understood with the embeddings described in Sections

3.5.2 and 3.5.3.

It is easy to see that different representatives of [∇] give the same differential

operator, we can write this map as [∇] 7→ L[∇].

Recall the definition of (λ̌)ii for λ̌ ∈ h from Sections 3.5.2 and 3.5.3.
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Lemma 3.6.5. Suppose ∇ is a Miura g-oper with [∇] ∈ Opg(P1)Λ̌,z, then L[∇] is

a monic Fuchsian differential operator with singularities at points in z only. The

exponents of L[∇] at zs, s = 1, . . . , n, are (λ̌(s))ii +N − i, and the exponents at ∞ are

−(λ̌)ii −N + i, i = 1, . . . , N .

Proof. Note that ∇ satisfies the conditions (i)-(iii) in Lemma 3.6.3. By Theorem 5.11

in [Fre05] and Lemma 3.6.1, we can assume ws = 1 for given s. The lemma follows

directly.

Denote by Z(G ) the center of G , then

Z(G ) =

{I2r+1} if g = so2r+1,

{±I2r} if g = sp2r.

We have the following lemma.

Lemma 3.6.6. Suppose ∇ is a Miura g-oper with [∇] ∈ Opg(P1)Λ̌,z. If g = so2r+1,

then L[∇] is a monodromy-free differential operator. If g = sp2r, then the monodromy

of L[∇] around zs is −I2r if and only if 〈αr, λ̌(s)〉 is odd for given s ∈ {1, . . . , n}.

3.6.3 Relations with Pure Self-Dual Spaces

Let Λ̌ = (λ̌(1), . . . , λ̌(n), λ̌) be a sequence of n + 1 dominant integral g-coweights

and let z = (z1, . . . , zn,∞) ∈ P̊n+1.

Consider Λ̌ as a sequence of dominant integral gN -weights. Choose d large enough

so that k := d−N−
∑n

s=1(λ̌(s))11−(λ̌)11 > 0. (We only need to consider the case that∑n
s=1(λ̌(s))11 + (λ̌)11 is an integer for N = 2r, see Lemma 3.4.4 and Remark 3.6.4.)

Let k = (0, . . . , 0, k). Note that we always have |Λ̌A,k| = N(d − N) and spaces of

polynomials in sΩΛ̌,k,z (= sΩΛ̌A,k,z
) are pure self-dual spaces.

Theorem 3.6.7. There exists a bijection between Opg(P1)Λ̌,z and sΩΛ̌,k,z given by

the map [∇] 7→ Ker(f−1 · L[∇] · f), where T = (T1, . . . , TN) is associated with Λ̌A,k, z

and f = (T1 . . . TN)−1/2.
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Proof. We only prove it for the case of g = sp2r. Suppose [∇] ∈ Opg(P1)Λ̌,z, by Lem-

mas 3.6.2 and 3.6.3, we can assume ∇ has the form (3.6.1) satisfying the conditions

(i), (ii), and (iii) in Lemma 3.6.3.

Note that if 〈αr, λ̌(s)〉 is odd, f has monodromy −I2r around the point zs. By

Lemma 3.6.6, one has that f−1 · L[∇] · f is monodromy-free around the point zs for

s = 1, . . . , n. Note also that
∑n

s=1〈αr, λ̌(s)〉+〈αr, λ̌〉 is even, it follows that f−1 ·L[∇] ·f

is also monodromy-free around the point∞. Hence f−1 ·L[∇] · f is a monodromy-free

differential operator.

It follows from Lemmas 3.5.1 and 3.6.5 that Ker(f−1 · L[∇] · f) ∈ ΩΛ̌A,k,z
. Since

L[∇] takes the form

(∂x + v1(x)) . . . (∂x + vr(x))(∂x − vr(x)) . . . (∂x − v1(x)),

it follows that Ker(f−1 · L[∇] · f) is a pure self-dual space by Lemma 3.5.4.

If there exist [∇1], [∇2] ∈ Opg(P1)Λ̌,z such that f−1 ·L[∇1] · f = f−1 ·L[∇2] · f , then

they are the same differential operator constructed from different bases of Ker(f−1 ·

L[∇] · f) as described in Lemma 3.5.2. Therefore they correspond to the same so2r+1-

population by Theorem 7.5 of [MV04]. It follows from Theorem 4.2 and remarks in

Section 4.3 of [MV05a] that [∇1] = [∇2].

Conversely, give a self-dual space X ∈ sΩΛ̌,k,z. By Lemma 3.5.5, there exists a

basis Γ of X such that for yΓ = (y1, . . . , yN−1) we have yi = yN−i, i = 1, . . . , N − 1.

Following [MV05a], define v ∈M(h) by

〈αi,v〉 = − ln′
(
Ti

r∏
j=1

y
−ai,j
j

)
,

then we introduce the Miura g-oper ∇Γ = ∂x + p−1 + v, which only has regular

singularities. It is easy to see from Lemma 3.5.2 that f−1 · L[∇Γ] · f = DX . It follows

from the same argument as the previous paragraph that [∇Γ] = [∇Γ′ ] for any other

basis Γ′ of X and hence [∇Γ] is independent of the choice of Γ. Again by Lemma

3.5.5, for any x0 ∈ C\z we can choose Γ such that yi(x0) 6= 0 for all i = 1, . . . , N −1,

it follows that [∇Γ] is regular at x0. By exponents reasons, see Lemma 3.6.5, we have

reszs [∇Γ] = [λ̌(s)]W , res∞[∇Γ] = −[λ̌]W , s = 1, . . . , n.
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On the other hand, [∇Γ] is monodromy-free by Theorem 4.1 of [MV05a]. It follows

that [∇Γ] ∈ Opg(P1)Λ̌,z, which completes the proof.

3.7 Proof of Main Theorems

3.7.1 Proof of Theorems 3.3.6 and 3.3.8

We prove Theorem 3.3.6 first.

By assumption, Ξ = (ξ(1), . . . , ξ(n−1)) is a simple degeneration of

Λ = (λ(1), . . . , λ(n)).

Without loss of generality, we assume that ξ(i) = λ(i) for i = 1, . . . , n− 2 and

dim(Vλ(n−1) ⊗ Vλ(n))
sing

ξ(n−1) > 0.

Recall the strata ΩΛ is a union of intersections of Schubert cells ΩΛ,z, see (3.3.6).

Taking the closure of ΩΛ is equivalent to allowing coordinates of z ∈ P̊n coincide.

Let z0 = (z1, . . . , zn−1) ∈ P̊n−1. Let X ∈ ΩΞ,z0 . By Theorem 3.3.2, there exists a

common eigenvector v ∈ (VΞ,z0)slN of the Bethe algebra B such that Dv = DX .

Let z′0 = (z1, . . . , zn−1, zn−1). Consider the B-module VΛ,z′0 , then we have

VΛ,z′0 =(
n−2⊗
s=1

Vλ(s)(zs))⊗ (Vλ(n−1) ⊗ Vλ(n))(zn−1)

=
⊕
µ

cµ
λ(n−1),λ(n)(

n−2⊗
s=1

Vλ(s)(zs))⊗ Vµ(zn−1),

where cµ
λ(n−1),λ(n) := dim(Vλ(n−1)⊗Vλ(n))sing

µ are the Littlewood-Richardson coefficients.

Since dim(Vλ(n−1) ⊗ Vλ(n))
sing

ξ(n−1) > 0, we have VΞ,z0 ⊂ VΛ,z′0 . In particular, (VΞ,z0)slN ⊂

(VΛ,z′0)slN . Hence v is a common eigenvector of the Bethe algebra B on (VΛ,z′0)slN such

that Dv = DX .

It follows that X is a limit point of ΩΛ,z as zn approaches zn−1. This completes

the proof of Theorem 3.3.6.

Theorem 3.3.8 follows directly from Theorem 3.3.6.
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3.7.2 Proof of Theorems 3.4.5, 3.4.12, and 3.4.13

We prove Theorem 3.4.5 first. We follow the convention of Section 3.6.

We can identify the sequence Λ̌ = (λ̌(1), . . . , λ̌(n), λ̌) of dominant integral g-

coweights as a sequence of dominant integral gN -weights. Consider the gN -module

VΛ̌ = Vλ̌(1)⊗· · ·⊗Vλ̌(n)⊗Vλ̌. It follows from Theorem 3.2 and Corollary 3.3 of [Ryb18]

that there exists a bijection between the joint eigenvalues of the gN Bethe algebra B

acting on (Vλ̌(1)(z1)⊗· · ·⊗Vλ̌(n)(zn))sing and the g-opers in Opg(P1)Λ̌,z for all possible

dominant integral g-coweight λ̌. In fact, one can show that Theorem 3.2 and Corollary

3.3 of [Ryb18] are also true for the subspaces of (Vλ̌(1)(z1) ⊗ · · · ⊗ Vλ̌(n)(zn))sing

λ̌
with

specific gN -weight λ̌. Recall that k = (0, . . . , 0, k), where k = d−N −
∑n

s=1(λ̌(s))11−

(λ̌)11 > 0. Since one has the canonical isomorphism of B-modules

(VΛ̌,z)
gN ∼= (Vλ̌(1)(z1)⊗ · · · ⊗ Vλ̌(n)(zn))sing

λ̌
,

by Theorem 3.6.7, we have the following theorem.

Theorem 3.7.1. There exists a bijection between the joint eigenvalues of the gN Bethe

algebra B acting on (VΛ̌,z)
gN and sΩΛ̌,k,z ⊂ sGr(N, d) such that given a joint eigen-

value of B with a corresponding B-eigenvector v in (VΛ̌,z)
gN we have Ker ((T1 . . . TN)1/2·

Dv · (T1 . . . TN)−1/2) ∈ sΩΛ̌,k,z.

The fact that Ker ((T1 . . . TN)1/2 ·Dv ·(T1 . . . TN)−1/2) ∈ sΩΛ̌,k,z for the eigenvector

v ∈ (VΛ̌,z)
gN of the gN Bethe algebra (except for the case of even N when there exists

s ∈ {1, 2, . . . , n} such that 〈αr, λ̌(s)〉 is odd) also follows from the results of [LMV16]

and [MM17].

Note that by Proposition 2.10 in [Ryb18], the i-th coefficient of the scalar dif-

ferential operator L[∇] in Theorem 3.6.7 is obtained by action of a universal series

Gi(x) ∈ U(gN [t][[x−1]]). Theorem 3.4.5 for the case of N > 4 is a direct corollary of

Theorems 3.6.7 and 3.7.1.

Thanks to Theorem 3.4.5, Theorems 3.4.12 and 3.4.13 can be proved in a similar

way as Theorems 3.3.6 and 3.3.8.
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3.8 Self-dual Spaces and $-Invariant Vectors

3.8.1 Diagram Automorphism $

There is a diagram automorphism $ : slN → slN such that

$(Ei) = EN−i, $(Fi) = FN−i, $2 = 1, $(hA) = hA.

The automorphism $ is extended to the automorphism of glN by

glN → glN , eij 7→ (−1)i−j−1eN+1−j,N+1−i, i, j = 1, . . . , N.

By abuse of notation, we denote this automorphism of glN also by $.

The restriction of $ to the Cartan subalgebra hA induces a dual map $∗ : h∗A →

h∗A, λ 7→ λ?, by

λ?(h) = $∗(λ)(h) = λ($(h)),

for all λ ∈ h∗A, h ∈ hA.

Let (h∗A)0 = {λ ∈ h∗A | λ? = λ} ⊂ h∗A. We call elements of (h∗A)0 symmetric

weights.

Let hN be the Cartan subalgebra of gN . Consider the root system of type

AN−1 with simple roots αA1 , . . . , α
A
N−1 and the root system of gN with simple roots

α1, . . . , α[N2 ].

There is a linear isomorphism P ∗$ : h∗N → (h∗A)0, λ 7→ λA, where λA is defined by

〈λA, α̌Ai 〉 = 〈λA, α̌AN−i〉 = 〈λ, α̌i〉, i = 1, . . . ,

[
N

2

]
. (3.8.1)

Let λ ∈ h∗A and fix two nonzero highest weight vectors vλ ∈ (Vλ)λ, vλ? ∈ (Vλ?)λ? .

Then there exists a unique linear isomorphism I$ : Vλ → Vλ? such that

I$(vλ) = vλ? , I$(gv) = $(g)I$(v), (3.8.2)

for all g ∈ slN , v ∈ Vλ. In particular, if λ is a symmetric weight, I$ is a linear

automorphism of Vλ, where we always assume that vλ = vλ? .
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Let M be a finite-dimensional slN -module with a weight space decomposition

M =
⊕

µ∈h∗A
(M)µ. Let f : M → M be a linear map such that f(hv) = $(h)f(v)

for h ∈ hA, v ∈ M . Then it follows that f((M)µ) ⊂ (M)µ? for all µ ∈ h∗A. Define a

formal sum

Tr$Mf =
∑

µ∈(h∗A)0

Tr(f |(M)µ)e(µ),

where Tr(f |(M)µ) for µ ∈ (h∗A)0 denotes the trace of the restriction of f to the weight

space (M)µ.

Lemma 3.8.1. We have Tr$M⊗M ′(f ⊗ f ′) = (Tr$Mf) · (Tr$M ′f
′).

Let Λ = (λ(1), . . . , λ(n)) be a sequence of dominant integral gN -weights, then the

tuple ΛA = (λ
(1)
A , . . . , λ

(n)
A ) is a sequence of symmetric dominant integral slN -weights.

Let VΛA =
⊗n

s=1 Vλ(s)
A

. The tensor product of maps I$ in (3.8.2) with respect to λ
(s)
A ,

s = 1, . . . , n, gives a linear isomorphism

I$ : VΛA → VΛA , (3.8.3)

of slN -modules. Note that the map I$ preserves the weight spaces with symmetric

weights and the corresponding spaces of singular vectors. In particular, (VΛA)slN is

invariant under I$.

Lemma 3.8.2. Let µ be a gN -weight. Then we have

dim(VΛ)sing
µ = Tr

(
I$|(V

ΛA
)sing
µA

)
, dim(VΛ)µ = Tr

(
I$|(V

ΛA
)µA

)
.

In particular, dim(VΛ)gN = Tr
(
I$|(V

ΛA
)slN

)
.

Proof. The statement follows from Lemma 3.8.1 and Theorem 1 of Section 4.4 of

[FSS96].

3.8.2 Action of $ on the Bethe Algebra

The automorphism $ is extended to the automorphism of current algebra glN [t]

by the formula $(g ⊗ ts) = $(g)⊗ ts, where g ∈ glN and s = 0, 1, 2, . . . . Recall the

operator DB, see (3.2.3).
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Proposition 3.8.3. We have the following identity

$(DB) = ∂Nx +
N∑
i=1

(−1)i∂N−ix Bi(x).

Proof. It follows from the proof of Lemma 3.5 of [BHLW17] that no nonzero elements

of U(glN [t]) kill all
⊗n

s=1 L(zs) for all n ∈ Z>0 and all z1, . . . , zn. It suffices to show

the identity when it evaluates on
⊗n

s=1 L(zs).

Following the convention of [MTV10], define the N ×N matrix

Gh = Gh(N, n, x, px, z,λ, X, P )

by the formula

Gh :=
(

(px − λi) δij +
n∑
a=1

(−1)i−j
xN+1−i,apN+1−j,a

x− za

)N
i,j=1

.

By Theorem 2.1 of [MTV10], it suffices to show that

rdet(Gh)
n∏
a=1

(x−za) =
∑

A,B,|A|=|B|

∏
b 6∈A

(px−λb)
∏
a6∈B

(x−za) det(xab)
b∈B
a∈A det(pab)

b∈B
a∈A. (3.8.4)

The proof of (3.8.4) is similar to the proof of Theorem 2.1 in [MTV10] with the

following modifications.

Let m be a product whose factors are of the form f(x), px, pij, xij where f(x) is

a rational function in x. Then the product m will be called normally ordered if all

factors of the form px, xij are on the left from all factors of the form f(x), pij.

Correspondingly, in Lemma 2.4 of [MTV10], we put the normal order for the first

i factors of each summand.

We have the following corollary of Proposition 3.8.3.

Corollary 3.8.4. The glN Bethe algebra B is invariant under $, that is $(B) =

B.

Let Λ = (λ(1), . . . , λ(n)) be a sequence of partitions with at most N parts and

z = (z1, . . . , zn) ∈ P̊n.
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Let v ∈ (VΛ,z)
slN be an eigenvector of the glN Bethe algebra B. Denote the $(DB)v

the scalar differential operator obtained by acting by the formal operator $(DB) on

v.

Corollary 3.8.5. Let v ∈ (VΛ,z)
slN be a common eigenvector of the glN Bethe algebra;

then the identity $(DB)v =
(
Dv
)∗

holds.

Let Ξ = (ξ(1), . . . , ξ(n)) be a sequence of N -tuples of integers. Suppose

ξ(s) − λ(s) = ms(1, . . . , 1), s = 1, . . . , n.

Define the following rational functions depending on ms, s = 1, . . . , n,

ϕ(x) =
n∏
s=1

(x− zs)ms , ψ(x) = ln′(ϕ(x)) =
n∑
s=1

ms

x− zs
.

Here we use the convention that 1/(x − zs) is considered as the constant function 0

if zs =∞.

Lemma 3.8.6. For any formal power series a(x) in x−1 with complex coefficients,

the linear map obtained by sending eij(x) to eij(x)+δija(x) induces an automorphism

of glN [t].

We denote the automorphism in Lemma 3.8.6 by ηa(x).

Lemma 3.8.7. The B-module obtained by pulling VΛ,z via ηψ(x) is isomorphic to

VΞ,z.

By Lemma 3.8.7, we can identify the B-module VΞ,z with the B-module VΛ,z as

vector spaces. This identification is an isomorphism of slN -modules. For v ∈ (VΛ,z)
slN

we use ηψ(x)(v) to express the same vector in (VΞ,z)
slN under this identification.

Lemma 3.8.8. The following identity for differential operators holds

ηψ(x)(DB) = ϕ(x)DB(ϕ(x))−1.
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Proof. The lemma follows from the simple computation:

ϕ(x)(∂x − eii(x))(ϕ(x))−1 = ∂x − eii(x)− ψ(x).

Proposition 3.8.9. Let v ∈ (VΛ,z)
slN be an eigenvector of the Bethe algebra such

that Dv = DX for some X ∈ ΩΛ,z, then Dηψ(x)(v) = Dϕ(x)·X .

Proof. With the identification between the B-modules VΞ,z and VΛ,z, we have

Dηψ(x)(v) =
(
ηψ(x)(DB)

)
v

= ϕ(x)Dv(ϕ(x))−1 = ϕ(x)DX(ϕ(x))−1 = Dϕ(x)·X .

The second equality follows from Lemma 3.8.8.

3.8.3 I$-Invariant Bethe Vectors and Self-Dual Spaces

Let Λ = (λ(1), . . . , λ(n)) be a tuple of dominant integral gN -weights. Recall the

map I$ : VΛA → VΛA , from (3.8.3).

Note that an slN -weight can be lifted to a glN -weight such that the N -th coor-

dinate of the corresponding glN -weight is zero. From now on, we consider λ
(s)
A from

(3.8.1) as glN -weights obtained from (3.4.2), that is as the partitions with at most

N − 1 parts.

Let Ξ = (ξ(1), . . . , ξ(n)) be a sequence of N -tuples of integers such that

ξ(s) − λ(s)
A = −(λ

(s)
A )1(1, . . . , 1), s = 1, . . . , n.

Consider the slN -module VΛA as the glN -module VΛA , the image of VΛA under I$ in

(3.8.3), considered as a glN -module, is VΞ. Furthermore, the image of (VΛA)slN under

I$ is (VΞ)slN .

Let T = (T1, . . . , TN) be associated with ΛA, z, we have

T1 · · ·TN =
n∏
s=1

(x− zs)(λ
(s)
A )1 .
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Let ϕ(x) = T1 · · ·TN and let ψ(x) = ϕ′(x)/ϕ(x). Hence by Lemma 3.8.7, the pull-

back of VΞ,z through ηψ(x) is isomorphic to VΛA,z. Furthermore, the pull-back of

(VΞ,z)
slN through ηψ(x) is isomorphic to (VΛA,z)

slN .

Theorem 3.8.10. Let v ∈ (VΛA,z)
slN be an eigenvector of the glN Bethe algebra B

such that Dv = DX for some X ∈ ΩΛA,z, then Dηψ(x)◦I$(v) = DX†. Moreover, X is

self-dual if and only if I$(v) = v.

Proof. It follows from Proposition 3.8.9, Corollary 3.8.5, and Lemma 3.5.4 that

Dηψ(x)◦I$(v) =ϕ(x)DI$(v)(ϕ(x))−1 = ϕ(x)$(DB)v(ϕ(x))−1

=(T1 . . . TN)(DX)∗(T1 . . . TN)−1 = DX† .

Since (λ
(s)
A )N = 0 for all s = 1, . . . , n, X has no base points. Therefore X is

self-dual if and only if DX = DX† . Suppose X is self-dual, it follows from Theorem

3.3.2 that ηψ(x) ◦ I$(v) is a scalar multiple of v. By our identification, in terms of

an slN -module homomorphism, ηψ(x) is the identity map. Moreover, since I$ is an

involution, we have I$(v) = ±v.

Finally, generically, we have an eigenbasis of the action of B in (VΛA,z)
slN (for

example for all z ∈ RP̊n). In such a case, by the equality of dimensions using Lemma

3.8.2, we have I$(v) = v. Then the general case is obtained by taking the limit.

Acknowledgement. By courtesy of International Press of Boston, Inc, we ac-

knowledge that this chapter was previously published in Pure and Applied Mathe-

matics Quarterly, vol. 13 no. 2.
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4. LOWER BOUNDS FOR NUMBERS OF REAL

SELF-DUAL SPACES IN PROBLEMS OF SCHUBERT

CALCULUS

4.1 Introduction

It is well known that the problem of finding the number of real solutions to al-

gebraic systems is very difficult, and not many results are known. In particular, the

counting of real points in problems of Schubert calculus in the Grassmannian has

received a lot of attention, see [EG02, HHS13, HS, HSZ16, MT16, SS06, Sot10] for ex-

ample. In this paper, we give lower bounds for the numbers of real self-dual spaces

in intersections of Schubert varieties related to osculating flags in the Grassmannian.

We define the Grassmannian Gr(N, d) to be the set of all N -dimensional subspaces

of the d-dimensional space Cd[x] of polynomials in x of degree less than d. In other

words, we always assume for X ∈ Gr(N, d), we have X ⊂ Cd[x]. Set P1 = C ∪

{∞}. Then, for any z ∈ P1, we have the osculating flag F(z), see (3.3.3), (3.3.4).

Denote the Schubert cells corresponding to F(z) by Ωξ(F(z)), where ξ = (d − N >

ξ1 > ξ2 > · · · > ξN > 0) are partitions. Then the set Ωξ,z consists of spaces

X ∈ Gr(N, d) such that X belongs to the intersection of Schubert cells Ωξ(i)(F(zi))

for z = (z1, . . . , zn) and ξ =
(
ξ(1), . . . , ξ(n)

)
, where all zi ∈ P1 are distinct and ξ(i) are

partitions, see (3.3.5). A point X ∈ Gr(N, d) is called real if it has a basis consisting

of polynomials with all coefficients real. A lower bound for the number of real points

in Ωξ,z is given in [MT16].
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Let X ∈ Gr(N, d) be an N -dimensional subspace of polynomials in x. Let X∨ be

the N -dimensional space of polynomials which are Wronskian determinants of N − 1

elements of X

X∨ =
{

det
(
di−1ϕj/dx

i−1
)N−1

i,j=1
, ϕj(x) ∈ X

}
.

The space X is called self-dual if X∨ = ψ ·X for some polynomial ψ(x), see [MV04].

We define sΩξ,z the subset of Ωξ,z consisting of all self-dual spaces. Our main result

of this paper is a lower bound for the number of real self-dual spaces in Ωξ,z, see

Corollary 4.7.4, i.e., a lower bound for the number of real points in sΩξ,z, by following

the idea of [MT16].

Let gN be the Lie algebra so2r+1 if N = 2r or the Lie algebra sp2r if N = 2r + 1.

We also set g3 = sl2. It is known from [LMV16], see also [MV04, Section 6.1], that

if sΩξ,z is nonempty, then ξ
(s)
i − ξ

(s)
i+1 = ξ

(s)
N−i − ξ

(s)
N−i+1 for i = 1, . . . , N − 1. Hence

the slN -weight corresponding to the partition ξ(s) has certain symmetry and thus

induces a gN -weight λ(s), cf. (4.4.4). Therefore, the sequence of partitions ξ with

nonempty sΩξ,z can be expressed in terms of a sequence of dominant integral gN -

weights λ =
(
λ1, . . . , λ(n)

)
and a sequence of nonnegative integers k = (k1, . . . , kn),

see Lemma 4.4.1. In particular, ki = ξ
(i)
N . We call ξ, z or λ,k, z the ramification data.

As a subset of Ωξ,z, sΩξ,z can be empty even if Ωξ,z is infinite. However, if sΩξ,z

is nonempty, then sΩξ,z is finite if and only if Ωξ,z is finite. More precisely, if

|ξ| :=
n∑
i=1

∣∣ξ(i)
∣∣ = N(d−N),

then the number of points in sΩξ,z counted with multiplicities equals the multiplicity

of the trivial gN -module in the tensor product Vλ(1) ⊗ · · · ⊗ Vλ(n) of irreducible gN -

modules of highest weights λ(1), . . . , λ(n). Since we are interested in the counting

problem, from now on, we always assume that |ξ| = N(d−N).

For brevity, we consider ∞ to be real. If all z1, . . . , zn are real, it follows from

[MTV09c, Theorem 1.1] that all points in sΩξ,z are real. Hence the number of real

points is maximal possible in this case. Moreover, it follows from [MTV09b, Corollary

6.3] that all points in sΩξ,z are multiplicity-free.
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Then we want to know how many real points we can guarantee in other cases.

In general, a necessary condition for the existence of real points is that the set

{z1, . . . , zn} should be invariant under the complex conjugation and the partitions

at the complex conjugate points are the same. In other words,
(
λ(i), ki

)
=
(
λ(j), kj

)
provided zi = z̄j. In this case we say that z, λ, k are invariant under conjugation.

Moreover, the greatest common divisor of X ∈ sΩξ,z in this case is a real polynomial.

Hence we reduce the problem to the case that ki = 0, for all i = 1, . . . , n.

The derivation of the lower bounds is based on the identification of the self-dual

spaces of polynomials with points of spectrum of higher Gaudin Hamiltonians of types

B and C (gN , N > 4) built in [LMV16] and [MV04], see Theorem 4.5.2. We show that

higher Gaudin Hamiltonians of types B and C have certain symmetry with respect

to the Shapovalov form which is positive definite Hermitian, see Proposition 4.6.1. In

particular, these operators are self-adjoint with respect to the Shapovalov form for

real z1, . . . , zn and hence have real eigenvalues. Therefore, it follows from Theorem

4.5.2 that self-dual spaces with real z1, . . . , zn are real.

If some of z1, . . . , zn are not real, but the data z, λ, k are invariant under the

complex conjugation, the higher Gaudin Hamiltonians are self-adjoint with respect

to a nondegenerate (indefinite) Hermitian form. One of the key observations for

computing the lower bound for the number of real points in sΩξ,z is the fact that

the number of real eigenvalues of such operators is at least the absolute value of the

signature of the Hermitian form, see Lemma 4.6.4.

The computation of the signature of the form is reduced to the computation

of the character values of products of symmetric groups on products of commuting

transpositions. The formula for such character, similar to the Frobenius formula

in [Fro00] and [MT16, Proposition 2.1], is given in Proposition 4.3.1. Consequently,

we obtain our main result, a lower bound for the number of real points in sΩξ,z for

N > 4, see Corollary 4.7.4. The case N = 2 is the same as that of [MT16] since every

2-dimensional space of polynomials is self-dual. By the proof of [LMV16, Theorem

4.19], the case N = 3 is reduced to the case of [MT16], see Section 4.7.2.
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Based on the identification of the self-self-dual spaces of polynomials with points

of spectrum of higher Gaudin Hamiltonians of type G2 built in [BM05] and [LM19a],

we expect that lower bounds for the numbers of real self-self-dual spaces in Ωξ,z with

N = 7 can also be given in a similar way as conducted in this paper.

It is also interesting to find an algorithm to compute all (real) self-dual spaces with

prescribed ramification data. The solutions to the Bethe ansatz equations described

in [LMV16] can be used to find nontrivial examples of self-dual spaces.

The paper is organized as follows. We start with the standard notation of Lie

theory in Section 4.2 and computations of characters of a product of symmetric groups

in Section 4.3. Then we recall notation and definitions for osculating Schubert calculus

and self-dual spaces in Section 4.4. In Section 4.5 we recall the connections between

Gaudin model of types B, C and self-dual spaces of polynomials. The symmetry of

higher Gaudin Hamiltonians with respect to Shapovalov form and the key lemma

from linear algebra are discussed in Section 4.6. In Section 4.7 we prove our main

results, see Theorem 4.7.2 and Corollary 4.7.4. Finally, we display some simple data

computed from Corollary 4.7.4 in Section 4.8.

4.2 Simple Lie Algebras

Let g be a simple Lie algebra over C with Cartan matrix A = (ai,j)
r
i,j=1, where

r is the rank of g. Let D = diag(d1, . . . , dr) be the diagonal matrix with positive

relatively prime integers di such that DA is symmetric.

Let h ⊂ g be a Cartan subalgebra with the Cartan decomposition g = n−⊕h⊕n+.

Fix simple roots α1, . . . , αr in h∗. Let α̌1, . . . , α̌r ∈ h be the corresponding coroots.

Fix a nondegenerate invariant bilinear form ( , ) on g such that (α̌i, α̌j) = ai,j/dj.

The corresponding bilinear form on h∗ is given by (αi, αj) = diai,j. We have 〈λ, α̌i〉 =

2(λ, αi)/(αi, αi) for λ ∈ h∗. In particular, 〈αj, α̌i〉 = ai,j. Let ω1, . . . , ωr ∈ h∗ be the

fundamental weights, 〈ωj, α̌i〉 = δi,j.
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Let P = {λ ∈ h∗ | 〈λ, α̌i〉 ∈ Z, i = 1, . . . , r} and P+ = {λ ∈ h∗ | 〈λ, α̌i〉 ∈ Z>0, i =

1, . . . , r} be the weight lattice and the cone of dominant integral weights.

Let e1, . . . , er ∈ n+, α̌1, . . . , α̌r ∈ h, f1, . . . , fr ∈ n− be the Chevalley generators

of g.

Given a g-module M , denote by (M)g the subspace of g-invariants in M . The

subspace (M)g is the multiplicity space of the trivial g-module in M .

A sequence of nonnegative integers ξ = (ξ1, . . . , ξk) such that ξ1 > ξ2 > · · · > ξk >

0 is called a partition with at most k parts. Set |ξ| =
k∑
i=1

ξi.

For λ ∈ h∗, let Vλ be the irreducible g-module with highest weight λ. For any

g-weights λ and µ, it is well known that dim(Vλ ⊗ Vµ)g = δλ,µ for g = so2r+1, sp2r.

For any Lie algebra g, denote by U(g) the universal enveloping algebra of g.

4.3 Characters of the Symmetric Groups

Let gN be the Lie algebra so2r+1 if N = 2r or the Lie algebra sp2r if N = 2r + 1,

r > 2. We also set g3 = sl2. Let GN be the respective classical group with Lie algebra

gN .

Let Sk be the symmetric group permuting a set of k elements. In this section

we deduce a formula for characters of a product of the symmetric groups acting on a

tensor product of finite-dimensional irreducible gN -modules.

For each dominant integral gN -weight λ, denote by λ̄ = (λ̄1, . . . , λ̄r) the partition

with at most r parts such that

2〈λ, α̌i〉 = λ̄i − λ̄i+1, i = 1, . . . , r − 1, and λ̄r =

〈λ, α̌r〉, if N = 2r,

2〈λ, α̌r〉, if N = 2r + 1.

Define an anti-symmetric Laurent polynomial ∆N in x1, . . . , xr as follows

∆N = det
(
xN+1−2j
i − x−(N+1−2j)

i

)r
i,j=1

. (4.3.1)

We call ∆N the Vandermonde determinant of gN .
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Let λ be a dominant integral gN -weight. It is well known that the character of

the module Vλ is given by

SNλ (x1, . . . , xr) = trVλ XN =
det
(
x
λ̄j+N+1−2j
i − x−(λ̄j+N+1−2j)

i

)r
i,j=1

∆N

, (4.3.2)

where XN ∈ GN is given by

XN =

diag
(
x2

1, . . . , x
2
r, 1, x

−2
r , . . . , x−2

1

)
, if N = 2r,

diag
(
x2

1, . . . , x
2
r, x
−2
r , . . . , x−2

1

)
, if N = 2r + 1.

We call SNλ the Schur function of gN associated with the weight λ.

Note that SNλ are symmetric Laurent polynomials in x1, . . . , xr, namely

SNλ ∈
(
C
[
x±1

1 , . . . , x±1
r

])Sr
.

Let λ(1), . . . , λ(s) be a sequence of dominant integral gN -weights and k1, . . . , ks a

sequence of positive integers. Consider the tensor product of gN -modules

Vλ = V ⊗k1

λ(1) ⊗ V ⊗k2

λ(2) ⊗ · · · ⊗ V ⊗ksλ(s)

and its decomposition into irreducible gN -submodules

Vλ =
⊕
µ

Vµ ⊗Mλ,µ.

By permuting the corresponding tensor factors of Vλ, the product of symmetric

groups Sk = Sk1 ×Sk2 × · · · ×Sks acts naturally on Vλ. Note that the Sk-action

commutes with the gN -action, therefore the group Sk acts on the multiplicity space

Mλ,µ for all µ.

For σ = σ1×σ2×· · ·×σs ∈ Sk, σi ∈ Ski . Suppose all σi are written as a product

of disjoint cycles. Denote by ci the number of cycles in the product representing σi

and lij, j = 1, . . . , ci, the lengths of cycles. Note that li,1 + · · ·+ li,ci = ki.

We then consider the value of the character of Sk corresponding to the represen-

tation Mλ,µ on σ. Let χλ,µ = trMλ,µ .
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Proposition 4.3.1. The character value χλ,µ(σ) equals the coefficient of the mono-

mial

xµ̄1+N−1
1 xµ̄2+N−3

2 · · ·xµ̄r+N+1−2r
r

in the Laurent polynomial

∆N ·
s∏
i=1

ci∏
j=1

SNλ(i)

(
x
lij
1 , . . . , x

lij
r

)
.

Proof. The proof of the statement is similar to that of [MT16, Proposition 2.1].

4.4 Osculating Schubert Calculus and Self-Dual Spaces

Let N , d ∈ Z>0 be such that N 6 d. Consider P1 := C ∪ {∞}. Set

P̊n :=
{
z = (z1, . . . , zn) ∈ (P1)n | zi 6= zj for 1 6 i < j 6 n

}
,

RP̊n :=
{
z = (z1, . . . , zn) ∈ P̊n | zi ∈ R or zi =∞, for 1 6 i 6 n

}
.

4.4.1 Osculating Schubert Calculus

Let Cd[x] be the space of polynomials in x with complex coefficients of degree

less than d. We have dimCd[x] = d. Let Gr(N, d) be the Grassmannian of all N -

dimensional subspaces in Cd[x]. The Grassmannian Gr(N, d) is a smooth projective

complex variety of dimension N(d−N).

Let Rd[x] ⊂ Cd[x] be the set of polynomials in x with real coefficients of degree less

than d. Let GrR(N, d) ⊂ Gr(N, d) be the set of subspaces which have a basis consisting

of polynomials with all coefficients real. For X ∈ Gr(N, d) we have X ∈ GrR(N, d) if

and only if dimR(X ∩ Rd[x]) = N . We call such points X real.
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For a complete flag F = {0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fd = Cd[x]} and a partition

ξ = (ξ1, . . . , ξN) such that ξ1 6 d − N , the Schubert cell Ωξ(F) ⊂ Gr(N, d) is given

by

Ωξ(F) =
{
X ∈ Gr(N, d) | dim(X ∩Fd−j−ξN−j) = N − j,

dim(X ∩Fd−j−ξN−j−1) = N − j − 1
}
.

Note that codim Ωξ(F) = |ξ|.

Let F(∞) be the complete flag given by

F(∞) =
{

0 ⊂ C1[x] ⊂ C2[x] ⊂ · · · ⊂ Cd[x]
}
. (4.4.1)

The subspace X is a point of Ωξ(F(∞)) if and only if for every i = 1, . . . , N , it

contains a polynomial of degree d− i− ξN+1−i.

For z ∈ C, consider the complete flag

F(z) =
{

0 ⊂ (x− z)d−1C1[x] ⊂ (x− z)d−2C2[x] ⊂ · · · ⊂ Cd[x]
}
. (4.4.2)

The subspace X is a point of Ωξ(F(z)) if and only if for every i = 1, . . . , N , it

contains a polynomial with a root at z of order exactly ξi +N − i.

A point z ∈ C is called a base point for a subspace X ⊂ Cd[x] if ϕ(z) = 0 for every

ϕ ∈ X.

Let ξ=
(
ξ(1), . . ., ξ(n)

)
be a sequence of partitions with at most N parts and z =

(z1, . . ., zn) ∈ P̊n. Set |ξ| =
n∑
s=1

∣∣ξ(s)
∣∣.

Assuming |ξ| = N(d−N), denote by Ωξ,z the intersection of the Schubert cells

Ωξ,z =
n⋂
s=1

Ωξ(s)(F(zs)). (4.4.3)

Note that due to our assumption, Ωξ,z is a finite subset of Gr(N, d).

Define a sequence of polynomials T = (T1, . . . , TN) by the formulas

Ti(x) =
n∏
s=1

(x− zs)ξ
(s)
i −ξ

(s)
i+1 , i = 1, . . . , N,

where ξ
(s)
N+1 = 0. Here and in what follows we use the convention that x − zs is

considered as the constant function 1 if zs =∞. We say that T is associated with ξ,

z.
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4.4.2 Self-Dual Spaces

Let X ∈ Gr(N, d) be an N -dimensional subspace of polynomials in x. Given a

polynomial ψ in x, denote by ψ ·X the space of polynomials of the form ψ · ϕ for all

ϕ ∈ X.

Let X∨ be the N -dimensional space of polynomials which are Wronskian deter-

minants of N − 1 elements of X

X∨ =
{

det
(
di−1ϕj/dx

i−1
)N−1

i,j=1
, ϕj(x) ∈ X

}
.

The space X is called self-dual if X∨ = ψ ·X for some polynomial ψ(x), see [MV04].

Let sGr(N, d) be the set of all self-dual spaces in Gr(N, d). We call sGr(N, d) the

self-dual Grassmannian. The self-dual Grassmannian sGr(N, d) is an algebraic subset

of Gr(N, d).

Denote by sΩξ,z the set of all self-dual spaces in Ωξ,z

sΩξ,z = Ωξ,z
⋂

sGr(N, d).

Let µ be a dominant integral gN -weight and k ∈ Z>0. Define a partition µA,k with

at most N parts by the rule: (µA,k)N = k and

(µA,k)i − (µA,k)i+1 =

〈µ, α̌i〉, if 1 6 i 6
[
N
2

]
,

〈µ, α̌N−i〉, if
[
N
2

]
< i 6 N − 1.

(4.4.4)

We call µA,k the partition associated with weight µ and integer k.

Let λ =
(
λ(1), . . ., λ(n)

)
be a sequence of dominant integral gN -weights and let

k = (k1, . . ., kn) be an n-tuple of nonnegative integers. Then denote

λA,k =
(
λ

(1)
A,k1

, . . . , λ
(n)
A,kn

)
the sequence of partitions associated with λ(s) and ks, s = 1, . . . , n.

We use the notation µA = µA,0 and λA = λA,(0,...,0).

Lemma 4.4.1 ( [LMV16]). If ξ is a sequence of partitions with at most N parts

such that |ξ| = N(d − N) and sΩξ,z is nonempty, then ξ has the form ξ = λA,k for
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a sequence of dominant integral gN -weights λ =
(
λ(1), . . . , λ(n)

)
and a sequence of

nonnegative integers k = (k1, . . . , kn). The pair (λ,k) is uniquely determined by ξ.

In what follows we write Ωλ,z, Ωλ,k,z, sΩλ,z, sΩλ,k,z for ΩλA,z, ΩλA,k,z, sΩλA,z,

sΩλA,k,z, respectively.

Note that |λA,k| = |λA|+N |k|, where |k| = k1+· · ·+kn. Suppose |λA| = N(d−N),

there exists a bijection between Ωλ,z in Gr(N, d) and Ωλ,k,z in Gr(N, d + |k|) given

by

Ωλ,z → Ωλ,k,z, X 7→
n∏
s=1

(x− zs)ks ·X. (4.4.5)

Moreover, (3.4.3) restricts to a bijection between sΩλ,z in sGr(N, d) and sΩλ,k,z in

sGr(N, d+ |k|).

4.5 Gaudin Model

Let g[t] = g⊗ C[t] be the Lie algebra of g-valued polynomials with the pointwise

commutator. We call it the current algebra of g. We identify the Lie algebra g with

the subalgebra g⊗ 1 of constant polynomials in g[t].

It is convenient to collect elements of g[t] in generating series of a formal variable

x. For g ∈ g, set

g(x) =
∞∑
k=0

(
g ⊗ tk

)
x−k−1. (4.5.1)

For each a ∈ C, we have the evaluation homomorphism eva : g[t] → g where eva

sends g⊗ ts to asg for all g ∈ g and s ∈ Z>0. Its restriction to the subalgebra g ⊂ g[t]

is the identity map. For any g-module M , we denote by M(a) the g[t]-module,

obtained by pulling M back through the evaluation homomorphism eva. The g[t]-

module M(a) is called an evaluation module. The generating series g(x) acts on the

evaluation module M(a) by g/(x− a).

The Bethe algebra B (the algebra of higher Gaudin Hamiltonians) for a simple Lie

algebra g was described in [FFR94]. The Bethe algebra B is a commutative subalgebra
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of U(g[t]) which commutes with the subalgebra U(g) ⊂ U(g[t]). An explicit set of

generators of the Bethe algebra in Lie algebras of types B, C, and D was given

in [Mol13].

Proposition 4.5.1 ( [FFR94, Mol13]). Let N > 3. There exist elements Fij ∈ gN ,

i, j = 1, . . . , N , and polynomials Bs(x) in dkFij(x)/dxk, s = 1, . . . , N , k = 0, . . . , N ,

such that the Bethe algebra B of gN is generated by the coefficients of Bs(x) considered

as formal power series in x−1.

We denote M(∞) the gN -module M with the trivial action of the Bethe algebra

B, see [LMV16] for more detail.

For a collection of gN -weights λ =
(
λ(1), . . . , λ(n)

)
and z = (z1, . . . , zn) ∈ P̊n, we

set

Vλ,z =
n⊗
s=1

Vλ(s)(zs),

considered as a B-module. We also denote Vλ the module Vλ,z considered as a gN -

module.

Let ∂x be the differentiation with respect to x. Define a formal differential operator

DB = ∂Nx +
N∑
i=1

Bi(x)∂N−ix ,

where

Bi(x) =
∞∑
j=i

Bijx
−j (4.5.2)

and Bij ∈ U(gN [t]), j ∈ Z>i, i = 1, . . . , N . The operator DB is called the universal

operator.

Let z = (z1, . . . , zn) ∈ P̊n and let λ =
(
λ(1), . . . , λ(n)

)
be a sequence of dominant

integral gN -weights. For every g ∈ gN , the series g(x) acts on Vλ,z as a rational

function of x.

Since the Bethe algebra B commutes with gN , B acts on the invariant space

(Vλ,z)
gN . For b ∈ B, denote by b(λ, z) ∈ End((Vλ,z)

gN ) the corresponding linear

operator.
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Given a common eigenvector v ∈ (Vλ,z)
gN of the operators b(λ, z), denote by

b(λ, z; v) the corresponding eigenvalues, and define the scalar differential operator

Dv = ∂Nx +
N∑
i=1

∞∑
j=i

Bij(λ, z; v)x−j∂N−ix .

The following theorem connects self-dual spaces in the Grassmannian Gr(N, d)

with the Gaudin model associated to gN .

Theorem 4.5.2 ( [LMV16]). Let N > 3. There exists a choice of generators Bi(x)

of the Bethe algebra B, such that for any sequence of dominant integral gN -weights

λ =
(
λ(1), . . . , λ(n)

)
, any z ∈ P̊n, and any B-eigenvector v ∈ (Vλ,z)

gN , we have

Ker
(
(T1 · · ·TN)1/2 · Dv · (T1 · · ·TN)−1/2

)
∈ sΩλ,z,

where T = (T1, . . . , TN) is associated with λA, z.

Moreover, if |λA| = N(d − N), then this defines a bijection between the joint

eigenvalues of B on (Vλ,z)
gN and sΩλ,z ⊂ Gr(N, d).

4.6 Shapovalov Form and the Key Lemma

4.6.1 Shapovalov Form

Define the anti-involution $ : gN → gN sending e1, . . . , er, α̌1, . . . , α̌r, f1, . . . , fr

to f1, . . . , fr, α̌1, . . . , α̌r, e1, . . . , er, respectively.

For any dominant integral gN -weight λ, the irreducible gN -module Vλ admits

a positive definite Hermitian form (·, ·)λ such that (gv, w)λ = (v,$(g)w)λ for any

v, w ∈ Vλ and g ∈ gN . Such a form is unique up to multiplication by a positive real

number. We call this form the Shapovalov form.

Let λ =
(
λ(1), . . . , λ(n)

)
be a sequence of dominant integral gN -weights. We define

the positive definite Hermitian form (·, ·)λ on the tensor product Vλ as the product

of Shapovalov forms on the tensor factors. The form (·, ·)λ induces a positive definite

Hermitian form (·|·)λ on (Vλ,z)
gN .
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Proposition 4.6.1. For any i = 1, . . . , N , j ∈ Z>i, and any v, w ∈ (Vλ,z)
gN , we have(

Bij(λ, z)v|w
)
λ

=
(
v|Bij(λ, z̄)w

)
λ
,

where Bij are given by (4.5.2), z̄ = (z̄1, . . . , z̄n) and the bar stands for the complex

conjugation.

Proof. We prove the proposition in Section 4.6.3.

If z ∈ RP̊n, then Bij(λ, z) are self-adjoint with respect to the Shapovalov form.

Therefore all Bij(λ, z) are simultaneously diagonalizable. Moreover, all eigenvalues

of Bij(λ, z) are real.

The following statement is also known.

Theorem 4.6.2 ( [Ryb18]). For generic z ∈ P̊n, the action of the Bethe algebra B

on (Vλ,z)
gN is diagonalizable and has simple spectrum. In particular, this statement

holds for any sequence z ∈ RP̊n.

If some of the partitions λ(1), . . . , λ(n) coincide, the operators b(λ, z) admit addi-

tional symmetry. Assume that λ(i) = λ(i+1) for some i. Let Pi ∈ End(Vλ) be the flip

of the i-th and (i+ 1)-st tensor factors and z̃(i) = (z1, . . . , zi−1, zi+1, zi, zi+2, . . . , zn).

Lemma 4.6.3. For any b ∈ B, we have Pib(λ, z)Pi = b
(
λ, z̃(i)

)
.

4.6.2 Self-Adjoint Operators with Respect to Indefinite Hermitian Form

In this section we recall the key lemma from linear algebra, see [Pon44].

Given a finite-dimensional vector space M , a linear operator T ∈ End(M), and a

number α ∈ C, let MT(α) = ker(T − α)dimM . When MT(α) is not trivial, it is the

subspace of generalized eigenvectors of T with eigenvalue α.

Lemma 4.6.4 ( [Pon44]). Let M be a complex finite-dimensional vector space with

a nondegenerate Hermitian form of signature κ, and let A ⊂ End(M) be a com-

mutative subalgebra over R, whose elements are self-adjoint operators. Let R =⋂
T∈A

⊕
α∈RMT(α). Then the restriction of the Hermitian form on R is nondegener-

ate and has signature κ. In particular, dimR > |κ|.



113

4.6.3 Proof of Proposition 4.6.1

In this section, we give the proof of Proposition 4.6.1. We follow the convention

of [MM17]. We only introduce the necessary notation and refer the reader to [Mol13,

Section 5] and [MM17, Section 3] for more detail.

Proof of Proposition 4.6.1. We prove it for the case N = 2r first.

Let Eij with i, j = 1, . . . , 2r+1 be the standard basis of gl2r+1. The Lie subalgebra

of gl2r+1 generated by the elements Fij = Eij − E2r+2−j,2r+2−i is isomorphic to the

Lie algebra so2r+1 = gN . With this isomorphism, the anti-involution $ : gN → gN

is realized by taking transposition, Fij 7→ Fji. To be consistent with the notation

in [MM17], we write g for gN . The number N in [MM17] is 2r + 1 in our notation.

We write Fij[s] for Fij ⊗ ts in the loop algebra g
[
t, t−1

]
. Consider the affine Lie

algebra ĝ = g
[
t, t−1

]
⊕CK, which is the central extension of the loop algebra g

[
t, t−1

]
,

where the element K is central in ĝ and

[g1[k], g2[l]] = [g1, g2][k + l] + kδk,−l(g1, g2)K, g1, g2 ∈ g, k, l ∈ Z.

Consider the extended affine Lie algebra ĝ ⊕ Cτ = g
[
t, t−1

]
⊕ CK ⊕ Cτ , where τ

satisfies

[τ, Fij[s]] = −sFij[s− 1], [τ,K] = 0, s ∈ Z.

Set U = U(ĝ ⊕ Cτ) and fix m ∈ {1, . . . , N}. Introduce the element F [s]a of the

algebra
(

End
(
C2r+1

))⊗m ⊗ U , see [MM17, equation (3.5)], by

F [s]a =
2r+1∑
i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(m−a) ⊗ Fij[s],

where eij ∈ End
(
C2r+1

)
denote the standard matrix units. The map $ induces an

anti-involution

$ : U
(
t−1g

[
t−1
])
→ U

(
t−1g

[
t−1
])
, Fij[s] 7→ Fji[s], s ∈ Z6−1.
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For 1 6 a < b 6 m, consider the operators Pab and Qab in
(

End
(
C2r+1

))⊗m
defined as follows

Pab =
2r+1∑
i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ eji ⊗ 1⊗(m−b),

Qab =
2r+1∑
i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ e2r+2−i,2r+2−j ⊗ 1⊗(m−b).

Set

S(m) =
1

m!

∏
16a<b6m

(
1 +

Pab
b− a

− 2Qab

2r + 2b− 2a− 1

)
,

where the product is taken in the lexicographic order on the pairs (a, b). The element

S(m) is the symmetrizer of the Brauer algebra acting on
(
C2r+1

)⊗m
. In particular, for

any 1 6 a < b 6 m, the operator S(m) satisfies

S(m)Qab = QabS
(m) = 0, S(m)Pab = PabS

(m) = S(m).

Replacing τ with ∂x and Fij[−`− 1] with −∂`xFij(x)/`!, where Fij(x) is defined in

(4.5.1), for ` ∈ Z>0, in the element

2r +m− 1

2r + 2m− 1
trS(m)(τ + F [−1]1) · · · (τ + F [−1]m),

see [MM17, formula (3.26)], where the trace is taken on all m copies of End
(
C2r+1

)
,

we get a differential operator

ϑm0(x)∂mx + ϑm1(x)∂m−1
x + · · ·+ ϑmm(x),

where ϑmi(x) is a formal power series in x−1 with coefficients in U(g[t]). The Bethe

subalgebra B of U(g[t]) is generated by the coefficients of ϑmi(x), m = 1, . . . , N ,

i = 0, . . . ,m, see [Mol13, Section 5].

Therefore, to prove the proposition, it suffices to show that the element

2r +m− 1

2r + 2m− 1
trS(m)(τ + F [−1]1) · · · (τ + F [−1]m), (4.6.1)

is stable under the anti-involution $. Here $ maps τ to τ .
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Applying transposition on a-th and b-th components to the commutator relation

F [k]aF [l]b − F [l]bF [k]a = (Pab −Qab)F [k + l]b − F [k + l]b(Pab −Qab),

see the proof of [MM17, Lemma 3.6], we get

F>[k]aF
>[l]b − F>[l]bF

>[k]a = F>[k + l]b(Pab −Qab)− (Pab −Qab)F
>[k + l]b,

for all 1 6 a < b 6 m. Here > stands for transpose, explicitly,

F>[s]a =
2r+1∑
i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(m−a) ⊗ Fji[s].

Thus one can use the same argument as in the proof of [MM17, Lemma 3.2] to show

that the image of (4.6.1) under the anti-involution $ equals

2r +m− 1

2r + 2m− 1
trS(m)

(
τ + F>[−1]1

)
· · ·
(
τ + F>[−1]m

)
. (4.6.2)

By applying the simultaneous transposition eij → eji to all m copies of End
(
C2r+1

)
we conclude that (4.6.2) coincides with (4.6.1) because the transformation takes each

factor τ+F>[−1]a to τ+F [−1]a whereas the symmetrizer S(m) stays invariant. Hence

we complete the proof of Proposition 4.6.1 for the case N = 2r.

The case N = 2r+ 1 is proved similarly, see for example [MM17, Lemma 3.9].

4.7 The Lower Bound

In this section we prove our main results – the lower bound for the number of real

self-dual spaces in Ωλ,z, see Theorem 4.7.2 and Corollary 4.7.4.

Recall the notation from Section 4.4. For positive integers N , d such that d > N

we consider the Grassmannian Gr(N, d) of N -dimensional planes in the space Cd[x]

of polynomials of degree less than d. A point X ∈ Gr(N, d) is called real if it has a

basis consisting of polynomials with all coefficients real.

4.7.1 The general case N >>> 4

Let us first consider the case N > 4.
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Let λ =
(
λ(1), . . . , λ(n)

)
be a sequence of dominant integral gN -weights, k =

(k1, . . . , kn) an n-tuple of nonnegative integers, and z = (z1, . . . , zn) ∈ P̊n. Suppose

that |λA,k| = N(d−N). Denote by d(λ,k, z) the number of real points counted with

multiplicities in sΩλ,k,z ⊂ Gr(N, d).

Clearly, d(λ,k, z) = 0 unless the set {z1, . . . , zn} is invariant under the complex

conjugation and
(
λ(i), ki

)
=
(
λ(j), kj

)
whenever zi = z̄j. In particular, the polynomial

n∏
s=1

(x− zs)ks has only real coefficients. It follows from (3.4.3) that the number of real

points in sΩλ,k,z ⊂ Gr(N, d) is equal to that of sΩλ,z ⊂ Gr(N, d − |k|). From now

on, we shall only consider the case that k = (0, . . . , 0). We simply write d(λ, z) for

d(λ,k, z) if k = (0, . . . , 0).

Let T = (T1, . . . , TN) be associated with λA,k, z. Note that if z, λ, k is invariant

under conjugation, then the polynomial T1 · · ·TN also has only real coefficients.

In what follows we denote by c the number of complex conjugate pairs in the set

{z1, . . . , zn} and without loss of generality assume that z1 = z̄2, . . . , z2c−1 = z̄2c while

z2c+1, . . . , zn are real (one of them can be infinity). We will also always assume that

λ(1) = λ(2), . . . , λ(2c−1) = λ(2c).

Recall that for any λ and generic z ∈ P̊n, all points of Ωλ,z are multiplicity-free.

The same also holds true with λ imposed above for any c.

Consider the decomposition of Vλ into irreducible gN -submodules

Vλ =
⊕
µ

Vµ ⊗Mλ,µ.

Then Mλ,0 = (Vλ)gN . Since λ(2i−1) = λ(2i) for i = 1, . . . , c, the flip P2i−1 of the

(2i− 1)-st and 2i-th tensor factors of Vλ commutes with the gN -action and thus acts

on (Vλ)gN . Denote by Pλ,c ∈ End((Vλ)gN ) the action of the product P1P3 · · ·P2c−1 on

(Vλ)gN .

The operator Pλ,c is self-adjoint relative to the Hermitian form (·|·)λ on (Vλ)gN

given in Section 4.6. Define a new Hermitian form (·, ·)λ,c on (Vλ)gN by the rule: for

any v, w ∈ (Vλ)gN

(v, w)λ,c = (Pλ,cv|w)λ.
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Denote by q(λ, c) the signature of the form (·, ·)λ,c.

Proposition 4.7.1. The signature q(λ, c) equals the coefficient of the monomial

xN−1
1 xN−3

2 · · ·xN+1−2r
r ,

in the Laurent polynomial

∆N ·
c∏
i=1

SNλ(2i)

(
x2

1, . . . , x
2
r

) n∏
j=2c+1

SNλ(j)(x1, . . . , xr).

Here ∆N and SN
λ(s) are given by (4.3.1) and (4.3.2), respectively.

Proof. Since P 2
λ,c = 1 and Mλ,0 = (Vλ)gN , we have q(λ, c) = trMλ,0 Pλ,c, and the claim

follows from Proposition 4.3.1.

Theorem 4.7.2. The number d(λ, z) of real self-dual spaces in Ωλ,z is no less than

|q(λ, c)|.

Proof. Our proof is parallel to that of [MT16, Theorem 7.2].

By Proposition 4.6.1 and Lemma 4.6.3, the operators Bij(λ, z) ∈ End((Vλ)gN ) are

self-adjoint relative to the form (·, ·)λ,c. By Lemma 4.6.4,

dim

(⋂
i,j

⊕
α∈R

(
(Vλ)gN

)
Bij(λ,z)

(α)

)
> |q(λ, c)|.

By Theorem 4.6.2, for any λ and generic z ∈ P̊n the operators Bij(λ, z) are diag-

onalizable and the action of the Bethe algebra B on (Vλ)gN has simple spectrum.

The same also holds true with λ imposed above for any c. Thus for generic z,

the operators Bij(λ, z) have at least |q(λ, c)| common eigenvectors with distinct real

eigenvalues, which provides |q(λ, c)| distinct real points in sΩλ,z by Theorem 4.5.2.

Hence, d(λ, z) > |q(λ, c)| for generic z, and therefore, for any z, due to counting

with multiplicities.

Remark 4.7.3. If dim(Vλ)gN is odd, it follows from Theorem 4.7.2 by counting parity

that

d(λ, z) > |q(λ, c)| > 1.
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Therefore, there exists at least one real point in sΩλ,z. In particular, if dim(Vλ)gN = 1,

then the only point in sΩλ,z is always real.

The following corollary of Proposition 4.7.1 and Theorem 4.7.2 is our main result.

Corollary 4.7.4. The number d(λ, z) of real self-dual spaces in Ωλ,z (real points

in sΩλ,z) is no less than |a(λ, c)|, where a(λ, c) is the coefficient of the monomial

xN−1
1 xN−3

2 · · ·xN+1−2r
r in the Laurent polynomial

∆N ·
c∏
i=1

SNλ(2i)

(
x2

1, . . . , x
2
r

) n∏
j=2c+1

SNλ(j)(x1, . . . , xr).

Here ∆N is the Vandermonde determinant of gN and SN
λ(s) is the Schur function of

gN associated with λ(s), s = 1, . . . , n, see (4.3.1) and (4.3.2).

Remark 4.7.5. Recall that the total number of points (counted with multiplicities)

in sΩλ,z equals dim(Vλ)gN = q(λ, 0). Hence if z ∈ RP̊n, Theorem 4.7.2 claims that

all points in sΩλ,z are real. It is proved in [MTV09b, Corollary 6.3] that for z ∈ RP̊n
all points in Ωλ,z are real and multiplicity-free, so are the points in sΩλ,z.

4.7.2 The case N = 2,3

Now let us consider the case N = 2, 3. Note that sGr(2, d) = Gr(2, d), this case is

the usual Grassmannian, which has already been discussed in [MT16].

Let N = 3 and g3 = sl2. It suffices for us to consider the case that points in

sΩλ,z have no base points, see the beginning of Section 4.7.1 for more detail. We shall

consider sGr(3, 2d−1) instead of sGr(3, d), see [LMV17, Section 4.6]. We identify the

dominant integral sl2-weights with nonnegative integers. Let λ =
(
λ(1), . . . , λ(n)

)
be a

sequence of nonnegative integers and z = (z1, . . . , zn) ∈ P̊n. Then λA has coordinates

λ
(s)
A =

(
2λ(s), λ(s), 0

)
, s = 1, . . . , n.

We also assume |λA| = 6(d− 2).

Recall from [LMV17, Theorem 4.19], if X ∈ sΩλ,z, then there exist monic poly-

nomials ϕ and ψ such that ϕ2, ϕψ, ψ2 form a basis of X. Denote by
√
X the space
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of polynomials spanned by ϕ and ψ. Let ξ(i) be the partitions with at most two parts

defined by
(
λ(i), 0

)
, i = 1, . . . , n. Set ξ =

(
ξ(1), . . . , ξ(n)

)
, then |ξ| = 2(d − 2). It

follows from the proof of [LMV17, Theorem 4.19] that
√
X ∈ Ωξ,z ⊂ Gr(2, d). The

map Ωξ,z → sΩλ,z given by
√
X 7→ X is bijective.

Lemma 4.7.6. The self-dual space X is real if and only if
√
X is real.

Proof. It is obvious that X is real if
√
X is real.

Conversely, if X is real, then there exist complex numbers ai, bi, ci, i = 1, 2, 3,

such that

aiϕ
2 + biϕψ + ciψ

2, i = 1, 2, 3,

are real polynomials and form a basis of X. Without loss of generality, we assume

degϕ < degψ. Since degϕ < degψ, we have ci ∈ R, i = 1, 2, 3. At least one of ci is

nonzero. We assume c3 6= 0. By subtracting a proper real multiple of a3ϕ
2 + b3ϕψ +

c3ψ
2, we assume further c1 = c2 = 0. Continuing with the previous step, we assume

that b1 = 0, b2 6= 0, a1 6= 0 and hence obtain that a1, b2, c3 ∈ R. Then a1ϕ
2 is a real

polynomial, so is ϕ. Therefore, a2ϕ + b2ψ is also a real polynomial, which implies

that the space of polynomials
√
X is also real.

Because of Lemma 4.7.6, the case N = 3 is reduced to the lower bound for the

number of real solutions to osculating Schubert problems of Gr(2, d), see [MT16].

Moreover, Corollary 4.7.4 also applies for this case by putting N = 3, r = 1, and

gN = sl2.

4.8 Some data for small N

In this section, we give some data obtained from Corollary 4.7.4 when N is small.

Since the cases N = 2, 3 reduce to the cases of [MT16], we start with N = 4.

We always assume that λ, k, z are invariant under conjugation. By Remark 4.7.3,

we shall only consider the cases that dim(Vλ)gN > 2. We also exclude the cases that

z ∈ RP̊n. In particular, the cases that all pairs
(
λ(s), ks

)
, s = 1, . . . , n, are different.
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We write the highest weights in terms of fundamental weights, for example

(1, 0, 0, 1) = ω1 + ω4.

We also write
(
λ(1)
)
k1
, . . . ,

(
λ(n)

)
kn

for (λ,k) and simply write λ(s) for (λ(s))0. We

use
(
λ

(s)
1 , λ

(s)
2

)⊗m
ks

to indicate that the pair
((
λ

(s)
1 , λ

(s)
2

)
, ks
)

appears in (λ,k) ex-

actly m times. For instance, (0, 1)1, (0, 1)⊗3 represents the pair (λ,k) where λ =

((0, 1), (0, 1), (0, 1), (0, 1)) and k = (1, 0, 0, 0).

4.8.1 The case N = 4,5

For each g4-weight λ = (λ1, λ2), denote by λC the g5-weight (λ2, λ1). Note that

g4 = so5 is isomorphic to g5 = sp4, the lower bound obtained from the ramification

data λ =
(
λ(1), . . . , λ(n)

)
and k = (k1, . . . , kn) of g4 is the same as that obtained from

the ramification data λC =
(
λ

(1)
C , . . . , λ

(n)
C

)
and k = (k1, . . . , kn) of g5.

In Table 4.1, we give lower bounds for the cases from Gr(4, 7) and Gr(5, 10). By

the observation above, we transform the case from Gr(5, 10) to its counter part in

Gr(4, d) for some d depending on the ramification data. The number in the column

of dimension is equal to dim(Vλ)g4 for the corresponding ramification data λ in each

row. The numbers in the column of c = i equal the lower bounds computed from

Corollary 4.7.4 with the corresponding c.

For a given c, there may exist several choices of complex conjugate pair corre-

sponding to different pairs of gN -weights. If the corresponding lower bounds are the

same, we just write one number. For example, in the case of (0, 2)⊗2, (0, 1)⊗2 and

c = 1 of Table 4.1, the complex conjugate pair may correspond to the weights (0, 2)⊗2

or (0, 1)⊗2. However, they give the same lower bound 1. Hence we just write 1 for

c = 1. If the bounds are different, we write the lower bound with the conjugate

pairs corresponding to the leftmost 2c weights first while the one with the conjugate

pairs corresponding to the rightmost 2c weights last, in terms of the order of the

ramification data displayed on each row. Since we have at most 3 cases, the possible

remaining case is clear. For instance, in the case (0, 1, 0)⊗4, (0, 0, 1)⊗4 and c = 2 of
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Table 4.1.
The case N = 4, 5.

ramification data dimension c = 1 c = 2 c = 3

(0, 1)⊗6 14 2 2 6

(1, 0)⊗3, (0, 1)⊗2 4 0,2 2

(1, 0)⊗3, (1, 0)1 3 1

(1, 0)⊗4, (0, 0)1 3 1 3

(0, 2), (0, 1)⊗4 6 0 2

(0, 0)1, (0, 1)⊗4 3 1 3

(1, 0), (0, 1)⊗4 5 1 1

(1, 1), (0, 1)⊗3 2 0

(0, 1)1, (0, 1)⊗3 3 1

(0, 2)⊗2, (0, 1)⊗2 3 1 3

(1, 0)⊗2, (0, 1)⊗2 2 0 2

(0, 2), (1, 0), (0, 1)⊗2 2 0

(1, 0)1, (1, 0), (0, 1)⊗2 2 0

(1, 0)⊗2, (0, 1)1, (0, 1) 2 0

(1, 1), (1, 0)⊗2, (0, 1) 2 0

Table 4.2, the two complex conjugate pairs corresponding to (0, 1, 0)⊗4 give the lower

bound 12 while the two complex conjugate pairs corresponding to (0, 0, 1)⊗4 give the

lower bound 24. The remaining case, where the two conjugate pairs corresponding to

(0, 1, 0)⊗2 and (0, 0, 1)⊗2, gives the lower bound 2.

4.8.2 The case N = 6

In what follows, we give lower bounds for ramification data consisting of funda-

mental weights when N = 6. We follow the same convention as in Section 4.8.1.
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Table 4.2.
The case N = 6.

ramification data dimension c = 1 c = 2 c = 3 c = 4

(0, 0, 1)⊗4 4 0 4

(0, 1, 0)⊗4 6 2 6

(1, 0, 0)⊗4 3 1 3

(0, 0, 1)⊗2, (0, 1, 0)⊗2 3 1 3

(0, 0, 1)⊗2, (1, 0, 0)⊗2 2 0 2

(0, 1, 0)⊗2, (1, 0, 0)⊗2 3 1 3

(0, 0, 1)⊗6 30 2 2 10

(0, 1, 0)⊗6 130 8 14 36

(1, 0, 0)⊗6 15 3 3 7

(0, 1, 0)⊗2, (0, 0, 1)⊗4 34 4,2 0,6 16

(0, 1, 0)⊗4, (0, 0, 1)⊗2 55 3,1 3,7 19

(1, 0, 0)⊗2, (0, 0, 1)⊗4 16 2 0,4 10

(1, 0, 0)⊗4, (0, 0, 1)⊗2 10 0,2 2,0 6

(1, 0, 0)⊗2, (0, 1, 0)⊗4 46 2 6 18

(1, 0, 0)⊗4, (0, 1, 0)⊗2 21 1,3 5,3 11

(1, 0, 0)⊗2, (0, 1, 0)⊗2, (0, 0, 1)⊗2 20 2 0,4,0 10

(0, 0, 1)⊗8 330 20 6 0 50

(0, 1, 0)⊗8 6111 69 59 113 311

(1, 0, 0)⊗8 105 15 9 7 25

(0, 1, 0)⊗4, (0, 0, 1)⊗4 984 22,28 12,2,24 0,38 108

(1, 0, 0)⊗4, (0, 0, 1)⊗4 116 6,12 8,2,12 0,10 32

(1, 0, 0)⊗4, (0, 1, 0)⊗4 510 6,12 22,4,18 28,18 74
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