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ABSTRACT 

This study emphasizes the extreme variability present in traffic speed studies and the need 

for high resolution traffic and weather data in order to understand the interaction between traffic 

speeds and weather. I analyzed the impact rainfall has on roadway traffic speeds along I-65 in 

Indiana for the month of June 2018 and attempted to leverage this information to model and predict 

traffic speeds. To develop a statistical distributional understanding of the difference between traffic 

speeds under rain and non-rain conditions, Quantile-Quantile plots were generated in addition to 

fitting both scenarios to a gamma distribution. To compare how traffic speeds react to various 

precipitation intensities, boxplots were generated for comparison. Then, a baseline speed was 

defined using the median traffic speed under non-rain scenarios and was used to calculate speed 

reductions from the baseline at varying precipitation intensities. Finally, an XGBoost model is 

developed to attempt traffic speed predictions.  

There are five key findings indicated by this study. First, the non-rain traffic speeds above 

the 5th percentile are typically faster than their rain speed counterparts at comparable quantile 

levels. Second, traffic speeds exhibit a high amount of variance at varying precipitation intensity 

levels. Third, the gamma distribution does not suit traffic speed distributions at all locations and 

times of day under rain or non-rain scenarios. This result is consistent with previous findings that 

suggest traffic speed interactions are highly variable and based on a variety of factors that are hard 

to account for. Fourth, weekday traffic speeds from 1600 to 2200 UTC are the most strongly 

impacted across all regions during rain events seeing speed reductions of up to 10 mph, this is 

consistent with previous findings. Finally, the XGBoost model did not perform adequately in the 

configuration used in this study. The poor performance of the XGBoost model was somewhat 

anticipated as this study did not have access to traffic volume information and instead leverages 

proxy variables to account for this. The findings of this study demonstrate the need for finer scale 

studies on traffic—weather interactions and provides methodology that can be extended to other 

weather and traffic datasets. 
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 INTRODUCTION 

According to the Federal Highway Administration (FHWA), there are roughly 5.8 million 

crashes every year, 21% of which are weather-related. Of this 21%, 46% are directly attributable 

to rainfall (Federal Highway Administration, 2018). Rainfall impacts traffic conditions in a variety 

of ways: visibility can be greatly hindered as intensity increases, pavement friction can be reduced, 

and water can pool up if the intensity is high enough or road conditions are just right. These factors 

greatly impact the speed of traffic and results in an increase in risk for motorists. This study aims 

to improve our understanding of these relationships and hypothesizes that as precipitation intensity 

increases, there will be a corresponding trend towards lower traffic speeds. This study will also 

attempt to leverage this relationship for the sake of modeling and carry out a prediction of traffic 

speeds. 

A 10-year average for the United States from 2007 to 2016 showed rainfall was directly 

attributable to 556,151 crashes, 212,647 injuries, and 2,473 deaths (Federal Highway 

Administration, 2018). While the cost of a crash is extremely variable, a rough idea of cost can be 

calculated using the comprehensive crash unit Property Damage Only (PDO) cost. The FHWA 

lists the comprehensive crash unit PDO cost as being roughly $7,400 in 2001 (Harmon, Bahar, & 

Gross, 2018). Adjusting for inflation using the Bureau of Labor Statistics inflation adjustment tool 

(U.S. Bureau of Labor Statistics, n.d.) shows the comprehensive crash unit PDO cost for a crash 

is roughly $10,900. This equates to over 6 billion US dollars yearly on average in PDO costs due 

to crashes attributable to rainfall. This calculation leaves out the cost of human lives lost to rainfall 

related crashes.  

From both a quality of life and cost perspective, traffic and rainfall interactions deserve a 

thorough analysis in order to develop a deeper understanding of the interactions that occur to better 

allow mitigation of the impact of precipitation on motorists. High-resolution spatial and temporal 

precipitation intensity data is much more accessible than it has been in the past, thanks to the work 

of the National Severe Storms Laboratory (Zhang et al., 2016). High-resolution spatial and 

temporal traffic data has also come a long way thanks to crowdsourcing of telematics information 

from a variety of sources sold by companies like INRIX (Kim & Coifman, 2014). Combining high-

resolution traffic and weather data may shed light on the interaction between weather and traffic 

in new ways that have yet to be uncovered in the literature. Many previous studies do not assess 



 

 

11 

the weather component at a high enough resolution. A deeper understanding of these interactions 

lends itself to a variety of applications. Autonomous vehicles and mapping systems could readily 

make use of more detailed knowledge of weather—traffic interactions to make more informed 

decisions for driving as well as route choices.  

While the interaction between traffic speeds and precipitation intensity seems somewhat 

intuitive as many have experienced the phenomenon of speeds decreasing as precipitation begins 

and intensifies, the literature on this subject is not comprehensive. An example of a situation in 

which traffic speeds were reduced in the presence of intense precipitation can be seen in Figure 

1.1 for mile marker 34.4 on Highway 465 in Indiana. The left figure shows typical traffic patterns 

on Tuesday, June 19th, 2018. In the left-most figure, a significant traffic slowdown is pictured 

around 1700 EST, indicating typical afternoon rush traffic speed reductions. On Tuesday, June 

26th, a heavy rain event was recorded around 1100 EST. Traffic speeds were shown to significantly 

decrease during the rain event’s time frame compared with the previous Tuesday’s traffic speeds. 
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Figure 1.1. Traffic speeds near mile marker 34.4 on Highway 465 in Indiana. Typical PM 

congestion is contrasted with a rain event on June 26th, 2018. 

 

 The background information and literature review for the work carried out in this study 

will be covered in chapter 2, where previous research on weather’s impact on traffic speeds will 

be discussed at length. Chapter 3 will discuss the data sources selected for this study. Chapter 4 

will provide insight into the process selected for integrating traffic and weather data, engineering 

of features into the dataset, external data sources incorporated, the methods employed for analysis, 

and the modeling process. Chapter 5 will discuss the results from the analytics as well as the model 

performance. Chapter 5.1, in particular, will focus on the distributions of rain and non-rain traffic 

speeds, their likeness to a gamma distribution, data variability, and a measure of speed reductions 

under varying precipitation regimes. Chapter 6 will summarize the lessons learned from this study 

and provide some insight into how this work can be furthered in the future. The code developed 

for use in this study can be found at https://github.com/Foxhound013/MS-Thesis.  
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 BACKGROUND 

Many studies have been performed over the years discussing the impacts of rainfall, or 

more broadly weather, on traffic speeds. Some of the earliest research carried out discussing the 

impact of weather on traffic was Tanner (1952), who noted a negative correlation between traffic 

speeds and rainfall. Tanner’s work was somewhat limited in extent due to the time at which it was 

conducted. Further work was carried out by Ibrahim and Hall (1994) using high-resolution double 

loop detector traffic data for measuring volumes and speeds at 30-second intervals. Ibrahim and 

Hall’s weather data was derived from a local airport of unspecified distance from the two locations 

used in their study. Their findings were much more specific than Tanner’s and seem to be a 

touchstone study for future studies regarding weather’s impact on traffic speeds. Ibrahim and Hall 

limited their analysis to 10 am to 4 pm in order to control for free-flow traffic conditions. Their 

findings indicate that light precipitation results in a speed reduction of roughly 1.2 mph and under 

heavy precipitation, a speed reduction of 3.1 to 6.2 mph. Their analysis, while thorough, did not 

adequately comment on the impact of traffic speeds relationship with precipitation at all times of 

the day. In addition to this, their analysis reduces the weather component to a much simpler picture 

than reality. A nearest-neighbor interpolation of the weather component does not adequately 

address the variations exhibited in real-world weather scenarios.  

Further work carried out by Smith et al. (2003) sought to expand upon the work of the 

Highway Capacity Manual (HCM) as well as that of Ibrahim and Hall. They provided a summary 

of the work carried out by the HCM as well as Ibrahim and Hall. Smith et al. rightly noted the 

importance of regionality in their work. They mention that drivers from different areas are more 

or less comfortable with driving in inclement weather based on where they’re from. This 

observation seems to be missed in much of the other work surrounding this topic. The traffic data 

used in their study was at the 15-minute scale, which seems reasonable, but their weather data was 

at an hourly scale and interpolated with a nearest-neighbor scheme from a single airport three miles 

away. The disparity in temporal and spatial resolution is somewhat of a cause for concern, as 

mentioned with Ibrahim and Hall. They noted that precipitation should be treated as a continual 

range rather than a binary variable. They found that capacity reduction is far more dramatic than 

that of speed. In order to discuss speed reductions, they propose an interesting method for 

producing a baseline speed for comparison. The baseline speed for comparison used in their study 
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is an average of traffic speeds greater than 40 mph. The average traffic speed above 40 mph was 

intended to mitigate the impact of congestion on the analysis. They did not note any significant 

difference in speed reduction from light to heavy rain intensities (.25-6.25 mm/hr and 6.25 mm/hr 

and above, respectively), contrary to the findings of Ibrahim and Hall.  

The studies discussed up to this point have all made use of a nearest-neighbor interpolation 

scheme, which does not accurately reflect the large variability of weather conditions on small 

spatiotemporal scales, especially with respect to precipitation. This could be addressed by 

accessing a finer resolution weather dataset and interpolating the values to the road segment level 

as done in the research by Sathiaraj et al. (2018). Sathiaraj et al. analyzed visibility, wind speed, 

temperature, and precipitation. They made use of Inverse Distance Weighting (IDW) interpolation 

to adequately determine precipitation intensity at the 48 locations selected for their study. The 

weather data used in this study was somewhat coarse with an hourly temporal resolution and four 

weather stations for the 135 square miles of the area covered by this study. The extreme upper 

value of the precipitation analyzed in this study was above 7.62 mm/hr, which doesn’t adequately 

describe precipitation rates in other locations. Their findings were primarily focused on traffic 

volumes, which seem to be more sensitive to inclement weather conditions than that of speed as 

their volume reductions are larger than the speed reductions found by Ibrahim and Hall. Despite 

Sathiaraj et al. focusing on volumes, their methodology is novel and groundbreaking in traffic—

weather interactions as it provides the most accurate handling of weather data that this study has 

encountered in the literature. 

All of the studies encountered by this research have been focused on relatively low “high 

intensity” precipitation. These studies fail to reference much higher precipitation regimes, which 

are somewhat common in other locations. Some locations can experience significantly higher 

precipitation intensities that may have a larger impact on traffic speeds than what has been seen in 

the literature.  

 Traffic modeling with weather information incorporated is not new and has been studied 

by Tsirigotis et al. (2012). Their work focused on the use of traditional time series forecasting 

methods like Auto Regressive Integrated Moving Average (ARIMA), ARIMA with Exogenous 

variables (ARIMAX), Vector Auto Regressive with Exogenous variables (VARX), and Bayesian 

VARX (BVARX). The weather data used by Tsirigotis et al. again seems to be a nearest-neighbor 

approach, but their model achieves good performance. Their findings indicated that truck 
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percentage, volumes, and rainfall as exogenous variables in the model improved predictive 

capability. 

 While the impact of precipitation intensity on traffic speeds is not new to the literature, 

very few studies have studied the data with adequate spatial and temporal resolution for both 

weather and traffic data across large geographic regions. This study aims to fill the gap in the 

literature by providing a more thorough analysis than what has been accomplished thus far. In 

addition to this, the literature suggests that volume, capacity, and the relative percentage of trucks 

on the road segment are highly important variables (Tsirigotis et al., 2012), this study will not be 

able to take those variables into account due to the nature of the traffic data used here. To account 

for this a modeling approach that works on weak learners, or variables that only have a slight 

correlation to with the true value, will be utilized to see if meaningful predictions can be made. 
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 DATA SOURCES 

The Joint Transportation Research Program (JTRP) maintains a database of traffic speed 

data for the state of Indiana. The traffic data used in this study is derived from this database. 

Precipitation intensity data is derived from the Iowa Environmental Mesonet (IEM) Archived Data 

Resources (“Iowa Environmental Mesonet MRMS Grib Archive,” n.d.), which maintains an active 

archive of a few MRMS variables. 

3.1 INRIX Traffic Speeds 

The traffic data used in this study is derived from the INRIX traffic speeds dataset. INRIX 

aggregates many sources of telematics data, commercial and personal, into representative 

segments of roadway with a temporal resolution of 1-minute. Other commercial datasets like 

INRIX exist from platforms like Here. In recent years Open Street Maps has begun to offer an 

open-source traffic data alternative. This study has not explored the viability of these other datasets 

for traffic weather interaction studies. The focus for this study was on liquid precipitation events 

along I-65 in Indiana from the southernmost point in Indiana near Louisville, KY to the 

northernmost point near Gary, IN, as can be seen in Figure 3.1. The segments consist of a start and 

endpoint with associated latitude and longitudes. It is sufficient for the purposes of this study to 

select the starting position of each segment and perform the analysis with that data point rather 

than working with the line segment. Only the northbound segments have been selected for analysis 

in this study. 
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Figure 3.1. Northbound segments of I-65 in Indiana zoomed in to the Indianapolis region. 

 

The data provider includes a confidence score at each time step, indicating the reliability of 

the data at that time step. A score of 30 constitutes high-confidence data and implies that the 

reported data is based on that segment's real-time data. A score of 20 constitutes medium-

confidence data, indicating that the speed is based primarily on historical data, most likely the 

average speed. Finally, a confidence score of 10 constitutes low-confidence data, indicating that 

the reported speed is based solely on historical data, most likely the reference speed for that 

segment (Center for Advanced Transportation Technology, 2012). An analysis of the confidence 

scores available for June 2018 reveals that 96.77% of the data is high-confidence data, 3.23% is 

medium-confidence data, and 0% is low-confidence data. A review of the medium-confidence data 

indicates that the medium confidence data is not spatially clustered in any one location but occurs 

across all segments. Given the overwhelming percentage of high-confidence speed data, a 

negligible percentage of medium-confidence data, and a complete lack of low-confidence data, the 

dataset is complete. Given that the medium confidence data does not make up a large portion of 

the dataset and is not representative of reality, it will be discarded in this analysis. It should be 

noted that the INRIX data exhibits a weak temporal relationship in which there is a slight peak in 

medium confidence data around 6 UTC, or 2 am EST.  
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Figure 3.2. Percentage of confidence scores by hour of day. 

3.2 MRMS Precipitation Intensity 

The weather data used in this study is derived from the National Severe Storms 

Laboratory’s (NSSL) Multi Radar Multi Sensor (MRMS) system. This system aggregates roughly 

180 operational radars across the conterminous United States. It integrates them with atmospheric 

environmental data, satellite data, and lightning and rain gauge observations in order to develop a 

variety of weather products (Zhang et al., 2016). The variable of interest, for this research, in this 

dataset, is the precipitation rate. Zhang et al. calculates the precipitation rate using varying Rain 

Rate-Reflectivity (R-Z) relationships. Different R-Z relationships are implemented for stratiform 

rain, convective rain, and snow. This study is focused on June 2018 and therefore, will not include 

any precipitation rates calculated with the snow R-Z relationship. It should be mentioned that 

Zhang et al. note that the MRMS does not use polarimetric radar variables due to the need for 

further research at the time of publication. 

The MRMS data was chosen for this study for a few reasons. The first reason for its choice 

was its high temporal and spatial resolution. The MRMS’ precipitation rate is available at a 1 

square kilometer spatial resolution and 2-minute temporal resolution. A high-resolution weather 
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dataset, both spatially and temporally, is a necessity for traffic—weather interaction studies. The 

second reason for its choice was the R-Z relationship calculations being varied based on the 

surrounding environment. This is critical as R-Z relationships are not constant and can vary 

significantly, as noted by Stout and Mueller (Stout & Mueller, 1968). The third and final reason 

for its choice is the vast amount of data that the system aggregates in addition to the ease with 

which it could be integrated into traffic management systems by a Department of Transportation 

(DOT). 
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 METHODOLOGY 

This study will be carried out in two parts. The first portion of this study is intended to 

provide an understanding of the bulk properties of the relationship between traffic speeds and 

precipitation intensity. The second portion of this study will attempt to model the relationship 

between traffic speeds and precipitation intensity. 

4.1 Speed Down-Sampling and Precipitation Interpolation 

Two data sources are present in this research, the first being precipitation intensity and the 

second consisting of traffic speeds. Pre-processing of both datasets was required before analysis 

could begin. The traffic speed data was collected via JTRP’s traffic speeds database and was down-

sampled to a 2-minute temporal resolution in order to better align with the precipitation intensity. 

The down-sampling method used for the traffic speeds data was simply the speed at every 2-

minutes. No averages are computed as the INRIX speeds data is an instantaneous measure of 

average traffic speed for that minute.  

The MRMS precipitation data is a gridded dataset with a 1 square kilometer resolution for 

the continental United States. It is thus necessary to perform a clipping and interpolation step in 

order to subset the data to a manageable size and align it with the traffic speeds segment data. 

Clipping the precipitation data to Indiana was accomplished through the use of the wgrib2 tool 

(Climate Prediction Center, n.d.). A deterministic interpolation method, Inverse Distance 

Weighting (IDW) (Shepard, 1968), was leveraged to carry out the interpolation. A geostatistical 

interpolation method, Ordinary Kriging (ORK), was investigated for use but was ultimately 

discarded. It was, in theory, a comprehensive method, but in practice, it required too many 

assumptions and too much computational time. Ly and Charles found that on the daily scale, these 

two methods were comparable (Ly, Degré, & Charles, 2013). 

The equation for IDW can be seen in Equation 4.1, and the accompanying weighting 

equation can be seen in Equation 4.2. In these equations, 𝑤𝑖 refers to the weighting value assigned 

to each measurement in the interpolation field and 𝑑(𝑥, 𝑥𝑖) refers to the distance between the 

locations to be interpolated to, 𝑥 , and the points to interpolate from, 𝑥𝑖 . IDW requires two 

parameters, a power, 𝑝 , to determine how strongly weighted surrounding measurements are, and 
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a max distance, 𝐷, of measurements to be considered in the interpolation. For the purposes of this 

study a power of 2 was chosen along with a max distance of 5 kilometers. It should be noted that 

while these chosen parameters may not be the most optimal choice but are adequate for the 

purposes of this study. Interpolation is carried out at each 2-minute time step for the month of June 

2018. The results are joined with the traffic speeds data by segment ID for further analysis in this 

study. 

Equation 4.1 

∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

     𝐼𝑓 𝑑(𝑥, 𝑥𝑖) > 0 𝑎𝑛𝑑 𝑑(𝑥, 𝑥𝑖) ≤ 𝐷 

Equation 4.2 

𝑤𝑖(𝑥) =
1

𝑑(𝑥, 𝑥𝑖)𝑝
 

Unlike the traffic speeds data, there is missingness present in the precipitation intensity data. 

The missingness for the precipitation intensity data is particularly minor as it consists of two time 

slices (i.e., two observations). A simple naïve forecast from the previous time step is used to fill in 

the missing values in the precipitation intensity data.  

4.2 Bulk Precipitation and Speed Analytics 

A study of the bulk properties of the intersection between traffic speed and precipitation 

intensity is carried out to develop a deeper understanding of the overarching characteristics of 

traffic speeds in the presence and absence of precipitation for all segments of I-65 in Indiana. A 

majority of the dataset is dominated by typical conditions in which traffic speeds are relatively 

normal and there is no precipitation. A smaller subset of this data consists of traffic speeds that are 

slower than normal but are still in the absence of precipitation. Finally, an even smaller subset of 

this data consists of traffic speeds that are slower than normal and are in the presence of 

precipitation. The small sample size of data in which traffic speeds are slower than normal in the 

presence of precipitation presents a challenge in directly analyzing traffic speeds. The approach 

taken in this section of the study is an attempt at remedying this by reviewing the bulk properties 

of the data. This study recognizes that there are more prominent traffic dynamics variables such as 

traffic capacities, traffic volumes, human psychology, and other variables that likely play a more 

important role in determining the traffic speed. 
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Three tasks were carried out in this section, feature engineering, data augmentation, and 

analysis. 

4.2.1 Feature Engineering 

The sparsity of the information available in this study has given rise to the necessity of 

feature engineering. In order to obtain the clearest insights possible, two classes of features have 

been engineered into this dataset, spatial and temporal features. The first feature to be incorporated 

into this dataset is the spatial feature, region. The regions are defined somewhat arbitrarily to 

quantify the missing traffic capacity variable while time of day metrics were incorporated in order 

to derive the missing traffic volumes variable. The regions used in this dataset are as follows, 

Northern Indiana, Indianapolis, Louisville, and Rural. These regions, except for Rural, are 

represented in Figure 4.1. It should be noted that Rural is not outlined in Figure 4.1 as any region 

along I-65 in Indiana not defined by the red boundaries is considered as Rural in this study. The 

mile marker boundaries for the regions are given in Table 4-1. This study recognizes that these 

boundaries could be further discretized in order to improve homogeneity within regions. Using 

more generalized regions allows more precipitation occurrences to appear in each of the categories. 

Further division of the data could be detrimental to the sample size of traffic speeds in the presence 

of precipitation for some groups, given that this study is focused only on June 2018.  

 

Table 4-1. Region mile marker boundaries 

Region Start Mile Marker End Mile Marker 

Northern Indiana 250.80 260.2 

Indianapolis 105.73 130.56 

Louisville 0.58 7.60 

Rural NA NA 
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Figure 4.1. Region map of I-65 

 

The temporal features incorporated into this dataset are as follows, hour range, day of week, 

and weekday/weekend. These features are based on the time stamp in the native dataset. These 

temporal divisions were selected to ensure the sample size in each division was adequate for 

analysis. A finer temporal resolution, such as the hourly scale, proved not to contain an adequate 

sample size at all time slices for analysis. It is for this reason that the hour of day and day of week 

were discarded in favor of an hour range and weekday/weekend feature.. The hour ranges selected 

for this study can be seen in Table 4-2. 

Table 4-2. Hour ranges in UTC 

Hour Range Hours (UTC) 

Morning [4, 10) 

Morning Rush [10, 16) 

Afternoon Rush [16, 22) 

Evening [22, 4) 
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4.2.2 Data Augmentation 

The dataset has been augmented with knowledge of crashes that occurred as well as with 

known construction zones in June 2018. In order to control for interference from crashes that 

occurred, crashes that occurred within DOT work zones have been filtered out of the dataset. 

Crashes were located by Cassandra McKee using the Automated Reporting Information Exchange 

System (ARIES) crash database in Indiana. Identified crashes have been filtered from the dataset 

by removing from the time at which a crash occurred to 30 minutes after and +/- 5 miles from the 

location in which it occurred. This is done to ensure that queuing issues and clean up associated 

with crashes are sufficiently removed from the dataset. Crashes, their times, and associated mile 

markers removed from the dataset can be seen in Table 4-3. 

 

Table 4-3. Crashes removed from the dataset 

Date Times (UTC) Mile Markers 

06/08/2018 20:38 – 21:08 100 – 110 

06/10/2018 19:30 – 20:00 56 – 66 

06/12/2018 06:00 – 06:30 62 – 72 

06/21/2018 17:30 – 18:00 172 – 182 

06/21/2018 18:50 – 19:20 128 – 138 

06/26/2018 14:50 – 15:20 110 – 120 

 

Construction zones were marked as “Construction” or “Non-Construction” according to 

information provided by JTRP and INDOT. These construction/non-construction zones were 

determined by work zone reports compiled by Jairaj Desai at JTRP. The construction zones are 

defined in Table 4-4. 

 

Table 4-4. Construction zone start and end mile markers 

Construction Start Mile 

Marker 

Construction End Mile 

Marker 

8 16 

50 68 

141 165 

167 176 

197 207 

229 253 
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4.2.3 Bulk Analytics 

Once the feature engineering and data augmentation had been completed, the analytics were 

carried out as follows. A detailed analysis of the distribution of the rain and non-rain traffic speeds 

was carried out. A Quantile-Quantile (QQ) plot of the rain and non-rain speeds were produced in 

order to compare the traffic speeds at the same quantile level. The 5th, 25th, 50th, 75th, and 95th 

percentiles were marked in this plot in order to outline where a bulk of the deviations occur. Plots 

were conditioned on region, construction/non-construction, hour range, and weekday/weekend in 

order to bin sufficient sample sizes together but also separate the temporal and spatial components 

of these distributions. Further investigation of the distribution was made by comparing the rain 

and non-rain traffic speeds with a gamma distribution. The gamma distribution was selected as a 

candidate to test the fit of traffic speeds as the distribution is bounded at 0 and goes to positive 

infinity. The gamma distribution parameters were calculated according to Equation 4.4 and 

Equation 4.5 where 𝜇  and 𝜎  are the mean and standard deviation, respectively. To deal with 

extreme outliers in fitting the gamma distribution to the rain and non-rain traffic speeds, speeds 

less than 50 mph were removed from the data. The 50-mph threshold was chosen as most speed 

limits along I-65 are typically greater than 50 mph. 

Equation 4.3 

𝑠ℎ𝑎𝑝𝑒 = (
𝜇

𝜎
)

2

 

Equation 4.4 

𝑠𝑐𝑎𝑙𝑒 =
𝜎2

𝜇
 

In order to understand how speeds reacted to different precipitation regimes, precipitation 

intensities were categorized into the following bins, [0, 0.01), [0.01, 2.5], [2.5, 5), [5, 10), [10, 20), 

[20, 30), [30, 40), [40, 50), [50, 60), [60, 70), [70, 80), [80, 150). Boxplots following the same 

conditioning scheme listed for the QQ plots are given. A sample size plot has been developed in 

addition to the boxplots in order to provide insight into how many samples are being represented 

by each box. 

As a final method of understanding the bulk properties, the 50th percentile speeds were 

calculated by location against the precipitation intensity regimes used for the boxplots and 

conditioned on weekday/weekend, construction/non-construction, and hour range. The 50th 
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percentile speed under non-rain scenarios is also calculated using the same conditioning. The 50th 

percentile speed under varying precipitation regimes and non-rain scenarios is used to calculate a 

delta speed value. The delta calculation can be seen in Equation 4.5. In Equation 4.5, 𝑆𝑝𝑒𝑒𝑑50𝑟 

refers to the 50th percentile speed under the various precipitation regimes and 𝑆𝑝𝑒𝑒𝑑50𝑏 refers to 

the 50th percentile baseline speed established by speeds in the absence of rain. Negative values 

indicate a slowdown from non-rain scenarios, and positive values indicate a speed up from non-

rain scenarios. 

Equation 4.5 

𝐷𝑒𝑙𝑡𝑎 = 𝑆𝑝𝑒𝑒𝑑50𝑟 − 𝑆𝑝𝑒𝑒𝑑50𝑏 

4.3 Speed Prediction 

The second step in this study was to attempt to develop a model relating traffic speeds to 

precipitation intensity so that, in theory, speed forecasts could be made in relation to precipitation 

intensity forecasts. A method for forecasting traffic speeds in addition to a baseline prediction to 

compare with would be required. The supervised learning method, eXtreme Gradient Boosting 

(XGBoost), was chosen as a suitable method for attempting to predict traffic speeds due to its 

reliance on weak learners as well as its extremely scalable nature (Chen & Guestrin, 2016). 

XGBoost is built to be quick and to leverage many CPU cores. This was ideal for this study as the 

dataset consisted of over 9 million observations. XGBoost is capable of classification as well as 

regression. This study will focus on its use as a tree-based regression technique. 

Crashes and scores of 20 have not been removed for the purposes of modeling, as removing 

them would render the time series incomplete. The variables used in the model are as follows: 

traffic speed, a 16-minute lagged traffic speed, precipitation intensity, region, bearing, 

construction/non-construction, hour range, day/night, weekend/weekday, and day of the week. The 

traffic speed is the response variable, while the rest serve as predictors. The 16-minute lagged 

traffic speed has been added as an autoregressive component in order to help improve the model. 

A 10-minute and 60-minute moving average will be used as the baseline for which the XGBoost 

model will be compared and judged. Prior to modeling, it was required to carry out one-hot 

encoding on the categorical variables, such as region, hour range, day/night, day of week, 

weekend/weekday, construction/non-construction, and bearing. One-hot encoding of categorical 
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variables consists of creating a sparse matrix of 1s and 0s for each category. For example, one-hot 

encoding the day of week categorical variable would add 7 columns to the matrix. XGBoost has 

been designed with one-hot encoding in mind. 

Given that the dataset is a time series, it was important to split the dataset so that the time 

series were still properly connected. The data was split into a training and testing set with the 

training set consisting of the observations before June 22 at 0 UTC (the first 70%) and the testing 

set consisting of the observations from and after June 22 at 0 UTC (the last 30%). Given the long 

running nature of the process, very few hyper parameters were tuned in this model. Two 

parameters in the XGBoost model were tuned; these include the boosting iterations and the eta 

parameter. A full list of parameter values used in this study can be seen in Table 4-5. 

 

Table 4-5. XGBoost parameters used in study 

Parameter Values 

Eta (Learning Rate) 0.1, 0.2, 0.3 

N Rounds (Boosting Iterations) 200, 250, 300, . . ., 850, 950, 1000 

Max Depth 6 

Gamma 0 

Columns Sampled by Tree 1 

Minimum Child Weight 1 

Subsample 1 

 

The boosting iterations and learning rate were the only parameters tuned in this study due 

to time constraints. A 3-fold cross-validation was used to determine the best fitting model with the 

Root Mean Squared Error (RMSE) used as a measure of how well the model fit. Once the model 

is fit, Mean Absolute Error (MAE) will be the preferred method of this study for discussing model 

accuracy due to MAE being somewhat easier to interpret.  

The learning rate is one method for preventing overfitting of the model from the training 

set by making each iteration, more conservative. The boosting iterations refer to the number of 

trees produced by the model. The max depth was left at its default value; it refers to how deep a 

tree can be grown or how complex a tree can become. The gamma value defaults to 0 and 

determines whether or not the tree can be split farther on a particular leaf node. The columns 

sampled by tree defaults to 1, which indicates that all columns should be included in the tree. The 

minimum child weight defaults to 1 and is used for determining whether to continue splitting a 
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leaf node. Finally, the subsample parameter defaults to 1 and is the ratio of the training set that is 

to be sampled for the current iterations tree building process.  

A few segments will be selected for visualizing the time series of the predicted traffic 

speeds under the various methods in order to provide a visual view of how these models are 

performing and whether the added complexity and overhead of XGBoost is worth it in this 

scenarios. The XGBoost model will be compared with two baselines, a 10-minute moving average 

and a 60-minute moving average. The 10-minute moving average was chosen as a baseline as it is 

close to the 16-minute lagged speed that has been included in the model. The 60-minute moving 

average was included as a secondary baseline for comparison. 
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 RESULTS 

5.1 Bulk Precipitation and Speed Analytics 

A first step in attempting to understand the relationship between traffic speeds and 

precipitation intensity was a scatterplot. Given the size of the dataset in question, the results were 

unclear due to significant over-plotting. It should be noted that the occurrence of rain traffic speed 

scenarios is somewhat rare by comparison with non-rain traffic speed scenarios. The dataset for 

this study has roughly 8.65% of the data as rainy. Rather than plotting points individually, a 

distribution approach was taken in order to understand the data from a holistic standpoint. QQ 

plots are plotted by region, construction/non-construction, hour range, and weekday/weekend. The 

QQ plots can be seen in Figure 5.1 through Figure 5.6. It should be noted that the plots for 

construction zones in Indianapolis as well as Louisville have been omitted as there was no 

construction in these regions for June 2018. The 5th, 25th, 50th, 75th, and 95th percentiles according 

to the non-rain distribution have been included as red solid and dashed lines in these figures in 

order to provide a sense of where in the distribution the deviations are occurring. A 45-degree line 

has been included in each panel of the figures to show precisely where the deviations in the two 

speed regimes are occurring. Points above the 45-degree line indicate that speeds are faster under 

non-rain scenarios at that quantile, while points below the 45-degree line indicate that speeds are 

faster under rain scenarios at that quantile. 
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Figure 5.1. QQ plots of Indianapolis for non-construction, hour ranges, and weekday/weekend
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Figure 5.2. QQ plots of Louisville for non-construction, hour ranges, and weekday/weekend
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Figure 5.3. QQ plots of Northern Indiana for non-construction, hour ranges, and weekday/weekend
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Figure 5.4. QQ plots of Northern Indiana for construction, hour ranges, and weekday/weekend
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Figure 5.5. QQ plots of Rural areas for non-construction, hour ranges, and weekday/weekend
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Figure 5.6. QQ plots of Rural areas for construction, hour ranges, and weekday/weekend
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The results of the QQ plots are not as straightforward as one might hope. The reality of the 

situation is particularly nuanced as one considers each of the QQ plots in Figure 5.1 through Figure 

5.6. Reviewing the situation in Indianapolis, Figure 5.1, above the 5th percentile, speeds are 

roughly equivalent with a slight tilt towards being faster under non-rain scenarios. The major 

deviations, as with most of the plots, occur at or below the 5th percentile. In the morning, morning 

rush, and afternoon rush time frames, the QQ plots show a hump that occurs during both weekdays 

and weekends towards non-rain speeds being a fair bit faster than rain speeds (with the exception 

of weekday mornings). In the case of weekday mornings and evenings as well as weekend evenings, 

the rain speeds are shown to be faster at the same quantile level. While this is somewhat counter 

intuitive at first, it is helpful to note that this is a very small proportion of the population.  

 Like Indianapolis, there are no construction zones to show in the Louisville region, as such 

only the non-construction zone is shown in Figure 5.2. The situation is a little different from that 

of Indianapolis. During the weekdays, the speeds above the 5th percentile mostly follow the 45-

degree line. Below the 5th percentile, the morning and afternoon rush show speeds being faster 

under non-rain scenarios while the morning rush and evening time frames show speeds faster 

during rain scenarios. Speeds are indicated as being faster during rain scenarios on the weekend 

below the 5th percentile as well. Still, the speeds above the 75th percentile on the weekend indicate 

non-rain speeds as being markedly faster. It should be noted that the traffic dynamics of the 

Louisville region are substantially different than that of Indianapolis due to the makeup of the 

surrounding area. This may be one reason that the weekend time frame is so different from that of 

Indianapolis. 

 The Northern Indiana region for non-construction and construction zones can be seen in 

Figure 5.3 and Figure 5.4, respectively. For non-construction zones in Northern Indiana, the non-

rain speeds seem to be faster below the 5th percentile in all situations, with the afternoon rush on 

the weekend being the one exception. Above the 5th percentile, speeds seem to be relatively 

comparable or a little faster under non-rain scenarios by and large, with the weekday morning 

being the one exception. This pattern, however, does not remain true for the construction zones 

shown in Figure 5.4. In the Northern Indiana construction zones during the morning weekday and 

weekend as well as the evening weekend, rain speeds are faster below the 5th percentile. Above 

the 5th percentile speeds are nominally the same. Interestingly the afternoon rush on the weekday 

and weekend as well as the weekend morning rush display significantly faster speeds below the 
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5th percentile under non-rain conditions. The construction zone speeds seem to lean towards faster 

speeds under non-rain conditions than non-construction zones do in Northern Indiana. 

 Finally, the Rural region QQ plots can be seen in Figure 5.5 and Figure 5.6 for non-

construction and construction zones, respectively. The non-construction zone shows speeds to be 

roughly equivalent or slightly faster under non-rain scenarios until much lower in the distribution, 

typically well below the 5th percentile. The afternoon rush on the weekday is particularly notable 

as the non-rain speeds remain a fair bit faster than rainy speeds well past the 5th percentile. The 

same can be said of the weekday evenings and all time slots on the weekend aside from the 

afternoon rush. The construction scenario is not quite the same here, with rain speeds being faster 

below the 5th percentile. Above the 5th percentile, speeds are nominally the same.  One oddity is 

the weekend evening speeds seem to be much faster under the non-rain scenario.  

It should be noted as with all of these QQ plots, the sample sizes are important. With the 

weekend evening oddity in Figure 5.6, it is likely that this is an artifact of sample size issues. It 

should also be noted that despite how strange it might seem that rain speeds are faster in some 

cases at the same quantile level, this is typically below or well below the 5th percentile level. This 

indicates that a very minor proportion of the data is showing faster rain scenario speeds, whereas 

a majority of the data is showing comparable speeds or slightly faster speeds under non-rain 

scenarios. The QQ plots seem to support a weak relationship with traffic speeds and rain or non-

rain scenarios.  

 In order to further investigate the distribution of the traffic speed data, comparisons with a 

Gamma Distribution have been made. Initial gamma distribution estimations can be seen in 

Appendix A. It was found that the initial gamma distribution estimations were greatly skewed by 

outliers. In order to refine the estimation of the gamma distribution, a threshold of 50 mph was 

used to see if the gamma distribution better fit the data under more typical speed regimes. The 

results of the gamma distribution fit can be seen in Figure 5.7 through Figure 5.12. As suggested 

by Dey et al., 2006, it has been shown that traffic speeds follow a normal distribution under 

homogeneous scenarios but deviate under heterogeneous conditions; comparisons to the normal 

distribution have been made in Appendix A to complete this portion of the analysis. 
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Figure 5.7. Gamma distribution fits of rain and non-rain traffic speeds (mph) for Indianapolis, non-construction
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Figure 5.8. Gamma distribution fits of rain and non-rain traffic speeds (mph) for Louisville, non-construction
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Figure 5.9. Gamma distribution fits of rain and non-rain traffic speeds (mph) for Northern Indiana, non-construction
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Figure 5.10. Gamma distribution fits of rain and non-rain traffic speeds (mph) for Northern Indiana, construction
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Figure 5.11. Gamma distribution fits of rain and non-rain traffic speeds (mph) for Rural areas, non-construction  
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Figure 5.12. Gamma distribution fits of rain and non-rain traffic speeds (mph) for Rural areas, construction
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 The results of the gamma distribution fit plots in Figure 5.7 through Figure 5.12 are 

somewhat mixed. In the Indianapolis, non-construction region shown in Figure 5.7, the gamma 

distribution seems to be overall a relatively good fit, and the separation between rain and non-rain 

gamma distribution is overall negligible. This was promising as the Indianapolis region appeared 

to be possible to model with a gamma distribution of the specified shape and scale parameters seen 

in Figure 5.7.  

 The Louisville non-construction region, as seen in Figure 5.8, was not nearly as promising 

with the gamma distribution not fitting well at any time slice, particularly on the weekends. There 

was much more of a separation between the separately fitted gamma distributions of rain and non-

rain scenarios than what was seen in Indianapolis. The strong deviations from the 45-degree line 

as well as the curved nature of the distributions point to the gamma distribution being a poor fit 

for the Louisville region. This is the opposite of what we saw in the Indianapolis region. 

 Moving to the Northern Indiana region, the results are a little more nuanced than in 

Indianapolis or Louisville. The non-construction region shown in Figure 5.9, overall seems to 

show a good fit to the gamma distribution. The shape and scale parameters are much more 

reasonable than what was seen in Louisville, and the rain and non-rain scenarios are much more 

similar, much like Indianapolis. This changes significantly, though, when moving to the 

construction region in Figure 5.10. For the construction region, the weekend and weekday morning 

fits show a large separation between the rain and non-rain scenarios. The weekday afternoon rush 

also shows a separation of rain and non-rain scenarios but not to the same extent as the morning 

time frame. The overall fit to the 45-degree line is generally worse than the non-construction 

counterpart in Northern Indiana. 

 Finally, for the Rural non-construction and construction zones seen in Figure 5.11 and 

Figure 5.12, the results are still mixed. The non-construction traffic speeds seen in Figure 5.11 

tend to have little to no separation for most time slices, with the exception of the weekday morning 

time frame. Overall, the gamma fit appears to be okay under the non-construction scenario but not 

as good as was seen in Indianapolis. A review of the rural area in the presence of construction, as 

seen in Figure 5.12, yields a slightly better fit to the gamma distribution. As with the non-

construction gamma distribution fit, the morning time frame seems to display the largest separation 

between rain and non-rain gamma fits. 
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 It would seem that the gamma distribution is only conditionally appropriate. There seemed 

to be some consistency in that non-construction zones, with the exception of Louisville, were better 

fit by the gamma distribution. As was noted by Smith et al. (Smith et al., 2003), there is a need to 

study the impacts of weather at varying locations to see if the weather-specific impact is region-

specific. These gamma distribution fit plots seem to indicate that there is certainly a regional 

component involved. 

Up to this point, precipitation intensity has not played a role in the visualizations and 

analysis produced by this study. To remedy this, boxplots as well as sample size plots have been 

generated with precipitation intensities, grouped as indicated in section 4.2.3. It should be noted 

that not all boxplots or sample size plots list each rain regime; this is due to there being no samples 

from the missing precipitation regime. These boxplots and sample size plots can be seen in Figure 

5.13 through Figure 5.24. It should be noted that for the sample size plots, in many cases, the [0, 

0.01) and [0.01, 2.5) precipitation ranges have a very large number of samples. It is for this reason 

that they have been excluded in order to allow for more differentiation in the lower sampled classes. 

The conditional grouping is carried out the same as was done with the ECDF plots previously. The 

boxplot whiskers are given as the magnitude of the 1st and 3rd quartiles multiplied by 1.5. Any data 

points that fall outside of this range are presented as outliers and shown as blue dots. The 50th 

percentile is marked as a single black dot in the center of each box. 

Three general observations can be derived from a review of Figure 5.13 through Figure 

5.24. First, in many scenarios there seems to be a weak trend towards lower speeds as precipitation 

intensity increases. This observation seems to hold true across most locations. This observation is 

somewhat limited in the fact that there is a relatively small sample size as precipitation intensity 

increases at all locations. Second, there are many outliers, especially in the lower precipitation 

regimes. These outliers do start to fade away as precipitation intensity increases, but so does 

sample sizes for that precipitation regime. Finally, there is a significant amount of variance in the 

traffic speed amongst all precipitation regimes. This is particularly notable at higher precipitation 

regimes, though the 50th percentile speed seems to show a lessening trend as precipitation intensity 

increases the values overlap significantly with lower precipitation intensity regimes. 
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Figure 5.13. Boxplots of Indianapolis for non-construction, hour ranges, and weekday/weekend 
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Figure 5.14. Sample size plots of Indianapolis for non-construction, hour ranges, and weekday/weekend 
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Figure 5.15. Boxplots of Louisville for non-construction, hour ranges, and weekday/weekend
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Figure 5.16. Sample size plots of Louisville for non-construction, hour ranges, and weekday/weekend 
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Figure 5.17. Boxplots of Northern Indiana for non-construction, hour ranges, and weekday/weekend
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Figure 5.18. Sample size plots of Northern Indiana for non-construction, hour ranges, and weekday/weekend 
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Figure 5.19. Boxplots of Northern Indiana for construction, hour ranges, and weekday/weekend
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Figure 5.20. Sample size plots of Northern Indiana for construction, hour ranges, and weekday/weekend 



 

 

 

5
4
 

 

Figure 5.21. Boxplots of Rural areas for non-construction, hour ranges, and weekday/weekend
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Figure 5.22. Sample size plots of Rural areas for non-construction, hour ranges, and weekday/weekend 
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Figure 5.23. Boxplots of Rural areas for construction, hour ranges, and weekday/weekend
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Figure 5.24. Sample size plots of Rural areas for construction, hour ranges, and weekday/weekend 
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The boxplots of traffic speeds under varying precipitation regimes provide a holistic look at 

the speed distributions, though a noisy one. To focus on the relationship between traffic speeds 

and rain, the median for non-rain scenarios is calculated as a baseline and used to calculate a delta, 

or reduction, for the median speed in rain scenarios. Each location has been plotted versus the 

precipitation regimes shown before, with the locations colorized for ease of comparison. The 

reduction plots can be seen in Figure 5.25 and Figure 5.26. The median was chosen as the primary 

measure of central tendency here for its resistance to outliers. When reviewing the speed reductions, 

it is important to keep in mind the variability that was demonstrated in the boxplots from Figure 

5.13 through Figure 5.23. Additionally, not all scenarios have a sufficient sample size for analysis. 

Thus, only scenarios in which the sample size is greater than 100 have been plotted.  

An initial review of the non-construction speed reductions in Figure 5.25 shows a quasi-

linear trend towards increased speed reductions from the non-rain median speed. The morning rush 

and afternoon rush time frames display the strongest linear trend in each location. In the case of 

the afternoon rush scenario, the speed reductions are much more dramatic during the weekday than 

during the weekend. This is a somewhat intuitive result as traffic volumes are higher during these 

time frames. The evening time frame also seems to exhibit this linear trend of higher speed 

reductions under higher precipitation regimes. The morning time frame seems fairly insensitive to 

precipitation intensity as the speed reductions are either 0 or are constant as precipitation intensity 

increases. One particular point of interest is the positive speed reductions during the morning 

weekday time frame. A positive speed reduction would indicate that the median speeds during rain 

scenarios are faster than the median speeds in non-rain scenarios. While this is counterintuitive, 

the actual speed difference is not that significant, 2—3 mph, and occurs only during a low volume 

time frame. The largest speed reduction shown here is 10 mph in rural regions during the afternoon 

rush timeframe on a weekday. 
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Figure 5.25. Median speed reduction in non-construction zones 
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Figure 5.26. Median speed reduction in construction zones
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Figure 5.26 shows the speed reductions for each time frame and location in the presence of 

construction. Indianapolis and Louisville are not plotted here as these locations did not have any 

construction for the month of June 2018. The conclusions drawn from Figure 5.25 seem to be 

comparable here. The morning time frame seems relatively insensitive to higher precipitation 

intensities while the morning rush, afternoon rush, and evening time frames seem to be much more 

sensitive. There does not seem to be an appreciable difference between the non-construction and 

construction zones. It would seem that the speed reductions are comparable in both situations. 

5.2 Speed Prediction 

Given that XGBoost is well renowned for working quite well on weak learners, it was 

hypothesized that it could be useful in the domain of traffic speed studies with exogenous variables 

like precipitation intensity included. As there was little literature regarding this method for this 

particular domain, it was decided that it would be used by this study. The results were particularly 

poor despite attempts at improving the model by varying the eta and boosting iteration parameters, 

as seen in Figure 5.27. The MAE values for each combination of region, construction/non-

construction, hour range, and weekday/weekend were calculated and can be seen in Figure 5.28 

and Figure 5.29.  

The XGBoost model, despite having an autoregressive term, failed to produce tenable 

results capable of even beating a 60-minute moving average, let alone a 10-minute moving average. 

This does not mean it failed completely though. Review of Figure 5.28 shows that XGBoost was 

relatively close to beating the 60-minute moving average, particularly in Louisville. This suggests 

that perhaps with more comprehensive feature engineering, XGBoost could potentially yield 

substantially better results. The 3-fold cross validation in Figure 5.27 seems to indicate other 

hyperparameters as a potential place to begin further tuning, aside from further feature engineering. 

Comparison of Figure 5.28 and Figure 5.29 does not seem to indicate any appreciable difference 

in errors between construction and non-construction zones. 
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Figure 5.27. Results of 3-fold cross validation for XGBoost model with eta and boosting iterations varied 
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Figure 5.28. MAE values calculated for Non-Construction regions by weekday/weekend and hour range
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Figure 5.29. MAE values calculated for construction regions by weekday/weekend and hour range
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 CONCLUSIONS 

This study investigated the interaction between interstate 65 traffic speeds in Indiana and 

precipitation intensity for June 2018. In order to do this, the speed distributions were investigated 

through comparison of rain and non-rain traffic speeds under varying conditions such as 

weekday/weekend, hour range, construction/non-construction, and region. It was found that 

generally, above the 5th percentile, traffic speeds were faster or comparable in non-rain scenarios 

as opposed to rain scenarios. Below the 5th percentile, traffic speeds tended to be faster in non-rain 

scenarios. It was noted that these visualizations do not account for the variability in the data and 

that the faster rain speeds were a very small proportion of the dataset. 

The rain/non-rain traffic speeds were compared with a gamma distribution in order to 

determine if the speeds followed some form of a standard distribution. Traffic speeds were limited 

to 50 mph and above in an attempt to produce a better fit and limit any outliers. The results showed 

that non-construction zones, with the exception of Louisville, seemed to be fit by the gamma 

distribution better than construction zones across regions. As precipitation intensity was 

considered via boxplots, it was shown that there is a significant amount of variability in traffic 

speeds across all precipitation regimes. Due to this variability, a median non-rain traffic speed 

baseline was established to draw comparisons against. The results indicated that there is a quasi-

linear relationship, as precipitation intensity increases, traffic speeds tend to fall. The amount of 

speed decreases seems to be region, weekday/weekend, and hour range dependent. The most 

significant traffic speed slowdowns were shown to occur during the afternoon rush on a weekday 

with Rural areas showing the greatest speed decrease of 10 mph at a 50-60 mm/hr precipitation 

intensity. 

Finally, an XGBoost model was developed to see if traffic speeds could be predicted better 

than a simple naïve forecast of traffic speeds. The model was relatively simple with the speed as 

the response variable and a 16-minute lagged speed, precipitation intensity, region, bearing, 

construction/non-construction, hour range, day/night, weekend/weekday, and day of the week as 

predictors. The model did not perform particularly well and was easily outperformed by a 10-

minute moving average as well as a 60-minute moving average. Given the closeness of the MAE 

values from the model, it does seem to suggest that further feature engineering and hyperparameter 

tuning could result in a more accurate model. 
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The key findings from this research are as follows: 

1. Non-rain traffic speeds above the 5th percentile in the month of June are typically faster 

than their rain speed counterparts. 

2. There is a significant amount of variability in the traffic speeds under various precipitation 

intensities. 

3. A gamma distribution does not adequately fit traffic speeds under rain and non-rain 

scenarios in all situations and cannot be formulated in a general fashion. 

4. The afternoon rush is the most strongly impacted time frame during rain events seeing 

speed reductions of up to 10 mph. 

5. XGBoost does not perform adequately for speed predictions, as done in this study.  

6.1 Future Work 

For future work, this study has two recommendations. The first recommendation is to 

investigate the use of high-resolution weather models for furthering this kind of research. The High 

Resolution Rapid Refresh (HRRR) model would seem to be an excellent candidate for traffic 

studies. It has a 15-minute temporal resolution, 3-by-3 square-kilometer spatial resolution, and 55 

variables available at the surface, 2-meter, and 10-meter levels. No archives of the 15-minute data, 

which would be necessary for fine-scale traffic interaction studies, currently exist. Thus, this study 

recommends that future researchers begin archival of the 15-minute HRRR forecast data, at least 

at the 0th hour analysis step, in order begin to relate many weather variables at a high resolution to 

traffic speeds. This may prove particularly useful for winter operations. The second 

recommendation this study makes is to perform future analyses of weather and traffic speeds at 

the 15-minute level. Finer time resolutions may be appropriate in some cases, but the 15-minute 

level should help to reduce noise in the data as well as align studies with the temporal resolution 

of high-resolution weather datasets like the HRRR.
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APPENDIX A. SUPPLEMENTAL FIGURES 
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Appendix A 1. Gamma distribution fits of rain and non-rain traffic speeds (mph) for Indianapolis, non-construction 
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Appendix A 2. Gamma distribution fits of rain and non-rain traffic speeds (mph) for Louisville, non-construction



 

 

 

7
0
 

 

Appendix A 3. Gamma distribution fits of rain and non-rain traffic speeds (mph) for Northern Indiana, non-construction
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Appendix A 4. Gamma distribution fits of rain and non-rain traffic speeds (mph) for Northern Indiana, construction
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Appendix A 5. . Gamma distribution fits of rain and non-rain traffic speeds (mph) for Rural areas, non-construction
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Appendix A 6. Gamma distribution fits of rain and non-rain traffic speeds (mph) for Rural areas, non-construction 
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Appendix A 7 Normal distribution fits of rain and non-rain traffic speeds above 50 mph for Indianapolis, non-construction 
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Appendix A 8 Normal distribution fits of rain and non-rain traffic speeds above 50 mph for Louisville, non-construction 
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Appendix A 9 Normal distribution fits of rain and non-rain traffic speeds above 50 mph for Northern Indiana, construction 
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Appendix A 10 Normal distribution fits of rain and non-rain traffic speeds above 50 mph for Northern Indiana, non-construction 
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Appendix A 11 Normal distribution fits of rain and non-rain traffic speeds above 50 mph for Rural areas, non-construction 
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Appendix A 12 Normal distribution fits of rain and non-rain traffic speeds above 50 mph for Rural areas, construction
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