
AUDITABLE COMPUTATIONS ON (UN)ENCRYPTED

GRAPH-STRUCTURED DATA

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Servio Ernesto Palacios Interiano

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Bharat Bhargava, Chair

Department of Computer Science

Dr. Jeremiah Blocki

Department of Computer Science

Dr. James V. Krogmeier

Department of Electrical and Computer Engineering

Dr. Chunyi Peng

Department of Computer Science

Dr. Xiangyu Zhang

Department of Computer Science

Approved by:

Dr. Clifton Bingham

Head of Graduate Program

iii

Soli Deo Gloria.

In memory of Jesus Castulo Palacios Tosta.

To my wonderful mother, Aura Interiano.

To my beloved wife and son.

iv

ACKNOWLEDGMENTS

I would like to express my appreciation and thanks to my advisor Dr. Bharat

Bhargava. My deepest gratitude for his assistance, support, guidance during my

Ph.D. I am thankful for allowing me an immense degree of freedom to develop my

research agenda.

I want to thank Dr. Blocki, Dr. Krogmeier, Dr. Peng, and Dr. Zhang for serving

in my advisory committee and for providing valuable feedback. Also, I would like to

thank Dr. Ananth Grama for fascinating discussions and highly challenging problems

that motivated the need to pursue the Ph.D. degree.

I dedicate this dissertation to my father, Jesus Palacios, and my mother, Aura

Interiano. The significance of their perfect combination of emotional encouragement,

continuous support, love, and trust cannot be conveyed in words alone. I want to

express my sincerest thanks to my team members, my wife, Bessy, and my son Jesus

Alberto. From eating ice cream at midnight to pizza nights on Fridays, together we

got through our Ph.D. I am eternally in debt to all the people supporting my family

and me, such as my beloved siblings Delfina, Jesus, Jessyka, Victoria, and my in-laws,

Maritza, Cristina, and Louis.

I would like to thank the Fulbright program. Through your support, many—

otherwise shattered—dreams come true. Similarly, I want to thank the OATS Center

(Open AG Technologies and Systems) for giving me the opportunity and support to

pursue my ideas. The OATS team provided a rich environment filled with fascinating

insights and discussions. In particular, I want to thank Aaron Ault, Dr. Krogmeier,

and Dr. Buckmaster.

Finally, this dissertation is dedicated to my kids (nephews and nieces) and all

the underrepresented in STEM disciplines. A final thanks go to all my friends, in

particular Victor Santos and my friends from the Instituto Central Vicente Caceres.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . xi

LIST OF FIGURES . xii

ABSTRACT . xvi

1 INTRODUCTION . 1

1.1 Motivation . 2

1.2 Contributions . 3

1.2.1 AGAPECert . 3

1.2.2 AuditGraph.io . 3

1.2.3 TruenoDB . 4

1.2.4 MioStream . 4

1.3 Impact . 5

1.4 Dissertation roadmap . 5

2 AGAPECERT: AN AUDITABLE, GENERALIZED, AUTOMATED, PRIVACY-
ENABLING CERTIFICATION FRAMEWORK WITH OBLIVIOUS SMART
CONTRACTS . 6

2.1 Introduction . 7

2.1.1 Motivation and Problem Definition 8

2.1.2 Design Principles . 9

2.1.3 Approach . 11

2.1.4 Trust Levels . 14

2.1.5 Contributions . 15

2.2 Background . 16

2.2.1 Cryptographic Hash Functions and Data Integrity 16

2.2.2 Trusted Execution Environments 16

vi

Page

2.2.3 Blockchain Technologies . 19

2.2.4 Real-time Graph-based API . 20

2.3 Method: AGAPECert System Model 21

2.3.1 AGAPECert Architecture . 21

2.3.2 Oblivious Smart Contracts . 23

2.3.3 Private Automated Certifications (PAC) Workflow 25

2.3.4 Blockchain-Gateway Schema . 28

2.4 Security Analysis . 30

2.4.1 Side channel attacks to the Compute Engine 30

2.4.2 Analyzing AGAPECert’s Trust Levels 32

2.4.3 Discussion . 33

2.5 Prototype Implementation . 33

2.5.1 Blockchain Gateway . 34

2.5.2 Trusted Compute Engine . 34

2.6 Example Applications . 35

2.6.1 Trust Level 2: Certified Fishing Catch Area 35

2.6.2 Trust Level 3: Organic Mass Balance 36

2.7 Evaluation . 38

2.7.1 Experiment setup . 38

2.7.2 Trusted Compute Engine Performance 39

2.7.3 Private Automated Certifications Performance 41

2.7.4 Blockchain-Gateway Performance 42

2.8 Conclusion . 42

2.9 Acknowledgements . 43

3 AUDITGRAPH.IO: AN AUDITABLE AND AUTHENTICATED GRAPH
PROCESSING MODEL . 49

3.1 Introduction . 50

3.1.1 Problem statement and motivation 52

vii

Page

3.1.2 Design Principles . 52

3.1.3 Hierarchical structure of trust 53

3.1.4 Contributions . 54

3.2 Background . 55

3.2.1 Data Integrity of Graphs . 55

3.2.2 AGAPECert . 55

3.2.3 Real-time Graph-based API . 56

3.2.4 TruenoDB . 57

3.2.5 Graph Authentication . 57

3.2.6 Trusted Execution Environments 58

3.2.7 Blockchain technologies . 59

3.2.8 Distance in a graph G . 60

3.2.9 Similarity Primitives . 62

3.3 Method: System and Security Model 63

3.3.1 Security Model . 63

3.3.2 Data model . 63

3.3.3 System Architecture . 67

3.4 Block formation and layout . 70

3.4.1 Authentication graph and layout ordering 70

3.4.2 Block formation . 75

3.4.3 Authenticated block-based graph API 76

3.5 Security Analysis . 78

3.5.1 Side-channel attacks to the AIM/Compute Engine 78

3.6 Prototype implementation . 78

3.6.1 Compute Engine . 78

3.6.2 AIM Engine . 78

3.6.3 Block Manager . 79

3.6.4 Graph pre-processing and integrity 79

viii

Page

3.6.5 Digital signatures . 80

3.6.6 Blockchain-gateway . 80

3.7 Evaluation . 80

3.7.1 Experimental setup . 80

3.7.2 Graph Pre-Processing and Integrity 81

3.7.3 Graph Integrity and digital signatures 81

3.7.4 Multi-Modal Knowledge Graph Performance 85

3.7.5 Neighbors Algorithm Performance 86

3.7.6 Blockchain-Gateway Performance 86

3.7.7 Discussion . 87

3.8 Conclusion . 88

3.9 Acknowledgements . 88

4 TRUENODB: THE SCALABLE GRAPH DATASTORE/COMPUTATIONAL
ENGINE HYBRID . 93

4.1 Introduction . 93

4.2 System Architecture . 96

4.2.1 Cluster Manager . 96

4.2.2 Core Manager . 97

4.2.3 Web Console . 97

4.2.4 Graph Store . 98

4.2.5 Computation Engine . 98

4.2.6 Drivers . 101

4.3 Applications . 104

4.4 Evaluation . 106

4.4.1 Experimental Setup . 106

4.4.2 Query and Traversal Performance 107

4.4.3 Scalability . 108

4.4.4 Computation Engine . 110

ix

Page

4.5 Related Work . 114

4.5.1 Graph Databases . 114

4.5.2 Visualization and Analysis Tools 115

4.5.3 Graph Processing Frameworks 116

4.6 Conclusion . 116

4.7 Future Work . 117

5 MIOSTREAM: AN INTEGRITY-PRESERVING, PEER-TO-PEER, DIS-
TRIBUTED LIVE MEDIA STREAMING ON THE EDGE 119

5.1 Overview . 120

5.2 Background . 121

5.2.1 WebSockets . 122

5.2.2 WebRTC . 124

5.3 Design and Implementation . 126

5.3.1 Architecture . 126

5.3.2 Virtual Topologies . 129

5.3.3 The Communication Layer . 131

5.3.4 Security Layer . 132

5.3.5 Discussion . 135

5.4 Experiments . 136

5.4.1 Experiment Setup . 136

5.4.2 Method of injecting failures 137

5.4.3 Results . 138

5.4.4 Scalability and Goodput . 142

5.4.5 Integrity Validation of Video Chunks Overhead 144

5.4.6 Security Layer Overhead . 145

5.4.7 Analysis . 145

5.4.8 Use cases . 147

5.5 Future Work . 147

x

Page

5.6 Related Work . 148

5.7 Conclusion . 149

6 CONCLUSION . 151

REFERENCES . 154

xi

LIST OF TABLES

Table Page

2.1 Summary of Notations [18]. 14

2.2 Summary of Trust Levels requirements and security guarantees. 44

2.3 Summary of Important AGAPECert Cryptographic Hashes. 45

2.4 Summary of Components. 46

2.5 PAC business network in the shared ledger. 47

2.6 Summary of components’ repositories for AGAPECert implementation. . . 48

3.1 Summary of the hierarchical structure of trust, requirements, and security
guarantees. 90

3.2 Summary of Important AuditGraph.io Cryptographic Hashes. 91

3.3 Datasets. 92

4.1 Datasets . 107

4.2 Throughput Statistics . 108

4.3 Compute Statistics . 113

5.1 Media Information of the WebM video used for the experiment 137

xii

LIST OF FIGURES

Figure Page

2.1 Trust Transformation . 10

2.2 AGAPECert architecture for Trust Level 3. The data owner main compo-
nents include a compute engine that runs the OSC (exterior and interior),
a data store, a service manager for the OSCs (broker), and a blockchain-
gateway to store the Quote Hash and UUID (PAC.id). The regulator
includes the validator and its data store. The validator queries the ledger
to verify a particular PAC. Also, the validator attests correct code execu-
tion connecting to remote attestation services or DCAP. 23

2.3 AGAPECert Workflow . 29

2.4 AGAPECert’s compute engine (TL1, TL2) and Apache Spark (1,2,4 ex-
ecutors). We developed the Monte Carlo Approximation Algorithm for
those compute engines. 40

2.5 Compute Engine Performance. We utilize the Monte Carlo Approxima-
tion Algorithm. The Monte Carlo OSC is instantiated in AGAPECert
for Trust Level 1 (tl1) for an in-browser computation, Trust Level 1 (tl1)
NodeJS compute engine, and Trust Level 2 (tl2) with Intel SGX and Ope-
nEnclave. 40

2.6 PACs’ generation performance evaluation for Trust Level 3 (tl3). The K-
means algorithm is instantiated as an Oblivious Smart Contract (K-means
OSC or oblivious K-means if you will). 42

2.7 Blockchain-Gateway interacting with IBM Hyperledger Fabric and pacContract
performance. 43

3.1 User Ui queries a shared graph G = (V,E) (§3.3.2) composed of multiple
individual authenticated subgraphs. The computation and data can be
audited in the future storing untraceable cryptographic hashes in a shared
ledger. 53

3.2 Authenticated-Blocked Graph example. The graph G is pre-processed
into a series of blocks. Each color represents a subgraph. A subgraph is
composed of at least one or a set of blocks in the graph G. 64

xiii

Figure Page

3.3 Authentication Tree A for the graph G in Figure 3.2. The authentica-
tion tree is utilized for a hierarchical access structure. For more com-
plex authentication and authorization graph data accesses the multi-modal
Knowledge Graph is used (§3.3.2). 66

3.4 Multi-modal Knowledge Graph summarized data model. 67

3.5 System Architecture for AuditGraph.io module. We implemented Audit-
Graph.io as a Trellis module. 68

3.6 Authenticated and block-based graph representation 71

3.7 Coarse representation of a mesh network. Partitioning algorithms based
on the eccentricity of the Graph G. Nodes in the center are considered
more sensitive and therefore stored in a different shard or memory block
than the other set of nodes. 77

3.8 DFS traversal algorithm in various datasets. The pre-order and post-order
lists generated by this algorithm provides essential information related to
the graph structure. 82

3.9 This experiment measures the overhead of generating cryptographic hashes
for the datasets and pre-order and post-order lists generated in Figure 3.8. 83

3.10 Evaluation of the digital signature scheme overhead (ECDSA with SHA384)
on top of the Facebook dataset. 84

3.11 a) Summarized multi-modal Knowledge Graph Representation. The data
model described in Figure 3.4 is materialized using Neo4j graph database.
The AIMKG includes the similarity graph. Also, the edge betweeness
centrality is included as a property in the edges. We queried this AIMKG
to obtain the results in Fig 3.11(b). b) AuditGraph.io’s AIMKG Multi-
modal Knowledge Graph performance. We perform the most common
traversal queries—using Cypher—in the Knowledge Graph in Figure 3.11(a).85

3.12 Neighbors’ algorithm performance. This experiment tested three differ-
ent datasets (Wiki, Facebook, and a synthetic dataset.) We measure the
total number of blocks touched by the algorithm on those datasets. Au-
ditGraph.io touches fewer blocks and retrieves more related blocks with
high probability. 87

3.13 AuditGraph.io’s Blockchain-Gateway component interacting with IBM Hy-
perledger Fabric and auditContract performance. 87

4.1 TruenoDB System Architecture . 96

4.2 TruenoDB’s compute engine architecture. 99

xiv

Figure Page

4.3 TruenoDB Web UI Visualization - Top ranked gene neighborhood in the
Parkinson’s Network. 105

4.4 TruenoDB Web UI Visualization - Top ranked paper neighborhood in the
Citation’s Network. 106

4.5 Performance . 109

4.6 TruenoDB distributed read on the Pokec dataset. 109

4.7 Computation time (PageRank and Connected Components algorithms) on
the Biogrid dataset. TruenoDB vs Neo4j. 111

4.8 TruenoDB Compute on Biogrid, Citations, and LDBC (Scale 1) datasets. 112

4.9 Distributed read and computation on the Pokec dataset. 114

5.1 WebSocket frame [104,107]. 122

5.2 WebRTC Protocol Stack [101,104]. 124

5.3 MioStream Architecture Diagram. 127

5.4 Authentication Finite State Machine. 133

5.5 Linked list topology under induced failures (Uniform, Binomial, and Pois-
son distribution). Average stalled time of playback per peer. 139

5.6 Linked list topology under induced failures (Uniform, Binomial, and Pois-
son distribution). Average stalled counter per peer. 140

5.7 Tree topology under induced failures (Uniform, Binomial, and Poisson
distribution). Average stalled time of playback per peer. 140

5.8 Tree topology under induced failures (Uniform, Binomial, and Poisson
distribution). Average stalled counter per peer. 140

5.9 Mesh topology under induced failures (Uniform, Binomial, and Poisson
distribution). Average stalled time of playback per peer. 141

5.10 Mesh topology under induced failures (Uniform, Binomial, and Poisson
distribution). Average stalled counter per peer. 141

5.11 Scalability under induced failures (Uniform, Binomial, and Poisson distri-
bution) according to network topology. (a) average stalled time of play-
back per peer; (b) average stalled counter per peer. 143

5.12 Goodput (bytes per second) under induced failures using the uniform dis-
tribution. 144

5.13 Average Number of Stalled Video Chunks per Threshold. 144

xv

Figure Page

5.14 Total Stalled Time per Threshold. 145

5.15 HMAC setup and digest generation. 146

xvi

ABSTRACT

Palacios, Servio Ph.D., Purdue University, August 2020. Auditable Computations on
(Un)Encrypted Graph-Structured Data. Major Professor: Bharat Bhargava.

Graph-structured data is pervasive. Modeling large-scale network-structured data-

sets require graph processing and management systems such as graph databases. Fur-

ther, the analysis of graph-structured data often necessitates bulk downloads/uploads

from/to the cloud or edge nodes. Unfortunately, experience has shown that malicious

actors can compromise the confidentiality of highly-sensitive data stored in the cloud

or shared nodes, even in an encrypted form. For particular use cases —multi-modal

knowledge graphs, electronic health records, finance— network-structured datasets

can be highly sensitive and require auditability, authentication, integrity protection,

and privacy-preserving computation in a controlled and trusted environment, i.e., the

traditional cloud computation is not suitable for these use cases. Similarly, many

modern applications utilize a ”shared, replicated database” approach to provide ac-

countability and traceability. Those applications often suffer from significant privacy

issues because every node in the network can access a copy of relevant contract code

and data to guarantee the integrity of transactions and reach consensus, even in the

presence of malicious actors.

This dissertation proposes breaking from the traditional cloud computation model,

and instead ship certified pre-approved trusted code closer to the data to protect

graph-structured data confidentiality. Further, our technique runs in a controlled en-

vironment in a trusted data owner node and provides proof of correct code execution.

This computation can be audited in the future and provides the building block to

automate a variety of real use cases that require preserving data ownership. This

project utilizes trusted execution environments (TEEs) but does not rely solely on

xvii

TEE’s architecture to provide privacy for data and code. We thoughtfully examine

the drawbacks of using trusted execution environments in cloud environments. Simi-

larly, we analyze the privacy challenges exposed by the use of blockchain technologies

to provide accountability and traceability.

First, we propose AGAPECert, an Auditable, Generalized, Automated, Privacy-

Enabling, Certification framework capable of performing auditable computation on

private graph-structured data and reporting real-time aggregate certification status

without disclosing underlying private graph-structured data. AGAPECert utilizes

a novel mix of trusted execution environments, blockchain technologies, and a real-

time graph-based API standard to provide automated, oblivious, and auditable cer-

tification. This dissertation includes the invention of two core concepts that provide

accountability, data provenance, and automation for the certification process: Oblivi-

ous Smart Contracts and Private Automated Certifications. Second, we contribute an

auditable and integrity-preserving graph processing model called AuditGraph.io. Au-

ditGraph.io utilizes a unique block-based layout and a multi-modal knowledge graph,

potentially improving access locality, encryption, and integrity of highly-sensitive

graph-structured data. Third, we contribute a unique data store and compute engine

that facilitates the analysis and presentation of graph-structured data, i.e., TruenoDB.

TruenoDB offers better throughput than the state-of-the-art. Finally, this disserta-

tion proposes integrity-preserving streaming frameworks at the edge of the network

with a personalized graph-based object lookup.

1

1. INTRODUCTION

Graph-structured data is ubiquitous. Modeling and handling large-scale network-

structured datasets require graph processing and management systems such as graph

databases and pose significant computational challenges. Graphs1 are data structures

used to represent relationships between entities. For particular use cases —multi-

modal knowledge graphs, electronic health records, finance— network-structured

datasets can be highly sensitive and require controlled computation in a trusted en-

vironment, i.e., the traditional cloud computation is not suitable for highly sensitive

datasets nor for applications that require low-latency and high-throughput. Further,

in regulated environments, auditable computation is imperative. Many modern big-

data applications work on top of graph-structured data. For instance, graph databases

such as Neo4j [1], JanusGraph [2], TruenoDB [3] and others [4–7] handle large-scale

graphs that model biological interactions, social networks, knowledge graphs, elec-

tronic health records, finance, etc. These systems manage large graphs and execute

traversal algorithms on them. Traversal algorithms exhibit access locality in the graph

structure. Although current graph databases such as Neo4j, ArangoDB, and others

offer protection for data-in-transit [8, 9]—utilizing SSL/TLS— and for data-at-rest

—using Bitlocker or encrypted key-value stores; those do not offer fine-grained au-

thentication and auditability guarantees at the graph structure level (for example,

subgraphs, motif).

Similarly, many modern applications utilize a ”shared, replicated database” ap-

proach to provide accountability and traceability. For instance, many solutions for

certifiability and traceability in supply chains using blockchain technologies have risen

to prominence [10–15]. Those applications often suffer from significant privacy issues

because every node in the network can access a copy of relevant contract code and data

1For the rest of the dissertation, the terms graph and network are interchangeable.

2

to guarantee the integrity of transactions and reach consensus, even in the presence

of malicious actors.

Despite the importance of securing not only the content of the nodes but also

the structure of the graph, state-of-the-art authentication measures for the graph

model have been following techniques that are often used in the relational model.

Further, modern systems that utilize graph data stores as backend do not provide

authentication nor auditability features at the subgraph level and exploiting the access

locality of traversal algorithms.

1.1 Motivation

We argue that there is a need for certification frameworks that do not rely uniquely

on blockchain technologies as a building block. Instead, we propose allowing a privacy-

conscious data owner to run pre-approved and certified code in their own environment

on their own private graph-structured data and provide proof of correct code execution

and data provenance that can be audited in the future. We examine the risks of using

trusted execution environments (TEEs) in the cloud and propose alternatives on how

to use TEEs differently.

We investigate the access locality exhibit by traversal algorithms on graph-structured

data to present a performant graph processing model while providing authentication

and auditability features. We argue that exploiting access locality can help create

unique memory layouts that semantically relate individual authenticated sets with

the access patterns exhibited by the users in a graph data store. We examine the

use of multi-modal knowledge graphs to enhance the authentication engine and ex-

pose a richer user experience, automatically caching and pushing relevant content

to the users. In particular, we generate blocked individual authenticated sets with

high-locality, which serves as a building block for subgraphs authentication. Fur-

ther, we argue that using a block-based structure can facilitate the encryption of

graphs using AES-GCM or AES-CTR. Moreover, we examine the use of a novel mix

3

of blockchain technologies, trusted execution environments, and graph analytics to

provide auditable and authenticated computation on top of the graph model. Finally,

we integrate previous work on graph authentication with our block-based graph rep-

resentation.

We argue that current graph databases offer limited functionality making the

management of large networks a challenge, from points of view of analyses and pre-

sentation. To tackle this, we propose a scalable and easy to use graph database with

an integrated compute engine.

Finally, we investigate stream processing systems at the edge of the network to

avoid incurring costly and extensive CDN infrastructure while enabling a personalized

graph-based object lookup, low latency, and high-throughput.

1.2 Contributions

1.2.1 AGAPECert

This chapter introduces AGAPECert, an Auditable, Generalized, Automated,

Privacy-Enabling, Certification framework capable of performing auditable compu-

tation on private data and reporting real-time aggregate certification status with-

out disclosing underlying private data. AGAPECert utilizes a novel mix of trusted

execution environments, blockchain technologies, and a real-time graph-based API

standard to provide automated, oblivious, and auditable certification. AGAPECert

contributes an open-source certification framework that can be adopted in any regu-

lated environment to keep sensitive data private while enabling a trusted automated

workflow.

1.2.2 AuditGraph.io

We propose AuditGraph.io, an auditable and privacy-preserving graph processing

model that performs auditable computation on graph-structured data on a trusted or

4

controlled node. AuditGraph.io exploits access locality of traversal algorithms; it uti-

lizes trusted execution environments and blockchain technologies to provide authen-

ticated access to subgraphs and provide auditable proof of correct code execution. To

the best of our knowledge, AuditGraph.io is the first solution for auditable, authenti-

cated, and privacy-preserving computation for network-structure data exploiting the

access locality exhibited by traversal algorithms.

1.2.3 TruenoDB

We contribute TruenoDB, an easy-to-use scalable graph database and compu-

tation engine. TruenoDB is a novel integration of highly optimized algorithms and

implementations, with distributed search engines, graph-parallel computations on top

of a dataflow framework, and a rich set of drivers. TruenoDB provides a user-friendly

Web UI, a simple API for developing plugins, has extensive language support, and

commonly used execution engines such as Spark, and includes a library of graph

analytics kernels. We validate TruenoDB outstanding usability utilizing a variety

of applications ranging from computational systems biology to information retrieval.

Finally, we support TruenoDB’s practicality through some micro and macro bench-

marks that demonstrate excellent performance, scalability, and flexibility.

1.2.4 MioStream

We present the design, implementation, and evaluation of a novel P2P service

based on WebRTC (web browsers with Real-Time Communications) called MioStream.

MioStream is an open-source alternative for distributed media streaming that runs

on the edge of the network without incurring costly and extensive CDN infrastruc-

ture. We contribute a unique mix of algorithms using WebRTC data channels. For

instance, under network degradation and high-churn environments, MioStream re-

structures the topology dynamically. MioStream provides authentication, privacy,

and integrity of video chunks.

5

1.3 Impact

All the systems exposed in this dissertation are open-source. Moreover, there is

a significant interest in commercializing AGAPECert. Similarly, AuditGraph.io will

be used to enhance AGAPECert capabilities. The AuditGraph.io proof of concept

can enhance auditability and authentication features of current graph databases. Our

systems can be found at:

• AGAPECert: https://github.com/agapecert

• AuditGraph.io: https://github.com/AuditGraphDB

• TruenoDB: https://github.com/TruenoDB

• MioStream: https://github.com/maverick-zhn/miostream

1.4 Dissertation roadmap

The rest of this dissertation is organized as follows. We present an Auditable,

Generalized, Automated, and Privacy-Enabling Certification Framework with Obliv-

ious Smart Contracts in Chapter 2. We examine AuditGraph.io that leverages au-

ditability and authentication through the exploration of access locality of the graph

model (Chapter 3). Chapter 4 introduces TruenoDB and background knowledge of

graph databases. We introduce MioStream in Chapter 5; we provide a background

for essential building blocks. Chapter 6 concludes this dissertation.

6

2. AGAPECERT: AN AUDITABLE, GENERALIZED,
AUTOMATED, PRIVACY-ENABLING CERTIFICATION

FRAMEWORK WITH OBLIVIOUS SMART CONTRACTS

This paper introduces AGAPECert, an Auditable, Generalized, Automated, Privacy-

Enabling, Certification framework capable of performing auditable computation on

private data and reporting real-time aggregate certification status without disclos-

ing underlying private data. AGAPECert utilizes a novel mix of trusted execution

environments, blockchain technologies, and a real-time graph-based API standard

to provide automated, oblivious, and auditable certification. Our technique allows

a privacy-conscious data owner to run pre-approved Oblivious Smart Contract code

in their own environment on their own private data to produce Private Automated

Certifications. These certifications are verifiable, purely functional transformations

of the available data, enabling a third party to trust that the private data must have

the necessary properties to produce the resulting certification.

Recently, a multitude of solutions for certification and traceability in supply chains

have been proposed. These often suffer from significant privacy issues because they

tend to take a ”shared, replicated database” approach: every node in the network

has access to a copy of all relevant data and contract code to guarantee the integrity

and reach consensus, even in the presence of malicious nodes. In these contexts of

certifications that require global coordination, AGAPECert can include a blockchain

to guarantee ordering of events, while keeping a core privacy model where private

data is not shared outside of the data owner’s own platform.

AGAPECert contributes an open-source certification framework that can be adopted

in any regulated environment to keep sensitive data private while enabling a trusted

automated workflow.

7

2.1 Introduction

Recently many solutions for certifiability and traceability in supply chains using

blockchain technologies have risen to prominence. For example, to provide account-

ability and visibility in the food supply, blockchain solutions exist such as IBM Food

Trust [10], BeefChain [11], Lowry Solutions Sonaria platform [12], ripe.io [13], Orig-

inTrail [14], and SAP Blockchain Service [15], to name but a few.

A component of many blockchain solutions is a smart contract: a piece of code

stored in the blockchain itself that is run by all (or most of) the nodes in the chain in

response to some on-chain event: i.e., some data is added to the blockchain computing

nodes which triggers processing. Nodes in the network have copies of the data and

the code and achieve data integrity by checking each other’s work. This approach

suffers from significant privacy challenges because data and smart contract code is

replicated on all nodes in the network [16] as a means to achieve varying levels of

Byzantine fault tolerance: i.e., malicious actors are unable to affect data integrity.

Thus, some projects have proposed the use of trusted execution environments in

the chain to provide some level of privacy-preserving computation [16] (§2.2.2). A

trusted execution environment (TEE) is a private, integrity-protected, and secure

computation environment built into processor hardware1 [17, 18]. For example, In-

tel SGX (Software Guard Extensions) intends to supply confidentiality and integrity

guarantees to computation run in environments where the hypervisor (virtualized en-

vironments), operating system, or the kernel are probably malicious/adversarial [18].

TEE’s were originally intended to provide a way to keep code and data isolated from

malicious actors in a shared platform, and they have had questionable (§2.4.1) suc-

cess toward that goal thus far. However, our trust model simply requires that a TEE

can produce cryptographically secure guarantees about which code it ran, not that it

isolates data from the rest of its platform.

1Throughout the rest of this paper, we use the terms TEE, enclave, and trusted black box
interchangeably.

8

Brandenburger et al. (2018) contributed an open-source proof of concept for TEEs

within blockchain computation on top of Hyperledger Fabric [16]. Another example

using blockchain and Intel SGX is SDTE [19], a data processing model implemented

on Ethereum. A more general framework is the Confidential Consortium Blockchain

(COCO) that aims to enable scalable and confidential blockchain networks [20]. In

all these solutions, the computation is on-chain: i.e., replicated across nodes in the

network.

In many of the real use cases requiring the sort of privacy provided by TEEs, par-

ticipants are reticent to provide even encrypted versions of sensitive data to a public

or permissioned blockchain which will enshrine the encrypted data immutably, thus

giving attackers an enormous time-based attack surface to find exploits in encryption

key management.

AGAPECert leverages privacy-preserving computation via TEEs but allows the

TEEs to run in environments controlled by the data owner rather than on-chain.

AGAPECert abstains from sending data to a public or even private blockchain net-

work and applies restrictions to the code that runs inside enclaves: the code or algo-

rithm that runs on the private data must be pre-approved by both data owner and

regulator.

Before delving further into details of AGAPEcert and its relationship to other

technologies, it is important to define a model of the problem that AGAPEcert is

designed to solve.

2.1.1 Motivation and Problem Definition

Figure 2.1(a) illustrates a common activity in everyday life that we call a trust

transformation. A regulator such as the Internal Revenue Service (IRS), an environ-

mental agency, or even just a down-stream purchaser of a product has a form that

the individual or company being regulated needs to fill out. This form contains a

request for information that is derived from other sources. The source data is gener-

9

ally considered private by the data owner and therefore is not submitted directly to

the regulator. The transformation of the source data into the fields on the regulators

form can be considered a trust transformation from more private, fine-grained data

to less private, coarse-grained data.

When the regulator has cause for increased scrutiny, such as an IRS audit or a

surprise inspection, there is typically a need to reproduce the private source data

and re-execute the process of the trust transformation under threat of legal action;

however, this time under the supervision of the regulator or an independent third

party. The source data presented under audit conditions should be verifiable as the

same data that produced the responses in the original form. The auditor often has

little means of verifying that the data provided by the data owner is correct. Instead,

the data owner would typically sign some legal document attesting that the data they

have provided is correct to the best of his/her knowledge2.

The goal of AGAPECert is to enable the trusted service provider or data owner

that performs the trust transformation in Figure 2.1(a) to be replaced or augmented

with code agreed upon by both the regulator and the data owner as shown in Fig-

ure 2.1(b). This automates the process of data-centric certification. This process

must not infringe on existing models for trust transformation that society already

understands and uses, as outlined below.

2.1.2 Design Principles

The following features must be supported in order for AGAPEcert to fit most

existing certification processes:

1. The data owner should be confident that private data will not be released to

the regulator, even in encrypted (but decryptable) form.

2. The data owner should be able to run the code to fill out the regulators form

as often as they like internally without notifying the regulator.

2The data owner in question is often the sole source of that information.

10

(a) Trust transformation today

(b) Trust transformation with AGAPECert.

Fig. 2.1.: (a) Illustration of common model of trust transformation. A person or their
trusted agent will fill out a form for a regulator using private, fine-grained source data
that they transform into the fields on the regulator’s form. (b) AGAPECert replaces
or augments the service provider or data owner with a piece of software code agreed
upon by both the regulator and the data owner, thus automating the certification
process.

11

3. The regulator must be able to verify that the private data has not changed in

the event of a subsequent audit under threat of legal action.

4. The regulator should learn nothing more about the data owners information or

business processes other than the exact features of the filled-out form.

5. In some cases, the regulator should be able to confirm that the appropriate code

was run without requiring a full audit.

6. The process need not verify the private data beyond a legal assertion by the

data owner that the data is correct. However, the process may enable better

trust requirements around the integrity of private source data.

This new model has the benefit of repeatable precision enabled by its purely

functional nature: when the trusted software code produces the responses in the

form such as passed or properly certified, then the data owner knows that they have

indeed passed the certification process, and the whims of a later human regulator or

auditor cannot change that. The traditional model of data-centric automation has

been to ship data to the code that uses it, thus creating privacy concerns. In the

AGAPECert model, data-centric automation is achieved by shipping trusted code to

the data, eliminating any needless privacy concerns, leaving only those privacy issues

required by the contents of the regulator’s report itself (§2.6).

2.1.3 Approach

As a key component of the AGAPECert framework, we introduce the concept

of Oblivious Smart Contracts (OSCs) as a means to achieve Private Automatable

Certifications (PACs). These concepts achieve the high-level flow:

1. use a piece of standardized, industry-trusted, regulator-approved code that can

securely access private data using a standardized graph-based API (§2.2.4),

12

2. compute an aggregate resulting certification (the PAC) as a purely functional

result from the input data,

3. store results back to the platform of choice for the code (i.e., a blockchain, or

any standardized graph-based platform §2.2.4),

4. and hash and sign all so that these signatures and hashes can be presented in

the event of a legal challenge and used to verify that the code was run faithfully,

and the input data has not been changed since code execution.

No information will be leaked from the private data beyond what is produced by

the pre-approved code itself. Even the produced PAC does not necessarily have to be

shared by the data owner except in the case of a manual audit or legal challenge. It

need not even leak the fact that the data owner has run the OSC at all if the OSC

itself does not communicate with any outside platform during execution. We can con-

sider the PAC as being produced by a smart contract —standard, pre-approved code

shared by participants—, and consumers of the resulting PAC as being oblivious to

all features of the underlying private dataset beyond the aggregate information in the

PAC, similar to the widely-accepted use of the term oblivious computation [21]. These

two features give rise to the name we have coined here, Oblivious Smart Contract.

AGAPECert utilizes a graph datastore abstraction, that is, the Trellis frame-

work [22] which specializes the Open Ag Data Alliance (OADA) API framework [23]

to provide a standard API for automated data exchange. AGAPECert uses this

concept of having a known, standard API for any type of data as a foundational

component to build an interoperable codebase capable of interacting with myriad in-

dividual platforms (§2.2.4.) Without the concept of a standardizable API layer with

the features available in Trellis/OADA, it is not practical to write a piece of code that

one would expect to work against many heterogeneous data sources. For those unfa-

miliar with Trellis and OADA, it is important to note that the API framework works

for any kind of data or use case, not simply those within the agriculture industry or

13

the food supply chain. Therefore, AGAPEcert’s use of Trellis and OADA enables it

to be fully generalizable.

As an example of a PAC protocol utilizing blockchain as a byzantine fault toler-

ant3 data storage layer, AGAPECert can leverage auditable computation through a

Blockchain-Gateway that allows pluggable shared ledgers (§2.5.1) to store anonymous

hashes computed during the PAC generation process.

AGAPECert integrates two crucial concepts derived from Intel’s documentation [24];

REPORT and QUOTE (Table 2.1). The Intel SGX documentation defines a RE-

PORT as a unique signed structure that binds a key to the enclave hardware, the

signer of the codebase, the code itself, and any user-defined data. In the remote at-

testation process (§2.2.2), the Quoting Enclave verifies the REPORT and creates and

signs the QUOTE with a key that is only known to trusted Intel SGX hardware. The

QUOTE is utilized by the Intel’s Remote Attestation Services to verify the identity

of particular code running inside an enclave. AGAPECert can store the Quote Hash

(§2.2.1) in the PAC or a shared ledger, serving as BFT proof of the computation

result timing.

AGAPECert diverges considerably from current edge computing (i.e., processing

outside the cloud) literature. The AGAPECert architecture includes a graph data

store node, a compute engine node, a broker, and a validator (§2.3.1). The approach is

highly flexible to a wide array of situations: OSC code can interact with or be initiated

by regular on-chain smart contract code as appropriate, various data components can

be chosen by participants as either on-chain or off-chain to support the use case,

and results and hashes can be reported directly to certifying bodies, pushed to a

blockchain, or held only by the data owners. PACs can also be composed: one

”meta”-PAC can be created by an OSC which simply verifies the validity of many

other PACs, avoiding the need to even disclose the underlying PACs themselves.

3A Byzantine Fault Tolerant (BFT) network can continue operating even if some of the nodes fail
to communicate or act maliciously.

14

Table 2.1.: Summary of Notations [18].

Notation Explanation
OSC Oblivious Smart Contract
PAC Private Automated Certification
REPORT A unique signed structure

that binds a key to an enclave
QUOTE Created by the Quoting Enclave

(Signed REPORT)

2.1.4 Trust Levels

Not all use cases have the same trust requirements. AGAPECert proposes classi-

fying OSC structures that solve various use cases into a hierarchy of three trust levels

with increasing trust guarantees at the expense of increasing complexity. (Table 2.2):

• Trust Level 1, Owner Attested (OA): Regulator or consumer of PAC trusts the

data owner to faithfully execute the OSC, and therefore does not require proof

of correct execution provided by a TEE. Computation is still auditable under

legal challenge. Example: one company prepares a report that utilizes data

from a supplier, and they would like to automate report preparation without

requiring the transfer of private source data from the supplier that the report

preparation process would naturally aggregate anyway.

• Trust Level 2, Enclave Attested (EA): Regulator or consumer of PAC requires

attestation that OSC code was executed faithfully. Computation is auditable

under legal challenge, and correct code execution can be attested without ac-

cess to private data. Example: government regulator would like to automate

checks against data owner’s digital data, so the resulting PAC contains TEE

attestation.

• Trust Level 3, Blockchain Attested (BA): Regulator or consumer of PAC

requires proof of correct execution as well as proof of event ordering for issues

like double spending prevention. Contains same components as Level 2, with the

15

addition of a Byzantine fault tolerant shared data storage layer like blockchain.

Example: Buyer of a product wants to know that it is from a certified set (i.e.,

purchase does not exceed available certified balance), but seller does not wish

to leak information about timing and quantity of other sales.

2.1.5 Contributions

In summary, our contributions are:

• Utilizing a novel mix of blockchain technologies, trusted execution environ-

ments, and graph-based APIs, AGAPECert provides a unique, auditable, gen-

eralized, automated, and privacy-enabling certification framework for any in-

dustry.

• AGAPECert can be used as a novel privacy-preserving food-safety framework

in particular.

• AGAPECert contributes auditable computation for use cases that require pre-

serving data ownership and privacy.

• AGAPECert contributes a handshake protocol utilizing trusted execution envi-

ronments and the OAuth2.0 (§2.3.3).

• AGAPECert introduces, for the first time, the concepts of Oblivious Smart

Contracts and Private Automated Certifications as building blocks to automate

and protect data ownership in real use cases, i.e., certification frameworks, in

the supply chain.

• This work provides an opensource design, implementation, and evaluation of

our solution (§2.5, §2.7).

16

2.2 Background

AGAPECert computes on encrypted or access-controlled data (Confidentiality),

preserves the privacy and state of the original private data (Integrity), and, for some

use cases, provides the latest record of the certification (sequence.)

2.2.1 Cryptographic Hash Functions and Data Integrity

AGAPECert provides integrity protection of private data and code through well-

known cryptographic hash functions. Formally, hash functions map an arbitrary

length input message m to a fixed-length output h(m) referred to as a hash [25]. The

hash has the property that it is computationally infeasible to create an input string

which produces a pre-defined hash value, it is infeasible to invert (i.e., determine the

original input from the hash alone), and it is deterministic (the same input string

always produces the same hash).

AGAPECert uses the SHA256 hashing function to create five crucial hashes (Ta-

ble 2.3) to uniquely characterize the private data, the REPORT (local attestation),

QUOTE (remote attestation), PAC, and OSC.

2.2.2 Trusted Execution Environments

Trusted Execution Environments (TEEs) are an industry innovation to enhance

the privacy of data and computation [16]. Through specialized and isolated execution

environments (enclaves) TEEs shield applications against any malicious operating

system, hypervisor, firmware, or drivers [18]. TEEs include functionality to encrypt

sensitive communications, seal (encrypt) data, and verify the integrity of code and

data. TEEs implementation includes specialized hardware instructions embedded in

a machine’s processor.

17

Intel SGX

Intel SGX (Software Guard Extensions) aims to supply integrity and confidential-

ity guarantees through a TEE [18]. Intel SGX creates a private and trusted execution

region in the computer’s processor called an enclave: a secure ”virtual container” or

black box that contains code and secret data [18]. The intended code and data are

injected from an untrusted region into the enclave. Then, built-in software attestation

and sealing mechanisms can provide proof that an application is interacting with the

exact/correct software in the enclave and not an attacker’s injected malicious code or

simulator.

AGAPECert Trust Level 2 and above require an enclave to exist in the compute

engine (§2.3.1). The data owner trusts the environment where they run the code on

top of their private data, and the code they choose to run there has been pre-approved

by them or their trusted service provider in advance. In addition, the regulator has

also pre-approved the code and knows the appropriate REPORT parameters that the

code will produce when executed in a TEE. Hence, the code injected in the enclave has

been approved by both the regulator and the data owner — a code trust relationship.

Local and remote attestation

To prove that specific software code is running in trusted hardware, Intel SGX

relies on local and remote attestation [18, 26]. The attestation mechanism provides

proofs, which comprise a cryptographic signature of the enclave’s content (code, data,

and parameters) using the platform’s secret attestation key known only to the pro-

cessor. In local attestation, the cryptographic proof is verifiable locally by another

enclave running in the same processor; this allows secure collaboration to reach a

result.

In remote attestation, the cryptographic signature on the proof can be verified by

a third party as having originated from a particular piece of trusted hardware using

the assumption that the secret key within the processor hardware is unknown outside

18

of the hardware itself and the hardware never reports that key to running software.

In other words, the only entity that could have produced the signature is a trusted

processor because it is the only entity that knows its signing key.

AGAPECert utilizes a remote attestation mechanism as the means by which the

data owner can prove to the regulator that they have faithfully executed the pre-

approved code. OSC code reads private data and produces purely functional outputs

from that data, including additional hashes (§2.2.1). This makes code execution both

reproducible and verifiable given the same input data.

Intel Enhanced Privacy ID [27]

A critical aspect of privacy-preserving computation is attesting that compute de-

vices have not been tampered with and are authentic. Intel’s Enhanced Privacy ID

(EPID) is an implementation of ISO/IEM 2008 that handles membership revocation

and anonymity. Membership revocation exposes methods to invalidate compromised

secret keys. Anonymity means that EPID will attest to the authenticity of devices

without identifying the particular device, i.e., the signature was created by a key from

amid a trusted group of secret keys. However, EPID cannot distinguish which partic-

ular key in the group created a given signature. AGAPECert utilizes these existing

remote attestation signature schemes.

Intel SGX DCAP [28]

EPID has some limitations:

• Participants are reticent to outsource trust decisions.

• Some highly-distributed use cases require scalable verification points and need

to avoid a single point of failure.

• AGAPECert can run computation in controlled environments restricting Inter-

net access at runtime.

19

To tackle these issues, Intel allows the use of Data Center Attestation Primitives—

Intel SGX DCAP—to build customized third party remote attestation. At this point,

only servers with Flexible Launch Control (FLC) enabled Intel Xeon E Processors

are supported [28].

2.2.3 Blockchain Technologies

A blockchain is an immutable, decentralized digital ledger [16,29]. Multiple com-

puters store ordered transactions, linked together through a series of hashes that

represent all the data in the ledger up to a given block. Immutability implies that

a record in a set ”chained” together by hashes cannot be changed without affecting

all the subsequent block hashes. A blockchain provides inherently byzantine fault

tolerant [30] independent auditability capabilities typically by placing computational

constraints on block content that require brute-force guessing to solve. Those con-

straints make it too difficult for a malicious attacker to game the system since they

cannot brute-force guess solutions any faster than non-malicious participants. Adding

to the concept of the immutable shared ledger is the concept of a smart contract. A

smart contract is defined as code that resides in the blockchain itself. An event can

trigger some or all nodes to execute that code. The input and output data for each

run of the contract code is also typically stored in the blockchain to make code exe-

cution directly verifiable: every node uses the same inputs, runs the same code, and

verifies that they produce the same output.

The simplest forms of OSC do not require a blockchain. However, some use

cases require provable concepts of time or event ordering. In such cases, including

a blockchain building block can be key to giving an OSC the capability to provide

collaborative interaction that respects ordering of events. In such cases, AGAPECert

can utilize a blockchain to store hashes when building a PAC. AGAPECert cur-

rently implements a Generalizable Blockchain-Gateway with IBM Hyperledger Fab-

20

ric as a building block, but can be extended to other blockchain frameworks such as

Ethereum [31].

2.2.4 Real-time Graph-based API

We utilize the Trellis Framework which exposes standardized REST API semantics

to interact with a user’s private data store. The purpose of Trellis is to enable stan-

dardized, automated, permissioned, ad-hoc, point-to-point data connections through

the use of a common REST API. It is beyond the scope of this paper to fully recount

the details of Trellis4. However, some critical features of Trellis are important to

understand AGAPECert:

• Resource Discovery : Filesystem-like graph schemas to define where data can be

discovered. For example, catch locations for a fishing vessel for May 1, 2020

could be defined as discoverable at graph path /bookmarks/trellis/fishing/catch-

locations/day-index/2020-05-01.

• Write Semantics : Trellis standardizes how data within a graph is written: all

data changes are reduced to an ordered stream of idempotent merge operations5.

Operation ordering is only guaranteed per-resource, not globally.

• Change Feeds : Clients can register for real-time change feeds for any arbitrary

subgraph of data. This provides both a real-time communication channel as

well as a means of concurrency-safe 2-way data synchronization. The change

feed is comprised of the ordered stream of idempotent merge operations.

• Authorization: Trellis standardizes how any client registers and obtains autho-

rization tokens at any Trellis platform.

4Refer to https://github.com/trellisfw for more information.
5An idempotent merge operation means that a given JSON document is produced that only affects
matching keys. Keys that do not exist are created, existing ones are deep-replaced at overlapping
key paths, similar to a common upsert. Applying the same merge repeatedly results in the same
resource state at the mentioned key paths, hence why it is idempotent.

21

• Permissions : Trellis standardizes how data can be locally shared within a plat-

form.

2.3 Method: AGAPECert System Model

2.3.1 AGAPECert Architecture

AGAPECert considers two primary actors: data owners and regulators. Data

owners are clients that own private and sensitive data. Regulators are actors that

would like to know some derivative of the clients private, sensitive data without

requiring the disclosure of that data itself. Note that the regulator may not be only

what is traditionally considered a regulator, e.g., from a government agency, but

rather is used in a broader sense here as any entity looking for information that may

be derived from a clients private data. By this definition, a regulator could be a direct

customer of the data owner, a down-stream buyer in a supply chain, or a business

partner.

We define two critical components of the certification process:

• Private Automated Certification (PAC): the derivative output of the clients data

(i.e., the contents of the ”form” that the regulator requires the data owner to

fill out).

• Oblivious Smart Contract (OSC): regulator-approved code which, given access

to private input data, produces the desired PAC (i.e., the ”questions” on the

regulator’s ”form”).

The client (or their trusted service provider or industry consortium) ensures that

the OSC obtains only the necessary data to produce a PAC, and that the PAC

will not leak any unauthorized information (such as copies of the private data, or

knowledge of when the OSC code was run). The client runs the approved code and

provides it access to their private data to it to obtain a signed PAC. This PAC should

contain, at minimum, a cryptographic hash representing the input data used in its

22

computation. For Trust Levels 2 and above, it must also include the cryptographic

hashes of REPORT (Report Hash) and QUOTE (Quote Hash) from the Intel SGX

enclave. The client then provides their PAC to the regulator upon request, at which

time the regulator may validate the PAC according to the trust level for that use

case. Should a subsequent legal challenge be necessary, the client can produce the

private data to a legal authority, which can verify that the cryptographic hash for

that data (Data Hash) matches that from the PAC, and can also re-run the OSC

code to produce an equivalent PAC for comparison.

AGAPECert architecture comprises six main components, four required and two

optional based on the level of trust required (Figure 2.2):

• Compute Engine: a compute node controlled by or trusted by the data owner

that is capable of running the OSC code. A compute engine is required for all

trust levels. For Trust Levels 2 and above, the compute engine must be Intel

SGX-enabled.

• Data Store: a Trellis-conformant data storage platform that holds the private

data owned by the client. This serves as the source of the data for the OSC, as

the real-time communication channel for the broker and the OSC, and as the

destination for the PAC produced by the OSC.

• Broker: a web application that initiates, authorizes, provisions, moderates,

monitors, and validates OSC execution, communicating with the OSC through

the secure shared Trellis connection. This serves as the bridge between the

data owner and the OSC, acting as a service manager; all OSC services can be

monitored through this web-app.

• Validator: a web application that can validate a PAC, including remote at-

testation for Trust Level 2 and 3, and checking a blockchain for Trust Level

3.

23

• Attestation Service: The Intel SGX attestation service or DCAP (§2.2.2).

Given a particular QUOTE, this service can attest whether the QUOTE was

produced by a legitimate Intel SGX enclave or not, thus attesting proper code

execution. Required for Trust Levels 2 and above.

• Blockchain Gateway: an interface to a blockchain that is trusted by the

regulator and the data owner.

Fig. 2.2.: AGAPECert architecture for Trust Level 3. The data owner main com-
ponents include a compute engine that runs the OSC (exterior and interior), a data
store, a service manager for the OSCs (broker), and a blockchain-gateway to store the
Quote Hash and UUID (PAC.id). The regulator includes the validator and its data
store. The validator queries the ledger to verify a particular PAC. Also, the validator
attests correct code execution connecting to remote attestation services or DCAP.

2.3.2 Oblivious Smart Contracts

An Oblivious Smart Contract (OSC) is software code that reads private data to

compute a result such as pass/fail and generate a PAC (§2.3.3). OSCs run in the

compute engine node. For Trust Levels 2 and 3, this computation happens inside a

TEE on the compute engine.

24

As explained by Intel’s documentation [24] Intel SGX applications (such as Trust

Level 2 and above OSC’s) comprise two parts, the untrusted part of the application

which communicates with the enclave and the trusted part that includes the com-

putation inside enclaves. Note that while these terms make sense in the traditional

environments where Intel SGX is intended to run, they are more confusing than help-

ful in our context where the environment running the OSC is assumed to be trusted

by the data owner already. We will instead use the term enclave exterior to describe

what Intel SGX terms the untrusted part, and enclave interior to describe the trusted

part.

Trust Level 1 does not require a TEE; this simple form of OSC is simply any code

capable of interacting with a Trellis platform to read data and save a resulting PAC.

For the Trust Levels 2 and 3, the OSCs include native C Bridge functions that

communicate with the enclaves. The enclave exterior of the OSC connects and re-

trieves the private data from the Trellis data store and injects a buffer into the enclave

interior of the OSC. AGAPECert includes C++ classes that implement the Trellis

REST and WebSockets APIs to communicate with the Trellis data store through a

shared resource located in the Trellis graph at /bookmarks/OSC/Hk, where Hk can

be a random string generated at runtime by the OSC or a static feature of the OSC

and is discovered by the Broker when initiating the connection.

The enclave interior of the OSC computes the cryptographic hashes necessary to

audit the computation in the future and passes them through the enclave exterior to

be stored in the PAC, which is stored back to the data owner’s Trellis data store. In

Trust Level 3, AGAPECert also stores the cryptographic hashes in the blockchain.

It is important to note that since AGAPECert stores only the cryptographic hashes

in the blockchain, and these hashes cannot be linked to the source data using only the

hash, this protects the privacy of the data owner; i.e., there is no information leakage

from this process such as third party knowledge of how many times the data owner

has run the OSC. However, storage of the hash in the blockchain can leak the time

25

when a given PAC was generated since a regulator receiving the PAC in the future

can check where in the blockchain the hash was saved.

The typical OSC runs continuously, awaiting notification from the broker through

the Trellis data store at shared storage location /bookmarks/OSC/Hk to start a new

PAC generation process on a new subset of data, or until a restart is submitted from

the broker. Each run of the OSC produces one or more PACs deterministically, after

which point the OSC returns to a listening state awaiting further signals from the

broker.

2.3.3 Private Automated Certifications (PAC) Workflow

To generate a certification under Trust Level 3, AGAPECert uses the following

workflow (Figure 2.3.) For other trust levels, the respective components not used by

those levels are simply left out. Note that AGAPECert utilizes a set of RFCs in this

process (RFC7591, RFC7517, and RFC7519) as prescribed in the Trellis authorization

protocol [32].

1. Install OSC : The data owner installs the OSC on their compute engine. This

produces a random public/private asymmetric key pair, with the public key

saved as a JSON Web Key (jwk from RFC7517) in a newly generated Trellis

Client Certificate (Cosc).

2. Authorize Broker : The data owner logs into their Trellis compliant node via

OAuth2 to authorize a token for the Broker.

3. Watch for OSCs : The broker opens and maintains an active websocket con-

nection to the Trellis data store that watches the top-level /bookmarks/OSC

document for any connected OSCs.

4. Authorize OSC : The data owner uses the Broker to pre-register the OSC’s

Trellis Client Certificate Cosc at their Trellis data store as an authorized OSC.

26

5. Start the OSC : The data owner starts the OSC. They can also verify that the

hash of the OSC code OSC Hash matches the one available in a private certified

code repository.

(a) The OSC Exterior performs OAuth2 dynamic client registration by ex-

changing its Trellis Client Certificate Cosc with Trellis for a Client ID. It

then performs OAuth2 Client Grant flow during which it proves that it

has the private key for the pre-registered certificate by creating a signed

jwt bearer token (RFC7523). This process results in a properly scoped

launch token (Tl) to access the user’s Trellis data store at /bookmarks/OSC.

(b) The OSC Exterior generates a random string Hk that uniquely identifies

this instance of OSC. The OSC uses the token received from previous step

to create a resource (/bookmarks/OSC/Hk) in the data store. It also puts

information about itself into that document.

(c) The OSC exterior opens and maintains an active Trellis websocket connec-

tion to the Trellis data store watching for changes to the new /bookmarks/OSC/Hk

as the main communication channel between the broker and the OSC.

6. Communication Channel Opens : The brokers active Trellis websocket connec-

tion notifies it that a new OSC resource exists at /bookmarks/OSC/Hk.

7. Optional: Validate OSC Quote: In the event that the data owner requires

confirmation that their platform has loaded the correct OSC code, they can

load their own credentials for the Attestation Service §2.2.2 (IAS or DCAP)

into the broker and it will initiate remote attestation to verify that the enclave

is legitimate. In most cases the user already trusts their own platform and would

not require signing up with IAS. This remote attestation workflow produces a

QUOTE (§2.2.2).

8. Provision Data to OSC : The broker then provisions a properly-scoped data

access token Td for the OSC to use in creating its PAC. The broker writes this

27

token to the shared Trellis communication channel at /bookmarks/OSC/Hk

along with any data filtering instructions (such as restricting the PAC to only

consider a particular days dataset). The active websocket connection held by

the OSC exterior notifies it of the newly provisioned token and filter, triggering

the OSC to begin the core PAC generation.

9. OSC Interior Requests Data: The OSC exterior receives the data access token

and filtering instructions and notifies the OSC interior to begin PAC generation.

The OSC interior uses its knowledge of the known, published Trellis semantic

data structures to begin requesting data it needs. Requests for data initiated by

the OSC interior are forwarded to the OSC exterior to make the actual requests

over the active Trellis websocket connection.

10. OSC Exterior Injects Data: The OSC exterior serializes and injects the received

data into the OSC Interior as it comes back from Trellis.

11. OSC Interior Computes PAC : The OSC interior computes its core certification

result (i.e., pass/fail) from the received input data, as well as a cryptographic

hash (Data Hash) of all serialized data received during the generation of one

PAC. Upon completion of all received data, the OSC interior saves this hash of

all input data to the PAC in the data store.

12. OSC Interior Hashes PAC : The OSC interior generates a hash of the entire

PAC (including Data Hash and a random universally unique identifier for the

blockchain transaction) and saves this back to the PAC itself in the Trellis data

store through the OSC exterior.

13. Exterior Obtains TEE Quote: The OSC exterior sees the hash of the overall

PAC and concludes that the OSC interior has completed its work. The OSC

exterior then instructs the OSC interior to obtain a QUOTE from a local quoting

enclave, including the hash of the PAC as the user data for a new REPORT

28

from the OSC interior. The OSC exterior gathers the final QUOTE from this

process and writes it to the PAC in the Trellis data store.

14. OSC Interior Sends Quote Hash to Blockchain: For Trust Level 3, the OSC

exterior will then communicate with the Blockchain Gateway to record the

unique identifier and Quote Hash in the blockchain, along with any further

case-specific requirements.

15. Data Owner Sends PAC to Regulator : Finally, at a later time, the regulator

receives the generated PAC from the data owner and uses the Validator to

check it. The Validator sends the QUOTE from the PAC to an attestation

service to verify that the QUOTE was indeed generated with an Intel EPID

key that has not been revoked. Note that if a processors key is revoked, this

either invalidates all prior PACs generated by that processor, or some outside

means of providing a trusted timestamp of QUOTE generation (such as that

provided by Trust Level 3 through a blockchain) must be included in this flow

to maintain validity of PAC’s generated prior to some known revocation time.

The Validator also queries the blockchain ledger to validate the Quote Hash

and case-specific data.

2.3.4 Blockchain-Gateway Schema

AGAPECert stores a minimal set of cryptographic hashes (§2.2.1) in the shared

ledger. These hashes do not convey any identifiable private information to an eaves-

dropper of the transactions in the blockchain nodes. We define the methods of the

smart-contract necessary to store hashes from the OSC.

The AGAPECert proof-of-concept models the business network utilizing Hyper-

ledger Fabric (§2.5.1.) Hyperledger Fabric requires the definition of assets, partici-

pants, and transactions. AGAPECert utilizes a PAC as an asset in the blockchain

that we define as a ”Fabric PAC” fabPAC. We define two participants: an anony-

29

(a) AGAPECert Workflow (Before PAC Generation.)

(b) AGAPECert workflow - PAC Generation Overview.)

Fig. 2.3.: (a) Illustrates the OSC’s Authorization to the provisioning of data (steps
4-8) (b) AGAPECert generates a PAC (steps 8-14).

30

mous participant that stores PACs in the ledger and a regulator who queries the

transactions and assets in the distributed ledger.

AGAPECert defines a simple schema of at least two strings for a fabPAC:

(unique identifier, Quote Hash) and for some use cases a One-Time-Use-Key (OTK).

AGAPECert’s blockchain schema is shown in Table 2.5. This forms the basis for use

cases in Trust Level 3.

2.4 Security Analysis

AGAPECert does not alter the existing real-world model of requiring the regulator

to trust the data provided to it by the client under threat of legal recourse, as discussed

in 2.1.2. Our security analysis therefore only focuses on guarantees made about

computation on the private data (which is assumed correct until audited), rather

than about the private data itself.

2.4.1 Side channel attacks to the Compute Engine

TEE technology such as Intel SGX can be vulnerable to ”side channel attacks:” [33–

38] malicious code running on the same processor can learn about enclave compu-

tation and data via round-about methods such as tracking cache timings after an

enclave is switched out of execution. AGAPECert assumes the data owner is running

the OSC in an environment they already trust: the threat of a malicious entity on the

same processor does not apply, hence AGAPECert is immune to traditional enclave

side-channel attacks.

However, a data owner using past side-channel attacks against their own trusted

enclaves (such as the enclave that provides quotes) could learn the remote attestation

keys [33, 35] for their own system and use that to forge fake QUOTE’s. Since such

attacks have been discovered, researchers have also contributed mitigation techniques

to patch those security vulnerabilities [33,35]. Additionally, Intel’s security advisories

31

provide critical mitigation techniques [39]. For instance, some vulnerabilities require

microcode level and software mitigations.

AGAPECert runs in a controlled environment in which standards and best prac-

tices are enforced; therefore, data owners and participants in the protocol must have

the latest Intel SGX Software installed, the newest microcode updates through BIOS

updates, and any other recommended measures such as updated operating systems

and virtual machines. Microcode updates upgrade the Security Version Number

(SVN) utilized in the implementation of Intel SGX [39]. Microcode updates pro-

vide new sealing and attestation keys to the enclaves on the platform [39]. Hence, we

can track the SVN embedded in the PAC the regulator will assess the validity of a

specific PAC via a customized attestation process using current vulnerabilities.

This means that at any given time, it is not known to be possible to forge QUOTEs

that contain the latest SVN until a future vulnerability is released. In the event of

catastrophic security failure of Intel SGX’s architecture, data owners may need to

refresh relevant PACs after updating their processor microcode to produce updated

SVNs. The purely functional and auditable nature of AGAPECert’s OSCs fit this

model well. In addition, if the QUOTE hash was published in a blockchain prior

to vulnerability discovery, regulators may consider a ”likely validity” date since the

blockchain can attest when the original QUOTE was signed.

Recall as well that the computation is auditable at any time: should the regulator

question a result, they can simply trigger an audit of the private data, which could

be as simple as running the OSC again with the auditor’s oversight. Consider as well

that it is often vastly easier for a malicious data owner to forge their private data

(which they can do today without AGAPECert) than it is to attempt cracking open

a CPU in an attempt to probe for highly guarded embedded attestation keys. Once

such foul play is discovered during any audit, Intel EPID can simply revoke the key

that the malicious data owner spent so much effort attempting to learn, providing

severely diminishing returns to any such attacker.

32

Therefore the traditional side-channel security vulnerabilities with TEE comput-

ing have little ability to impact the security of AGAPECert in general.

2.4.2 Analyzing AGAPECert’s Trust Levels

Owner Attested

The regulator trusts the data owner to correctly execute the OSC. Therefore, the

Compute Engine, Broker, Data Store are assumed to be trusted. In the case of an

adversarial data owner, the regulator can still validate the private data and code

execution via audits.

Enclave Attested

Trust Level 2 requires the correct execution of the OSC/Algorithm. Therefore,

Trust Level 2 relies on the attestation capabilities of the Intel SGX Architecture.

Following our previous discussion on side-channel attacks, an adversarial data owner

can steal secrets from an outdated Intel SGX-enabled node signing code and data as

genuine compromising ultimately Trust Level 2. AGAPECert implementations must

require up-to-date remote attestation schemes, including the latest SVN known to

have reasonably uncompromisable attestation keys.

Blockchain Attested

For Trust Level 3, the discussion about faithful code execution is analogous to

Trust Level 2. Ordering of events provided by a shared ledger can expose the execution

timestamp of an OSC and creation of a PAC breaking our premise of obliviousness and

revealing useful information for an interested party. AGAPECert utilizes a Blockchain

Gateway to submit anonymous and asynchronous transactions to a shared ledger or

a mix of ledgers hiding the identity of the participants. In the case of a compromised

33

shared ledger, no useful information is derived by an attacker solely from the global

state.

2.4.3 Discussion

There exist extremely sensitive datasets and data sources—electronic health records,

stock market, finance, etc. —in which even the leakage of a reduced set of bits can be

catastrophic. Under adversarial environments, these use cases require stronger cryp-

tosystems that offer semantic security [40,41] (homomorphic encryption.) AGAPECert

use cases and trust model limit the capabilities of an adversary. For instance, a par-

ticipant is limited by standards, regulations, and audits. Moreover, the possibility of

legal action—when a deviation from the protocol is suspected—forces the participant

to maintain a good reputation. Powerful adversaries (stronger than HBC6) that can

get access to the blockchain cannot derive any useful information from the stored

cryptographic hashes and random universal unique identifiers. AGAPECert does not

rely solely on Intel SGX attestation and sealing primitives; instead, AGAPECert con-

tributes a set of trust levels providing adaptability features according to particular

use cases. AGAPECert’s future releases can allow homomorphic encryption expos-

ing Homomorphic and Oblivious Smart Contracts (HOSC.) Integrating SEAL [43] in

AGAPECert allows a richer set of devices as compute engines.

2.5 Prototype Implementation

The AGAPECert prototype implementation components are available as open

source as shown in Table 2.6, and documentation for how to install and run the entire

flow can be found at https://github.com/agapecert/agapecert.

6”The honest-but-curious (HBC) adversary is a legitimate participant in a communication protocol
who will not deviate from the defined protocol but will attempt to learn all possible information
from legitimately received messages” [42].

34

2.5.1 Blockchain Gateway

For Trust Level 3, AGAPECert’s prototype implementation interacts with a

pacContract deployed in a blockchain network through a custom Javascript-based

Blockchain Gateway7. The primary purpose of the Blockchain Gateway is to sub-

mit anonymous transactions to the ledger. The Blockchain Gateway is generalizable

and can accommodate pluggable shared ledgers. This gateway allows the Broker,

Validator, and OSC to interact with a shared ledger (or a mix of ledgers).

2.5.2 Trusted Compute Engine

We implemented the OSCs utilizing C++ for the OSC exterior. We utilized

OpenEnclave [44] to implement C bridge functions for the OSC interior. The compute

engine exposes a rich API (C++ driver Listing 2.1) to allow secure communication

between the OSC, the graph-based API, and the Broker. The C++ driver implements

secure WebSockets.

1 /// Trellis C++ Driver - Example

2 T r e l l i s ∗ o b j T r e l l i s = new T r e l l i s () ;

3 o b j T r e l l i s−>getPr ivateData () . wait () ;

4 m pr iva t e r e co rd s = o b j T r e l l i s−>m pr iva t e r e co rd s ;

5 // AGAPECert C++ Driver - Compute Engine Methods

6 o b j T r e l l i s−>getUUID () ;

7 o b j T r e l l i s−>getToken () ;

8 o b j T r e l l i s−>getAuthor i za t i on () ;

9 o b j T r e l l i s−>getPrivateDataPath () ;

10 o b j T r e l l i s−>getPr ivateData () ;

11 o b j T r e l l i s−>putPAC() ;

Listing 2.1: Example OSC Exterior usage of Compute Engine C++ Trellis driver

(https://github.com/agapecert/compute-engine)

7https://github.com/agapecert/blockchain-gateway

35

2.6 Example Applications

There are an enormous number of potential applications for AGAPECert with its

OSC+PAC model. This section shows a few non-trivial illustrative examples8.

2.6.1 Trust Level 2: Certified Fishing Catch Area

The global fishing industry would like to eliminate over-fishing by requiring fishing

vessels to catch fish only in approved areas. Fishermen consider their active catch ar-

eas to be proprietary to their business. The industry needs a practical zero-knowledge

proof that can certify a particular fish was caught within legal boundaries without

disclosing the actual catch locations. A sustainable fishing industry consortium cre-

ates an OSC which checks a given Trellis data store for a list of catch locations within

a certain time period or within a certain group identifier like a lot number. The OSC

pulls a set of approved geospatial catch boundaries from an industry list, intersects

the catch locations with the boundaries, and produces a PAC with the time period

or lot number, a true/false answer about whether all the catch locations fit within

the boundaries, an identifier for the set of boundaries used, and a QUOTE from the

trusted black box attesting that the OSC code was executed faithfully.

The industry would like to minimize cheating, and authorizes a set of trusted catch

location recording devices that are maintained and periodically tested by approved

auditors. The OSC can be augmented to verify that each catch location contains a

signature from a trusted recording device manufacturer, and that the device is present

in a recent active audit that is digitally signed by a trusted third-party auditor,

all using the Trellis standard document integrity signature process. This additional

true/false answer is added to the PAC, verifying that the catch locations themselves

were attested by trusted parties other than just the fisherman. The fisherman uses

the AGAPECert broker and their OSC-enabled Trellis platform to authorize and

8A complete description of example applications can be found at https://github.com/agapecert/osc-
definitions/wiki

36

run the OSC, producing the certification back to their Trellis platform. Before each

batch of fish can be sold at the docks, the buyer must receive the PAC for that days

catch. This represents a Trust Level 2 (Enclave Attested) computation where the

global fishing industry would like to know that the code was faithfully executed by

the fisherman.

2.6.2 Trust Level 3: Organic Mass Balance

One of the more difficult certification problems is characterized by a mass balance.

In its simplest form, there is some mass of product that has been certified to be

produced (either based upon the total inputs to the process, or based upon a human

auditors assessment), and the industry would like to know that the seller of a product

indeed can certifiably produce that amount of that product. If an organic farmer

could receive a certification that they can or did produce 10 tons of organic apples,

downstream buyers of those apples would like to know that the farmer has not re-used

that 10-ton organic certification multiple times with multiple buyers, thereby selling

potentially non-organic apples under an organic certificate. The farmer, on the other

hand, does not want to put a list of their transactions into some shared database for

buyers to check for validity since this could tip off buyers about how much inventory

he has or how many sales he has made recently and to whom. The buyer needs a

zero-knowledge-style proof that the certified product they are buying has not been

sold under this certification to someone else

An industry consortium agrees on one or more blockchain platform(s) to act as

a byzantine fault tolerant shared datastore. The consortium produce an OSC which

can look at a buyer’s Trellis platform for a private ledger of sales. This ledger should

be initiated with an additive transaction that is digitally signed by a trusted auditor

(i.e., the auditor attests that the farmer has 10 tons of organic apples). The signature

is verified by the OSC, and the balance is computed by subtracting any subsequent

verifiable sales. The OSC finds a proposed new sales transaction in the Trellis data

37

store, digitally signed by the buyer and the seller. The OSC verifies that the amount

of the sale does not exceed the available balance, verifies the signatures, and then

saves the transaction to the end of the private ledger. The OSC produces a PAC

indicating success/failure for the transaction, which can be automatically saved back

to either the buyers Trellis data store, the sellers, or both. If the buyer has their own

private ledger, this PAC from the seller can serve as auditable, traceable proof to

include in the buyers private ledger and add to their available inventory, all without

disclosing any of the buyer’s sales to any outside party.

As specified to this point, the protocol suffers from a double-spending attack

where the seller simply maintains multiple private ledgers, providing different ones

to the OSC depending on which customer they are selling to, thus enabling them

to spend the same certified product more than once. To alleviate this problem, we

introduce the concept of a one-time-use asymmetric key pair generated by the OSC

and verified by a smart contract on the OSCs chosen blockchain. When the OSC is

evaluating a proposed transaction, it accesses the sellers Trellis datastore to retrieve

the one-time-use private key from the previous transaction and an indicator of where

to find the corresponding public key in the blockchain storage layer. The OSC checks

the blockchains record for that key to see if has been marked as used yet or not.

If it has not been used, then the OSC initiates a smart contract at the blockchain

platform to mark it as used, which is only allowed by the smart contract when it

verifies that the OSC can produce a signature with the private key corresponding

to the public key in the chain. The OSC sees this successfully finish and then asks

a different smart contract on the blockchain platform to store a new one-time-use

public key and registers it in the blockchain along with a hash of the new ledger. The

OSC will fail the transaction if the ledger hash for the key it used does not match

the hash of the current ledger it is updating. The OSC stores the private key for this

new one-time-use key pair for the next transaction. The OSC also checks that each

successful transaction in the private ledger has a corresponding used key recorded

in the blockchain with matching ledger hashes. Note the importance of including

38

the hash of the ledger in the chain with the public key. We do not want to link

transactions in the chain by allowing one key to point to the next key in the chain.

However, if the two are truly unlinkable, then it is possible for a malicious seller to

still double-spend by simply maintaining multiple ledgers with multiple one-time-use

keys. Therefore, the OSC and smart contract must allow the link to be maintained in

the private ledger, both refusing to create and store a new one-time-use keypair whose

full ledger hash is already present with another one-time-use key in the chain. For

maximal trust, the blockchain nodes themselves should also be capable of performing

remote attestation to validate a QUOTE from the OSC interior. This is an example

of a Trust Level 3 (Blockchain Attested) computation.

2.7 Evaluation

In order to present empirical evidence of AGAPECert effectiveness, we develop

three experiments to benchmark critical components of AGAPECert. We start by

evaluating the trusted compute engine performance with a mix of Trust Level 1 and

Trust Level 2. Then, we discuss the results of generating 1000 PACs for differ-

ent input sizes (a complete workflow performance evaluation). Finally, we evaluate

the Blockchain-Gateway with our pacContract and Hyperledger Fabric performance.

All experiments are run 1000 times. All the code of experiments can be found at

https://github.com/agapecert.

2.7.1 Experiment setup

To show AGAPECert usability and flexibility, we utilize a commodity HP Pavilion

Laptop with an Intel Core i5-8250u CPU and 16GB of RAM running Ubuntu Linux

18.04 LTS 64-bit Operating System (serves as a compute engine, graph data store,

and Apache Spark server). We also use a trusted edge server, Dell R340, with an Intel

Xeon E-2186G and 64GB of RAM running Ubuntu Server Linux 18.04 LTS 64-bit

Operating System (utilized for data center attestation primitives). The latter has

39

support for Flexible Launch Control (FLC) and Data Center Attestation Primitives

(DCAP.) Serving as the Blockchain-Gateway is a MacBook Pro (15-inch, 2017) with

an Intel Core i7 2.8GHz and 16GB of RAM running macOS Catalina Version 10.15.4

and IBM Blockchain Platform 1.0.31 Visual Studio Code Extension.

2.7.2 Trusted Compute Engine Performance

We developed a computation-intensive algorithm—the Monte Carlo approximation—

as an Oblivious Smart Contract. The Monte Carlo OSC was instantiated in AGAPECert’s

compute engines running NodeJS (TL1), in-browser JavaScript (TL1), and C using

OpenEnclace API (TL2). Besides, we developed equivalent code in Python and de-

ployed it in Apache Spark version 3.1.0.

AGAPECert’s compute engine and Apache Spark

We compared AGAPECert’s compute engine against Apache Spark version 3.1.0.

The goal of this experiment is to provide a context of comparison to AGAPECert;

Apache Spark will scale and perform better at a massive scale. However, AGAPECert

includes use cases in which preserving data ownership is critical. Figure 2.4 shows

that AGAPECert’s compute engine performs better than Apache Spark using this

computationally-intensive Monte Carlo OSC. It is worth noting that Apache Spark’s

poor performance with two or four executors is due to the use of a synchronized

random function in Python, which cannot scale to multiple cores. Nonetheless, a

single executor (spark naive) provides a better comparison against AGAPECert’s

compute engine. Future AGAPECert releases can integrate Apache Spark [45] and

Opaque [21] for scalability guarantees.

40

1M 2M 4M 8M 16M 32M 64M 128M 256M
Iterations

0

50

100

150

200

250

300

Ti
m
e t
o
es
tim

ate
 p
i (
se
co
nd

s)

spark - naive
spark - 4 exec
spark - 2 exec
agapecert - tl1 JavaScript
agapecert - tl1 NodeJS
agapecert - tl2 C/C++

Fig. 2.4.: AGAPECert’s compute engine (TL1, TL2) and Apache Spark (1,2,4 execu-
tors). We developed the Monte Carlo Approximation Algorithm for those compute
engines.

Fig. 2.5.: Compute Engine Performance. We utilize the Monte Carlo Approximation
Algorithm. The Monte Carlo OSC is instantiated in AGAPECert for Trust Level 1
(tl1) for an in-browser computation, Trust Level 1 (tl1) NodeJS compute engine, and
Trust Level 2 (tl2) with Intel SGX and OpenEnclave.

41

Trust Level 1 and Trust Level 2 comparison

In Figure 2.5, we observe that the AGAPECert (tl2) compute engine outperforms

an in-browser JavaScript compute engine (tl1) with equivalent source code. Hence,

AGAPECert (tl2) can offer similar performance to widely used development frame-

works such as NodeJS and JavaScript. For some use cases, AGAPECert (tl2) can

provide a better performance than such frameworks—even computing on top of en-

crypted private data. We compare the compute time exclusively. An extensive study

of ocalls and ecalls performance is shown in [46].

2.7.3 Private Automated Certifications Performance

This experiment shows the total time needed to generate a PAC using the K-means

clustering algorithm deployed as an Oblivious Smart Contract (OSC.) The K-means

algorithm is setup with n in increments of 2i ∗1000 where i = 0, 1, 2, 3, 4, 5; k is set to

buckets of 250 items per cluster (k = n/250); k centroids are determined randomly.

The total time includes enclave creation, communication with the graph-based API,

computation on private-data, PAC generation, and PAC storage in the graph data

store. An asynchronous blockchain access stores the PAC in the blockchain (Fig. 2.7).

The purpose of this K-means OSC is two-fold: (1) it presents a widely used

clustering algorithm for replicability; (2) solves our example applications (2.6.1)—

certified fishing catch area and similar use cases—with a straightforward modification.

The regulator fixes the set of centroids, the algorithm to compute the distances,

and the threshold that determines if the PAC has passed the evaluation/certification

process. As mentioned before, this K-means OSC will be agreed upon by both the

regulator and the data owner. The K-means OSC will contain all the semantics

that allow the correct validation of data to generate an objective—according to the

specification—PAC that can be audited in the future.

42

Fig. 2.6.: PACs’ generation performance evaluation for Trust Level 3 (tl3). The K-
means algorithm is instantiated as an Oblivious Smart Contract (K-means OSC or
oblivious K-means if you will).

Figure 2.6 shows that the PAC generation is bounded by the input data retrieved

from the graph data store. Additionally, the running-time in the blockchain and

enclave creation is approximately constant.

2.7.4 Blockchain-Gateway Performance

AGAPECert interacts with a Blockchain-Gateway for Trust Level 3 (§2.5.1). We

created a test suite to measure the Blockchain-Gateway performance using the Chai

assertion library [47] and the Mocha test framework [48] (Figure 2.7). When there

exist multiple blocks in the shared ledger, the Blockchain-Gateway takes around

2180.88± 38 ms to execute an asynchronous PAC creation in the ledger.

2.8 Conclusion

This paper presented AGAPECert, an auditable, generalized, privacy-enabling

certificate framework that protects the confidentiality of data, participants, and code.

AGAPECert utilizes a unique mix of blockchain technologies, trusted execution en-

vironments, and a real-time graph-based API to define for the first time Oblivious

43

Fig. 2.7.: Blockchain-Gateway interacting with IBM Hyperledger Fabric and
pacContract performance.

Smart Contracts (OSCs) that generate auditable Private Automated Certifications

(PACs). AGAPECert offers pragmatic performance and is generalizable to many

use cases and data types. AGAPECert has a significant impact providing an open

source [49] framework that can be adopted as a standard in any regulated environment

to keep sensitive data private while enabling an automated workflow.

2.9 Acknowledgements

Sponsorship for this work was provided by Foundation for Food and Agriculture

Research (FFAR) under award 534662. The work was submitted for publication

with the following list of authors: Servio Palacios, Aaron Ault, James V. Krogmeier,

Bharat Bhargava, and Christopher G. Brinton.

44

T
ab

le
2.

2.
:

S
u
m

m
ar

y
of

T
ru

st
L

ev
el

s
re

q
u
ir

em
en

ts
an

d
se

cu
ri

ty
gu

ar
an

te
es

.

L
e
v
e
l

E
x
p

la
n
a
ti

o
n

R
eq

u
ir

em
en

ts
S
ec

u
ri

ty
G

u
ar

an
te

es
S
G

X
B

lo
ck

ch
a
in

au
d
it

ab
le

in
d
ep

en
d
en

tl
y

at
te

st
at

ed
p
ro

va
b
le

se
q
u
en

ce
T

ru
st

L
ev

el
1
tl

1
O

w
n
er

A
tt

es
te

d
X

X
X

X
T

ru
st

L
ev

el
2
tl

2
E

n
cl

av
e

A
tt

es
te

d
X

X
T

ru
st

L
ev

el
3
tl

3
B

lo
ck

ch
ai

n
A

tt
es

te
d

45

T
ab

le
2.

3.
:

S
u
m

m
ar

y
of

Im
p

or
ta

n
t

A
G

A
P

E
C

er
t

C
ry

p
to

gr
ap

h
ic

H
as

h
es

.

H
a
sh

N
a
m

e
In

p
u
t

O
b

je
ct

iv
e

D
a
ta
H
a
sh

pr
iv
a
te
d
a
ta

re
tr

ie
ve

d
fr

om
a

T
re

ll
is

d
at

a
st

or
e

In
te

gr
it

y
of

P
ri

va
te

D
at

a
R
ep
or
t
H
a
sh

R
E
P
O
R
T

p
ro

d
u
ce

d
b
y

an
en

cl
av

e
w

h
en

ru
n
n
in

g
th

e
O

S
C

In
te

gr
it

y
of

th
e

R
E

P
O

R
T

fr
om

th
e

en
cl

av
e

Q
u
ot
e
H
a
sh

Q
U
O
T
E

p
ro

d
u
ce

d
b
y

a
Q

u
ot

in
g

E
n
cl

av
e

In
te

gr
it

y
of

th
e

Q
U

O
T

E
fr

om
th

e
en

cl
av

e
P
A
C

i
H
a
sh

P
A
C

i
(J

S
O

N
ob

je
ct

)
p
ro

d
u
ce

d
b
y

th
e

en
cl

av
e

in
te

ri
or

In
te

gr
it

y
of

th
e

P
A

C
O
S
C
H
a
sh

O
S
C

S
of

tw
ar

e
C

o
d
e

in
th

e
T

ru
st

ed
C

o
d
e

R
ep

os
it

or
y

In
te

gr
it

y
of

th
e

O
S
C

co
d
e

it
se

lf

46

T
ab

le
2.

4.
:

S
u
m

m
ar

y
of

C
om

p
on

en
ts

.

C
o
m

p
o
n
e
n
ts

E
x
p

la
n
a
ti

o
n

C
om

p
u
te

E
n
gi

n
e

C
om

p
u
te

n
o
d
e

co
n
tr

ol
le

d
or

tr
u
st

ed
b
y

th
e

d
at

a
ow

n
er

.
R

u
n
s

th
e

O
S
C

.
D

at
a

S
to

re
A

G
ra

p
h

D
at

a
S
to

re
th

at
h
ol

d
s

th
e

p
ri

va
te

d
at

a
(T

re
ll
is

).
B

ro
ke

r
A

w
eb

-a
p
p

th
at

in
it

ia
te

s,
au

th
or

iz
es

,
p
ro

v
is

io
n
s,

m
o
d
er

at
es

,
m

on
it

or
s,

va
li
d
at

es
O

S
C

ex
ec

u
ti

on
.

V
al

id
at

or
.

A
w

eb
-a

p
p

th
at

ca
n

va
li
d
at

e
a

gi
ve

n
P

A
C

A
tt

es
ta

ti
on

S
er

v
ic

e
T

h
e

In
te

l
S
G

X
at

te
st

at
io

n
se

rv
ic

e
or

D
at

a
C

en
te

r
A

tt
es

ta
ti

on
P

ri
m

it
iv

es
(D

C
A

P
)

B
lo

ck
ch

ai
n
-G

at
ew

ay
A

G
en

er
al

iz
ab

le
B

lo
ck

ch
ai

n
S
er

v
ic

e
to

co
n
n
ec

t
to

a
m

ix
of

le
d
ge

rs
as

n
ee

d
ed

.

47

Table 2.5.: PAC business network in the shared ledger.

Property(fabPAC.) Type.
id String (UUID)
quoteHash String
OTK (optional One-Time-Key) String (Base64 encoded)

48

T
ab

le
2.

6.
:

S
u
m

m
ar

y
of

co
m

p
on

en
ts

’
re

p
os

it
or

ie
s

fo
r

A
G

A
P

E
C

er
t

im
p
le

m
en

ta
ti

on
.

C
o
m

p
o
n
e
n
t

R
e
p

o
si

to
ry

O
b

je
ct

iv
e

B
ro

ke
r

h
tt

p
s:

//
gi

th
u
b
.c

om
/a

ga
p

ec
er

t/
b
ro

ke
r

O
S
C

s’
S
er

v
ic

e
M

an
ag

er
V

al
id

at
or

h
tt

p
s:

//
gi

th
u
b
.c

om
/a

ga
p

ec
er

t/
va

li
d
at

or
P

A
C

s’
ve

ri
fi
er

C
om

p
u
te

E
n
gi

n
e

h
tt

p
s:

//
gi

th
u
b
.c

om
/a

ga
p

ec
er

t/
co

m
p
u
te

-e
n
gi

n
e

C
om

p
u
te

E
n
gi

n
e

B
lo

ck
ch

ai
n

G
at

ew
ay

h
tt

p
s:

//
gi

th
u
b
.c

om
/a

ga
p

ec
er

t/
b
lo

ck
ch

ai
n
-g

at
ew

ay
A

n
on

y
m

ou
s

an
d

as
y
n
ch

ro
n
ou

s
sh

ar
ed

le
d
ge

r
ac

ce
ss

es

49

3. AUDITGRAPH.IO: AN AUDITABLE AND
AUTHENTICATED GRAPH PROCESSING MODEL

Many modern big-data applications work on top of graph-structured datasets.

Modeling large-scale network-structured datasets require graph processing and man-

agement systems such as graph databases. For particular use cases —multi-modal

knowledge graphs, electronic health records, finance— network-structured datasets

can be highly sensitive and require controlled computation in a trusted environment,

i.e., the traditional cloud computation is not suitable for highly sensitive datasets.

Further, in regulated environments, auditable computation is imperative.

Thus, we propose AuditGraph.io, an auditable and authenticated graph processing

model that performs auditable computation on authenticated graph-structured data

on a trusted or controlled node. AuditGraph.io exploits access locality of traversal

algorithms; it utilizes trusted execution environments and blockchain technologies

to provide authenticated access to subgraphs and provide auditable proof of correct

code execution. To the best of our knowledge, AuditGraph.io is the first solution for

auditable, authenticated, and integrity-preserving computation for network-structure

data exploiting the access locality of traversal algorithms.

AuditGraph.io provides a tool that can be used to track computation on au-

thenticated network-structured data or subgraphs. An enormous amount of use

cases can benefit from AuditGraph.io. In particular, we integrate our solution with

AGAPECert to provide auditable checkpoints of network data for certification frame-

works in the supply chain.

50

3.1 Introduction

There is an increasing need for secure distributed computation on top of graph-

structured data. Graphs1 are data structures used to represent relationships be-

tween entities. Many modern big-data applications work on top of graph-structured

data. For instance, graph databases such as Neo4j [1], JanusGraph [2], TruenoDB [3]

and others [4–7] handle large-scale graphs that model biological interactions, social

networks, knowledge graphs, etc. These systems manage large graphs and execute

traversal algorithms on them. Traversal algorithms exhibit access locality in the graph

structure [50]. Although current graph databases such as Neo4j, ArangoDB, and oth-

ers offer protection for data-in-transit [8,9]—utilizing SSL/TLS— and for data-at-rest

—using Bitlocker or encrypted key-value stores; those do not offer fine-grained au-

thentication and auditability guarantees at the graph structure level (for example,

subgraphs, motif).

Some solutions to compute on top of encrypted graph-data has been proposed. For

instance, Xie and Xing (2014) contributed CryptGraph, which uses homomorphic en-

cryption to compute graph analytics on top of graph-structured data [51]. Similarly,

some solutions propose the use of trusted execution environments. Trusted execution

environments (TEEs) are a hardware-based solution for trusted computation on an

adversarial environment—where operating system, kernel, virtual machines are possi-

bly malicious [18]. Intel SGX is one example of TEEs computing in an isolated region

called enclave. Zheng, Dave, Beekman, Popa, Gonzalez, and Stoica (2017) created

Opaque, a distributed analytics platform built on top of Apache Spark computing on

encrypted data utilizing Intel SGX enclaves [21]. Those solutions are cloud-based and

not auditable. Further, for extremely sensitive private data, bulk copying confiden-

tial graph-structured data—even in an encrypted form—to the cloud is not an option.

AuditGraph.io applies authentication algorithms on top of subgraphs and provides

auditable computation and checkpoints utilizing trusted execution environments to

1For the rest of the paper the terms graph and network are interchangeable

51

sign data structures that serve as a proof of correct code execution under a particular

authenticated subgraph.

In this paper, we are also interested in the benefits of exploiting access locality

exhibited in graph traversal algorithms. AuditGraph.io exploits access locality of

network data to build a sequence of semantically related blocks that facilitate the

access to neighborhoods of data while reducing read access. Some solutions proposed

block-based disk layouts. Yasar, Gedik, and Ferhatosmanoglu (2017) presented a

scalable block formation and layout technique for graphs that aim to reduce the

I/O cost for disk-based processing algorithms [50]. They divide the graph network

into a series of disk blocks. These blocks contain subgraphs with high-locality. Also,

Hoque and Gupta (2012) introduced Bondhu as a technique to store a social graph on

disk. Bondhu’s layout scheme reduces the number of seek operations fetching multiple

friends’ data in a single seek [52]. Soule and Gedik (2016) introduced an adaptive disk

layout, i.e., Railway [53], for optimizing disk storage for interaction graphs. Although

these techniques showed significant improvement when querying network-structured

data from the disk, they do not take into account graph-data from different data-

owners (e.g., a variety of authenticated entities) sharing subgraphs among them.

Moreover, the distribution of data is usually carried out by a possible untrusted

third-party. In particular, we are interested in network-structured data that encode

sensitive information, e.g., electronic health records, social networks, multi-modal

knowledge graphs, finance, etc. Sensitive information necessitates confidentiality and

integrity protection. AuditGraph.io validates and audits the computation on network

data utilizing trusted execution environments and blockchain technologies.

AuditGraph.io includes the authentication and integrity protection of subgraphs

(structural integrity). Proposed solutions for graph authentication include Kundu

and Bertino (2010), which introduced schemes to verify the authenticity or integrity

of graph data without leakage [54–56]. They rely on the structure of the network

and aggregate signatures. However, there is no solution for disk-based processing

algorithms (i.e., those processing large graphs) or implementation in a state-of-the-

52

art graph database. In this paper, we propose a novel auditable, integrity-protected,

authenticated, and block-based graph processing model. The project includes a set of

unique algorithms and cryptographic techniques (e.g., hash functions, DFS traversal,

and digital signatures) that model the authentication scheme and graph structure into

a series of blocks with high-locality. Further, AuditGraph.io audits the structure of

authenticated network data and ensures correct graph-analysis code execution using

Intel SGX remote attestation. AuditGraph.io stores a minimal set of cryptographic

hashes in a shared ledger to provide time-sequence proofs that can be audited in the

future.

3.1.1 Problem statement and motivation

Current tools to analyze multiple sensitive network structure datasets are limited

and require bulk downloads and manual processing. This represents a risk of exposing

private data in transit or during computation. AuditGraph.io aims to query and

analyze a shared sensitive graph G = (V,E) (§3.3.2) that contains various levels of

authentication and authorization, e.g., a multi-modal knowledge graph, electronic

health records, finance, etc. AuditGraph.io allows a user Ui to query a shared graph

G = (V,E) composed of multiple individual authenticated sets (subgraphs.) Ui can

get an auditable aggregate result of the computation on the graph G (Fig. 3.1), i.e.,

an analysis of the graph G. Also, a derivative (crytographic hashes) of the recent

analysis is stored into a shared ledger. The cryptographic hashes stored in the ledger

do not convey any identifiable information about the computation or data, but the

hashes serve as proof of the structure of the graph and code that can be audited in

the future.

3.1.2 Design Principles

AuditGraph.io must support the following features to provide authentication and

auditability guarantees on top of graph-structured data:

53

Fig. 3.1.: User Ui queries a shared graph G = (V,E) (§3.3.2) composed of multiple
individual authenticated subgraphs. The computation and data can be audited in
the future storing untraceable cryptographic hashes in a shared ledger.

1. Users can share their graphs utilizing fine-grained access control.

2. A user Ui should be able to track the computation run on top of their shared

subgraph Gi = (Vi, Ei). User Ui is considered the owner for the subgraph Gi.

3. An auditor must be able to verify the correct code execution and subgraph

utilized in a particular computation or process.

3.1.3 Hierarchical structure of trust

AuditGraph.io defines hierarchical layers of trust (Table 3.1) that allow a flexible

framework to solve a myriad of use cases with different authentication and authoriza-

tion requirements.

1. Public: All the users in the system can access subgraphs marked as public.

Also, any algorithm is allowed to run on top of public data.

2. Protected: For subgraphs marked as protected, AuditGraph.io provides in-

tegrity protection. When querying protected subgraphs, the query engine re-

turns a cryptographic hash of the structure of the subgraph as part of the result.

Similarly, the compute engine checks the integrity of the subgraph.

3. Restricted: A query to a subgraph Si marked as restricted includes a digital

signature of Si. When running graph analysis on top of Si, the compute engine

checks the subgraph Si structure and the digital signature associated with Si.

54

4. Confidential: A query to a subgraph Si marked as confidential, must include

integrity protection, a digital signature, and a record of access and computation

in a shared ledger through the blockchain-gateway.

5. Secret: Secret subgraphs require the strongest guarantees. First, the blocks

that contain secret subgraphs will be stored in different portions of the mem-

ory. The blocks can also be encrypted using 128-bit AES in GCM mode. Addi-

tional protection can include hiding access patterns using Oblivious RAM [57].

The query must return a digital signature that ensures the authenticity and

integrity of the subgraph. Similarly, the compute engine will use a trusted

software code (pre-approved) inside a trusted sandbox, i.e., an enclave. The

compute engine will check the authenticity of the software code using remote

attestation. Finally, cryptographic hashes of the subgraph structure, quote of

the software code, and result will be stored in a shared ledger through the

blockchain-gateway. This layer provides proofs of correct code execution and a

digital signature of the structure of the graph utilized in the graph analysis.

It is important to note that it is possible to mix different layers of trust to solve

multiple use cases. AuditGraph.io implements these layers of trust to improve per-

formance when accessing less sensitive-data.

3.1.4 Contributions

In summary, our contributions are:

• The definition of the practical and formal security model of authentication for

the block-based graph.

• Three new algorithms for

– block construction with high locality,

– disk/memory layout for authenticated and block-based graphs,

55

– unique data structures and programming API for block-based graph access.

• Auditability features for the graph model.

• An open source implementation and evaluation of the proposed techniques (Au-

ditGraph.io2).

3.2 Background

3.2.1 Data Integrity of Graphs

Graph databases often require the validation of the structure of a graph or sub-

graph [55]. Similarly, some applications require validating if two subgraphs are the

same or if the network structure has changed since a time t. To tackle this, we utilized

Arshad et al. (2013)’s contributions to provide collision-resistant hash functions for

graphs that ensure the integrity of a graph [55]. In the Table 3.2, we observe the

different cryptographic hashes that AuditGraph.io utilizes to contribute auditability

and integrity on top of the graph model.

3.2.2 AGAPECert

AGAPECert [58] is an Auditable, Generalized, Automated, and Privacy-Enabling

Certification Framework. AGAPECert provides privacy-preserving guarantees utiliz-

ing trusted compute engines and graph data stores. Also, AGAPECert exposes au-

ditability features utilizing a generalized Blockchain-gateway and trusted execution

environments. AGAPECert intends to automate the certification process utilizing

Oblivious Smart Contracts that generate Private Automated Certifications. We inte-

grate AuditGraph.io into AGAPECert to provide auditable and private checkpoints

of network data and computation utilized in the certification process. In the case of an

audit, the auditor will use those checkpoints to determine if the data and structure of

2https://github.com/AuditGraphDB

56

the data (subgraphs) match the specification stored in the PAC (Private Automated

Certifications.)

Private Automated Certifications: PACs are defined as ”the derivative output

of the clients data (i.e., the contents of the ”form” that the regulator requires the data

owner to fill out)” [58].

Oblivious Smart Contracts: OSCs is the ”regulator-approved code which,

given access to private input data, produces the desired PAC (i.e., the ”questions” on

the regulator’s ”form”)” [58]. We utilize a similar concept to OSC to compute on top

of the graph model. AuditGraph.io utilizes a pre-approved software code to protect

data ownership and data confidentiality.

3.2.3 Real-time Graph-based API

We utilize the Trellis Framework, which exposes standardized REST API seman-

tics to interact with a user’s private data store. This section is based on [58] and

provides a high-level overview3. The purpose of Trellis is to enable standardized, au-

tomated, permissioned, ad-hoc, point-to-point data connections through a common

REST API. There are important features of Trellis necessary to understand Audit-

Graph.io and AGAPECert [58]:

• Resource Discovery : Filesystem-like graph schemas to define where data can be

discovered. For example, catch locations for a fishing vessel for July 25, 2020,

could be defined as discoverable at graph path /bookmarks/trellis/fishing/catch-

locations/day-index/2020-07-25.

• Write Semantics : Trellis standardizes how data within a graph is written: all

data changes are reduced to an ordered stream of idempotent merge operations4.

Operation ordering is only guaranteed per-resource, not globally.

3please refer to the Github project (https://github.com/trellisfw) for more information.
4”An idempotent merge operation means that a given JSON document is produced that only affects
matching keys. Keys that do not exist are created, existing ones are deep-replaced at overlapping
key paths, similar to a common upsert. Applying the same merge repeatedly results in the same
resource state at the mentioned key paths, hence why it is idempotent” [58].

57

• Change Feeds : Clients can register for real-time change feeds for any arbitrary

subgraph of data. This provides both a real-time communication channel as

well as a means of concurrency-safe 2-way data synchronization. The change

feed is comprised of the ordered stream of idempotent merge-operations.

• Authorization: Trellis standardizes how any client registers and obtains autho-

rization tokens at any Trellis platform.

• Permissions : Trellis standardizes how data can be locally shared within a plat-

form.

3.2.4 TruenoDB

TruenoDB [3] is an easy-to-use scalable graph datastore and compute engine.

TruenoDB integrates a scalable distributed search engine, i.e., Elasticsearch [59],

graph-parallel computation, i.e., Spark GraphX [60], and a set of drivers. TruenoDB

implements schema-less graph storage, where vertices, edges, and properties are

stored as Apache Lucene objects. TruenoDB integrates query capabilities via Gremlin

traversal graph language, in-memory single host compute engine utilizing NetworkX

library [61], and network visualization through Sigma.js [62]. AuditGraph.io can en-

hance TruenoDB providing auditable and privacy-preserving computation utilizing

trusted execution environments and blockchain technologies.

3.2.5 Graph Authentication

Kundu and Bertino (2010) proposed two schemes (i.e., one for DAGs and one for

a graph with cycles) to verify the authenticity of data without leakage [54–56]. Both

methods rely on the structure of the network and aggregate signatures. Therefore,

the security of these schemes depends on the computational Diffie-Hellman (that

is, aggregate signatures) and random oracles based cryptographic hash functions.

Also, they defined the structural authenticity as the integrity of relationships in the

58

network, and content authenticity as the authenticity of the content of nodes [54–56].

Consequently, an authenticity scheme for graph structure must preserve structural

and content authenticity [54–56]. According to [54–56], confidentiality implies the

following:

• A user, auditor, receiver, or prover that verifies data authenticity receives just

the structural information and vertices that it is authorized to access.

• A client should not infer or receive any information about the presence of nodes,

content, and structural relationships that it is not authorized to access.

The information that the user must not be allowed to infer or receive (according to

the authorization level) is called extraneous information [54]. AuditGraph.io utilizes

these definitions and algorithms to provide authentication for subgraphs in G, but

it extends the definitions to include a block-based graph representation to improve

access locality and diminish I/O.

3.2.6 Trusted Execution Environments

Trusted Execution Environments (TEEs) aim to enhance the confidentiality of

data and computation. TEEs are hardware-based creating controlled and isolated

regions called enclaves to compute securely even in the presence of a malicious kernel,

hypervisor, operating system, or drivers [18].

Intel SGX

Intel SGX (Software Guard Extensions) is an implementation of the TEE model

providing confidentiality for data and code [18]. Intel SGX implementation uses

a private region called enclave [18]. Code and private data are injected into an

enclave [18]. Intel SGX provides means to verify correct code execution using remote

attestation.

59

Remote attestation: The process of remote attestation includes signing a data

structure—REPORT— that contains properties of the data and code running in the

isolated environment, i.e., enclave. The signed data structure is called QUOTE. Then,

the Quoting Enclave signs the QUOTE with a key known only to the processor. This

key is not revealed outside of the trusted region of the processor. The QUOTE can

be used to attest that a particular graph-analysis or algorithm is running inside an

enclave and not an attacker’s injected code. Intel provides two methods to verify the

QUOTE: Intel Attestation Services or Data Center Attestation Primitives (DCAP.)

Hence, remote attestation validates the correct code execution under specific parame-

ters. AuditGraph.io includes cryptographic hashes in the QUOTE, and then stores a

derivative of the computation in the shared ledger (Quote Hash, Graph Data Hash,

Graph Structure Hash, Subgraph Signature). We utilized a similar concept to the

OSCs (Oblivious Smart Contracts, §3.2.2), in which the code that runs inside of en-

claves is pre-approved by the owners of the graph-structured data. This algorithm or

code runs in a trusted compute engine. AuditGraph.io provides proof of correct code

execution and structure of the data utilized to obtain a result.

3.2.7 Blockchain technologies

A blockchain is a decentralized and immutable shared ledger [16, 29]. A set of

nodes or peers store a chain of ordered transactions protected by an immutable set of

blocks of cryptographic hashes. A cryptographic hash in a block is tied to the previous

hash enabling one essential feature for auditability, traceability, and accountability

features such as integrity preservation of the ordering of events in the digital ledger.

A block cannot be changed without altering the output of all subsequent blocks,

i.e., immutability. A blockchain provides inherently byzantine fault tolerant [30]

independent auditability capabilities typically by placing computational constraints

on block content that require brute-force guessing to solve, thereby making it too

60

difficult for a malicious attacker to game the system since they cannot brute-force

guess solutions any faster than non-malicious participants.

One of the first concepts of Blockchain was introduced by Satoshi Nakamoto

(2008). Utilizing a peer-to-peer network Nakamoto proposed a byzantine fault tol-

erant solution for the double spending problem dubbed Bitcoin [29]. The double

spending problem states that an agent should not be able to register a transaction on

a ledger that spends the same resource(s) twice, even if some participants in the net-

work or the agent itself is malicious. In Bitcoin, Nakamoto constructed an immutable

record that derived from a hash-based proof-of-work. Participants in the network

would race to guess what bytes they need to add to a ledger entry in order for the

resulting message to produce a hash that fits a difficult constraint, such as needing to

start with a certain number of zeros. The network protocol defines the longest known

chain with constraint-satisfying hashes as the correct chain. This proof-of-work pro-

tocol and longest correct chain definition provide proof of the transactions/events

that happened as long as no malicious participant(s) can control more than 50% of

the total number of guesses in the overall race.

AuditGraph.io utilizes a blockchain-gateway to provide asynchronous and anony-

mous accesses to shared ledgers. AuditGraph.io implementation includes an IBM

Hyperledger Fabric, but the blockchain-gateway can be extended to connect to other

popular shared ledgers such as Ethereum and many others.

3.2.8 Distance in a graph G

Let u and v be vertices in a graph G. The distance from u to v is the length of the

shortest path u to v in G dG(u, v). If G is disconnected and u and v are in different

components, we say that dG(u, v) =∞.

The distance is a metric space:

d : V × V → Z+ ∪ {0}

Properties of the distance in a graph G:

61

1. dG(u, v) ≥ 0 and dG(u, v) = 0 if and only if u = v

2. dG(u, v) = dG(v, u)

3. dG(u, v) + dG(v, w) ≥ dG(u,w)

Eccentricity

The eccentricity of a vertex v ∈ V (G) is defined as: e(v) = max{dG(u, v)|u ∈

V (G)}

Diameter

The diameter is defined for the whole graph G. diameter(G) = max{e(v)|v ∈

V (G)}

Radius

radius(G) = min{e(v)|v ∈ V (G)}

Periphery

If e(v) = diameter(G), then v is a peripheral vertex. The set of all those vertex

comprise the periphery of a graph G.

Central vertex

If e(v) = radius(G) then v is a central vertex. The set of all such vertices form

the centre of G.

62

3.2.9 Similarity Primitives

AuditGraph.io goal is to maximize the graph locality over all authenticated sets

(subgraphs). To accomplish this, AuditGraph.io utilizes similarity measures to con-

struct semantically related blocks of graph data.

Block locality

For AuditGraph.io, we utilized the Girvan-Newman [63] algorithm based on the

edge betweenness centrality to find communities. Then, we order the blocks utilizing

edge betweenness centrality, and the authentication graph determines a final order-

ing. Similarly, AuditGraph.io can also integrate Yasar, Gedik and Ferhatosmanolu

(2017) building blocks using conductance and cohesiveness [50]. Cohesiveness can

find communities in graphs. Conductance is the ratio of the number of edge-cuts to

the total number in the block [50].

Jaccard similarity coefficient

The Jaccard index measures the similarity/correlation between finite sample sets;

the total size of the intersection is divided by the size of the union of the sample sets.

When using the Yasar et al. (2017) approach, AuditGraph.io includes the Jaccard

similarity coefficient and the betweenness centrality of the individual authenticated

sets.

Edge betweenness centrality

Edge betweenness centrality (ebc) is the number of shortest paths that go through

an edge in the graph or network [63]. An edge with high betweenness centrality score

represents a bridge node or connector between two parts in a network.

63

3.3 Method: System and Security Model

3.3.1 Security Model

This subsection and other subsections utilize definitions provided by Kundu and

Bertino (2010) [54]. AuditGraph.io extends these definitions to include a block-based

graph processing model. AuditGraph.io offers structural integrity and authentica-

tion. Kundu and Bertino (2010) offered structural and content integrity [54]. For

AuditGraph.io use cases, we are interested in providing authentication for subgraphs

and blocks that can also be audited. Our threat model includes a trusted compute

engine and graph data store.

• Leakage-free: a user Ui owner of Gi = (Vi, Ei) cannot infer any information

that is extraneous [54] to Gi (§3.2.5). Similarly, the user does not receive any

blocks/subgraphs that she/he is not authorized to access.

• Inference attack : A user Ui with access to one or more subgraphs Gi ⊂ G,

attempts to infer sensitive information about the structure—edges or nodes—

from the signature and Gi (e.g., node or edge inference). Analogous, an attacker

with access to one or more blocks B ⊂ B where B = {bi, bj, ..., bk} cannot infer

any information about related blocks or subgraphs that she/he is not authorized

to access.

• Data tampering attack : An attacker or adversary tampers with the structural

order, the content, the relation between two nodes (edges), or a set of blocks

B ∈ B.

3.3.2 Data model

Authenticated block-based Graph

A block-based (blocked) connected graph G = (V,E) is a data object; it consists

of a collection V of nodes V (G) and a collection E of edges each of which ”joins” or

64

”relates” two of the nodes E(G). A node v ∈ V (G) represents an atomic unit of data

(AuditGraph.io offers structural integrity not content integrity5) referred as Cv. The

blocked graph G = (V,E) contains a collection of subgraphs Gi = (Vi, Ei) (where

i = 1, 2, ..., k) that are shared with different users as a result of a query on the graph

G = (V,E).

Gi = (Vi, Ei) ⊆ G = (V,E)

Also, V (Gi) ⊆ V (G) and E(Gi) ⊆ E(G).

Individual Authenticated Set or Subgraph (IAS)

Each subgraph Gi = (Vi, Ei) represents an individual authenticated set of the

graph G = (V,E). Figure 3.2 shows individual blocked sets and relationships. Each

color represents a subgraph that can be represented as a block or a set of blocks in

the graph G.

Fig. 3.2.: Authenticated-Blocked Graph example. The graph G is pre-processed into
a series of blocks. Each color represents a subgraph. A subgraph is composed of at
least one or a set of blocks in the graph G.

5AuditGraph.io does not offer confidentiality for the content Cv as in [54]; instead, AGAPECert
protects the content of the nodes (property graph model.) AuditGraph.io enhances AGAPECert
providing structural authentication and integrity for the graph model.

65

Block

In graph theory, a block is defined as a maximal nonseparable subgraph [64]. Also,

every block in G is an induced subgraph of G. In the context of AuditGraph.io, a

block bi consists of one or more induced subgraphs of G, i.e., a block is a storage unit

that stores nodes and edges of a graph G. Those nodes and edges build communities

in the graph G and are structurally related. Blocks are also stored according to the

authentication structure reflected in the authentication tree (§3.3.2) or the multi-

modal Knowledge Graph (§3.3.2.)

Authentication on graphs [54]

A graph G′ = (V ′, E ′) is authenticated as a subgraph of G = (V,E) if and only if

• No vertices v′ or u′ or edge e′(u′, v′) has been deleted or added to G′ = (V ′, E ′)

in a unauthorized manner.

• None of the following has been modified (i) the content C ′
v of any vertex v′ ∈ V ′,

(ii) any edge e(u, v) ∈ E ′ (iii) any structural order u ≺ v where u, v ∈ V ′, and

(iv) a block B ∈ B containing node and edge information.

Authentication tree

AuditGraph.io uses an authentication tree A for use cases of authentication that

follow a hierarchical structure. A Tree A = (V ′′, E ′′) is the authentication graph of

G = (V,E) if and only if

• Any node v ∈ V ′′ represents individual authenticated sets—a subgraph— (§3.3.2)

in the graph G = (V,E).

• Any edge e(u, v) ∈ E ′′ represents an edge cut C(u, v) between individual au-

thenticated sets u and v in the blocked graph G = (V,E). The edge e(u, v)

66

includes a weight w(u, v) that captures the relationship between a subset of

authenticated sets. We use the normalized edge betweenness centrality (§3.2.9).

w(u, v) =
∑

(u′,v′)∈C(u,v)

ebc((u′, v′)) (3.1)

Fig. 3.3.: Authentication Tree A for the graph G in Figure 3.2. The authentication
tree is utilized for a hierarchical access structure. For more complex authentication
and authorization graph data accesses the multi-modal Knowledge Graph is used
(§3.3.2).

Multi-modal Access and Identity Management Knowledge Graph (AIMKG)

AuditGraph.io utilizes a multi-modal Knowledge Graph for highly evolving needs

and richer semantic definition.

The multi-modal Knowledge Graph includes (Figure 3.4):

• User Profiling: contains historical data of user queries and access to blocks

or subgraphs. Additionally, the property frequency of accessed blocks in the

user profile can serve as a method to cache frequently accessed blocks, i.e.,

AuditGraph.io can implement enhancements on cache libraries [65,66] inferring

useful information for similar users. Hence, relevant content can be pushed to

users when analyzing a subgraph.

• Security Clearance Graph (SCG): The security clearance graph is a DAG

that defines the required clearance to access blocks of data or subgraphs. Simi-

larly, the SCG determines the security clearance needs to run a graph analytics

algorithm such as PageRank. For instance, more sensitive datasets will require

correct code execution and auditability. However, the requirement of proper

67

code execution can be too restrictive for subgraphs or blocks marked as public.

Therefore, AuditGraph.io provides rich graph processing techniques allowing a

variety of algorithms to run on graph-structured data according to the security

clearance.

• Similarity Graph (§3.4.1): the similarity graph is the coarse graph represen-

tation of the semantically related individual blocks or subgraphs. The similarity

graph is integrated into the AIMKG to relate individual blocks and groups with

security clearance.

M
em

b
er

_
o
f

M
em

b
er

_
o
f

Consists
_of

A
ccess_to Acc

es
s_

to

Related_to

Related_to

Consist
s_of

Consists_of

A
ccess_to

A
cc

es
s_

to

Related_to

A
cc

es
s_

to

Is_Lower Is_Lower Is_Lower Is_Lower

C
leared_to

M
ar

ke
d_

as

M
arked_

as

C
le

ar
ed

_
to

M
ar

ke
d_

as

M
ar

ke
d
_
as Marked_as

C
an

_
co

m
pu

te

C
an_com

pute

C
an

_
co

m
p
u
te

Alice
Bob

Group1Group2

L1

B[1] B[j]

L2

L4

B[k] B[k+1] B[n]

Public Protected Restricted Con dential Secret

PageRank

Shortest
Path

Connected
Components

id:
name:
role:

string
string
int

id:
name:
role:

string
string
int

id:
name:

members:

string
string
int

id:
name:

members:

string
string
int

id:
layer:

blocks:

string
string
[int]

id: string

id: string

id:
layer:

blocks:

string
string
[int]

id:
layer:

blocks:

string
string
[int]

id: string

id: string

id: string

id:
name:

access:

string
string
authorization

id:
name:

access:

string
string
{authorization}

id:
name:

access:

string
string
{authorization}

id:
name:

access:

string
string
{authorization}

id:
name:

access:

string
string
{authorization}

id:
name:
hash:

string
string
string

id:
name:

string
string

id:
name:

string
string

id:
frequency:

string
float

id:
ebc:

string
float

id:
frequency:

string
float

id:
ebc:

string
float

id: string

Fig. 3.4.: Multi-modal Knowledge Graph summarized data model.

3.3.3 System Architecture

AuditGraph.io includes the following components (Fig. 3.5):

68

Fig. 3.5.: System Architecture for AuditGraph.io module. We implemented Audit-
Graph.io as a Trellis module.

• Graph data store: A trusted graph data store that stores the private graph

data or a sensitive shared graph G.

• Block manager: A module that implements the algorithms described in Sec-

tion 3.4.

• AIM engine: An authentication and authorization engine that utilizes the

authentication tree (§3.3.2) or the multi-modal Knowledge Graph (§3.3.2) to

provide a rich and evolving interaction with the block manager.

• Blockchain-gateway: The Blockchain-gateway provides asynchronous and

anonymous shared ledger accesses. The Blockchain-gateway exposes an API

that allows pluggable shared ledgers, i.e., IBM Hyperledger Fabric, Ethereum,

etc.

• Attestation service: This is the Intel Attestation Services or Data Center

Attestation Primitives (DCAP) to ensure correct code execution guarantees.

Before querying the graph G, an administrator pre-processes the graph utilizing

the processing model for block creation explained in Section 3.4. A pre-defined set of

authenticated sets facilitates the pre-computation of cryptographic hashes that Au-

ditGraph.io uses as random oracles when querying the graph. This way, our method

69

differs from [54] pre-computing cryptographic hashes of the structure of the blocks.

Moreover, we also utilize a trusted compute engine that provides proofs of correct

code execution and stored minimal set of cryptographic hashes that can be audited

in the future.

The process of querying and computing in the AuditGraph.io is as follows (Fig.

3.5):

1. User Ui queries the AuditGraph.io filtering the graph G.

2. The AIM engine will determine Ui’s credentials using the Encrypted Authenti-

cation Tree (§3.3.2) or the multi-modal Knowledge Graph (§3.3.2) that resides

inside an enclave. The AIM Engine queries the AIMKG to obtain a set of blocks

that the user Ui is authorized to access or retrieves NOT AUTHORIZED as

response to the user.

3. If authenticated, the process proceeds to obtain the blocks of graph data au-

thorized for Ui. The block manager constructs a subgraph Si from the set of

blocks retrieved.

4. The block manager signs the subgraph Si and sends it to the Compute Engine.

Note that Si can be encrypted and the AIM Engine determines if the algorithm

for that subgraph is valid.

5. The Compute Engine instantiates the requested algorithm inside an enclave and

send Si to the enclave trusted part. The computation obtains the aggregated

result or analysis of Si.

6. Cryptographic hashes of the network data and computation are stored in the

shared ledger.

7. The signed results (the result is a derivative of the graph analytics algorithms

run on top of subgraph Si) are sent back to the user Ui.

70

3.4 Block formation and layout

The algorithms presented in this section will serve to pre-process a sensitive graph

G composed of potentially many sensitive subgraphs shared by a variety of users.

Later, any user can queryG according to his/her security clearance (§3.3.2 and §3.3.2).

3.4.1 Authentication graph and layout ordering

Similar to Yasar et al. (2017), AuditGraph.io aims to generate locality-aware

blocks. In contrast to Yasar et al. (2017), we use a novel technique that exploits

the structure of the authentication tree or multi-modal Knowledge Graph (§3.3.2 and

§3.3.2) to define the ordering in the disk/memory layout. According to Yasar et al.

(2017), the I/O efficiency increases and the number of blocks accessed diminishes when

using locality-aware blocks [50]. The authentication mechanisms can take advantage

of locality-aware block formation to reproduce the authenticated access patterns on

blocked-graphs.

Encryption of blocks: AuditGraph.io exploits the locality of traversal algo-

rithms to generate semantically related blocks of graph-structured data. Further, the

block structure facilitates the encryption scheme using AES-GCM—authenticated

encryption— or AES-CTR.

Authenticated block-based graph construction

Authenticated clients (i.e., entities) create authenticated block-based subgraphs

(§3.3). Every authenticated data-graph (e.g., set) is blocked independently using the

block formation algorithm (§3.4.2). Then, AuditGraph.io implements graph coarsen-

ing on the authenticated-blocked graph (Figure 3.6(b) shows an intermediate step). In

the coarse graph, individual data-graph represent the nodes, and edges weights model

the edge betweenness centrality (Formula 1) among the edge cut between data-graphs

71

(a) (b) (c)

Fig. 3.6.: (a) Individual authenticated subgraphs joined by high edge betweenness
centrality are most likely to be stored in the same/contiguous shard/memory block.
(b) Authenticated and block-based graph coarse representation. Red edges represent
higher values of the edge betweenness centrality between individual authenticated
sets (§3.3.2). (c) Disk/memory layout example for the Figure 3.6(a). Authenticated
sets connected by a high edge betweenness centrality are stored in the same shard or
memory block with high probability.

72

(Figure 3.6(b) edges with high betweenness centrality in red). The resulting graph is

called similarity graph.

In the first algorithm, we modified the Girvan Newman partitioning algorithm [63].

AuditGraph.io builds the similarity graph removing the edges with high betweenness

and keeping track of the cuts between data-graphs. Then, AuditGraph.io recalculates

the betweenness centrality of the network. We proceed as long there are edges in the

graph.

To generate the ordering between authenticated sets, we create a novel algorithm

(Algorithm 1) that resembles the hierarchical agglomerative clustering. Also, we im-

plement the complete-linkage clustering which provides the maximum of the pairwise

dissimilarities between edge cuts (§3.3). Our algorithm stores highly related authen-

ticated sets (i.e., individual sets that shared an edge with high edge betweenness

centrality) in the same shard or memory block with high probability (as shown in

Figures 3.6(a),3.6(b),3.6(c)).

Layout manager

The layout manager utilizes the layout ordering algorithm (Algorithm 3) which

uses the authentication graph (or Knowledge Graph) structure to define the final

ordering of blocks inside of the shards or memory blocks. Our algorithm (Algorithm 2)

stores highly related individual blocked data-graphs in the same shard or memory

block with high probability. For instance, we can observe in Figure 3.6(c) a disk

layout representation of Figure 3.2 (we include only the four individual sets with high

edge betweenness centrality in the first shard or memory block.)

Layout ordering

The layout ordering algorithm (Algorithm 3) exploits the structure of the authen-

tication tree (§3.3.2) and provides highly related authenticated-sets ordering. This

algorithm is utilized when the authentication model follows a hierarchical structure—

73

Data: S: Nodes represented by individual authenticated sets with their
pre-computed cryptographic hashes

Data: d: Pairwise dissimilarities [edge weights represented by the edge cut
C(A,B) with weight edge betweenness centrality using formula 3.1]

Data: A: Authentication Graph
Result: Authentication Graph A
N ← |S|;
size[x]← 1 for all x ∈ S;
for i← 0, ..., N − 2 do

(a, b)← arg max(SxS) d;

S ← S \ {a, b};
create new node label n /∈ S;
update d d[x,n]=d[n,x]= complete linkage(d[a,x],d[b,x],d[a,b]) for all x ∈ S;
size[n] ← size[a] + size[b];
S ← S ∪ {n};
create new node label Gab /∈ A.V ;
A.E ← A.E + {Gab, a} + {Gab, b};
A.V[Gab][’size’] ← a.V.size+ b.V.size;
A.V[Gab][’hash’] ← sha256(a.V.hash+ b.V.hash);

end
return A;

Algorithm 1: Generating ordering among authenticated sets.

74

Data: mb size: Memory Block Size
Data: S: Nodes represented by individual authenticated sets
Data: d: Pairwise dissimilarities [edge weights represented by the edge cut

C(A,B) with weight edge betweenness centrality using formula 3.1]
Data: A: Authentication Graph
Result: Authentication Graph A
A← generate authentication graph(A, s, d);
layout← layout ordering(A.A.root);
i← 0;
foreach l ∈ layout do

foreach b ∈ blocks[l] do
if b.size + memory blocks[i] ≤ mb size then

memory blocks[i]← memory blocks[i] + b;
else

i← i+ 1;
memory blocks[i]← initialize memory block();
memory blocks[i]← memory blocks[i] + b;

end

end

end
return A;

Algorithm 2: This algorithm is a layout manager utilizing the authentication
tree (a similar process can include the AIM Knowledge Graph). We order a set of
blocks (subgraphs) in memory blocks as an example. This layout can be extended
to model disk layouts using shards instead of memory blocks.

75

for other use cases, AuditGraph.io uses a multi-modal Knowledge Graph. This algo-

rithm resembles a post-order tree traversal. The running time for this algorithm is

bounded by the size of the set of vertices (|V ′′|) and edges (|E ′′|), i.e., O(|V ′′|+ |E ′′|).

Data: A: Authentication Graph
Data: node: Authentication Graph node
Result: Layout ordering
if node.left == NULL then

return node.id;
else

L← layout ordering(A, node.left);
L← layout ordering(A, node.right);
return L + node.id;

end
Algorithm 3: This algorithm follows a post-order layout ordering for a hierarchical
authentication structure using an authentication tree.

3.4.2 Block formation

AuditGraph.io can modify the Girvan-Newman algorithm [63] to get a hierarchical

decomposition of the network and then organize communities in blocks according to

the block size threshold.

The block formation algorithm can also use the one found in [50]. AuditGraph.io

implements a hierarchical agglomerative clustering, hence the block formation follows

a bottom-up fashion. First, each node is in a partition by itself. Then, the process

merges pairs of partitions creating bigger partitions. The algorithm choose the pairs

that maximize the distance between vertices (i.e., via Jaccard Similarity Coefficient

§3.2.9). If the partition exceeds the block size threshold, AuditGraph.io creates a new

block.

76

3.4.3 Authenticated block-based graph API

AuditGraph.io exposes a minimal but functionally rich API used to simulate

graphs with high overlap and locality-aware traversal algorithms (Listing 3.1).

Authentication models

AuditGraph.io can generate individual authenticated sets through the

generate authentication model() call. The GraphType is an enumeration that de-

fines if the individual authenticated-sets will follow a power law distribution (i.e.,

using the preferential attachment model), the small-network phenomena, or networks

with high–overlap with lattices (e.g., mesh, hypercube, triangular, hexagonal). Also,

the API allows to call individual methods and construct personalized authentication

models (Listing 3.1 line 9 uses the preferential attachment model, and 10-13 generate

lattices).

Block-based traversal algorithms

AuditGraph.io API includes a rich set of traversal algorithms. These algorithms

keep track of the number of visited blocks. For instance, we can call

blocked single shortest path(v) to retrieve all vertices and blocks touched when run-

ning the shortest path computation from a single source. Similarly, we include

blocked BFS(), blocked DFS(), and blocked neighbors().

1 /// blocked graph simulation authorization graph

2 bg = BlockedGraph () //blocked graph

3 bg . generate authentication model (1000 , 100 , 100 , 4 , GraphType .

PREFERENTIALATTACHMENT)

4 bg . draw blocked graph manager ()

5 bg . p l o t v a l u e s (3)

6 bg . blocked single source shortest path ()

7 // independent graph generation lattices/pa

8 g = BlockedGraph () //graph

77

9 G1=g . generate preferential attachment (200 , 1)

10 G2=g . generate lattice (L a t t i c e s .HEXAGONAL, 3 , 3)

11 G3=g . generate lattice (L a t t i c e s .HYPERCUBE, 3)

12 G4=g . generate lattice (L a t t i c e s .TRIANGULAR, 3 , 4)

13 G5=g . generate lattice (L a t t i c e s .MESH, 8 , 8)

14 g . set blocked graph (G1)

15 p a r t i t i o n s = g . partition (G1)

16 g . draw blocked graph (G1, p a r t i t i o n s)

Listing 3.1: Summarized authenticated blocked graph API. Python source.

Partitioning algorithms

AuditGraph.io exposes a new set of partitioning algorithms. For instance, it can

be the case that a network follows the structure of a mesh and nodes in the center

are more sensitive (Figure 3.7). For such applications, novel partitioning algorithms

based on the eccentricity (§3.2.8) of the graph are necessary. Sensitive edges must be

exposed by a higher level (a more privileged) access level.

Fig. 3.7.: Coarse representation of a mesh network. Partitioning algorithms based on
the eccentricity of the Graph G. Nodes in the center are considered more sensitive
and therefore stored in a different shard or memory block than the other set of nodes.

78

3.5 Security Analysis

3.5.1 Side-channel attacks to the AIM/Compute Engine

Intel SGX can suffer from side-channel attacks [33, 34]. However, the Audit-

Graph.io trust model includes a trusted compute engine and a controlled environment;

therefore, side-channel attacks are out of the scope for this paper. AuditGraph.io

trust model targets regulated environments where users want to audit computation

and network-structured data access. AuditGraph.io enforces up-to-date remote at-

testation services, up-to-date microcode, and best practices in place.

3.6 Prototype implementation

AuditGraph.io is implemented as an in-memory module for the Trellis platform.

Trellis consists of many docker containers that handle the authentication, authoriza-

tion, query requests, graph lookup, and many other core components. Trellis is based

on OADA and ArangoDB multi-model NoSQL database. AuditGraph.io enhances

Trellis providing an authenticated and auditable graph processing system. In partic-

ular, we integrated our solution with AGAPECert.

3.6.1 Compute Engine

We implemented the compute engine utilizing a mix of React components and

JavaScript APIs for the service manager. For the compute engines that require Intel

SGX, we implemented the drivers using C++ and OpenEnclave.

3.6.2 AIM Engine

This AIM Engine includes a connection to a graph database in which the Multi-

modal Knowledge Graph is stored. We utilized Neo4j’s Docker container 4.0.4. Some

parts of the knowledge graph are created in the pre-processing stage when initializ-

79

ing the system. Then, the User Profile interface updates the user’s preferences and

improves the capabilities of the AIM Engine. The AIM Engine can infer what infor-

mation or blocks are essential for some users and cache the appropriate information

even before the user queries the graph.

3.6.3 Block Manager

AuditGraph.io implements a Python-based block manager utilizing NetworkX

2.4 [61]. The Block Manager provides a richer interface to simulate authentication

graphs and block-based traversal algorithms.

3.6.4 Graph pre-processing and integrity

As explained in [67], including timestamps in the Depth-first search (DFS) reveals

essential information about the graph’s structure. Kundu and Bertino (2010) utilized

this notion of timestamps, and they used pre-order and post-order numbers [54, 56].

AuditGraph.io utilizes a DFS traversal to obtain the post-order, and pre-order num-

bered list of nodes. Then we compute an HMAC-SHA256 derived from the post-order

and pre-order numbers that describe or determine graph’s structure. The key k for

HMAC-SHA256 is determined by the initialization step of AuditGraph.io query pro-

cessing. This key k can be associated with particular users or groups, and a mixture

of keys can be used to provide a final cryptographic hash for a subgraph or a set of

subgraphs. A trusted node stores the key or set of keys, and the pre-computation

of cryptographic hashes happens inside an enclave. The DFS traversal can reveal

the type of edges—tree edges, back edges, forward edges, cross edges; however, Au-

ditGraph.io’s trust model assumes a trusted compute engine and graph data store;

therefore, we only offer structural integrity and authentication for the graph that can

be used to audit computation. The pre-computation facilitates the creation of digital

signatures when querying the graph. We bound the input size for the digital signature

algorithm to a fixed string (the HMAC-SHA256.)

80

3.6.5 Digital signatures

Since we pre-computed the HMAC-SHA256 of the DFS pre-order and post-order

lists, we bound the size of the input (e.g., a fixed string) for the digital signature

algorithm improving performance considerably. AuditGraph.io uses the ECDSA sig-

nature scheme with the SHA384 hash function.

3.6.6 Blockchain-gateway

When the data is confidential or secret, then AuditGraph.io utilizes a blockchain-

gateway to interact with different shared ledgers. For the AuditGraph.io’s Blockchain-

Gateway we utilized an IBM Blockchain Platform 1.0.31 Visual Studio Code Exten-

sion.

3.7 Evaluation

We implemented the AuditGraph.io Block Manager using Python 3.8.3, NetworkX

2.4 [61], METIS 5.1.0 [68]. The trusted compute engine exposes C++ drivers to

connect to the graph data store. AuditGraph.io utilizes OpenEnclave 0.9 to provide

secure enclaves and remote attestation. Blockchain-Gateway contracts are built using

JavaScript.

3.7.1 Experimental setup

AuditGraph.io’s simulator and experiments were run on top of a MacBook Pro

(15-inch, 2017) with an Intel Core i7 2.8GHz and 16GB of RAM running macOS

Catalina Version 10.15.5.

Synthetic datasets We generate data graphs through the preferential attach-

ment model [69] where new vertices attach preferentially to already well-connected

nodes (i.e., richer gets richer phenomena). This model reproduces the property

of large networks in which connectivities follow a scale-free power-law distribution.

81

Moreover, the AuditGraph.io API exposes methods to generate small-world networks.

We also simulate extreme overlap between data graphs using lattices (e.g., meshes,

hypergraphs, hexagonal, and triangular).

3.7.2 Graph Pre-Processing and Integrity

In this experiment, we evaluate the total time exposed by the DFS traversal for

various datasets. The DFS traversal pre-order and post-order lists are used as input

datasets to compute the cryptographic hash HMAC-SHA256 (§3.6.4). As shown in

Figure 3.8, it takes around 80ms to compute the pre-order and post-order lists for

the anonymized Facebook dataset.

In Figure 3.9, we analyze the total overhead incurred by the pre-computation of

cryptographic hashes for the output datasets generated in the experiment shown in

Figure 3.8. Analyzing Figures 3.8 and 3.9, it is clear that generating the HMAC-

SHA256 depends on the size of the pre-order and post-order lists O(|V |), in which V

is the vertex set for those lists.

3.7.3 Graph Integrity and digital signatures

This experiment evaluates the overhead to compute digital signatures derived

from the structure of the graph (§3.6.5). Since we pre-computed the HMAC-SHA256

of the DFS pre-order and post-order lists, we bound the size of the input (e.g., a

fixed string) for the digital signature algorithm improving performance considerably.

AuditGraph.io uses the ECDSA signature scheme with the SHA384 hash function.

According to our findings (Figure 3.10), computing a digital signature for a subgraph

or block is cheap, i.e., around 2551µs with the P256 curve and the SHA384 hash

function.

82

Fig. 3.8.: DFS traversal algorithm in various datasets. The pre-order and post-order
lists generated by this algorithm provides essential information related to the graph
structure.

83

Fig. 3.9.: This experiment measures the overhead of generating cryptographic hashes
for the datasets and pre-order and post-order lists generated in Figure 3.8.

84

Fig. 3.10.: Evaluation of the digital signature scheme overhead (ECDSA with
SHA384) on top of the Facebook dataset.

85

(a)

M
e
m
b
e
r_
O
f

M
em
be
r_
O
f

M
e
m
b
e
r_
O
f

M
e
m
b
e
r_
O
f

M
e
m
b
e
r_
O
f

M
e
m
b
e
r_
O
f

M
em
ber_
O
f

M
em
b
er_
O
f

M
e
m
b
e
r_
O
f

M
e
m
b
e
r_
O
f

Cl
ea
re
d_
to

C
on
si
st
s_
O
f

Consists_O
f

Cons
ists_O

f

C
le
a
re
d
_
to

Consists_Of

Consists_Of

Cleared_to

Consists…

C
le
a
re
d
_
to

Cl
ea
re
d_
to

A
c
c
e
s
s
_
T
o

A
c
c
e
s
s
_
T
o

A
cc
es
s_
To

A
c
…

A
c
c
e
s
s
_
T
o

A
cc
e
ss
_
T
o

A
ccess_

To

A
c
c
e
s
s
_
T
o

A
cce
ss_
T
o

A
c
c
e
s
s
_
T
o

A
c
c
e
s
s
_
T
o

Access_To

A
c
c
e
s
s
…

Access_To

A
cce
ss…

M
a
rk
e
d
_
A
s

R
e
la
te
d
_
T
o

Marked_As

R
e
la
te
d
_
T
o

M
ar
ke
d_
As

Rela
te…

M
a
rk
e
d
_
A
s

Re
lat
ed
_T
o

M
a
rk
e
d
_
A
s

M
ar
ke
d_
As

Rel…

Relat…

M
a
rk
e
d
_
A
s

M
a
rk
e
d
_
A
s

Rel
…

Related_To

Marked_As

M
a
rk
e
d
_
A
s

Re
la
te
d_
To

Relat…

Marked_AsM
a
rk
e
d
_
A
s

M
arked_

A
s

R
el…

Marked…

Marked_As

R
elated

_
T
o

Is_Lower

Is_Lowe
r

Is_L
ower

Is_Lower

C
a
n
_
C
o
m
p
u
te

C
a
n
_
C
o
m
p
u
te

C
a
n
_
C
o
m
p
u
te

Alice

Bob

Aura

Servio

Jesus

Bessy

Alberto

Jessyka

Steve

Jobs

Group1

Group2

Group3

Group4

Group5

L1

L2

L3

L4

L5

L6

B_01

B_02

B_03

B_04

B_05

B_06

B_07
B_08

B_09

B_10

B_11

B_12

B_13

B_14

B_15

B_16

PublicProtected

Restricted

Confide…
Secret

PageRa…

Shortest
Path

Connect…

(b)

Fig. 3.11.: a) Summarized multi-modal Knowledge Graph Representation. The data
model described in Figure 3.4 is materialized using Neo4j graph database. The
AIMKG includes the similarity graph. Also, the edge betweeness centrality is in-
cluded as a property in the edges. We queried this AIMKG to obtain the results
in Fig 3.11(b). b) AuditGraph.io’s AIMKG Multi-modal Knowledge Graph per-
formance. We perform the most common traversal queries—using Cypher—in the
Knowledge Graph in Figure 3.11(a).

3.7.4 Multi-Modal Knowledge Graph Performance

In this section, we evaluate the Multi-modal Access and Identity Management

Knowledge Graph (AIMKG §3.3.2) performance. This experiment includes the

anonymized Facebook dataset [70]. The block formation and layout algorithms (§3.4)

generated 16 blocks of semantically related blocks (similarity graph §3.4.1.) We then

created the AIMKG, including the similarity graph, the user profiling subgraph, and

authentication and authorization subgraph. We materialize the data model (Fig-

86

ure 3.4) utilizing a Neo4j’s Docker Container 4.0.4. Additionally, we integrate this

AIMKG module with AGAPECert’s broker. The test suite includes the Chai as-

sertion library, the Mocha test framework, and the Neo4j JavaScript driver. The

queries are run 1000 times using the bolt driver to connect to Neo4j with a basic

authentication scheme6 (Fig. 3.11(b)).

3.7.5 Neighbors Algorithm Performance

Now we analyze the blocked-based neighbor’s algorithm in a power-law graph

model (Fig. 3.12). For this experiment, we modified the neighbors’ algorithm. We

include a block property that serves to divide the nodes into different buckets; then,

we count the number of blocks/buckets touched by the neighbors’ algorithm. The

AuditGraph.io API exposes methods to perform block-based traversal algorithms. In

Figure 3.12, we can observe different schemes of graph partitioning and disk/mem-

ory layout. The primary benefit of AuditGraph.io is when accessing authenticated

graph datasets. AuditGraph.io exploits the access patterns of the authentication

tree (§3.3.2) or multi-modal Knowledge Graph (§3.3.2) to produce ordered blocks

in shards or memory blocks with high-locality. AuditGraph.io stores blocks with

high-locality in the same shard with high probability. The non-blocked partitioning

performs poorly compared to our solution.

3.7.6 Blockchain-Gateway Performance

For the AuditGraph.io’s Blockchain-Gateway we utilized an IBM Blockchain Plat-

form 1.0.31 Visual Studio Code Extension. Analogous to AGAPECert’s experiment,

we use Chai assertion library and the Mocha test framework (Figure 3.13). When

there exist multiple blocks in the shared ledger, the Blockchain-Gateway takes around

2173.12± 45 ms to execute an asynchronous object creation.

6The AIMKG graph construction script and queries can be found at
http://github.com/AuditGraphDB

87

Fig. 3.12.: Neighbors’ algorithm performance. This experiment tested three different
datasets (Wiki, Facebook, and a synthetic dataset.) We measure the total number
of blocks touched by the algorithm on those datasets. AuditGraph.io touches fewer
blocks and retrieves more related blocks with high probability.

Fig. 3.13.: AuditGraph.io’s Blockchain-Gateway component interacting with IBM
Hyperledger Fabric and auditContract performance.

3.7.7 Discussion

We also ran experiments utilizing AuditGraph.io’s API methods to generate small-

world networks and the preferential attachment model [69]. Using AuditGraph.io’s

simulator, we compare the number of buckets or blocks touched by traversal algo-

rithms; AuditGraph.io reduces the number of blocks touched when executing traver-

88

sals on the graph. These experiments offer empirical evidence of the feasibility of our

ideas.

Limitations: Our solution is in-memory only, future work includes testing these

techniques using a combination of disk and memory.

3.8 Conclusion

We have presented AuditGraph.io, an auditable, authenticated, and blocked graph

processing model. AuditGraph.io exploits the structure of the network to generate

blocked individual authenticated sets with high-locality. AuditGraph.io utilizes the

structure of the access hierarchy (authentication graph) to define the ordering of

blocks and entities in the disk or memory layout. A similarity graph with edges

representing the relationship between authenticated sets (edge betweenness centrality

as weight) determines the final ordering of blocks in shards or memory blocks.

AuditGraph.io provides network-structured data integrity and digital signatures

using previous work and our block-based model. Also, AuditGraph.io contributes

auditable computation on top of the graph-model utilizing trusted execution environ-

ments and blockchain technologies. Our preliminary results and simulation show that

AuditGraph.io can reduce the total number of visited blocks and potentially reducing

the total I/O cost for disk/memory processing algorithms. Through a unique mix of

digital signatures schemes, blockchain technologies, and trusted execution environ-

ments, AuditGraph.io provides an auditable, integrity-preserving, and block-based

graph processing model. AuditGraph.io contributes a tool that can be used to track

computation on authenticated network data or subgraphs.

3.9 Acknowledgements

The research was partially carried out at the Jet Propulsion Laboratory, California

Institute of Technology, under a contract with the National Aeronautics and Space

Administration (80NM0018D0004). Also, this work was partially supported by the

89

National Science Foundation Grant number CCF 1533795, Division of Computing and

Communication Foundations under the XPS program. The work is in preparation

for publication with the following list of authors: Servio Palacios, Bharat Bhargava,

Arun Viswanathan, and Jeremy Pecharich. We also thank Dr. Ananth Grama for

fascinating discussions and advice.

90

T
ab

le
3.

1.
:

S
u
m

m
ar

y
of

th
e

h
ie

ra
rc

h
ic

al
st

ru
ct

u
re

of
tr

u
st

,
re

q
u
ir

em
en

ts
,

an
d

se
cu

ri
ty

gu
ar

an
te

es
.

L
e
v
e
l

E
x
p

la
n
a
ti

o
n

R
eq

u
ir

em
en

ts
S
ec

u
ri

ty
G

u
ar

an
te

es
In

te
l

S
G

X
B

lo
ck

ch
a
in

in
te

gr
it

y
au

th
au

d
it

ab
le

in
d
.

at
te

st
ed

se
q
u
en

ce
P

u
b
li
c

O
p

en
X

X
X

X
X

X
X

P
ro

te
ct

ed
In

te
gr

it
y

X
X

X
X

X
X

R
es

tr
ic

te
d

A
u
th

en
ti

ca
te

d
X

X
X

X
X

C
on

fi
d
en

ti
al

A
u
d
it

ed
X

X
S
ec

re
t

A
tt

es
te

d

91

T
ab

le
3.

2.
:

S
u
m

m
ar

y
of

Im
p

or
ta

n
t

A
u
d
it

G
ra

p
h
.i
o

C
ry

p
to

gr
ap

h
ic

H
as

h
es

.

H
a
sh

N
a
m

e
In

p
u
t

O
b

je
ct

iv
e

G
ra
ph

D
a
ta
H
a
sh

pr
iv
a
te
d
a
ta

re
tr

ie
ve

d
fr

om
a

T
re

ll
is

d
at

a
st

or
e

In
te

gr
it

y
of

P
ri

va
te

D
at

a

G
ra
ph

S
tr
u
ct
u
re

D
a
ta
H
a
sh

pr
iv
a
te
d
a
ta

st
ru

ct
u
re

re
tr

ie
ve

d
fr

om
th

e
b
lo

ck
m

an
ag

er
In

te
gr

it
y

of
P

ri
va

te
D

at
a

st
ru

ct
u
re

R
ep
or
t
H
a
sh

R
E
P
O
R
T

p
ro

d
u
ce

d
b
y

an
en

cl
av

e
w

h
en

ru
n
n
in

g
th

e
O

S
C

In
te

gr
it

y
of

th
e

R
E

P
O

R
T

fr
om

th
e

en
cl

av
e

Q
u
ot
e
H
a
sh

Q
U
O
T
E

p
ro

d
u
ce

d
b
y

a
Q

u
ot

in
g

E
n
cl

av
e

In
te

gr
it

y
of

th
e

Q
U

O
T

E
fr

om
th

e
en

cl
av

e
O
S
C
H
a
sh

O
S
C

S
of

tw
ar

e
C

o
d
e

in
th

e
T

ru
st

ed
C

o
d
e

R
ep

os
it

or
y

In
te

gr
it

y
of

th
e

O
S
C

co
d
e

it
se

lf

92

Table 3.3.: Datasets.

Datasets

Wiki
Vertices 7,115
Edges 100,762

Facebook
Vertices 4,039
Edges 88,234

Synthetic
Vertices 1,000
Edges 88,234

Synthetic100K
Vertices 100,000
Edges 1,000,000

93

4. TRUENODB: THE SCALABLE GRAPH
DATASTORE/COMPUTATIONAL ENGINE HYBRID

Handling large and complex dynamic graph datasets poses significant computa-

tional challenges. Existing graph databases such as Neo4j, Titan, OrientDB, and

others, offer limited functionality making the management of large networks a chal-

lenge, from points of view of analyses and presentation.

In this paper, we present TruenoDB an easy-to-use scalable graph database and

computation engine. TruenoDB is a novel integration of highly optimized algorithms

and implementations, with distributed search engines, graph-parallel computations

on top of a dataflow framework, and a rich set of drivers. TruenoDB provides a

user-friendly Web UI, a simple API for developing plugins, has extensive language

support, interfaces with commonly used execution engines such as Spark, and includes

a library of graph analytics kernels.

We validate TruenoDB outstanding usability utilizing a variety of applications

ranging from computational systems biology to information retrieval. Finally, we

support TruenoDB’s practicality through some micro and macro benchmarks that

demonstrate an excellent performance, scalability, and flexibility.

4.1 Introduction

Recently, there is an increasing importance towards analyzing graph relationships

and interactions of modern datasets. In particular, integrated interaction data (e.g.,

Protein-Protein interactions, Protein-DNS interactions, microRNA-mRNA interac-

tions, social networks, and others) can have millions of edges and vertices. Moreover,

networks1 can represent dynamic systems in which the graph structure is continu-

ously updated. Analysis of massive graph datasets is often performed via specialized

1For the rest of the paper, the terms graph and network are interchangeable.

94

systems incurring in bulk downloads2and in-house processing. Running stages of the

analytics pipeline in separate systems is cumbersome and inefficient. For instance,

Neo4j [1] and Titan [71] offer graph queries via pattern matching (Cypher [72] and

Apache TinkerPop Gremlin [73]), but allow limited support for graph algorithms (e.g.,

connected components, PageRank). Visualization tools such as Cytoscape [74], Net-

workX [61], and Gephi [75] provide methods to visualize small in-memory networks.

Nonetheless, these visualization tools are not suitable means to explore a large dataset

or perform distributed computation. Further, Biological network databases usually

offer a constrained query interface.

Most existing workflows are based on an ETL (i.e., Extract, Transform, Load)

pipeline. We can summarize a typical integrated analytics process with the follow-

ing steps: (1) Individually install all the components needed (e.g., graph database,

Apache Spark, Hadoop, distributed indexing system or search engine). (2) Extract

and transform raw data into a graph representation. (3) Apply functions to the graph

representation and write to a persistent storage. (4) Load the graph into a graph pro-

cessing system such as GraphLab [76], compute a graph algorithm (e.g., PageRank),

and persist results. (5) Load results into dataflow processing engine (e.g., Apache

Spark, Hadoop), apply transformations, and persist results.

We present TruenoDB [3], an easy-to-use scalable graph datastore and com-

pute engine. TruenoDB integrates a scalable distributed search engine (i.e., Elas-

ticsearch [59]), graph-parallel computation (i.e., Spark GraphX [60]), and a rich set

of drivers (e.g., JavaScript, Java, Scala, C++, and Python). TruenoDB implements a

schema-less graph storage, where vertices, edges, and properties are stored as Apache

Lucene objects. TruenoDB integrates query capabilities via Gremlin traversal graph

language, in-memory single host compute engine utilizing NetworkX library [61], and

network visualization through Sigma.js [62]. To support a complete graph analytics

pipeline, TruenoDB includes a library of graph analytics kernels, and provides a con-

2Bulk download refers to moving/copying significant amounts of data from specialized systems. For
instance, when copying data from Neo4j into HDFS to run graph analysis using mazerunner. Then,
the results are written back to Neo4j in large amounts.

95

nector (e.g., trueno-elasticsearch-spark-connector) to extend graph analysis from

Spark GraphX. To enhance the distributed read scalability, TruenoDB implements

the Elasticsearch Sliced Scroll API.

We validate TruenoDB outstanding functionality through a variety of applica-

tions ranging from computational systems biology to information retrieval. Finally,

we include a number of micro and macro benchmarks to demonstrate the excellent

performance, scalability, and flexibility of TruenoDB.

In summary, our contributions are:

• We alleviate the difficulty of current graph analytics pipelines when handling

enormous datasets. Through a novel consolidation of scalable indexed storage,

graph-parallel computation, and a diverse set of drivers; TruenoDB offers a

straightforward highly scalable platform to process distributed graph analytics

and queries.

• TruenoDB implements an efficient trueno-elasticsearch-spark-connector which

interacts with execution engines such as Apache Spark (e.g., GraphX, Graph-

Frames, MLlib, Spark SQL). This connector provides an uncomplicated API for

developing plugins (i.e., Scala based).

• We offer an open source implementation and evaluation of TruenoDB3.

The outline of this paper is as follows. After presenting TruenoDB architecture

in §4.2, we discuss two scenarios that shows flexibility and potential of TruenoDB in

§4.3. Then, in §4.4 we provide a comprehensive evaluation of the graph database,

including micro and macro benchmarks. Finally, in §4.5, we discuss some related

research and existing solutions and include our conclusions in §4.6.

3https://github.com/TruenoDB

96

4.2 System Architecture

TruenoDB implements a fast scalable graph store supported by Apache Lucene

indexes, and with distributed computation capabilities. Fig. 4.1 depicts the system

architecture.

Fig. 4.1.: TruenoDB System Architecture

4.2.1 Cluster Manager

TruenoDB provides a distributed, resilient, and highly optimized graph store.

TruenoDB can be easily configured as a cluster or single instance installation. In a

cluster setup, TruenoDB deploys a node manager which acts as coordinator. The

node manager keeps track of all the servers that are part of the deployment, balance

the workload among the cluster, and restarts nodes in case of failures. Further, when

a node fails, the graph data is synchronized from the storage master node.

The nodes can be configured either for storage, computation or both. The storage

is replicated and sharded on Elasticsearch, while the computation is distributed using

97

Apache Spark. All storage nodes form an Elasticsearch cluster; likewise, computation

nodes form an Apache Spark cluster.

4.2.2 Core Manager

TruenoDB exposes two different methods of communication for clients to interact

with the graph store: (1) using the RESTful interface from the Web Console; (2)

through any of the available drivers. Either method has access to the same features.

The Core Manager handles and resolves clients request using the corresponding API.

In the case of traversal queries or graph updates, requests are handled using the

OLTP4 API, which interacts with the distributed graph store. TruenoDB integrates

the Gremlin language to support traversal queries. By contrast, distributed graph

analytics are handled by the Compute Engine through the Compute API, as described

in §4.2.5.

4.2.3 Web Console

TruenoDB’s Web User Interface (Web UI) offers capabilities for graph processing,

analytics, visualization and graph management. The Web UI is connected to the

database and processing engine using a RESTful interface, which enables a fully

interactive workspace that allows graph queries or structure updates via the Gremlin

traversal language. Query results are presented in a visual canvas powered by Sigma.js

framework, which allows the user to graphically interact with the graph (or subgraph).

Moreover, the Web UI offers graph analytics capabilities either locally, using the

NetworkX library; or distributed analysis, supported by Apache Spark.

4Online Transaction Processing

98

4.2.4 Graph Store

The graph store is supported by Elasticsearch [59], a full-text search and analytical

search engine based on Apache Lucene, and serves two purposes. First, it stores the

graph data in a distributed and durable platform. The data is distributed in shards,

and replicated along the cluster. Second, the graph store allows the analysis of a

large amount of data quickly and in near real time. TruenoDB provides a schema-less

graph store, where elements (i.e., vertices, edges) and their properties are stored as

Apache Lucene objects. Hence, all the data is automatically indexed without the

need to deal with any index management.

TruenoDB does not support ACID transactions, which makes the graph database

not a suitable solution for transactional applications. Nevertheless, TruenoDB was

designed to provide a highly scalable platform to support analytic computation and

high-throughput for online query.

4.2.5 Computation Engine

TruenoDB integrates an efficient graph processing system (e.g., to execute graph

algorithms Spark GraphX [60,77]) and a RESTful interface for submitting and man-

aging Apache Spark jobs (i.e., Spark Job Server [78]). Spark Job Server maintains

the Spark Job Context which allows sharing the Spark Context and the Resilient Dis-

tributed Datasets (i.e., RDDs). Furthermore, it provides a clean and secure method

of submitting jobs to Spark, avoiding the complex setup requirements of connecting

to the Spark Master directly. Figure 4.2 shows the Compute Engine architecture.

TruenoDB’s Compute Engine provides the sharing of RDDs in a Spark applica-

tion among multiple Spark Jobs. Hence, the compute engine enables the recurring

utilization of shared RDDs for low-latency data access across multiple graph analysis

or queries.

GraphX is a graph processing system built on top of Spark to efficiently process it-

erative graph algorithms [60,77]. The dataflow operators join-map-groupby form the

99

core of GraphX (e.g., graph computation on top of collections [60,77]). In GraphX the

graph is represented as horizontally partitioned collections [60,77]. GraphX includes

a set of graph algorithms to facilitate graph analytics [79]. In addition, TruenoDB’s

Compute Engine introduces a few more (available from TruenoDB’s Web UI see sec-

tion §4.2.3):

• PageRank

• Personalized PageRank

• Triangle Count

• Shortest Paths

• Label Propagation

• Connected Components

• Strongly Connected Components

• Minimum Spanning Trees

• Global Clustering Coefficient

TruenoDB’s Compute Engine can be extended to include other graph algorithms

(e.g., shortest paths with weights, merging graphs, etc.)

Fig. 4.2.: TruenoDB’s compute engine architecture.

TruenoDB supports native integration between Elasticsearch and Apache Spark

through elasticsearch-hadoop5. This connector creates RDDs that can read data

from Elasticsearch. Native integration is the recommended method to retrieve/store

documents from/to Elasticsearch. Listing 4.1 shows how to connect to the Elastic-

search cluster and retrieve vertices and edges.

5https://github.com/elastic/elasticsearch-hadoop

100

1 /∗ Creat ing Spark Context ∗/

2 va l sc = new SparkContext (conf)

3 /∗ Loading V e r t i c e s ∗/

4 va l verticesESRDD = sc . esRDD(index+”/v”)

5 /∗ Loading Edges ∗/

6 va l edgesESRDD = sc . esRDD(index+”/e”)

Listing 4.1: Connecting to TruenoDB - Scala Source

TruenoDB offers a connector called trueno-elasticsearch-spark-connector. TruenoDB

implements the Elasticsearch Scroll API which can retrieve a large number of results

from a single search request. We split the results into partitions using the Sliced Scroll

API that allows us to improve read scalability (as shown in the evaluation §4.4.4).

Listing 4.2 shows how to load data from Elasticsearch using partitions and slices.

1 import org . apache . spark .

2 /∗ Importing Trueno ES and Spark Connector ∗/

3 import org . trueno . e l a s t i c s e a r c h . spark . connector .

4

5 va l conf = new SparkConf () . setAppName (appName) . setMaster (master)

6 va l sc = new SparkContext (conf)

7 /∗ Loading V e r t i c e s from TruenoDB ∗/

8 va l verticesRDD =

9 sc . p a r a l l e l i z e (1 to s l i c e s , s l i c e s)

10 . map

11 { i =>

12 va l tc = new ESTransportClient (index , host , port)

13 tc . getVertexRDD (i , s l i c e s +1)

14 }

Listing 4.2: Loading vertices from TruenoDB using

trueno-elasticsearch-spark-connector. Scala Source.

101

4.2.6 Drivers

TruenoDB provides a rich set of drivers (e.g., Java, JavaScript, Python, C++, and

Scala). Drivers connect to the TruenoDB’s engine that exposes the graph storage and

graph analytics engine. The drivers are completely asynchronous (e.g., Promises in

Javascript, and CompletableFuture in Java API). Moreover, drivers include support

for bulk operations.

Creating a Graph: Listing 4.3 shows how to connect to TruenoDB and create

a graph g with two vertices and one edge (JavaScript driver). First, it connects to

the TruenoDB’s engine (line 3-5). Then, it creates a graph object (line 8). Similarly,

the driver implements addV ertex(), addEdge() to create those types of objects (lines

12, 13, and 26). TruenoDB allows customized properties in nodes and edges (lines

15-18). Finally, the drivers persist results into the backend (lines 20 and 29).

1 / const Trueno = r e q u i r e (’../lib/trueno’) ;

2 /* Instantiate connection */

3 let trueno = new Trueno({host: host, port: port});

4

5 trueno.connect((s)=> {

6 console.log(’connected’, s.id);

7 /* Create a new Graph */

8 let g = trueno.Graph();

9 /* Set label: Graph Name */

10 g.setLabel(’citations’);

11 /* Create Vertices */

12 let v1 = g.addVertex();

13 let v2 = g.addVertex();

14 /* Adding properties */

15 v1.setProperty(’name’, ’alice’);

16 v1.setProperty(’age’, ’25’);

17 v2.setProperty(’name’, ’bob’);

18 v2.setProperty(’age’, ’35’);

19 /* Persist v1, v2 */

20 v1.persist().then((result) => {

102

21 console.log(’Vertex successfully created’);

22 }, (error) => {

23 console.log(’Error: ’,error);

24 });

25 /* Create an edge between v1 and v2 */

26 let e1 = g.addEdge(1, 2);

27 e1.setProperty(’relation’, ’knows’);

28 /* persist e1 */

29 e1.persist().then((result) => {

30 console.log(’Edge successfully created’);

31 }, (error) => {

32 console.log(’Error: ’, error);

33 });

34 }, (s)=> {

35 console.log(’disconnected’, s.id);

36 });

Listing 4.3: Creating Graph - JavaScript Source.

Computing PageRank: Listing 4.4 demonstrates how to connect to the TruenoDB

and compute PageRank on top of graph g. TruenoDB’s compute engine requests a

job to the Spark Master (i.e., we use Spark Job Server RESTful API) First, the

JavaScript driver needs to establish a connection (lines 5, 6). Then, we create a

graph object in our API (graph g). Next, we define the algorithm (e.g., PageRank)

that will be computed on g (line 13). Additionally, the PageRank algorithm requires

some parameters such as tolerance and reset probability. The API allows to persist

the result in the backend or to retrieve the values to the client.

1 //* Including Libraries */

2 const Trueno = require(’../lib/trueno’);

3 const Enums = require("../enums");

4 /* Creating new Trueno object */

5 let trueno = new Trueno({ host: host, port: port});

6 trueno.connect((s) => {

7 /* Create a new Graph */

103

8 let g = trueno.Graph();

9 g.setLabel(destinationGraph);

10 /* Create Compute Object */

11 let computeObject = g.getCompute();

12 /* Defining Algorithm Type */

13 computeObject.setAlgorithm(Enums.algorithmType.PAGE_RANK);

14 /* Algorithms Parameters */

15 let parameters = {

16 schema: {string: destinationGraph},

17 tolerance: {string: 0.000000001},

18 alpha: {string: 0.85},

19 persisted: {string: "false"},

20 persistedTable: {string: "vertices"}

21 };

22 computeObject.setParameters(parameters);

23 /* Get the JobId of the algorithm */

24 computeObject.deploy().then((jobId) => {

25 console.log(’JobId: ’, jobId);

26 computeObject.jobStatus(jobId)

27 .then((status) => {

28 if (status == Enums.jobStatus.FINISHED) {

29 computeObject.jobResult(jobId)

30 .then((ranks) => {

31 console.log(’Ranks: ’, ranks.result);

32 });

33 }

34 });

35 });

36 }, (s) => {

37 console.log(’disconnected’, s.id);

38 });

Listing 4.4: Computing PageRank - JavaScript Source

104

4.3 Applications

We provide an open source implementation and evaluation of TruenoDB. Addi-

tionally, the project includes an extensive documentation of TruenoDB components6.

We evaluated TruenoDB usability in a wide range of datasets to demonstrate its flex-

ibility and simple Web UI. We support TruenoDB’s practicality via micro and macro

benchmarks (Refer to Section §4.4.4).

Top ranked gene in the Parkinson’s neighborhood: The analysis and vi-

sualization of interaction datasets are increasingly important. Some tools have been

developed to provide the biological and biomedical research communities with genetic

and protein interaction data (e.g., Biogrid [80,81]). However, to analyze and visualize

this data, bulk downloads and processing are necessary7. TruenoDB provides a simple

filtering and analysis of the full Biogrid dataset. The visualization and analysis are

straightforward using TruenoDB Web UI. For larger datasets, the Web UI integrates

the distributed compute engine (Apache Spark) via Spark Job Server. TruenoDB

Web UI incorporates NetworkX to analyze small networks in memory.

TruenoDB provides a graph import tool8 to load networks from JSON-formatted

files. For instance, it is possible to load the complete Biogrid dataset in a graph

representation using:

1 / trueno import b i o g r i d

Listing 4.5: Importing the Biogrid dataset.

We study the Parkinson neighborhood using two publicly available databases (e.g.,

Biogrid9 and OMIM10). For instance, we filtered the genes of Parkinson disease (re-

trieved from OMIM) in the Biogrid dataset (e.g., from the TruenoDB Web UI). List-

ing 4.6 shows the integrated Gremlin query.

1 /g .V() . has (’name’ , w i th in (’GBA’ ,’ADH1C’ ,’TBP’ ,’ATXN2’ ,’MAPT’ ,’GLUD2’))

6https://truenodb.github.io/documentation/latest/
7For example using Biogrid and Cytoscape dedicated plugin.
8https://github.com/TruenoDB/trueno-javascript-driver
9Biogrid is a repository of protein, chemical, and genetic interactions.
10https://www.omim.org/

105

2 . as (’genes’)

3 . both ()

4 . as (’neighbors’)

5 . bothE ()

6 . as (’network’)

7 . s e l e c t (’genes’ , ’neighbors’ , ’network’)

Listing 4.6: Filtering the Parkinson Neighborhood.

TruenoDB can store intermediate results in the graph store (e.g., we can save

parkinson network as a graph available in the Web UI). Further, TruenoDB Web

UI facilitates loading and analyzing stored networks. For example, we use TruenoDB

compute engine11 to obtain the top ranked genes in the Parkinson disease12. Figure 4.3

demonstrates top ranked gene12 neighborhood.

Fig. 4.3.: TruenoDB Web UI Visualization - Top ranked gene neighborhood in the
Parkinson’s Network.

High energy physics citation network analysis [82]: We implemented a

wrapper (i.e., GraphX algorithms wrapper) integrated with TruenoDB’s Web UI.

In this application, we analyze the citations SNAP dataset [70]13 (nodes represent

papers14). First, we built a personalized PageRank algorithm to obtain a rank relative

to the ”source” node (e.g., Vs) in the graph G. We were able to find the most

important paper from the perspective of the source paper (i.e., Vs). We obtained the

11We request a job to the Spark cluster via Spark Job Server.
12Top ranked gene is MAPT.
13https://snap.stanford.edu/data/cit-HepPh.html
14If a paper i cites paper j, the graph contains a directed edge from i to j.

106

top ranked node15. We found the most important paper16 from the top ranked paper

point of view.

We extended the analysis using the gremlin query language. We traversed the

graph and provided the following information.

• We obtained the paper titles and citations count.

• We listed the paper titles of the papers with more than 100 citations.

• We showed the subgraph of Vertex V1 (we showed the vertices who cite V1).

Figure 4.4 exhibits the uncomplicated Web UI interface interacting with the top

ranked paper neighborhood.

Fig. 4.4.: TruenoDB Web UI Visualization - Top ranked paper neighborhood in the
Citation’s Network.

4.4 Evaluation

4.4.1 Experimental Setup

Single-machine experiments were run using a machine with Intel Core i5 (4 cores

@2.7GHz, 8MiB cache) with 8GiB of RAM.

Distributed experiments were run on a cluster of 16 machines with Intel Xeon

X3430 (4 cores @2.4GHz, 8MiB cache), 8GiB of RAM, and spinning disks. The

nodes connect over a shared Gigabit Ethernet connection. We configured the nodes

15The top ranked paper ”Noncompact Symmetries in String Theory” [83]
16”An algorithm to generate classical solutions for string effective action” [84]

107

Table 4.1.: Datasets

Datasets

Biogrid
Vertices 15,034
Edges 301,685

Citations
Vertices 29,554
Edges 167,103

LDBC Graphalytics (Scale 1)
Vertices 34,379
Edges 1,010,631

LDBC SNB (Scale 1, filtered by knows relationship)
Vertices 9,152
Edges 180,832

Pokec
Vertices 1,632,803
Edges 30,622,564

with CentOS Linux release 7.2.1511 (Core), Spark 2.1.1 built for Hadoop 2.7.3, and

Elasticsearch 5.3.2.

4.4.2 Query and Traversal Performance

First, we evaluated TruenoDB performance on a single machine installation. The

performance was compared against a well known graph database, Neo4j, using three

different datasets (as shown on table 4.1): Biogrid [81], Citations [70], and Pokec [70].

Both, Trueno and Neo4j v3.2 were installed on identical hardware, and tests were

conducted using the Javascript driver. To evaluate the performance we measure the

throughput of each graph database while handling a workload between 5K to 50K

requests, depending of the dataset and the test. The workload consists of reads of

randomly selected vertices, write operations (creates vertices not using transactions),

and a mix of reads and writes (90% of the workload correspond to read operations).

Throughput: Table 4.2 shows the throughput of Trueno compared to Neo4j.

The read performance between both databases is similar on the smaller datasets, but

as the data grows TruenoDB scales better than Neo4j, which outperforms by a 1.2×

factor. Furthermore, TruenoDB outperforms Neo4j on write operations by two orders

of magnitude.

108

Although we are not declaring a transaction explicitly on Neo4j, every update to

the graph store is wrapped on a transaction. Therefore, the main overhead on writes

operations correspond to the transaction management. By contrast, TruenoDB by

not supporting ACID transactions offers a higher throughput.

Both Neo4j and TruenoDB use Apache Lucene to index the data. However, in the

case of Neo4j only the unique keys are indexed. As discussed in §4.2.4, TruenoDB by

being supported on Elasticsearch, all data is indexed.

Table 4.2.: Throughput Statistics

Datasets Requests Trueno Neo4j
(records/s) (records/s) (records/s)

Biogrid
Read 15,034 4,450.58 4,629.14
Write 5,000 4,752.48 56.46
Mix 15,034 3,442.05 2,566.54

Citations
Read 29,554 4,336.03 5,187.62
Write 5,000 4,697.75 30.94
Mix 29,554 4,279.64 3,217.22

Pokec
Read 50,000 3,243.29 2,619.41
Write 5,000 6,853.29 30.76
Mix 50,000 2,841.42 1,228.29

4.4.3 Scalability

In this section, we demonstrate that, for distributed reads, TruenoDB scales ac-

cording to the number of executors, partitions, and slices of data (Figure 4.6). Going

from 4 to 32 partitions (a factor of 8) yields an approximately 4-fold increase in

throughput (records/second). We utilize the trueno-elasticsearch-spark-connector

to take advantage of the Sliced Scroll API provided by Elasticsearch (Section §4.2.5).

In this experiment the Spark master is set to Cluster Master and we increase the

number of executors, partitions, and slices by a factor of 4. All executors have 3GB

of memory and 2 cores.

109

C
ita

tio
ns

 -
R
ea

ds

C
ita

tio
ns

 -
W

rit
es

C
ita

tio
ns

 -
R
/W

B
io

gr
id

 -
R
ea

ds

B
io

gr
id

 -
W

rit
es

B
io

gr
id

 -
R
/W

Pok
ec

 -
R
ea

ds

Pok
ec

 -
W

rit
es

Pok
ec

 -
R
/W

0

1000

2000

3000

4000

5000

6000

7000

T
h
ro
u
gh

pu
t(
re
co
rd
s/
s)

Performance

Trueno

Neo4j

Fig. 4.5.: Performance

0 4 8 12 16 20 24 28 32

Executors/Slices

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

T
h
ro
u
gh

pu
t(
re
co
rd
s/
se
c)

×10
5 Trueno Compute Scalability - Pokec Dataset

Trueno Spark Connector Distributed Read

Fig. 4.6.: TruenoDB distributed read on the Pokec dataset.

110

4.4.4 Computation Engine

In these experiments, one machine is reserved as the master while the others are

workers. We evaluated TruenoDB’s Compute Engine with the same datasets used for

the §4.4.2 (see table 4.1). For each dataset, we measure the total read time from the

TruenoDB’s backend. In addition, we create the VertexRDD and EdgeRDD. Then,

we analyze the GraphX graph creation time from a collection of vertices and edges

in an RDD (e.g VertexRDD and EdgeRDD). Finally, we estimate the runtime of two

graph algorithms (e.g., PageRank and Connected Components). PageRank runs 10

iterations as in [60].

We begin by studying the compute engine behavior on a single machine. TruenoDB

and Neo4j implement a Spark connector 17 which uses GraphX as the building block.

Figure 4.7(a) shows the comparison between TruenoDB Compute Engine workflow

and Neo4j (e.g., Neo4j Spark connector). TruenoDB performs similarly to Neo4j

when loading data and computing the Connected Components algorithm. However,

the PageRank algorithm is notable faster in the TruenoDB engine. TruenoDB cre-

ates the VertexRDD and EdgeRDD using the documents retrieved from TruenoDB’s

backend (i.e., Elasticsearch).

We evaluate the Neo4j Mazerunner18 Service which adds a REST API that allows

requesting jobs to Apache Spark GraphX (Figure 4.7(b)). For this experiment, we

install all the components in a virtual machine19. TruenoDB excels in the easy instal-

lation and configuration compared to the setup of three Docker containers required

by Mazerunner. Neo4j is slightly faster when requesting a job to the Spark cluster;

however, algorithms run faster when using TruenoDB (i.e., Mazerunner needs to copy

the results back to HDFS then Neo4j has to copy those into the GraphDB engine).

Not to mention, Neo4j Docker container only supports the version 2.2.1.

17https://github.com/neo4j-contrib/neo4j-spark-connector
18https://github.com/neo4j-contrib/neo4j-mazerunner
19We setup a virtual machine (VMWare) with an Intel Core i7-4700MQ (4 cores @2.4GHz, 6MiB
cache) 4GiB of RAM and a spinning disk. Algorithms run until convergence and the runtime includes
loading the data from TruenoDB and Neo4j. The virtual machine includes the three docker image
deployments (i.e., Hadoop HDFS, Neo4j Graph Database, and Apache Spark.)

111

Data load Components PageRank

Process

0

5

10

15

20

25

30

35

40

T
im

e
(s
)

TruenoDB Compute vs Neo4j

TruenoDB

Neo4j

(a) TruenoDB vs Neo4j.

Job Request CC PageRank

Process

0

5

10

15

20

25

30

35

T
im

e
(s
)

TruenoDB Compute vs Neo4j

TruenoDB

Neo4j + HDFS + Mazerunner

(b) TruenoDB vs Mazerunner.

Fig. 4.7.: Computation time (PageRank and Connected Components algorithms) on
the Biogrid dataset. TruenoDB vs Neo4j.

112

0

2

4

6

8

10

12

14

16

18

20

Process

T
im

e
(s
)

Cr
ea
te
G
ra
ph

Lo
ad
D
at
a

Co
m
po
ne
nt
s

Pa
ge
R
an
k

CC
- C
ac
he
d

PR
- C
ac
he
d

Biogrid

Citations

LDBC Graphalytics

Fig. 4.8.: TruenoDB Compute on Biogrid, Citations, and LDBC (Scale 1) datasets.

In Figure 4.8 we show the computation time on the Citations, Biogrid, and LDBC

Graphalytics20 datasets. We also include the runtime when all data structures are

cached in memory (i.e., the algorithms finish/converge faster). In this test the Spark

master is set to local[*] and we use two executors with 3GB of memory and 2 cores.

Finally, we evaluate TruenoDB against a bigger dataset (e.g., Pokec). This ex-

periment utilizes 34 executors with 3 GB of RAM and 2 cores each. In Table 4.3

and Figure 4.9 we observe that TruenoDB distributed read21 took 271.47 seconds

to retrieve 32 million records from the backend (i.e., 118K records/second). The

PageRank computation took roughly 10.8 minutes. Similarly, the Connected Compo-

nents runtime was 4.92 minutes. Therefore, we exploit the strong scaling performance

guarantees provided by GraphX [60].

20https://github.com/ldbc/ldbc graphalytics
21We use elasticsearch-hadoop due to its maturity.

113

Table 4.3.: Compute Statistics

Compute Statistics (s)

Biogrid

Load data 5.781
Graph creation 4.546
Connected Components 5.273
PageRank 14.981
CC - cached 0.701
PageRank - cached 6.770

Citations

Load data 4.416
Graph creation 3.182
Connected Components 4.438
PageRank 11.951
CC - cached 0.944
PageRank - cached 6.955

Pokec

Load data 271.472
Graph creation 270.119
Connected Components 295.918
PageRank 651.907
CC - cached 37.698
PageRank - cached 350.487

114

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

Trueno Compute - Pokec

Process

T
im

e
(s
)

Lo
ad
D
at
a

Cr
ea
te
G
ra
ph

Co
m
po
ne
nt
s

Pa
ge
R
an
k

CC
- C
ac
he
d

PR
- C
ac
he
d

Pokec

Fig. 4.9.: Distributed read and computation on the Pokec dataset.

There is an extensive comparison between graph analysis platforms in [85]. They

introduce LDBC Graphalytics which consists of six deterministic algorithms and stan-

dard datasets that enable an objective comparison of graph analysis platforms.

4.5 Related Work

4.5.1 Graph Databases

Titan [71] and Neo4j [1,72] have a limited support for graph algorithms (e.g., con-

nected components, PageRank). These graph databases offer mostly graph queries

via pattern matching (i.e., Cypher [72] and Gremlin [73]). TruenoDB utilizes the

Spark GraphX capabilities to provide additional graph processing features (e.g., con-

structing the graph g from Elasticsearch documents and running graph algorithms

on top of g).

TAO is an eventual consistent geographically distributed graph store optimized

for reads [86]. TruenoDB relies on the eventual consistent model of Elasticsearch. For

115

instance, write operations wait for the primary shards to be active before proceeding

(i.e., wait for active shards = 1). This default value can be modified by setting

wait for active shards. TAO was designed specifically to serve the Facebook’s social

graph [86]. TAO does not provide an advanced graph processing API (i.e., analysis

jobs do not execute within TAO requiring off-line graph processing systems). On the

contrary, TruenoDB integrates Spark Job Server and Spark GraphX to provide an

advanced customizable API.

In their promising paper, Dave et al. (2016) discussed GraphFrames as a single

API that includes graph algorithms, pattern matching, and relational queries [87].

They built GraphFrames from previous work in graph analytics using query opti-

mization for pattern matching and declarative APIs for data analytics [87]. Previ-

ously, the implementation of those applications required multiple systems increasing

the complexity and overhead. GraphFrames promises to write a complete optimized

processing pipeline [87]. TruenoDB aims to provide a user-friendly (i.e., easy to use)

scalable graph datastore and compute engine to solve the common analytics pipeline

of current graph databases. TruenoDB integrates GraphX and Spark Job Server to

include graph analytics, a traversal API (e.g., Gremlin [73]) and visualizes the result

through a Web UI.

4.5.2 Visualization and Analysis Tools

With the aim of understanding complex graph interactions, graphic represen-

tations facilitate and expedite the analysis of data. For instance, nodes are more

comfortable or easier to identify when they have a higher number of interactions, or a

higher ranked node (e.g., a common protein, person, paper that interacts with many

others). Consequently, many tools have been developed to allow the visualization

of network data, Cytoscape [74], NetworkX [61], Gephi [75], Sigma [62]. Cytoscape

is an open-source platform for analyzing and visualizing molecular interaction net-

works [74]. Cytoscape does not provide tools to explore a large dataset. Although

116

Cytoscape offers an interactive visualization tool (i.e., Cytoscape.js), Cytoscape fo-

cuses on desktop-based use cases. In [88], they introduced PINV (Protein Interaction

Network Visualizer) that applies prefilters on the data to visualize and analyze protein

interactions. HTML5, JavaScript, SVG (Scalable Vector Graphics), and canvas are

the building blocks of PINV. On the other hand, TruenoDB integrates Sigma [62] and

NetworkX [61]. Sigma is a JavaScript library dedicated to graph drawing. Sigma is a

highly customizable rendering engine (e.g., renders on WebGL or Canvas). Moreover,

TruenoDB includes NetworkX as a single host in-memory compute engine. NetworkX

is a Python language software package for the creation, manipulation, and study of

the structure, dynamics, and functions of complex networks [61].

4.5.3 Graph Processing Frameworks

We briefly describe graph processing frameworks similar to GraphX [60]. For

instance, Trinity [89] is a graph engine built on top of distributed memory storage

infrastructure (i.e., memory cloud). PEGASUS [90] is a graph mining package built

on top of Hadoop. Apache Giraph [4] is an open-source project that utilizes an

iterative vertex-centric programming model similar to Google’s Preguel [91]. Giraph

is built on top of Apache Hadoop’s MapReduce. To overcome the drawbacks of

MapReduce approaches to process large networks, many solutions based on vertex-

centric computation arose (e.g., Pregel [91], GraphLab [76], PowerGraph [89], and

GraphChi [92]). PowerGraph [89] utilizes a programming model known as Gather-

Apply-Scatter (GAS). Preguel programming model utilizes message passing between

vertices in a graph [91]. GraphLINQ is a graph processing framework using a general-

purpose dataflow framework [60].

4.6 Conclusion

We presented TruenoDB a user-friendly (i.e., easy to use) distributed and scal-

able graph datastore and computational engine. We demonstrated TruenoDB flex-

117

ibility and usability through a variety of applications. TruenoDB provided facile

graph analysis and visualization via the Web UI. The integrated distributed graph

computation (i.e., Spark GraphX) is extremely useful when handling large datasets.

We validated TruenoDB excellent performance providing evidence through compar-

isons against state-of-the-art commercial graph database and a variety of datasets

(e.g., biology datasets, social networks, citations networks, and the LDBC bench-

mark). In particular, TruenoDB outperforms Neo4j on write operations by two

orders of magnitude. We demonstrated the desirable TruenoDB scalability guar-

antees using the simple cluster installation and large datasets. We showed that

trueno-elasticsearch-spark-connector provides outstanding distributed read perfor-

mance. TruenoDB and Neo4j provide Spark connectors that allow a practical in-

teraction with GraphX and GraphFrames. TruenoDB aims to provide a straight-

forward highly scalable platform to process distributed graph analytics and queries.

TruenoDB uncomplicated installation and accessible Web UI make this engine a suit-

able candidate for a diverse set of applications ranging from computational science

biology to information retrieval.

4.7 Future Work

We have a long roadmap of features that will be part of forthcoming releases of

TruenoDB. First, we plan to include optimizations and improvements in the drivers.

Then, we will include additional algorithms in the integrated compute engine (e.g.,

Machine Learning algorithms using MLlib, Merging Graphs, Graphframes based al-

gorithms). We plan to improve the traversal API. Next, the automated Spark Cluster

installation and configuration will incorporate options for cluster management tools

(e.g., Mesos). TruenoDB will include integrated authentication and access control

mechanisms. Additionally, upcoming releases include support for dynamic graphs,

compressed querying, a full versioning API and storage optimization, and support for

trusted computations on graphs.

118

Acknowledgments

This work was partially supported by the National Science Foundation Grant

number CCF 1533795, Division of Computing and Communication Foundations under

the XPS program. The list of authors of TruenoDB includes Victor Santos, Servio

Palacios, Edgardo Barsallo, Miguel Rivera, Chih-Hao Fang, Pen Hao, Ananth Grama,

Tyler Cowman, and Mehmet Koyuturk. TruenoDB’s project started in Fall 2015;

experimental results were obtained in Fall 2016. The principal investigator (PI) and

Victor Santos granted permission to use TruenoDB’s write-up for this dissertation.

119

5. MIOSTREAM: AN INTEGRITY-PRESERVING,
PEER-TO-PEER, DISTRIBUTED LIVE MEDIA

STREAMING ON THE EDGE

The work in this chapter has been previously published in Multimedia Tools and
Applications International Journal. DOI: https://doi.org/10.1007/s11042-018-6940-2

The typical centralized cloud model is poorly suited to latency-sensitive applica-

tions requiring low-latency and high-throughput. This paper proposes an integrity-

preserving serverless framework for live-video streaming that runs on the edge of the

network. We present the design, implementation, and evaluation of a novel P2P

service based on WebRTC (web browsers with Real-Time Communications) called

MioStream. MioStream is an open-source alternative for distributed media stream-

ing that runs on the edge of the network without incurring in costly and extensive

CDN infrastructure. We contribute a unique mix of algorithms using WebRTC data

channels. For instance, under network degradation and high-churn environments,

MioStream restructures the topology dynamically. MioStream provides authentica-

tion, privacy, and integrity of video chunks.

This paper exposes a set of micro-benchmarks to measure the quality of service

under network degradation and high churn environment (inducing failures). The

Mesh topology offers the highest goodput per peer; the stalled playback on a node

equals 1.8% of the total video play. Our results show the feasibility of this proof

of concept under high-churn environments. The total stream interruptions in the

topology are not longer than one second under a binomial distributed series of failures.

The integrity check applied to each package includes a considerable overhead and

impact the quality of service.

120

5.1 Overview

Peer-to-Peer (P2P) systems constitute the backbone of a diversity of distributed

implementations (e.g., video streaming, file sharing, and many others) due to their

performance, resiliency, and scalability. In particular, we are interested in an emerg-

ing technology called WebRTC that allows Real-Time Communication (RTC) on top

of the World Wide Web (i.e., through web browsers such as Chrome, Firefox, Opera,

and Edge). In their paper, Rhinow et al. (2014) provided an analysis of the feasibil-

ity of implementing live video streaming into web applications [93]. Although they

offered performance measures, they did not include an open-source repository, nor

they studied the security implications and quality of service under failures. Lopez et

al. (2016) introduced Kurento Media Server, an open-source WebRTC media server

that offers features such as group communication, recording, routing, transcoding,

and mixing [94]. They provided APIs that facilitate the development of web-based

video applications. Lopez et al. did not present an analysis of the quality of service

under failures or security attacks—i.e., an adversarial environment. Similarly, Garcia

et al. (2017) introduced NUBOMEDIA, an open-source cloud platform-as-a-service

(PaaS) designed for WebRTC services [95]. NUBOMEDIA exposes a set of APIs that

facilitate the development of WebRTC applications.

In this paper, we propose MioStream [96] a new distributed peer-to-peer video

streaming system. MioStream takes advantage of emerging technologies to accom-

plish the desired operability. MioStream offers media streaming capabilities on top

of WebSockets, WebRTC, and JavaScript. We identified challenges analogous to the

ones exposed in [97, 98]. For instance, how to deal with peer selection in high churn

and heterogeneous network. MioStream offers authentication and integrity capabili-

ties. For instance, We authenticate every peer against a centralized server, supervisor,

using an authentication protocol based on TLS and DTLS cookies. Once authenti-

cated, peers are monitored, including their connection channels using WebSockets

heartbeats and WebRTC data channel features. In the case of network degradation,

121

the system is capable of restructuring the topology dynamically (i.e., changing ac-

tive receivers or bridges) to obtain the performance in the overall network similar

to [97, 98]. MioStream is an open-source alternative for distributed media streaming

that runs at the edge of the network without incurring costly and extensive CDN

infrastructure.

In summary, our contributions are:

• A personalized object-lookup utilizing WebSockets and WebRTC.

• A novel communication and security layer implemented through the supervisor

as Certification Authority (CA).

• An open source implementation and evaluation of the proposed techniques [99].

• An analysis of the quality of service in the presence of failures and attacks.

• We enhanced previous work on integrity validation of video chunks [100]. We

contribute a unique method applied to live-video streaming.

Through a set of micro benchmarks, our evaluation demonstrates MioStream high-

quality video streaming in the presence of failures.

A brief explanation of the building blocks of the system is in Section 5.2. The key

concepts and architecture of the system are in Section 5.3. We provide an extensive set

of experiments demonstrating the feasibility of our system in Section 5.4. Section 5.5

provides an insight into challenges experienced throughout the development of the

system and future work. We include a discussion of related research and existing

solutions (Section 5.6). Finally, we present our conclusions in Section 5.7.

5.2 Background

In this section, we introduce the essential concepts of the WebRTC stack utilized

to build MioStream. Our discussion is based on [101–105]1.

1We refer the reader to this useful books. You will find a detailed explanation of WebSockets and
WebRTC.

122

5.2.1 WebSockets

WebSockets allow a client and a server exchange message-oriented streams of

text/binary data in a bidirectional way [104]. According to [104], the API provides

the following services:

• WebSockets exposes a message-oriented communication API and allows useful

message framing.

• WebSockets comprises an extensible API and sub-protocol negotiation.

• WebSockets enforce the same-origin policy and connection negotiation.

• WebSockets can interoperate with current HTTP infrastructure.

MioStream utilizes SocketCluster framework [106] to provide WebSocket services.

SocketCluster allows communitation using the client-server model (similar to socket.io)

and group communication via pub/sub channels. Also, this library exposes features

such as automatic reconnects, heartbeats, timeouts, and multi-transport fall-back

functionality as recommended in [104, 105]. SocketCluster design scales vertically—

across multiple CPU cores—and horizontally—across multiple nodes/instances/ma-

chines.

Fig. 5.1.: WebSocket frame [104,107].

WebSocket frame

Figure 5.1 shows a map of a typical WebSocket frame for the RFC6455 [107].

In detail, the first bit FIN indicates if the fragment is the last or final fragment of

123

a message. To indicate the type of frame that is being transferred, the Websockets

frame includes the 4-bit opcode to represent (1) text, (2) binary, or (10) for connection

liveness. For more detail please check [104].

Deploying WebSockets Infrastructure

Since we do not have control over the policy of the client Ci network, MioStream

has to use TLS tunneling over a secure end-to-end connection. Therefore, WebSockets

traffic can circumvent firewalls and intermediate proxies [104]. It is possible to send

security parameters to SocketCluster to allow secure connections.

The following discussion is motivated by [104,105,108].

Performance objectives

• MioStream leverages reliable deployments through secure WebSocket (WSS over

TLS).

• To minimize transfer size, MioStream optimizes the binary payloads.

• To minimize transfer size, MioStream considers compressing UTF-8 content.

• MioStream avoids head-of-line blocking splitting long messages.

• MioStream observes buffered data on the client.

Performance notes

MioStream takes into consideration the performance criteria based on WebSockets’

architecture [104]. For instance, MioStream considers in-order delivery of WebSockets

messages associated with the order of the client’s queue. According to [104], large mes-

sages or queued messages will delay the delivery of messages queued behind it (e.g.,

this is known as head-of-line blocking). MioStream’s application layer can divide large

124

messages into shorter pieces or implement its customized priority queue [104]. As a re-

sult, considering that the application is delivering latency-sensitive data, MioStream

takes care of each message’s payload size.

5.2.2 WebRTC

Web Real-Time Communication (WebRTC) is a mixture of JavaScript APIs, stan-

dards, and protocols, which enables peer-to-peer data, video, and audio sharing be-

tween browsers (peers) [101, 102, 105, 109]. WebRTC transports data over UDP be-

cause latency and timeliness are crucial [101,105].

Fig. 5.2.: WebRTC Protocol Stack [101,104].

WebRTC protocol stack components

Figure 5.2 shows the protocol stack [101,104].

• ICE: Interactive Connectivity Establishment [110]

• STUN: Session Traversal Utilities for NAT [111].

• TURN: Traversal Using Relays around NAT [112].

• SDP: Session Description Protocol [113].

• DTLS: Datagram Transport Layer Security [114]

125

• SCTP: Stream Control Transport Protocol [115]

• SRTP: Secure Real-Time Transport Protocol [116]

To establish and maintain a peer-to-peer connection over UDP, ICE, STUN, and

TURN are required. MioStream includes secure data transfers between peers through

WebRTC; therefore, DTLS is used to encrypt data transfers [104, 105]. SCTP and

SRTP expose multiplexing of different streams. Also, SCPT and SRTP provide

partially-reliable delivery on top of UDP and congestion control.

RTCPeerConnection API

RTCPeerConnection RTCPeerconnection wraps the connection setup, manage-

ment, and state [104].

DataChannel

The peers can exchange arbitrary application data through the data channel

API [104]. MioStream utilizes the data channel API to provide edge creation in

the personalized object lookup. According to [104], each data channel can provide

the following:

• Out-of-order or in-order delivery of messages.

• Partially reliable or reliable delivery of messages.

When setting a time limit or a maximum number of retransmissions the channel

can be configured to be partially reliable [104]. Also, the WebRTC stack will handle

the acknowledgments and timeouts [104].

MioStream deals with the NAT traversal problem using WebRTC capabilities.

Also, MioStream wrapped the PeerJS [117] library to provide WebRTC basic function-

ality and functions (e.g., Communication Layer). For instance, the built-in ICE [110]

protocol performs the required routing and connectivity checks. MioStream’s unique

126

communication and security layer handle the delivery of notifications (signaling) and

initial session management. MioStream integrates the PeerJS library with the com-

munication and security layer.

Session Description Protocol [113]

WebRTC utilizes the Session Description Protocol (SDP) to determine the pa-

rameters of the peer-to-peer connection. SDP describes the session profile; that is,

SDP does not deliver media directly. Also, the Session Description Protocol describes

the properties of a session through an uncomplicated text-based protocol. Finally,

the JavaScript Session Establishment Protocol [118] (JSEP) encapsulates the Session

Description Protocol (SDP); therefore, WebRTC applications do not have to deal

with SDP directly.

Interactive Connection Establishment (ICE) [110]

When establishing a peer-to-peer connection, the peers need to route packets to

each other. In addition, the peer-to-peer connection can fail because the peers can be

in different private networks. To combat this, ICE agents manage this connectivity

complexity. As shown in Figure 5.2, each RTCPeerConnection object contains

an ICE agent. The ICE agent collects the candidates’ port tuples and local IP ad-

dresses. Also, the agent transmits connection keep-alive. Finally, the ICE agent

makes connectivity checks among peers.

5.3 Design and Implementation

5.3.1 Architecture

MioStream is composed of daemons installed with just one command via the

NPM (Node Package Manager [119]). The system has a peer-to-peer architecture

127

which comprises three main components, as shown in Figure 5.3. We describe the

components as follows.

• Broadcaster: The broadcaster is the source of a particular media stream. This

is a multiplatform [120] application which leverages cutting edge web technolo-

gies such as WebRTC, Media Source Extensions [121], and all experimental

components included in the Chromium [122] browser. With all Node.js native

capabilities, the Broadcaster extracts binary data either from a camera/micro-

phone hardware or a pre-encoded WebM [123] container, which can be audio

or video. Finally, the Broadcaster streams the source media via WebRTC data

channels (See §5.2) to the neighbors (e.g., one-hop apart connected peers).

• Receiver: The receiver is an HTML5 web application which receives the de-

sired media stream. Using several technologies present in the Broadcaster (We-

bRTC and Media Source Extensions), the receiver consumes a stream and re-

lays the stream to its neighborhood (neighbors peers).

Fig. 5.3.: MioStream Architecture Diagram.

• Supervisor: The supervisor registers each peer (broadcaster or receiver). The

supervisor monitors every connection to the components in real-time and no-

tifies every relevant change to the corresponding nodes, i.e., disconnection of a

128

peer. The supervisor includes the authentication protocol explained in §5.3.4.

That is, we use the supervisor as a CA (Certification Authority) to take care of

the authentication of every peer facing challenges similar to [124]. The system

enhances the privacy and integrity of the video chunks allowing only authenti-

cated peers to transmit/receive data and connect to streams. We assume that

the peers have a valid public key that the server can validate in the authentica-

tion protocol. Also, the authenticated broadcaster generates keyed SHA-256

(HMAC) to ensure the integrity of video chunks. Therefore, the system allows

the detection of malicious chunks in the broadcast.

After a Broadcaster creates a stream, the supervisor registers and announces

the existence of this new stream to the Receivers. When a receiver chooses

to join the stream, the supervisor registers the new component in the stream

topology. After the insertion of a new receiver in the topology, signaling events

and connection setup connect this new peer to its neighbors directly. This new

data channel creates a path where the stream will flow. Currently, we have

implemented three topologies: Linked List, where viewers are chained one

after another in the order of arrival. Binary Tree, where viewers connect

into a tree structure. Also, we implemented a Mesh topology. The tree and

mesh topologies have the advantage of the scalability and low content delivery

latency. The stream only takes the depth of the tree to reach the last node in

the topology, and the scalability of the overall topology follows the geometric

series: 2n+1 − 1 where n is the depth of the tree.

The following additional component, not part of the architecture, is used for

administrative and experimental purposes.

• Monitor: The monitor is an HTML5 web-tooling interface used to visually

emit commands to the receivers and evaluate the effectiveness of a particular

streaming topology. The monitor is conduct experiments on a streaming topol-

ogy according to the following parameters: network topology for the receivers,

129

number of induced failures per second, number of simulated attacks per second

and probabilistic distribution to generate attacks or failures. Some of the fea-

tures of the monitor include to measure stalled stream events, disconnections,

apply different failure distributions (see §5.4), and visualize the shape of the

topology (usually a binary tree).

The system relies on WebSockets and WebRTC data channels. We use the Socket-

Cluster [106] library for the real-time signaling communication from which we leverage

convenient features such as heartbeats, connection state, and event-driven commu-

nication. The supervisor is continuously listening for connections from broadcasters,

and receivers (e.g., peers). At each disconnection, the supervisor updates the data

structure to balance the load among peers. Also, the supervisor serves as a low-latency

fault-tolerant messenger and certification authority.

5.3.2 Virtual Topologies

One of the key aspects of MioStream is the virtual topologies. The main role of

the virtual topology is to provide a deterministic way of arranging the connections

between nodes (connected peer machines) in the system. When the supervisor com-

ponent is deployed, it arranges the broadcasters and receivers in the desired topology

data structure. In the case of a list, it uses a linked list to store each broadcaster

following a receiver which in turn broadcast the packages to the next node. The flow

of data in the topology is managed by monitoring delays and retransmissions in each

section of the topology. The following is the description of each implemented topology

and how they work:

1. List Topology: The simplest of the topologies is a linked list virtual overlay

where each broadcasting node is connected to a receiver, which in turn is a

broadcaster to the following node. Intuitively, the scaling of this topology is

linear, and failures can be handled by creating connections to successive nodes.

For instance, we can let specify that each node will connect at least to 3 nodes

130

ahead of its current position, this way if a subsequent node fails, the stream can

continue to flow uninterrupted or with little delay. Stalled flows of data due to

asymmetric connection speeds between nodes in the list can be mitigated by

keeping the topology in descending order using connection speed and latency

as the ordering metric.

2. Mesh Topology: The mesh topology is represented as a 2D matrix where

each neighboring cell is a receiver node which consequently transmits the flow

of data to neighboring nodes. This topology offers low latency and scalability

by start the streaming the data from several broadcasters across the 2D ma-

trix. These broadcasters are selected with the main criteria of creating a full

coverage of topology at the moment of transmitting. For example, a broad-

caster starts transmitting the package to all its 8 neighboring nodes(horizontal,

vertical, and diagonal cells of the 2D matrix) and the data will start propagat-

ing like a wave caused by a water droplet. When a packet arrives at a node

which has already received the data sequence, it drops the packet and doesn’t

propagate any further. Intuitively, we can guess that resilience is improved by

how well the broadcaster are distributed across the topology and how well the

packages propagate until they are dropped by overlapping ’waves’. Bottlenecks

and asymmetric propagation speed is mitigated by arranging the broadcaster

and neighboring nodes in a circular shape, i.e. the fastest node in the cen-

ter(broadcaster) and slower nodes at the edges of the propagation wave. A

drawback of this topology is the high complexity to maintain when nodes fail

and the propagation coverage needs to be calculated and rearranged.

3. Tree Topology: The three topology is represented as a binary tree and has

the best scalability of the three used topology in the study. Similar to the

list topology, resilience can be increased by creating preventive connections to

successive nodes. The dual connection of the binary tree makes it convenient to

handle faults since connections can be created crossing the branches and follow

131

protocols to reroute the traffic through those branches. Stalled flow can be

mitigated to implement a max-heap instead of an unordered binary tree, this

way preventing bottlenecks in slow link connected nodes.

These three topologies are a starting point to future and more complex structures

such as a self-balancing directed graphs where the topology is ruled by a tradeoff of

optimality in the data flow in exchange of maintainability in the presence of failures.

Another possibility is to apply machine learning to weight the probability of failure

in certain nodes by inspecting feature vectors of physical, software, and connection

links features, this way optimizing the backup links among the topology.

5.3.3 The Communication Layer

We now explain the communication components that provide signaling features

during a media streaming session. The communication layer abstracts all the burden

of WebRTC, SocketCluster and the Security Library. This layer provides application

transparency to the operations being executed under the hood.

1. Collision Resistant Unique Identifier : Since MioStream wraps the PeerJS li-

brary inside of the communication library, it needs to provide a collision resis-

tant function to generate unique names with negligible probability of collisions.

We use a randomly generated UUID which has 128 bits. The chance that 128

bits of having the same value can be calculated using probability theory (i.e.,

birthday problem), which can be shown to be negligible.

p(n) ≈ 1− e−n2

2∗x where n is the number of bits.

We use this PeerID to ensure unique WebRTC data channels between peers.

2. Public and private key : Every peer has its own RSA private and public key.

We provide a parameter to configure the level of security enforcement among

peers (e.g., key bit length ≥ 2048). These keys are used for the Authentication

1Extending our library to include Elliptic Curve Cryptography is straightforward.

132

Protocol described in the Security Layer. Our security model assumes a trusted

supervisor.

3. Connected Peers : Every peer keeps its neighborhood set similar to [125, 126].

We then forward packets received and/or send to the application layer, the video

chunks received.

4. Signaling Capabilities : Every peer connects to the supervisor using the commu-

nication library. Consequently, this layer handles all the signaling, heartbeats,

and disconnections.

5. WebRTC Data-channels : We want to be able to build a variety of topologies

using our implementation. Hence, the communication library provides a capa-

bility that is the equivalent to creating an edge e(u, v) ∈ E in a graphG = (V,E)

where u and v are authenticated nodes in our network2. Consequently, we can

create a rich set of topologies using the basic building blocks of edges (e.g., data

channels see §5.2) and vertices (e.g., peers, receivers or broadcasters).

5.3.4 Security Layer

In this subsection, we discuss the security guarantees that our system offers.

1. Authentication Protocol : MioStream implements a handshake protocol, as shown

in Figure 5. Although we took some ideas from TLS and DTLS [124]; MioStream

includes the componentType in the topology as a new property.

• MioStream receives a socket connection to its SocketCluster server (super-

visor).

• The supervisor sends the message COLLECT PEER INFO REQUEST.

2In this paper, we use the terms nodes, vertices, and peers interchangeably.

133

Fig. 5.4.: Authentication Finite State Machine.

• The peer replies with a COLLECT PEER INFO RESPONSE, including its PeerID

(used in the PeerJS connection), the Public Key, and a componentType

(Broadcaster or Receiver).

• The supervisor sends its public key to the peer using AUTHENTICATION

REQUEST message3.

• The peer ACKs with the message AUTHENTICATION RESPONSE.

• The supervisor now computes a nonce including two random numbers and

encrypts those numbers using the peers public key. We then send the nonce

using AUTHENTICATION CHALLENGE REQUEST.

• The Peer receives the challenge request, decrypts the nonce, and computes

a number based on two random numbers included in the nonce. The peer

then proceeds to encrypt the response using the supervisor’s public key.

Finally, the peer answer with AUTHENTICATION CHALLENGE RESPONSE.

3Our future work will include a Certification Authority to deal with digital signatures, public keys,
and tokens.

134

• The supervisor now checks the response given by the peers, if matches

the one computed on the server, then the peer has now the state of AU-

THENTICATED and is ready to initiate or receive streams.

2. Integrity Validation of Video Chunks : Habib et al. [100] proposed a probabilis-

tic packet verification protocol. In particular, their One Time Digest Protocol

(OTDP) utilizes a keyed hash to generate digests. Also, they divide the me-

dia file into segments or blocks; each block contains many packets. The server

provides a secret key Ki ∈ K for each segment i. Each supplying peer will

generate digests using the provided keys and segments. Habib et al. motivate

the integrity verification on video chunks presented in this project; therefore, to

provide data integrity during peer-to-peer video streaming, MioStream adopts a

similar approach but with some significant differences and contributions. First,

this project only has a broadcaster for a specific stream. Second, we have im-

plemented a personalized object (stream) lookup. Third, our implementation is

live-oriented; hence we do not know all video-chunks in advance. The security

model does not assume that connecting peers are trustworthy, so MioStream

enforces authentication through the supervisor including a Public Key Infras-

tructure (PKI). Every authenticated peer is allowed to be part of our streaming

sessions. The compute message digests are computed using a keyed SHA-256

(HMAC) and NodeJS Crypto library instead of digital signatures as in [100],

but we use video chunks V C instead of segments. Therefore, we derived the

following digest:

Dij = h(Ki, V Cj)

where Dij is the computed HMAC for the video chunk (V C) j and Ki is the

supervisor’s generated key for stream i.

Our implementation modifies the steps of One Time Digest Protocol (OTDP)

to adapt it to our model as follows:

135

• The peer P0 authenticates itself against the supervisor.

• P0 requests a list of media streams to the supervisor.

• The supervisor provides a set of keys based on the search results.

• When the broadcaster (Pi) starts the streaming, it sends an initialization

packet to P0.

• The broadcaster (Pi) sends both data and digests to P0.

• P0 verifies random video chunks. Furthermore, P0 can verify every packet

depending on the threshold defined as a parameter.

The broadcaster computes the hash of every video chunk and sends the packet

via the data channels connected to its receivers. Next, the receiver checks for

the integrity of the packet and compares with the digest sent by the broadcaster

or source of the media stream. In contrast to [100], we do not know all chunks

of media in advance. Therefore, MioStream cannot compute random message

digests and send those to every peer in our topology. We compute message di-

gests of the chunks generated by the application layer. The receiver can verify

at random one message digest to identify forgeries. MioStream includes a prob-

abilistic approach using a uniform random number generator and comparing

those generated numbers against a threshold defined as a parameter. The size

of the message digests are 44 bytes (Base64 encoded).

5.3.5 Discussion

The system has several limitations that are mainly due to the client-server na-

ture of web technologies. Currently, we can use two execution points: Any browser’s

ECMAScript run-time with WebRTC support, where users go to a website and auto-

matically setup all the execution environment, and a Node.js application (supervisor)

that currently runs on top of the V8 engine with I/O and OS’s system call capabil-

ities. The browser run-time is limited to its intrinsically high failure rate, especially

136

in mobile devices. Although MioStream lacks fault tolerance capabilities, the imple-

mentation is flexible enough to include more SocketCluster instances that can pro-

vide redundancy among supervisors (i.e., the communication layer can be extended

to accommodate fault tolerance features). MioStream offers authentication and data

integrity protocols; however, security poses a significant challenge because of the usu-

ally heterogeneous and high-churn network. Still, we can alleviate the attack surface

utilizing trusted hardware in the supervisor and relay points.

5.4 Experiments

The experiments evaluate two main aspects of the system: video streaming quality

under failures and integrity verification of video chunks overhead. First, we injected

failures into the network to simulate how users would abandon the video stream (i.e.,

we use three distributions Binomial, Uniform, and Poisson). Hence, P2P connections

between nodes in the network topology are aborted and packets get lost, ultimately

causing stalled playbacks on other peers. The quality of the services was evaluated

in terms of stalled playback and goodput metrics, as we will refer later. Stalled

playbacks refer to delays or pauses in the viewer. Goodput measures the number

of bytes received by the application layer (video chunks). Topology simulates the

connections among the peers (e.g., linked list, tree, mesh). Second, we evaluated

the performance of our the integrity verification of video chunks implemented in the

security layer.

5.4.1 Experiment Setup

The experiment setup consisted of 83 machines with different specifications, rang-

ing from four to eight 2.0 GHz cores, 8GB of RAM, connected to a 1Gbps local area

network. All 83 machines act as receivers. In another machine, we set up the supervi-

sor and the monitor. Finally, we stream the media from a separate machine running

137

Table 5.1.: Media Information of the WebM video used for the experiment

Media Information

General

Format WebM
Format version Version 2
File size 24.0 MiB
Duration 2mn 53s
Overall bit rate mode Variable
Overall bit rate 1159 Kbps

Video

Format VP8
Width 1920 pixels
Height 1080 pixels
Display aspect ratio 16:9
Frame rate mode Constant
Frame rate 29.970

Audio

Format Vorbis
Bit rate 128 Kbps
Channel(s) 2 channels
Sampling rate 44.1 KHz

the broadcaster. Hence, we use a total of 85 machines for all experiments. In table 5.1,

we can see the technical specification of the video streamed for all experiments.

Each experiment is repeated on three different network topologies: linked list,

tree and mesh. The monitor component has the capability of visualizing how nodes

connect throughout the whole experiment. Basically, in the first set of experiments,

we are particularly interested in observing the quality of service of the system under

a non-reliable network (we use a pessimistic method of inducing failures).

5.4.2 Method of injecting failures

We define a failure as a disconnection of a viewer from the network. Since each

viewer also forward the video to another peer, the flow of the stream is interrupted

with every failure. When a viewer disconnects from the stream, that same node is

reconnected to the network as a new incomer viewer. Hence, the network size is kept

constant during the whole experiment. The rate of failures varies from one to five.

138

To better evaluate the behavior of the system in different failures scenario, we

induce the failures based on three probability distribution: binomial, uniform, and

Poisson. The monitor use the distribution to choose the failure peer from the net-

work topology. For each distribution and network topology, we ran five experiments,

varying the failure rate from one to five failures per second. The experiment consist

on stream one minute of video across all the receivers. We took four samples in order

to rule out spontaneous network congestion and processing load fluctuations.

The metrics used to evaluate the behavior of the system were:

• Stalled: Overall stalled playbacks in the stream during the experiment.

• Total Stalled Time: Overall playback stalled time during the experiment.

• Average Stalled Time: Overall average stalled time during the experiment.

• Goodput. Average goodput, or bytes received per second, on each peer during

the experiment.

These metrics all together will describe the quality of the stream on different

failure rates and scenarios.

5.4.3 Results

Figures 5.5-5.10 show the results for the stalled counter and stalled time for each

distribution and network topology, varying from one to five failures per second. Under

the uniform distribution, every peer in the topology has the same probability to fail

during the experiment. As we can see in the figures, the stalled counted and the total

stalled time experiences a gradual increment as the failure rate increases.

The binomial distribution induces failures mostly at the center of the topology.

The failure peers were selected using 20 trials with a 80% of success probability. As

we can observe, in the Figures 5.5-5.10, both stalled counter and total stalled time are

very low compared to those values in the uniform distribution experiments. The low

139

Fig. 5.5.: Linked list topology under induced failures (Uniform, Binomial, and Poisson
distribution). Average stalled time of playback per peer.

stalled counter can be explained by analyzing the following scenario: A broadcaster

sends a chunk of the media through all the topology at time t1, and let say that this

media chunk reaches the leaf nodes in the topology after n milliseconds of latency. If

the binomial failure experiment induces failures at the center of the topology, it may

be common that the chunks traveling the topology are in transit before the center,

or after the center at the moment of failure. Since the chunk, if already delivered to

the leaves or are before the center, there won’t be stalled playbacks.

Finally, with a Poisson distribution the stalled counter and stalled time also

gradually increments with the number of failures. In the sense of the location of the

induced failure in the topology, this distribution behaves similarly to the binomial but

closer to the root or broadcaster instead of the middle of the topology. Therefore,

the values are higher than the other two distributions, since failures closer to the

broadcast (root) impact more peers in the topology. Each faulty peer was chosen

with a mean of 83/2 (half number of nodes in the topology).

140

Fig. 5.6.: Linked list topology under induced failures (Uniform, Binomial, and Poisson
distribution). Average stalled counter per peer.

Fig. 5.7.: Tree topology under induced failures (Uniform, Binomial, and Poisson
distribution). Average stalled time of playback per peer.

Fig. 5.8.: Tree topology under induced failures (Uniform, Binomial, and Poisson
distribution). Average stalled counter per peer.

141

Fig. 5.9.: Mesh topology under induced failures (Uniform, Binomial, and Poisson
distribution). Average stalled time of playback per peer.

Fig. 5.10.: Mesh topology under induced failures (Uniform, Binomial, and Poisson
distribution). Average stalled counter per peer.

142

5.4.4 Scalability and Goodput

The Figure 5.11 compares the resilience of each topology varying the failure rate.

For the analysis, we choose the uniform distribution to have an equal probability of

failure for each node of the topology. The viewers in the linked list topology experience

the worst quality of service among the three topologies. A failure on this topology

has the more significant impact since it affects the higher number of peers (recall that

each peer is serially connected with each other). For instance, a failure on a peer close

to the source (broadcaster) requires reconfiguring most of the network. The stalled

count and the stalled time for the linked list topology at least double the values of

the other two topologies. The stalled time per peer during the whole experiment goes

from 2807 ms to 7325 ms for zero and five induced failures respectively.

The service quality increases drastically with more scalable topology like a tree.

This topology is more resilient to failures and offers a shorter reconfiguration time in

the presence of disconnection. However, the topology is highly vulnerable to failures

near the root or source (broadcaster), as we observed earlier. The stalled time in this

topology varies from 169 ms (an order of magnitude less than the linked list topology)

to 2410 ms. However, the best quality of service is offered by the mesh topology. Even

though the tree and mesh topology behave similar with minimal disconnections, the

mesh topology is more robust to failures. The mesh offers faster reconfiguration and

overcomes the vulnerability to failures near the source by providing more alternative

connection than the tree topology. The peers in the mesh topologies experience fewer

stalls with respect the other two topologies, and the average stalled time is less than

half of the respective value in a tree. The stalled time goes from 169 ms (similar than

tree topology) to 1093 ms. Furthermore, as we can observe from Figure 5.12, the

mesh network offers the highest goodput per peer, which is 10% than the goodput on

the tree topology.

143

Fig. 5.11.: Scalability under induced failures (Uniform, Binomial, and Poisson distri-
bution) according to network topology. (a) average stalled time of playback per peer;
(b) average stalled counter per peer.

144

Fig. 5.12.: Goodput (bytes per second) under induced failures using the uniform
distribution.

5.4.5 Integrity Validation of Video Chunks Overhead

We now discuss the total number of stalled video chunks due to the integrity

validation. In Figure 5.13, 5.14 we can observe different scenarios using thresholds4

starting from 10% up to 50%. The average delayed video chunks increase according to

the threshold when the probability limit was below 10 percent the quality of service

improved considerably.

Fig. 5.13.: Average Number of Stalled Video Chunks per Threshold.

4The threshold represents the probability of the integrity analysis of a video chunk.

145

Fig. 5.14.: Total Stalled Time per Threshold.

5.4.6 Security Layer Overhead

Experimental Setup

Single-machine experiments were run using a machine with Intel Core i7 (4 cores

@2.8GHz, 8MiB cache) with 16GiB of RAM. We tested the NodeJS Crypto Li-

brary [127].

HMAC

The experiment consists of 10 runs of HMAC instantiations and 10 HMAC digests

generation. The figure 5.15 shows the overhead caused by this library per HMAC

digest generation.

5.4.7 Analysis

The main contribution of our work is to expose a proof of concept of a decen-

tralized (in the sense of content distribution) of a media content streaming using

peer-to-peer communication. Also, we demonstrated that it is feasible to maintain

considerably good quality in exchange for resource cost and network overhead. All

experiments with different distributions and failure rates aimed to simulate real-life

failure scenarios, and how the system will behave in such extreme conditions. So

146

Fig. 5.15.: HMAC setup and digest generation.

far, we have shown in figures 5.5-5.10, how the streaming quality is affected and how

stalled playbacks scale as failure rate increases. Furthermore, the average stalled time

in the overall topology is below one second in most scenarios, independent of the dis-

tribution. Hence, the total stream interruptions in the topology are not longer than

one second, and in most cases are milliseconds which can be tolerated and perhaps

be so brief that are not even perceived by the viewer.

Besides, the study offers a comparison between different network topologies, high-

lighting the benefits and drawbacks of each one. As shown in Figures 5.11- 5.12, the

mesh topology is more robust to failures than the other topologies analyzed, offering

a higher goodput and fewer stalled playbacks. Moreover, the stalled playback on a

node equals 1.8% of the total video play. The amount is insignificant if we take into

consideration that the experiments aimed to simulate extreme conditions, with as

many as five failures per seconds. Finally, the integrity check includes a considerable

overhead; hence an acceptable threshold will be lower than ten percent of the total

of chunks.

147

5.4.8 Use cases

We have shown how to maintain considerable good quality in a live stream topol-

ogy using mainly three components: supervisor, broadcaster, receivers. We are pre-

senting our system in the context of live media streaming. On the other hand, there

is no reason why this same concept cannot apply to other scenarios which also relies

on CDN to distribute content. Some of the potential scenarios to apply the same

architecture are:

• Mobile applications content distribution: Recently, many mobile applications

(i.e., social media), distribute media content in a graph fashion. I.e., friends to

friends. This case will be even simpler than our scenario since the stream of

content is not real-time. Implementing a similar architecture would significantly

reduce the cost of scale-out large mobile applications which need to distribute

media content.

• Software Updates : Modern software, such as those built with Electron [120],

supports hot updates, meaning that the application can be downloaded in the

background and installed inside of a sandbox without the need of natively unin-

stall and install a different binary. The same concept applies to distributed hot

updates without requiring large content distribution networks.

5.5 Future Work

In the experiments section, we showed the potential of our system. However, the

system should have many other qualities to be considered robust. We aim to improve

the quality of the streaming further and prevent stalled playbacks. First, MioStream

will include high-availability in case of failures through supervisor replication in our

topology. Second, MioStream’s communication layer will detect relay points through

machine learning techniques. The relay points aim to avoid stalled playbacks and

148

congested paths. Finally, MioStream will provide new enhancements in the security

layer (e.g., Elliptic Curve Cryptography).

5.6 Related Work

MioStream shares some characteristics as Peer2View [128]. For example, Peer2-

View is built on top of UDP-based transport library which provides reliability and se-

curity guarantees. Also, they authenticate their users against a central authority (e.g.,

in our case the supervisor). They provide encryption using SSL and integrity. How-

ever, there are many differences between MioStream and Peer2View; the latter solves

the NAT problem with NATCracker [128], the former uses WebRTC, ICE, STUN

and TURN. Moreover, Peer2View is a commercial peer-to-peer live video streaming

(P2PLS) using Content Distribution Network (CDN). In contrast, MioStream is an

Open Source system.

We now compare against an Energy-Efficient Mobile P2P Video Streaming [129].

Their goal is to minimize and balance the energy consumption of participating devices

in the video streaming session. Similarly, our goal is to provide the best quality of

video streaming across all participants of our video streaming session balancing the

traffic in the network using data structures to provide congestion control (maximizing

network utilization). Wichtlhuber et al. have energy consumption as its primary

goal; we can extend our vision and minimize the usage of mobile devices to avoid

degradation of our network and maximize battery life in mobile devices.

We based much of our work on PROMISE and CollectCast [97,98,100]. However,

there are many important differences. For instance, we assume constant bandwidth

for each peer (e.g., we do not have the notion of partial bandwidth contribution,

MioStream uses all bandwidth available on the WebRTC data channel), and there

is only one broadcaster for every stream. Available streams are provided by the

supervisor to the receivers. In [97, 98] they exploit the properties of the underlying

network in which one receiver can collect data from multiple senders. PROMISE is

149

independent of the underlying P2P network. Therefore, PROMISE can be deployed

using Pastry [125], Chord [130], and CAN [131]. MioStream depends on WebSockets

and WebRTC architecture; the supervisor exposes the object lookup. Furthermore,

MioStream implements its personalized object lookup, called Stream Manager.

In their paper, Rhinow et al. provided an analysis of the feasibility of implementing

live video streaming into web applications [93]. Although they offered performance

measures, they did not include an open source repository, nor they studied the security

implications and quality of service under failures. MioStream exposes an analysis of

QoS in the presence of failures. Lopez et al. introduced Kurento Media Server an

open source WebRTC media server that offers features such as group communication,

recording, routing, transcoding, and mixing [94]. They provide APIs that facilitates

the development of web-based video applications. Lopez et al. did not present an

analysis of the quality of service under failures or security attacks—i.e., an adversarial

environment. Garcia et al. introduced NUBOMEDIA an open source cloud platform

as a service (PaaS) designed for WebRTC services [95]. NUBOMEDIA exposes a set

of APIs that facilitate the development of WebRTC applications.

5.7 Conclusion

An increasing number of companies require serverless privacy-preserving frame-

works for live-video streaming. We presented the design, implementation, and evalua-

tion of a novel P2P service based on WebRTC (web browsers with Real-Time Commu-

nications) called MioStream. MioStream directly targets this essential and practical

application. This paper contributes an open-source alternative for distributed me-

dia streaming that runs on the edge of the network without incurring in costly and

extensive CDN infrastructure. We contributed a unique mix of algorithms using We-

bRTC data channels. Also, under network degradation and high-churn environments,

MioStream restructures the topology dynamically. MioStream provides authentica-

tion, privacy, and integrity of video chunks.

150

This paper exposed a set of micro-benchmarks to measure the quality of service

under network degradation and high churn environment (inducing failures). Failures

are induced in the topology using three distributions (e.g., Uniform, Binomial, and

Poisson) and three network topologies such as mesh, tree, and linked list. The Mesh

topology offers the highest goodput per peer; the stalled time goes from 169 ms to

1093 ms, the stalled playback on a node equals 1.8% of the total video play. Our

results show the feasibility of this proof of concept under high-churn environments.

We conclude that the total stream interruptions in the topology are not longer than

one second under the binomial distribution, and in most cases are milliseconds. The

integrity check includes a considerable overhead.

151

6. CONCLUSION

In this dissertation, we have introduced a lineage of research that has proposed moving

the computation kernels out of the traditional cloud computation model to provide

practical frameworks that compute on (un)encrypted graph-structured data. Further,

we also examined the cloud-model drawbacks related to latency, throughput, and pri-

vacy. Similarly, this dissertation provided an analysis of the current solutions for the

supply chain that rely on blockchain technologies as a building block; we provided

a practical solution uniquely utilizing current techniques to accomplish auditable,

oblivious, and automated certification process in the supply chain. Additionally, we

analyzed state-of-the-art graph data stores and their shortcomings related to usability

and privacy. We investigated the access locality exhibited by traversal algorithms on

top of the graph model to present novel layout algorithms that can provide authentica-

tion and auditability features. These techniques and derived open-source frameworks

have introduced new auditable, automated, oblivious, and privacy-preserving meth-

ods for use cases in which the preservation of graph-data ownership is imperative.

To address the real-world challenge of certification frameworks that preserves data

ownership in the supply chain, we presented AGAPECert. AGAPECert is an au-

ditable, generalized, privacy-enabling certification framework that protects the con-

fidentiality of data, participants, and code. AGAPECert utilizes a unique mix of

blockchain technologies, trusted execution environments, and a real-time graph-based

API to define for the first time Oblivious Smart Contracts (OSCs) that generate

auditable Private Automated Certifications (PACs). AGAPECert offers pragmatic

performance and is generalizable to many use cases and data types. AGAPECert has

a significant impact providing an open source [49] framework that can be adopted as

a standard in any regulated environment to keep sensitive data private while enabling

an automated workflow.

152

AuditGraph.io introduced an auditable, authenticated, and blocked graph process-

ing model. AuditGraph.io exploits the structure of the network to generate blocked

individual authenticated sets with high-locality. AuditGraph.io utilizes the structure

of the access hierarchy (authentication graph) to define the ordering of blocks and

entities in the disk or memory layout. A similarity graph with edges representing

the relationship between authenticated sets (edge betweenness centrality as weight)

determines the final ordering of blocks in shards or memory blocks. AuditGraph.io

contributes auditable computation on top of the graph-model utilizing trusted exe-

cution environments and blockchain technologies.

We address the usability challenges presented by graph data stores introducing

TruenoDB. TruenoDB is a user-friendly (i.e., easy to use) distributed and scalable

graph datastore and computational engine. We demonstrated TruenoDB flexibility

and usability through a variety of applications. TruenoDB provided facile graph

analysis and visualization via the Web UI. The integrated distributed graph compu-

tation (i.e., Spark GraphX) is extremely useful when handling large datasets. We

validated TruenoDB excellent performance providing evidence through comparisons

against state-of-the-art commercial graph databases and a variety of datasets (e.g.,

biology datasets, social networks, citations networks, and the LDBC benchmark).

Finally, MioStream presented the design, implementation, and evaluation of a

new P2P service based on WebRTC (web browsers with Real-Time Communications)

called MioStream. MioStream contributes an open-source alternative for distributed

media streaming that runs on the edge of the network without incurring costly and

extensive CDN infrastructure. We contributed a unique mix of algorithms using We-

bRTC data channels. Also, under network degradation and high-churn environments,

MioStream restructures the topology dynamically using a graph-based representation

in the supervisor. MioStream provides authentication, privacy, and integrity of video

chunks.

In conclusion, the techniques for auditability, authentication, privacy-preserving

computation, and trust model presented in this dissertation highlight the impact-

153

ful advantages of all these solutions. AGAPECert proved our work to be practi-

cal; moreover, we expect the adoption of our solution in parts of the supply chain.

Similarly, despite an in-memory only implementation (e.g., in a docker container),

AuditGraph.io has a significant potential to provide authentication and auditability

enhancements for graph datastores.

REFERENCES

154

REFERENCES

[1] “Neo4j.” [Online]. Available: http://neo4j.com

[2] “JanusGraph (release 0.5.2),” https://janusgraph.org/, Apr. 2020, online.

[3] “TruenoDB.” [Online]. Available: https://github.com/TruenoDB

[4] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan, “One
Trillion Edges : Graph Processing at Facebook-Scale,” Vldb, vol. 8, no. 12, pp.
1804–1815, 2015.

[5] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph compu-
tation on just a pc,” in Proceedings of the 10th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI 2012. USENIX Association,
2012, pp. 31–46.

[6] Y. Xia, L. Nai, and J. H. Lai, “Towards Balance-Affinity Tradeoff in Concurrent
Subgraph Traversals,” Proceedings - 2015 IEEE 29th International Parallel and
Distributed Processing Symposium, IPDPS 2015, pp. 936–945, 2015.

[7] “ArangoDB,” https://www.arangodb.com/, Apr. 2020, online.

[8] “Neo4j security checklit,” https://neo4j.com/docs/operations-
manual/current/security/checklist/, Apr. 2020, online.

[9] “ArangoDB Security,” https://www.arangodb.com/why-arangodb/arangodb-
enterprise/arangodb-enterprise-security/, Apr. 2020, online.

[10] “IBM Food Trust,” https://www.ibm.com/blockchain/solutions/food-trust,
2019, [Online; accessed April 16, 2019].

[11] B. Pirus, “BeefChain receives first USDA certification for a blockchain com-
pany,” https://www.forbes.com/sites/benjaminpirus/2019/04/25/beefchain-
receives-first-usda-certification-for-a-blockchain-company/#3f678c6c7607,
2019, [Online; accessed April 27, 2019].

[12] Lowry, “Lowry Solutions Sonaria Blockchain Platform: Making IIoT into
Blockchain,” https://lowrysolutions.com/, 2019.

[13] Ripe, “Ripe.io: Blockchain of Food,” http://ripe.io, 2019.

[14] OriginTrail, “OriginTrail: Blockchain-powered Data Exchange Protocol for In-
terconnected Supply chains,” http://origintrail.io, 2019.

[15] SAP, “SAP: Blockchain Service,” https://www.sap.com/products/leonardo/blockchain.html,
2019.

155

[16] M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti, “Blockchain and
trusted computing: Problems, pitfalls, and a solution for hyperledger fabric,”
2018.

[17] J. Ekberg, K. Kostiainen, and N. Asokan, “The untapped potential of trusted
execution environments on mobile devices,” IEEE Security Privacy, vol. 12,
no. 4, pp. 29–37, July 2014.

[18] V. Costan and S. Devadas, “Intel SGX Explained,” Cryptology ePrint Archive,
Report 2016/086, 2016.

[19] W. Dai, C. Dai, K. R. Choo, C. Cui, D. Zou, and H. Jin, “Sdte: A secure
blockchain-based data trading ecosystem,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 725–737, 2020.

[20] M. Russinovich, “Announcing the Confidential Consortium Blockchain Frame-
work for enterprise blockchain networks,” https://azure.microsoft.com/en-
us/blog/announcing-microsoft-s-coco-framework-for-enterprise-blockchain-
networks/, 2017, [Online; accessed June 10, 2019].

[21] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and I. Sto-
ica, “Opaque: An Oblivious and Encrypted Distributed Analytics Platform,”
Proceedings of the 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2017.

[22] Trellis, “The Trellis Framework,” https://github.com/trellisfw, 2019.

[23] OADA, “The Open Ag Data Alliance: a API framework for automated, cross-
industry data exchange,” https://github.com/oada, 2019.

[24] Intel, “Intel Software Guard Extensions Documentation,”
https://software.intel.com/en-us/articles/intel-sgx-web-based-training, 2015.

[25] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of Applied
Cryptography, 1st ed. Boca Raton, FL, USA: CRC Press, Inc., 1996.

[26] Intel, “Intel Software Guard Extensions (Intel SGX) SDK for Linux* OS,”
https://01.org/intel-softwareguard-extensions, 2019.

[27] ——, “Intel Enhanced Privacy ID Ecosystem,” https://intel-epid-
sdk.github.io/ecosystem/, 2017.

[28] “Intel SGX DCAP (release 1.6),” https://download.01.org/intel-sgx/sgx-
dcap/1.6/linux/docs/, Apr. 2020, intel.

[29] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
http://bitcoin.org/bitcoin.pdf, 2008.

[30] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Proceedings
of the Third Symposium on Operating Systems Design and Implementation,
ser. OSDI ’99. Berkeley, CA, USA: USENIX Association, 1999, pp. 173–186.
[Online]. Available: http://dl.acm.org/citation.cfm?id=296806.296824

[31] D. Wood, “Ethereum: A Secure Decentralized Generalized Distributed Ledger,”
2014.

156

[32] Trellis, “Trellis Authorization Protocol,” https://github.com/OADA/oada-
docs/blob/master/rest-specs/Authentication and Authorization.md, 2016.

[33] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution,” in 27th USENIX Security Symposium (USENIX Security 18). Bal-
timore, MD: USENIX Association, Aug. 2018, p. 991–1008. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck

[34] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg, “Meltdown: Reading kernel memory from user space,”
in 27th USENIX Security Symposium (USENIX Security 18). Baltimore,
MD: USENIX Association, Aug. 2018, pp. 973–990. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

[35] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution,” in 2019 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 2019, pp.
142–157.

[36] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “Obliviate: A data oblivious
filesystem for intel sgx,” Network and Distributed System Security Symposium,
2018.

[37] Y. Xiao, M. Li, S. Chen, and Y. Zhang, “Stacco: Differentially analyzing side-
channel traces for detecting ssl/tls vulnerabilities in secure enclaves,” in Proceed-
ings of the 2017 ACM SIGSAC Conference on computer and communications
security, ser. CCS ’17. ACM, 2017, pp. 859–874.

[38] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang,
and C. Gunter, “Leaky cauldron on the dark land: Understanding memory side-
channel hazards in sgx,” in Proceedings of the 2017 ACM SIGSAC Conference
on computer and communications security, ser. CCS ’17, vol. 2017. ACM,
2017, pp. 2421–2434.

[39] “L1 Terminal Fault - Security Advisory,” https://software.intel.com/security-
software-guidance/software-guidance/l1-terminal-fault, Apr. 2020, intel.

[40] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation, Stan-
ford University, Stanford, CA, USA, 2009, aAI3382729.

[41] P. Paillier, “Public-key cryptosystems based on composite degree residuosity
classes,” in Proceedings of the 17th International Conference on Theory
and Application of Cryptographic Techniques, ser. EUROCRYPT’99. Berlin,
Heidelberg: Springer-Verlag, 1999, pp. 223–238. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1756123.1756146

[42] A. Paverd, A. Martin, and I. Brown, “Modelling and Au-
tomatically Analyzing Privacy Properties for Honest-but-Curious
Adversaries,” https://www.cs.ox.ac.uk/people/andrew.paverd/casper/casper-
privacy-report.pdf. [Online]. Available:
https://www.cs.ox.ac.uk/people/andrew.paverd/casper/casper-privacy-
report.pdf

157

[43] “Microsoft SEAL (release 3.5),” https://github.com/Microsoft/SEAL, Apr.
2020, microsoft Research, Redmond, WA.

[44] “OpenEnclave,” https://github.com/openenclave/openenclave, 2020, [Online;
accessed April 20, 2020].

[45] M. Zaharia, M. Chowdhury, T. Das, and A. Dave, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster comput-
ing,” NSDI’12 Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation, pp. 2–2, 2012. [Online]. Available:
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

[46] O. Weisse, V. Bertacco, and T. Austin, “Regaining lost cycles with hotcalls: A
fast interface for sgx secure enclaves,” in 2017 ACM/IEEE 44th Annual Inter-
national Symposium on Computer Architecture (ISCA), vol. 45, no. 2. ACM,
2017, pp. 81–93.

[47] “Chai NPM Library,” https://www.chaijs.com/, 2020, [Online; accessed April
20, 2020].

[48] “Mocha NPM Library,” https://mochajs.org/, 2020, [Online; accessed April 20,
2020].

[49] AgapeCert, “AGAPECert,” https://github.com/agapecert, 2020.

[50] A. Yasar, B. Gedik, and H. Ferhatosmanolu, “Distributed block formation and
layout for disk-based management of large-scale graphs,” Distributed and Par-
allel Databases, vol. 35, no. 1, pp. 23–53, 2017.

[51] P. Xie and E. P. Xing, “Cryptgraph: Privacy preserving graph analytics
on encrypted graph,” CoRR, vol. abs/1409.5021, 2014. [Online]. Available:
http://arxiv.org/abs/1409.5021

[52] I. Hoque and I. Gupta, “Disk layout techniques for online social network data,”
IEEE Internet Computing, vol. 16, no. 3, pp. 24–36, 2012.

[53] R. Soulé and B. Gedik, “RailwayDB: adaptive storage of interaction graphs,”
VLDB Journal, vol. 25, no. 2, pp. 151–169, 2016.

[54] A. Kundu and E. Bertino, “How to authenticate graphs without
leaking,” Proceedings of the 13th International Conference on Ex-
tending Database Technology, pp. 609–620, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1739041.1739114

[55] M. U. Arshad, A. Kundu, E. Bertino, K. Madhavan, and A. Ghafoor, “Security
of graph data,” Proceedings of the 4th ACM conference on Data and application
security and privacy - CODASPY ’14, pp. 223–234, 2014. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2557547.2557564

[56] A. Kundu and E. Bertino, “Privacy-preserving authentication of trees and
graphs,” International Journal of Information Security, vol. 12, no. 6, pp. 467–
494, 2013.

[57] E. Stefanov, M. van Dijk, E. Shi, T.-H. H. Chan, C. Fletcher, L. Ren, X. Yu,
and S. Devadas, “Path oram: An extremely simple oblivious ram protocol,”
2012.

158

[58] S. Palacios, A. Ault, J. V. Krogmeier, B. Bhargava, and C. G. Brinton,
“Agapecert: An auditable, generalized, automated, and privacy-enabling certi-
fication framework with oblivious smart contracts,” Forthcoming, submitted.

[59] “Elasticsearch.” [Online]. Available: https://github.com/elastic/elasticsearch

[60] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica, “GraphX : Graph Processing in a Dis-
tributed Dataflow Framework,” 11th USENIX Symposium on Op-
erating Systems Design and Implementation, pp. 599–613, 2014.
[Online]. Available: https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/gonzalez

[61] “NetworkX.” [Online]. Available: https://networkx.github.io/

[62] “Sigma.” [Online]. Available: http://sigmajs.org/

[63] M. Girvan and M. E. J. Newman, “Community structure in so-
cial and biological networks,” Proceedings of the National Academy of
Sciences, vol. 99, no. 12, pp. 7821–7826, 2002. [Online]. Available:
http://www.pnas.org/cgi/doi/10.1073/pnas.122653799

[64] G. Chartrand and P. Zhang, A First Course in Graph Theory, ser.
Dover books on mathematics. Dover Publications, 2012. [Online]. Available:
https://books.google.com/books?id=ocIr0RHyI8oC

[65] S. Palacios, K. Solaiman, P. Angin, A. Nesen, B. Bhargava, Z. Collins, A. Sipser,
M. Stonebraker, and J. Macdonald, “Wip-skod: A framework for situational
knowledge on demand,” in Heterogeneous Data Management, Polystores, and
Analytics for Healthcare. Springer, 2019, pp. 154–166.

[66] OADA, “OADA cache,” https://github.com/OADA/oada-cache. [Online].
Available: https://github.com/OADA/oada-cache

[67] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[68] “METIS.” [Online]. Available: http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

[69] A.-L. Barabasi and R. Albert, “Emergence of scaling in random networks,”
Science (Washington), vol. 286, no. 5439, pp. 509–512, 1999. [Online].
Available: http://search.proquest.com/docview/743701710/

[70] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford Large Network Dataset
Collection,” 2014. [Online]. Available: https://snap.stanford.edu/snap/

[71] “Titan distributed graph database.” [Online]. Available:
http://thinkaurelius.github.io/titan/

[72] J. Webber, “A Programmatic Introduction to Neo4j.”

[73] M. A. Rodriguez, “The Gremlin Graph Traversal Machine and Language,”
2015. [Online]. Available: https://arxiv.org/abs/1508.03843

[74] “Cytoscape.” [Online]. Available: http://www.cytoscape.org/

159

[75] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An Open Source
Software for Exploring and Manipulating Networks,” Third International
AAAI Conference on Weblogs and Social Media, pp. 361–362, 2009. [Online].
Available: http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154

[76] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “GraphLab: A New Framework for Parallel Machine Learning,”
Conference on Uncertainty in Artificial Intelligence, 2010. [Online]. Available:
http://arxiv.org/abs/1006.4990

[77] M. Malak and R. East, Spark GraphX in Action. Manning, 2016.

[78] Ooyala, “Spark Job Server.” [Online]. Available: https://github.com/spark-
jobserver/spark-jobserver

[79] Apache, “GraphX Programming Guide.” [Online]. Available:
https://spark.apache.org/docs/latest/graphx-programming-guide.html

[80] A. Chatr-Aryamontri, R. Oughtred, L. Boucher, J. Rust, C. Chang, N. K. Kolas,
L. O’Donnell, S. Oster, C. Theesfeld, A. Sellam, C. Stark, B. J. Breitkreutz,
K. Dolinski, and M. Tyers, “The BioGRID interaction database: 2017 update,”
Nucleic Acids Research, vol. 45, no. D1, pp. D369–D379, 2017.

[81] Biogrid, “Biological General Repository for Interaction Datasets.” [Online].
Available: https://thebiogrid.org/

[82] M. Malak and R. East, Spark GraphX in action, 2016.

[83] J. Maharana and J. H. Schwarz, “Noncompact symmetries in string theory,”
Nuclear Physics, Section B, vol. 390, no. 1, pp. 3–32, 1993.

[84] S. Kar, S. Khastgir, and A. Kumar, “An Algorithm to Generate
Classical Solutions for String Effective Action,” 1992. [Online]. Available:
https://arxiv.org/abs/hep-th/9201015

[85] A. Iosup, T. Hegeman, W. L. Ngai, S. Heldens, A. Prat-Perez, T. Manhardt,
H. Chafi, M. Capot, N. Sundaram, M. Anderson, I. G. T, and Y. Xia, “LDBC
Graphalytics : A Benchmark for Large-Scale Graph Analysis on Parallel and
Distributed Platforms , a Technical Report,” Vldb, vol. 9, no. 13, pp. 1317–1328,
2016.

[86] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding, J. Ferris,
A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov, L. Puzar, Y. J.
Song, and V. Venkataramani, “TAO: Facebook’s distributed data store for the
social graph,” Usenix Atc’13, pp. 49–60, 2013.

[87] A. Dave, A. Jindal, L. Li, R. Xin, J. Gonzalez, and M. Zaharia,
“GraphFrames: An Integrated API for Mixing Graph and Relational Queries,”
Proceedings of the Fourth International Workshop on Graph Data Management
Experiences and Systems SE - GRADES ’16, 2016. [Online]. Available:
http://dx.doi.org/10.1145/2960414.2960416

[88] G. a. Salazar, A. Meintjes, G. K. Mazandu, H. a. Rapanoël, R. O.
Akinola, and N. J. Mulder, “A web-based protein interaction network
visualizer.” BMC bioinformatics, vol. 15, p. 129, 2014. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029974/

160

[89] B. Shao, H. Wang, and Y. Li, “Trinity,” in Proceedings of the 2013
international conference on Management of data - SIGMOD ’13, 2013, p. 505.
[Online]. Available: http://dl.acm.org/citation.cfm?doid=2463676.2467799

[90] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS: A peta-scale graph
mining system - Implementation and observations,” in Proceedings - IEEE In-
ternational Conference on Data Mining, ICDM, 2009, pp. 229–238.

[91] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale
graph processing,” Proceedings of the 2010 international conference on
Management of data - SIGMOD ’10, pp. 135–146, 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1807167.1807184

[92] A. Kyrola and C. Guestrin, “GraphChi-DB: Simple Design for a Scalable Graph
Database System – on Just a PC,” ArXiv e-prints, 2014.

[93] F. Rhinow, P. P. Veloso, C. Puyelo, S. Barrett, and E. O. Nuallain, “P2P
Live Video Streaming in WebRTC,” Computer Applications and Information
Systems (WCCAIS), 2014 World Congress on, pp. 1–6, 2014.

[94] L. Lopez, M. Paris, S. Carot, B. Garcia, M. Gallego, F. Gortazar, R. Benitez,
J. A. Santos, D. Fernandez, R. T. Vlad, I. Gracia, and F. J. Lopez,
“Kurento: The WebRTC Modular Media Server,” Proceedings of the 2016
ACM on Multimedia Conference, pp. 1187–1191, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2964284.2973798

[95] B. Garcia, L. Lopez, F. Gortzar, M. Gallego, and G. A. Carella, “NUBOME-
DIA: The first open source WebRTC PaaS,” MM 2017 - Proceedings of the 2017
ACM Multimedia Conference, pp. 1205–1208, 2017.

[96] S. Palacios, V. Santos, E. Barsallo, and B. Bhargava, “Miostream: a peer-
to-peer distributed live media streaming on the edge,” Multimedia Tools and
Applications, Jan 2019. [Online]. Available: https://doi.org/10.1007/s11042-
018-6940-2

[97] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “PROMISE:
Peer-to-Peer Media Streaming Using CollectCast,” Proceedings of the eleventh
ACM international conference on Multimedia - MULTIMEDIA ’03, p. 45,
2003. [Online]. Available: http://dl.acm.org/citation.cfm?id=957013.957022

[98] M. Hefeeda, A. Habib, D. Xu, B. Bhargava, and B. Botev, “CollectCast: A
peer-to-peer service for media streaming,” Multimedia Systems, vol. 11, no. 1,
pp. 68–81, 2005.

[99] “MioStream.” [Online]. Available: https://github.com/maverick-
zhn/miostream

[100] A. Habib, D. Xu, M. J. Atallah, B. Bhargava, and J. C.-I. Chuang, “Verifying
data integrity in peer-to-peer media streaming,” in Multimedia Computing and
Networking 2005, S. Chandra and N. Venkatasubramanian, Eds., vol. 5680,
International Society for Optics and Photonics. SPIE, 2005, pp. 1 – 12.
[Online]. Available: https://doi.org/10.1117/12.587201

[101] “WebRTC.” [Online]. Available: https://webrtc.org/

161

[102] “WebRTC use cases.” [Online]. Available: https://tools.ietf.org/html/rfc7478

[103] “WebSockets.” [Online]. Available: https://www.websocket.org/

[104] I. Grigorik, High Performance Browser Networking, 2013.

[105] P. R. S. Loreto Salvatore, Real-Time Communication with WebRTC: Peer-to-
Peer in the Browser, 2014.

[106] “SocketCluster.io.” [Online]. Available: http://socketcluster.io

[107] “The WebSocket Protocol RFC6455,” 2011. [Online]. Available:
https://tools.ietf.org/html/rfc6455

[108] “How does HTTP/2 solve the Head of Line blocking (HOL) issue,” 2018.
[Online]. Available: https://community.akamai.com/customers/s/article/How-
does-HTTP-2-solve-the-Head-of-Line-blocking-HOL-issue

[109] C. Vogt, M. J. Werner, and T. C. Schmidt, “Leveraging WebRTC for P2P
content distribution in web browsers,” Proceedings - International Conference
on Network Protocols, ICNP, 2013.

[110] “ICE.” [Online]. Available: https://tools.ietf.org/id/draft-ietf-ice-rfc5245bis-
13.html

[111] “Session Traversal Utilities for NAT (STUN),” 2008. [Online]. Available:
https://tools.ietf.org/html/rfc5389

[112] “Traversal Using Relays around NAT (TURN),” 2010. [Online]. Available:
https://tools.ietf.org/html/rfc5766

[113] “SDP: Session Description Protocol,” 2006. [Online]. Available:
https://tools.ietf.org/html/rfc4566

[114] “Datagram Transport Layer Security,” 2006. [Online]. Available:
https://tools.ietf.org/html/rfc4347

[115] “Stream Control Transmission Protocol,” 2007. [Online]. Available:
https://tools.ietf.org/html/rfc4960

[116] “The Secure Real-time Transport Protocol (SRTP),” 2004. [Online]. Available:
https://www.ietf.org/rfc/rfc3711.txt

[117] PeerJS, “PeerJS.” [Online]. Available: http://peerjs.com/

[118] “JSEP.” [Online]. Available: https://tools.ietf.org/html/draft-ietf-rtcweb-jsep-
24

[119] NPM, “Node Package Manager.” [Online]. Available: https://www.npmjs.com/

[120] “Electron.” [Online]. Available: http://electron.atom.io

[121] “Media Source Extensions.” [Online]. Available: https://w3c.github.io/media-
source

[122] “Chromium.” [Online]. Available: https://www.chromium.org

162

[123] “WebM,” 2014. [Online]. Available: http://www.webmproject.org/

[124] N. Modadugu and E. Rescorla, “The Design and Implementation of
Datagram TLS,” Proceedings of ISOC NDSS, p. 14, 2004. [Online]. Available:
https://crypto.stanford.edu/ nagendra/papers/dtls.pdf

[125] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems,” Middleware
2001, vol. 2218, no. November 2001, pp. 329–350, 2001. [Online]. Available:
http://www.springerlink.com/index/10.1007/3-540-45518-3

[126] R. Ferreira, S. Jagannathan, and A. Grama, “Locality in structured peer-to-
peer networks,” Journal of Parallel and Distributed Computing, vol. 66, no. 2,
pp. 257–273, 2006.

[127] “NodeJS Crypto Library.” [Online]. Available:
https://nodejs.org/api/crypto.html

[128] R. Roverso, S. El-Ansary, and S. Haridi, “Peer2View: A peer-to-peer HTTP-live
streaming platform,” 2012 IEEE 12th International Conference on Peer-to-Peer
Computing, P2P 2012, pp. 65–66, 2012.

[129] M. Wichtlhuber, J. Rückert, D. Stingl, M. Schulz, and D. Hausheer, “Energy-
efficient mobile P2P video streaming,” 2012 IEEE 12th International Confer-
ence on Peer-to-Peer Computing, P2P 2012, pp. 63–64, 2012.

[130] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications,”
Conference on Applications, technologies, architectures, and protocols for
computer communications (SIGCOMM ’01), pp. 149–160, 2001. [Online].
Available: http://portal.acm.org/citation.cfm?doid=383059.383071

[131] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
Scalable Content-Addressable Network,” Proceedings of the 2001 conference
on Applications, technologies, architectures, and protocols for computer
communications, vol. 31, no. 4, pp. 161–172, 2001. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=964723.383072

