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The research presented in this work addresses open questions regarding (i) the funda-
mental understanding of powder compaction, and (ii) the complex mechanical response of
particle-binder composites under large deformations. This work thus benefits a broad range
of industries, from the pharmaceutical industry and its recent efforts on continuous manufac-
turing of solid tablets, to the defense and energy industries and the recurrent need to predict
the performance of energetic materials. Powder compacts and particle-binder composites are
essentially confined particulate systems with significant heterogeneity at the meso (particle)
scale. While particle mechanics strategies for modeling evolution of mesoscale microstruc-
ture during powder compaction depend on the employed contact formulation to accurately
predict macroscopic quantities like punch and die wall pressures, modeling of highly nonlin-
ear, strain-path dependent macroscopic response without a distinctive yield surface, typical
of particle-binder composites, requires proper constitutive modeling of these complex defor-
mation mechanisms. Moreover, continued loading of particle-binder composites over their
operational life may introduce significant undesirable changes to their microstructure and
mechanical properties. These challenges are addressed with a combined effort on theoretical,
modeling and experimental fronts, namely, (a) novel contact formulations for elasto-plastic
particles under high levels of confinement, (b) a multi-scale experimental procedure for as-
sessing changes in microstructure and mechanical behavior of particle-binder composites
due to cyclic loading and time-recovery, and (c) a finite strain nonlinear elastic, endochronic

plastic constitutive formulation for particle-binder composites.



CHAPTER 1. INTRODUCTION
1.1 Motivation

Confined particulate systems, particularly powder compacts and densely loaded partic-
ulate composites, are one of the most commonly used type of materials, with extensive
applications in manufacturing processes of critical industries like pharmaceuticals, ceramics,
energy, automotive, construction, food and metallurgy (Figure 1.1). The versatility, manip-
ulability and applicability of these materials have made them a subject of active scientific
research, particularly in the area of predictive modeling of meso and macroscopic behavior
of these materials under confinement. While the development of predictive and computa-
tionally efficient models capable of accurately describing the behavior of confined granular
media would positively impact manufacturability, waste reduction, quality and price of the
end product, the same for particle-binder composites such as energetics would significantly

reduce the risks associated with handling, storage and transportation of these materials.

1.2 Background
1.2.1 Deformation Mechanisms

Both powder compacts and particle-binder composites have been found to contain sig-
nificant heterogeneity at the meso (particle) scale, which has a fundamental impact on their
macroscopic behavior. Powder compacts consist of a disordered blend of powder particles
with different particle size distributions. Macroscopic compaction pressure in these ma-
terials is supported by contact and deformation of the particles as forces get transmitted
throughout the system, forming a heterogeneous contact network of force chains (Majmudar
& Behringer, 2005; Makse et al., 2000; Blair et al., 2001; Chan & Ngan, 2005). Concurrently,
particulate composites, or particle-binder composites, consist of hard particles or fillers (car-

bon, tungsten carbide, silica, etc.) embedded in the matrix of a soft material (polymers, soft
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Figure 1.1. The applications of confined particulate systems. Images are allowed for reuse
under their respective licenses. Image sources: Pexels (http://www.pexels.com/) and Adobe
Stock (©Author Name - http://stock.adobe.com/).

metals, etc.). Under mechanical load, the main load bearing mechanism is the contact force
chain network formed by the filler particles, while the matrix has a bulk effect on the load
transfer (Liu et al., 2014a; Topin et al., 2007) and a confining effect on the initial rearrange-
ment of the filler particles. Additionally, the presence of filler particles introduces significant
inelastic phenomenon in the macroscopic mechanical response of particle-binder composites
(Dargazany et al., 2014). For example, filled elastomers (Bergstrém & Boyce, 1998; Miehe
& Keck, 2000) typically exhibit stress-softening or Mullins effect (Mullins, 1948, 1969) and
hysteresis (Netzker et al., 2010) under the application of cyclic load.

1.2.2 Multi-scale Modeling Strategy

In conformity with the evident complexity of the microstructural evolution and macro-
scopic deformation mechanisms of these materials, a multi-scale modeling strategy for con-
fined particulate systems has been identified in the current literature (Figure 1.2). Each of

the modeling techniques in this strategy is discussed separately in the coming sections.
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Figure 1.2. Multi-scale modeling strategy for confined particulate materials.

Continuum Contact Mechanics

At the meso-scale, the most fundamental modeling procedures involve the application of
continuum contact mechanics, where individual particles are treated as bulk material and
their contact behavior is modeled using large deformation continuum mechanics. Models
proposed in this category typically utilize computer simulation techniques such as the Finite
Element Method (FEM). For confined granular systems, finite element models for the com-
paction of two dimensional (Gethin et al., 2002; Procopio & Zavaliangos, 2005) and three
dimensional (Chen et al., 2007; Frenning, 2008; Harthong et al., 2009, 2012) granular pack-
ings using discrete meshed spherical particles have been proposed, collectively known as the
Meshed Distinct Element Method (Harthong et al., 2009). For particle-binder composites,
models based on the framework of Cohesive Finite Element Method (CFEM) (Zhong &
Knauss, 1997; X. Allan Zhong, 2000; Matous & Geubelle, 2006; Barua & Zhou, 2011) have
been proposed to capture inter-particle contact interactions and damage nucleation due to
particle-binder interfacial dewetting under both quasi-static and dynamic impact loading.

For the specific case of energetic Polymer-Bonded Explosives (PBXs), these models are capa-



ble of predicting the formation of local hotspots due to frictional heating at particle-particle
and particle-binder interfaces, which is important for efficient design of the detonation mech-
anism of these materials.

While meso-scale continuum contact mechanics is the most accurate predictive modeling
technique for large deformation response of confined particulate materials, it suffers from
the prohibitive limitations of the computational cost of performing finite element simula-
tions. For instance, MDEM-based models are at most capable of simulating the macroscopic
response of an assembly of a few hundred particles (Harthong et al., 2009). Therefore, it
is not suitable for performing simulations of a realistic representative volume of particulate

systems such as pharmaceutical tablets, which may contain a packing of millions of particles.

Analytical Contact Formulations

To enable large-scale simulations of realistic granular packings, meso-scale analytical
contact formulations have been developed, which essentially are closed-form solutions of
the relationship between three important physical quantities representing particle-particle

contact, i.e.

1. Contact displacement (), which is the displacement of centers of mass of the contacting

particles

2. Contact force (P), which is the force due to pressure developed at the contact between

the particles, and

3. Contact radius (a), which is the radius of the approximately circular contact developed

between the contacting particles.

Analytical contact formulations, or contact laws, are developed by taking several simplifying
assumptions with regards to particle and contact geometry, material’s mechanical properties,
loading configuration, and boundary conditions. Therefore, the predictions of these formu-
lations may not be as accurate as those of models based on continuum contact mechanics.
Nevertheless, their computational efficiency due to being closed-form expressions enables

them to be applicable to discrete simulations of a realistically large number of particles.



The foundational concepts of analytical contact formulations were pioneered by Hertz
(1882), who proposed a contact law for linear-elastic spherical particles by solving an ap-
proximate problem for frictionless contact between paraboloids of revolution, where the
contacting surfaces are assumed as elastic half-spaces. For this assumption to hold, the de-
formations at the contact are assumed to be small as compared to the the dimensions of the
contacting bodies and the relative radii of curvature of the contacting surfaces. By assuming
an ellipsoidal pressure distribution over the circular contact area, Hertz derived closed-form

expressions for relating the three physical quantities P, a and -y, given by
P = nuy*? (1.1)

-1 -1/2
where g = § (12 +52) (& +4) . and

11\,
_ 1.2
¢ (Rl * RQ) 7 (1.2)

In the above expressions, R; and Rj are the radii of the two spheres and (£, v1) and (Es, v5)
are their respective elastic mechanical properties (Young’s modulus and Poisson’s ratio).
Since its development in 1882, the Hertz theory is one of the most commonly applied
contact laws to model normal contact between elastic solids of revolution, with extensive
applications in mechanical characterization of nano and micro particles using single parti-
cle compression experiments (King & Bourgeois, 1993; Liu et al., 1998; Wang et al., 2005;
Egholm et al., 2006; Zhang et al., 2007; Yan et al., 2009; Marigo et al., 2014; Portnikov
& Kalman, 2014), made possible with fairly recent nanoindentation and micro-compression
testing technology. However, in the context of confined particulate systems where multiple
particles form a heterogeneous contact network, the predictions of Hertz theory are limited
by its local character (Argatov et al., 2017), i.e., the multiple contacts on a single particle
are treated as independent of each other, with contact force and area determined from the
local deformation at each contact. For dense granular packings with high relative densities
(typically ~0.9 for pharmaceutical tablets according to Hancock et al. (2003)), this charac-

teristic is found to be untrue due to significant contact interactions at large deformations
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Figure 1.3. Comparison of Hertz (1882) theory and the nonlocal contact formulation by
Gonzalez & Cuitinio (2012) for confined granular systems.

(Mesarovic & Fleck, 2000). This limitation was overcome by Gonzalez & Cuitifio (2012),
who proposed the nonlocal contact formulation to provide an accurate description of the
force-deformation behavior at contacts of particles pressed to high relative densities. The
formulation is a direct extension of the Hertz theory and follows the work of Tatara (1989)
to express the total deformation at a particle contact as the sum of local (Hertz) applied de-
formation and nonlocal deformations resulting from the other contacts on the same particle.
Since the material behavior is assumed to be purely elastic, the principle of superposition

allows the sum of deformations to be applied at each contact.



Figure 1.3 shows a comparison the Hertz (1882) theory and the nonlocal contact formu-
lation (Gonzalez & Cuitino, 2012) in the context of confined granular systems. It is evident
that any two particles in contact within the heterogeneous contact network are additionally
in contact with their immediate neighboring particles. Therefore, if the two contacting par-
ticles are isolated, they are assumed to be subjected to a general configuration of contact
forces acting at the centers of each contact. According to the Hertz (1882) theory, each of
the contact forces evolve independently of one another as a function of the local deforma-
tion at each contact. Therefore, the contact force P is given by Equation (1.1), which is
a function of the local contact displacement v and the mechanical properties and geome-
try of the contacting particles. Conversely, the nonlocal contact formulation (Gonzalez &
Cuitino, 2012) considers the nonlocal contributions to the contact displacement by each force
Pl (k=1,2,1=1,.., Np), denoted by Wp; and estimated from the Boussinesq solution
(Johnson, 1985; Timoshenko & Goodier, 1970) for a point load on an elastic half space. The

final solution to w pi is given by

W (14 v)Pi [—2(1 — v) — 2(1 — 2u) sin (0} /2) + (7 — 8vy) sin® (6} /2)]

kAT Ry E) sin (6 /2) (13)

According to the above equation, w Pi for each force P is a function of the material properties
(Ey,v) and geometry (Ry) of the particle k, as well as the angular distance 6} of the force
from the considered contact. By invoking the principle of superposition, the total nonlocal

displacement 7y, at the contact between the two particles is given by
Np,
SO Sp o

k=1,2 i=1

and thus the contact force P is given by

Figure 1.4 shows the applied load vs. deformation plots for the contacts of a single rubber

sphere of radius R = 10 mm pressed between two rigid plates. In the figure, experimental
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Figure 1.4. Comparison of Hertz (1882) theory and the nonlocal contact formulation by
Gonzalez & Cuitino (2012) for confined granular systems.

results reported by Tatara (1989) are compared with the analytical predictions of the Hertz
theory and the nonlocal contact formulation, as well as numerical results from FE simula-
tion of the compression performed on (1/8)™ of the sphere (owing to geometric and loading
symmetries). The FE model of the sphere was meshed with 500,000 hexahedral elements of
type C3D8R with 515,201 nodes. The material properties for analytical formulations were
taken as £ = 1.85 MPa and v = 0.48 (Tatara, 1989; Tatara et al., 1991), while a compress-
ible Neo-Hookean hyperelastic material assumption with material constants corresponding
to these material properties was applied in the FE simulation to adequately model large
nonlinear elastic deformations.

From the figure, it is evident the Hertz theory predictions deviate from the experimental
and FE results at very small deformations (~5%), while the predictions of the nonlocal con-
tact formulation are in excellent agreement for deformations ranging up to 40% (equivalent
to relative density of ~0.9 in confined granular systems). Moreover, the NLC formulation
predictions were obtained within a few seconds, compared to about 5 hours taken ti obtain
the FE results. This demonstrates the high computational efficiency of closed-form analyt-

ical contact formulations as compared to models based on continuum contact mechanics,



as well as their applicability towards performing large-scale simulations involving granular
packings of a realistic number of particles.

While predictive analytical contact models for elastic particles provide essential insight
into the microstructure evolution and large deformation macroscopic behavior of confined
particulate systems, key progress in this regard entails the development of closed-form con-
tact formulations for particles exhibiting elasto-plastic behavior, since most particulate mate-
rials undergo large permanent deformations under confined conditions. However, the contact
response of elasto-plastic particles is found to be highly complex and spanning multiple dis-
tinct deformation regimes. From finite element study of the compression of elasto-plastic
spheres, Mesarovic & Fleck (2000) and Tsigginos et al. (2015) showed that the contact be-
tween two spheres primarily undergoes four distinct deformation modes: (1) fully elastic at
small deformations, (2) elasto-plastic or ‘contained plastic’ mode, (3) fully plastic or ‘uncon-
tained plastic’ mode, and (4) large deformation plasto-elastic mode.

For small elastic deformations, the Hertz (1882) theory is sufficient to model the contact
response. For elasto-plastic contact deformations, where the plastically deforming zone is
‘contained’ below the contact, spherical cavity expansion models have been proposed using
small-strain approximation for elastic-perfectly plastic (Johnson, 1985; Studman et al., 1977;
Hardy et al., 1971) and elastic-plastic power law hardening materials (Gao et al., 2006;
Mata et al., 2006). These models assume that a hemispherical region directly beneath
the contact area can be approximated by a hemispherical core of radius a (equal to the
contact radius) which is subjected to the hydrostatic component of stress, p. A plastically
deforming hemispherical shell surrounds the core, the boundary of which is at a state of
stress that satisfies the von-Mises yield criterion. Rest of the material outside the plastic
shell deforms elastically. For small-strain models, by assuming a radial symmetry of stresses
and displacements outside the hydrostatic core, the mean contact pressure and subsequently
the force-displacement relationship have been obtained from the solutions of spherical shell
expansion by Hill (1950).

For deformations in the fully plastic regime, where the plastically deforming zone breaks
out to the contact and the surrounding free surface (‘uncontained’ mode), Biwa and Storakers

(Biwa & Storakers, 1995; Storakers et al., 1997) formulated an analytical contact model
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by reducing the moving boundary contact problem of a curved rigid indenter deforming
a half space to a stationary one, where the dependence of particle velocities and strain
rates on the indentation magnitude (i.e., the contact radius) is removed through appropriate
transformations. This approach makes the solution self-similar (Spence & Temple, 1968),
and therefore the contact model is commonly known as the similarity solution. The solution,
however, assumes small-strain kinematics and rigid-plastic power law hardening behavior
(stress o = ke'/™, where & is a representative strength and m is the hardening exponent)
without consideration of particle elasticity, thus limiting its application to small-deformations
within the fully plastic regime.

With the onset of finite deformation plasticity, multiple contacts on a particle in confined
particulate systems cannot be treated as independent due to significant contact interactions
(Mesarovic & Fleck, 2000), and, therefore, local contact laws such as the similarity solution
and others developed by Thornton & Ning (1998), Vu-Quoc et al. (1999), Brake (2012, 2015)
and Rathbone et al. (2015) are no longer applicable. Additionally, at high relative densities
close to 1, the plastic incompressibility causes the particles to support stress through elastic
compression. This stage, referred to as the ‘low compressibility’ regime (Tsigginos et al.,
2015), is characterized by dominant contact interactions and rising compaction pressure. In
the context of a general loading configuration, the systematic development of an analytical
contact formulation capable of predicting these contact interactions at later stages of com-
paction remains an open problem. However, initial progress was made by Harthong et al.
(2009, 2012), who proposed a semi-empirical contact model for rigid-plastic power law hard-
ening spheres based on MDEM results of the compaction of spherical particles in a simple cu-
bic lattice. The model presents the contact force as the product of a stiffness and the contact
displacement, where the stiffness consists of two terms. The first term describes the contact
stiffness for the case of unconfined compression of a single particle between two rigid plates,
or equivalently, the simple contact of two particles. The second, singular term is dependent
on the relative density of the particle within its voronoi cell (Gellatly & Finney, 1982) as it
is compressed by its immediate neighbors, and describes the plastic incompressibility of the
particles at high relative densities by approaching infinity as the relative density approaches

1. Frenning (2013) proposed a contact model for a particle under a general configuration
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of contact forces, albeit limited in applicability to moderate deformations. By following the
work of Fischmeister & Arzt (1983) and Montes et al. (2006), he proposed that the deformed
configuration of a sphere with multiple contacts can be approximated by a truncated sphere
of a radius larger than that of the initial, undeformed particle. The radius of the truncated
sphere is estimated by equating the average pressure on the particle due to the contact forces
to the average volumetric pressure due to elastic compression. With the evaluated radius
R, the contact force P; on each contact i is given by P = Hm [R?* — (R, — 7;/2)?], where
H is the material’s hardness (Tabor, 1951), R, is the initial particle radius and ~; is the
displacement at the i*" contact. The model, however, is limited to moderate deformations
due to inability to describe contact areas after contact impingement (Harthong et al., 2012)
and the large contact pressures during the ‘low compressibility’ regime. Later, Frenning
(2015) extended this model to include these physical deformation mechanisms, albeit for the
particular case of hydrostatic triaxial compaction.

For particle-binder composites, analytical contact laws capable of describing particle-
binder-particle interactions, as well as particle-particle contact behavior when surrounded

by a binder, are currently under development (Baker & Gonzalez, 2020).

Discrete Systems Modeling

As discussed previously, the main objective behind development of analytical contact
laws is to enable large-scale simulations of the compaction of a realistic number of particles,
and to predict the macroscopic response of confined particulate systems by scaling up their
meso-scale contact behavior. Such simulations are performed by utilizing discrete numerical
methods capable of modeling the static and dynamic behavior of granular materials. One
of the most common and rapidly developing numerical technique is the Discrete Element
Method (DEM), which is a Lagrangian approach for tracking the motion and effect of a large
number of particles in time. Since its initial development by Cundall & Strack (1979), the
method has been widely accepted and extensively employed to study particle rearrangement,
microstructure evolution and macroscopic densification process during powder compaction

(Sheng et al., 2002; Martin et al., 2003; Martin & Bouvard, 2003; Martin et al., 2006; Skrinjar



12

& Larsson, 2004; Belheine et al., 2009; Harthong et al., 2009; Jerier et al., 2011; Rojek et al.,
2016). Advantages of this method include flexibility towards incorporating variety of contact
behavior, including normal and tangential (frictional) contact, formation and breakage of
solid bridges and attractive forces such as cohesion and adhesion, as well as the capability
to consider non-spherical particle shapes. However, being a dynamic solver, DEM employs
a time integrator (Rougier et al., 2004) to solve for the position and velocity of each particle
during a particular time step, and therefore, suffers from a conditional numerical stability
that imposes a limitation on the size of the time step (Burns et al., 2019). The solution
instability also increases with higher compaction, thus requiring very small time steps at
large deformations which increases the computational cost of the simulation. Additionally,
to simulate a quasi-static compaction process, the requirement of a small strain-rate usually
results in a significantly long simulation time (Sheng et al., 2004). Consequently, most DEM
simulations of large granular packings are solvable up to a relative density of about 0.8,
which is not sufficient to obtain a typical powder compact.

Recently, another discrete modeling technique, referred to as the particle mechanics ap-
proach (Gonzalez & Cuitino, 2016; Yohannes et al., 2016, 2017; Gonzalez et al., 2018; Poor-
solhjouy & Gonzalez, 2018; Gonzalez, 2019) has been developed to predict the microstructure
evolution of granular packings of spherical particles. It is a highly computationally efficient
numerical technique that describes each individual particle in the powder bed, and the collec-
tive rearrangement and deformation of particles that results in a compacted specimen. The
approach considers rate-independent material behavior and models the compaction process
as sequence of quasi-static loading steps. During each load step, a set of nonlinear equations
for the equilibrium configuration of each particle is defined by a suitable analytical contact
formulation and solved by a computationally efficient optimization approach based on the
trust region method (Coleman & Li, 1996; Conn et al., 2000) (for more details on the im-
plementation of trust-region based optimization, please ref. Gonzalez & Cuitino (2016) and
Gonzalez (2019)). Being an inherent time-independent quasi-static approach, particle me-
chanics calculations provide complete control over the size of the loading step, thus allowing

the solution to be stable at large deformations. Consequently, particle mechanics simulations
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are solvable up to a relative density close to 1, which is sufficient to study the macroscopic

response of any powder compaction process.

Continuum Systems Modeling

Constitutive models based on small and large deformation continuum mechanics have
been been the conventional methods used for describing the macroscopic response of confined
particulate systems. Continuum-based models assume the particle media as homogeneous
material and define the stress-state at every material point by constitutive equations that
relate stress with the applied strain. Although these models neglect mesoscopic deformation
mechanisms, they have been extensively used to model densification and macroscopic stress
response for industrial powder compaction processes and to predict the mechanical response
of particle-binder composites under variety of loading conditions.

For confined granular systems, the framework of many continuum mechanical models
has been developed from models proposed originally to study geological materials, such as
Drucker-Prager (Drucker & Prager, 1952), Cam-Clay plasticity (Schofield & Wroth, 1968)
and Cap plasticity (Drucker et al., 1957) models. For instance, the Drucker-Prager Cap
(DPC) plasticity model (DiMaggio & Sandler, 1971) has been developed by adding a cap yield
surface to the Drucker-Prager model to allow for material hardening and dilatancy control
during inelastic deformation. Often implemented in Finite Element (FE) codes, the DPC
model has been used extensively for analysis of metal (Coube & Riedel, 2000; Almanstotter,
2015), ceramic (Aydin et al., 1996) and pharmaceutical (Michrafy et al., 2002; Sinka et al.,
2003; Cunningham et al., 2004; Sinka et al., 2004; Wu et al., 2005; Han et al., 2008; Sinha
et al., 2010) powder compaction. For compaction of metal powders, where plasticity effects
may show very early during the loading process (Haggblad, 1991), models based on yield-
surface free endochronic plasticity (Khoei et al., 2002; Bakhshiani et al., 2002, 2004) have
been proposed. The endochronic theory (Valanis, 1970) considers material behavior during
the entire load path as elasto-plastic, thus eliminating the requirement of a yield surface that
classical plasticity theories employ to describe the onset and evolution of a material’s plastic

behavior.
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For particle-binder composites, many constitutive models have been developed over the
years in the context of large deformation continuum mechanics (Miehe & Keck, 2000; La-
iarinandrasana et al., 2003; Ayoub et al., 2014; Dargazany et al., 2014; Osterlof et al., 2016;
Raghunath et al., 2016; Plagge & Klppel, 2017; Guo et al., 2018a,b). The efficacy of a con-
stitutive model for these materials in particular lies in the capability to account for inelastic
phenomenon such as irreversible molecular slipping at the filler-binder interface (Kaliske &
Rothert, 1998; Netzker et al., 2010), micro-cracking and interfacial debonding, cyclic stress-
softening or Mullins effect (Mullins, 1948, 1969), hysteresis, and permanent deformations.
To model such material behavior, nonlinear rheological models have been frequently em-
ployed. For instance, a zener-type viscoelastic rheological model was developed by Ayoub
et al. (2014) for filled rubber-type materials based on the network alteration theory (Marck-
mann et al., 2002; Chagnon et al., 2006). To capture rate-independent plasticity effects of
filled rubbers, multi-yield-surface models based on a parallel combination of Prandtl elements
(Kaliske & Rothert, 1998) and yield-surface-free endochronic plasticity model (Netzker et al.,

2010) have been proposed.

1.3 Identifying Research Gaps

As discussed in the previous section, the nonlocal contact formulation for elastic confined
granular systems (Gonzalez & Cuitino, 2012) is an accurate and efficient analytical tool for
predicting the force-deformation behavior at the contacts of particles in a highly confined
environment. However, it still has wide scope for improvement in the context of predicting the
complete contact behavior and further relaxing the limiting assumptions of the Hertz theory.
A successful description of inter-particle contact response entails prediction of both contact
force and contact area. Since the nonlocal deformations also affect inter-particle contact
boundaries, they must be accounted for in the contact radius-displacement relationship.
Additionally, the limiting assumption of parabolic contacting profiles is also incorporated in
the nonlocal contact formulation due to it being a direct extension of the Hertz theory. This
assumption is mathematically defined as a one-term truncation of the Taylor series expansion

of the undeformed contacting profiles. Therefore, the associated error in calculation of the
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contact pressure distribution can be reduced by adding higher-order terms of the Taylor
series to increase the accuracy of the profile function.

With regard to availability of predictive contact formulations for elasto-plastic confined
granular systems, it is found that the current state-of-the-art contact formulations, such
those developed by Harthong et al. (2009) and Frenning (2013, 2015), lack a consistent
material or loading-condition dependence. For instance, the singular stiffness term in the
contact law developed by Harthong et al. (2009) does not consider elastic compressibility,
thus predicting very high contact forces at relative densities close to 1 for all material types
regardless of their elastic behavior. On the other hand, the contact formulation proposed by
Frenning (2013, 2015) does consider elastic compressibility, although solely for the specific
case of hydrostatic compaction.

In the context of particle-binder composites, efforts are focused specifically on under-
standing the growing need of the defense and energy sector to develop the capability of
predicting the performance and safety of energetic composite materials, particularly Plastic
Bonded Explosives (PBX) that are commonly used in ammunition and warheads. These
materials have explosive crystals embedded in a polymeric binder, where the binder provides
structural integrity to the ammunition and protection from weak impact loads. Due to the
hazardous nature of these materials, they must be designed to detonate and perform un-
der a very specific external stimulus. However, due to a variety of loading conditions that
these materials intermittently undergo during handling, storage and transportation over their
operational life, undesirable changes in their mechanical behavior and microstructure may
render them unpredictable and therefore, unsafe. While a number of independent experi-
mental (Funk et al., 1996; Idar et al., 1998; Wiegand, 2000; Thompson et al., 2002; Idar et al.,
2002; Grantham et al., 2004; Wiegand & Reddingius, 2005; Williamson et al., 2007; Drodge
& Williamson, 2016) and constitutive modeling (Bardenhagen et al., 1998; Le et al., 2010;
Yang et al., 2018) studies have been conducted over the years to understand and predict
the mechanical response of energetic materials to different loading conditions, the current
open literature lacks a systematic experimental and modeling procedure to understand and

quantify the microstructural evolution of PBX and changes in their mechanical behavior due
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to periodic application of mechanical load while allowing a time period of material recovery

and aging.

1.4 Thesis Goal and Objectives

The goal of this thesis is to address the identified research gaps and challenges in predict-
ing the microstructural evolution and mechanical behavior of confined particulate materials
through experimental, particle mechanics and continuum constitutive modeling techniques.

The specific objectives of the proposed thesis research are:

1. Develop closed-form analytical formulations to correct the elastic nonlocal contact for-
mulation by including nonlocal and curvature corrections to the inter-particle contact

area and profile functions of the contacting surfaces.

2. Develop contact formulations for elasto-plastic confined granular systems that are pre-

dictive at high relative densities and applicable to particle mechanics simulations.

3. Develop a systematic and reproducible experimental procedure to visualize and quan-
tify the evolution of mesoscale microstructure and mechanical properties of particle-
binder composites due to repeated quasi-static cyclic loading followed by time-recovery

or aging.

4. Complement the experimental efforts by developing a large deformation constitutive
model to characterize and predict the mechanical stress-strain response of particle-

binder composites.
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CHAPTER 2. CONTACT RADIUS AND CURVATURE CORRECTIONS TO THE
NONLOCAL CONTACT FORMULATION ACCOUNTING FOR MULTI-PARTICLE
INTERACTIONS IN ELASTIC CONFINED GRANULAR SYSTEMS

This chapter and associated appendices A and B were published in the International Journal
of Engineering Science, Volume 133, Ankit Agarwal and Marcial Gonzalez, Contact radius
and curvature corrections to the nonlocal contact formulation accounting for multi-particle
interactions in elastic confined granular systems, pages 26-46, Copyright Elsevier (2018).

2.1 Introduction

The extensive applications of powder compaction, especially in manufacturing processes
of critical industries like pharmaceutics, ceramic, energy, food, and metallurgy, make it a
subject of intense research in the scientific community. Development of predictive and com-
putationally efficient models that could accurately describe the behavior of granular media
during compaction would directly impact optimality in manufacturing, waste reduction, and
price and quality of the end product.

Macroscopic behavior of confined granular systems has been conventionally described by
continuum-based models, which consider granular media as a continuous system, and hence
have minimal emphasis on the behavior at particle scale. Many of these models were origi-
nally developed for analyzing the behavior of geological materials, such as Drucker & Prager
(1952), Cam-Clay plasticity and Cap plasticity models. More recently, the Drucker-Prager
Cap (DPC) plasticity model (DiMaggio & Sandler, 1971), where a cap yield surface is added
to the Drucker & Prager model to allow for material hardening and dilatancy control dur-
ing inelastic deformation, has been used for analysis of metal, ceramic and pharmaceutical
powder compaction. Although requiring an elaborate mechanical testing procedure for cali-
bration of model parameters (Cunningham, Sinka & Zavaliangos, 2004), the DPC model is
widely used due to its adaptability to finite element method (Sinka, Cunningham & Zavalian-

gos, 2004). However, accuracy of the model response, especially during the decompression
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(unloading) phase, relies heavily on the design of calibration experiments (Sinha, Curtis,
Hancock & Wassgren, 2010) and proper elastic constitutive modeling (Han, Elliott, Ben-
tham, Mills, Amidon & Hancock, 2008). In order to incorporate microstructural properties
of the granular system into its global behavior, discrete models have been proposed, where
contact behavior of individual particles is taken into account. Numerical methods in this
category, such as dynamic discrete element methods (Cundall & Strack, 1979; Zhu, Zhou,
Yang & Yu, 2008) and quasi-static particle mechanics approaches (Gonzalez & Cuitino, 2016;
Yohannes, Gonzalez, Abebe, Sprockel, Nikfar, Kiang & Cuitino, 2016; Gonzalez, Poorsol-
hjouy, Thomas, Liu & Balakrishnan, 2018), are used in combination with a suitable contact
formulation to predict the macroscopic behavior of compacted granular systems and, thus,
predictability is heavily dependent on the contact law involved. The Hertz (1882) contact
law for linear-elastic materials and similarity solution by Storakers, Biwa & Larsson (1997)
for viscous-plastic power law hardening materials are fairly predictable at small deforma-
tions and low relative densities of powder compacts. However, due to the occurrence of
contact interactions at higher deformations, as pointed out by Mesarovic & Fleck (2000) in
their study of elasto-plastic spheres, their predictions become increasingly deviant due to
the assumption of independent contacts. This was partially overcome by introducing a local
relative density parameter in contact laws curve-fitted to finite element simulations of small
three-dimensional packings (Harthong, Jérier, Dorémus, Imbault & Donzé, 2009). Finally,
a systematic and mechanistic connection between macroscopic and particle level behaviors,
using continuum and discrete models respectively, was recently proposed (Poorsolhjouy &
Gonzalez, 2018) to capture the anisotropic evolution of a die-compacted systems.

Several efforts towards experimental characterization of confined granular systems have
also been made to understand the deformation behavior at granular scale, and to provide an
efficient validation tool for the analytical contact formulations. Of particular interest is the
mechanical response of single particles under confined conditions, most commonly studied
using uniaxial compression experiments (Liu, Williams & Briscoe, 1998; Lu, Tung, Hung,
Shiau & Hwang, 2001; Shima, Tatara, lio, Shu & Lucero, 1993; Tatara, Shima & Lucero,
1991; Topuz & Okay, 2009; Zhang, Kristiansen & Liu, 2007). Recently, an apparatus has

been developed for triaxial testing of single particles (Jonsson, Grasjo, Nordstrom, Johansson
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& Frenning, 2015), providing a more realistic insight into the behavior of individual particles
during powder compaction.

For elastic confined granular systems, relaxing the underlying assumptions of the Hertz
contact theory that limit its applicability to small deformations could be the key to achieving
predictability at moderate to large deformations. Significant efforts in this direction have
been made by Zhupanska (2011), who relaxed the small-strain Hertz assumption of consid-
ering contacting surfaces as elastic half spaces by proposing an analytical solution to the
boundary value problem of an elastic sphere subject to contact stresses on a finite region of
its surface and supported at its center. The results showed that the Hertz pressure distri-
bution remained accurate for relatively large contact areas. Recently, Argatov et al. (2017)
explored the concept of far points in Hertz contact problems, emphasizing the limitations of
the ”local character” of Hertz predictions. A major contribution in this regard is the nonlocal
contact formulation for confined granular systems by Gonzalez & Cuitifio (2012), which pro-
vides an accurate and mechanistic description of the force-deformation behavior at contacts
of a linear-elastic spherical particle subject to multiple contact forces, a typical configuration
in particulate systems compressed to high relative densities. It follows the work of Tatara
(1989) and relaxes the classical contact mechanics assumption of independent contacts by
invoking the principle of superposition to express the deformation at a particular contact as a
sum of local (i.e., Hertzian) deformation and nonlocal deformations generated by other con-
tact forces acting on the same particle. The nonlocal contact formulation has recently been
employed successfully to study the die-compaction of large frictionless non-cohesive granular
systems comprising weightless elastic spherical particles (Gonzalez & Cuitino, 2016).

A complete description of the inter-particle contact behavior in confined granular systems
includes determination of both contact force and area with respect to particle deformation.
While critical macroscopic quantities like compaction pressure and the reaction from die
walls are directly related to inter-particle contact forces, the prediction of contact area is
needed to estimate strength formation in the compacted solid (Gonzalez, 2019). In addition,
the evolution of contact area is associated with contact impingement, i.e., with the merger of
neighboring contacts. Since the assumption of circular contacts no longer remains valid after

contact impingement, the predictions of a contact formulation may not be representative
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of real contact behavior beyond the occurrence of this phenomenon, making an accurate
determination of contact areas ever so important.

In the context of the nonlocal contact formulation (Gonzalez & Cuitino, 2012), nonlocal
mesoscopic deformations are derived from the Boussinesq solution (Johnson, 1985; Timo-
shenko & Goodier, 1970) of an elastic half-space under a concentrated force. The components
of these deformations normal to the contact surface constitute the nonlocal contribution to
the contact displacement, for which a closed-form solution has been obtained (Gonzalez &
Cuitino, 2012). However, the derivation of an analytical solution for nonlocal components
radial to the contact center, that contribute to the evolution of contact radius, remains an
open problem. Therefore, part of the work presented in this chapter is concerned with the
development of an analytical framework for predicting nonlocal effects in the evolution of
inter-particle contact area. The analysis presented is in the spirit of Tatara’s (1991) work
on expanded contact radius during uniaxial compression of rubber spheres.

An important aspect of this nonlocal contact formulation is that it is a direct extension
of the classical Hertz contact theory. When nonlocal effects are neglected, the formulation
reduces to Hertz theory. Therefore, any correction introduced in the Hertz solution should,
in turn, improve the accuracy of the formulation. The second analysis presented in this
chapter is concerned with the improvement of the formulation using contact pressures of
higher accuracy. A solution of higher accuracy is obtained by correcting the description of
the profiles of contacting surfaces through higher order terms in the Taylor series expansion
of the profile functions. This methodology, termed curvature correction, is similar to the
one reported by Cattaneo (1947) for solids of revolution and Luo (1958) for general solids.
Closed form solutions of contact force and radius in terms of displacement are obtained for
two-, three- and four-term curvature corrections.

Finally, a validation of the two proposed corrections is performed by comparison of the
analytical predictions of contact force and radius versus deformation for compression of
rubber spheres under various loading configurations with finite element simulations and
experimental measurements.

The chapter is organized as follows. The deformation of an elastic sphere in a confined

granular system under the action of multiple contact forces is discussed in Section 2.2. The
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analytical formulation for predicting nonlocal effects in the evolution of the contact radius
is then presented in Section 2.3. In Section 2.4, a curvature corrected nonlocal contact
formulation is discussed. Section 2.5 presents a numerical and experimental validation of
contact radius and curvature corrections. Finally, a summary and concluding remarks are

presented in Section 2.6.

2.2 Deformation of an Elastic Sphere in a Confined Granular System under the

action of a Distributed Surface Pressure

The deformation of a linear elastic sphere with radius R, Young’s modulus £ and Pois-
son’s ratio v is considered under the action of a distributed pressure and a general loading
configuration of multiple contact forces. By approximating the deformation with an axially
symmetric field, a cylindrical coordinate system defined in Figure 2.1 is adopted. The ref-
erence coordinates are denoted by X : (r, z), while the deformed coordinates are denoted
by x : (r',2"). The general loading configuration is represented by (P}, 6;), where P; are the
forces acting on the sphere’s surface and 6; are their angular distances with respect to z or
2/ axis.

A spherical cap of base radius a deforms to a flat circular surface of radius a’ under the

action of an ellipsoidally distributed pressure p proposed by Hertz (1882) and given by

p(r) = 1 2.)

where p,, = 3P/2ma? is the maximum value of the pressure and P is the effective contact
force. The displacement of the elastic cap is represented by a deformation mapping ¢(X),

given by

Np
; P u(r)+ Y un (1)
=1

2 R—mw(ﬂ—iwﬂ@")
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Figure 2.1. Depiction of deformation of an elastic sphere under the action a general con-
figuration of contact forces, due to a distributed surface pressure p acting on its surface.
The figure on the left denotes the configuration before deformation (reference configuration)
while the figure on the right denotes the deformed configuration.

where 2 = R — v/R? — 12 is used, thus enabling the deformation mapping of surface points
solely in terms of r. Quantities w(r) and u(r) are the vertical and radial displacements of
the cap’s surface points due to local pressure p(r), which can be approximated by means of
Boussinesq solution (Johnson, 1985; Timoshenko & Goodier, 1970), i.e., by

_3P(1—v?)

w(r) = =y (2a* — r?) (2.3)

and, according to Tatara (1991), by

(1+v)P r 72 1 r2
1441 = —o21—20) [ 1— —=/1—y/1— =
ArEr | V2R + R? ( ) V2 R2

u(r) = (2.4)

Quantities up,(r) and wp, (r) are the nonlocal contributions to radial and vertical dis-

placements induced by the concentrated forces P; acting on the surface of the sphere. As a
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valid approximation, Gonzalez & Cuitino (2012) have represented wp, (r) by the value of wp,

at the contact center, i.e., by

(1+v)P; [-2(1 —v) — 2(1 — 2v)sin(6;/2) + (7 — 8v) sin(6;/2)
ATRE sin(6;/2)

wp,(r) = wp,(0) = (2.5)

The determination of nonlocal radial displacements up,(r) is addressed in the next section
and it is a major contribution of this work. It is worth noting that if both local and nonlocal
radial displacements are assumed to be negligible, the nonlocal contact formulation proposed
by Gonzalez & Cuitifio (2012) is recovered.

From the above particle deformation analysis, an important conclusion can be drawn.
Although physical quantities, such as pressure and contact radius, compatibility conditions
and equilibrium are defined in the deformed configuration, it is more convenient to work in
the reference configuration. Physical quantities can be easily converted to spacial quantities
by using the deformation mapping ¢(X) and push-forward operations. This understanding

will be used in the analysis performed in subsequent sections.

2.3 Nonlocal effects in the Evolution of Inter-Particle Contact Area

Now, the evolution of contact surface between two elastic spherical particles ¢ and j of
radius I; and R;, and material properties F;, v; and Ej;, v; respectively is considered. The
particles are being pressed together in a general configuration of particles simulating a con-
fined granular system (Figure 2.2). It is proposed that the particles deform to accommodate

a flat contact surface of effective radius af;, given by

1 P. Py,
/ i 7

a :CLij—i—— — + "— (26)
ij 2 m%(aij) he/\;wég ﬂh(xj7 X;, Xh ke/\%#z Uk XZ, X], Xk)

where a;; is the contact radius in the reference configuration, x; and N; are the position and

neighbors of particle 7, and F;; is the effective contact force between particles ¢ and j. The

factor of 1/2 signifies an average of the radial deformations at the contact due to particles i

and j and their respective neighbors.
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Figure 2.2. Depiction of nonlocal effects on the contact area between two dissimilar particles
being compressed by a general loading configuration. The figure shows a schematic of the
loading configuration, and the contact configuration without (long dashed curve) and with
(solid curve) nonlocal correction. The contact with effective nonlocal correction is depicted
by a short dashed curve, with radius a;;.

L

Term my; corresponds to the local contribution to radial deformation of the contact

boundary. Using Equation (2.4) for r = a;j, it can be expressed as

1 14y | 1 a?;
I — A1+ _ Y
(2.7)
Rl 1 a?.
—2(1 -2 — )| 1——F%=4|1—y/1 - =2
=) (aij) V2 Rf
Term mi% corresponds to the nonlocal contribution to the radial deformation of the

contact boundary, given by

1 1 [ d
NL — o NL ¢ (2.8)
myn 27 Jo jih,Q(Xja X, Xn, @)

where m;\]ii@ corresponds to a particular point () on the contact boundary, given by its angu-

lar position ¢ with respect to the plane T given by the equation [(x; — x;) X (x; — Xp)]* (x —
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x;) = 0 (the plane shown in Figure 2.2). Specifically, mJ} , is mathematically represented

by

sin 6, cos ¢ {sin(6;in/2) — sin(Bjinq/2)}
I 14y X {sin(6;in/2) sin(Bjing/2) — 2 + 2v;}
mﬁI,;’Q - 27rEzRZ 2 sin(Gjih/Q) sin(ﬁjih,Q/Z)

cos(Bjing/2) — cos(Bjin/2)
2

—1—\/1 — sin? @, cos? ¢ [ (2.9)

—(1—2) { 1 —sin(Bjin0/2) cos(0in/2) H

sin Bjih,Q B 2 sin(ﬁjih/Z) (1 + sm(Gﬂh/Q))

where Bjinq = Ximh is the angle between point () and position coordinates of particles

1 and h, given by

Biing = cos ! {cos

0jin — sin™! (%) ‘ — (%) (1 —cos ¢)sinb,y, (2.10)

and 0, = mh is the angle between position coordinates of particles j, i and h. A detailed
derivation of m;\ﬁ’Q is presented in Appendix A. It essentially entails the calculation of the
radial displacement of point ) on the boundary of the deforming surface due to one of the

forces P; depicted in Figure 2.1.

NL
jih

In Equation (2.8), m>; is calculated by taking an average of the radial displacements
due to nonlocal forces exerted by particles h on particle ¢ across the contact boundary
between particles ¢ and j. Such averaging is necessary due to the fact that the nonlocal
radial contribution due to a particular force is asymmetric over the contact boundary due
to dependence on variable angle ¢. By averaging over ¢, the assumed symmetry in the
deformation field is recovered and thus the deformed contact surface is approximated by
a circular surface, although resulting in a shift in the position of its center which will be
neglected in this work (see insert in Figure 2.2 and Appendix A, Equation (A.10)). It
was found that the integral in Equation (2.8) does not have an exact closed-form solution,

however its numerical integration is convergent and is used in further analysis.
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To identify a closed-form approximate solution for m%ﬁ amenable to a computationally

tractable implementation, a Taylor series expansion of 1/ m?%@ about a;;/R; = 0 is obtained

1 [ de¢ 1+ |:COSZ (0;in/2) (4v; — 3 — cos jSh)] <a£)

% 0 ?@%,Q (Xj, X, Xp, qb) - 167TEZR1 Sin ((gﬂh/Q) R,L

2 (2.11)
ro((%))

Similarly, a Taylor expansion of 1/mJy; , about 6}, = 7 is also obtained

[ d¢ 1 (14 ;) (14 2u)

i — — ! Ym—0a) + O ((m—6:,)%) (212
o | e T TR oW O (= 6w’ (212
where m;\?,;m corresponds to the analytical solution of Equation (2.8) for #;;, = , that is

1 14y |1 . ay;

(2.13)
21— () [ 1 =1+ f1- 2
( %) <az‘j) V2 " R}

Figure 2.3 presents a comparison of the two approximate analytical solutions obtained
from truncated Taylor expansions at a;;/R; = 0 (Equation (2.11)) and 6;;, = 7 (Equa-
tion (2.12)) with the numerical solution of Equation (2.8), by plotting the dimensionless

NL
Fih

quantity E;R;/m; with respect to 6, for all possible values of 6;;;, € (sin_1 (a;j/R;) ,7T].
To gain a better insight into the non-linear dependency of the expressions on a;;/R; and
v;, graphs for three different values of v; (= 0.15, 0.3 and 0.45) are shown, with each graph
having plots evaluated at three different values of a;;/R; (= 0.25, 0.5 and 0.75). Analysis
of the plots suggests that the numerical solution is fairly represented by Equation (2.11)
until it shifts to positive values near 6;;;, = 37/4. Thereafter, the numerical solution is well

represented by Equation (2.12).
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Figure 2.3. Plots of E;R;/mY; obtained from truncated Taylor series expansion at a;;/R; = 0
(Equation (2.11), solid curves) and 60, = m (Equation (2.12), dashed curves) versus an-
gular distance 6;;,, compared with numerical solution of Equation (2.8) (dotted curves).
Graphs for three different values of v; equal to (a) 0.15, (b) 0.3 and (c) 0.45 are presented,
with plots for each evaluated at three different values of a;;/R; (red curves for a;;/R; =
0.25, green for a;;/R; = 0.5 and blue for a;;/R; = 0.75). The lower bound of 6;; =
sin”*(a;;/R;) (dashed-dotted lines) for evaluation of nonlocal contributions has also been
delineated in each of the graphs.

Accordingly, a piecewise continuous function is proposed to represent m%,LL, given by

( 1+ COSQ(jSh/Q)(ZLI/i — 3 —cosbin)
2(05:,/2)(4v; — 3 — ge. N
1 N _ cos ( ]zh/ )( v coS ﬂh) ai; o<t -
mhk sm(@jc.ih/Q) R, % |
i
\ m;\%w - 167w E; R; (ﬂ- B Gjih) ‘gjz'h > jSh
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Figure 2.4. Plots of E;R;/mJ}; obtained by piece-wise approximate solution Equation (2.14)

(bold solid curves) versus angular distance 6};;,, compared with numerical solution of Equa-
tion (2.8) (dotted curves). The values of v; and a;;/R; are the same as in figure 2.3.

where 67, is the critical value of angular distance at which 1 / m?IiL = 0, given by
16mE; R;
C L 2.15
gih (IT+wv)(1+ 2Vi>m?]i%7ﬂ_ ( )

Figure 2.4 shows a comparison of the numerical solution of 1 /mﬁ% and the proposed
piece-wise continuous approximate solution, using the same values of a;;/R; and v; as in
Figure 2.3. The accuracy of the closed-form approximate solution is acceptable and the

computational tractability of the formulation is attained.
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2.4 Curvature correction to the Nonlocal Contact Formulation

In this problem, the contact of two elastic spheres ¢ and j being pressed together by a
general configuration of concentrated forces (Figure 2.2) is considered again. According to
the nonlocal contact formulation (Gonzalez & Cuitino, 2012), any point within the contact

area satisfies the following compatibility equation

Yij = Rz — \/fil2 — T?j + Rj — \/Rjz — T?j + UJZ‘(’I“Z']') + U)j(?"l'j) — ’}/gL (216)

where 7,5 is the relative displacement of x; and x; along the direction z;; = (x;—x;)/||x;—x;l/,
r;; is the radial coordinate from axis z;; of surface points in the reference configuration, and
w;(r;;) and w;(r;;) are the vertical displacements of surface points located at r;; on spheres
1 and j. The last term in the equation, %J , is the total nonlocal contribution to vertical

displacements induced by all neighbors of the two particles, i.e.,

NL Py,
T = )T (2.17)
J heg;wéj 5ih (X Xi, %) kej\;ﬁéz wk(xw X;; Xk
with nﬂh derived from Equation (2.5) (Gonzalez & Cuitino, 2012)
1 (T+w) [—2(1 —v) — 2(1 — 2u3) sin(B;/2) + (7 — 8v;) sin®(0;:,/2) (2.18)
n?@% B 47TRZE1 Sin(Gjih/Q) '

An important assumption of the Hertz theory is that the profile of the undeformed spherical
contact surface is replaced by the first term of its Taylor series expansion, i.e.

2 4 2
R JRE im0 ()]~ 219)
7 () ij 2R2 R4 2Ri

This approximation largely deviates from the exact solution for moderate to high mesoscopic
deformations. However, the error can be controlled by including more terms in the series to
further correct the profile curvature; for example, the first four terms are given by

r2. rd 7S ad. r2. ri 76 58
Ri—JR2—v2 =R, |8 vy i (%)) T T, Ty U (2.20
P {2R§+8R§+ 16R5 (Rf)] or, 3w T om Timer (W)
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Therefore, by adopting a four-term curvature correction, Equation (2.16) simplifies to

7,2

wi(ri;) + w;(ri;) = (vig +75y7) — ]2 . — J8 - ]16 .- 1j28 : (2.21)
where
1 1 1 1 1 1 1 1
Ai':—‘f‘— ]Bgi.:__|__ Ci’:_+_ ]Di':_ R
TRYR OTETRE TR TE O OVTRTE

Next, the pressure distribution p;; compatible with Equation (2.21), over the circular
contact region Q;; of contact radius a;; in the reference configuration (Figure 2.5) is de-
termined. Specifically, for a pressure p;;(gi;,w;;) acting over an elemental region B of area
¢ij dgi; dw;;, the vertical displacement field according to the theory of elasticity (Johnson,
1985, pg. 53) is given by

wi(rij) + w;i(ry) = (1 1o VJQ) // Pij (i, wij ) dgijduws; (2.22)
7TE¢ 7TEj Qij

and thus, by using Equation (2.22) in Equation (2.21), one gets

1—v} 1- VJZ . rl?inj T%Bij

16 128

(2.23)

The pressure distribution p;; is readily available by following the method reported by
Luo (1958), which involves taking an approximate form of p;; to solve the integral, followed
by comparing coefficients of like powers of r;; on both sides of the equation. For reference,
the solution method is described in Appendix B. Using the pressure distribution functions,
contact radius-force-displacement relationships for two-term, three-term and four-term cur-

vature corrections are presented next in turn.
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Figure 2.5. Depiction of the circular contact region Q;; of contact radius a;; under the action
of a distributed contact pressure, with B(g;;,w;;) being an elemental region on which the
pressure distribution is considered.

2.4.1 Two-Term Curvature Correction

Pressure distribution (Appendix B.1, Equation (B.20)):

2 (1—v2 1—12\"" r2\ /2 242.B;; r2
mir =22 (e g ) (1) et ()] e
1 Vi ij i

Contact radius-displacement relationship (Appendix B.1, Equation (B.19)):

B,
@i (f) +azAy — (v +75) =0 (2.25)

which yields only one real and positive solution given by

1/2
3 4B NL 2
“i = 9B, (\/T (vij + i) + A — Ay (2.26)
Contact force-radius-displacement relationship:
aij 4Ez* 20”i <7z 4 71NL)2B1 .
Py = /0 pij (1) 2mrigdry = —ai (v + 75)° | Aig + —— = : (2.27)
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where
11— 1-v;
T -+
ij E; Ej

and a;;(v;; +75") is given by Equation (2.26).

2.4.2 Three-Term Curvature Correction

Pressure distribution(Appendix B.2, Equation (B.30)):

2 (1—v2 1—v2\"" r2\ 1 242.B;, r
pii(rij) = @ij Vi 4 J Ny Ay + Y I (14904
J\"ij T E; Ej a?j J 9 a?j

at.Cy; rZ ri
+]2—5J (3+4a—2j +8a—4j)}

i i

(2.28)

Contact radius-displacement relationship (Appendix B.2, Equation (B.29)):

4 [§

a;; ay:
i+ = aghi + ?jBij + ?]Cij (2.29)

which yields only one real and positive solution given by

2 3\1/2 1/3 1/3 1/2
- (@ +4R%)2+ Q] (2)'°Ry _ 5By (2.30)
; 9(2)1°C; 9C;; [(Q@ +4R%)2 + Q] 9Cy

where

Contact force-radius-displacement relationship:

4E}; 2ai-('y¢- + %NL)Q]Bi‘ 9@1'(%“ + %NL)4(C@”
Bj:_]aij(Vij_'_ngL)s Az]"‘ J\ 1 - J J + J\ 1) o J J

. (2.31)

where a;(7i; 4+ 71y") is given by Equation (2.30).



33

2.4.3 Four-Term Curvature Correction

Pressure distribution (Appendix B.3, Equation (B.42)):

2\ 1 2.\ 1/2 2 2
p(?”): QCLZ‘]' 1_1/12 n 1—Vj _Ti A+2CLUBU 1+ ’]“i
T B £ ajj ? 9 aj; (2.32)
ag;Cy; s rfj 4a?jDij ST Tfj '
+ 22 (34 asl 4820 ) 4 S0 (54 6.0 48 4162
25 w w 245 w aw am

Contact radius-displacement relationship (Appendix B.3, Equation (B.41)):
4 6 8

a;; ay al;
Vg vy = agA - ?JBij + ?JCU‘ + TJDij (2.33)

which yields only one real and positive solution given by

100D% 3D

W |1 147C7, 4B, o 1 (196B,Cy 343C% 564,
! 9T 45, U 15D% 125D% Dy

Vs Ty " (2.34)
2 20D
where
Sij = 7(2)' s} . [Sﬁf) +/s®” — 17150080 "
ij 9]D)u [ + \/8(2) 17150081(.;)3} 1/3 45(2)1/3Dij
| 49C; 4By

100D% 9Dy
S = 446512542 D;; — 694575A,;B;;C;; + 857508,

+ (3969000B;;D;; — 1250235C2,) (75 + 13"
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Figure 2.6. Schematic of the loading configurations considered for validation of contact radius
and curvature corrections to the nonlocal contact formulation. (a) Simple Compression, (b)
Die Compression, (c¢) Hydrostatic Compaction and (d) Die compression with four additional
walls at an angle of 37.5° from lateral walls in the y-direction. For each loading configuration,
views in x-z and y-z plane are provided for clarity.

Contact force-radius-displacement relationship:

_ 4B

P 2a5(vij + iy ) By 9ai; (i + i) Cij
ij 3 +

Ay
g 5 35

aii(vi; + 75 0)°

- (2.35)
ag; (vij + 755 )" Dy
+ 21

where a;;(7i; +71y") is given by Equation (2.34).

2.5 Validation of Contact Radius and Curvature Corrections

Validation of contact radius and curvature corrections to the nonlocal contact formulation
was performed by considering four types of loading configurations (Figure 2.6), three of which
simulate the compaction of particles in a simple cubic lattice, namely simple compression

(sphere pressed between two rigid plates, figure 2.6a), die compaction (sphere compressed
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between rigid plates and constrained laterally by rigid walls, figure 2.6b) and hydrostatic
compaction (sphere compressed triaxially by rigid plates, figure 2.6¢). The fourth configura-
tion consists of four additional walls perpendicular to the y-z plane between the plates and
lateral walls of a die compaction configuration (Figure 2.6d). Analytical predictions for all
the configurations were compared with detailed finite element simulations, analytical results
obtained from the original nonlocal contact formulation (Gonzalez & Cuitino, 2012), and
the classical Hertz predictions. For the case of simple compression, predictions were also
compared with experimental measurements (Tatara, 1989; Tatara et al., 1991).

The finite element simulations were performed in ABAQUS on one-eighth of a sphere,
owing to geometric and loading symmetries. Finite deformations were considered and the

material was characterized as compressible Neo-Hookean with energy density of the form

A
W (A1, Ao, As) = g [T+ 25+ 43) - 8] + S(J - 1)? (2.36)

where Aj, Ay and A3 are the principle material stretches, J = det(F) = A\ Ao A3 and pand X are
the Lamé constants. In ABAQUS, Cyp = § and D, = % are the input parameters The elastic
constants used in the simulations correspond to the values of £ = 1.85 MPa and v = 0.48
reported for rubber (Tatara, 1989; Tatara et al., 1991). Following a mesh convergence study,
mesh comprising of 500,000 elements of type C3D8R (8-node linear hexahedral) and 515,201
nodes was chosen. For illustration purposes, a course mesh of 108,000 elements is depicted
in Figure 2.7.

One of the most important factors to be considered while comparing analytical predictions
with numerical simulations, other than the evolution of contact force and contact radius, is
the occurrence of contact impingement. This is a phenomenon that causes the contacts
to no longer remain circular and, thereby, restricts the applicability of the nonlocal contact
formulation. Figure 2.8 provides a geometrical description of the impingement of two contacts
in a spherical particle under a general loading configuration. From the figure, the angular

distance 6,5 between the two contacts at the inception of impingement is given by

012 = tan™* <#§h/2)) + tan ™! (#%) (2.37)
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Figure 2.8. Impingement of two contacts of radii aj and aj at distances (R — %) and

(R — 772) respectively from the center of a particle of radius R, separated by an angular

distance 6y,.

range of applicability exists for simple compression as well, albeit at deformations greater
than 80% that are beyond the scope of this study.

Analysis of the plots suggests that the proposed contact radius and curvature corrections
increase the range of applicability of the nonlocal contact formulation, thereby enabling pre-
dictions at higher levels of deformation. Further improvement is observed with increase in the
order of curvature correction until convergence, which is achieved with a four-term correction.
Quantitatively, the range of applicability of the formulation is increased by roughly 5% for
die compaction, 2% for hydrostatic compaction and 6% for die compaction with additional
walls is observed. Additionally, the corrections enable predictions closer to the geometric
contact impingement, marked by dotted straight lines in the graphs. This is well represented
in the graphs for die compaction, where predictions continue right until the impingement of
vertical and lateral contacts, and for die compaction with additional walls, where predictions
continue until the impingement of vertical and lateral contacts in the x-direction. Interest-

ingly, the analytical predictions for the fourth configuration are remarkably accurate even
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Figure 2.9. (a) Load - deformation and (b) contact radius - deformation curves for simple
compression of a rubber sphere. Hertz theory predictions (black-dashed curves), nonlocal
contact formulation results without contact radius and curvature corrections (black curves),
with contact radius and two- (red curves), three- (green curves) and four- (blue curves) term
corrections, finite element solution (gray curves), and experimental measurements (Tatara,
1989; Tatara et al., 1991) (five-pointed stars and triangles) are presented. The convergence
of predictions at a four-term correction is shown in the inserts.
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Figure 2.10. (a) Load - deformation and (b) contact radius - deformation curves for die
compression of a rubber sphere. Predictions for vertical loaded contacts are given by solid
curves while predictions for lateral constrained contacts are given by dashed-dotted curves.
Hertz theory predictions (black-dashed curves), nonlocal contact formulation results without
contact radius and curvature corrections (black curves), with contact radius and two- (red
curves), three- (green curves) and four- (blue curves) term corrections, and finite element
solution (gray curves) are presented. The deformation at geometrical contact impingement of
vertical and lateral contacts is marked by a gray dotted line. The convergence of predictions
at a four-term correction is shown in the inserts.
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Figure 2.11. (a) Load - deformation and (b) contact radius - deformation curves for hy-
drostatic compression of a rubber sphere. Hertz theory predictions (black-dashed curves),
nonlocal contact formulation results without contact radius and curvature corrections (black
curves), with contact radius and two- (red curves), three- (green curves) and four- (blue
curves) term corrections, and finite element solution (gray curves)) are presented. The de-
formation at geometrical contact impingement of contacts is marked by a gray dotted line.
The convergence of predictions at a four-term correction is shown in the inserts.
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Figure 2.12. (a) Load - deformation and (b) contact radius - deformation curves for com-
pression of a rubber sphere according to the loading configuration depicted in Figure 2.6d.
Predictions are represented by solid curves for vertical loaded contacts, dashed-dotted curves
for lateral constrained contacts in x-direction, dashed curves for lateral constrained contacts
in y-direction, and dotted curves for oblique contacts. Hertz theory predictions (bold black-
dashed curves), nonlocal contact formulation results without contact radius and curvature
corrections (black curves), with contact radius and two- (red curves), three- (green curves)
and four- (blue curves) term corrections, and finite element solution (gray curves) are pre-
sented. The deformation at geometrical contact impingement of vertical, oblique and lateral
(y-direction) contacts is marked by a gray dotted line, and that of vertical contacts and
lateral contacts in x-direction by a black dotted line. The convergence of predictions at a
four-term correction is shown in the inserts.
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after the impingement of vertical, oblique and lateral (y-direction) contacts (gray dotted
line), indicating that predictions of the extended nonlocal contact formulation are accurate
until impingement of all the particle contacts. As for the case of simple compression, an
overall improvement in the representation of experimental measurements for both contact

force and radius is observed, which again converges at the four-term curvature correction.

2.6 Summary and Discussion

An analytical framework has been developed for contact radius correction to nonlocal
contact formulations, which accounts for local and nonlocal contributions to the radial de-
formation of contact boundaries due to multiple contact forces acting on a single particle.
Furthermore, a method of curvature correction has been proposed to relax the traditional
assumption of one-term Taylor series representation of undeformed contacting surfaces. For
definiteness, attention has been restricted to elastic spheres in the absence of gravitational
forces, adhesion or friction. Hence, a notable feature of the nonlocal formulation presented
here is that, when no contact radius and curvature corrections are accounted for, it reduces
to the nonlocal contact formulation presented by Gonzalez & Cuitino (2012) and thus, when
all nonlocal effects and corrections are neglected, it reduces to Hertz theory. A salient fea-
ture of the proposed formulation is that it increases the range of applicability of the nonlocal
contact formulation (Gonzalez & Cuitino, 2012) and, consequently, it enables accurate pre-
dictions of contact behavior until contact impingement for confined loading configurations.
Specifically, investigation of four different loading conditions (namely simple compression,
die compression within four walls and within six walls, and hydrostatic compaction) have
successfully validated the predictions of the proposed nonlocal formulation with respect to
experimental and detailed finite-element simulation results of rubber particles.

To conclude this chapter, future research directions and possible approaches for extension
of the formulation are mentioned below.

First, the work presented in this chapter together with the nonlocal contact formula-
tion by Gonzalez & Cuitino (2012) serves as the foundation for conceiving an analytical

elasto-plastic nonlocal contact formulation. Similar to elastic particles, the assumption of
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independent contacts is not valid for particles deforming predominantly plastically in the
range of moderate to high mesoscopic deformations (Mesarovic & Fleck, 2000). Recently,
finite element simulations of linear elastic-perfectly plastic particles (Tsigginos, Strong &
Zavaliangos, 2015) have shown contact interactions at moderate deformations physically
manifesting as coalescence of local plastically deforming zones around individual contacts,
with further deformation leading to the development of a low-compressibility regime when
the contact deformations become predominantly elastic. The systematic investigation of
these interaction effects is a worthwhile direction of future research.

Second, although the work presented in this chapter is a contribution to predictive mod-
eling of confined granular systems, considerable effort is required for modeling of contact
behavior beyond contact impingement. Finite element simulations presented in this chap-
ter show an almost linear increase in contact force with deformation after impingement of
all contacts, indicating a linear force-displacement relationship in this deformation regime.
However, a rigorous analysis of such linear correlation is desirable, if beyond the scope of

this study.
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CHAPTER 3. SEMI-MECHANISTIC CONTACT LAWS FOR LARGE DEFORMATION
UNIAXTAL AND TRIAXTAL COMPRESSION OF ELASTO-PLASTIC PARTICLES

The content of this chapter and associated appendices C, D and E has been submitted to
the International Journal of Solids and Structures, and it is currently under review.

3.1 Introduction

Compacted granular systems, particularly powder compacts, are one of the most com-
monly used types of materials, with extensive applications in manufacturing processes of
critical industries like pharmaceuticals, ceramics, energy, automotive, construction, food,
and metallurgy. The versatility and wide application of these materials have made them a
subject of active research in the scientific community, particularly in the area of predictive
modeling of meso and macroscopic behavior of these materials under confinement. Confined
granular media typically consist of a disordered blend of different powder particles with
different particle size distributions. During compaction, these particles deform by coming
into contact with neighboring particles as forces get transmitted throughout the system, es-
sentially forming a heterogeneous contact network of force chains (Majmudar & Behringer,
2005). The significant heterogeneity of these systems at the granular scale has, therefore, a
fundamental impact on their macroscopic behavior.

Conventionally, the macroscopic behavior of confined granular systems has been described
by continuum models such as Cam-Clay (Puri et al., 1995; Sun & Kim, 1997), Cap (Chtourou
et al., 2002), Drucker-Prager Cap (DPC) (DiMaggio & Sandler, 1971; Cunningham et al.,
2004; Sinka et al., 2004; Han et al., 2008; Sinha et al., 2010), and Endochronic (Khoei et al.,
2002; Bakhshiani et al., 2002, 2004) plasticity models, which consider granular media as
homogeneous material, thereby neglecting the critical behavior at meso (particle) scale such
as particle rearrangement and non-affine deformations. More recently, macroscopic discrete

models have been proposed. The capability of these models to incorporate microstructural
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evolution and properties of the granular system into its global behavior has increased their
popularity and usage in recent years. A commonly used numerical method in this category
is the Discrete Element Method (DEM) proposed by Cundall & Strack (1979), which has
been employed extensively to successfully study and predict densification due to particle
rearrangement and particle-particle elasto-plastic deformation during powder compaction
(Sheng et al., 2002; Martin et al., 2003; Martin & Bouvard, 2003; Martin et al., 2006; Skrinjar
& Larsson, 2004; Belheine et al., 2009; Harthong et al., 2009; Jerier et al., 2011; Rojek
et al., 2016). The discrete particle mechanics approach (Gonzalez & Cuitino, 2016; Yohannes
et al., 2016, 2017; Gonzalez et al., 2018; Poorsolhjouy & Gonzalez, 2018; Gonzalez, 2019)
is another computationally efficient numerical technique for modeling of highly confined
granular systems. The approach considers rate-independent material behavior and models
the compaction process as a sequence of quasi-static loading steps, where a set of nonlinear
equations for the equilibrium configuration of each particle is formulated and solved during
each step.

While the superiority of discrete models over continuum models in describing the macro-
scopic behavior of confined granular systems is evident, it is worth mentioning that the
predictability of discrete models relies heavily on the employed contact formulation to de-
scribe the contact force-area-deformation relationship between inter-particle contacts formed
before and during the compaction process. Understanding the contact mechanics between
deformable particles has been a problem of interest for several decades. While contact of
elastic particles within the regime of small deformations is fairly understood, thanks to the
classical work of Hertz (1882), the problem becomes more involved and complex with con-
sideration of large deformations and inelastic material behavior. As an initial step towards
formulating an analytical contact law for elasto-plastic particles under large deformations, an
attempt to understand the deformation mechanisms that govern the particle response under
large compression is made. Figure 3.1 represents the normalized contact force-deformation,
contact radius-deformation and contact pressure-deformation responses derived from finite
element simulations of a single elasto-plastic von Mises type power-law hardening spherical
particle under three types of loading configurations in a simple cubic cell, namely simple

axial compression, die compression (axial compression and lateral confinement between four
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Figure 3.1. Finite element simulation results of normalized (a) contact force-deformation,
(b) contact radius-deformation, and (c) contact pressure-deformation behavior of an elastic-
plastic power law hardening sphere of radius R = 10mm under three types of loading con-
figurations, namely simple compression (solid curve with circle markers), die compaction
(solid curve with pentagram markers) and hydrostatic compaction (solid curve with cross
markers). The similarity solution proposed by Biwa & Storakers (1995) is also plotted for
comparison, and is shown as dashed curve in all the plots. The material properties used here
correspond to lead (Chen et al., 2007).



47

VA

|
LT LT AT HII

1TH
; O ) é
(N T R e HN

| ./
(EEARRRRRERRENN TTTHAITTTHTTT HITTTTEH

V4
|
|

HIHTTH
HITTH

(a) Simple Compression (b) Die Compaction (c) Hydrostatic Compaction

Figure 3.2. Schematics of loading configurations considered in this study.

rigid walls) and hydrostatic compression (isostatic axisymmetric loading). Schematics of
these loading configurations are depicted in Figure 3.2. The material’s yield surface evolves
according to the following power law (Ludwik, 1909)

U:Uy+K61/n (3.1)

pl

where o is the current stress, o, is the yield stress, K is a representative strength, n is the

hardening exponent, and ¢ is the plastic strain calculated as

€pl = € — z (32)

&

where € is the current strain and E is the Young’s modulus. To perform the simulations,
material properties corresponding to those reported by Chen et al. (2007) for lead, i.e.,
K = 15.5 MPa, n = 2.857, F = 10 GPa and v = 0.435 were used. To ensure consistency
with the assumption of rigid-plastic power law hardening behavior by previous works on
contact models for spherical indentation (Tabor, 1951; Biwa & Storakers, 1995) and contact
of inelastic solids of revolution (Storakers et al., 1997), the Hollomon’s power law (Hollomon,

1945) is additionally considered

o = ke/™ (3.3)
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where k is a representative strength and m is the hardening exponent. By equating power
laws given by Equations (3.1) and (3.3) and adjusting the coefficient values to obtain similar
response curves, Harthong et al. (2009) obtained x = 20.5 MPa and m = 4.167 for lead.
This value of k was used to normalize the contact force and the contact pressure in Fig-
ure 3.1. From an observation of the contact response, it is quite apparent that the contact
behavior is heavily dependent on the loading configuration, especially at moderate-to-large
deformations. Particle compression causes an initial elastic deformation, followed by local
plastic deformation at the vicinity of each contact where yielding occurs for the first time.
Initially, the plastic zone is fully contained within the surrounding material which remains
elastic, and, therefore, the contact deformation mode within this regime is termed as a ‘con-
tained’ or ‘elastic-plastic’ deformation mode (Johnson, 1970, 1985; Stronge, 2018). On the
onset of this deformation mode, the contact force and pressure curves become non-linear
with a decreasing slope. The plastic zone quickly expands and breaks out to the free surface,
resulting in a plastic flow of the material surrounding the contact area. This is called an
‘uncontained’ or ‘fully plastic’ mode of deformation (Johnson, 1970, 1985; Stronge, 2018).
During this stage, the contact response exhibits a softening or a reduction in contact pressure
with further deformation. This deformation regime has been previously studied by Frenning
and co-workers (Frenning, 2013; Jonsson et al., 2017) and Tsigginos et al. (2015), who at-
tribute the softening effect to the full mergence of plastically deforming zones around the
contacts. However, the theory of Jackson, Green, and co-workers (Jackson & Green, 2003;
Quicksall et al., 2004; Jackson & Green, 2006) is more intuitive, who postulated that the
flattening or indentation of a sphere onto a surface causes its geometry to approach that of
a compressed column, leading the contact pressure to reduce and approach the material’s
yield or representative strength. Until this point, the contacts can be assumed independent
of each other, yielding similar force, area and pressure evolution regardless of the loading
configuration, resulting in an overlap of the curves at this stage. With further deformation,
the void volume around the particle gets increasingly filled by the material displaced by
plastic deformation. For the case of simple compression, the lateral void volume is infinitely
large. Therefore, material displacement in the lateral direction due to contact deformation

does not affect the contact pressure, which continues to reduce and approach the material’s
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representative strength. However, for die and hydrostatic loading conditions, the void volume
is finite and, therefore, the contact pressure starts increasing again with increasing particle
deformation. This phenomenon, termed ‘geometrical hardening’” by Sundstrom & Fischmeis-
ter (1973) and ‘low compressibility’ regime by Tsigginos et al. (2015), has been previously
studied using finite element simulations of isostatic axisymmetric loading of elastic-perfectly
plastic spherical particles (Tsigginos et al., 2015). It was observed that the increase in con-
tact pressure was the result of a significant increase in the elastic strain energy of the particle
during this stage, indicating that further particle deformation is governed by elastic com-
pressibility of the material. Due to the higher degree of confinement, void filling occurs at
a faster rate during hydrostatic loading as compared to the die loading condition, resulting
in the contact pressure rising at a smaller contact deformation for the hydrostatic loading
configuration as compared to the die configuration. Overall, this phenomenon is observed
the in form of a significant divergence of the response curves of the three cases at this stage,
signifying a strong dependence on the loading configuration at large deformations.

For deformations in the ‘contained” mode, spherical cavity expansion models for elasto-
plastic indentation of a half space have been proposed for both small (Johnson, 1985;
Studman et al., 1977; Hardy et al., 1971; Gao et al., 2006; Mata et al., 2006) and large
deformations (Liu et al., 2014b). For materials undergoing negligible elastic deformations
and predominant ‘uncontained’ plastic deformations (rigid-plastic power law hardening),
Biwa and Storakers (Biwa & Storakers, 1995; Storakers et al., 1997) formulated a contact
model by reduction of a moving boundary contact problem to a stationary one using self-
similar approach. The model was derived by first solving the fundamental contact problem
of a curved rigid indenter in contact with a deformable half space (Hill et al., 1989), from
which the solution of spherical indentation of a half space and more importantly, contact
of two spheres of different radii and strengths but the same hardening exponent could be
obtained. According to this model, for contact between two spheres (Figure 3.3) of radii R,
and Ry, strengths k1 and ks, and plastic power-law hardening exponent m, the contact force

(P)-radius (a)-displacement (7y) relationships are given by
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P

Figure 3.3. Schematic of the two-particle contact problem, depicting the contact between
two spherical particles of radii R; and R,. The particles are made of rigid-plastic power law
hardening material with strengths x; and x5 and a common power-law hardening exponent
m. A displacement v of the centers of mass of the particles located at positions x; and x5
results in a contact force P and contact area of radius a.

Contact Force:
P = npaz-f—% (34)

Contact Radius:

202 1/2
0= (K) 12 (3.5)

where ~ is the relative displacement of the particles
’YZR1+R2—||X1—X2|| (36)

and the geometric parameter A and plastic law coefficient np are given by

11
R R

1 1 —1/m
np = whAY™ (— + —) (3.8)

m m
K1 Kg

A
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with k = 3 x 67%/™ and ¢? = 1.43¢7%97/™ (Storakers & Larsson, 1994). To illustrate the
applicability of the contact law, it is plotted for the properties of lead in Figure 3.1 (dashed
curves). It can be seen that the solution is independent of the loading configuration, and
diverges from the response curves at small deformations (~2 — 3%). This is consistent
with the assumption of small strain kinematics and independent contacts employed for the
derivation of the similarity contact law.

The formulation of an analytical contact law capable of describing the contact behav-
ior at later stages of compression is particularly challenging due to the inapplicability of
the assumptions of independent contacts and small strain kinematics. Besides, the contact
formulation must account for complex phenomena such as softening at moderate strains
and the significant increase in contact pressure evident at large strains for confined loading
conditions. Initial progress in this regard was made by Harthong et al. (2009, 2012), who
proposed a semi-mechanistic contact law for spherical particles with rigid plastic power-law
hardening material behavior through curve fitting of force-deformation FE data of particle
compression under simple, die and hydrostatic loading conditions. The model is based on
a local relative density-dependent stiffness parameter, which is added to the stiffness of the
contact under simple compression to represent the rise in contact force for die and hydrostatic
loading conditions due to plastic incompressibility at large deformations. While the model
is highly predictive at large deformations, it is limited to the force-deformation relationship
and neglects elastic deformations, leading to infinite force as the relative density tends to
unity. Frenning (2013) proposed a truncated sphere model applicable for small-to-moderate
deformations of a spherical particle under a general loading configuration. The model uti-
lizes the plastic incompressibility assumption to relate the average pressure in the particle
due to elastic volumetric strain to the mean pressure generated at the particle contacts. For
the specific case of hydrostatic loading condition, Frenning (2015) later extended the model
to account for contact impingement and low compressibility at large deformations. Olsson
& Larsson (2013a,b, 2016) proposed semi-analytical contact laws for elasto-plastic spheri-
cal particles under simple loading configuration that are predictive at large deformations.

Their formulation is based on the work of Johnson (1970) on the correlation of indenta-
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tion tests performed on elasto-plastic materials to a single master curve dependent on a
non-dimensional material and contact geometry parameter.

While the development of a closed-form analytical formulation for large deformation con-
tact behavior of elasto-plastic confined granular systems remains an open problem, valuable
progress towards achieving this goal can be made by developing the capability to predict the
complete contact behavior, i.e., contact force and contact area, for particles under uncon-
fined and confined compression in a simple cubic packing. In this chapter, a semi-mechanistic
contact formulation for an elastic-perfectly plastic spherical particle under simple, die and
hydrostatic loading configurations is presented. Contact laws for the evolution of contact
pressure and contact radius with deformation are proposed, which enable the determina-
tion of contact force as the product of pressure and area. The contact radius is derived as
a three-term expansion of the curvature-corrected (Agarwal & Gonzalez, 2018) similarity
contact law, where each term corresponds to the contact response under a specific defor-
mation regime (small, moderate and large deformations). The contact pressure is described
in each deformation regime by distinct contact laws that are continuous and differentiable
at the transition from one regime to another. The proposed laws are both material and
loading condition-dependent, accounting for initial elastic and elasto-plastic deformations
and limited elastic compressibility for confined loading conditions (die and hydrostatic) at
large deformations. This is accomplished by calibrating the various model parameters to a
sufficiently large set of finite element simulations, where the set of elasto-plastic material
properties used to perform the simulations is obtained through a space-filling design, thus
ensuring sufficient diversity of the considered material behavior.

The chapter is organized as follows. Section 3.2 describes the space-filling design prob-
lem for acquiring mechanical properties used in the finite element simulations. The finite
element analysis and results are then presented and discussed in Section 3.3. A detailed
description of the semi-mechanistic contact formulation is presented in Section 3.4, followed
by its validation through a comparison of model predictions with the finite element results in
Section 3.5. A preliminary semi-mechanistic analysis of the lateral contacts in the die loading
configuration is presented in Section 3.6. Finally, a summary and concluding remarks are

presented in Section 3.7.
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3.2 Space-Filling Design of Experiments for acquiring Mechanical Properties

and Loading Configurations

To obtain a diverse set of elasto-plastic material properties for our finite element sim-
ulations, the mechanical properties and loading configurations are modeled as variables of
a space-filling design problem (Santner et al., 2013). Therefore, independent variables are
the mechanical properties, i.e. Young’s modulus (£), Poisson’s ratio () and uniaxial yield
stress (0y), and the loading configurations, i.e. simple, die and hydrostatic loading. Another
material-dependent quantity worthy of consideration is either one of the ratios F/(1 —v?)o,
(Mesarovic & Fleck, 2000) and E/o, (Tsigginos et al., 2015), which have been numerically
shown to influence the contact behavior significantly during the initial stages of compression.
Although E/(1—v?%)o, is a more appropriate choice considering the fact that it incorporates
all the properties that influence stiffness, yield and compression behavior of the material,
E /o, is chosen as the final independent variable to ensure minimal nonlinearity in the con-
straints and acquisition of a broader range of material properties. Table 3.1 provides bounds
for the considered independent variables in the space-filling design. The bounds are selected
to encompass the observed mechanical properties of most elasto-plastic materials (thermo-
plastic polymers, metals, alloys, pharmaceutical powders, etc.).

Although the mechanical properties E, v and o,, and the ratio £/, are modeled as
separate variables, there is an evident relationship between them. This relationship is incor-

porated into the design problem as a nonlinear constraint, given by

951/952 — I3

< TOL 3.9
Py (3.9)

Table 3.1. Bounds for the independent variables (mechanical properties) considered in the
space-filling design problem.

Minimum Value | Maximum Value

E (MPa) 2000 200000
o, (MPa) 1 500
v 0.2 0.48

E/o, 100 5000
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where 1 — E, 15 — 0, and 23—E/0,. According to this constraint, the relative difference
between the ratio of variables E and o, and the variable E/o, should be lower than a
specified tolerance. In this study, a tolerance of TOL = 0.005 (0.5%) is assumed.

The formulated design problem was solved in the statistical software JMP®  Version 14
(2018) using the Fast Flexible Filling (FFF) algorithm, which is capable of incorporating
nonlinear constraints. According to the software’s Design of Experiments documentation
(SAS Institute Inc., 2018), the FFF algorithm starts by balancing the total number of design
points across the total number of combinations of levels n of the categorical variables. For the
given problem, only one categorical variable (loading configurations) is defined with 3 levels
(simple, die and hydrostatic), which implies that for a total of K design points, K /3 points
are allocated to each level. For this study, a total of K = 51 FE simulations were performed.
Therefore, 17 points were allocated to each level, i.e., 17 simulations were performed for each
loading configuration.

Next, a large number of points within the design space defined by the continuous variables
(E, 0y, vand E/o,) are generated, which are then grouped into K/3 (= 17) primary clusters
using a fast Ward’s algorithm (Ward Jr., 1963). Each of the primary clusters are then further
clustered into n (= 3) sub-clusters. Within each primary cluster, a design point is calculated
for each of the sub-clusters by minimizing a Maximum Projection (MaxPro) criterion (Joseph
et al., 2015), which, for the given problem with p = 4 continuous variables and K = 51 total

clusters is defined as

CMaxpro = Z Z [H(mm - $jk)2] (3.10)

i j=i+1 Lk=1

By minimizing the above criterion, product of the distance between potential design points
is maximized in a way that involves all variables, which results in a good space-filling design.
Finally, for each of the K/3 (= 17) primary clusters, one of the n (= 3) categorical levels
is randomly assigned to each of the n (= 3) sub-cluster design points, yielding the total of
K (= 51) design points.

Figure 3.4 provides scatter plots of the design points obtained for the three symmetric

loading configurations, while Table 3.2 provides a complete list of the mechanical properties
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Figure 3.4. Scatter plot of the design points obtained from the space-filling design of me-
chanical properties and loading configurations for the FEA study.

obtained by solving the design problem. It is quite evident that the points are fairly-spaced,
and hence, the obtained mechanical properties can be used further to set-up the FE simula-

tions.

Table 3.2. : List of mechanical properties (arranged in the increasing order of E/o, ratio) and
corresponding loading configurations obtained from the solution of the space-filling design
problem.

Loading E (MPa) v o, (MPa) | E/o,
Condition
Simple 36961.79 | 0.4130 361.11 102.36
Compression | 20639.45 | 0.2993 148.54 138.95
84752.72 | 0.3524 452.13 187.45
150500.27 | 0.4739 499.21 301.48
172086.58 | 0.2115 472.34 364.32
101785.47 | 0.2643 225.81 450.75
190003.52 | 0.2939 304.09 624.83
75517.00 | 0.4019 92.86 813.25
196617.68 | 0.4270 178.85 1099.37
161529.29 | 0.2046 123.92 1303.46
114577.91 | 0.3579 76.34 1500.97
88565.10 | 0.4709 42.09 2104.13
Continued on next page




Table 3.2 — Continued from previous page

Loading E (MPa) v o, (MPa) | E/o,
Condition
139990.73 | 0.2161 54.84 2552.68
52841.85 | 0.2003 13.95 3786.85
178811.38 | 0.2582 45.49 3930.52
16555.89 | 0.4328 3.48 4756.54
193549.09 | 0.4078 39.13 4946.77
Die 49200.85 | 0.2251 317.80 154.82
Compaction | 57221.17 | 0.3899 176.03 325.06
146900.23 | 0.3247 | 424.97 345.67
199028.86 | 0.4392 | 480.79 413.96
180937.93 | 0.2001 341.00 530.61
41573.92 | 0.3058 71.21 583.84
141078.40 | 0.4640 234.62 601.32
118951.98 | 0.2124 156.49 760.11
184270.83 | 0.3440 199.86 922.02
21959.27 | 0.4749 16.08 1365.37
199785.29 | 0.2841 129.76 1539.61
190786.67 | 0.3829 78.68 2424.75
5314.12 | 0.2933 2.01 2643.37
78547.20 | 0.4264 28.38 2767.69
198038.19 | 0.4772 51.91 3815.19
160754.07 | 0.3213 37.41 4297.29
110376.78 | 0.2204 23.42 4713.79
Hydrostatic 2958.14 | 0.2099 26.39 112.08
Compaction | 57840.71 | 0.4623 | 483.90 119.53
65157.56 | 0.2831 283.64 229.72
135501.57 | 0.3973 | 345.15 392.59
194137.98 | 0.2418 413.75 469.22
79402.31 | 0.4792 164.35 483.14
198495.80 | 0.3652 | 256.71 773.23
143839.36 | 0.3178 138.24 1040.50
61598.96 | 0.3370 47.86 1286.97
187812.04 | 0.4654 114.89 1634.70
131429.64 | 0.4187 70.02 1876.91
197086.03 | 0.2014 92.22 2137.09
174002.47 | 0.2976 61.27 2839.88
34338.87 | 0.4100 11.20 3065.39
123218.19 | 0.2344 35.71 3451.00
147336.69 | 0.4576 31.83 4628.58
95689.98 | 0.3607 19.17 | 4992.44

o6
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3.3 Finite Element Analysis

On the account of geometric and loading symmetries, finite-element simulations were
performed on one-eighth of a sphere of radius R = 10mm in ABAQUS. As mentioned
before, the material was characterized as elastic-ideal plastic (hardening exponent m — o),

satisfying the following constitutive law

(3.11)

Following a mesh convergence study, a mesh comprising of 500,000 linear hexahedral elements
of type C3D8R and 515,201 nodes was chosen for our analysis. For representational purposes,
a courser mesh of 62,500 elements and 66,351 nodes is depicted in Figure 3.5. A total of 51
FE simulations were performed with this model, 17 for each loading configuration (simple,
die and hydrostatic) using the material properties obtained from the space-filling design.
To simulate the extensive particle deformation conditions during powder compaction
process, the contact response for simple compression was evaluated until 50% deformation.
For hydrostatic and die configurations, a state of complete closure of porosity is achieved with
continued particle deformation and material flow. This stage is termed as the zero porosity

limit (Tsigginos et al., 2015), following which the stresses required for further deformation
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Figure 3.5. Finite element mesh consisting of linear hexahedral elements of type C3DS8R,
created for one-eighth of a sphere in ABAQUS. The depicted mesh is coarser than the final
converged mesh, and consists of 62,500 elements and 66,351 nodes.
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Figure 3.6. Schematic of the voronoi cell for (a) die and (b) hydrostatic loading conditions.

are very high and are governed by the bulk modulus of the material. At this stage, the
volume of the particle’s radical voronoi cell (Gellatly & Finney, 1982; Aurenhammer, 1987),
which is the polyhedron formed by the rigid contact planes of the particle, becomes equal to
the particle volume. For hydrostatic and die configurations, this limit can be geometrically
computed if the elastic volume reduction during initial stages of particle compression is
neglected. Considering the voronoi cell dimensions presented in Figure 3.6, the zero porosity
limits are calculated below:

Die Compaction:

p
N . (3.12)
— — =1——->~0.476
2R 6
Hydrostatic Compaction:
4 3
V= 37k =8 (R-3)
(3.13)
= L = <7T>1/3 0.194
2R 6/

To fully represent this final stage of particle compression and to account for small elastic
volume reduction during the course of particle compression, contact response was evaluated
until a small deformation beyond the attainment of zero porosity, i.e., 48% for die and 19.5%

for hydrostatic loading configuration.
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Figures 3.7, 3.8, 3.9 and 3.10 show the normalized contact pressure, contact radius and
contact force response of the particles plotted against contact deformation, for simple, hy-
drostatic and die loading configurations respectively. Contact response is plotted for 5 out
of the 17 material property sets for each configuration, with the ratio F/(1 — v?)o, (re-
ferred to as parameter A in the rest of this chapter) ranging from minimum to the maximum
value obtained from the space-filling design. Observation of contact pressure response of
the particle under simple loading configuration (Figure 3.7a) indicates a dependence of the
response on material properties during elastic and elasto-plastic regimes of particle com-
pression, where higher response stiffness and larger maximum contact pressure values are
observed with increasing A. Although, the response curves tend to converge at higher values
of A, indicating an asymptotic relationship with respect to material properties. Following
the onset of a fully plastic regime, the gradual decreasing trend of contact pressure is ob-
served to be fairly independent of material properties. Similar observations are made in
the contact radius (Figure 3.7b) and contact force (Figure 3.7¢) response, with the response
stiffness rising asymptotically with increasing A for small-to-moderate particle deformation
(~ 20%) and converging to a single response curve for larger deformation. The effect of
material properties becomes increasingly apparent in the contact response for hydrostatic
loading configuration, where the contact pressure response (Figure 3.8a) follows the trend of
simple loading until about 15% deformation, following which the contact pressure increases
rapidly with increasing particle confinement. Elasticity becomes relevant again during this
regime of particle compression, evident from increasing stiffness of the response and higher
values of pressure with increasing A, although an asymptotic relationship with respect to
the material parameter is also evident. Similar observations are made again in the contact
radius (Figure 3.8b) and contact force (Figure 3.8¢) response, where noticeable dependence
on the value of \ is observed during initial and final compression stages, with the response
stiffness increasing asymptotically with increasing value of the parameter.

For the case of die loading configuration, contact response is plotted for both axially
loaded (or primary) contacts (Figure 3.9) and lateral walled (or secondary) contacts (Figure
3.10). The primary contacts exhibit a response similar to the contacts in hydrostatic load-

ing configuration, with the exception of a higher level of deformation at which the contact
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Figure 3.7. Finite element simulation results of normalized (a) contact pressure-deformation,
(b) contact radius-deformation, and (c) contact force-deformation behavior of an elastic-
perfectly plastic sphere of radius R = 10mm under simple compression. Contact response
is depicted with corresponding A = E/(1 — v?)o, values for 5 material properties, ranging
from minimum to maximum value of A among the 17 property values obtained from the
space-filling design.
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Figure 3.8. Finite element simulation results of normalized (a) contact pressure-deformation,
(b) contact radius-deformation, and (c) contact force-deformation behavior of an elastic-
perfectly plastic sphere of radius R = 10mm under hydrostatic compaction. Contact response
is depicted with corresponding A = E/(1 — v?)o, values for 5 material properties, ranging
from minimum to maximum value of A among the 17 property values obtained from the
space-filling design.
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Figure 3.9. Finite element simulation results of normalized (a) contact pressure-deformation,
(b) contact radius-deformation, and (c) contact force-deformation behavior at the primary
(axial) contacts of an elastic-perfectly plastic sphere of radius R = 10mm under die com-
pression. Contact response is depicted with corresponding A = E/(1 — v?)o,, values for 5
material properties, ranging from minimum to maximum value of A among the 17 property
values obtained from the space-filling design.
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Figure 3.10. Finite element simulation results of normalized (a) contact pressure-

deformation, (b) contact radius-deformation, and (c) contact force-deformation behavior
at the secondary (lateral) contacts of an elastic-perfectly plastic sphere of radius R = 10mm
under die compression. Contact response is depicted with corresponding A = E/(1 — v?)o,
values for 5 material properties, ranging from minimum to maximum value of A among the
17 property values obtained from the space-filling design.
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pressure starts rising again (~ 30%) due to a lower degree of confinement. The secondary
contacts, despite not being subjected to any applied deformation, exhibit an evolution of
contact pressure, area, and force with increasing deformation of the primary contact. In-
terestingly, they exhibit levels of contact pressure and force similar to the primary contacts
at later stages of compression. Such contact behavior is not predictable by a local contact
formulation (for example, the similarity contact law) which treats contacts to be independent
of each other, but a nonlocal contact formulation (ref. Gonzalez & Cuitifio (2012, 2016) and
Agarwal & Gonzalez (2018) for an elastic nonlocal contact formulation) that is capable of
predicting the nonlocal lateral deformation in the secondary contacts as a function of the
applied deformation at the primary contacts. While the systematic development of a nonlo-
cal contact formulation for elasto-plastic particles is currently being pursued by the authors,
a foundational semi-mechanistic analysis of the secondary contacts is presented in one of the
later sections of this chapter.

Figure 3.11 shows a magnified view of the contact pressure response of hydrostatic and
die (both primary and secondary contacts) loading configurations during the ‘low compress-
ibility” regime. As already explained in the previous sections, particle deformation during
this regime for confined loading conditions is mainly governed by elastic compressibility of
the material, leading to rising contact pressure values during the final stages of compression.
Therefore, the contact response in Figure 3.11 is plotted with respect to material parameter
¢ = B/oy,, where B is the Bulk Modulus of the material. An apparent asymptotic relation-
ship of the contact pressure with respect to ( is observed in all the plots, with the response
stiffness and pressure values rising rapidly with increasing ¢ and converging to a single curve
for larger values of (.

This section is concluded by pointing out the evident asymptotic relationship between
the contact response and material properties (parameters A\ and () during the initial and
final stages of particle compression. This observation provides key insight into the material
dependence of the contact behavior in confined granular systems, which is essential for the

development of accurate and predictive contact models.
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Figure 3.11. Finite element simulation results of normalized contact pressure-deformation
behavior of an elastic-perfectly plastic sphere of radius R = 10mm during ‘low compressibil-
ity’ regime (Tsigginos et al., 2015), under (a) hydrostatic compaction, (b) die compression
(primary contacts) and (c) die compression (secondary contacts). Contact response is de-
picted with corresponding ¢ = B/o, values for 5 material properties, ranging from minimum
to maximum value of ( among the 17 property values obtained from the space-filling design
for each loading configuration.
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3.4 Formulation of a Semi-Mechanistic Contact Law

To develop a semi-mechanistic contact law for the large-deformation, material and load-
ing configuration-dependent contact behavior of elastic-ideally plastic spherical particles in
confined granular systems, the two-particle contact problem described by the similarity so-
lution explained in section 3.1 is reconsidered. For the case of an ideally plastic material

(m — 00), the solution for contact force (Equation (3.4)) reduces to
P = 30,ma’ (3.14)

This solution corresponds to the definition of material’s hardness, or the average contact
pressure during indentation of a deformable flat surface with a rigid indenter. Hardness, as
defined by Brinell (1900), is the contact force divided by the contact surface area, i.e. P/ma®.

According to the similarity solution, this hardness H is given by

P _
H:T(‘_aQ:SO-y:HO-y (315)

Therefore, the hardness is obtained as a coefficient H, often termed as the normalized hard-
ness (Olsson & Larsson, 2013a,b, 2016), equal to 3 times the yield strength of the material.
This result is in good agreement with the empirical findings of Tabor (1951), who proposed
the hardness of materials from Brinell indentation tests to given by 2.84c,. However, ob-
servation of the normalized contact pressure vs. deformation plots obtained from the FE
simulations suggests that the proposed value of hardness is higher than the numerically
obtained value for the majority of the particle compression process. Additionally, the pro-
posed hardness is independent of the loading configuration and material properties, which
is not true, as is evident from the observed dependence of the contact response on material
parameters A and (, and its contrasting evolution for simple, die and hydrostatic loading

configurations. Considering these observations, the following contact law is proposed

P(3: A ¢, LC) i= H (3 A, ¢, LC)o,w{a(y; A, LC)}? (3.16)
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where LC corresponds to the loading configuration. In the next sections, semi-mechanistic
functional relationships for contact radius @ and normalized hardness H are proposed from
an analytical framework based on the similarity contact law and the data obtained from FE

simulations.

3.4.1 Semi-Mechanistic Formulation for the Contact Radius

In addition to small-strain kinematics, one of the important limiting assumptions of the
similarity contact law is an approximation of the spherical profile of the contacting surfaces by
paraboloids of revolution. This is done by replacing the profile surface functions by the first
term of their Taylor series expansion. A similar approximation is also assumed for derivation
of the Hertz contact law (Hertz, 1882) for elastic spherical particles. This assumption was
relaxed by Agarwal & Gonzalez (2018), who proposed the method of curvature correction to
re-derive the Hertz solution after considering higher order terms in the Taylor series expansion
of the profile functions. While the method was proposed to improve the predictions of Hertz
law for large deformations, it is utilized in this study to obtain the analytical framework for
a semi-mechanistic contact radius formulation. A detailed derivation of a 2-term curvature
corrected similarity solution is presented in Appendix C. Considering the first three terms
of the Taylor expansion of this solution (ref. Equation (C.25) in Appendix C), the following

contact law is proposed:

_p, ()2 p B 324D B*\ 52 (3.17)
a = 1 Al/Q ,Y 3 AS/Q /7 5 AQ/Q ,Y *

where A is given by Equation (3.7) and

L,
R} R

(3.18)

According to the above law, the contact radius a is a nonlinear function of the contact
displacement v between two spherical particles of radii R; and Ry, with material and loading
configuration described by parameters Dy, D3, and Ds. The proposed law is similar to the

stress-strain contact model proposed for large unconfined compression of microcrystalline
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Figure 3.12. Estimation of parameters D;, D3, and Dj for simple loading configuration.
Plotted discrete values correspond to the values calibrated from FE data, while solid curves
correspond to D; — A relationships obtained from curve fitting.

cellulose particles by Bommireddy et al. (2019), and is composed of three terms; the first
term corresponds to the small deformation behavior and is similar to the a — v relationship
derived from self-similarity approach by Biwa & Storakers (1995). The second term describes
the contact response during moderate deformations under the fully plastic regime, where the
overall response undergoes a softening and a dip in the slope of a — v curve is observed. The
third term describes the large deformation contact response during the ‘low compressibility’
regime in confined loading conditions, where the slope of a — v curve starts rising again. For
the simple loading condition, the third term models the slight increase in slope of the a — «
curve in the large deformation fully plastic regime.

The material and loading condition parameters Dy, D3, and D5 are given by

D; = (0°)? [ay tanh (B:A%)] (i = 1,3,5) (3.19)

where each parameter D; (i = 1,3, 5) is expressed as the product of two nonlinear functions;
a power function of loading condition parameter b raised to the power of i/2, and an
asymptotic material function of parameter A\ with constant «;, coefficient §; and exponent

;. Simple compression (SC), being the most fundamental loading configuration where the
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Table 3.3. Estimated values of material function constants «;, 3; and ;.

i Q; Bi 0;

11 1.7527 | 0.3540 | 0.2633
3123702 | 0.0411 | 0.5366
5| 3.3715 | 0.0634 | 0.4766

Table 3.4. Estimated values of loading condition parameters b-C for simple (SC), die (DC)
and hydrostatic (HC) loading configurations.

SC DC HC

1 | 1.048+£0.00477 | 1.1701 £0.0276
biC | 1 | 1.1818 £ 0.00873 | 2.4002 + 0.096
bYC | 1 ] 1.2352 4 0.00641 | 2.9376 & 0.0452

LC
bl

particle remains unconfined, is assigned a loading condition parameter value of b7¢ =1 (i =
1,3,5). Consequently, the material function constants «;, §; and d; are estimated by fitting
the material function to D; values calibrated from FE simulation data of the simple loading
case (Figure 3.12). The estimated values of these constants are listed in Table 3.3. It is
interesting to note that the limiting value of parameter D; = a3 = 1.7527 is very close
to the value of an equivalent coefficient v/2¢2 = 1.6911 for perfectly plastic materials in
the a — 7 relationship derived from self-similar approach (Equation (3.5)), which makes the
small deformation predictions of the proposed contact law consistent with predictions of the
similarity contact law as the material behavior approaches rigid plasticity (A — 00).

Once the material function constants are known, the values of loading condition param-
eters for die (bPC) and hydrostatic (b°) compression are estimated from FE simulation
data of the respective loading configurations. The estimated values within 95% confidence
interval are listed in Table 3.4. It is interesting to note that all the parameter values for
the hydrostatic loading condition are higher than those for the die loading condition, which
validates the relationship of the proposed loading condition parameters with the degree of

confinement.
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3.4.2 Semi-Mechanistic Formulation for the Normalized Hardness

As already discussed in the previous sections, particle contacts undergo four major de-
formation regimes during large compression: elastic, elasto-plastic, fully plastic and ‘low
compressibility’” (for confined loading configurations). Since the evolution of normalized
hardness H is found to be significantly different in each of these regimes, we propose distinct
contact laws for each regime in a way that C! continuity is maintained at the transition from
one regime to another. Hence, the proposed semi-mechanistic formulation is continuous and
differentiable at any given level of particle deformation.

During the elastic regime at small deformations, the well-known Hertz contact theory
(Hertz, 1882) is capable of sufficiently describing the contact response. According to the
theory, normalized hardness H for contact between particles of radii R, and R, and material

parameter A as a function of displacement v is given by

_ 2
He = Z\AY21/2 3.20
3T v ( )

where A is given by Equation (3.7), and the superscript “e” is used to denote the elastic
regime. Using Equation (3.20), the slope of H with respect to v, i.e., 9H /07 in the elastic
regime is given by

ome 1
oy 3w

AA1/2y71/2 (3.21)

The elastic regime transitions to the elasto-plastic regime when yield occurs at a point
beneath the contact surface at H = 1.1 (Johnson, 1985). Using Equation (3.20), the contact

displacement at yield, v, is given by

1 /3.37\°
— =20 .22
Ty A ( 2\ ) (3.22)
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During the elasto-plastic regime, the non-linear evolution of H with respect to displacement

v is well-represented by the following relationship

_ c2
B — o — o [m (—7 H)] (3.23)
Y

where the superscript “ep” is used to denote the elasto-plastic regime. The proposed re-
lationship is in spirit of a similar formulation proposed by Olsson & Larsson (2013b) for
the elasto-plastic regime, where H is represented as a function of the Johnson’s parameter
(Johnson, 1970). In the above equation, H.. and 7| e are, Tespectively, the maximum
value of normalized hardness and the contact displacement observed at the transition be-
tween elasto-plastic and fully plastic regimes. Figure 3.13 shows these values plotted against
material parameter A for all 51 FE simulations. Evidently, H.,. has an asymptotic increas-
ing trend, while v|gz__ has an asymptotic decreasing trend with respect to the parameter.

From fitting of the plotted values, we propose the following relationships for Hy,., and 7| Ao

with A

Hinax = 3.101 tanh {0.6746A%%%*} (3.24)

0.7073
Nt = (B2 + Ra) [GXP (W) - 1] (3.25)

The proposed relationships are also plotted in Figure 3.13 (solid curves), and provide very
good estimates of the values obtained from FE simulations.

Additionally, the elasto-plastic H formulation comprises a coefficient ¢; and an exponent
¢, both of which are determined from the condition of C! continuity at the transition between
elastic and elasto-plastic regimes. Using Equation (3.23), the slope of H with respect to v

in the elasto-plastic regime is given by

_ep _ 0271
OH® _ ace [m (—7|H)} (3.26)
Oy gl g

which gives the condition ¢y > 1 for the slope given by the above equation to be equal to zero
at v = v|g... By equating the values of H given by Equations (3.20) and (3.23), and its
first derivatives with respect to displacement ~ given by Equations (3.21) and (3.26) at the
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Figure 3.13. Estimation of (a) Hpnax and (b) v|g,.. as functions of parameter A. Plotted
discrete values correspond to values obtained from FE data, while solid curves correspond
to relationships obtained from curve fitting.

transition displacement -y, given by Equation (3.22) to achieve C"! continuity for evolution of
H between elastic and elasto-plastic regimes, two equations are obtained with two unknowns

c; and cy. By solving the equations, we get

_ 1/2.,1/2
¢y =1In Y )\;A Ty (3.27)
Yy 3m(Hpax — 1.1)
and
- Vit \|
¢1 = (Hpax — 1.1) |In ’Y— (3.28)
y

To determine the permissible values of material parameter A for the fulfillment of condition

co > 1, we substitute the expressions for v,, Hmax and 7|z given by Equations (3.22),

(3.24) and (3.25) in the expression for ¢y given by Equation (3.27) to obtain

0.17741n [0.0372A(Ry 4 Rp)A? exp (yohi — 1)] .-

_ 3.29
“ tanh {0.6746 000529} — (0.3547 = (3:29)
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For contacting particles of equal radii (R; = Ry = R), which is the case for our considered
loading configurations, A = 1/2R and R; + Ry = 2R cancel out each other, making Equation
(3.29) a nonlinear equation in A. Using Newton Raphson’s method, the solution to the
equation is determined to be A > 22.08. Therefore, the elasto-plastic H — v relationship
given by Equation (3.23), and thus the proposed semi-mechanistic contact formulation, is
valid for material parameter A\ values greater than or equal to 22.08.

On the onset of a fully plastic regime, the normalized hardness H starts decreasing
gradually from its previously achieved maximum value of Hy... While we acknowledge
that a number of contact models have been proposed to predict the evolution of hardness
in this regime (see Ghaednia et al. (2017) and references therein), we propose a contact
formulation that incorporates dependence on material properties and loading configuration
while maintaining C! continuity with other deformation regimes. With this consideration,

the normalized hardness in the fully plastic regime is given by

- - Y =i, Y =i '
H® = H,_..—p |tanh L lmax L max } 7 3.30
p i {a (T e Yo f (1200 ) ol | a0

where

Ya,.. —7a 1 Ya,.. —7a
= , — min max _t 2 h 2 min max 331
6O ) = (M ) [y g (M2 (3.31)

In the above equations, v|z . is the value of contact displacement at the minimum value of

normalized hardness, i.e., Hyn, while p, ¢, and r are positive model parameters. According
to the proposed equations, the value of H' at v = ~| ... 1s equal to H,.x, while its slope

with respect to v, given by

oH™ ( pr ) {tanh {q (7 - 7|Hmax) } cos { (V - 7|Hmax) sl q)H r—1
By R + R Ry + R, Ry + R Hin?
L2 Y = Y e V=V e \ -
- [q e {q ( Ry + Ry o Ry + Ry SO )
Y —a . Y =a
—tanh L T Hmax L TWmax ) (|
o {q ( Ry + Ry ) } . { < Ry + Ry ) 8(7|H‘"”’7Q)H

(3.32)
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Figure 3.14. Analysis of the influence of model parameters (a) ¢, (b) 7, (c) p and (d) 7|z,
on H™ model response. Solid curves correspond to the reference curve obtained by setting
q=28,7r=2p=15and v|g_ /(R + Ry) = 0.8, while the other curves (dashed-dotted
and dashed) correspond to those obtained by perturbing one of the parameter values while
keeping other values constant. The value of Hya., and 7|z /(R; + Ry) corresponds to
A = 1721.55.

is equal to zero at v = 7|z for r > 1. Therefore, when the condition r > 1 is true, the
H'™ — ~ relationship given by Equations (3.30) and (3.31) is C! continuous with the H®P —
relationship given by Equation (3.23).

Figure 3.14 shows the influence of model parameters ¢, r, p and 7|z . on the response of
H™._ In all figures, the reference model curve (solid line) is obtained by setting p = 1.5, ¢ = 8,
r=2and v|g /(R + R2) = 0.8. The other curves (dashed and dashed-dotted lines) are
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obtained by perturbing one of the parameter values while keeping the other values constant.
The value of Hyax and |5 /(R1+Rs) in the plots is obtained by setting A = 1721.55, which
corresponds to the material properties with £/, = 1500.97 for simple loading case obtained
from the space-filling design (ref. Table 3.2). From the study, it is evident that parameters
q and r predominantly influence the rate of softening of H, with 7 mainly controlling the
rate at the onset of the fully plastic regime and ¢ governing the rate of descent thereafter
until the attainment of a minimum. Parameter 7|z, as per its definition, predominantly
influences the level of deformation at the minimum, while p regulates the value of Hyi,. It is
important to note that the proposed equation models the evolution of H until the point of
minimum, following which the loading condition effects predominate and another formulation
is required to predict the rising pressure values for confined loading configurations.

From the observations of normalized hardness versus deformation data obtained from
FE simulations, it is quite evident that the initial softening response from the onset of the
fully plastic regime is primarily dependent on the material properties and fairly independent
of the loading configuration. Therefore, parameters ¢ and r are identified to be material-
dependent parameters. However, the minimum value of H and the level of deformation
at the minimum is heavily dependent on the loading configuration as well as the initial
rate of softening. Therefore, 7|z and p are identified to be both material and loading
condition-dependent parameters.

For the case of a simple loading configuration, it is theorized that the contact response
softens until contact pressure approaches the material’s yield strength as the particle ge-
ometry approaches that of a flat disk at v — R; + Ry = 2R. Therefore, we obtain
S A, = I+ Ry = 2R. For confined loading configurations, the contact pressure rises
again during the ‘geometric hardening’ regime due to void filling, as well as occupation of the
voronoi cell faces by the contact surfaces. While void filling causes the elastic energy of the
particle to increase due to material compression, the voronoi cell faces limit the evolution
of contact areas, both of which lead to the increase in pressure. In accordance with this

analysis, we propose the following condition to be true at the minimum:

pI‘}C,contact pIéC‘,contact -7 (333)
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Table 3.5. Expressions for various volume and surface quantities in the minimum H condition
given by Equation (3.33) for all contacts under hydrostatic and primary contacts under die
loading configuration.

DC HC
Viero | 8R*(R—1/2) 8(R—7/2)°
Visstact | (4/3)R* (R —7/2) | (4/3) (R —~/2)’
Sface AR’ 4(R—~/2)*

Thus, for a particular contact of a particle under a given loading condition, the product of
relative volume density (p{“/c’contw) and relative surface area density (pgc’coma"t) is equal to
a parameter ' at the minimum. The relative volume density for a contact is given by

LC,contact __  LC V(;Iagtact _ Vparticle ‘/c%gtact 3.34
Py = Pv VT - VLC VLC ( )

voro voro voro

where p\L/C = (Vpartide / Vv%fo) is the relative density of the particle’s voronoi cell (Harthong

et al., 2009), Vparticle = (4/3)mR? is the volume of the spherical particle, V.EC is the volume

voro

of the voronoi cell, and VES . is a section of the voronoi cell volume associated with the

contact, which is estimated as the volume of a pyramid with the base as the contact’s voronoi
cell face and apex as the particle’s center of mass. The relative surface area density is given
by
SLC
LC,contact __ “~contact (335)

S - SLC

face

where SLC . . is the contact area and SLC is the area of the contact’s voronoi cell face. Table

contac face
3.5 provides expressions for VLC VLC —and SEC in terms of particle radius R and contact
displacement « for all contacts under hydrostatic loading and primary contacts under die
loading configuration.

Figure 3.15 shows the values of " obtained from FEA simulations of die (primary contacts)
and hydrostatic loading conditions, plotted against material parameter A. From the figure, it

is evident that I' has a weak dependence on both material properties and loading condition,

which results from the material and loading dependence of the contact area. These weak
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Figure 3.15. Plot of I' values against material parameter A for die (primary contacts) and
hydrostatic loading conditions. Discrete values correspond to values obtained from FE data,
while the solid plot corresponds to the average I' value determined for the confined loading
conditions.

effects are neglected by proposing a value of I' averaged across all the obtained numerical
values for die and hydrostatic loading conditions, which is I' = 0.0593.

Using Equation (3.33), a detailed derivation of the solution of 7|z . for primary contacts
of die (vP°|z..) and all contacts of hydrostatic (y"°|g_ ) conditions is presented in Ap-
pendix D. It essentially entails substituting various volume and surface quantities (Viarticle,
yLC yLC . and SEC), and contact area SLC.. . = ma? in Equation (3.33) with their re-
spective expressions for die and hydrostatic conditions to finally obtain a solvable quintic in
terms of the unknown variable 7|z .

As discussed previously, the parameter p governs the minimum value of normalized hard-
ness, i.e., Hy. For the case of simple loading configuration, the contact pressure approaches
material’s yield strength, and hence H3{, = 1 at v°°|z = R; 4+ R, = 2R. Consequently,

using Equations (3.30) and (3.31), we have

H = Hypor — p°° [tanh {q (1 - ﬂQH—}“%“) } cos { (1 — 7|2H—;‘;") —5(2R, Q)H =1 (3.36)
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Rearranging the above equation, we get
SC Hmax -1

S Y A CRET | S (R B

For die and hydrostatic loading conditions, determination of H,, is not straightforward,

(3.37)

since the contact pressure starts rising at v = 7*°|z_ (LC—{DC, HC}) before reaching
the material’s yield strength. However, two prospective values of H,,;, can be obtained from

different analysis. The first value is determined as the value of H for the simple loading case

at Y0 | ie.
LC| _ _ _
}qu;ncn71 — Hmax _ pSC |:tanh {q (’y ’HmlaR 7|Hmax)}

(3.38)

LC| , r
Y A — Y
min max _ 2
xcos{( 5 ) s( R,q)H

Considering that the initial evolution of normalized hardness during the fully plastic regime
is similar for all loading conditions, a second prospective value of Hy,;, can be evaluated by
determining an intermediate value of p““, such that the slope of H““ for die and hydrostatic
cases is equal to the slope of HSC for the simple case at their points of inflection, i.e. at
the point where the second derivative of H with respect to v/(R; + Ry) (= v/2R) is zero.
This inflection point is evident in the H vs. /2R curves obtained from FE simulations
for all loading conditions (Figures 3.7a, 3.9a and 3.8a) during the initial softening response,
when the curve changes from concave downward to concave upward. A detailed approximate
solution for this point, denoted by the contact deformation v*“|z/_,/2R (LC—{SC, DC,
HC}) at the point, is presented in Appendix E, where the highly nonlinear equation H "=0

is solved using Taylor series expansion. The approximate solution is obtained as

3rtan {5(7°C,,,.0)} + [3(24 +3)(r — 1)(2r + 1)

1/2
im0 N +9(2r* — 1) tan® {s(+"| 4,0 @) }]
2R 2R (2¢2 +3)(2r + 1) + 3(r + 1) tan? {5(7L0|gmm, q)}

(3.39)
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By equating the slope of HX® (LC—{DC, HC}) at v*°|z/_,/2R to the slope of H5C
at 75¢|g7_o/2R, and rearranging the equation, we obtain the intermediate value of p“C

LC—{DC, HC}), denoted by p-C. as
( {DC, HC}), Y D

— SC _ _ T
2qcsch {2(1 (7 2’ 7‘“‘“)}

2R
Vg = max
o so|_ —tm{(Eme) -
po :p 2 h 2 L | ”7077|Hmax
qcsc q YT
LC| |
a {( " O 7Hmax) LC|F[ ‘ ’q)}
o (Pt )
SC| n_ga
X COS ( T m‘”‘) s(2R, q }
% Yl o=l
= Hmax
tanh {g ( iy s |
LC o =~ A
i % COS{(’Y |5 o ’Y|Hmax> - S(VLC|f{mmaQ>} |
The second value of Hy, at v=¢| i, is then given by
LC| . _ |-
HES 5 = Hypax — p5© [tanh {q (7 ‘ngR 7|Hm“>}
(3.41)

LC |Hm1n ’y Hrnax LC _ '
x cos s = 51 1,000)

Figure 3.16 shows the plots of H-C for die and hydrostatic loading conditions against

min

material parameter A. The discrete values (square plots for die and diamond plots for hydro)

are obtained from FE simulation data, while H-$ | (dashed curve) and HX$ , (dashed-dotted

min,1 min,2

curve) are plotted using Equations (3.38) and (3.41) respectively for permissible values of

A > 22.08. From the figure, it is evident that Hr%& , underpredicts the numerical values of

HEC  while HrIﬁm , overpredicts the values. An average of the two prospective values, plotted

min?’

as a solid curve in the figure, accurately predicts the minimum normalized hardness for both

confined loading conditions. Therefore, we represent HX$ as

Hrl;llnl + HLC

HEC — min2 (3.42)

min ~ 2
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Figure 3.16. Plots of HXS against material parameter \ for (a) die and (b) hydrostatic
loading conditions. Discrete plots (squares for die and diamonds for hydrostatic) represent
values obtained from FE simulation data. ﬁf;lghl and F[;%,Q are represented by dashed and
dashed-dotted curves respectively. The analytical value of HXS | given by the average of

HES | and HLS 5, is represented by a solid curve.

Consequently, using Equations (3.30) and (3.31), parameter p¢ (LC—{DC, HC}) is given
by

Hrnax - HLC
pLC — min (343)

LC| .  —~| 4 LC| 4 7 "
|:tanh {q <w> } CcOoS { (%) _ S(’YLC‘HWM q)}]

The remaining parameters ¢ and r, determined to be material-dependent parameters, are

calibrated from the H vs. v/2R FE simulation data of the simple loading case. Figure 3.17
shows the plots of calibrated ¢ and r values against material parameter A. From fitting of

the plotted values, we propose the following relationships for ¢ and r with A

g = 14.1819 tanh (0.3729A"'"%) (3.44)
1.6199
"= Cexp ()\0.3232) (3.45)

For confined loading conditions, following the attainment of a minimum normalized hard-

ness HXC at contact deformation 7| i, » the contact pressure rises steadily during the ‘low

min
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Figure 3.17. Estimation of material-dependent parameters (a) ¢ and (b) r as functions of
parameter A for normalized hardness H™ in the fully plastic regime. Plotted discrete values
correspond to values obtained from FE data, while solid curves correspond to relationships
obtained from curve fitting.

compressibility’ regime. During this regime, contact behavior is heavily dependent on the
loading condition due to significant contact interactions. Therefore, contacts in this regime
cannot be treated independent of each other; rather, the contact behavior should be directly
related to the overall particle response under compression. With this consideration, we pro-
pose to model contact response in this regime as a function of the relative density of the

voronoi cell, piC  where the normalized hardness H is given by

LC _ LC| _ 2
X = X A

min

where the superscript “l¢” denotes the ‘low compressibility” regime, u and [ are the model
parameters and y'C =1/ p‘L/C = (VVI;)S‘O / Vpartide) is the inverse of the relative density. Using

the expressions for V2C in terms of particle radius R and contact displacement + from Table
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3.5, and Vpurtice = (4/3)7R3, the contact deformation v*¢/2R (LC — {DC,HC}) in terms

of xC is given by

(3.47)

1/3
7Dc 7TXDC E L 7TXHC /
2R 6 ' 2R 6

Additionally, x| ... is the value of x attained at HLC | while XZLPC is the value of y at-
tained at the zero porosity limit (Tsigginos et al., 2015), which is the limit of full closure of
porosity and beyond which the contact pressure is governed by the particle’s elastic volume

compressibility. It is given by

LC
Vparticle - ‘/;1

LC
Xap = Vharticle (348)
where VIC is the elastic reduction in particle volume until the zero porosity limit is reached.
[t is important to note that the normalized hardness given by Equation (3.46) attains its min-
imum value equal to HEC at y*¢ = x| i, » making it C' continuous with the normalized
hardness in the fully plastic regime given by Equation (3.30).

The contact pressure beyond the zero porosity limit is given by the elastic volumetric

stress on the particle. Therefore, the normalized hardness in this regime is given by

g =B (1 _ Vvoro ) = (1 —x") (3.49)

Oy V})article
where the superscript “ev” denotes the elastic volumetric regime. By equating the value and
slope of H&" given by Equation (3.46) and H® given by (3.49) at x"© = x}¥ to achieve C*
continuity between the contact formulations for H in the ‘low compressibility’ and elastic

volumetric regimes, we obtain the following relationships between model parameters v and

[ and elastic volume reduction V¢

. yLC _ LC
u = V})artlcchmln C‘/el (350)
‘/particle 11’1(1 - l)

LC __ %article {QZHII;SQ + C(l B XLC’Hmin)(l B l) 11’1(1 B l)}
Ve = CRIT (= Dn(l -0} (351
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Figure 3.18. Estimation of model parameter [ as a function of material parameter (¢ for
normalized hardness H&" in the ‘geometrical hardening’ regime. Plotted discrete values
correspond to In(1 — /) values obtained from calibration of FE data, while the solid curve
represents the relationship obtained from curve fitting.

From the above equations, it is evident that u and V}'© can be evaluated from a known value
of [. Figure 3.18 shows a plot of the natural log of (1 — [) against material parameter (,
where the [ values are calibrated from H vs. v/2R FE simulation data of die and hydrostatic
loading cases. It is interesting to note that the parameter [ is independent of the loading
condition, since the In(1 — [) values for both die and hydrostatic loading conditions fall on
a single trend curve that is a function of (. Therefore, it is fair to conclude that [ is a
material-dependent parameter.

From curve fitting of the plotted values, we propose the following relationship between [

and ¢

1
In(1—1) =1
n(l=1) n(1+0.1985§1-0222>

1 (3.52)
I=1-
- (1 + 0.1985C1-0222)
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To conclude the analysis, we provide below a summarized form of the semi-mechanistic

contact law for the normalized hardness H

¢

— e — B%AAl/le/z v € (0,7
— — 7 02
= Hep = Hmax - Cl |:1n (’Y‘H%)] ’7 E (fyy7’y|ﬁmax]
= H" = 0. — p*© [tanh {q <%>} 7€ (’V‘Hmaxa’VLC|Hmm}

xcos { (Z38) — 5(4*lg,,,.0)}|  LC = {8C,DC,HC}

]
I

(3.53)
77l F7LC XX\ LC LC
= H*“=Hpg;, —uln {1 —1 <—XZLpC*XLC|ngn) } Y€ (’V |Hmin77zp ]

LC — {DC,HC}

— = (1 — \O) 7€ (s 00)

LC — {DC,HC}

3.5 Validation of the Semi-Mechanistic Contact Law

The semi-mechanistic contact formulation developed in the previous section was validated
by comparing the contact law predictions of normalized contact radius (a/R), normalized
contact pressure or hardness (H = P/o,ma?) and normalized contact force (P/o,mR?) with
data obtained from FE simulations. Figures 3.19, 3.20 and 3.21 present this comparison
for simple, die (primary contacts) and hydrostatic loading configurations respectively. To
validate the material property dependence of the contact formulation, comparative plots
for all loading configurations are provided for the lowest and the highest value of material
parameter A obtained from the space-filling design. The figures show an excellent agreement
between the numerical FEA data and the analytical contact law predictions, with an accurate

representation of material and loading condition - dependence of the contact behavior.
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Figure 3.19. Comparison of the predictions of proposed semi-mechanistic contact formulation
with FE simulation data for a particle under simple compression. Plots of normalized (a) con-
tact radius-deformation, (b) contact pressure-deformation, and (c¢) contact force-deformation
are depicted. FE data for the lowest value of A = 123.41 obtained from space-filling design
are denoted by circles, with corresponding contact law predictions denoted by a dashed curve.
FE data with the highest value of A = 5933.40 are denoted by diamonds, with corresponding
contact law predictions denoted by a solid curve.
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Figure 3.20. Comparison of the predictions of proposed semi-mechanistic contact formula-
tion with FE simulation data for primary contacts of a particle under die compression. Plots
of normalized (a) contact radius-deformation, (b) contact pressure-deformation, and (c) con-
tact force-deformation are depicted. FE data for the lowest value of A = 163.08 obtained
from space-filling design are denoted by circles, with corresponding contact law predictions
denoted by a dashed curve. FE data with the highest value of A = 4954.40 are denoted by
diamonds, with corresponding contact law predictions denoted by a solid curve.
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Figure 3.21. Comparison of the predictions of proposed semi-mechanistic contact formulation
with FE simulation data for a particle under hydrostatic compression. Plots of normalized
(a) contact radius-deformation, (b) contact pressure-deformation, and (c) contact force-
deformation are depicted. FE data for the lowest value of A = 117.24 obtained from space-
filling design are denoted by circles, with corresponding contact law predictions denoted by
a dashed curve. FE data with the highest value of A = 5854.69 are denoted by diamonds,
with corresponding contact law predictions denoted by a solid curve.
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3.6 Preliminary semi-mechanistic analysis of the secondary contacts of die load-

ing configuration

For the case of die loading configuration, we have shown the evolution of contact behavior
at the lateral or ‘secondary’ contacts from the FE simulations presented in section 3.3. These
contacts, despite being subjected to zero applied or ‘local’” deformation, develop solely due to
the lateral or ‘nonlocal’ deformation of the particle resulting from axial compression. In this
section, we attempt to lay the foundation of a nonlocal contact formulation capable of pre-
dicting such contact behavior by proposing semi-mechanistic laws relating the deformation
at primary and secondary contacts.

To obtain an estimate of the lateral deformation, we utilize the FE simulations for the
simple loading configuration and post-process the average nodal displacements at the lateral
edge of the (1/8)™ sphere (Figure 3.22). Therefore, for a displacement /2 at the particle-
plate axial contact (v for a two-particle contact), we obtain an average nodal displacement
of 75/2 at the lateral edge, where the subscript ‘s’ denotes the equivalent displacement at the
secondary contact in the die loading configuration. It is important to note that, according

to the nonlocal contact formulation (ref. Gonzalez & Cuitifio (2012, 2016) and Agarwal &

N2

s

Figure 3.22. Schematic of the simple compression of (1/8)™ sphere, showing an axial contact
displacement of /2 resulting in a lateral edge displacement of /2.
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Figure 3.23. Plots of lateral secondary contact displacement (7,) vs. axial primary contact
displacement () obtained from FE simulations of the simple loading configuration. Plots are
depicted for 5 out of the 17 material properties obtained from the space-filling design, ranging
from minimum to maximum value of the material parameter A. The units of displacement
on both axes is millimeters (mm).

Gonzalez (2018)), each particle contact acquires nonlocal displacement contributions from
all other contacts on the particle. Therefore, as the lateral secondary displacements v, evolve
and become larger, their nonlocal contributions to the primary and other secondary contacts
become significant. Since the development of a complete nonlocal contact formulation for
elasto-plastic particles is beyond the scope of this chapter, we restrict our estimation of
the secondary displacements to the small deformation regime to safely neglect any nonlocal
contributions from the secondary contacts.

From the observation of FE simulation results of normalized hardness for secondary die
contacts (Figure 3.10a), we find that the contact behavior remains within the small deforma-
tion elasto-plastic regime until the primary contact deformation /2R reaches 0.1. Therefore,
the lateral secondary displacements are evaluated until the primary contact displacement
reaches v = 0.1 x 2R = 2mm for R = 10mm. The obtained displacements are plotted in
Figure 3.23 for 5 out of the 17 material properties for simple configuration obtained from

the space filling design, ranging from minimum to the maximum value of material parameter
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Figure 3.24. Estimation of material-dependent parameters (a) 7 and (b) w as functions of
parameter A for the relationship between secondary and primary contact displacements -,
and ~. Plotted discrete values correspond to the values obtained from FE data, while solid
curves correspond to relationships obtained from curve fitting.

A. From the figure, we observe that the evolution of lateral displacement follows a power
law, with the rate of evolution increasing with increasing material compliance (decreasing
A). Accordingly, we propose the following relationship between the secondary and primary

contact displacement

Ny = T (3.54)

where 7 and w are material-dependent parameters. Figure 3.24 shows a plot of the discrete
values of these parameters against material parameter X\, obtained by fitting the above
relationship to the secondary vs. primary displacement data for all 17 material properties.
From curve fitting of these calibrated values, we propose the following relationship for 7 and

w with A

|
7~ 1480.8863 tanh {(5.0261 x 10-5) - (A12559)]

w = 5.7775 tanh {0.0159 (A\*01%) } (3.56)

(3.55)
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Figure 3.25. Comparison of secondary displacement (v;) vs. primary displacement (7)
obtained from the power law given by Equation (3.54) and FE simulations of the simple
loading configuration. Plots are depicted for minimum and maximum value of A\ obtained
from the space-filling design. The units of displacement on both axes is millimeters (mm).

The above relationships are also plotted in Figure 3.24, and provide excellent estimates of
the calibrated parameter values. Finally, by using these relationships in the v, — v power law
given by Equation (3.54), the evaluated secondary displacements are plotted and compared
with the FE values for the minimum and maximum A in Figure 3.25. The figure confirms
the accuracy of the proposed power law, with an excellent agreement obtained between the
modeled and FE results.

The secondary contact displacement model from Equation (3.54) can now be used to
obtain the contact radius (Equation (3.17)), normalized hardness (Equation (3.20) for elastic
and Equation (3.23) for elasto-plastic regime) and contact force (Equation (3.16)) until the
primary contact deformation reaches 0.1, which denotes the limit of elasto-plastic regime for
the secondary contacts.

Additionally, we have proposed in the previous section that during the ‘low compress-
ibility’ regime, the contact response is a function of the overall particle compression due to
significant contact interactions. Therefore, it is fair to assume that beyond the ‘low com-

pressibility’ regime, all particle contacts are subjected to the same pressure, which is given
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Figure 3.26. Plot of primary deformation (v/2R) vs. the product of volume and surface rel-

. . D tact D tact . . .
ative densities pp " x po Y™ for the secondary contacts of die loading configuration.

Plots are depicted for 5 out of 17 material properties for die configuration, ranging from min-
imum to maximum value of A\. The marked points (bold cross markers) correspond to the
points between which the value of v/2R at pp ™ pROontact — 1 — (1,0593 is interpolated
for A = 163.08.

by Equation (3.46) in the ‘low compressibility’ regime and Equation (3.49) in the elastic
volumetric regime. For the secondary contacts, the onset of ‘low compressibility” regime is
predicted by using the minimum hardness condition given by Equation (3.33), where the
product of volume and surface relative densities is given by

DC DC
DC,contact % DC,contact __ V;Jarticle ‘/contact S, contact
Py Ps o 1/DC 1/DC SDbC

voro voro face

sTR? sR2(R—3) Ston
— 23 . X 3 5 3 % Contact’y (357)
8R*(R—3)  8R*(R—-3) 4R(R-3)
71_SDC

contact

4R (1 - )

The value of primary deformation v/2R at the onset can be obtained by interpolating the

v/2R vs. pBC’ComaCt X p?c’comm data generated by using FE values of the secondary contact

area SP¢ Figure 3.26 presents this data for 5 out of the 17 material properties for die

contact*

configuration, ranging from minimum to maximum A. According to Equation (3.33), the
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Table 3.6. Values of primary contact deformation /2R at the onset of ‘low compressibility’
regime for secondary die contacts. Values are provided for 5 out of the 17 material properties
for die loading configuration.

A ~v/2R (Low Compressibility)
163.08 0.4159
386.40 0.4115
1045.79 0.4102
2841.32 0.41
4954.40 0.4098

‘low compressibility’ regime starts when the product of volume and surface relative densities
equals I' = 0.0593. The deformation values at the fulfillment of this condition are obtained
by cubic interpolation between points on either side of the I' value, and are listed in Table
3.6 for the five plotted material properties.

Observation of the large deformation normalized contact pressure response of secondary
die contacts from finite element simulations (Figure 3.11c) suggests that while the normalized
hardness H at the onset of ‘low compressibility’ regime (7/2R ~ 0.41 from Table 3.6) does
not attain a minimum value, it does fall on an inflection point, following which the evolution
of contact pressure is visibly similar to that of the primary contacts (Figure 3.11b). This
observation confirms the accuracy of our predictions of the onset of the ‘low compressibility’
regime for secondary die contacts.

Figure 3.27 presents a comparison of the predicted evolution of normalized secondary
contact radius and contact force in the small-deformation (elastic and elasto-plastic) regime
with the finite element simulation results. Additionally, Figure 3.28 shows the predicted
vs. FE results of the evolution of normalized hardness in both small and large (beyond ‘low
compressibility’) deformation regimes. Comparative plots are provided for the minimum and
the maximum value of A for die configuration. Even though an excellent agreement is not
achieved, the predicted results at small deformations are still comparable with the FE data
and of the same order of magnitude. Concurrently, a good agreement between the predicted

and FE results is obtained for normalized hardness in the large deformation regime.
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Figure 3.27. Comparison of the predictions of small-deformation normalized (a) contact
radius (Equation (3.17)) and (b) contact force (Equation (3.16)) evolution at the secondary
contacts with respect to primary contact deformation with FE simulation data for a particle
under die compression. FE data for the lowest value of A = 163.08 are denoted by circles,
with corresponding contact law predictions denoted by a dashed curve. FE data with the
highest value of A = 4954.40 are denoted by diamonds, with corresponding contact law
predictions denoted by a solid curve.
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Figure 3.28. Comparison of the predictions of small and large deformation normalized hard-
ness evolution at the secondary contacts with respect to primary contact deformation with
FE simulation data for a particle under die compression. FE data for the lowest value of
A = 163.08 are denoted by circles, with corresponding contact law predictions denoted by
a dashed curve. FE data with the highest value of A = 4954.40 are denoted by diamonds,
with corresponding contact law predictions denoted by a solid curve.
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3.7 Summary and Discussion

A semi-mechanistic contact formulation has been developed for material and loading
condition-dependent contact behavior of an elastic-perfectly plastic spherical particle, as
it is compressed in a simple cubic packing under unconfined (simple axial compression) or
confined (die and hydrostatic compression) loading conditions. Contact laws for the evolution
of contact radius and normalized contact pressure (or hardness) have been proposed, while
the contact force is efficiently determined from the product of contact pressure and area. The
material-dependence is systematically incorporated in the formulation through calibration
of model parameters to a set of 51 single-particle finite element simulations (17 for each of
simple, die and hydrostatic loading conditions), where the diverse set of material properties
is obtained from a space-filling design.

The contact radius is determined as a three-term nonlinear function of the contact dis-
placement, where each term corresponds to the evolution of contact area during a specific
deformation regime, i.e., small, moderate and large deformations. The analytical framework
for the three-term function is obtained by applying the method of curvature-correction to the
small-deformation similarity contact law. The normalized hardness, due to its complex and
distinct evolution in each deformation regime, is modeled as a piece-wise differentiable func-
tion, with distinct contact laws proposed for each regime in a way that the function remains
continuous and differentiable with respect to the contact deformation at all stages of particle
compression. A salient feature of the proposed contact law is its capability to predict the
rise in contact pressure for confined loading conditions during the ‘geometrical hardening’
or ‘low compressibility’ regime as a function of the particle’s elastic compressibility, thus
unraveling critical material-dependent behavior at large deformations. The capabilities of
the contact formulation are successfully validated by attainment of an excellent agreement
between the model and finite element predictions of the evolution of contact radius, pressure
and force with contact deformation for the three considered loading configurations.

Finally, a foundational semi-mechanistic analysis of the lateral walled (secondary) con-
tacts in the die loading configuration is presented. The secondary contacts, despite not

being subjected to any applied deformation, evolve as a result of the lateral expansion of
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the axially compressed particle. The induced deformation at the secondary contacts, termed
as nonlocal deformation, is determined by post-processing the nodal displacements at the
lateral edge of the particle from finite element simulations of the simple loading configura-
tion. Although, this analysis is limited to small deformations to safely neglect any nonlocal
contributions from the secondary contacts themselves. The relationship between primary
and nonlocal secondary contact displacements is modeled as a power law, which is shown to
accurately represent the material-dependent evolution of the secondary displacements. By
using this relationship, the contact response is evaluated at small deformations from the
proposed semi-mechanistic contact formulation. Additionally, by utilizing the assumption
of equal contact pressure at all particle contacts beyond the ‘low compressibility’ regime,
the contact pressure at large deformations for the secondary contacts is determined from
the proposed normalized hardness law. A comparison of the model and finite element pre-
dictions of the secondary contact response shows that while an excellent agreement is not
achieved, the model predicted response is comparable and of the same order of magnitude
as the numerical FE data. With regard to this observation, it is worth mentioning that since
the FE simulations performed in this study were set up for an accurate determination of the
large deformation contact response, a separate finite element study with a finer mesh may
be needed for proper convergence of contact behavior at small deformations. Such a study
will enable a more reliable validation of the modeled response at the secondary contacts, and

is a worthwhile direction of future research.
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CHAPTER 4. EFFECTS OF CYCLIC LOADING AND TIME-RECOVERY ON
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF PARTICLE-BINDER
COMPOSITES

This chapter was published in the ASME Journal of Applied Mechanics, Volume 87(10):
101008 (23 pages), Ankit Agarwal and Marcial Gonzalez, Effects of cyclic loading and time-
recovery on microstructure and mechanical properties of particle-binder composites, Copy-
right ASME (2020).

4.1 Introduction

Particulate composites, or particle-binder composites, consist of hard particles, such as
carbon, tungsten carbide, silica, gravel, and others, in the matrix of a soft material, such
as polymers and soft metals. These materials are used across a wide range of applications
in different contexts. For example, particle-reinforced composites (such as filled elastomers
and concrete, i.e., gravel embedded in a cement matrix) are used to enhance the mechanical
properties of the matrix. Since hard particles increase the load-bearing capacity of the
material, these composites provide an improvement in strength and wear properties over
single material systems. However, they also exhibit significant inelastic phenomena in their
mechanical response (Dargazany et al., 2014), such as Mullins effect (Mullins, 1948, 1969)
and cyclic hysteresis (Netzker et al., 2010) in filled rubbers (Bergstrom & Boyce, 1998; Miehe
& Keck, 2000).

Plastic-bonded explosives (PBX) are another type of particle-binder composites that
are widely used in ammunition for defense applications. These materials consist of explo-
sive crystals, such as cyclotrimethylenetrinitramine (RDX) and cyclotetraminetetranitramine
(HMX), in the matrix of a binder that primarily includes: (i) a soft polymer, such as
hydroxyl-terminated polybutadiene (HTPB) (Akhavan, 2011) and Estane (Idar et al., 1998),
(ii) a plasticizer, such as bis(2,2-dinitropropyl)acetal (BDNPA), dioctyl adipate (DOA) and
bis(2,2-dinitropropyl)-formal (BDNPF), and (iii) small concentrations of antioxidants, bond-
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ing agents, wetting agents, cross-linkers, stabilizers and catalysts (Daniel, 2006). The poly-
mer acts as a safety envelope for the explosive crystals, inhibiting their movement and
excitation to low amplitude loads and thus reducing their sensitivity to weak impact loads
(Palmer et al., 1993; Rae et al., 2002; Rangaswamy et al., 2010). The plasticizer improves
processability, mechanical properties and also lowers sensitivity (Yilmaz et al., 2014). An-
other major ingredient in PBX may include a metal, such as aluminum, which is often used
as a fuel or booster to enhance blast effects (Prakash et al., 2004; Daniel, 2006).
Characterization and mechanistic understanding of the mechanical behavior of PBX are
of particular interest to the defense community. PBXs are designed to detonate in response
to a very specific external stimulus. However, these composites may be subjected to diverse
loading conditions during their operational life (ranging from high to low strain-rate com-
pression and tension, impact, mechanical vibrations and cyclic loading, among others) that
in turn may alter their microstructure and their mechanical response, rendering them unpre-
dictable and unsafe (Drodge & Williamson, 2016). Several experimental studies have been
performed to analyze the mechanical response and microstructural changes in PBX under dif-
ferent loading conditions. The most commonly used techniques for imparting static and dy-
namic loads are: (i) low strain-rate uniaxial unconfined compression and tension (Funk et al.,
1996; Idar et al., 1998; Thompson et al., 2002), (ii) low frequency base excitation (Paripovic
& Davies, 2013, 2016), (iii) Brazilian test for measuring tensile strength (Grantham et al.,
2004; Williamson et al., 2007), (iv) high strain-rate compression and impact loading using
split Hopkinson pressure bars (Idar et al., 2002; Li et al., 2012; Kerschen et al., 2017), and (v)
dynamic mechanical analysis (Thompson et al., 2012; Drodge & Williamson, 2016). The most
common destructive and non-destructive techniques for observing microstructural changes
are: (i) speckle photography (Palmer et al., 1993) and (ii) scanning electron microscopy
(SEM) (Rae et al., 2002; Chen et al., 2007), that have been used to study fracture surfaces
in PBX following a Brazilian test, (iii) high speed synchrotron X-ray phase contrast imaging
(Hudspeth et al., 2015), which has been used to study in-situ deformation and failure in
PBX under dynamic compression (Parab et al., 2016), and (iv) micro-computed tomogra-
phy, which is an increasingly popular and sophisticated non-destructive imaging technique

capable of characterizing the material in a three-dimensional (3D) space (hua YANG et al.,
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2014; Al-Raoush & Papadopoulos, 2010; Koloushani et al., 2018; Mukunoki et al., 2016; Yu
et al., 2018; He et al., 2013; Yermukhambetova et al., 2016). In the context of PBX, in-situ
micro-computed tomography (micro-CT) has been used to observe microstructural changes
in material specimens during large uniaxial unconfined compression (Manner et al., 2017;
Chen et al., 2017), with observations of ductile plastic flow to extensive cracking and dam-
age mechanisms like crystal-binder delamination and transgranular fracture. When coupled
with optical deformation measurement techniques like digital image correlation (DIC) (Bruck
et al., 1989) and digital volume correlation (DVC) (Bay et al., 1999), micro-CT has been used
effectively to obtain strain fields and quantify microstructural changes in polymer-bonded
sugar during large unconfined uniaxial compression (Hu et al., 2015, 2016).

The stress-strain response of particle-binder composites, specifically polymer-bonded
sugar under large quasi-static monotonic compression, is typically characterized by four
stages (see, e.g., Chen et al. (2017)). Initially, a nonlinear increase in the slope of the
stress-strain curve is observed, which is attributed to the gradual mating of the machine
platen-specimen surface. This is followed by a predominant elastic deformation of the ma-
terial, where the response curve remains largely linear. The third stage commences with a
nonlinear decline in the slope of the curve, attributed to predominant inelastic deformation
and damage accumulation in the form of particle-binder delamination and slipping, which
results in nucleation of cracks, and it continues until the material reaches its ultimate com-
pressive strength. Subsequently, the material rapidly loses its strength, owing to an extensive
transgranular crack formation during the fourth stage.

It is worth noting that, since the majority of inelastic deformation and damage accumula-
tion without loss of structural integrity occurs within the first three stages of deformation, it
is relevant to study periodic or cyclic loading within the range of moderate to high strains and
to characterize its effect on microstructure and mechanical properties of particle-binder com-
posites. Furthermore, since a material specimen may be subject to such loading conditions
multiple times over its operational life, it is important to study the effect of time-recovery,
degradation or aging (see, e.g., Goldrein et al. (2001)). A systematic study of the simultane-

ous effect of cyclic loading and time-recovery on microstructure and mechanical properties of
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particle-binder composites is not available in the open literature and, thus, it is the central
focus of this work.

This chapter specifically focuses on the qualitative and quantitative characterization of
changes in mechanical behavior and microstructure of particle-binder composites due to the
application of high amplitude quasi-static cyclic compressive loading, before and after a 4-
week time-recovery or aging period. Three compositions that differ in aluminum content
from the mock sugar formulation of PBXN-109 are cast into cylindrical specimens and used
in this study. Microstructural changes in the spatial distribution of the primary components
of the formulation, including pore space, are characterized from micro-CT images.

The chapter is organized as follows. Section 4.2 describes the experimental procedures,
including specimen preparation, experimental apparatus, and the proposed cyclic testing
and aging (recovery) procedure. Section 4.3 provides an analysis of the simple monotonic
compressive response of mock specimens to identify optimum strain levels for cyclic loading.
Section 4.4 presents a detailed analysis of cyclic loading and time-recovery effects on the me-
chanical response of mock specimens. Section 4.5 describes the postprocessing procedure for
the identification of spatial distribution of different components in the formulation, includ-
ing pore space, from micro-CT images. Section 4.6 provides a detailed quantitative analysis
of changes in microstructure due to cyclic loading and time-recovery or aging. Finally, a

summary and concluding remarks are presented in section 4.7.

4.2 Experimental Procedures
4.2.1 Material Preparation and Specimen Geometry

Cylindrical specimens of mock PBX material with dimensions of approximately 1-inch
height and 1-inch diameter were prepared following the procedure by Range et al. (2018).
The specimens were prepared by Ms. Allison Range.! The formulations used are variations
of PBXN-109 formulation (Lochert et al., 2002), with sugar used as a substitute for RDX to

render the specimens inert. The base formulation is summarized in Table 4.1.

L Allison Range, Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA. Email:
range@purdue.edu



101

Table 4.1. PBXN-109 formulation.

Constituent % w/w
RDX 64.000
Aluminum 20.000
R45-HT (Hydroxyl-terminated Polybutadiene Resin) | 7.346
Dioctyl Adipate (DOA) 7.346
Antioxidant 2246 0.100
Dantocol DHE 0.260
Triphenylbismuth 0.020
Isophorone Diisocyanate (IPDI) 0.950

The main constituents of the mock specimens are an HTPB binder with equal quantities
of R45-HT resin (Cray Valley USA, LLC) and DOA plasticizer (Sigma-Aldrich USA), sucrose
particles, and spherical aluminum powder (Valimet Inc, Stockton, CA, USA). The sucrose
particles are sieved to a diameter range of 106-355 pum to be comparable in size to RDX
particles. The aluminum powder has an average particle size of 25 ym. To prepare the
specimens, a mixing and casting procedure as described by Range et al. (2018) was followed.
The cast specimens were then cured in an oven for 7 days at 60°C. Experiments on the
specimens were performed 1-2 months after curing.

To gain insight into the role of additive content, i.e., of aluminum powder, in the evolu-

tion of microstructure and mechanical properties during cyclic loading and aging, the base

(a) 85-00 (b) 85-15 (c) 85-30

Figure 4.1. Mock energetic material specimens.
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formulation was varied to produce specimens of different formulations based on the following

two parameters:

1. Solids loading, which is the weight percentage of solids (sucrose crystals and aluminum

powder) in the overall mixture.
2. Additive content, which is the weight percentage of aluminum powder in the solids.

Specimens of three different formulations were studied, all of whom have 85% solids loading
but differ in additive content, namely 85-00 (0% additive in solids, 0% in total, Figure 4.1a),
85-15 (15% additive in solids, 12.75% in total, Figure 4.1b) and 85-30 (30% additive in
solids, 25.5% in total, Figure 4.1c). The nominal specimen heights (h), diameters (D) and
test performed for 85-00, 85-15 and 85-30 are provided in Tables 4.2, 4.3 and 4.4, respectively.

Table 4.2. Test parameters for 85-00 formulation.

Specimen | Nominal Height - | Nominal Diameter Test Performed
h (mm) - D (mm)
85-00-01 27.17 + 0.03 25.68 £+ 0.13 Simple compressive loading
85-00-02 26.33 £ 0.01 25.71 £ 0.07 Simple compressive loading
85-00-03 27.05 £ 0.03 25.45 £+ 0.12 Simple compressive
loading-unloading
85-00-04 26.60 £+ 0.01 25.71 £ 0.10 Simple compressive
loading-unloading
85-00-05 26.32 £+ 0.02 25.62 = 0.09 Compressive cyclic
Table 4.3. Test parameters for 85-15 formulation.
Specimen | Nominal Height - | Nominal Diameter Test Performed
h (mm) - D (mm)
85-15-01 27.29 £+ 0.01 25.66 £ 0.11 Simple compressive loading
85-15-02 26.20 £ 0.01 25.72 £ 0.11 Simple compressive loading
85-15-03 26.55 + 0.01 25.54 + 0.11 Simple compressive
loading-unloading
85-15-04 27.25 £ 0.01 25.53 £ 0.10 Simple compressive
loading-unloading
85-15-05 27.38 £ 0.01 25.52 £ 0.15 Compressive cyclic
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Table 4.4. Test parameters for 85-30 formulation.

Specimen | Nominal Height - | Nominal Diameter Test Performed
h (mm) - D (mm)

85-30-01 26.70 £ 0.01 25.89 £ 0.10 Simple compressive loading

85-30-02 25.09 £+ 0.03 25.54 £ 0.08 Simple compressive loading

85-30-03 26.14 + 0.02 25.49 £+ 0.14 Simple compressive
loading-unloading

85-30-04 25.84 + 0.02 25.67 £ 0.14 Simple compressive
loading-unloading

85-30-05 26.33 £+ 0.02 25.46 £+ 0.10 Simple compressive
loading-unloading

85-30-06 26.34 + 0.02 25.52 £ 0.10 Compressive cyclic

85-30-07 26.08 £ 0.01 25.56 £ 0.07 Compressive cyclic

4.2.2 Experimental Setup

Compressive loading experiments were performed on a MTS Criterion C43 universal test-
ing machine (Figure 4.2). The specimens were compressed between metal platens lubricated
with WD-40 dry lube. Strain-controlled tests were performed at room temperature (72°F),
and at a strain-rate of 0.001s! to produce a quasi-static loading response. A load cell of 500

N capacity was used to obtain the force measurements.

4.2.3 Micro-Computed Tomography

Micro-CT scans were performed on a Bruker Skyscan 1272 instrument (Figure 4.3). The
specimens were fixed to the mounting fixture using adhesive putty, with care being taken to
mount them in a straight, upright position. Table 4.5 presents the optimum scan settings
identified for each of the specimen formulations. The settings were optimized for scan qual-
ity (i.e., good contrast, low beam hardening, and ring artifacts), image quality (i.e., good
resolution, low noise) and scan time. Due to the specimens being larger than the detector’s
field of view at the selected resolution, the scan was carried out at two camera positions
successively to capture the entire width of the specimens. However, the length captured was

still limited by the length of the field of view. Therefore, the middle portion of the specimen
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Figure 4.2. Experimental setup for compressive periodic loading tests, showing (a) MTS
Criterion C43 testing frame, (b) Controlling workstation, and (c) Test specimen (85-00
shown in the figure).

Figure 4.3. The setup for micro-computed tomography, showing (a) Bruker Skyscan 1272
instrument, (b) Controlling workstation, (c) Test specimen (85-00 shown in the figure) fixed
to the (d) mounting fixture, (e) X-Ray detector, and (f) Side visual camera.



Table 4.5. Optimum micro-CT scan settings.
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Scan Settings 85-00 85-15 85-30
Beam Voltage (kV) 70 80 100
Beam Current (uA) 142 125 100

Beam Filter Al Imm Al 0.5mm + Cu Cu 0.11mm
0.038mm
Detector Resolution 1632x1092 1632x1092 1632x1092
Voxel Size (pum) 10 10 10
Rotation Angle 0.4 0.4 0.4
(degrees)
Averaging (frames) 6 6 6
Offset Scanning Yes, with two Yes, with two Yes, with two
camera positions camera positions camera positions
Scan duration 5 hrs 40 mins 6 hrs 15 mins 7 hrs 30 mins

25.4mm
(approx.)

10.92 mm

Figure 4.4. Representation of the scanned portion with respect to the entire length of the

specimen.

of length 10.92 mm was scanned to adequately capture the loading and aging effects for the

entire specimen (Figure 4.4).

4.2.4 Testing Procedure for assessing Cyclic Loading and Time-Recovery Ef-

fects

Figure 4.5 presents the standardized testing procedure employed to identify the depen-

dence of mock energetic specimens on loading history and time-recovery or aging. A period

of 24 hours was selected for re-scanning the specimens after cyclic compressive testing, to
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UNTESTED | | MICRO-CT | C Ol\(/igl(ljllfJ;(S:IVE | |MICRO-CT RESCAN
SPECIMEN SCA TESTING (WITHIN 24 HOURS)

RESTING PERIOD |
(4 WEEKS)

Figure 4.5. Testing procedure for assessing cyclic loading and time-recovery effects on mock
energetic specimens.

allow sufficient time for scan completion, and to simultaneously capture the material’s de-
pendence on cyclic loading. Before resuming the testing cycle, a resting period of 4 weeks
was allowed for the specimens to capture the aging effect, during which the specimens were

stored in UV protective resealable bags in a temperature-controlled (72°F) room.

4.3 Identification of Optimal Strain Levels for Cyclic Loading

To understand the basic deformation characteristics of mock specimens, and to estab-
lish a standard procedure for identifying optimal strain levels for cyclic loading, monotonic
compressive loading-unloading tests were performed for each specimen composition.

First, two specimens of each composition were compressed until a chosen maximum strain
level of 30% (see Figure 4.6), and the resulting nominal stress-strain response was studied.
It was observed that the 85-00 specimen exhibits (i) an initial nonlinear behavior (machine-
specimen mating), followed by (ii) an approximately linear increase in stress (predominant
elasticity), succeeded by (iii) a nonlinear response with decreasing slope (predominant plas-
ticity) until a peak stress level (ultimate compressive strength), after which the (iv) stress
decreases rapidly. These observations are in agreement with the previously observed behav-
ior of polymer-bonded sugar under monotonic compression (Chen et al., 2017). In contrast,
85-15 and 85-30 specimens exhibit a predominantly nonlinear response followed by ductile
plastic flow, reaching the peak stress at a much larger ultimate compressive strength; inter-
estingly, the ultimate strength is not reached under 30% strain for 85-30 specimens. These

observations are similar to those reported for aluminized explosives under high strain-rate
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Figure 4.6. Uniaxial simple compressive stress-strain response of (a) 85-00-01 and 85-00-02,
(b) 85-15-01 and 85-15-02, and (c) 85-30-01 and 85-30-02 specimens until 30% deformation.

Figure 4.7. Configuration of 85-00-01 (top row), 85-15-01 (middle row) and 85-30-01 (bottom
row) specimens under compression at 5%, 15% and 25% strain.
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compression loading (Rumchik & Jordan, 2007). The increase in compressive strength with
the addition of aluminum is attributed to an increase in inter-particle interactions and, conse-
quently, in load-bearing capacity due to a more densely packed solid phase (i.e., crystals and
aluminum powder). It is additionally noted that the presence of sucrose-aluminum contact
interactions reduces sucrose-binder interfacial area, which in turn arrests extensive interfa-
cial debonding and larger crack formation, leading to a ductile macroscopic deformation.
These observations are supported by the deformed configuration of the loaded specimens
(see Figure 4.7), where extensive crack formation and debonding is observed in the 85-00
specimens while lateral expansion and plastic material flow is observed in 85-15 and 85-30
specimens.

Second, optimal strain levels for cyclic loading of each specimen composition were selected

on the basis of the following two principles:

1. The maximum strain level should ensure sufficient elasto-plastic deformation while
preventing the material from reaching its ultimate compressive strength. Therefore,
for experimental convenience, we chose the maximum stress level to be the nearest

integer function of 80% of the averaged strain at ultimate compressive strength, i.e.,

€max,cyclic = LOS Eultimate—l .

2. The minimum strain level should allow for sufficient cyclic deformation while account-
ing for cyclic stress softening (Mullins effect) and ensuring that the specimen remains
in compression after cyclic stabilization. Therefore, we adopted an upper bound equal

to two-thirds of the maximum strain level, i.e., €mincyctic < 2 €max cyclic/3-

For 85-00 and 85-15 formulations, the values of strain at ultimate strength and the
maximum cyclic strain level obtained from the tested specimens are reported in Table 4.6.

Next, two specimens each of the 85-00 and 85-15 formulations were loaded to their re-
spective maximum strain levels and subsequently unloaded to a stress-free state (see Figure
4.8). A suitable value of the minimum strain level, lying between its upper bound (depicted
by dashed-dotted lines in the figure) and the residual strain (i.e., 1% for 85-00 and 2% for
85-15), was to be chosen. We adopted a minimum strain level of 5% for 85-00 and 8% for

85-15, depicted by dotted lines in the figure. Finally, we verified (and show in the later



109

Table 4.6. Maximum cyclic strain values for 85-00 and 85-15 (all values in %).

. 85-00-XX 85-15-XX
Strain
Type 01 02 01 02
€ultimate 10.14 12.00 19.98 19.18
€max,cyclic 9 16

sections) that, for these chosen optimal strain levels, the specimens remained in compression
during cyclic loading until the attainment of a stabilized cycle, despite the occurrence of
stress softening.

For the 85-30 formulation, an ultimate compressive strength was not reached within
30% deformation and, therefore, the selection of optimal strain levels for cyclic loading was
made based on the identification of the minimum strain level first. To this end, compressive
loading-unloading tests were performed on three specimens for three different maximum
strains, namely 30%, 15% and 9%. The unloading stress-strain curves for each of these
tests are presented in Figure 4.9. It is evident from the figure that the specimens exhibited
large residual strains; interestingly, the residual strain corresponding to a maximum strain

of 30% is slightly larger than the two-thirds bound, i.e., 20%, while the residual strains for
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Figure 4.8. Unloading stress-strain response of (a) 85-00-03 and 85-00-04, and (b) 85-15-03
and 85-15-04 specimens, with calculated maximum cyclic strain level (dashed line), upper
bound on minimum cyclic strain level (dashed-dotted line) and the chosen minimum cyclic

strain level (dotted line).
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Figure 4.9. Unloading stress-strain response of 85-30-03 from 30% strain, 85-30-04 from 15%
strain, and 85-30-05 from 9% strain. The maximum strains are denoted by dashed lines,
while upper bounds on minimum cyclic strain level are denoted by dashed-dotted lines.

15% and 9% are slightly smaller than their respective two-thirds bounds, i.e., 10% and 6%.
Consequently, cyclic compression tests were performed using 10%-15% and 6%-9% minimum-
maximum strain levels (see Figure 4.10). The former test exhibited a stress-free state before
cyclic stabilization, while the latter remained in compression until cyclic stabilization (see
inserts in the Figure 4.10). Therefore, we adopted optimal strain levels of 6%-9% for cyclic

loading of the 85-30 formulation.
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Figure 4.10. Cyclic compressive response of (a) 85-30-06 specimen between 10% and 15%
strain, and (b) 85-30-07 specimen between 6% and 9% strain. Graphs on the top left inset
in each figure show a magnified view of the stress-strain response near the minimum cyclic

strain.
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A detailed analysis of the cyclic response of each mock energetic formulation is presented

in the next section.

4.4 Cyclic Loading and Time-Recovery Effects on the Mechanical Response

Figure 4.12 presents the compressive cyclic nominal stress-strain response of 85-00-05,
85-15-05 and 85-30-07 specimens when loaded between the optimal strain levels selected in
the previous section, i.e., 5%-9%, 8%-16% and 6%-9%, respectively. Figures 4.12a, 4.12¢
and 4.12e show the response during initial cyclic testing of virgin specimens, while Figures
4.12b, 4.12d and 4.12f show the response of the same specimens after a 4-week time-recovery
or aging period. Nominal heights of the specimens measured before cyclic testing after
the 4-week period were 26.05 £ 0.02 mm for 85-00-05, 26.95 + 0.01 mm for 85-15-05, and
25.56 £ 0.01 mm for the 85-30-07 specimen. When compared with the nominal heights of
the specimens in their virgin (untested) configuration (Tables 2, 3 and 4), a residual strain
of ~1% in 85-00-05, ~1.57% in 85-15-05 and ~2% in 85-30-07 specimen is identified after
the recovery period.

Investigation of the mechanical response of the specimens suggested that all three formu-
lations exhibited a response characterized by the following attributes: (1) highly nonlinear
stress-strain response without a distinctive yield point, (2) hysteresis, and (3) cyclic stress
softening with eventual stabilization, which was observed at the 20th cycle for all formula-
tions. It is worth noting that for all compositions there are significant differences between the
cyclic response before and after the time-recovery period. These differences can be quantified

by the following parameters defined for a given cycle (see Figure 4.11):

1. Peak and valley stresses: the maximum oy,,x; and the minimum o, ; values of stress

in the i*" (i = 1,...,20) cycle. These stresses are related to the material strength.

2. Cumulative dissipated energy density: the difference between the energy supplied to
the material (i.e.,the area under the loading path) and the energy recovered after a cycle
(i.e., the area under the unloading path), accumulated throughout the cyclic loading.

This energy quantifies cyclic hysteresis and accumulated damage in the material.
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Figure 4.11. Schematic of a cyclic stress-strain curve (first two cycles shown) depicting peak
and valley stresses, dissipated energy, and apparent stiffness.

3. Apparent stiffness: the slope of the line connecting peak and valley stresses in each

: th —
CyC167 Le., for the 4 Cy(ﬂea Eapparent,i - (Umax,i - O-min,i)/(emax,cyclic - Emin,cyclic)-

In the following sections, a thorough analysis of cyclic loading and time-recovery effects on
the overall stress-strain response, damage, strength, and stiffness of mock energetic specimens

is presented.

4.4.1 Effects on the overall Stress-Strain Response

It is interesting to note that in the cyclic stress-strain response of all specimen formu-
lations, the first loading path of the virgin material is quite different from the subsequent
reloading paths, including those recorded after the time-recovery period. Excluding the ini-
tial response (until about 3% strain) which is related to gradual mating of machine platen-
specimen surface, the rate of strain hardening is observed to be decreasing with compression
during the first loading path of the virgin material and increasing with compression during
subsequent reloading. A similar observation has been made previously for cyclic compression
of aluminized RDX-based PBX in HTPB binder (Tang et al., 2016), where the authors have
described the initial loading response as sharp oval shaped, and the subsequent response

as crescent shaped. This type of strain hardening has not been observed in other particle-
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Figure 4.12. Cyclic compressive stress-strain response of (a and b) 85-00-05, (¢ and d)
85-15-05 and (e and f) 85-30-07 specimens during initial testing and testing after 4 weeks.
Observable response attributes include (1) highly nonlinear stress-strain response without a
distinctive yield point, (2) hysteresis, and (3) cyclic stress softening with eventual stabiliza-
tion (observed at the 20th cycle for all formulations).
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binder composites such as filled elastomers (Bergstrom & Boyce, 1998; Miehe & Keck, 2000;
Dargazany et al., 2014), where the initial loading response is similar to the response observed
during subsequent reloading.

Another interesting observation is made regarding the effects of loading history and time-
recovery on the first loading path of the aged material. For the 85-15 and 85-30 formulations,
the first loading path of the aged specimen is similar in shape to both the loading response
of the stabilized cycle before aging and to the subsequent reloading paths. However, for the
85-00 formulation, the shape of the first loading path of the aged specimen remains similar
to the first loading path of the virgin material. This permanent change in the mechanical
behavior of aluminized specimens may be attributed to the loading history memory effect
observed in plastic or ductile (polycrystalline) materials (Jiang & Sehitoglu, 1994; Zhang &
Jiang, 2004; Jiang & Zhang, 2008; Paul et al., 2011).

4.4.2 Effects on Damage, Strength and Stiffness

All three formulations show a nonlinear decline in peak and valley stresses (and thus in
strength), and apparent stiffness with cyclic loading, for tests performed both before and after
the time-recovery period (see Figures 4.13 and 4.14). The rate of decline, however, eventually
reduces to zero and cyclic stabilization is observed after the 20th cycle. This weakening and
softening of the material, also known as the Mullins effect, is attributed to the accumulation
of damage. This accumulated damage is also evident from the evolution of cumulative
dissipated energy (see Figures 4.14), and it is typically attributed to mesoscale physical
processes such as bond rupture at polymer-filler interfaces (Blanchard & Parkinson, 1952),
molecular slipping on the filler-particle surface (Houwink, 1956), filler aggregate rupture
(Kraus et al., 1966), among others and so on (see, e.g., Diani et al. (2009) and references
therein for a review of physical interpretations of the Mullins effect).

The effect of loading history and time-recovery on material behavior is evident for the
85-00 formulation. It shows a large increase in peak stress (~45%), valley stress (~66%) and
apparent stiffness (~41%) consistently for all cycles, and a ~100% increase in both the value

of energy dissipation during the first cycle and its rate of accumulation during subsequent
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Figure 4.13. Plots depicting evolution of peak and valley stresses with cyclic loading of (a
and b) 85-00-05, (c and d) 85-15-05 and (e and f) 85-30-07 specimens. Round data points
indicate peak and valley stress values obtained during initial (virgin) testing, while square
data points indicate values obtained during testing after 4 weeks.
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Figure 4.14. Plots depicting evolution of cumulative dissipated energy and apparent material
stiffness with cyclic loading of (a and b) 85-00-05, (¢ and d) 85-15-05 and (e and f) 85-30-07
specimens. Round data points indicate energy and stiffness values obtained during initial
(virgin) testing, while square data points indicate values obtained during testing after 4
weeks.
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cycles. In contrast, aluminized formulations (i.e., 85-15 and 85-30) show a small reduction
in peak stress and apparent stiffness during the initial 4-5 cycles after the time-recovery
period. The 85-15 specimen also shows a small reduction in valley stress, which is consistent
with observations of other values. However, the 85-30 specimen shows a consistent increase
in valley stress, although the values may be too small to be captured accurately due to
limitations of the load cell. Interestingly, the rates of energy dissipation before and after
aging are the same, but the values are offset by a significant drop (~58% for 85-15 and
~56% for 85-30) observed in the first cycle after the time-recovery period.

The observation of stiffening and strengthening of the 85-00 formulation is consistent
with the proposition of an increase in sucrose particle-particle interactions during the initial
loading of the virgin material. Formation of inter-particle force chains has been previously
observed during high strain-rate compression of polymer-bonded sugar with high solids load-
ing (>80%) (Ravindran et al., 2019), and during quasi-static compression of metal-matrix
composites (Liu et al., 2014a). Specifically, it is argued that the force network within the filler
particles is the main load-bearing mechanism under compression, while the binder matrix has
a bulk effect on load transfer and a confining effect on the initial relative movement of filler
particles (Liu et al., 2014a; Topin et al., 2007). Furthermore, if particle-binder interfacial
debonding occurred at moderate to large deformations, then radial displacement of the soft
polymer matrix would follow and, in turn, inter-particle interactions would be facilitated.
Even if binder rearrangement was partially reversed during the time-recovery period, the
increased proximity of the sucrose particles, as compared to the virgin material, would result
in an apparent increase in load-bearing capacity due to a more densely packed solid phase.
In sharp contrast, large ductile plastic flow and higher irrecoverable damage are observed for
formulations with aluminum micro-sized powder, i.e., for the 85-15 and 85-30 formulations.
As it was noted above, a stiffer force network is formed due to sucrose-aluminum-sucrose
interactions, which results in higher material strength, but plastic irreversible deformation

occurs during cyclic loading, which results in a lack of recovery during the aging period.
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4.5 Identification of the Spatial Distribution of Formulation Components at the

Meso-scale

A systematic procedure for identifying the spatial distribution of the primary components
of each formulation, including pore space, from micro-CT scans was developed. To this end,
the volumetric CT data was first reconstructed using NRecon (Bruker micro-CT) software
to obtain multiple cross-sectional 8-bit gray-scale images along the length of the scanned
portion of the specimen. A total of 1092 volumetric image slices (each image of 10 um
height, constituting the total scanned height of 10.92 mm) were obtained. To avoid low-
quality images at the top and bottom edges due to cone-beam imaging geometry (Scarfe
& Farman, 2008) of the Bruker micro-CT instrument, 68 image slices from the top and
70 image slices from the bottom were discarded; these values were recommended by the
software. The effective analyzed height was then equal to 9.54 mm. The images were
produced by attributing a gray value from 0-255 to each pixel depending upon its attenuation
coefficient, which in turn depends on the material density. Figure 4.15 shows a schematic of
the histogram of attenuation coefficient values obtained from the middle cross-section of the
85-15 specimen. From the histogram, a range of attenuation values is chosen which is mapped
to the gray-scale. Limits of this range, also known as contrast limits, were chosen as follows:
the lower limit was selected as 0, which is the first peak in the histogram corresponding to air,
while the higher limit was selected as 4%-5% more than the maximum attenuation (density)
observed in the histogram to assure complete visualization of all the material within the
specimen.

In addition to choosing the contrast limits, corrections were applied to the gray-scale
images to reduce the effect of tomography artifacts like beam hardening and ring artifacts,
while Gaussian smoothing (Shapiro & Stockman, 2001) was applied to reduce image noise.
Since these values affect the fundamental gray distribution of the images, they need to be
the same for multiple scans of the same specimen for accurate qualitative and quantitative
comparisons.

The gray-scale images were then further analyzed in the CT-analyzer (Bruker micro-

CT) software, which is capable of performing a wide range of morphometric analyses on
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Figure 4.15. Schematic of the log-scaled histogram of the middle cross-section of the 85-15-05
specimen with respect to the attenuation coefficient of image pixels.

reconstructed scan datasets. A major function of the tool is thresholding, which is the
binarization of a gray-scale image so that a certain range of gray values are assigned the
value 0 (black), while the rest of the gray values are assigned the value 1 (white). Using
thresholding, it is possible to distinguish materials of different densities (gray values) in
the scanned image. However, automatic thresholding algorithms in CT-analyzer are at
most capable of segmenting two-component material systems. Furthermore, due to partial
volume effects in CT images (Wellington & Vinegar, 1987) and extensive mixing of different
materials in particle-binder composites, distinct peaks corresponding to different materials
are not observed in the gray-scale histogram of mock specimens, making segmentation of
multiple components and porosity solely from the gray-scale histogram infeasible.

It bears emphasis that the porosity of the specimen and the volume fraction of its primary
components, i.e., binder, sucrose and aluminum can be analytically computed from the
measurement of specimen’s weight and volume, since mass fractions and densities (binder:
0.907 g/cc, sucrose: 1.59 g/cc, aluminum: 2.7 g/cc) of the components are known. While
weight could be easily measured with good accuracy using a balance, the volume was best
approximated using a combination of CT-analyzer tools and physical measurements. A useful
feature of the software is the ability to wrap the boundary of the Volume of Interest (VOI)
tightly around the boundary of the specimen. Figure 4.16 shows the Region of Interest
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Figure 4.16. A cross-sectional image slice of the 85-15-05 specimen in gray-scale, and its cor-
responding ROI obtained using the “Shrink Wrap” feature available in Bruker CT-analyzer.

(ROI) obtained using this “Shrink Wrap” feature for a cross-sectional image slice of the
85-15-05 specimen. The VOI was then constructed from ROIs created along the entire
length of the scanned portion, and its volume (Vyo1) was computed by CT-analyzer’s 3D
morphometric analysis tool. Volume of the entire specimen (V') was then approximated as
V' = Wor(h/hvor), where h is the measured specimen height and hyor = 9.54 mm.

Once specimen porosity and volume fractions of its components were known, gray-scale
ranges corresponding to the measured values were obtained from the 3D voxel gray-scale

histogram available from CT-analyzer. Figure 4.17 shows representative gray-scale ranges
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Figure 4.17. 3D voxel histogram of the 85-15-05 specimen showing representative gray-scale
ranges for each specimen component.
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Table 4.7. Measurements of weight, volume and comparison of measured porosity and volume
fractions (VF) with values obtained from CT-analayzer voxel histogram for the three mock
energetic specimens. The identified thresholding ranges are provided for reference.

Specimen | Weight | Volume| Component | Measured CT- Thresh-
() (cm?) VF (%) | analyzer olding

VF (%) Range

Porosity 19.2480 19.4842 0-33

85-00-05 15.7524 | 13.6560 Binder 19.0790 19.0703 34-95
Sucrose 61.6729 61.4454 96-255

Porosity 9.3428 9.4371 0-24

85 1505 18.9840 | 13.9674 Binder 22.4780 22.3999 25-96
Sucrose 61.7609 61.6016 97-244

Aluminum 6.4183 6.5614 245-255

Porosity 6.1790 6.2632 0-17

Binder 24.4719 24.4512 18-93

85-30-07 | 20.0892 ) 13.5762 Sucrose 55.3738 55.3135 94-216
Aluminum 13.9753 13.9721 217-255

in the 3D voxel histogram of the 85-15 specimen, arranged in the order of increasing density
of components (porosity < binder < sucrose < aluminum). Table 4.7 provides weight and
volume measurements, and it compares the porosity and volume fraction of each component
obtained from the true density of the specimen and the CT-analyzer voxel histogram. The
table also reports the threshold gray-scale ranges identified in the analysis.

Finally, the obtained gray-scale ranges were used to binarize the gray-scale images into
four sets of binary images, each containing voxels representing an individual component.
These binary image sets were then color-coded in MATLAB®, Version 9.4.0 (2018a), as-
signing a specific color to each component (porosity-black, HTPB-red, sucrose-green and
aluminum-blue), and combined to obtain a single set of color-coded slices. Figure 4.18 shows
a schematic of the described post-processing procedure for the identification of individual
specimen components and their spatial distribution. Additionally, Figure 4.19 provides 3D
rendered volume images of the gray-scale and the color-coded representations of the mi-

crostructure of each formulation.
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Figure 4.18. A schematic of the postprocessing procedure of micro-CT scans to reconstruct
the microstructure of the specimen and the spatial distribution of its individual components.
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Figure 4.19. 3D rendered gray-scale and color-coded volume images of (a) 85-00-05, (b)
85-15-05 and (c) 85-30-07 mock specimens, obtained from Bruker CTvox software The color
bars provide the color-code for each component, as well as a representative measure of their
volume fraction.
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4.6 Cyclic loading and Time-Recovery Effects on the Microstructure

In previous sections, it has been established that cyclic loading and time-recovery in-
troduce evident and permanent changes in the macroscopic mechanical response of mock
energetic materials. This behavior is attributed to mesoscale deformation and relaxation
mechanisms that emerge from the presence of a hard phase (sucrose) and a soft phase
(binder) in the microstructure. The soft phase becomes progressively more compliant due to
accumulated damage and particle-binder interfacial debonding. It undergoes homogeneous
or affine deformation under compressive load, it recovers during unloading, and it relaxes
over time. In sharp contrast, the hard phase experiences a collective rearrangement or non-
affine deformation under compressive loading, and it only partially recovers during unloading
and over time due to the irreversible nature of this collective rearrangement. The presence of
a ductile third phase (aluminum) may significantly affect these mesoscale deformation and
relaxation mechanisms by forming permanent sucrose-aluminum contacts and reducing the
sucrose-binder interfacial area—i.e., by arresting interfacial debonding and thus effectively
stiffening the soft phase.

In this section, the proposed mesoscale deformation and relaxation mechanisms are in-
vestigated by characterizing changes in the spatial distribution of the primary components
of each formulation, including pore space, before and after each cyclic test and, thus, before
and after the time-recovery or aging period.

The spatial volume distribution of components in a formulation is determined from the
three-dimensional color-coded micro-CT volume images (see Figure 4.19) using MATLAB®,
Version 9.4.0 (2018a). Distributions in the radial direction are of primary interest, and thus
the VOI is first segmented into three equal discs along its height, next into 20 angular sectors
of equal volume and, lastly, into 20 radial rings (see Figure 4.20). The proposed tessellation
is such that the volume of the resulting elements increases linearly with radial distance,
from 0.179 mm? at r = 0.6 mm to 7.013 mm? at » = 12 mm-—radial distances beyond 12
mm are excluded from the analysis to eliminate any inconsistencies that may result from
imperfections in the specimen geometry. The volume fraction of sucrose, binder, aluminum

and pore space within each tessellated volume, and the mean and standard deviation values
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hvo1

Figure 4.20. A schematic of the segmentation procedure of the volume image obtained from
micro-CT into a set of elements for studying changes in volume distribution of the specimen
components along the specimen’s radius.

along the angular direction, are then readily available and compared for scans taken before
and after virgin material testing and testing after 4 weeks in Figures 4.23-4.25, 4.26-4.29 and
4.30-4.33 for specimens 85-00-05, 85-15-05 and 85-30-07 respectively. In the figures, plots
are depicted for each segmented disc (top, middle and bottom), with the volume fraction
plotted against radial position, and standard deviation along the angular direction plotted
as error bars. For additional qualitative comparison of microstructural changes, color-coded
axial cross-sections of the specimens are provided in Figures 4.21 and 4.22. It is evident
from these figures that the majority of the volumetric changes are observed near the core
or center of the specimen. This observation is consistent with in-situ micro-CT studies in
polymer-bonded sugar under quasi-static uniaxial monotonic compression (Hu et al., 2015,
2016) which show that accumulation of damage, in the form of debonding, starts from the
core region and then propagates to the outer region. A detailed characterization of each
formulation is presented next.

The 85-00 formulation shows an increase in the volume fraction of sucrose, and a reduction
in that of binder and porosity, near the core upon the first cyclic loading test (see Figures
4.21a and 4.21b; circle (black) and square (blue) plots in Figures 4.23-4.25). This behavior
is consistent with an affine radial deformation of the soft and debonded binder as it is

compressed by stiffer sucrose crystals, and conversely, a non-affine longitudinal motion of
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Figure 4.21. Central cross-sectional images along the height (z) of the spatial distribution of
specimen components in the 85-00-05 (a, b, ¢ and d) and 85-15-05 (e, f, g and h) specimens,
shown for scans taken before and after virgin material testing and testing after 4 weeks. In
the images, white indicates Porosity, green indicates Sucrose, red indicates Binder, while
blue indicates Aluminum.

the sucrose crystals to form a denser contact network. Furthermore, this formulation exhibits
a partial reversal of such microstructural rearrangement during the 4-week time-recovery or
aging period (see Figures 4.21b and 4.21¢; square (blue) and triangle (red) plots in Figures
4.23-4.25). This reversal or recovery is facilitated by a relaxation over time of residual strains

in the binder. Finally, the second cyclic test reveals trends of binder displacement similar
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Figure 4.22. Central cross-sectional images along the height (z) of the spatial distribution
of specimen components in the 85-30-07 specimen, shown for scans taken before and after
virgin material testing and testing after 4 weeks. In the images, white indicates Porosity,
green indicates Sucrose, red indicates Binder, while blue indicates Aluminum.

to those observed during the first test but extended over a larger region, i.e., it indicates
gradual propagation of damage away from the core (Chen et al., 2017) (see Figures 4.21c
and 4.21d; triangle (red) and diamond (brown) plots in Figures 4.23-4.25).

In the 85-15 formulation (see Figures 4.21e and 4.21f, and Figures 4.26-4.29), the spatial
distribution of specimen components is highly inhomogeneous, as observed in the radial and
longitudinal distributions of sucrose and binder, and the angular distribution of aluminum
and porosity. However, the average microstructural rearrangement during the first cyclic test
is observed to be similar to the 85-00 formulation. Although, compared to 85-00, the increase
in volume fraction of sucrose and the reduction in volume fraction of binder and porosity are
observed much closer to the specimen core. This observation indicates an influence of the
aluminum particles on the microstructure evolution. By forming additional contacts with
sucrose, aluminum particles tend to reduce the sucrose-binder interfacial area and resist
particle-binder debonding, thereby reducing the compliance of the binder. The effects of
these contact interactions are observed prominently following partial recovery, where the
deformation mechanisms of binder and sucrose are completely reversed during the 4-week

cyclic test (see Figures 4.21g and 4.21h; triangle (red) and diamond (brown) plots in Figures
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Figure 4.23. Comparison of the volume distribution of sucrose in the 85-00-05 specimen.
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Figure 4.24. Comparison of the volume distribution of binder in the 85-00-05 specimen.
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Figure 4.25. Comparison of the volume distribution of porosity in the 85-00-05 specimen.
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4.27. Comparison of the volume distribution of binder in the 85-15-05 specimen.
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Figure 4.28. Comparison of the volume distribution of Aluminum in the 85-15-05 specimen.
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Figure 4.29. Comparison of the volume distribution of porosity in the 85-15-05 specimen.

4.26-4.29). It is observed that the volume fraction of sucrose decreases near the core, while
the volume fraction of the binder increases. This is the indication of an affine radial motion
of the sucrose crystals away from the specimen core, and a non-affine rearrangement of
the binder towards the core. A similar crystal motion has been observed previously by
Manner and co-workers during in-situ micro-CT analysis of the uniaxial compression of
a PBX formulation (ref. Manner et al. (2017) for more info on the formulation and the
compression study) that undergoes ductile macroscopic plastic deformation.

In the highly aluminized 85-30 formulation (see Figures 4.22a and 4.22b; circle (black)
and square (blue) plots in Figures 4.30-4.33), the prominent effects of aluminum-sucrose
interactions are apparent from the first cyclic test itself, where affine motion of the sucrose
crystals and aluminum particles (clearly observable in Figures 4.32a, 4.32b and 4.32c¢ due to
higher aluminum content) away from the specimen core, and non-affine rearrangement of the

binder towards the core are observed. The same microstructural rearrangement continues
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Figure 4.30. Comparison of the volume distribution of sucrose in the 85-30-07 specimen.
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Figure 4.32. Comparison of the volume distribution of Aluminum in the 85-30-07 specimen.
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Figure 4.33. Comparison of the volume distribution of porosity in the 85-30-07 specimen.
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during the recovery period and during the 4-week cyclic test (see Figures 4.22c and 4.22d;
triangle (red) and diamond (brown) plots in Figures 4.30-4.33).

4.7 Summary and Discussion

A systematic experimental procedure and quantitative analyses have been proposed to
investigate the effects of cyclic loading and time-recovery (or aging) on the mechanical prop-
erties and microstructure of particle-binder composites. Cast cylindrical specimens of mock
sugar formulations of PBXN-109 differing in the amount of aluminum content (85-00 with
no aluminum, 85-15 with 12.75% w/w aluminum, 85-30 with 25.5% w/w aluminum) were
subjected to quasi-static cyclic compressive loading. The microstructure of each specimen
was imaged before and after cyclic loading using micro-computed tomography. This proce-
dure was repeated after a 4-week time-recovery period. The stress-strain response of each
specimen was quantified using four parameters per loading-unloading cycle, namely peak and
valley stresses (related to material strength), cumulative dissipated energy density (related
to cyclic hysteresis and accumulated damage), and apparent stiffness. The spatial distribu-
tion of primary components in each specimen, including pore space, was postprocessed from
micro-CT images.

The cyclic compressive response of PBXN-109 mock formulations is very similar to that
of filled elastomers. Namely, it exhibits a highly nonlinear elasto-plastic response without
a distinct yield point, hysteresis, and progressive stress softening (or Mullins effect) with
cyclic stabilization. However, in sharp contrast to filled elastomers, these mock energetic
composites exhibit an initial loading path noticeably different from subsequent loading paths.
This nonlinear, path-dependent behavior observed in the macroscopic response is supported
by changes in the mesoscopic spatial volume distribution of formulation components (i.e.,
binder, sucrose, aluminum, and pore space) observed using micro-CT. The quantification of
these effects, before and after cyclic loading and time-recovering, confirmed that this behavior
can be attributed to mesoscale deformation and relaxation mechanisms that emerge from the
presence of a hard phase (sucrose) and a soft phase (binder) in the microstructure. The soft

phase becomes progressively more compliant due to accumulated damage and particle-binder
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interfacial debonding. It undergoes homogeneous or affine deformation under compressive
load, it recovers during unloading, and it relaxes over time. In sharp contrast, the hard
phase experiences a collective rearrangement or non-affine deformation under compressive
loading, and it only partially recovers during unloading and over time due to the irreversible
nature of this collective rearrangement. The presence of a ductile third phase (aluminum)
may significantly affect these mesoscale deformation and relaxation mechanisms by forming
permanent sucrose-aluminum contacts and reducing the sucrose-binder interfacial area—
i.e., by arresting interfacial debonding and thus effectively stiffening the soft phase. In all
formulations, and due to the loading conditions, the majority of microstructural changes
occurred near the core of the cylindrical specimens. Furthermore, in formulations with
aluminum content, the non-affine nature of the deformation field appeared to be anisotropic
(i.e., different longitudinal and radial behavior was observed).

To conclude, the work presented in this chapter serves as the foundation of a future study
of the long-term effects of repetitive cyclic loading and time-recovery on the microstructure
and mechanical properties of particle-binder composites. Such study would entail an execu-
tion of the proposed testing and recovery procedure over several months. The outcome of this
study will provide compelling affirmation of the observations and analyses presented in the
chapter, leading to a better understanding and characterization of the complex mechanical

behavior of particle-binder composites.
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CHAPTER 5. A FINITE-DEFORMATION CONSTITUTIVE MODEL OF
PARTICLE-BINDER COMPOSITES INCORPORATING YIELD-SURFACE-FREE
PLASTICITY

This content of this chapter has been submitted to the International Journal of Plasticity,
and it is currently under review.

5.1 Introduction

Particle-binder composite materials consist of a large concentration of hard particles,
called fillers, randomly dispersed in the matrix of a soft material. Generally, fillers are used
to enhance the mechanical properties of the soft material. For example, filled elastomers
such as carbon black and silica filled rubbers (Rattanasom et al., 2007; Omnes et al., 2008)
have been shown to possess superior stiffness, strength and damping properties over natural
rubber, making them suitable for application in automotive parts such as tires and bearing
seals, and in structures providing vibration and shock isolation to mechanical systems.

Another class of particle-binder composites, called energetic composites or Plastic-Bonded
Explosives (PBX), consists of explosive crystals and, in some formulations, metal fuel pow-
der, embedded in a binder composed mainly of a soft polymer and a plasticizer. Since
their initial development at Los Alamos National Laboratory in 1947, PBXs have been com-
monly used as ammunition in defense applications. Examples of explosives used include
cyclotrimethylenetrinitramine (RDX) and cyclotetra-minetetranitramine (HMX), while the
binder composition includes polymers like hydroxyl-terminated polybutadiene (HTPB) and
Estane, and plasticizers like Dioctyl adipate (DOA) and isodecyl pelargonate (IDP), along
with smaller concentrations of various additives (Akhavan, 2011). In PBX binder, the poly-
mer, apart from providing structural integrity to the explosive, reduces their impact and
vibrational sensitivity (Palmer et al., 1993; Rae et al., 2002; Rangaswamy et al., 2010), while

the plasticizer improves their mechanical properties and processability (Yilmaz et al., 2014).
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The metal fuel, usually aluminum, is used to enhance the blast effects. Therefore, aluminized
PBXs are typically used in naval weapons and missile warheads (Kumar et al., 2010).

Energetic composites are commonly used in applications requiring high mechanical con-
finement or compression (Wiegand, 2000; Wiegand & Reddingius, 2005). Additionally, these
materials may be subjected to diverse loading conditions, ranging from low to high strain-rate
cyclic, vibrational and impact loading during transport, storage and handling over their op-
erational life. Since PBXs are designed to detonate under specific external energy stimulus,
such loading conditions may alter their mechanical response, rendering them unpredictable
and unsafe (Drodge & Williamson, 2016). Therefore, understanding and predicting the me-
chanical response of PBX under different loading conditions is of particular interest to the
defense and propulsion community.

Earlier experimental studies on the mechanical behavior of PBX under uniaxial load
have shown strong dependence on strain rate and temperature (Idar et al., 2002; Thompson
et al., 2002; Williamson et al., 2008). Several constitutive models in the context of small
and large deformation mechanics have been developed to model their rate and temperature-
dependent behavior. For instance, Bardenhagen et al. (1998) proposed a large deformation
viscoelastic model for PBX binder materials using Blatz-Ko hyperelasticity formulation and
a Maxwell element. Clements & Mas (2001) proposed a viscoelastic constitutive theory
for filled polymers using Boltzmann superposition principle, where the filler particles were
modeled as randomly positioned elastic ellipsoidal particles. Composite stress relaxation
functions were developed with their prony series coefficients dependent on filler concentration,
ellipsoidal aspect ratio and polymer moduli. The visco-elastic cracking constitutive model
developed by Bennett et al. (1998) combined a linear viscoelastic Maxwell’s model with an
isotropic damage model by Addessio & Johnson (1990). It was based on the mechanism of
micro-cracking and derived from the statistical crack mechanics approach proposed by Dienes
(1996) for brittle materials. The model was developed to predict the nonlinear stress-strain
response of the material, as well as the strain-softening and nonlinearity observed due to
extensive cracking at larger deformations. The model has since been extensively implemented
in finite element analyses and used to predict the thermo-mechanical behavior of PBX and

study hotspot generation (Rangaswamy et al., 2010; Buechler & Luscher, 2014). In the
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context of PBX undergoing low-frequency vibrational loading, nonlinear viscoelastic models
for a mass-material system undergoing base excitation were proposed by Paripovic & Davies
(2013, 2016).

While most of the constitutive formulations proposed for PBX model the material as
viscoelastic due to the rubbery nature of the polymer binder, it has been shown that they
can exhibit considerable plastic deformation with increasing confinement. Uniaxial confined
compression tests carried out on inert mock sugar-based specimens for PBX 9501 (Wiegand,
2000; Wiegand & Reddingius, 2005) under different confining pressures revealed increasing
plastic deformation and strain hardening with increasing pressure. Recently, Agarwal &
Gonzalez (2020) conducted unconfined compression tests at room temperature and low strain
rate (1073/s) on cylindrical specimens of three mock explosive formulations based on PBXN-
109 (Lochert et al., 2002), with sugar as a substitute for the explosive HMX crystals. All
three formulations contained 85% w/w of solids (sugar and aluminum), but differed from
each other by the amount of aluminum content in the solids-composition, namely 85-00 (0%
Al in solids, 0% in total), 85-15 (15% Al in solids, 12.75% in total) and 85-30 (30% additive
in solids, 25.5% in total). The stress-strain response of the 85-00 specimens exhibited a
quasi-brittle behavior (Pijaudier-Cabot et al., 1999), with an initial nonlinear increase in
stress until a peak stress level at around 10-11% strain, followed by strain-softening due
to evolution of microcracks into larger transgranular fracture leading to a loss of strength.
Such behavior has been recorded and studied extensively for many non-aluminized PBX
formulations (Idar et al., 1998, 2002; Rangaswamy et al., 2010). However, the aluminized
specimens (i.e., 85-15 and 85-30 specimens) exhibited a more ductile plastic flow behavior
with strain hardening, indicating that the presence of aluminum could cause the material to
deform plastically even in the absence of confinement.

Additionally, plastic deformation and damage in PBX have been shown to be associ-
ated with hotspot mechanisms (Trumel, H. et al., 2012; Keyhani et al., 2019), thus directly
impacting their ignition characteristics. Therefore, the development of a constitutive model
capable of characterizing the plastic behavior of explosives is extremely important for proper
modeling and prediction of their mechanical behavior. Constitutive models for PBX incor-

porating plasticity have been proposed for cyclic deformation (Le et al., 2010) and mild
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Figure 5.1. (a) Aluminized mock sugar-based PBX specimen 85-15, and (b) the nominal
stress-strain response under strain-controlled unconfined uniaxial compressive cyclic loading
of the specimen. The response until the attainment of stable cyclic loop is shown in gray,
while the stable cyclic loop is shown in black. Observable response attributes (labeled in the
figure) include: (1) highly nonlinear stress-strain response without a distinctive yield point,
(2) hysteresis, and (3) cyclic stress softening with eventual stabilization.

impact (Yang et al., 2018). However, the models have been developed using small defor-
mation theory, and, therefore, are inapplicable to large deformation mechanical behavior of
explosives.

Lastly, Agarwal & Gonzalez (2020) also conducted large deformation, unconfined cyclic
compression tests of cylindrical sugar-based mock PBX specimens at room temperature and
low strain rate (107 /s). Figure 5.1b shows the cyclic response of the 85-15 formulation. The
strain-controlled, cyclic compression test was carried out by initially loading the specimen
to 16% strain, and thereafter partially unloading-reloading between 8% and 16% strain.
Observable response attributes (indicated in the figure) include: (1) a non-linear, continuous
elasto-plastic response without apparent yield, (2) hysteresis, and (3) cyclic stress-softening
with eventual stabilization. It is also worth noting that the curvature of the initial loading
path is different from those of subsequent reloading paths. The former is convex and the

latter are concave, indicating irreversible changes in the material behavior during the initial
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loading itself. This behavior has also been previously observed for cyclic compression of
aluminized RDX-based PBX in HTPB binder (Tang et al., 2016).

The mechanical response of filled elastomers and PBX specimens exhibit similar char-
acteristics at large deformations. Constitutive models of filled elastomers have been pro-
posed adopting both phenomenological (see, e.g., Laiarinandrasana et al. (2003); Ayoub
et al. (2014); Osterlof et al. (2016); Guo et al. (2018a,b)) and micromechanical (see, e.g.,
Dargazany et al. (2014); Raghunath et al. (2016); Plagge & Klppel (2017)) frameworks. Ay-
oub et al. (2014) proposed a zener-type visco-hyperelastic constitutive model of rubber-like
materials that accounts for Mullins effect (Mullins, 1948, 1969), continuous stress-softening
and permanent residual strains, utilizing the network alteration theory (Marckmann et al.,
2002; Chagnon et al., 2006). Raghunath et al. (2016) extended the micromechanical dynamic
flocculation model developed by Kliippel (2003) to include time-dependent effects typical of
filled elastomers. The majority of these models attribute the observed hysteresis, and other
inelastic phenomena, to time-dependent viscous overstress in the rubber matrix. In contrast,
only a limited number of models consider these phenomena as time-independent plastic de-
formation mechanisms. A case in point is the phenomenological elasto-plastic constitutive
model proposed by Kaliske & Rothert (1998) that captures the rate-independent process of
internal material friction due to irreversible polymer slippage on the filler surface and plastic
deformation of the filler particles. This multi-yield-surface rheological model is comprised
of a finite number of elasto-plastic Prandtl elements arranged in parallel with an elastic
member. More recently, yield-surface-free endochronic plasticity (Valanis, 1970) was utilized
by Netzker et al. (2010) to model the smooth and hysteretic cyclic stress-strain response of
carbon-black filled rubbers, with higher computational efficiency and less parameters.

In this chapter, an elasto-plastic constitutive formulation with isotropic damage is pre-
sented, which is capable of modeling the cyclic response of mock energetic composite materi-
als. Specifically, a Lagrangian finite-deformation formulation based on additive decomposi-
tion of strain energy (Simo, 1987; Govindjee & Simo, 1991; Holzapfel & Simo, 1996; Holzapfel,
1996, 2002) into elastic and plastic parts is adopted. The formulation uses Ogden’s hyper-
elastic model (Ogden, 1972a,b) to predict the rubber-like nonlinear elastic response of the

polymeric binder, and a hereditary (path-dependent) yield-surface-free endochronic plastic-
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ity theory (Valanis, 1970), based on the concept of internal state variables (Horstemeyer &
Bammann, 2010), to account for irreversible deformations. A discontinuous isotropic damage
model (Kachanov, 1986; Lemaitre et al., 1985) is utilized to model the stress-softening that
occurs during unloading, and an endochronic material scale function (Valanis, 1970; Wu &
Yip, 1981; Yeh, 1995; Lin et al., 2007) is utilized to model progressive cyclic stress softening
and attainment of stable cyclic response. The number of model parameters is a function
of the number of active Ogden terms and endochronic branches, and therefore a significant
number of parameters may need to be identified. Therefore, we develop a parameter identifi-
cation method based on a nonlinear multivariate least-squares problem, which is expected to
be non-convex and affected by multiple local optima. The range of behavior predicted by the
proposed model is demonstrated by calibrating parameters for the 85-15 formulation under
cyclic compression (Agarwal & Gonzalez, 2020). Finally, to gain a better insight into the
dependence of material response on model parameters, the analysis is concluded by studying
the sensitivity of the cyclic compressive response to variations in the estimated values of
endochronic and isotropic damage parameters.

The chapter is organized as follows. The constitutive model is presented in Section 5.2,
followed by Section 5.3 which provides a discrete numerical procedure to solve for stresses
along a loading path. Section 5.4 presents the model parameter identification procedure and
the calibrated material properties of the 85-15 mock PBX formulation. Section 5.5 shows a
detailed sensitivity analysis of the yield-surface-free endochronic plasticity and the isotropic

damage model. Finally, a summary and concluding remarks are presented in Section 5.6.

5.2 Constitutive model
5.2.1 General framework

The finite-deformation constitutive law is based on an additive decomposition of the
Helmholtz free energy density function (Simo, 1987; Govindjee & Simo, 1991; Holzapfel
& Simo, 1996; Holzapfel, 1996, 2002) into elastic and plastic parts and it employs a lo-
cal multiplicative decomposition of the deformation gradient into isochoric and volumetric

contributions. This approach is in contrast to the constitutive formulations based on multi-
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plicative elastic-plastic decomposition of the deformation gradient (Kroner, 1959; Lee & Liu,
1967; Lee, 1969; Gurtin & Anand, 2005) or additive decomposition of the rate of deformation
tensor (Hill, 1950, 1958; Prager, 1961).

For an isothermal elasto-plastic deformation process, the free energy density function ¥
is given by

N
\IJ(C, Cla EI) CN) = q’iol(‘]) + \Ijieso<c) + ZFE(C7 C]) (51)

Jj=1

where ¢ (J) and ¥ (C) are the volumetric and isochoric elastic strain energy density
functions, dependent respectively on the Jacobian of the deformation J = det(F) and on
the isochoric right Cauchy-Green deformation tensor C = F'F (where F = J~'/3F). The
inelastic strain energy Zjvzl Fij(C,Cj) is a set of configurational free energy functions Fij
(j = 1,...,N) that characterizes the inelastic deformation behavior, namely irreversible
slip at particle-particle and particle-binder contacts, plastic deformation and fracture of
particles, among other dissipative mechanisms typical of particle-binder composites. The
path-dependent dissipative potential dependents on the right Cauchy-Green deformation
tensor C and a set of inelastic strain-like second-order tensorial internal variables ¢; (j =
1,..., N) that represent the inelastic deformation history of the material.

A discontinuous isotropic damage model is utilized to model the stress-softening that
occurs during the unloading of particle-binder composites. For rubber or other polymeric
materials, this phenomenon is known as Mullins effect (Mullins, 1948, 1969), and it has been
phenomenologically described by applying a reduction factor of (1 — D) to the stress of a
hypothetical, undamaged material, where D € (0, 1] is the scalar damage variable (Kachanov,
1986; Lemaitre et al., 1985). Therefore, the second law of thermodynamics, in the form of
the Clausius-Duhem inequality for an isothermal process, is given by
Dint := —%:C—\P

N ort A (5.2)
S Qam(c,cl,...,cN)} :C_ZBF](C,CJ) -

! ¢ >0
2|1-D oC o, VT

j=1
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From standard arguments (Coleman & Noll, 1963; Coleman & Gurtin, 1967), the first
term yields the definition of the second Piola-Kirchhoff stress, that is

U(C, ¢y, ¢N)

)
S=(1-D)2 e

—(1-D) |8

vol + SlSO + Z Sl] (53)
and the second term results in a condition for each Fij, that is
St:¢;>0 (5.4)

where the volumetric elastic stress S, the isochoric elastic stress S, the inelastic stress

1807

Z;.V:l Sij, and the stress-like internal variables S; (thermodynamically conjugate to ¢;) are

given by
SSl = quj%}(‘])cl ) (5.5)
s, = pev {s7C (5:6)
]EN;S; =2 i % (5.7)
93:‘%:‘% (j=1,...,N) (5.8)

In the above equations, DEV{.} = {-} — (1/3)[{-} : C]C™! provides the deviator of a
tensor in the reference configuration. It is worth noting that inequality (5.4) is satisfied by

an evolution equation of the following form
¢ =By(C.¢): S] (5.9)

where B; is a positive definite fourth-order tensor (Holzapfel, 1996).
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5.2.2 Elastic strain energy

The nonlinear elastic constitutive behavior of rubber-like materials, such as the binder in
the application studied here, is commonly described through hyperelastic material models
(see, e.g., the finite-deformations formulation presented by Mooney (1940); Rivlin (1948);
Ogden (1972a,b); Boyce & Arruda (2000)). Ogden’s hyperelastic model (Ogden, 1972a,b) is
one of the most extensively used models for describing complex nonlinear responses, mainly
due to its flexible series representation with the capability to introduce several model pa-

rameters. Specifically, the isochoric elastic strain energy density W, is given by

M
e, (C) = ST EE gk 1 gk + Agk - 3) (5.10)

where the isochoric principle stretches are given by A\, = J~/3), (a = 1,2, 3) for principal
stretches A\, (a = 1,2,3). Constants py, and oy (k= 1,..., M) are material parameters that

satisfy the following inequality to enforce stability in the material response
o >0 Vke [1,M] , (511)

From consistency conditions with respect to linear elasticity at small-strain (Ogden,

1984), the reference (ground-state) shear modulus of the material is given by

M
p=3" HkQk (5.12)

5.2.3 Discontinuous isotropic damage

A discontinuous isotropic damage model (Kachanov, 1986; Lemaitre et al., 1985) is uti-
lized to model the stress-softening that occurs during unloading, i.e., Mullins effect (Mullins,
1948, 1969) for polymeric materials, with scalar damage variable D € (0, 1]. In the spirit of
the damage function proposed by Zuiniga & Beatty (2002) and pseudoelastic damage func-
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tions proposed by Ogden & Roxburgh (1999) and Dorfmann & Ogden (2003), we specifically

define the scalar damage variable as follows

D(C, ¢™*) = tanh” (—¢max — ¢(|C\))

- (5.13)

where ¢(|C|) is the measure of deformation proposed by Beatty and co-workers (Beatty &
Krishnaswamy, 2000; Zuniga & Beatty, 2002) given by

#(ICl) = |C| = VC: C (5.14)
and where ¢™** is the maximum deformation level given by

¢"(t) = max ¢(|C(7)]) (5.15)

TE[—00,t]

The scalar damage variable is then a monotonic function of the deformation measure in

the interval ¢ € [\/§, ¢™**], with positive damage parameters m and p.

5.2.4 Yield-surface-free endochronic plasticity and evolution equation

As explained previously, particle-binder composites, specifically Plastic-Bonded Explo-
sives (PBX), exhibit a non-linear elasto-plastic response without apparent yield. Classical
plasticity theories require a yield surface and thus their applicability is limited for modeling
these composites. In this study, we follow the work of Holzapfel & Simo (1996) and assume

a quadratic relationship between free energy functions Fij(C, ¢;) and the internal variables

Cj’ 1.e.

or
9¢;C

=2u;6;,I  (j not summed) (5.16)

where y1; are the reference (ground state) shear moduli related to j inelastic processes, 6y,

is the Kronecker delta and I is the fourth-order identity tensor.
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By integrating Equation (5.16) twice, the following inelastic strain energy functions are

obtained
TY(C,¢) = il P +85(C): ¢+ 93(C)  (j=1,....N) (5.17)

where S*(C) and ¥*(C) are unknown tensor and scalar-valued functions, respectively. Sim-
ilarly, an evolution or rate equation for the stress-like internal variables is obtained from

Equations (5.8), (5.9) and (5.17), and it is given by
S +2u; B;(C,¢;):S;=-8*(C)  (j=1,...,N) (5.18)

The inelastic strain energy without apparent yield is realized by adopting the endochronic
plasticity theory developed by Valanis (1970). This theory is strain path-dependent in nature
and it does not require the definition of a yield surface. This theory has been applied
successfully to develop both infinitesimal-strain and finite-deformation plastic formulations
to describe many metals and alloys (Wu & Yip, 1981; Valanis & Lee, 1984; Guo et al., 2016),
concrete (Valanis & Read, 1986), powder compaction (Bakhshiani et al., 2002; Khoei et al.,
2003; Khoei & Bakhshiani, 2004) and, more recently, filled elastomers (Netzker et al., 2010;
Chen et al., 2018). In this work, we specifically assume
(<))
214575

B;(C,¢;) = I (j=1,....N) (5.19)

where the intrinsic time scale z is a monotonically increasing measure of the deformation
history, and the memory kernel is given by a set of positive dimensionless material parameters
v (7 =1,...,N) (see, for reference, Hsu et al. (1991) and Khoei et al. (2003)) that defines
the path-dependent behavior of the formulation. It is worth noting that p;v; > 0 for B; to
be a positive definite tensor. In addition, we assume

S*(C) = -8

i iso,J

—2/3 a\I',ieso,j((_j) .
(C)=—J ¥ DEV{28—C} (j=1,...,N) (5.20)
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where U¢

%0, are a set of isochoric elastic strain energy functions defined according to the

Ogden’s model as

P .. _ _ —

v, =Y %(Xf“ FAST 4N —3)  (j=1,...,N) (5.21)
i=1 Y

with constants p;; and o;; such that g0, > 0 (cf. Equation (5.11)). It is worth noting
that after substituting B; and S¥ according to Equations (5.20) and (5.21) respectively, the
evolution or rate equation (5.18) simplifies to

=i (€D

S, +
J Vi

§i = (Gj=1,...,N) (5.22)

iso,j

which can be regarded as the nonlinear extension of the one-dimensional isothermal evolution
equation for a standard linear solid proposed by Valanis (1972) (see section 6 of the reference).
Furthermore, by eliminating time dependence on both sides of differential equation and
integrating with respect to the intrinsic time scale z, the classical hereditary or convolution

form is recovered, that is

z Zl

S =S, +/0 S, ¢ vdd  (j=1,...,N) (5.23)

with S;(z =0) = Sij’O. Finally, for completeness, we set ¥*(C) = ¥¢,_ (C) and, therefore,

the reference shear moduli y; in (5.16) are given by
;= Al =1,...,N 5.24
i ; g (G=1,...,N) (5.24)

5.2.5 Intrinsic time scale and material scale function

The intrinsic time scale z, used in the evolution or rate equation (5.22) for internal

variables Sij, is defined as

C|
f(2)

#(|C) = (5.25)
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f(2) = e—(e—1)eFes
f(z) (Wu & Yip, 1981)

c/s—(s— 1)8‘552!lef

c/s—(s— l)e*/"szif

¢/s—(s— l)e’ﬁ-"eref
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0 Zref Zref z
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Figure 5.2. Schematic representation of the evolution of material scale function f(z).

where f(z) is a material scale function that represents the transient cyclic behavior of the
material until attainment of a stable response. In its simplest form, f(z) is a monotonically
increasing function for cyclic hardening materials, and a monotonically decreasing function
for cyclic softening materials, that is asymptotic to a saturation value at steady state. A

simple scale function proposed by Wu & Yip (1981) is given by
f(z) =c—(c—1)e P (5.26)

where . controls the rate of evolution, and the value at steady state is ¢ > 1, for hardening
materials, and ¢ < 1, for softening materials. Yeh (1995) and Lin et al. (2007) proposed the

following improvements to the scale function

f(z) _ ¢ _ ( ¢ _ 1) o~ Pe(z=zrer) (5.27)

S — (S —_ ]_)e_ﬁszref S — (S — 1)e_ﬁszref

In the above improved scale function, the additional parameter z.¢, defined as the value
of z at which the last reversal of the strain path occurred, adds the capability to model
“fading memory” effects exhibited by materials with memory (Coleman, 1964). In turn,
the saturation value at steady state depends on the reference time scale z.. It is equal

to ¢ for z.f = 0, i.e., before the first reversal, and approaches ¢/s for z. — oo, i.e., at
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cyclic stabilization. It is worth noting that for ¢ > s > 1, the initial saturation value c is
greater than the saturation value ¢/s at cyclic stabilization, i.e., the scale function describes
the progressive cyclic softening typically observed in particle-binder composites. Figure 5.2
shows a schematic representation of the scale function proposed by Lin et al. (2007). It is
evident from the figure that the rate of evolution of the material scale function is controlled

by f., whereas the rate of evolution of the saturation value is controlled by f;.

5.2.6 Inelastic stress

The inelastic stress Sij is determined by using Equation (5.7) with the inelastic strain
energy function defined by Equation (5.17) and by expressing the internal variable ¢; in terms

of its conjugate Sij, i.e., using Equation (5.8). The result of this mathematical manipulation

is given by
i e 1 aSieSOJ e Qi
) = Sty 0 (St~ $)) (5.28)

where the internal variable S; is determined using the evolution or rate equation (5.22).

5.3 Incremental solution procedure

The constitutive model presented in the previous section is integrated by using an in-
cremental solution procedure with time or loading intervals [n,n + 1]. We assume that the
state of the material, C,,, S}m Zn, Zrefm, Op, is known at loading step n, and that C,,4; at

loading step n + 1 is given. The problem is then to determine g}n 110 Zntls Zrefntls Ongy at

loading step n + 1, and the value of the second Piola-Kirchhoff stress S,, 1 which is given by

N
Sn+1 = (1 - Dn+1) [SSfoLn-i—l + Sieso,n-i-l + Z Sieso,j,n+1
j=1

Yo
- Z 2_,u~cj’"+1 : (S;aso,j,nJrl - S},nﬂ)]
j=1

J

(5.29)
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where
_ o0Se .
=2 iso,j ‘
and
Si' _ (1 - AZ/2VJ) S},n + sto,j,nJrl - S"fso,j,n (5 31)
(i+ B/ '

In the above equations, all quantities other than D,.; and Az are either known or
depend on the right Cauchy-Green deformation tensor through equations (5.5), (5.6), and
(5.20). The scalar damage variable D, is computed after updating ¢2%Y using equation
(5.15). The internal variable S}n 1 defined by Equation (5.31) above is obtained by using a

midpoint rule to discretize the evolution or rate equation (5.22), i.e., from

Gi Gi Az &i Si'n 1 Si'n e e
Sj»n+1 - S]7n + ( i ) (Sﬂyn + e 2 - > - Sisovjvn+1 B Siso,j,n (532>
j

The value of intrinsic time scale increment, Az, is obtained by using a midpoint rule to

discretize (5.25) together with (5.27), i.e., from

c C Az
A N _ 1 7,8c(zn+772ref,n+l)
< |:$ _ (S _ 1)e_ﬂszref,n+1 {S — (S — 1)e_ﬁSZref‘n+1 } ¢ (533)

- |Cn+1 - Cn| =0

with z,,1 = 2, + Az and

Zref n+1 = ( i ) ( 1) (534)
Zret,n, Otherwise

The above nonlinear equation is solved numerically using a Newton-Raphson method.
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5.4 Model parameter identification of mock PBX

The range of behavior predicted by the proposed constitutive model is demonstrated
by calibrating parameters for the 85-15 mock PBX formulation under cyclic compression
(Agarwal & Gonzalez, 2020). Therefore, section 5.4.1 presents the incremental procedure for
uniaxial cyclic loading under unconfined lateral conditions and incompressible material as-
sumptions. Section 5.4.2 presents a parameter identification procedure based on a nonlinear
multivariate minimization problem and the least-squares principle. Finally, sections 5.4.3
and 5.4.4 show the results of the parameter identification and the validation of the model,

respectively.

5.4.1 Incremental procedure for uniaxial cyclic loading

The material is assumed to be incompressible, i.e., J, = 1 and thus C, = C,, due
to the rubber-like behavior of the particle-binder composite. The cylindrical mock PBX
specimen is loading along its axial direction which is coincidental with the e3 of a Cartesian
coordinate system ey, with I = 1,2, 3. Therefore, the right Cauchy-Green deformation tensor

has principle stretches A; are related by

A = Aop = —F— (5.35)
)‘S,n

and principal directions aligned with the Cartesian axes, i.e., C, = Z‘?:l )\%nej ® er. The

specimen is laterally unconfined and the platens that apply the load are frictionless. There-

fore, the only component of second Piola-Kirchhoff stress that is different from zero is Sss .

The elastic strain energy functions involved in the formulation reduce to

\Ile(Ala >\27 )\3) =

NE

O A 3)

k=1

(5.36)

B (X294 059 4039 =8)  (G=1,...,N)

Qij

(/=1

\II§<A17 )\27 )\3)

Il
L 17
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where the last term augments energy density and enforces the material internal or kinematic
constraint imposed by incompressibility, i.e., J = 1, with p, being the hydrostatic pressure.
Following the incremental procedure in section 5.3, we assume that the state of the

material, C,, S} ns Zns Zrefns OnF, is known at loading step n, and that C,,4; at loading step

n+11is given. The maximum deformation ¢)¢ is determined from (5.14) and (5.15) using

2
Pnt1 = \/ M1 15— (5.37)

2
)\3 ;n+1

The intrinsic time scale increment Az is obtained using (5.33) with

Gt = Cul = /2 (Aghis = 250)° + (M — X3,)° (5.38)

and Z.ef 41 1s updated using (5.34) and 2,41 = z, + Az. The stress components in (5.29)

simplify to

M
e __ Qe o 1—ay /2 . ce . ap—2
11,iso,n+1 = P22jiso,n+1 — E #k)\3,n+1 )y ©33ison+1 — § Nk>‘3,n+1

k=1
e . e _ >\ . e _ )\72
11,volntl — P22 volnt1l — —Pon+1A3n+1 3 P33volnt1l — ~Pon+1A3 nt1

(5.39)

e _ 1 C!i]'/2 . )\alj—Q
11,is0,j,n+1 — 5 iso,jn+1 = sz 3,n+1 ; 553 Jiso,jnt+l — Nza 3n+1

~ o ~ o 2—04”'/2‘ ~ _ aij_4
Ciitjnt1 = Cooo jint1 = E prij(ig — 2)A3,,41" "5 Casszjni1 = E prij(cuij — 2)A3% 14

where the hydrostatic pressure p,,+1 is obtained from the traction free boundary condition,

i.e., from Sll,n+1 = 5227»,1_,_1 = 07 using

N

_ 1 e + Se

Pon+1 = A 11,iso,n+1 11,is0,j,n+1
3,n+1 -:

N
S e (s — 5
o 1111,5,n+1 - 11,is0,,n+1 11,j,;n+1
=1 oM

(5.40)

and the internal variable S;n 1 is readily computed using Equation (5.31).
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5.4.2 Parameter identification method

We have developed a parameter identification method based on a nonlinear multivariate
minimization problem. The proposed constitutive model has 2M + 2P x N 4+ N + 6 material

parameters, namely

e 2M parameters in the elastic branch: py and o (k= 1,..., M).

e 2P x N elastic parameters in the yield-surface-free endochronic branches: p;; and

(t=1,....,P;j=1,...,N).
e N kernel parameters in the yield-surface-free endochronic branches: v; (7 =1,...,N).
e 4 material scale function parameters: ¢, s, . and [s.

e 2 isotropic damage parameters: m and p.

The method is based on the least-squares principle, for A" experimental nominal stress values

TP and corresponding model first Piola-Kirchhoff stress values A3 ,, 533 ,,, and it is given by

VER2M+2PXN+N+6 ¢

1 N
N Z [TEXP - )\3,n533,n}2
N n=1

subjectto — prar <0 for k=1,... M

5.41
— pijog; <0 for i=1,...,P;j=1,...,N 40

s—c<0

v E [Vminvvmax]

where the inequality constraints come from Ogden’s stability conditions (e.g., from equation
(5.11) for the elastic branch), and from the requirement of progressive cyclic softening. Since
the nonlinear optimization problem is expected to be non-convex and affected by multiple
local optima, appropriate bounds are applied on the set of material parameters v. Lastly, the
experimental response of the mock PBX specimen suggests that the initial loading response
is affected by machine/specimen mismatch (Figure 5.1b). Therefore, the initial part of the
response is omitted from the parameter estimation by applying a strain offset ¢, to the

experimental data and setting stresses for the initial mismatch to be zero.
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Figure 5.3. Experimental data and estimated model response for cyclic compression of the
85-15-05 PBX mock specimen, showing the (a) cyclic stress-strain curve, (b) evolution of
apparent stiffness, and (c¢) cumulative energy dissipation with cyclic loading, and (d) the
experimental and predicted model response of the unloading of specimens 85-15-03 and 85-
15-04 from a strain level of 16%. The dashed-dotted line in (a) represents the value of
machine/specimen mismatch offset e,.

5.4.3 Parameter identification of mock PBX

The nonlinear multivariate problem presented above was solved in MATLAB®, Version
9.4.0 (2018a) using the constrained optimization function fmincon with the default interior-
point algorithm. The resulting estimated stress-strain curve, compared with the experimen-

tally obtained response for the 85-15-05 specimen (ref. Agarwal & Gonzalez (2020) for the
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Table 5.1. Material properties of the 85-15 mock PBX formulation with three yield-surface-
free endochronic branches (N = 3).

Material properties of the 85-15 mock PBX formulation
Elastic branch (M =1)
1 = 1.4474 MPa oy = 10.4933

M
Initial (ground-state) shear modulus p® = > prax/2 = 7.5939 MPa
k=1

Yield-surface-free endochronic branch 1 (P = 1)
(1 = 13.5808 MPa ayy = 1.0454  ~, = 0.0018

P
Initial (ground-state) shear modulus g} = >~ psa4/2 = 7.1034 MPa
=1

Yield-surface-free endochronic branch 2 (P = 1)
e = 1.2238 MPa g5 = 1.2841 o = 0.0541

P
Initial (ground-state) shear modulus ph, = > pinaye/2 = 0.7857 MPa
i=1

Yield-surface-free endochronic branch 3 (P = 1)
3 = 0.5774 MPa  aq3 = 1.1829 3 = 0.4634

P
Initial (ground-state) shear modulus gl = > pizaus/2 = 0.3415 MPa
i=1

Material scale function
c=11.1679 s=1.8178 [.=423.9661 [, =5.5234

Isotropic damage
m = 0.0764 p = 0.6429

specific naming convention of the tested mock PBX specimens) is presented in Figure 5.3a,
along with the experimental and model-estimated values of the apparent stiffness (Figure
5.3b) and of the cumulative energy dissipation (Figure 5.3c). The apparent stiffness is cal-
culated as the slope of the line connecting peak and valley stresses in each cycle, while the
cyclic energy dissipation is calculated as the difference between the energy supplied to the
material (i.e., the area under the loading path) and the energy recovered after a cycle (i.e.,
the area under the unloading path). It is interesting to note that an excellent agreement
between the experimental data and the model response is achieved with M =1, N = 3 and

P = 1. Therefore, the 85-15 mock formulation is well characterized by a total of 17 material
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parameters, listed in Table 5.1, with ¢, = 1.2%—shown in Figure 5.3a by a dashed-dotted

vertical line.

5.4.4 Validation

A simple validation of the calibrated constitutive law under axial loading is performed
using the unloading experimental response from a strain level of 16% to a stress-free state.
Figure 5.3d shows very good agreement between the experimental unloading curves of spec-
imens 85-15-03 and 85-15-04 (Agarwal & Gonzalez, 2020) and the model predictions. It is
worth noting that while the unloading response remains fairly consistent from specimen-to-
specimen, the loading response from a virgin state could vary considerably and, thus, it is

not shown in the figure.

5.5 Sensitivity analysis of the yield-surface-free endochronic plasticity and the

isotropic damage model

A sensitivity analysis of the cyclic stress-strain response to material properties of the
yield-surface-free endochronic and the isotropic damage models is presented in this section.
Specifically, we investigate the contribution of these material properties while keeping all
other parameter values constant and equal to those obtained for the 85-15-05 mock PBX

specimen.

5.5.1 Yield-surface-free endochronic plasticity

Figure 5.4 presents the influence of initial or ground-state shear moduli, i.e., y; (Figure
5.4a), us (Figure 5.4c) and us (Figure 5.4¢), and of kernel parameters, i.e., threshold strains
v (Figure 5.4b), v (Figure 5.4d) and ~3 (Figure 5.4f), on the stable cyclic response of
the 85-15-05 mock PBX specimen. Solid curves correspond to the response calibrated to
experimental data, dashed-dotted curves show the effect of reduction in the parameter values,
while dashed curves show the effect of increase in the parameter values. It is evident from

the figures that increase (decrease) in the shear moduli y; significantly increases (decreases)
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Figure 5.5. Cyclic peak stress of the 85-15 mock PBX formulation for variations in the
material scale function parameters (a) ¢ and s, (b) . and (c) fs.

the stiffness of the stress-strain response, while increase (decrease) in the threshold strains
7; increases (decreases) the cyclic hysteresis energy. Additionally, the dominant contribution
to these effects is from the first yield-surface-free endochronic branch, i.e., from parameters
p1 and 1.

Figure 5.5 presents the influence of material scale function parameters ¢ and s on the
evolution of peak stress with cyclic compression of the 85-15 mock PBX specimen. It is
evident from Figure 5.5a that variation in ¢ results in almost proportional change in the

magnitude of the peak stress of each cycle (see f(z) ~ ¢ and f(z) — ¢/s in figure 5.2). In



159

1.0 r 1.0
—m =m —p =p
09F|——.m' = 0.2m 7 09r —-—-p' =0.2p
——m =0.6m -—p =0.6p
0‘87——m'=1.4m B 0.8
07|77 =18m 0.7}

o

o

o

o
:

Nominal Stress [MPa]
o
B

Nominal Stress [MPa]
o
o

0.4 0.4
0.3 0.3
0.2 0.2
0.1r 0.1

0 L = T 1 I 0

0 2 4 6 8 10 12 14 16 18 18
Strain [%)] Strain [%)]
(a) (b)

Figure 5.6. Loading-unloading response of the 85-15 mock PBX formulation for variations
in the isotropic damage parameters (a) m and (b) p.

contrast, variation in s does not change the peak stress for the first cycle but it has an almost
inverse proportional effect on the magnitude of the peak stress upon cyclic stabilization.
Similarly, figures 5.5b and 5.5¢ present the influence of material scale function parameters
B and s on the evolution of peak stress. The main effect of increase (decrease) in the value
of . is to increase (decrease) the magnitude of the peak stress of each cycle in a nonlinear
fashion. In contrast, the main effect of increase (decrease) in the value of [ is to decrease
(increase) the magnitude of the peak stress upon cyclic stabilization in a nonlinear fashion.

These nonlinearities result from the exponential term in equation (5.27).

5.5.2 Isotropic damage model

Figure 5.6 presents the influence of isotropic damage parameters m and p on the loading-
unloading stress-strain response of the 85-15 mock PBX specimen. Both parameters control
the stress-softening behavior during unloading. Specifically, an increase (decrease) in the
values of m and p results in decreasing (increasing) softening. Specifically, the parameter m
exerts a more significant influence on the amount of softening at low strain levels, while p

has greater control over the softening at moderate-to-high strain levels.
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5.6 Summary and discussion

A quasi-static constitutive model for particle-binder composites is presented, which ac-
counts for finite-deformation kinematics, non-linear elasto-plasticity without apparent yield,
cyclic hysteresis and progressive stress-softening before the attainment of stable cyclic re-
sponse. The model is based on an additive decomposition of strain energy into elastic and
inelastic parts, where the elastic response is modeled using Ogden hyperelasticity while the
inelastic response is described using yield-surface free endochronic plasticity based on the
concepts of internal variables and of evolution or rate equations. Stress-softening is modeled
using two approaches; a discontinuous isotropic damage model to appropriately describe the
overall softening between loading and unloading responses, and a material scale function to
describe the progressive cyclic softening until attainment of stable response. The constitutive
model is then based on the deformation mechanisms experimentally observed during cyclic
compression of mock PBX at large strain.

Furthermore, a discrete numerical procedure to solve for stresses along a loading path is
proposed. To determine material properties from experimental cyclic compression data, a
parameter identification method based on a nonlinear multivariate minimization problem is
developed. Specifically, cyclic data for 85-15 mock PBX (Agarwal & Gonzalez, 2020) is used
to demonstrate the range of behavior predicted by the proposed constitutive model and the
effectiveness of the parameter identification method. The capability of the model is estab-
lished from the remarkable model calibration results and validation against the unloading
response from a strain level of 16% to a stress-free state. Finally, a sensitivity analysis of
the cyclic stress-strain response to material properties of the yield-surface-free endochronic
and the isotropic damage models is conducted to establish their influence on the mechanical
response of the studied material.

To conclude, it is suitable to discuss some limitations of the proposed approach and pos-
sible directions for the future extension of the presented analysis. First, the present work
restricts attention to quasi-static, i.e., low strain-rate behavior of particle-binder composites,
thereby neglecting any strain-rate dependent effects in the constitutive model. However, it

is well-known that viscous effects become dominant in these materials at moderate to high
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strain rates. Second, the proposed constitutive model carries an assumption of elasto-plastic
incompressibility, which limits the analysis to particle-binder composites with moderate lev-
els of compressibility. Therefore, the extension of the model to rate-dependent viscous effects

and compressible behavior is a worthwhile direction of future research.
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CHAPTER 6. ANALYSIS OF THE LARGE DEFORMATION CONSTITUTIVE
BEHAVIOR OF PARTICLE-BINDER COMPOSITES

6.1 Introduction

In this chapter, the large deformation constitutive model presented in chapter 5 is utilized
to estimate the mechanical properties and model the stress-strain behavior of the three mock
energetic composite formulations studied in chapter 4. For parameter identification, cyclic
and monotonic compressive experimental data for cylindrical specimens of the three mock
formulations of PBXN-109, namely 85-00, 85-15 and 85-30 is used. A comparative analysis of
the three specimen formulations is then presented, where a correlation between the estimated
mechanical properties and the mechanical behavior as well as composition of the specimens

is identified and detailed.

6.2 Parameter Identification and Comparative Analysis of mock PBX speci-

mens

The constitutive model and parameter identification method presented in Chapter 5
were used to calibrate the virgin cyclic (ref. Figures 4.12a, 4.12¢ and 4.12¢) and monotonic
(ref. Figure 4.6) compressive response of 85-00, 85-15 and 85-30 mock PBX cylindrical
specimens. The calibration results are presented in Figure 6.1, and the estimated material
parameters for each specimen formulation are listed in Table 6.1. As evident from the figure,
an excellent agreement between the experimental data and model response is obtained for
all three formulations. It is important to mention here that the parameter estimation for 85-
15 specimen presented in Chapter 5 considered only the cyclic compressive response, while
both cyclic and monotonic compression data is utilized here for determination of material
properties. Consequently, the material properties for 85-15 listed in Table 6.1 provide a more

accurate representation of the constitutive behavior of the material. Consideration of an even
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Table 6.1. Material properties of 85-00, 85-15 and 85-30 mock energetic formulations esti-
mated from their virgin cyclic and monotonic compressive response.

Material Parameters

| 85-00 | 85-15 | 85-30

Elastic branch (M =1)

w1 (MPa) 1.1252 0.7483 0.0808
o 9.2293 10.8969 | 17.4232
1]
Initial shear modulus pu® = > prax/2 (MPa) | 5.1922 4.0768 0.7037
k=1
Yield-surface-free endochronic branch 1 (P =1)
p1n (MPa) 0.0432 5.6465 | 12.1770
o1 0.0519 0.8418 1.1832
P
Initial shear modulus u} = > piicu1 /2 (MPa) | 0.0011 2.3766 7.2038
i=1
T 0.0017 0.0010 0.0018
Yield-surface-free endochronic branch 2 (P = 1)
p1o (MPa) 0.0068 2.8725 0.0039
12 0.0661 1.5255 0.0543
P
Initial shear modulus i, = > piacvin/2 (MPa) | 0.0002 2.1910 0.0001
i=1
Y2 0.1723 0.0358 0.0622
Yield-surface-free endochronic branch 3 (P =1)
w1z (MPa) - 4.3973 0.6204
13 - 1.6687 1.2223
P
Initial shear modulus pl = 3 pizays/2 (MPa) - 3.6688 | 0.3792
i=1
Y3 - 0.3413 0.2388
Material scale function
c 14.9879 | 29.5182 | 591.1894
S 1.2592 2.0384 5.9671
Be 125.3399 | 944.2924 | 2.0906
Bs 212.6798 | 16.7109 5.7283
Isotropic damage
m 0.0247 0.0863 0.0195
P 0.7619 0.5769 0.3208

larger variety of experimental stress-strain datasets (e.g. shear tests, tensile tests) would

assuredly result in higher accuracy of parameter estimation, however, it may add excessive

complexity to the nonlinear multivariate problem which may lead to non-convergence of the

solution.
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From the observation of calibrated properties of mock PBX specimens in Table 6.1, it is
possible to identify the correlation between the property values and the unique mechanical
behavior of each specimen, and therefore, establish the relationship between material prop-
erties and material composition. For instance, the 85-00 specimen is accurately modeled by
2 endochronic branches, while 85-15 and 85-30 specimens require 3 endochronic branches to
fully represent their mechanical response, which signifies the higher material non-linearity
and more extensive inelastic behavior of the aluminized specimens. Specific trends in indi-

vidual property values are also observed, which are discussed in detail below.

6.2.1 Elastic and Endochronic Branches

In the context of representing the deformation mechanics of energetic materials by a
rheological model with respect to the constitutive formulation presented in Chapter 5, the
elastic branch can be seen as a spring of stiffness p® acting in parallel with endochronic
branches, each of which consist of a spring of stiffness ,uij and a friction element with threshold
strain 7;, where j = 1,..., N is the j™ of a total of N branches. The total stiffness u of the
material is represented by a sum of the elastic and endochronic moduli, i.e., 4 = ue—i—Z;.V:l uij,
while the threshold strains represent the macroscopic strains at which the inelastic processes,
such irreversible slipping of binder molecular chains on the filler (solid) surface and plastic
deformation of the filler, start to occur (Kaliske & Rothert, 1998; Netzker et al., 2010).

From the calibrated parameter values listed in Table 6.1, the total stiffness of 85-00, 85-15
and 85-30 specimens is found to be 5.1941 MPa, 12.3132 MPa and 8.2868 MPa respectively.
This suggests that the addition of aluminum in the PBX composition increases material
stiffness, however, the stiffness starts to reduce with an increase in the amount of aluminum
in the composition. This postulation is also supported by the evolution of apparent stiffness
during virgin cyclic loading of the three compositions, presented in Chapter 4 (ref. Figures
4.14b, 4.14d and 4.14f). The figures show that the apparent stiffness of the cyclic loops range
between 5-7 MPa for 85-00, 6-11 MPa for 85-15 and 4-11 MPa for 85-30, and therefore, the
experimentally determined average stiffness follows the same order as the modeled stiffness

with respect to the material composition. Another interesting observation lies in the con-
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tribution to the total stiffness by the endochronic branches, which from Table 6.1 is 0.0013
MPa (0.025%) for 85-00, 8.2364 MPa (66.89%) for 85-15 and 7.5831 MPa (91.51%) for 85-30.
Therefore, it is evident that with the activation of inelastic deformation mechanisms, the
elastic material stiffness decreases with increasing aluminization, which is consistent with
the observation of predominantly nonlinear mechanical response and ductile plastic flow to
larger strain levels during monotonic compression in 85-15 and 85-30 as compared to 85-00
(ref. Figures 6.1b, 6.1d and 6.1f).

With regard to the threshold strains v;, the value of strain in the first endochronic branch
(71) is very small and comparable in magnitude for all PBX compositions (0.0017 for 85-00,
0.001 for 85-15 and 0.0018 for 85-30), suggesting that all three specimens start exhibiting
inelastic behavior from almost the beginning of the loading process. However, the value
of threshold strain in the second endochronic branch (72) is much larger for 85-00 (0.1723)
as compared to 85-15 (0.0358) and 85-30 (0.0622), indicating that more extensive inelastic
processes start occurring at smaller macroscopic strains in the aluminized specimens. When
comparing 85-15 and 85-30 specimens, we observe that although the second threshold strain
is smaller for 85-15, the threshold strain in the third branch is smaller for 85-30 (0.2388)
as compared to 85-15 (0.3413). Therefore, it can be concluded that higher aluminization
leads to the material exhibiting predominant inelastic deformations at a smaller strain. This
conclusion is also supported by observations of higher residual strain in 85-30 (~2%) as
compared to 85-15 (~1.57%) after the recovery period following the virgin cyclic loading
tests as presented in Chapter 4.

6.2.2 Material Scale Function

As explained in Chapter 5, the material scale function f(z), which is a function of the
intrinsic time scale z, is used in the constitutive model to represent the progressive cyclic
stress-softening behavior observed during cyclic compression of mock PBX specimens. The
function is given by Equation (5.27) and consists of four material parameters, namely ¢, s,
B. and . The parameter ¢ is the saturation value of the function during initial loading from

zero deformation, when the reference intrinsic time scale z..¢ is equal to zero. If the loading



167

[
| ¢ =0.5¢
0.9r } ——-c =0.75¢
| 78' =c
0.8+ e =2¢
| |—¢c =5
07F c=2e
f— |
o]
& 060
= i
0.5 |
n
2 04f | Pras T ——7
n | P ~~ 1
0.3 ! ///./'/ : R
| i h \\\
L I 7 N
0.2 | /.//.» . N
(75 RN
0.1+ | S
|
O 1 1 1 1 1
0 5 10 15 20 25 30

Strain (%)

Figure 6.2. Influence of variation in the value of material scale function parameter ¢ on the
predicted monotonic compressive response of 85-00 formulation.

remains monotonic, the simpler scale function proposed by Wu & Yip (1981) and given by
Equation (5.26) is recovered. According to this simpler function, the value of f(z) evolves
from 1 as z increases, and approaches ¢ as z — oo, with the rate of evolution governed by
Be. If ¢ > 1, then f(z) > 1. Therefore, during a loading step, the increment in intrinsic
time scale z is greater than the increment in deformation measure |C| according to Equation
(5.25), which produces a strain-hardening behavior. Conversely, if ¢ < 1, then a strain-
softening response is obtained. This is also true during cyclic loading-unloading, however,
the saturation value evolves from ¢ as z.f increases, and approaches ¢/s as z..; — 0o at cyclic
stabilization. If ¢/s < ¢, then a progressive stress-softening response is obtained, which, as
already stated, is one of the primary observed deformation mechanisms of mock PBX.

The value of parameter ¢ for the studied mock PBX specimens is seen to increase with
increasing aluminum content in the composition. Specifically, it is much higher for 85-30 as
compared to 85-00 and 85-15 specimens. The reason for this difference lies in the monotonic
compression response of the specimens. Figure 6.2 shows the influence of variation in ¢ from
its estimated value on the monotonic compression response of 85-00 specimen. It is evident
that ¢ controls the occurrence of maximum or ultimate stress in the response, as well as the
magnitude of the ultimate stress, which stems from its representative role as the magnitude
of strain hardening in the material. An ultimate stress is observed in the monotonic response

of 85-00 and 85-15 specimens, with the value of the stress and the strain at which it occurs
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being higher for 85-15 as compared to 85-00. Therefore, the estimated value of parameter ¢
for 85-15 is comparatively higher than 85-00. However, the 85-30 specimen does not show
an ultimate stress and continues to harden until the maximum applied deformation of 30%;
hence, in accordance with Figure 6.2, the estimated value of ¢ for 85-30 is much higher than
both 85-00 and 85-15. With regard to parameter (3., a correlation between the estimated
values and PBX aluminum content is not observed; rather, the values are closely related to
the evolution of the scale function during monotonic loading and the estimated values of c.
Figure 6.3 shows the influence of variation in . on the monotonic compression response as
well as the evolution of scale function f(z) with intrinsic time z for the three specimens. It
is evident that for 85-00 and 85-15 specimens, the scale function f(z) reaches its saturation
value ¢ during the monotonic loading process, while the same does not occur for the 85-30
specimen as the material continues to harden beyond the maximum applied strain. For 85-
15 (Figures 6.3c and 6.3d), the saturation value is reached much before the attainment of
ultimate stress, and therefore, any variation in /3. has only a slight influence on the loading
response at small strains (~1%-5%). For 85-00 (Figures 6.3a and 6.3b), the saturation value
is reached near the end of the loading process, and therefore, the influence of variation in £,
on the stress-strain response is comparatively larger than 85-15. For 85-30 (Figures 6.3e and
6.3f), however, any variation in (. has a significant impact on the stress-strain response. It
is specifically observed that (. controls only the evolution of stress, with the stress at any
strain increasing with increasing (. and vice versa. With regard to the magnitude of 3., a
higher value of 3, increases the rate of evolution of f(z) and therefore the rate of attainment
of the saturation value. Hence, 85-15 has the highest value of (. (944.2924), followed by
85-00 (125.3399), while 85-30 assumes a much lower value (2.0906).

As discussed before, the role of parameters s and 3, in the context of PBX material is to
reduce the saturation value of the scale function f(z) from ¢ to ¢/s during the cyclic loading
process in order to achieve progressive stress-softening until cyclic stabilization. While s
primarily controls the magnitude of the softening, [, controls the softening rate or the
rate of attainment of cyclic stabilization. From the estimated values of s for the three
specimens, the value of ¢/s is obtained as 11.9027, 14.4811 and 99.0748 for 85-00, 85-15 and
85-30 respectively, resulting in a reduction of 20.58%, 50.94% and 83.24% in their respective
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Figure 6.3. Influence of variation in the value of material scale function parameter (5. on
the monotonic compressive response and the corresponding evolution of the material scale
function f(z) with intrinsic time z, for (a and b) 85-00, (c and d) 85-15, and (e and f) 85-30
mock formulations. The occurrence of ultimate stress in 85-00 and 85-15 is designated in
their respective f(z) evolution plots by a dotted line.
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Figure 6.4. Plots depicting evolution of (a) the ratio of peak stress for each cycle with respect
to peak stress for the first cycle, and (b) fractional change in peak stress for a cycle with

respect to peak stress for the previous cycle, for cyclic compressive experimental data of
85-00, 85-15 and 85-30 specimens.

saturation values at cyclic stabilization as compared to ¢. This implies that the magnitude
of softening is the highest for 85-30, followed by 85-15, and the least for 85-00. Concurrently,
the estimated values of 5, for the three specimens indicate the highest rate of stabilization
for 85-00 (212.6798), followed by 85-15 (16.7109), and the lowest for 85-30 (5.7283). These
findings with reference to the model parameters are in agreement with the experimental data,
as seen in Figure 6.4, where the ratio of cyclic peak stresses with respect to the first peak
stress (Figure 6.4a) drops the highest for 85-30, followed by 85-15 and then 85-00, while the
change in peak stress with each cycle (Figure 6.4b) approaches zero (i.e., cyclic stabilization)

fastest for 85-00, followed by 85-15 and then 85-30.

6.2.3 Isotropic Damage

It is shown in Chapter 5 that the primary function of the isotropic damage model is
to represent the overall softening between loading and unloading responses during cyclic
loading of particle-binder composites. The model consists of parameters m and p, each of
which have been shown to increase (decrease) the softening effect as their values decrease

(increase). From the sensitivity analysis of the two parameters on the unloading response of



171

300

—85-00
—— 85-15
—-—-85-30|

N
o
=)

i
i
i
200 ,\'\
i
i

150

100 |\

Tangent Stiffness - Unloading (MPa)
(%Al
=
/
/

,,,,,,,,,,,,,,,,,,,

=}
o
o
o

1

|
[y
-
o
N

Unloaded Strain (%)

Figure 6.5. Plot depicting the slope or tangent stiffness of the experimental unloading stress-
strain curve during the first cycle with respect to the unloaded strain for the three mock
PBX compositions.

85-15 presented in chapter 5, it was found that p predominantly affects the softening rate at
higher strains, more specifically, near the beginning of unloading. On the contrary, m exerts
a predominant control at lower strain levels. A closer observation of Figure 5.6 indicates
that the effects of p are dominant during the initial rapid softening (~15%-16% strain in the
figure), while the influence of m predominates thereafter, when the softening rate decreases.
Figure 6.5 shows the evolution of slope of the first cyclic unloading curve for the cyclic
compressive response of the three mock PBX specimens. The slope is plotted for first 2%
strain after the start of unloading, since it is seen that within this range the unloading curves
of all three specimens begin to curve and the softening rate declines. Therefore, the effects
of both m and p can be studied within this range for the three specimen compositions. From
the figure, it is evident that the 85-30 specimen begins unloading with the highest slope,
and therefore exhibits the highest rate of initial softening, followed by 85-15 and then 85-
00. This is in agreement with the decreasing trend of the estimated p values in Table 6.1
with increasing aluminum content. With further unloading, the slope of the stress-strain
curve drops rapidly for all specimens and then approaches a stable value, indicating a more
linear stress-strain response beyond ~0.5% unloaded strain. In this region, the influence of
parameter m is predominant and a lower slope indicates a higher softening effect (ref. Figure

5.6a). Therefore, 85-30 again experiences the highest softening in this strain range since it
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has the lowest slope. However, the slope of 85-00 is lower than 85-15 in this range, and
therefore exhibits a higher softening. This is again in agreement with the estimated values

of m in Table 6.1, which is the highest for 85-15, followed by 85-00 and lowest for 85-30.

6.3 Summary

The constitutive behavior and mechanical properties of the three mock sugar formula-
tions of PBXN-109 are determined by utilizing the large deformation elasto-plastic consti-
tutive model and the parameter identification method presented in Chapter 5. An excellent
agreement between the cyclic and monotonic compression experimental data and the model
response is obtained for all three formulations, which confirms the accuracy and versatility
of the estimated mechanical properties. Correlation between the mechanical properties and
the unique stress-strain response of each specimen is identified, which contributes towards
establishing and validating specific trends observed in the property values with respect to the
specimen composition, specifically, the amount of aluminum in the mock PBX. Finally, it is
concluded that each of the estimated material parameters are more than mere numbers and
have a significant contribution towards establishment of the highly complex and nonlinear

mechanical behavior of particle-binder composites under finite strain.
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CHAPTER 7. SUMMARY AND FUTURE WORK

This thesis presents computational and experimental tools and techniques to predict and
understand the microstructural evolution and large deformation mechanical behavior of con-
fined particulate composites, specifically, compacted powders and particle-binder composites.
This work is of particular interest to a broad range of industries that manufacture powder
compaction-based products, such as pharmaceutical, food, construction and powder met-
allurgy, and to the defense and energy sector with the ever-growing need to predict the
performance and safety of energetic composite materials. The challenges of estimating the
macroscopic response of these significantly heterogeneous and non-linear materials are ad-
dressed on both meso (particle) and continuum scale by developing accurate and predictive
experimental, particle mechanics and constitutive models.

Particle mechanics strategies for compacted powder systems employ a contact formula-
tion to predict the evolution of force-deformation behavior at the individual particle-particle
contacts during the compaction process. In chapter 2, the nonlocal contact formulation for
elastic confined granular systems pioneered by Gonzalez & Cuitino (2012) was extended to
account for both local and nonlocal contributions to the deformation at inter-particle contact
boundaries (i.e., the contact area) due to other multiple contact forces acting on the pair
of contacting particles in a confined environment. Additionally, the original contact formu-
lation was corrected to include higher-order terms in the traditional one-term Taylor series
representation of the undeformed profiles of the contacting surfaces. From the investiga-
tion of different symmetric and non-symmetric loading conditions on single elastic spherical
particles to simulate mesoscale compaction conditions, it was established that the contact
radius and curvature corrections enhance the range of applicability of the nonlocal contact
formulation, providing accurate and fast predictions of the high-density inter-particle contact
behavior up to the analytical limit of contact impingement. These findings were corroborated
by an excellent agreement obtained between the analytical predictions and data collected

from single-particle experiments and Finite Element simulation results.
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While the corrected nonlocal contact formulation is an efficient and effective analyti-
cal tool for understanding the microstructural evolution of confined granular systems, it is
currently limited in application to elastically deforming particles. However, a majority of
compacted granular materials, for instance, pharmaceutical and metal powders, exhibit per-
manent plastic deformations during compaction to produce the final product. To diversify
the application of this research and pave the way towards the development of a nonlocal
contact formulation for elasto-plastic confined granular systems, semi-mechanistic contact
laws for uniaxial and triaxial compression of elastic-perfectly plastic spherical particles were
developed and presented in Chapter 3. A salient feature of these contact laws is that they
are both material and loading-condition dependent, which is also a unique aspect of the
elastic nonlocal contact formulation that makes it predictive at high compaction densities.
Nonlinear contact pressure-deformation and contact radius-deformation relationships were
developed from a sufficiently large set of finite element simulations of three symmetric load-
ing configurations, namely simple (unconfined uniaxial) compression, die (confined triaxial
with rigid lateral walls) compaction and hydrostatic (isostatic axisymmetric) compaction of
single spherical particles. The accuracy and predictive capabilities of these contact laws were
demonstrated with the attainment of an excellent agreement between analytical predictions
and FE results for the three loading configurations within a wide range of elasto-plastic
mechanical properties.

For the second class of confined particulate systems studied in this work, i.e. particle-
binder composites, experimental mechanical testing and 3D imaging methods were developed
and presented in Chapter 4 to understand and quantify the changes in the complex mesoscale
microstructure and macroscopic mechanical response of these materials with repeated cyclic
loading followed by an extended period of recovery. The specific materials of interest are
Plastic Bonded Explosives (PBX), which consist of a heavy concentration of explosive crys-
tals embedded in a polymeric binder. Inch-sized cast cylindrical mock sugar specimens of
PBXN-109 formulation with three compositions differing in the amount of aluminum content
(85-00 with no aluminum, 85-15 with 12.75% w/w aluminum, 85-30 with 25.5% w/w alu-
minum) were studied. The specimens were subjected to large quasi-static cyclic compressive

loading before being allowed a time-recovery period of 4 weeks, following which the test was
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repeated. Three dimensional images of the specimen’s microstructure were obtained from
micro-Computed Tomography before and after each loading test, which were post-processed
to quantify the spatial distribution of the specimen’s porosity and its primary components,
namely sucrose (sugar), binder and aluminum. The mechanical response of the mock PBX
specimens was found to be highly nonlinear and exhibiting several inelastic deformation
mechanisms. More interesting observations were made when the same specimens were cycli-
cally loaded again. With respect to the stress-strain response exhibited during the first test,
the 85-00 specimen showed considerable increase in strength and stiffness, while the 85-15
and 85-30 specimens showed a small reduction in the overall strength and stiffness and exhib-
ited a permanent change in their initial loading stress-strain curve, which became similar to
the cyclic reloading curves. These differing changes in the mechanical response of the spec-
imens with and without aluminum were correlated with the microstructural rearrangement
observed in the specimens before and after the tests and during the recovery period using
post-processed micro-CT data. It was concluded that with cyclic loading, the soft phase
(binder) becomes progressively compliant due accumulated damage and particle-binder in-
terfacial debonding, causing it to exhibit affine deformations in the radial direction, away
from the specimen’s core. On the contrary, the hard phase (sucrose) exhibits a collective
non-affine rearrangement near the specimen’s core to form a stronger inter-particle contact
network, effectively increasing the load bearing capacity of the material. However, the pres-
ence of a ductile third phase (aluminum) alters these mesoscale deformation mechanisms
by reducing the sucrose-binder interfacial area and arresting interfacial debonding, thereby
causing a more ductile plastic material flow and inelastic material memory effects.

To complement the experimental efforts and identify a reliable method to quantify and
predict the large deformation macroscopic mechanical behavior of PBX, a constitutive model
based on nonlinear elasticity and the hereditary yield-surface-free endochronic plasticity
was developed and presented in Chapter 5. While the model was developed on the ba-
sis of observed deformation characteristics of mock PBX, it is also applicable to the the
rate-independent constitutive behavior of similar particle-binder composites such as filled
elastomers. A discrete numerical procedure was proposed for solving model equations and

efficiently calculating stresses along the loading path, along with a reliable parameter identi-
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fication method based on a nonlinear multivariate optimization problem. Finally, in Chapter
6, the model was shown to accurately estimate the large deformation cyclic and monotonic
compressive behavior of the three mock PBX formulations. A reliable correlation between
the estimated mechanical properties and the distinct mechanical response of each specimen
was established to demonstrate the significance of each property value and their role in
uniquely identifying the material composition.

To conclude the work presented in this thesis, it is suitable to identify and mention
possible avenues of extending the work and directions of future research studies.

With regard to confined granular systems, the contact formulation presented in Chapter
3 is limited to elastic-perfectly plastic material behavior. It is, therefore, desirable to extend
the formulation to include strain hardening material behavior. Additionally, the loading-
condition dependence of the formulation is limited to the three symmetric loading conditions
(i.e., simple, die and hydrostatic), whereas a truly nonlocal contact formulation is capable of
predicting contact behavior under any general loading configuration. Therefore, a systematic
semi-mechanistic treatment of the nonlocal plastic contributions through extensive finite-
element simulation studies is envisioned to take the next step forward in the development of
a closed-form nonlocal contact formulation for plastically deforming particles.

With regard to particle-binder composites, as noted in Chapter 4, future work should be
focused on utilizing the proposed experimental and post-processing procedures to study long-
term effects of repetitive loading and recovery over several months on the microstructure and
mechanical properties of the studied energetic materials. Additionally, as noted in Chapter
5, future work with respect to the large deformation constitutive model should be focused on
extending the model to include rate-dependent viscous effects to characterize the moderate-
to-high strain-rate behavior of these materials. Such a study would of course be supported by
an extensive experimental campaign, including high strain-rate loading and stress-relaxation
studies. Future work on including other recovery effects in the model, such as the recovery
of transient cyclic response observed during the subsequent reloading of the mock specimens

is also desirable and recommended.
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APPENDIX A. DETERMINATION OF RADIAL DISPLACEMENT OF A CONTACT
BOUNDARY POINT DUE TO A SINGLE FORCE

Figure A.1 depicts a three dimensional view of a linear-elastic spherical particle under the
action of a concentrated force P; applied at the origin A of cylindrical coordinates (z,r).
We consider the deformation of a spherical cap of base radius a and center C, situated at
an angular distance #; from the force P;, due an ellipsoidally distributed pressure given by
Equation (2.1) in section 2.2. The pressure distribution is approximated by an effective
force P applied at C'. A point () on the cap boundary is situated at angle ¢ from the plane
defined by points A, O and C. Using vector algebra, the angle AOQ), denoted by g, can be

expressed as

1

f; — sin~* (ﬁ)’ - (ﬁ) (1 — cos @) sin Hi] (A1)

[COS R R

Bo = cos™

The above equation implies that the angular distance between a contact force and any point
on the cap boundary can be represented in terms of a constant reference angle #; and a
variable angle ¢. The dependency on angle ¢ vanishes for the two extreme values of 6;, i.e.

0 and 7. For §; = 0, which corresponds to the case when P, = P, Equation (A.1) reduces to

a

Baly—o = sin”™" (}—z) (A2)

the above result restates the geometrical fact that the contact force P is equidistant from
any point on the cap boundary, the angular distance being sin~'(a/R). A similar result
is obtained for #; = m, which makes the force P; equidistant from any point on the cap

boundary. The angular distance in this case becomes

Bq

0;=m

=71 —sin ! (}%) (A.3)
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Figure A.1. A linear-elastic sphere of radius R under the action of an ellipsoidally distributed
pressure, approximated by an effective force P on a spherical cap of radius a and center C,
with concentrated force P; acting normally on one of its surface points.

At point @ with coordinates (z,7) : (2Rsin*(8q/2), Rsin 8g), displacements due to force
P, along the (z,r) axes, denoted by (W, o, U, o), are given by the Boussinesq solution (John-

son, 1985; Timoshenko & Goodier, 1970) and can be expressed in terms of angle ¢ as

_ (A +v)P [sin(B/2) ~ 1-v

Wio(Bg) = orER { QQ + sin(ﬂQ/Q)} -
_(1+v)P, (1 — 2v) cos(fq/2)

Uio(Bg) = A ER {COS(BQ/Q) " sin(Bo/2) (1 + sinc(zﬂQ/Q))] o

Similarly, for the cap center C' with coordinates (z,r) : (2R sin?(6;/2), Rsin 91), displace-
ments due to force P; along the (z,r) axes, denoted by (W, ¢, U; ), can be expressed in

terms of angle 0; as

(14+v)P; [sin(6;/2) l-v
Wic(0:) = =% [ 5 e, /2)] (A.6)
(+wP (1 — 2v) cos(0;/2)
Uic(6;) = I ER {cos(ez/Q)  sin(6;/2) (1 + siu(@,-/2))} A

The displacement of point () due to force P; in the radial direction with respect to center C,

denoted by u; g, can be expressed as

Ui = [(VVZ-Q — Wijc)éz + (Ui’Q — Ui,C)ér] -t (Ag)
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where # is a unit vector in the radial direction at Q, as shown in figure A.1. Using vector
algebra, it can be proved that the vector ¢ can be expressed in terms of (x,%, z) coordinates

as
t = —cosb; cospé, — singé, —sinf; cospé, (A.9)

which implies that £ in terms of (z,7) coordinates becomes

t = —sin6; cos ¢pé, + <\/1 — sin? 6; cos? ¢> e (A.10)

Substituting ¢ from Equation (A.10) into Equation (A.8), we get

uig=—(Wig—Wic)sinb,;cos¢ + (Ui g — Ui,o)\/l — sin? 6; cos? ¢ (A.11)

Equation (A.11) provides a general definition of the radial displacement of a contact
boundary point on an elastic spherical particle due to a concentrated force acting on the
surface of the particle. After substituting the values of W, o, U, g, Wic and U, ¢ from
Equations (A.4), (A.5), (A.6) and (A.7) respectively into Equation (A.11), the resulting

final expression for u; ¢ in terms of angles 6, and ¢ is given by

sin 6; cos ¢ {sin(6;/2) — sin(Bg(6;, ¢)/2)}

N (1+v)P, x {sin(0;/2) sin(Bg(0;, $)/2) — 2 + 2v}
"9 TorER 2sin(6;/2) sin(Bo (0, 9)/2)
+\/1 — sin? ; cos? ¢ B (cos(Bg (b, ¢)/2) — cos(6;/2)) (A.12)

(1 gy J L 5in(B0(0:,¢)/2) cos(6;/2)
! 2){ sin fg(6;, ¢) QSin(Gi/Q)(l—|—Sin(ei/2))}:|

The above expression can be further reduced to the following form

P,
7:,Q

(A.13)

uz?Q -
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where
sin 6, cos ¢ {sin(6;/2) — sin(By(6;, ¢)/2)}
1 1+4v x {sin(6;/2) sin(Bq(0:, ¢)/2) — 2 + 2v}
niq 2mER 2sin(6;/2) sin(Bq(6:, ¢)/2)

/1= sin?6; cos? B (cos(Bo s, 6)/2) — cos(6:/2)) (A.14)

(1 — 9y 1 —sin(Bg(b:, ¢)/2) cos(6;/2)
- ){ sin o (6i, ¢) 28111(91'/2)(1+Sin(6i/2))H
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APPENDIX B. CALCULATION OF PRESSURE DISTRIBUTION ON THE CONTACT
SURFACE OF AN ELASTIC SPHERE

Considering the contact configuration presented in Figure 2.2 in Section 2.3, the contact area
is circular and depicted in Figure 2.5 in Section 2.4. Based on the analysis of Luo (1958) and
Cattaneo (1947), the following approximate form of pressure distribution can be assumed at

a radial distance r;;.

2n—1

pi; (rij) an( ]) 2 (B.1)

where N corresponds to the number of Taylor series terms considered in the profile function,
and p, are N unknown function parameters. For an internal point A in the contact region

at a radial distance r;; from the contact center, we can write the following using cosine rule

Sij =T + Gy + 2rijgij cos wy (B.2)

Using Equations (B.1) and (B.2), the pressure distribution at elemental region B(g;;,w;;)

can be written as

N

pn 2n—1
pij(4ij, wig) = Z m(a?j - Tin — 273q;j COS wij — %2]) 2 (B.3)
n=1 4j
Let (i; = \/az; — r7; and 0y = ri; coswij. Then Equation (B.3) reduces to
=
n 2n—1
pz] szawz] Z 2n— 1 25@]%] q;) 2 (B4)

n=1 CL
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After substituting the expression for p;;(g;;, w;;) given by Equation (B.4) in Equation (2.22)

(Section 2.4), the displacement field inside the circular region becomes

w;i(rij) +w;i(rij) = Uiz (1i5) + Ujy; (155)

1 _— VQ 1 - I/ 2 7L 2n—
:( E; )/ dww/ { 2n 7 (G5 — 20535 — QZQJ) :

where ¢; is the positive root of the equation (Johnson, 1985, pg. 60)

) (B.5)
} dqij

a5 + 2055015 — G = 0 (B.6)

)

given by

=045+ /G5 + 03 (B.7)

We now consider three cases depending upon the number of Taylor series terms (N) taken in
the profile function. The three cases correspond to N = 2, 3 and 4. We shall now calculate
the pressure distribution for each of these cases.

We first calculate the displacement field for N = 4 and then modify the function accord-
ingly for different cases. First, the internal integrals with respect to dg;; for n =1, 2, 3 and

4 are obtained and given by

q1 1 1 51
/0 (€ — 2055015 — ¢) " dgi; = __Cijéij + 5( 507 {5 — tan ™" (C_j>} (B.8)
ij
" 2 980 — a2 )2 da.. = — 2 52 3 2 4 52 m_ 1 (ig
( i z]ql] qZJ) qm - CZ] Z](5 + 3 ) ( + ) tan
0 8 2 Gij
(B.9)
q1 1
0
(B.10)
2 T -1 %
(CU+5 )3 {2 tan (@)}
a
/ (¢ — 265501 — 4)"dai; = —3g 4@ 0;(279¢5; + 511¢;567; + 3857075 + 10567
0
(B.11)

35 4 T _ (51
+58(( +67) {E—tan 1(5)}
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When the resulting expression from combination of Equations (B.8), (B.9), (B.10) and (B.11)
is substituted in Equation (B.5), and integrated with respect to w;; from 0 to 27, the terms
containing (;;0;; and tan~!(8;;/¢;;) are eliminated. The final form of Equation (B.5) re-

expanded in terms of a;; and r;; is given by

w;(rij) +w;i(rij) = Uiz (1i5) + Ujay; (755)

1—1/1-2<|>1—V]2 T 2 (o +3 +5 +35
E B, ) \day ) |“9\F T2y g

3 15 35 Ops  45p;  315p\ (B-12)
2 Syt 20, 10 4
"ig (pl ot gt 16”4) Ty (16a§j " 3202, T 12802

%5ps  175ps 1225,
6 5
" (64a;1j * 128a§j) Ty (4096a§j

We now consider the three cases individually.

B.1 Case I: Two terms (N=2)

For N = 2, the terms with ps3 and p, are eliminated from Equation (B.12). Substituting

the modified equation in Equation (2.23) (Section 2.4) with two terms, we have

1—v? 1—V2)<7T)[ 3 3 Ip>
( =+ : az; (201 + —Pz) — 7y (/)1 + _P2> + r?j ( 2 )]
E: E; ) \da; 2 2 16a3; (B.13)

2 4
7 Ay o1 jBij

2 8

= (v +vy) —

In order to satisfy Equation (B.13) for all points withing the circular contact region, coeffi-

cients of like powers of r;; on both sides must be equal. Hence,

1—v? 1—=02\ [(97ps
— ‘ =B, B.14
( E; ’ E; ) (861% ) ’ (B.14)

1— 12 1—I/J2 T 3
. — =A;; B.15
( E; " E; ) (2%‘) (,01 " 2p2) ! (B.15)

1—v2 1-0v2\ /7ay; 3
( B Ej)( 4J> <2p1+§p2>:%j+’75L (B.16)

J
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Solving Equations (B.14) and (B.15) for p; and pq, we get

-1

2@2']' (SAW + QG%J-BZ‘J') (1 — 2 1- V?)
3T El E]
8alBiy (1—12 1—v2\""
pr = — 9]7?]( _— Eﬁ) (B.13)
i j

Substituting the expressions for p; and p, obtained above into Equation (B.16), we get an
expression for displacement +;; in terms of contact radius a;;
4

al;

Also, by substituting the expressions for p; and py in Equation (B.1) and rearranging, we

obtain the pressure distribution of the form

- /2 2 2

2a-j 1— 12 1-— I/J2 ! 7’-2]- ! 20’“BU T
ij(rij) = — : -2 Ay L 1+2-2 B.20
pij(ryg) = = ( 5 TE - it +25 (B.20)

i i

B.2 Case II: Three terms (N=3)

For N = 3, terms with p, are eliminated. Substituting the modified Equation (B.12) in
Equation (2.23) with three terms, we have

1—ﬁ+1—ﬁ s 2 (o, 3 5 ) R
as. — — — . — R
E, E; day; i\ 2PL T QP2 4P i \PL T 5P2T s

) 905 N 45p3\ 6 2503\ _ (s ) 75 A B riBij B 5. Cij
9\ 16a% " 3203 ) "9 \ G4at, CR 2 T

(B.21)
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Since the coefficients of like powers of r;; on both sides of Equation (B.21) must be equal,

we get
1 — 2 1—Vj2 251 ps
( E; - E; ) (16%53‘) ’ ( )
1—v2 1-07 o 5p3
() () () -2 o2
102 1=\ [« 3 15
i — _ = A;; B.24
( B E; ) (2%) (p1+ 2Ty p3> ’ (B2
1—1v2 1—02\ /7a;; 3 5
( B EJ)< i) <2p1+§p2+1[)3):%jJrVEL (B2
1 J

solving Equations (B.22), (B.23) and (B.24) for py, p2 and ps, we get

-1

2a;;(15A;; + 10a2By; + 9a2.Cy5) (1 —1v2 1—17?
p1 = {154 T ) ( EVZ +— J) (B.26)
i J
8a3.(5By; + 9a2Cy;) (1 —1v2 1—12\ "
1] 1) 1] 1] f j
- B.2
P 457 ( B E ) (B.27)
16a?.C;. 1—12 1— 12 -1
1y Y i J
- B.28
T < E, | E > (B.28)

By substituting the expressions for p;, p, and ps obtained above into Equation (B.25), we

get
at ab.
“ij + IVEL = a?inj + %Bz] + %CU <B29)

And by substituting the expressions for p;, ps and p3 into Equation (B.1) and rearranging,

we obtain the pressure distribution of the form

-1

2a;; (1—v? 1-— V2 r2 1/2 2a2. B, r2
pij(rij) = 7r] ( = T & ]) ( - a—zj) |:Aij + 39 : <1 + a_Q])
’ J K Y (B.30)

at.C;.; rZ ri
+”2—5j (3+4a—; +8—4])}

i i
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B.3 Case III: Four terms (N=4)

For N = 4, we substitute Equation (B.12) into Equation (2.23) to get

1—u3+1—u} s 2 (o 3 5 35 o ()3
a: . — — —_— — ro. —
Ei Ej 40,2‘]‘ t P~ 2p2 4p3 32,04 K P~ 2p2

15 35 s [ 9p2 | 45p3 | 315p, o (2505 175p,
+ 3 ps + 16P4) + 15 (16a?j + 32%% + 128%% Tij 64a;‘j + 128&21]- (B.31)

s (122504 ] _ (75; + 4N — rihy By Gy 5Dy
9\ 409648 )| ~ 0T T 2 8 6 128

Since the coefficients of like powers of r;; on both sides of Equation (B.31) must be equal,

we get

- (1 TEfZQ : TE;?) (212587;%4) =Dy (B.32)
(1 TEZ-%2 = ;3) (167;?]-) (25” 3 122”4) =Gy (B.33)
() (5) (e ) = 1)
(1 ;ZVE * 1 ;jyjz) (2;;-) (pl T 3/)2 + %pi% + ?—2@) = Ay (B.35)
(1 ;:jf - : ;j’/]?) (ﬂzi]) <2P1 + gpz + ZP:’) + g_gpél) =Yy + ng (B.36)

Solving Equations (B.32), (B.33), (B.34) and (B.35) for p1, pa, ps and py, we get

. 2a;;(105A; + 7oa§j1531% ; 63a;,Cy; + 60ay;Dij) (1 _ vi 1 ]—3 vj > - (B.37)
T i '

. ~ 8a3,(35B;; + 62(112?7(?@ +90alD;;) (1 ; .V? L ; .VJZ ) o (B.38)

P3 = 16a?j(7@1j7;:0a’2‘7mij) (1 _ElVZQ * 1 ;?jyf) 71 | -

o _12§Z§fij (1 TEiuf ! ;jv?)‘l (B.40)
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By substituting the expressions for p;, pa, p3 and p4 obtained above into Equation (B.36),

we get
az; al; al;
Vij + VEL = a?inj + ?sz’j + EJCU + %Dij (B.41)

And by substituting the expressions for py, ps, p3 and p4 into Equation (B.1) and rearranging,

we obtain the pressure distribution of the form

2a;: (1—v2 1—12 -1 7}‘2‘ 1/2 2%2-1331” 7,22}
pig(ry) = = Tt 5] Ay ——(1+25
TAE S E “ 9 @ (B.42)
PN P W ol PP SR |
25 S ay 245 ai o ag a_?j
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APPENDIX C. DERIVATION OF A CURVATURE CORRECTED CONTACT LAW
USING SELF-SIMILAR APPROACH

Figure C.1 shows a magnified view of the contact between two spherical particles of radii R,
and Ry, representative strengths x; and ko, and hardening exponent m being pressed along
the normal direction. A Cartesian coordinate system x; (i = 1,2,3) and a polar coordinate
system (z,r) is adopted, where (z,x3) is the normal direction that is positive downwards,
and x; — X5 is the plane of contact with r = m . According to Storakers et al. (1997),

the boundary condition at the contact region is given by

u$) Fu) =y = filr) = faolr) (C.1)

where ugl) and u§2) are the local displacements of any two corresponding surface points on

the spheres 1 and 2 at a distance r from the contact center, v is the total displacement of
the centers of mass of the two spheres, and fi(r) and fy(r) are the profile functions of the
undeformed contacting surfaces, given by fi(r) = Ri—+/R? —r2 and fy(r) = Ry—+/R3 — 2.
To obtain the similarity solution, the profile functions are approximated by the first term of

their Taylor series expansion about r = 0, i.e.

7,,2 a4 TQ

To control the error associated with this approximation, the profile curvature can be
corrected by including higher order terms of the Taylor expansion. We consider a two term

expansion to approximate the profile functions as

7,.2 7,.4 a6 ,’,,2 7,4
R-rR-r="y ' to(s )" 1T =12 .3
R T (R?) TR ) (€3)
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Rl K1, m

Figure C.1. Schematic of the contact between two spherical particles of radii R; and Rs.
The total displacement ~ generates a radius of contact a between the two particles.

With this correction, the boundary condition given by Equation (C.1) becomes

2A B
u) +uf) =y -5 - = (C.4)
2 8
where
11 11
A=—+—= and B= — + =
R R ™ B R

With the consideration of small-strain kinematics, the field equations together with the

boundary conditions can be summarized as:

() - (D)
FONE du; n 9, (C.5)
i "2\ oz, " o
ooV
B — C.6
8.’36'j ( )
o) =k (D) (C.7)
i +i) =5, off =04l =0, r<a (C.8)

ol =% =0l =0, r>a (C.9)
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where [ = 1,2 and equations (C.5), (C.6) and (C.7) correspond to compatibility, equilibrium
and constitutive law respectively.

The solution to this problem can be started by first taking a basic assumption that
oy () = o) (1=1,2) (C.10)

in order to ensure continuity of traction at the contact region. This in turn also satisfies the

local equilibrium. In addition, scaling the displacements as

W (z) = (—>mug(xk) (1=1,2) (C.11)

;i = (i ¥ i)_”m (C.12)

m m
K1 %)

satisfies the complete field equations. With these assumptions, the boundary condition,

Equation (C.4) can be expressed as
o=y A _TB (C.13)

and the inhomogeneous rate boundary conditions (Equations (C.8) and (C.9)) can be ex-

pressed as
3 =7, 0i3=033 =0, r<a (C.14)
Ofs =093 =053 =0, r>a (C.15)

The above moving boundary problem can now be converted to a stationary one by remov-

ing the dependence on indentation magnitude (contact radius) through appropriate transfor-
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mations. The kinematic variables, namely particle velocities and strain rates are transformed

first and expressed as

T = a:ik (016)
i (wy, a) = yu7 (Ty) (C.17)
éona) = (1) &0 .19

With the help of the above scaling, the inhomogeneous rate boundary condition, Equation

(C.14) now reduces to
@W=1, #=0 F<l (C.19)

The vertical velocity field 44, when integrated over time, gives the total vertical displace-
ment u§ which must satisfy the boundary condition given by Equation (C.13). Using the

transformation given by Equation (C.17), we get

¢ o r?A B
0

Variable transformation from ¢ to a and the use of reduced rate boundary condition (Equation

(C.19)) yields a particular Volterra integral equation for v = y(a) given by

v (r) — /0 as(r/s)y'(s)ds = % + %, ' (a) = fl—z (C.21)

the solution to which is given as

a) = 6_12 (a%A N G%B> (C.22)

with the eigenfunction ¢? given by

02:1—2/ %d? (C.23)
1
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Equation (C.22) is a quadratic equation in a?, which can be solved algebraically to obtain

the following a — ~ relationship

a= K%) {(A* + 2Bc*y) /2 — A}} v (C.24)

The above a — 7 relationship can be expressed as a Taylor series about v = 0 as follows

2¢2\ /2 . B2/3:2\ /2 72/534/5 2\ %/
— [ 2= /2 _ 3/2 5/2 7/2
“= ( A ) 7 (2,@/3) v ( 2975 1075 ) 7+ O00"7) (C.25)

where the first term of the series corresponds to the a — v relationship without curvature
correction, proposed by Storakers et al. (1997), while the higher order terms correspond to the
applied curvature correction. Equation (C.25) serves as the motivation behind formulation

of the semi-mechanistic contact radius formulation proposed in Section 3.4 of Chapter 3.
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APPENDIX D. DERIVATION OF THE CONTACT DISPLACEMENT AT MINIMUM
NORMALIZED HARDNESS FOR CONFINED PARTICLE LOADING CONDITIONS

According to the condition of minimum normalized hardness for confined loading configu-
rations given by Equation (3.33), expressions for various volume and surface quantities in
the equation are provided in Table 3.5 for primary contacts under die and all contacts under
hydrostatic loading configurations. The particle volume is given by Vparicle = (4/3)7R? and
the contact area is given by SLC,. . = ma? where contact radius a is given by Equation (3.17).
We now proceed to derive Equation (3.33) for the two confined loading cases in terms of the
unknown contact displacement at the minimum.

Die Compaction:

LC LC
LC,contact LC,contact __ Vparticle chontact S, contact
Py Ps — \ TyLc VLC SLC

voro voro face

4 3 4 p2 _ 2
__ smR 3R (R—12) . T D1
8R?(R—3) 8R*(R—13) 4R?
m2a?
" 14R(R—3)

Now, substituting a in terms of v from Equation (3.17) with A = 1/R; +1/Ry = 2/R and
B=1/R?+1/R3 = 2/R3, rearranging and simplifying the above equation, we finally get

7T2D52) 5 7T2D3D5 4 72’D§ W2D1D5 3 7TQ,D1,D3 2
(3233)'y _( SR? )7 +(8R T TIR )7 _< 2 )7

ZDQ
+ (W 21R n 72RF> v — 144R°T = 0

(D.2)
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Hydrostatic Compaction:

LC LC
LC,contact LC,contact Vparticle ‘/contact S, contact
Pv Ps — \Tyrc 7/ LC GLC

voro voro face

B 2 NS LU ) N )
3 3 2 .

8(R—3)" 8(R-3)" 4(R-3)

_ 7T2R3a25:F

144 (R - 1)

Now, substituting a in terms of v from Equation (3.17) with A = 1/R; +1/Ry = 2/R and
B =1/R}+ 1/R3 = 2/R?, rearranging and simplifying the above equation, we finally get

7T2D52) I’ 5 72D3D5R
)48 - [ 25 L 45RD ) A4
()7 ()

7T2D§R2 7T2D1D5R2
+ R

2D, Dy R
+ 180R2F) - (”% + 36OR3F) ? (D.4)

272 R4
+ (W 7)213 + 36OR4F> v — 144R°T = 0

The quintic equations in terms of the unknown ~, given by Equations (D.2) and (D.4),
are solvable in radicals for given values of Dy, D3, D5, R and I' by the method proposed by
Dummit (1991) (please ref. Trott & Adamchik (2001) for an implementation of the method
in Mathematica, Version 12.0 (2019)). Although the obtained quintic functions have five
roots, there is only one positive real root, the proof of which is described below.

First, we immediately observe that the limits of the quintic functions in Equations (D.2)
(denoted by ¢(v)) and (D.4) (denoted by h(y)) at x — —oo and x — oo are —oo and oo
respectively, which means that the functions have at least one real root. Then, we calculate

the derivative of the two polynomials with respect to v to obtain

2

T
'(4) = T2RT
g(y)=T12R +[32R3

(Ds7* — 2RDyy + 4R*Dy) (5D57° — 6RDsy + 4R2D1)] (D.5)
7T2

32

K =50 -2+ |

5 (Ds7* — 2RD3y + 4R*Dy) (5D57° — 6RDsy + 4321)1)] (D.6)
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0 — 0 ‘
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25} —250} ]
50} —500
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~100 ~1000|
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0 1 2 3 4 5 6x10° 0 1 2 3 4 5 6x10
A A
(a) (b)

Figure D.1. Plots of Ag,,)/4R? (i = 1, 2) against material parameter X for (a) die and (b)
hydrostatic loading configurations.

If it is proved that ¢/(v) and h/(7) are positive in R, then g() and h(7y) are monotonic in
R, meaning that they have only one real root. Both ¢/(v) and /() include an addition of

two terms, where the first term in both functions is evidently positive, while the second term

contains a product of two quadratic functions in ~, given by

Fi(7) = Dsy* — 2RDsy + 4R*D, (D.7)

If these quadratic functions are both positive or negative in R, then the derivative functions

g'(v) and B/(y) are positive in R. We thus calculate the discriminants of the two quadratic
functions, given by

Ap,(y) = 4R*(D; — 4D, D;) (D.9)
Apy(y) = 4R*(9D; — 20D Ds) (D.10)

Figure D.1 presents the plots of Ap,)/4R? (i = 1, 2) against material parameter X\ for

die (Figure D.1a) and hydrostatic (Figure D.1b) loading configurations. The plots evidently
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Table D.1. Limiting values of Ap,,)/4R* (i = 1, 2) at A — oo for die and hydrostatic loading
configurations.

DC HC
lim Mgy /AR | —3L1.76 | —300.49
—00

lim Ap, /4R | 12170 | ~1191.71
—00

show that the discriminant values remain negative for A > 0, with the limiting negative values
at A — oo provided in Table D.1. This analysis proves that the quadratic functions Fj(7)
and Fy(y) are positive in R, and hence derivative functions ¢’(y) and A/(y) are monotonic in
R. Therefore, it is proved that the quintic functions g(7) and h(vy) have only one real root.

Finally, we observe that g(y = 0) = —144R’T" and h(y = 0) = —144R°T". Hence, at
v =0, both g() and h(vy) are negative. Therefore, it is also proved that the real root of the

quintic functions is a positive value.
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APPENDIX E. DERIVATION OF THE CONTACT DISPLACEMENT AT MINIMUM
NORMALIZED HARDNESS FOR CONFINED PARTICLE LOADING CONDITIONS

From the observation of normalized hardness (H) vs. contact deformation (v/2R) curves
obtained from FEA simulations of simple (Figure 3.7a), hydrostatic (Figure 3.8a) and die
(Figure 3.9a) loading configurations depicted in Chapter 3, it is evident that the curves
experience a change in curvature from concave downward to concave upward during the fully
plastic deformation regime. The contact deformation at the inflection point, i.e., the point
of curvature change, can be obtained by setting the second derivative of H with respect to
contact deformation /(R; + R2) (= 7/2R) equal to zero, and solving the resulting equation
for the unknown deformation.

Using Equations (3.27) and (3.28) with R, = R, = R, the second derivative of H with
respect to /2R is given by

2H .
2= —pCr [tanh(q:v) coS {$ — 3(7L0|Hmm, q)}] [4q2CSCh2(2qz) {r — cosh(2qx)}
9 (35)
LC (E.1)

—2gresch(gz)sech(gz) tan {z — s(v*“|z.. . q)}
+(r — 1) tan? {a: — s(ch|gmin, q)} — 1}

where

o Y W (E.2)

2R

Setting 9*H /0 (%)2 = 0 and simplifying the resulting equation, we get the following non-

linear equation in unknown x

4qPcsch®(2qz) {r — cosh(2qz)} — 2gr csch(gz) sech(qz) tan {z — s(v"“|5.,.. 4} (E£3)
E.3

+ (r — 1) tan? {:c - S(’YLC|Hmva)} —1=0
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Due to the high degree of non-linearity, the above equation cannot be solved analytically.
However, an approximate solution for x can be obtained by reducing the equation to the first
term of its Taylor series expansion at x = 0 (v/2R = 7|g,_. /2R). The resulting equation is
given by

. bt {5(0"] 0} )
(22 +3)(2r + 1) + 3(r + 1) tan? {S(VLC’Emma q)}

B 3(r—1) 0
(242 +3)(2r +1) + 3(r + 1) tan? {s('yLC\Hmm, q)}

(E4)

The two solutions to the above equation are given by

3rtan {s(v*“|g_ ,q)} £ [3(2¢* + 3)(r — 1)(2r + 1)

. +9(2r2 — 1) tan? {s(+*“| .., ¢)}] " (£5)
(22 +3)(2r + 1) + 3(r + 1) tan? {s('yLC\Hmin, q)} '

Among the two solutions, the solution involving a difference of the two terms in the numerator
is always negative, since (2r> — 1) > r? and 3(2¢> + 3)(r — 1)(2r + 1) > 0. Therefore, =
is given by the second, positive solution. Consequently, from Equation (E.2), v/2R at the
inflection point, denoted by Y| 7/_y/2R is approximately given by

3rtan {s(v*“|g_ @)} + [3(2¢* + 3)(r — 1)(2r + 1)

1/2
Vim0, Wit +9(2r* — 1) tan® {s(+"| 1,0 0) }]
2R 2R (22 4+ 3)(2r + 1) + 3(r + 1) tan® {s(v"C| 7. . 0) }

(E.6)
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