
EFFICIENT AND ROBUST DEEP LEARNING THROUGH

APPROXIMATE COMPUTING

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Sanchari Sen

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Anand Raghunathan, Chair

School of Electrical and Computer Engineering

Dr. Kaushik Roy

School of Electrical and Computer Engineering

Dr. Sumeet K. Gupta

School of Electrical and Computer Engineering

Dr. Vijay Raghunathan

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

Head of the School Graduate Program

iii

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my advisor,

Prof. Anand Raghunathan, for his constant guidance and support throughout the

last five years. Our regular discussions have helped me grow immensely not only as a

researcher, but also as a person. He has constantly encouraged me to pursue new ideas

and acquire new skills. His persistence on improving my writing and presentation

skills has allowed me to conceptualize and communicate better. Throughout my

graduate life, I have been trying to imbibe his impeccable research acumen, work

ethic and thirst for knowledge, and will continue to do so in the next phase of my

life.

I would like to thank the members of my advisory committee, Prof. Kaushik Roy,

Prof. Vijay Raghunathan and Prof. Sumeet Gupta for their insightful comments and

constructive feedback. Their thoughts and suggestions have helped to better shape

my research. I am grateful for their time and effort on the same.

Next, I want to thank the past and current members of the Integrated Systems

Laboratory (ISL) at Purdue, including Dr. Swagath Venkataramani, Dr. Ashish

Ranjan, Dr. Shubham Jain, Younghoon Kim, Jacob Stevens, Sarada Krithivasan,

Vinod Ganesan, Abinand Nallathambi, Manik Singhal, Sourjya Roy, Shrihari Srid-

haran, Reena Elangovan and Amrit Nagarajan. Their willingness to help and share

their expertise have allowed me to overcome numerous obstacles encountered in my

work. I have thoroughly enjoyed our conversations on a variety of academic and non-

academic topics, both inside and outside the confinements of the lab. I am grateful

for having the opportunity to closely collaborate with some of the members, which

has helped expand my research horizon. I also enjoyed my interactions with Viji

Srinivasan, Kailash Gopalakrishnan, Derrick Aguren and Joseph Greathouse as part

of my internships at IBM T. J. Watson Research Center and AMD Research.

iv

My stay at Purdue would have been incomplete without the amazing time I spent

outside work. I am lucky to have been part of the Purdue University Tagore Society

(PUTS) and attend their numerous events. I will greatly cherish the memorable mo-

ments spent with my friends here and would specially like to thank Sreya Sarkar, Esha

Chatterjee, Indrani Biswas, Somrita Chatterjee, Srishti Chakravorty, Sayan Choud-

hury, Aritra Mitra, Arindam Nandi and Sayantan Bhattacharya for their invaluable

friendships. I am deeply indebted to my boyfriend, Prabudhya Roy Chowdhury, for

constantly supporting me and accompanying me throughout the past 8 years of my

life.

Finally, I would like to thank my parents, Dr. Siddhartha Sen and Sreeparna Sen,

for their unparalleled love, care and support; for always believing in me and encour-

aging me to pursue my dreams. I would like to thank my brother, Dr. Sambudhha

Sen, for being someone I could always look up to, share my concerns and ask for

advice. The following pages of the dissertation are dedicated to them.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

ABSTRACT . xiv

1 INTRODUCTION . 1

1.1 Computational Challenges of DNNs . 3

1.2 Robustness of DNNs . 5

1.3 Thesis contributions . 6

1.3.1 Improving Efficiency of Feed-Forward Neural Networks 7

1.3.2 Improving Efficiency of Recurrent Neural Networks 9

1.3.3 Improving Efficiency of Spiking Neural Networks 9

1.3.4 Exploring Opportunities for Combining Multiple Approximate
Computing Approaches . 11

1.3.5 Improving Robustness of DNNs 12

1.4 Thesis outline . 13

2 RELATED WORK . 14

2.1 Improving Efficiency of DNNs . 14

2.1.1 Software parallelization on multi-cores and GPUs 15

2.1.2 Specialized accelerators . 15

2.1.3 Model compression . 16

2.1.4 Exploiting sparsity in DNNs . 16

2.2 Improving Robustness of DNNs . 17

2.2.1 Modified DNN training . 17

2.2.2 Input pre-processing . 17

2.2.3 Use of specialized DNN models 17

vi

Page

2.3 Approximate computing . 18

2.4 Thesis contributions . 19

3 BACKGROUND . 22

3.1 Feed-Forward Neural Networks . 22

3.1.1 Sources of Sparsity in FFNNs 24

3.1.2 Opportunity for Computational Savings 26

3.2 Long Short Term Memory Neural Networks 27

3.2.1 Long Short Term Memory networks (LSTMs) 28

3.2.2 Sequence-to-Sequence Learning 29

3.3 Spiking Neural Networks . 31

3.4 Pruning in DNNs . 33

3.5 Quantization in DNNs . 34

3.6 Adversarial Attacks on DNNs . 35

3.7 Test Pattern Compression . 36

4 SPARCE: SPARSITY AWARE GENERAL-PURPOSE CORE EXTENSIONS
TO ACCELERATE FEED-FORWARD NEURAL NETWORKS 38

4.1 SparCE: Sparsity Aware General Purpose Core Extensions 41

4.1.1 Challenges . 42

4.1.2 SparCE: Overview . 44

4.1.3 In-order SparCE Processor Pipeline 46

4.2 Software for SparCE Processsors . 50

4.2.1 Code Generation for SparCE 51

4.2.2 Case Study: Executing GEMM Routine on SparCE 54

4.3 Experimental Methodology . 56

4.3.1 Performance Evaluation . 56

4.3.2 Power and Area Evaluation . 58

4.3.3 Benchmarks . 59

4.4 Results . 59

vii

Page

4.4.1 Performance and Energy Improvement 59

4.4.2 Performance Scaling with Sparsity 63

4.4.3 Operand Ordering in SparCE OpenBLAS-SIMD4 Implemen-
tations . 65

4.5 Summary . 66

5 APPROXIMATE COMPUTING FOR LONG SHORT TERM MEMORY
(LSTM) NEURAL NETWORKS . 68

5.1 AxLSTM: Design Approach and Methodology 70

5.1.1 AxLSTM: Overview . 70

5.1.2 Dynamic Timestep Skipping (DTS) 72

5.1.3 Dynamic State Reduction (DSR) 74

5.1.4 AxLSTM: Design Methodology 77

5.2 Experimental Methodology . 79

5.2.1 Performance Evaluation . 79

5.2.2 Application benchmarks . 80

5.3 Results . 80

5.3.1 Performance Benefits Versus Accuracy 80

5.3.2 Benefits Breakdown and Overhead analysis 83

5.3.3 Input Adaptive Approximations in Action 85

5.4 Summary . 87

6 APPROXIMATE COMPUTING FOR SPIKING NEURAL NETWORKS . . 88

6.1 AxSNN: Design Approach and Methodology 91

6.1.1 Approximating Spike-triggered Updates 91

6.1.2 AxSNN: Overview . 92

6.1.3 AxSNN: Design Methodology 95

6.2 SNNAP: Architecture . 96

6.3 Experimental Methodology . 98

6.3.1 Runtime and Energy Evaluation 98

6.3.2 Application Benchmarks . 99

viii

Page

6.4 Results . 99

6.4.1 Energy Benefits at Iso-Accuracy 99

6.4.2 Energy vs. Accuracy Tradeoff 100

6.4.3 Input Adaptive Approximations: Easy vs. Hard Inputs 101

6.5 Summary . 103

7 EFFICACY OF PRUNING IN ULTRA-LOW PRECISION DNNS 104

7.1 Sparse Storage Formats for Pruned DNNs 106

7.1.1 Compression Ratios . 107

7.1.2 Realizing the cSmap Format using Test Pattern Compression . 110

7.2 Experimental Methodology . 112

7.2.1 Benchmarks . 112

7.2.2 Compression Evaluation . 113

7.3 Results . 113

7.3.1 Network-level Compression Ratios 113

7.3.2 Storage Breakdown in Sparse Formats 114

7.3.3 Benefits of a Hybrid Compression Scheme 116

7.4 Summary . 118

8 EMPIR: ENSEMBLES OF MIXED PRECISION DEEP NETWORKS FOR
INCREASED ROBUSTNESS AGAINST ADVERSARIAL ATTACKS . . 119

8.1 EMPIR: Ensembles of Mixed Precision Deep Networks for Increased
Robustness against Adversarial Attacks 121

8.1.1 Adversarial Robustness of Low-Precision Networks 121

8.1.2 EMPIR: Overview . 123

8.1.3 Computational and Memory Complexity of EMPIR 125

8.2 Experiments . 126

8.2.1 Benchmarks . 126

8.2.2 Evaluation of robustness . 126

8.3 Results . 128

8.3.1 Robustness of EMPIR models across all attacks 128

ix

Page

8.3.2 Comparison with individual models 131

8.3.3 Analysis of confusion matrices 132

8.3.4 Impact of varying the number of low-precision and full-precision
models . 133

8.4 Summary . 135

9 CONCLUSION . 136

9.1 Thesis Summary . 137

REFERENCES . 139

VITA . 152

x

LIST OF TABLES

Table Page

4.1 (a) Gem5 simulation parameters (b) Application benchmarks 58

5.1 Application benchmarks . 79

6.1 (a) SNNAP parameters (b) Application benchmarks 99

7.1 Benchmarks . 112

8.1 Benchmarks . 127

8.2 Attack parameters . 128

8.3 MNISTconv: Unperturbed and adversarial accuracies of the baseline and
EMPIR models across different attacks 129

8.4 CIFARconv: Unperturbed and adversarial accuracies of the baseline and
EMPIR models across different attacks 130

8.5 AlexNet: Unperturbed and adversarial accuracies of the baseline and EM-
PIR models across different attacks . 130

xi

LIST OF FIGURES

Figure Page

1.1 (a) Results from the ImageNet challenge (b) Number of FLOPs required
to evaluate different DNNs from the ImageNet challenge 4

1.2 Original and adversarial images from the MNIST dataset [53] 6

3.1 Different forms of sparsity in FFNNs . 23

3.2 Variation in activation sparsity of AlexNet CONV3 layer across two dif-
ferent input images . 25

3.3 (a) Average fraction of redundant ops across benchmarks (b) Variation in
fraction of redundant ops across different inputs of AlexNet 26

3.4 (a) Basic RNN (b) Time unrolled RNN . 27

3.5 Long Short Term Memory cell . 28

3.6 Sequence-to-sequence model . 30

3.7 Spiking neural network preliminaries . 32

3.8 Test pattern compression architecture . 37

4.1 Related work: Exploiting sparsity in FFNNs 39

4.2 Redundant instructions due to sparsity in vector dot-product evaluation . 42

4.3 SparCE: Design Overview . 44

4.4 Block diagram of SparCE in-order processor architecture 47

4.5 Flowchart for pre-identifying and skipping redundancy 48

4.6 Code generation for SparCE . 51

4.7 Zero skipping for sgemm kernel subroutine in BLAS 53

4.8 SASA table entries for kernel16x4 M1 subroutine 55

4.9 SparCE in action for sgemm routine . 57

4.10 Improvement in execution time at the application level 60

4.11 Execution time breakdown for AlexNet . 62

4.12 Layer-wise benefits breakdown for AlexNet 63

xii

Figure Page

4.13 SparCE performance scaling with sparsity 64

4.14 Impact of operand ordering on performance 65

5.1 Overview of AxLSTM approximation strategies 71

5.2 Dynamic Timestep Skipping in sequence-to-sequence models 73

5.3 Dynamic State reduction in sequence-to-sequence models 74

5.4 (a) Normalized execution time and (b) Normalized compute operations
versus drop in quality using AxLSTM for sequence-to-sequence models . . 81

5.5 Execution time benefits breakdown with AxLSTM 84

5.6 (a) Normalized encoding time per input word and (b) Normalized decoding
time per output word for a semantically simple sentence with and without
AxLSTM . 85

5.7 (a) Normalized encoding time per input word and (b) Normalized decod-
ing time per output word for a semantically complex sentence with and
without AxLSTM . 85

6.1 Neuron approximation mechanism . 92

6.2 Overview of approximation strategy in AxSNN 93

6.3 Block diagram of SNNAP . 97

6.4 Normalized OPS and energy benefits for different applications 100

6.5 Normalized energy vs. accuracy trade-off for 3 SNN benchmarks 101

6.6 Approximation levels of neurons at each time step 102

7.1 Data-structures and memory requirements of different storage formats . . 107

7.2 Lossy SM compression . 111

7.3 Network-level compression . 114

7.4 Storage breakdown in different sparse formats 115

7.5 Layer-level and network-level variation in best performing sparse formats 117

8.1 Unperturbed accuracies and adversarial accuracies of low-precision models
trained for the MNIST dataset . 122

8.2 Overview of EMPIR . 124

8.3 Tradeoff between unperturbed and adversarial accuracies of the individual
and EMPIR models across 2 benchmarks. 131

xiii

Figure Page

8.4 Confusion matrices of the baseline FP and EMPIR model for the MNIST-
conv benchmark. 132

8.5 Effects of varying the number of LP and FP models in EMPIR (a) Un-
perturbed accuracies, (b) Adversarial accuracies, (c) Execution time over-
heads and (d) Storage overheads . 134

xiv

ABSTRACT

Sen, Sanchari PhD, Purdue University, August 2020. Efficient and Robust Deep
Learning Through Approximate Computing. Major Professor: Anand Raghu-
nathan.

Deep Neural Networks (DNNs) have greatly advanced the state-of-the-art in a wide

range of machine learning tasks involving image, video, speech and text analytics, and

are deployed in numerous widely-used products and services. Improvements in the

capabilities of hardware platforms such as Graphics Processing Units (GPUs) and spe-

cialized accelerators have been instrumental in enabling these advances as they have

allowed more complex and accurate networks to be trained and deployed. However,

the enormous computational and memory demands of DNNs continue to increase with

growing data size and network complexity, posing a continuing challenge to comput-

ing system designers. For instance, state-of-the-art image recognition DNNs require

hundreds of millions of parameters and hundreds of billions of multiply-accumulate

operations while state-of-the-art language models require hundreds of billions of pa-

rameters and several trillion operations to process a single input instance. Another

major obstacle in the adoption of DNNs, despite their impressive accuracies on a

range of datasets, has been their lack of robustness. Specifically, recent efforts have

demonstrated that small, carefully-introduced input perturbations can force a DNN

to behave in unexpected and erroneous ways, which can have to severe consequences

in several safety-critical DNN applications like healthcare and autonomous vehicles.

In this dissertation, we explore approximate computing as an avenue to improve the

speed and energy efficiency of DNNs, as well as their robustness to input perturba-

tions.

xv

Approximate computing involves executing selected computations of an applica-

tion in an approximate manner, while generating favorable trade-offs between com-

putational efficiency and output quality. The intrinsic error resilience of machine

learning applications makes them excellent candidates for approximate computing,

allowing us to achieve execution time and energy reductions with minimal effect on

the quality of outputs. This dissertation performs a comprehensive analysis of dif-

ferent approximate computing techniques for improving the execution efficiency of

DNNs. Complementary to generic approximation techniques like quantization, it

identifies approximation opportunities based on the specific characteristics of three

popular classes of networks - Feed-forward Neural Networks (FFNNs), Recurrent Neu-

ral Networks (RNNs) and Spiking Neural Networks (SNNs), which vary considerably

in their network structure and computational patterns.

First, in the context of feed-forward neural networks, we identify sparsity, or the

presence of zero values in the data structures (activations, weights, gradients and

errors), to be a major source of redundancy and therefore, an easy target for approxi-

mations. We develop lightweight micro-architectural and instruction set extensions to

a general-purpose processor core that enable it to dynamically detect zero values when

they are loaded and skip future instructions that are rendered redundant by them.

Next, we explore LSTMs (the most widely used class of RNNs), which map sequences

from an input space to an output space. We propose hardware-agnostic approxima-

tions that dynamically skip redundant symbols in the input sequence and discard

redundant elements in the state vector to achieve execution time benefits. Following

that, we consider SNNs, which are an emerging class of neural networks that represent

and process information in the form of sequences of binary spikes. Observing that

spike-triggered updates along synaptic connections are the dominant operation in

SNNs, we propose hardware and software techniques to identify connections that can

be minimally impact the output quality and deactivate them dynamically, skipping

any associated updates.

xvi

The dissertation also delves into the efficacy of combining multiple approximate

computing techniques to improve the execution efficiency of DNNs. In particular,

we focus on the combination of quantization, which reduces the precision of DNN

data-structures, and pruning, which introduces sparsity in them. We observe that

the ability of pruning to reduce the memory demands of quantized DNNs decreases

with precision as the overhead of storing non-zero locations alongside the values starts

to dominate in different sparse encoding schemes. We analyze this overhead and the

overall compression of three different sparse formats across a range of sparsity and

precision values and propose a hybrid compression scheme that identifies that optimal

sparse format for a pruned low-precision DNN.

Along with improved execution efficiency of DNNs, the dissertation explores an

additional advantage of approximate computing in the form of improved robustness.

We propose ensembles of quantized DNN models with different numerical precisions

as a new approach to increase robustness against adversarial attacks. It is based

on the observation that quantized neural networks often demonstrate much higher

robustness to adversarial attacks than full precision networks, but at the cost of a

substantial loss in accuracy on the original (unperturbed) inputs. We overcome this

limitation to achieve the best of both worlds, i.e., the higher unperturbed accuracies

of the full precision models combined with the higher robustness of the low precision

models, by composing them in an ensemble.

In summary, this dissertation establishes approximate computing as a promis-

ing direction to improve the performance, energy efficiency and robustness of neural

networks.

1

1. INTRODUCTION

Deep Neural Networks (DNNs) have transformed the field of machine learning by

achieving state-of-the-art results on a wide range of tasks like image classification,

speech recognition, object detection and machine translation [1–7]. Today, DNNs are

deployed in a spectrum of real-world products and services including Google Trans-

late [8], Google Maps [9], Apple’s Siri [10], Google’s voice and image search [11],

Netflix and Amazon’s recommendation engines [12]. Although neural networks have

a rich history dating back to the 1950s, their phenomenal growth and expansion into

nearly all fields of machine learning is relatively recent and can be attributed to a

favorable confluence of various factors. A major factor on that front has been the

improvement in the capabilities of hardware platforms like Graphics Processing Units

(GPUs) and specialized accelerators. For instance, there was a 65× increase in the

performance of different GPUs proposed between 2013 and 2016 [13]. The evolution

of these hardware platforms, along with the availability of larger datasets, has been

instrumental in allowing the development of more accurate (and more complex) net-

works over the years. For example, AmoebaNet, a state-of-the-art image-recognition

DNN demonstrates an impressive 83.9% accuracy on the ImageNet dataset but re-

quires 469 million parameters and 104 billion multiply-accumulate operations to clas-

sify a single image [14]. Thus, in order to continue the development of increasingly

complex DNNs with better accuracies, computing system designers need to pursue

innovative ways of meeting their high computational demands.

Prior research efforts have explored a few key directions to address the com-

putational challenges posed by DNNs. The first direction explores efficient paral-

lelization techniques of DNNs on programmable platforms such as multi-cores and

GPUs [15–21]. The second direction develops specialized accelerators to match the

compute and data access patterns of different kinds of DNNs [22–30]. Complemen-

2

tary to these directions, we explore approximate computing as a promising approach

to improve the execution efficiency of DNNs.

Along with their high computational and memory demands, recent efforts have

highlighted another key limitation of DNNs, namely, their lack of robustness [31].

Specifically, DNN outputs have been observed to be severely affected by small, carefully-

introduced input perturbations, which can have drastic consequences in different

safety-critical applications like autonomous driving and healthcare. These adversarial

input perturbations can be systematically generated through a range of adversarial

attack techniques, including Fast Gradient Sign Method [31], Projected Gradient De-

scent [32] and Basic Iterative Method [33]. Therefore, it is imperative to improve

the robustness of DNNs for ushering in the next realm of deep learning applications,

beyond the primitive tasks of image, speech and text analytics.

Realizing this need, previous efforts have looked into various means for boosting

robustness, including training with adversarial or noisy inputs [31, 32, 34], defensive

distillation [35] and regularizing input gradients [36]. We, on the other hand, focus

on improving robustness through approximate computing.

Approximate computing is a computing paradigm that allows certain computa-

tions in an application to be performed in an inexact or approximate manner while

preserving the output quality. It leverages the intrinsic error resilience of applications

to introduce approximations that can achieve maximum benefits for a given quality

constraint. In general, neural networks have been observed to be highly resilient to

approximations in a significant fraction of their computations. For example, different

quantized neural networks [37–39] utilizing low-precision data-structures have suc-

ceeded in achieving high accuracy levels, in spite of the errors introduced during the

quantization process. This intrinsic error resilience makes DNNs attractive candidates

for approximate computing.

A key challenge in approximate computing is to identify which computations to

approximate and by how much. In order to achieve a favorable energy or execution

time versus quality tradeoff, we primarily target our approximations on computations

3

that do not affect the network numerically, as well as, computations that do affect

the intermediate values of the network such that the effects don’t propagate to the

final output quality significantly. In this dissertation, we perform a comprehensive

analysis of these computations in DNNs and propose efficient software and hardware

techniques for introducing approximations in them. We specifically illustrate the

benefits of approximations in three different types of neural networks, namely, Feed-

Forward Neural Networks (FFNNs), Recurrent Neural Networks (RNNs) and Spiking

Neural Networks (SNNs), which have widely varying computational characteristics

and network structures. We further explore the challenges in combining multiple ap-

proximate computing techniques for improving the efficiency of these DNNs, specially

in the context of FFNNs and RNNs.

While a majority of previous efforts in approximate computing focus on improve-

ments in execution time and energy consumption, a few recent efforts have also high-

lighted a previously unexplored advantage of approximate computing, in the form

of improving robustness of DNNs [40–42]. We explore this advantage even further

to develop DNNs robust to a range of adversarial attacks, while maintaining their

output quality on the original unperturbed inputs.

In the following sections, we first discuss the computational challenges of DNNs.

Next, we discuss the robustness of DNNs. Following that, we present the contributions

of this dissertation in terms of developing approximate computing techniques for

improving the efficiency and robustness of DNNs. Finally, we outline the remaining

chapters of this dissertation.

1.1 Computational Challenges of DNNs

The rise of DNNs in the last few years has allowed us to achieve major breakthroughs

in several machine learning tasks. Their success can most readily be exemplified by

their achievements in the ImageNet challenge. Figure 1.1(a) illustrates the classifica-

tion accuracies of the top entrants in the challenge over different years. The accuracies

4

are quantified in terms of the top-5 errors which represent the fraction of images for

which the correct class did not appear in the top five categories determined by the

algorithm. DNNs entered the challenge for the first time in 2012 and immediately

caused the error rate to decrease by almost 10%. For the next few years, the devel-

opment of other forms of DNNs allowed the error rate to quickly decrease to below

5% in 2017, which even exceeds human accuracy levels.

(a) (b)

0

5

10

15

20

25

30

A
cc

u
ra

cy
 (

To
p

-5
 e

rr
o

r)

A
le

xN
et

ZF

V
G

G
-1

9

R
es

N
et

-1
5

2

R
es

N
ex

t-
1

0
1

N
as

N
et

A

Ef
fi

ci
en

tN
et

-B
7

0

10

20

30

40

G
FL

O
P

s/
 im

ag
e

2012 2019

A
le

xN
et ZF

In
ce

p
ti

o
n

V
3

R
es

N
et

-1
5

2

R
es

N
ex

t-
1

0
1

V
G

G
-1

9

N
as

N
et

A

Ef
fi

ci
en

tN
et

-B
7

Fig. 1.1.: (a) Results from the ImageNet challenge (b) Number of FLOPs required

to evaluate different DNNs from the ImageNet challenge

The dramatic accuracy improvements on the ImageNet dataset were mainly possi-

ble through the design of deeper and increasingly complex networks. Obviously, this

came at the expense of increased computational and storage requirements of DNNs.

Figure 1.1(b) quantifies the computational demands of different top DNN entries in

the ImageNet challenge over the years. It shows that there was a 10× increase in

the number of scalar floating point operations (FLOPs) required to evaluate different

networks proposed between 2012 to 2019. A significant number of these DNNs relied

on GPUs to meet their high computational demands in both training and inference.

This was further facilitated by a 65× increase in GPU performance from 2013 to

2016 [13].

As DNNs get deployed in increasingly complex tasks on bigger datasets, their com-

putational demands are expected to further increase in the future. In addition, this

5

growth can potentially surpass the growth in performance of future GPUs, thereby

ceasing any possibility of addressing the challenge by simply executing them on in-

creasingly powerful GPUs. Realizing this, existing research efforts have mainly tried

to improve the computational efficiency of DNNs by designing accelerators that can

mimic the compute and data access patterns of DNNs [22–30].

Complementary to the above approaches, this dissertation focuses on the use of ap-

proximate computing for improving the computational efficiency of DNNs. Previous

efforts in that context have explored the use of network pruning [43–45], quantized

data-structures [39, 46, 47] and approximate arithmetic units [37, 48, 49]. However,

these approaches are often restricted to feed-forward neural networks and can pri-

marily provide benefits on only specialized hardware architectures. In contrast, we

consider different classes of DNNs and identify approximations that exploit their

unique computational characteristics. Further, we don’t restrict these approxima-

tions to accelerator platforms and demonstrate savings on different general-purpose

platforms as well.

1.2 Robustness of DNNs

The remarkable success of DNNs on different machine learning tasks, as illustrated

in the previous section for the ImageNet challenge, has naturally led to a significant

interest in deploying them in various real-world applications. A large number of

these real-world applications, including autonomous driving, healthcare, financial risk

management, etc., are safety-critical in nature. Accordingly, robustness, i.e., the

ability to cope with erroneous or malicious inputs fed to an application, is emerging

as an important requirement for DNNs, along with accuracy.

Recent studies on robustness of DNNs have in fact revealed that DNNs are sus-

ceptible to errors under the presence of small input perturbations, imperceptible to

humans [31]. A range of adversarial attack techniques, proposed in previous works,

provide systematic methodologies for generating perturbations that can cause a DNN

6

to fail [31, 33, 50, 51]. These perturbations can even be targeted towards a particular

output class [51] and transferred across different models [52], increasing their strength

even further. Fig 1.2 presents some original and adversarial images from the MNIST

dataset.

Fig. 1.2.: Original and adversarial images from the MNIST dataset [53]

To overcome this limitation, prior efforts have proposed a range of techniques for

boosting robustness. These efforts can be grouped into two broad classes. The first

class of efforts involve modifying the training process of DNNs to perform adversarial

training [31, 32], noise-based training [34] or defensive distillation [35]. The second

class of efforts focuses on different input pre-processing techniques to reduce the effect

of perturbations [54,55].

Complementary to these efforts, we focus on the use of approximate computing for

boosting robustness. Earlier efforts in this respect have specifically studied the effect

of quantization and observed that it can improve robustness [40–42], but at the cost

of some loss in the original unperturbed accuracy. We, on the other hand, overcome

this limitation by forming ensembles of both full-precision and low-precision DNNs,

to increase the robustness of DNNs while maintaining their accuracy on the original

unperturbed inputs.

1.3 Thesis contributions

In this dissertation, we explore approximate computing as an avenue to improve the

speed, energy efficiency and robustness of both software and hardware implementa-

tions of DNNs.

7

The unique computational and data characteristics of different classes of DNNs

give rise to distinct forms of computations that can be approximated. We first explore

these approximations for improving the speed and energy efficiency of three different

classes of DNNs, namely, Feed-forward Neural Networks (FFNNs), Recurrent Neu-

ral Networks (RNNs) and Spiking Neural Networks (SNNs). Next, we explore the

opportunities for combining two different forms of approximations, namely, quanti-

zation and pruning, in DNNs. Finally, we explore approximations for improving the

robustness of DNNs.

1.3.1 Improving Efficiency of Feed-Forward Neural Networks

Feed-Forward neural networks (FFNNs) are a class of DNNs characterized by the

flow of information strictly in the forward direction from the input layer to the out-

put layer. These include Convolutional Neural Networks (CNNs) and Multi-Layer

Perceptrons (MLPs) deployed in tasks like image recognition and object detection.

They lack any memory of previous inputs and are thus more suitable for tasks with

fixed-length, temporally independent inputs and outputs. We identify sparsity, or the

presence of zero values in different data-structures, as a significant source of redun-

dancy in these CNNs. Specifically, multiply-accumulate (MAC) operations, which are

the primitive unit of computations in these networks, become redundant when any of

the input operands are zeros. Across 6 image-recognition feed-forward networks, we

observe that sparsity results in ∼ 45.1% of the computations being rendered redun-

dant, presenting a significant opportunity for improving performance. Therefore, we

target our approximations on these redundant MAC computations.

Sparsity in the FFNN data-structures like activations, weights and backpropa-

gated errors arises from the presence of ReLU (Rectified Linear Unit) layers as well

as from the application of pruning techniques for model size reductions. This spar-

sity can be both static or dynamic, depending on whether the zero values remain

constant or vary across different inputs to the network. Sparsity in weights, intro-

8

duced by pruning connections in the network after training, is static in nature. In

contrast, activation and error sparsities, caused by the thresholding nature of the

ReLU activation functions, are dynamic in nature. In this dissertation, we propose

lightweights extensions to general-purpose cores in the form of Sparsity-aware Core

Extensions (SparCE) for exploiting both static and dynamic sparsities by dynam-

ically detecting whether an operand (e.g., the result of a load instruction) is zero

and subsequently skipping a set of future instructions that use it. SparCE consists

of 2 key micro-architectural enhancements. First, a Sparsity Register File (SpRF) is

utilized to track registers that are zero. Next, a Sparsity-Aware Skip Address (SASA)

Table is used to indicate instruction sequences that can be skipped, and to specify

conditions on SpRF registers that trigger instruction skipping. When an instruction is

fetched, SparCE dynamically pre-identifies whether the following instruction(s) can

be skipped, and if so appropriately modifies the program counter, thereby skipping

the redundant instructions and improving performance. We model SparCE using

the gem5 architectural simulator, and evaluate our approach on 6 state-of-the-art

image-recognition CNNs (the most commonly used type of FFNNs) in the context

of both training and inference using the Caffe deep learning framework. On a scalar

microprocessor, SparCE achieves 1.11×-1.96× speedups across both convolutional

and fully-connected layers that exhibit 10%-90% sparsity. These speedups translate

to 19%-31% reduction in execution time at the overall application-level. We also

evaluate SparCE on a 4-way SIMD ARMv8 processor using the OpenBLAS library,

and demonstrate that SparCE achieves 8%-15% reduction in the application-level

execution time.

In addition to the feed-forward networks described above, there exists a different

class of neural networks referred to as Recurrent Neural Networks (RNNs), which

can handle variable-length inputs and outputs forming sequences. The following

subsection will briefly discuss our proposed approximations in RNNs.

9

1.3.2 Improving Efficiency of Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of DNNs with applications in text and

handwriting synthesis [56], speech recognition [57], neural machine translation [58]

and image and video captioning [3]. These networks have a cyclic structure, allowing

information to persist temporally in the form of memory (state) in the network. The

computation of an RNN can be thought of as proceeding in timesteps with a new

element of the input sequence being fed to the network at each timestep.

In this dissertation, we propose hardware-agnostic approximate computing tech-

niques for accelerating RNNs. We specifically consider Long Short Term Memory

networks (LSTMs), the most popular class of RNNs. The proposed AxLSTM consists

of two techniques Dynamic Timestep Skipping (DTS) and Dynamic State Reduc-

tion (DSR). Dynamic Timestep Skipping identifies, at runtime, input symbols that

are likely to have little or no impact on the cell state and skips evaluating the corre-

sponding timesteps. In contrast, Dynamic State Reduction reduces the size of the cell

state in accordance with the complexity of the input sequence, leading to a reduced

number of computations per timestep. We describe how AxLSTM can be applied to

the most common application of LSTMs, viz., sequence-to-sequence learning. We im-

plement AxLSTM within the TensorFlow deep learning framework and evaluate it on

3 state-of-the-art sequence-to-sequence models. On a 2.7 GHz Intel Xeon server with

128 GB memory and 32 processor cores, AxLSTM achieves 1.08×-1.31× speedups

with minimal loss in quality, and 1.12×- 1.37× speedups when moderate reductions

in quality are acceptable.

1.3.3 Improving Efficiency of Spiking Neural Networks

Apart from the conventional CNNs and RNNs discussed above, which consist of

neurons communicating through continuous activation values, there also exists an

emerging class of neural networks often referred to as the third generation of neural

networks, namely, Spiking Neural Networks (SNNs). SNNs mimic the spiking be-

10

havior of biological neurons and accordingly, represent and process information in

the form of binary valued spikes. They well-suited to applications that operate on

temporal streams of data (e.g. outputs of event-driven cameras).

This dissertation proposes AxSNN, a set of approximate computing techniques

exploiting the spiking behavior of SNNs to improve their computational efficiency.

SNNs are composed of neurons associated with membrane potentials and these neu-

rons generate spikes whenever the potential exceeds a threshold. The spikes generated

by neurons can be viewed as events that trigger updates to the membrane potentials of

all outgoing neurons. These spike-triggered updates thus form the fundamental com-

pute primitives in SNNs. AxSNN determines spike-triggered neuron updates that

can be skipped with little or no impact on output quality and selectively skips them

to improve both compute and memory energy. Neurons that can be approximated

are identified by utilizing various static and dynamic parameters such as the average

spiking rates and current potentials of neurons, and the weights of synaptic connec-

tions. Such a neuron is placed into one of many approximation modes, wherein the

neuron is sensitive only to a subset of its inputs and sends spikes only to a subset of its

outputs. We apply AxSNN to both hardware and software implementations of SNNs.

For hardware evaluation, we designed SNNAP, a Spiking Neural Network Approxi-

mate Processor that embodies the proposed approximation strategy, and synthesized

it to 45nm technology. The software implementation of AxSNN was evaluated on a

2.7 GHz Intel Xeon server with 128 GB memory. Across a suite of 6 image recogni-

tion benchmarks, AxSNN achieves 1.4-5.5× reduction in scalar operations for network

evaluation, which translates to 1.2-3.62× and 1.26-3.9× improvements in hardware

and software energies respectively, for no loss in application quality.

11

1.3.4 Exploring Opportunities for Combining Multiple Approximate Com-

puting Approaches

Along with the above approaches, a wide spectrum of other approximate computing

techniques have also been proposed over the years for improving the efficiency of

DNNs. Pruning and quantization have emerged as two of the most popular approaches

among them, specially for reducing the memory requirements of DNNs. Pruning

zeros out different weight values by removing redundant connections in the network

and allows weights to be stored compactly in memory using different sparse formats.

Quantization, on the other hand, converts DNN weights to low-precision values, which

can be represented and stored in memory using a smaller number of bits. Both

pruning and quantization have primarily been explored as independent approaches

with ongoing efforts focusing on advancing their individual limits even further. We

investigate the opportunities for combining them, specially as we go into the regime

of ultra-low precision DNNs (sub-8 bits of precision).

In this dissertation, we systematically evaluate the effectiveness of pruning ultra-

low precision DNNs, in terms of the memory reductions achieved by storing these

pruned DNNs in different sparse formats. We consider two sparse formats widely

used in compressing DNNs, viz., Compressed Sparse Column (CSC) and Sparsity

Map (Smap). We also propose a new format, namely, compressed Sparsity Map

(cSmap), that improves upon the Smap format by replacing the sparsity map matrix

with its compressed version. We realize the cSmap format in our implementation by

re-purposing the test pattern compression tools widely used in manufacturing tests.

We discover that the memory compression benefits of all three sparse formats reduce

with decreasing precision because of the increasing overhead of storing the location

of non-zero weights along with their values. Across several pruned and quantized

versions of 6 state-of-the-art DNNs, we observe that the compression ratio achieved

by each format is a strong function of both sparsity and precision, even leading to

values <1 in certain cases. Based on this observation, we propose a new hybrid

12

compression scheme that compresses different networks, and individual layers within

them, in different sparse formats — identified to be best-suited for their precision and

sparsity levels. We demonstrate that such a hybrid scheme can improve the average

compression ratio of a 2-bit DNN by 18.3% - 34.7% over homogeneous compression

schemes.

1.3.5 Improving Robustness of DNNs

In addition to reducing the computational and memory demands of DNNs, a few

recent efforts have highlighted that quantization can also be used as an approach

to improve robustness, as low-precision DNNs exhibit higher adversarial accuracies

than full-precision DNNs [40–42]. However, the loss in information associated with

the quantization process often makes these low-precision models perform significantly

worse than their full-precision counterparts while classifying the original unperturbed

inputs.

This dissertation proposes EMPIR, ensembles of mixed-precision DNNs, as a new

approach for improving robustness. It combines the higher robustness of low-precision

models with the higher unperturbed accuracy of full-precision models by composing

them in an ensemble. In the general case, it is composed of M full-precision mod-

els and N low-precision models with the outputs of the individual models combined

through ensembling techniques that count the number of predictions for each class

or average the probabilities of the models. We study the effect of ensemble size and

ensembling technique on the overall robustness of the model and observe that M = 1

and N = 2 or 3 provides significant improvement in robustness with minimal compute

and memory overheads. We implemented EMPIR within the TensorFlow framework

and measured the adversarial accuracies under a range of adversarial attacks within

the Cleverhans library. Our results indicate that EMPIR boosts the average adversar-

ial accuracies by 42.6%, 15.2% and 10.5% for the DNN models trained on the MNIST,

CIFAR-10 and ImageNet datasets respectively, when compared to single full-precision

13

models, without sacrificing accuracy on the unperturbed inputs. Further, these EM-

PIR models only incur modest compute and memory overheads compared to a single

full-precision model (<25% in our evaluations).

1.4 Thesis outline

The rest of the thesis is organized as follows. Chapter 2 details the related research

efforts in accelerating different types of DNNs and improving their robustness. Chap-

ter 3 provides the necessary background on FFNNs, LSTMs and SNNs, along with the

preliminaries of pruning, quantization and adversarial attacks on DNNs. Chapter 4

proposes techniques to accelerate FFNNs on general-purpose platforms by exploiting

sparsity. Chapter 5 proposes hardware-agnostic approximate computing techniques

for accelerating LSTMs. Chapter 6 discusses another application of approximate com-

puting for accelerating SNNs. Chapter 7 investigates the opportunities for combining

two popular approximate computing techniques of pruning and quantization in DNNs.

Chapter 8 proposes an approximate computing technique for boosting robustness of

DNNs. Finally, Chapter 9 concludes this dissertation.

14

2. RELATED WORK

Deep neural networks have successfully achieved state-of-the-art results in a wide

range of machine learning tasks like image, video, text and speech processing. How-

ever, the pursuit of larger networks with better accuracies has also led to increasing

concerns about their high computational and memory demands, which far outstrips

the capabilities of modern computing platforms. Multiple research efforts have ac-

cordingly tried to address the computational challenge posed by DNNs by proposing

techniques to improve their computational efficiency on different platforms. In this

chapter, we discuss some of these efforts, particularly in the context of convolutional

neural networks, long short term memory neural networks and spiking neural net-

works, and highlight the unique aspects of our work.

In addition to their high computational and memory demands, recent efforts have

also highlighted another notable limitation of DNNs, namely, their lack of robust-

ness. Various forms of adversarial attacks have successfully fooled DNNs through

small, carefully-introduced input perturbations that cause large misclassifications.

To overcome this limitation, prior research efforts have proposed different techniques

for increasing robustness of DNNs. We present the details of some of these efforts in

this chapter and contrast them with our approach.

Finally, as this dissertation is built on the principles of approximate computing, we

also present previous research efforts in applying approximate computing techniques

to improve the computational efficiency of different applications.

2.1 Improving Efficiency of DNNs

Prior research efforts that target improving the computational efficiency of DNNs

can be grouped into the four broad classes which are discussed below in more detail.

15

2.1.1 Software parallelization on multi-cores and GPUs

A large number of previous efforts have been directed towards developing techniques

for efficient parallelization of DNNs on programmable platforms such as multi-core

servers and GPUs [15–20, 59–63]. These techniques primarily exploit two different

forms of parallelism, namely, model parallelism and data parallelism [15]. Model

parallelism refers to the parallelization of different parts of the same model across

different threads or cores. On the other hand, data parallelism refers to the par-

allelization of different inputs to the same model across different threads or cores.

The efficiency of model or data parallelism largely depends on the characteristics of a

particular DNN. Model parallelism is generally observed to be more efficient for sce-

narios with large amounts of compute operations per neuron while data parallelism

is observed to be more efficient for DNNs with larger batch sizes of inputs. Some of

the approaches also employ other optimizations on top of model and data parallelism,

exploiting the computational pattens of specific classes of DNNs like LSTMs [21] or

SNNs [63]. Overall, the scalability of the techniques is often limited by synchroniza-

tion and communication bottlenecks. Specially the dynamic and event-driven nature

of SNNs makes parallelization challenging, as it leads to irregular and unpredictable

compute and memory access patterns.

2.1.2 Specialized accelerators

Developing specialized hardware architectures has been an attractive approach to

improve the computational efficiency of DNNs. These accelerators utilize special-

ized processing cores, interconnect networks and other hardware-software co-design

methodologies to leverage the different forms of compute and data reuse patterns in

DNNs. They differ on the kind of parallelism exploited, the DNN operating phase

targeted for acceleration — training or inference phase, as well as, the area, power

and energy constraints considered in the designs. Some of the designed accelerators

16

can support a range of neural networks [23, 24, 26] while others are more targeted

towards a particular type of network [22,29,64–66].

2.1.3 Model compression

DNNs require high storage and memory bandwidths to efficiently store and transfer

the large number of parameters involved in their computations. Existing efforts in

pruning [43–45] and quantization [37,39,47,67] address this challenge by reducing the

number of parameters and the number of bits used in representing them, respectively.

This is specially advantageous in various resource-constrained embedded platforms

which cannot support DNNs of large model sizes.

2.1.4 Exploiting sparsity in DNNs

Prior efforts that exploit sparsity to improve DNN efficiency can be grouped into two

classes based on whether they exploit static sparsity or dynamic sparsity. Specialized

sparse architectures that are capable of exploiting static or dynamic sparsity incorpo-

rate a variety of compression techniques and zero-skipping schemes to reduce storage

requirements and avoid redundant multiplications in accelerators [26,68–72].

On the other hand, software approaches that exploit static weight sparsity on

GPPs take advantage of sparse matrix libraries. These sparse libraries usually yield

performance improvements only under extreme levels of sparsity (>95%). Since DNNs

naturally exhibit sparsity in the range of 40%-70%, a few research efforts force more

weight sparsity into DNNs using sparse decomposition methods, etc. [73, 74] or cus-

tomize the pruning to match the underlying hardware organization [75]. These in-

variably come at the cost of training overhead or loss of functional accuracy.

17

2.2 Improving Robustness of DNNs

Popular approaches for improving robustness of DNNs can be grouped into the fol-

lowing three classes.

2.2.1 Modified DNN training

The first class of efforts includes popular techniques like adversarial training and noise-

based training which augment the training dataset with adversarial inputs [31,32] or

noisy inputs [34] to increase robustness. Although they do improve the robustness

of DNNs, the increase in training time can be prohibitively high. Another approach,

defensive distillation [35], involves training networks on the output probabilities of

classes instead of the conventional approach of training on hard output class labels.

It is based on the technique of distillation that was originally proposed to efficiently

transfer knowledge across different DNN models. Other approaches have also explored

input gradient regularization [36] during the training process for enforcing smooth

input gradients in the network.

2.2.2 Input pre-processing

The second class of efforts for increasing robustness performs input pre-processing for

reducing the effect of perturbations. Popular pre-processing techniques include input

discretization and quantization [54, 55]. However, modifying the attack generation

process to include the discretization process is can break the defense mechanism [55].

2.2.3 Use of specialized DNN models

The third class of efforts focus on the use of specialized forms of DNN models for

increasing robustness. Some efforts have advocated the use of ensembles of full preci-

sion models [53,76–78]. In addition to the above efforts, there have been a parallel set

of efforts studying the robustness of low-precision or quantized DNNs. For example,

18

binary neural networks with single bit precisions for weights and activations have been

shown to exhibit higher adversarial robustness than their full-precision counterparts

on different white-box attacks [40,41]. Stochastic quantization of activations has also

been proposed as an approach to make DNNs more robust [42]. However, the quan-

tized models in these efforts are often in the sub-8 bit domain and thus demonstrate

lower accuracies on unperturbed or clean examples due to the loss in information

associated with the quantization process.

2.3 Approximate computing

Approximate computing refers to an emerging computing paradigm that improves the

performance and energy efficiency of computing platforms by exploiting the intrinsic

error resilience of different applications. Intrinsic error resilience is defined as the

ability of certain applications to produce outputs of satisfactory quality even when

some of the underlying computations are approximated. Prior research efforts have

proposed a multitude of approximate computing techniques over the years, applicable

to different levels of the hardware stack, from circuits to architecture and software [79].

These include voltage overscaling techniques at the circuit level [80, 81], precision

scaling techniques at the architectural level [82, 83] as well as iteration skipping and

dependency relaxation techniques at the software level [84,85].

Various machine learning applications in domains like recognition, vision, search

and data analytics have been observed to exhibit significant amounts of intrinsic error

resiliency and thereby be amenable to approximate computing. Accordingly, in the

context of NNs, approximate computing has been previously applied to feed-forward

neural networks [37,48,49]. In addition, one of the prior approaches have also explored

approximate computing for RNNs [86]. These approaches utilize backpropagation,

one of the key steps involved in training NNs, to characterize the criticality of neurons

in the network, and correspondingly subject them to varying levels of approximation.

19

These approximations are subsequently realized by utilizing reduced precision and

approximate arithmetic units.

2.4 Thesis contributions

The primary contributions of this dissertation are different or complementary to the

prior efforts in the following aspects:

Sparsity aware general-purpose core extensions to accelerate FFNNs. Our

work differs from specialized accelerator based approaches to accelerate FFNNs [22–

26] by focusing on different size and cost-constrained systems like wearables and sen-

sors where the use of accelerators employing large numbers of processing elements

and considerable on-chip memory is prohibitive. We specifically accelerate FFNNs

on these systems by developing lightweight extensions to the general-purpose proces-

sors (GPPs) already present in them. The proposed extensions exploit a key attribute

of FFNNs, i.e., sparsity of weights and activation values. Unlike software based ap-

proaches that can only exploit the static sparsity in weights [73–75], our proposed

extensions, in the form of SparCE (Sparsity-aware Core Extensions), can exploit

both dynamic sparsity in activations and static sparsity in weights, while being effec-

tive even under intermediate levels. Further, these extensions account for just 1.04%

area overhead over an ARM Cortex A35 core of 0.4mm2 area, as opposed to area

overheads of 4− 16mm2 of different accelerators [22, 25,26].

Hardware-agnostic approximate computing for LSTMs and SNNs. Our

work complements other efforts that accelerate SNNs or LSTMs through the use

of parallel software [19–21, 59–63] or specialized hardwares [27–30, 64–66, 87, 88] by

proposing the use of approximate computing to improve their computational effi-

ciency. Prior efforts that apply approximate computing to neural networks [37, 48,

49, 86] utilize reduced precision and approximate arithmetic units. As a result, they

often require specialized hardware implementations and do not benefit software imple-

mentations. In contrast, our work proposes new approximate computing techniques

20

that are generic in nature and are applicable to both software and hardware imple-

mentations. These techniques also take advantage of the unique structure and com-

putational characteristics of SNNs and LSTMs. For instance, our proposed AxSNN

(Approximate computing for SNN) identifies spike-triggered neuron updates to be

the primitive unit of computations in SNNs and determines updates with little or no

impact on output quality to selectively skip them at runtime. On the other hand, the

proposed AxLSTM (Approximate computing for LSTM) takes advantage of LSTM’s

computational pattern of updating its entire memory state vector after processing a

new symbol in each timestep. It accordingly skips the evaluation of input symbols

that are likely to have little or no impact on memory state and reduces the size of

the cell state in accordance with the complexity of the input sequence.

Investigating opportunities for combining pruning and quantization tech-

niques. Prior efforts have primarily explored pruning [43–45, 89] and quantiza-

tion [39, 46, 47, 67] as independent approaches for compressing DNN models. In con-

trast, we focus on the intersection of the two techniques and identify the opportunities

for combining both. We demonstrate that existing sparse storage formats, which store

non-zero locations along with non-zero values in pruned DNNs, suffer from inefficien-

cies in the ultra-low precision (<8 bits) regime. Specifically, the overhead of storing

non-zero locations starts to dominate in this regime and can even force the overall

compression ratio to drop below 1 in the worst case, when the sparse format ends up

consuming higher memory than the dense format. Our work is also complementary

to a few previous efforts that propose training frameworks to perform pruning and

quantization in parallel [90]. These efforts solely on simultaneously maximizing the

achieved sparsity levels and minimizing the weight precisions without considering the

implications of exploiting sparsity in the ultra-low precision regime.

Ensembles of mixed-precision DNNs for increased robustness. Our work

differs from existing ensembling approaches for increasing robustness [53, 76–78] by

considering both low-precision and full-precision DNNs in the constituent models.

The presence of all full-precision models in the previously proposed ensembles in-

21

creases their compute and memory requirements significantly (10× for an ensemble

with 10 models in [53]), which prevents the application of this approach to larger

state-of-the art models. In contrast, as low precision DNN models have significantly

lower computational and storage requirements than full precision models, the pro-

posed EMPIR ensemble incurs only modest compute and memory overheads com-

pared to a single full-precision model (<25% in our evaluations). Further, unlike the

low unperturbed accuracies of the low-precision models proposed for increasing ro-

bustness [40–42], EMPIR maintains high unperturbed accuracy by combining higher

robustness of the low-precision models with the higher unperturbed accuracies of the

full-precision models in the ensemble.

22

3. BACKGROUND

In this chapter, we first provide a brief background on the network architectures and

computational patterns of FFNNs, RNNs and SNNs. Next, we present the basics of

pruning and quantizing DNNs. Following that, we present a brief background on ad-

versarial attacks on DNNs. Finally, we discuss the basics of test pattern compression

mechanisms.

3.1 Feed-Forward Neural Networks

In this section, we first provide a brief background on Feed-Forward Neural Networks

(FFNNs). We then explain the various static and dynamic sources of sparsity in

the different data-structures of FFNNs and quantify the opportunity for performance

improvement afforded by sparsity.

FFNNs are networks of primitive compute units called neurons, organized into

layers like convolutional layer, pooling layer and fully-connected layer. Each layer is

associated with a set of parameters called weights. Just like any other neural network,

FFNNs operate in two phases viz. training and inference. During the training phase,

a labeled training dataset is used to iteratively refine the weights of the FFNN. In

the inference phase, the trained FFNN is used to classify new inputs.

Computationally, FFNN executions iteratively perform three key steps viz. For-

ward Propagation (FP), Backpropagation (BP), and Weight Gradient and Update

(WG). These steps operate on four primary data-structures, viz., activations, weights,

errors and gradients. All three steps (FP, BP, WG) are performed during the train-

ing phase, while inference involves only the FP step. In FP, inputs to the FFNN are

propagated through its layers to produce the FFNN outputs. In each layer, the input

activations are operated on with its weights to produce its output activations, which

23

are then fed to the next layer and so on. In BP, errors observed at the output of the

FFNN are propagated backwards through each layer of the FFNN. In this case, the

error at the output of a layer is operated on with its weights to compute the error at

its inputs. In WG, the input activations and the output error of each layer are used

to refine its weights.

0

50

100

0 50 100

GeoMean

conv3

conv2

conv1

Activation sparsity Weight sparsity Error sparsity

Sources

Nature

Training
Dynamic Dynamic Dynamic

Inference
Dynamic

Static N/A

Quantity(%)

Deep Compression
AlexNet [50]

CIFAR-10 DNN

0

50

100

C
if

ar
-1

0

A
le

xN
et

D
ee

p
C

o
m

p

G
o

o
gl

eN
et

V
G

G
-1

6

R
es

N
et

-5
0

G
eo

M
ea

n

co
n

v1

co
n

v2
co

n
v3

co

n
v4

co

n
v5

fc

1
fc

2
fc

3

M
ea

n

Fig. 3.1.: Different forms of sparsity in FFNNs

24

3.1.1 Sources of Sparsity in FFNNs

In practice, all major FFNN data-structures - activations, weights, errors and gra-

dients - exhibit significant levels of sparsity, which can be exploited for computational

savings. Three of the four data-structures (all except weight gradients) are used as

inputs to multiply-and-accumulate operations in the different steps (FP/BP/WG),

which become redundant when one of the input operands is zero. Among these three

sparse multiply-and-accumulate operands, weights exhibit static sparsity that remains

constant across different inputs while the remaining two data-structures (activations

and errors) exhibit dynamic sparsity that varies dynamically across different inputs.

Figure 3.1 summarizes the sparsity in the different FFNN data-structures, which we

describe in the remainder of this subsection.

Static Sparsity

Weight Sparsity. Sparsity in weights occurs during the inference phase of the

FFNN. As shown in Figure 3.1, after training, connections whose weights are close

to zero are pruned to compress the model size [25,43,44]. The last row in Figure 3.1

shows the fraction of zero weights in the different layers of the AlexNet model trained

using deep compression [43]. We find the sparsity to vary between 18%-85% across

the different layers. Weight sparsity is static in nature because of the fact that zero

weights are identified before the inference phase.

Dynamic Sparsity

Activation sparsity. Sparsity in activations stems from the thresholding nature

of the activation function present at the output of each layer. As shown in Figure 3.1,

the predominantly used ReLU (Rectified Linear Unit) activation function clips neg-

ative inputs to zero. Figure 3.1 also shows the average activation sparsity exhibited

by various FFNN benchmarks, which ranges between ∼25%-60%. Activation sparsity

25

has a dynamic nature i.e., because neurons whose outputs are zero vary considerably

across inputs. Figure 3.2 illustrates this property for the activations produced by the

conv3 layer of AlexNet. The activations are evaluated for two different inputs from

the ImageNet dataset, and presented as black-and-white images where white pixels

represent zero values. The example clearly illustrates that the fraction and locations

of zero elements varies considerably across inputs.

Input 1

Input 2 Feature: 1 Feature: 100

CONV3 – Feature MapInput Image

Fig. 3.2.: Variation in activation sparsity of AlexNet CONV3 layer across two

different input images

Error Sparsity. Sparsity in the error data-structure originates from two sources.

First, the derivative of the activation function, such as ReLU, is zero when the error

at the output of the layer is negative. Next, when errors are propagated back through

a max-pooling layer, as shown in Equation 3.1, only one input of each pooling window

is set a non-zero error value.

∂E

∂yl
(x+ p, y + q) =

0, if yl+1(x, y) 6= yl(x+ p, y + q)

∂E
∂yl+1

, otherwise

(3.1)

26

For example, if a pooling window of size 2×2 is used, at least three quarters of

the error values are sparse. Similar to activation sparsity, the error sparsity is also

dynamic. The average error sparsity in different layers of a FFNN trained for the

CIFAR-10 dataset is shown in Figure 3.1. The error sparsity is considerable and

varies from 75%-93%.

3.1.2 Opportunity for Computational Savings

Figure 3.3(a) shows the fraction of multiply-accumulate (MAC) computations

that are rendered redundant for each FFNN benchmark due to dynamic sparsity in

activations during inference. We find that between 25%-60% (average: 45%) of the

computations can be skipped, underscoring the substantial opportunity improvement.

0

0.2

0.4

0.6

0.8

C
IF

A
R

-1
0

A
le

xN
et

D
ee

p
C

o
m

p

G
o

o
gl

eN
et

V
G

G
-1

6

R
es

N
et

-5
0

G
eo

M
ea

n

Fr
ac

. R
ed

u
n

d
an

t
O

p
s
→

Different Input Images

0 200 400 600 800 1000

0.45

0.4

0.3

0.25

Fr
ac

ti
o

n
 o

f
O

p
s

sa
ve

d

0.35

(a) (b)

Fig. 3.3.: (a) Average fraction of redundant ops across benchmarks (b) Variation in

fraction of redundant ops across different inputs of AlexNet

Figure 3.3(b) shows how the fraction of redundant operations varies across 1000

different inputs for the AlexNet CNN. We observe ∼14% variation across inputs,

27

although every input shows considerable opportunity for reduction in execution time

(minimum: 28%).

In summary, the dynamic sparsity present in the activation and error data-structures

offers a substantial opportunity to accelerate FFNNs. However, the levels of sparsity

are not extreme enough to completely exploit them in software, and this coupled with

their dynamic nature necessitates hardware solutions to realize benefits in the context

of general purpose processors.

3.2 Long Short Term Memory Neural Networks

This section provides a brief review of Recurrent Neural Networks, Long Short Term

Memory networks and sequence-to-sequence models. Recurrent Neural Networks are

a class of neural networks designed to process sequential information with the help

of memory or state. Individual symbols of an input sequence are presented to the

RNN at each processing timestep. These inputs are used to modify the network state,

thereby accumulating information from the past.

xt (tth symbol of input sequence x)

yt (tth output)

ht

(memory

state at

timestep t)
x0 x1 xn-1

y0 y1 yn-1

(a) (b)

…

timestep 1 timestep n-1timestep 0

Fig. 3.4.: (a) Basic RNN (b) Time unrolled RNN

The basic structure of an RNN is shown in Figure 3.4(a). It operates on the tth

symbol, xt, of the input sequence, x, at timestep t and modifies the state ht, before

feeding it back to the network at time t + 1. The network is trained through the

Backpropagation Through Time (BPTT) algorithm, performing backpropagation on

an RNN unrolled into multiple timesteps (Figure 3.4(b)). Several RNN models, with

28

varying levels of ability to model sequences, have been proposed over the years [91–

93]. We focus on the most commonly used model, called Long Short Term Memory

networks (LSTMs). However, our proposed approximations can be applied to any

RNN model that has clearly identifiable state and timesteps.

3.2.1 Long Short Term Memory networks (LSTMs)

ft
it čt

ht-1 ht-1

ot

ht-1

ct

(current

cell state)
tanh

ht

(current

output)

xt (tth symbol of input sequence)

ht-1

(previous

output)

forget
gate

ct-1

(previous

cell state)

input
gate

output
gate

Fig. 3.5.: Long Short Term Memory cell

LSTMs [91] represent a special class of RNNs known for their ability to effectively

learn long-term dependencies in sequences. Recent interest in RNNs has been largely

fueled by LSTMs, and LSTMs and their variants account for most practical applica-

tions of RNNs. An LSTM is composed of cells. The structure of a cell is illustrated in

Figure 3.5. Each cell has an associated state referred to as the cell state, ct. Carefully

regulated structures, called gates, control the addition and removal of information

from the cell state. A gate is a neural network layer with a sigmoid activation func-

tion, followed by pointwise multiplication. The sigmoid output, with values between

0 and 1, dictates how much of each component should be let through for pointwise

multiplication with the cell state. The forget gate, ft, determines how much of the

previous cell state, ct−1 should be passed on to the current time step. A new set

of candidate values for the cell state, ĉt, is produced by a tanh layer. Subsequently,

the input gate it determines the fraction of new candidate values to be added to the

current cell state. Finally, the output gate, ot, controls which parts of the cell state

29

go to the output, ht, produced at timestep t. Mathematically, the computations in

an LSTM can be represented by the following equations.

ft = σ(Wf × [ht−1, xt] + bf)

ĉt = tanh(Wc × [ht−1, xt] + bc)

it = σ(Wi × [ht−1, xt] + bi)

ct = ft ∗ ct−1 + it ∗ ĉt

ot = σ(Wo × [ht−1, xt] + bo)

ht = ot ∗ tanh(ct)

(3.2)

Here, Wf , Wc, Wi and Wo are the matrices storing the weights of different gates;

bf , bc, bi and bo are the biases of the different gates; ct is the current cell state and ht

is the current output. Matrix-vector multiplications are indicated by × and element

wise multiplications are indicated by ∗.

LSTMs are most commonly used for sequence-to-sequence learning, which we

discuss next.

3.2.2 Sequence-to-Sequence Learning

Sequence-to-sequence learning refers to the ability to learn a mapping from input

sequences in one domain to output sequences in a different domain. Sequence-to-

sequence models are deployed in a wide range of tasks including neural machine

translation [58], speech recognition [57] and video captioning [3]. As shown in Fig-

ure 3.6, a sequence-to-sequence model comprises of two structures — an encoder and

a decoder. The encoder converts the input sequence into a fixed dimensional con-

text vector, which is then used by the decoder to generate the output sequence. For

example, in a machine translation task, the encoder utilizes the words of the source

sentence to produce a context vector that summarizes the semantics of the sentence.

The decoder subsequently operates on this semantic vector to generate translated

words in the target language. Advanced sequence-to-sequence models employ en-

30

coder and decoder networks with multiple layers and residual connections between

layers to enable effective learning of more complicated sequences.

…

…

Encoder

Decoder

E
n
co

d
ed

 c
on

te
xt

ve

ct
or

x0 x1
xn-1=

<EOS>
…

Output sequence of length m

y0 y1 ym-1=<EOS>…

…

Input sequence of length n

Fig. 3.6.: Sequence-to-sequence model

Evaluating sequence-to-sequence models. Sequence-to-sequence models are

evaluated by determining the quality of output sequences generated by a model. Un-

like image recognition tasks, which usually have a unique golden output, most tasks

performed by sequence-to-sequence models may allow multiple correct outputs for a

given input. For example, there could be multiple correct translations for a given

input sentence, which vary in the choice of words or phrases, as well as the ordering

thereof. Human evaluations of these output sequences can be expensive. Multiple

automatic evaluation methods have been proposed for sequence-to-sequence models

that generate natural language as their output. A few examples are BLEU [94],

METEOR [95], ROUGE [96] and CIDEr [97]. We utilize the most popular metric

BLEU (Bilingual Evaluation Understudy) to evaluate the quality of our sequence-to-

sequence models. BLEU scores indicate how similar the generated sentence is to the

reference sentences, with higher values representing more similar sentences. A BLEU

score of 100 indicates that the generated sentence is identical to one of the reference

sentences.

31

Execution time breakdown for sequence-to-sequence models. The overall

execution time of a sequence-to-sequence model is a function of 4 major parameters

as shown in equation 3.3.

InputSeqLen× ComputeT imePerInputSymbol+

OutputSeqLen× ComputeT imePerOutputSymbol
(3.3)

where InputSeqLen and OutputSeqLen denote the lengths of the input and output

sequences and ComputeT imePerInputSymbol and ComputeT imePer OutputSymbol

denote the time required to process a single symbol of the input and output se-

quence. Overall, the first product term represents the encoding time while the second

product term represents the decoding time. Three of the four parameters, namely,

InputSeqLen, ComputeT imePerInputSymbol and ComputeT imePerOutputSymbol

are deterministic in nature and depend on the number of input symbols processed and

the amount of computation in the encoder and decoder, respectively. The remain-

ing parameter, OutputSeqLen, is non-deterministic and is influenced by the map-

ping performed by the sequence-to-sequence model. Reducing the execution time of

sequence-to-sequence models amounts to reducing one or more of the four parameters

mentioned above, without adversely affecting the overall quality of the model.

In summary, LSTMs and sequence-to-sequence models in particular have struc-

tures that are significantly different from feedforward neural networks. The explo-

ration of techniques exploiting their specific characteristics is key to improving their

execution efficiency.

3.3 Spiking Neural Networks

Just like any other neural networks, SNNs are interconnected networks of primitive

compute units, called neurons, that are organized in layers, with neurons in each

layer connected to those in the layer succeeding it. The junction between connected

neurons is called a synapse, which is associated with a parameter, the weight, that

signifies the strength of the connection. The synaptic weights are learnt during the

32

training process. In SNNs, as shown in Figure 3.7, information is represented and

processed using spikes, which take a binary value 0 or 1. Inputs are presented to

the neurons in the first layer as a time series of spikes. The spike trains propagate

through the network until the output layer is reached. Each neuron in the output

layer is associated with a class label, and the input is assigned the class corresponding

to the output neuron that spiked the largest number of times. The number of time

steps for which the SNN is evaluated is a key network parameter, and is determined

during training.

4

5

6
I3

I2

I1

Time

Input spike trains Membrane potential

Output spike trains

Neuron

Weighted
synapse

Reset
Threshold

7

8

Input

Time

Time

Output
Class

Time

Fig. 3.7.: Spiking neural network preliminaries

Several spiking neuron models, with varying levels of biological fidelity, have been

proposed [98]. In this dissertation, we consider the most commonly used model, called

Leaky-Integrate-and-Fire (LIF); however, our proposed approximation method is in-

dependent of the neuron model used in the SNN. The LIF neuron has 3 key parameters

viz., the membrane, threshold and reset potentials. At the start of evaluation, the

membrane potential is initialized to the reset value. Whenever a spike is observed

at an input, the membrane potential is updated by the weight of the connection. In

addition, in each time step, the membrane potential leaks (is decremented) by a fixed

value. Mathematically, the LIF neuron is represented by Equation 3.4.

Vi(t) = Vi(t− 1)− Vleak +
∑
j

wjiAj(t) (3.4)

33

where Vi(t) is the membrane potential of neuron i at time t, Vleak is the leakage

potential, wji is the weight of the synapse connecting neuron i and its input j, and

Aj is a binary variable indicating whether input j spiked at time t. The LIF neuron

produces an output spike whenever its membrane potential exceeds the threshold,

following which the potential is re-initialized to the reset value.

The key compute primitive in SNNs is the set of updates triggered by a neuron

spike. In this case, the potentials of all of its fanouts are updated by the respective

synaptic weights. These updates may in turn cause new spikes to be generated and

subsequently processed.

In summary, SNNs are event-driven workloads, wherein work is dynamically gen-

erated as neurons spike in the network. The set of updates triggered by each spike is

the basic unit of work.

3.4 Pruning in DNNs

Pruning refers to the process of removing insignificant connections and neurons in a

DNN and setting the corresponding weight values to zero. The benefits of pruning,

and the weight sparsity borne out of it, are two-fold. First, as discussed in Section 3.1

in greater detail, the zero weight values lead to redundant MAC operations which

can be skipped to obtain computational savings. Second, the pruned weights can be

compressed and stored compactly in memory by utilizing different sparse formats.

A wide variety of pruning techniques have been proposed over the years, which

can be grouped into two broad categories based on the granularity in which they

introduce zeros. Fine-grained or element-wise pruning zeros out individual weights

in the network [43–45], while coarse-grained or structured pruning zeros out well-

defined groups of weights [99,100]. Coarse-grained pruning leads to regular compute

and data access patterns in DNNs, enabling easy exploitation of weight sparsity. It

can also directly reduce the memory requirements without requiring sparse storage

formats, specially in the extreme forms of channel and filter pruning. The main ad-

34

vantage of fine-grained pruning, on the other hand, is its ability to achieve higher

sparsity levels in the lack of any shape or size constraints. It can also significantly

prune hand-designed compact DNN models, like Mobilenet [101], as well as, compact

models designed through neural architecture search (NAS) techniques, like NasNet-

Mobile [101], which have reduced opportunities for coarse-grained pruning.

As part of our work on studying the efficacy of pruning in ultra-low precision

DNNs, we focus on fine-grained pruning and consider the technique of Automated

Gradual Pruning (AGP) [102] which can successfully realize a DNN with any target

sparsity level. It gradually increases the sparsity level, and the number of pruned

weights, in each pruning step or epoch until the target sparsity level is achieved. As

expected, higher target sparsity levels can affect network accuracies significantly. In

order to minimize this, the weights are pruned on the basis of their magnitudes, with

all weights below a particular magnitude pruned in each step.

3.5 Quantization in DNNs

Quantization in DNNs reduces the number of bits used to represent the DNN data-

structures. It is based on the observation that DNN data-structures dont require

the full representations of double (64-bit) or single (32-bit) floating-point numbers.

Instead, DNNs can produce correct outputs and achieve iso-accuracy levels even

when their data-structures are represented with just 8 bits or less [103]. Quan-

tization provides both computational and memory benefits in DNNs as the low-

precision operations can be performed with arithmetic units of lower complexity,

and the low-precision data-structures can be stored using less number of total bits.

A broad range of DNN quantization approaches have been proposed over the past

few years [38,103–105]. These approaches explore the use of different number formats

(floating-point or fixed-point), uniform and non-uniform quantization techniques, as

well as, post-training quantization and quantization-aware training processes. We

35

consider post-training quantization of DNNs to fixed-precision representations in the

ultra-low precision DNNs explored in our work.

3.6 Adversarial Attacks on DNNs

Adversarial attacks modify inputs in a manner that force a DNN model to misclassify,

while ensuring that the input changes are small and imperceptible to human eyes. In

the context of DNNs that operate on images, which are the focus of most prior work,

various attack methods have been proposed to systematically modify pixel values

in the input image so as to result in a mis-classification. A few such methods are

described below.

Fast Gradient Sign Method (FGSM) [31]. FGSM is a single-step attack that

operates by calculating the gradient of the loss function with respect to the input

pixels (OxL(θ,X, Y)). Based on the sign of the loss, the input pixels are increased

or decreased by a small constant, ε, to help move the image towards the direction of

increased loss. The adversarial input, Xadv can be computed as:

Xadv = X + εSign(OxL(θ,X, Y)) (3.5)

Here, X is the original input image associated with an output Y and θ refers to the

weights of the network.

Basic Iterative Method (BIM) [33]. BIM is an iterative version of the

FGSM attack which performs a finer optimization by modifying pixels by small values

in each iteration. Further, the image generated in each iteration has its pixel values

clipped to ensure minimal distortion. Mathematically, this attack can be described

as:

X0
adv = X, XN+1

adv = ClipX,ε{XN
adv + αSign(OxL(θ,XN

adv, y))} (3.6)

Here, the terms X, Y , θ and ε have the same meaning as in Equation 3.5 and XN
adv

refers to the adversarial input generated at the N th iteration and α is the step size in

each iteration.

36

Carlini-Wagner (CW) [51]. CW is another iterative attack that employs op-

timizers to create strong adversarial inputs by simultaneously minimizing the input

distortion and maximizing the misclassification error. It can be described mathemat-

ically as:

min
δ
‖δ‖22 + c · f(X + δ) such that (X + δ) ∈ [0, 1]n

f(X) = max(max
i 6=t
{Z(X)i} − Z(X)t, 0)

Xadv = X + δ

(3.7)

where δ is the input distortion, c is the Lagrangian multiplier, Z(X) is the logit

output for the input X, t is the target class and f(X) is an objective function that

satisfies the condition f(X + δ) ≤ 0 for all misclassifications.

Projected Gradient Descent (PGD) [32]. PGD is a third type of iterative

attack very similar in nature to the BIM attack. Unlike BIM, which starts with the

original image itself, PGD starts with a random perturbation of the original input

image. PGD can be described by the following equations:

X0
adv = X + randomUniform(shape(X), {−ε, ε})

XN+1
adv = ClipX,ε{XN

adv + αSign(OxL(θ,XN
adv, y))}

(3.8)

Here, the terms X, Y , XN
adv, θ, ε and α have the same meaning as in Equation 3.6.

To summarize, different adversarial attacks have been proposed that expose the

lack of robustness in current DNN models by constructing adversarial inputs that

force a misclassification. Developing defenses to these adversarial attacks is critical

to enable the deployment of DNNs in safety-critical systems.

3.7 Test Pattern Compression

Test pattern compression is widely used to reduce the size of tester memories in IC

testing by exploiting the redundancies in test patterns. Various test pattern com-

pression techniques have been proposed over the years utilizing reseedable-LFSR-

codes [106], XOR networks [107] and Golomob codes [108]. We utilize Embedded

37

D
ec

o
m

p
re

ss
o

r
Scan chain 2

Scan chain 3

Scan chain S
… C

o
m

p
ac

to
r

Compressed test patterns Compacted responses

in
p

u
t

ch
a

n
n

el
 1

in
p

u
t

ch
a

n
n

el
 E

… …

D
ec

o
m

p
re

ss
ed

 t
es

t
p

a
tt

er
n

s

Scan Chain 1

…
Scan
cell

Scan
cell

Scan
cell

1 2 D

…

Design Under Test

Fig. 3.8.: Test pattern compression architecture

Deterministic Test (EDT) [109] within Mentor Graphics Tessent tool to perform test

pattern compression in our work. The overall test compression architecture in EDT

is shown in Figure 3.8. It consists of a design-under-test (DUT) with multiple scan

chains, each of which has several scan cells. The compressed test patterns are stored

in the external test memory and fed to the decompressor to obtain the individual test

patterns fed to the scan chains. At every test cycle, E bits fed to the decompressor

are converted to S bits, where E and S are the number of external input channels

and the number of internal scan chains, respectively. Thus, the achieved test pattern

compression ratio achieved equals S/E. The compactor performs the inverse oper-

ation of the decompressor and compacts the outputs generated by the scan chains

to store them externally as compacted responses, which are subsequently compared

with the golden test results.

38

4. SPARCE: SPARSITY AWARE GENERAL-PURPOSE

CORE EXTENSIONS TO ACCELERATE

FEED-FORWARD NEURAL NETWORKS

Deep Neural Networks (DNNs) have transformed the field of machine learning and

have greatly advanced the state-of-the-art in image, video, text and speech process-

ing [1–3,6,110]. As mentioned in Chapter 1, their success in the domain of computer

vision applications can primarily be attributed to the development of Feed-Forward

Neural Networks (FFNNs), specially, Convolutional Neural Networks (CNNs). As

FFNNs get pervasively deployed, a key challenge that arises is their computational

demand, which far outstrips the capabilities of modern computing platforms. For ex-

ample, ResNet-152 [1], a state-of-the-art CNN for image recognition, requires ∼11.3

giga operations to classify a single 224×224 image.

The computational demands of FFNNs have most commonly been addressed

through the design of specialized accelerator architectures that exploit the unique

compute and communication characteristics of FFNNs. However, we focus on deeply

embedded systems such as wearables and IoT edge devices where the additional area

and cost imposed by custom accelerators is prohibitive. For example, even a low

power accelerator such as Eyeriss [26] occupies 12.25mm2 area which is 30× larger

than the 0.4mm2 occupied by an ARM Cortex A35 core [111]. Thus, in highly

area-constrained platforms, FFNNs are typically executed on the general-purpose

processor (GPP) cores already present in them. We focus on improving the execution

time of FFNNs on GPPs by leveraging sparsity in different FFNN data-structures,

viz., activations, weights and backpropagated errors. Sparsity in FFNNs can be both

static or dynamic, depending on whether the zero values remain constant or vary

across different inputs to the network. Sparsity in weights, introduced by pruning

connections in the network after training, is static in nature. In contrast, activation

39

and error sparsities, caused by the thresholding nature of the ReLU (Rectified Linear

Unit) activation functions, are dynamic in nature. We note that sparsity leads to

truly redundant MAC operations in FFNNs which can be skipped with no effect on

the output quality (e.g. classification accuracy).

Eyeriss[18], EIE[27],
SCNN[28], Cambricon-x[29],

GPU ZeroSkip[30]

Eyeriss[18],
Cnvlutin[26],

EIE[27], SCNN[28]

SparseCNN[31], SSL[32],
Scalpel[33], SPARCE

SPARCE

Accelerators

General
Purpose

Processors

Static sparsity Dynamic sparsity

Fig. 4.1.: Related work: Exploiting sparsity in FFNNs

Prior efforts that exploit sparsity to accelerate FFNNs can be grouped into two

classes based on whether they exploit static or dynamic sparsity, as shown in Fig-

ure 4.1. Specialized accelerators [26,68–72] have been proposed to exploit both forms

of sparsity. As mentioned previously, the area and cost overhead of these accelerators

is prohibitively high for many IoT edge devices. Software-only approaches [73–75]

allow static sparsity to be exploited on GPPs through sparse encodings and sparse

matrix multiplication routines. However, these techniques are unable to exploit dy-

namic sparsity because of the encoding overhead involved at runtime. We observe

across 6 image-recognition FFNNs that dynamic sparsity in features ranges from

40%-70%, resulting in 45.1% of the computations being rendered redundant during

inference, presenting a significant opportunity for improving performance. We believe

our effort, SparCE, is the first to successfully exploit dynamic sparsity to accelerate

FFNNs on GPPs. Moreover, since static sparsity is a special case of dynamic sparsity

where the location of zeros can be identified a priori, SparCE is a single solution

that exploit both forms of sparsity.

40

To exploit dynamic sparsity, GPPs need to be equipped to dynamically detect if

the result of an instruction (e.g., a load from a sparse data structure) is zero and

if so, skip a set of future instructions that use its result. However, there are three

key challenges: (i) the instructions to be skipped often do not immediately follow the

instruction that determines whether they are redundant; moreover, the instructions

to be skipped may be non-contiguous in the program, (ii) to maximize performance

benefits, the instructions to be skipped should be prevented from even being fetched,

as squashing the instruction in-flight would diminish the benefits by introducing a

pipeline stall, and (iii) GPPs often utilize SIMD (Single Instruction, Multiple Data)

execution units which allow the instructions to be skipped only if the computations

performed in all the SIMD lanes are redundant.

Sparsity aware Core Extensions (SparCE). To overcome the aforementioned

challenges, Sparsity aware Core Extensions (SparCE) proposes two key micro-archit-

ectural enhancements to GPPs. First, SparCE contains a Sparsity Register File

(SpRF) to track general purpose registers that contain zero values. We achieve this

by augmenting the writeback stage of the processor to check if the update to a register

is zero and appropriately modify the corresponding SpRF entry. Next, a Sparsity-

Aware Skip Address (SASA) Table is used to store instruction sequences and the

conditions under which they can be skipped i.e., the registers in the SpRF that need

to be zero for the instructions to become redundant. Whenever SparCE fetches an

instruction, it uses the SASA Table and the SpRF to pre-identify whether the follow-

ing instruction(s) can be skipped. If so, the program counter is modified to directly

fetch the next irredundant instruction. In order to suitably leverage these micro-

architectural extensions, we also propose a code generation process for SparCE that

allows successful identification of redundant instruction sequences and subsequent

programming of the SASA Table.

41

In summary, the key contributions of this work are:

• We propose Sparsity aware Core Extensions (SparCE) to accelerate FFNNs

on general purpose processors by skipping redundant computations borne out

of sparsity in the different FFNN data-structures.

• SparCE comprises of micro-architectural enhancements to dynamically track

when the result of an instruction is zero, pre-identify future instructions that

are rendered redundant, and prevent them from being fetched and executed,

thereby improving performance.

• We evaluate SparCE on a suite of 6 state-of-the-art image-recognition FFNN

benchmarks using the Caffe deep learning framework. We achieve application-

level speedups of 19%-31% on a scalar ARMv8 microprocessor. We also achieve

speedups of 8%-15% over highly optimized baseline implementations that use

OpenBLAS on an ARMv8 processor with 4-way SIMD and prefetching support.

The rest of the chapter is organized as follows. Section 4.1 details the key design

principles of SparCE and demonstrates them in the context of an in-order pipelined

processor. Section 4.2 describes the code generation process and shows SparCE in

action using the ARM-BLAS GEMM routine as a case study. Section 4.3 describes

the experimental methodology and the results are presented in Section 4.4. Finally,

Section 4.5 summarizes the chapter.

4.1 SparCE: Sparsity Aware General Purpose Core Extensions

To exploit the different forms of sparsity and improve FFNN performance on GPPs,

we propose Sparsity aware Core Extensions (SparCE), a set of micro-architectural

and ISA extensions that are general-purpose, minimally intrusive and low-overhead.

In this section, we present the key ideas behind SparCE and describe how they can

be integrated within an in-order processor pipeline.

42

4.1.1 Challenges

The key challenge in exploiting sparsity is to equip the processor with the ability

to dynamically detect if the result of an instruction is zero and if so, skip a list of

future instructions that are rendered redundant. We illustrate this challenge using

the assembly code snippet shown in Figure 4.2, which computes the dot-product of

two vectors, INP and KER, each of size N , to produce a scalar OUT . Registers r0,

r1 and r2 hold the data operands, while p0, p1 and p2 are pointers that hold their

respective memory locations. For each instruction in the program, Figure 4.2 shows

the instructions that can be skipped when its result is zero. For example, when the

INP load returns a zero (Inst. 2), the subsequent KER load (Inst. 4), and the

multiply and add instructions can be skipped (Insts. 6-7). It is noteworthy that

the computational savings is a weighted sum of the number of instructions skipped

and the cycles taken by each instruction. For instance, floating point multiply and

add instructions may take 3-5 cycles to execute, while a load incurs variable cycles

depending on the level of cache hierarchy accessed.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

LD r2, [p2] //Load OUT

LOOP : LD r0, [p0] //Load INP

ADD p0, p0, #1

LD r1, [p1] //Load KER

ADD p1, p1, #1

FMUL r3, r1, r0 // r3 = INP*KER

FADD r2, r2, r3 // OUT += r3

INC INDEX

BNE INDEX, #N, LOOP

ST r2 , [p2]

Redundant insts. if result == 0

4,6-7

6-7

7

Vector Dot-product

Fig. 4.2.: Redundant instructions due to sparsity in vector dot-product evaluation

43

The following observations highlight the challenges in detecting and benefiting

from sparsity.

• Location of redundant instructions. In a program, the instructions that can

be skipped may not immediately follow the instruction producing the zero result.

Worse, redundant instruction sequences may be scattered non-contiguously

through the program. For instance, in the program shown in Figure 4.2, when

inst. 2 returns a zero, 2 non-contiguous instruction sequences (Inst. 4 and Insts.

6-7) need to skipped. Hence, efficient ways to capture which instructions can be

skipped is key to leveraging sparsity.

• Avoiding redundant instruction fetches. To maximize performance, the

instructions that can be skipped need to be prevented from even being fetched.

This is especially critical in the context of in-order pipelines, where even if the

instruction is squashed after being fetched, it would introduce a bubble in the

pipeline. For example, if the condition for r0 or r1 being zero is checked after

the FMUL instruction is fetched (Inst. 6), it would result in a bubble flowing

through the pipeline in place of Inst. 6. It is worth noting that, in the context

of multi-cycle instructions, squashing the instruction after it is fetched can still

improve performance.

• Use of SIMD instructions. GPPs use vector units with SIMD (Single In-

struction, Multiple Data) execution engines to exploit fine-grained data paral-

lelism in workloads. SIMD instructions can be skipped only if computations

performed on all the vector lanes are redundant. This constrains the sparsity

to be relatively coarse grained, as irregularly scattered zero values are not ben-

eficial.

44

4.1.2 SparCE: Overview

Figure 4.3 shows an overview of the micro-architectural and ISA enhancements

proposed in SparCE. We describe these extensions in detail, and demonstrate how

they address the aforementioned challenges to leverage sparsity in CNNs.

Fe De Exe WBPC IF
/ID

ID
/E

X

EX
/W

B

Sparse Value
Checker (SVC)

Processor
Pipeline

Update SpRF if
inst. result is zero

Track if a
register is zero

Modulate PC if
next set of insts.
can be skipped

Stores which insts.
become redundant

& when?

Identify Redundant
Instruction Regions
• Identify sparse data-

structures
• Mark insts. that

operate on them

Deep Neural
Network

(DNN) Program

HW/SW interface

Program SASA table
• Form SASA table

entries
(PC, sp.Regs, #insts)
• Instrument SASA-LD

insts. in program

SparCE: Software Design

SparCE uArch States

Sparsity Aware Skip
Address (SASA) Table

Sparsity Register
File (SpRF)

Pre-identify & Skip
Redundancy Unit (PSRU)

SparCE uArch Support

Fig. 4.3.: SparCE: Design Overview

Micro-architectural states and ISA Extension

In SparCE, we augment the processor with two new micro-architectural states

viz. Sparsity Register File (SpRF) and Sparsity-Aware Skip Address (SASA) table.

The SpRF is used to dynamically track which registers in the processor’s register file

45

contain zero values. The SpRF contains one entry (few bits) corresponding to each

register in the register file. When an instruction that writes to a register retires,

the SpRF is updated if the result is zero. The SASA table stores information about

which instructions can be skipped and under what conditions. Specifically, each entry

stores the program counter (PC) of the instruction preceding a redundant instruction

sequence, the index of the register that determines redundancy and the length of

the sequence. Storing the PC of the instruction preceding a redundant instruction

sequence allows SparCE to pre-identify whether the next set of instructions can be

skipped and if so, skip them before the instructions are fetched.

SASA-LD Instruction. SparCE enables software to explicitly identify potentially

redundant instruction regions by pre-loading the SASA table at program startup, or

before the program execution enters a given code region. To this end, we extend the

ISA with a new instruction viz. SASA-LD, which loads a given region of memory

into the SASA table. As shown in Equation 4.1, the SASA-LD instruction takes a

register operand (Rn) that points to the SASA table’s location in memory and an

immediate operand (size) that denotes the size of the SASA table.

SASA-LD [Rn],#size (4.1)

At a given point in the program execution, the number of entries in the SASA table

limits the number of redundant instruction regions that can be skipped by SparCE.

However, the SASA table can be periodically refreshed from memory as the program

execution progresses. In the context of CNNs, we found that 20 entries in the SASA

table suffice to capture all redundant instruction sequences, since the computational

kernels are captured by a small number of library (e.g., BLAS) functions.

Tracking, Pre-identifying, and Skipping Redundant Instructions

SparCE utilizes the SpRF and the SASA table to dynamically skip redundant

instructions borne out of sparsity in the input data-structures. As shown in Figure 4.3,

the micro-architecture of SparCE is extended to support the following functions.

46

Track Sparse Registers. SparCE contains a Sparse Value Checker (SVC), which

in the processor’s writeback stage compares the result of each instruction to zero and

if so, updates the entry corresponding to the instruction’s destination register in the

SpRF.

Pre-identify & Skip Redundant Instructions. SparCE is equipped with a Pre-

identify and Skip Redundancy Unit (PSRU) that utilizes the SASA table to identify

and skip redundant instruction regions. For each instruction, we check if its PC

contains an entry in the SASA table. An entry in the SASA table indicates that the

instruction following the current instruction is the start of a potentially redundant

instruction sequence. In this case, the PSRU checks the SpRF to identify if the

registers indicated in the SASA table entry are currently zero. If so, it increments the

PC to the end of the redundant instruction sequence, thereby skipping instructions

to benefit performance. If not, SparCE proceeds to execute instructions in program

order.

In summary, SparCE uses the SpRF and the SASA table to seamlessly track

sparse registers, pre-identify instruction sequences that are redundant and dynami-

cally skip them before they are even fetched to improve performance.

4.1.3 In-order SparCE Processor Pipeline

We now explain how SparCE can be integrated into an in-order processor. Fig-

ure 4.4 shows the block diagram of the overall SparCE processor architecture. We

start with a conventional 4-stage (fetch, decode, execute/memory, and writeback)

pipelined processor architecture implementing a RISC-style instruction set with at

most 2 source register operands and one destination register operand. Although the

SparCE architecture is described in this section with a scalar execution unit for ease

of illustration, it is directly applicable to vector processors with any number of SIMD

execution lanes. We augment the processor with the following structures.

47

IF/ID

Fetch Decode

=

0

ID
/EX

M
EM

/W
B

Reg.
File

Instruction
CacheP

C

Writeback
M

u
x

PrecedingPC instsToSkip SpRFcondition

4067 2 SpRF[Rs1] | SpRF[Rs2]

4100 5 SpRF[Rs3] & SpRF[Rs4]

4250 2 SpRF[Rs3]

Sparsity Aware Skip Address (SASA) Table

isSparse regUpdInFlight

1 0

0 1

1 1

Rs2

Main/ ALU #1
pipeline

MAC pipeline

+

Mux

Sparsity Register File (SpRF)

Pre-identify &
Skip Redundancy

Unit (PSRU)

Sparse
Value

Checker
(SVC)

Execute/Memory

Rs1

Load/Store
Pipeline

SpRF[Rs1]
SpRF [Rs2]

Associative Memory

Check
SpRFCond.

Skippable
Region SASA Hit/Miss

Default

Squash

Update
Regs.

in-flight

isSparse

regUpdInFlight

PC
inc.

Fig. 4.4.: Block diagram of SparCE in-order processor architecture

Sparsity Register File (SpRF). The SpRF is located at the fetch stage of the

SparCE processor. It is a multi-ported register file, with one entry corresponding to

each register in the processor’s register file. Each entry in the SpRF contains only two

single-bit fields - isSparse and regUpdInFlight. The isSparse bit is set to 1 for registers

containing zeros, and reset otherwise. The regUpdInFlight bit indicates whether an

instruction modifying the register is in flight in any stage of the pipeline. For instance,

an instruction modifying register Rd, sets the SpRF [Rd][regUpdInF light] field when

it enters the decode stage and resets it after committing its result in the writeback

stage. In determining whether a future instruction is redundant, the regUpdInFlight

field ensures that we do not use a stale isSparse value when a more recent instruction

updating this register is under execution.

Sparse Value Checker (SVC). The SVC is added to the writeback stage of the

SparCE processor. It contains a comparator that checks if the output of each in-

struction that updates a register is zero. It then correspondingly updates the SpRF.

48

For example, when the output of an instruction with destination register Rd is zero,

then SpRF [Rd][isSparse] is set and SpRF [Rd][regUpdInF light] is reset.

Sparsity-Aware Skip Address (SASA) table. The SASA table is also present

in the fetch stage of the SparCE processor. As shown in Figure 4.4, the SASA

table is an associative memory structure with three fields: (i) preceedingPC, which

stores the PC of the instruction prior to the redundant instruction sequence, (ii)

SpRFCondition field which stores a Boolean combination of 2 register indices in

the SpRF that should be satisfied for the instruction region to be skipped, and (iii)

instsToSkip, which contains the length of the redundant instruction sequence. As

an example, for the code in Figure 4.2, the SASA table entry to skip instructions 6-7

would be {preceedingPC=5, SpRFCondition=r0|r1, instsToSkip=2}.

PC
SASA
Hit?

Yes

SpRF[Rs1,Rs2]
inflight?

No

Is SpRF
[Rs1,Rs2]
sparse?

Ye
s

PC += SASA[PC]
instsToskip

No

PC++

Yes

Mark
{PC + SASA[PC]

instsToskip}
as skippable

PC++

Is PC
skippable?No

Yes

No

SpRF[Rs1,Rs2]
inflight?

PC++

No

Is SpRF
[Rs1,Rs2]
sparse?

Ye
s

PC += skippable
region end

No

PC++

Yes

PC++

Fig. 4.5.: Flowchart for pre-identifying and skipping redundancy

49

Pre-identify and Skip Redundancy Unit (PSRU) The PSRU is also added to

the fetch stage of SparCE processor. The PSRU determines whether an instruction

region specified in the SASA table can be skipped, and appropriately modulates the

PC. Figure 4.5 shows the flowchart depicting the operation of PSRU. Given a PC,

an associative lookup is performed on the preceedingPC field of the SASA table. If

the PC is a hit in the SASA table, then the next instruction marks the beginning of a

potentially redundant instruction sequence. To ascertain if the instruction sequence

can be skipped, the PSRU reads the register indices specified in the SpRFCondition

field of the SASA table (say Rs1 and Rs2) from the SpRF. If neither SpRF [Rs1] nor

SpRF [Rs2] have their regUpdInF light field set, then PSRU computes the Boolean

condition (specified in the SpRFCondition field) on their respective isSparse fields.

If the condition is satisfied, then the instruction region is deemed redundant and the

PC is incremented by instsToSkip to point to the instruction immediately following

the end of the redundant region. If not, PC is incremented by 1 and the instructions

are executed in program order. However, if the regUpdInF light field is set for either

SpRF [Rs1] or SpRF [Rs2] and the Boolean condition in SpRFCondition cannot be

definitively evaluated, then the instruction region is temporarily marked as a skippable

region within the PSRU. The PC is incremented by 1 and the program execution is

continued. It is worth noting that continuing or aborting execution of a skippable

region will not affect program functionality.

In the case when a PC is not present in the SASA table, the PSRU checks

if the PC is part of an active skippable region. For the registers present in the

SpRFCondition, the regUpdInF light fields are re-checked from the SpRF. If they

are reset, the Boolean condition in SpRFCondition is evaluated. If the skippable

region is determined to be redundant, then the remaining instructions in the region

are skipped by appropriately modifying the PC. Further, instructions belonging to

the skippable region prior to the current PC are squashed if they are still in flight.

If the Boolean condition evaluates to a false, then the remaining instructions in the

skippable region are executed. Finally, for a PC that misses the SASA table and is

50

not part of any active skippable region, the PC is incremented by 1 to fetch the next

instruction.

In general, branches can also be a part of redundant instruction regions if the

branches are guaranteed to be always not-taken when the associated registers are

sparse. In the absence of such a guarantee, the redundant instruction regions are frag-

mented into multiple segments without the branches. This ensures that the branches

are always evaluated and the control flow of the program remains unaffected. Irre-

dundant branch instructions preceding a redundant instruction region can potentially

pose a challenge as the result of its execution (whether the branch will be taken or not)

is unknown. We address this challenge by changing the preceding PC in the SASA

Table from the branch instruction to the following redundant instruction. This en-

sures that we skip the redundant instructions only if the branch takes the control flow

to that region. However, the observed benefits may be lower due to the inability to

skip the first instruction in the redundant region.

We note that the logic introduced in SparCE to pre-identify redundant instruc-

tions executes in parallel with the instruction cache (ICache) access. The additional

logic does not impact the latency of the fetch stage, as both the SASA table and the

SpRF are significantly smaller structures compared to the ICache.

In summary, by using the SpRF and the SASA table, SparCE dynamically

tracks sparse registers, pre-identifies if an instruction region is redundant and skips

instructions before they are even fetched to improve performance. Thus SparCE en-

ables CNN acceleration on GPPs by exploiting the sparsity resident in their data-

structures.

4.2 Software for SparCE Processsors

To extract maximum performance from SparCE, the software needs to suitably

leverage the sparsity-aware micro-architectural extensions. In this section, we outline

the key principles behind software design for SparCE, and demonstrate them in the

51

context of a highly optimized implementation of matrix multiplication (GEMM) from

the OpenBLAS library.

4.2.1 Code Generation for SparCE

Figure 4.6 presents an overview of the code generation process for SparCE. The

individual steps are subsequently described in more detail.

.rodata (read-only data)

0x0000: 0x08045000

.text (executable code)

0x0798: MOV p3, #0x0000

0x079C: SASA-LD [p3], #1

LOOP :

0x0800: LD r0, [p0]

0x0804: ADD p0, p0, #1

0x0808: LD r1, [p1]

0x080C: LD r2, [p2]

0x0810: FMUL r3, r1, r0

0x0814: FADD r2, r2, r3

0x0818: ST r2 , [p2]

0x081C: ADD p1, p1, #1

0x0820: ADD p2, p2, #1

0x0824: INC INDEX

0x0828: BNE INDEX, #N, LOOP

@Sparse float *input;

float *kernel, *output;

//initialization function
init(input, kernel, output);

//convolution function
conv(input, kernel, output);

(a) Sparse data-structures marked by
the programmer

. . .

(c) Instrumented code executed
on the SparCE processor

LOOP : LD r0, [p0] //Load INP (1)

LD r1, [p1] //Load KER (2)

LD r2, [p2] //Load OUT (3)

FMUL r3, r1, r0 // r3 = INP*KER (4)

FADD r2, r2, r3 // OUT += r3 (5)

ST r2 , [p2] (6)

ADD p0, p0, #1 (7)

ADD p1, p1, #1 (8)

ADD p2, p2, #1 (9)

INC INDEX (10)

BNE INDEX, #N, LOOP (11)

(b) Original assembly code snippet for
MAC operations in conv function

. . .
1. Mark input data-structure as sparse

5. Initialize SASA

Table in memory

PrecedingPC: 0804,

instsToSkip: 5,

SpRF condition: 000

6. Load SASA Table

from memory

(size =1)

2. Identify register

holding sparse data-

structure

3. Identify redundant

instruction sequence

4. Insert independent

irredundant

instruction

: Steps involved in instrumenting the

assembly code

Fig. 4.6.: Code generation for SparCE

Identifying sparse data-structures and redundant instructions. One of the

key requirements on software is to identify which instruction regions are potentially

redundant due to sparsity. To that end, the programmer first annotates sparse data-

types with @Sparse qualifiers in a high-level program. In the example shown in

52

Figure 4.6(a), the data-structure named input is marked as sparse. Next, when the

application is compiled, the registers into which the sparse data-structures are loaded

from memory are identified along with the corresponding load instructions (step 2 in

Figure 4.6(c)). Then, a static dependency analysis of the instruction stream reveals

the instructions that become redundant with zero values in the sparse data-structures.

These are marked as potentially redundant instruction sequences, as mentioned in

step 3 of Figure 4.6(c).

Reordering instructions to improve benefits. To completely skip a redundant

instruction region, the instruction whose result makes them redundant should have

completed execution. Therefore, in the context of in-order processors, they should

ideally be spaced at least few instructions apart (3 in our as case as the SVC is located

in writeback stage) in the program to prevent squashing and subsequent introduction

of pipeline bubbles. To this end, the instruction stream is re-ordered by inserting

independent irredundant instructions wherever possible to ensure maximum benefits.

For example, instruction (7) in Figure 4.6(b) is reordered to appear earlier in the final

code depicted in Figure 4.6(c).

Programming the SASA Table. The individual entries of the SASA Table contain

information about the registers identified as sparse and the corresponding redundant

instruction sequences. These entries are stored in memory as read-only data during

the initialization phase of the program (Step 5). Finally, the executable code is

instrumented with appropriate SASA-LD instructions before the execution of the

program region containing the redundant instruction sequences (Step 6).

Mapping sparse data-structures to vector processors. In vector processors,

typically one of the input operands is shared by all SIMD lanes, while the other

is different across lanes. A vector instruction can be skipped only if computations

performed on all SIMD lanes are redundant. Hence, it is better to map a sparse data-

structure as the shared input operand, since the likelihood of all non-shared inputs

being zero is low. If both data-structures are sparse, then the data-structure that

exhibits the most block-wise sparsity is mapped as the non-shared input operand.

53

We present more details about this step in the following subsection where we discuss

the details behind executing BLAS based GEMM routines on SparCE.

i=2

v12.s[i] == 0

Skip 4 fmla

instructions

v0.4s == 0

Skip 4 fmla

instructions

v12.s[0-3] == 0

Skip 4 ld1

instructions

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Loads SIMD registers

v0, v2, v4, v6, v8

Performs fmla on

v1, v3, v5, v7, v12

Loads SIMD registers

v1, v3, v5, v7, v12

Performs fmla on

v0, v2, v4, v6, v8

vX.4s: SIMD register with

4 32-bit (single precision)

elements

fmla: floating point multiply-add

to accumulator
ld1: vector load

prfm PLDL1KEEP: prefetch for load

into L1 and keep in cache

512: byte offset

pB: Pointer to values in matrix B,

v12, v8: SIMD registers with

values from matrix B

pA_x: Pointers to values in matrix A

v0-v7: SIMD registers with values

from matrix A

Variable
definitions:

Instruction
definitions:

Fig. 4.7.: Zero skipping for sgemm kernel subroutine in BLAS

54

4.2.2 Case Study: Executing GEMM Routine on SparCE

Popular deep learning frameworks, such as Caffe [112], TensorFlow [113], etc., ex-

ecute FFNNs as a series of matrix multiply operations, and leverage highly optimized

software libraries such as BLAS (Basic Linear Algebra Subprograms) to realize them.

Therefore, we evaluate the benefits of SparCE by executing the GEMM (Gener-

alized Matrix Multiply) routine from the OpenBLAS library [114] for an ARM v8

processor with 4-width SIMD. The corresponding implementation is referred to as

the OpenBLAS-SIMD4 implementation in Sections 4.3 and 4.4.

Figure 4.7 shows the original assembly program for the sgemm kernel l1 M16 22

subroutine, which performs single-precision floating point matrix multiplication (B×A=C).

The sgemm routine executes two smaller subroutines viz. kernel16x4 M1 (which we

abbreviate as M1) and kernel16x4 M2 (M2) sequentially in a loop. The subroutines

utilize vector registers v8 and v12 to hold the first input operand (B) and registers

v0-v7 to hold the second operand (A). The intermediate results are computed in

registers v16-v31. To optimize performance, each subroutine prefetches data for the

other. For example, M1 fetches data for operand A into the odd registers, which are

then used by M2 in the subsequent iteration. The memory addresses are provided

by scalar registers pB and pA 0-pA 3. The subroutines also prefetch data in the

L1-cache using the prfm instruction.

We identify redundant instruction sequences in the sgemm kernel l1 M16 22 sub-

routine assuming one of the input operands (say B) is sparse. The analysis can be

easily extended to cover the scenario when either A or both A and B are sparse.

Since B is sparse, it is beneficial to map it as the operand shared across the SIMD

lanes, which is already the case in Figure 4.7. Even when one of the words in a

vector register containing B (v8 or v12) is zero, 4 fmla instructions can be skipped.

For instance, when v12.s[1] equals 0, instructions 9,10,13,14 in M2 can be skipped.

This forms 2 redundant instruction sequences (9-10 and 13-14), each of size 2. This

amounts to 16 fmlas being skipped when the entire vector register (v8 or v12) is

55

zero. It is worth noting that, had the sparse data-structure (B) been mapped as the

non-shared SIMD operand in the program, only 4 fmlas could be skipped even when

the entire vector register is zero.

In addition to the fmla instructions being skipped, when the vector register is

fully zero, the load instructions for the second operand can also be skipped. For

example, when v12 is zero, ld1 instructions (7, 11, 15 and 19) for operand A can be

skipped in M1. Also, note that we did not re-order any instruction in the sgemm

routine, as the redundant instruction sequences were sufficiently spaced apart from

the instruction that triggers their skipping. In the context of fmla instructions, the

vector loads happen in a different subroutine owing to pre-fetching, and in the case

of the ld1 instructions, they were naturally spaced >3 instructions apart.

PrecedingPC instsToSkip SpRFcondition
Bgt inst.	in	
sgemm 2 SpRF[v8[0]]	

M1.4 2 SpRF[v8[0]]	
M1.6 1 SpRF[v12]
M1.8 2 SpRF[v8[1]]	
M1.10 1 SpRF[v12]
M1.12 2 SpRF[v8[1]]	
M1.14 1 SpRF[v12]
M1.16 2 SpRF[v8[2]]	
M1.18 1 SpRF[v12]
M1.20 2 SpRF[v8[2]]	
M1.23 2 SpRF[v8[3]]	
M1.26 2 SpRF[v8[3]]	

Fig. 4.8.: SASA table entries for kernel16x4 M1 subroutine

56

Based on the above analysis, Figure 4.8 shows the SASA table corresponding to

the M1 subroutine. We find a total of 12 entries in the SASA table, 8 entries of

size 2 for the 16 fmlas and 4 entries of size 1 for the ld1 instructions. The final

GEMM routine executed on SparCE has this information about the contents of the

SASA table built in it along with explicit SASA-LD instructions to load the table

from memory.

SparCE in action. Figure 4.9 depicts the sequence of events that leads to in-

structions being skipped by SparCE. First, when register v12 is loaded by the M1

subroutine, its SpRF entry is updated. Note that the isSparse field is a bit vector,

one bit for each word in the vector register. Next, when instruction M2.12 is fetched,

it sees a hit in the SASA table and the reads SpRF [12] to ascertain if the bit corre-

sponding to SpRF [12][1] is sparse. Since that is the case, the PC is incremented to

directly fetch M2.15.

In summary, with minimal changes to software, SparCE processors can leverage

sparsity to improve performance.

4.3 Experimental Methodology

In this section, we present the methodology adopted in our experiments to evaluate

SparCE.

4.3.1 Performance Evaluation

We modeled the micro-architectural extensions proposed in SparCE using the

cycle-accurate gem5 architectural simulator [115]. The gem5 simulator was tightly

integrated with the popular Caffe [112] deep learning framework, wherein the matri-

ces corresponding to each layer and each input batch was formed in Caffe and fed into

the gem5 simulator to perform the matrix computations. The results were fed back to

Caffe to form the inputs for the next layer (or input batch), and so on. Table 4.1(a)

shows the gem5 system configuration used in our experiments. All experiments were

57

Time in clock cycles

Program execution

order (in instructions)

Fe De Exe WB
P

C
: 0

x
4
0
8
6

0
x
4
0
8
6

M2.12: add pA_1, pA_1, #16

M2.13: fmla v22.4s, v5.4s, v12.s[1]

M2.14: fmla v23.4s, v7.4s, v12.s[1]

M2.15: ld1 {v4.4s}, [pA_2]

Preceding

PC

instsTo

Skip

SpRF

condition

0x4086 2 SpRF[12][1]

2. SASA Table

lookup

isSparse regUpd

InFlight

0110 0

5. Modify NPC as

SpRF[12][1] is zero

4. SpRF[12]

lookup3. SASA

Table

hit

6. Update PC in

next cycle

…
M1.3: ld1 {v12.4s}, pB

1. Update SpRF[12] from writeback stage

Fe De Exe WB

P
C

: 0
x
4
0
9
8

NPC = PC + (2+1) *InstrSize

…

(PC: 0x4098)

(PC: 0x4086)

Fig. 4.9.: SparCE in action for sgemm routine

run in full-system mode. We evaluate SparCE by measuring application level execu-

tion times under two scenarios. The first scenario targets embedded scalar processors

that are present in ultra-low power edge/IoT devices and lack support for high per-

formance libraries. We chose a scalar ARM v8 in-order processor architecture as the

baseline. We leverage the modular nature of gem5 to cater to this scenario, wherein we

disable support for advanced architectural features such as SIMD processing and pre-

fetching in the ARM v8 processor. We then prototyped a direct convolution routine

(which we call Dir-Conv-Scalar) that does not utilize the disabled features and used

it in our experiments. The second scenario targets a reasonably sophisticated mobile

processor for which we chose the ARM v8 in-order processor architecture with 4-way

58

SIMD as the baseline. In this case, the matrix computations were realized using the

highly-optimized OpenBLAS [114] based GEMM routines described in Section 4.2.2.

We refer to this implementation as OpenBLAS-SIMD4.

4.3.2 Power and Area Evaluation

We implemented the hardware extensions of SparCE at the Register Transfer

Level (RTL) using Verilog HDL and synthesized them to IBM 45nm technology us-

ing Synopsys Design Compiler to measure its power and area overheads. For the

configuration shown in Table 4.1(a), the area overhead is 1.04% of the ARM Cortex

A35 core [111]. Thus the area overhead of SparCE is quite minimal allowing its

deployment in the resource-constrained embedded platforms.

Table 4.1.: (a) Gem5 simulation parameters (b) Application benchmarks

Processor
config.

ARMv8-A, In-order

SPARCE
config.

20 SASA table entries, 32
SpRF entries

L1 Cache Split I&D, 32KB I cache,
64KB D cache, 2-way set
associative I & D cache,
64B line, 3-cycles/access

L2 Cache Unified 2MB 8-way set
associative, 64B line, 12
cycles/ access

Benchmark Dataset # Layers #Ops

CIFAR-10 CIFAR-10 5 0.01B

AlexNet ImageNet 8 0.72B

VGG-16 ImageNet 16 15.4B

ResNet-50 ImageNet 50 3.86B

GoogleNet ImageNet 22 1.59 B

DeepComp. ImageNet 8 0.72B

(b)(a)

59

4.3.3 Benchmarks

As CNNs are currently the most widely used FFNNs, we evaluate the benefits

of SparCE on CNNs. Our benchmark suite, listed in Table 4.1(b), consists of 6

state-of-the-art image-recognition CNNs viz. CIFAR-Caffe CNN using the CIFAR-10

dataset [116], and AlexNet [117], VGG-16 [110], ResNet-50 [1], GoogleNet [2] and

Deep Compression-AlexNet [43] using the ImageNet dataset. These benchmarks con-

tained 5-50 layers and took 0.01-15.4 Billion scalar operations to classify an image.

We utilized pre-trained models from the Caffe Model Zoo to evaluate SparCE in the

context of inference. For training, we utilized only the smaller CIFAR-10 benchmark,

as training ImageNet models on gem5 was prohibitively time consuming. It is note-

worthy that all benchmarks exhibited dynamic sparsity in features and errors, while

only Deep Compression-AlexNet exhibited static sparsity in weights.

4.4 Results

In this section, we present the results of our experiments that highlight the advantages

of SparCE.

4.4.1 Performance and Energy Improvement

Figure 4.10 shows the normalized execution time benefits of SparCE over the

baseline processor for both inference and training. In the context of Dir-Conv-Scalar,

the reduction in application runtime ranges between 19%-31% across the benchmarks.

In contrast, OpenBLAS-SIMD4 demonstrates benefits in the range of 8%-15% reduc-

tion in runtime. This is because fmla instructions occupy a much smaller fraction

of their runtime, as their execution engines are more sophisticated - multiple SIMD

lanes, low floating point instruction latency etc. Also, since they support features

such as prefetching where the data is already fetched into the higher levels of the

60

memory subsystem, avoiding redundant data fetches has a less prominent impact on

performance.

0.6

0.7

0.8

0.9

1

1.1
N

o
rm

al
iz

e
d

 e
xe

cu
ti

o
n

 t
im

e
 → Dir-Conv-Scalar OpenBLAS-SIMD4

Baseline
C

IF
A

R
-1

0

A
le

xN
et

D
ee

p
C

o
m

p

G
o

o
gl

eN
et

V
G

G
-1

6

R
es

N
et

-5
0

C
IF

A
R

-1
0

Tr

ai
n

in
g

G
eo

M
ea

n

Fig. 4.10.: Improvement in execution time at the application level

Among the benchmarks, the execution time benefits are largely proportional to

the amount of sparsity that they exhibit (Figure 3.1 in Section 3.1). The Deep

Compression-AlexNet benchmark achieves the most benefits because both its activa-

tion and weight data-structures are sparse, as opposed to other benchmarks whose

weight data-structure is dense. In the context of training, the backpropagation step

achieves more improvement compared to forward propagation. This stems from the

fact that the error data-structure is more sparse compared to activations.

Execution Time Breakdown. To better appreciate the improvements achieved

by SparCE, Figure 4.11 hierarchically breaks down the application execution time

(in the context of both Dir-Conv-Scalar and OpenBlas-SIMD4 implementations) into

components that can and cannot be impacted by SparCE. At the top level, the

solid yellow and gray colors represent the execution time fraction that cannot be

61

improved by SparCE. This is primarily constituted by auxiliary CNN operations

such as activation functions, subsampling and others, which represent 1.9% and

12.2% of the runtime for Dir-Conv-Scalar and OpenBlas-SIMD4 implementations,

respectively. It is noteworthy that although these operations occupy <1% of the to-

tal CNN FLOPs, they occupy a substantially larger fraction of the runtime for the

OpenBLAS-SIMD4 implementation. This is owed to the fact that they are typically

memory-bound (higher Bytes/FLOP ratio), which is further amplified as matrix mul-

tiply operations are significantly optimized by the GEMM subroutine. Also, since the

inputs to the CNN are typically dense, the first CNN layer exhibits little redundancy.

This occupies 14.3% and 16.9% of the total runtimes of AlexNet for Dir-Conv-Scalar

and OpenBLAS-SIMD4 implementations, respectively. The fraction grows smaller in

deeper networks such as ResNet and VGG.

In Figure 4.11 the green color bars denote the computations that can accelerated

by leveraging sparsity (∼71%). For Dir-Conv-Scalar implementation, this is limited

to 83.6% of the baseline AlexNet runtime. Since AlexNet contains ∼36% redundant

computations (Figure 3.3 (b) in Section 3.1), the best case benefits are limited to

29.8%, of which SparCE achieves 22.3%. For the OpenBLAS-SIMD4 implementa-

tion, the underlying GEMM involves supplementary operations like memory allocate,

copy and free operations, which as marked by the vertically hatched regions consume

27% of the total execution time. This constraints the opportunity for SparCE to

∼44% of AlexNet runtime as shown by the diagonally hatched portions in Figure 4.11.

Since AlexNet contains ∼36% redundant computations (Figure 3.3 (b) in Section 3.1),

the best case benefits are limited to ∼16%, of which SparCE achieves 12% improve-

ment as other control operations such as pointer arithmetic, prefetching etc. present

within the loop body cannot be avoided.

Layer-wise Benefits. We now present the layer-wise breakdown of the benefits

quantified in terms of the execution time, instructions and data cache (D-Cache) ac-

cesses skipped for the convolutional layers of AlexNet. Figure 4.12 shows the benefits

achieved with SparCE in the context of both SIMD and scalar processor implemen-

62

Dir-Conv-Scalar OpenBLAS-SIMD4

0

0.2

0.4

0.6

0.8

1

Baseline SparCE

0

0.2

0.4

0.6

0.8

1

Baseline SparCE

N
o

rm
. e

xe
c.

 t
im

e→

0
1
2
3
4
5
6

1

Chart Title

Auxiliary Computations First DNN Layer

Other Layers Other Layers - sgemm Overhead

Other Layers - sgemm Compute

First CNN Layer

Fig. 4.11.: Execution time breakdown for AlexNet

tations. The values have been normalized with respect to the execution time, instruc-

tions and data cache accesses observed in the baseline. As shown in Figure 4.12, we

are able to achieve, on an average, 39.4% reduction in instruction count and 35.1%

reduction in D-Cache accesses for Dir-Conv implementations on low-power embedded

scalar processors. The reduction in instruction count and D-Cache accesses amount

to 30.5% and 14% respectively for OpenBLAS-SIMD4 implementations. We also ob-

serve the benefits are typically larger for layers deeper in the CNN, as they typically

exhibit more sparsity.

Energy Benefits. Power evaluation of the SparCE (Section 4.3.2) reveals that it

consumes 1.74 mW at 1 GHz, which amounts to 1.9% of the 90 mW power con-

sumed by even the most power-efficient baseline ARM v8 processor, the Cortex A35

processor [111]. Accordingly, the execution time benefits translate to benefits in the

range of 16.9%-28.7% reduction in application-level energy for a Dir-Conv-Scalar im-

63

0

0.2

0.4

0.6

0.8

1

1.2

conv2 conv3 conv4 conv5 Mean conv2 conv3 conv4 conv5 Mean

N
o

rm
al

iz
ed

 v
al

u
es

→ Execution time Instructions Dcache accesses

OpenBLAS-SIMD4 Dir-Conv-Scalar

Baseline

Fig. 4.12.: Layer-wise benefits breakdown for AlexNet

plementation. In the context of OpenBLAS-SIMD4 implementations, the reduction

in energy ranges between 6.1%-13.2% across the benchmarks.

4.4.2 Performance Scaling with Sparsity

We now study how the performance of SparCE scales with increasing levels of

sparsity. To this end, we consider the implementation of conv4 layer (4th convolu-

tional layer) of AlexNet which convolves input activations of size 384×13×13 with

kernels of size 384×384×3×3 to produce output activations of size 384×13×13. We

varied the sparsity of input activations by constraining the number of zero entries.

The location of the zeros and other entries of the matrices were chosen at random.

Figure 4.13 shows how the execution time and the fraction of instructions executed

varies with sparsity in the context of both Dir-Conv-Scalar and OpenBLAS-SIMD4

implementations. The values have been normalized with respect to the those ob-

served in the baseline processor without SparCE extensions. We find that both im-

plementations exhibit strong performance scaling with sparsity, outlining the ability

of SparCE to efficiently skip computations. We find the number of instructions exe-

cuted to be larger than ideal (dotted line in Figure 4.13) due to the presence of control

64

instructions for pointer arithmetic, loop counts etc., in the program, which cannot be

skipped. Also, the disparity in the fraction of instructions executed and the resultant

execution time benefits is more pronounced for the OpenBLAS-SIMD4 implementa-

tion. We attribute this to the intelligent instruction ordering in the GEMM routine

utilized in the implementation, wherein computations are aggressively overlapped

with data-fetches. Therefore, even if computations are skipped, the improvement

in performance is limited by the time taken for the data-fetches. The performance

improvements can potentially be boosted with advanced compiler optimizations ca-

pable of generating differently ordered GEMM instructions for data-structures with

different amounts of sparsity. However, in this work, we have focused on minimal

software changes. Another important property that can be observed in Figure 4.13 is

that SparCE does not cause any slowdown at 0% sparsity in both OpenBLAS-SIMD4

and Dir-Conv-Scalar implementations. This can be attributed to the fact that the

overhead associated with programming the SASA Table is negligible when compared

to the total number of computations.

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100

Sparsity (%)

Execution time

Instruction Count
0

0.2

0.4

0.6

0.8

1

0 25 50 75 100

N
o

rm
al

iz
ed

 s
ca

le
 →

Sparsity (%)

Execution time

Instruction count

OpenBLAS-
SIMD4

Dir-Conv-
Scalar

Fig. 4.13.: SparCE performance scaling with sparsity

65

4.4.3 Operand Ordering in SparCE OpenBLAS-SIMD4 Implementations

As described in Section 4.2, based on the amount of sparsity exhibited by the

data-structures, mapping the right data-structure as the shared-SIMD operand can

have a considerable impact on performance. In the case of all benchmarks other than

Deep Compression-AlexNet, only the activation data-structure is sparse. Therefore,

mapping it as the shared-SIMD operand (Matrix B in the sgemm subroutine) would

yield the best benefits.

Figure 4.14 shows the performance improvement achieved when operands are or-

dered in both ways viz. Activations×Weights and Weights×Activations. In the con-

text of AlexNet, we find that mapping activations as the shared-SIMD operand yields

1.86× better benefits (∼12% vs. 6.5%) compared to mapping the non-sparse weight

0.8

0.85

0.9

0.95

W * F F * W

N
o

rm
. e

xe
c.

 t
im

e
→

AlexNet DeepComp

F: Features W: Weights

Fig. 4.14.: Impact of operand ordering on performance

data-structure. For the Deep Compression-AlexNet network, since both activation

and weight data-structures are sparse, the disparity in performance due to operand

ordering is relatively small (<2%). Even in this case, we find that choosing activa-

tions as the shared-SIMD operand is beneficial. This is attributed to the fact that

some of the weight matrices have high degree of sparsity, and their zero entries are

66

typically clustered. Therefore, in this case, using weights as the non-shared SIMD

operand has less of an adverse impact on performance compared to using activations.

Overall, the programmer is responsible for making the choice of which sparse

data-structure should be mapped as a non-shared SIMD operand. For applications

with both data-structures as sparse, higher benefits are obtained when the operand

exhibiting a higher sparsity value is chosen as the non-shared SIMD operand. In

contrast, for applications with only one sparse data-structure, mapping the same as

the shared SIMD operand yields higher benefits.

4.5 Summary

As FFNNs pervade the spectrum of computing devices, new approaches to improve

their computational efficiency on resource-constrained IoT/ edge devices becomes crit-

ical. In this work, we accelerate FFNNs on GPPs, which are an indispensable part

of IoT/ edge devices, by exploiting sparsity in the different FFNN data-structures.

To this end, we propose Sparsity-aware general purpose Core Extensions (SparCE)

that enable GPPs to efficiently leverage sparsity, while being minimally intrusive

and low-overhead. SparCE comprises of two key micro-architectural enhancements.

First, a Sparsity Register File (SpRF) dynamically tracks zero-valued registers in

the processor. Next, a Sparsity-Aware Skip Address (SASA) Table indicates poten-

tially redundant instruction sequences and the conditions under which they can be

skipped. A Pre-identify and Skip Redundancy Unit (PSRU) combines the informa-

tion from the SpRF and the SASA table to dynamically pre-identify if an instruction

sequence can be skipped, and if so masks it from being fetched and executed. We take

advantage of these micro-architectural extensions by suitably modifying the code gen-

eration process to allow successful identification of redundant instruction sequences

and subsequent programming of the SASA Table. We evaluate SparCE on 6 image-

recognition FFNNs in the context of both training and inference. Our evaluations

67

reveal that SparCE is a promising design that allows us to exploit all forms of static

and dynamic sparsity to accelerate FFNNs on GPPs.

68

5. APPROXIMATE COMPUTING FOR LONG SHORT

TERM MEMORY (LSTM) NEURAL NETWORKS

As discussed in Chapter 1, DNNs can broadly be classified into feed-forward neural

networks and recurrent neural networks. Feed-forward networks like Convolutional

Neural Networks (CNNs) and Multi-Layer Perceptrons (MLPs) are suitable for tasks

with fixed-length, temporally independent inputs and outputs, such as image classi-

fication. These networks lack any feedback connections and are characterized by a

strict forward flow of information from the input layer to the output layer.

Recurrent Neural Networks (RNNs), on the other hand, can handle variable-length

inputs and outputs that form sequences. Text and handwriting synthesis [56], speech

recognition [57], neural machine translation [58] and image and video captioning [3]

are a few examples of applications that deploy RNNs. These networks have a cyclic

structure, allowing information to persist temporally in the form of memory in the

network. The computation of an RNN can be thought of as proceeding in timesteps

with a new element of the input sequence being fed to the network at each timestep.

Recent interest in RNNs has been largely fueled by the success of Long Short Term

Memory networks (LSTMs) [91]. LSTMs and their derivatives have demonstrated

an ability to learn long-term dependencies in sequences and are currently deployed

in numerous real-world applications. An LSTM comprises of cells, each of which is

associated with a cell state and multiple gate units that control the flow of information

in and out of the cell.

State-of-the-art LSTMs are highly compute-intensive. For example, Neural Ma-

chine Translation (NMT) of the WMT development set From English to French, using

a quantized version of Google’s NMT, takes 1322 seconds on a pair of Intel Haswell

CPUs [20]. Previous efforts to improve the execution efficiency of LSTMs have ex-

plored three distinct directions. The first direction is to efficiently parallelize LSTMs

69

on CPUs and GPUs [19–21]. The second direction develops accelerators that exploit

the data access and compute patterns of LSTMs [24, 27–30]. Finally, the last set of

efforts applies model pruning and quantization to reduce the model size for execution

on resource-constrained platforms [45,67,89].

We explore approximate computing techniques to accelerate the execution of LSTMs.

The intrinsic error resilience of machine learning applications makes them excellent

candidates for approximate computing, which attempts to reduce execution time and

energy with minimal effect on the quality of outputs. Previous efforts have pro-

posed approximate computing techniques for neural networks by utilizing variable

bit precision and approximate arithmetic units [37,48,49,86]. Other works have also

proposed approximate computing techniques for biologically inspired spiking neural

networks [118]. However, these techniques provide benefits only on specialized hard-

ware architectures or do not specifically exploit the unique characteristics of LSTMs.

To the best of our knowledge, we are the first to propose hardware-agnostic approxi-

mate computing techniques for LSTMs.

We present AxLSTM, a general approach to approximate LSTMs 1. AxLSTM con-

sists of two techniques — Dynamic Timestep Skipping (DTS) and Dynamic State

Reduction (DSR). DTS is based on the observation that some elements of the input

sequence have little or no impact on the state of the LSTM (and hence the output

produced). Therefore, identifying such unimportant elements of the input sequence

allows the LSTM to skip evaluating them at runtime. On the other hand, DSR is

based on the observation that, since the LSTM state is provisioned to capture all pos-

sible input sequences, many inputs sequences do not require the full dimensionality

of the LSTM state. Thus, the computational complexity of an LSTM can be reduced

by dynamically reducing the size of the LSTM state based on the input sequence.

1Although we focus on LSTMs due to their widespread use, the proposed techniques are applicable
to any RNN.

70

In summary, the key contributions of this work are:

• We propose AxLSTM, an approximate computing framework for LSTMs, which

combines Dynamic Timestep Skipping (DTS) and Dynamic State Reduction

(DSR).

• We develop heuristics to dynamically modulate the number of timesteps in DTS,

as well as the number of computations per timestep in DSR, based on the input

sequence.

• We implement AxLSTM within the TensorFlow deep learning framework and

apply it to state-of-the-art sequence-to-sequence models for neural machine

translation and video caption generation. We achieve speedups of 1.08× - 1.31×

with minimal loss in quality, and 1.12× - 1.37× when moderate reductions in

quality are acceptable.

The rest of the chapter is organized as follows. Section 5.1 presents the AxL-

STM approach and attendant details, followed by the experimental methodology in

Section 5.2. Section 5.3 presents the results of our experiments. Section 5.4 concludes

the chapter.

5.1 AxLSTM: Design Approach and Methodology

To improve the execution efficiency of LSTMs, we propose AxLSTM, a set of approx-

imate computing techniques that exploit the key characteristics of LSTMs. In this

section, we present the salient features of AxLSTM and describe its details in the

context of sequence-to-sequence models.

5.1.1 AxLSTM: Overview

Figure 8.2 outlines the approximation strategies adopted by AxLSTM and the

targeted benefits. AxLSTM consists of two techniques — Dynamic Timestep Skip-

ping (DTS) and Dynamic State Reduction (DSR). The motivation behind Dynamic

71

Dynamic Timestep Skipping (DTS):
• Skips input symbols that are

likely to have negligible impact
on cell state.

AxLSTM Techniques

…

Sk
ip

x0 xn-1

Dynamic State Reduction (DSR):
• Reduces the size of cell state

according to the complexity of
input sequence.

Unimportant
symbol

…

Saved computations

=

=

Computations corresponding

to reduced cell state

y0 y1
yn-1

y0 y1
yn-1

x0 xn-1
x1

Reduced number of timesteps
Reduced number of computations

per timestep

AxLSTM Benefits

Fig. 5.1.: Overview of AxLSTM approximation strategies

Timestep Skipping is the fact that all symbols in an input sequence do not have an

equal impact on the LSTM state. Consequently, the LSTM can skip evaluating sym-

bols that are likely to have negligible effects on its state and thereby save execution

time. For example, not all frames in a video sequence are equally important for an

LSTM to generate an appropriate caption for the video. Similarly, some words of a

sentence may turn out to be redundant in machine translation. Skipping the evalu-

ation of any unimportant frame (or word) can help save one entire timestep worth

of computation, which involves multiple matrix multiplications for calculating the

different gates of an LSTM.

In contrast, Dynamic State Reduction is based on the principle that all input

sequences are not semantically complex enough to require the entire dimensionality

of the cell state. As a result, the state size can be dynamically modulated at runtime.

A smaller state size reduces the sizes of matrices and thereby, the complexity of matrix

72

multiplications involved in calculating the different gates of an LSTM. This, in turn,

significantly decreases the time spent in evaluating each timestep of an LSTM.

In summary, AxLSTM reduces the execution time of LSTMs by taking advantage

of the two techniques, DTS and DSR, to reduce the number of timesteps as well as

the number of computations per timestep.

5.1.2 Dynamic Timestep Skipping (DTS)

The key challenge involved in DTS lies in developing an accurate, yet low overhead

mechanism to identify unimportant symbols in an input sequence. To ensure savings,

the time expended in evaluating this dynamic mechanism should be significantly less

than that expended towards evaluating the LSTM itself.

We propose to augment an LSTM with a new structure, the Input Analyzer (IA).

The IA acts as a filter to the LSTM and feeds only important input symbols of a

sequence to it. It substitutes all unimportant symbols with a special symbol called

the Skip Symbol (SS). Unlike other input symbols, the LSTM doesn’t perform any

computations on the Skip Symbol. Instead, it simply moves on to processing the next

timestep. The application of DTS to the encoder of a sequence-to-sequence model is

shown in Figure 5.2. In this case, DTS targets the encoding time and reduces the

effective InputSeqLen observed by the encoder.

We propose two heuristics for the IA to dynamically identify unimportant input

symbols. These heuristics, which are named StateEffect and InputDiff, are illustrated

in Figure 5.2. The StateEffect heuristic utilizes knowledge of each input symbol’s

expected or average effect on the encoder state. This effect is quantified as the L2

norm of the difference between the encoder state before and after processing a symbol.

We rank the input symbols in increasing order of their effect on the encoder state

for all examples in the training set. Next, we skip each symbol and observe the

effect on overall quality. Finally, we program the IA to store a list of input symbols

that can be skipped for a given quality requirement. The size of the corresponding

73

StateEffect table is determined by the number of available quality levels, the number

of insignificant symbols per quality level and the encoding size for each symbol. In

our evaluations, we observed that a table of size 12 kB is sufficient.

…

E
n
co

d
ed

 C
on

te
xt

 v
ec

to
r

x0

xt : (tth symbol of input sequence x of total length n)

x2 xn-1 =<EOS>…

<
SS

>
IA IA IA

x0
x2 xn-1

Quality

Input

IA

Difference

Computation

Threshold

Table

>

MUX

<SS>
Skip

Symbol

InputDiff
Heuristic

Quality

Input

Insignificant

symbols

Q1 u1, u2

Q2 u1, u2, u3

StateEffect
Heuristic

Input Analyzer (IA)

x1

xt-1

Input symbol fed to the encoder

Quality

Input

Encoder

Fig. 5.2.: Dynamic Timestep Skipping in sequence-to-sequence models

The InputDiff heuristic is based on the fact that an input symbol that is very simi-

lar to the previous input symbol does not convey any new information to the encoder.

Accordingly, skipping it’s evaluation will minimally affect the overall output quality.

An IA executing the InputDiff heuristic dynamically measures the difference between

two successive input symbols. It is programmed to have a Threshold Table containing

DiffThres values corresponding to each quality requirement. The IA decides to skip

74

an input symbol if its difference from the previous symbol is less than DiffThres. In

general, the suitability of the StateEffect or the InputDiff heuristic can vary across

different applications and the IA can be programmed to execute either or both of

them. The values in the Threshold Table are determined using the methodology

described in 5.1.4.

In summary, by using the IA, the encoder of a sequence-to-sequence model is able

to dynamically identify unimportant symbols of an input sequence and skip processing

them, thereby reducing the execution time.

5.1.3 Dynamic State Reduction (DSR)

…

Decoder

Fu
ll

d
im

en
si
on

a
l
co

n
te

xt
 v

ec
to

r
(s

iz
e

p
) Output sequence of length m

o0 o1 om-1=

<EOS>…

State Minimizer (SM)

R
ed

u
ce

d
 c

on
te

xt
 v

ec
to

r
(s

iz
e

q
 <

 p
)

…

c[
p

-1
]

c[
p

-2
]

…
c[

1
]

c[
0

]

d
[q

-1
]

…
d

[0
]

Decoder
weight

matrices

Reduced
weight

matrices

Extracting weight values

corresponding to significant elements

Significant
elements of c

Insignificant
elements of c

Reduced

dimensional state

passed across

timesteps

= Computations saved per timestep

E
n
c
o

d
e
r

Fig. 5.3.: Dynamic State reduction in sequence-to-sequence models

In Dynamic State Reduction, the original full dimensional state is converted to

a smaller state by identifying and retaining only the significant state elements for a

given input sequence. Correspondingly, the original weight matrices are sliced into

smaller matrices by extracting only the values corresponding to the significant state

elements.

75

In the context of sequence-to-sequence models, we apply DSR to the decoder and

successfully reduce the contribution of ComputeT imePerOutputSymbol in Equa-

tion 3.3. As shown in Figure 5.3, we achieve this by adding a new structure called

the State Minimizer (SM). In general, the SM can be invoked anywhere during the

encoding or decoding process. However, invoking the SM at an intermediate timestep

of the encoder and limiting the size of the encoder state size thereafter may lead to

significant error since the subsequent input symbols have not yet been reflected in

the encoder state. In addition, determining significant elements too frequently using

the SM can turn out to be counter-productive due to the overhead of the significant

index identification and matrix slicing steps. In order to avoid these challenges in our

implementation, we invoke the SM only once at the well-defined boundary between

the encoder and decoder network to identify a fixed set of significant indices before

the decoding process starts. Specifically, the size of the hidden state in the encoder

stays at the maximum value throughout the encoding process, producing a complete

context vector. The SM analyzes the context vector and strips it down to a smaller

vector containing only state elements that are deemed to be significant. The decoder

weight matrices are also sliced by the SM based on the indices of the significant ele-

ments of the context vector. Each timestep of the decoder consumes and produces a

context vector of this reduced size.

The SM examines the content of the encoded context vector to determine the

significant elements. Two heuristics for identifying these significant elements are

described below.

• Relative thresholding: The relative thresholding approach discards elements

that are numerically far less than the maximum value in the context vector. For

a given threshold relThres, an element i of the context vector C is identified

to be insignificant if

C[i] < relThres×maxiC[i] (5.1)

76

• Absolute thresholding: The absolute thresholding approach discards ele-

ments whose magnitude is less than an absolute constant. For a given threshold

of absThres, an element i of the context vector C is identified to be insignificant

if

|C[i]| < absThres (5.2)

The relThres and absThres values in both criteria play an important role in

achieving a favourable quality versus savings tradeoff. Lower values of relThres and

absThres lead to smaller states as most of the context vector elements are discarded

by the SM. However, this also leads to a potential loss of useful information and

subsequently, a drop in quality. For a given user-defined quality constraint, the

threshold values are determined using the methodology described in 5.1.4 and are

programmed into the SM before the AxLSTM model is deployed for inference.

For sequence-to-sequence models that perform inference after batching multiple

input sequences, the SM adopts a conservative approach by forming a union of sig-

nificant elements across all input sequences in a batch. This leads to some amount of

inefficiency as the final state size, determined by the number of significant elements,

can eventually be higher than that required for a single sequence. However, batching

of input sequences also provides an advantage by ensuring that the overhead of slicing

states and weights is amortized over multiple sentences in the batch. A large number

of state-of-the-art sequence-to-sequence models have multiple layers in the encoder

and decoder. The SM is sensitive to the difference in the behavior of different layers

and accordingly outputs different sets of important indices for different layers.

In summary, the SM equips an LSTM with the ability to reduce the state size

dynamically at runtime based on the complexity of the input sequence. This leads to

a reduction in the amount of computation per timestep.

77

5.1.4 AxLSTM: Design Methodology

Algorithm 1 presents a method to automatically design sequence-to-sequence mod-

els of specified quality levels with AxLSTM. For brevity of discussion, we restrict

ourselves to the StateEffect heuristic of DTS and the absThres criterion for DSR.

However, the method can be applied to other heuristics and criteria with minor mod-

ifications. The inputs to the method are a sequence-to-sequence model trained with

conventional LSTMs (Seq2Seq), the training dataset (TrainData), the list of input

symbols in the training dataset (InputSym) and the quality constraint (Q). The

output is the approximate version of the Seq2Seq model (AxSeq2Seq), the list of

unimportant input sequence symbols for DTS (DTSlist) and the DSR threshold for

identifying unimportant elements of the context vector C for layer Li (DSRLi
thres). The

algorithm builds AxSeq2Seq by successively adding more input symbols to DTSlist,

reducing DSRLi
thres and retraining AxSeq2Seq until the quality drops below the spec-

ified threshold.

We first measure the average effect on encoder state for all input symbols in the

training dataset (lines 1-2) by calculating the L2 difference between the state vector

before and after processing the symbol. Next, we sort the input symbols in order of

their increasing effect on state (line 3) and store them in SortedSym. The DSRthres

for each layer is initialized to the maximum absolute value of the corresponding

context vector (lines 4-6). The DTSlist is initialized to be a null list (line 7) and

the weight and bias values of AxSeqtoSeq are initialized to be equal to that of the

original Seq2Seq. At each iteration of the algorithm, new symbols are copied from

the SortedSym list to DTSlist (line 11). The DSRthres values for each layer of the

network are reduced by a small constant ∆ (line 13). Finally, the network is retrained

for T training iterations to further improve its quality level (line 14). This process is

stopped when the quality level QAxSeq2Seq of the AxSeqtoSeq drops below the specified

quality level Q.

78

Algorithm 1 Designing sequence-to-sequence models with AxLSTM

Input: Seq2Seq: Trained sequence-to-sequence model,

TrainData: Training dataset,

InputSym: List of input sequence symbols,

Q: Quality constraint

Output: AxSeq2Seq: Approximate sequence-to-sequence model,

DTSlist: List of unimportant input sequence symbols,

DSRLi
thres: Threshold for identifying unimportant elements of context vector C

for layer Li

1: For each symbol S ∈ InputSym:

2: Compute average effect on encoder state, Effect[S]

3: Sort InputSym in increasing order of Effect, SortedSym

4: For each Layer Li:

5: Compute Max. Abs(Context vector C), CLi
max

6: Initialize DSRLi
thres = CLi

max

7: DTSlist = ∅

8: AxSeq2Seq = Seq2Seq

9: numSkipped = 0

10: while (1) do

11: DTSlist = DTSlist∪SortedSym[numSkipped]

12: For each Layer Li:

13: Set DSRLi
thres -= ∆

14: AxSeq2Seq = Retrain(AxSeq2Seq, DTSlist, DSRthres, TrainData, T train-

ing iterations)

15: if(QAxSeq2Seq < Q) break

16: numSkipped = numSkipped+1

17: end while

18: return AxSeq2Seq, DTSlist and DSRLi
thres

79

In summary, by selectively skipping unimportant symbols in the encoder and

reducing the decoder state size, AxLSTM improves the execution efficiency of LSTMs.

5.2 Experimental Methodology

In this section, we present the methodology utilized in our experiments to evaluate

AxLSTM.

5.2.1 Performance Evaluation

We implemented AxLSTM within TensorFlow [113], a popular deep learning

framework. The files used by the Python API of TensorFlow were modified to in-

corporate the DTS and DSR techniques. We evaluated the performance benefits of

AxLSTM in software by measuring application level runtimes with and without the

proposed techniques on a 2.7GHz Intel Xeon server with 128GB memory and 32

processor cores.

Table 5.1.: Application benchmarks

Model NMT1 NMT2 S2VT

Task Neural Machine
Translation

Neural Machine
Translation

Video Captioning

Dataset IWSLT15 WMT16 Youtube Corpus
(MSVD)

Input
Sequence

English sentence German sentence Video

Output
Sequence

Vietnamese sentence English sentence English sentence

No. of layers 2 4 2

LSTM state
size

512 1024 256

80

5.2.2 Application benchmarks

Our benchmark suite, listed in Table 5.1, consists of three sequence-to-sequence mod-

els with applications in Neural Machine Translation (NMT) and video captioning.

These models vary considerably in the nature of their input sequences, output se-

quences and their computational complexity, as indicated by the number of layers and

LSTM state size. The two NMT models are based on the models available in [119].

The first NMT model performs English-Vietnamese translation and is trained on a

parallel corpus of TED talks (133K sentence pairs) provided by the IWSLT Evalu-

ation Campaign. The next NMT model performs German-English translation and

is trained on the German-English parallel corpus (4.5M sentence pairs) provided by

the WMT Evaluation Campaign. On the other hand, the video captioning model is

based on [3], trained on the Microsoft Video Description Corpus [120] and used to

generate captions on Youtube clips collected on Amazon Mechanical Turk. We uti-

lize BLEU scores, a method for automatically evaluating machine translations, as a

metric to evaluate application quality. The baseline implementations were trained on

the training datasets using conventional LSTM networks, whereas the AxLSTM im-

plementations were obtained using the methodology mentioned in Section 5.1.4 with

the DTS and DSR techniques in place. The application level runtimes and BLEU

scores of both implementations were measured on a separate validation dataset.

5.3 Results

In this section, we present the results of our experiments that evaluate the benefits

of AxLSTM, and analyze the sources of these benefits.

5.3.1 Performance Benefits Versus Accuracy

Figure 5.4(a) shows the normalized execution time benefits achieved by AxL-

STM across all benchmarks. For each benchmark, models with different quality lev-

81

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2 4 6 8

N
o

rm
al

iz
ed

 o
p

s

Drop in BLEU score

S2VT

AxLSTM DSR DTS

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2 4 6 8

N
o

rm
al

iz
ed

 o
p

s

Drop in BLEU score

NMT1

AxLSTM DSR DTS

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2 4 6 8 10

N
o

rm
al

iz
ed

 o
p

s

Drop in BLEU score

NMT2

AxLSTM DSR DTS

Baseline

Baseline

Baseline

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2 4 6 8

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

Drop in BLEU score

NMT1

AxLSTM DSR DTS

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2 4 6 8 10

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

Drop in BLEU score

NMT2

AxLSTM DSR DTS

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2 4 6 8

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

Drop in BLEU score

S2VT

AxLSTM DSR DTS

Baseline

Baseline

Baseline

(a) (b)

Fig. 5.4.: (a) Normalized execution time and (b) Normalized compute operations

versus drop in quality using AxLSTM for sequence-to-sequence models

82

els, or equivalently, different BLEU scores, are obtained by varying how aggressively

input symbols are skipped in DTS and how aggressively the state size is reduced us-

ing DSR. AxLSTM reduces the execution time by 13%, 19.1% and 23.5% for average

drops in BLEU scores of 0.9, 2.5 and 5.8, respectively. This models were obtained

by applying quality constraints of <1, <3 and <6 drops in BLEU scores respectively

in the methodology described in Section 5.1.4. For each of these cases, we also cal-

culated the theoretical reduction in compute operations by taking into account the

number of skipped symbols and the reduction in state size. The corresponding val-

ues are shown in Figure 5.4(b). We observe that AxLSTM achieves 22.2%, 29.8%

and 36.29% reduction in operations for average drops in BLEU scores of 0.9, 2.5 and

5.8, respectively. The reduction in compute operations don’t translate entirely into

the execution time benefits because of the overheads associated with DTS and DSR,

which are discussed in more detail in Section 5.3.2.

Figures 5.4(a) and 5.4(b) also show the individual execution time versus qual-

ity tradeoffs observed with DTS and DSR. The speedups and compute reductions

observed with DTS depend on the amount of redundancy present in the input se-

quence. In general, frames in a video have more redundancy than words in a sen-

tence. Specifically, consecutive frames in a video have a higher chance of conveying

similar redundant information than consecutive words in a sentence. As a result,

DTS can demonstrate higher benefits on sequence-to-sequence models with videos as

input sequences. In Figure 5.4(a), DTS achieves 10.5% reduction in execution time

on the S2VT model as opposed to 4.7% and 2.9% reductions on NMT1 and NMT2,

respectively, for similar drops in BLEU scores. This corresponds to 17.8%, 6.4% and

4.1% reductions in compute operations in the S2VT, NMT1 and NMT2, respectively,

as shown in Figure 5.4(b).

In contrast, the benefits observed with DSR depend primarily on the fraction of

semantically complex input sequences in a dataset. A higher proportion of semanti-

cally simpler inputs allows S2VT to derive higher DSR benefits than the other two

models. As shown in Figure 5.4, S2VT experiences 20.4% reduction in execution

83

time with DSR whereas NMT1 and NMT2 experience reductions of 18.1% and 7.6%

respectively, for similar drops in BLEU scores. The reduction in compute operations

follows a similar trend as illustrated in Figure 5.4(b). DSR achieves 30.9% reduc-

tion in compute operations on S2VT as opposed to 22.1% and 16.7% reductions on

NMT1 and NMT2 models, respectively.

Figures 5.4(a) and 5.4(b) present an interesting behavior exhibited by models with

DSR-based approximations. We observe that the execution time and compute oper-

ations initially drop with a reduction in BLEU score but subsequently increase with

further reduction in BLEU score. This counterintuitive behavior can be attributed to

the fact that these inferior quality models suffer from the problem of lack of coverage,

in which the smaller state vector leads to loss of useful information. This results in

over-translation, where some words are unnecessarily translated multiple times [121].

This causes OutputSeqLen in Equation 3.3 to increase, outweighing the reduction in

ComputeT imePerOutputSymbol, resulting in a net increase in the compute opera-

tions and decoding time.

5.3.2 Benefits Breakdown and Overhead analysis

In this subsection, we analyze the benefits observed with AxLSTM by providing

a breakdown in terms of the individual execution time benefits observed during the

encoding and decoding process. Figure 7.4 shows this breakdown across the three

benchmarks for an average of 0.9 drop in BLEU score. On average, AxLSTM reduces

the encoding and decoding time by 9.8% and 14.6% respectively, which translates

to 13.9% reduction in overall execution time. It is important to note here that the

decoding process accounts for a larger fraction of the overall execution time in both

the baseline and the AxLSTM based implementations of all three models.

The figure also highlights the overheads encountered with AxLSTM. We observe

an average of 6.4% and 2.08% overheads during the encoding and decoding process

respectively, which in turn leads to an overall overhead of 3.5%. The encoding and

84

0

0.2

0.4

0.6

0.8

1

1.2

Baseline AxLSTM Baseline AxLSTM Baseline AxLSTMN
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

Encoding process Encoding overhead

Decoding process Decoding overhead

NMT1 NMT2 S2VT

Baseline AxLSTM Baseline AxLSTM Baseline AxLSTM

Fig. 5.5.: Execution time benefits breakdown with AxLSTM

decoding overheads are directly attributable to DTS and DSR, respectively. The

encoding time overhead is equal to the time taken by the IA in DTS to determine the

unimportant symbols on the fly. We observe that this overhead is a strong function of

the heuristic adopted by IA. In general, the time consumed by the StateEffect heuristic

is substantially less than that consumed by the InputDiff heuristic. Consequently, the

encoding overhead for NMT1 and NMT2, which utilize the StateEffect heuristic, is

<0.1% as opposed to an encoding overhead of 19.2% in the S2VT model, which utilizes

the InputDiff heuristic. This difference stems from the fact that the computations

involved in calculating the sum of absolute difference between pixels of consecutive

video frames in S2VT are significantly more expensive than the quality table lookup

performed in the other two models. On the other hand, the decoding overhead is

proportional to the time expended by the SM to extract important elements and

slice matrices as part of the DSR process. The observed values vary according to the

number of important elements and the matrix sizes involved.

In summary, the individual benefits and overheads of DTS and DSR combine to

determine the overall speedups observed with AxLSTM.

85

Source sentence: And the garden, it was beautiful.

(a) (b)

Fig. 5.6.: (a) Normalized encoding time per input word and (b) Normalized

decoding time per output word for a semantically simple sentence with and without

AxLSTM

Source sentence: Now we teach entrepreneurship to 16-year-olds in Northumberland, and we start the class
by giving them the first two pages of Richard Branson’s autobiography, and the task of the 16-year-olds is to
underline, in the first two pages of Richard Branson’s autobiography how many times Richard uses the word
“I“ and how many times he uses the word “we“.

(a) (b)

Fig. 5.7.: (a) Normalized encoding time per input word and (b) Normalized

decoding time per output word for a semantically complex sentence with and

without AxLSTM

5.3.3 Input Adaptive Approximations in Action

As described in section 5.1, the two techniques of AxLSTM, DTS and DSR, reduce

two different components of Equation 3.3, viz., InputSeqLen and ComputeT imePer-

86

OutputSymbol. We illustrate these reductions in the NMT1 model with the help of

two different sentences from the IWSLT dataset. For both sentences AxLSTM pro-

duces translations that are identical to the baseline LSTM, i.e., there is no drop in

output quality.

Figure 5.6(a) shows the ComputeT imePerInputSymbol with and without AxL-

STM for each input symbol in a semantically simple source sentence comprising of

8 words, or equivalently, 8 input symbols. The specified quality constraint allows

DTS to skip all instances of ‘the’ present in the sentence, leading to zero processing

time for the second word in the case of AxLSTM. The ComputeT imePerInputSymbol

for the remaining words is not affected by AxLSTM because the quality constraint

doesn’t allow DTS to skip them. Overall, the area under the curves denote the total

encoding time and we observe that AxLSTM successfully reduces the encoding time

from the baseline implementation.

Figure 5.6(b) shows the ComputeT imePerOutputSymbol with and without AxL-

STM for each symbol during the decoding process of the same sentence. For all output

symbols other than the first symbol, the ComputeT imePerOutputSymbol observed

with AxLSTM is less than that observed with LSTM because of the reduced state size

with DSR. The increase in time for the first symbol with AxLSTM can be attributed

to the overhead associated with the matrix slicing process in DSR. However, the total

area under the AxLSTM curve is less than that under the baseline curve, indicating

that AxLSTM reduces the decoding time for this sentence.

The ComputeT imePerInputSymbol and ComputeT imePerOutputSymbol for a

semantically complex source sentence with 69 words are shown in Figures 5.7(a) and

(b). We observe that DTS is able to extract higher benefits in this case because of

a more frequent occurrence of unimportant words. Specifically, the compute time re-

duces to zero for 7 words. However, the complex nature of this sentence dictates the

use of a larger decoder state in DSR and accordingly, we observe a lower reduction in

time during the decoding process. Nevertheless, the area under the AxLSTM curves

87

during both the encoding and decoding process are still less than the baseline, indi-

cating that AxLSTM is beneficial.

In summary, AxLSTM is able to successfully extract execution time benefits in the

form of reduced encoding and decoding times for input sequences of widely varying

complexity.

5.4 Summary

Long Short Term Memory networks (LSTMs), a special class of RNNs, have attracted

widespread attention due to their success in a range of machine learning applications

involving sequences, including text generation, machine translation and speech recog-

nition. We address the computational challenges posed by LSTMs by proposing AxL-

STM, an application of approximate computing to improve the execution efficiency

of LSTMs. AxLSTM comprises of two techniques — Dynamic Timestep Skipping

(DTS) and Dynamic State Reduction (DSR) — that exploit the unique structure

and computational characteristics of LSTMs. DTS reduces the effective number of

timesteps of an LSTM by dynamically identifying input symbols that have little or

no impact on the LSTM state and skipping them. DSR reduces the computations

in each timestep of an LSTM by dynamically reducing the size of the LSTM state.

Both these techniques are intrinsically input-adaptive, i.e., they modulate the overall

computational effort of an LSTM based on the complexity of the input sequences. We

describe how AxLSTM can be applied in the context of sequence-to-sequence models.

We implement AxLSTM within the TensorFlow deep learning framework and evaluate

its benefits on 3 state-of-the-art sequence-to-sequence benchmarks. Our evaluations

on an Intel Xeon Server reveal that AxLSTM achieves speedups of 1.08× - 1.31×

with minimal loss in quality, and 1.12× - 1.37× when moderate reductions in quality

are acceptable.

88

6. APPROXIMATE COMPUTING FOR SPIKING

NEURAL NETWORKS

In this chapter, we focus on an emerging class of NNs, called Spiking Neural Networks

(SNNs), which are often referred to as the 3rd generation NNs. Compared to prior

generations of NNs, SNNs exhibit higher biological fidelity i.e., they mimic the spiking

behavior of biological neurons. Therefore, SNNs have the potential to achieve better

algorithmic performance with lower network complexity, especially in applications

where temporal streams of data are processed [122]. SNNs are an active area of

research, and in the recent past, SNNs have demonstrated state-of-the-art recognition

performance on popular datasets such as MNIST [123] and CIFAR-10 [124].

Computational Challenges. SNNs are compute and data intensive workloads.

For example, spiking networks emulating the functionality of the visual cortex may

contain over a million neurons and a billion synapses [63]. When used to process an

image of size 256×256, this translates to ∼2 giga scalar operations per frame, and

over 4 GB memory. With growth in data and the need for higher accuracy, these

requirements are only expected to increase further in the future. Hence, exploring

avenues to improve the energy efficiency of SNNs is fundamental to their adoption.

Realizing this need, prior approaches have explored three key directions for effi-

cient realization of SNNs. The first is software parallelization on commercial platforms

such as multi-cores and GPUs [59–62]. The event driven nature of SNNs makes soft-

ware parallelization quite challenging. In SNNs, work is generated dynamically as

neurons spike, which renders the control flow and memory access patterns irregular.

In contrast, commercial platforms, such as GPUs, are optimized for regular memory

access patterns and fine-grained SIMD parallelism. The second direction is to build

hardware architectures specialized for SNNs. A range of architectures, from low-

89

power IP cores [64] to large-scale systems [65, 66], have been proposed. The final set

of efforts investigate alternate device technologies, such as memristor ans spintronics

to realize SNNs [125–127].

Approximate SNNs. In this work, we explore a new direction - approximate com-

puting - to improve the efficiency of SNNs. Due to their large-scale structure and

the application context in which they are deployed, NNs are highly resilient to ap-

proximations in a significant fraction of their computations. Approximate computing

has been applied to prior generations of (non-spiking) NNs [37,48,49]. However, due

to the unique characteristics of SNNs (described below), such methodologies are not

directly applicable. We believe ours to be the first effort to explore approximate

computing for SNNs.

In SNNs, information is encoded and processed using trains of spikes. Each neuron

is associated with a membrane potential, and a spike is dynamically generated when

the potential goes above a specified threshold. When a neuron spikes, the potentials

of all its fanout neurons are incremented by the weights of the respective connections.

Thus spike-triggered neuron updates are the fundamental compute kernel in SNNs.

To approximate SNNs, we develop a methodology, called AxSNN, to identify the

criticality of spike-triggered updates and skip a subset of them to lower computational

requirements thereby energy. AxSNN associates an approximation level with each

neuron. The approximation level determines which fraction of a neurons successors

will be updated when it spikes, as well as which fraction of its inputs it is sensitive to.

All update operations are carried out when a neuron at the most accurate (or least

approximate) level spikes. Progressively fewer update operations are performed as

the approximation level of the neuron is increased. Spikes are entirely skipped when

the neuron is in its most approximate state. To determine the approximation level

of the neuron at runtime, AxSNN estimates the probability of the neuron spiking,

and the significance of its spikes. For this purpose, it utilizes static network-level

characteristics such as the number of fanout paths from the neuron to SNN outputs

90

and their average path weights, as well as dynamic local characteristics such as spike

rate and current membrane potential of the neuron.

SNNs of any desired output quality can be realized using the above approach. We

develop a framework that automatically tunes how aggressively neurons transition

between approximation levels, thereby yielding an efficiency vs. quality trade-off. It

is worth noting that the proposed approach is intrinsically input-adaptive i.e., the

approximate SNN modulates its computational effort across input samples, based on

how often the neurons spike and the significance of the spikes to the eventual output.

In summary, the key contributions of this work are:

• We propose approximate computing as a new approach to improve the efficiency

of SNNs.

• We develop a systematic approach to identify the criticality of spikes generated

by each neuron at runtime. We correspondingly skip some or all updates due to

the spike, thereby improving both compute and memory energy for a minimal

loss in quality.

• We evaluate our approach in both software and hardware. For software, we

utilize a C++ implementation of SNNs on a commodity server. In the case of

hardware, we develop SNNAP, a Spiking Neural Network Approximate Proces-

sor. We achieve 1.2×-3.9× improvement in energy across a suite of 6 image

recognition SNNs that contain ∼3K-14K neurons and ∼1.3M-48.8M connec-

tions.

The rest of the chapter is organized as follows. Sections 6.1 describes the design

approach and methodology. Section 6.2 details the SNNAP architecture. The experi-

mental methodology is presented in Section 6.3 followed by the results in Section 6.4.

Section 6.5 concludes the chapter.

91

6.1 AxSNN: Design Approach and Methodology

To address the computational challenges imposed by SNNs, we propose AxSNN,

a new design approach that leverages approximate computing to improve their effi-

ciency. In this section, we present the key concepts behind AxSNN and describe the

design methodology in detail.

6.1.1 Approximating Spike-triggered Updates

As described in Chapter 3, spike triggered neuron updates form the key compute

primitive in SNNs. In our benchmark suite comprising of 6 image recognition SNNs,

spike-triggered updates accounted for ∼97% of the overall operations, and consumed

∼93% of the total software execution time on a commodity Intel Xeon server. There-

fore, we target these operations for approximation.

We associate an approximation level (α) with each neuron in the SNN. The ap-

proximation level (α) takes a value between 0 and 1, and is modulated dynamically

during network evaluation. Based on α, we approximate the update operations asso-

ciated with the neuron, as shown in Figure 6.1. An α of 1 indicates that the neuron

is at its highest accuracy level, in which case all its fan-in and fan-out connections

are active. As α is reduced, the neuron is progressively made more approximate by

only enabling a fraction α of its fan-in and fan-out connections to be active. In this

case, when the neuron spikes, only its active fan-out connections are updated, while

the rest are skipped. Similarly, its membrane potential is updated only when one of

its active fan-in connections spike. By dynamically deactivating input and output

connections of a neuron, we reduce computation and save energy.

An important aspect of our approach is that we eliminate connections in a signific-

ance-aware manner, i.e., based on synaptic weights. Once the SNN is trained, we

pre-sort input and output connections to each neuron in increasing order of weight

magnitude and deactivate the ones with lower magnitude first. For ease of imple-

mentation, we restrict the number of number of approximation levels to 5 viz. 1, 0.5,

92

5

6

7

8

2

3

4

1

N

5

6

7

8

2

3

4

1

N

Decreasing order of synaptic weight
|W1N|> |W3N| > |W2N |> |W4N | and |WN5|> |WN8| > |WN7 |> |WN6 |

αN =0.5

W1N

W2N

W3N

W4N

W1N

W2N

W3N

W4N

WN5

WN6

WN7

WN8

WN5

WN6

WN7

WN8

All connections active 50% of fan-in and fan-out
connections active

αN = 1

Fig. 6.1.: Neuron approximation mechanism

0.25, 0.125 and 0. Note that α of 0 indicates that the neuron is completely removed

from the network as none of its fan-in and fan-out connections are active.

6.1.2 AxSNN: Overview

With the aforementioned approximation mechanism in place, we now present the

overall approximation strategy adopted in AxSNN, as illustrated in Figure 6.2. The

proposed strategy is dynamic, i.e., the approximation levels of different neurons are

determined at runtime in the course of evaluating an input. As shown in Figure 6.2,

at the start of evaluation (t = 0), all neurons are set to their most accurate level (α

= 1). We augment the SNN with an AxSNN controller, which is invoked periodically

after every λ time steps. The AxSNN controller loops through each neuron in the

network and determines the approximation level with which it should be executed for

the next λ time steps. To make this decision, the AxSNN controller considers several

key factors as described below.

93

1

2

3

4

6

5

1

2

3

4

6

5

1

2

3

4

6

5

8

7

8

7

8

7

All neurons start

execution at most

accurate level

λ

Approximation levels of

some neurons are

relaxed at runtime

Early network termination:

Only a single active neuron

remains in output layer

Single active

neuron: Assign

class as output

Inactive

neuron: Class

eliminated

Time Step

. . . .

. . . .

Decreasing α

. . . .

AxSNN controller invoked every λ
time steps: Assigns new α

α = 1

Accurate

Neuron

α = 0

Inactive

Neuron
2λ kλ

A
x
S
N

N
 C

o
n
tr

o
ll
e
r

A
x
S
N

N
 C

o
n
tr

o
ll
e
r

A
x
S
N

N
 C

o
n
tr

o
ll
e
r

. . . .

Compute Neuron FOM

AxSNN Controller

FOM range for each α

. .
new
α

Assign
Static Characteristics of

Neurons

• Number of paths to outputs

• Mean path weight

Potential

Spike Rate

Dynamic Characteristics

of Neurons

New α

Fig. 6.2.: Overview of approximation strategy in AxSNN

Determining Approximation Levels

In order to determine the approximation level of a neuron, the AxSNN controller

estimates the potential impact of approximations on the overall output quality using

two key factors: (i) Spike probability, which captures the probability of the neuron

spiking in the next λ time steps, and (ii) Spike significance, which denotes the relative

importance of the neuron’s spike to the overall network. Since the AxSNN controller

is invoked periodically during execution, the above factors need to be estimated with

very low overhead, as they directly offsets the benefits derived from approximate

computing.

The AxSNN controller utilizes a mix of static and dynamic parameters to deter-

mine the spike probability (SpikeProb) and significance (SpikeSig) of each neuron.

For a neuron to spike, its membrane potential should exceed its threshold value.

94

Therefore, to estimate the SpikeProb at runtime, as shown in Equation 6.1, we first

identify how far the neuron’s current potential is from its threshold, normalized to

the reset value. We then divide the rate at which the neuron spiked in the past by

the normalized potential difference to compute SpikeProb.

SpikeProb =
SpikeRate

(Thresh.− Potential)/(Thresh.−Reset)
(6.1)

Intuitively, from Equation 6.1, the spike probability of a neuron is higher if it has

spiked frequently in the past, or if its potential is close to the threshold value.

SpikeSig, as shown in Equation 6.2, is computed as the product of the number

of paths connecting the neuron to the network outputs and the mean of all path

weights.

SpikeSig = NumPathsToOutputs ∗MeanPathWeight (6.2)

We note that, since the number of paths and the mean path weight remain constant

across all time steps, we can pre-calculate SpikeSig for each neuron once the SNN

is trained. SpikeProb and SpikeSig are combined into a single Figure-Of-Merit

(FOM), as shown in Equation 6.3.

FOM = SpikeProb ∗ SpikeSig (6.3)

The AxSNN controller contains a set of pre-defined FOM ranges for each ap-

proximation level. Based on the range in which the FOM of a neuron falls, the

AxSNN controller assigns it the corresponding approximation level. Given an output

quality requirement, the methodology used to obtain the FOM ranges is described

in Section 6.1.3.

Early Network Termination

Another key aspect of the proposed approximation strategy is that it enables the

SNN to classify an input even before all the time steps are complete. We note that, in

the most approximate level, the neuron is completely disconnected from the network

95

and no further spike activity can occur at its output. Therefore, when all but one

neuron in the output layer reach an α of 0, the execution is terminated and the input

is assigned the class of the neuron that is active.

6.1.3 AxSNN: Design Methodology

We now describe how the FOM range for each approximation level is obtained.

The FOM ranges determine how aggressively neurons transition across approxima-

tion levels, leading to different points in the efficiency vs. quality space. At the finest

granularity, the FOM ranges can be defined individually for each neuron in the net-

work. However, this leads to a prohibitively large design space, and further incurs

significant overhead to store the FOM ranges in the AxSNN controller. We address

this challenge by leveraging the fact that neurons in a layer are computationally sim-

ilar, and constrain them to utilize the same FOM ranges. In other words, the FOM

range for each approximation level is defined layer-wise.

We constrain the search space further by imposing a constraint that the FOM

range endpoints for the different approximation levels are spaced in the proportion

to the value of α. For example, the threshold to transition from α : 0.5 → 0.25 is

constrained to be half of the threshold to transition from α : 1 → 0.5 and so on.

This simplifies the search to finding one parameter per layer, which represents the

threshold to transition from the most accurate level to the first approximate level

(FOMα:1→a1).

Algorithm 2 presents the pseudocode to find FOMα:1→a1 for each layer. A trained

SNN, the training dataset and the output quality constraint are provided as inputs.

We first identify the maximum FOM for each layer, by setting its SpikeProb to 1 (Line

2), and initialize its FOMα:1→a1 to this value (Line 3). We then iteratively search

the space of FOMα:1→a1 as follows (Lines 4-9). For each layer, the corresponding

FOMLi
α:1→a1 is decreased by a small constant ∆, and the energy (ELi) and quality

(QLi) of the resultant AxSNN is computed by evaluating it on the training dataset

96

(Lines 5-6). Amongst these, we commit to the change in FOMLi
α:1→a1 for the layer

with the minimum ELi/QLi ratio (Line 8). This process is repeated until QLi for none

of the layers meet the specified quality constraint (Line 7).

Algorithm 2 Identifying FOM transition thresholds

Input: SNN : Trained spiking network, TrData: Training dataset, Q: Quality con-

straint

Output: FOMLi
α:1→a1: Threshold to transition from most accurate to first approxi-

mate level for each layer

1: For each Layer Li:

2: Compute Max. FOM FOMLi
max

3: Initialize FOMLi
α:1→a1 = FOMLi

max

4: while (1) do

5: For each Layer Li:

6: Set FOMLi
α:1→a1 -= ∆ and compute ELi, QLi

7: if (QLi < Q ∀ Li) break

8: Commit FOMLi
α:1→a1 in layer with min. (ELi/QLi) and QLi > Q

9: end while

In summary, by selectively skipping updates triggered by spikes, AxSNN achieves

significant improvements in the implementation efficiency of SNNs.

6.2 SNNAP: Architecture

In this work, we evaluate AxSNN, using both hardware and software SNN im-

plementations. To demonstrate the benefits in hardware, we propose Spiking Neural

Network Approximate Processor (SNNAP), a new hardware architecture for SNNs,

enhanced to support the proposed approximation mechanism. Figure 6.3 shows the

block diagram of SNNAP. It consists of two types of processing units: (i) a scalar

Leak-and-Spike (LnS) unit, and (ii) a 1D array of Spiking Neuron Processing Elements

97

(SNPEs). The architecture also contains two memory banks, the State Memory (SM)

and the Weight Memory (WM), which store the neuron potentials and the weights

respectively. A global controller orchestrates the overall execution.

We now describe how SNNs are realized in SNNAP. The LnS unit loops over all

neurons in all time steps, leaks its membrane potential and checks if the potential is

above its threshold. If not, the execution moves on to the next neuron. In the case

the neuron spiked, the SNPE array is activated, which reads the SM and WM banks

and updates the potentials of the fan-out neurons. The network state and weights

are statically partitioned across the SM and WM banks, such that the compute load

to each SNPE is roughly balanced.

``

SM

SNPE SNPE SNPE SNPE
Leak-and-
Spike	Unit	

(LnS)

SM

WM

SM

WM

SM

WM

SM

WM

MUX MUX MUX MUX MUX

……

……

……WM
-

Potential
Leak

Thresh.

Spike
>

+

POT.

Data	IN	&	OUT

1	to	many	DEMUX

Data	IN	&	OUT

1	to	many	DEMUX

State	
Memory	
(SM)	
Bank

Weight	
Memory	
(WM)	
Bank

SNPE	
Array

Global	
Controller

AxSNN	Controller

Layer FOM	
range α

?
Comp.	
FOM

α-New

Spike	
Neural	
Proc.	
Element

Fig. 6.3.: Block diagram of SNNAP

98

To support approximate operation, SNNAP is enhanced with an AxSNN controller

that is periodically invoked by the global controller. We also add 3 bits to the neuron

states in the SM banks to store their approximation levels. Further, the weights in

WM are sorted in accordance to their magnitude, such that updates can be skipped

with no overhead when neurons transition approximation levels. Overall, SNNAP

incurs ∼3.5% area overhead to support approximate operation.

6.3 Experimental Methodology

In this section, we describe the methodology used in our experiments to evaluate

AxSNN.

6.3.1 Runtime and Energy Evaluation

We evaluate AxSNN in both hardware and software. The software was imple-

mented in C++ and run on a 2.7GHz Intel Xeon server with 128GB memory. In the

case of hardware, the SNNAP architecture was implemented at the Register Transfer

Level (RTL) using Verilog HDL and synthesized to IBM 45nm technology using Syn-

opsys Design Compiler. The micro-architectural and circuit level parameters of the

implementation are shown in Figure 6.1a. We measured performance through cycle-

accurate simulations using ModelSim, and the switching activity traces were fed to

Synopsys Power Compiler to estimate (static and dynamic) logic power at the gate-

level. Energy was computed as the product of power and execution time. CACTI was

used to model the memory structures. The memory energy was computed by profiling

the number of memory reads and writes and multiplying them with the corresponding

energy values obtained from CACTI.

99

Table 6.1.: (a) SNNAP parameters (b) Application benchmarks

Dataset Type Layers Neurons Connections

MNIST
F.C 4 3194 2392800

Conv. 6 13594 6527300

NORB
F.C 4 3053 1276500

Conv. 6 89806 4012960

SVHN F.C. 5 7582 11149000

CIFAR-10 F.C. 4 14082 48854400

Metric Value

Feature Size 45nm

Area 0.34 mm2

Power 175.74 mW

Gate Count 193723

Frequency 1 GHz

No. of SNPE lanes 64

(b)(a)

6.3.2 Application Benchmarks

Our benchmark suite, listed in Table 6.1b, comprises of 6 image recognition SNNs,

of which two are convolutional networks and the rest are fully-connected networks.

Table 4.1b also lists the number of layers, neurons and connections in each benchmark.

The networks were trained using the methods described in [124] and [123]. We utilized

classification accuracy, i.e., fraction of inputs classified correctly, as our metric to

evaluate application quality.

6.4 Results

This section presents the results of our experiments that demonstrate the benefits

of AxSNN in both HW and SW.

6.4.1 Energy Benefits at Iso-Accuracy

Figure 6.4 shows the normalized benefits using AxSNN with no loss in accuracy

across all benchmarks. The improvements are quantified using three metrics: (i)

number of spike update operations, (ii) hardware energy, and (iii) software energy. We

100

achieve 1.4×-5.5× reduction in spike update operations across the benchmarks, which

translates to 1.2×-3.62× and 1.26×-3.9× improvement in hardware and software

energies respectively, at iso-accuracy. The benefits largely depend on the difficulty of

classifying the inputs in each dataset. For example, in the case of MNIST where we

observe the most improvements, almost 99% of the inputs can be terminated early.

In contrast, only 63% and 52% of inputs are amenable to early termination in CIFAR

and SVHN respectively. The hardware and software energies include the energy spent

in performing other control and compute operations involved in SNN evaluation in

addition to the spike update operations. Further, they also reflect the overheads

associated with realizing the approximation methodology. Due to the above reasons,

the reduction in the spike update operations don’t translate entirely into the hardware

and software benefits.

0

0.2

0.4

0.6

0.8

1

1.2

MNIST Norb SVHN Cifar MNIST
Conv.

Norb
Conv.

geoMean

N
o

rm
. b

en
ef

it
s

HW Energy SW energy/ Time Spike Update Ops

Baseline

Fig. 6.4.: Normalized OPS and energy benefits for different applications

6.4.2 Energy vs. Accuracy Tradeoff

By modulating how aggressively the neurons transition to higher approximation

levels, different application-level qualities can be achieved in AxSNN with correspond-

ing benefits in energy. Figure 6.5 shows the energy vs. quality trade-off curves thus

101

Quality	Loss	(%)	à

0

0.2

0.4

0 2 4

MNIST
Hardware
Software

0

0.5

1

0 2 4

CIFAR -10

Hardware
Software

0

0.5

1

0 2 4

NORB

Hardware
SoftwareNo

rm
.	B

en
ef
its
	à

Fig. 6.5.: Normalized energy vs. accuracy trade-off for 3 SNN benchmarks

achieved for 3 benchmarks. On an average, we obtain 1.86×, 2.51× and 3.37× en-

ergy improvement for a quality loss of 1%, 2% and 5% respectively. Since modulating

application quality only requires a change in the FOM ranges set in the AxSNN con-

troller, the same implementation can easily support multiple application quality levels

and can switch between them at runtime.

6.4.3 Input Adaptive Approximations: Easy vs. Hard Inputs

An important aspect of AxSNN is that the approximations are intrinsically input

adaptive. Inputs that are easy-to-classify are approximated more than the harder

inputs, thereby scaling computational effort in proportion to input difficulty. We

illustrate this in Figure 6.6, using 2 examples from the MNIST handwritten digit

recognition dataset. Figure 6.6 plots the approximation level of each neuron in the

SNN at each time step. Red denotes the most accurate level, while white indicates

the neuron is inactive. The AxSNN controller is invoked after every 5 time steps,

and the neurons may switch approximation levels after this interval. For ease of

understanding, we plot the approximation level for the output neurons separately

(graph on the right for both inputs).

We observe that all neurons start execution (t=0) in their most accurate state.

However, after the AxSNN controller is first invoked (t=5), a substantial fraction of

102

Neuron	ID	à

All	Neurons Output	layer	neurons

Accurate Inactive

0				5			10			15		20			25			30					
Time	(ms)	à
Neuron	ID	à

Early	
termination

Early	
termination

Time	(ms)	à

Easy	input

Hard	input

500

1000

1500

2000

2500

3000

1 0.5 0.25 0.125 0α

500

1000

1500

2000

2500

3000
0				5			10			15		20			25			30					

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

Only	
one	
active	
neuron

Multiple	
neurons	
active

Fig. 6.6.: Approximation levels of neurons at each time step

the neurons change approximation levels. Specifically, we observe that several output

neurons have been rendered inactive, effectively eliminating the respective class labels

from consideration. For example, in the case of the easy input, except for the class

‘1’, neurons corresponding to all other classes are inactive. Therefore, the execution is

terminated and the input is classified. For the hard input, 5 classes are in contention,

albeit with their neurons at different approximation levels. This reduces to 2 class

labels (‘4’ and ‘8’) at t=10, and the input is classified after 35 time steps. We still

achieve significant benefits in the case of the hard input, as neurons in other layers

are progressively approximated.

103

6.5 Summary

Spiking neural networks (SNNs) are an emerging class of neural networks that have

demonstrated significant promise in realizing several recognition, data analytics and

computer vision applications. To improve the implementation efficiency of SNNs, we

utilize approximate computing, a design paradigm in which selected computations are

performed in an approximate manner, saving energy with minimal loss in quality. We

identified updates triggered by a neuron spike as the key compute primitive in SNNs.

We target our approximations at this primitive by skipping some or all updates caused

by a spike. We develop a methodology, AxSNN, to identify the spike triggered neuron

updates that can be skipped while meeting the specified output quality requirement.

Across a suite of 6 image recognition SNN benchmarks, we demonstrate significant

benefits in energy for both hardware and software implementations.

104

7. EFFICACY OF PRUNING IN ULTRA-LOW

PRECISION DNNS

Among different approximate computing approaches for improving the efficiency of

DNNs, pruning and quantization have emerged as two of the most popular techniques

that reduce both DNN model sizes and computational complexities. But they have

been primarily explored as independent techniques, exploiting different forms of re-

dundancies in DNNs. In this chapter, we investigate the opportunities for combining

them, especially as they are driven to their individual limits.

Quantization refers to the conversion of DNN data-structures, like weights and

activations, from full-precision to low-precision values. It allows these data-structures

to be represented and stored using fewer bits, reducing their memory requirements.

It also reduces the computational demands of DNNs as the low-precision values can

be processed by simpler arithmetic units. Previous research efforts in quantizing

DNNs have succeeded in pushing the limits of quantization to perform DNN training

and inference with 8 or lower bits of precision while maintaining accuracy levels

close to full-precision implementations [103,105]. This has further motivated different

computing platforms, such as, CPUs [128], GPUs [13] and DNN accelerators [129] to

natively support low-precision operations in hardware. As these ultra-low precision

(sub-8 bits) DNNs become increasingly mainstream, we analyze the efficacy of pruning

them to extract additional benefits in terms of model size during inference.

Pruning removes redundant weights and neurons in a DNN, setting their values

to zeros. It produces sparse models that are both compute and memory-efficient

compared to their dense counterparts. The memory benefits are obtained by utilizing

different sparse coding schemes, that store only non-zero values, along with informa-

tion about their locations. However, we observe that these sparse storage formats

suffer from inefficiencies in the ultra-low precision regime as the overhead of storing

105

the non-zero locations starts to dominate. For instance, the memory compression

benefits of a 70% pruned model, with respect to a dense model, reduces from 2.21×

to 1.1× when the weight precision is decreased from 8 to 2 bits when using the Com-

pressed Sparse Column (CSC) sparse storage format [130]. Thus, there is a need to

re-evaluate the benefits of pruning as we go into the domain of ultra-low precision

DNNs.

In this work, we examine the efficacy of pruning in ultra-low precision DNNs

by measuring the compression benefits achieved by storing pruned DNNs in differ-

ent sparse formats. We consider two sparse formats widely used for DNNs, namely,

Compressed Sparse Column (CSC) and Sparsity map (Smap) format. We also pro-

pose a new format, compressed Sparsity map (cSmap), that compresses the binary

sparsity map in the Smap format to reduce the overhead of storing non-zero value

locations. We illustrate a mechanism for realizing this format by re-purposing test

pattern compression methods widely used in manufacturing test. For each of the

formats, we formulate analytical expressions for the achieved compression ratios and

identify their variation with precision and sparsity levels. Across pruned and quan-

tized versions of 6 state-of-the-art DNNs, we observe that all three formats suffer from

low compression ratios in the ultra-low precision regime. However, the compression

ratios of the individual formats vary differently with sparsity and precision, leading to

different formats achieving highest compressions in different scenarios. Accordingly,

we further propose the use of a hybrid compression scheme that selects the optimal

sparse format at a network or even layer granularity, to increase the compression

benefits across a range of DNNs.

The key contributions of this work are summarized below.

• We evaluate the efficacy of pruning in ultra-low precision DNNs.

• We develop analytical expressions for the compression benefits of two popular

sparse formats, CSC and Smap format, and analyze the effects of different

parameters on them.

106

• We propose a new format, compressed Sparsity map (cSmap), to reduce the

overhead for storing non-zero locations in the Smap format and realize it using

test pattern compression methods employed in manufacturing test.

• We evaluate the compression benefits of all three formats across 6 state-of-the-

art Convolutional Neural Networks (CNNs) and Recurrent Neural Networks

(RNNs) with varying sparsity and precision levels. We further propose a hybrid

compression scheme that dynamically identifies the best sparse format in a

given scenario and improves the average compression ratio by 18.3% - 34.7%

over homogeneous compression schemes for a 2-bit DNN.

7.1 Sparse Storage Formats for Pruned DNNs

In this section, we describe the sparse formats considered in our analysis and formu-

late their compression ratios and overheads. We also identify the impact of varying

different parameters on them. Finally, we detail the implementation of a new format

proposed in this work, using test pattern compression techniques.

The first sparse format examined in this work is the Compressed Sparse Column

(CSC) format, which is well-suited for storing irregular sparse matrices. We specially

consider a small variant of the basic format explored in sparse DNN accelerators like

Eyeriss [131] and EIE [69] to maximize compression benefits on DNNs. The second

sparse format that we consider is the sparsity map (Smap) format which has also

been explored by previous efforts in compressing sparse DNNs [132, 133]. The final

sparse format explored in our analysis is referred to as the compressed Sparsity Map

(cSmap) format. It is a new sparse format proposed in this work, targeted towards

reducing the overhead of non-zero locations in the Smap format.

107

0 c 0 0 0

a d 0 0 0

b 0 f 0 0

0 e 0 0 0

0 0 0 0 g

a b c d e f g

1 0 0 0 1 2 4

0 2 5 6 6 7

Non-zero weight vector, NZW

Zero count vector, C

Column address vector, A

(1-S) x M x N x P bits

(N+1) x logMN bits

(1-S) x M x N x I bits

Sparse weight matrix, W

M
 x

 N
 x

 P
 b

it
s

Sparsity map, SM

M
 x

 N
 b

it
s

0 1 0 0 0

1 1 0 0 0

1 0 1 0 0

0 1 0 0 0

0 0 0 0 1

a b c d e f g

Non-zero weight vector, NZW

(1-S) x M x N x P bits

1 0 0

0 1 1

1 1 0

Compressed sparsity map, cSM

M
 x

 N
/C

 b
it

s

a b c d e f g

Non-zero weight vector, NZW

(1-S) x M x N x P bits

Dense Format CSC Format

Smap Format cSmap Format

Fig. 7.1.: Data-structures and memory requirements of different storage formats

7.1.1 Compression Ratios

Compressed Sparse Column (CSC) Format. Fig 7.1 illustrates an example

sparse weight matrix, W , stored in the CSC format. It consists of 3 different data-

structures — the non-zero weight vector, NZW , zero count vector, C, and column

address vector, A. NZW stores the non-zero weight values of W while C stores the

number of zeros between them. The values are ordered in a column-major manner

with the A vector storing the starting index for each column in NZW and C. Thus,

108

all non-zero elements in column p of W lies between indices A[p] and A[p + 1] in

NZW .

The storage requirements of the individual data-structures in CSC are also shown

in Fig 7.1. The originalM×N weight matrix, W , requiresM×N×P bits (= Densebits),

when stored in a dense format with a weight precision of P . For S amount of spar-

sity, or fraction of zeros, in W , the NZW vector requires (1− S)×M×N×P bits of

storage to store (1−S)×M×N number of non-zeros. Similarly, the C vector requires

(1 − S)×M×N×I bits of storage, where I equals the precision of count values. On

the other hand, the A vector requires (N + 1)×log2MN for storing (N + 1) entries in

log2MN bits of precision. log2MN bits is the minimum precision required to support

the worst-case scenario of S = 0, when the last value of A equals MN . The overall

storage requirements for the CSC sparse format can be expressed by the following

equation.

CSCbits = (1− S)×M ×N × (P + I) + (N + 1)× log2MN (7.1)

Accordingly, the compression ratio achieved by the CSC format can be expressed as

CCSC =
Densebits
CSCbits

=
P

(N+1)×log2MN
M×N + (1− S)× (I + P)

(7.2)

Overall, the A and C vectors form the overhead for specifying the location of non-

zeros in this format. Clearly, the compression ratio decreases when the overhead

becomes significant for (i) smaller values of P (lower precision) and (ii) smaller values

of S (lower sparsity).

Sparsity map (Smap) Format. An example of a sparse matrix representation

using the Smap format is shown in Figure 7.1. It consists of two data-structures,

NZW and SM . The NZW vector resembles that in the CSC format, while the

Sparsity Map (SM) matrix, is a binary matrix indicating the location of non-zeros in

W . Specifically, ‘1’ values in SM correspond to non-zeros while ‘0’ values correspond

to zeros. Assuming the same sparse weight matrix W as above, the NZW vector

again requires (1 − S)×M×N×P bits, as shown in Figure 7.1. The SM matrix

109

requires M×N bits since it stores a single bit for each element in W . The following

equation formulates the overall storage requirements for the Smap format.

Smapbits = (1− S)×M ×N × P +M ×N (7.3)

The compression ratio, CSmap, achieved by the Smap format amounts to

CSmap =
Densebits
Smapbits

=
P

1 + (1− S)× P
(7.4)

The SM matrix forms the overhead in this format and it can dominate the overall

storage requirements for (i) smaller values of P (lower precision) and (ii) smaller

values of S (lower sparsity), leading to lower compression ratios in these scenarios.

Compressed Sparsity map (cSmap) Format. The cSmap format is a new sparse

format proposed in this work, which improves upon the Smap format by compressing

the SM matrix into a cSM matrix, as shown in Figure 7.1. Considering a compression

ratio of C, the memory footprint of the cSM matrix equals (M × N)/C bits. The

memory footprint of the NZW vector, storing the non-zero values, remains same as

the previous two formats. The total storage requirements for the cSmap format can

be expressed by the following equation.

cSmapbits = (1− S)×M ×N × P +
M ×N
C

(7.5)

This leads to an overall compression ratio of

CcSmap =
Densebits
cSmapbits

=
P

1
C

+ (1− S)× P
(7.6)

The value of the compression ratio decreases for (i) smaller values of C (lower SM

compression), (ii) lower values of S (lower sparsity) and (iii) smaller values of P (lower

precision). In this work, we illustrate a mechanism for compressing the SM matrix

by utilizing test pattern compression tools. The details of the mechanism will be

presented in the next subsection.

Overall, we clearly see that all three sparse formats suffer from low compression

ratios in the ultra-low precision regime considered in this work. But the exact varia-

tion in the value of the compression ratio, with different precision and sparsity levels,

depends on the format, and will be discussed in greater detail in Section 7.3.

110

7.1.2 Realizing the cSmap Format using Test Pattern Compression

We now present the details for realizing the cSmap format with the help of the

test pattern compression tools discussed in Section 3.7. The advantages of utilizing

these test pattern compression tools are three-fold. First, these tools can efficiently

compress binary test vectors and should accordingly be able to compress the binary

matrix, SM , into its compressed form, cSM . Second, the decompression overhead is

very low, allowing cSM to be decompressed into SM at runtime. Third, it allows us

to re-use the existing test units in hardware.

However, commercial test pattern compression tools (for e.g., Mentor Graphics’

Tessent TestKompress [134]) lack the flexibility to compress an arbitrary binary ma-

trix, SM . They are engineered to compress only test patterns generated by ATPG

(Automatic Test Pattern Generation) tools, and are unable to compress any user-

defined test patterns. As a result, we modify the DUT and the ATPG process to

generate patterns resembling the values in SM . The overall process consists of three

distinct steps, namely, creation of DUT, generation of constrained patterns and com-

pression of these patterns.

First, we create a simple flip-flop (FF) based design consisting of rows of FFs

connected in chains. Each FF gets converted to a scan cell and rows of FFs get

converted to scan chains during the test insertion process, to yield a design similar

to the DUT in Figure 3.8. The size of the design is set to be a function of the size

of the SM matrix that we want to compress. Specifically, the number of FF rows is

set to be αM and the number of FF in each row is set to be βN , where M and N

have the same meaning as in the previous subsection. Further, each bit in the SM

matrix mapped to a unique FF in the design. For α and β values of 1, this mapping

is straightforward with each matrix element mapping to the FF with the same index.

For higher values of α and β, we adopt a strided and staggered mapping strategy,

where element (i, j) in the matrix maps to scan cell (α× i, β × j + i % α).

111

Next, we force the ATPG tool to generate patterns resembling the SM matrix by

constraining the FFs to have values equal to their corresponding values in SM . The

strided and staggered mapping strategy ensures that the constraints are sufficiently

spread out and the ATPG is able to generate the constrained patterns efficiently.

Finally, we compress these patterns to form cSM . For DNNs with larger weight

matrices, we further partition SM into smaller submatrices and perform the design

creation, test pattern generation and compression process iteratively on individual

submatrices.

Lossy scheme to improve SM compression. In order to improve the compression

of the SM matrix even further, we also allow the compression mechanism to be lossy

in nature. Specifically, during the ATPG process, we constrain all cells corresponding

to ‘1’ valued bits but only a fraction, fc, of cells corresponding to ‘0’ valued bits in

SM . The test pattern bits corresponding to the remaining (1 − fc) fraction of ‘0’

elements in SM can potentially end up having a value of ‘1’. The compressed version

of these test patterns, forming the cSM matrix, thus decompresses to form dSM ,

which is a small variant of the SM matrix with some additional 1’ values, as shown

in Figure 7.2. Clearly, the NZW vector now has to store zero values corresponding

0 1 0 0 0

1 1 0 0 0

1 0 1 0 0

0 1 0 0 0

0 0 0 0 1

0 1 0 0 0

1 1 1 0 0

1 0 1 0 0

0 1 0 0 1

0 1 0 0 1

Decompressed sparsity map, dSMOriginal sparsity map, SM

Fig. 7.2.: Lossy SM compression

to these extra ‘1’s, increasing its memory footprint to (1− SdSM)×M ×N × P bits

where SdSM is the sparsity fraction in the dSM matrix. Equation 7.6, describing the

112

compression ratio achieved by the cSmap format, thus gets modified to the following

form.

CcSmap =
Densebits
cSmapbits

=
P

1
C

+ (1− SdSM)× P
(7.7)

7.2 Experimental Methodology

This section describes the methodology adopted in our experiments to study the

efficacy of pruning in ultra-low precision DNNs.

7.2.1 Benchmarks

Our benchmark suite consists of Convolutional Neural Networks (CNNs) and Recur-

rent Neural Networks (RNNs) for image-recognition and language modeling tasks,

respectively. The details of the benchmarks are listed in Table 7.1. The number of

weights, or connections, in the networks varies between 0.43 million and 135.83 mil-

lion. We prune each of the networks to different sparsity levels using AGP [102] and

quantize them to four different ultra-low weight precision levels — 2, 4, 6 and 8 bits.

As the quantization is performed after pruning, the sparsity fraction and distribution

remains constant across precision levels.

Table 7.1.: Benchmarks

Name MNISTconv AlexNet ResNet18 ResNet50 MobileNetv2 WordLangModel

Dataset MNIST ImageNet ImageNet ImageNet ImageNet ImageNet

Type CNN CNN CNN CNN CNN RNN

Accuracy (%) 99.09 56.52 69.76 76.13 71.88 84.23 (Ppl:
Perplexity)

Weights (M) 0.43 61.09 22.73 11.51 3.49 135.83

113

7.2.2 Compression Evaluation

For each of the pruned networks, we calculate the compression benefits of the three

sparse formats with respect to a dense network of the same precision. The individual

weight memory requirements of a layer, as expressed by equations 7.1, 7.3 and 7.5,

are summed up to yield network-level compression benefits. For the CSC format, we

consider I = 4, similar to [69]. For the cSmap format, we perform a grid search on

the values of α, β and fc, and select the values yielding the highest compression ratio

for each network.

7.3 Results

In this section, we present the results of our experiments on exploring the efficacy of

pruning in ultra-low precision DNNs.

7.3.1 Network-level Compression Ratios

Figure 7.3 shows the network-level compression ratios achieved by the 3 sparse formats

across different pruned and quantized versions of the benchmarks. The individual

networks, along with their weight sparsity levels after pruning, are listed horizontally.

The sparse formats and weight precision values are listed vertically. The colors in the

figure represent the compression ratios achieved by a format when the corresponding

sparse network is stored with a specific weight precision. All compression ratios below

1 are shown in red color and it highlights the scenarios where using a sparse format

hurts us by increasing the memory requirements to more than that of a dense network

with the same precision. On the other hand, all compression ratios above 1 are

shown in green color, corresponding to scenarios where we can benefit from pruning

by utilizing a sparse format. Overall, the compression ratio varies between 0.65×-

5.27× across different formats, networks, precisions and sparsity levels. Individually,

it varies between 0.65×-5.27×, 0.99×-4.44× and 0.99×-3.43× for the CSC, Smap and

114

C
SC

Sm
ap

cS
m
ap

MNISTconv AlexNet ResNet18 WordLang
Model

50.0 69.4 88.8 49.8 68.3 88.3 50.4 59.9 69.4 50 70 90

2

4

6

8

2

4

6

8

2

4

6

8

Sparsity (%) Mobile
NetV2

ResNet50

50 69.7 80 52.8 72.4

Precision
(bits)

1

0.65

5.27

Fig. 7.3.: Network-level compression

cSmap format, respectively. It decreases with decreasing precision and sparsity levels,

as evident from the shift in darker green shades in the bottom right corner to lighter

green or red shades in top left corner for all formats and networks. For instance,

the top left corner illustrates the compression ratio of 0.65× achieved by the CSC

format for the MNISTconv network with 50% weight sparsity and 2 bits of weight

precision. The low or no compression benefits at intermediate sparsity levels (50-70%)

are specially concerning for compact networks like MobileNet [101] which cannot be

pruned beyond those levels without causing a huge drop in accuracy.

7.3.2 Storage Breakdown in Sparse Formats

Next, we study the variation in the storage requirements of the individual compo-

nents, i.e., the non-zero locations and non-zero values, in the different sparse formats.

115

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

8 6 4 2 8 6 4 2 8 6 4 2

50% sparsity 70% sparsity 90% sparsity

N
o

rm
al

iz
ed

 s
to

ra
ge

Compressed SpM NZW

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

8 6 4 2 8 6 4 2 8 6 4 2

50% sparsity 70% sparsity 90% sparsity

N
o

rm
al

iz
ed

 s
to

ra
ge

SpM NZW

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

8 6 4 2 8 6 4 2 8 6 4 2

50% sparsity 70% sparsity 90% sparsity

N
o

rm
al

iz
ed

 s
to

ra
ge

Idx NZW

Dense baseline

Dense baseline

CSC sparse format

Smap sparse format

C+A

SM

cSmap sparse format

Dense baseline

bits bitsbitsbitsbits bits bits bits bits bits bits bits

cSM

bits bitsbitsbitsbits bits bits bits bits bits bits bits

bits bitsbitsbitsbits bits bits bits bits bits bits bits

Fig. 7.4.: Storage breakdown in different sparse formats

116

Figure 7.4 plots the normalized storage fraction of these components with respect to

a dense baseline of the same weight precision across different pruned versions of the

WordLangModel benchmark. The non-zero location component, shown in blue, corre-

sponds to different data-structures in each format. Across all formats, we observe that

the location storage fraction increases with decreasing precision for a fixed sparsity

level. However, the individual values of this fraction, as well as its rate of increase, is a

strong function of the sparse format, with the cSmap format exhibiting the minimum

value. For the same precision level, the location fraction decreases with increasing

sparsity in the CSC format but remains constant in the Smap format. It also remains

constant in the cSmap format for identical hyperparameters in the test compression

process. For the non-zero value component, we observe that its fraction in both the

CSC and Smap formats remains constant across all precisions for a constant spar-

sity level, while decreasing with increasing sparsity levels because of lower number

of non-zeros. The value fraction in the cSmap format, on the other hand, is higher

than that in the other two formats across all sparsity levels and precisions due to the

introduction of some additional non-zeros in the lossy SM compression with the test

pattern compression tool.

7.3.3 Benefits of a Hybrid Compression Scheme

As evident from the previous subsection, the compression ratios of the 3 sparse formats

exhibit different trends across sparsity and precision levels. This in turn leads to a

variation in the best performing sparse format across networks, as well as, layers

within a network. We thus propose a hybrid compression scheme to overcome this

limitation by identifying the optimal format at a layer or network granularity based

on its sparsity and precision level. In this subsection, we discuss the advantages of

such a hybrid scheme.

Figure 7.5 illustrates the inter-layer variation in the best performing sparse for-

mat for the AlexNet network exhibiting an average sparsity of 90%. The individual

117

0

1

2

3

4

5

50%
Sparsity

70%
Sparsity

90%
Sparsity

50%
Sparsity

70%
Sparsity

90%
Sparsity

50%
Sparsity

70%
Sparsity

90%
Sparsity

2 bit 4 bit 6 bit

N
et

w
o

rk
 c

o
m

p
re

ss
io

n
 r

at
io CSC Smap cSmap

0

1

2

3

4

5

6

co
n

v2

co
n

v3

co
n

v4

co
n

v5 fc
1

fc
2

fc
3

co
n

v2

co
n

v3

co
n

v4

co
n

v5 fc
1

fc
2

fc
3

co
n

v2

co
n

v3

co
n

v4

co
n

v5 fc
1

fc
2

fc
3

2 bit 4 bit 6 bit

La
ye

r
co

m
p

re
ss

io
n

 r
at

io CSC Smap cSmap

Fig. 7.5.: Layer-level and network-level variation in best performing sparse formats

layers in this network are pruned to different sparsity levels based on their relative

importance in the overall recognition task. At 2 bit precision, we observe that the

cSmap format achieves the highest compression for the conv2, conv3 and conv4 layers,

while the Smap format achieves the highest compression for the conv5 and fc3 layers,

and the CSC format achieves the highest compression for the fc1 and fc2 layers. By

selecting these best performing formats in each layer, the hybrid scheme increases the

average compression ratio by 14.5%-36.6% over homogeneous schemes. Figure 7.5

highlights the inter-network variation in the best performing sparse format across

different pruned versions of the WordLangModel benchmark. We again observe that

118

different formats among Smap, CSC and cSmap, emerge as the best performing for-

mat in different scenarios. The hybrid scheme selects the best format in each of these

scenarios, increasing the average compression ratio across 2-bit networks by 18.3%,

34.7% and 34.2% over the CSC, Smap and cSmap format, respectively.

7.4 Summary

The high computational and memory demands of DNNs impede their efficient exe-

cution on different resource-constrained platforms. Quantization and pruning have

emerged as two of the most widely-used approaches to address these demands. In this

work, we identify the challenges in effectively combining them, specially as each of

them gets pushed to its limits. We observe that as we go into the domain of ultra-low

precision (sub-8 bit) DNNs, the efficacy of pruning reduces due to the increasing over-

head of storing non-zero locations in different sparse encoding schemes. Our results

across multiple pruned and quantized versions of 6 state-of-the-art DNNs reveal that

the compression benefits are a strong function of the pruning level and the sparse

encoding scheme, and can even drop below 1 in the worst-case, rendering pruning

ineffective. However, a hybrid compression scheme, proposed in this work, can ex-

ploit the variation across sparse encodings to identify the optimal format in a given

scenario and improve the average compression benefits over homogeneous encoding

schemes, across a range of DNNs.

119

8. EMPIR: ENSEMBLES OF MIXED PRECISION DEEP

NETWORKS FOR INCREASED ROBUSTNESS

AGAINST ADVERSARIAL ATTACKS

As discussed in Chapter 1, the concerns about the high computational and memory

demands of DNNs has also been accompanied by concerns regarding their lack of

robustness. Robustness, i.e., the ability to cope with erroneous or malicious inputs

fed to an application, is a key requirement in safety-critical applications of DNNs

like autonomous cars, unmanned aerial vehicles and healthcare, wherein errors (mis-

classifications) made by DNNs can lead to severe — in the extreme case, fatal —

consequences.

Several efforts have in fact shown that DNNs behave in unexpected and incorrect

ways for small, specifically designed input perturbations [31]. An attacker can take

advantage of this behavior to intentionally modify the inputs in a manner that forces

the DNN model to mis-classify, and the overall system that uses the DNN to fail. A

variety of methods for launching adversarial attacks on DNNs have been proposed over

the years. These adversarial attacks systematically modify a given original input to

cause a misclassification while keeping the input distortion minimal. A few examples

of adversarial attacks that have been successfully applied to various DNN models are

the Fast Gradient Sign Method (FGSM) [31], Jacobian-based Saliency Map Attack

(JSMA) [50], Carlini-Wagner (CW) [51] and the Basic Iterative Method (BIM) [33],

which have been discussed in greater detail in Chapter 3.

Prior works have tried to overcome these vulnerabilities by proposing various

defense mechanisms against adversarial attacks. Adversarial training [31], defensive

distillation [35] and input gradient regularization [36] are a few representative defense

techniques. Each of these approaches, albeit promising, has limitations with respect

to the kind of attacks they can defend against, the increase in training complexity,

120

as well as their effect on the model’s accuracy on the original unperturbed inputs.

To address these shortcomings, we propose EMPIR, an ensemble of mixed precision

DNN models, as a new form of defense against adversarial attacks and demonstrate

that it can significantly improve the robustness of a variety of DNN models across a

wide range of adversarial attacks.

Ensembles have been widely explored as an approach to improve the performance

of machine learning models and classifiers [135]. Examples of various successful ensem-

bling methods include averaging, bagging [136], boosting [137], etc. Recently, it has

also been suggested that ensembles may help boost the robustness of DNNs [53,76–78].

The individual models in these ensembles are restricted to full precision DNN mod-

els, i.e., models utilizing 32 bits of numerical precision to represent different data-

structures. Such ensembles are very expensive in terms of the computational and

memory overhead (e.g., 10× the baseline for an ensemble with 10 models [53]). In

contrast, the use of quantized models in EMPIR, which entail the use of significantly

lower number of bits in storage and compute, ensures that the overhead is modest

(less than 25% in our evaluations).

Quantized DNNs are characterized by the use of lower numbers of bits to represent

DNN data-structures like weights and activations [37–39,104]. They have been widely

explored as an approach to reduce the high computational and memory demands of

DNNs. Recent studies have also observed that these quantized models demonstrate

higher robustness to adversarial attacks [40–42]. However, the loss in information as-

sociated with the quantization process often makes these quantized models perform

significantly worse than their full-precision counterparts while classifying the orig-

inal unperturbed inputs. This motivates the design of EMPIR, which successfully

combines the higher robustness of low-precision models with the higher unperturbed

accuracy of the full-precision models. In the general case, EMPIR comprises of M

full-precision models and N low-precision models with the final prediction determined

by an ensembling technique such as averaging the probabilities or counting the num-

121

ber of predictions for each class. In practice, we find that M = 1 and N = 2 or 3

provides a significant improvement in adversarial accuracy with small overheads.

In summary, the key contributions of this work are

• We propose the use of ensembles of mixed precision models as a defense against

adversarial attacks on DNNs.

• We analyze the effect of ensemble size and ensembling techniques on the overall

robustness as well as the computational and storage overheads of the ensemble.

• Across a suite of 3 different DNN models under 4 different adversarial attacks,

we demonstrate that EMPIR exhibits significantly higher robustness when com-

pared to individual models as well as ensembles of full-precision models.

8.1 EMPIR: Ensembles of Mixed Precision Deep Networks for Increased

Robustness against Adversarial Attacks

To improve the robustness of DNN models, we propose EMPIR, or ensembles of

mixed precision models. In this section, we will detail the design of EMPIR models

and discuss the overheads associated with them.

8.1.1 Adversarial Robustness of Low-Precision Networks

DNNs have conventionally been designed as full precision models utilizing 32-bit

floating point numbers to represent different data-structures like weights, activations

and errors. However, the high compute and memory demands of these full-precision

models have driven efforts to move towards quantized or low-precision DNNs [37–

39, 103, 104]. A multitude of quantization schemes have been proposed to minimize

the loss of information associated with the quantization process. While our proposal

is agnostic to the quantization method used, for the purpose of demonstration we

adopt the quantization scheme proposed in DoReFaNet [38], which has been shown

122

to produce low-precision models with competitive accuracy values. The quantization

scheme can be described by Equation 8.1.

quantizek(x) =
1

2k − 1
round((2k − 1) · x)

wk = 2 · quantizek(
tanh(w)

2 ·max(|tanh(w)|)
+

1

2
)− 1, ak = quantizek(a)

(8.1)

where k refers to the number of quantization bits in the low precision network, w

and wk refer to weight values before and after quantization, and a and ak refer to

activation values before and after quantization.

0.4

0.3

0.2

1.00

0.99

0.98

0.97

0.96
0.95

1
16

32
24

1
16

32
24

0.250.200.15 0.30 0.9880.9840.980

A
d

ve
rs

ar
ia

l a
cc

u
ra

cy

Fig. 8.1.: Unperturbed accuracies and adversarial accuracies of low-precision models

trained for the MNIST dataset

In addition to the widely known advantages of reduced model size and reduced

complexity of arithmetic computations, recent research efforts have also brought to

light another lesser known advantage of low-precision models in the form of increased

robustness to adversarial attacks. It has been observed that low-precision models in

general exhibit higher values of adversarial accuracy than full-precision models with

identical network structures [40, 41]. One possible explanation for this property is

that higher quantization introduces higher amounts of non-linearity, which prevents

123

small changes in the input from drastically altering the output and forcing a misclas-

sification [40]. Figure 8.1 shows the adversarial accuracies of different low precision

models trained on the MNIST dataset under the FGSM attack. Unlike the activa-

tions and weights, the gradients utilized in the attack generation process were not

quantized, allowing the adversary to launch a stronger attack. From the figure, it is

apparent that models with lower numbers of bits used for representing weights and

activations exhibit significantly higher levels of adversarial accuracy.

However, increasing the robustness of a system by simply replacing the full-

precision model with its low-precision variant can negatively impact its accuracy on

the original unperturbed inputs (unperturbed accuracy). In other words, the model

may now start to mis-classify inputs that were not adversarially perturbed. Figure 8.1

also shows the unperturbed accuracies of low-precision models. As expected, models

with weights and activations represented using lower numbers of bits exhibit lower

unperturbed accuracies.

Based on the above observations, we propose the use of ensembles of mixed-

precision models to achieve the best of both worlds, i.e., increase robustness against

adversarial attacks without sacrificing the accuracy on unperturbed inputs.

8.1.2 EMPIR: Overview

Figure 8.2 presents an overview of EMPIR. In the general case, an EMPIR model

comprises of M full-precision (FP) models and N low-precision (LP) models. The full-

precision models help in boosting the unperturbed accuracy of the overall model, while

the low-precision models contribute towards higher robustness. All the individual

models are fed the same input and their predicted classes or probabilities are combined

with the help of an ensembling technique at the end to determine the final prediction

of the EMPIR model. In practice, we found that a single full-precision model (M=1)

and a small number of low-precision models (N=2 or 3) are sufficient to achieve

124

Predicted class
& probability

1 2 M

FP models

1 2 N

LP models

Ensembling technique

Input Image

Final
predicted
class

…

…

1. Max voting of
classes

2. Averaging of
probabilities

Ensembling technique

Fig. 8.2.: Overview of EMPIR

high adversarial accuracies without any noticeable compromises in the unperturbed

accuracies.

The ensembling function plays a vital role in the overall performance of the model

as it determines the final classification boundary. In this work, we consider two of the

most commonly used ensembling functions, namely, averaging and max voting. The

averaging function averages the output probabilities of each model and identifies the

class with the maximum average probability as the final predicted class. On the other

hand, max voting considers the predictions of each model as votes and determines the

class with the maximum number of votes to be the final class. In our experiments,

we found that averaging achieves better adversarial accuracies on ensembles of size 2

while max voting achieves better adversarial accuracies on ensembles of size greater

than 2.

In order to allow an ensemble model to work better than a single model, the

individual models should also be designed to be diverse [135]. This ensures that

the models dont produce similar errors and hence, that the probability of two models

125

misclassifying the same input is lower. We introduce diversity in the individual models

of EMPIR by training them with different random initializations of weights.

8.1.3 Computational and Memory Complexity of EMPIR

The ensembling of multiple full-precision and low-precision models in EMPIR in-

creases its computational and storage requirements as these models need to be stored

and evaluated. In this work, we keep these memory and computational complexities

within reasonable limits by restricting the precision of weights and activations in the

low-precision models of EMPIR to a maximum of 4 bits.

The increasing popularity of low-precision DNN models has prompted recent hard-

ware platforms including GPUs and neural network accelerators to add native hard-

ware support for operating on low precision data [13,129]. These hardware platforms

reconfigure a common datapath to perform computations on full-precision data (32

or 64 bits) as well as low-precision data (4, 8 or 16 bits). Low-precision operations

can achieve higher throughputs than full-precision operations on these platforms as

the same number of compute elements and the same amount of memory bandwidth

can support a larger number of concurrent operations. Consequently, the additional

execution time required to evaluate the low-precision models in EMPIR is much less

than that of a full-precision model. Overall, we quantify the execution time and

storage overhead of an EMPIR model using the formula described by Equation 8.2.

TimeOverhead{EMPIR(M,N)} = M +
N∑
i=1

Ops per sec(FP)

Ops per sec(ki)

StorageOverhead{EMPIR(M,N)} = M +
N∑
i=1

ki
FP

(8.2)

where ki is the precision of the ith low-precision model, FP is the precision of the

full-precision models, and Ops per sec(b) is the throughput of b bit operations on the

underlying hardware platform.

126

8.2 Experiments

In this section, we describe the experiments performed to evaluate the advantages of

EMPIR models over baseline full-precision models.

8.2.1 Benchmarks

We studied the robustness of EMPIR models across three different image recog-

nition DNNs, namely, MNISTconv, CIFARconv and AlexNet. The individual full-

precision and-low precision networks within the EMPIR models were designed to have

identical network topologies. The details of the individual networks in these bench-

marks are listed in Table 8.1. The benchmarks differ in the number of convolutional

layers, fully connected layers as well as the datasets. We consider three different

datasets, namely, MNIST [138], CIFAR-10 [116] and ImageNet [139] which vary sig-

nificantly in their complexity. The low precision networks were obtained using the

quantization scheme proposed in DoReFa-Net [38]. The full precision models were

trained using 32 bit floating point representations for all data-structures.

8.2.2 Evaluation of robustness

We implemented EMPIR within TensorFlow [140] and have released the source

code for our implementation 1. The robustness of the EMPIR models was measured

in terms of their adversarial accuracies under a variety of white-box attacks within

the Cleverhans library [141]. We specifically consider the four adversarial attacks

described in Section 3.6. The adversarial parameters for the attacks on the different

benchmarks are presented in Table 8.2. The attacks were generated on the entire

test dataset for each of the benchmarks. Generating these white-box attacks involves

computation of the gradient OxL(θ,X, Y) (Section 3.6), which is not directly defined

for ensembles. For the EMPIR models, we compute this gradient as an average over

1https://github.com/sancharisen/EMPIR

127

Table 8.1.: Benchmarks

Network Dataset Configuration

MNISTconv MNIST

Conv(8×8×64), ReLU,

Conv(6×6×128), ReLU,

Conv(5×5×128), ReLU,

Fully Connected(10), SoftMax

CIFARconv CIFAR-10

Conv(5×5×32), ReLU,

MaxPool(3×3), Conv(8×8×64),

ReLU, AvgPool(3×3),

Conv(8×8×64), ReLU,

AvgPool(3×3), Fully Connected(64),

Fully Connected(10), SoftMax

AlexNet ImageNet

Conv(12×12×96), ReLU,

Conv(5×5×256), BatchNorm, ReLU,

MaxPool(3×3), Conv(3×3×384),

BatchNorm, ReLU, MaxPool(3×3),

Conv(3×3×384), BatchNorm, ReLU,

Conv(3×3×256), BatchNorm, ReLU,

MaxPool(3×3), Fully Conn(4096),

BatchNorm, ReLU, Fully Conn(4096),

BatchNorm, ReLU, Fully Conn(1000),

SoftMax

128

Table 8.2.: Attack parameters

Network CW FGSM BIM PGD

MNISTconv
Attack

iterations = 50
ε= 0.3

ε= 0.3, α=0.01

No. of

iterations = 40

ε= 0.3, α=0.01

No. of

iterations = 40

CIFARconv
Attack

iterations = 50
ε= 0.1

ε= 0.1, α=0.01

No. of

iterations = 40

ε= 0.1, α=0.01

No. of

iterations = 40

AlexNet
Attack

iterations = 50
ε= 0.1

ε= 0.1, α=0.01

No. of

iterations = 40

ε= 0.1, α=0.01

No. of

iterations = 5

all individual models for an averaging ensemble and as an average over the individual

models that voted for the final identified class for a max-voting ensemble.

8.3 Results

In this section, we present the results of our experiments highlighting the advantages

of EMPIR models.

8.3.1 Robustness of EMPIR models across all attacks

Tables 8.3, 8.4 and 8.5 present the results of our experiments across the MNIST-

conv, CIFARconv and AlexNet benchmarks, respectively. The EMPIR models pre-

sented in the tables are the ones exhibiting highest average adversarial accuracies

under the constraints of <25% compute and memory overhead and <2% loss in unper-

129

Table 8.3.: MNISTconv: Unperturbed and adversarial accuracies of the baseline and

EMPIR models across different attacks

Unperturbed Adversarial Accuracy (%)

Approach Accuracy (%) CW FGSM BIM PGD Average

Baseline FP

EMPIR

Defensive Distill.

Inp. Grad. Reg.

FGSM Adv. Train

EMPIR (FGSM

Adv. Train)

98.87

98.89

98.12

99.01

99.06

99.09

3.69

86.73

2.34

6.83

3.09

90.54

14.32

67.06

40.22

30.15

76.56

75.98

0.9

18.61

7.61

1.14

0.87

33.16

0.77

17.51

3.28

1.20

0.39

5.17

4.92

47.48

13.36

9.83

20.23

51.21

turbed accuracy. We observed that across all the benchmarks, ensembles comprised

of two low-precision and one full-precision model combined with the max-voting en-

sembling technique satisfy these constraints. However, the individual configurations

of the low-precision models, i.e., the precisions of weights and activations in the en-

sembles, differ across the benchmarks. For example, both low-precision models in

the EMPIR model for MNISTconv have weight precisions of 2 bits and activation

precisions of 4 bits. On the other hand, the two low-precision models in the AlexNet

EMPIR model have {weight,activation} bit-precisions of {2,2} and {4,4}, respec-

tively. In general, we observe that the EMPIR models exhibit substantially higher

adversarial accuracies across all attacks for the three benchmarks.

We also compare the benefits of EMPIR with four other popular approaches for

increasing robustness, namely, defensive distillation [35], input gradient regulariza-

tion [36] , FGSM based adversarial training [31] and PGD based adversarial train-

130

Table 8.4.: CIFARconv: Unperturbed and adversarial accuracies of the baseline and

EMPIR models across different attacks

Unperturbed Adversarial Accuracy (%)

Approach Accuracy (%) CW FGSM BIM PGD Average

Baseline FP

EMPIR

FGSM Adv. Train

EMPIR (FGSM

Adv. Train)

PGD Adv. Train

74.54

72.56

72.36

73.62

73.55

13.38

48.51

14.36

45.73

12.62

10.28

20.45

41.58

31.67

12.45

11.97

24.59

12.92

29.55

10.97

10.69

13.55

11.24

14.74

8.52

11.58

26.78

20.03

30.42

11.14

Table 8.5.: AlexNet: Unperturbed and adversarial accuracies of the baseline and

EMPIR models across different attacks

Unperturbed Adversarial Accuracy (%)

Approach Accuracy (%) CW FGSM BIM PGD Average

Baseline FP

EMPIR

53.23

55.09

9.94

29.36

10.29

21.65

10.81

20.67

10.30

11.76

10.34

20.86

ing [32]. The distillation process was implemented with a softmax temperature of

T = 100, the gradient regularization was realized with a regularization penalty of

λ = 100, while the adversarial training mechanisms utilized adversarial examples

generated with a maximum possible perturbation of ε = 0.3. Tables 8.3 and 8.4

present the results for the approaches that were able to achieve <5% loss in unper-

131

turbed accuracy for the MNISTconv and CIFARconv benchmarks respectively. We

observe that FGSM based adversarial training significantly boosts the adversarial ac-

curacies of the MNISTconv and CIFARconv models under the FGSM attack but is

unable to increase the accuracies under the other three attacks, often hurting them

in the process. A similar result is observed for the MNISTconv model trained with

defensive distillation and gradient regularization. In contrast, EMPIR successfully

increases the robustness of the models under all four attacks. In fact, it can even be

combined with the other approaches to further boost the robustness, as evident from

the adversarial accuracies of an EMPIR model comprising of adversarially trained

models for the MNISTconv and CIFARconv benchmarks. EMPIR also achieves a

higher adversarial accuracy than PGD based adversarial training for the CIFARconv

benchmark. Overall, EMPIR increases robustness with zero training overhead, as op-

posed to considerable training overheads associated with the other defense strategies

like adversarial training, defensive distillation and input gradient regularization.

8.3.2 Comparison with individual models

0
2

0 0.5 1 1.5 2 2.5

Individual models EMPIR model

0

0.2

0.4

0.6

0.8

1

0.96 0.98 1

A
d

ve
rs

ar
ia

l A
cc

u
ra

cy

Unperturbed Accuracy

MNISTconv

0

0.1

0.2

0.3

0.4

0.5

0.6

0.45 0.65 0.85

A
d

ve
rs

ar
ia

l A
cc

u
ra

cy

Unperturbed Accuracy

CIFARconv

Fig. 8.3.: Tradeoff between unperturbed and adversarial accuracies of the individual

and EMPIR models across 2 benchmarks.

132

Figure 8.3 illustrates the tradeoff between the adversarial and unperturbed accu-

racies of the individual DNN models and EMPIR models for two of the benchmarks

under the CW attack. The circular blue points correspond to individual models with

varying weight and activation precisions while the red diamond points correspond

to the EMPIR models presented in Section 8.3.1. The figure clearly indicates that

the EMPIR models in both the benchmarks are notably closer to the desirable top

right corner with high unperturbed as well as high adversarial accuracies. Among the

individual models, the ones demonstrating higher adversarial accuracies but lower un-

perturbed accuracies (towards the top left corner) correspond to lower activation and

weight precisions while those demonstrating lower adversarial accuracies and higher

unperturbed accuracies (towards the bottom right corner) correspond to higher acti-

vation and weight precisions.

8.3.3 Analysis of confusion matrices

Baseline FP model EMPIR model

0
1

2
3
4
5
6

7
8

9

0
1

2
3
4
5
6

7
8

9
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

A
ct

u
al

 la
b

el

A
ct

u
al

 la
b

el

Predicted label Predicted label

0 200 1200400 600 1000800 0 200 1200400 600 1000800
No. of imagesNo. of images

Fig. 8.4.: Confusion matrices of the baseline FP and EMPIR model for the

MNISTconv benchmark.

133

Figure 8.4 presents the confusion matrices of the baseline FP model and the

EMPIR model for the MNISTconv benchmark under the FGSM attack. The actual

ground truth class labels are listed vertically while the predicted labels are listed

horizontally. The colors represent the number of images in the test dataset that

correspond to the combination of actual and predicted class labels. The diagonal

nature of EMPIR’s confusion matrix clearly illustrates its superiority over the FP

model, which frequently misclassifies the generated adversarial images.

8.3.4 Impact of varying the number of low-precision and full-precision

models

In this subsection, we vary the number of low-precision and full-precision models

in EMPIR between 0 and 3 to observe its effect on the unperturbed and adversarial

accuracies of the MNISTconv benchmark under the FGSM attack. We also mea-

sure the execution time and memory footprint of the EMPIR models to quantify

their overheads with respect to a baseline single full-precision model. We restrict

the low-precision models to have weight and activation precisions between 2 and 4

bits and choose the configurations that maximize the adversarial accuracies of the

EMPIR models while introducing <1% drop in unperturbed accuracies.

Figure 8.5 presents the results of this experiment. Figure 8.5(a) and (b) clearly in-

dicates that a higher number of low-precision models in EMPIR helps in boosting the

adversarial accuracies while a higher number of full-precision models help in boosting

the unperturbed accuracies. For instance, an EMPIR model comprising of only three

low-precision models demonstrates unperturbed and adversarial accuracies of 98.8%

and 56.9% respectively while an EMPIR model comprising of only three full-precision

models demonstrates unperturbed and adversarial accuracies of 99.2% and 31%, re-

spectively. The execution time and memory footprint associated with the former are

only 0.38× and 0.25× over the baseline, as opposed to 3× in case of the latter. Overall,

we observe that an EMPIR model comprising of a single full-precision model and two

134

(a) (b)

(c) (d)

0.983 0.986 0.9920.989 0.60.50.40.30.2

A
d

ve
rs

ar
ia

l a
cc

u
ra

cy

3.02.51.51.00.5 2.0 3.02.51.51.00.5 2.0

0.7

Fig. 8.5.: Effects of varying the number of LP and FP models in EMPIR (a)

Unperturbed accuracies, (b) Adversarial accuracies, (c) Execution time overheads

and (d) Storage overheads

low-precision models (configuration presented in Tables 8.3, 8.4 and 8.5) achieves a

good balance between adversarial and unperturbed accuracies with modest execution

time and storage overheads.

135

8.4 Summary

As deep neural networks get deployed in applications with stricter safety require-

ments, there is a dire need to identify new approaches that make them more robust

to adversarial attacks. In this work, we boost the robustness of DNNs by designing

ensembles of mixed-precision DNNs. In its most generic form, EMPIR comprises

of M full-precision DNNs and N low-precision DNNs combined through ensembling

techniques like max voting or averaging. EMPIR combines the higher robustness of

low-precision DNNs with the higher unperturbed accuracies of the full-precision mod-

els. Our experiments on 3 different image recognition benchmarks under 4 different

adversarial attacks reveal that EMPIR is able to significantly increase the robustness

of DNNs without sacrificing the accuracies of the models on unperturbed inputs.

136

9. CONCLUSION

Deep neural networks have succeeded in greatly advancing the state-of-the-art in a

large number of machine-learning tasks. Their success has in turn contributed to a

growing interest in deploying them in different real-world applications and services.

However, any major initiative on that front has been plagued by two notable limi-

tations of DNNs, namely, their high computational and memory demands, and their

lack of robustness.

The high computational and memory demands of neural networks was one of the

factors responsible for their limited success even after multiple decades of research

efforts, post their conception in the 1950s. The development of powerful computa-

tional platforms like Graphics Processing Units (GPUs) and specialized accelerators,

over the past decade, has helped alleviate a part of the challenge. But the strive

for continuously improving DNN accuracies has propelled the design of even larger

networks with higher compute and memory footprints. Thus, there is a pressing need

to come up with alternative techniques for addressing the computational challenge of

DNNs.

The lack of robustness in DNNs, on the other hand, has been highlighted by

numerous efforts on adversarial attacks which force DNN mis-classifications through

small, human-imperceptible input perturbations. The success of adversarial attacks

has raised concerns on the deployment of DNNs in different safety-critical applications

where such erroneous or malicious inputs need to be processed safely. Thus, there is

also an urgent need to develop techniques for boosting the robustness of DNNs.

137

9.1 Thesis Summary

In this dissertation, we propose the use of approximate computing for improving both

the efficiency and robustness of DNNs. We identify opportunities for approximations

in multiple classes of DNNs that exploit their unique computational and connectivity

patterns to achieve energy and execution time savings. We also develop approximate

computing approaches for boosting robustness of DNNs without sacrificing their ac-

curacy on the unperturbed inputs. The primary contributions of the dissertation are

summarized below.

• The thesis explores micro-architectural and instruction set extensions extensions

in the form of SparCE for accelerating FFNNs on general-purpose processor

cores. The proposed sparsity-aware core extensions exploit a key attribute of

FFNNs, viz., sparsity, by dynamically identifying zero values loaded into the

processor pipeline and skipping subsequent instructions rendered redundant by

them. The lightweight and minimally intrusive nature of the extensions estab-

lishes SparCE as a promising approach for accelerating DNNs on various area

and cost-constrained devices that can’t accommodate specialized DNN acceler-

ators.

• Next, the thesis explores hardware-agnostic approximations for long-short term

memory networks. The proposed AxLSTM technique exploits the timestep-

driven computation in LSTMs to dynamically skip input symbols with little or

no impact on the cell state and modulate the size of the cell state based on the

complexity of the input sequence. We apply AxLSTM to sequence-to-sequence

learning, one of the most common application of LSTMs, and demonstrate

execution time savings on a general-purpose processor.

• The thesis also develops AxSNN, a set of approximate computing techniques

for spiking neural networks that take advantage of the spike-triggered nature

of computations in SNNs. AxSNN identifies appropriate approximation modes

138

for each neuron in the network based on its static and dynamic properties,

and determines a suitable subset of spike-triggered updates that can skipped in

each mode. We apply AxSNN to both software and hardware implementations

of SNNs and demonstrate significant energy and execution time savings with

minimal loss in quality.

• The thesis explores the opportunities for combining two popular approximate

computing techniques — pruning and quantization — in DNNs, particularly as

each gets pushed to its limits. It specifically finds that the efficacy of pruning, in

reducing memory requirements of DNNs, diminishes in the ultra-low precision

regime. This is because of the increasing overhead of non-zero locations in

different sparse coding schemes utilized for storing the pruned networks. By

observing the variation in compression ratios of three different sparse formats,

we further propose a hybrid compression scheme that identifies the optimal

sparse format for a network or a layer based on its sparsity and precision value.

• Finally, the thesis proposes ensembles of mixed-precision DNNs, EMPIR, as a

new approach for improving the robustness of DNNs to different adversarial

attacks. EMPIR combines the higher adversarial accuracies of low-precision

models with the higher unperturbed accuracies of the full-precision models to

achieve the “best of the both worlds”. By utilizing low-precision models in the

ensemble, EMPIR also ensures that the memory and compute overheads of the

ensemble are modest (<25% in our evaluations).

REFERENCES

139

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[2] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” CoRR,
vol. abs/1409.4842, 2014. [Online]. Available: http://arxiv.org/abs/1409.4842

[3] S. Venugopalan, M. Rohrbach, J. Donahue, R. J. Mooney, T. Darrell,
and K. Saenko, “Sequence to sequence - video to text,” in 2015 IEEE
International Conference on Computer Vision, ICCV 2015, Santiago,
Chile, December 7-13, 2015, 2015, pp. 4534–4542. [Online]. Available:
http://dx.doi.org/10.1109/ICCV.2015.515

[4] A. Y. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng, “Deep speech:
Scaling up end-to-end speech recognition,” CoRR, vol. abs/1412.5567, 2014.
[Online]. Available: http://arxiv.org/abs/1412.5567

[5] X. Zhang and Y. LeCun, “Text understanding from scratch,” CoRR, vol.
abs/1502.01710, 2015. [Online]. Available: http://arxiv.org/abs/1502.01710

[6] G. Hinton, L. Deng, D. Yu, G. Dahl, A. rahman Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, “Deep neural networks
for acoustic modeling in speech recognition,” Signal Processing Magazine, 2012.

[7] J. Li, M. Galley, C. Brockett, G. P. Spithourakis, J. Gao, and
B. Dolan, “A persona-based neural conversation model,” March 2016.
[Online]. Available: https://www.microsoft.com/en-us/research/publication/
persona-based-neural-conversation-model/

[8] “Deep learning boosts google translate tool,” Nature
News, 2016. [Online]. Available: https://www.nature.com/news/
deep-learning-boosts-google-translate-tool-1.20696

[9] “Updating google maps with deep learning and street view,” [online] Google
AI Blog, May 2017. [Online]. Available: https://ai.googleblog.com/2017/05/
updating-google-maps-with-deep-learning.html

[10] “Apple is turning siri into a next-level artificial intelligence,”
Mashable, 2016. [Online]. Available: http://mashable.com/2016/06/13/
siri-sirikit-wwdc2016-analysis/hLMSxZKVnEqO

[11] “Improving photo search: A step across the semantic gap,” Google Research
blog, 2013.

140

[12] “How amazon and netflix are winning the personal-
ization battle,” MarTech Advisor, 2016. [Online]. Avail-
able: https://www.martechadvisor.com/articles/customer-experience-2/
recommendation-engines-how-amazon-and-netflix-are-winning-the-personalization-battle/

[13] “The Intelligent Industrial Revolution — NVIDIA Blog.” [online] NVIDIA
Blog, 2017. [Online]. Available: https://blogs.nvidia.com/blog/2016/10/24/
intelligent-industrial-revolution/

[14] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for
image classifier architecture search,” in AAAI, 2019.

[15] A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” CoRR, vol. abs/1404.5997, 2014. [Online]. Available: http:
//arxiv.org/abs/1404.5997

[16] F. N. Iandola, K. Ashraf, M. W. Moskewicz, and K. Keutzer, “FireCaffe:
near-linear acceleration of deep neural network training on compute
clusters,” CoRR, vol. abs/1511.00175, 2015. [Online]. Available: http:
//arxiv.org/abs/1511.00175

[17] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato,
A. Senior, P. Tucker, K. Yang, Q. V. Le, and A. Y. Ng, “Large scale distributed
deep networks,” in Advances in Neural Information Processing Systems 25,
P. Bartlett, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds., 2012,
pp. 1232–1240.

[18] “Neon, nervana systems: http://neon.nervanasys.com/docs/latest/index.html,”
2016.

[19] B. Li, E. Zhou, B. Huang, J. Duan, Y. Wang, N. Xu, J. Zhang, and H. Yang,
“Large scale recurrent neural network on GPU,” in 2014 International Joint
Conference on Neural Networks (IJCNN), July 2014, pp. 4062–4069.

[20] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu,
L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian,
N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals,
G. Corrado, M. Hughes, and J. Dean, “Google’s neural machine translation
system: Bridging the gap between human and machine translation,” CoRR, vol.
abs/1609.08144, 2016. [Online]. Available: http://arxiv.org/abs/1609.08144

[21] J. Devlin, “Sharp models on dull hardware: Fast and accurate neural machine
translation decoding on the CPU,” CoRR, vol. abs/1705.01991, 2017. [Online].
Available: http://arxiv.org/abs/1705.01991

[22] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun, and O. Temam, “DaDianNao: A machine-
learning supercomputer,” in Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-47. Washington,
DC, USA: IEEE Computer Society, 2014, pp. 609–622. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2014.58

141

[23] S. Venkataramani, A. Ranjan, S. Banerjee, D. Das, S. Avancha,
A. Jagannathan, A. Durg, D. Nagaraj, B. Kaul, P. Dubey, and A. Raghunathan,
“ScaleDeep: A scalable compute architecture for learning and evaluating deep
networks,” in Proceedings of the 44th Annual International Symposium on
Computer Architecture, ser. ISCA ’17. New York, NY, USA: ACM, 2017, pp.
13–26. [Online]. Available: http://doi.acm.org/10.1145/3079856.3080244

[24] N. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami,
R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R.
Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan,
A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu,
K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R.
Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N.
Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G.
Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,
E. Wilcox, and D. H. Yoon, “In-datacenter performance analysis of a tensor
processing unit,” in Proceedings of the 44th Annual International Symposium
on Computer Architecture, ser. ISCA ’17. New York, NY, USA: ACM, 2017,
pp. 1–12. [Online]. Available: http://doi.acm.org/10.1145/3079856.3080246

[25] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling low-power,
highly-accurate deep neural network accelerators,” in Proceedings of the
43rd International Symposium on Computer Architecture, ser. ISCA ’16.
Piscataway, NJ, USA: IEEE Press, 2016, pp. 267–278. [Online]. Available:
http://dx.doi.org/10.1109/ISCA.2016.32

[26] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,” IEEE Jour-
nal of Solid-State Circuits, vol. 52, no. 1, pp. 127–138, Jan 2017.

[27] A. X. M. Chang, B. Martini, and E. Culurciello, “Recurrent neural networks
hardware implementation on FPGA,” CoRR, vol. abs/1511.05552, 2015.
[Online]. Available: http://arxiv.org/abs/1511.05552

[28] M. Lee, K. Hwang, J. Park, S. Choi, S. Shin, and W. Sung, “FPGA-based
low-power speech recognition with recurrent neural networks,” in 2016 IEEE
International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp.
230–235.

[29] S. Li, C. Wu, H. Li, B. Li, Y. Wang, and Q. Qiu, “FPGA acceleration of re-
current neural network based language model,” in 2015 IEEE 23rd Annual In-
ternational Symposium on Field-Programmable Custom Computing Machines,
May 2015, pp. 111–118.

[30] Y. Guan, Z. Yuan, G. Sun, and J. Cong, “Fpga-based accelerator for long short-
term memory recurrent neural networks,” in 2017 22nd Asia and South Pacific
Design Automation Conference (ASP-DAC), Jan 2017, pp. 629–634.

[31] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing Ad-
versarial Examples,” arXiv e-prints, p. arXiv:1412.6572, Dec 2014.

142

[32] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
Deep Learning Models Resistant to Adversarial Attacks,” arXiv e-prints, p.
arXiv:1706.06083, Jun 2017.

[33] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” CoRR, vol. abs/1607.02533, 2016. [Online]. Available:
http://arxiv.org/abs/1607.02533

[34] A. Liu, X. Liu, C. Zhang, H. Yu, Q. Liu, and J. He, “Training robust deep neural
networks via adversarial noise propagation,” ArXiv, vol. abs/1909.09034, 2019.

[35] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a
Defense to Adversarial Perturbations against Deep Neural Networks,” arXiv
e-prints, p. arXiv:1511.04508, Nov 2015.

[36] A. S. Ross and F. Doshi-Velez, “Improving the adversarial robustness and in-
terpretability of deep neural networks by regularizing their input gradients,” in
AAAI, 2017.

[37] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “AxNN:
Energy-efficient neuromorphic systems using approximate computing,” in
Proceedings of the 2014 International Symposium on Low Power Electronics
and Design, ser. ISLPED ’14. New York, NY, USA: ACM, 2014, pp. 27–32.
[Online]. Available: http://doi.acm.org/10.1145/2627369.2627613

[38] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, “DoReFa-
Net: Training low bitwidth convolutional neural networks with low
bitwidth gradients,” CoRR, vol. abs/1606.06160, 2016. [Online]. Available:
http://arxiv.org/abs/1606.06160

[39] M. Courbariaux, Y. Bengio, and J. David, “Binaryconnect: Training deep
neural networks with binary weights during propagations,” CoRR, vol.
abs/1511.00363, 2015. [Online]. Available: http://arxiv.org/abs/1511.00363

[40] A. Galloway, G. W. Taylor, and M. Moussa, “Attacking Binarized Neural Net-
works,” arXiv e-prints, p. arXiv:1711.00449, Nov 2017.

[41] P. Panda, I. Chakraborty, and K. Roy, “Discretization based solutions for secure
machine learning against adversarial attacks,” CoRR, vol. abs/1902.03151,
2019. [Online]. Available: http://arxiv.org/abs/1902.03151

[42] A. Siraj Rakin, J. Yi, B. Gong, and D. Fan, “Defend Deep Neural Networks
Against Adversarial Examples via Fixed and Dynamic Quantized Activation
Functions,” arXiv e-prints, p. arXiv:1807.06714, Jul 2018.

[43] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding,” CoRR, vol.
abs/1510.00149, 2015. [Online]. Available: http://arxiv.org/abs/1510.00149

[44] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional
neural networks with low rank expansions,” CoRR, vol. abs/1405.3866, 2014.
[Online]. Available: http://arxiv.org/abs/1405.3866

143

[45] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao, Y. Wang,
H. Yang, and W. B. J. Dally, “ESE: Efficient speech recognition engine with
sparse LSTM on FPGA,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. (FPGA), 2017, pp.
75–84. [Online]. Available: http://doi.acm.org/10.1145/3020078.3021745

[46] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning
with limited numerical precision,” in Proceedings of the 32Nd International
Conference on International Conference on Machine Learning - Volume 37,
ser. ICML’15. JMLR.org, 2015, pp. 1737–1746.

[47] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,”
CoRR, vol. abs/1612.01064, 2016. [Online]. Available: http://arxiv.org/abs/
1612.01064

[48] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “ApproxANN: An ap-
proximate computing framework for artificial neural network,” in 2015 Design,
Automation Test in Europe Conference Exhibition (DATE), March 2015, pp.
701–706.

[49] Z. Du, A. Lingamneni, Y. Chen, K. V. Palem, O. Temam, and C. Wu, “Lever-
aging the error resilience of neural networks for designing highly energy efficient
accelerators,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 34, no. 8, pp. 1223–1235, Aug 2015.

[50] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” CoRR, vol.
abs/1511.07528, 2015. [Online]. Available: http://arxiv.org/abs/1511.07528

[51] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of
neural networks,” CoRR, vol. abs/1608.04644, 2016. [Online]. Available:
http://arxiv.org/abs/1608.04644

[52] N. Papernot, P. D. McDaniel, and I. J. Goodfellow, “Transferability
in machine learning: from phenomena to black-box attacks using
adversarial samples,” CoRR, vol. abs/1605.07277, 2016. [Online]. Available:
http://arxiv.org/abs/1605.07277

[53] T. Strauss, M. Hanselmann, A. Junginger, and H. Ulmer, “Ensemble Methods
as a Defense to Adversarial Perturbations Against Deep Neural Networks,”
arXiv e-prints, p. arXiv:1709.03423, Sep 2017.

[54] C. Guo, M. Rana, M. Cissé, and L. van der Maaten, “Countering adversarial
images using input transformations,” CoRR, vol. abs/1711.00117, 2017.
[Online]. Available: http://arxiv.org/abs/1711.00117

[55] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow, “Thermometer
encoding: One hot way to resist adversarial examples,” in International
Conference on Learning Representations, 2018. [Online]. Available: https:
//openreview.net/forum?id=S18Su--CW

[56] A. Graves, “Generating sequences with recurrent neural networks,” CoRR,
vol. abs/1308.0850, 2013. [Online]. Available: http://arxiv.org/abs/1308.0850

144

[57] A. Graves, A. Mohamed, and G. E. Hinton, “Speech recognition with deep re-
current neural networks,” in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, May 2013, pp. 6645–6649.

[58] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2, ser.
NIPS’14, Cambridge, MA, USA, 2014, pp. 3104–3112. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2969033.2969173

[59] R. Ananthanarayanan and D. S. Modha, “Anatomy of a cortical simulator,” in
SC ’07: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing,
Nov 2007, pp. 1–12.

[60] A. Morrison, C. Mehring, T. Geisel, A. Aertsen, and M. Diesmann, “Advanc-
ing the boundaries of high-connectivity network simulation with distributed
computing,” Neural Computation, vol. 17, pp. 1776–1801, 2005.

[61] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, and A. Veidenbaum,
“Efficient simulation of large-scale spiking neural networks using cuda graphics
processors,” in 2009 International Joint Conference on Neural Networks, June
2009, pp. 2145–2152.

[62] A. K. Fidjeland and M. P. Shanahan, “Accelerated simulation of spiking neural
networks using gpus,” in The 2010 International Joint Conference on Neural
Networks (IJCNN), July 2010, pp. 1–8.

[63] J. L. Krichmar, P. Coussy, and N. Dutt, “Large-scale spiking neural networks
using neuromorphic hardware compatible models,” J. Emerg. Technol.
Comput. Syst., vol. 11, no. 4, pp. 36:1–36:18, Apr. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2629509

[64] T. Schoenauer, S. Atasoy, N. Mehrtash, and H. Klar, “Neuropipe-chip: A digital
neuro-processor for spiking neural networks,” IEEE Transactions on Neural
Networks, vol. 13, no. 1, pp. 205–213, Jan 2002.

[65] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras, S. Tem-
ple, and A. D. Brown, “Overview of the spinnaker system architecture,” IEEE
Transactions on Computers, vol. 62, no. 12, pp. 2454–2467, Dec 2013.

[66] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo,
I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner,
W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron
integrated circuit with a scalable communication network and interface,”
Science, vol. 345, no. 6197, pp. 668–673, 2014. [Online]. Available:
http://science.sciencemag.org/content/345/6197/668

[67] S. Shin, K. Hwang, and W. Sung, “Fixed-point performance analysis of recur-
rent neural networks,” in 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), March 2016, pp. 976–980.

[68] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network comput-
ing,” in 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), June 2016, pp. 1–13.

145

[69] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,
“EIE: efficient inference engine on compressed deep neural network,” CoRR, vol.
abs/1602.01528, 2016. [Online]. Available: http://arxiv.org/abs/1602.01528

[70] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,
J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: an accelerator for
compressed-sparse convolutional neural networks,” in Proceedings of the
44th Annual International Symposium on Computer Architecture, ser. ISCA
’17. New York, NY, USA: ACM, 2017, pp. 27–40. [Online]. Available:
http://doi.acm.org/10.1145/3079856.3080254

[71] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen,
“Cambricon-X: An accelerator for sparse neural networks,” in 2016 49th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO), Oct
2016, pp. 1–12.

[72] H. Park, D. Kim, J. Ahn, and S. Yoo, “Zero and data reuse-aware fast
convolution for deep neural networks on GPU,” in Proceedings of the Eleventh
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis, ser. CODES ’16. New York, NY, USA: ACM, 2016, pp.
33:1–33:10. [Online]. Available: http://doi.acm.org/10.1145/2968456.2968476

[73] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Penksy, “Sparse convolutional
neural networks,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015, pp. 806–814.

[74] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning struc-
tured sparsity in deep neural networks,” in Advances in Neural In-
formation Processing Systems 29, D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates, Inc.,
2016, pp. 2074–2082. [Online]. Available: http://papers.nips.cc/paper/
6504-learning-structured-sparsity-in-deep-neural-networks.pdf

[75] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing DNN pruning to the underlying hardware parallelism,”
in Proceedings of the 44th Annual International Symposium on Computer
Architecture, ser. ISCA ’17. New York, NY, USA: ACM, 2017, pp. 548–560.
[Online]. Available: http://doi.acm.org/10.1145/3079856.3080215

[76] T. Pang, K. Xu, C. Du, N. Chen, and J. Zhu, “Improving adversarial robustness
via promoting ensemble diversity,” in ICML, 2019.

[77] W. He, J. Wei, X. Chen, N. Carlini, and D. Song, “Adversarial example
defenses: Ensembles of weak defenses are not strong,” in Proceedings of
the 11th USENIX Conference on Offensive Technologies, ser. WOOT’17.
Berkeley, CA, USA: USENIX Association, 2017, pp. 15–15. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3154768.3154783

[78] F. Tramèr, A. Kurakin, N. Papernot, D. Boneh, and P. D. McDaniel, “Ensemble
adversarial training: Attacks and defenses,” ArXiv, vol. abs/1705.07204, 2017.

[79] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Ap-
proximate computing and the quest for computing efficiency,” in 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), June 2015, pp. 1–
6.

146

[80] R. Hegde and N. R. Shanbhag, “Soft digital signal processing,” Very Large
Scale Integration (VLSI) Systems, IEEE Trans. on, vol. 9, no. 6, Dec. 2001.
[Online]. Available: http://dx.doi.org/10.1109/92.974895

[81] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, “Design of voltage-
scalable meta-functions for approximate computing,” in 2011 Design, Automa-
tion Test in Europe, March 2011, pp. 1–6.

[82] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghu-
nathan, “Quality programmable vector processors for approximate computing,”
in 2013 46th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), Dec 2013, pp. 1–12.

[83] V. K. Chippa, D. Mohapatra, K. Roy, S. T. Chakradhar, and A. Raghunathan,
“Scalable effort hardware design,” IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, vol. 22, no. 9, pp. 2004–2016, Sep. 2014.

[84] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,” in
Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ser. ESEC/FSE ’11.
New York, NY, USA: ACM, 2011, pp. 124–134. [Online]. Available:
http://doi.acm.org/10.1145/2025113.2025133

[85] J. Meng, S. Chakradhar, and A. Raghunathan, “Best-effort parallel execution
framework for recognition and mining applications,” in Proceedings of the
2009 IEEE International Symposium on Parallel&Distributed Processing, ser.
IPDPS ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 1–12.
[Online]. Available: https://doi.org/10.1109/IPDPS.2009.5160991

[86] J. Kung, D. Kim, and S. Mukhopadhyay, “Dynamic approximation with
feedback control for energy-efficient recurrent neural network hardware,”
in Proceedings of the 2016 International Symposium on Low Power
Electronics and Design, ser. (ISLPED), 2016, pp. 168–173. [Online]. Available:
http://doi.acm.org/10.1145/2934583.2934626

[87] A. S. Cassidy, J. Georgiou, and A. G. Andreou, “Design of silicon brains
in the nano-cmos era: Spiking neurons, learning synapses and neural
architecture optimization,” Neural Networks, vol. 45, pp. 4 – 26, 2013,
neuromorphic Engineering: From Neural Systems to Brain-Like Engineered
Systems. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0893608013001597

[88] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran,
J. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neu-
rogrid: A mixed-analog-digital multichip system for large-scale neural simula-
tions,” Proceedings of the IEEE, vol. 102, no. 5, pp. 699–716, May 2014.

[89] A. See, M.-T. Luong, and C. D. Manning, “Compression of neural machine
translation models via pruning,” in CoNLL, 2016.

[90] F. Tung and G. Mori, “Clip-q: Deep network compression learning by in-parallel
pruning-quantization,” in 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2018, pp. 7873–7882.

147

[91] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[92] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber,
“LSTM: A search space odyssey,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 28, no. 10, pp. 2222–2232, Oct 2017.

[93] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” CoRR, vol. abs/1412.3555,
2014. [Online]. Available: http://arxiv.org/abs/1412.3555

[94] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: A method for
automatic evaluation of machine translation,” in Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics, ser. ACL ’02.
Stroudsburg, PA, USA: Association for Computational Linguistics, 2002, pp.
311–318. [Online]. Available: https://doi.org/10.3115/1073083.1073135

[95] M. Denkowski and A. Lavie, “Meteor universal: Language specific translation
evaluation for any target language,” in In Proceedings of the Ninth Workshop
on Statistical Machine Translation, 2014.

[96] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,” in
Text Summarization Branches Out: Proceedings of the ACL-04 Workshop, S. S.
Marie-Francine Moens, Ed. Barcelona, Spain: Association for Computational
Linguistics, July 2004, pp. 74–81.

[97] R. Vedantam, C. L. Zitnick, and D. Parikh, “CIDEr: Consensus-based image
description evaluation,” CoRR, vol. abs/1411.5726, 2014. [Online]. Available:
http://arxiv.org/abs/1411.5726

[98] E. M. Izhikevich, “Which model to use for cortical spiking neurons?” Neural
Networks, IEEE Trans. on, vol. 15, no. 5, Sep. 2004.

[99] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for
deep neural network compression,” in The IEEE International Conference on
Computer Vision (ICCV), Oct 2017.

[100] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for
efficient convnets,” ArXiv, vol. abs/1608.08710, 2016.

[101] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” ArXiv, vol. abs/1704.04861, 2017.

[102] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy of
pruning for model compression,” ArXiv, vol. abs/1710.01878, 2018.

[103] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan, “Training
deep neural networks with 8-bit floating point numbers,” in NeurIPS, 2018.

[104] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quan-
tized neural networks: Training neural networks with low precision weights and
activations,” J. Mach. Learn. Res., vol. 18, no. 1, pp. 6869–6898, Jan. 2017.

148

[105] A. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, “Wrpn: wide reduced-
precision networks,” arXiv preprint arXiv:1709.01134, 2017.

[106] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois, “Built-
in test for circuits with scan based on reseeding of multiple-polynomial linear
feedback shift registers,” IEEE Transactions on Computers, vol. 44, no. 2, pp.
223–233, 1995.

[107] I. Bayraktaroglu and A. Orailoglu, “Test volume and application time reduction
through scan chain concealment,” in Proceedings of the 38th Design Automation
Conference (IEEE Cat. No.01CH37232), 2001, pp. 151–155.

[108] A. Chandra and K. Chakrabarty, “Test data compression for system-on-a-chip
using golomb codes,” in Proceedings 18th IEEE VLSI Test Symposium, 2000,
pp. 113–120.

[109] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, “Embedded deterministic
test,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 23, no. 5, pp. 776–792, 2004.

[110] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[111] “ARM Announces New Cortex-A35 CPU - Ultra-High Efficiency For Wearables
& More: https://www.anandtech.com/show/9769/arm-announces-cortex-a35,”
Anandtech, 2015.

[112] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast
feature embedding,” in Proceedings of the 22Nd ACM International Conference
on Multimedia, ser. MM ’14. New York, NY, USA: ACM, 2014, pp. 675–678.
[Online]. Available: http://doi.acm.org/10.1145/2647868.2654889

[113] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[114] “OpenBLAS: An optimized BLAS library: http://www.openblas.net/,” 2017.
[Online]. Available: http://www.openblas.net/

[115] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011. [Online].
Available: http://doi.acm.org/10.1145/2024716.2024718

[116] A. Krizhevsky, “Learning multiple layers of features from tiny images,” Tech.
Rep., 2009.

149

[117] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2012, pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[118] S. Sen, S. Venkataramani, and A. Raghunathan, “Approximate computing for
spiking neural networks,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2017, March 2017, pp. 193–198.

[119] M. Luong, E. Brevdo, and R. Zhao, “Neural machine translation (seq2seq)
tutorial,” https://github.com/tensorflow/nmt, 2017.

[120] Collecting Highly Parallel Data for Paraphrase Evaluation. As-
sociation for Computational Linguistics, January 2011. [On-
line]. Available: https://www.microsoft.com/en-us/research/publication/
collecting-highly-parallel-data-for-paraphrase-evaluation/

[121] Z. Tu, Z. Lu, Y. Liu, X. Liu, and H. Li, “Coverage-based neural
machine translation,” CoRR, vol. abs/1601.04811, 2016. [Online]. Available:
http://arxiv.org/abs/1601.04811

[122] J. Vreeken, “Spiking neural networks, an introduction,” Tech. Rep., 2003.

[123] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, and M. Pfeiffer, “Fast-classifying,
high-accuracy spiking deep networks through weight and threshold balancing,”
in 2015 International Joint Conference on Neural Networks (IJCNN), July
2015, pp. 1–8.

[124] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural
networks for energy-efficient object recognition,” International Journal of
Computer Vision, vol. 113, no. 1, pp. 54–66, May 2015. [Online]. Available:
https://doi.org/10.1007/s11263-014-0788-3

[125] D. Kuzum, S. Yu, and H.-S. P. Wong, “Synaptic electronics: materials, devices
and applications,” Nanotechnology, vol. 24, no. 38, p. 382001, sep 2013. [Online].
Available: https://doi.org/10.1088%2F0957-4484%2F24%2F38%2F382001

[126] X. Liu, M. Mao, B. Liu, B. Li, Y. Wang, H. Jiang, M. Barnell, Q. Wu, J. Yang,
H. Li, and Y. Chen, “Harmonica: A framework of heterogeneous computing
systems with memristor-based neuromorphic computing accelerators,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 5, pp.
617–628, May 2016.

[127] A. Sengupta, P. Panda, P. Wijesinghe, Y. Kim, and K. Roy, “Magnetic tunnel
junction mimics stochastic cortical spiking neurons,” Scientific Reports, vol. 6,
July 2016.

[128] A. Rodriguez, “Lowering Numerical Precision to Increase
Deep Learning Performance,” [online] Intel, 2018. [Online].
Available: https://software.intel.com/content/www/us/en/develop/articles/
lower-numerical-precision-deep-learning-inference-and-training.html

150

[129] B. M. Fleischer, S. Shukla, M. M. Ziegler, J. Silberman, J. Oh, V. Srinivasan,
J. Choi, S. Mueller, A. Agrawal, T. Babinsky, N. Cao, C.-Y. Chen, P. Chuang,
T. W. Fox, G. Gristede, M. Guillorn, H. Haynie, M. Klaiber, D. Lee, S.-H.
Lo, G. W. Maier, M. Scheuermann, S. Venkataramani, C. Vezyrtzis, N. Wang,
F. Yee, C. Zhou, P.-F. Lu, B. W. Curran, L. Chang, and K. Gopalakrishnan,
“A Scalable Multi- TeraOPS Deep Learning Processor Core for AI Trainina and
Inference,” 2018 IEEE Symposium on VLSI Circuits, pp. 35–36, 2018.

[130] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.

[131] Y. Chen, T. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible accelerator for
emerging deep neural networks on mobile devices,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp. 292–308, 2019.

[132] U. Gupta, B. Reagen, L. Pentecost, M. Donato, T. Tambe, A. M. Rush, G. Wei,
and D. Brooks, “Masr: A modular accelerator for sparse rnns,” in 2019 28th
International Conference on Parallel Architectures and Compilation Techniques
(PACT), 2019, pp. 1–14.

[133] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. N. Vijaykumar, “Sparten:
A sparse tensor accelerator for convolutional neural networks,” Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019.

[134] M. Graphics, “Tessent TestKompress www.mentor.com/products/silicon-
yield/multimedia/overview/tessent-testkompress-1849a6d7-9f9d-404a-9c19-
f12d945c3baf,” [online].

[135] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 12, no. 10, pp. 993–1001,
Oct 1990.

[136] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123–140,
Aug. 1996. [Online]. Available: http://dx.doi.org/10.1023/A:1018054314350

[137] T. G. Dietterich, “Ensemble methods in machine learning,” in Multiple Classi-
fier Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 1–15.

[138] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-
plied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, Nov 1998.

[139] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[140] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Sys-
tems,” ArXiv e-prints, Mar. 2016.

151

[141] N. Papernot, F. Faghri, N. Carlini, I. Goodfellow, R. Feinman, A. Kurakin,
C. Xie, Y. Sharma, T. Brown, A. Roy, A. Matyasko, V. Behzadan, K. Ham-
bardzumyan, Z. Zhang, Y.-L. Juang, Z. Li, R. Sheatsley, A. Garg, J. Uesato,
W. Gierke, Y. Dong, D. Berthelot, P. Hendricks, J. Rauber, and R. Long,
“Technical report on the cleverhans v2.1.0 adversarial examples library,” arXiv
preprint arXiv:1610.00768, 2018.

VITA

152

VITA

Sanchari Sen received the B.Tech (Hons.) degree in Electronics and Electrical

Communication Engineering from the Indian Institute of Technology, Kharagpur,

India. She is pursuing a Ph.D. degree in the School of Electrical and Computer

Engineering, Purdue University, West Lafayette, Indiana.

She worked as a summer intern at AMD Research, Austin, Texas in 2018. She

was also an intern at the IBM T. J. Watson Research Center, Yorktown Heights, New

York, during the summer of 2019. Her current research interests include software and

hardware techniques for improving the execution efficiency and robustness of deep

neural networks on different platforms.

She was awarded the Institute Silver medal for her academic performance in IIT

Kharagpur. As part of the Ph.D. program at Purdue University, she received the Ross

Fellowship and the Bilsland Dissertation Fellowship in 2015 and 2019, respectively.

She also received the Richard Newton Young Student Fellowship Award for the Design

Automation Conference (DAC) in 2016.

