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ABSTRACT

Pritchett, Timothy A. Ph.D., Purdue University, August 2020. Workload Driven
Designs for Cost-Effective Non-volatile Memory Hierarchies. Major Professor:
Mithuna S. Thottethodi.

Compared to traditional hard-disk drives (HDDs), non-volatile (NV) memory

technologies offer significant performance advantages on one hand, but also incur

significant cost and asymmetric write-performance on the other. A common strat-

egy to manage such cost- and performance-differentials is to use hierarchies such

that a small, but intensely accessed, working set is staged in the NV storage (se-

lective caching). However, when this working set includes write-heavy data, the

low write-lifetime of NV storage necessitates significant over-provisioning to maintain

required lifespans (e.g., storage lifespan must match or exceed 3 year server lifes-

pan). One may think that employing DRAM-based write-buffers can filter writes

that trickle through to the NV storage and thus alleviate the write-pressure felt at

the NV storage. Unfortunately, selective caches, when used with common recency-

based or frequency-based replacement, have access patterns that require large write

buffers (e.g., 100MB+ relative to a 12GB cache) to filter writes adequately. Further,

these large DRAM write-buffers also require backup-power to ensure the durability

of disk writes. More sophisticated replacement policies that combine recency and

frequency can reduce the size of the DRAM buffer (while preserving write-filtering),

but are so computationally-expensive that they can limit the I/O rate, especially for

simple controllers (e.g., RAID controller).

My first contribution is the design and implementation of WriteGuard– a self-

tuning sieving write-buffer algorithm that filters writes as well as the highly-effective

(but computationally-expensive) algorithms while requiring lightweight computation
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comparable to a simple LRU-based write-buffer. While WriteGuard reduces the ca-

pacity needed for DRAM buffering (to approx. 64 MB), it does not eliminate the

need for DRAM buffers (and corresponding power backup).

For my second thrust, I identify two specific application characteristics – (1) the

vast majority of the write-buffer’s contents is composed of write-dominant blocks,

and (2) the vast majority of blocks in the write-buffer are overwritten within a pe-

riod of 28 hours. I show that these characteristics help enable a high-density, opti-

mized STT-MRAM as a replacement for DRAM, which enables durable write-buffers

(thus eliminating the cost of power backup for the write-buffer). My optimized STT-

MRAM-based write buffer achieves higher density by (a) trading off superfluous dura-

bility by exploiting characteristic (2), and (b) deoptimizing the read-performance of

STT-MRAM by leveraging characteristic (1). Together, the techniques increase the

density of STT-MRAM by 20% with low or no impact on write-buffer performance.



1

1. INTRODUCTION

The nature of trade-offs in storage technology continues to favor a hybrid approach

as non-volatile solid-state technologies offer significantly higher bandwidth (but at

significantly higher cost per bit) whereas traditional hard-disk drive (HDD) storage

offers high capacity at a lower cost-per-bit. This trade-off leads to a very specific

design problem in storage-tier caching: accelerated drive wear-out from the aggre-

gation of write-intense data. Because any successful storage-tier cache will aim to

hold the hot data, they are typically designed with high-performance non-volatile

storage [1–3]. For example, SieveStore [3] uses a small non-volatile cache to capture a

narrow (but highly popular) set of disk blocks from a large collection of backend HDD

drives. Such hybrid systems minimize cost (like HDD-based storage) while achieving

high performance (like NV storage).

Unfortunately, the presence of highly popular, but also frequently written, disk

blocks complicates this approach. Frequently written blocks pose a dilemma because

their frequent writes can affect the lifetime 1 of non-volatile storage (especially in mod-

ern MLC SSD caches), but not caching them in the NV storage causes performance

degradation (given how frequently they are accessed).

I use the system proposed in [3] – SieveStore-C– as the baseline system that offers

a cost-effective SSD cache. Figure 1.1 illustrates the organization as proposed in [3],

updated to illustrate RAM-based caches and write-buffers that are common internal

components of storage caches. The system includes a collection of servers, each with

its own local filesystem and underlying buffer cache (in memory). Each such server

also has a local hard disk storage (HDD in Figure 1.1). The SSD cache is a common
1Some argue that the lifetime problem does not matter for SSD caches. We discuss that seeming
contradiction later in Chapter 2 and conclusively show that the reduction in lifetimes is a real
concern.
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structure that is shared across all servers. SieveStore-C uses the shared cache to hold

a small (but frequently accessed) set of data.

Fig. 1.1.: Reference SSD Cache System Organization

Prior techniques that allow the caching of writes and specifically write-intense

data, like SieveStore-C, have largely depended upon the higher write-endurance rat-

ings of SLC Flash to maintain SSD-Cache lifetimes on-par with typical server life-

times (i.e., 3-5 years). However, SSD production and Flash production in general
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have nearly exclusively switched to utilizing the significantly less write-tolerant MLC

Flash, due their higher bit-densities, largely removing SLC Flash based SSDs from

consideration in storage caches due to further increased cost premiums and limited

availability. Due to the largely diminished write-endurance ratings of MLC Flash

(e.g., 92× lower), sustainable caching of write-intense data would require a mix of

higher-level write-buffers (typically RAM-based) to filter the writes that reach the

SSD-cache and over-provisioning of the SSD-cache capacity to leverage wear-leveling

approaches for extending drive lifetimes [4–6]. The hope is that the write-filtering ef-

forts will significantly lessen the over-provisioning costs needed to restore the lifetime

of SSD caches beyond that of typical server lifetime (i.e., 3-5 years). Unfortunately,

RAM-based write buffers do not represent a storage-equivalent solution as RAM is

volatile. Buffering file system writes in volatile memory can result in data loss in

case of crash/failure of the computer in question. To achieve equivalent durability as

persistent storage, the RAM-buffers must be protected by backup power sources (to

enable flushing to persistent storage on a crash) with power requirements increasing

with increasing buffer size.

The goal of my work is to ameliorate and/or eliminate such additional costs of

write-buffering while still filtering enough writes to minimize over-provisioning costs

needed to extend SSD-cache lifetimes beyond three years.

My solution has two components. The first component – WriteGuard– is a self-

tuned write buffer that maximizes the write filtering for a given write-buffer capacity,

(or alternately, reduces the amount of buffering needed to achieve a given level of

write-filtering). In Chapter 2 I show that, while simple replacement algorithms such

as least recently used (LRU) and least frequently used (LFU) can be implemented

with low computation complexity, they significantly under-filter writes. On the other

hand, sophisticated techniques that combine recency, frequency, and aging/inflation

mechanisms (e.g., LRFU-with-inflation [7]) achieve significantly higher write filtering.

However, the computational cost of these sophisticated algorithms can be so high that

it becomes an IO bottleneck.
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My work diagnoses the key source of complexity in the sophisticated replacement

algorithms – unlike LRU and LFU which perform a constant amount of work on

each access to maintain the replacement stack, the LRFU-with-inflation approach

effectively has to perform as many as log(n) operations to maintain the replacement

stack in sorted order. In general, a replacement stack enforces the invariant that a

more “valuable” block is not replaced by a less valuable block. An alternate “sieving

approach” proposed in [3] uses a thresholding to prevent allocations to less popular

blocks, achieving results similar to a frequency-based sort, but it requires offline trace

analysis for the selection of this threshold. Based on this insight, I propose a design

WriteGuard that avoids maintaining a fully sorted stack. Instead, WriteGuard elimi-

nates the need for a sorted replacement stack with a dynamically-tuned thresholding

mechanism that requires only a constant (amortized) amount of work for a given

access. This approach reduces the amount of buffering needed by a factor of up-to 2x

relative to recency-based and frequency-based write buffers, while requiring similar

or less computational effort. I expand on this component in Chapter 2.

The second component explores an STT-MRAM-based approach for the write

buffer. While STT-MRAM’s non-volatility enables naturally durable write-buffer

without the need for power-backup, it’s higher cost relative to DRAM has limited

adoption. However, factoring the full picture of durability and elimination of peri-

odic refresh power and performance penalties alongside the lower density of current

STT-MRAM has resulted in early but limited adoption in some high-performance en-

terprise SSD designs [8]. In Chapter 3 I show that, for storage workloads, write buffers

exhibit internal access patterns that enable STT-MRAM design scaling beyond the

limitations imposed in traditional workloads where the criticality of read-performance

largely determines cell design. My work then illustrates the write-dominance of ac-

cesses within write-buffers enables the trading of superfluous cell retention time for

increased cell density, resulting in a STT-MRAM cell density increase of 25% with

low or no impact on write buffer performance. I describe this study and resulting

design approach further in Chapter 3.
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The remainder of this thesis is organized as follows. Chapter 2 describes the

design and evaluation of my self-tuned write-buffer design – WriteGuard. Chapter 3

describes the workload characteristics of writes in storage traces and illustrates how

those characteristics may be leverage to achieve a high-density (i.e., lower cost) STT-

MRAM-based write-buffer design. Chapter 4 concludes this dissertation.
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2. WRITEGUARD

Flash-based solid-state drives (SSDs) remain an order of magnitude more expen-

sive per bit than traditional hard-disk drives (HDDs). Consequently, while SSDs

indeed dominate the performance segment, they have not been considered an attrac-

tive proposition for bulk storage capacity where HDDs dominate. As such, previous

proposals have argued that SSDs should be used as staging caches in front of a bulk-

storage HDD array. In such designs, the SSDs typically handle the high-activity

blocks and bypass the low-intensity block accesses to the HDD tier. While siev-

ing caches lessen the cost of using SSDs to accelerate storage performance, the high

write-intensity of the blocks held in these selective caches still necessitates the use

of high-wear resistant and expensive SSDs, massive over-provisioning of SSD capac-

ity for increased wear-leveling, or relatively large RAM based buffers that require

additional system power backup.

I show that the driving factor behind the large size of RAM-based write-buffers

is that the write-stream for selective caches has characteristics that lead to poor

performance with both strictly recency-based and frequency-based buffer algorithms,

and thus require algorithms from the more computationally expensive joint recency-

frequency-based designs. I then diagnose the key sources of the added computational

expense of the more effective recency-frequency-based designs - the logarithmic cost

of resorting replacement stack on each access. And I propose a dynamically tuned

sieving write-buffer algorithm – WriteGuard– which eliminates the need for costly

meta-data resorting required by joint recency-frequency-based replacement policies.

This design approach reduces the amount of buffering needed by a factor of up-to 2x

relative to recency-based and frequency-based write buffers, while requiring similar

or less computation effort.
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2.1 Introduction

Consider the conventional approaches to using RAM-based write filtering. One

could use a RAM-based write-buffer that is managed using traditional LRU or LFU re-

placement. (For write buffers, I specifically also consider least recently written (LRW)

and least frequently written (LFW) replacement policies.) However, unlike traditional

write buffers, the write buffers of SSD caches must handle a high skewed popular-

ity distribution, which LRU/LRW, and LFU/LFW fail at. Specifically, LRU/LRW-

replacement with skewed popularity leads to inadequate filtering of writes because

of a large number of spills to SSD. In contrast, LFU/LFW prioritizes old hot blocks

over newly trending blocks which results in unnecessary propagation of new writes to

SSDs. I observed that workloads which have dynamic popularity (where the popular

pages change over time) are particularly susceptible to this problem. Finally, there

are variants of LFU/LFW that use ’inflation’ (LFU-I/LFW-I) which manage to bal-

ance both recency and frequency. (Effectively, the frequency of a page becomes less

relevant with age.) While effective in handling dynamic popularity, these approaches

are computationally expensive, especially for the modest processing available in an

SSD-based cache.

In this paper, I resolve the above dilemma by designing WriteGuard that com-

bines recency and frequency to manage a RAM-based write-buffer efficiently. My

work diagnoses the key source of complexity in the sophisticated replacement algo-

rithms – unlike LRU and LFU which perform a constant amount of work on each

access to maintain the replacement stack, the LRFU-with-inflation approach effec-

tively has to perform as many as log(n) operations to maintain the replacement stack

in sorted order. In general, a replacement stack enforces the invariant that a more

“valuable” block is not replaced by a less valuable block. An alternate “sieving ap-

proach” proposed in [3] uses a thresholding to prevent allocations to less popular

blocks, achieving results similar to a frequency-based sort, but it requires offline trace

analysis for the selection of this threshold. Based on this insight, I propose a design
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WriteGuard that avoids maintaining a fully sorted stack. Instead, WriteGuard elimi-

nates the need for a sorted replacement stack with a dynamically-tuned thresholding

mechanism that requires only a constant (amortized) amount of work for a given

access. This approach reduces the amount of buffering needed by a factor of up-to 2x

relative to recency-based and frequency-based write buffers, while requiring similar

or less computational effort.

Section 2.2 provides a brief discussion of my baseline system architecture and

write buffer policy approaches. Section 2.3 describes the characteristics of the write

stream within the base SSD cache system and the resulting benefits and costs of

known write buffering approaches. In Section 2.4, I discuss the details of my proposed

design and the key observation that results in it’s effectiveness. I then discuss my

evaluation methods in Section 2.5 followed by the corresponding results in Section 2.6.

Section 2.7 discusses prior work related to my design. And I state my final conclusions

in Section 2.8

2.2 Background

2.2.1 Basic Architecture

My basic architecture assumes backend HDD-based storage servers. The front-end

servers access the backend storage servers. I assume that each front-end server has

built-in RAM caching (which is typical for Unix-based systems with buffer caches).

The SSD-cache is a tier between the HDD-storage backend and the front-end servers.

The reference system organization (initially described in Chapter 1) is depicted in

Figure 2.1 (for easier reference), with the additional RAM based cache discussed in

Section 2.3 Claim 1 highlighted with a green vertical striped fill and the location of

the write buffer targeted by the work in this paper highlighted with a blue horizontal

striped fill.
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Fig. 2.1.: Reference SSD Cache System Organization (As presented in Chapter 1)

2.2.2 Overheads of replacement policies

Because cache/WB lookup and stack-maintenance occurs on every access (hit

or miss), it is a common design goal to achieve fast lookup and fast stack main-

tenance. Consider how each of the following replacement algorithms are efficiently

implemented.
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LRU Caches/WBs

Software-based, fully-associative, LRU caches are typically implemented using a

hash-table for fast O(1) lookup. In addition, each block’s metastate is also maintained

in a doubly-linked list to facilitate LRU stack maintenance. Any accessed block is

removed from its current position in the list and moved to the head of the list to

indicate its most-recently-used (MRU) status. Because node deletion and insertion

in doubly linked lists are of O(1) complexity, such an implementation is efficient for

LRU stack maintenance. In such an organization, the LRU block is found at the tail

of the list (also in O(1) time).

Unfortunately, for workloads with high popularity skew, LRU has known lim-

itations as it prioritizes recent-but-unpopular blocks at the expense of less-recent-

yet-more-popular blocks resulting in unnecessary replacements. (In the context of

RAM-based write-buffers, such replacements are effectively writebacks to the lower

level SSD.)

LFU Caches/WBs

Like LRU caches, LFU caches also employ hash-tables for fast lookup. The re-

placement stack maintenance is different; LFU caches must count the frequency of

access for each block. But merely counting frequencies is inadequate; because LFU

requires easy identification of the LFU block, the metastate of all blocks is maintained

in an efficient priority queue (typically implemented with a heap data structure). Be-

cause the frequency-count of a block can at most increase by one upon access, this

approach guarantees that a node may at most move once in the heap. Therefore the

amount of maintenance work on each access is limited to O(1).

Unfortunately, LFU has known issues when popularity is dynamic (i.e., when the

most popular blocks change). A popular block’s high access count inoculates it against

replacement long after its last access which results in unnecessary replacements (and

writes to lower levels).
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LFU with inflation (LFU-I)

Variants of LFU address the issue of dynamic popularity by using “inflation” such

as the ”clock” used in [7]. The key novelty of inflation is to increment the frequency

count of a block, not by 1, but by the count of the last evicted block. Effectively,

this incorporates a recency bias as recent (and hence inflated) accesses contribute

more to the frequency count than older (uninflated) accesses. While the replacement

behavior is indeed better in that it avoids the common flaws of LRU and LFU, the

stack maintenance overheads are significantly higher. Specifically, a single access can

cause a large increase in the block’s frequency count, resulting in more significant

movement in the heap/priority-queue. Such extended data-structure manipulation

can result in significantly higher compute costs as it occurs on each access.

My goal is to achieve the best of both worlds; that is to achieve the write-filtering

of LFW-I while achieving fast lookup and stack maintenance (like LRU and LFU).

2.2.3 Alternative approaches

All of the above approaches use a common strategy of RAM-based buffers to

filter writes to the lower-level SSD cache. In contrast, Sievestore [3] argues that the

write-intensity is tolerable (i.e., storage lifetime is still at least as good as typical

system lifetimes) in spite of holding write-hot blocks in SSD storage. However, the

analysis is based on an estimated lifetime of 5 years for the SLC Flash-based SSD

that they consider, as shown in Table 2.1. With SLC-SSDs being phased out even

for enterprise-class storage, the same workloads that yielded a useful life of 5-years

lead to significantly shorter lifespans for modern MLC-FLASH based SSDs, which

are designed for bulk replacement where their lower write-life ratings still resulting

in useful (5yr+) lifespans. Effectively, the write-intensity in selective caching is high

enough to cause lifetime problems for non-volatile storage based caches using MLC-

FLASH. However, recent work has shown that manufacturer warranty ratings are

overly pessimistic and assume permanent cell damage from writes, while in reality
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the cells naturally ’anneal’ the damage overtime with per-page write-gaps of 100s to

physical pages resulting 17.7x longer lifespans for SLC-Flash and 9.3x longer lifespans

for MLC-Flash [9]. While these annealing effects are not strong enough to solve write-

life issues (and thus over-provisioning) they do bring them down to manageable levels,

which would enable effective write buffering schemes to potentially remove the need

for over-provisioning with MLC-Flash based SSDs.
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Table 2.1.: Example SSD Cache Provisioning Costs based on SieveStore-C [3]

Rating Class Enterprise SLC Enterprise MLC Consumer MLC

Reference Drive Intel X-25E Samsung 983 DCT Samsung 860 EVO

Warranty Limit

(Disk Writes / GB

Capacity)

31.250 TB 1.46 TB 0.600 TB

Exact-Capacity

Projected Lifespan

(Full Replacement)

1479.8 Years 69.14 Years 28.41 Years

Exact-Capacity

Projected Lifespan

(SieveStore-C)

5.66 Years 0.26 Years 0.11 Years

SieveStore-C

Provisioning Factor

(5-Year Minimum)

1x 47x 92x

Exact-Capacity

Projected Lifespan

(SieveStore-C w/

100s gap Annealing)

99.95 Years 2.45 Years 1.01 Years

SieveStore-C w/

100s gap Annealing

Provisioning Factor

(5-Year Minimum)

1x 2.04x 4.96x
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2.3 SSD Cache Write-Stream Characteristics

In this section, I characterize the nature of the write stream seen at the SSD cache.

I use the block IO traces from [10] (see Table 2.2), which contains all block-device

requests to the storage backend below the buffer cache, as the starting point. To focus

specifically on the accesses seen at the SSD cache and the writes in particular, I use

a prior SSD-caching technique [3] (SieveStore-C) to model the SSD cache operation

and the selective caching of the most popular blocks.

The goal of my workload characterization is to achieve the design that is most

effective in filtering writes from reaching the cache’s SSD. Though I offer details of my

analysis that leads to such a design, I briefly summarize my key claims in advance.

1. Though each front-end server has a buffer-cache, there is value in having an

additional shared RAM-based LRU-cache at the SSD-cache to capture residual

reuse.

2. While the RAM-based LRU cache is useful to achieve some dilution of write

intensity at the SSD cache, it is not sufficient. There is an abundance of writes

that still filter through to the SSD. Furthermore, extending the size of the LRU

cache is an ineffective way to capture these writes.

3. A write-buffer that uses LFU-I is the best performing design to capture the

writes from the cache-filtered stream. It outperforms both LRU and LFU based

designs.

I justify each of the above claims in the remainder of this section.

Justification for Claim 1:

Figure 2.2 plots the fraction of writes captured (Y-axis) by various RAM-based struc-

tures (different curves) of various sizes from 4 MiB to 256 MiB (X-axis). I primarily

consider fmy types of RAM-based structures: LRU caches, LRU write-buffers, LRW

write buffers, and popularity-based caches. While the first three are practical struc-
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Table 2.2.: Summary of Reference Ensemble Trace Set

Key Name Volumes Drives Size (GB)

Usr User home dirs 3 16 1367

Proj Project dirs 5 44 2094

Prn Print server 2 6 452

Hm Hardware monitor 2 6 39

Rsrch Research projects 3 24 277

Prxy Web proxy 2 4 89

Src1 Source control 3 12 555

Src2 Source control 3 14 355

Stg Web staging 2 6 113

Ts Terminal server 1 2 22

Web Web/SQL server 4 17 441

Mds Media server 2 16 509

Wdev Test web server 4 12 136

Total 36 179 6449

tures, the popularity-based cache represents an oracular structure that fills the cache

with the most popularly accessed blocks in a recent 2-hr time window.

The results show that a normal LRU-cache captures more than 40% of the writes

at lower capacities. Indeed, it is the best performing option till about 28MiB of RAM

capacity. It is this component that my design aims to capture by using a 28MiB shared

LRU-cache which dilutes the write intensity that reaches the SSD-cache. I refer to

the SieveStore-C augmented with a 28MiB RAM-based LRU cache as SieveStore+.

Justification for Claim 2:

While the LRU cache is useful in capturing some residual reuse, we see in Figure 2.2

that at capacities higher than 28 MiB, a popularity-based approach yields better

write filtering. Blindly increasing the size of the LRU-cache is sub-optimal. Of
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course, because the popularity-based approach is an oracular approach, one must

still consider realistic alternatives. As I show next, some frequency-based practical

designs also outperform the LRU-cache.

Fig. 2.2.: Comparison of the Write-Stream Dilution Strength of Least Recently

Access-based Caches and Buffers

Justification for Claim 3:

Figure 2.3 characterizes the traffic below the RAM-based LRU-cache in terms of writes

captured (Y-axis) at various RAM capacities (X-axis). Each curve corresponds to a

unique configuration for the write buffers. Figure 2.3 includes two recency-based

variants of the write-buffer (LRU and LRW), one frequency-based variants of the

write-buffer (LFW), and one that uses a combination of frequency and recency (LFW-

I). I include the oracular design with perfect sieving as well.
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I can observe that in the traffic below the RAM-based LRU-cache, (a) frequency-

based designs work well at lower capacities, (b) recency based designs work well at

high capacities, and (c) LFW-I, which uses both recency and frequency performs well

across the entire capacity range.

Fig. 2.3.: Comparison of the SSD Write-Stream Dilution Strength of Least Re-

cently/Frequently Access-based Caches and Buffers for SieveStore+

While I now know the relative performance (in terms of diluting the writes seen at

the SSD) of various frequency, and recency-based caching strategies for my workload

traces, it is equally important to understand and quantify the overheads of of these

strategies.
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Fig. 2.4.: Comparison of the decision making overhead profiles of LR, LF, and LF-I

based Buffers

2.3.1 Computational overheads of Recency-based and Frequency-based

Write Buffers

Figure 2.4 shows the overhead of each technique normalized to that of the basic

block access (Y-axis) at various RAM capacities (X-axis). Both recency-based designs

exhibit an overhead factor of 2x regardless of buffer capacity, meaning that the time

taken to make all decisions regarding a request was on average twice that of the time

needed to move the needed block data in or out of the buffer. In contrast, the LFW

design achieves lower overhead than the LR based designs for capacities larger than

64MiB but in an adverse way. Because I count the overhead normalized to data

transfer times, LFU achieves lower relative overhead by having more evictions which

would need to move both the request’s block data and the evicted item’s block data.
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The LFW-I design has significantly worse overhead factors which get progressively

worse with buffer size. LFW-I has a factor of nearly 4x at a 4MiB capacity, which

is nearly twice (2x) as bad as the other designs, and soars to a nearly 14x factor at

256MiB, which is seven times (7x) worse than the LR types. Furthermore this factor

of 7x at 256MiB is nearly fourteen times (14x) worse than the LFW design, despite

the only difference in code or operation being the key inflation.

Summary:

I observe that from a write-dilution point-of-view, LFW-I achieves the best results.

Unfortunately, LFW-I is also the most expensive from a performance overhead point

of view. My design, which I present next, aims to achieve the best of both worlds, by

achieving LFW-I-like write-dilution with significantly less overheads.

2.4 WriteGuard

The goal of WriteGuard is to leverage both frequency and recency data in a

computationally efficient manner in order to maximize the amount of write-hits, thus

write-absorption, for small write-buffers. In order to do this WriteGuard exploits the

observation that sieving via thresholds (initially proposed by [3]) can achieve similar

selection results as frequency-based sorting like happens in LFU-I without the cost

of updating and resorting frequency meta data with every new access. Figure 2.5

briefly illustrates the difference in effort for selecting a top subset of items based on

their popularity which is shown unsorted in the left most column set, followed by the

middle set where the popularity data must be sorted before selecting the top 4 items,

and terminated with a set were the desired items can be directly chosen from the

initial unsorted set based on a previously set threshold of >60. While LFU-I does

not sort from a fully unsorted list on each access, the large changes in values from

the inflation effect does cause the on-access resort do involve relatively large portions

of the popularity data, as indicated by the increasingly larger runtimes shown in

Figure 2.4. Whereas a thresholding requires no adjustment directly to or relative to
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any meta data other that directly involved with the currently accessed item. However,

this approach does require a properly set threshold to be available before the accesses

which can be challenging, and for the case of SieveStore-C is chosen via offline analysis

of the IO activity. Therefore, dynamically determining this desired threshold value

would enable a sieving approach to be a computationally more efficient and similarly

easy to deploy alternative for LRFU style algorithms.

Fig. 2.5.: Visual comparison of selection by popularity sort versus selection by pop-

ularity threshold

One may think that directly adopting the previous approach would work for my

context as well. Consider the way SieveStore-C implements caching that combines

frequency and recency. SieveStore-C uses sieving which employs popularity thresh-

olds to control allocation in the cache. Blocks with more accesses than the threshold

are permitted to be allocated in the cache, whereas blocks with fewer accesses than

the threshold are not. Although once blocks are in the cache, replacement is deter-

mined solely by using LRU (i.e., recency). However, SieveStore-C does have a major

limitation; it requires offline analysis of the data-streams in order to choose appro-

priate thresholds and sizes for its block-popularity tracking structures. Too high of a

threshold prevents blocks from entering the cache and wastes space in the cache (i.e.,

over-sieving). Too low of a threshold achieves inadequate filtering resulting in cache



21

pollution (i.e., under-sieving). The tuning challenge is to find the balance between

using all of the space for the most popular blocks, while bypassing the rest of the

accesses. Effectively, the choice of a threshold directly impacts the bypass ratio – the

ratio of accesses that bypass the cache to the all accesses.

While WriteGuard may be thought of as a write-buffer based extension of the

SieveStore-C cache design, the key novelty is that WriteGuard utilizes self-tuning

behavior to achieve the best possible write filtering given a RAM-capacity. Such

self-tuning is inherently a two-level problem. At the first level, the system must be

able to automatically achieve a desired bypass ratio (i.e., a target set-point). At the

second level, the desired bypass ratio must itself be tuned over longer timescales to

maximize write-absorption because no static bypass ratio is optimal. Accordingly,

WriteGuard employs a two-phase, history-based process to achieve self-tuning. The

first of the two self-tuning phases directly tunes the filter threshold based a longer-

term target of the ratio of bypassed writes and write-misses (i.e., the bypass ratio in

the context of write buffers), and is discussed further in Section 2.4.2. The second

phase tunes the longer-term target used by the first phase in order maximize the write

absorption rate once the current target has been achieved and is discussed in further

detail in Section 2.4.3. The resulting WriteGuard design has the LRFU properties

that Section 2.3 demonstrated are required for the high write-absorption needed and

maintains a runtime that is small and constant with buffer size while also not requiring

off-line trace analysis for deployment.

2.4.1 WriteGuard Base Design

For the base form of my WriteGuard design (no self-tuning aspects yet) I used a

simplified form of the SieveStore-C design where only the precise popularity counts are

maintained. (In contrast, SieveStore-C uses a combination of precise and imprecise

popularity counts for efficiency of counting over a large set of blocks). This was done

both in order to narrow down the the filter threshold options that would need to
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be tuned and because WriteGuard is designed to be an internal aspect of a selective

SSD-base cache, which limits the amount of required meta-data to a more easily

manageable amount. For example, at a 12GiB SSD cache capacity WriteGuard would

only need to keep meta-data for at most 3 million 4KiB blocks and this tracking data

can safely be in volatile memory and does not need power backup, as compared to

the data sections of the buffer which must be kept in effectively non-volatile memory

and thus will require power backup.

If SieveStore-C is slightly undersized relative to it’s targeted popular set, blocks

that are evicted due to this slight over-fitting will be forced to re-satisfy the filter,

resulting in extra warm-up misses. WriteGuard prevents these extra warm-up penal-

ties, that would otherwise result from slight over-fitting, by maintaining a small victim

LRU queue that holds block ids for evicted blocks. The number of entries in the vic-

tim queue is sized to be only 10% of the number of slots in main WriteGuard buffer,

requiring a negligibly small additional RAM that can be also be safely volatile. This

victim queue is checked before attempting to filter a write-miss and if the block id

for the request is found in the queue then it bypasses the filter and is allowed back

into the buffer. One might consider repopulating filter information for evicted blocks

as an alternative fix for this issue. However, no popularity data is kept for objects

within the cache, both because SieveStore-C uses strictly LRU replacement and in

order to help minimize the active precise table size. Furthermore, the popularity

tracking state for these blocks, if kept, would be significantly larger than the simple

block id and minimal LRU queue state for the victim queue.

2.4.2 WriteGuard Sieving Filter Self-Tuning

The primary contribution in my extension of SieveStore-C is the ability to au-

tomatically learn the appropriate filter threshold to apply during the sieving-based

allocation. Before I discuss the method of auto-tuning the sieving threshold we must

first have an effective metric for judging the current performance of the sieving filter.
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Initially one might consider directly using the hit-rate of the buffer, however in cases

of under-sieving the hit-rate can be very noisy due to the varying cache pollution ef-

fects. Another option would be to monitor for churn, but churn can happen because

of a popular set being just slightly larger than the buffer size in addition to being

from truly poor sieving. To navigate the murky waters of under-sieving, an intuitive

but more fixed reference point is needed.

When considering the role and operation of an ideally sieved cache, the sieving

effect should be such that misses are either due to intentional rejections (bypasses) or

cold misses. From this I derive a meaningful metric for evaluating the effectiveness

of a sieving filter’s operation as the number of misses due to bypassing divided by

the number of total misses, which I will refer to as the bypass-ratio. Since Write-

Guard is a write-buffer it’s bypass-ratio calculation only considers write-misses and

not read-misses. A high bypass-ratio indicates that the majority of misses are due to

bypasses and a low bypass-ratio indicates that most of the misses are for reasons other

than intentional bypasses and thus the bypass-ratio directly represents the intensity

of sieving currently happening. The bypass-ratio also directly relates to the intu-

itive notion that smaller buffers/caches would need to be more selective than larger

buffers/caches and thus provides a system designer an intuitive control parameter for

deploying a sieved cache or buffer. As an intermediate design point, I include one

variant of WriteGuard called WriteGuard-Static (or WGS) that uses offline analysis

to choose a static target bypass-ratio. This variant effectively uses only the first phase

of auto-tuning to tune the thresholds to achieve the appropriate bypass-ratio.

Like SieveStore-C, I maintain popularity counts over moving windows and sub-

windows of time. The algorithm described in Algorithm 1 is used to make adjustment

decisions for the current filter’s threshold at the end of each of the filter’s sub-windows.

I calculate the current sub-window’s bypass-ratio from the number of bypasses and

misses that have happened during the current sub-window (Line 1). I then compare

my current bypass-ratio with my target bypass-ratio and decrease the threshold if

the current bypass-ratio is higher than the target bypass-ratio and otherwise increase
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Algorithm 1: Filter Threshold Tuning (Run at end of each filtering sub-

window)

1 curr_bypass_ratio = window_bypasses/window_write_misses;

2 if bypass_ratio_target < curr_bypass_ratio then

3 delta = −1;

4 else

5 if prior_delta > 0 then

6 delta = prior_delta ∗ 2;

7 else

8 delta = 1;

9 end

10 end

11 filter_threshold = filter_threshold+ delta;

12 prior_delta = delta;

the threshold (Line 2). The filter’s threshold is increased even when the current

bypass-ratio matches the target bypass-ratio because it is generally safer to predict

that a higher sieving threshold should be used for the next window, unless I know

that I are currently over-sieving. Threshold decreases are done slowly with a delta of

negative one (Line 3) since over-sieving results in an under utilization of the buffer

capacity but does not result in write-buffer overrun from too many blocks entering

the buffer. Additionally even small decrements near hot-set boundaries can result in

large increases in the number of blocks allowed through the filter, which allows for

effective popular set boundary detection with small decrements. When the decision

is made to increase the threshold, the prior adjustment is considered with a prior

increase being accelerated (Line 6) and a prior decrease being reversed (Line 8).
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Algorithm 2: Bypass-Ratio Tuning (Run at end of each tuning evaluation

window)

1 Age and update the recent write hit/total history array;

2 curr_bypass_ratio_gap = |bypass_ratio_target− curr_bypass_ratio|;

3 if 0.05 > curr_bypass_ratio_gap then

4 Calculate the average hit-rate for the recent history;

5 hit_rate_delta = curr_avg_hit_rate− prior_avg_hit_rate;

6 hit_rate_delta_pos_guard = prior_avg_hit_rate ∗ 0.05;

7 hit_rate_delta_neg_guard = −(hit_rate_delta_pos_guard);

8 if hit_rate_delta_neg_guard > hit_rate_delta then

9 current_bypass_ratio− = prior_bypass_ratio_adjustment;

10 prior_bypass_ratio_adjustment =

−(prior_bypass_ratio_adjustment);

11 else if hit_rate_delta_pos_guard < hit_rate_delta then

12 current_bypass_ratio+ = prior_bypass_ratio_adjustment;

2.4.3 WriteGuard Bypass-Ratio Target Self-Tuning

While the target bypass-ratio (as done in WGS above) is an intuitively settable

parameter that does not require a detailed offline analysis to get decent sieving per-

formance, it does require some offline analysis to in order to find the right target

ratio to optimize the sieving performance during usage of the design. Because I wish

to avoid any offline analysis, the second phase of WriteGuard’s self-tuning adjusts

the target bypass-ratio used based on tracking the recent hit-rate history once the

current target has been achieved. The need to only consider hit-rate and it’s history

once the current bypass-ratio target has already been met is due to the previously

discussed effects of under-sieving undercutting the ability to know if poor hit-rate is

due to under-sieving or over-sieving. However once the intuitively set initial bypass-

ratio target has been met, I can reliably use hit-rate history to determine how to



26

tune my target bypass-ratio toward a better one. WriteGuard does this by executing

the algorithm described in Algorithm 2 at evaluation intervals, with the time interval

being defined as the filter’s full window divided by a configurable evaluation factor.

The hit-rate history used is an array of the number of write-hits and number of writes

that occurred in prior evaluation windows, with the length of the array being con-

trolled via a similar configurable history factor parameter (which is also expressed

relative to the full window). The first step of this algorithm is to age the history

array by throwing out the values from oldest evaluation window and recycling the

space for the current evaluation window’s values (Line 1). The the gap between the

current target and the current evaluation window’s bypass-ratio is calculated as the

magnitude of their difference (Line 2). If this gap is less than 5%, then the current

window’s bypass-ratio is considered to be close enough to allow an adjustment of the

current target (Line 3). If an adjustment is allowed, then the average write hit-rate is

computed from the history array (Line 4), followed by the delta between the current

historic average and the historic average from the prior evaluation window (Line 5).

If the current hit-rate is worse than the prior one by more than 5% of the prior one’s

value, then the prior adjustment is reversed (Line 9). If it is better than the prior

one by more than 5% of the prior one’s value, then the prior adjustment is reapplied.

If it is with 5% of the prior hit-rate, then the bypass-ratio and any prior adjustment

information is left unchanged. The prior bypass-ratio adjustment state is initialized

to a value of 0.01 (1%) during WriteGuard initialization.

2.5 Methodology

2.5.1 Initial Baseline SSD Cache

The simulation code used for the SieveStore-C runs in [3] was extended to export

a trace log of all block accesses to the SieveStore-C instance’s internal storage for

use in both offline analysis and design profiling simulation runs. The SieveStore-

C configuration used for my reference cache instance is detailed in Table 2.3. The
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storage access trace from [10] was used as the input trace for the reference SieveStore-

C instance and is summarized in Table 2.2.

Table 2.3.: SieveStore-C SSD Cache Parameters

Parameter Value

Window Span 8 Hours

Number of sub-windows 4

Imprecise Filter Size 500 Million Slots

Imprecise Filter Threshold 9

Precise Filter Size 5 Million Slots

Precise Filter Threshold 2

Cache Capacity 3Mi Pages (12 GiB)

2.5.2 Trace Analysis

A custom IO trace profiling tool was used to perform all of the access stream

analysis discussed during Section 2.3.

2.5.3 Revised Experiment Baseline

I extended the SieveStore-C design to have an internal 28MB LRU RAM cache

after the initial findings discussed in Section 2.3. To do this, a new baseline trace

was generated by extending my LRU Cache design simulator module to export it’s

downstream access trace to a similarly formatted log file for use as the revised baseline

trace for all buffer related trace analysis and design simulations.
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2.5.4 Comparison with PID Controller based Threshold tuning

Given that the threshold tuning stage of the design involves a control loop ap-

proach, I implemented a variant of WriteGuard that employs a proportional-integral-

derivative (PID) controller approach for managing the direct filter threshold tuning

stage for comparison. However, PID controllers need initial tuning to set constants

used during the respective P, I, and D control loop steps and these values would

depend on the trace patterns given those are largely what determine the result of

threshold adjustments. Therefore to in order to reasonably manage the tuning of

these constants for a given trace, I adapted the Ziegler-Nichols method for determin-

ing PID constants into a calibration mode that starts at the beginning of the trace

and tunes the P constant (with I and D stages inactive) until oscillatory behaviors

are observed, at which point the full set of P, I, and D constants are calculated and

then activated for the remainder of the buffer operation. I refer to this PID based

variant as WGP.

2.5.5 Design Simulations

Each design variant (e.g., recency-based, frequency-based, and hybrids) was imple-

mented as a modular extension to the main simulation code used for the SieveStore-C

simulations. This code base was then extended to track the amount of processor time

used to perform all of the stack-maintenance work and the emulated block data move-

ment for each request. This was done in order to quantify the relative impact each

of these two phases have on the total time required for handling the block writes and

reads to and from the buffer and cache designs. In all cases where design runtime was

evaluated, five identically configured instances were run at different times and their

various results were averaged to get the respective runtime result for that design and

buffer capacity. Runtime sweeps were run in batched sweeps with no more than 24

design profiler instances running on the same 32-core server, such that each instance
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would effectively get it’s own dedicated core during execution. A summary of the key

server configuration for these runtime profiling sweeps are summarized in Table 2.4.

Table 2.4.: Summary of Key Attributes for Servers used for Design Runtime Profiling

Parameter Value

Server Processor AMD Opteron™ 6320 (2.8GHz)

Server Processor Core Count 4

Server Processor L2 Cache Capacity 2MB

Server Processor L3 Cache Capacity 8MB

Server DRAM per Core (Average) 8GB

Design Instance Profilers per

Processor Core during sweeps
1

Threads per Design Instance Profiler 1
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2.6 Results

There are three main conclusions from my experiments.

1. All key parameters for WriteGuard and WriteGuard-Static can be intuitively

set based on only system structure information, such as a general understanding

of expected write skew (i.e. targeting the super-hot versus just the hot set).

(Section 2.6.1)

2. I show that by using a bypass-ratio target for tuning sieving thresholds, Write-

Guard and WriteGuard-Static based buffers are able to perform as well as the

highly-effective and computationally expensive LFW-I based buffers, using only

64MB to absorb 60% of the writes otherwise seen by the SSD in a SieveStore+

style cache. (Section 2.6.2)

3. WriteGuard’s self-tuned sieving approach results in a write buffer algorithm

that has a lower runtime-overhead than even LRU or LRW buffers, and that it

does not increase with buffer size. (Section 2.6.3)

2.6.1 WriteGuard Tuning

In this section I present the results from the sensitivity studies performed for

WriteGuard-Static’s target bypass-ratio parameter and WriteGuard’s history factor

and evaluation factor parameters (timing factors that control the frequency of the

tuning operation, as described in Section 2.4.3).

WriteGuard-Static Bypass Ratio Sensitivity Sweep:

I profiled the WriteGuard-Static design for target bypass-ratio values ranging from

20% through 70% in 10% steps, values from 70% through 95% in 5% steps, and a

value of 99%. Then the data for the six settings that were most representative of the

sensitivities were plotted in Figure 2.6, with the writes captured (normalized to the

total number of writes in the SieveStore+ reference trace, Y-axis) plotted against the

various profiled buffer sizes in descending order (X-axis). In the smaller and hotter
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Fig. 2.6.: WriteGuard (Static Ratio Target) Bypass Ratios Sensitivity Comparison

regions higher bypass-ratio settings perform progressively better, and most settings

perform similarly in the cooler regions, although the very high settings become pro-

gressively volatile in cooler regions and low settings result in more volatile performance

in the warm regions (between 64MiB and <128MiB). This indicates both that it is

generally better to have a high bypass-ratio setting, as long as the extremely high

ranges are avoided unless intentionally targeting the super hot set of written blocks,

and that only small tuning is needed for the bypass-ratio settings when not targeting

the highly hot set of written blocks.

WriteGuard Auto-Tuned History Factor Sensitivity Sweep:

I profiled the WriteGuard design for history factor settings from 1x through 16x in

multiples of two, with the evaluation factor fixed at a value of 4x to match the filter

threshold evaluation rate from WriteGuard-Static, and the initial target bypass-ratio
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Fig. 2.7.: WriteGuard (Auto-Tuned) History Factor Sensitivity Comparison

set to 90% based on the findings in Section 2.6.1. The data is plotted in Figure 2.7,

with the writes captured (normalized to the total number of writes in the SieveStore+

reference trace, Y-axis) plotted against the various profiled buffer sizes in descending

order (X-axis). The various history factor settings all resulted in similar performance

in the hotter regions (<64MiB) and resulted in progressively more volatile perfor-

mance in the cooler regions when not at the 2x and 16x settings, with the 2x setting

resulting in both cleaner and higher performance. The history factor controls how

many prior full filter windows worth of stats are used for the hit-rate averaging and

thus represents a strong smoothing function (after just a 2x setting) for the hit-rates

compared during bypass-ratio target tuning decisions. Therefore it makes sense that

the smoothing effects are effective but similar for the hotter and more dynamic re-

gions but becomes problematic when either only the current full window is used (1x)
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or too many are used (>2x), since the hit-rate changes needed for making decisions

can be more easily erased in cooler regions from over-smoothing and might be hard

to correctly identify if too little smoothing is done.

Fig. 2.8.: WriteGuard (Auto-Tuned) Evaluation Rate Sensitivity Comparison

WriteGuard Auto-Tuned Evaluation Rate Sensitivity Sweep:

I profiled the WriteGuard design for evaluation factor settings from 1x through 16x

in multiples of two, with the history factor fixed at a value of 2x based on the his-

tory sensitivity findings, and the initial target bypass-ratio set to 90 based on the

findings in Section 2.6.1. The data is plotted in Figure 2.8, with the writes captured

(normalized to the total number of writes in the SieveStore+ reference trace, Y-axis)

plotted against the various profiled buffer sizes in descending order (X-axis). The

various settings resulted in close performance in the hotter regions (<64MiB). Al-

though the 16x setting had the best performance for that region, since evaluating a
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higher rate would accelerate the tuning from the initial 90% bypass-ratio toward the

more optimum higher settings. In the progressively cooler regions, staying near the

filter threshold decision rate, which is aligned with the underlying filter’s tracking

sub-windows, results in the best performance. This is due to not much tuning being

needed for the bypass-ratio value, and because measurements will get noisier when

making decisions at a granularity smaller than the underlying sieving filter.

Fig. 2.9.: WriteGuard Auto-Tuning vs. Static Bypass Ratios Comparison

WriteGuard Auto-Tuning Effectiveness Comparison:

Figure 2.9 compares the performance of the tuned WriteGuard design (evaluation

factor of 4x, history factor of 2x) against that of the WriteGuard-Static design for

some of the target bypass-ratio settings from the prior bypass-ratio sensitivity study.

In the plot, the writes captured (normalized to the total number of writes in the

SieveStore+ reference trace, Y-axis) are plotted against the various profiled buffer
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sizes in descending order (X-axis). From this we see that the tuned WriteGuard

design is able to generally match the capture rate of the WriteGuard-Static design

with the best bypass-ratio target setting for each region.

2.6.2 Write Stream Dilution Results

Fig. 2.10.: LRU Screened Intra-Cache Write Stream Dilution Comparison

I compare the write capture performance of the tuned WriteGuard design (4x eval-

uation factor, 2x history factor, 90% initial bypass-ratio target, WG), WriteGuard-

Static (90% bypass-ratio target, WGS), and the PID based writeguard variant (4x

evaluation factor, 2x history factor, 90% initial bypass-ratio target, WGP) with

the perfectly sieved buffer, the computationally cheap LRW buffer, and the highly-

effective but computationally expensive LFW-I buffer. Figure 2.10 plots the writes

captured (normalized to the total number of writes in the SieveStore+ reference trace,
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Y-axis) plotted against the various profiled buffer sizes in descending order (X-axis).

Both WriteGuard and WriteGuard-Static designs perform better than or equal with

the LFW-I design in the hotter region (<64MiB) and cooler regions (>128MiB) and

only slightly worse than it for buffer capacities between 64MiB and 128MiB in size.

Additionally WriteGuard nearly strictly performs better than LFW-I in the hotter

region (<64MiB), and are able to capture 60% of the writes seen by the SSD while

only using only a 64MiB buffer capacity. Lastly, while the PID based WG variant was

able to out perform LRW in the hotter region (<64MiB) it generally under-performed

relative to WriteGuard and WriteGuard-Static (and LFW-I) since PID operation de-

pends on the system being a linear system which is not the case for thresholding given

the many-to-one mapping effects that can result from threshold value changes.

Fig. 2.11.: Underlying SSD Lifespan Improvements from Write Buffer designs
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Since the ultimate goal of this work is to improve the overall lifespan of the

downstream SSD I compare the ssd lifespan improvements that result from the write

absorption of WriteGuard with the computationally cheap LRW buffer and the highly-

effective but computationally expensive LFW-I buffer. Figure 2.11 plots the projected

lifespan of the SSD with the respective upstream write buffer designs (normalized to

without an upstream write buffer, Y-axis) plotted against the various profiled buffer

sizes in descending order (X-axis). As expected from the prior write dilution plot,

WriteGuard performs similarly well (and sometimes better) than LFW-I in the hotter

regions. However, it begins to perform strictly better than both LRW and LFW-I

in the cooler regions due to it’s sieving nature resulting in lower churn and resulting

evictions downstream as I illustrate later in Figure 2.13.

2.6.3 Buffer Design Run-time Cost Results

Next I compare the runtimes of the tuned WriteGuard and WriteGuard-Static

designs with those of the LRW and LFW-I designs. Figure 2.12 plots the algorithm

runtime in hours (averaged across five profiling runs) for each of the buffer designs

(Y-axis) against the various profiled buffer sizes in descending order (X-axis). Both

WriteGuard and WriteGuard-Static designs have runtimes matching LRW in the min-

gling band of curves in the 20 minutes to 30 minute range. Furthermore, on the

servers used it takes approximately 20 minutes in order to just parse the whole input

trace file (based on ’empty’ parsing-only benchmark versions of the design profilers).

This means that the runtimes of of WriteGuard, WriteGuard-Static, and LRW shown

here are likely file IO bound. However, the runtime for LFW-I is both significantly

longer (slower than the file IO based trace parsing) and strongly worsens as buffer

size increases (ranging from 4x to 14x worse).

Since WriteGuard, WriteGuard-Static, and LRW have indistinguishable runtimes

that are also constant, it useful to compare these competing algorithms in terms of

another efficiency focused metric, buffer allocations. Buffer allocations directly map to
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Fig. 2.12.: Comparison of the decision making run-time profiles of Write Buffer Al-

gorithms for the SieveStore+ write-stream

overhead work, memory bandwidth usage, and power consumption that is not directly

spent for write-absorption, since only write-hits correspond to filtering a write from

being seen by the SSD, and thus offer a clean comparison of extra work done by the

different buffer designs. Figure 2.13 plots the number of block allocations to each

buffer design (in millions) against the various profiled buffer sizes in descending order

(X-axis). The LRW and LFW-I designs experience massively higher allocation counts

in the very hot regions (<64MiB), having as much as 10x as many allocations as the

WriteGuard and WriteGuard-Static designs. The number of allocations decrease as

the regions get progressively cooler, although the LRW and LFW-I still experience

more than 2x as many allocations as the WriteGuard and WriteGuard-Static designs

for any buffer size. The WriteGuard design experiences more allocations than the
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WriteGuard-Static design in the cooler regions as a result of decisions for bypass-

ratio tuning being less clear since block popularity is more similar in the long tails

for cooler regions. Overall, WriteGuard and WriteGuard-Static buffers experience

significantly fewer buffer allocations due to their sieving nature, resulting in a more

efficient buffer design, even in the space of similar capture rates between them and

LRW (buffer capacities > 160MiB).

Fig. 2.13.: Comparison of the allocations made by Write Buffer Algorithms for the

SieveStore+ write-stream

2.7 Related Work

A formal study of RAM buffer for flash storage to filter accesses was first pro-

posed by [5]. In this study, authors introduced Block Padding Least Recently Used

(BPLRU) buffer management scheme to improve the performance of random writes
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to the flash storage. My focus is on reducing the total number of writes to flash; not to

improve the performance of random writes. [11] suggests to use different replacement

policy and write-back policy for the write buffer depending on the host workload in

order to strike a balance between write performance and write traffic reduction. [12]

proposes an address mapping and data buffering scheme named treeFTL to dynam-

ically manage RAM buffer based on workloads. A large body of cache replacement

policy studies focus on using page access recency and frequency to predict future

page access pattern, including proposing variants of LRU and LFU [13–16], as well

as mechanism that combines the two [17–20]. While WriteGuard also focuses on one

LRFU mechanism, my goal is to do so in an efficient way.

While industry is constantly pursuing cheaper cost-per-bit NAND flash devices,

as a side effect, the lifetime of such devices is also decreasing because of the increas-

ing density and the smaller technology nodes. Most recent studies have focused on

the device level to improve durability. [21, 22] propose to use Write-Once Memory

(WOM) codes to improve SSD durability by more efficient page reuses. A recent

study from [23] proposes techniques to optimize the lifetime and performance of a

mixed high-end and low-end ssd array. [24] introduces a way to identify the weakest

cells and strongest cells, and uses a wear unbalancing technique to distribute more

writes to strongest cells so that the overall device lifetime is improved. Authors of

[25] observed that erase voltage and erase time have a large impact on NAND en-

durance, and suggests to use slow erasing with a lower erase voltage to improve device

endurance. While these orthogonal improvements to Flash endurance are important,

WriteGuard solves the problem that exists today which is to maximize the lifetime

within existing endurance limits.

Techniques to improve write performance of flash drive have also been studied.

Sievestore [3] takes advantage of the skewness of disk access popularities to do selec-

tive caching to improve SSD write performance has been extensively discussed in the

main body of the paper. [26, 27] suggests to apply different ECC codes to writes

with different reliability guarantees to improve write latency. Other techniques, such
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as using in place delta compression [28] to reduce SSD write stress have also been

proposed. Exclusive caching policies for non-volatile memory based caches for flash

storage has been proposed for lowering write-amplification during garbage collection

by invalidating Flash storage copies of data currently resident in a non-volatile mem-

ory based cache [29].

Additionally, a recent study from Google [30] reveals that while high-end SLC

drives experience lower raw bit error rates (RBERs) than MLC drives for similar

program erase (PE) cycles counts, they still require replacement at similar rates to

MLC drives. Their results indicate that while MLC drives are more sensitive to

PE cycles than SLC drives (as previously thought) the SLCs higher PE endurance

cannot be practically leveraged due to other drive errors resulting in earlier drive

replacements. This increases the need for efficient and effective write-filtering like

WriteGuard, since SLC drives will likely cease to be used due to their higher cost for

similar replacement rates, resulting in MLC drives (with their greater PE sensitivity)

remaining as the only practical option.

2.8 Conclusion

The high cost per GiB for SSDs (relative to HDDs) continues to drive their use

as part of a hybrid system where they serve as a high-performance storage-tier cache

for the hot data, while HDDs are used as the lower-performance bulk storage. While

sieving cache designs, like SieveStore-C, greatly lessen the amount of writes to the

underlying SSDs by minimizing allocation-writes, the write-hot blocks cached in these

designs still pose a significant lifespan issue for the SSDs, especially since the more

write-wear tolerant SLC based SSDs have been primarily phased out in favor of the

higher capacity MLC SSDs. The primary means of addressing this issue are either

through expensive over-sizing of SSD capacity or usage of large RAM-based write-

back buffers that increase the system’s backup power requirements. I show that

buffer designs based on the Least-Recently-Frequent class of buffer algorithms are



42

needed in order to cost-effectively handle the high popularity skew present within

the access-stream seen by SSDs in these caches. I then propose – WriteGuard– a

self-tuning sieved write-buffer design that is able to absorb writes as effectively as the

computationally expensive LFW-I design while having similar runtime costs as that

of a LRW buffer.
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3. OPTIMIZED STT-MRAM FOR WRITE BUFFERS

DRAM-based write buffering and caching techniques (includingWriteGuard) are com-

monly used to help alleviate the write-pressure to SSDs, and thus over-provisioning

costs, but require power backup to ensure durability of writes. Even the efficient write

buffers can require sizing on the order of 1GB per 120GB capacity of the underlying

SSD cache. Additionally, selective caches have access patterns that require large (e.g.,

640MB-1280 MB+ relative to a 120GB cache) write buffers when used with common

recency-based or frequency-based replacement. DRAM-based write buffers may need

additional safeguards to ensure the durability of writes via additional power backup.

Note that there may be some modest battery backup built into server/datacenter in-

frastructure. However, it is not a free resource that can satisfy the additional demand

of the DRAM write-buffer backup power. As such, we account for it as an added

cost.

One simple approach to avoiding the added power-backup cost is to employ Non-

Volatile memory technologies such as STT-MRAM as a drop-in replacement for the

write buffer’s DRAM [8]. My contribution is to show that for storage write-buffers,

the workload characteristics enable the use of higher-density variants of STT-MRAM.

Specifically, I identify two application characteristics – (1) the vast majority of the

write-buffer’s contents is composed of write-dominant blocks, and (2) the vast ma-

jority of blocks in the write-buffer are overwritten within a period of 28 hours –

that enable a high-density, optimized STT-MRAM as a replacement for DRAM.

My optimized STT-MRAM-based write buffer achieves higher density by (a) trad-

ing off superfluous durability by exploiting characteristic (2), and (b) de-optimizing

the read-performance of STT-MRAM by leveraging characteristic (1). Together, the

techniques increase the density of STT-MRAM by up to 80% with low or no impact

on write-buffer performance.
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3.1 Introduction

DRAM-based write-buffers and caches are currently used to absorb significant

portions of these problematic writes in order to minimize the over-provisioning of SSD

cache capacity needed to maintain drive lifetimes (through wear-leveling) beyond that

of typical servers lifespans (i.e., 3-5 years). However, these RAM buffers require power

backup to ensure the durability of writes and the access patterns for these caches

necessitate common recency-based or frequency-based write buffers to be large (e.g.,

100MB+ relative a 12GB cache) to be effective. More effective algorithms, like the

more computationally expensive class of joint recently-frequent (LRFU) policies and

the computationally efficient sieving WriteGuard algorithm detailed in Chapter 2,

are able to reduce the required buffer capacity (to approx. 64MB for the same 12GB

cache). While these algorithms meaningfully reduce the required capacity, and thus

power backup, they still require significant power backup for the DRAM buffer.

Before we begin to discuss alternative ways to ensure the durability of write buffers,

it is important to first clarify the respective durability and failure model for this design

space. The type of failures these buffers must be designed to endure is short-lived

crashes, which typically do not result in true data loss due to data replication both

within and across data-centers ensuring that other copies exist during the crash and

recovery period. However, in order to maintain the desired level of replication, there

are two primary choices for handling a crash event. The first is to assume that all

copies on the involved node are lost which requires re-replicating all blocks held by

that node onto other nodes, which involves Terabytes of data transfers and IO. The

second is to simply wait for the node to restart, which involves no extra data transfers

and replication levels are restored after the restart finishes. My work targets design

spaces that choose option two over option one, which means that buffered blocks need

to be durable enough to survive restart cycles.

Spin-Torque-Transfer Magnetic-RAM (STT-MRAM) has been gaining ground as

replacement for traditional RAM technologies because of it’s non-volatility, higher
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read performance, and strong density scaling. Existing STT-MRAM cell designs tar-

geted as an SRAM replacement have densities as much as 5x higher than SRAM [31].

Furthermore, STT-MRAM shows scaling potential to come close to both embed-

ded and traditional DRAM while also achieving higher performance [32, 33], with

STT-MRAM-cell density limited by design trade-offs with read performance and non-

volatility [34]. Perpendicular magnetized MTJ based STT-MRAM cell designs, where

the magnetic alignment within the MTJ layers is perpendicular to the plane of the

wafer, have shown improvements to write energy costs and enhanced density due to

their better ability to scale to smaller feature sizes and higher temperature toler-

ances [35]. Improvements in this design space have enabled production STT-MRAM

capacities of 1Gb per chip at 22nm fabrication [36]. Although, production DRAM is

currently at 16Gb per chip (before die stacking) at 10nm fabrication [37]. However,

factoring the full picture of durability and elimination of periodic refresh power and

performance penalties alongside the lower density of current STT-MRAM has resulted

in early but limited adoption in some high-performance enterprise SSD designs [8].

Optimizing STT-MRAM-cell for use in traditional designs is complicated by mul-

tiple trade-offs between it’s promising properties (read performance, bit-cell density,

and non-volatile) and improving write energy and latency costs. Read performance

and bit-cell density related trade-offs result from adjusting the bit-cell’s access tran-

sistor or magnetic layers, with improvements for write-current, density, and latency

lessening the differential between bit-states during reads or even causing destructive

reads [34]. Trade-offs involving non-volatility offer a significant opportunity for im-

proving write energy and performance without negatively impacting read performance

and density, but necessitates study of data lifespans within workloads to properly

leverage the cells [38,39]. Furthermore, optimization in traditional application spaces

has resulted in cell designs which have MTJ stacks optimized to match the overlap-

ping region with their underlying access transistor, resulting in no density benefits

from reduced cell retention time [40]. However, this access transistor sizing (and the

resulting effective MTJ size reduction limit) is only necessitated by the dependence



46

on read performance in traditional application domains, due to access transistor size

reductions resulting in worse read performance.

In this work, I identify two specific application characteristics – (1) the vast major-

ity of the write-buffer’s contents (e.g., 95%) is composed of write-dominant blocks, and

(2) the vast majority of blocks in the write-buffer (e.g., 98%) are overwritten within

a period of 28 hours. I show that these characteristics help enable a high-density,

optimized STT-MRAM as a replacement for DRAM, which enables durable write-

buffers (thus eliminating the cost of power backup for the write-buffer). My optimized

STT-MRAM-based write buffer achieves higher density by (a) trading off superfluous

durability by exploiting characteristic (2), and (b) deoptimizing the read-performance

of STT-MRAM by leveraging characteristic (1). Together, the techniques increase the

density of STT-MRAM by 25% with low or no impact on write-buffer performance.

Section 3.2 provides a brief introduction to STT-MRAM and a discussion of cell

retention time related design trade-offs. In Section 3.3 I discuss the results from

analyzing the opportunity for write-buffer focused customization of STT-MRAM cell

designs. In Section 3.4, I discuss the details of my proposed cell design trade-off

and ways to manage it’s costs. I then discuss my evaluation methods in Section 3.5

followed by the corresponding results in Section 3.6. Section 3.7 discusses related

prior work. And I state my final conclusions in Section 3.8
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3.2 STT-MRAM Technology Background

Fig. 3.1.: Simplified Diagram of a STT-MRAM cell

Figure 3.1 illustrates the general structure of a STT-MRAM bit-cell, where a

switchable magnetic filter (the Magnetic Tunnel Junction or MTJ) is connected be-

tween per-bit wire and an access transistor. The MTJ is composed of a magnetic

layer with a fixed magnetic alignment referred to as the fixed layer, a tunneling bar-

rier referred to as the barrier layer, and a magnetic layer with a switchable alignment

referred to as the free layer. Data stored in the bit-cell is encoded via the relative

alignment of these two magnetic layers within the MTJ, with matching alignments

resulting in less resistance to electric current traveling through it and opposing align-

ments have a higher resistance to electric current traveling through it. Earlier designs

had the alignments of these magnetic layers parallel to the plane of the wafer and are

now referred to as in-plane MTJ (iMTJ) and have bit states similar to those shown in

Figure 3.2a. More recent designs use magnetic alignments perpendicular to plane of

the wafer due to there better scaling and thermal characteristics and have bit states

similar to those shown in Figure 3.2b [35]
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(a) In-plane MTJ (iMTJ) (b) Perpendicular MTJ (pMTJ)

Fig. 3.2.: Relative magnetic alignment for distinct STT-MRAM bit-states

3.2.1 Adjusting STT-MRAM Cell Retention Time

The retention-time of a cell is controlled by the cell’s Magnetic Tunnel Junction

(MTJ) properties with respect to thermal noise resulting in changes to it’s magnetic

alignment, which would potentially result in a bit-flip or read error. This MTJ char-

acteristic is referred to as the thermal barrier and denoted by ∆. The retention time

for a given cell follows Equation 3.1, with C and k as fitting constants that are depen-

dent on MTJ design but independent of the MTJ volume (MTJ volume does affect

retention time via the ∆ term).

Retention Time = Cek∆ (3.1)

Therefore the change in needed thermal barrier between two different retention

times can be calculated via Equation 3.2. And the reduction in thermal barrier

between the two times (in percentage) can be calculated via Equation 3.3.
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Furthermore, retention time for a cell in nanoseconds can be approximated with

C set to 1ns and k set 1 [41], resulting Equation 3.4 with t measured in nanosec-

onds. This logarithmic relationship clearly indicates that retention time would need
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to shrink by orders of magnitude for any appreciable gains in density for the cell,

which is shown to be the case in Section 3.6.

100.0
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3.2.2 Adjusting STT-MRAM Magnetic Tunnel Junction

There two primary ways to change the MTJ (and thus its retention time) without

fundamentally changing the MTJ structure (and thus it’s core fabrication processes)

(1) shrinking of the thickness of MTJ layer(s) and (2) shrinking of the planar area

of MTJ layers and thus the footprint of the MTJ stack. This is because the thermal

barrier is directly proportional to the volume (V), its in-plane anisotropy field (Hk),

and it’s saturation magnetization (Ms) and it is inversely proportional to absolute

temperature in Kelvin (T) as captured in Equation 3.5.

∆ ∝ V HkMs

T
(3.5)

Furthermore, the critical write current (Ic) is proportional to the MTJ planar

area (A) according to Equation 3.6, where C and gamma are fitting constants and

Jc0 depends on the MTJ vertical structure [42].

Ic(write time) = A

(
Jc0 +

C

(write time)γ

)
(3.6)

Therefore both options reduce the necessary write energy and thus write power or

write performance, with area changes having a directly proportional impact. Chang-

ing the layer thickness does not affect cell density because it does not result in changes

to the cell area related dimensions. Whereas, changing the layer planar area has the

ability to directly impact the cell area, given the matching dimensions, as long as the

access transistor sizing does not set a hard upper limit for the cell area. However,
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under the traditional STT-MRAM cell design focus, currently optimized cells are di-

mensionally limited by the size of the access transistor and have their respective MTJ

stacks sized to match the overlapping area of the access transistor [40].

This constraint wherein the access transistor limits any area reduction is a con-

sequence of the read-optimized cell sizing, which disallows any reduction in the size

of the access transistor. My work shows that significant (e.g., 20%) area reduction

(and hence STT-MRAM density improvements) are possible for the write-dominated

workload seen at the write buffer. One may think that it is tautological to expect

that writes dominate traffic at write buffers since all writes are, by definition, steered

to the write buffer. However, if those written blocks are then re-read one or more

times, arbitrary read-write ratios are possible. My workload characterization shows

that reads to written blocks are extremely rare (e.g., less than 7% of buffered blocks

have write-to-read ratios of less than 3x and effectively 100% of reads occur to blocks

with write-to-read ratios that are less than 2x).

3.3 Opportunity for Write Focused STT-MRAM Design

There are three key conclusions from my opportunity search.

1. The accesses to the blocks held within selective caches are strongly clustered,

with most reads and writes coming from respectively distinctly different sets of

blocks. (Section 3.3.1)

2. Internal Screening caches (Internal RAM Caches) appear to primarily capture

block sets that are read-dominant with more mixed access contributions and

thus both filter the downstream trace to be more distinctly clustered and need

a follow up internal access study for identifying amenable STT-MRAM cell

type(s) (Section 3.3.2)
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3. Internal write-buffers nearly exclusively handle write-dominant (and mostly

write-only) blocks with the majority of the absorbed writes affecting strongly

write-dominant blocks. (Section 3.3.3)

3.3.1 SieveStore-C Internal Access-Stream Trends

Fig. 3.3.: SieveStore-C internal access-stream write-to-read ratio profile

In this section I present the results from profiling the write-to-read ratios and

respective access contributions of the blocks held within the SieveStore-C instance.

The complete profiles are plotted in Figure 3.3. Block count PDF and CDF (normal-

ized to the total number of blocks within SieveStore-C) are plotted (left Y-Axis with

solid lines) against write-to-read ratio bins inclusively from 0.0x to 100x (increments

of 0.01), with values for ratios greater than 100x includedsi in the 100x bin. Read,

write, and combined access counts (normalized to the their respective totals) are plot-
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ted (right Y-Axis with dashed lines) against write-to-read ratio bins inclusively from

0.0x to 100x (increments of 0.01), with values for ratios greater than 100x includedsi

in the 100x bin. Blocks are are strongly clustered into two groups at the extremes of

the write-to-read ratio bins, with approximately 20% in or near the 100x ratio bin and

over 70% being in bins with ratios lower than 5x. Effectively all reads are to blocks

with ratios lower than 5x, with nearly 95% being from blocks with extremely low W/R

ratios. The write CDF curve sharply climbs as W/R ratios increase from extremely

low values toward approximately 5x and then effectively plateau until the effectively

write-only blocks (near 100x W/R ratio), with nearly 55% of writes belonging to

these ’write-only’ blocks. This strong read-focused and write-focused clustering make

sense when one thinks about how we typically work with files in relatively focused

phases, switching between creating, reading, and updating. However, a closer look

is needed for the 0.0 to 5x W/R ratio region to clarify the strength of the clustering

with respect to reads, since those ratios are effectively compressed into the left edge

of the plot.

Figure 3.4 plots the same data from Figure 3.3 only with the X-Axis zoomed

write-to-read ratio values between 0 and 5x. At this focus level, we see that the write-

focusing is even stronger than previously seen, with nearly 80% of writes occurring

to write-dominant blocks (W/R ratios larger than 1x) and previously observed write

plateau starting around ratios of 3x. Furthermore, 95% of reads are to read-dominant

blocks (W/R ratios lower than 1x), with 60% coming from effectively read-only blocks

and effectively no reads from write-dominant blocks. These trends indicate a strong

opportunity for leveraging a write-optimized STT-MRAM-cells for write absorption

since read performance and energy characteristics would be largely irrelevant for the

blocks that account for the vast majority of writes. Additionally, this indicates that

read-acceleration-focused efforts could potentially have significant benefits from more

strongly read-optimized (as compared to write-mitigated or balanced) STT-MRAM-

cell types.
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Fig. 3.4.: SieveStore-C internal access-stream write-to-read ratio profile (ratios < 5x)

3.3.2 SieveStore+ Internal Screening Cache and Downstream Trends

In order to further investigate and solidify the level of opportunity for leverag-

ing differently optimized STT-MRAM-cell types, I analyzed the write-to-read ratio

profiles for the access-stream downstream from the internal screening cache in Sieve-

Store+. First I present the profile trends in this access-stream (Section 3.3.2), and

then discuss the trend differences before and after the internal screening cache (Sec-

tion 3.3.2).
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SieveStore+ Write-Buffer Input Access-Stream Trends

In this section I present the results from profiling the write-to-read ratios and

respective access contributions in the access-stream downstream from the screening

cache in SieveStore+ (and thus the input access-stream to the SieveStore+’s write-

buffer). The complete profiles are plotted in Figure 3.5 with a similarly 0 to 5x

zoomed range plotted in Figure 3.6. Block count PDF and CDF (normalized to the

total number of blocks within SieveStore-C) are plotted (left Y-Axis with solid lines)

against write-to-read ratio bins inclusively from 0.0x to 100x (increments of 0.01),

with values for ratios greater than 100x includedsi in the 100x bin. Read, write, and

combined access counts (normalized to the their respective totals) are plotted (right

Y-Axis with dashed lines) against write-to-read ratio bins inclusively from 0.0x to

100x (increments of 0.01), with values for ratios greater than 100x includedsi in the

100x bin. High level trends remain similar to those in SieveStore-C’s access-stream,

with very strong read and write clustering, nearly all reads coming from blocks with

lower write-to-read ratios, nearly all writes going to write-dominated blocks, and the

majority of writes going to ’write-only’ blocks.
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Fig. 3.5.: Write-buffer input access-stream write-to-read ratio profile

However, the plot for ratios between 0 and 5x (Figure 3.6) shows an even stronger

read-focusing and write-focusing. Nearly all writes (>95%) are from blocks that

have at least balanced write-to-read ratios, and consequently nearly no writes to

read-dominant blocks which still account for the vast majority of reads (~ 85%).

Additionally, the blocks with balanced ratios account for less than 15% of all accesses

but over 25% of writes, meaning that they may still be valid candidates for write-

prioritized STT-MRAM-cells in write-buffers, where write-absorption is the primary

goal.
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Fig. 3.6.: Write-buffer input access-stream write-to-read ratio profile (ratios < 5x)

Screening Cache Potential Opportunity Trends

(a) Screened Cache Input Stream (b) Downstream Write Buffer Input Stream

Fig. 3.7.: Comparison of pre- and post- screening cache access-streams (ratios < 5x)
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In this section, I discuss the write-to-read ratio profile differences between access-

streams before and after the screening cache. In the prior section it was noted that the

high-level and extremely high write-to-read ratio trends are similar in both streams, so

this section will focus on the region of ratios from 0x to 5x. The zoomed write-to-read

ratio profile plots shown previously for the access-stream before the screening cache

and the access-stream after the screening cache have been re-included side-by-side in

Figure 3.7 to better facilitate this discussion.

One might think we should see a shift in the block count based PDF and thus CDF

curves given the absorption of writes and reads in the screening cache. However, the

screening cache in SieveStore+ has a capacity of only 28MiB (approximately 0.228%

of capacity of the overall SieveStore+ cache) and so should leave the write-to-read

ratios for most blocks unaffected. The screening cache captures approximately 40% of

the writes (as noted in Chapter 2) and approx. 15% of the reads so we should expect

to see differences in the access related profile curves from these filtered accesses.

However, misses for both reads and writes will result in a downstream read or write,

respectively, at a one-to-one ratio they will not trigger any access profile changes.

There are two key access related profile shifts. The first being that there are not

longer very many writes (nor reads) coming from blocks with ratios of approximately

0.66 (2:3) and there is now a significant portion to blocks with balanced ratios (near

ratios of 1x). This would imply that at least one of the block sets captured in the

screening cache is actually more heavily read filtered and thus both would likely need

more read-optimized STT-MRAM in the screening cache. The increase in the portion

of reads to extremely read-dominant blocks after the screening cache is likely a result

of the the total read count shrinking due to the read filtering, but may also stem

from a strong write-filtering. The option of the write-optimized STT-MRAM for this

’balanced’ set stems from both the focus of the write-buffer being write-absorption

and that they contributed relatively less reads (around 10% of reads and 25% of

writes). Secondly, the write-plateau occurs at ratios a little lower than 2x in the

downstream trace and happened at ratios around 3x before the screening cache. This
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implies that the screening cache has a another block set that it both more strongly

write-filters and is already write-dominant and thus would likely need write-optimized

STT-MRAM in the screening cache. These two key shifts indicate that the screening

cache would likely need complementary sets of both read-optimized STT-MRAM-cells

and write-optimized STT-MRAM-cells for optimally handling it’s working set, and

that it’s internal trace should be studied in followup work.

3.3.3 Write-Buffer Access-Stream Trends

To solidify the level of opportunity for write-optimized STT-MRAM-cell usage

in write-buffers, I analyzed the access-stream to the data buffer component inside

of the WriteGuard write-buffer instance. First I present the profile trends in this

access-stream (Section 3.3.3), and then discuss the impacts of reads required during

the eviction of currently held blocks (Section 3.3.3).

Write-Buffer Internal Data Storage Access-Stream Trends

The complete write-to-read ratio profiles are plotted in Figure 3.8 with a zoomed

view of the profiles plotted for ratios between 0 and 5x in Figure 3.9. Block count

PDF and CDF (normalized to the total number of blocks within SieveStore-C) are

plotted (left Y-Axis with solid lines) against write-to-read ratio bins inclusively from

0.0x to 100x (increments of 0.01), with values for ratios greater than 100x includedsi

in the 100x bin. Read, write, and combined access counts (normalized to the their

respective totals) are plotted (right Y-Axis with dashed lines) against write-to-read

ratio bins inclusively from 0.0x to 100x (increments of 0.01), with values for ratios

greater than 100x includedsi in the 100x bin.

Similar to the previous traces, there is a clustering of read-focused and write-

focused block sets. However, the writes are are more distributed throughout the

range of ratios from 3x through 100x, but this range still accounts for over 55% of

writes and less than 5% of reads. Writes are also generally more dominant, with
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Fig. 3.8.: Write-buffer internal block storage access-stream write-to-read ratio profile

the writes to these strongly write-dominant blocks accounting for nearly 40% of all

accesses, instead of 15% of the accesses like the previous traces. This makes sense for

the following two reasons, (1) the only reads to the write-buffer are from read-hits

and reads of blocks being evicted, since write-buffers do not allocate for read-misses

and (2) reads were previously shown to be primarily mapping to blocks that had very

low amounts of writes and thus would likely not be kept in the write-buffer.

When we focus on the regions for lower write-to-read ratios (Figure 3.9), we see

that reads are primarily concentrated in the blocks with balanced ratios, with ap-

proximately 60% of reads mapping to these blocks and less than 15% of reads going

to read-dominant blocks (ratios <1x). Given the concentration of reads and that

the sum of the reads and writes to these balance blocks accounts for over 40% of



60

Fig. 3.9.: Write-buffer internal block storage access-stream write-to-read ratio profile

(zoomed to Ratios less than 5x)

accesses, it would seem balanced STT-MRAM-cells would be needed for optimized

performance. Although, the level of balance needed would depend on how bad the

read-related trade-offs were, since the reads share that 40% of accesses with a signifi-

cant portion (approximately 30%) of the overall writes. As in the previously analyzed

traces, there are effectively no reads to strongly write-dominant blocks (ratios >2x)

and these blocks account for 55% of writes, with more than half of them (30% over-

all) coming from the ’write-only’ blocks (as was shown in Figure 3.8). Furthermore,

accesses to read-dominant blocks account for no more than approximately 6% of all

accesses to the internal block storage, and writes to these blocks account for no more

than around 3% of writes. These trends make a strong case that write-optimized

STT-MRAM-cells should be used to create optimized non-volatile write-buffers, and
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that conventional read-optimized or balanced cells would be problematic as the sole

(or even common) STT-MRAM-cell.

Impacts of Write-Buffer Block Eviction-Triggered Reads

Since the write-dominant region has a significantly stronger growth in the ag-

gregate amount of writes as write-to-read ratio increases beyond 5x (approximately

25% compared to effectively no growth in previous traces), this section discusses the

impacts of the reads required to evict blocks from the write-buffer. One difference

between the internal storage of a write buffer and the external access streams is that

when blocks are evicted from the write-buffer they must first be read from the stor-

age, since the data is dirty and must be written back. This means that blocks that

were naturally write-only would now experience a read, and thus blocks with effec-

tively infinite (>100x) write-to-read ratios could have ratios less than 100x. In order

to identify if these ’extra’ reads are resulting in the greater distribution of writes in

the region of write-to-read ratios that are greater than 5x, complete profiles for this

stream with with eviction-triggered reads and without them are plotted side-by-side

in Figure 3.10. The subplot for profiles including eviction-triggered reads (a) is the

same plot as was shown previously in Figure 3.8. The subplot for profiles excluding

eviction-triggered reads (b) is plotted in the same format. Block count PDF and

CDF (normalized to the total number of blocks within SieveStore-C) are plotted (left

Y-Axis with solid lines) against write-to-read ratio bins inclusively from 0.0x to 100x

(increments of 0.01), with values for ratios greater than 100x includedsi in the 100x

bin. Read, write, and combined access counts (normalized to the their respective

totals) are plotted (right Y-Axis with dashed lines) against write-to-read ratio bins

inclusively from 0.0x to 100x (increments of 0.01), with values for ratios greater than

100x includedsi in the 100x bin.

When eviction-triggered reads are ignored, the familiar flat region for each curve

(for ratios between 5x and 100x) returns, along with markedly more extreme trends
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(a) With eviction-triggered reads (b) No eviction-triggered reads

Fig. 3.10.: Write-buffer internal block storage access-stream write-to-read ratio profile

without eviction triggered reads

regarding the strongly and extremely write-dominant blocks. The first of these shifts

is that, more than 88% of blocks are ’write-only’ when eviction-triggered reads are

ignored (compared to less than 5% when they are counted). This trend is important

because for these blocks reads are only occurring when the data is no longer locally

needed after the read, and thus should safely allow the use of STT-MRAM-cells that

were write-optimized so far that reads became destructive. The second trend is that

effectively 100% of reads (without counting eviction reads) happen to blocks with

W/R ratios less than or equal to 2x, which in total account for less than 7% of

the blocks in held by the write buffer. This is more clearly visible in Figure 3.11,

which is a zoomed version of the prior plot where the x-axis is zoomed to just display

the data for blocks with write/read ratios less than or equal to 5. Additionally,

the percentage of blocks that are write-dominant (write-to-read ratios > 1x) is now

over 95%. And lastly, more than 55% of writes and effectively 0% of reads are to

strongly write-dominant blocks (ratios larger than 2x), and 72% of writes occur to

write-dominant blocks. These trends indicate strong opportunity for STT-MRAM-

cells designed to optimize density, even if this write-focused optimization results in

significantly worsened read performance or increased risk of destructive reads.
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Fig. 3.11.: Write-buffer internal block storage access-stream write-to-read ratio profile

without eviction triggered reads (zoomed to Ratios less than 5x)
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3.4 STT-MRAM Reduced Retention-Time Trade-off

STT-MRAM cells are typically designed with a 10+ year retention-time allowing

them to be handled as a general purpose long-term non-volatile storage media. How-

ever write-buffers are intermediate storage with the purpose of aggregating writes

over time to locations to minimize the amount of individual writes to the underlying

bulk storage, and thus would see little benefit from a 10+ year retention time due

to the constant overwriting that occurs. Furthermore, Section 3.3 proved that write

buffer activity is also largely insensitive to read performance given that writes make

up the super majority of accesses and that nearly all reads occur to minuscule por-

tion of the blocks held by the write buffer. However, based on this trend one could

also design the write buffer to use traditional STT-MRAM for a very small portion

of capacity that is selected based on write to read ratios to capture any potential

upstream benefit from non-reduced read performance to those blocks. Although this

added complexity in buffer design would have only minor impact to the overall SSD

Cache, since the reads served from a 256MB (2% SSD capacity) write-buffer account

for only 16% of the reads handled by the SSD Cache as a whole, and even the re-

duced read performance in a write-optimized STT-MRAM cell would remain orders

of magnitude better than SSD read performance.

3.4.1 Benefits of Reduced Retention Time

Shrinking the retention time of a cell results from a few cell design changes (1)

fundamental changes to the MTJ layers (2) shrinking of the thickness of MTJ layer(s)

(3) shrinking of the planar area of MTJ layers(s) and thus the footprint of the MTJ

stack. The first option is not of interest because it would also mean fundamental

fabrication changes which if possible would be costly and result in large fabrication

differences between current production and a proposed write-buffer optimized one.

Both the second and third options result in reduce necessary write energies and thus

write power or write performance. However only the third option allows for changes
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to cell density as a result of changes in retention time, as the adjusted dimension

could be chosen to align with the width of the access transistor below the MTJ stack

and thus could result in density gains if the access transistor could likewise shrink.

As discussed in Section 3.3, this last requirement is shown to be possible due to the

write dominated access behavior and purpose of write buffers.

According to Equation 3.5 in Section 3.2.2, if only the planar area of the MTJ is

adjusted, then reduction in planar area would be directly proportional to the reduction

in thermal barrier. Since the width of the MTJ planar area is the dimension that

aligns with the width of the underlying access transistor, if only it and the width

of the access transistor are reduced in tandem then the reduction in thermal barrier

would result in a directly proportional reduction in STT-MRAM cell size.

Furthermore, the critical write current is directly proportional to the MTJ planar

area (as shown in Equation 3.6 in Section 3.2.2). This means that reductions the

MTJ planar area also directly reduce the critical write current needed for any given

write duration, which means the minimum width of the access transistor needed to

support the write current for a given write time reduces directly with the MTJ planar

area. This together with the write dominance of the write buffer activity mean that

the access transistor can be safely scaled directly with the planar area of the MTJ and

thus fully retain any density gains resulting from the planar area reduction method

for reducing cell retention time. Although it should be noted that while my work

relies on these previously validated scaling models [35, 40–43], independent layout

and simulation of my proposed scaling may be necessary to re-validate my design to

address end-to-end scalability (including wires) and process variation concerns.

3.4.2 Costs of Reduced Retention Time

When reducing the STT-MRAM cell retention time, it will likely be undesirable

to limit the reduction to completely cover the longest natural lifespan of data to be

held as this would likely result in very limited reduction due to only a few pages
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having abnormally long data lifespans. Instead, these abnormally long lifespan pages

should be handled via a expiration management scheme such that the STT-MRAM

cell retention time reduction can be based on capturing a significant majority of the

natural data lifespans of pages. There are two primary schemes for managing the ex-

piration of these longer lifespan pages (1) refreshing the page before it expires and (2)

evicting that page down to the underlying SSD. Furthermore, given that SSD caches

may experience shorter term (few hours or less) downtime and crash induced restarts

for a variety of reasons, it is necessary to have either of the above policies perform

their operations early enough to ensure a desired “reserve” retention time window.

This timing, which is illustrated in Figure 3.12, ensures that the data would remain

durable during machine downtime or restart cycles of up to this “reserve” duration,

although it will increase the respective costs associated with both approaches.

Fig. 3.12.: Timing Diagram Illustrating Timing for Ensuring Reserve Durability

Due to the nature of refresh cycles needed in this application, the extra costs for

option 1 should be tolerable at worst and potentially could be minimal. Page refreshes

are currently already done as periodic bulk refresh cycles at the hardware level for

DRAM given it’s cells have retention times in the 10s of milliseconds. Reduced

retention time STT-MRAM should still be in scope of minutes to hours of retention

time in order to be a suitably durable storage for write buffers and so the refreshing

cycles would need happen far less often. Additionally, with the retention time chosen

to handle the bulk of the natural data lifespans of write buffered pages, there should
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only be a small subset of the pages that need to be refreshed. As a result selectively

refreshing only the pages that need it could likely be done by the software managing

the write buffer, given that it would be relatively easy and inexpensive to track the

time since the prior write and refresh as needed. This tracking would simply require

the addition of a timestamp added to each page’s meta data that is updated on each

write, followed by periodically check these stamps starting with the oldest first and

refreshing the page if it is approaching expiration. For reference, WriteGuard and

LRW buffers keep the metadata for all currently resident blocks in a LRW queue so

there would be no additional sorting cost required to start with the least recently

written page and only refreshing the subset that would need it. There would be

an overhead cost in terms of extra buffer media accesses resulting from the software

managed refresh, as illustrated in Figure 3.13. Although one strong benefit of this

approach is that there would be zero impact to SSD lifespan increases that result

from the write buffer’s filtering.

Fig. 3.13.: Timing Diagram Illustrating Timing for Selective Refresh Related Activity

The second option would have minimal extra costs to buffer runtime but could

result in significant reductions in the write buffer’s effective filtering, and thus lessen

the SSD lifespan benefits it provides. This scheme is depicted in Figure 3.14, where

each page approaching it’s expiration would need to be written back downstream to

the SSD to ensure no data loss. This would require the same additional metadata

and similar extra metadata processing as the first scheme to identify pages that

need to be written back, but would only require one additional read to the physical
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page instead of potentially repeated read and write cycles required for a refresh.

However, once evicted and written back to the SSD any future access to the block

would be bypass misses until the block was reallocated to the buffer for selectively

allocating buffers. This means that the expiration based eviction could result in more

extra downstream writes than just the one corresponding to the expiration triggered

eviction. In WriteGuard’s case, the victim meta data buffer would help lessen this by

allowing reallocation on the next write for any evicted pages with meta data still in

this small buffer.

Fig. 3.14.: Timing Diagram Illustrating Timing for Expiration based Eviction Activity
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3.5 Methodology

3.5.1 Reference Access Traces

Four block IO access traces, each at subsequent levels of the internal architecture

of SieveStore+ staging cache from Chapter 2, were analyzed for the access-stream

profile results presenting in Section 3.3. The first two traces in the sequence, the full

SieveStore+ internal access-stream and the access-stream between the LRU RAM

cache and WriteGuard instance, are the same ones captured during the work covered

in Chapter 2. The third and fourth traces were captured during this work and are

the logical access-stream and the physical access-stream to the data store component

of a WriteGuard write-buffer instance and it’s extraction is discussed in the following

Section 3.5.2.

For ease of reference, the parameters for the SieveStore-C aspect of the Sieve-

Store+ instance in Table 3.1, as well as a copy of the summary of the base storage

ensemble trace that the analyzed traces are derived from is provided in Table 3.2.

Additionally, a copy of the SieveStore+ system architecture diagram (Figure 3.15)

has been included here for easier reference to the respective levels of the traces.

Table 3.1.: SieveStore-C SSD Cache Parameters

Parameter Value

Window Span 8 Hours

Number of sub-windows 4

Imprecise Filter Size 500 Million Slots

Imprecise Filter Threshold 9

Precise Filter Size 5 Million Slots

Precise Filter Threshold 2

Cache Capacity 3Mi Pages (12 GiB)
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Table 3.2.: Summary of Reference Ensemble Trace Set

Key Name Volumes Drives Size (GB)

Usr User home dirs 3 16 1367

Proj Project dirs 5 44 2094

Prn Print server 2 6 452

Hm Hardware monitor 2 6 39

Rsrch Research projects 3 24 277

Prxy Web proxy 2 4 89

Src1 Source control 3 12 555

Src2 Source control 3 14 355

Stg Web staging 2 6 113

Ts Terminal server 1 2 22

Web Web/SQL server 4 17 441

Mds Media server 2 16 509

Wdev Test web server 4 12 136

Total 36 179 6449
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Fig. 3.15.: Reference SSD Cache System Organization (As presented in Chapter 1)
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3.5.2 WriteGuard Instance for Write-Buffer Internal Access-Stream

The two access-stream traces that were captured for this work (the third trace ana-

lyzed in both Section 3.3 and Section 3.6, and the fourth trace analyzed in Section 3.6)

were for the accesses to the data buffer internal to the write-buffer in the SieveStore+

system in Figure 3.15. The logical access-stream trace (the third trace) contained the

accesses to the internal data store of the write buffer using the logical block addresses

provided by the trace inputted to the write buffer. The physical access-stream trace

(the fourth trace) contained the accesses to the internal data store of the write buffer

based on the allocation to the internal pool of available blocks which represents the

physical memory blocks that the write buffer would have. This trace was captured

by activating the internal access logging features of the WriteGuard buffer design

code, from the work in Chapter 2, for a WriteGuard instance with the parameters

recorded in Table 3.3. The capacity of 256 MiB was chosen because (1) beyond this

capacity all designs suffer overwhelmingly diminished returns for added capacity and

(2) WriteGuard, LFWI, and LRW all have similar write-dilution effectiveness at this

capacity allowing the trends analyzed for WriteGuard to be predictive for the other

designs as well. The first point is important because higher capacities and higher

but less-selective capture rates would result in higher read accesses and thus offer a

conservative view of opportunity for write-dominance focused cell utilization, in ad-

dition to creating a more challenging cell density constraint. Regarding the second

point, similar capture rates for the same capacity between LRFU and LRU algorithms

would imply that similar data trends are being captured given the overlap in utilized

information, resulting in the only major difference in internal block trends stemming

from WriteGuard’s sieved nature lessening the number of write-only blocks (which

would be favorable for write-optimized STT-MRAM) due to minimizing buffer allo-

cations. The combination of these two properties allows this single trace to serve as a

conservative opportunity analysis for LRFU and LRU based buffer designs for various

capacities.
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Table 3.3.: WriteGuard Write-Buffer Reference Instance Parameters

Parameter Value

Window Span 2 Hours

Number of sub-windows 4

Initial Sieving Threshold 1

Initial Bypass-Ratio Target 90%

Buffer Capacity 64 Ki Blocks (256 MiB)

3.5.3 Trace Analysis

The custom IO trace profiling tool developed and used during the work described

in Chapter 2 was extended and used to perform all of the access stream analysis

discussed during Section 3.3 and Section 3.6.
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3.6 Results

There are three main conclusions from my analysis.

1. There is significant opportunity for cell density gains from reducing cell reten-

tion times via MTJ planar area reduction along with access transistor width

reduction. (Section 3.6.1 & Section 3.6.2)

2. The expiration of pages with natural lifespans longer than the reduced cell

retention time should be managed via selectively refreshing those pages instead

of eviction. (Section 3.6.3)

3. Data expiration management can be done via software. (Section 3.6.4)

3.6.1 SieveStore-C Internal and Post-Screening Cache Data Lifespan Trends

In this section I discuss the results from analyzing the naturally occurring data

lifespans of page writes to the SieveStore-C and those downstream from the small

LRU screening cache. I analyzed the time gaps between writes to the each of the

pages present within the first two block IO traces that were captured during the work

in Chapter 2. The data from this is plotted in Figure 3.16, with the percentage of

write-gaps shorter than or equal to a gap length (normalized to the total number of

write-gaps, Y-axis) plotted against the various gap lengths (in microseconds) (X-axis).

The X-Axis is plotted on base-10 logarithmic scale given that the Retention time for

a cell is exponentially related to the cell’s thermal barrier, necessitating orders of

magnitude reduction in required retention time to result in appreciable changes to

MTJ size and their corresponding cell size change. The blue curve plots the CDF of

the data from the trace containing all of the block IOs cached by the SieveStore-C

instance, and the red curve plots the CDF of the data from the trace containing all

of the block IOs downstream from the internal screening cache. Given that these

traces cover the span of 1 week the horizontal axis is limited to 1012µs (11.6 days)

and the curves stop short of this limit because it would not be possible to have a gap
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that long. The next useful major step in gap length is 1011µs (27.8 hours), which is

long enough to accommodate 97.65% of all per-page write-gaps in the baseline trace

and 97.15% of those in the screened trace. Going further to the left to gap lengths

of 1010µs (2.78 hours) is long enough to accommodate 82.72% of all per-page write-

gaps in the baseline trace and 78.02% in the screened trace. After this point the

percentage of write-gaps shorter than a given size decreases rapidly with only 32.73%

having gaps shorter than 109µs in the baseline trace and 20.97% having gaps shorter

than that length in the screened trace. Therefore, the realm of potential retention-

time reduction for write-buffer targeted STT-MRAM cells should be in the 1011µs

range for a more conservative design point and around 1010µs for a more aggressive

design point. However, analysis of the traffic within the write buffer (discussed in

Section 3.6.2) is still needed to solidify the value of these design points, as some of

the accesses in the post screening trace will not be captured by the write buffer and

buffer evictions and re-allocations could also result in changes to per-page write-gap

lengths.

Additionally one can observe that nearly all gaps shorter than 108µs (1.67 min-

utes) and most of the gaps shorter than 109µs (16.67 minutes) that occur in the cache

at large (blue curve) do not occur downstream of the screening cache. This along with

only minor reductions the relative presence of longer gaps downstream of the screen-

ing cache indicates that the screening likely hold blocks with data-lifespans nearly

completely in these shorter lengths, and thus could leverage even greater reductions

in cell retention time than the downstream write buffer will be able to. Although

power loss durability requirements would still impose limits to the useful retention

time reduction such that it doesn’t shrink below minutes, otherwise even minor power

blip based machine restarts would result in data loss. However given it’s tiny capacity,

density benefits from write-focused reduced retention time STT-MRAM cells would

be minor to system cost. Furthermore, as illustrated in Section 3.3.1 and Section 3.3.2

this screening cache experiences a significant higher ratios of reads to writes than the

downstream write buffer, and thus would likely be better off with more traditionally
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read-focused STT-MRAM, such as those proposed by [39] given it’s high read activity

for it’s tiny capacity.

Fig. 3.16.: Natural Data Lifespans for logical pages within SieveStore-C and down-

stream of the internal screening cache

3.6.2 Write-Buffer Internal Data Lifespan Trends

In this section I discuss the results from analyzing the naturally occurring data

lifespans of page writes to within the write buffer. I analyzed the time gaps between

writes to the each of the pages present within the two traces captured for this work,

with the first of the two being for the logical page activity and the second one being

for the physical page activity within the write buffer. The data from this is plotted in

Figure 3.17, with the percentage of write-gaps shorter than or equal to a gap length

(normalized to the total number of write-gaps, Y-axis) plotted against the various
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gap lengths (in microseconds) (X-axis). The X-Axis is plotted on base-10 logarithmic

scale given that the Retention time for a cell is exponentially related to the cell’s

thermal barrier, necessitating orders of magnitude reduction in required retention

time to result in appreciable changes to MTJ size and their corresponding cell size

change. The blue curve plots the CDF of the data from the trace containing all of

the physical page IOs within the write buffer, and the red curve plots the CDF of

the data from the trace containing all of the logical page IOs within the write buffer.

Given that these traces cover the span of 1 week the horizontal axis is limited to

1012 microseconds (11.6 days) and the curves stop short of this limit because it would

not be possible to have a gap that long. Additionally, the X-axis is kept in terms

of microseconds for easy of comparing with Figure 3.16 but limited to gaps greater

than or equal to 107 microseconds (10 seconds) since shorter retention times would

be useless for a durable write buffer.

One trend that stands out from this plot, is that the physical access CDF is slightly

shifted to the right of the logical access CDF, meaning that slightly larger portions of

the accesses tend to have longer gaps than in the logical access trace. This counter-

intuitive trend results from two characteristics of the write buffer implementation

(WriteGuard), (1) in selective buffers (WriteGuard) churn is minimized so there is

minimal to no artificial slicing or shrinking of natural access gaps due to intermediate

eviction and reallocation to the buffer and (2) physical pages get reallocated to new

logical pages after the prior logical page is evicted (which would tend to be long

gaps when churn is low) resulting in additional gaps that are also long. For buffer

implementations with higher churn rates (such as LRU or LFW-I) there would be both

more artificial slicing of natural gaps from intermediate eviction and reallocation and

the reallocation of physical pages to a new logical page would happen more often

resulting in additional gaps that were shorter.

The more important trend present is that there are still similarly large portions of

the per-page write-gaps that fall within both the conservative (1011µs) and aggressive

(1010µs) design points previously identified in Section 3.6.1. Regarding physical page



78

activity, 98% of per-page write-gaps are at most 1011µs (2.78 hours) resulting in a

conservative retention time reduction by more than 3,153x and 80% of per-page write-

gaps are at most 1010µs (2.78 hours) resulting in a more aggressive retention time

reduction by more than 31,536x.

Fig. 3.17.: Natural Data Lifespans for logical and physical pages within the write

buffer

Since smaller buffer capacities would naturally deal with proportionately more

popular blocks, as well as higher churn rates, the natural per-page write-gaps will

generally shrink some as buffer capacity decreases, resulting in more opportunity to

benefit from reduced retention times. To evaluate the magnitude of this impact I

also analyzed the activity to physical pages within write buffers of 128MB and 64MB

capacities. The data from this is plotted in Figure 3.18, with the percentage of

write-gaps shorter than or equal to a gap length (normalized to the total number of
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write-gaps, Y-axis) plotted against the various gap lengths (in microseconds) (X-axis).

The X-Axis is plotted on base-10 logarithmic scale given that the Retention time for

a cell is exponentially related to the cell’s thermal barrier, necessitating orders of

magnitude reduction in required retention time to result in appreciable changes to

MTJ size and their corresponding cell size change. The blue curve plots the CDF of

the data from the trace containing all of the physical page IOs within the original

write buffer with a capacity of 256MB (2% of cache capacity), the red curve plots

the CDF of the data from the write buffer with a capacity of 128MB (1% of cache

capacity), and the black curve plots the CDF of the data from the write buffer with

a capacity of 64MB (0.5% of cache capacity). The X-axis is kept to have the same

limits as in Figure 3.17. One clear trend is that even successive reductions in capacity

by factors of 2x only have small increases in the relative portion of write-gaps that

are shorter than the aggressive design point of 1010µs, with the 64MB capacity buffer

having 90.13% compared to the 80% at the 256MB capacity point. Although this

does mean that the conservative design point of 1011µs becomes even safer of a design

point, given that 99.68% of per-page write-gaps are shorter than it for the 128MB

write buffer, and 99.94% are shorter than it for the 64MB write buffer. While it

would not be practical to have different retention times for different buffer capacities

due to reduced economies of scale benefits during production, this does mean that

smaller buffer capacities would experience diminishing overhead costs and penalties

that result from having to manage the expiration of pages with write-gaps longer than

the chosen retention time for the STT-MRAM cells.

In order to better quantify the benefits of we need to apply the formulas from

Section 3.2.1 and Section 3.2.2. From applying Equation 3.4, the conservative de-

sign point of 1011µs (27.8 hours) results in a reduction of 20% to the required MTJ

thermal barrier, and the aggressive design point of 1010µs results in a reduction of

25.7%. Due to Equation 3.5, we know that reduction in STT-MRAM cell size is

directly proportional to the reduction if MTJ thermal barrier when only scaling the

planar area. Furthermore, from Equation 3.6 we know that the critical write current
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Fig. 3.18.: Comparison of Natural Data Lifespans for physical pages within the write

buffers of different sizes

will also scale directly proportionally to the planar area reduction. From these we

know that, if this thermal barrier reduction is achieved through MTJ planar area

reduction in the dimension that matches the access transistor width, both can be

safely scaled while maintaining the same write performance for the cell. Therefore,

this coordinated reduction in MTJ planar area and access transistor width results in

a cell size reduction of 20% for the conservative design point with a retention time of

1011µs (27.8 hours) and a cell size reduction of 25.7% for the aggressive design point

with a retention time of 1010µs (2.78 hours).

Additionally, actual cell retention time design points do not need to precisely

match the identified design points in order to retain the vast majority of the cell

size reductions, due to the exponential relationship between retention time and MTJ
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thermal barrier. For an aggressive design point example, the blue (256MB) curve in

Figure 3.18 shows that 89.01% of per-page write-gaps to physical pages within the

256MB capacity write buffer only need a retention time of at most 2 ∗ 1010µs which

would result in a thermal barrier and corresponding cell size reduction of 24%. For

an ultra conservative design point example, the same curve also shows that increasing

the conservative design point retention time to 2 ∗ 1011µs results in only 0.5972% of

per-page write-gaps not being naturally covered by the cell’s retention time and still

yields a cell size reduction of 18.3%.

3.6.3 Impact on SSD Lifespan Improvements from Data Expiration

In this section I discuss the impact that the data expiration management schemes

discussed in Section 3.4.2 have on the overall write buffer effectiveness and thus lifes-

pan improvements for the downstream SSD. I analyzed the amount of write traffic

going downstream from the write buffer to the SSD. This analysis does not include

extra writes due to potentially extra bypass writes from the write buffer no longer

having expiration-based evicted page when subsequent writes occur to that page, and

thus is a best-case view of the impact that expiration-based eviction would have.

The data is plotted in Figure 3.19 with the relative lifespan improvement for the

SSD (normalized relative to the SSD activity without a write buffer, Y-axis) plot-

ted against the various cell retention times in microseconds (X-axis). The x-axis is

limited to values greater than 109µs (16.67 minutes) given the marginal amount of

natural per-page data-lifespans that would be satisfied by cell retention times smaller

that that. The impact resulting from the selective refresh scheme is plotted for the

three write buffer sizes previously analyzed using the dashed curves, with blue for

256MB capacity, red for 128MB capacity, and black for the 64MB capacity. The

impact resulting from the expiration-based early write-back approach for these write

buffer capacities is plotted using the solid curves, with blue for 256MB capacity, red

for 128MB capacity, and black for the 64MB capacity. The selective refresh scheme
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has no impact on the write buffer effectiveness since it, by design, results in no extra

writes down stream to the SSD. The expiration-based early eviction approach experi-

ences increasingly significant reductions to the write buffer effectiveness and resulting

SSD lifespan improvements, due to the relatively large amounts of extra downstream

writes that result from the write-backs (discussed in more detail in Section 3.6.4).

The conservative design point experiences a drop from 5.55x improvement to 5.06x

for the 256MB buffer although it experiences effectively no drop for the smaller buffer

sizes, due to the smaller sizes having write-gaps that are naturally nearly 100% ac-

commodated by the retention time. The more aggressive design point experiences

a drop from 5.55x to 2.85x for the 256MB write buffer (which is a stronger impact

than reducing capacity by 2x), a drop from 3.53x to 2.47x for the 128MB one (which

is similar in impact to reducing capacity further by 2x), and a drop from 2.46x to

2.13x for the 64MB one. Ultimately this indicates that even a expiration-based evic-

tion should only realistically be considered if the retention time is chosen based on

a very conservative point where only a few percent of per-page data lifespans would

not naturally be accommodated by the retention time. Whereas, selective refreshing

of pages nearing expiration has not impact on SSD lifetime improvements regard-

less of capacity and cell retention-time and thus is the better approach when the

chosen cell retention time does not naturally accommodate nearly all of the natural

data-lifespans.
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Fig. 3.19.: Comparison of SSD Lifespan Improvements for write buffers using reduced

STT-MRAM cell retention time with either selective refresh or expiration eviction

management schemes
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3.6.4 STT-MRAM Cell Retention Time Trade-off Costs

In this section I show the results from analyzing the costs of managing the expira-

tion buffered pages with natural data lifespans longer than the buffer’s STT-MRAM

cell retention time. The first cost analyzed is the additional writes sent downstream

to the SSD which is the reason for the impacts to the SSD lifespan improvement dis-

cussed in Section 3.6.3. For this analysis the number of pages that would expire due to

various cell retention times was calculated from the natural data lifespans extracted

from the trace of activity to physical pages with the write buffer for the three capaci-

ties previously analyzed (256MB, 128MB, and 64MB). This was then compared with

the amount of downstream writes if there were no retention time related downstream

rights. The data is plotted in Figure 3.20, with the extra expiration-based writes

(normalized as a percentage of non-expiration related writes, Y-axis) plotted against

the various potential cell retention times (X-axis). The x-axis is limited to values

greater than 109µs (16.67 minutes) given the marginal amount of natural per-page

data-lifespans that would be satisfied by cell retention times smaller that that. The

blue curve plots the data for the 256MB write buffer, the red curve plots the data for

the 128MB write buffer, and the black curve plots the data for the 64MB buffer. One

trend that stands out is that reduction in capacity noticeably shifts the curves to the

left, as should be expected given the previous plotted increasing amounts of blocks

that can be accommodated by shorter retention times. However one non-obvious

aspect about this trend is the magnitude of the shifts, which is far larger than the

relative shifts in required retention time shown previously in Figure 3.18. This change

is due to the fact that smaller write buffers have lower hit rates and thus filter out less

writes downstream which further minimizes the impact of their also smaller amount of

extra writes (relative to the number of extra writes for larger sizes). For example, the

highly effective 256MB capacity buffer (5.55x baseline lifespan increase) experiences

9.60% extra writes from expiration-based evictions with a retention time of 1011µs,

while the 128MB capacity buffer (3.53x baseline lifespan increase) experiences around
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0.884% extra writes from expiration-based evictions, and the 64MB capacity buffer

experiences 0.099% extra writes from expiration-based evictions. This also illustrated

in the Figure 3.19 by the combination of lower starting points and slower reduction

of lifespan improvement with shorter retention times. The key trend from this data

is the sharp rise in relative amounts of extra writes from expiration-based eviction

as retention time is decreased due to the large amount of write-gaps approaching or

longer than 1010µs relative to the small amount of writes that not originally filtered

out by the write buffer. A clear indicator of this is that the 256MB capacity buffer

experiences 94.46% extra writes from expiration-based evictions for a retention time

of 1010µs while that design point only offers a additional raw 5.7% cell reduction

benefit relative compared to the 20% benefit granted with a retention time of 1011µs

which only results in 9.60% extra writes from expiration-based evictions.

Fig. 3.20.: Comparison of extra SSD writes for write buffers using reduced STT-

MRAM cell retention time with expiration eviction management scheme
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The second and final cost to analyze is the cost of extra accesses to the write

buffer’s internal STT-MRAM media. For this analysis, the numbers of expiration-

based eviction reads and the number of refresh cycles (read + write) for the various

cell retention times were calculated from the natural data lifespans extracted from

the trace of activity to physical pages with the write buffer for the three capacities

previously analyzed (256MB, 128MB, and 64MB). This was then compared to the

amount of reads and writes going to the buffer’s internal data store in terms of write-

hits (writes), read-hits(reads), allocations (writes), evictions (reads). This data is

plotted in Figure 3.21 and Figure 3.22, with the extra data store activity (normal-

ized as a percentage of the baseline activity, Y-axis) plotted against the various cell

retention times (X-axis). The x-axis is limited to values greater than 109µs (16.67

minutes) given the marginal amount of natural per-page data-lifespans that would

be satisfied by cell retention times smaller that that. In these plots solid curves are

used to plot the data for the selective refresh scheme for the three analyzed buffer

capacities, with the blue curve for the 256MB capacity, the red curve for the 128MB

capacity, and the black curve for the 64MB capacity. Additionally, one thing of note

is that the jaggedness of the refresh curves is due to the computation needing to

done after logarithmicly binning the per-page write-gap values prior to computation

in order for it to be feasible to do. Dashed curves are used to plot the data for the

expiration-based eviction scheme for the same three sizes, with the blue curve for the

256MB capacity, the red curve for the 128MB capacity, and the black curve for the

64MB capacity. Furthermore, Figure 3.21 includes extra activity percentages through

400% while Figure 3.22 zooms in to values up to 100% to allow a better view of the

lower values for the conservative design point of 1011µs.

As was expected, the curves again shift left with reductions in capacity due to the

increased percentages of page data-lifespans that would be naturally accommodated

by the respective retention times and thus result in fewer refresh cycles or expiration

based evictions. One key difference in the trend for the two approaches is that while

the increase in extra activity is slow for the expiration-based evictions it increases very
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Fig. 3.21.: Comparison of extra STT-MRAM data access overheads for write buffers

using reduced STT-MRAM cell retention time with either selective refresh or expira-

tion eviction management schemes (Overheads ≤ 400%)

quickly for the selective refresh approach. This is because unlike the expiration-based

eviction which only has 1 extra access (the read for eviction), the selective refresh

requires an increasing amount of refresh cycles to prevent a page from expiring as

the retention time decreases. As a result of this growing effect on needed refresh

cycles, the 256MB capacity buffer experiences an refresh activity overhead of 87.05%

for the aggressive design point of 1010µs and a 1.77% overhead at the conservative

design point of 1011µs. While a nearly 90% overhead seems terrible at first, data

from the Chapter 2 showed that moving data in and out of the buffers data store

represented only around a third of the overall runtime cost, so even a full doubling
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Fig. 3.22.: Comparison of extra STT-MRAM data access overheads for write buffers

using reduced STT-MRAM cell retention time with either selective refresh or expira-

tion eviction management schemes (Zoomed to Overheads ≤ 100%)

of data movement to or from the data store would only result in an overall runtime

cost of around 33%.

Furthermore, it should be remembered that DRAM currently bulk refreshes all

pages every 10 to 100 ms (104µs to 105µs), while even the aggressive design point is

only refreshing a subset of pages every 1010µs (105x slower rate than DRAM). Addi-

tionally, if the STT-MRAM chips were design to have an internal refresh command

that could be triggered by the buffer there would be no extra data movement and the

command overhead would be neg liable compared to the previously existing DRAM

refresh performance penalties. Therefore, while the selective refresh scheme has ad-

ditional overhead costs spanning between the design points and rapidly increasing
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toward the aggressive design point, it is still low enough that the scheme could be

managed in software by the write buffer implementation, especially if the hardware

chips offered a block refresh command.

Since it is necessary to ensure a reserved duration of non-volatility for buffered data

so that it will remain durable during short-term machine downtime or crash induced

restart cycles, I have also analyzed the impact of refreshing pages such that certain

reserve lifespans are preserved. The results of this analysis were calculated in similar

fashion to the prior analysis with the only difference being that refresh interval used

was reduced by reserve times of 1 hour, 4 hours, and 8 hours. This data is plotted

in Figure 3.23 andFigure 3.24, with the extra data store activity (normalized as a

percentage of the baseline activity, Y-axis) plotted against the various cell retention

times (X-axis). The x-axis is limited to values greater than 109µs (16.67 minutes)

given the marginal amount of natural per-page data-lifespans that would be satisfied

by cell retention times smaller that that. All curves in this plot are based on data from

the 256MB capacity write-buffer instance, with the original curve with no reserved

retention time included for reference. The inclusion of the extra reserved lifespan

to account for machine downtime accelerated the increase in overhead in the more

aggressive retention time ranges, as was expected, and had minimal impact near

the conservative design point. Regarding the more aggressive design point, a one

hour reserve increased the overhead from 87.05% to 129.30%. The curve for the four

hour reserve time terminates at the 2 ∗ 1010µs point given the combination of the

logarithmic binning and it being impossible for shorter times to provide the required

reserve. And the eight hour reserve curve becomes nearly vertical at gap sizes of

4 ∗ 1010µs. However, even the eight hour reserve only increase the overhead at the

conservative design point of 1011µs from 1.77% to 1.93%. Thus the conservative

design point experiences negligible costs while providing a cell reduction of 20% and

retaining durability during reasonably long machine downtime.
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Fig. 3.23.: Comparison of impact of reserving extra page lifespan by early refreshing

of pages (Limited to Overheads ≤ 400%)
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Fig. 3.24.: Comparison of impact of reserving extra page lifespan by early refreshing

of pages (Zoomed to Overheads ≤ 100%)
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3.7 Related Work

STT-MRAM has been gaining momentum as alternative to traditional memo-

ries due to STT-MRAM’s non-volatility, higher read performance, and strong den-

sity scaling. As a result various prior works have tried to improve the problematic

characteristics that have been limiting widespread adoption, such as write energy

costs, write latency, and fabrication feature size scaling. One example is Perpendicu-

lar magnetized MTJ based STT-MRAM cell designs, where the magnetic alignment

within the MTJ layers is perpendicular to the plane of the wafer, have shown im-

provements to write energy costs and enhanced density due to their better ability

to scale to smaller feature sizes and higher temperature tolerances [35]. This de-

sign change is complementary to the non-volatility trade-off taken by my proposed

write-buffer focused STT-MRAM, since the thermal barriers are also shown to remain

directly proportional to their MTJ stack volume and thus the planar area that I pro-

pose to shrink. Additionally, [44] proposed STT-MRAM designs with tilted magnetic

anisotropy which significantly improved write energy costs while maintaining or im-

proving read performance, and thermal stability. This work is targeted at traditional

workload focused STT-MRAM cells and involves cell design changes that would only

be complementary to the non-volatility trade-off taken by my proposed write-buffer

focused STT-MRAM, especially given their lower critical write currents. My work

leverages volumetric scaling of MTJ stacks and reducing access transistor sizing below

read-performance dictated limits that I show are artificial for write-buffer workloads.

Therefore improvements to traditionally targeted STT-MRAM cell designs should in

general be complementary to my proposed designs, unless they negatively alter the

relationship between MTJ thermal barrier values and the MTJ planar area or would

negatively impact access transistor size scaling relative to MTJ planar area scaling

under write-dominated workloads.

Prior works have proposed using reduced retention time STT-MRAM cells in

caches. [38] proposed designing on-chip caches using STT-MRAMwith retention times
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reduced to 56µs followed by DRAM style hardware refresh schemes in order to scale

STT-MRAM cells from 32F 2 to 10F 2 as a way to reduce dynamic power of on-

chip caches and have SRAM similar write times for the STT-MRAM cells. Unlike

my work, [38] did not perform a study of data lifespans as their usage of reduced

retention time was geared around using reduced retention time STT-MRAM as sort

of high performance DRAM to replace SRAM for on-chip caches. Whereas, my work

targets durable write buffering and only trades off the extraneous non-volatility that

artificially limits density scaling for this high density workload. Furthermore, the

designs proposed by [38] depend on baseline MTJ sizes of 32F 2 where the MTJ is

far larger than the size of the necessary access transistor as indicated by other works

with optimized cell designs in the range of 2-3F 2 [40, 43]. [39] also proposed reduced

retention times for on-chip STT-MRAM targeted to replace SRAM for lower level

on-chip caches. Although these designs decreased the MTJ layer thickness in order

to leverage the reduced retention time to lower the write power of the cells, since the

optimized cells at that time were already had MTJ planar area limited by the size

of the access transistor. While my work considers the same baseline optimized cell

sizing limits as in this work, my work shows that this sizing limit does not hold for

write buffers and thus leverages planar area reductions in MTJ and access transistor

width reductions to achieve both write power and density benefits in this application

space. Additionally, [39] uses a hardware refresh scheme to refresh pages just before

they expire, while my work does via a software approach that is shown to be feasible

in my target application space of software controlled write-buffers.

Given the asymmetric characteristics of STT-MRAM, other works [45–47] have

proposed hybrid cache designs where STT-MRAM is used to hold the read-dominate

data while using DRAM or SRAM for the write-dominate portions. While these

designs allow for benefiting from the improved read performance and lessened dynamic

power, they are not naturally durable designs and would still require power backup

(although less than a full DRAM based design). Whereas my design is naturally

durable for long enough to prevent data loss under typical power outage scenarios.
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3.8 Conclusions

DRAM-based write buffering and caching techniques are commonly used to help

alleviate write-pressure to SSDs, and thus over-provisioning costs, but require power-

backup to ensure durability of buffered writes. Even the more efficient forms of these

buffers require relatively large capacities on the order of 1GB for 120GB SSD capacity.

One approach to avoiding the power-backup costs associate with these larger buffers

is to employ Non-Volatile memory such as STT-MRAM as a drop-in replacement for

the write-buffer’s DRAM.

My contribution is to show that higher-density variants of STT-MRAM are usable

in write buffers. More specifically, I identify two application characteristics – (1) the

vast majority of the write-buffer’s contents is composed of write-dominant blocks,

and (2) the vast majority of blocks in the write-buffer are overwritten within a period

of 28 hours – that enable a high-density, optimized STT-MRAM as a replacement

for DRAM in write-buffers. My optimized STT-MRAM-based write buffer achieves

higher density by (a) trading off superfluous durability by exploiting characteristic

(2), and (b) deoptimizing the read-performance of STT-MRAM by leveraging char-

acteristic (1). Together, the techniques increase the density of STT-MRAM by 20%

with low or no impact on write-buffer performance.
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4. CONCLUSION

The high cost per GiB for SSDs (relative to HDDs) continues to drive their use as part

of a hybrid system where they serve as a high-performance storage-tier cache for the

hot data, while HDDs are used as the lower-performance bulk storage. This design-

point leads to a very specific design problem in storage-tier caching: accelerated drive

wear-out from the aggregation of write-intense data. Frequently written blocks pose

a dilemma because their frequent writes can affect the lifetime of non-volatile storage

(especially in modern MLC SSD caches), but not caching them in the NV storage

causes performance degradation (given how frequently they are accessed).

Prior techniques that allow the caching of writes and specifically write-intense

data, like SieveStore-C, have largely depended upon the higher write-endurance rat-

ings of SLC Flash to maintain SSD-Cache lifetimes on-par with typical server life-

times (i.e., 3-5 years). However, SSD production and Flash production in general

have nearly exclusively switched to utilizing the significantly less write-tolerant MLC

Flash, due their higher bit-densities, largely removing SLC Flash based SSDs from

consideration in storage caches due to further increased cost premiums and limited

availability. Due to the largely diminished write-endurance ratings of MLC Flash

(e.g., 92× lower), sustainable caching of write-intense data would require a mix of

higher-level write-buffers (typically RAM-based) to filter the writes that reach the

SSD-cache and over-provisioning of the SSD-cache capacity to leverage wear-leveling

approaches for extending drive lifetimes [4–6].

Unfortunately, RAM-based write buffers do not represent a storage-equivalent

solution as RAM is volatile. Buffering file system writes in volatile memory can

result in data loss in case of crash/failure of the computer in question. To achieve

equivalent durability as persistent storage, the RAM-buffers must be protected by

backup power sources (to enable flushing to persistent storage on a crash) with power
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requirements increasing with increasing buffer size. In this work I ameliorate and/or

eliminate such additional costs of write-buffering while still filtering enough writes to

minimize over-provisioning costs needed to extend SSD-cache lifetimes beyond three

years.

I address these issues in two stages. Firstly I propose – WriteGuard– a self-tuned

sieved write-buffer that maximizes the write filtering for a given write-buffer capac-

ity, (or alternately, reduces the amount of buffering needed to achieve a given level

of write-filtering). I show that, while simple replacement algorithms such as least

recently used (LRU) and least frequently used (LFU) can be implemented with low

computation complexity, they significantly under-filter writes. On the other hand,

sophisticated techniques that combine recency, frequency, and aging/inflation mecha-

nisms (e.g., LRFU-with-inflation [7]) achieve significantly higher write filtering. How-

ever, the computational cost of these sophisticated algorithms can be so high that it

becomes an IO bottleneck. My work then diagnoses the key source of complexity in

the sophisticated replacement algorithms – performing log(n) operations to maintain

the replacement stack in sorted order, which is used to enforce the invariant that a

more “valuable” block is not replaced by a less valuable one. Based on the insight that

an alternate “sieving approach” proposed in [3] uses a thresholding to prevent allo-

cations to less popular blocks and achieves results similar to a frequency-based sort,

I propose a design WriteGuard that avoids maintaining a fully sorted stack. Instead,

WriteGuard eliminates the need for a sorted replacement stack with a dynamically-

tuned thresholding mechanism that requires only a constant (amortized) amount of

work for a given access while no longer needing offline analysis like the design in [3].

This approach reduces the amount of buffering needed by a factor of up-to 2x relative

to recency-based and frequency-based write buffers, while requiring similar or less

computational effort.

Next I explore using STT-MRAM to replace DRAM in write-buffers and thus

eliminate the required additional power-backup. While STT-MRAM is continuing to

scale in density it’s higher cost relative to DRAM limits is adoption to the premium
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system designs (such as the write-buffers within IBM’s FlashCore modules). I show

that, for storage workloads, write buffers exhibit internal access patterns that enable

STT-MRAM design scaling beyond the limitations imposed in traditional workloads

where the criticality of read-performance largely determines cell design. My work then

illustrates the write-dominance of accesses within write-buffers enables the trading of

superfluous cell retention time for increased cell density, resulting in a STT-MRAM

cell size reduction of 20% with low or no impact on write buffer performance.
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