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ABSTRACT 

This thesis is a collection of three research articles to quantify carbon fluxes and isotopic 

signature changes across global terrestrial ecosystems. Chapter 2, the first article of this thesis, 

focuses on the importance of an under-estimated methane soil sink for contemporary and future 

methane budgets in the pan-Arctic region. Methane emissions from organic-rich soils in the Arctic 

have been extensively studied due to their potential to increase the atmospheric methane burden 

as permafrost thaws. However, this methane source might have been overestimated without 

considering high affinity methanotrophs (HAM, methane oxidizing bacteria) recently identified in 

Arctic mineral soils. From this study, we find that HAM dynamics double the upland methane sink 

(~5.5 TgCH4yr-1) north of 50°N in simulations from 2000 to 2016 by integrating the dynamics of 

HAM and methanogens into a biogeochemistry model that includes permafrost soil organic carbon 

(SOC) dynamics. The increase is equivalent to at least half of the difference in net methane 

emissions estimated between process-based models and observation-based inversions, and the 

revised estimates better match site-level and regional observations. The new model projects double 

wetland methane emissions between 2017-2100 due to more accessible permafrost carbon. 

However, most of the increase in wetland emissions is offset by a concordant increase in the upland 

sink, leading to only an 18% increase in net methane emission (from 29 to 35 TgCH4yr-1). The 

projected net methane emissions may decrease further due to different physiological responses 

between HAM and methanogens in response to increasing temperature. This article was published 

in Nature Climate Change in March 2020. 

In Chapter 3, the second article of this thesis, I develop and validate the first 

biogeochemistry model to simulate carbon isotopic signatures (δ13C) of methane emitted from 

global wetlands, and examined the importance of the wetland carbon isotope map for studying the 

global methane cycle. I incorporated a carbon isotope-enabled module into an extant 

biogeochemistry model to mechanistically simulate the spatial and temporal variability of global 

wetland δ13C-CH4. The new model explicitly considers isotopic fractionation during methane 

production, oxidation, and transport processes. I estimate a mean global wetland δ13C-CH4 of -

60.78‰ with its seasonal and inter-annual variability. I find that the new model matches field 

chamber observations 35% better in terms of root mean square estimates compared to an empirical 

static wetland δ13C-CH4 map. The model also reasonably reproduces the regional heterogeneity of 
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wetland δ13C-CH4 in Alaska, consistent with vertical profiles of δ13C-CH4 from NOAA aircraft 

measurements. Furthermore, I show that the latitudinal gradient of atmospheric δ13C-CH4 

simulated by a chemical transport model using the new wetland δ13C-CH4 map reproduces the 

observed latitudinal gradient based on NOAA/INSTAAR global flask-air measurements. I believe 

this study is the first process-based biogeochemistry model to map the global distribution of 

wetland δ13C-CH4, which will significantly help atmospheric chemistry transport models partition 

global methane emissions. This article is in preparation for submission to Nature Geoscience. 

Chapter 4 of this thesis, the third article, investigates the importance of leaf carbon 

allocation for seasonal leaf carbon isotopic signature changes and water use efficiency in temperate 

forests. Temperate deciduous trees remobilize stored carbon early in the growing season to 

produce new leaves and xylem vessels. The use of remobilized carbon for building leaf tissue 

dampens the link between environmental stomatal response and inferred intrinsic water use 

efficiency (iWUE) using leaf carbon isotopic signatures (δ13C). So far, few studies consider carbon 

allocation processes in interpreting leaf δ13C signals. To understand effects of carbon allocation 

on δ13C and iWUE estimates, we analyzed and modeled the seasonal leaf δ13C of four temperate 

deciduous species (Acer saccharum, Liriodendron tulipifera, Sassafras albidum, and Quercus alba) 

and compared the iWUE estimates from different methods, species, and drought conditions. At the 

start of the growing season, leaf δ13C values were more enriched, due to remobilized carbon during 

leaf-out. The bias towards enriched leaf δ13C values explains the higher iWUE from leaf isotopic 

methods compared with iWUE from leaf gas exchange measurements. I further showed that the 

discrepancy of iWUE estimates between methods may be species-specific and drought sensitive. 

The use of δ13C of plant tissues as a proxy for stomatal response to environmental processes, 

through iWUE, is complicated due to carbon allocation and care must be taken when interpreting 

estimates to avoid proxy bias. This article is in review for publication in New Phytologist. 
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 INTRODUCTION 

Human-induced perturbation has caused warming of the climate in the industrial era 

(Stocker et al. 2013). The anthropogenic activities caused the increase in atmospheric CO2 by 

almost 50% from 280 ppm in the 1750s to 400 ppm in the 2010s (Friedlingstein et al. 2019), and 

the increase in atmospheric CH4 by 150% from 720 ppb in the 1750s to 1850 ppb in the 2010s 

(Nisbet et al. 2019; Dlugokencky et al. 2011). The increase in greenhouse gases is due to carbon 

emissions from anthropogenic sources, such as fossil fuel burning (9.5 GtC yr-1) and land use 

change (1.5 GtC yr-1) (Fig. 1.1). More than 30% of the emissions are removed in the atmosphere 

by terrestrial ecosystems (3.2 GtC yr-1), emphasizing the importance of terrestrial ecosystems in 

mitigating the climate change.  

Despite the significant role as a major atmospheric carbon sink, terrestrial ecosystems are 

currently under tremendous pressure from climate change (Friedlingstein et al. 2019). The climate 

change may influence total carbon fluxes between the atmosphere and terrestrial ecosystems (120 

GtC yr-1) by altering photosynthesis, respiration, and nutrient uptake and release by microbes 

(Bonan 2008). Studies also address the vulnerability of carbon pools in terrestrial ecosystems as 

climate changes, which store up to 5,000 Pg of carbon (Turetsky et al. 2020; Wieder et al. 2013; 

Bonan 2008). The perturbations can further alter physical, chemical, and biological processes in 

terrestrial ecosystems that affect planetary energy fluxes and the hydrologic cycle (Bonan 2008). 

Depending on the mechanisms governing each process, the feedback between climate change and 

terrestrial ecosystems can be dampened or amplified. 

This thesis summarizes three research articles that help to understand the processes 

governing the changes in three major carbon pools in terrestrial ecosystems: permafrost, wetland 

soils, and vegetation (Fig. 1.2). The first article studies soil CH4 in Arctic permafrost, the second 

article studies CH4 isotopes in global wetland soils, and the third article studies leaf carbon 

allocation and water use efficiency (WUE) in temperate forests. 
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Figure 1.1 Schematic representation of the overall perturbation of global carbon cycle and 

terrestrial ecosystem caused by anthropogenic activities, averaged globally for the decade 2009–

2018 in GtC per year, modified from Global Carbon Project (Friedlingstein et al. 2019). Bold 

arrows represent anthropogenic fluxes of fossil CO2 (gray), land use change (yellow), land 

uptake by terrestrial ecosystem (green), and ocean uptake (teal), and atmospheric increase in 

anthropogenic carbon is in sky-blue color with plus (+) sign. Thin green arrows represent natural 

carbon cycling, and green round dots represent main carbon pools (permafrost, soils, and 

vegetation) in terrestrial ecosystems. The carbon fluxes interact with the atmosphere and dampen 

or amplify the feedback with climate. 

 

 

Figure 1.2 Summary of three articles and main chapters of this thesis. 
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Permafrost carbon cycle 

The effects of climate change in the Arctic has been an interesting research topic as Arctic 

temperature has increased more rapidly than other regions. Studies revealed surface air 

temperature increases 0.6°C per decade since 1985 in the Arctic, twice the rate of the global 

increase (Stocker et al. 2013; McGuire et al. 2012). This rapid warming changes a broad spectrum 

of physical and ecological systems in the Arctic and causes a rapid thaw of permafrost soils 

(McGuire et al. 2009). Permafrost is ground that remains frozen for two or more consecutive years, 

which underlies 85% of Alaska, Greenland, Canada, and Siberia (Zimov et al. 2006). The Arctic 

permafrost was built up over thousands of years and stores up to 1,700 Pg of carbon (Fig. 1.3). 

This permafrost carbon pool is four times the carbon that has been released to the atmosphere due 

to human activities in the industrial era (Hugelius et al. 2013; Schuur et al. 2013).  

The permafrost thaw may facilitate decomposition of the enormous carbon pool and release 

carbon into the atmosphere in the form of CO2 and CH4 (McGuire et al. 2018; Koven et al. 2011). 

It is crucial to understand the ratio between these two greenhouse gases, as CH4 has 30 times 

stronger global warming potential over a 100-year period compared with CO2 (Stocker et al. 2013). 

The ratio between CO2 and CH4 depends on the gradual or abrupt thaw of permafrost. For example, 

abrupt thaw may result in carbon release as mainly CH4  due to associated changes in local 

hydrology (Turetsky et al. 2020). Current CH4 emissions in the Arctic are estimated in a range of 

31-100 TgCH4 yr-1 (McGuire et al. 2009), but the emissions are expected to increase by 2-3 times 

or more by 2100, depending on the positive feedback between temperature and CH4 due to more 

carbon from thawing permafrost (Koven et al. 2011; Lawrence et al. 2015).  

However, in Chapter 2 and the first article of this thesis, I found a new perspective of the 

current understanding of the Arctic methane and permafrost feedback. I focused on the 

underestimated CH4 soil sink that may help accurately estimate current CH4 emissions and add a 

negative feedback between temperature and CH4 in the Arctic. This study was published in Nature 

Climate Change in March 2020 (Oh et al. 2020). 
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Figure 1.3 The current state of the Arctic carbon cycle north of 45 °N based on a synthesis of the 

information presented in the review of McGuire et al., 2009. Values shown are the ranges of 

uncertainty. 
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Uncertainty in wetland soils and the global methane cycle 

Understanding and quantifying the global CH4 budget is important in predicting future 

climate change (Saunois et al. 2020). The global CH4 budget is determined by the balance of CH4 

sources and sinks (Fig. 1.4). CH4 is emitted from three major sources through anthropogenic or 

natural processes: biogenic, thermogenic, and pyrogenic. The emitted CH4 from three sources is 

oxidized by chemical reactants, mainly OH, in the atmosphere, and about 10% of the emissions 

are oxidized by soil methane oxidizing bacteria (Curry 2007).  

Current synthesis analysis of the global CH4 budget shows a huge discrepancy of over 200 

TgCH4 yr-1 between the bottom-up and top-down estimates (Fig. 1.4) (Saunois et al. 2020). 

Bottom-up estimates of CH4 emissions are derived from process-based, satellite-based, inventory, 

or observation-based upscaling models. Top-down estimates of CH4 emissions are derived from 

an inversion approach of atmospheric observation of CH4. The huge discrepancy is attributed to 

large natural emissions by bottom-up estimates in inland water systems (160 TgCH4 yr-1) (Saunois 

et al. 2020; DelSontro et al. 2018). It is expected that a better understanding of natural net methane 

emissions will help resolve the mechanisms responsible for long-term trends in atmospheric CH4 

and its carbon isotopic signatures (δ13C) (Nisbet et al. 2019). 

Among the natural sources, wetlands are the largest and have a strong effect on atmospheric 

CH4 and its δ13C (Schwietzke et al. 2016). Since top-down estimates cannot distinguish CH4 

emissions between wetlands and other natural sources, the discrepancy in bottom-up and top-down 

estimates emphasizes the need of accurate estimation. The current estimation of wetland CH4 

emissions varies between 100 and 200 TgCH4 yr-1, and the wetland inundated area varies between 

10 and 30 million km2 (Melton et al. 2013; Wania et al. 2013). 

Thus, in Chapter 3, the second article of this thesis, I develop and validate a first-of-its-

kind process-based model to simulate δ13C of CH4 emitted from global wetlands, and examine the 

importance of the wetland δ13C map for studying the global CH4 cycle. I use stable isotope tracers 

as they are a useful tool in diagnosing a wide variety of mechanisms associated with determining 

CH4 processes in wetlands (Chanton 2005). This article is in preparation for submission to Nature 

Geoscience. 
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Figure 1.4 Global CH4 budget for the 2008–2017 decade from Saunois et al., 2020. Both bottom-

up (left) and top-down (right) estimates (TgCH4 yr−1) are provided for each emission and sink 

category, as well as for total emissions and total sinks. 
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Water use efficiency and global carbon cycle 

Annually, about 60% of the total evapotranspiration of terrestrial ecosystems occurs as 

transpiration via plant stomata as a tradeoff of the carbon gain by photosynthesis (Schlesinger and 

Jasechko 2014; Bonan 2008). Thus, the terrestrial ecosystem’s carbon and hydrologic cycles are 

intimately coupled by gas exchange through plant stomata. Water use efficiency (WUE) is a useful 

indication of the vegetation function that reflects the ratio between photosynthesis and 

transpiration (Medlyn et al., 2011). The changes in WUE have implications for the planetary 

energy, water, and carbon budgets, as photosynthesis is crucial to change atmospheric CO2 to 

organic carbon, and transpiration is crucial to change sensible heat to latent heat and increase 

atmospheric water vapor (Fig. 1.5). 

Due to the increase in atmospheric CO2 and changes in precipitation in the industrial era, 

WUE has been widely studied to understand tree responses to climate change (Frank et al., 2015). 

The δ13C in tree rings and leaves are used to estimate long-term changes in WUE, based on the 

assumption that δ13C in plant tissues are governed by stomatal-controlled photosynthetic 

fractionation (Farquhar and Sharkey 1982; Farquhar et al. 1989). However, the δ13C of plant 

tissues may not be explained solely by the photosynthetic fractionation. The δ13C of plant tissues 

have been found to vary across different tissue types within the same plant (Badeck et al. 2005; 

Bowling et al. 2008), and there is a discrepancy in WUE estimation between the isotope-based and 

other methods (Medlyn et al. 2017). This discrepancy induces uncertainties in estimating future 

tree responses to climate change, as land surface models have incorporated δ13C to improve model 

representation and prediction of terrestrial water and carbon fluxes (Raczka et al. 2016; Graven et 

al. 2017; Van Der Velde et al. 2013; Suits et al. 2005). 

I argue that this discrepancy of isotope-based WUE may be resolved by improved 

understanding of leaf carbon allocation processes happening after photosynthesis in plant stomata. 

Thus, in the Chapter 4 of this thesis and the third article, I investigate the importance of leaf carbon 

allocation for seasonal leaf δ13C changes and WUE in temperate forests. This article is in review 

for publication in New Phytologist. 
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Figure 1.5 A schematic diagram of (A) surface energy fluxes, (B) hydrologic cycle, and (C) 

carbon cycle in terrestrial ecosystems modified from Bonan 2008.  
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 REDUCED NET METHANE EMISSIONS DUE TO 

MICROBIAL METHANE OXIDATION IN A WARMER ARCTIC 

2.1 Abstract 

Methane emissions from organic-rich soils in the Arctic have been extensively studied due 

to their potential to increase the atmospheric methane burden as permafrost thaws (McGuire et al. 

2018; Schuur et al. 2013, 2015). However, this methane source might have been overestimated 

without considering high affinity methanotrophs (HAM, methane oxidizing bacteria) recently 

identified in Arctic mineral soils (Juncher Jørgensen et al. 2015; Lau et al. 2015; D’Imperio et al. 

2017; Emmerton et al. 2014). Here, we find that HAM dynamics double the upland methane sink 

(~5.5 TgCH4yr-1) north of 50°N in simulations from 2000-2016 by integrating the dynamics of 

HAM and methanogens into a biogeochemistry model (Oh et al. 2016; Zhuang et al. 2004, 2013) 

that includes permafrost SOC dynamics (Schuur et al. 2015). The increase is equivalent to at least 

half of the difference in net methane emissions estimated between process-based models and 

observation-based inversions (Bruhwiler et al. 2014; Saunois et al. 2016), and the revised estimates 

better match site-level and regional observations (Emmerton et al. 2014; Lau et al. 2015; Bloom 

et al. 2010; Bohn et al. 2015; Miller et al. 2016). The new model projects doubled wetland methane 

emissions between 2017-2100 due to more accessible permafrost carbon (Hugelius et al. 2013; 

Koven et al. 2011; Lawrence et al. 2015). However, most of the increase in wetland emissions is 

offset by a concordant increase in the upland sink, leading to only an 18% increase in net methane 

emission (from 29 to 35 TgCH4yr-1). The projected net methane emissions may decrease further 

due to different physiological responses between HAM and methanogens in response to increasing 

temperature (Hagerty et al. 2014; Trimmer et al. 2015). This study was published in Nature 

Climate Change in March 2020 (Oh et al. 2020). 

2.2 Introduction 

Arctic soils are considered to be a significant net emission source of methane to the 

atmosphere. Current process-based biogeochemistry models and observation-based atmospheric 

inversions have estimated this source to be between 15 and 50 TgCH4yr-1, accounting for 20-25% 

of global natural methane emissions (Saunois et al. 2016). Furthermore, process-based models 
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predict 2-3 times larger methane emissions by 2100 (Koven et al. 2011; Lawrence et al. 2015; 

Schuur et al. 2013), as warmer temperature increases both rates of decomposition and availability 

of soil organic carbon (SOC) from permafrost-affected soils in addition to SOC from recently dead 

vegetation for decomposition (Hugelius et al. 2013; Schuur et al. 2009).  

However, methane emissions are mainly confined to 13% of Arctic landscapes comprised 

of organic-rich soils where anaerobic processes dominate (Hugelius et al. 2013). The rest is 

comprised of mineral-rich soils where recent field studies have identified net annual methane sinks 

during growing seasons (Emmerton et al. 2014; Lau et al. 2015; D’Imperio et al. 2017; Juncher 

Jørgensen et al. 2015). This difference may be controlled by differences in methanotroph 

community composition (Fig. 2.1) (Christiansen et al. 2015). In wet organic soils, a fraction of 

methane produced by methanogenic archaea (methanogens, MG) is oxidized by methanotrophic 

bacteria (methanotrophs), and the remainder is mostly emitted into the atmosphere (Fig. 2.1a). The 

methanotrophs in these wet organic soils may be “low-affinity” methanotrophs (LAM) that require 

> 600 ppm of methane (by moles) for their growth and maintenance (Baani and Liesack 2008). 

But in dry mineral soils, the dominant methanotrophs are “high-affinity” methanotrophs (HAM), 

which can survive and grow at the level of atmospheric methane abundance ([CH4]atm) of about 

1.8 ppm (Fig. 2.1b) (Tveit et al. 2019). 
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Figure 2.1 Schematic diagram of XPTEM-XHAM. The model simulates methane (CH4) 

production by methanogens (MG), oxidation of CH4 by Low Affinity Methanotrophs (LAM) in 

wetlands (panel a), and oxidation of atmospheric CH4 ([CH4]atm) by High Affinity Methanotrophs 

(HAM) in uplands (panel b). We used a static inundation data (Matthews, E., and Fung 1987) to 

divide the Arctic landscape into wetland and upland regions but later varied the regions based on 

time-varying inundation data (Poulter et al. 2017; Lawrence et al. 2018). Changes in active 

biomass (MICbiomass) of MG and HAM depend on microbial growth efficiencies (ε) and 

maintenance energy demand (mE), and are tracked as a function of time, t. Permafrost SOC 

dynamics are added to account for accessible SOC from thawing permafrost when soil 

temperature at the corresponding depth becomes higher than 1°C. The dark blue arrow refers to 

permafrost SOC dynamics, dark red arrows refer to microbial dynamics, and grey arrows refer to 

processes from the original TEM
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Quantification of the previously underestimated methane soil sink by HAM is needed to 

improve our understanding of Arctic methane budgets. Process-based methane models have 

overestimated Arctic methane emission by 5-10 TgCH4yr-1 when compared to observation-based 

atmospheric inversions (Bruhwiler et al. 2014; Saunois et al. 2016). Given that 87% of the Arctic 

is dominated by mineral-rich soils, the HAM-driven methane sink may greatly reduce current area-

integrated net methane emissions. Furthermore, the positive feedbacks of methane emission due 

to additional accessible permafrost SOC may be partially suppressed by negative feedbacks from 

high activities of HAM at future increased surface temperatures and [CH4]atm (Oh et al. 2016). 

Previous studies show that simulation of explicit microbial dynamics of MG and HAM 

improve model estimates of the magnitude and seasonality of methane sources and sinks (Oh et al. 

2016; Segers 1998). Microbial dynamics may also cause additional complexity due to different 

microbial physiology between MG and HAM (Hagerty et al. 2014; Wieder et al. 2013). Recent 

laboratory and field studies show that microbial communities adjust their active microbial biomass 

(MICbiomass) in warmer soils depending on microbial growth efficiency (ɛ) and maintenance energy 

(mE) (Hagerty et al. 2014). ɛ represents growth efficiency of MICbiomass per unit of substrate 

consumed, and the ɛ of MG (0.05) is a factor of 10 smaller than that of HAM (0.5) (Von Stockar 

and Liu 1999; Trimmer et al. 2015). mE, the rate of metabolic energy generation needed to maintain 

MICbiomass, increases exponentially with temperature for all microbes, including MG and HAM, 

reflecting the fast turnover associated with cell mortality (Tijhuis et al. 1993; Hagerty et al. 2014). 

These processes are important for current and future Arctic methane budgets. However, current 

process-based methane models have not considered such microbial dynamics. 

This study (1) estimates current pan-Arctic soil methane emissions and consumptions while 

accounting for microbial and permafrost SOC dynamics; (2) evaluates the magnitude and spatial 

variability of those estimates; and (3) projects pan-Arctic changes in soil methane emissions and 

consumptions through 2100. These projections include enhanced methane emissions due to 

increased available permafrost SOC and stimulated HAM activity due to increased surface 

temperatures and [CH4]atm, and different physiological responses of MG and HAM at warmer 

temperatures. 
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2.3 Methods 

To address these objectives, we implemented explicit microbial dynamics for MG and 

HAM into a biogeochemistry model, the Terrestrial Ecosystem Model (TEM) (Fig. 2.1) (Zhuang 

et al. 2004, 2013). In wetland system, we simulated methane oxidation by LAM as a function of 

environmental parameters. We fixed MICbiomass of LAM due to the limited control of LAM 

MICbiomass on Arctic wetland methane emissions (Knoblauch et al. 2015; Throckmorton et al. 2016). 

Thus, we calculated changes in MICbiomass of MG and HAM as a function of ɛ, mE, and 

environmental parameters, and set mE as a constant with a temperature of 0°C (Hagerty et al. 2014; 

Tijhuis et al. 1993). To identify effects of permafrost SOC, we modified methane production to 

consider the amount of SOC from vegetation (Net Primary Productivity, NPP) and thawing 

permafrost in wetland ecosystems. The complete model with microbial and permafrost SOC 

dynamics is referred as eXplicit Permafrost TEM-eXplicit HAM model, XPTEM-XHAM (Fig. 

2.1) (see Section 2.3.1). 

To assess the effects of microbial and permafrost SOC dynamics, we conducted two 

additional sets of simulations for a factorial analysis (Table 2.1). First, we developed the 

Permafrost TEM-HAM model (PTEM-HAM), which considers HAM and permafrost SOC as 

XPTEM-XHAM but does not simulate explicit microbial dynamics of MG and HAM. Second, we 

used a version of TEM that simulates methane production and oxidation by MG and LAM, 

respectively, but does not consider HAM, permafrost nor microbial dynamics (TEM) (Zhuang et 

al. 2004, 2013). For XPTEM-XHAM and PTEM-HAM, we optimized key parameters of methane 

production and oxidation for alpine tundra, wet tundra, and boreal forest (see Section 2.3.2). 
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Table 2.1 Summary of the three models used in this study. The setup for XPTEM-XHAM is 

explained in details in Figure 2.1. For PTEM-HAM, methane production in wetlands is 

dependent on SOC derived from vegetation and thawing permafrost, and methane oxidation is by 

HAM, but MICbiomass changes are not explicitly simulated. In the TEM setup, methane 

production in wetlands is dependent on SOC derived from vegetation only, methane oxidation is 

by LAM, and MICbiomass changes are also not explicitly simulated. 

 

Model Setup XPTEM-XHAM PTEM-HAM TEM 

Permafrost SOC Dynamics ON ON OFF 

High Affinity Methanotrophs (HAM) ON ON OFF 

Microbial Dynamics of HAM and MG ON OFF OFF 
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The three models simulated methane dynamics north of 50°N, including low- (50-65°N) 

and high- (north of 65°N) Arctic regions at a spatial resolution of 0.5° latitude by 0.5° longitude. 

Gridded Climatic Research Unit (CRU) data were used as meteorological inputs for a 

contemporary simulation from 2000 to 2016 (Harris et al. 2014), and inputs from IPCC 

Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5 were used for projections to 2100 

(Meinshausen et al. 2011). For PTEM-HAM and XPTEM-XHAM, we used the Northern 

Circumpolar Soil Carbon Database version 2 (NCSCDv2) to estimate permafrost SOC at different 

soil depths (Hugelius et al. 2013). The simulated methane emission from wetlands and 

consumption from uplands were area-integrated for each grid cell based on static fractional 

inundation data (Matthews, E., and Fung 1987) (see Section 2.3.3). 

For a sensitivity test of surface area of wetlands and uplands of XPTEM-XHAM, we used 

time-varying inundation data from the satellite-driven Surface WAter Microwave Product Series- 

Global Lakes and Wetlands Database (SWAMPS-GLWD) during 2000-2012 (Poulter et al. 2017) 

and transient inundation fraction simulated by Community Land Model (CLM) version 5.0 during 

2017-2100 (Lawrence et al. 2018). We further conducted XPTEM-XHAM sensitivity tests of 

wetland emission and upland consumption to changes in meteorology and substrate inputs during 

2000-2016. For XPTEM-XHAM during 2017-2100, we varied mE of MG and HAM to increase 

with temperature to model microbial physiological responses (equations (13), (14), and (19)). 

Lastly, for RCP 8.5 of XPTEM-XHAM, we varied Q10 of methane production and oxidation and 

fixed [CH4]atm to the contemporary level (1.8 ppm) to test model sensitivity to temperature and 

[CH4]atm changes (see Section 2.3.4). 

 

2.3.1 Model description 

We incorporated explicit microbial dynamics of high affinity methanotrophs (hereby, 

“HAM”) and methanogens (hereby, “MG”), including permafrost SOC dynamics, into a process-

based biogeochemistry model, Terrestrial Ecosystem Model (TEM).  

 

TEM 

TEM is one of few biogeochemistry models that simulate methane consumption in Arctic 

mineral soils, and its methane, soil thermal, and hydrological dynamics have been evaluated in 

previous studies (Zhuang et al. 2004, 2013). The methane dynamics module of TEM simulates 
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methane production, oxidation, and three transport processes between soil and atmosphere. In a 

wetland system, changes in methane concentrations (CM) at depth z and time t (∂CM(z,t)/∂t) are 

governed by equation 2.1, where Mp(z,t), Mo(z,t), Rp(z,t), and RE(z,t) are methane production, 

oxidation, plant-mediated transport, and ebullition rates, respectively, and ∂FD(z,t)/∂z represents 

flux divergence due to gaseous and aqueous diffusion.  

 

𝜕𝐶𝑀(𝑧,𝑡)

𝜕𝑡
= 𝑀𝑃(𝑧, 𝑡) − 𝑀𝑂(𝑧, 𝑡) −

𝜕𝐹𝐷(𝑧,𝑡)

𝜕𝑧
− 𝑅𝑃(𝑧, 𝑡) − 𝑅𝐸(𝑧, 𝑡) … Equation 2.1 

 

Methane is produced (MP) in anaerobic soils and is calculated by the product of maximum 

potential production rate (MGO) and limiting functions of substrate, soil temperature, pH, and redox 

potentials (SOM, MST, pH and Rx, respectively) (equation 2.2). We used limiting factors of pH and 

Rx to consider enzymatic activity and the relative availability of electron acceptors (e.g., O2, NO3
-, 

SO4
-2, Fe+3, Mn+4) for methane production. The limiting function of substrate (f(SOM(z,t)) is mainly 

dependent on soil organic carbon (SOC) derived from vegetation (Net Primary Productivity, NPP), 

where NPP(mon) is monthly NPP (gC m-2 month-1), NPPMAX is ecosystem-specific maximum 

monthly NPP, and f(CDIS(z)) describes the relative availability of organic carbon substrate at depth 

z (equation 2.3). For the substrate availability, we calculated changes in vegetation carbon using 

atmospheric CO2 concentrations, transient temperature, precipitation, vapor pressure and soil 

texture (Zhuang et al. 2003).  

 

𝑀𝑃,𝑇𝐸𝑀(𝑧, 𝑡) = 𝑀𝐺0𝑓(𝑆𝑂𝑀(𝑧, 𝑡))𝑓(𝑀𝑆𝑇(𝑧, 𝑡))𝑓(𝑝𝐻(𝑧, 𝑡))𝑓(𝑅𝑥(𝑧, 𝑡)) … Equation 2.2 

 

𝑓(𝑆𝑂𝑀(𝑧, 𝑡)) = (1 +
𝑁𝑃𝑃(𝑚𝑜𝑛)

𝑁𝑃𝑃𝑚𝑎𝑥
) 𝑓(𝐶𝐷𝐼𝑆(𝑧)) … Equation 2.3 

 

The produced methane diffuses into aerobic soils and is oxidized by low affinity 

methanotrophs (hereby, “LAM”), calculated by the product of the maximum potential oxidation 

rate (OMAX) and limiting functions of methane concentration, soil temperature, soil moisture, redox 

potential, nitrogen deposition, diffusion limited by high soil moisture, and oxygen concentration 
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(CM, TSOIL, ESM, ROX, NDP, DMS, and CO2 respectively) (equation 2.4). The Michaelis-Menten 

constant for methane oxidation was set to 5 µM (kCH4,LAM) (equation 2.5) (Baani and Liesack 2008). 

 

𝑀𝑂,𝑇𝐸𝑀(𝑧, 𝑡)

= 𝑂𝑀𝐴𝑋𝑓(𝐶𝑀(𝑧, 𝑡))𝑓(𝑇𝑆𝑂𝐼𝐿(𝑧, 𝑡))𝑓(𝐸𝑆𝑀(𝑧, 𝑡))𝐹(𝑅𝑂𝑋(𝑧, 𝑡))𝑓 (𝑁𝑑𝑝(𝑧, 𝑡)) 𝑓(𝐷𝑚𝑠(𝑧, 𝑡))𝑓(𝐶𝑂2(𝑧)) 

… Equation 2.4 

 

𝑓(𝐶𝑀(𝑧, 𝑡)) =
𝐶𝑀(𝑧,𝑡)

𝑘𝐶𝐻4,𝐿𝐴𝑀+𝐶𝑀(𝑧,𝑡)
  … Equation 2.5 

 

The residual methane is emitted to the surface through three transport processes. First, 

gaseous and aqueous diffusion (FD) occur due to concentration gradients of methane (∂CM(z,t)/∂t) 

following Fick’s law through soil pores (equation 2.6). The molecular diffusion coefficient (D) in 

different soil layers was calculated based on soil texture and soil moisture. We also have a simple 

limitation of diffusion on temperature, that there will be no diffusion when temperature is below 

0 C. Secondly, ebullition (RE) occurs when methane bubble forms (i.e., when CM is greater than 

500 μmol L-1 in saturated soils); CM is multiplied by a constant rate of 1.0 h-1 (Ke) (equation 2.7).  

Lastly, plant-mediated transport (Rp) occurs through the root systems of some plants that provide 

a direct conduit for methane to the atmosphere, and is functions of rate constant of 0.01 h-1, 

vegetation type, root density, vegetation growth, and soil methane concentrations (Kp, TRveg, fROOT, 

fGROW, and CM, respectively) (equation 2.8) (Walter and Heimann 2000). Rp depends on ecosystem-

specific plant functional types and increases in a warmer soil due to the increase in vegetation 

growth. In both wetland and upland ecosystems, the soil profile was divided into 1-cm layers, and 

soil temperature, moisture, and methane dynamics of TEM were simulated at daily time steps 

(Zhuang et al. 2004). 

𝐹𝐷(𝑧, 𝑡) = −𝐷(𝑧)
𝜕𝐶𝑀(𝑧,𝑡)

𝜕𝑡
 … Equation 2.6 

 

𝑅𝐸(𝑧, 𝑡) = 𝐾𝑒𝑓(𝐶𝑀(𝑧, 𝑡)) … Equation 2.7 
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𝑅𝑃(𝑧, 𝑡) = 𝐾𝑃𝑇𝑅𝑣𝑒𝑔𝑓𝑅𝑂𝑂𝑇(𝑧)𝑓𝐺𝑅𝑂𝑊(𝑡)𝐶𝑀(𝑧, 𝑡) … Equation 2.8 

 

 

Permafrost TEM-HAM model 

We first revised TEM to consider permafrost SOC dynamics and HAM, but not active 

microbial biomass changes (Permafrost TEM-HAM model; “PTEM-HAM”). To consider 

atmospheric methane oxidation by HAM, we modified the Michaelis-Menten constant for methane 

oxidation from 5 to 0.11 µM (kCH4,HAM) (Baani and Liesack 2008; Zhuang et al. 2004) (equation 

2.9). To account for permafrost SOC accessible as surface temperature increases and permafrost 

thaws, we set maximum lower boundary of soil layer from 1- to 3-m. We then added permafrost 

SOC dynamics by changing the main carbon source for MG to vegetation (NPP) and permafrost 

SOC (equation 2.10). PSOC(z) represents permafrost soil organic carbon stored at depth z (g m-2) 

and is available when soil temperature at the corresponding depth is greater than 1°C. We set 

PSOCmax to be 300 kg m-2 for top 3-m soil, based on Northern Circumpolar Soil Carbon Database 

version 2 (NCSCDv2) (Hugelius et al. 2013). Accordingly, equations of methane production and 

oxidation for PTEM-HAM are similar to equations 2.2 and 2.4, but the f(CM) and f(SOM) are 

replaced with fnew(CM) and fnew(SOM), respectively (equations 2.11 and 2.12).  

 

𝑓𝑛𝑒𝑤(𝐶𝑀(𝑧, 𝑡)) =
𝐶𝑀(𝑧,𝑡)

𝑘𝐶𝐻4,𝐻𝐴𝑀+𝐶𝑀(𝑧,𝑡)
  … Equation 2.9 

 

𝑓𝑛𝑒𝑤(𝑆𝑂𝑀(𝑧, 𝑡)) = ((1 +
𝑁𝑃𝑃(𝑚𝑜𝑛)

𝑁𝑃𝑃𝑚𝑎𝑥
) 𝑓(𝐶𝐷𝐼𝑆(𝑧)) +

𝑃𝑆𝑂𝐶(𝑧)

𝑃𝑆𝑂𝐶𝑚𝑎𝑥
) … Equation 2.10 

 

𝑀𝑃,𝑃𝑇𝐸𝑀−𝐻𝐴𝑀(𝑧, 𝑡) = 𝑀𝐺0𝑓𝑛𝑒𝑤(𝑆𝑂𝑀(𝑧, 𝑡))𝑓(𝑀𝑆𝑇(𝑧, 𝑡))𝑓(𝑝𝐻(𝑧, 𝑡))𝑓(𝑅𝑥(𝑧, 𝑡))  

… Equation 2.11 

 

𝑀𝑂,𝑃𝑇𝐸𝑀−𝐻𝐴𝑀(𝑧, 𝑡) =

𝑂𝑀𝐴𝑋𝑓𝑛𝑒𝑤(𝐶𝑀(𝑧, 𝑡))𝑓(𝑇𝑆𝑂𝐼𝐿(𝑧, 𝑡))𝑓(𝐸𝑆𝑀(𝑧, 𝑡))𝐹(𝑅𝑂𝑋(𝑧, 𝑡))𝑓 (𝑁𝑑𝑝(𝑧, 𝑡)) 𝑓(𝐷𝑚𝑠(𝑧, 𝑡))  

… Equation 2.12 
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eXplicit Permafrost TEM-eXplicit HAM model  

We further added explicit microbial dynamics of MG and HAM into PTEM-HAM  

(eXplicit Permafrost TEM-eXplicit HAM model; “XPTEM-XHAM”). The methane oxidation by 

LAM was simulated as a function of environmental parameters with fixed active microbial 

biomass (MICbiomass), same as TEM and PTEM-HAM (equation 2.4 and 2.12), due to the limited 

control of LAM MICbiomass on Arctic wetland methane emissions (Knoblauch et al. 2015; 

Throckmorton et al. 2016). To clarify the role of LAM microbial dynamics in wetland methane 

emission for both contemporary period and future projection, we ran additional simulations by 

adding microbial dynamics of LAM into XPTEM-XHAM. 

Methane production by MG (MP,XPTEM-XHAM) and oxidation by HAM (MO,XPTEM-XHAM) are 

calculated by the product of MICbiomass and methane production and oxidation of PTEM-HAM 

(MP,PTEM-HAM and MO,PTEM-HAM), respectively (equation 2.13) (Oh et al. 2016; Lau et al. 2016). 

Active microbial biomass changes (dMICbiomass/dt) are calculated thermodynamically by 

considering microbial growth efficiency (ɛ), maintenance energy (mE), and Gibbs free energy (ΔG) 

of MG and HAM (equation 2.14). Here, the maximum methane production and oxidation 

potentials, MGO and Omax respectively in equations 2.11 and 2.12, are multiplied by a geometric 

parameter (γgeometric) and become MGO’ and Omax’ (MGO’= MGO×γgeometric and Omax’= Omax×γgeometric), 

where the units for MGO’ and Omax’ are μMSOC / μMbioC
0.66 /hr and μMCH4 / μMbioC

0.66 /hr, 

respectively. 

 

𝑀𝑃,𝑋𝑃𝑇𝐸𝑀−𝑋𝐻𝐴𝑀 = 𝑀𝐼𝐶𝑏𝑖𝑜𝑚𝑎𝑠𝑠,𝑀𝐺
2/3

× 𝛾𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 ×𝑀𝑃,𝑃𝑇𝐸𝑀−𝐻𝐴𝑀 … Equation 2.13a 

 

𝑀𝑂,𝑋𝑃𝑇𝐸𝑀−𝑋𝐻𝐴𝑀 = 𝑀𝐼𝐶𝑏𝑖𝑜𝑚𝑎𝑠𝑠,𝐻𝐴𝑀
2/3

× 𝛾𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 ×𝑀𝑂,𝑃𝑇𝐸𝑀−𝐻𝐴𝑀  … Equation 2.13b 

 

𝑑𝑀𝐼𝐶𝑏𝑖𝑜𝑚𝑎𝑠𝑠,𝑀𝐺
𝑑𝑡

= 𝜀𝑀𝐺 × (0.8 × 𝑀𝐼𝐶𝑏𝑖𝑜𝑚𝑎𝑠𝑠,𝑀𝐺

2
3 × 𝛾𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 ×𝑀𝑃,𝑃𝑇𝐸𝑀−𝐻𝐴𝑀 +𝑀𝐼𝐶𝑀𝐺

𝑚𝐸

∆𝐺𝑟.𝑀𝐺
) 

… Equation 2.14a 
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𝑑𝑀𝐼𝐶𝑏𝑖𝑜𝑚𝑎𝑠𝑠,𝐻𝐴𝑀
𝑑𝑡

= 𝜀𝐻𝐴𝑀 × (0.8 × 𝑀𝐼𝐶𝑏𝑖𝑜𝑚𝑎𝑠𝑠,𝐻𝐴𝑀

2
3 × 𝛾𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 ×𝑀𝑂,𝑃𝑇𝐸𝑀−𝐻𝐴𝑀

+𝑀𝐼𝐶𝐻𝐴𝑀
𝑚𝐸

∆𝐺𝑟,𝐻𝐴𝑀
) 

… Equation 2.14b 

 

Equations for changes in MICbiomass were derived from growth rate (ΔP) (Lau et al. 2016), 

which is proportional to the relative magnitude in the difference between maintenance energy 

demand and rate of energy delivery of a metabolic redox equation in equation 2.15, where ΔP is 

in kJ µmolbiomass
-1s-1, ΔGr is the free energy of the metabolic redox reaction at in-situ temperature, 

activities, and fugacities, which is usually negative, in kJ µmolreactant
-1, MP is the metabolic reaction 

rate in µmolreactant µmolbiomass
-1 s-1, and mE is the maintenance energy in kJ µmolbiomass

-1 hr-1. We 

assumed that only 80% of the free energy is available for metabolism and the rest is lost as heat 

(Lau et al. 2016).  

 

∆𝑃𝑀𝐺 = −0.8 ∆𝐺𝑟,𝑀𝐺  𝑀𝑃,𝑃𝑇𝐸𝑀−𝐻𝐴𝑀 −𝑚𝐸 … Equation 2.15a 

 

∆𝑃𝐻𝐴𝑀 = −0.8 ∆𝐺𝑟,𝐻𝐴𝑀 𝑀𝑂,𝑃𝑇𝐸𝑀−𝐻𝐴𝑀 −𝑚𝐸 … Equation 2.15b 

 

The rate of increase or decrease of active biomass is governed by the fraction of ΔGr that 

is directed to maintenance and the growth efficiency, so the active biomass increases according to 

equation 2.16, where MICbiomass is the active biomass concentration in µmolbiomass L
-1, and ɛ is the 

microbial growth efficiency in µmolbiomass µmolsubstrate
−1. 

 

𝑑𝑀𝐼𝐶𝑏𝑖𝑜𝑚𝑎𝑠𝑠,𝑀𝐺

𝑑𝑡
=

𝜀𝑀𝐺×𝑀𝐼𝐶𝑏𝑖𝑜𝑚𝑎𝑠𝑠,𝑀𝐺×∆𝑃𝑀𝐺

−∆𝐺𝑟,𝑀𝐺
 … Equation 2.16a 

 

𝑑𝑀𝐼𝐶𝑏𝑖𝑜𝑚𝑎𝑠𝑠,𝐻𝐴𝑀

𝑑𝑡
=

𝜀𝐻𝐴𝑀×𝑀𝐼𝐶𝑏𝑖𝑜𝑚𝑎𝑠𝑠,𝐻𝐴𝑀×∆𝑃𝐻𝐴𝑀

−∆𝐺𝑟,𝐻𝐴𝑀
 … Equation 2.16b 
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Here, ΔGr is calculated using the net thermodynamic driving force (f) of the reaction in 

equation 2.17, where m is the number of moles of ATP generated per mole of reactant, and ΔGp is 

the free energy for the phosphorylation reaction. At the point at which the thermodynamic drive 

vanishes, ΔGr = -m×ΔGp. For methanotrophs, ΔGr,HAM = -286×2.8 kJ molreactant
-1 = -800.8 kJ 

molreactant
-1 (Stackhouse et al. 2015). Whereas for methanogens, the free energy of the metabolic 

redox reaction is much smaller, ΔGr,MG= -25 kJ molreactant
-1 (Thauer et al. 2008). 

 

f = - ΔGr - m×ΔGp   … Equation 2.17 

 

Lastly in equations 2.13 and 2.14, we added the power of two thirds (2/3) to the active 

biomass term to account for substrate diffusion to the cell surface. Specifically, microbes rarely 

exist as single microbes in isolation, but rather as aggregates (Gottschalk 2012). As the availability 

of substrate is assumed to be positively correlated with diffusion, thus the rate of diffusion to the 

cell wall is determined by surface area (not cell volume). Based on this argument, since MICbiomass 

in equation 2.14 does not cancel out, we calculated the theoretical active microbial biomass at 

equilibrium, which is the maximum active microbial biomass for given environmental conditions 

when MG and MT are not limited by space (equation 2.18). 

 

𝑀𝐼𝐶𝑏𝑖𝑜𝑚𝑎𝑠𝑠,𝑀𝐺 = (
−0.8×∆𝐺𝑟,𝑀𝐺 ×𝑀𝑃,𝑃𝑇𝐸𝑀−𝐻𝐴𝑀

𝑚𝐸
)
3

 … Equation 2.18a 

 

𝑀𝐼𝐶𝑏𝑖𝑜𝑚𝑎𝑠𝑠,𝐻𝐴𝑀 = (
−0.8×∆𝐺𝑟,𝐻𝐴𝑀 ×𝑀𝑂,𝑃𝑇𝐸𝑀−𝐻𝐴𝑀

𝑚𝐸
)
3

 … Equation 2.18b 

 

The active microbial biomass changes in equation 2.14 are dependent on ɛ and mE. We set 

ɛ as 0.05 and 0.5 for MG and MT, respectively, defined from previous laboratory and experiment 

studies (Segers 1998; Von Stockar and Liu 1999; Von Stockar et al. 2006; Trimmer et al. 2015). 

The temperature sensitivity of mE is derived from Tijhuis et al. (1993) (Tijhuis et al. 1993), who 

studied a large range of different organisms and found that maintenance energy is mainly 

influenced by temperature (T in °C) with energy of activation of 69 kJ mol-1 (equation 2.19). 
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𝑚𝐸 = 4.5 × exp (
−6.94×104

𝑅
(
1

𝑇
−

1

298
)) … Equation 2.19 

 

The initial MICbiomass of MG and HAM is estimated from metagenomic data (0.0002 and 

0.0025 μmolbiomass Lsoil
-1, respectively) (Stackhouse et al. 2015; Oh et al. 2016; Stackhouse et al. 

2017). We set the maximum active microbial biomass of MG and HAM of each layer, as the 

maximum concentration of cells is 104-107 cells per gram of dry soil due to substrate availability 

and space limitation (Conrad 2009). Using conversion factors, 1 cell = 8 × 10-15 mol C, 1 L soil = 

1500 g of dry soil, and the ratio of MT to MG in the total microbial composition from Stackhouse 

et al. (2015) (Stackhouse et al. 2015) (maximum 1.5% of total cells), we estimated that the 

maximum concentrations of both MG and HAM are 50,000 nmolbiomass Lsoil
-1. 

 

 

2.3.2 Model optimization 

We optimized a total of 5 parameters for upland methane oxidation and 4 parameters for 

wetland methane production related to both PTEM-HAM and XPTEM-XHAM (Table 2.2-2.3). 

All other parameters were set the same as in Zhuang et al. (2004) (Zhuang et al. 2004) for methane 

production and transport processes and as in Zhuang et al. (2013) (Zhuang et al. 2013) for methane 

oxidation. To optimize these parameters, we first collected observation data from six sites 

representing uplands and wetlands for alpine tundra, wet tundra, and boreal forest ecosystems 

(Sellers et al. 1997; Harazono et al.; D’Imperio et al. 2017; Juncher Jørgensen et al. 2015; 

Dinsmore et al. 2017) (Data from the Greenland Ecosystem Monitoring Programme were provided 

by the Department of Bioscience, Aarhus University, Denmark in collaboration with Department 

of Geosciences and Natural Resource Management, Copenhagen University, Denmark) (Table 

2.2). Besides the observed meteorology from field sites, we also used CRU time-series data version 

4.01 to fill missing meteorological inputs (Harris et al. 2014). We then used the Shuffled Complex 

Evolution Approach in R language (SCE-UA-R) to minimize the difference between simulated 

and observed methane emission and consumption rates (Duan et al. 1993). For each site, 40 

ensembles were run using SCE-UA-R with 10,000 maximum loops per parameter ensemble, and 

all of them reached steady state before the end of the loops. Our optimization results show that 
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both XPTEM-XHAM and PTEM-HAM reasonably capture the magnitude and seasonality of 

observed soil methane fluxes (Figure 2.2 and 2.4). 

The optimized parameters show maximum potential, temperature and moisture sensitivity 

of methane production and oxidation in different ecosystems (Table 2.4-2.5 and Figure 2.3 and 

2.5). In wetlands, the temperature sensitivity of methane emission (PCH4Q10) ranges 2.5-9, 

corresponding to observations (Segers 1998; Roy C. et al. 2015). In boreal wetland ecosystems, 

methane emission is less sensitive to temperature (low PCH4Q10), and more oxidation occurs by 

LAM (high OXIc), probably due to higher temperature throughout the growing season than in 

alpine and wet tundra ecosystems. In uplands, the temperature sensitivity (OCH4Q10) ranged from 1 

to 6, also corresponding to observations (Lau et al. 2015). OCH4Q10 was optimized to be lowest for 

upland wet tundra as our observation data from wet tundra showed consistent methane 

consumption throughout the growing season (Juncher Jørgensen et al. 2015) (Figure 2.2e and 2.4e). 

The optimal soil moisture (MVopt) for methane consumption ranges between 0.35 to 0.55 v/v, 

corresponding to observations (Whalen and Reeburgh 1996). The parameter uncertainty is large 

for the reference temperature of methane production (TPR) for wetland systems and is large for 

minimum soil moisture (MVmin) for upland systems (Figure 2.3 and 2.5). 
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Table 2.2 Information about observation sites for model optimization 

No. Vegetation 

Types 

Latitude, 

Longitude 

Meteorological 

Inputs 

Observation 

Data 

References 

Uplands 

1 Alpine 

Desert 

70, -53.5 Site observation CH4 flux in 

2013-2014 

D’Imperio et al., 

2016 

2 Wet Tundra 74.5, -20.5 Site observation CH4 flux in 

2012 

Jørgensen et al., 

2015 

3 Boreal 

Forest 

67.5, 26.5 Site observation CH4 flux in 

2012 

Dinsmore et al., 

2017 

Wetlands 

1 Alpine 

Desert 

74.5, -20.5 Site observation CH4 flux in 

2010, 2012 

Greenland 

Ecosystem 

Monitoring 

Programme 

2 Wet Tundra 71, -156.5 CRU CH4 flux in 

2000-2001 

Harazono et al., 

2006 

3 Boreal 

Forest 

56, -98.5 Site observation CH4 flux in 

2012 

Sellers et al., 1997 
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Table 2.3 Variable name, unit, upper and lower boundary of parameters 

Symbol 

 

Variable 

name 

XPTEM-XHAM PTEM-HAM 

Unit Upper 

Boundar

y 

Lower 

Boundar

y 

Unit Upper 

Boundar

y 

Lower 

Boundar

y 

Wetlands 

MGO Maximum 

Potential of 

Methane 

Production 

μMSOC / 

μMbioC
0.6

6 /hr 

0.05 0.001 μM/hr 5.0 0.1 

QCH4Q1

0 

Q10 

temperatur

e 

sensitivity 

unitless 10.0 1.0 unitles

s 

10.0 1.0 

OXIC Maximum 

Potential of 

methane 

oxidation 

by LAM 

μM/hr 5.0 0.01 μM/hr 5.0 0.01 

TPR Reference 

temperatur

e for 

methane 

production 

°C 5.0 -5.0 °C 0.01 -5.0 

Uplands 

Omax Maximum 

Potential of 

methane 

oxidation 

by HAM 

μMCH4 / 

μMbioC
0.6

6 /hr 

0.025 0.001 μM/hr 15.0 0.1 
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Table 2.3 continued 

OCH4Q10 Q10 

temperature 

sensitivity  

Unitless 10.0 0.5 Unitless 10.0 0.5 

MVmax Maximum 

Volumetric 

Soil 

Moisture 

v/v 1.0 0.55 v/v 1.0 0.55 

MVmin Minimum 

Volumetric 

Soil 

Moisture 

v/v 0.25 0.0 v/v 0.25 0.0 

MVopt Optimum 

Volumetric 

Soil 

Moisture 

v/v 0.55 0.25 v/v 0.55 0.25 
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Table 2.4 Optimized parameters for PTEM-HAM 

Wetlands 

No. Vegetation MGO PCH4Q10 OXIC TPR 

 

1 Alpine Desert 0.280±0.094 8.034±1.928 0.028±0.055 2.154±1.908 
 

2 Wet Tundra 0.415±0.121 8.818±1.179 0.010±0.001 2.438±1.405 
 

3 Boreal Forest 0.504±0.140 6.296±1.873 0.211±0.194 2.827±1.287 
 

Uplands 

No. Vegetation OMAX OCH4Q10 Mvmax Mvmin Mvopt 

1 Alpine Desert 3.755±0.487 6.240±1.119 0.818±0.818 0.226±0.052 0.541±0.019 

2 Wet Tundra 2.422±0.149 2.864±0.925 0.614±0.058 0.134±0.071 0.464±0.032 

3 Boreal Forest 0.813±0.188 4.192±0.758 0.853±0.057 0.124±0.067 0.431±0.082 
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Table 2.5 Optimized parameters for XPTEM-XHAM 

Wetlands 

No

. 

Vegetatio

n 

MGO PCH4Q10 OXIC TPR 

 

1 Alpine 

Desert 

0.016±0.005 7.896±1.971 0.011±0.011 1.750±1.595 
 

2 Wet 

Tundra 

0.014±0.005 7.985±1.832 0.010±0.000

2 

1.920±1.529 
 

3 Boreal 

Forest 

0.015±0.001 2.392±0.484 0.033±0.035 2.490±1.032 
 

Uplands 

No

. 

Vegetatio

n 

OMAX OCH4Q10 Mvmax Mvmin Mvopt 

1 Alpine 

Desert 

0.0034±0.00

02 

6.1449±1.13

66 

0.8090±0.18

06 

0.1854±0.08

14 

0.5259±0.03

11 

2 Wet 

Tundra 

0.0024±0.00

02 

1.1762±0.12

37 

0.7947±0.09

39 

0.1349±0.06

88 

0.4404±0.08

14 

3 Boreal 

Forest 

0.0022±0.00

05 

3.7315±0.37

22 

0.8553±0.06

13 

0.1130±0.06

82 

0.3603±0.08

11 
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Figure 2.2 Model-data comparison of methane fluxes for XPTEM-XHAM model. (a-c) wetland 

methane emission and (d-f) upland methane consumption in mg m-2 day-1 for (a,d) alpine tundra, 

(b,e) wet tundra, and (c,f) boreal forest ecosystems 
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Figure 2.3 Box plot of normalized optimized parameters for XPTEM-XHAM model. (a-c) 

Normalized values of optimized parameters of (1) maximum methane production potential 

(MGO), (2) Q10 temperature sensitivity of methane production (QCH4Q10), (3) Maximum potential 

of methane oxidation by LAM (OXIC), and (4) reference temperature for methane production 

(TPR). (d-f) Normalized values of optimized parameters with 1 standard deviation of (1) 

maximum potential of methane oxidation by HAM (Omax), (2) Q10 temperature sensitivity of 

methane oxidation(OCH4Q10), (3) Maximum soil moisture for methane oxidation (MVmax), (4) 

minimum soil moisture for methane oxidation (MVmin) and (5) optimum soil moisture for 

methane oxidation (MVopt) for (a,d) alpine tundra, (b,e) wet tundra, and (c,f) boreal forests. On 

each box, the central mark indicates the median, and the bottom and top edges of the box 

indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data 

points not considered outliers, and the outliers are plotted individually using the '+' symbol 

(Higham and Higham 2016). 

  



 

 

50 

 

 

Figure 2.4 Model-data comparison of methane fluxes for PTEM-HAM model. (a-c) wetland 

methane emission and (d-f) upland methane consumption in mg m-2 day-1 for (a,d) alpine tundra, 

(b,e) wet tundra, and (c,f) boreal forest ecosystems. 
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Figure 2.5 Box plot of normalized optimized parameters for PTEM-HAM model. (a-c) 

Normalized values of optimized parameters of (1) maximum methane production potential 

(MGO), (2) Q10 temperature sensitivity of methane production (QCH4Q10), (3) Maximum potential 

of methane oxidation by LAM (OXIC), and (4) reference temperature for methane production 

(TPR). (d-f) Normalized values of optimized parameters with 1 standard deviation of (1) 

maximum potential of methane oxidation by HAM (Omax), (2) Q10 temperature sensitivity of 

methane oxidation(OCH4Q10), (3) Maximum soil moisture for methane oxidation (MVmax), (4) 

minimum soil moisture for methane oxidation (MVmin) and (5) optimum soil moisture for 

methane oxidation (MVopt) for (a,d) alpine tundra, (b,e) wet tundra, and (c,f) boreal forests. On 

each box, the central mark indicates the median, and the bottom and top edges of the box 

indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data 

points not considered outliers, and the outliers are plotted individually using the '+' symbol 

(Higham and Higham 2016).
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We validated soil temperature and moisture in the top 10-cm soil depth for alpine tundra, 

wet tundra, and boreal forest sites where we used the data from the sites for model optimization 

(Juncher Jørgensen et al. 2015; D’Imperio et al. 2017; Dinsmore et al. 2017). In general, soil 

thermal and hydrological modules of TEM simulate Arctic soil temperature and moisture 

reasonably well (Figure 2.6). The simulated soil temperature and moisture correspond well with 

observations, but with a slight under-estimation of temperature and over-estimation of moisture 

during the growing season. 

 

 

 

Figure 2.6 Model-data comparison of top soil temperature and moisture. (a,c, and e) daily top 10-

cm soil temperature in °C and (b, d, and f) daily top 10-cm volumetric soil moisture in % volume 

for (a,b) alpine tundra in 2013, (c,d) wet tundra in 2012, and (e,f) boreal forest in 2012. 
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2.3.3 Simulation for the contemporary period 

Setup 

To make spatially- and temporally-varying estimates of methane emission and 

consumption in the Arctic, we used spatially explicit data of land cover, soil pH and textures, 

meteorology and leaf area index (LAI) (Zhuang et al. 2004). The vegetation and soil texture data 

sets were used to assign vegetation-specific and texture-specific parameters to a grid cell (Melillo 

et al. 1993; Zhuang et al. 2003). The soil-water pH data set was used to estimate methane 

production across the study region (Carter and Scholes 2000). Meteorological inputs were derived 

from historical air temperature, precipitation, vapor pressure, and cloudiness from gridded CRU 

time-series data, version 4.01 (Harris et al. 2014). We used monthly LAI data derived from satellite 

imagery (Myneni et al. 2002) to prescribe LAI for each 0.5° latitude and longitude grid cell. Lastly, 

for PTEM-HAM and XPTEM-XHAM, we added the Northern Circumpolar Soil Carbon Database 

version 2 (NCSCDv2) to estimate permafrost SOC (Hugelius et al. 2013). Permafrost SOC of each 

1-cm of soil layer depth was calculated using the NCSCDv2 data by dividing the permafrost SOC 

data of 1, 2, and 3m-depth equally to different depths. 

The model was applied at the spatial resolution of 0.5° latitude by 0.5° longitude north of 

50°N for both wetland and upland ecosystems with an hourly time-step for microbial dynamics 

and a daily time-step for other processes and modules during 2000-2016. A year of spin-up was 

used for methane equilibrium in soils for TEM and PTEM-HAM, and five years of spin up were 

used for biomass equilibrium in soils for XPTEM-XHAM. Simulated ecosystem-specific methane 

emission from wetlands and consumption from uplands were then area weighted for each grid cell, 

as defined by the static fractional inundation data (Matthews, E., and Fung 1987). 

 

Model-data comparison 

i. Site-level 

We compared our model results with data from 46 in-situ measurements organized by 

Emmerton et al. (2014) and Lau et al. (2015) (Table 2.6) (Emmerton et al. 2014; Lau et al. 2015). 

Specifically, Emmerton et al. (2014) summarized methane fluxes measured in high-, low- and sub-

Arctic tundra for a portion of the northern growing season (May-October). Fluxes were organized 

by chamber and eddy covariance measurements and by terrestrial sites predominantly emitting or 

consuming methane. Lau et al. (2015) summarized methane emission and consumption in the 
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northern circumpolar permafrost region, organized by soil pH, moisture, temperature, SOC, and 

vegetation types for field measurements only. Due to a possible mismatch of soil and vegetation 

properties, and wetland distribution of grid cells between model and observation, we compared 

observed fluxes with simulated fluxes averaged over the growing season from 2000 to 2016 within 

two adjacent grid cells (1°×1°) of the observation. 

 

ii. Regional-level 

We compared model simulations of three regions with methane emission (Alaska, Hudson Bay 

Lowlands, West Siberian Lowlands) and two regions with consumption (Northeast and West 

Greenland) (Table 2.7). Regional estimates of methane consumption were calculated by 

extrapolating the measured consumption from fields to a regional level after considering the 

heterogeneity of land ecosystems (Juncher Jørgensen et al. 2015; D’Imperio et al. 2017). Regional 

estimates of methane emission of previous studies were calculated by combining field 

measurements with an atmospheric inversion (Bloom et al. 2010; Bohn et al. 2015; Miller et al. 

2016). 

 

iii. Pan-Arctic level 

We compared the simulated net regional methane emission with results from a top-down 

inversion system, CarbonTracker-CH4. CarbonTracker-CH4 estimated anthropogenic and natural 

methane emission from 2000 through 2010 north of 50°N (Bruhwiler et al. 2014). To produce 

posterior flux estimates, CarbonTracker-CH4 uses the ensemble Kalman smoother described by 

Peters et al. (2005) (Peters et al. 2005), and the TM5 transport model with driving meteorology 

from the European Centre for Medium-Range Weather Forecasting (ECMWF) (Krol et al. 2005). 

Air samples from 88 surface flask-air methane measurements from NOAA’s cooperative global 

air sampling and tall tower networks were used to constrain the flux estimates. Measurements of 

methane from flask-air samples collected from light aircraft were used to evaluate the inversion 

results. 
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Table 2.6 Summary table of in-situ wetland methane emission and upland methane consumption 

measured in the Arctic from Emmerton et al. (2014) (Emmerton et al. 2014) and Lau et al. 

(2015) (Lau et al. 2015). 

 

Wetlands 

No

. 

Location Latitud

e () 

Longitud

e 

() 

Emission 

Flux (mg m-

2 day-1) 

Standard 

Deviation 

(mg m-2 

day-1) 

References 

1 James Bay, 

CA 

51.3 -80.3 34.0 18.0 Roulet et al., 

1994, Moore et 

al., 1994 

2 Hudson Bay 

lowlands, CA 

53.0 -90.0 40.8 16.3 Picket-Heaps 

2011 

3 Schefferville, 

CA 

54.5 -66.5 30.0 12.0 Bubier, 1995, 

Adamsen and 

King, 1993 

4 Churchill, 

CA 

58.5 -94.1 54.0 21.6 Roulet et al., 

1994, Moore et 

al., 1994 

5 Bethel, US 60.5 -161.5 58.0 28.0 Bartlett et al., 

1992, Fan et al., 

1992 

6 Daring Lake, 

CA 

64.5 -111.4 62.0 24.8 Wilson and 

Humphreys, 2012 

7 Vorkuta, RU 67.2 63.4 44.0 39.0 Berestovakaya et 

al., 2005, 

Heikkinen et al., 

2002a 

8 Yamal, RU 68.1 71.4 58.0 23.2 Eheyer et al., 

2002 
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Table 2.6 continued 

9 Stordalen, SE 68.2 19.0 58.0 32.0 Oquiest and 

Svensson, 2002 

10 Toolik, US 68.4 -149.4 41.5 36.5 King et al., 1998 

11 Flakkerhuk, 

Disko Island, 

GL 

69.0 -53.0 1.6 1.0 Johansen et al., 

2011 

12 Kaamanen, 

FI 

69.1 27.2 48.5 20.0 Corradi et al., 

2005 

13 Cherskii, RU 69.4 161.2 223.0 58.0 Nakano et al., 

2000 

14 Indigirka, RU 70.5 147.3 83.0 20.0 Parmentier et al., 

2011 

15 Barrow, US 71.2 -156.4 37.0 7.3 Lara et al., 2012, 

Sturtevant et al., 

2012 

16 Tiski, RU 71.3 130.0 23.0 9.2 Nakano et al., 

2000 

17 Lena Delta, 

RU 

72.2 126.3 20.5 10.5 Sachs et al., 2008 

18 Northern RU 72.5 141.5 39.1 39.0 Christensen et al., 

1995 

19 Zackenberg 

Valley, GL 

74.2 -21.0 26.5 5.5 Mastepanov 

2008, 

Christensen 2000 

20 Zackenberg, 

GL 

74.3 -20.3 103.0 35.5 Strom et al., 2012 
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Table 2.6 continued 

21 Alexandra 

Fjord, 

Ellesmere 

Island, CA 

78.5 -75.6 1.5 6.4 Brummell et al., 

2012 

22 Ny-Ålesund, 

Svalbard 

79.0 12.0 45.5 0.6 Adachi et al., 

2006 

23 Northern RU 72.5 141.5 39.0 39.0 Sachs et al., 

2008 

24 Alaska, US 69.0 -152.5 27.0 20.0 Morrissey and 

Livingston, 

1992 

25 Ellesmere I., 

CA 

82.0 -71.2 0.7 0.5 Emmerton et al., 

2014 

26 Saskatchewan

, CA 

53.8 -104.6 189.2 34.7 Sellers et al., 

1997 

27 Manitoba, CA 55.9 -98.4 94.1 89.9 Seller et al., 

1997 

28 Poikovsky 

Bog, RU 

56.9 82.9 173.9 157.7 Glagolev et al., 

2011 

29 Poikovsky 

Mire, RU 

56.9 82.9 195.2 180.7 Glagolev et al., 

2011 

30 Khanty-

Mansijsk, RU 

60.9 68.7 78.6 47.1 Glagolev et al., 

2011 

Uplands 

No

. 

Location Latitud

e 

Longitud

e 

Consumptio

n Flux (mg 

m-2 day-1) 

Standard 

Deviation 

(mg m-2 

day-1) 

References 
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Table 2.6 continued 

1 Moscow, 

Puschino 

54.5 37.37 0.31 0.1 Kizilova et al., 

2013 

2 Lipetsk, 

Danki 

54.0 37.31 0.48 0.18 Kizilova et al., 

2013 

3 Schefferville, 

CA 

54.5 -66.5 3.0 1.2 Bubier, 1995 

4 Bonanza 

Creek, 

Alaska, US 

64.5 -148.2 0.2 0.2 Whalen et al., 

1992 

5 Stordalen, SE 68.2 19.0 3.0 2.0 Jackowicz-

Korczynski et 

al., 2010 

6 Flakkerhuk, 

Disko Island, 

GL 

69.0 -53.0 0.6 0.5 Johansen et al., 

2011 

7 Lena River 

Delta, RU 

72.2 126.3 1.7 0.7 Liebner et al., 

2011 

8 Zackenberg 

Valley, GL 

74.2 -21.0 0.02 0.01 Christensen 

2000, 

Christensen 2012 

9 Zackenberg, 

GL 

74.3 -20.3 0.3 0.1 Strӧm et al., 

2012 

10 Okse Bay, 

Ellesmere 

Island, CA 

77.8 -87.4 0.9 0.8 Brummell et al., 

2014 

11 Alexandra 

Fjord, 

Ellesmere 

Island, CA 

78.5 -75.5 4.5 2.0 Brummell et al., 

2012 
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Table 2.6 continued 

12 Ny-Ålesund, 

Svalbard 

79.0 12.0 2.4 1.7 Adachi et al., 

2006 

13 Expedition 

Fjord, Axel 

Heiberg 

Island, CA 

79.2 -90.5 0.2 0.0 Allan 2014, 

Stackhouse 

2016, Lau 2016 

14 Patterson 

River, 

Ellesmere 

Island, CA 

82.4 -63.5 0.2 0.0 Brummell et al., 

2014 

15 Ellesmere I., 

CA 

80.0 -69.0 0.6 0.2 Lamb et al., 

2011, Stewart et 

al., 2012 

16 Ellesmere I., 

CA 

82.0 -71.2 1.4 0.6 Emmerton et al., 

2014 
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Table 2.7  Summary table of observed regional estimation of net methane flux. 

 

Region Latitude Longitude Net methane 

flux (TgCH4yr-

1) 

Methods References 

Upland 

NE Greenland 74 to 81 -30 to -15 1.3 ×10-3 Field Study Jørgensen et al., 

2015 

W Greenland 69 to 70 -52 to -55 15 ×10-9 Field Study D’Imperio et 

al., 2016 

Wetland 

Hudson Bay 

Lowland 

47 to 60 -100 to -80 3.5 – 6.5 Field Study 

and 

Inversion 

Bloom et al., 

2010 

West Siberia 54 to 70 65 to 85 4.8 – 7.2 Field Study 

and 

Inversion 

Bohn et al., 

2015 

Alaska 50 to 75 -160 to -

120 

1.48 – 2.0 Field Study 

and 

Inversion 

Miller et al., 

2016 
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Sensitivity test for XPTEM-XHAM of contemporary period 

We varied a transient wetland distribution using satellite-driven Surface WAter Microwave 

Product Series- Global Lakes and Wetlands Database (SWAMPS-GLWD) during 2000-2012 for 

our sensitivity test (Poulter et al. 2017). We also conducted 8 sensitivity tests of wetland emission 

and 6 tests of upland consumption to changes in meteorology and substrate inputs. Specifically, 

we altered air temperature by ± 3°C, water table depth by ± 30 cm, and soil moisture, atmospheric 

methane abundance, permafrost SOC, and NPP by ± 30%, uniformly for each grid cell, while 

maintaining all other variables at their default XPTEM-XHAM values. 

 

 

Examples of seasonal changes in MICbiomass in soil columns 

Figure 2.7 shows an example of seasonal changes in MICbiomass in wetland and upland 

systems at four soil depths. The simulated MICbiomass of MG and HAM are in a reasonable range 

of previous studies (Conrad 2007). The seasonal maximum of MICbiomass of MG and HAM are one 

to two months lagged behind the maximum of soil temperature (figure 2.7a), which extends the 

period of methane emission and consumption. 

In a wetland system, MICbiomass of MG is higher at 50 and 100 cm depths (supplementary 

figure 6a), where the combined effects of soil temperature, moisture, pH, redox potential, and 

organic matter contents are optimal for methanogen (equation 2.14a). In an upland system, 

MICbiomass of HAM is highest at 10 cm depth and is negligible at 50, 100, and 200 cm depths due 

to the substrate depletion in deeper soils (figure 2.7b). The main energy source of HAM – methane 

and oxygen, mainly comes from the atmosphere, which reduces in concentration with depth as a 

result of diffusivity. The MICbiomass of HAM at deeper soils are thus negligible because most 

atmospheric methane is consumed by HAM at top soil layers (equation 2.14b).  
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Figure 2.7 Seasonality of active microbial biomass for four soil depths. Changes in active 

microbial biomass (nmolbioC Lsoil
-1) of (a) methanogens in wetlands in a boreal forest in 2012 

(Sellers et al. 1997) and (b) HAM in uplands in a dry tundra in 2013-2015 (D’Imperio et al. 

2017) at 10, 50, 100, and 200 cm soil depths. 
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2.3.4 Simulation for future projection 

Setup 

From 2017 to 2100, we used the Intergovernmental Panel on Climate Change (IPCC) future 

climate scenarios from Representative Concentration Pathways (RCPs) climate forcing data sets, 

RCP 2.6, RCP 4.5, and RCP 8.5. RCPs 2.6, 4.5 and 8.5 are climate projections with a possible 

range of radiative forcing values of 2.6, 4.5 and 8.5 W m−2, respectively, in the year 2100 

(Meinshausen et al. 2011). Since RCP data sets did not provide water vapor pressure data, we used 

the specific humidity and sea level air pressure from the RCP data sets and elevation of surface to 

estimate the monthly surface vapor pressure (Seinfeld et al. 1998). Under those scenarios, the 

global climate was simulated with Hadley Centre Coupled Model version 3 at a 0.5° spatial 

resolution. Transient atmospheric methane data were obtained by linearly interpolating the decadal 

data for these future projections. Spatial data of vegetation, soil texture, soil pH, and LAI used in 

the 21st century were the same as in the simulation for the contemporary period. Models were then 

applied at a spatial resolution of 0.5° latitude by 0.5° longitude north of 50°N for both wetland and 

upland ecosystems from 2017 to 2100. Our simulation showed the largest increase in soil 

temperature and moisture for RCP 8.5 followed by RCP 4.5 and 2.6, but the soil moisture increase 

was not distinct (Figure 2.8).  
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Figure 2.8 Inter-annual variability of soil temperature and moisture and atmospheric methane 

abundance during 2017 – 2100. Annual averaged estimates of pan-arctic (a) top 10-cm soil 

temperature in °C, (b) top 10-cm soil moisture in % volume, and (c) atmospheric methane 

abundance ([CH4]air) in ppb using RCP 2.6 (sky blue), RCP 4.5 (green), and RCP 8.5 (dark red) 

north of 50°N. 
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Microbial physiology 

To elucidate effects of microbial physiological responses of MG and HAM to temperature 

increase, we conducted sensitivity tests by setting mE as a function of temperature in Equation 2.19. 

 

Sensitivity test for XPTEM-XHAM for future projections 

We used a static inundation map for our default simulation (Matthews, E., and Fung 1987) 

but applied the transient wetland inundation fraction data by setting the initial inundation fraction 

same as SWAMPS-GLWD but varying the seasonal and inter-annual fraction of each grid cell 

using normalized changes in the fraction simulated by the CLM 5.0 SSP3-7 deforestation scenario 

for a sensitivity test (Lawrence et al. 2018). 

We acknowledge that different model structures and temperature sensitivity among models 

may cause potential biases in the projected methane emission as temperature increase (Xu et al. 

2016). Thus, we used various Q10 of methanogenesis and methanotrophy for our sensitivity test of 

XPTEM-XHAM for RCP 8.5 scenarios. We referred the temperature sensitivity test of CLM4Me 

(Riley et al. 2011) and varied the Q10 of methane production to 2, 3, and 4 with reference 

temperature of 3 C for low, medium, and high setups, respectively. The Q10 of methane oxidation 

varied to 1, 2, and 3 with reference temperature of 5C for low, medium, and high setups, 

respectively, which is smaller than Q10 of methane production but still is in a range of observation 

(Lau et al. 2015). Furthermore, to clarify the effect of projected increase in [CH4]atm from 1.8 to 

3.8 ppm for RCP 8.5 scenario (Figure 2.8), we conducted additional simulation where we keep 

[CH4]atm to be same as the contemporary level, 1.8 ppm.  

 

Importance of Microbial dynamics of LAM 

We first need to acknowledge the limitation of observation data to optimize methane 

processes in wetlands. Most bottom-up methane models, including ours, use observed net wetland 

methane emissions to optimize methane production by MG and oxidation by LAM where the 

fraction of each is uncertain (Xu et al. 2016). Since methane oxidation by LAM is highly dependent 

on methane emission by MG due to its requirement of high methane concentrations (> 600ppm) 

for survival and growth (Baani and Liesack 2008), we assume that the observed net wetland 

methane emissions are mainly controlled by microbial dynamics of MG. 
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However, to clarify the role of LAM in wetland methane emission for both contemporary 

period and future projection, we ran additional simulations by adding microbial dynamics of LAM 

into XPTEM-XHAM. In specific, the methane oxidation and microbial biomass changes for LAM 

were simulated using Equations 2.13b and 2.14b but we set the Michaelis-Menten constant (kCH4) 

for LAM to be 5 µM (Equation 2.5), instead of 0.11 µM for HAM (Equation 2.9). For LAM 

physiology, microbial growth efficiency (ɛ) of LAM is set to be 0.5, same as HAM, and 

maintenance energy (mE) exponentially increases, same as MG and HAM (Equation 2.19) 

(Trimmer et al. 2015; Tijhuis et al. 1993). 

The results show that simulations with microbial dynamics of LAM for contemporary 

period in 2000-2016 are within the uncertainty range of the simulations without LAM microbial 

dynamics, reflecting the minor role of LAM MICbiomass in current wetland methane emissions 

(Figure 2.9a). For with and without physiology simulations of RCP 8.5 scenario, the wetland 

methane emissions may decrease by ~5 Tgyr-1 by 2100 after LAM microbial dynamics are 

included, although the difference is within the uncertainty ranges (Figure 2.9b). Thus, LAM 

microbial dynamics have a limited contribution to current wetland methane dynamics but may 

have a potential to decrease wetland emissions due to its increase in MICbiomass in a warmer Arctic.  

To better constrain the methane pathways in Arctic wetlands, more observations of 

subsurface vertical processes using isotopic labeling analysis and inhibitor techniques are 

necessary (Pedersen et al. 2018). The future study shall factor the effects of diverse vertical 

methane pathways, including LAM microbial dynamics and physiology, when more data are 

available. 
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Figure 2.9 Effects of microbial dynamics of LAM to wetland methane emission for 

contemporary period and RCP 8.5 during 2017-2100 north of 50°N. Annual estimates of pan-

Arctic net methane emission for XPTEM-XHAM for (a) contemporary period in 2000-2016 (b) 

RCP 8.5 scenario in 2017-2100 without varying mE (blue), XPTEM-XHAM with physiological 

responses of MG and HAM to temperature change (skyblue), and sensitivity tests of varying 

microbial dynamics of LAM (red and yellow represent with and without varying mE, 

respectively). The shaded error bars represent one standard deviation of model results 

determined by varying the optimized parameters from ensemble simulations. 
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2.4 Results 

Our simulations during 2000-2016 show the effects of permafrost SOC and microbial 

dynamics on wetland methane emissions (Figures 2.10-15 and Table 2.8). Compared with PTEM-

HAM, TEM estimates larger wetland methane emissions in the low-Arctic (37.70 vs. 26.83 

TgCH4yr-1) but smaller emissions in the high-Arctic (3.73 vs. 6.76 TgCH4yr-1) (Fig. 2.10a). TEM 

simulates higher emissions in the low-Arctic as its parameterization on substrate depends on NPP 

only, which is higher in the low-Arctic (Figure 2.13c). For PTEM-HAM, methane emission is 

based on NPP and permafrost SOC, with more prevalent permafrost SOC in the high-Arctic 

(Extended Data  

Figure 2.13d). Compared to PTEM-HAM, XPTEM-XHAM simulates larger methane wetland 

emissions in the low-Arctic (32.60 TgCH4yr-1) due to high MICbiomass of MG that persists late into 

the growing season, extending the period of methane emissions (Figure 2.11) (Segers 1998). 

Comparing XPTEM-XHAM to TEM results, we more than double the upland methane sink 

by including microbially dynamic HAM (Figure 2.10b). TEM estimates upland sinks of 4.15 

TgCH4yr-1 north of 50°N. After considering HAM and microbial dynamics, upland sinks for 

PTEM-HAM and XPTEM-XHAM increase to 6.14 and 9.52 TgCH4yr-1, respectively, consistent 

for both the low- and high-Arctic. This additional ~5.5 TgCH4yr-1 has not been accounted for in 

most current process-based methane models that do not consider microbial dynamics of HAM 

(McGuire et al. 2018; Koven et al. 2011; Lawrence et al. 2015). 

By integrating wetland emission and upland consumption, net Arctic methane emission of 

XPTEM-XHAM and PTEM-HAM are closer to posterior fluxes estimated by an observation-

based inversion, CarbonTracker-CH4 (Figure 2.10c) (Bruhwiler et al. 2014). Starting with a prior 

estimate of 35 ± 10 TgCH4yr-1 for wetland emissions north of 50°N, CarbonTracker-CH4 reduced 

net emission to 26 ± 5 TgCH4yr-1 during its optimization (Table 2.8). Our estimates of increased 

upland methane sinks are equivalent to at least half of the difference between prior and posterior 

estimates from the inversion (Bruhwiler et al. 2014; Saunois et al. 2016). 

During 2000-2012, our XPTEM-XHAM sensitivity test using time-varying inundation data 

simulates less Arctic net methane emission due to smaller annual inundation fraction in SWAMPS-

GLWD compared to the static map north of 50°N (Figure 2.16-17) (Matthews, E., and Fung 1987; 

Poulter et al. 2017). Additional sensitivity tests to meteorological and substrate changes show that 
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wetland emission is sensitive to temperature, NPP, permafrost SOC, and water table depth, and 

upland consumption is sensitive to temperature, soil moisture, and [CH4]atm (Figure 2.18). 

 

 

 

 

 

Figure 2.10 Annual estimates of the Arctic methane budget by three models for 2000-2016. 

Annual estimates of (a) wetland methane emission, (b) upland methane consumption, and (c) net 

methane emission in TgCH4yr-1 averaged over 2000-2016 for TEM (red), PTEM-HAM (yellow), 

and XPTEM-XHAM (blue) for the pan-Arctic region (north of 50°N), including the low-Arctic 

between 50–65°N and high-Arctic north of 65°N. The error bars represent one standard deviation 

of TEM, PTEM-HAM, and XPTEM-XHAM determined by varying the optimized parameters 

from ensemble simulations. The top-down inversion in panel (c) (grey) represents posterior 

estimates of mean and one standard deviation of net wetland methane fluxes by CarbonTracker-

CH4 in 2000-2010. 
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Table 2.8 Annual mean wetland methane emission, upland methane consumption, and net 

methane emission (TgCH4yr-1) with one standard deviation in 2000 – 2016 for low-Arctic (50-

65 °N), high-Arctic (>65°N), and pan-Arctic (>50°N) estimated by TEM, PTEM-HAM, and 

XPTEM-XHAM. 

 

 
Emission 

(TgCH4yr-1) 

Consumption 

(TgCH4yr-1) 

Net Emission 

(TgCH4yr-1) 

TEM 

Low-Arctic 37.70 ± 1.99 3.12 ± 0.16 34.58 ± 1.99 

High-Arctic 3.73 ± 0.60 1.04 ± 0.05 2.69 ± 0.60 

Pan-Arctic 41.43 ± 2.59 4.15 ± 0.21 37.27 ± 2.59 

PTEM-HAM 

Low-Arctic 26.83 ± 2.08 3.12 ± 0.23 23.00 ± 2.08 

High-Arctic 6.76 ± 1.05 1.04 ± 0.15 4.44 ± 1.05 

Pan-Arctic 33.59 ± 3.13 4.15 ± 0.38 27.44 ± 3.13 

XPTEM-

XHAM 

Low-Arctic 32.60 ± 2.03 6.19 ± 0.34 26.41 ± 2.03 

High-Arctic 6.22 ± 1.00 3.33 ± 0.25 2.89 ± 1.00 

Pan-Arctic 38.82 ± 3.03 9.52 ± 0.59 29.3 ± 3.03 
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Figure 2.11 Pan-Arctic monthly mean methane fluxes for XPTEM-XHAM and PTEM-HAM 

from 2000-2016 north of 50°N. Estimates of pan-arctic (a,c) monthly wetland methane emission 

and (b,d) monthly upland methane consumption in mg m-2 day-1 for (a,b) XPTEM-XHAM and 

(c,d) PTEM-HAM model. The blue line is monthly averages over 2000-2016, and grey lines 

represent values of each year. 
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Figure 2.12 Inter-annual variability of methane fluxes from 2000 – 2016 north of 50°N. (Left) 

Annual estimates of pan-arctic (a) wetland methane emission, (b) upland methane consumption, 

and (c) net methane emission for XPTEM-XHAM (blue line), PTEM-HAM (yellow line), and 

TEM (red line) in TgCH4yr-1 from 2000-2016. The shaded area represents one standard deviation 

of models determined by varying the optimized parameters. (Right) Mean and one standard 

deviation averaged over the simulation period for each metric are given by the bars. Panel (c) 

additionally shows mean and one standard deviation of previous estimates of net methane 

emission estimated by top-down inversions (times symbol) by the bars.   



 

 

73 

 

 

 

Figure 2.13 Spatial variability of soil and vegetation properties north of 50°N. (a) annual top 10-

cm soil temperature in °C, (b) annual top 10-cm soil moisture in % volume, (c) monthly net 

primary productivity in gC m-2 month-1, and (d) permafrost SOC stored in the top 3-m in kg m-2 

(Hugelius et al. 2013; Schuur et al. 2015). The soil temperature, moisture, and net primary 

productivity were averaged over the contemporary period during 2000-2016. The dotted 

longitudinal lines are at 30° intervals, and the latitudinal line is at 65°N. 
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Figure 2.14 Inter-annual variability of top soil temperature and moisture. Estimates of pan-arctic 

(a) annual top 10-cm soil temperature in °C and (b) annual top 10-cm soil moisture in % volume 

for 2000-2016. 
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Figure 2.15 Spatial variability of methane fluxes north of 50°N. (a-b) Spatial variability of 

annual wetland methane emission (TgCH4yr-1) averaged over (a) 2000-2016 and (b) RCP 8.5 

during 2017-2100 for XPTEM-XHAM model. (c-d) Spatial variability of annual upland methane 

consumption averaged over (c) 2000-2016 and (d) RCP 8.5 during 2017-2100 north of 50°N for 

XPTEM-XHAM model. The dotted longitudinal lines are at 30° intervals, and the latitudinal line 

is at 65°N.  
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Figure 2.16 Inter-annual variability of methane fluxes using time-varying inundation fraction 

from 2000 – 2012 north of 50°N. Annual estimates of pan-arctic (a) net methane emission, (b) 

wetland methane emission, and (c) upland methane consumption for XPTEM-XHAM model 

using static inundation fraction (Matthews, E., and Fung 1987) (blue) and time-varying 

inundation fraction from SWAMPS-GLWD (Poulter et al. 2017) (green) in TgCH4yr-1. The 

shaded area represents one standard deviation determined by varying the optimized parameters. 
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Figure 2.17 Monthly averaged time-varying and static inundated area north of 50°N. Monthly 

inundated area from time-varying (SWAMPTS-GLWD (Poulter et al. 2017)) and a static 

estimates (Matthews&Fung, 1987 (Matthews, E., and Fung 1987)) in km2 from 2000 – 2012. 
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Figure 2.18 Sensitivity test of methane emission and consumption for XPTEM-XHAM. (a) 

Changes in pan-arctic wetland methane emission relative to a default simulation after varying 

temperature, water table, NPP, and permafrost SOC. (b) Changes in pan-arctic upland methane 

consumption relative to a default simulation after varying temperature, soil moisture, and 

atmospheric methane abundance ([CH4]atm). 
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We validated the magnitude and spatial variability of three models using site-level and 

regional observations. In-situ measurements from 46 flux observation sites confirm that XPTEM-

XHAM reproduces both methane emission and consumption (R2 of 0.65 and 0.87 and RMSE of 

38.21 and 0.52 mgm-2day-1 for emission and consumption, respectively) (Figure 2.20) (Lau et al. 

2015; Emmerton et al. 2014). Compared to XPTEM-XHAM, RMSEs in PTEM-HAM and TEM 

were 10% and 60% larger, respectively, on average for all sites. We also compared observed and 

simulated regional net methane emission for three regions for methane emission (Alaska, Hudson 

Bay Lowlands, West Siberian Lowlands) and two for consumption (Northeast and West 

Greenland) (Figure 2.19 and Table 2.9) (D’Imperio et al. 2017; Juncher Jørgensen et al. 2015; 

Bloom et al. 2010; Bohn et al. 2015; Miller et al. 2016). XPTEM-XHAM generally matched 

emission estimates for the West Siberian Lowlands and consumption in upland West Greenland, 

whereas PTEM-XHAM and TEM agreed poorly. All three models estimate less methane emissions 

from Alaska than observed (Miller et al. 2016), possibly because we did not consider methane 

emissions from aquatic sources such as thermokarst lakes (Sepulveda-Jauregui et al. 2015). 

 

 

 

Figure 2.19 Spatial variability of annual net methane flux north of 50°N for XPTEM-XHAM. 

The net methane fluxes are in TgCH4yr-1, positive for emission and negative for consumption, (a) 

averaged for the contemporary period during 2000-2016, and (b) difference between 2086-2100 

for RCP 8.5 and 2000-2016. The dotted longitudes are at 30° intervals, and the dotted latitude is 

at 65°N. Panel (a) additionally shows five regions in black boxes used for regional model-data 

comparisons. 
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Figure 2.20 Model-data comparison of methane fluxes using site-level data. Comparison of (a) 

wetland methane emission and (b) upland methane consumption of data from 46 in-situ 

measurements (supplementary table 5) with simulation results from XPTEM-XHAM (blue), 

PTEM-HAM (yellow), and TEM (red). 
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Table 2.9 Model-data comparison of regional estimation of net methane flux with one standard 

deviation (TgCH4yr-1). 

 

 Observation XPTEM-XHAM PTEM-HAM TEM 

Upland  

1 NE Greenland 1.3 ×10-3  1.0×10-3 1.1×10-3 0.2×10-3 

2 W Greenland 15 ×10-9  13.5×10-9 7.5×10-9 7.5×10-9 

Wetland 

3 
Hudson Bay 

Lowland 
3.5 – 6.5  4.72 ± 0.21 3.97 ± 0.22 4.23 ± 0.20 

4 West Siberia 4.8 – 7.2  6.69 ± 0.34 7.46 ± 0.22 8.03 ± 0.25 

5 Alaska 1.48 – 2.0  0.88 ± 0.06 1.18 ± 0.03 0.66 ± 0.02 
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Our future simulation shows that both PTEM-HAM and XPTEM-XHAM project 70 and 

100% increase in wetland methane emissions by 2100 for RCP 8.5, respectively, due to increased 

temperature and more accessible permafrost SOC (Figure 2.19 and 2.21a, and 2.22). This increase 

is larger than the 59% increase predicted by TEM. However, the increase in wetland emission is 

mostly compensated by an increase in upland consumption by 2100 (22 and 35 TgCH4yr-1 for 

PTEM-HAM and XPTEM-XHAM, respectively) due to increased HAM activity at increased 

temperature and [CH4]atm (Figure 2.23). This leads to a reduced increase in net methane emission 

by 2100 for XPTEM-XHAM and PTEM-HAM (35 TgCH4yr-1) than TEM (55 TgCH4yr-1) and 

other previous projections (40 to 120 TgCH4yr-1) (Schuur et al. 2013; Lawrence et al. 2015; Koven 

et al. 2011). The net methane emission increase is less for RCP 2.6 and 4.5 than for RCP 8.5 in all 

three models (Figure 2.21).  

Furthermore, our simulation of XPTEM-XHAM with microbial physiology of MG and 

HAM shows that net Arctic methane emission can potentially decrease in the future (Figure 2.21b 

and 2.24). Increases in both methane production and oxidation are limited by decreases in 

MICbiomass growth for MG and HAM, respectively, due to an exponential increase in mE (equation 

2.19) (Hagerty et al. 2014; Tijhuis et al. 1993). As mE increases with temperature, growth in 

MICbiomass slows more substantially for MG, because the ɛ of MG (0.05) is a factor of 10 smaller 

than the ɛ of HAM (0.5) (Von Stockar and Liu 1999; Trimmer et al. 2015). As a result, in our 

simulation, HAM survive better in the warmer Arctic due to their physiological response. 

Our sensitivity test of XPTEM-XHAM using time-varying inundation simulated by CLM 

5.0 does not change the projection significantly as the simulated inundation fraction increases only 

5% between 2017-2100 (Figure 2.26) (Lawrence et al. 2018). XPTEM-XHAM also shows a 

sensitivity of net methane emissions to both temperature (5 TgCH4yr-1) and [CH4]atm (10 TgCH4yr-

1) by 2100 for RCP 8.5 scenario (Figure 2.25).  
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Figure 2.21 Projected annual net Arctic methane emissions from 2016 to 2100. (Left) Annual 

estimates of pan-arctic net methane emission for (a) XPTEM-XHAM without varying mE 

(baseline, blue), PTEM-HAM (yellow), and TEM (red), and (b) XPTEM-XHAM baseline (blue; 

same as in (a)), XPTEM-XHAM with physiological responses of MG and HAM to temperature 

change (green) based on RCP 2.6 (dotted), RCP 4.5 (dashed), and RCP 8.5 (solid). The shaded 

error bars represent one standard deviation of TEM, PTEM-HAM, and XPTEM-XHAM 

determined by varying the optimized parameters from ensemble simulations. (Right) Mean 

(symbols) and one standard deviation (bars) in 2100 for each metric. Panel (a) additionally 

shows mean (*) and one standard deviation (bars) of previous estimates of net methane emission 

estimated by process-based methane models (Lawrence et al. 2015; Koven et al. 2011; Schuur et 

al. 2013). 
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Figure 2.22 Spatial variability of top soil temperature and moisture averaged over 2017-2100 for 

RCP 8.5 north of 50°N. (a) Averaged annual top 10-cm soil temperature in °C and (b) averaged 

annual top 10-cm soil moisture in % volume. The dotted longitudinal lines are at 30° intervals, 

and the latitudinal line is at 65°N. 
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Figure 2.23 Inter-annual variability of methane fluxes during 2017 – 2100. (Left) Annual pan-

arctic estimates of (a) wetland methane emission and (b) upland methane consumption for 

XPTEM-XHAM (blue), PTEM-HAM (yellow), and TEM (red) using RCP 2.6 (dotted), RCP 4.5 

(dashed), and RCP 8.5 (solid) north of 50°N. The shaded error bars represent one standard 

deviation of model results determined by varying the optimized parameters from ensemble 

simulations. (Right) Mean (symbols) and one standard deviation (bars) in 2100 for each metric. 

  



 

 

86 

 

 

Figure 2.24 Inter-annual variability of methane fluxes for XPTEM-XHAM with its microbial 

physiology from 2017 – 2100. (Left) Annual estimates of pan-arctic (a) wetland methane 

emission and (b) upland methane consumption for XPTEM-XHAM without varying mE 

(baseline, blue), and XPTEM-XHAM with physiological responses of MG and HAM to 

temperature change with varying mE (green) based on RCP 2.6 (dotted), RCP 4.5 (dashed), and 

RCP 8.5 (solid) north of 50°N. The shaded error bars represent one standard deviation of model 

results determined by varying the optimized parameters from ensemble simulations. (Right) 

Mean (symbols) and one standard deviation (bars) in 2100 for each metric. 
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Figure 2.25 Sensitivity of temperature and atmospheric methane abundance to projections of net 

methane emission for RCP 8.5 during 2017-2100 north of 50°N. Annual estimates of pan-Arctic 

net methane emission for XPTEM-XHAM without varying ɛ and mE (solid blue), XPTEM-

XHAM with physiological responses of MG and HAM to temperature change with varying mE 

(solid green), and sensitivity tests of the two simulations to Q10 changes (dotted, dash-dot, and 

dashed lines for low, medium, and high Q10 setups, respectively) and atmospheric methane 

abundance to stay at 1.8 ppm (circle marker). 
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Figure 2.26 Inter-annual variability of methane fluxes using time-varying inundation fraction 

from 2017 – 2100 north of 50°N. Annual estimates of pan-arctic (a) net methane emission, (b) 

wetland methane emission, and (c) upland methane consumption for XPTEM-XHAM model 

using static inundation fraction (blue) and dynamic inundation fraction (green) in TgCH4yr-1 

using RCP 2.6 (dotted), RCP 4.5 (dashed), and RCP 8.5 (solid). 
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2.5 Discussion and Conclusion 

Our simulation emphasizes that the current understanding of Arctic methane feedback may 

be incomplete (Figure 2.27) (Oh et al. 2016). Previous studies predicted strong positive feedbacks 

between temperature and methane emission due to more accessible SOC from thawing permafrost. 

However, additional negative feedbacks between temperature and HAM may suppress this 

feedback loop. This study also shows we need more field and laboratory experiments to understand 

HAM and MG physiological responses to environmental changes (Christiansen et al. 2015; 

McCalley et al. 2014). 

Although the new model significantly revises estimates of net Arctic methane emission, 

there are processes that current models, including ours, have not considered. We do not capture 

the complex Arctic hydrological and vegetation dynamics (Liljedahl et al. 2016; Nauta et al. 2015), 

which may influence our estimates of both methane production and consumption. We focused on 

terrestrial ecosystems without considering potential large methane emissions from aquatic systems, 

whose magnitude and spatial distribution may change (Sepulveda-Jauregui et al. 2015; Wik et al. 

2016). We used observed wetland methane emissions to optimize methane production and 

oxidation where the fraction of each is uncertain (Segers 1998). More observations of subsurface 

vertical processes using isotopic labeling analysis and inhibitor techniques will better constrain 

future models (Pedersen et al. 2018). 

In conclusion, we show HAM microbial dynamics are an important component of the 

current Arctic methane budget as our estimate more than doubles upland sinks. We also find our 

revised estimates with microbial and permafrost SOC dynamics better match site-level and 

regional observations and observation-based inversions. This model projects a smaller increase of 

net methane emission than previous models by 2100 as the increase in wetland emission due to 

more accessible permafrost SOC is mostly offset by the increase in upland consumption by HAM. 

A potential decrease in future net methane emission is projected after including microbial 

physiology of HAM and MG. This study highlights the need to incorporate more detailed microbial 

dynamics into process-based methane models to better constrain the Arctic methane budget. 
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Figure 2.27 Future arctic methane feedbacks (modified Fig. 5 of Oh et al., 2016 (Oh et al. 

2016)). Previous studies predicted a positive feedback between temperature and methane 

emission (circles 1–2). However, because high-affinity methanotrophs may respond strongly to 

temperature and less strongly to soil moisture due to uncertain arctic hydrology (circles 3–4), this 

feedback loop may be partially suppressed. Moreover, explicit modeling of microbial dynamics 

(circle 5) will facilitate future model developments that include effects of microbial physiology.  
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 A MECHANISTIC WETLAND ISOTOPE MODEL 

IMPROVES UNDERSTANDING OF ATMOSPHERIC CH4 ISOTOPIC 

COMPOSITION 

3.1 Abstract 

To effectively use measurements of δ13C of atmospheric CH4 to constrain emissions of 

CH4 by source sector in atmospheric transport model studies, the spatial and temporal distribution 

of source isotopic signatures must be known. But currently, such information on δ13C of 

CH4 (δ
13C-CH4) emitted by wetlands is limited. Observations show a latitudinal gradient in 

wetland δ13C-CH4 source signatures with heavier values in tropics and lighter values in the boreal 

region. Here we incorporated a carbon isotope-enabled module into an extant biogeochemistry 

model to mechanistically simulate the spatial and temporal variability of global wetland δ13C-CH4. 

The new model explicitly considers isotopic fractionation during methane production, oxidation, 

and transport processes. The model is then parameterized for low and high pH conditions of boreal, 

temperate, and tropical wetland ecosystems using observed data from field studies and 

extrapolated to global wetland ecosystems from 1984 to 2016. We estimate a mean global wetland 

δ13C-CH4 of -60.78‰ with its seasonal and inter-annual variability. We find that the new model 

matches field chamber observations 35% better in terms of RMSE compared to an empirical static 

wetland δ13C-CH4 map. The model also reasonably reproduces the regional heterogeneity of 

wetland δ13C-CH4 in Alaska, consistent with vertical profiles of δ13C-CH4 from NOAA aircraft 

measurements. Furthermore, we show that the latitudinal gradient of atmospheric δ13C-CH4 

simulated by a chemical transport model using the new wetland δ13C-CH4 map reproduces the 

observed latitudinal gradient based on NOAA/INSTAAR global flask-air measurements. We 

believe this study is among the first to use a process-based biogeochemistry model to map the 

global distribution of wetland δ13C-CH4, which will significantly help atmospheric chemistry 

transport models partition global methane emissions from various sources. 

3.2 Introduction 

Methane (CH4) is a powerful greenhouse gas, and its atmospheric abundance ([CH4]atm) has 

increased by about 150% since the 1750s (Etheridge et al. 1998; Dlugokencky et al. 2005). The 
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atmospheric burden is determined by the balance between sources and sinks (Saunois et al. 2016). 

Unlike the steady increase of atmospheric CO2 and N2O, [CH4]atm nearly stabilized from 1998 to 

2006 followed by a rapid increase after 2007 with a growth rate of ~6 ppb/year in 2007-2013 and 

~9 ppb/year in 2014-2018 (http://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/). Especially since 

2007, [CH4]atm has increased while its stable carbon isotopic composition (δ13C-CH4) has shifted 

to significantly more negative values after increasing for 200 years (Nisbet et al. 2019; 

Dlugokencky et al. 2011). Diagnosing the mechanism behind these changes continues to generate 

considerable attention and controversy (Hausmann et al. 2016; Naus et al. 2019; Schaefer et al. 

2016; Schwietzke et al. 2016; Worden et al. 2017). To understand how each sink and source 

contributes to the long-term trends of [CH4]atm and atmospheric δ13C-CH4, diverse atmospheric 

transport models have been developed and applied to this problem (Feinberg et al. 2018; Strode et 

al. 2019). 

The δ13C-CH4 from different source sectors provides additional information on the global 

methane budget in atmospheric transport model studies as CH4 produced from biogenic sources 

are lighter than the CH4 from fossil fuel or biomass burning (Schwietzke et al. 2016; Sherwood et 

al. 2017). However, due to the wide spread of the distribution of δ13C-CH4 in each source sector, 

the spatial and temporal distribution of source isotopic signatures must be known. Among the 

source sectors, wetlands are the largest single sources and have a strong impact on the atmospheric 

δ13C-CH4 (Saunois et al. 2016). But currently, such spatial and temporal information on δ13C-CH4 

emitted by wetlands is limited, and many atmospheric transport modeling studies use a single 

uniform value for δ13C-CH4 from wetlands (Strode et al. 2019). 

Furthermore, recent studies addressed a distinct latitudinal gradient of the δ13C-CH4 from 

wetlands, that the CH4 emitted from Arctic wetlands is much lighter in δ13C-CH4 than from tropics 

(Feinberg et al. 2018). Studies have proposed reasons behind the latitudinal gradients, such as 

differences in communities in CH4 production archaea (methanogens), oxidation by bacteria 

(methanotrophs), abundance in C4 plants in precursor plant materials (Chanton 2005; Fisher et al. 

2017; Nakagawa et al. 2002; Brownlow et al. 2017). A recent study presented the first spatially 

resolved wetland δ13C-CH4 map (Ganesan et al. 2018). However, without identifying the 

mechanisms of the latitudinal gradients, the static map represented an empirical relationship 

between wetland δ13C-CH4 and global soil pH and C4 plant distribution with an abrupt δ13C-CH4 

changes between 40°N and 45°N.  
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Here, we incorporate a carbon isotope module into a biogeochemistry model, Terrestrial 

Ecosystem Model (TEM) (Zhuang et al., 2004), to mechanistically understand δ13C-CH4 from 

global wetlands. The model is then thoroughly validated using extensive site-level and regional 

observation data. We then use the model to understand the mechanisms behind the latitudinal and 

long-term variability of wetland δ13C-CH4. Finally, we applied the model results as inputs for an 

atmospheric transport modeling to understand the effects of spatially and temporally resolved 

wetland isotope map on atmospheric δ13C-CH4, compared to the uniform and static spatially 

resolved map from Ganesan et al. (2018). 

 

3.3 Methods 

The methane dynamics module of TEM simulates methane production, oxidation, and three 

transport processes (diffusion, ebullition and plant-mediated transport) between soil and the 

atmosphere (Liu et al. 2020; Oh et al. 2020; Zhuang et al. 2004, 2013). The new model, referred 

to as isoTEM, explicitly considers four main carbon isotopic fractionations in methane cycling 

processes (Fig. 3.1).  

First, the initial 13C of soil organic carbon (SOC) is determined by the precursor global C3 

and C4 plant distribution (Fig. 3.2) (Still et al. 2003), where C4 vegetation is isotopically heavier 

due to its photosynthetic pathways (Holmes et al. 2014). Second, methane is produced in the 

anaerobic soil zone by two distinct methanogen communities: hydrogenotrophic methanogens 

(HM) use H2 and CO2 and acetoclastic methanogens (AM) use acetate for methane production 

(Horn et al. 2003). The fractional contribution of two methanogen communities is important 

because HM produce isotopically lighter methane than AM (fractionation factor (α) for HM (α HM) 

≈ 0.920-0.970 and for AM (αAM) ≈ 0.960-1.000) (McCalley et al. 2014; Holmes et al. 2015). Thus, 

we conducted a multiple regression analysis between the fraction of both methanogens and the 

main environmental factors, soil carbon, pH, and latitude, using a relatively large dataset from 

Holmes et al., 2014 (Fig. 3.3, and Table 3.1). The regression showed a positive relationship 

between the HM fraction and latitudes with a breakpoint at 60 °N, and a negative relationship 

between the HM fraction and soil pH and total carbon (R2 0.41 and p < 0.001). The 13C of 

produced methane is then calculated using the binary mixing of methane pools of two methanogens. 
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Third, a fraction of CH4 produced by methanogens is oxidized by methanotrophs in aerobic soils 

with preferably oxidized isotopically light CH4 (α for methane oxidation (αMO) ≈ 1.015-1.035) (Le 

Mer and Roger 2001). Lastly, methane is transported to the atmosphere through three processes, 

where ebullition shows negligible fractionation, but diffusion and plant-mediated transport cause 

CH4 to be lighter (α for plant-mediated transport (αTP) ≈ 0.970-1.000, α for diffusion (αTD) ≈ 0.990-

1.000, and α for ebullition (αTE) ≈ 0.995-1.000) (Chanton 2005). The final 13C-CH4 emitted to the 

atmosphere is calculated by the mixing of the methane pools through three transport processes (see 

Section 3.3.1). 

We optimized 6 fractionation factors (αHM, αAM, αMO, αTP, αTD, αTE) for low and high pH conditions 

in boreal, temperate, and tropical wetland ecosystems using observed data from field studies 

(McCalley et al. 2014; Kelly et al. 1992; Burke et al. 1988) and Shuffled Complex Evolution 

optimization (SCE-UA-R) with 10,000 maximum loops per parameter ensemble (Table 3.2-3.4 

and Figure 3.4) (Duan et al. 1993). To quantify the uncertainty in the model simulations, we used 

one standard deviation of model results from 10 ensemble members of the SCE-UA-R 

optimization (see Section 3.3.2). 

We used monthly meteorological inputs of the Gridded Climatic Research Unit (CRU) (Harris et 

al. 2014) to run global wetland simulations from 1984 to 2016 at a spatial resolution of 0.5°×0.5° 

with a 15-year of spin up to stabilize the carbon fractionation processes. Because various wetland 

inundation datasets exist (Melton et al. 2013), we first assumed that every global grid cell is fully 

saturated and set wetland 13C-CH4 values for all grid cells (Fig. 3.5), thus it can be used in 

conjunction with any flux and wetland area dataset for other studies. We then used a static upland 

and wetland inundation for our default simulation (Matthews and Fung, 1987) and conducted a 

sensitivity test using transient inundation data (Poulter et al. 2017) (see Section 3.3.3). 
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Figure 3.1 Main configuration of isoTEM. Bold and dashed lines refer to chemical and transport 

processes, respectively. Precursor C3/C4 plant distribution (C3/C4) and fractionation factors 

related to methane production, oxidation, and transport processes (αHM, αAM, αMO, αTP, αTE, αTD,) 

were added for isoTEM. 
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3.3.1 Model development  

We incorporated carbon isotope module of methane into a process-based biogeochemistry 

model, Terrestrial Ecosystem Model (TEM).  

 

a. Terrestrial Ecosystem Model (TEM) 

TEM is one of commonly used biogeochemistry models and its methane, soil thermal, and 

hydrological dynamics have been evaluated in previous studies (Zhuang et al. 2004, 2013). The 

methane dynamics module of TEM simulates methane production, oxidation, and three transport 

processes between soil and atmosphere. In a wetland system, changes in methane concentrations 

(CM) at depth z and time t (∂CM(z,t)/∂t) are governed by Equation 3.1, where Mp(z,t), Mo(z,t), Rp(z,t), 

and RE(z,t) are methane production, oxidation, plant-mediated transport, and ebullition rates, 

respectively, and ∂FD(z,t)/∂z represents flux divergence due to gaseous and aqueous diffusion.  

 

𝜕𝐶𝑀(𝑧,𝑡)

𝜕𝑡
= 𝑀𝑃(𝑧, 𝑡) − 𝑀𝑂(𝑧, 𝑡) −

𝜕𝐹𝐷(𝑧,𝑡)

𝜕𝑧
− 𝑅𝑃(𝑧, 𝑡) − 𝑅𝐸(𝑧, 𝑡) … Equation 3.1 

 

Methane is produced (MP) in anaerobic soils and is calculated by the product of maximum 

potential production rate (MGO) and limiting functions of substrate, soil temperature, pH, and redox 

potentials (SOM, MST, pH and Rx, respectively) (Equation 3.2). We used limiting factors of pH and 

Rx to consider enzymatic activity and the relative availability of electron acceptors (e.g., O2, NO3
-, 

SO4
-2, Fe+3, Mn+4) for methane production. The limiting function of substrate (f(SOM(z,t)) is mainly 

dependent on soil organic carbon (SOC) derived from vegetation (Net Primary Productivity, NPP), 

where NPP(mon) is monthly NPP (gC m-2 month-1), NPPMAX is ecosystem-specific maximum 

monthly NPP, and f(CDIS(z)) describes the relative availability of organic carbon substrate at depth 

z (Equation 3.3). For the substrate availability, we calculated changes in vegetation carbon using 

atmospheric CO2 concentrations, transient temperature, precipitation, vapor pressure and soil 

texture (Zhuang et al. 2003).  

 

𝑀𝑃,𝑇𝐸𝑀(𝑧, 𝑡) = 𝑀𝐺0𝑓(𝑆𝑂𝑀(𝑧, 𝑡))𝑓(𝑀𝑆𝑇(𝑧, 𝑡))𝑓(𝑝𝐻(𝑧, 𝑡))𝑓(𝑅𝑥(𝑧, 𝑡)) … Equation 3.2 
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𝑓(𝑆𝑂𝑀(𝑧, 𝑡)) = (1 +
𝑁𝑃𝑃(𝑚𝑜𝑛)

𝑁𝑃𝑃𝑚𝑎𝑥
) 𝑓(𝐶𝐷𝐼𝑆(𝑧)) … Equation 3.3 

 

The produced methane diffuses into aerobic soils and is oxidized by methanotrophs, 

calculated by the product of the maximum potential oxidation rate (OMAX) and limiting functions 

of methane concentration, soil temperature, soil moisture, redox potential, nitrogen deposition, 

diffusion limited by high soil moisture, and oxygen concentration (CM, TSOIL, ESM, ROX, NDP, DMS, 

and CO2 respectively) (Equation 3.4). The Michaelis-Menten constant for methane oxidation was 

set to 5 µM (kCH4,LAM) (Equation 3.5). 

 

𝑀𝑂,𝑇𝐸𝑀(𝑧, 𝑡)

= 𝑂𝑀𝐴𝑋𝑓(𝐶𝑀(𝑧, 𝑡))𝑓(𝑇𝑆𝑂𝐼𝐿(𝑧, 𝑡))𝑓(𝐸𝑆𝑀(𝑧, 𝑡))𝐹(𝑅𝑂𝑋(𝑧, 𝑡))𝑓 (𝑁𝑑𝑝(𝑧, 𝑡)) 𝑓(𝐷𝑚𝑠(𝑧, 𝑡))𝑓(𝐶𝑂2(𝑧)) 

… Equation 3.4 

 

𝑓(𝐶𝑀(𝑧, 𝑡)) =
𝐶𝑀(𝑧,𝑡)

𝑘𝐶𝐻4+𝐶𝑀(𝑧,𝑡)
  … Equation 3.5 

 

The residual methane is emitted to the surface through three transport processes. First, 

gaseous and aqueous diffusion (FD) occurs due to concentration gradients of methane (∂CM(z,t)/∂t) 

following Fick’s law through soil pores (Equation 3.6). The molecular diffusion coefficient (D) in 

different soil layers was calculated based on soil texture and soil moisture. We also have a simple 

limitation of temperature on diffusion, that there will be no diffusion when temperature is below 

0 C. Secondly, ebullition (RE) occurs when methane bubble forms (i.e., when CM is greater than 

500 μmol L-1 in saturated soils); CM is multiplied by a constant rate of 1.0 h-1 (Ke) (Equation 3.7). 

Lastly, plant-mediated transport (Rp) occurs through the root systems of some plants that provide 

a direct conduit for methane to the atmosphere, and is functions of rate constant of 0.01 h-1, 

vegetation type, root density, vegetation growth, and soil methane concentrations (Kp, TRveg, fROOT, 

fGROW, and CM, respectively) (Equation 3.8) (Walter and Heimann 2000). Rp depends on ecosystem-

specific plant functional types and increases in a warmer soil due to the increase in vegetation 

growth. In both wetland and upland ecosystems, the soil profile was divided into 1-cm layers, and 
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soil temperature, moisture, and methane dynamics of TEM were simulated at daily time steps 

(Zhuang et al. 2004). 

 

𝐹𝐷(𝑧, 𝑡) = −𝐷(𝑧)
𝜕𝐶𝑀(𝑧,𝑡)

𝜕𝑡
 … Equation 3.6 

 

𝑅𝐸(𝑧, 𝑡) = 𝐾𝑒𝑓(𝐶𝑀(𝑧, 𝑡)) … Equation 3.7 

 

𝑅𝑃(𝑧, 𝑡) = 𝐾𝑃𝑇𝑅𝑣𝑒𝑔𝑓𝑅𝑂𝑂𝑇(𝑧)𝑓𝐺𝑅𝑂𝑊(𝑡)𝐶𝑀(𝑧, 𝑡) … Equation 3.8 

 

 

b. Methane carbon isotope enabled TEM (isoTEM) 

The isoTEM explicitly considers four main carbon isotopic fractionations during methane 

dynamics. First, the initial 13C of soil organic carbon (SOC) is determined by the global C3 and 

C4 vegetation distribution (Still et al., 2003). The initial 13C of soil organic carbon (SOC) is 

determined by the global C3 and C4 vegetation distribution (Still et al., 2003) and is set to -27 and 

-13 ‰ for C3- and C4-only vegetation area. The initial 13C of areas with mixed C3 and C4 

vegetation is determined by the proportion of the vegetation (Fig. 3.2). 

 

 

Figure 3.2 The C4 fraction of the vegetation (Still et al., 2003). 
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Second, methane is produced in the anaerobic soil zone by the two distinct methanogen 

communities: hydrogenotrophic (HM) use H2 and CO2 and acetoclastic methanogens (AM) use 

acetate for methane production (Horn et al., 2003). The fractional contribution of two methanogen 

communities is calculated based on a multiple regression analysis between the fraction of both 

methanogens and the main environmental factors, such as pH, total organic carbon, and latitude, 

using data from Holmes et al. (2015) (Equation 3.9). The regression results show that the fraction 

of HM is positively correlated with latitude with a steep increase at 60 °N (slope of 0.11 and 5.19 

for latitudes below and above 60 °N, respectively) and negatively correlated with pH (slope of -

9.23) and SOC (slope of -0.7) (R2 of 0.41, p < 0.001) (Table 3.1 and Figure 3.3). 

 

𝑓𝐻𝑀 =  

{
 
 

 
 𝑎1 × 𝑙𝑎𝑡 + 𝑏 × 𝑝𝐻 + 𝑐 × 𝑆𝑂𝐶 + 𝑑  

⋯𝑓𝑜𝑟 𝑙𝑎𝑡 < 𝑙𝑎𝑡𝑠𝑡𝑒𝑝
𝑎1 × 𝑙𝑎𝑡 + 𝑎2 × (𝑙𝑎𝑡 − 𝑙𝑎𝑡𝑠𝑡𝑒𝑝) + 𝑏 × 𝑝𝐻 + 𝑐 × 𝑆𝑂𝐶 + 𝑑 

⋯𝑓𝑜𝑟 𝑙𝑎𝑡 > 𝑙𝑎𝑡𝑠𝑡𝑒𝑝

 … Equation 3.9 

 

 

Table 3.1 Coefficients for multiple stepwise regression of the fraction of methanogenic 

community. 

 a1 a2 b c d 

Meaning Latitudinal 

gradient  

Latitudinal 

gradient for  

> 60N 

pH gradient SOC 

gradient 

Intercept 

Value 0.11 5.19 -9.23 -0.7 102.93 

Significance  * 0.05 * 0.05  * 0.05 
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Figure 3.3 Multiple regression results between fraction of hydrogenotrophic methanogens (HM) 

and (a) step-wide latitude, (b) pH, and (c) total soils carbon. 

 

 

The 13C of produced methane by HM and AM both makes methane lighter than the 

initial 13C of SOC and is calculated based on the fractionation factors (αHM≈0.920-0.970, 

αAM≈0.960-1.000) (Equation 3.10). The 13C of produced methane is calculated using the binary 

mixing of methane pools of two methanogens (Equation 3.11). 

 

𝛿13𝐶𝐻4𝑝𝑟𝑜𝑑,𝐻𝑀= 𝛿13𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙−1000×𝑙𝑛(𝛼𝐻𝑀)

𝛿13𝐶𝐻4𝑝𝑟𝑜𝑑,𝐴𝑀= 𝛿13𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙−1000×ln (𝛼𝐴𝑀)
 … Equation 3.10 

 

𝛿13𝐶𝐻4𝑝𝑟𝑜𝑑 = fHM × 𝛿
13𝐶𝐻4𝑝𝑟𝑜𝑑,𝐻𝑀 + (1 − fHM) × 𝛿

13𝐶𝐻4𝑝𝑟𝑜𝑑,𝐴𝑀 … Equation 3.11 

 

Next, methanotrophs oxidize methane in aerobic soils and preferably consume isotopically 

light methane (Le mer and Roger, 2001). Fraction of methane oxidation of total production (fox) is 

calculated by TEM (Equation 3.12), and Methane carbon isotope signatures after methane 

oxidation based on the fractionation of methane oxidation (αMO≈1.015-1.035) (Equation 3.13) 

(Zhang et al. 2016). 

 

𝑓𝑜𝑥 =
𝛿13𝐶𝐻4𝑝𝑟𝑜𝑑−𝛿

13𝐶𝐻4𝑜𝑥𝑖𝑑

(
1

𝛼𝑀𝑂
−1)(𝛿13𝐶𝐻4𝑜𝑥𝑖𝑑+1000)

 … Equation 3.12 
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𝛿13𝐶𝐻4𝑜𝑥𝑖𝑑 =
𝛿13𝐶𝐻4𝑝𝑟𝑜𝑑−1000×𝑓𝑜𝑥(

1

𝛼𝑀𝑂
−1)

𝑓𝑜𝑥(
1

𝛼𝑀𝑂
−1)+1

 … Equation 3.13 

 

Lastly, methane is transported to the atmosphere through three processes (plant-mediated 

transport, diffusion, and ebullition) with different fractionations (αTP≈0.970-1.000, αTD≈0.990-

1.000, αTE≈0.995-1.000, respectively) (Equation 3.14). The final 13C-CH4 emitted to the 

atmosphere is calculated by the mixing of the methane pools through three transport processes 

(Equation 3.15) (Chanton et al., 2005). 

 

𝛿13𝐶𝐻4𝑓𝑖𝑛𝑎𝑙,𝑇𝑃 =  𝛿13𝐶𝑜𝑥𝑖𝑑 − 1000 × 𝑙𝑛(𝛼𝑇𝑃) 

𝛿13𝐶𝐻4𝑓𝑖𝑛𝑎𝑙,𝑇𝐸 =  𝛿13𝐶𝑜𝑥𝑖𝑑 − 1000 × 𝑙𝑛(𝛼𝑇𝐸)  

𝛿13𝐶𝐻4𝑓𝑖𝑛𝑎𝑙,𝑇𝐷 =  𝛿13𝐶𝑜𝑥𝑖𝑑 − 1000 × 𝑙𝑛(𝛼𝑇𝐷) 

… Equation 3.14 

 

𝛿13𝐶𝐻4𝑓𝑖𝑛𝑎𝑙 = 𝑓𝑇𝑃 × 𝛿
13𝐶𝐻4𝑓𝑖𝑛𝑎𝑙,𝑇𝑃 + 𝑓𝑇𝐸 × 𝛿

13𝐶𝐻4𝑓𝑖𝑛𝑎𝑙,𝑇𝐸 + 𝑓𝑇𝐷 × 𝛿
13𝐶𝐻4𝑓𝑖𝑛𝑎𝑙,𝑇𝐷  

… Equation 3.15 

3.3.2 Model optimization 

We optimized 6 fractionation factors (αHM, αAM, αMO, αTP, αTD, αTE) for low and high pH 

conditions in boreal, temperate, and tropical wetland ecosystems. All other parameters were set 

the same as in Liu et al. (2020). To optimize these parameters, we first collected observation data 

from six sites representing each ecosystem (Table 3.2-3.4) (Burke, Barber and Sackett, 1988; Kelly 

set al., 1992; McCalley et al., 2014a). Besides the observed meteorology from field sites, we also 

used CRU time-series data version 4.01 to fill missing meteorological inputs (Harris et al. 2014). 

We then used the Shuffled Complex Evolution Approach in R language (SCE-UA-R) to minimize 

the difference between simulated and observed methane emission and consumption rates (Duan et 

al. 1993). For each site, 10 ensembles were run using SCE-UA-R with 10,000 maximum loops per 

parameter ensemble, and all of them reached steady state before the end of the loops. Our 

optimization results show that isoTEM reasonably captures the magnitude and seasonality of 

observed soil methane fluxes (Fig. 3.4).  
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Table 3.2 Information about observation sites for model optimization. 

Vegetation 

Types 

Lat, 

Lon 

Meteorological Inputs Observation 

Data 

References 

Boreal low- 

and high- pH 

68, 

18.5 

Site observed temperature 

and precipitation and 

CRU 

CH4 flux and 

δ13C-CH4 in 

2012-2013 

(McCalley et al. 

2014) 

Temperate 

low- and high - 

pH 

48,  

-95 

Site observed temperature 

and CRU 

CH4 flux and 

δ13C-CH4 in 

1989-1990 

Kelly et al., 1992 

Tropic low- 

and high- pH 

27.5,  

-82.5 

Site observed temperature 

and CRU 

CH4 flux in 1986-

1987 

Burke, Barber 

and Sackett, 

1988 

  



 

 

103 

Table 3.3 Upper and lower limits of parameter range of fractionation factors (α), where 

AM=acetoclastic methanogenesis, HM=hydrogenotrophic methanogenesis, MO=methane 

oxidation, TP=plant-mediated transport, TE=ebullition transport, TD=diffusion. 
 

Lower Bound Upper Bound Literature 

αAM 0.960 1.000 Conrad 2005; Vaughn 2016; Kruger 2002; 

Conrad 2010 

αHM 0.920 0.970 Conrad 2005; Vaughn 2016; Kruger 2002; 

Conrad 2010 

αMO 1.015 1.035 King 1989; Chanton 2005; Zhang 2016; 

Kinnaman 2006 

αTP 0.970 1.000 Chanton 2005 (review paper) 

αTE 0.995 1.000 Chanton 2005 (review paper) 

αTD 0.990 1.000 Chanton 2005 (review paper) 
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Table 3.4 Optimized Parameters related to methane fractionation factors in wetlands. 

Latitude Wetland Type α
AM

 α
HM

 α
MO

 α
TP

 α
TE

 α
TD

 

High 

(60 – 

90°) 

Low pH 0.9790 

±0.0103 

0.9536 

±0.0006 

1.0151 

±0.0001 

0.9951 

±0.0002 

0.9995 

±0.0007 

0.9962 

±0.0008 

High pH 0.9659 

±0.0030 

0.9595 

±0.0008 

1.0150 

±0.0001 

0.9951 

±0.0002 

0.9975 

±0.0008 

0.9914 

±0.0012 

Middle 

(30 – 

60°) 

Low pH 0.9942 

±0.0033 

0.9593 

±0.0091 

1.0175 

±0.0031 

0.9723 

±0.0039 

0.9988 

±0.0010 

0.9940 

±0.0029 

High pH 0.9800 

±0.0081 

0.9350 

±0.0092 

1.0311 

±0.0037 

0.9924 

±0.0013 

0.9975 

±0.0012 

0.9959 

±0.0020 

Low 

(0 to 

30 °) 

Low pH 0.9773 

±0.0036 

0.9348 

±0.0101 

1.0300 

±0.0008 

0.9970 

±0.0032 

0.9970 

±0.0015 

0.9949 

±0.0023 

High pH 0.9864 

±0.0026 

0.9587 

±0.0050 

1.0350 

±0.0001 

0.9825 

±0.0023 

0.9963 

±0.0010 

0.9982 

±0.0014 

Average 0.9805 

±0.0140 

0.9502 

±0.0129 

1.0239 

±0.0085 

0.9891 

±0.0092 

0.9978 

±0.0015 

0.9951 

±0.0028 
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Figure 3.4 Calibration results of seasonal methane emissions in mg m-2 day-1 (a,b,e,f,i,j) and its 

carbon isotope changes in δ13C-CH4 (c,d,g,h,k,l) for low-pH (a,c,e,g,i,k) and high-pH (b,d,f,h,j,l) 

system in boreal (a-d), temperate (e-h), and tropic (i-l) regions. Red error bars represent 

observation with standard deviation, and blue lines represent simulation results. 
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3.3.3 Simulation setup 

To make spatially- and temporally-varying estimates of methane emission and 13C-CH4  

on the global scale, we used spatially explicit data of land cover, soil pH and textures, meteorology 

and leaf area index (LAI) (Zhuang et al. 2004). The vegetation and soil texture data sets were used 

to assign vegetation-specific and texture-specific parameters to a grid cell (Melillo et al. 1993; 

Zhuang et al. 2003). The soil-water pH dataset was used to estimate methane production across 

the study region (Carter and Scholes 2000). Meteorological inputs were derived from historical air 

temperature, precipitation, vapor pressure, and cloudiness from gridded CRU time-series data, 

version 4.01 (Harris et al. 2014). We used monthly LAI data derived from satellite imagery 

(Myneni et al. 2002) to prescribe LAI for each 0.5° latitude and longitude grid cell. 

Because multiple wetland flux data sets exist (using different wetland inundated areas), we 

provide a source signature value for every grid cell globally by assuming wetland exists each grid 

cell. It can therefore be used in conjunction with any flux and wetland area dataset. The original 

wetland type from Matthews and Fung (1987) is in Fig. 3.5a. To fill the grid cells without wetland 

types, we set low-pH forested wetlands at acidic soil sites, and set high-pH non-forested wetlands 

at alkaline soil sites based on the pH 7 (Fig. 3.5b-c). 

In our analyses, we used wetland fluxes defined over the static and time-varying inundated 

area from Matthews and Fung (1987) and Poulter et al. (2017), respectively. Simulated ecosystem-

specific methane emissions from wetlands were then area weighted for each grid cell, as defined 

by the fractional inundation data. Finally, we used monthly meteorological inputs of the Gridded 

Climatic Research Unit (CRU) (Harris et al. 2014) to run a global wetland simulations with 10 

ensemble members from 1984 to 2016 with a daily time-step at a spatial resolution of 0.5°×0.5°. 

A 15-year of spin-up was used for methane and its isotope equilibrium in soils. 
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Figure 3.5 global soil wetland and pH map. (a) default wetland type map from Matthews and 

Fung (1987), where type 1 and 2 represent forested and non-forested bog, type 3 and 4 represent 

forested and non-forested swamp, and 5 represent alluvial wetlands. The wetland map was 

developed based on vegetation, soil properties, and fractional inundation, and yielded a global 

distribution of wetland sites identifies with in situ ecological and environmental characteristics. 

(b) filled wetland types assuming low-pH soils are in type 1 and high-pH soils are in type 2. (c) 

global soil pH map from (Carter and Scholes 2000). 
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3.3.4 Model data comparison 

Site level 

We compared our model results with previously published data from 58 in-situ 

measurements organized by Holmes et al. (2015) and 66 in-situ measurements Sherwood et al. 

(2017). (Table 3.5). Holmes et al. (2015) compiled data of latitude, fraction of HM and AM, pH, 

vegetation, 13C-CH4 from global wetlands to understand factors affecting the methanogenic 

pathway in different wetlands. This paper found that a combination of environmental parameters 

including pH, vegetation type, nutrient status, and latitude are correlated to the dominant 

methanogenic pathway from the principal component analysis. Sherwood et al. (2017) compiled 

database of 13C-CH4 from all methane sources including fossil fuel, microbial, and biomass 

burning sources. The wetland database of Sherwood et al. (2017) includes literature reference, 

latitude, wetland types, measurement methods.  

After combining the overlapped data between Holmes et al. (2015) and Sherwood et al. 

(2017) and removing the data that we used for our model optimization (McCalley et al. 2014; Kelly 

et al. 1992; Burke et al. 1988), 71 sites remained for site-level validation. Due to a possible 

mismatch of soil and vegetation properties, and wetland distribution of grid cells between model 

and observation, we compared the observed 13C-CH4 with simulated data of the sampling year 

within two adjacent grid cells (1°×1°) of the observation. 
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Table 3.5 Site-level observations from Holmes et al. (2015) and Sherwood et al. (2017). 

No. Literature Lat Lon δ13C-

CH4 

mean 

δ13C-CH4 

uncertaint

y 

1 Brownlow et al. 2017 -16 -69.5 -59.7 1.0 

2 Brownlow et al. 2017 -3.5 -62 -63.9 0.8 

3 Tyler et al. 1987 -2.5 -62 -54 7.3 

4 Quay et al. 1988 -2.5 -62.5 -58.47 9.0 

5 Devol et al. 1996 0 39.5 -51.6 17.6 

6 Tyler et al. 1988 0 29.5 -54.2 0.6 

7 Tyler et al. 1988 0.5 36 -48 2.5 

8 Tyler et al. 1988 1 33.5 -58.7 4.1 

9 Brownlow et al. 2017 2 31.5 -53 0.4 

10 Brownlow et al. 2017 5 118 -61.5 2.9 

11 Brownlow et al. 2017 6 101 -65.9 5.6 

12 Nakagawa et al. 2002a 8.5 -83.5 -73.9 3.8 

13 Brownlow et al. 2017 9 -80 -61.9 3.2 

14 Tyler 1989a 10.5 -85.5 -53.3 1.7 

15 Brownlow et al. 2017 22 114 -55.7 3.3 

16 Brownlow et al. 2017 25 -80.5 -60.97 3.0 

17 Stevens and Engelkemeir 1988; Chanton and 

Martens 1988; Holmes 2014 

25.5 -80.5 -61.7 3.6 

18 Burke et al. 1988 28 -81.5 -63.6 6.1 

19 Burke and Sacket 1986 29 97 -68.3 5.0 

20 Liu et al., 2013 29.5 -90 -60.1 0.2 

21 Burke and Sacket 1986 33 80 -51.1 5.0 

22 Liu et al., 2013 34 -81 -53.5 1.6 

23 Burke and Sacket 1986 34.5 -78.5 -65.27 1.0 

24 Martens et al. 1986; Chanton and Martens 

1988 

39 -80 -56.7 3.3 
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Table 3.5 continued 

25 Wahlen et al. 1989 40 -106 -50.7 1.1 

26 Tyler 1986 41 -89.5 -50.4 0.8 

27 Stevens and Engelkemeir 1988 41.5 -72.5 -64.06 5.2 

28 Oana and Deevey 1960 42 -83 -64.4 7.9 

29 Hornibrook et al., 1997; Hornibrook et al., 

2000; Mayer et al., 1998 

43 -73.5 -58.3 2.4 

30 Wahlen et al. 1989 43 -81 -52.5 13.5 

31 Hornibrook et al., 1997; Hornibrook et al., 

2000 

45 -76 -75 5.0 

32 Alstad and Whiticar, 2011 47 -94 -66 6.0 

33 Quay et al. 1988 47 -122 -74 0.5 

34 Conrad, 1999; Lansdown et al., 1992 48 -94 -67.2 5.0 

35 Stevens and Engelkemeir 1988 49 -79 -60 3.2 

36 Kuhlmann et al. 1998 49 -95 -65.1 1.0 

37 Chasar et al., 2000 49.5 9.5 -57.4 2.1 

38 Levin et al. 1993 50 12 -56 6.0 

39 Hädrich et al., 2012; Kuesel et al., 2008; Paul 

et al., 2006; Reiche et al., 2008 

52 -4 -63.9 15.0 

40 Hornibrook and Bowes, 2007 52.5 10.5 -58.4 2.4 

41 Woltemate 1982 55 -113 -67.5 3.0 

42 Alstad and Whiticar, 2011 57 83 -60 15.0 

43 Kotsyurbenko et al., 2004 59 -99 -62.9 1.9 

44 Wahlen et al. 1989 60 -149 -67.9 5.0 

45 Chanton et al., 2006; Duddleston et al., 2002; 

Hines et al., 2001 

60.5 -155.5 -66 2.4 

46 Martens et al. 1992 60.5 -145.5 -51.3 14.2 

47 Douglas et al. 2016 61 74 -63.8 5.4 

48 Nisbet 2013 61 24 -70.63 15.0 

49 Galand et al., 2010 62 129 -61.45 4.4 
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Table 3.5 continued 

50 Nakagawa et al. 2002b 64.5 -153 -73.1 0.8 

51 Walter et al. 2008 65 -148 -56.6 11.3 

52 Douglas et al. 2016 66 -151 -65.5 5.0 

53 Chanton et al., 2006; Hines et al., 2008; 

Rooney‐Varga et al., 2007 

66 -150 -62.8 5.0 

54 Chanton et al., 2006; Hines et al., 2008; 

Rooney‐Varga et al., 2007 

67.5 26 -69.75 2.8 

55 Fisher et al. 2017 68 -153.5 -72.5 2.9 

56 Walter et al. 2008 68 18.5 -72.95 2.0 

57 Fisher et al. 2017 68 25 -70.15 5.3 

58 Hines et al., 2008; Levine and Whalen, 2001; 

Rooney‐Varga et al., 2007 

68 -149 -62.9 5.0 

59 Fisher et al. 2017 68.5 19 -68.6 4.1 

60 Quay et al. 1988 68.5 -154.5 -62.6 5.0 

61 Walter et al. 2006, Walter et al. 2008 69 129 -70.3 6.0 

62 Douglas et al. 2016 69 19 -64.6 12.1 

63 Chanton et al., 2006; Hines et al., 2008; 

Rooney‐Varga et al., 2007 

69 -150 -65.9 5.0 

64 Bowden et al., 2008; Chanton et al., 2006; 

Hines et al., 2008; Rooney‐Varga et al., 2007 

69 -149 -62.3 5.0 

65 Chanton et al., 2006; Hines et al., 2008; 

Rooney‐Varga et al., 2007 

69 -148 -57.8 5.0 

66 Fisher et al. 2017 69 27 -71.7 2.5 

67 Fisher et al. 2017 69.5 29 -72 1.1 

68 Chanton et al., 2006; Hines et al., 2008; 

Rooney‐Varga et al., 2007 

70 -149 -58.1 5.0 

69 Douglas et al. 2016 71 -156.5 -56.5 7.5 

70 Bouchard et al. 2015 73 -79.5 -60.5 4.0 

71 Fisher et al. 2011 78 98.5 -68.7 2.4 
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Regional level 

We used aircraft air samples for 3 regions in Alaska from Carbon in Arctic Reservoirs 

Vulnerability Experiment (CARVE) (Miller et al. 2016; Chang et al. 2014). From 2012 to 2015, 

CARVE collected airborne measurements of atmospheric carbon dioxide, methane, and carbon 

monoxide and relevant land surface parameters in the Alaskan Arctic to provide insights into 

Arctic carbon cycling. During the airborne measurements, flask samples were collected to send 

them to NOAA ESRL GMD for 50 trace gas analysis including CO2, CH4, CO, OCS, HC’s and 

their isotopic signatures. After screening aircraft data with flags, total data points are 1,476 during 

the measurement period.  

To compare the spatial variability wetland 13C-CH4, we divided the Alaskan continent into 

three regions: North slope, interior, and southwest Alaska based on the latitudes (62-68, 57-62, 52-

57 °N for North slope, interior, and southwest, respectively). We used Keeling and Miller-Tans 

(M-T) plots to identify the source signatures of 13C of methane from wetlands (Keeling 1960; 

Miller and Tans 2003). To identify wetland isotopic signatures, we removed data that may have 

effects from fossil fuel emission (C3H8 < 300 ppt), biomass burning (CO < 300 ppb), and transport 

influence (Altitude < 1500m). For M-T plots, we set the background altitude to be > 5000m. After 

plotting the data, year 2014 was screened out due to the limited data points with low R2
 for both 

Keeling and M-T plots (Table 3.6). 

 

Table 3.6 Regional-level observation of Alaska airborne measurements from North-slope (N), 

interior (IN), and southwest (SW) Alaska in 2012-2013, and 2015. 

 Keeling plot Miller-Tans plot 

  N IN SW N IN SW 

Year 2012 -65.75 -66.50 -62.37 -65.90 -66.43 -62.61 

Year 2013 -65.53 -74.81 -54.73 -65.92 -75.47 -54.67 

Year 2015 -63.71 -64.42 -59.83 -63.65 -64.31 -59.74 

Mean -65.00 -68.58 -58.98 -65.16 -68.74 -59.01 

Standard Deviation 1.12 5.50 3.89 1.30 5.93 4.02 
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3.3.5 Forward modeling using TM5 chemical transport model 

3.3.5.1 Isotope mass balance and bottom-up inventory 

We first set up the bottom-up inventory for each emission scenario using isotope mass 

balance. Considering the global atmosphere as one box with mass conservation, the global mass 

balance of CH4 can be expressed on a yearly time scale (t=1 yr) as Equation 3.16, where [CH4] is 

the global burden, τ is the atmospheric lifetime, QATM is total emissions to the atmosphere, and 

[CH4]

τ
 is total sinks. Total emissions to the atmosphere QAtm include sub-categories of emissions 

(Q) from microbial (Mic), fossil emission (FE, including FF and natural geological seeps) and 

biomass/biofuel burning (BB) sources as Equation 3.17. A similar equation can also be written for 

δ13Catm in Equation 3.18, where δ13Cx in the right-hand side is the emission-weighted source 

signature of a specific category of emissions, δ13CQ in the left-hand side is the combined signal of 

δ13C emitted to the atmosphere. Atmospheric δ13Catm also sees the combined effects of emissions 

and sinks on the 13C/12C ratio.  All sink processes enrich the atmosphere with 13C due to their faster 

reactions with 12C. In Equation 3.19, ε is defined as the sink-weighted average fractionation factor 

due to reactions with OH, Cl, and O(1D) and the soil sink, each with different fractionation. 

 

d[CH4]

dt
= QAtm −

[CH4]

τ
 … Equation 3.16  

 

QAtm = QMic + QFE + QBB … Equation 3.17 

 

δ13CQ ∙ QAtm = δ
13CMic ∙ QMic + δ

13CFE ∙ QFE + δ
13CBB ∙ QBB … Equation 3.18 

 

δ13CQ = α ∙ δ13Catm + 𝜀 … Equation 3.19 

 

The emission scenarios covering 1984-2016 were constructed for 3D model runs. We first 

estimated top-down total emissions using Eq. 3.16 with observed global atmospheric CH4 growth 
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rate  
d[CH4]

dt
 and [CH4], and modelled lifetime τ. A conversion factor of 2.763 Tg/ppb, based on 

TM5 atmospheric mass, is used to convert dry mole fraction to Tg of CH4.  

The top-down estimates show step increases in emissions in 2007 and 2014, which sum up 

to a ~40 Tg/yr increase in annual emissions at 2016 compared with those during the 1999-2006 

stable period. To satisfy the global mass balance of CH4, all candidate emission scenarios are 

designed to have the same total emissions as the top-down estimates. Specifically, we assumed 

wetland increases are fully responsible for the global emission increase since 2007. Thus the 40 

Tg/yr additional increase with inter-annual variability is assigned to wetland emissions, and 

ruminant and oil/gas emissions are adjusted to fit the top-down total (Table 3.7 and Fig. 3.6-3.7). 
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Table 3.7 Data sources for total emissions and their spatiotemporal patterns used in building 

different emission scenarios for model simulations. 

Source Total emissions Spatial 

distribution 

Seasonal cycle 

Fossil 

Emission (FE) 

EDGAR 4.3.2 for coal, oil and natural gas, and other 

energy/industry (Janssens-Maenhout et al., 2017). ONG 

and coal are disaggregated because their δ13CH4 signatures 

are different. 

n/a (annual 

resolution) 

Etiope et al. (2019) for geological seeps. Time invariant 

Biomass and 

biofuel 

burning (BB) 

Biomass burning fluxes between 1997-2016 are from GFED 4.1s with monthly 

resolution (Van der Werf et al., 2017) 

Biomass burning fluxes before 1997 are 

from Reanalysis of the Tropospheric 

chemical composition project (Schultz et 

al., 2008) 

GFED 4.1s 

for 2000 

GFED 4.1s for 

2000 

Biofuel fluxes are from EDGAR 4.3.2 n/a (annual 

resolution) 

Modern 

Microbial 

(Mic) 

Ruminants and waste/landfills fluxes are from EDGAR 

4.3.2 

n/a (annual 

resolution) 

Rice fluxes are from EDGAR 4.3.2 Matthews et al. 

(1991) with 

monthly 

resolution 

Wild animals and termites fluxes are from Bergamaschi et al. (2007), with daily 

resolution but without inter-annual variability 

Wetland (positive) and soil sink (negative) fluxes are from a process-based 

model with monthly resolution (Liu et al., 2019) 
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Figure 3.6 (a) Bottom-up emissions for each category and (b) total emissions including soil sinks 

(negative) estimated by bottom-up (i.e., the total of a) and top-down approaches. The data 

sources can be found in Table 3.7. 

 

 

a b
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Figure 3.7 Bottom-up emissions for each category and scenario. (a) Bottom-up emissions for 

each category for static isoTEM scenario. Changes of emissions in (b) wetland, (c) ruminant, and 

(d) oil/gas for different scenarios of isoTEM with static inundation (blue), isoTEM with transient 

inundation (red), Ganesan et al. (2018) with static inundation (yellow), and Ganesan et al. (2018) 

with transient inundation (purple). The data sources can be found in Table 3.7. 
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3.3.5.2 TM5 Model setup 

Atmospheric CH4 mole fractions and δ13C-CH4 were simulated from January 1, 1984 to 

January 1, 2017 by coupling the surface fluxes and isotope source signatures with the TM5 tracer 

transport model driven by ECMWF ERA Interim meteorology with the 4DVAR branch of the 

TM5 model (Basu et al. 2013; Meirink et al. 2008). TM5 was run globally at 6°x4° over 25 vertical 

sigma-pressure hybrid levels, for total CH4 and 13CH4. For each source type, 13CH4 fluxes were 

derived from total CH4 fluxes and source-specific isotope source signatures. Our model setup 

consists of the OH field from Spivakovsky et al (2000) scaled by 0.901, tropospheric Cl field from 

Hossaini et al (2016), and fractionation factors for 13CH4 for the atmospheric loss reactions from 

Saueressig et al (2001). For this setup, we calculated the CH4 lifetime from the decay of a CH4 

tracer with a realistic initial field in 1984 and no sources. Despite the climatological OH, Cl and 

O1D fields, the CH4 lifetime is not a constant every year from 1984 to 2016 due to changes in 

meteorology.  

We constructed the initial CH4 mole fraction field on January 1, 1984 as follows. First, we 

took the 3D CH4 mole fraction field from CarbonTracker-CH4 (CT-CH4) on January 1, 2003 

(https://www.esrl.noaa.gov/gmd/ccgg/carbontracker-ch4/). Since CT-CH4 started assimilation on 

January 1, 2000, its posterior mole fraction field after 3 years is expected to have spatial gradients 

consistent with CH4 observations globally. Next, we calculated the average Pacific Ocean marine 

boundary layer (MBL) CH4 mole fraction from this field by considering the lowest ~160 hPa 

between 180°W and 174°W, and derived a scaling factor between this calculated quantity and the 

January 1984 observed MBL average CH4 from NOAA’s global network 

(https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/). We scaled the January 1, 2003 CT-CH4 field 

by this factor to reach a CH4 field for January 1984 that was consistent with observed MBL CH4 

and its latitudinal gradient and had vertical gradients consistent with the TM5 model. We then 

calculated the initial 13CH4 field in January 1984 from this initial CH4 field and the estimated 

global average δ13CH4 of -47.501 ‰ in 1984 (Schwietzke et al. 2016).  

 

https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/
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3.3.5.3 Measurements and Marine Boundary Layer references  

Observational data used to evaluate model results are from flask-air measurements from 

NOAA’s Cooperative Global Air Sampling Network (Dlugokencky et al., 2019). Weekly samples 

were collected in pairs of 2.5 L borosilicate glass flasks with a portable sampler and sent to NOAA 

in Boulder, Colorado for CH4 analysis by gas chromatography with flame ionization detection. All 

CH4 data are reported on the WMO X2004A mole fraction scale (Dlugokencky et al. 2005) and 

reported in units of nmol mol-1 dry air (abbreviated as ppb for parts per billion by moles). A subset 

of the flask-air samples were then analyzed for δ13C-CH4 at the Institute of Arctic and Alpine 

Research (INSTAAR), University of Colorado, Boulder. Isotope-ratio mass spectrometry is used 

for δ13C-CH4 analysis, and more details are described in Miller et al. (2002). 

A subset of the network air sampling sites predominantly influenced by well-mixed 

background air is used to construct Marine Boundary Layer (MBL) zonally averaged surfaces 

using methods developed by Masarie and Tans (1995), to represent the observational-based global 

trend and latitude gradient. More details on the MBL data products and uncertainties can be found 

at https://www.esrl.noaa.gov/gmd/ccgg/mbl/mbl.html. For model-observation comparisons, 

model results from the same set of MBL sites are sampled, and the same calculation methods are 

applied to model results and observations for global mean and latitude gradient.  

 

3.4 Results 

3.4.1 Modeling global isotopic signatures of wetland δ13C-CH4 and its model-data 

comparison  

We estimated that total wetland CH4 emissions range from 120 to 150 TgCH4yr-1 and a 

mean global wetland 13C-CH4 is -60.78‰ with its spatial and temporal variability in 1984-2016 

(Fig. 3.8). Since not all grid cells contain wetlands, Fig. 3.9 shows the wetland δ13C-CH4 map 

masked for the wetland grid cells based on the static inundation in Fig. 3.8. The histogram of flux-

weighted global wetland 13C-CH4 by isoTEM shows more variance than 13C-CH4 from Ganesan 

et al. (2018) (Fig. 3.10), as Ganesan et al. (2018) set the maximum, minimum, and the mean value 

https://www.esrl.noaa.gov/gmd/ccgg/mbl/mbl.html
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of wetland 13C-CH4 empirically. Our mean global source signature is heavier than the mean 

wetland signature of -62.25 and -61.5‰ reported in Ganesan et al. (2018) and Sherwood et al. 

(2017) (Fig. 3.11), respectively, and similar to the one derived by Feinberg et al. (2018) 

(approximately -60.5‰). We also showed the latitudinal gradients of flux-weighted 13C-CH4 

range from a mean of -55.60‰ from the tropics to -64.11‰ from the boreal region (Fig. 3.8b). 

The new model also simulated a seasonal variation of 13C-CH4 with a relatively consistent value 

throughout the growing season for boreal and tropic regions, and with a lower value in temperate 

regions when methane flux is higher due to high fractionation during plant-mediated transport 

(mean αTP of 0.982 for temperate ecosystems) (Fig. 3.12). We did not find a clear long-term change 

of flux-weighted wetland 13C-CH4 as it showed a consistent value during 1984-2016 (Fig. 3.13b). 
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Figure 3.8 Global map of wetland methane carbon isotopic signatures (δ13C-CH4) and its 

emissions. (a) (left) Modeled global wetland δ13C-CH4 and (right) its latitudinal mean by flux not 

weighted (blue) and flux weighted (yellow). (b) (left) Modeled global wetland methane 

emissions by static inundation data from Matthews and Fung (1987) in TgCH4 yr-1 and (right) its 

latitudinal sum. The error bars represent one standard deviation by varying the optimized 

parameters from ensemble simulations. 
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Figure 3.9 Wetland δ13C-CH4 masked for grid cells using static inundation from Matthews and 

Fung (1987).  
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Figure 3.10 Histogram of modeled global isotopic signatures of wetland δ13C-CH4 by (a) 

Ganesan et al. (2018), and isoTEM with (b) flux not weighted and (c) weighted. 
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Figure 3.11 Global map of wetland δ13C-CH4. Wetland δ13C-CH4 by (a) isoTEM in July, 2000 

and (b) Ganesan et al. (2018), and (c) their latitudinal gradients mean of wetland δ13C-CH4 by 

isoTEM (blue) and Ganesan et al. (2018) (red). 
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Figure 3.12 Seasonality of (a) mean δ13C-CH4 and (b) sum of methane fluxes for global (blue), 

boreal (green), temperate (yellow), and tropic (red) regions. The error bars represent one 

standard deviation by varying the optimized parameters from ensemble simulations. 
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Figure 3.13 Latitudinal gradients of simulated δ13C-CH4 and inter-annual variability of wetland 

emissions and δ13C-CH4. (a) Flux-weighted mean latitudinal gradients of δ13C of SOC (green), 

produced methane (red), methane after oxidized (yellow), and methane after transported to the 

soil surface (blue). The error bars represent one standard deviation by varying the optimized 

parameters from ensemble simulations. (b) inter-annual variability of global wetland emissions 

(skyblue), global mean wetland δ13C-CH4 with flux weighted (maroon with cross symbol) and 

not weighted (maroon with circle symbol). 
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We validated the magnitude and spatial variability of isoTEM model comparing with 

Ganesan et al. (2018) using site-level and regional observations. First, we conducted a site-level 

comparison of wetland 13C-CH4 using 71 independent in situ measurements from previous studies 

(Table 3.5) (Holmes et al. 2015; Sherwood et al. 2017). We showed that isoTEM reduced root 

mean square error (RMSE) 35% compared to Ganesan et al. (2018) (2.33 vs. 3.60), but both 

Ganesan et al., 2018 and isoTEM show a positive mean bias in the tropic but a negative mean bias 

in the temperate and arctic regions (Fig. 3.14). In specific, Ganesan et al. (2018) showed a mean 

of 1.88±4.15, -2.50±4.75, and -1.63±4.75‰ bias of observation and model for tropical, temperate, 

and Arctic regions, respectively, whereas the bias for isoTEM was 0.87±3.38, -0.69±4.18, and -

1.27±4.19‰, respectively. 

Furthermore, we compared the spatial variability of the simulated wetland source isotopic 

signatures with inferred signatures from Keeling and Miller-Tans (M-T) plots of vertical aircraft 

air samples for 3 regions in Alaska during 2012-2013 and 2015 (Fig. 3.15-3.16) (Miller and Tans 

2003; Keeling 1960). A collected series of in situ samples along a N-S transect across Alaska from 

60-70°N showed an average of -65.31‰ but a large variance of  8.96‰, due to the complex 

vegetation and soil properties in Alaska (Chanton et al. 2006). The Keeling and M-T plots of 

observation from aircraft data also showed the spatial variability, that the 13C-CH4 from North 

slope Alaska is heavier (-65±1.12‰) than the CH4 from interior (-68.58±5.50) but lighter than 

southwest Alaska (-58.98±3.89‰) (Fig. 3.16, and Table 3.6). The isoTEM simulated the spatial 

variability (-65.53±1.50, -66.92±1.51, and -63.65±1.44‰ for north slope, interior, and southwest 

Alaska, respectively), whereas Ganesan et al. (2018) simulated no spatial variability (-

65.07±0.20‰) (Fig. 3.15). We did not fully represent the enriched 13C-CH4 from southwest 

Alaska (-58.98±3.89 and -63.65±1.44‰ for observation and isoTEM, respectively), which may 

explain the negative bias for boreal regions from site-level comparison (Fig. 3.14). In summary, 

the site-level and regional model-data comparison shows that isoTEM improves the spatial 

variability of wetland 13C-CH4 than the previous static map. 
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Figure 3.14 Site-level model-data comparison. (a-b) Comparison between observation and 

Ganesan et al. (2018) using 1:1 line with observation and (c-d) histogram of the difference 

between model and observation from the tropic (red), temperate (yellow), and boreal (blue) 

region. 

 

  



 

 

129 

 

Figure 3.15 Regional model-data comparison. Simulated wetland 13C (CH4) by (a) Ganesan et 

al. (2018) and (b) isoTEM, and (c) their comparison with observation from NOAA Alaska 

aircraft data using Keeling and Miller-Tans plots. 
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Figure 3.16 Keeling and Miller-Tans plots of airborne measurements in 2012, 2013, and 2015 for 

North slope, interior, and southwest Alaska. 
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3.4.2 Latitudinal and long-term variability of wetland 13C-CH4 

After validating the simulations, we used the isoTEM results to identify the mechanisms 

behind the distinct latitudinal gradients of 13C-CH4 from wetlands (Fig. 3.13a), where Figure 3.17 

shows how four carbon isotopic fractionations during methane dynamics affect the latitudinal 

gradients. First, since C4 plants are more prevalent in the tropics (Fig. 3.1), their  13C of soil 

organic carbon is heavier (Fig. 3.17a). Second, due to higher fraction of AM in the tropics (Fig. 

3.2), the 13C-CH4 produced by methanogens is heavier (Fig. 3.17b). Third, methane oxidation is 

more prevalent in the tropics due to thicker oxic zone (Chanton, 2005), which makes the residual 

methane from the oxidation heavier (Fig. 3.17c). Lastly, due to high fraction of plant-mediated 

transport in the tropics (Fig. 3.18), their final methane release to the atmosphere becomes lighter 

(Fig. 3.17d). In summary, in our simulation, the higher 13C-CH4 from tropic wetlands are 

strengthened due to distribution of C3/C4 plant (40%), methanogen community (60%), methane 

oxidation (50%), and weakened due to plant mediated transport (-50%) (Fig. 3.13a). 

Furthermore, the simulated long-term trends of wetland δ13C-CH4 in 1984-2016 shows that 

the wetland δ13C-CH4 did not change significantly during the simulation period (Fig. 3.13b). The 

simulation showed that increased temperature increases plant productivity and plant-mediated 

transport. Since δ13C-CH4 becomes lighter during the plant-mediated transport (αTP), the wetland 

δ13C-CH4 showed a decreasing trend during 1984-2016 (Fig. 3.18). However, the change was not 

significant when applying uncertainties of the ensemble simulations (0.95‰). We acknowledge 

that the latitudinal and long-term variability of wetland 13C-CH4 are simulation results based on 

the mechanistic processes and parameters of our model. More atmospheric and field measurements 

are necessary to verify these results and better understand the mechanisms. 
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Figure 3.17 Spatial map of δ13C simulated in isoTEM. Map of δ13C of (a) SOC, (b) produced 

methane, (c) methane after oxidized, and (d) methane after transported to the soil surface. 
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Figure 3.18 Inter-annual variability of wetland emissions (skyblue), flux-integrated wetland 

δ13C-CH4 (Maroon), and fraction of plant-mediated transport over all three transport processes 

(green) for (a) global scale, (b) boreal, (c) temperate, and (d) tropic regions.
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3.4.3 Implication for global methane cycling 

Finally, we applied the isoTEM results as inputs for atmospheric transport modeling to 

understand the effects of spatially and temporally resolved wetland isotope distribution on 

atmospheric δ13C-CH4, compared to the previous maps. We used the global atmospheric chemical 

transport model TM5 tracer transport model with the 4DVAR branch driven by ECMWF ERA 

Interim meteorology (Meirink et al. 2008; Basu et al. 2013; Krol et al. 2005). We conducted the 

TM5 forward run from 1984 to 2016 globally at 6°×4° over 25 vertical sigma-pressure hybrid 

levels by coupling the surface CH4 fluxes and isotope source signatures for each source type of 

biogenic, fossil fuel, and biomass burning (Table 3.7 and Fig. 3.6). We spun up our model for 16 

years from 1984 to 1999 and selected 2000-2016 as our analysis period with observation to ensure 

that our spin-up period was significantly longer than equilibration of inter-hemispheric δ13CH4 

gradients (Tans 1997). 

We set up eight emission scenarios in total, four of them using static (Matthews, E., and 

Fung 1987) and another four using transient inundation data (Poulter et al. 2017). First scenario 

uses a globally uniform wetland signature of −62.25‰ (referred to as uniform) and the second 

scenario uses the static spatially-resolved wetland δ13C-CH4 map from Ganesan et al., 2018 

(referred to as Ganesan). The third and fourth scenarios use new spatially-resolved wetland δ13C-

CH4 map from this study using a static map from July, 2000, and time-varying maps from 1984 to 

2016 (referred to as isoTEM-static and isoTEM-dynamic, respectively). We set the bottom-up 

inventory for the eight emission scenarios by varying the annual wetland, ruminants, and oil and 

gas emissions up to 50 TgCH4 yr-1 (Fig. 3.7). In particular, since the flux-weighted mean of wetland 

δ13C-CH4 is 1.5‰ enriched for isoTEM maps (-62.25 vs. -60.78‰), we reduced the oil and gas 

emissions by 25 TgCH4 yr-1 and adjusted ruminant emissions to meet the isotope mass balance (Fig 

3.7c-d and Eq. 3.16-19). We compared the long-term variability and inter-hemispheric CH4 and 

δ13C-CH4 gradients by calculating the average Pacific Ocean marine boundary layer (MBL) 

between the scenarios and observation from NOAA/INSTAAR global flask-air measurements 

(Dlugokencky et al., 2011). 

The comparison with observation showed that all scenarios reproduce the long-term 

variability of CH4 reasonably well, since all scenarios satisfy the atmospheric top-down constraints 

when setting up the bottom-up inventory (Fig. 3.19). However, for scenarios using static 
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inundation, isoTEM wetland δ13C-CH4 map reproduces the observed inter-hemispheric δ13C-CH4 

72 and 89% better when compared with uniform and Ganesan scenarios, respectively, in terms of 

RMSE in 2000-2016 (Fig. 3.21). Compared with observation, uniform and Ganesan scenarios 

under- and over-estimated the inter-hemispheric δ13C-CH4 (0.47, 0.17, and 0.58‰ for observation, 

uniform, and Ganesan, respectively). The inter-hemispheric δ13C-CH4 between isoTEM-static and 

isoTEM-dynamic scenarios was similar, as isoTEM does not show a significant temporal 

variability (Fig. 3.21). When using transient inundation data, the inter-hemispheric CH4 matched 

better compared with scenarios using static inundation data (Fig. 3.20). However, all four scenarios 

underestimate the inter-hemispheric δ13C-CH4 compared with observation (Fig. 3.22), implying 

that the transient inundation data from Poulter et al. (2017) may need more wetland emissions 

from the boreal region as static inundation data (Fig. 3.23) and other satellite-driven inundated 

data from Prigent, Jimenez and Bousquet (2020). 

 



 

 

136 

 

Figure 3.19 Long-term variability of atmospheric [CH4]. Model-data comparison of long-term 

variability of atmospheric [CH4] (in ppb) by observation (grey) and simulations from uniform 

(yellow), Ganesan (red), isoTEM-static (blue), isoTEM-dynamic (skyblue) from 1984 to 2016 

for scenarios using (a) static inundation from Matthews and Fung (1987) and (b) transient 

inundation from Poulter et al. (2017). 
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Figure 3.20 Inter-hemispheric gradients of atmospheric [CH4]. Model-data comparison of global 

inter-hemispheric gradients of atmospheric [CH4] by observation (grey) and simulations from 

uniform (yellow), Ganesan (red), isoTEM-static (blue), isoTEM-dynamic (skyblue) scenarios in 

(a, d) 2005, (b, e) 2010, and (c, f) 2015 using (a-c) static and (d-f) dynamic inundation data from 

Matthews and Fung (1987) and Poulter et al. (2017), respectively. 

 

  



 

 

138 

 

Figure 3.21 Inter-hemispheric gradients of atmospheric δ13C-CH4 using static inundation. Model-

data comparison of global inter-hemispheric gradients of atmospheric δ13C-CH4 by observation 

(grey) and simulations from uniform (yellow), Ganesan (red), isoTEM-static (blue), isoTEM-

dynamic (skyblue) scenarios in (a) 2005, (b) 2010, and (c) 2015 using static inundation data from 

Matthews and Fung (1987). 
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Figure 3.22 Inter-hemispheric gradients of atmospheric δ13C-CH4 using dynamic inundation. 

Model-data comparison of global inter-hemispheric gradients of atmospheric δ13C-CH4 by 

observation (grey) and simulations from uniform (yellow), Ganesan (red), isoTEM-static (blue), 

isoTEM-dynamic (skyblue) scenarios in (a) 2005, (b) 2010, and (c) 2015 using dynamic 

inundation data from Poulter et al. (2017). 

  



 

 

140 

 

Figure 3.23 Comparisons of wetland (WL) emissions between static (red) and dynamic WL 

(blue) area maps for (a) annual emissions in Tg yr-1, (b) seasonal cycle in Tg yr-1 and (c) latitude 

distribution in Tg yr-1. 
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3.5 Discussion and Conclusion 

Although the new model significantly improved our understanding of the spatial and 

temporal variability of global wetland 13C-CH4 and global CH4 budgets, there are still a few 

limitations of this study. First, we need more field and atmospheric measurements of wetland 13C-

CH4 to further constrain model parameters. Our optimization of fractionation factors (αHM, αAM, 

αMO, αTP, αTD, αTE) was based on a limited amount of observations, which increases the uncertainty 

of our model results. Also, since we set the fraction of two methanogen communities (HM and 

AM) using multiple regression analysis, the fraction changes spatially but not temporally, we need 

a better understanding of the temporal microbial community changes as they occur when 

permafrost thaws and disturbance happens (McCalley et al. 2014). Finally, various methanogenic 

and non-methanogenic processes will change 13C of CH4 and CO2, and the CO2/CH4 ratios, thus 

13C-CH4 emitted from wetlands. We need to identify detailed vertical subsurface methane 

processes using isotopic labeling analysis and inhibitor techniques to include those fractionation 

processes in the model.  

In conclusion, we developed the first-of-its-kind process-based biogeochemistry model that 

maps the global distribution of wetland 13C-CH4 and thoroughly validated the model using site-

level and regional observations. The new model isoTEM explains latitudinal and long-term 

variability of 13C-CH4 from wetlands. The latitudinal gradients of 13C of methane from wetlands 

strengthen due to distribution of C3/C4 plant, methanogen community, methane oxidation, but 

weaken due to plant mediated transport. Also, the long-term trends in 13C-CH4 from wetlands 

may be related to increased plant-mediated transport due to increasing temperature, but the 

changes were within the uncertainty range of our ensemble simulations. We applied the model 

results as inputs for an atmospheric transport modeling and showed that the spatially and 

temporally resolved wetland isotope map better matches observed inter-hemispheric δ13C-CH4 

compared to the previous uniform and static maps. 
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 CARBON ALLOCATION AFFECTS SEASONAL LEAF 

CARBON ISOTOPIC SIGNATURES AND INFERRED WATER USE 

EFFICIENCY OF TEMPERATE DECIDUOUS TREES 

4.1 Abstract 

Temperate deciduous trees remobilize stored carbon early in the growing season to produce 

new leaves and xylem vessels. The use of remobilized carbon for building leaf tissue dampens the 

link between environmental stomatal response and inferred intrinsic water use efficiency (iWUE) 

using leaf carbon isotopic signatures (δ13C). So far, few studies consider carbon allocation 

processes in interpreting leaf δ13C signals. To understand effects of carbon allocation on δ13C and 

iWUE estimates, we analyzed and modeled the seasonal leaf δ13C of four temperate deciduous 

species (Acer saccharum, Liriodendron tulipifera, Sassafras albidum, and Quercus alba) and 

compared the iWUE estimates from different methods, species, and drought conditions. At the 

start of the growing season, leaf δ13C values were more enriched, due to remobilized carbon during 

leaf-out. The bias towards enriched leaf δ13C values explains the higher iWUE from leaf isotopic 

methods compared with iWUE from leaf gas exchange measurements. We further showed that the 

discrepancy of iWUE estimates between methods may be species-specific and drought sensitive. 

The use of δ13C of plant tissues as a proxy for stomatal response to environmental processes, 

through iWUE, is complicated due to carbon allocation and care must be taken when interpreting 

estimates to avoid proxy bias. 

 

4.2 Introduction 

Globally, temperate forests account for 25% of carbon stored as biomass and remove a 

significant amount of increasing anthropogenic carbon dioxide (CO2) from the atmosphere 

annually (Bonan 2008). Drought has been a key disturbance agent in temperate forests, and it is 

predicted that droughts will occur more frequently in the future and significantly reduce forest 

carbon uptake capacity (Ciais et al. 2005; Stocker et al. 2013; Millar and Stephenson 2015). To 

understand how trees respond to water stress and how increased atmospheric CO2 may ameliorate 
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the effects, water use efficiency (WUE) has been used as a key measure to link terrestrial carbon 

and water cycles (Frank et al. 2015; Baldocchi et al. 1997; Hoffmann et al. 2011). The responses 

of WUE to water stress depend on biome types and tree species in temperate forests (Yi et al. 2019; 

Charney et al. 2016; Yang et al. 2016), emphasizing the importance of understanding WUE to 

predict future forest demographics and adaptation to climate change (Fei et al. 2011, 2017). 

The intrinsic WUE (iWUE), defined as the photosynthetic rate (A) divided by stomatal 

conductance (gs) (Eq. 4.1), represents the trade-off between new carbon uptake and the ease with 

which water vapor is lost through leaf stomata in terms of internal and atmospheric CO2 

concentrations (ci and ca, respectively). Unlike the total WUE, defined as the ratio of A to 

transpiration, the iWUE is not sensitive to abiotic controls on water loss that do not affect 

photosynthesis (specifically, enhanced transpiration as vapor pressure deficit (VPD) rises). Thus, 

iWUE is a measure of WUE that more clearly reflects physiological (or biotic) responses to 

changing environmental conditions.   

𝑖𝑊𝑈𝐸 =
𝐴

𝑔𝑠
=

(𝑐𝑎−𝑐𝑖)

1.6
=

𝑐𝑎

1.6
(1 − (

𝑐𝑖

𝑐𝑎
))  … Equation 4.1  

 

To estimate a long-term changes in iWUE, studies have used the ratio of stable carbon 

isotopes (13C/12C) of plant tissues, such as tree rings and leaves (e.g. Linares & Camarero, 2012; 

Belmecheri et al., 2014; Frank et al., 2015; Cornwell et al., 2018) and residual effects on 

atmospheric CO2 (e.g. Keeling et al., 2017). The stable carbon isotope ratio is expressed in delta 

notation (δ13C) (Eq. 4.2) (McCarroll and Loader 2004). The isotopic method of estimating iWUE 

is based on photosynthetic fractionation, where gas diffusion and enzymes discriminate against 

heavier 13C during photosynthesis (Farquhar and Sharkey 1982). When plants close their stomata, 

it causes smaller photosynthetic fractionation, higher δ13C of plant tissues, smaller ratios of internal 

to atmospheric CO2 concentrations (ci/ca), and thus higher iWUE (Eq. 4.1). Land surface models 

have incorporated stable carbon isotope tracers to improve model representation and prediction of 

terrestrial water and carbon fluxes (Raczka et al. 2016; Graven et al. 2017; Van Der Velde et al. 

2013; Suits et al. 2005). 

𝛿13𝐶 (‰) = (
( C 
13 C 

12⁄ )
𝑠𝑎𝑚𝑝𝑙𝑒

( C 13 C 12⁄ )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1) × 1000 … Equation 4.2  
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However, the δ13C of plant tissues may not be explained solely by stomatal-controlled 

photosynthetic fractionation. For example, the δ13C of plant tissues have been found to vary across 

different tissue types within the same plant, where stem and root tissues are generally enriched in 

δ13C than leaf tissue (Badeck et al. 2005; Bowling et al. 2008). The offsets vary by tree species, 

and reflect post-photosynthetic fractionation during construction of plant tissues and storage pools 

and allocation processes moving carbon between pools (Linares and Camarero 2012; Gessler et al. 

2014; Cernusak et al. 2009). Post-photosynthetic processes leading to variability in δ13C of internal 

carbon pools may cause a discrepancy of iWUE among different measurement methods for 

temperate forests. Isotope-based estimates of iWUE tend to be higher than estimates based on non-

isotopic methods, such as gas exchange and eddy covariance (Medlyn et al. 2017; Yi et al. 2019). 

The discrepancy of isotope-based iWUE may be resolved by improved understanding of 

seasonal dynamics of δ13C in plant tissues. Some studies have shown an enrichment in δ13C in leaf 

tissues early in the growing season of temperate deciduous trees compared to the peak growing 

season, which leads to higher inferred iWUE during the early period and lower iWUE during the 

peak season (Helle and Schleser 2004; Stokes et al. 2010; Ogée et al. 2009). This cannot be 

explained by the photosynthetic fractionation only, as fractionation due to leaf gas diffusion and 

resulting  ci/ca often decreases resulting in higher iWUE during the peak growing season when 

VPD is high and trees close their stomata to avoid xylem cavitation and hydraulic failure (Farquhar 

and Sharkey 1982; Farquhar et al. 1989; Yi et al. 2019).  

A conceptual illustration of how the observed seasonal δ13C of leaf tissues may be related 

to post-photosynthetic carbon allocation processes is given in Figure 4.1. After carbon is 

assimilated in the leaf (Fig. 4.1a), it can be stored in structural or non-structural carbon pools, lost 

through respiration, or transported to the other parts of tree (Fig. 4.1b, 4.1c, and 4.1d) (Brüggemann 

et al. 2011; Fatichi et al. 2014; Savage et al. 2016). Among the carbon pools, non-structural 

carbohydrates (NSC) exist as a form of sugar or starch and are used to regulate plant metabolism 

or stored for later use. The stored NSC often shows enriched values (high δ13C) compared to new 

NSC from photosynthetic fractionation due to additional fractionation during post-photosynthetic 

carbon allocation processes (Bowling et al. 2008; Cernusak et al. 2009; Gessler et al. 2014). 

Temperate deciduous trees remobilize stored NSC every spring to produce new xylem vessels and 

leaves until new carbon can be supplied from photosynthesis (Fig. 4.1e) (Kuptz et al. 2011; 

Carbone et al. 2013; De Kauwe et al. 2014). They also remobilize stored NSC to avoid carbon 
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starvation when environmental conditions are unfavorable for productivity, for example during 

drought (Hasibeder et al. 2015; Gessler and Treydte 2016). 

 

 

 

 

Figure 4.1 A conceptual illustration of leaf carbon allocation processes. Trees produce newly 

assimilated carbon by photosynthesis (a) and input the new carbon to the non-structural carbon 

(NSC) pool in leaves. The NSC can be used for leaf growth and structural carbon pool (b), 

growth and maintenance respiration (c), or transported to stems through phloem (d). When leaf 

respiration costs outpace photosynthetic fluxes, the NSC from stems and roots is transported 

back to leaf (e). The color of the arrows represents drought/early growing season (red) and non-

drought/mid to late growing season (blue) conditions and the size of arrows represents relative 

annual fluxes. 
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This remobilization of stored NSC for use in new tissues, and later mixing of stored carbon 

with new carbon pools, can therefore contribute to the seasonal variability of δ13C of leaf tissues 

for temperate deciduous trees. Remobilizing old NSC from stem and root tissues which tend to 

have higher δ13C values to build xylem vessels and new leaves early in the growing season is a 

proposed explanation for leaf δ13C enrichment (Hoch et al. 2003; Stokes et al. 2010; Gessler et al. 

2014). As photosynthesis continues to increase, the leaf NSC pool (i.e., mixture of old and new 

NSCs) gradually increases the fraction of new carbon, causing the δ13C to gradually decrease 

(Helle and Schleser 2004; Gessler et al. 2009; Stokes et al. 2010). The fraction of new carbon in 

leaf tissues may depend on the minimum size of NSC pools in temperate deciduous species as 

trees use different strategies of carbon allocation for early-season growth (Brüggemann et al. 2011; 

Stokes et al. 2010).  

In summary, the use of remobilized NSC early in the growing season for different species 

and environmental conditions can dampen the link between stomatal response to climate, 

photosynthesis, and tree growth (Kagawa et al. 2006; Eglin et al. 2010; Brüggemann et al. 2011; 

Gessler et al. 2014). So far, few studies have considered the role of the carbon allocation in 

interpreting the high iWUE by isotopic methods due to enriched δ13C signals from remobilized 

NSC. The uncertainty leads to a potential for bias for studying carbon and water fluxes when using 

different iWUE measures to parameterize or validate models (Battipaglia et al. 2013; Frank et al. 

2015; Monclus et al. 2006; Keller et al. 2017).  

The objective of this paper is to quantify the effects of carbon allocation on seasonal leaf 

δ13C and iWUE estimates of temperate deciduous trees. We specifically investigate (1) the role of 

remobilized NSC early in the growing season in explaining the discrepancy in iWUE between 

isotope-based and other measurements, and (2) the effects of species-specific and drought-

sensitive remobilized NSC on the variations in iWUE among different species and environmental 

conditions. We studied four tree species (Acer saccharum, Liriodendron tulipifera, Sassafras 

albidum, and Quercus alba) that vary in stomatal responses and carbon allocation strategies. To 

address these objectives, we modelled species-specific photosynthesis, carbon allocation, and 

isotopic fractionation processes. We then used this model framework to estimate iWUE using 

different methods (isotopic and non-isotopic), for each species and environmental conditions, 

which helps to isolate the role of remobilized NSC in iWUE estimates. 
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4.3 Materials and Methods 

4.3.1 Study site and materials 

Our study was conducted at the Morgan-Monroe State Forest (MMSF) in southcentral 

Indiana, USA (Latitude 39.119N, Longitude 86.125W). MMSF is a core-site affiliated in the 

AmeriFlux network (US-MMS), and a 46 m eddy covariance tower has been operating since 1998 

to measure CO2, water, and energy fluxes along with other ecophysiological measurements (Yi et 

al. 2017; Roman et al. 2015; Brzostek et al. 2014). As a secondary successional temperate 

deciduous forest, the mean age of trees in MMSF is 80-90 years. About 70% of the basal area is 

comprised of Acer saccharum (sugar maple), Liriodendron tulipifera (tulip poplar), Sassafras 

albidum (sassafras), and Quercus alba (white oak) (Ehman et al. 2002). 

During our study period in 2011-2013 and 2017-2018, the mean annual temperature at 

MMSF was 14.42°C and the mean annual precipitation as 1,069 mm based on meteorological 

observations from the tower (Fig. 4.2). In 2012, MMSF experienced an extreme drought event that 

affected much of the Midwestern US, and received only 23 mm of rainfall during the peak of the 

growing season in June and July (Yi et al. 2019; Roman et al. 2015). The drought reduced soil 

moisture and increased VPD significantly (Fig. 4.2c and 4.2d). As a result, the absolute value of 

net ecosystem exchange (NEE) during the peak growing season in 2012 (DOY 182–218) was 

reduced by 55% relative to mean NEE during typical weather conditions in 1999–2010 (Yi et al., 

2019). However, since the growing season started several weeks early in 2012, the drought caused 

only about a 30% reduction in the absolute value of NEE during the entire growing season in 2012 

relative to the NEE in wetter 2013 (Fig. 4.2b).  

 



 

 

148 

 

 

Figure 4.2 Inter- and intra-annual variability of environmental conditions in 2011–2013, 2017–

2018.Seasonal changes of 10-day moving average of (a) air temperature, (b) net ecosystem CO2 

exchange (NEE), (c) vapor pressure deficit, and (d) soil moisture in the first 30 cm depth 

measured at the MMSF AmeriFlux site in 2011–2013, 2017–2018. 
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We collected seasonal leaf samples from three individuals each tree species in 2011–2013. 

During the growing seasons, at least two sunlit leaves of maximum maturity for that time for each 

tree were collected every 2 weeks (day of year (DOY) 195–235 in 2011, DOY 123–286 in 2012 

and DOY 135–270 in 2013) by accessing to the top of the canopy using a boom-lift. During the 

bi-weekly collections, leaf gas exchange and ancillary data, including mid-day atmospheric and 

intercellular CO2 concentrations (ca and ci, respectively), net assimilation (An), and stomatal 

conductance (gs) were measured using a portable photosynthesis system (LI-6400; Li-COR) 

(Roman et al., 2015; Yi et al., 2019). Additional samples were collected in 2017–2018 using a 

sling-shot method from one individual of the four tree species to sample at least two sunlit leaves 

for each tree at the top-to-middle canopy range (every 1–2 weeks during DOY 111–307 in 2017 

and four times during DOY 145–298 in 2018).  

Tree cores were sampled using a 5 mm diameter increment borer at breast height. The 

growth-rings were available in 2011–2012 for all species and additional samples in 2013 for 

sassafras only (Yi et al., 2019). Tree core samples were not collected in 2017 or 2018 to minimize 

the damage of the heavily-sampled target trees. 

 

4.3.2 Carbon isotope analysis 

Carbon isotope ratios (δ13C) of the seasonal leaf and annual tree core samples were 

measured using a continuous flow elemental analyzer-isotopic ratio mass spectrometer (EA-IRMS) 

(PDZ Europa ANCA-GSL EA interfaced with a Sercon 20-22 IRMS). Before leaf samples were 

ground using a mixer mill (Restech MM 200), samples in 2011–2013 were dried passively at room 

temperature during storage of 3 years or longer and samples in 2017–2018 were oven-dried within 

3 days. For the tree core samples, alpha-cellulose was extracted from late-wood annual rings 

following the modified Soxhlet method at Indiana University (see more details about the tree cores 

sample preparation in Yi et al., 2019). The tree core samples of sassafras and all leaf samples were 

then analyzed by Purdue Stable Isotope (PSI) facility at Purdue University, and the tree ring 

samples of other species were analyzed by Stable Isotope Research Facility (SIRF) at Indiana 

University. Peach Leaf standard reference material (NIST 1547) was used as a quality control in 

the PSI lab, and USGS 40 and acetanilide #1 (CAS 103-84-4) were further used to check the 

accuracy of the one-point standard correction. Analytical precision was better than 0.2‰.  
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Leaf δ13C values are known to vary with height due to differences in solar irradiance and 

hydraulic conductance affecting leaf water potential, photosynthesis rates, and ci/ca values 

(McDowell et al. 2011; Suh and Diefendorf 2018). To account for sampling height differences in 

leaves collected by the sling-shot method at a lower height in 2017–2018 compared to the upper-

canopy leaves collected by the boom-lift in 2011–2013, we added a constant offset of +3‰ for 

sugar maple and +2‰ for all other species to leaf δ13C values in 2017–2018. The offsets were in 

the observation range of relationships between tree height and leaf δ13C and brought the mean 

values for each in line with previous years (McDowell et al. 2011). 

To quantify differences in the seasonal variability of leaf δ13C among species, we averaged 

leaf δ13C for early and late growing seasons separately, defined by before and after DOY 150, for 

four species from four years of data (2012, 2013, 2017 and 2018). We excluded the data from the 

year 2011 in this seasonal analysis due to the lack of sample collection prior to DOY 150 in this 

year. 

 

4.3.3 Modeling species-specific carbon allocation processes 

Photosynthetic rate and stomatal conductance 

We implemented the photosynthesis equations from the Community Land Model version 

4.5 (CLM 4.5) (Bonan et al. 2012, 2014). In specific, we directly referred chapters 8.2 – 8.5 of 

technical description of CLM 4.5 to calculate leaf-level net assimilation (An) and intercellular CO2 

concentrations (ci) for the C3 photosynthesis module. The An was calculated by subtracting 

autotrophic respiration (Rd) from the minimum of Rubisco-, light, and product- limited 

assimilation rates (Ac, Aj, and Ap, respectively) (Eq. 4.3). The rubisco-limited rates are a function 

of the maximum carboxylation rate (Vc,max), CO2 compensation point (Γ*), Michaelis-Menten 

constants for CO2 and O2 (Kc and Ko), and oxygen partial pressure (oi) (Eq. 4.4). The ci was 

calculated by considering diffusion of atmospheric CO2 (ca) controlled by boundary layer and 

stomata conductance (gb and gs, respectively), and atmospheric pressure (Patm) (Eq. 4.5). The An, 

ci and gs were solved iteratively using Brent’s method until ci converges (Brent 1976). Additionally, 

phenology was prescribed by setting the initiation and termination of photosynthesis using 

seasonal leaf growth derived from the PhenoCam imagery (Table 4.1) (Richardson et al. 2018) 

and species-specific phenology recorded at MMSF (Table 4.2). 
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𝐴𝑛 = min(𝐴𝑐, 𝐴𝑗 , 𝐴𝑝) − 𝑅𝑑 … Equation 4.3 

 

𝐴𝑐 = (𝑉𝑐,𝑚𝑎𝑥(𝑐𝑖 − Γ
∗))/(𝑐𝑖 + 𝐾𝑐(1 + 𝑜𝑖/𝐾𝑜))  … Equation 4.4 

 

𝑐𝑖 = 𝑐𝑎 − (1.4/𝑔𝑏 + 1.6/𝑔𝑠)𝑃𝑎𝑡𝑚𝐴𝑛 … Equation 4.5 
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Table 4.1 Species-specific model parameters for four tree species of this study. 

 

 Tulip 

Poplar 

Sugar 

Maple 

Sassafras White Oak References 

Offset between Tree 

ring cellulose and leaf 

NSC 

+2.5‰ +2.0‰ +0.5‰ +1.0‰ Badeck et al. 

(2005) 

Species-

specific 

Wood 

Anatomy 

Porosity Diffuse Porous Ring Porous Yi et al. 

(2017) 

Minimum 

NSC pool 

20 mg/gDM 40 mg/gDM Barbaroux & 

Bréda (2002) 

Species-specific 

Isohydricity 

Isohydric Anisohydric Medlyn et al. 

(2011) 

Stomatal model optimized 

using leaf gas exchange data 

Spring 

Phenology based on 

Table S1 

Shifted 

5 days 

earlier 

Shifted 

5 days 

earlier 

Shifted 15 

days later 

No Shift This study 

 

 

Table 4.2 Phenology of Morgan Monroe State Forest in 2011 – 2013. 

 

Day of Year (DOY) 2011 2012 2013 

Leaf Out (LA0) 125 115 125 

Maximum LAI (LAmax) 210 200 210 

Start of Senescence 245 245 260 

Full Senescence 310 310 320 
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We implemented species-specific stomatal conductance (gs) using a linear relationship 

between gs and the term An/(ca D
1/2), where ca is atmospheric CO2 and D is VPD (Eq. 4.6) (Medlyn 

et al. 2011). Compared to the empirical stomatal conductance model, the Medlyn model provides 

a theoretical interpretation for stomatal optimization of carbon gain per water loss. Equation 3 

predicts a close linear relationship between gs and the term A/(ca D
1/2), where D is VPD. Here, the 

parameter g1 (kPa0.5) is shown to vary with growth temperature and is species-specific, and g0 is 

assumed to be small (< 0.1) (Medlyn et al. 2017).  

We optimized the parameters g1 and g0 in Eq. 4.6 using leaf-gas exchange measurements 

for each species to account for trees response to VPD at the stomatal level along the species-

specific gradients of isohydric and anisohydric traits (Roman et al., 2015; Yi et al., 2019). To filter 

leaf gas exchange data, we applied the same criteria as Wolz et al., 2017 by screening data from 

sun leaves with no precipitation, and when photosynthetic photon flux density (PPFD) > 1400 

μmol m-2 s-1. During a drought, isohydric trees close their stomata to sustain relatively stationary 

leaf water potential, which reduces the risk of xylem embolism. Anisohydric trees leave the 

stomata open, which sustains gas exchange but at greater risk of hydraulic damage by decreasing 

leaf water potential.  Among the species considered here, tulip poplar is known to be very isohydric, 

sugar maple and sassafras are intermediate isohydric, and white oak is very anisohydric (Brzostek 

et al. 2014; Roman et al. 2015) (Table 4.1). 

 

𝑔𝑠 ≈ 𝑔0 + 1.6 (1 + (
𝑔1

√𝐷
))

𝐴

𝑐𝑎
  … Equation 4.6 

 

For each simulation time-step of one hour, the interdependent variables An and gs were solved 

iteratively. Initial An for each species was set to be equal to the gross primary productivity from 

eddy flux measurements and intercellular CO2 concentration (ci) was set as a function of gs (Eq. 

4.5). Calculation of An and gs was iterated until the previous and updated ci converged to a constant 

(Brent 1976).  

 

Post-photosynthetic carbon allocation to/from leaves 

The carbon budget within leaves was simulated based on respiration fluxes, phloem export, 

and remobilization processes in addition to photosynthesis (Fig. 4.1). We used equations of the 



 

 

154 

post-photosynthetic carbon allocation processes from the ISOCASTANEA model (Eglin et al. 

2010). Note that we did not track carbon pools in other parts of the tree like stems and roots, but 

only the carbon entering (import) or leaving (export) the leaves was considered. Thus, we assume 

in our simulation that an infinite supply of stored NSC is available when leaf respiration costs 

outpace photosynthetic fluxes.  

The leaf carbon pool consists of structural and non-structural carbon (NSC) pools (Figure 

4.1). The size of the NSC pool in the leaf is determined by the balance between the new NSC and 

stored NSC. The new NSC refers to the freshly produced NSC via photosynthesis, and the stored 

NSC refers to the NSC that has been stored before it was remobilized into the leaf NSC pool. Both 

new and stored NSC pools are the carbon sources of the structural carbon pool during the period 

of leaf growth. The leaf structural carbon pool was simulated using stored and new NSC 

proportionally from leaf NSC pools during periods of leaf growth. Both new and stored carbon 

contributions were tracked separately in the structural and NSC leaf pools in order to account for 

differences in the δ13C values of each. 

Leaf carbon fluxes include the input of new NSC as a result of photosynthesis, export of 

new and stored NSC for respiration and phloem transport proportionally, and import of stored NSC 

from remobilization. In the ISOCASTANEA model, the carbon allocation is simulated by leaf 

growth, respiration, phloem transport, and remobilization processes (Fig. 4.1b, 4.1c, 4.1d and 4.1e). 

First, the leaf area growth (LA) was calculated as a function of accumulated temperature 

(T) between day of year (DOY) of leaf out (LA0) and maximum LAI (LAmax), where SfrcLA is the 

state of forcing for leaf growth (Eq. 4.7-8 and Table 4.2) (Dufrêne et al. 2005) 

 

𝑆𝑓𝑟𝑐𝐿𝐴 = ∑ 𝑇
𝐷𝑂𝑌𝐿𝐴𝑚𝑎𝑥
𝐷𝑂𝑌𝐿𝐴0

, 𝑖𝑓 𝑇 > 0℃ … Equation 4.7 

 

𝑑𝐿𝐴

𝑑𝑡
= {

𝐿𝐴𝑚𝑎𝑥×𝑇

𝑆𝑓𝑟𝑐𝐿𝐴
,   𝑖𝑓 𝐿𝐴 < 𝐿𝐴𝑚𝑎𝑥

0,                   𝑖𝑓 𝐿𝐴 = 𝐿𝐴𝑚𝑎𝑥   
 … Equation 4.8 

 

We then calculated growth respiration (RG) as a function of growth rate (GB) and 

construction cost (CR) of leaf growth from Eq. 4.9, and maintenance respiration (RM) as a function 

of temperature (Tsuf) and nitrogen content (Nm), where B is biomass, MRN is nitrogen dependency, 
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Nm is nitrogen contents, Q10 is temperature effect for leaves, and Tmr is base temperature for 

maintenance respiration (Eq. 4.10) (Dufrêne et al. 2005). 

 

𝑅𝐺 = 𝐺𝐵(𝐶𝑅 − 1) … Equation 4.9 

 

𝑅𝑀 = 𝐵 ×𝑀𝑅𝑁 × 𝑁𝑚 × 𝑄10
(𝑇𝑠𝑢𝑓−𝑇𝑚𝑟)/10

 … Equation 4.10 

 

The phloem transport followed a Michaelis-Menten equation of the leaf NSC pool, where L and S 

are the export rate and the NSC pool size, respectively, and Lmax and Km
export

  are the Michaelis-

Menten constants for NSC pool (Eq. 4.11). Smin is the minimum leaf NSC pool size that was set to 

be species-specific (Table 4.1). Lastly, the remobilization of NSC was simulated to occur when 

the NSC pool size becomes smaller than Smin in leaves (Eglin et al. 2010).  

𝐿 =
𝐿𝑚𝑎𝑥(𝑆−𝑆𝑚𝑖𝑛)

𝐾𝑚
𝑒𝑥𝑝𝑜𝑟𝑡

+(𝑆−𝑆𝑚𝑖𝑛)
 … Equation 4.11 

 

We assigned different leaf Smin depending on wood porosity of each species. Ring porous 

species build wider and longer xylem vessels that are more susceptible to xylem cavitation during 

winter (Barbaroux and Bréda 2002; Barbaroux et al. 2003).  Ring porous species are known to 

have larger Smin than diffuse porous species do in order to reserve NSC to repair vulnerable xylem 

vessels (Heizmann et al. 2001; Mayrhofer et al. 2004; Palacio et al. 2011; Dietze et al. 2014). On 

the other hand, diffuse porous species have smaller xylem vessels, which are less susceptible to 

damage from freezing, and therefore smaller Smin is observed (Barbaroux and Bréda 2002; Furze 

et al. 2019). In this model, we assume that Smin follows the tree-level minimum NSC pool size and 

set Smin for diffuse porous species (tulip poplar and sugar maple) to be 50% lower than ring porous 

species (white oak and sassafras) (Table 4.1). 

 

Modeling carbon isotope values of leaf carbon fluxes and pools 

We simulated δ13C values of leaf NSC and structural carbon pools using photosynthetic 

isotopic fractionation and mixing between the new and remobilized stored NSC pools (Seibt et al. 

2008; Eglin et al. 2010). We trained the model in 2011–2013 using observed leaf phenology and 
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tree ring δ13C, and tested the model in 2017–2018 using the mean leaf phenology and tree ring 

δ13C. 

First, using the time-varying simulated An and ci in the model, we calculated the time-

varying δ13C of newly assimilated NSC by photosynthetic fractionation using Equation 4.12a, 

where a is the fractionation during CO2 diffusion through the stomata (4.4‰), b is the fractionation 

during carboxylation (29‰), am is the fractionation during the mesophyll CO2 transfer (1.8‰), f 

is the fractionation during photorespiration (Eq. 4.13), Γ* is the CO2 compensation point in the 

absence of dark respiration (Eq. 4.14), and mesophyll conductance (gm) is assumed to be  0.2 mol 

m-2 s-1 within the range of limited observations (Seibt et al. 2008). We also test a common 

simplification presented in Equation 4.12b not accounting for gm, where b’ (27‰) is the net 

carboxylation fractionation reduced to account for the terms omitted from Equation 4.12a 

(Farquhar et al. 1989).  

 

𝛿13𝐶𝑝ℎ𝑜𝑡𝑜 = 𝛿13𝐶𝑎𝑡𝑚 − (𝑎 + (𝑏 − 𝑎)
𝑐𝑖

𝑐𝑎
− (𝑏 − 𝑎𝑚)

𝐴𝑛

𝑔𝑚𝑐𝑎
− 𝑓

Γ∗

𝑐𝑎
) … Equation 4.12a 

 

𝛿13𝐶𝑝ℎ𝑜𝑡𝑜 = 𝛿13𝐶𝑎𝑡𝑚 − 𝑎 + (𝑏′ − 𝑎)
𝑐𝑖

𝑐𝑎
  … Equation 4.12b 

 

𝑓 = 8 − (
350−𝑐𝑎

25
) … Equation 4.13 

 

Γ∗ = 1.54 × 1.05 × (𝑇 + 2.5) … Equation 4.14 

 

 

Second, due to observational constraints, the δ13C of stored NSC was not modeled in a 

time-dependent way but assumed to be a constant value set by the stored carbon of the previous 

year. We estimated δ13C of stored NSC from the isotopic signatures of tree ring cellulose of the 

previous year in 2011–2012 and subtracted a species-specific fractionation factor within the 

observed range of +0.5 to +2.5‰ to consider differences in post-photosynthetic enrichment of tree 

ring cellulose compared to leaf NSC material (Δstem-leafNSC) (Gessler et al. 2014; Badeck et al. 2005). 

The different Δstem-leafNSC fractionations were used for each species in order to best fit the leaf δ13C 
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observations (Table 4.1). We further conducted a sensitivity test including Δstem-leafNSC to quantify 

the importance of Δstem-leafNSC on our simulation results.  

Within the leaf, the binary mixing of stored and new carbon pools was calculated using the 

fraction of stored and new carbon and their respective isotopic signatures (Eq. 4.15a). In Equation 

4.15a and 4.15b, the isotopic signatures of the resulting mixture of NSC and structural carbon pool 

(δ13CNSC and δ13Cstruct, respectively) at a timestep t vary systematically depending on the relative 

fraction of new carbon (fnew) and the isotopic signatures of new and old carbon pools (δ13Cnew and 

δ13Cold). We set the isotopic fractionation between leaf structural and NSC (ΔNSC-SC) to be +1.5‰, 

where structural is more enriched than NSC. We do not consider different chemical compounds 

within the structural pool (e.g. Collister et al., 1994). For the leaf respiration and phloem transport 

fluxes removing carbon from the leaf, we assumed that there was no isotopic fractionation and 

they have the mixed δ13C value of the leaf NSC at each time step. 

 

𝛿13𝐶𝑁𝑆𝐶,𝑡 = 𝛿
13𝐶 𝑛𝑒𝑤,𝑡 × 𝑓𝑛𝑒𝑤,𝑁𝑆𝐶,𝑡 + 𝛿

13𝐶 𝑜𝑙𝑑,𝑡 × (1 − 𝑓𝑛𝑒𝑤,𝑁𝑆𝐶,𝑡) … Equation 4.15a 

 

𝛿13𝐶𝑠𝑡𝑟𝑢𝑐𝑡,𝑡 = 𝛿
13𝐶 𝑛𝑒𝑤,𝑡 × 𝑓𝑛𝑒𝑤,𝑠𝑡𝑟𝑢𝑐𝑡,𝑡 + 𝛿

13𝐶 𝑜𝑙𝑑,𝑡 × (1 − 𝑓𝑛𝑒𝑤,𝑠𝑡𝑟𝑢𝑐𝑡,𝑡) …  Equation 4.15b 

 

Uncertainty tests 

To quantify the uncertainty in the model simulations of leaf carbon fluxes and δ13C, we 

varied six key parameters mentioned in section 4.3.3: Vc,max, Lmax, Km
export, CRleaf, Q10,leaf, and ΔNSC-

SC (Table 4.3). We sampled the six parameters 20 times using a random distribution of minimum 

and maximum of parameters based on reported literature ranges and used these samples to define 

20 different model ensemble members. We found that the ensemble mean and ensemble variance 

of leaf δ13C values stabilized at around 10 members, so we ultimately chose to include 20 ensemble 

members to be conservative. 
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Table 4.3 Details of parameter uncertainty tests. 

No. Parameter Minimum Maximum References 

1 Maximum rate of carboxylation 

(Vc,max) 

52.4  

mol m-2s-1 

57.7  

mol m-2s-1 

Bonan et al., 2012 

2 Maximum phloem transport 

rate (Lmax) 

6  

mol m-2s-1 

14  

mol m-2s-1 

Moing, Escobar-

Gutierrez and 

Gaudillere, 1994; 

Eglin et al., 2010 

3 Half-saturation point for 

Michaelis-Menten parameter 

for phloem transport (Km
export) 

3.6  

mol m-2s-1 

4.4  

mol m-2s-1 

Moing, Escobar-

Gutierrez and 

Gaudillere, 1994; 

Eglin et al., 2010 

4 Construction cost of leaves 

(CRleaf) 

1.2  1.4 Niinemets, 1999; 

Dufrêne et al., 2005 

5 Temperature effect for leaves 

(Q10,leaf) 

2.0 2.4 Bolstad, Mitchell and 

Vose, 1999 

 

6 Offset between leaf non-

structural and structural carbon 

pools (ΔNSC-SC) 

+1.4‰ +1.6‰ Badeck et al., 2005; 

Gessler et al., 2014 
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Model sensitivity test  

We conducted seven sensitivity tests to identify the relative importance of various model 

parameterization choices (Table 4.4). Test 1 clarifies the importance of carbon allocation to bulk 

leaf material by considering photosynthetic discrimination only. Tests 2 and 3 address the 

importance of mesophyll conductance and offsets of δ13C between tree ring cellulose and leaf NSC 

pool. Test 4 elucidates the importance of species-specific carbon allocation processes by switching 

the NSC pool size and timing of vessel growth of ring- and diffuse-porous species. Test 5 switches 

the species-specific stomatal response between the isohydric and anisohydric species. Lastly, test 

6 neglects the species-specific phenology and test 7 changed maximum phloem loading rates. We 

ran seven independent simulations for the sensitivity tests and calculated the RMSE between the 

observations and the model.  

We present two types of error analysis. First, testing how close the model results are to the 

mean observations by the RMSE from the 1:1 line, and second, how close the model captures the 

within season variability by the RMSE from the least squares linear fit to the model-observation 

comparison. This second error analysis acknowledges that some constant parameters are optimized 

to the observation means, but do not contribute to within season variability. We present the RMSE 

values from the sensitivity tests relative to the optimized model.  
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Table 4.4 Details of sensitivity tests. 

No. Sensitivity Test Assumption Variable Change 

1 No Carbon allocation Leaf bulk δ13C is solely 

controlled by photosynthetic 

fractionation  

Turn off post-

photosynthetic carbon 

allocation processes 

2 Varied mesophyll 

conductance 

Mesophyll conductance varies in 

the observation range 

0.20 to 0.25 mol m-2s-1 

3 Same fractionation factor 

of tree ring cellulose – 

bulk leaf δ13C (Δstem-

leafNSC) 

Δstem-leafNSC does not vary between 

species 

+1.5 ‰  

4 Species-specific wood 

anatomy and minimum 

leaf NSC pool size (Smin) 

Switched between ring and 

diffuse porous species  

Smin for ring porous 

species to be 50% lower 

than diffuse porous 

species 

5 Species-specific 

isohydricity 

Switched between isohydric and 

anisohydric species 

Switched Medlyn 

relationship between 

isohydric and 

anisohydric species 

6 Same phenology Phenology does not vary between 

species and between years 

Same leaf out and 

maximum LAI dates 

7 Varied maximum phloem 

loading rates  

Maximum phloem loading rates 

vary in the observation range 

6 to 10 μmol m-2 s-1 
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4.3.4 Estimation of iWUE using multiple methods 

We compared iWUE in equation 4.1 from five different methods using the observations and 

model results in our study. These include direct leaf gas exchange measurements, carbon isotope 

measurements of leaves and tree rings, and our modeled fluxes sampled in two different ways. The 

iWUE estimated by leaf gas exchange measurements is the most direct measurement, but is limited 

as an instantaneous measurement of constantly changing gas exchange (Instantaneous Licor A/gs) 

(Yi et al. 2019). In order to examine the influence of temporal variability, we sampled our model 

at the same times that the leaf gas exchange was measured (Instantaneous Model A/gs) and also 

averaged the iWUE of the modeled fluxes using GPP-weighting over the entire season (GPP 

weighed Model A/gs). The iWUE estimates from leaf and tree ring δ13C (Leaf and Tree ring δ13C) 

were calculated using equation 4.1 after calculating ci/ca using both Eq. 4.12a and 4.12b, with and 

without considering gm, respectively. For tree ring δ13C, we accounted for the well-known δ13C 

offset of 1.0‰ between cellulose and bulk wood (Badeck et al. 2005; Gessler et al. 2014). We 

compared the iWUE calculated using the five methods, across species, and between relatively 

unstressed conditions in 2011 to drought conditions in 2012. The iWUE for other years were not 

calculated due to lack of tree ring δ13C measurements.  

 

4.4 Results 

4.4.1 Observed bulk leaf and tree ring cellulose δ13C variability 

The bulk leaf δ13C values generally started high in the spring and then decreased as the 

growing season proceeded (circle symbols in Fig. 4.3). The average early-late season difference 

was statistically significant over the study period in 2012–2013 and 2017–2018 for sassafras and 

white oak (p < 0.05), with a larger difference for sassafras (2.43‰) than white oak (1.43‰) 

(triangle symbols in Fig. 3c-d). The averaged early-late season difference was smaller for sugar 

maple (1.24‰) and tulip poplar (0.70‰) over the study period and was significant only in 2017–

2018 for sugar maple (2.16‰) and in 2013 for tulip poplar (0.95‰) (p < 0.05) (triangle symbols 

in Fig. 4.3a-b).  

We observed a species-specific variability of mean tree ring cellulose δ13C in 2011–2012 

with the highest δ13C for sugar maple (an average of -24.02‰), followed by tulip poplar, sassafras, 

and white oak (-24.46, -24.99, and -26.41‰, respectively) (asterisk symbols in Fig. 4.3). The tree 
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ring δ13C in 2012 was higher than 2011 in all species (0.40, 0.52, 1.06, and 0.27 for sugar maple, 

tulip poplar, sassafras, and white oak, respectively), although the difference was not statistically 

significant (p > 0.05). A clear species-specific offset between bulk leaf and tree ring cellulose δ13C 

was observed, where the average offset was larger for diffuse porous tulip poplar (3.54‰) and 

sugar maple (2.83‰) and smaller for ring porous sassafras (1.61‰) and white oak (1.05‰). 

 

 

 

Figure 4.3 Observed seasonal leaf and annual tree ring δ13C in 2011–2013, 2017–2018. Observed 

seasonal changes of bulk leaf δ13C (‰) (open circles), early- and late-season averages of bulk 

leaf δ13C (‰) (up and down triangles), and annual tree ring cellulous (asterisk symbol) for (a) 

sugar maple, (b) tulip poplar, (c) sassafras, and (d) white oak in 2011–2013, 2017–2018. Left 

panels show bulk leaf δ13C (‰) sampled throughout the growing season. Middle panels show 

early- and late-season averages of bulk leaf δ13C (‰) based on the DOY 150 cutoff. Right panels 

show tree ring cellulose δ13C plotted in 2011–2013. Error bars represent one standard deviation 

of each sampling/average period. 
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4.4.2 Modeling of photosynthesis, stomatal conductance, and photosynthetic fractionation 

The empirical fit of the Medlyn et al. (2011) relationship of gs to the leaf gas exchange data 

showed the species-specific stomatal response to environmental changes (Eq. 4.6) (Fig. 4.4). The 

three-year averaged g1, sensitivity of gs to D, during 2011-2013 was lowest for sugar maple, 2.36 

kPa0.5, followed by 3.26, 3.76, and 4.36 kPa0.5 for white oak, sassafras, and tulip poplar. The annual 

averaged gs of anisohydric white oak species did not decrease (an average of 10% reduction) as 

much during drought as other isohydric species (an average of 40% reduction) during the drought 

year in 2012 (Fig. 4.4). The simulated annual photosynthesis (An) agreed reasonably well with the 

leaf gas exchange measurements with an averaged root mean square error (RMSE) of 1.80 µmolc 

m-2s-1 for all species (Fig. 4.5). The seasonal variation in An started at the prescribed leaf-out date 

and increased gradually in DOY 100–200 and stayed high until the prescribed leaf senescence 

(Table 4.2). 

The simulated seasonal bulk leaf δ13C based on the photosynthetic fractionation using An 

and gs not accounting for stored carbon reallocation failed to match the early season enrichment 

of the observed bulk leaf δ13C (dashed lines in Fig. 4.6). The simulated seasonal bulk leaf δ13C 

considering photosynthetic fractionation started from low values (an average of -28.64‰) and 

increased gradually as the growing season proceeded. This was driven by stomatal response to 

high mid-summer VPD resulting in less photosynthetic fractionation (Figure. 4.2c). The simulated 

δ13C was higher in 2012 (an average of -27.76‰) than other years (an average of -28.43‰) as the 

drought caused a reduction in modeled gs and less 13C fractionation. The modeled final leaf δ13C 

averaged in 2011-2013 was more enriched for sugar maple (-27.00‰) than other species (-28.03‰) 

as sugar maple showed the lowest mean gs and g1 for Medlyn relationship than other species (Fig. 

4.4) (Medlyn et al. 2011). 
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Figure 4.4 Medlyn stomatal conductance relationship using leaf gas exchange measurements in 

2011–2013. The optimized linear relationship between gs and A/caD
0.5, where A is 

photosynthesis rates in µmol m-2 s-1, ca is atmospheric CO2 concentrations in µmol mol-1, and D 

is VPD in kPa with R2 for (a) sugar maple, (b) tulip poplar, (c) sassafras, and (d) white oak using 

leaf gas exchange measurements (open circles) (Medlyn et al. 2011). The filled circles represent 

average values of gs and A/caD
0.5 in 2011 (green), 2012 (red), and 2013 (blue). 
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Figure 4.5 Model-data comparison of photosynthesis-related parameters. The model-data 

comparison of annual averages of (a) photosynthesis rate, (b) fraction of intercellular and 

atmospheric CO2 concentrations (ci/ca), and (c) stomatal conductance rate during observation 

period of day of year (DOY) 195–235 in 2011(△), DOY 123–286 in 2012 (x), and DOY 135–

270 in 2013 (o) for sassafras (red), sugar maple (blue), tulip poplar (green), and white oak 

(purple). Error bars represent one standard deviation of each measurement point, and an 

averaged root mean square error (RMSE) represents an absolute difference of the annual 

averages between model and observation. 
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Figure 4.6 Observed and simulated seasonal bulk leaf δ13C in 2011–2013, 2017–2018. Observed 

(open circles) and simulated (lines) seasonal changes of bulk leaf δ13C (‰) for (a) sugar maple, 

(b) tulip poplar, (c) sassafras, and (d) white oak, with carbon allocation in 2011–2013, 2017–

2018 (solid lines) and with photosynthetic fractionation only in 2011-2013 (dashed lines) 

overlaid the observed bulk leaf δ13C (open circle). The grey highlight represents the mean leaf 

growth period in 2011–2013. Shaded error bars represent one standard deviation of parameter 

uncertainty from 20 ensemble simulations. 
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4.4.3 Modeling of leaf carbon allocation and mixing among leaf carbon pools 

Our simulation including leaf post-photosynthetic carbon allocation showed that the leaf 

carbon pools were initially fueled by remobilized stored NSC but gradually increased the fraction 

of new carbon (Fig. 4.7). The simulated fraction of new carbon in the leaf NSC pool (solid lines 

Fig. 4.7) and the leaf structural carbon pool (dashed lines Fig. 4.7) showed the fraction of new 

carbon increases as photosynthesis rates increase during the growing season (Fig. 4.9). This 

increase in the fraction of new carbon occurred during the leaf growth periods (grey highlight in 

Fig. 4.6) when the newly assimilated carbon was partially consumed by leaf growth respiration 

(Fig. 4.9-10). The phloem transport also gradually increased as more carbon was available in leaf 

NSC pool from photosynthesis (Fig. 4.11). The structural carbon pool was also initially fully fueled 

by the remobilized carbon and gradually increased the fraction of new carbon (Fig. 4.12). The 

pattern of new carbon fraction in structural carbon pools followed the pattern of its carbon source, 

the leaf NSC pool (Fig. 4.6). 

There were responses to drought and species-specific differences in carbon allocation. In 

the mid-growing season (DOY 200), the fraction of new carbon decreased significantly in 2012 

due to the stomatal closure and consequential reduction of photosynthesis in response to drought 

(Red solid lines in Fig. 4.7 and Fig. 4.9). The final fraction of new carbon in the structural pool 

was thus smaller by 15% in 2012 than in 2013 (Dashed lines in Fig. 4.7 and Table 4.5). Furthermore, 

the larger amount of remobilized carbon caused smaller fraction of new carbon by 10% in 

structural carbon pools for ring porous white oak and sassafras (Table 4.5), which is attributable 

to their assumed larger Smin than diffuse porous species (Table 4.1) (Heizmann et al. 2001; 

Mayrhofer et al. 2004; Palacio et al. 2011; Dietze et al. 2014). 

The simulated bulk leaf δ13C using species-specific carbon allocation showed a better 

match of early season enrichment (solid lines in Fig. 4.6). During the model-trained period in 

2011–2013, the carbon allocation model agreed well with the observed seasonal leaf δ13C 

throughout the growing season with an average R2 of 0.54 and RMSE of 0.55 across the four 

species (green, red, and blue solid lines in Fig. 4.6 and black markers in Fig. 4.8). Sassafras showed 

the highest R2 of 0.78 and tulip poplar showed the lowest R2 of 0.43. The R2 for tulip poplar was 

the lowest partly due to the extremely low δ13C of -29.40‰ in DOY 143 in 2012 (R2 of 0.5 after 

removing the outlier). The model also agreed well with the observations for the model-testing 
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years (2017–2018) with an average R2 of 0.40 for all species (yellow and purple solid lines in Fig. 

4.6 and gray markers in Fig. 4.8). 

 

 

 

 

Figure 4.7 Fraction of new carbon in the leaf NSC and structural pool. The simulated fraction of 

new carbon in the leaf NSC pool (solid lines) and structural carbon (SC) pool (dashed lines) for 

(a) sugar maple, (b) tulip poplar, (c) sassafras, and (d) white oak in 2011–2013. The grey 

highlight represents the leaf growth period. Shaded error bars represent one standard deviation of 

parameter uncertainty from 20 ensemble simulations. 
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Figure 4.8 Model-data comparison of leaf δ13C in 2011–2013 and  2017–2018. The model-data 

comparison of the observed and carbon allocation simulated seasonal changes of bulk leaf δ13C 

(‰) (a) sugar maple, (b) tulip poplar, (c) sassafras, and (d) white oak for trained years in 2011–

2013 (black lines with circle symbols) and for tested years in 2017–2018 (grey lines with cross 

symbols). 



 

 

170 

 

Figure 4.9 Simulated photosynthesis rates in 2011 – 2013. The simulated daily-averaged 

photosynthesis rates (μmol m-2 s-1) for (a) sugar maple, (b) tulip poplar, (c) sassafras, and (d) 

white oak in 2011 – 2013. 
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Figure 4.10 Simulated respiration rates in 2011 – 2013. The simulated daily-averaged respiration 

rates (μmol m-2 s-1) for (a) sugar maple, (b) tulip poplar, (c) sassafras, and (d) white oak in 2011 

– 2013. 
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Figure 4.11 Simulated phloem loading rates in 2011 – 2013. The simulated daily-averaged 

phloem loading rates (μmol m-2 s-1) for (a) sugar maple, (b) tulip poplar, (c) sassafras, and (d) 

white oak in 2011 – 2013. 
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Figure 4.12 Simulated remobilization rates in 2011 – 2013. The simulated daily-averaged 

remobilization rates (μmol m-2 s-1) for (a) sugar maple, (b) tulip poplar, (c) sassafras, and (d) 

white oak in 2011 – 2013. 
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Table 4.5 A final fraction of new carbon in leaf structural pool weighted by time-varying leaf 

growth in 2011-2013. Uncertainty represents one standard deviation of parameter uncertainty 

from 20 ensemble simulations. 

 

 2011 2012 2013 

Sugar Maple 0.71±0.05 0.67±0.05 0.74±0.05 

Tulip Poplar 0.74±0.05 0.70±0.05 0.77±0.05 

Sassafras 0.65±0.04 0.61±0.04 0.70±0.04 

White Oak 0.66±0.04 0.65±0.04 0.69±0.04 
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4.4.4 iWUE across different methods, species, and drought conditions 

Sampling the model at the same time as the leaf gas measurements showed good agreement 

in iWUE estimates within 2% difference (Fig. 4.13a, Instantaneous Model A/gs and Instantaneous 

Licor A/gs), showing that our model reasonably captures photosynthetic rates and stomatal 

conductance (Fig. 4.5).  However, when we simulated the iWUE over the entire growing season 

weighted by GPP (GPP-weighted Model A/gs), the iWUE estimates were 15-20% smaller 

compared to the leaf gas exchange measurements. This can be explained by mid-day leaf gas 

exchange measurements biased toward periods of high photosynthesis rates (Long and Bernacchi 

2003). The estimated iWUE from tree ring and leaf isotopes (Tree-ring and Leaf δ13C) was 

significantly higher than iWUE from leaf gas exchange measurements (Instantaneous Licor A/gs) 

by 35 and 20% respectively when mesophyll conductance (gm) was not taken into account (Eq. 

4.12b), and by 31 and 13% when gm was considered (Eq. 4.12a) respectively. The decrease in 

iWUE after considering gm is largest for white oak (decrease by 21 %), followed by tulip poplar, 

sassafras, and white oak (18, 14, and 8%, respectively), due to high photosynthetic rates that cause 

higher gm limitation and less photosynthetic fractionation (Eq. 4.12a and Fig. 4.5). When the 

difference between the iWUEs based on leaf and tree ring δ13C was compared across species, the 

ring porous species (sassafras and white oak) showed lower difference (12.5%) than the diffuse 

porous species (sugar maple and tulip poplar, 25%) (Fig. 4.13a).  

The estimated iWUE among the different methods and species also showed differences of 

drought response of iWUE (Fig. 4.13b). The iWUE was significantly higher for 2012 than 2011 

using model and leaf gas exchange averaged across all species (9.03, 10.55, and 11.51 µmolc 

molH2O
-1 for GPP-weighted Model A/gs, instantaneous Model A/gs, and Instantaneous Licor A/gs, 

respectively). The difference was smaller when using leaf and tree ring δ13C for all species except 

Sassafras (an averaged difference of 5.67 and 5.89 µmolcmolH2O
-1 for all species except Sassafras, 

and 11.4 and 13.2 µmolcmolH2O
-1 for sassafras for Tree-ring and Leaf δ13C, respectively), 

indicating dampened stomatal-response signals in the carbon isotope proxies. Sassafras 

exceptionally showed comparable drought iWUE response from all estimation methods, possibly 

related to its physiological traits as an isohydric and ring porous species (Table 4.1). 
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Figure 4.13 Estimation of iWUE. (a) Mean annual iWUE using five different methods in 2011–

2012 for each of the 4 species studied with error bars. The horizontal bar in the middle of the leaf 

and tree ring 13C represents the adjustment in calculated iWUE between using the full Eq. 4.12a 

considering mesophyll conductance (gm) rather than the simplified Eq. 4.12b (full bar height). 

This shows that the model derived from Licor observations (Instantenous Licor A/gs) can be 

partially reconciled with isotopic observations, but the ‘true’ iWUE, GPP-weighted model A/gs, 

is lower than all the methods. (b) The difference in annual iWUE using five different methods 

between 2012 and 2011 showing that drought iWUE response varies by species and method. 

Error bars represent one standard deviation of parameter uncertainty from 20 ensemble 

simulations for GPP-weighted and Instantaneous model A/gs, and one standard deviation of each 

sampling/average period for other methods.
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4.5 Discussion 

4.5.1 Processes affecting seasonal leaf δ13C  

We observed an early-season enrichment in bulk leaf δ13C that cannot be explained by 

photosynthetic fractionation alone (dashed lines in Fig. 4.6). The simulation without considering 

carbon allocation underestimated bulk leaf δ13C early in the growing season, which implied the 

early-season leaf growth was fueled mainly by remobilized NSC (solid lines in Fig. 4.6 and Fig. 

4.7). Previous leaf carbon isotope studies also observed this decreasing seasonal trend and 

explained it by a progressive shift from 13C enriched remobilized carbon from root and stem 

storage pools (stored NSC) to carbon from recent assimilation (new NSC) (Damesin et al. 1998; 

Helle and Schleser 2004; Gessler et al. 2009; Stokes et al. 2010; Damesin and Lelarge 2003; Li et 

al. 2007).  

There are some additional processes besides carbon allocation that may play a role in 

changing bulk leaf δ13C through the growing season. First, an increase in cell membranes rich in 

lipids as leaves mature could make bulk leaf δ13C more depleted because lipids have been shown 

to be ~4‰ lighter than synthesized sugars (Collister et al. 1994; Sachse et al. 2015). Second, leaf 

respiration could reduce leaf δ13C over time because respiration has been shown to be more 

enriched in 13C than the bulk leaf (Xu et al. 2004; Ubierna and Marshall 2011). Third, exported 

phloem sugars have also been found to be enriched in 13C compared to leaf sugars (Bögelein et al. 

2019) which could also result in lighter δ13C leaf carbon values over time. According to Eglin et 

al. (2009), the remobilized NSC is most likely the main driver of the early-season enrichment in 

bulk leaf δ13C, which fuels both leaf and stem growth. This is supported by other studies showing 

similar enrichment patterns in the bulk leaf and tree-ring cellulose (Helle and Schleser 2004; 

Gessler et al. 2009, 2014; Eglin et al. 2010, 2009). The covariation of δ13C of leaf tissue and stem 

cellulose growth increments suggests that the seasonal variability is driven by changes in the δ13C 

of the leaf and stem NSC pools. The possibility of refining this model to reflect all of these 

processes is discussed in section 4.5.3. 

We conducted model-fitting exercises to explore sensitivity of model parameters 

influencing the seasonal variability of modeled bulk leaf δ13C (Fig. 4.14, Table 4.4). When 

remobilization of stored carbon was ignored, the RMSE increased by 100% (dashed line in Fig. 

4), highlighting allocation as one of the most important factors in our model (Test 1 in Fig. 4.14). 
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We found that the mesophyll conductance (gm), the offset between bulk leaf NSC and tree ring 

cellulose δ13C (Δstem-leafNSC), and species-specific minimum NSC pool size (Smin) are important to 

accurately simulate mean leaf δ13C of the four species (27, 25 and 24% RMSE differences for Tests 

2, 3, and 4, respectively) but did not contribute strongly to the seasonal variability (1, 7, and 4% 

of RMSE difference in mean bias, respectively, in Fig. 4.14). Switching species-specific stomatal 

response between isohydric and anisohydric species by changing the g1 value used in the 

photosynthesis calculations increased RMSE by 17% suggesting that incorporating isohydricity 

into our model, while important, has a smaller impact than allocation (Test 5 in Fig. 4.14). Lastly, 

removing species-specific phenology increased RMSE by 8% by changing the seasonal variability 

(Test 6 in Fig. 4.14). To sum up, these results illustrate that carbon allocation was one of the most 

important processes to explain the observed seasonal variability of bulk leaf δ13C and therefore 

iWUE estimate biases. 

 

 

 

 

Figure 4.14 Model sensitivity test. Bar plot of the difference in RMSE between the observations 

and the model fits using the 1:1 line fit and the linear fit, compared to the RMSE of the optimal 

model (Table S2 and Supplementary Method 4). 
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4.5.2 Implications for the estimation of iWUE 

From global compilations of leaf gas exchange, leaf δ13C, and eddy covariance data, 

Medlyn et al. (2017) investigated variations in iWUE across plant functional types (PFTs) using 

the g1 proxy (Eq. 4.6). In their results, the leaf δ13C based estimates of iWUE were higher than 

estimates based on gas exchange for most PFTs, including temperate deciduous trees. Medlyn et 

al. (2017) hypothesized that the discrepancy may be explained by neglected mesophyll 

conductance (gm) in the isotopic calculations, although the magnitude of this discrepancy was more 

substantial than they expected in most PFTs. 

Our results suggest that considering gm may not fully explain the magnitude of the 

discrepancy of iWUE between isotopic and non-isotopic methods (Fig. 4.13). The higher iWUE 

inferred from leaf and tree ring δ13C compared with leaf gas measurements could be due to the 

bias towards higher δ13C values of remobilized stored NSC used in the spring leaf flush (Hoch, 

Richter and Körner, 2003; Stokes, Morecroft and Morison, 2010; Gessler et al., 2014). One recent 

study also explained a discrepancy of iWUE between isotopic and non-isotopic methods by stored 

NSC remobilization during dry periods (Tarin et al. 2019). The iWUE overestimation we observed 

was smaller when using leaf δ13C compared to tree ring δ13C, as the leaf δ13C is likely affected less 

by stored NSC compared to tree ring δ13C (Gessler et al. 2014).  

Our findings emphasize that care must be taken when using plant tissue δ13C as a proxy for 

iWUE. This supports the warning by Barbaroux and Bréda (2002) about using the δ13C of plant 

tissues to estimate stomatal response to environmental changes as carbon allocation processes lead 

to species-specific biases and dampening of the signals between leaf- and tree-level responses. Our 

results also show that the stomatal iWUE δ13C signal is altered in the leaf and tree ring tissues, 

suggesting that a direct comparison between isotope- and non-isotope-based iWUE estimation may 

be misleading to understand the plant stomatal responses. We acknowledge that these biases do 

not call into question long-term trends of iWUE estimates using a single measurement technique 

like tree rings, but will likely affect the interpretation of interannual variability (Lavergne et al. 

2019; Gessler et al. 2014). 

 

4.5.3 Suggested future work 

Due to observational constraints, we did not simulate chemical composition changes within 

leaf tissues or the carbon pools in other plant tissues, like stems and roots. This limits the ability 
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of our model to track changes in stored NSC and post-photosynthetic fractionation through the 

entire tree. For a comprehensive understanding of the internal carbon allocation processes, future 

research should target tracking the δ13C of the leaf respiration, structural, and NSC carbon pools 

in the trees over time, including sugars and starches, in leaves, intra-annual tree rings, and roots. 

Moreover, the relative contributions of different pathways, including maintenance and growth 

respiration (Xu et al., 2004) and sugar export through phloem (Bögelein et al., 2019) as well as 

dilution with recently assimilated sugars discussed here, leading to a decrease in bulk leaf δ13C as 

the growing season progresses is not clear (Eglin et al. 2009). These types of detailed studies will 

yield further insight into how stored NSC contributes to each of these pools (Barbaroux and Bréda 

2002; Furze et al. 2019).  

The analysis of carbon isotope signatures of the different parts of tree tissues and fluxes 

will further improve our understanding of the offsets between tree ring cellulose and bulk leaf δ13C 

that our sensitivity test showed to be critical (Fig. 4.14) and will help to improve models of carbon 

allocation and δ13C fractionation. We also need more studies to understand the discrepancy in 

iWUE estimation between isotopic and non-isotopic methods for diverse PFTs that cover longer 

seasons and years and capture the full range of environmental conditions (Medlyn et al. 2011, 

2017). 

 

4.5.4 Conclusion 

The observed and simulated seasonal leaf δ13C variability showed that leaf tissues rely on 

stored NSC for their growth in the beginning of the growing season. As the growing season 

proceeds, the enriched leaf δ13C decreases when leaf tissues make the switch from relying on 

remobilized stored NSC to new assimilates. This early season reliance on stored carbon with more 

enriched δ13C values provides an explanation for the observed bias between isotopic and non-

isotopic estimates for measuring iWUE. The different magnitudes of stored NSC for ring and 

diffuse porous species and under drought conditions may also play a role in the discrepancy of 

iWUE estimates. Therefore, the use of δ13C of leaves and tree rings as a proxy for stomatal 

response to environmental processes, through iWUE, is complicated due to species-specific 

internal carbon allocation. 
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  SUMMARY AND FUTURE WORK 

From the first article and Chapter 2 of the thesis, I showed that HAM microbial dynamics 

are an important component of the current Arctic methane budget as the new estimate more than 

doubles upland sinks. I also found revised estimates with microbial and permafrost SOC dynamics 

better match site-level and regional observations and observation-based inversions. This model 

projected a smaller increase of net methane emission than previous models by 2100 as the increase 

in wetland emission due to more accessible permafrost SOC is mostly offset by the increase in 

upland consumption by HAM. A potential decrease in future net methane emission was projected 

after including microbial physiology of HAM and MG. The first article highlighted the need to 

incorporate more detailed microbial dynamics into process-based methane models to better 

constrain the Arctic methane budget.  

Although the new model significantly revises estimates of net Arctic methane emission, 

there are processes that current models, including mine, have not considered. I do not capture the 

complex Arctic hydrological and vegetation dynamics (Liljedahl et al. 2016; Nauta et al. 2015), 

which may influence estimates of both methane production and consumption. I focused on 

terrestrial ecosystems without considering potential large methane emissions from aquatic systems, 

whose magnitude and spatial distribution may change (Sepulveda-Jauregui et al. 2015; Wik et al. 

2016). I used observed wetland methane emissions to optimize methane production and oxidation 

where the fraction of each is uncertain (Segers 1998). More observations of subsurface vertical 

processes using isotopic labeling analysis and inhibitor techniques will better constrain future 

models (Pedersen et al. 2018). 

In the second article and Chapter 3 of the thesis, I developed the first process-based 

biogeochemistry model that maps the global distribution of wetland 13C-CH4 and thoroughly 

validated the model using site-level and regional observations. The new model isoTEM explained 

latitudinal and long-term variability of 13C-CH4 from wetlands. The latitudinal gradients of 13C 

of methane from wetlands strengthen due to distribution of C3/C4 plant, methanogen community, 

methane oxidation, but weaken due to plant mediated transport. Also, the long-term trends in 13C-

CH4 from wetlands may be related to increased plant-mediated transport due to increasing 

temperature, but the changes were within the uncertainty range of our ensemble simulations. I 
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applied the model results as priors for an atmospheric transport modeling and showed that the 

spatially and temporally resolved wetland isotope map better matches observed inter-hemispheric 

δ13C-CH4 compared to the previous uniform and static maps. 

Although the new model significantly improved the understanding of the spatial and 

temporal variability of global wetland 13C-CH4 and global CH4 budgets, there are still a few 

limitations of this study. First, I need more field and atmospheric measurements of wetland 13C-

CH4 to further constrain model parameters. The optimization of fractionation factors (αHM, αAM, 

αMO, αTP, αTD, αTE) was based on a limited amount of observations, which increases the uncertainty 

of our model results. Also, since I set the fraction of two methanogen communities (HM and AM) 

using multiple regression analysis, the fraction changes spatially but not temporally, I need a better 

understanding of the temporal microbial community changes as they occur when permafrost thaws 

and disturbance happens (McCalley et al. 2014). Finally, various methanogenic and non-

methanogenic processes will change 13C of CH4 and CO2, and the CO2/CH4 ratios, thus 13C-CH4 

emitted from wetlands. I need to identify detailed vertical subsurface methane processes using 

isotopic labeling analysis and inhibitor techniques to include those fractionation processes in the 

model.  

In the third article and Chapter 4 of the thesis, the observed and simulated seasonal leaf δ13C 

variability showed that leaf tissues rely on stored NSC for their growth in the beginning of the 

growing season. As the growing season proceeds, the enriched leaf δ13C decreases when leaf 

tissues make the switch from relying on remobilized stored NSC to new assimilates. This early 

season reliance on stored carbon with more enriched δ13C values provides an explanation for the 

observed bias between isotopic and non-isotopic estimates for measuring iWUE. The different 

magnitudes of stored NSC for ring and diffuse porous species and under drought conditions may 

also play a role in the discrepancy of iWUE estimates. Therefore, the use of δ13C of leaves and 

tree rings as a proxy for stomatal response to environmental processes, through iWUE, is 

complicated due to species-specific internal carbon allocation. 

Due to observational constraints, I did not simulate chemical composition changes within 

leaf tissues or the carbon pools in other plant tissues, like stems and roots. This limits the ability 

of the model to track changes in stored NSC and post-photosynthetic fractionation through the 

entire tree. For a comprehensive understanding of the internal carbon allocation processes, future 
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research should target tracking the δ13C of the leaf respiration, structural, and NSC carbon pools 

in the trees over time, including sugars and starches, in leaves, intra-annual tree rings, and roots. 

Moreover, the relative contributions of different pathways, including maintenance and growth 

respiration (Xu et al., 2004) and sugar export through phloem (Bögelein et al., 2019) as well as 

dilution with recently assimilated sugars discussed here, leading to a decrease in bulk leaf δ13C as 

the growing season progresses is not clear (Eglin et al. 2009). These types of detailed studies will 

yield further insight into how stored NSC contributes to each of these pools (Barbaroux and Bréda 

2002; Furze et al. 2019).  

The analysis of carbon isotope signatures of the different parts of tree tissues and fluxes 

will further improve the understanding of the offsets between tree ring cellulose and bulk leaf δ13C 

that our sensitivity test showed to be critical (Fig. 4.14) and will help to improve models of carbon 

allocation and δ13C fractionation. I also need more studies to understand the discrepancy in iWUE 

estimation between isotopic and non-isotopic methods for diverse PFTs that cover longer seasons 

and years and capture the full range of environmental conditions (Medlyn et al. 2011, 2017). 
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