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ABSTRACT

Paul, Smriti Nandan PhD, Purdue University, August 2020. Orbital Perturbations
for Space Situational Awareness. Major Professor: Carolin Frueh.

Because of the increasing population of space objects, there is an increasing necessity

to monitor and predict the status of the near-Earth space environment, especially of

critical regions like geosynchronous Earth orbit (GEO) and low Earth orbit (LEO)

regions, for a sustainable future. Space Situational Awareness (SSA), however, is

a challenging task because of the requirement for dynamically insightful fast orbit

propagation models, presence of dynamical uncertainties, and limitations in sensor

resources. Since initial parameters are often not known exactly and since many SSA

applications require long-term orbit propagation, long-term effects of the initial un-

certainties on orbital evolution are examined in this work. To get a long-term perspec-

tive in a fast and efficient manner, this work uses analytical propagation techniques.

Existing analytical theories for orbital perturbations are investigated, and modifica-

tions are made to them to improve accuracy. While conservative perturbation forces

are often studied, of particular interest here is the orbital perturbation due to non-

conservative forces. Using the previous findings and the developments in this thesis,

two SSA applications are investigated in this work. In the first SSA application, a

sensor tasking algorithm is designed for the detection of new classes of GEO space

objects. In the second application, the categorization of near-GEO objects is carried

out by combining knowledge of orbit dynamics with machine learning techniques.

xiii



1 INTRODUCTION

The last two decades have seen phenomenal growth in the object population in the

near-Earth space environment due to an increase in the number of launch providers,

ambitious satellite constellation programs, and undesirable experiments featuring

anti-satellite weapons. The growth in object population increases the risk of collision

among space objects threatening the sustainability of this precious space. Thus, there

is a necessity for better Space Situational Awareness (SSA), which is defined by the

Space Foundation as1 “the ability to view, understand and predict the physical loca-

tion of natural and man-made objects in orbit around the Earth, with the objective of

avoiding collisions.”

Orbit propagation is often an essential part of SSA applications like the prediction of

object populations, collision avoidance maneuvers, object detection, object tracking,

and catalog maintenance. The selection of the orbit propagation technique for any

SSA task depends on the user requirement for accuracy and computational time. Ac-

curate orbital trajectories of space objects can be obtained using numerical techniques.

However, numerical techniques are computationally expensive, thereby making them

unsuitable when the propagation period is large. Numerical techniques also provide

no general insight other than the specific orbit being propagated. Computational

complexity involving numerical techniques can be overcome by propagating orbits

using analytical perturbation techniques, which not only facilitate fast orbit propa-

gation but also permit meaningful theoretical insight into the structure of the orbital

perturbations. Popular analytical techniques include (1) using analytical expressions

obtained from integration of Lagrange’s planetary equations (for conservative pertur-

bation forces) so that short-period variations do not appear in the final solution (2)

using analytical expressions obtained via integration of Gauss’s variational equations

(for both non-conservative and conservative perturbation forces) (3) using averaging

techniques involving Hamiltonian formulation (for conservative perturbation forces).

1https://www.spaceacademy.net.au/intell/ssa.htm. Last accessed: May 02, 2020.

1

https://www.spaceacademy.net.au/intell/ssa.htm


Apart from pure numerical or pure analytical techniques, a compromise between the

accuracy of numerical techniques and the computational simplicity of analytical tech-

niques can be achieved through the use of semi-analytical techniques.

One can select from an array of different sets of orbital elements while developing

analytical orbital perturbation expressions or while numerically integrating an orbit.

Keplerian elements are the most popular ones, and they are used in this research

work because of easy geometric interpretation and elegant perturbation expressions.

However, analytical theories based on classical Keplerian elements are often prone

to singularities from small eccentricity, small inclination, or other singular factors

depending on the formulation of the analytical theory. Equinoctial elements, whose

direct geometric interpretation is relatively difficult, have the advantage that they

are free from singularities. Some authors prefer to use Lagrangian and Hamilto-

nian dynamics and hence use canonical variables like Delaunay elements (canonical

counterpart to Keplerian elements) and Poincaré elements (canonical counterpart to

equinoctial elements). Analytical formulas based on Delaunay elements suffer from

singularities because of small eccentricity and small inclination, whereas the ones

based on Poincaré elements do not suffer from these singularities.

Significant literature exists in the development of analytical orbital perturbation the-

ory. Kozai [1] presents one of the earliest theories for analytical orbit propagation.

Kozai uses averaging techniques on Lagrange’s planetary equations (LPE) in order to

obtain second-order secular and first-order periodic variations in Kepler’s elements.

Kozai’s work deals with the zonal harmonics J2, J3, J4 of Earth’s gravitational poten-

tial, and ignores the effect of atmospheric drag. In the same year as work by Kozai,

Brouwer [2] presents an analytical theory for perturbation due to zonal harmonics J2,

J3, J4, J5. Brouwer’s theory [2], which is based on the method of Von Zeipel, is de-

veloped through two successive canonical transformations of Hamiltonian mechanics

using Delaunay variables; it becomes the basis for several later works. Kozai [3] ex-

tends Brouwer’s theory to derive second-order periodic perturbations and third-order

2



secular perturbations in the presence of J2 through J8 zonal harmonic perturbations.

Since Brouwer’s theory is singular for small eccentricities and inclinations, Lyddane

[4] proposes a modification to Brouwer’s theory by using Poincare variables instead

of the Delaunay variables. Brouwer and Hori [5] provide an analytical solution using

Delaunay variables to the combined effects of atmospheric drag and J2, J3, J4, J5

zonal harmonics of Earth’s gravitational potential. The authors use an exponential

model for the Earth’s atmosphere with the assumption that there is no atmospheric

rotation. Their work demonstrates the usefulness of canonical transformations even

when non-conservative perturbation forces are considered in a system. Aksnes [6]

provides second-order perturbation theory corresponding to J2, J3, J4 zonal pertur-

bations using a rotating ellipse as an intermediate orbit. His theory is based on

Lie-Hori method [7] and uses Hill variables. Although his theory has a singularity

in the form of critical inclination, it is valid for any eccentricity. Deprit and Rom

[8] use Deprit-Lie method [9] and give third-order short and long period perturba-

tions and fourth-order secular perturbations due to J2 zonal harmonic. The authors

use Delaunay variables and make expansions in the power series of eccentricity in

order to avoid zero eccentricity singularity. Their theory, however, is limited to near-

circular orbits. Cook [10] derives analytical expressions for long-period variations in

Keplerian elements due to tesseral harmonics up to the fourth degree, for orbits of

any eccentricity and inclination. Kaula [11], with the help of so-called ‘inclination

functions’ and ‘eccentricity functions’, derives first-order perturbation expressions for

any zonal or tesseral term of the Earth’s gravitational potential. Wnuk [12] uses a

modification of Kaula’s expressions [11] to give a first-order perturbation theory due

to the Earth’s tesseral harmonics up to an arbitrary degree and order. He bases his

theory on Hori’s Lie series [7]. The perturbations are given in non-singular orbital

elements, which are functions of eccentricity and Delaunay variables. Wnuk [13],

following his previous work [12], further gives perturbations in the Keplerian orbital

elements due to tesseral harmonics of Earth’s gravitational potential. Lane [14] uses

3



LPE to provide a first-order analytical solution to the perturbations in Keplerian ele-

ments due to tesseral harmonic resonance. The author manipulates LPE to resemble

the equation of motion of a simple pendulum to derive the expressions. Based on the

integration of GVE, Cook [15] provides a first-order analytical theory for secular and

long-periodic orbital changes due to luni-solar perturbations. Roy [16] derives analyt-

ical first-order secular and periodic changes due to Luni-solar perturbation forces for

a near-Earth artificial satellite. The author bases his theory on Brown’s lunar theory

[17] and uses Keplerian orbital elements for his analysis. Giacaglia [18] has calculated

short-period, long-period, and secular perturbation terms due to the Moon. His ex-

pressions use ecliptic elements for the Moon and equatorial elements for the satellite.

The earlier mentioned work by Cook [15] also derives perturbation expressions for

Keplerian elements due to direct solar radiation pressure. His expressions are ob-

tained through the analytical integration of GVE. The author assumes a cylindrical

model for Earth’s shadow and expresses the perturbations in terms of shadow entry

and exit true anomalies. Kozai [19] derives expressions similar to that of Cook [15]

using GVE but in terms of shadow entry and exit eccentric anomalies. While Kozai

[19] does not assume any specific form for the solar radiation pressure and leaves few

integrals unevaluated, Aksnes [20] assumes a cannonball model for the direct solar

radiation pressure and uses Kozai’s formulas to give short periodic and long peri-

odic perturbations. The author also corrects three misprints in Kozai’s formula and

gives modifications for handling small eccentricities and small inclinations. Peng and

Gao [21] use Gauss’s variational equations to develop analytical perturbation due to

Lorentz force. The authors model the Earth’s magnetic field as a dipole and assume

that the dipole orientation does not change during one orbital period.

Schaub and Alfriend [22] has developed an analytical technique to establish J2 invari-

ant relative orbits for spacecraft formation flying. With the help of Brouwer’s satellite

theory [2], the authors use mean orbital elements to design J2 invariant orbits. In

their method, the authors establish two first-order conditions between the differences

4



in semi-major axis, eccentricity, and inclination angle in order to match the drift rates

of two neighboring orbits. Mahajan, Vadali, and Alfriend [23] have developed an an-

alytical solution for relative motion under the complete zonal perturbations. The

authors provide an analytical solution for secular rates, second-order short-period,

and first-order long-period generating functions in closed-form in eccentricity. Rosen-

gren and Scheeres have carried out a number of work using semi-analytical techniques

for orbit propagation. In Ref. [24], the authors develop a first-order averaged model

in terms of Milankovitch elements in order to study the long-term dynamics of HAMR

objects. The authors shed light on the behavior of Saros resonance and the systematic

structure of the inclination-node phase space through their work. A similar investi-

gation is also carried out by Rosengren and Scheeres in Refs. [25] and [26]. Wiesel

[27] provides a solution for satellite relative motion about an oblate Earth by em-

ploying the Floquet theory and semi-analytical perturbation theory. In the proposed

modeling, the author includes all zonal harmonics of the Earth’s gravitational field

producing a solution accuracy that is at least three orders of magnitude better than

the traditional Clohessy-Wiltshire solution. Der [28] provides an analytical first-order

Keplerian state transition matrix. The author makes a comparison of his analytical

state transition matrix with other forms of state transition matrices in local-vertical

coordinate system. Pollock, Gangestad, and Longuski [29] present an analytical solu-

tion for the relative motion of a charged spacecraft under Lorentz force perturbations.

The authors linearize their dynamical models for obtaining approximate solutions.

Some of the existing analytical theories due to Earth zonal and tesseral gravitational

attractions, Sun and Moon gravitational forces, solar radiation pressure, and Lorentz

force are investigated in this thesis for a better understanding of the assumptions and

derivations and improved upon whenever required. In this thesis, Brouwer’s theory

[2] is used for modeling zonal perturbations, and Lane’s analytical theory [14] is used

for modeling the effect of tesseral resonance. Cook’s first order theory for third body

perturbations [15] lacks adequate accuracy, so a second-order theory is proposed in
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this thesis. Cook’s analytical theory for solar radiation pressure perturbations [15]

diverges with time, so a modified update scheme that improves the accuracy by one

order of magnitude is proposed in this thesis. The analytical formulation for Lorentz

perturbations by Peng and Gao [21] is applicable only for low Earth orbit, so a set of

modified analytical formulas applicable for all near-Earth altitudes is derived in this

thesis.

Through the use of analytical orbital theories, the goal of this research work is to

investigate the propagation of initial uncertainties in orbital and dynamics parame-

ters with its applicability pertaining to SSA. Initial uncertainties in these parameters

arise from a plethora of sources including imperfect sensor measurements, inadequate

knowledge about object shape, attitude, material, nature of the interaction between

object and environment, and various types of sensor limitations. In this work, the

initial uncertainty is addressed by assuming a probability distribution for the initial

state and for the uncertain design parameters. Two strategies are followed for captur-

ing and propagating the initial uncertainties. The first approach is the Monte Carlo

approach, where a large number of particles are sampled from initial distribution,

and these are propagated via analytical techniques. In the second approach, only

a few carefully selected particles are used; these so-called sigma points are obtained

through the technique of unscented transform (UT) [30]. These sigma points are

then propagated via analytical formulas. The results from the UT based method are

then compared to the Monte Carlo method in order to study or validate the accuracy

of this technique. Although the use of analytical techniques makes the propagation

much faster compared to numerical or semi-analytical techniques, the Monte Carlo

approach still requires many samples when compared to the UT approach. On the

other hand, the main disadvantage of the UT approach is that it captures only the

first two moments of the distribution, so information on higher moments is lost. Fi-

nally, design of a sensor tasking algorithm for detection of object population is carried

out. While both variational equations and sensor tasking strategies have been han-
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dled individually in the past, the novelty of this work is to combine these two concepts

together.

Detection of new object classes is of particular interest in this research work. One

such class of objects that this research work investigates is high area-to-mass ratio

(HAMR) objects. HAMR objects, which have first been detected in the geosyn-

chronous region by Schidknecht et al. [31, 32], are susceptible to large perturbations

mainly from non-conservative forces. This makes their detection and tracking chal-

lenging and very few of them are currently cataloged in the space catalogs. These

objects have AMR typically greater than 1 m2/kg. The source of origin of HAMR

objects is still debatable, but it is suspected that most of them originate from the

delamination of multi-layer insulation (MLI) used for thermal insulation of space-

craft. As indicated, the investigation of the effect of non-conservative perturbation

forces is important for the detection of new object classes. While many authors do

consider the non-conservative solar radiation pressure in their orbital investigation,

they tend to exclude Lorentz force perturbation from their analysis because of its

relatively small magnitude compared to other perturbation forces. However, space

objects are sometimes susceptible to getting highly charged especially during eclipses

[33], during solar energetic particle events [34], and inside high charge plasma envi-

ronment like the auroral ovals [35]. Under these high-charge scenarios, Lorentz force

can be comparable to few other perturbative forces. Thus, the novelty and occasional

occurrence of these high-charge events call for a special investigation of Lorentz force

perturbations.

While analytical formulas only give insight into the dynamics of space objects, the

last two decades have also seen an outpour of space data because of better and

increased detection/tracking capabilities and increased number of space objects, and

this calls for a combined dynamics-data approach to tackle SSA. The data approach

has slowly but steadily gained traction in the SSA community because of increasing

computational capabilities and reinforced confidence stemming from its acceptability
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across other disciplines of science and technology. A concerted effort towards making

data more accessible to the public via open source or public domain licensing to

encourage a wider community-based SSA has also led to the increased popularity of

a data-based approach. Machine learning or data-based approach can be used for

a plethora of SSA applications, most notably for the detection of maneuvers and

anomalous events in space objects.

Apart from sensor tasking for object detection, another SSA application that has been

investigated upon in this research work is the categorization of near-geosynchronous

space objects. The focus is upon the long-term evolutionary trend in the categoriza-

tion of space objects. Object categorization allows for more methodical treatment of

space objects for SSA purposes. Objects in a single cluster or group can have similar

dynamical characteristics, and they may pose a similar level of threat to active space

assets. Sometimes, an effort to cluster space objects into different groups can also

lead to the discovery of objects with unique and novel properties. In this research

work, orbital information on near-geosynchronous objects is first extracted from pub-

licly available two-line element (TLE) data. Criteria based on dynamical knowledge

is then used to categorize these objects into eight different groups. Thereafter, a

supervised machine learning technique (Neural Network) is used to learn from this

input orbital data and its categorization to estimate the categorization of any new

orbital data.

1.1 Research Questions

This thesis tries to answer the following four broad research questions:

1. How can we improve upon existing analytical propagation theories so that there

is no significant divergence or trend mismatch over decade-long propagation

periods, especially for non-conservative perturbation forces?
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2. Can initial uncertainties in dynamical parameters be captured and propagated

in a computationally efficient manner for SSA relevant applications?

3. Can variational equations in presence of uncertainties be used for sensor tasking

for detection of new classes of space objects?

4. How can we combine knowledge of dynamics with data based approach for space

object categorization?

1.2 Outline of the Dissertation

Chapter 2 details the assumptions and derivations of analytical orbital perturbation

theories. It introduces orbital perturbations due to higher harmonics of Earth’s grav-

itational potential, analytical expressions corresponding to luni-solar perturbations

along with higher-order improvements, and analytical perturbations corresponding

to solar radiation pressure with divergence improvements. A discussion on numerical

orbit propagation and a comparison between numerical and analytical orbit propa-

gation results are also carried out.

Chapter 3 is dedicated to Lorentz force perturbations. A detailed discussion on

numerical modeling of Lorentz force is first carried out. This is followed by the

development of an analytical theory for Lorentz perturbations applicable to all near-

Earth altitudes.

Chapter 4 discusses uncertainties in orbital and dynamical parameters. Simulations

investigating the propagation of uncertainties using analytical techniques are pre-

sented, and a comparison between the unscented transformation technique and Monte

Carlo technique for orbit uncertainty propagation is provided. Furthermore, justifi-

cation is also provided for the use of Gaussian distribution over other distributions

for initial uncertainty representation.
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Chapter 5 introduces the topic of sensor tasking for the detection of GEO space

objects. Sensor tasking is posed as an optimization problem following the formulation

by Frueh et al. [36]. The sensor tasking formulation relies on a “hypothesis surface”

constructed with the help of variational equations. A simulation is carried out for

the detection of known GEO objects using the sensor tasking strategy. The analysis

leads to the successful detection of a large number of GEO objects and serves as a

confidence-building step. Thereafter, a simulation is carried out for the detection of

unknown HAMR objects in the GEO region.

Chapter 6 presents a discussion on the dynamic characteristics of near-GEO space

objects, orbital data processing, and the Neural Network learning algorithm. A

schematic based on combined dynamics and machine learning for categorization of

near-GEO space objects is presented. Based on the schematic, a simulation is car-

ried out to investigate the evolution of trends in the categorization of space objects

between the years 2001 and 2013.

Chapter 7 provides a summary of the work done and proposes future work.
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2 MODELING ANALYTICAL PERTURBATIONS

It is important to analyze and discuss the assumptions and derivations of analytical

orbital theories and compare them against accurate numerical models to understand

the nuances in perturbation structures and assess if there is a need for new or improved

analytical theories in order to meet a desired accuracy level. This chapter highlights

the derivations for various analytical theories that form the basis for SSA applications

discussed in later chapters. Contributions in this chapter constitute the development

of a higher-order theory for third-body perturbations and modifications to the update

scheme for solar radiation pressure perturbations.

2.1 Modeling Perturbations Due to Zonal and Tesseral Harmonics of
Earth’s Gravity

The gravitational effect of the departure of Earth from an ideal sphere can be mod-

eled through latitude dependent zonal harmonic terms, latitude/longitude dependent

tesseral harmonic terms, and longitude dependent sectorial harmonic terms [37]. This

research only takes into consideration the first three zonal harmonics, J2, J3, J4, with

J2 being the most dominant zonal harmonic term. The effect of tesseral and sectorial

harmonics on orbital elements is mainly significant under resonance condition (de-

scribed later). For the GEO objects simulated later in this work, only the effect of

dominant J[2,2] tesseral harmonic term is considered.

2.1.1 Modeling Zonal Perturbations

For obtaining zonal perturbations, the well-known Brouwer’s analytic formulas [2]

are used in this thesis. To use Brouwer’s analytical formulas, one needs to compute

the so-called ‘Brouwer mean elements,’ which can be obtained from the osculating

elements using Cain’s iteration scheme [38]. Brouwer’s theory has singularity near the

critical inclination of 63.40, but that issue will not be addressed here, as this research
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mostly deals with orbits of lower inclinations.

A comparison between Brouwer’s orbit propagation and numerical orbit propagation

is carried out next to demonstrate the accuracy of Brouwer’s analytical theory. The

numerical results are obtained via the direct integration of GVE using Dormand

and Prince’s Runge-Kutta (4,5) ODE solver [39] with relative tolerance of 10−12 and

absolute tolerance of 10−12. The rationale behind the selection of the numerical

method is discussed later in section 2.4. For completion, the GVE are given as:

da

dt
=

2

n
√

1− e2

[
Se sin f + T (1 + e cos f)

]
(1a)

de

dt
=

√
1− e2

na

[
S sin f + T (cos f + cosE)

]
(1b)

di

dt
=
r cos (ω + f)

na2
√

1− e2
W (1c)

dΩ

dt
=

r sin (ω + f)

na2
√

1− e2 sin i
W (1d)

dω

dt
=

√
1− e2

nae

[
− S cos f + T

(
1 +

r

p

)
sin f

]
− cos i

dΩ

dt
(1e)

dM

dt
= n− 1

na

[
2r

a
− 1− e2

e
cos f

]
S − (1− e2)

nae

[
1 +

r

a(1− e2)

]
sin fT (1f)

where a, e, i, Ω, ω, M , f , E represent the Keplerian orbital parameters of semi-major

axis, eccentricity, inclination, right ascension of ascending node (RAAN), argument

of perigee (AoP), mean anomaly, true anomaly, and eccentric anomaly, respectively.

The parameters n, r, p represent orbital mean motion, the radial distance of the object

from Earth center, and orbital semilatus rectum, respectively. S is the component of

perturbation acceleration in the radial direction, T is the component perpendicular

to radial vector in the orbital plane and velocity-increasing direction, and W is the

component perpendicular to the orbital plane and completes the right-handed orthog-

onal system. The expressions for S, T , and W , for the first three zonal harmonics,
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are given as [40] 2:

S =
µE
r2

[
3

2
J2

(
RE

r

)2

(3fnS
2
n − 1) + 2J3

(
RE

r

)3

sin i

(5fnS
3
n − 3Sn) +

5

8
J4

(
RE

r

)4

(35f 2
nS

4
n − 30fnS

2
n + 3)

] (2)

T = −µE
r2

sin i cosu

[
3J2

(
RE

r

)2

sin i sinu+
3

2
J3

(
RE

r

)3

(5fnS
2
n − 1) +

5

2
J4

(
RE

r

)4

sin i(7fnS
3
n − 3Sn)

] (3)

W = −µE
r2

cos i

[
3J2

(
RE

r

)2

sin i sinu+
3

2
J3

(
RE

r

)3

(5fnS
2
n − 1)

+
5

2
J4

(
RE

r

)4

sin i(7fnS
3
n − 3Sn)

] (4)

where fn = sin2 i, Sn = sinu, with u = (ω+f) being the argument of latitude. J2, J3,

J4 are the zonal harmonic coefficients. The parameters RE and µE represent Earth

equatorial radius and Earth standard gravitational parameter, respectively.

Fig. 2.1 shows a comparison between analytical and numerical results for an object

perturbed by zonal harmonics with the corresponding simulation set-up given in Table

1. In Figs. 2.1(a), 2.1(c), 2.1(e), 2.1(g), 2.1(i), the

Table 1: Simulation parameters for comparison between numerical and analytical
methods for zonal perturbation.

Parameter Value

Initial Semi-major Axis 42164 km

Initial Eccentricity .01

Initial Inclination 100

Initial AoP .10

Initial RAAN .10

Initial Epoch 2437582.5 JD

Propagation Period 15 years

2Merson [40] has a typo in his expression for S, which has been corrected here.
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red curve corresponds to analytical simulation and the blue curve corresponds to numerical

integration. Figs. 2.1(b), 2.1(d), 2.1(f), 2.1(h), 2.1(j) show the difference between analytical

and numerical results. The semi-major axis differences, eccentricity differences, inclination

differences, and AoP differences have no obvious secular trends. During this interval, the

maximum semi-major axis difference is a mere 0.14 m approximately, the maximum ec-

centricity difference is 3.5 × 10−8 approximately, the maximum inclination difference is

7.5 × 10−7 degrees approximately, and the maximum AoP difference is 8.3 × 10−4 degrees

approximately. The RAAN differences have a secular trend but the absolute value of max-

imum differences stands at a mere 1.3 × 10−5 degrees approximately. Since the analytical

simulation is able to follow the expensive numerical simulation, it is decided not to pursue

a further higher-order analytic theory for modeling zonal perturbations.

(a) Semi-Major Axis. (b) ∆ Semi-Major Axis.

(c) Eccentricity. (d) ∆ Eccentricity.
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(e) Inclination. (f) ∆ Inclination.

(g) AoP. (h) ∆ AoP.

(i) RAAN. (j) ∆ RAAN.

Figure 2.1: Analytical versus numerical simulation for perturbation due to Earth
zonal harmonics.

2.1.2 Modeling Tesseral Perturbations

Near-GEO objects often have orbital periods close to Earth’s rotation period, thereby sat-

isfying the criterion for orbital resonance. Under this so-called ‘1:1 resonance condition’,

the tesseral harmonic term J[2,2] is a dominant contributor to orbital perturbations. Model-
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ing analytical perturbations due to tesseral harmonics under resonance condition is rather

a challenging task, and its derivation deserves special attention. This research work uses

Lane’s analytical theory [14] for tesseral perturbations.

Lane uses an analogy between Lagrange’s planetary equations and simple pendulum equa-

tions of motion (EoM) to obtain his analytical expressions. Lane’s theory is based on

Kaula’s expression [11] for geopotential disturbing function:

V =

∞∑
l=2

l∑
m=0

l∑
p=0

q=∞∑
q=−∞

Vlmpq (5)

Vlmpq =

(
µE
a

)(
RE
a

)l
Flmp(i)Glpq(e)J[l,m]

 cosψlmpq l −m even

sinψlmpq l −m odd
(6)

where µE , RE , a represent Earth equatorial radius, Earth standard gravitational parameter,

and semi-major axis, respectively. Inclination function Flmp(i) and eccentricity function

Glpq(e) can be obtained from Kaula [11]. The parameter J[l,m] =
√
C2
lm + S2

lm, with Clm,

Slm being unnormalized spherical harmonic coefficients of degree l and order m. The angular

parameter ψlmpq is defined shortly. The indices l and m represent degree and order of the

spherical harmonic respectively (i.e., l = 2 and m = 2 for J[2,2]), index p can take integer

values between 0 and l, and index q can take any integer value. Critical indices l, m,

p, q which result in resonance satisfy l − 2p + q = m
s0

, where s0 is the integer closest to

object’s mean motion in revolutions per day (for near-GEO, s0 = 1). In this research, as an

approximation, only the effect of dominant term corresponding to l = 2,m = 2, p = 0, q = 0

is considered.

Variation of the Semi-major Axis

The disturbing function for an even (l−m), corresponding to the dominant critical indices,

is given as:

R = Vlmpq =

(
µE
a

)(
RE
a

)l
Flmp(i)Glpq(e)J[l,m] cosψlmpq (7)
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The angular argument ψlmpq is given as:

ψlmpq = m(λ− λlm)− qω (8)

where m and q are critical indices, λlm = (1/m) tan−1(Slm/Clm), and ω is argument of

perigee. The stroboscopic mean node λ is given as:

λ =
1

s0
(M + ω)− (θ − Ω) (9)

where s0 is integer closest to object mean motion in revolutions per day, M is mean anomaly,

ω is argument of perigee, θ is mean Greenwich sidereal time, and Ω is RAAN.

Lane used first order approximation of ω̈ = Ω̈ = 0 in Eqs. (8) and (9) to write the following

double differential equation:

ψ̈lmpq = mλ̈ =
m

s0
M̈ =

m

s0
ṅ (10)

where ṅ is time rate of change of mean motion. Eq. (10) can also be written as:

ψ̈lmpq =
m

s0

∂n

∂a
ȧ (11)

Using n =
√
µE/a3 in Eq. (11), one can write:

ψ̈lmpq =
m

s0

√
µE

(
− 3

2

)
a−

5
2 ȧ (12)

The expression for ȧ can be obtained from Lagrange’s planetary equation for semi-major

axis, which is given as:

ȧ =
2

na

∂R

∂M
(13)

Taking a partial derivative of the disturbing function given in Eq. (7) w.r.t mean anomaly

M , where it is to be kept in mind that ψlmpq is related to mean anomaly via Eqs. (8) and

(9), one obtains:

ȧ = −2mµE
ns0a2

(
RE
a

)l
Flmp(i)Glpq(e)J[l,m] sinψlmpq (14)
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Substituting expression for ȧ from Eq. (14) into Eq. (12) and dropping the subscript lmpq

for convenience, one obtains:

ψ̈ = P sinψ (15)

where,

P =
3m2µE
s2

0a
3

(
RE
a

)l
Flmp(i)Glpq(e)J[l,m] (16)

If P is negative, Eq. (15) is similar in form to that of a simple pendulum equation, ẍ =

−C sinx, where C is a positive constant. If P is positive, one can define a new variable

ψ̃ = ψ + π, which will transform Eq. (15) into
¨̃
ψ = −P sin ψ̃, which again is similar to

simple pendulum equation. Lane solves the simple pendulum equation and provides the

following integration results (refer Lane [14]; derivation excluded from here for brevity):

∫ t

t0

sinψdt =


2
kQ

[
cn(u0,

1
k )− cn(u, 1

k )

]
|k| > 1

2
kQ

[
dn(u0, k)− dn(u, k)

]
|k| < 1

(17)

∫ t

t0

cosψdt =



2
Q

[
E(u, 1

k )− E(u0,
1
k )

]
− 1

Q [u− u0] |k| > 1

2
kQ

[
E(u, k)− E(u0, k)

]
−
(
k′

2
+1

kQ

)
[u− u0] |k| < 1

(18)

where t0 is a reference time, t is a general time, and Q =
√
|P |. sn(·, ·), cn(·, ·), and dn(·, ·)

are Jacobi elliptic functions. E(·, ·) represents incomplete elliptic integral of the second

kind. The parameter k is given as:

k =
1

sin ψm
2

(19)

with,

sin2 ψm
2

=
ψ̇2

0 − 2Q2 cosψ0 + 2Q2

4Q2
(20)

where ψ0 is the value of the parameter ψ at the reference time t0. The sign of sin (ψm/2)

in Eq. (20) is given by the sign of ψ̇0.
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The parameter k′
2

in Eq. (18) can be obtained from k using k′
2

= 1 − k2. The parameter

u (with u0 being the value of u at reference time t0) in Eqs. (17) and (18) is given as:

u =


Q(t− t0) + F

(
1
k , sin

−1(k sin ψ0

2 )

)
|k| > 1

Q
k (t− t0) + F

(
k, ψ0

2

)
|k| < 1

(21)

where F (·, ·) is the incomplete elliptic integral of the first kind.

Eq. (14) can now be integrated w.r.t time to obtain the expression for change in semi-major

axis:

∆a = A


cn(u0,

1
k )− cn(u, 1

k ) |k| > 1

dn(u0, k)− dn(u, k) |k| < 1

(22)

where A = 4as0Q/(3nmk).

Variation of the Eccentricity

Lagrange’s planetary equation for eccentricity is given as:

de

dt
=

1− e2

nea2

∂R

∂M
−
√

1− e2

nea2

∂R

∂ω
(23)

Taking partial derivatives of the disturbing function R given in Eq. (7) w.r.t mean anomaly

M and argument of perigee ω, where it is to be kept in mind that ψlmpq is related to mean

anomaly and argument of perigee via Eqs. (8) and (9), one obtains:

de

dt
=

1− e2

nea2

µE
a

(
RE
a

)l
Flmp(i)Glpq(e)J[l,m]

(
m

s0

)
(− sinψ)

−
√

1− e2

nea2

µE
a

(
RE
a

)l
Flmp(i)Glpq(e)J[l,m]

(
m

s0
− q
)

(− sinψ)

(24)
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Integrating Eq. (24) w.r.t time and using the integration result from Eq. (17) yields:

∆e =
µE
na3

(
RE
a

)l
|Flmp(i)Glpq(e)|J[l,m]

[
m

s0

(
1− e2 −

√
1− e2

e

+
q
√

1− e2

e

)](
2

kQ

)
cn(u0,

1
k )− cn(u, 1

k ) |k| > 1

dn(u0, k)− dn(u, k) |k| < 1

(25)

Variation of the Inclination

Lagrange’s planetary equation for inclination is given as:

di

dt
=

cos i

na2
√

1− e2 sin i

∂R

∂ω
− 1

na2
√

1− e2 sin i

∂R

∂Ω
(26)

Taking partial derivatives of the disturbing function R given in Eq. (7) w.r.t argument of

perigee ω and RAAN Ω, where it is to be kept in mind that ψlmpq is related to argument

of perigee and RAAN via Eqs. (8) and (9), one obtains:

di

dt
=

cos i

na2
√

1− e2 sin i

µE
a

(
RE
a

)l
Flmp(i)Glpq(e)J[l,m]

(m
s0
− q
)
(− sinψ)

− 1

na2
√

1− e2 sin i

µE
a

(
RE
a

)l
Flmp(i)Glpq(e)Jlmm(− sinψ)

(27)

Integrating Eq. (27) w.r.t time and using the integration result from Eq. (17) yields:

∆i = − µE

na3
√

1− e2 sin i

(
RE
a

)l
|Flmp(i)Glpq(e)|J[l,m]

[
q cos i+

m(1− 1

s0
cos i)

](
2

kQ

) cn(u0,
1
k )− cn(u, 1

k ) |k| > 1

dn(u0, k)− dn(u, k) |k| < 1

(28)

Variation of the Argument of Perigee

Lagrange’s planetary equation for AoP is given as:

dω

dt
= − cos i

na2
√

1− e2 sin i

∂R

∂i
+

√
1− e2

nea2

∂R

∂e
(29)
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Taking partial derivatives of the disturbing function R given in Eq. (7) w.r.t inclination i

and eccentricity e, one obtains:

dω

dt
= − cos i

na2
√

1− e2 sin i

µE
a

(
RE
a

)l
F ′lmp(i)Glpq(e)J[l,m] cosψ

+

√
1− e2

nea2

µE
a

(
RE
a

)l
Flmp(i)G

′
lpq(e)J[l,m] cosψ

(30)

Integrating Eq. (30) w.r.t time and using the integration result from Eq. (18) yields:

∆ω =
µE
na3

(
RE
a

)l
Jlmσ

[
cos i√
1− e2

Glpq(e)
F ′lmp(i)

sin i
−
√

1− e2Flmp(i)

G′lpq(e)

e

] 2
Q [E(u, 1

k )− E(u0,
1
k )]− 1

Q [u− u0] |k| > 1

2
kQ [E(u, k)− E(u0, k)]− (k

′2+1
kQ )[u− u0] |k| < 1

(31)

where σ = sign(Flmp(i)Glpq(e)).

Variation of the Right Ascension of Ascending Node

Lagrange’s planetary equation for RAAN is given as:

dΩ

dt
=

1

na2
√

1− e2 sin i

∂R

∂i
(32)

Taking partial derivatives of the disturbing function R given in Eq. (7) w.r.t inclination i,

one obtains:

dΩ

dt
=

1

na2
√

1− e2 sin i

µE
a

(
RE
a

)l
F ′lmp(i)Glpq(e)J[l,m] cosψ (33)

Integrating Eq. (33) w.r.t time and using the integration result from Eq. (18) yields:

∆Ω = − µE

na3
√

1− e2

(
RE
a

)l
JlmσGlpq(e)

F ′lmp(i)

sin i
2
Q [E(u, 1

k )− E(u0,
1
k )]− 1

Q [u− u0] |k| > 1

2
kQ [E(u, k)− E(u0, k)]− (k

′2+1
kQ )[u− u0] |k| < 1

(34)

21



A comparison between analytical and numerical orbit propagation is carried out next to

demonstrate the importance of tesseral perturbations for a GEO object. The numerical

results are obtained via the direct integration of GVE using Dormand and Prince’s Runge-

Kutta (4,5) ODE solver [39] with relative tolerance of 10−12 and absolute tolerance of

10−12. The numerical integration of GVE requires the radial, transverse, and perpendicular

components of the tesseral acceleration, which are obtained as follows [41]:

[S T W ]T = PTL~aL (35)

where, the transformation matrix PTL is given as:

PTL = PT I ITBBTL (36)

The transformation matrices in Eq. (36) are given as:

PT I =

[
cos Ω cosu−sin Ω cos i sinu sin Ω cosu+cos Ω cos i sinu sin i sinu
− cos Ω sinu−sin Ω cos i cosu − sin Ω sinu+cos Ω cos i cosu sin i cosu

sin Ω sin i − cos Ω sin i cos i

]
(37a)

ITB =


cosGMST − sinGMST 0

sinGMST cosGMST 0

0 0 1

 (37b)

BTL =


cosφ cosλ − sinλ − sinφ cosλ

cosφ sinλ cosλ − sinφ sinλ

sinφ 0 cosφ

 (37c)

where Ω, u, i, GMST , φ, λ represent RAAN, argument of latitude, inclination, Greenwich

Mean Sidereal Time, latitude, and longitude, respectively.

The acceleration vector ~aL in Eq. (35) is given as:

~aL =



µE
r2

(
RE
r

)2

(−3)P̃
(2)
2 (C̃2,2 cos 2λ+ S̃2,2 sin 2λ)

µE
r2

(
RE
r

)2

(2) secφP̃
(2)
2 (−C̃2,2 sin 2λ+ S̃2,2 cos 2λ)

µE
r2

(
RE
r

)2

cosφP̃
(2)′

2 (C̃2,2 cos 2λ+ S̃2,2 sin 2λ)


(38)
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where µE , RE , r, P̃
(2)
2 , P̃

(2)′

2 represent Earth gravitational parameter, equatorial radius of

the Earth, object radial distance, normalized Legendre function, and the first derivative of

normalized Legendre function w.r.t sinφ, respectively. C̃2,2 and S̃2,2 are the normalized har-

monic coefficients. The normalized Legendre function can be obtained using the following

recursive relation:

P̃ (m)
n =


Q1

[
(2n− 1)

1
2 sinφP̃

(m)
n−1 −Q2P̃

(m)
n−2

]
m < n(

2n+1
2n

) 1
2

cosφP̃
(m−1)
n−1 m = n

0 m > n

(39a)

where,

Q1 =

[
2n+ 1

(n+m)(n−m)

] 1
2

(40)

Q2 =

[
(n+m− 1)(n−m− 1)

2n− 3

] 1
2

(41)

and the recursion is initiated using P̃
(0)
0 = 1, P̃

(0)
1 =

√
3 sinφ, P̃

(1)
1 =

√
3 cosφ.

In Eq. (38), the derivative P̃
(m)′
n is obtained using:

P̃ (m)′
n =

1

cos2 φ

[
− n sinφP̃ (m)

n +

(
(2n+ 1)(n+m)(n−m)

2n− 1

) 1
2

P̃
(m)
n−1

]
(42)

Fig. 2.2 shows the effect of Earth gravitational perturbations for the same set-up as that

of Table 1. Figs. 2.2(a), 2.2(c), 2.2(e), 2.2(g), 2.2(i) consider both zonal and tesseral

perturbations whereas Figs. 2.2(b), 2.2(d), 2.2(f), 2.2(h), 2.2(j) consider only the zonal

perturbations. The scales in the y-axes are kept the same for corresponding zonal and

combined zonal-tesseral plots in order to highlight the importance of tesseral resonance.

The semi-major axis amplitude in Fig. 2.2(a) (relative to initial value) is roughly of the

order of 25 kilometers. The inclination amplitude (relative to initial value) in Fig. 2.2(e) is

roughly four times that of Fig. 2.2(f). Figs. 2.2(g) and 2.2(i) establish that the effects of

J[2,2] perturbations on argument of perigee and RAAN are much smaller compared to that

of other three orbital elements, and it can effectively be ignored. Even after 15 years of

propagation, for the combined zonal and tesseral perturbations, the maximum eccentricity
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difference between analytical and numerical simulations is around .00002, the maximum

inclination difference is merely around .00015 degrees, the maximum argument of perigee

difference is around .25 degrees, and the maximum difference for RAAN is around .05

degrees. For semi-major axis, the maximum difference stands at mere .0059% of the initial

value. Since these difference values are acceptably small, it justifies and validates the usage

of Lane’s analytical formulas.

(a) SMA (Zonal+Tesseral). (b) SMA (Zonal).

(c) Ecc. (Zonal+Tesseral). (d) Ecc. (Zonal).

(e) Incl. (Zonal+Tesseral). (f) Incl. (Zonal).
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(g) AoP (Zonal+Tesseral). (h) AoP (Zonal).

(i) RAAN (Zonal+Tesseral). (j) RAAN (Zonal).

Figure 2.2: Effect of tesseral harmonics on perturbation of orbital elements for
GEO.

2.2 Modeling Third-Body Gravitational Perturbations

In this research work, only the gravitational perturbations due to the Sun and the Moon

are considered; it is assumed that the perturbation effects of all other third bodies are

negligible. In the low Earth orbit (LEO) region, the magnitudes of accelerations due to

Sun and Moon gravitational forces are much smaller compared to the magnitude of the

acceleration due to higher harmonics of Earth’s gravity. In the GEO region, however,

the third body perturbations are comparable to that of zonal and tesseral perturbations.

This research work modifies Cook’s analytical theory [15] for third body perturbations.

Cook’s theory is a ‘first-order’ theory 3 and does not capture the evolution of eccentricity

3The term ‘first-order theory’ refers to (r/rd) and higher-order terms being ignored in the ex-
pressions for S, T , W , with r being the radial distance of the object from Earth’s center and rd
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and argument of perigee correctly. A higher-order theory is hence required for eccentricity

and argument of perigee. The Second-order expression for ∆ω is provided as additional

information in Cook [15]. The Second-order expression for ∆e has been derived as part

of this research work. The assumptions and derivation of perturbation in eccentricity are

discussed next. Derivations for analytic expressions for semi-major axis, inclination, AoP,

and RAAN perturbations are excluded from here for brevity and can be found in Cook [15].

Variation of the Eccentricity

The disturbing function for third body perturbations is given as [15]:

R = GMd

(
1

∆
− xxd + yyd + zzd

r3
d

)
(43)

where (x, y, z) represents the Earth-centered inertial (ECI) position of the space object,

(xd, yd, zd) represents the ECI position of the disturbing body (i.e., the Sun or the Moon),

G represents universal gravitational constant, Md represents the mass of the disturbing

body, rd represents the distance of the disturbing body from the Earth’s center, and

∆ represents the distance between the space object and the disturbing body, i.e., ∆ =√
(x− xd)2 + (y − yd)2 + (z − zd)2.

The partial derivatives of the disturbing function R w.r.t the ECI coordinates (x, y, z) are

given as:
∂R

∂x
= −GMd

(
x− xd

∆3
+
xd
r3
d

)
(44a)

∂R

∂y
= −GMd

(
y − yd

∆3
+
yd
r3
d

)
(44b)

∂R

∂z
= −GMd

(
z − zd

∆3
+
zd
r3
d

)
(44c)

The direction cosines for a line parallel to the direction in which S is defined in GVE [Eq.

(1)] are given as:

l1 = cos Ω cosu− sin Ω sinu cos i (45a)

being the radial distance of Sun/Moon from Earth’s center

26



m1 = sin Ω cosu+ cos Ω sinu cos i (45b)

n1 = sinu sin i (45c)

where Ω, u, i represent RAAN, argument of latitude, and inclination, respectively, of the

space object orbit.

The direction cosines for a line parallel to the direction in which T is defined in GVE [Eq.

(1)] are given as:

l2 = − cos Ω sinu− sin Ω cosu cos i (46a)

m2 = − sin Ω sinu+ cos Ω cosu cos i (46b)

n2 = cosu sin i (46c)

The direction cosines for a line parallel to the direction in which W is defined in GVE [Eq.

(1)] are given as:

l3 = sin Ω sin i (47a)

m3 = − cos Ω sin i (47b)

n3 = cos i (47c)

With the help of the direction cosines in the radial direction [Eq. (45)], one can write the

coordinates of the space object and coordinates of the disturbing body as:

x = rl1 = r(cos Ω cosu− sin Ω sinu cos i) (48a)

y = rm1 = r(sin Ω cosu+ cos Ω sinu cos i) (48b)

z = rn1 = r sinu sin i (48c)

xd = rdld = rd(cos Ωd cosud − sin Ωd sinud cos id) (48d)

yd = rdmd = rd(sin Ωd cosud + cos Ωd sinud cos id) (48e)

zd = rdnd = rd sinud sin id (48f)
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where Ωd, ud, id represent RAAN, argument of latitude, and inclination, respectively, of

the disturbing body orbit. ld, md, nd represent direction cosines for the disturbing body

radial vector.

If φ denotes the angle between object radial vector and disturbing body radial vector, then

using the Law of Cosines, one can write:

∆2 = r2 + r2
d − 2rrd cosφ (49)

1

∆3
=

1

r3
d

(
1 +

(
r

rd

)2

− 2

(
r

rd

)
cosφ

)− 3
2

(50)

Using Taylor series expansion on Eq. (50) and ignoring the terms of the order (r/rd)
3 and

higher,
1

∆3
=

1

r3
d

[
1 + 3

(
r

rd

)
cosφ+

(
− 3

2
+

15

2
cos2 φ

)(
r

rd

)2]
(51)

Since φ is the angle between object radial vector and disturbing body radial vector, it can

also be written as:

cosφ =
[x y z] · [xd yd zd]

rrd
=
xxd + yyd + zzd

rrd
(52)

Substituting the expressions for x, y, z, xd, yd, zd from Eq. (48) into Eq. (52) results in:

cosφ = A cosu+B sinu (53)

where,

A = cosud cos (Ω− Ωd) + sinud cos id sin (Ω− Ωd) (54a)

B = cos i[− sin (Ω− Ωd) cosud + cos id sinud cos (Ω− Ωd)] + sin i sinud sin id (54b)

Substituting Eqs. (48) and (51) into Eq. (44) results in:

∂R

∂x
= −GMdr

r3
d

[
l1 + 3

(
l1
r

rd
− ld

)
cosφ+

3

2
ld
r

rd
(1− 5 cos2 φ)

− 3

2
l1

(
r

rd

)2

(1− 5 cos2 φ)

] (55a)
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∂R

∂y
= −GMdr

r3
d

[
m1 + 3

(
m1

r

rd
−md

)
cosφ+

3

2
md

r

rd
(1− 5 cos2 φ)

− 3

2
m1

(
r

rd

)2

(1− 5 cos2 φ)

] (55b)

∂R

∂z
= −GMdr

r3
d

[
n1 + 3

(
n1

r

rd
− nd

)
cosφ+

3

2
nd

r

rd
(1− 5 cos2 φ)

− 3

2
n1

(
r

rd

)2

(1− 5 cos2 φ)

] (55c)

The radial, transverse, and perpendicular components of the perturbation acceleration in

GVE [Eq. (1)] can be computed using:

S = l1
∂R

∂x
+m1

∂R

∂y
+ n1

∂R

∂z
(56a)

T = l2
∂R

∂x
+m2

∂R

∂y
+ n2

∂R

∂z
(56b)

W = l3
∂R

∂x
+m3

∂R

∂y
+ n3

∂R

∂z
(56c)

Substituting Eq. (55) into Eq. (56a), and noting that l21 +m2
1+n2

1 = 1, l1ld+m1md+n1nd =

cosφ, one obtains:

S = −Kr
[
1 + 3

(
r

rd
− cosφ

)
cosφ+

3

2

(
r

rd

)
(1− 5 cos2 φ) cosφ

− 3

2

(
r

rd

)2

(1− 5 cos2 φ)

] (57)

where K = GMd

r3d
.

Cook’s first order theory [15] ignores both (r/rd) and (r/rd)
2 terms in Eq. (57). Here, only

(r/rd)
2 term will be ignored. Using Eq. (53) in Eq. (57) and making use of the identity

(1/2)(A2 +B2) +AB sin 2u+ (1/2)(A2 −B2) cos 2u = cos2 φ, one obtains:

S = −Kr
[
1− 3

2
(A2 +B2)− 3AB sin 2u− 3

2
(A2 −B2) cos 2u

+
3

2

(
r

rd

)
(A cosu+B sinu)(3− 5(A cosu+B sinu)2)

] (58)
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Substituting Eq. (55) into Eq. (56b), and noting that l1l2 +m1m2 +n1n2 = 0, one obtains:

T = 3Kr(l2ld +m2md + n2nd)

[
cosφ− 1

2

(
r

rd

)
(1− 5 cos2 φ)

]
(59)

Using Eqs. (46) and (48), one can write:

l2ld +m2md + n2nd = −A sinu+B cosu (60)

where A and B are defined in Eq. (54).

Substituting Eqs. (60) and (53) into Eq. (59), and making use of the identity AB cos 2u−
1
2(A2 −B2) sin 2u = (A cosu+B sinu)(−A sinu+B cosu), one obtains:

T = 3Kr

[
AB cos 2u− 1

2
(A2 −B2) sin 2u

+
1

2

(
r

rd

)
(A sinu−B cosu)

(
1− 5(A cosu+B sinu)2

)] (61)

Cook’s first order theory [15] ignores the (r/rd) term in Eq. (61). In the second order

theory presented here, the (r/rd) term is retained.

Substituting Eq. (55) into Eq. (56c), and noting that l1l3 +m1m3 +n1n3 = 0, one obtains:

W = 3Kr(l3ld +m3md + n3nd)

[
cosφ− 1

2

(
r

rd

)
(1− 5 cos2 φ)

]
(62)

Using Eqs. (47), (48), one can write an expression for C = l3ld +m3md + n3nd as:

l3ld +m3md + n3nd = sin i[cosud sin (Ω− Ωd)

− cos id sinud cos (Ω− Ωd)] + cos i sin id sinud

(63)

Substituting Eqs. (63) and (53) into Eq. (62), one obtains:

W = 3KrC

[
A cosu+B sinu− 1

2

(
r

rd

)
(1− 5(A cosu+B sinu)2)

]
(64)

Using the first order approximation dt
df = (1/n)(r/a)2(1/

√
1− e2), the GVE for eccentricity

[Eq. (1b)] can be written as:
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de

df
=

r2

n2a3

[
S sin f + T (cos f + cosE)

]
(65)

Substituting expressions for radial and transverse acceleration components from Eqs. (58)

and (61) into Eq. (65) and using the relation cosE = (cos f + e)/(1 + e cos f) results in:

de

df
=
Kr3

n2a3

(
− sin f

[
1− 3

2
(A2 +B2)− 3AB sin 2u− 3

2
(A2 −B2)

cos 2u+
3

2
(
r

rd
)(A cosu+B sinu)(3− 5(A cosu+B sinu)2)

]
+ 3

(
cos f +

cos f + e

1 + e cos f

)[
AB cos 2u− 1

2
(A2 −B2) sin 2u

+
1

2

(
r

rd

)
(A sinu−B cosu)

(
1− 5(A cosu+B sinu)2

)])
(66)

From Cook’s theory [15], the integration of the first-order part (i.e., non (r/rd) terms) of

Eq. (66) over one orbit results in:

(∆e)first order = −15πKe
√

1− e2

n2

[
AB cos 2ω − 1

2
(A2 −B2) sin 2ω

]
(67)

The second-order part of Eq. (66) that is not captured in Cook’s theory is:

(
de

df

)
second order

=
Kr3

n2a3

[
− sin f(

3r

2rd
)(A cosu+B sinu)(3− 5(A cosu

+B sinu)2) + 3

(
cos f +

cos f + e

1 + e cos f

)
1

2

(
r

rd

)
(A sinu−B cosu)

(
1− 5(A cosu+B sinu)2

)] (68)

Using the orbit mechanics conic equation r = a(1 − e2)/(1 + e cos f) and noting that u =

ω + f , Eq. (68) can be written as:
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(
de

df

)
second order

=
K

n2

(1− e2)4

(1 + e cos f)4

(
3a

2rd

)[
− sin f(A(cos f cosω

− sin f sinω) +B(sin f cosω + cos f sinω))

(3− 5(A(cos f cosω − sin f sinω) +B(sin f cosω

+ cos f sinω))2) +

(
2 cos f + e

(
1 + cos 2f

2

)
+ e

)(
1

1 + e cos f

)
(A(sin f cosω + cos f sinω)

−B(cos f cosω − sin f sinω))(1− 5(A(cos f cosω

− sin f sinω) +B(sin f cosω + cos f sinω))2)

]

(69)

After much simplification of Eq. (69) using trigonometric identities (steps not shown for

brevity), one obtains:

(
de

df

)
second order

= −K
n2

(1− e2)4

(1 + e cos f)4

(
3a

4rd

)
(K1 cos 2f +K2 cos 4f

+K3) +
K

n2

(1− e2)4

(1 + e cos f)5

(
3a

4rd

)
(K4 cos f

+K5 cos 2f +K6 cos 3f +K7 cos 4f

+K8 cos 5f +K9) + zero integrands

(70)

where zero integrands refer to integrands of the form:

zero integrands ≡ constant× sin(αf)

(1 + e cos f)β
(71)

where α and β are some positive integers. Integration of zero integrands (w.r.t true

anomaly) from 0 to 2π leads to zero and hence they are not written out explicitly in Eq.

(70).
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The parameters K1 through K9 in Eq. (70) are given as:

K1 = 3(A sinω −B cosω)− 15AB2 sin2 ω cosω + 15A2B sin2 ω cosω

− 5A3 sin3 ω − 5B3

2
cosω(−2 + 3 sin2 ω)

(72a)

K2 =
15AB2

4
sin 3ω +

15A2B

4
cos 3ω − 5A3

4
sin 3ω − 5B3

4
cos 3ω (72b)

K3 = 3(B cosω −A sinω) +
15AB2

4
sinω − 15A2B

4
cosω

+
15A3

4
sinω − 15B3

4
cosω

(72c)

K4 = e(A sinω −B cosω)

[
− 5(A2 −B2) cos 2ω − 10AB sin 2ω

+
7

2
− 35

4
(A2 +B2)

]
+ e(A cosω +B sinω)

(
− 15

2

)
[
−
(
A2 −B2

2

)
sin 2ω +AB cos 2ω

] (72d)

K5 = 2(A sinω −B cosω)[1− 5(A cosω +B sinω)2] (72e)

K6 =

(
e

2

)
(A sinω −B cosω)

[
− 35

2

((
A2 −B2

2

)
cos 2ω

+AB sin 2ω

)
+ 1− 5

2
(A2 +B2)

]
+

25e

4
(A cosω +B sinω)(

−
(
A2 −B2

2

)
sin 2ω +AB cos 2ω

) (72f)

K7 = −5(A sinω −B cosω)

[(
A2 −B2

2

)
cos 2ω +AB sin 2ω

]
+ 5(A cosω +B sinω)

[
−
(
A2 −B2

2

)
sin 2ω +AB cos 2ω

] (72g)
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K8 = −5e

4
(A sinω −B cosω)

[(
A2 −B2

2

)
cos 2ω +AB sin 2ω

]
+

5e

4
(A cosω +B sinω)

[
−
(
A2 −B2

2

)
sin 2ω +AB cos 2ω

] (72h)

K9 = (A sinω −B cosω)

[
− 5

2
(A2 −B2) cos 2ω − 5AB sin 2ω + 2

− 5(A2 +B2)

]
− 5(A cosω +B sinω)

[
−
(
A2 −B2

2

)
sin 2ω

+AB cos 2ω

] (72i)

Integration of Eq. (70) w.r.t the independent variable f over one orbit results in:

(∆e)second order = −K
n2

(1− e2)4

(
3a

4rd

)
([K1f1(e) +K2f2(e) +K3f3(e)]

− [K4f4(e) +K5f5(e) +K6f6(e) +K7f7(e)

+K8f8(e) +K9f9(e)])

(73)

The eccentricity functions fj in Eq. (73) are given as:

f1(e) =

∫ 2π

0

cos 2ν

(1 + e cos ν)4
dν = g1 + h1 (74a)

f2(e) =

∫ 2π

0

cos 4ν

(1 + e cos ν)4
dν =


g2 + h2 for e ≥ .05

P9 for e < .05

(74b)

f3(e) =

∫ 2π

0

1

(1 + e cos ν)4
dν = g3 + h3 (74c)

f4(e) =

∫ 2π

0

cos(ν)

(1 + e cos ν)5
dν = g4 + h4 (74d)

f5(e) =

∫ 2π

0

cos(2ν)

(1 + e cos ν)5
dν = g5 + h5 (74e)

f6(e) =

∫ 2π

0

cos(3ν)

(1 + e cos ν)5
dν = g6 + h6 (74f)
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f7(e) =

∫ 2π

0

cos(4ν)

(1 + e cos ν)5
dν = g7 + h7 (74g)

f8(e) =

∫ 2π

0

cos(5ν)

(1 + e cos ν)5
dν =


g8 + h8 for e ≥ .1

P̃9 for e < .1

(74h)

f9(e) =

∫ 2π

0

1

(1 + e cos ν)5
dν = g9 + h9 (74i)

where the analytical expressions for eccentricity-dependent functions gj (the integrand being

integrated from 0 to π) and hj (the integrand being integrated from π to 2π) are obtained

using Matlab’s 4 symbolic integration and are given in Appendix A. MATLAB’s symbolic

integrator performs wrong evaluations of the functions f2 and f8 for low eccentricity, and

hence, a split-wise function is defined for f2 and f8. Terms P9 and P̃9 are 9th order polyno-

mial fits used to approximate f2 and f8, respectively, for small eccentricity, and are given

in Appendix A.

A comparison between analytical and numerical orbit propagation for Moon third-body

perturbation is carried out next for a GEO object. The numerical results are obtained via

the direct integration of GVE using Dormand and Prince’s Runge-Kutta (4,5) ODE solver

[39] with relative tolerance of 10−12 and absolute tolerance of 10−12. For the numerical in-

tegration of GVE, the radial (S), transverse (T ), and perpendicular (W ) components of the

third body perturbations are obtained using Eqs. (56) and (44) without any approximation

for the 1/∆3 term. For the same set up as that of Table 1, Fig. 2.3 shows the comparison

between Cook’s first-order theory and numerical results for an object perturbed by Moon

gravity. In Fig. 2.3a, the blue curve corresponds to analytical results and the orange curve

corresponds to the numerical results. Fig. 2.3b shows the difference between numerical and

analytical eccentricity values.

Fig. 2.4 shows the comparison between second-order analytical theory developed here and

numerical results for Moon perturbation. In Fig. 2.4a, the blue curve corresponds to

analytical results and the orange curve corresponds to the numerical results. Fig. 2.4b

4MATLAB version 9.4.0.813654 (R2018a), The MathWorks, Inc., Natick, Massachusetts, United
States
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shows the difference between numerical and analytical eccentricity values. There is one

order of magnitude improvement in ∆e values for the second-order theory as compared to

the first-order theory. Since the second-order analytical theory is able to follow numerical

results for the 15-year period to an accuracy of the order of 10−5, a higher-order theory is

not sought after.

(a) Eccentricity. (b) ∆ Eccentricity.

Figure 2.3: Effect of Moon third-body perturbation on eccentricity of a GEO object
using first order theory.

(a) Eccentricity. (b) ∆ Eccentricity.

Figure 2.4: Effect of Moon third-body perturbation on eccentricity of a GEO object
using second order theory.

2.3 Modeling Perturbations Due to Direct Solar Radiation Pressure

Solar radiation pressure (SRP) is the pressure exerted on an object resulting from the

momentum exchange between solar photons and the object. For low area-to-mass ratio

(LAMR) objects, solar radiation pressure (SRP) is smaller than gravitational perturbation
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forces in both LEO and GEO regions. However, for HAMR objects in the GEO region,

SRP is one of the most dominant perturbing forces resulting in large perturbations, which

lead to difficulties in the detection and tracking of these HAMR objects. Modeling SRP can

be difficult in situations that involve self-shadowing or complicated body geometry. The

simplest SRP model, called ‘cannonball model,’ assumes a body as a sphere that is rota-

tionally invariant with the same optical properties for the entire surface. This research work

assumes all objects to be simple spheres, and hence the ‘cannonball model’ is applicable.

Under the cannonball model, acceleration due to SRP is given as [42]:

~Frad = −A
m

E

c

A2
⊕

|~r − ~r�|2

(
1

4
+

1

9
Cd

)
Ŝ (75)

where A represents the surface area of the body, m represents the total mass of the body, E

represents solar flux, c represents the speed of light, A⊕ represents the astronomical unit,

and Cd represents the diffuse reflection coefficient. ~r, ~r�, Ŝ represent geocentric position of

object, geocentric position of the sun, and direction of radiation source respectively.

This work uses Cook’s analytical theory [15] for SRP perturbations. A cylindrical shadow

model for the Earth is assumed, and the algorithm for computing the same is taken from

[43]. Cook’s analytical perturbations diverge over time, and hence a modified update scheme

is used in this research work. The assumptions and derivation of Cook’s analytical theory

are discussed next.

Cook’s analytical theory is based on the following assumptions:

1. As the distance of the Sun from the Earth or the object is large compared to the

distance of the object from the Earth, the magnitude of solar radiation pressure will

be assumed to be independent of the object-Sun distance i.e., a constant value for

the object-sun distance will be assumed during one orbital period.

2. It is assumed that the SRP magnitude is independent of body orientation. A suitable

average value for magnitude is taken for the entire orbital period.

If F represents the magnitude of the SRP acceleration given in Eq. (75), φ represents the

angle between radial vector to the object and radial vector to the Sun, β represents the angle
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between θ̂ (unit vector along the perpendicular direction to object radial vector and lying in

the orbital plane) and radial vector to the Sun, and γ represents the angle between ĥ (unit

vector along the normal direction to the object orbital plane) and radial vector to the Sun,

then the radial, transverse, and perpendicular components of perturbation acceleration can

be written as:

S = F cosφ (76a)

T = F cosβ (76b)

W = F cos γ (76c)

Expression for cosφ is given in earlier seen Eq. (53).

Expression for cosβ can be obtained with the help of Eqs. (46) and (48) as:

cosβ = l2ld +m2md + n2nd (77)

cosβ = (− cos Ω sinu− sin Ω cosu cos i)(cos Ωd cosud

− sin Ωd sinud cos id) + (− sin Ω sinu+ cos Ω cosu cos i)

(sin Ωd cosud + cos Ωd sinud cos id) + (cosu sin i)(sinud sin id)

(78)

cosβ = −A sinu+B cosu (79)

where the expressions for A and B are given in Eq. (54).

Expression for cos γ can be obtained with the help of Eqs. (47) and (48) as:

cos γ = l3ld +m3md + n3nd (80)

cos γ = sin Ω sin i(cos Ωd cosud − sin Ωd sinud cos id)

− cos Ω sin i(sin Ωd cosud + cos Ωd sinud cos id)

+ cos i sinud sin id = C

(81)
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Substituting Eqs. (53), (79), (81) into Eq. (76) results in:

S = F (A cosu+B sinu) (82a)

T = F (−A sinu+B cosu) (82b)

W = FC (82c)

Variation of the Semi-major Axis

Using the first order approximation dt
df = (1/n)(r/a)2(1/

√
1− e2), the GVE for semi-major

axis [Eq. (1a)] can be written as:

da

df
=

2r2

n2a2(1− e2)
(Se sin f + T (1 + e cos f)) (83)

Substituting expressions for radial and transverse components of perturbation acceleration

from Eq. (82) into Eq. (83) results in:

da

df
=

2r2

n2a2(1− e2)
(F (A cosu+B sinu)e sin f

+ F (−A sinu+B cosu)(1 + e cos f))

(84)

Substituting r = a(1 − e2)/(1 + e cos f), u = ω + f into Eq. (84) and simplifying, one

obtains:

da

df
= − 2F (1− e2)

n2(1 + e cos f)2

[
(A sinω −B cosω)(e+ cos f)

+ (A cosω +B sinω) sin f

] (85)

Integrating Eq. (85) over one orbital period and keeping in mind that that the solar radia-

tion pressure is zero when the object is in Earth’s shadow, one obtains:

∆a = − 2F

n2a

[
(A sinω −B cosω)(rA sin θ∗A − rD sin θ∗D)

+ (A cosω +B sinω)

(
rA − rD

e

)] (86)

39



where rD and rA are the radial distances of the object at departure from Earth’s shadow

and arrival to Earth’s shadow, respectively. θ∗D and θ∗A are the true anomaly values at

departure from Earth’s shadow and arrival to Earth’s shadow, respectively.

It is to be noted that the solar radiation pressure, under the aforementioned model results

in net zero change in energy or semi-major axis over one orbital period, if the object

never enters the Earth’s shadow region. Neglecting the orbital changes caused by other

perturbations, only when an object passes through the shadow region, SRP results in net

semi-major axis perturbation over an orbital period.

Variation of the Eccentricity

From Eq. (65), Gauss’s variational equation for eccentricity is:

de

df
=

r2

n2a3

[
S sin f + T (cos f + cosE)

]
(87)

Substituting expressions for radial and transverse components of perturbation acceleration

from Eq. (82) into Eq. (87) results in:

de

df
=
Fr2

µ

[
sin f(A cosu+B sinu)

+
1

ae

(
a(1 + e cos f)− a(1− e2)

1 + e cos f

)
(−A sinu+B cosu)

] (88)

where µ = n2a3.

Substituting u = ω + f and simplifying Eq. (88), one obtains:

de

df
=
Fr2(−A sinω +B cosω)(1 + 2e cos f + cos2 f)

µ(1 + e cos f)

− Fr2(A cosω +B sinω) sin f(e+ cos f)

µ(1 + e cos f)

(89)

Let Sp = F (A cosω + B sinω) and Tp = F (−A sinω + B cosω), where the subscript p

indicates that Sp and Tp will denote radial and transverse SRP accelerations at perigee,

respectively, when the perigee position is not located inside Earth’s shadow. With the help
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of these new definitions, and using the orbit mechanics conic equation, one can re-write Eq.

(89) as:

de

df
=
Tp
µ

[
a2(1− e2)2(1 + 2e cos f + cos2 f)

(1 + e cos f)3

]

− Sp
2µ

[
2a2(1− e2)2 sin f(e+ cos f)

(1 + e cos f)3

] (90)

Integrating Eq. (90) over one orbital period and keeping in mind that that the solar radia-

tion pressure is zero when the object is in Earth’s shadow, one obtains:

∆e =
Tp
µ

[
3a2(1− e2)

1
2

(
tan−1

[
(1− e2)

1
2 tan

θ∗A
2

1 + e

]
− tan−1

[
(1− e2)

1
2 tan

θ∗D
2

1 + e

])
− 1

2e

(
r2
A sin θ∗A − r2

D sin θ∗D
)

+
a

2e
(1− 4e2)

(
rA sin θ∗A − rD sin θ∗D

)]
− Sp

2µ

[
(r2
A − r2

D)

+
a(1− e2)

e2
(rA − rD) +

1

e
(r2
A cos θ∗A − r2

D cos θ∗D)

]
(91)

Variation of the Inclination

Using the first order approximation dt
df = (1/n)(r/a)2(1/

√
1− e2), the GVE for inclination

[Eq. (1c)] can be written as:

di

df
=

r2

na2
√

1− e2

r cos (f + ω)

na2
√

1− e2
W (92)

Using the relation µ = n2a3 and the orbit mechanics conic equation r = a(1−e2)/(1+e cos f)

in Eq. (92), one obtains:

di

df
=
W

µ

[(
a2(1− e2)2 cos f

(1 + e cos f)3

)
cosω −

(
a2(1− e2)2 sin f

(1 + e cos f)3

)
sinω

]
(93)

Integrating Eq. (93) over one orbital period and keeping in mind that that the solar radia-

tion pressure is zero when the object is in Earth’s shadow, one obtains:
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∆i =
W

µ

[(
1

2(1− e2)
(r2
A sin θ∗A − r2

D sin θ∗D) +
a(1 + 2e2)

2(1− e2)

(rA sin θ∗A − rD sin θ∗D)− 3a2e

(1− e2)
1
2

(
tan−1

[
(1− e2)

1
2 tan

θ∗A
2

1 + e

]

− tan−1

[
(1− e2)

1
2 tan

θ∗D
2

1 + e

]))
cosω − 1

2e
(r2
A − r2

D) sinω

] (94)

Variation of the Right Ascension of the Ascending Node

Using the first order approximation dt
df = (1/n)(r/a)2(1/

√
1− e2), the GVE for RAAN [Eq.

(1d)] can be written as:
dΩ

df
=

r3 sin (ω + f)

n2a4(1− e2) sin i
W (95)

Using the relation µ = n2a3 and the orbit mechanics conic equation r = a(1−e2)/(1+e cos f)

in Eq. (95), one obtains:

dΩ

dt
=

W

µ sin i

[
a2(1− e2)2 sinω

cos f

(1 + e cos f)3

+ a2(1− e2)2 cosω
sin f

(1 + e cos f)3

] (96)

Integrating Eq. (96) over one orbital period, one obtains:

∆Ω =
W

µ sin i

[
(r2
A − r2

D)

2e
cosω +

[
r2
A sin θ∗A − r2

D sin θ∗D
2(1− e2)

+
1 + 2e2

2(1− e2)
(arA sin θ∗A − arD sin θ∗D)− 3a2e√

1− e2(
tan−1

[√
1− e2 tan

θ∗A
2

1 + e

]
− tan−1

[√
1− e2 tan

θ∗D
2

1 + e

])]
sinω

] (97)

Variation of the Argument of Perigee

Using the first order approximation dt
df = (1/n)(r/a)2(1/

√
1− e2), the GVE for AoP [Eq.

(1e)] can be written as:

dω

df
=

r2

n2a3e

[
− S cos f + T

(
1 +

r

p

)
sin f

]
− cos i

dΩ

df
(98)
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Substituting expressions for radial and transverse components of perturbation acceleration

from Eq. (82) into Eq. (98) results in:

dω

df
= −Fr

2

µe

[
A cosω +B sinω + (A sinu−B cosu)

sin f

1 + e cos f

]
− cos i

dΩ

df

(99)

Substituting orbit mechanics conic equation into Eq. (99) and simplifying, one obtains:

dω

df
=
TP
µe

[
a2(1− e2)2 sin f cos f

(1 + e cos f)3

]
− SP
µe

[
a2(1− e2)2(1 + e cos f + sin2 f)

(1 + e cos f)3

]
− cos i

dΩ

df

(100)

where Sp = F (A cosω +B sinω) and Tp = F (−A sinω +B cosω).

Integrating Eq. (100) over one orbital period and keeping in mind that that the solar

radiation pressure is zero when the object is in Earth’s shadow, one obtains:

∆ω = −Sp
µe

[
3a2
√

1− e2

(
tan−1

(√1− e2 tan
θ∗A
2

1 + e

)
−

tan−1
(√1− e2 tan

θ∗D
2

1 + e

))
+

1

2e
(r2
A sin θ∗A − r2

D sin θ∗D)

− a

2e
(1 + 2e2)(rA sin θ∗A − rD sin θ∗D)

]
+

Tp
2µe3[

e(r2
A cos θ∗A − r2

D cos θ∗D) + a(1− e2)(rA − rD)

]
−∆Ω cos i

(101)

Valk’s algorithm for computation of shadow entry and exit true anomalies [43] has some

typos. Expressions for the corrected parameters are as follows (for the definition of these

parameters, look at [43]):

a2(y) = p2β2 +R2
⊕k

2
e

(102a)

a1(y) = 2p2βξy + 2keR
2
⊕ + 2keheR

2
⊕y (102b)
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a0(y) = p2ξ2y2 +R2
⊕ +R2

⊕h
2
ey

2 + 2heyR
2
⊕ − p2 (102c)

A0 = R4
⊕k

4
e − 2R4

⊕k
2
e +R4

⊕ + 2R2
⊕β

2k2
ep

2 + 2R2
⊕β

2p2

− 2R2
⊕k

2
ep

2 − 2R2
⊕p

2 + β4p4 − 2β2p4 + p4
(102d)

A1 = −4R4
⊕hek

2
e + 4R4

⊕he + 4R2
⊕β

2hep
2 − 8R2

⊕βkep
2ξ

− 4R2
⊕hep

2
(102e)

A2 = −2R4
⊕h

2
ek

2
e + 6R4

⊕h
2
e − 2R4

⊕k
4
e + 2R4

⊕k
2
e + 2R2

⊕β
2h2
ep

2

− 4R2
⊕β

2k2
ep

2 − 2R2
⊕β

2p2 − 8R2
⊕βhekep

2ξ − 2R2
⊕h

2
ep

2

+ 2R2
⊕k

2
ep

2ξ2 + 2R2
⊕k

2
ep

2 + 2R2
⊕p

2ξ2 − 2β4p4

− 2β2p4ξ2 + 2β2p4 − 2p4ξ2

(102f)

A3 = 4R4
⊕h

3
e + 4R4

⊕hek
2
e − 4R2

⊕β
2hep

2 + 8R2
⊕βkep

2ξ

+ 4R2
⊕hep

2ξ2
(102g)

A4 = R4
⊕h

4
e + 2R4

⊕h
2
ek

2
e +R4

⊕k
4
e − 2R2

⊕β
2h2
ep

2 + 2R2
⊕β

2k2
ep

2

+ 8R2
⊕βhekep

2ξ + 2R2
⊕h

2
ep

2ξ2 − 2R2
⊕k

2
ep

2ξ2 + β4p4

+ 2β2p4ξ2 + p4ξ4

(102h)

A simulation comparing numerical and analytical orbital evolution is carried out for a GEO

object perturbed by SRP for the set-up given in Table 2.
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Table 2: Simulation parameters for comparison between numerical and analytical
methods for SRP perturbation.

Parameter Value

Initial Semi-major Axis 42164 km
Initial Eccentricity 0.1
Initial Inclination 100

Initial AoP .10

Initial RAAN .10

Initial Epoch 2437582.5 JD
Propagation Period 30 years
Area 1 m2

AMR 50 m2/kg
Diffuse Reflection Coefficient (Cd) .035

The numerical results are obtained via the direct integration of GVE using Dormand and

Prince’s Runge-Kutta (4,5) ODE solver [39] with relative tolerance of 10−12 and absolute

tolerance of 10−12. For the numerical integration of GVE, the radial (S), transverse (T ),

and perpendicular (W ) components of the SRP perturbations are obtained using Eq. (82)

without assuming F , A, B, C as constants. Fig. 2.5(a) shows the comparison for the

eccentricity and Fig. 2.5(b) shows the comparison for the argument of perigee, where the

red plot belongs to the analytical method, and the blue plot belongs to the numerical

method. The plots demonstrate how the error between numerical and analytical results

grows rapidly with progress in time. The amplitude of the difference between numerical and

analytical eccentricities increases to about .07 for a propagation period of 30 years, whereas

the amplitude of difference increases to about 30 degrees for the argument of perigee.

(a) Eccentricity. (b) Argument of Perigee.

Figure 2.5: Eccentricity and AoP divergence due to Cook’s analytical expressions.
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In order to overcome the divergence issue, Cook’s update scheme need modification. In this

research work, Cook’s update scheme:

xt+1 = xt + ∆x(at, et, it, ωt,Ωt, ~rsunt) (103)

is replaced with a modified update scheme:

xt+1 = xt + ∆x(at, et, it, ωt,Ωt, ~rsunt) (104a)

xt+1 = .5xt+1 + .5xt + .5∆x(at+1, et+1, it+1, ωt+1,Ωt+1, ~rsunt+1) (104b)

where x represents the Keplerian elements, the subscripts t and t+1 represent the corre-

sponding quantities at times t and t+Tperiod respectively, ~rsunt represents Sun position at

time t. ∆x (which is a function of parameters in parenthesis) represents Cook’s [15] analyt-

ical perturbation for one orbital period. In essence, we are replacing an Euler-like scheme

with a Strong-Stability Preserving Runge-Kutta (SSP-RK)-like scheme of order 2.

Fig. 2.6 shows the comparison between numerical and analytical results obtained using the

modified update scheme. The amplitude of difference between numerical and analytical

results for eccentricity is mere .002 even after 30 years of propagation, and the amplitude

of difference is only 2 degrees for argument of perigee.

(a) Eccentricity. (b) Argument of Perigee.

Figure 2.6: Eccentricity and argument of perigee evolution with modified update
scheme.

All the analytical results discussed so far have been compared against numerical integration

results generated using Dormand and Prince’s Runge-Kutta (4,5) ODE solver. Hence, a
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discussion on the rationale behind the selection of Dormand and Prince’s Runge-Kutta (4,5)

ODE solver over other readily available numerical solvers in Matlab is carried out next.

2.4 Comparison of Numerical Solvers

To compare various numerical techniques, a dummy dynamics model that has an exact

analytical solution (i.e., “truth”) will be used. This dynamics model is similar in structure

to the actual perturbation model, but not the same. Let the dummy dynamics model be

given by the following equations [44]:

ẋ = vx (105)

ẏ = vy (106)

ż = vz (107)

v̇x = −Dvx −
K

R3
x+

(
5

1000

)
sin

(
t

1000

)
(108)

v̇y = −Dvy −
K

R3
y +

(
5

1000

)
cos

(
t

1000

)
(109)

v̇z = −Dvz −
K

R3
z +

(
5

1000

)
sin

(
t

1000

)
(110)

where, x, y, z are the satellite coordinates relative to Earth’s center, v̇x, v̇y, v̇z are the

satellite velocity components, K = 3.986004415×1014 m3/s2 is the gravitational parameter,

D = 5 × 10−9 s−1 is the coefficient of atmospheric drag, R = 6.65256 × 106 m represents

object distance from center of Earth. The first term in each acceleration equation simulates

drag, the second term simulates Keplerian term, and the third term simulates all other

perturbations. The initial state for the dynamical model is taken as:



x(0)

y(0)

z(0)

vx(0)

vy(0)

vz(0)


=



R

0

0

0

v0

0


=



6.65256× 106m

0

0

0

7740.6ms

0


(111)
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The exact analytical solution for the dummy dynamical model is given by the following

equations [44] 5:

x(t) = eαt(C1 cos (βt) + C2 sin (βt)) +A1 cos

(
t

1000

)
+B1 sin

(
t

1000

) (112)

y(t) = eαt(C3 cos (βt) + C4 sin (βt)) +A2 cos

(
t

1000

)
+B2 sin

(
t

1000

) (113)

z(t) = eαt(C5 cos (βt) + C6 sin (βt)) +A1 cos

(
t

1000

)
+B1 sin

(
t

1000

) (114)

vx(t) = eαt[C1(α cos (βt)− β sin (βt)) + C2(β cos (βt) + α sin (βt))]

− A1

1000
sin

(
t

1000

)
+

B1

1000
cos

(
t

1000

) (115)

vy(t) = eαt[C3(α cos (βt)− β sin (βt)) + C4(β cos (βt) + α sin (βt))]

− A2

1000
sin

(
t

1000

)
+

B2

1000
cos

(
t

1000

) (116)

vz(t) = eαt[C5(α cos (βt)− β sin (βt)) + C6(β cos (βt) + α sin (βt))]

− A1

1000
sin

(
t

1000

)
+

B1

1000
cos

(
t

1000

) (117)

5[44] has some typos in its analytical solutions, which have been corrected here
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where,

α = Re

(
−D +

√
D2 − 4K

R3

2

)
(118)

β = Im

(
−D +

√
D2 − 4K

R3

2

)
(119)

A1 = − 5DR6 × 106

(K × 106 −R3)2 +D2R6 × 106
(120)

B1 = 1000× 5R3(K × 106 −R3)

(K × 106 −R3)2 +D2R6 × 106
(121)

A2 = B1 (122)

B2 = −A1 (123)

C1 = x(0)−A1 (124)

C2 =
1

β

(
vx(0)− C1α−

B1

1000

)
(125)

C3 = y(0)−A2

C4 =
1

β

(
vy(0)− C3α−

B2

1000

)
(126)

C5 = z(0)−A1 (127)

C6 =
1

β

(
vz(0)− C5α−

B1

1000

)
(128)

where Re and Im denote the real and imaginary parts, respectively.

Matlab has following readily available ODE solvers:

1. ode45: According to Mathworks, ode45 is based on explicit Runge-Kutta (4,5) formula

[39], which means it combines a fourth-order method and a fifth-order method, both

of which are similar to the classical fourth-order Runge-Kutta (RK) method [45]. The

modified RK varies the step size, choosing the step size at each step in an attempt

to achieve the desired accuracy. It is a single-step solver in computing y(tn), it needs

only the solution at the immediately preceding time point, y(tn−1).

2. ode23: According to Mathworks, ode23 is an implementation of an explicit Runge-

Kutta (2,3) pair of Bogacki and Shampine [46]. It may be more efficient than ode45 at
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crude tolerances and in the presence of moderate stiffness. In ode23, two simultaneous

single-step formulas, one of second-order and one of the third order, are involved.

3. ode113: According to Mathworks, ode113 is a variable-step, variable-order (VSVO)

Adams-Bashforth-Moulton PECE solver of orders 1 to 13 [47]. The highest order used

appears to be 12, however, a formula of order 13 is used to form the error estimate and

the function does local extrapolation to advance the integration at order 13. ode113

may be more efficient than ode45 at stringent tolerances or if the ODE function is

particularly expensive to evaluate. ode113 is a multistep solver, it normally needs the

solutions at several preceding time points to compute the current solution.

4. ode15s: According to Mathworks, ode15s is a variable-step, variable-order (VSVO)

solver based on the numerical differentiation formulas (NDFs) of orders 1 to 5. Op-

tionally, it can use the backward differentiation formulas (BDFs, also known as Gear’s

method) that are usually less efficient. Like ode113, ode15s is a multistep solver. One

may use ode15s if ode45 fails or is very inefficient and if one suspects that the problem

is stiff, or, when solving a differential-algebraic equation (DAE) [48, 49].

5. ode23s: According to Mathworks, ode23s is based on a modified Rosenbrock formula

of order 2. Because it is a single-step solver, it may be more efficient than ode15s at

solving problems that permit crude tolerances or problems with solutions that change

rapidly. It can solve some kinds of stiff problems for which ode15s is not effective

[48].

6. ode23t: According to Mathworks, ode23t is an implementation of the trapezoidal rule

using a free interpolant. This solver is preferred over ode15s if the problem is only

moderately stiff and you need a solution without numerical damping. ode23t can also

solve differential-algebraic equations (DAEs) [49, 50].

7. ode23tb: According to Mathworks, ode23tb is an implementation of TR-BDF2, an

implicit Runge-Kutta formula with a trapezoidal rule step as its first stage and a

backward differentiation formula of order two as its second stage. By construction,

the same iteration matrix is used in evaluating both stages. Like ode23s and ode23t,
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this solver may be more efficient than ode15s for problems with crude tolerances

[50, 51].

For each of the aforementioned numerical ODE solvers, the dummy dynamical system is

integrated and the following three characteristics are investigated:

1. Stability.

2. Accuracy.

3. Computational cost.

1. Stability Analysis:

For the stability analysis, two orbits with slightly different initial states are integrated w.r.t

time. The initial state of the first orbit is given by Eq. (111), and the initial state of the

second orbit is .00005% offset from the initial state of the first orbit, i.e., ~X(0)second orbit =

~X(0)firs orbit±(.00005/100)× ~X(0)first orbit. The distance between the two orbits for various

integration techniques is plotted in Fig. 2.7. Fig. 2.7(a) shows the difference between

reference orbit and orbit with .00005% increment in the initial state and Fig. 2.7(b) shows

the difference between reference orbit and orbit with .00005% decrement in the initial state.

The green plot corresponds to the exact or analytical method.

(a) .00005% Increment. (b) .00005% Decrement.

Figure 2.7: Comparison of various integration techniques for stability analysis.
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A small change is magnified much more quickly by ode23, ode23t, ode23tb, ode23s when

compared to ode45 or ode113 or ode15s. This implies that ode23, ode23t, ode23tb, ode23s

are the least stable ones. The relative tolerance and absolute tolerance are taken as

[10−12; 10−12] for all the integration techniques.

2. Accuracy Analysis:

For determining accuracy, the difference between true (analytical) and numerical solutions

are investigated. The initial state is given by Eq. (111). Fig. 2.8(a) plots the difference for

all the integration techniques and Fig. 2.8(b) plots the difference for all but ode15s. Orbit

obtained through ode15s is the least accurate one. The orbits obtained using ode45 and

ode113 have the best accuracy results. The relative tolerance and absolute tolerance are

taken as [10−12; 10−12] for all the integration techniques.

(a) All Integration Techniques. (b) All But ode15s.

Figure 2.8: Accuracy of various integration techniques.

3. Computational Cost Analysis:

Five iterations are run for each integration scheme, and the average run-time for each is

plotted in Fig. 2.9.
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Figure 2.9: Average run-time of various integration techniques.

From Fig. 2.9, ode23s and ode23t are the worst integrators in terms of run-time. ode45,

ode23, and ode 113 are the best integrators in terms of run-time.

From the stability, accuracy, and run-time analysis, the best integrators (from among the

ones readily available with Matlab) are ode45 and ode113. Between the two, ode45 is

selected because of its popularity.

2.5 Concluding Remarks

To conclude, the analytical developments in this chapter serve to provide a more accurate

solution for orbit propagation of near-Earth objects. The lesser the object distance from the

Earth-center compared to the disturbing body distance, the more relevant is the third-body

perturbation improvements made in this chapter. The improvement made in solar radiation

pressure perturbations is most relevant when the propagation period is relatively large (of

the order of decades).
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3 MODELING LORENTZ FORCE PERTURBATIONS

This chapter is dedicated to studying Lorentz force and orbital perturbations because of

the Lorentz force. Since the Lorentz force is not well-studied, a comprehensive numerical

study is first carried out before moving on to the development of analytical perturbation

theory. The numerical study carried out in section 3.1 uses Cartesian coordinates and is a

full-model study, i.e., all GEO-relevant perturbation forces are considered.

3.1 Full-Model Numerical Investigation of the Effect of Lorentz Force

Since the space debris is modeled as a sphere in this research work, a 3-DoF equation of

motion holds for center of mass, which is given in Cartesian coordinates as:

~̈x = −GM⊕∇V (~x)−G
∑
k=1,2

Mk

[
~x− ~xk
|~x− ~xk|3

+
~xk
x3
k

]
+
∑
l

~al (129)

where ~x is the geocentric position of the object, G the gravitational constant, M⊕ the Earth-

mass, and V (~x) the Earth gravitational potential. The formulation of Pines [52] has been

implemented for the gravitational potential representations. The third body gravitational

perturbations of the Sun and Moon (k=1,2) with the states ~xk are modeled via their center

of mass. The Sun and Moon masses are represented by Mk (k=1,2). Finally,
∑
~al is the

sum over non-gravitational accelerations of solar radiation pressure, atmospheric drag, and

Lorentz force.

The acceleration due to solar radiation pressure is modeled using cannonball model (Eq.

(75)) and the acceleration due to atmospheric drag force is modeled as:

~adrag = −1

2

c̃DArefρ|~vrel|~vrel
m

(130)

where c̃D is drag coefficient, Aref is reference area, ρ is atmospheric density and ~vrel is

velocity of body relative to atmosphere. Aref is taken as spherical cross-sectional area i.e.,

πr2. The atmosphere is assumed to be co-rotating with Earth. The density ρ is obtained

using GOST model [37].
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3.1.1 Lorentz Force

A charge q that moves through the Earth’s magnetosphere with a velocity ~vrel relative to

the magnetic field ~B, experiences Lorentz force,

~Fcharge = q~vrel × ~B (131)

where the charge q can be obtained from the potential φ of the space object and body

capacitance C using:

q = Cφ (132)

For solving the body potential φ, Kirchoff’s current equation needs to be solved. Assuming

that an object in space behaves like a node in an electric circuit, Kirchoff’s current law

under equilibrium condition gives [34]:

∑
j

Ij(φ) = Ii + Ie + Iph + Ise + Ibsc + Imisc = 0 (133)

where Ii is plasma ion current, Ie is plasma electron current, Iph is photoelectric current,

Ise is secondary electron current, Ibsc is backscattered current and Imisc is miscellaneous

current. Miscellaneous current includes all currents apart from ones mentioned until now,

and it will be neglected in all the theoretical developments and simulations in this work.

The φ in parenthesis indicates that the currents are a function of body potential. In this

work, the charging time scale is much smaller compared to orbit propagation time steps,

and hence the assumption of equilibrium current condition can be used.

3.1.2 Earth Magnetosphere

Lorentz force depends upon the selection of Earth’s magnetosphere model. Typically, mag-

netosphere models can be grouped into two classes: statistical and physics-based. The

Physics-based models are computationally expensive and difficult to solve as they require

solving numerically several nonlinear partial differential equations on a three-dimensional

grid of points. They take magnetohydrodynamic (MHD) flows of the plasma into consider-

ation for simulating the magnetic field. Statistical models, on the other hand, are based on
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empirical formulations. Early magnetosphere models were primarily physics-based due to

the unavailability of sufficient space-data, but over the last three decades, with the availabil-

ity of the huge amount of data from satellites and space-instruments, the trend has shifted

towards the use of statistical models [53, 54, 55].

The work carried out in this research uses the empirical dipole magnetic field model. The

model is a first-order approximation of Earth’s actual magnetic field. The implementation of

the dipole model is simple and is particularly accurate at low Earth altitudes. GEO magnetic

field can be much more accurately simulated using a complex model like the Tsyganenko

magnetic field model, but it is harder and slower to implement and is not part of this

work. Eqs. (134), (135), (136) represent the dipole model [56], where the parameters η, ξ, ζ

represent geocentric distance, co-elevation and East longitude from Greenwich, respectively.

rE is the equatorial radius of Earth. The parameters gji and hji are IGRF coefficients and

can be obtained from data released by IAGA [57].

Bη = 2

(
rE
η

)3[
g0

1 cos ξ + (g1
1 cos ζ + h1

1 sin ζ) sin ξ

]
(134)

Bξ =

(
rE
η

)3[
g0

1 sin ξ − (g1
1 cos ζ + h1

1 sin ζ) cos ξ

]
(135)

Bζ =

(
rE
η

)3[
g1

1 sin ζ − h1
1 cos ζ

]
(136)

3.1.3 Space-Plasma Environment

Body charge depends on longitude, local time, and altitude, because of varying plasma

conditions [34]. The numerical simulations carried out here focus on low Earth altitudes

(up to an altitude of 2000 Km) and geosynchronous region only. In the current work, for

the low Earth regions, local time and longitudinal variations of plasma data are neglected,

focusing only on altitude dependent effects as they appear to be the most crucial ones. For

the geosynchronous region, only the local time variations are considered because of limita-

tions in data availability. Plasma at low Earth orbits is usually of low energy (typically less

than .1 eV energy) and high density (typically 105 cm−3 or higher) [34]. At geosynchronous

altitudes, the plasma density is relatively small (around 1 cm−3), but plasma energy is high,
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typically around 100 eV, often reaching KeV ranges during geomagnetic storm activities

[34]. A geomagnetic storm is a space weather phenomenon resulting from a rapid increase

in energy transfer from Sun to Earth’s magnetosphere and typically caused by solar coronal

mass ejections (CME). Bodies in geosynchronous orbit typically get positively charged in

sunlight due to the emission of photo-electrons. The photoelectric current in the geosyn-

chronous region is of similar order as that of the dominant plasma electron current and

hence it is a major contributor to body charge. For the low Earth region, the photoelectric

current is relatively insignificant as plasma currents are much larger than photoelectric cur-

rent. However, under certain conditions, like when an object is inside the auroral oval, the

photoelectric current might play an important role. In the geosynchronous shadow region

and all of the low Earth regions, bodies are typically negatively charged because of the dom-

inant plasma electron current. Once the voltage is determined from the current equilibrium,

the charge can be determined using capacitance. The capacitance is both object geome-

try dependent and plasma dependent. The plasma dependence is characterized using the

so-called Debye length, which is a density-dependent quantity. Debye length is roughly the

distance from the body at which the electrostatic effect of the body is completely shielded

by the plasma particles surrounding it [58].

3.1.4 Modeling of Current

In the following sections, plasma electron and ion currents, secondary electron and ion

currents, backscattered electron current, and photoelectric current are modeled using a

steady-state approach [34].

3.1.4.1 Plasma Electron and Ion Currents

Depending on whether a particular kind (polarity) of plasma species is attracted or repelled,

plasma current expression can be different.

3.1.4.1.1 Plasma Flux for Repelled Particles

This section introduces analytical expression for the flux of particles repelled by the polar-

ity of the space object in low Earth and geosynchronous orbits. It will be assumed that
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the plasma particles follow Maxwell-Boltzmann distribution under the thermal equilibrium

condition. The assumption is usually valid for a calm environment. In actuality, no single

distribution can accurately model the plasma particles because of various disturbances.

For a spacecraft charged to a potential φ, the flux is given as [59]:

φ̃ = e−
q̃φ
kT φ0 (137)

where q̃ is particle charge, k is Boltzmann constant, and T is plasma distribution tempera-

ture. φ0 is the flux in absence of spacecraft charging, and is given as:

φ0 = n

√
kT

2πm̃
(138)

where n and m̃ represent particle number density and particle mass, respectively.

The current density to an uncharged body can then be written in terms of flux as:

J0 = q̃φ0 = nq̃

√
kT

2πm̃
=

1

2
nq̃

√
2kT

πm̃
(139)

And, the current density to a body charged to a potential φ is given as:

J = q̃φ̃ = e−
q̃φ
kT q̃φ0 = e−

q̃φ
kT J0 (140)

3.1.4.1.2 Plasma Flux for Attracted Particles

This section introduces flux for particles attracted by body polarity. In the geosynchronous

region, where the plasma density is low, the incoming current density collected by a per-

fectly absorbing spherical or infinitely long cylindrical body from a collisionless, stationary,

isotropic plasma is limited by the particles’ orbital angular momenta. This current is known

as orbit-limited current [60]. For orbit-limited sphere, for an attracted particle approach-

ing the body from infinity, conservation of energy and angular momentum results in the

following total current density striking the body surface [59],

J(φ) = J0(1− q̃φ

kT
) (141)
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where J0 is ambient current density outside the sheath and is given by Eq. (139).

In Eq. (141), the velocity of the body is not taken into consideration, i.e., it is assumed

that the body is at rest compared to plasma velocities. At geosynchronous altitudes, plasma

energy is high. The average kinetic energy of particles is much larger than the orbital speed,

and the body is essentially at rest compared to plasma particles and hence Eq. (141) is

valid.

At a low Earth orbit regime, the body gets negatively charged, i.e., an ion is the attracted

species. However, at low Earth orbit, the plasma sheath is thin such that thick sheath

theories do not apply here. Also, the orbital velocity is larger than the average kinetic

energy of ions. Hence, Eq. (141) becomes invalid for ions in low Earth orbits.

For low Earth orbits, under low-charge plasma conditions, as ions are relatively at rest, they

are assumed to be ramming into the body surface, and the ion current is approximately

given as [35]:

I = eniVscAi (142)

where e is elementary charge, ni is free plasma ion density, Vsc is inertial object velocity,

and Ai is projected ion collection area. For a sphere of radius r, the projected ion collection

area is Ai = πr2.

For low Earth orbits, under high-charge plasma conditions, voltage dependence needs to be

considered, and the ion current is approximately given as [59]:

I = eniVscAi

(
1− q̃φ

Ec

)
(143)

where Ec represents ion kinetic energy in the frame of spacecraft.

3.1.4.2 Secondary Electron Current Model

The expression for secondary electron current can be found using yield, i.e., the number

of secondary electrons generated per incident projectile particle. Yield expressions can be

multiplied with incident plasma ion and electron currents to find the value of secondary
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electron current. The secondary electron currents due to hitting ions and electrons are

given as:

Iseci = (< ∆i >)Ii (144)

Isece = (< ∆e >)Ie (145)

where the subscripts i and e denote impacting particles as ions and electrons, respectively.

Ii and Ie represent plasma ion and electron currents, respectively. It will be assumed that all

the incident electrons and ions get absorbed and contribute to secondary electron emission

process. The < ∆ > symbol signifies averaged yield value, averaged over all energies, and

is given as [34]:

< ∆ >=

∫ Eu
El

Ẽf(Ẽ)∆(Ẽ)dẼ∫ Eu
El

Ẽf(Ẽ)dẼ
(146)

where Ẽ represents energy, f(Ẽ) represents the Maxwell-Boltzmann distribution function

representing incoming electrons or ions. The integral limits El and Eu in Eq. (146) represent

lower and upper energy bounds of the impacting particles. In absence of precise information,

El and Eu are taken as 0 and ∞, respectively. In more advanced modeling, El and Eu can

be modeled as functions of spacecraft energy, but that aspect is not considered in this work.

∆(Ẽ) represents the secondary electron yield corresponding to the particular energy Ẽ of

the impacting particle. f(Ẽ) is given as:

f(Ẽ) = n

(
m̃

2πkT

) 1
2

e−
Ẽ
kT (147)

3.1.4.2.1 Secondary Electron Yield, ∆(Ẽ)

The yield ∆ can be obtained using Sternglass’s theory [61],

∆ =
1

2

1

Ē0

〈
dEi
dx

〉
Av

τALs(1 + F̃ (vi)) (148)

where Ē0 represents mean energy loss per secondary electron formed. Its value is approxi-

mately 25 eV for solids. τ is the surface transmission coefficient, and A is a constant that
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depends upon the distribution of initial velocities of secondary electrons and the ratio of

mean free path for absorption to mean free path for inelastic collisions; τA ≈ .5. The

parameter Ls is a characteristic length and is of the order of the distance between inelastic

collisions. Ls is given by the following equation:

Ls = (α′Nσg)
−1 (149)

where the constant α′ is approximately .23 for metals, N is the number of atoms per unit

volume, and σg is the geometrical area of the outermost filled electron shells. σg is given

as: σg = 1.6Z
1
3 × 10−16, where Z is the atomic number of the substrate.

In Eq. (148),
〈
dEi
dx

〉
Av

represents total energy loss per unit length and it is given as:

〈
dEi
dx

〉
av

= 2πNe4z2
i

[
Z

Eeq
ln

(
4Eeq
Ī

)]
(150)

where e represents the electronic charge, zi represents the charge of incident particle, and

Ī represents mean excitation potential of the atom. Eeq = (m0/m̃)Ẽ with m0, m̃, and Ẽ

being electronic mass, mass of incident particle, and energy of incident particle, respec-

tively. There is a minimum energy requirement for incident particles, and it comes from

the condition of positive argument for logarithm function in Eq. (150).

For lighter elements (Z < 30), the function F̃ (vi) in Eq. (148) is given as:

F̃ (vi) ≈
(

1 +
Eeq
100

)−1

(151)

where Eeq is expressed in electronvolts.

For heavier elements (Z ≥ 30), the function F̃ (vi) in Eq. (148) is given as:

F̃ (vi) ≈
((

1 +
Eeq
100

)−1

+ f̃

)(
1 + f̃

)−1

(152)

Experimental values for the parameter f̃ range typically from .05 for aluminum to .25 for

gold. A linear variation of this quantity with atomic number will be assumed in this work.
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3.1.4.3 Backscattering Current Model

Backscattering current can be obtained with the help of backscattering yield, i.e., the num-

ber of backscattered particles per incident particle. The backscattering of electrons is more

important than the backscattering of ions. Usually, the backscattering yield is much smaller

compared to the secondary yield. Backscattering electron current is given as:

Ibsc = rbscIe (153)

where rbsc represents backscattering yield and Ie represents plasma electron current.

3.1.4.3.1 Backscattering Yield, rbsc

There are two models (diffusion model and elastic collision model) that Archard [62] used

for explaining backscattering. Neither of the models single-handedly explains the backscat-

tering, but a combination of the two models explains the backscattering over the entire

atomic number range.

In the diffusion model, it is assumed that electrons travel straight into the target up to

a certain specified distance, after which they diffuse evenly in all directions. This model

assumes that an electron exhibits completely random motion after multiple collisions. It

ignores the possibility of an electron undergoing large single elastic reflections between the

surface and the depth of complete diffusion.

In the elastic collision model [63], it is assumed that electrons travel straight into the target,

suffering retardation according to Thomson-Whiddington law. Also, the electrons undergo

elastic collisions per Rutherford’s law of scattering. This model acknowledges the presence

of electrons that are elastically scattered through large angles, but ignores the diffusion

effect of multiple collisions. All electrons that are not turned through more than a right

angle are assumed not to have turned at all.

At a low atomic number (Z), the ratio of the depth of complete diffusion xd to the full

range xR is large, such that there is a great chance of large elastic collisions before diffusion

sets in, hence elastic collision model is used. For high Z, xd
xR

is small, so diffusion sets in
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almost immediately long before any elastic collision may take place, so the diffusion model is

applicable. In the intermediate region, both models are applicable, and a weighted average

of both is used. The following piece-wise model can be assumed for a substrate with the

atomic number Z:

For Z < 11,

rbsc =
a− 1 + .5a

a+ 1
(154)

For Z > 60,

rbsc =
7Z − 80

14Z − 80
(155)

For 11 ≤ Z ≤ 60

rbsc =
xd
xR

(
a− 1 + .5a

a+ 1

)
+
xR − xd
xR

(
7Z − 80

14Z − 80

)
(156)

where the value of parameter a is approximately taken as .045. The ratio xd
xR

is approximated

as xd
xR
≈ 40

7Z if the average energy of incoming particles is less than 100 KeV. For higher

energetic particles, it is approximated as xd
xR
≈ 40

6Z .

3.1.4.4 Photoelectron Current Model

Photoelectron current is one of the significant currents in GEO. Photoelectron current

density (divided by elementary charge) is given as [34]:

Jph =

∫ ∞
0

fsY dω (157)

where fs is the number of photons per unit area per unit time per unit photon energy, and

it is a function of photon energy, ω. Y is the yield, i.e., the number of photoelectrons per

incident photon and is a function of ω and angle of incidence, θi. The yield is given as:

Y [ω,R(ω)] = Y ?[ω,R(ω, θi)][1−R(ω, θi)] (158)
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where R is reflectance and Y ? is yield per absorbed photon, which can be approximated as

[34, 64]:

Y ?[ω,R(ω, θi)] ≈
Y ?[ω,R(ω, 0)]

cosθi
(159)

Laboratory measurements [34, 65, 66] show:

1−R(ω, θi) ≈ [1−R(ω, 0)]cos(θi) (160)

Thus, from the product of Y ? and (1−R), there is no θi dependence of Y. The only incident

angle dependence of the photoelectric current stems from the factor cos θi, which results

from effective surface area on which light is incident. Photoelectrons can be assumed to

follow Maxwellian distribution for positive body potentials with characteristic temperature

ranging 1eV-2eV [34]. The characteristic temperature Tph will be taken as 1.5 eV in this

work. This leads to:

Iph = eJph(0)Abodycosθi ≡ eJph(0)A⊥ if φ ≤ 0 (161)

and,

Iph = eJph(0)A⊥e
− φ
Tph if φ > 0 (162)

where the neutral current density Jph(0) is given as:

Jph(0) =

∫ ∞
0

fs(ω)Y ∗(ω)[1−R(ω)]dω (163)

In Eqs. (161) and (162), e represents elementary charge, A⊥ represents projected area of

the body and φ represents the body potential.

In the sections to follow, methods for obtaining quantities appearing in Eq. (163) are

stated. The number of photons per unit area per unit time per unit photon energy (fs)

will be obtained from AM 0 solar spectral irradiance. Yield per absorbed photon (Y ∗) will

be obtained using Fowler’s method for near-threshold frequencies and assumed constant for

higher frequencies. Fowler’s yield depends upon absolute body temperature, which will be
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obtained using the thermal equilibrium equation. Reflectance (R) will be obtained using

Fresnel’s equation. Fresnel’s equation depends upon the refractive index, which will be

computed using Brendel and Bormann model.

3.1.4.4.1 Solar Photon Flux Data fs

AM 0 or ASTM E-490 spectrum provides solar spectral irradiance ( W
m2nm−1 ) data and is

based on data collected from several satellites, space shuttles, high altitude aircrafts, solar

telescopes.

Spectral irradiance (power per unit area per unit wavelength) Sλ can be used to obtain the

number of photons per unit area per unit time per unit photon energy fs using [67]:

fs =
λ3

(hc)2
Sλ (164)

where λ, h, c represent light wavelength, Plank’s constant, and speed of light, respectively.

3.1.4.4.2 Fowler’s Yield Per Absorbed Photon Y ∗

Photoelectron yield per absorbed photon (Y ∗) for frequencies near the threshold frequency

of the body material can be obtained using Fowler’s yield [68]. It is given as:

Y ∗ = KP
T 2
B

(χ0 − hν)
1
2

κ
(
hν − χ
kTB

)
(165)

where the parameter KP is a proportionality constant, TB is absolute body temperature, h

is Plank’s constant, ν is photon frequency, χ is work function, and k is Boltzmann constant.

χ0 = χ+ ε∗ where ε∗ is Fermi energy. Fowler assumed that for frequencies near threshold,

(χ0 − hν)
1
2 is constant. According to Fowler, at hν ≈ χ, (χ0 − hν) ≈ ε?, so if ν changes

by 15%, (with ν0 of the order of 4 eV and χ0 − hν of the order of 10 volts), (χ0 − hν)

changes by 6% and (χ0− hν)
1
2 changes by only 3%. This implies approximately a constant

(χ0−hν)
1
2 . In this work, the upper and lower limit on variation of photon frequency ν from

threshold frequency ν0 would correspond to 3% variation of (χ0 − hν)
1
2 from its nominal

value (χ0 − χ)
1
2 . Thus,

Y ∗ = K ′PT
2
Bκ(µ) (166)
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where K ′P is new constant of proportionality, and µ = hν−χ
kTB

. The function κ is defined as:

κ(µ) = eµ − e2µ

22
+
e3µ

32
. . . for µ ≤ 0 (167)

κ(µ) =
π2

6
+

1

2
µ2 − (e−µ − e−2µ

22
+
e−3µ

32
− . . .) for µ > 0 (168)

The value of the constant K ′P has to be found from the experimental values of the photo-

electric yield. For aluminum (the material used in this work), if absolute body temperature

is expressed in terms of equivalent electronvolts, K ′P can be taken as .0038 eV −2. For fre-

quencies that have energy values lower than the proposed 3% range, it will be assumed that

there is no photoelectron emission. For all frequencies that have energy values higher than

this range, the yield will be taken as constant.

Eq. (166) requires absolute body temperature TB, which can be obtained from thermal

equilibrium:

TB =

(
(1− alb)E

4σ

) 1
4

(169)

where alb is the albedo, r is radius of the body, E is solar constant, and σ is Stefan’s

constant. As an approximation in this work, albedo is taken as a summation of diffuse and

specular reflectances.

3.1.4.4.3 Reflectance R

Reflectance (for thick materials), under the assumption of unpolarized sunlight and zero

angle of incidence, is given as [69, 70]:

R =
k2

2 + (n1 − n2)2

k2
2 + (n1 + n2)2

(170)

where n1 and n2 are the refractive indices of the medium in which incident light is present

and the object medium, respectively. k2 represents an optical parameter. It is safe to

assume n1 = 1, which corresponds to the vacuum. The next objective is to determine the

refractive index of the second medium n2 as a function of light wavelength or frequency,
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and the optical parameter k2.

Brendel and Bormann [71] proposed a modified version of the classical Lorentz-Drude model.

According to the modified model, the complex dielectric function is given as:

ε̂r(ω̃) = 1−
Ω2
p

ω̃(ω̃ − iΓ0)
+

l∑
j=1

χj(ω̃) (171)

χj(ω̃) =
1√

2πσj

∫ ∞
−∞

e
−

(x−ωj)
2

2σ2
j

fjω
2
p

(x2 − ω̃2) + iω̃Γj
dx (172)

where ωp =
√

Ñe2

ε0m0
is plasma frequency, with Ñ , e, ε0, m0 being number of conduction

electrons per unit volume, electronic charge, permittivity of vacuum, and electronic mass,

respectively. l is the number of oscillators with frequency ωj , strength fj , and lifetime 1/Γj ,

and Ωp =
√
f0ωp is plasma frequency associated with intraband transitions with oscillator

strength f0 and damping constant Γ0. σj is standard deviation associated with the Gaussian

modelling of the dielectric function and its value is experimentally obtained. ω̃ is angular

frequency of light.

Rakic [72] has given experimental tables for Brendel-Bormann model parameters f0, fj ,

Γ0, Γj , ωj , σj for some commonly used materials. For Aluminum, [f0, f1, f2, f3, f4] =

[.526, .213, .060, .182, .014], [Γ0,Γ1,Γ2,Γ3,Γ4] = [.047, .312, .315, 1.587, 2.145] eV , [ω1, ω2, ω3, ω4] =

[.163, 1.561, 1.827, 4.495] eV , [σ1, σ2, σ3, σ4] = [.013, .042, .256, 1.735] eV .

Analytical solution for χj(ω̃) exists and is given as:

χj =
ifjω

2
p

2
√

2ajσj

(
U

[
1/2, 1/2,−

(
aj − ωj√

2σj

)2]
+ U

[
1/2, 1/2,−

(
aj + ωj√

2σj

)2])
(173)

U is known as Kummer function of second kind and U(1/2, 1/2, z2) =
√
πez

2
erfc(z), where

erfc(x) = 2√
π

∫∞
x e−t

2
dt is the complementary error function. The parameter aj is given

by its real and imaginary parts:

aj = a′j + ia′′j (174)
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where,

a′j =
ω̃√
2

(
(1 + (Γj/ω̃)2)1/2 + 1

)1/2

(175)

a′′j =
ω̃√
2

(
(1 + (Γj/ω̃)2)1/2 − 1

)1/2

(176)

Now, the complex refractive index is given as:

ñ = n2 − ik2 (177)

where n2 is the usual real refractive index and k2 is the extinction coefficient. Now, the

square of amplitude of this complex refractive index (ñ)2 = (n2
2 − k2

2) − 2ik2n2 is equal to

the complex dielectric function.

Thus, if complex dielectric function ε̂r(ω̃) = εr1 − iεr2 , then from ε̂r(ω̃) = (ñ)2,

εr1 = n2
2 − k2

2 (178)

εr2 = 2k2n2 (179)

Solving Eqs. (178) and (179), one obtains:

n2 =
1√
2

√
εr1 +

√
ε2r1 + ε2r2 (180)

k2 =
1√
2

√
−εr1 +

√
ε2r1 + ε2r2 (181)

3.1.5 Capacitance Modeling

To compute object charge from voltage, one requires body capacitance, whose modeling

depends upon the orbit regime. The primary reason for the difference in capacitance mod-

eling arises from the difference in Debye length relative to body dimension. For an object

with dimension ranging from tens of centimeters to few meters, Debye length is much larger

than body dimension in the GEO region, whereas Debye length is much smaller than body

dimension in the LEO region. As a consequence of this, certain first-order approximations
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can be made in the capacitance formulation.

For two concentric conducting spheres having radii a1 and b1, respectively, the potential

difference is given as:

∆φ =
q

4πε0

(
1

a1
− 1

b1

)
(182)

where ε0 is vacuum permittivity. Thus, the capacitance C is:

C =
4πε0

( 1
a1
− 1

b1
)

(183)

At GEO altitude, with a1 = r and b1 = L, where r is radius of the body and L is the Debye

length, using the approximation r
L << 1 in Eq. (183) results in:

C = 4πε0r (184)

For LEO, with a1 = r and b1 = (r + L), and using the approximation r
L >> 1, Eq. (183)

results in:

C =
4πε0r

2

L
(185)

The Debye length L can be obtained from the following equation:

1

L2
=
∑
j

(
nj q̃

2
j

ε0kTj

)
(186)

where nj , q̃j , Tj , k denote number density of plasma particles, charge of particle, character-

istic temperature of particle distribution, and Boltzmann constant, respectively, for particle

type j.

3.1.6 GEO Numerical Simulation For Different Orbital Parameters, Area-
To-Mass Ratios, and Plasma Conditions

For all the simulation cases, an aluminum sphere of 1 m2 surface area is considered. Sim-

ulation time is taken as four days, and the initial epoch is set to 12:00:00 UTC, March 21,

2000. Earth’s gravity, Luni-Solar gravity, direct solar radiation pressure, and Lorentz force
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are included in the modeling. The gravitational potential is modeled up to degree and order

12, the atmospheric drag coefficient is taken as two, and the SRP diffuse reflection coeffi-

cient is taken as .035. The dipole model has been chosen for Earth’s magnetic field. Earth’s

shadow is modeled as a cylinder. Plasma electrons and ions are assumed to be collected

over the entire surface area, whereas photons are assumed to be collected over the frontal

surface area. Two area-to-mass ratio objects are investigated, one corresponds to general

satellites with low area-to-mass ratio (LAMR) of .02 m2/kg, and the other corresponds to

a high area-to-mass ratio (HAMR) of 23.6 m2/kg. Orbit propagation is performed using

the integrator ‘dop853’ (Runge-Kutta method of order 8(5,3) due to Dormand and Prince)

available with the Python class scipy.integrate.ode.

Three different groups of geosynchronous orbits are considered: the first GEO group is

characterized by low initial inclination (.10) and small initial eccentricity (.001), the second

GEO group is characterized by initial inclination of 150 and initial eccentricity of .015, and

the third GEO group is characterized by initial inclination of 400 and initial eccentricity of

.015. The initial true anomaly values are taken such that the initial longitude value is 750

E (GEO libration point). The GEO cases are described in Table 3.

Table 3: The GEO cases (ai = 42164 km, ωi = 300, Ωi = 600).

GEO group 1 GEO group 2 GEO group 3

(ii = .10, (ii = 150, (ii = 400,

ei = .001, ei = .015, ei = .015,

νi = 344.150) νi = 344.60) νi = 3490)

AMR = .02 m2/kg AMR = .02 m2/kg AMR = .02 m2/kg

AMR = 23.6m2/kg AMR = 23.6m2/kg AMR = 23.6m2/kg

Two different plasma conditions are simulated, one corresponding to low-charge conditions

and the other corresponding to high-charge conditions. Denton [73] provides GEO plasma

parameters for three classes of particles: hot electrons (30 eV to 45 KeV), hot protons (100

eV to 45 KeV), and low protons (1 eV to 100 eV). Data corresponding to one-solar-cycle
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(1990 - 2001) averaged low proton density, hot proton density, hot electron density, hot

proton perpendicular and parallel temperatures, hot electron perpendicular and parallel

temperatures (Maxwellian temperatures for distributions in the perpendicular and parallel

directions of the magnetic field, respectively) can be obtained from Denton [73]. The net

temperature for the overall distribution is then taken as:

T =
2

3
T⊥ +

1

3
T‖ (187)

Temperature distribution for low protons is not given by Denton. An assumption of 50

eV (corresponding to mid-value of the energy range) is used for the low proton tempera-

ture. Once the data is extracted from Denton for a particular turbulence level (decided by

geomagnetic Kp index value), an interpolation surface is fit through the data from which

plasma parameters can be obtained for any orbit local time. The low-charge plasma con-

dition is simulated using Denton’s data for Kp = 1. For simulating high-charge plasma

condition, high-flux ATS-6 data [74] given in Table 4 is used.

Table 4: High-charge plasma environment for GEO.

Particles Number Density (m−3) Energy (eV)

Electrons 2.36× 105 16000

Protons 2.36× 105 2.95× 104

Figs. 3.1(a) and 3.1(b) show voltage and equilibrium currents, respectively, of a GEO body

under low-charge plasma condition, where PEC, PIC, SEC, BEC, PC stand for plasma

electron current, plasma ion current, secondary electron current, backscattered electron

current, and photoelectric current, respectively. In GEO, the photoelectric current is one

of the major contributors, and its absence in the shadow region results in a large dip in

voltage. The body potential is a few positive volts in sunlight. On the other hand, for the

high-charge plasma condition described by Table 4, body voltage is 2.293 volts under sunlit

condition, and it is approximately -40 kV, when in Earth’s shadow.
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(a) Body Voltage. (b) Logarithm of Absolute Value of
Current.

Figure 3.1: Charging characteristic of GEO group 1 (LAMR, low-charge plasma
condition).

Fig. 3.2 shows the logarithm of magnitudes of perturbing accelerations for GEO orbits. For

the LAMR objects, higher harmonics of Earth’s gravity and Sun/Moon third body grav-

itational perturbations are the dominant contributors to perturbing acceleration; for the

HAMR objects, however, solar radiation pressure also becomes one of the major contribu-

tors. Lorentz force is still the least dominating factor affecting perturbing acceleration. The

sudden jumps in Lorentz perturbation in Fig. 3.2(a) implies that the object is in Earth’s

shadow. The jumps in Lorentz perturbation in Figs. 3.2(b), 3.2(c) are because of magnetic

field vector nearly aligning up with the relative velocity vector.

(a) GEO Group 1. (b) GEO Group 2.
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(c) GEO Group 3.

Figure 3.2: Common logarithm of perturbing acceleration magnitudes for GEO
orbits, low-charge plasma condition.

To investigate the importance of Lorentz force, the difference between Lorentz force in-

cluded orbit and Lorentz force excluded orbit is plotted. The projection of displacement

vector, i.e., the position vector in Lorentz force included orbit minus position vector in

Lorentz force excluded orbit, along the tangential or velocity vector direction of the Lorentz

force excluded orbit is defined as the in-track perturbation, the projection along the radial

direction is defined as the radial perturbation, and the projection along orbit-plane normal

is defined as the cross-track perturbation. For clarification, the definition of in-track and

radial perturbations are shown in Fig. 3.3.

Figure 3.3: Definition of in-track and radial perturbations.
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Figs. 3.4, 3.5, 3.6 show in-track, cross-track, and radial perturbations of Lorentz force

included orbit relative to Lorentz force excluded orbit, respectively, for HAMR objects. Figs.

3.4(a), 3.4(b) show the in-track perturbations corresponding to low-charge and high-charge

plasma conditions, respectively. Under both low-charge and high-charge plasma conditions,

all the orbit groups exhibit a secular decreasing trend in in-track plots. In addition to

the secular trend, the in-track perturbations also exhibit a short periodic variation with

a period of one day. The decreasing secular trend in in-track perturbation arises because

of the increasing semi-major axis of Lorentz force included orbit relative to Lorentz force

excluded orbit. Since the in-track perturbations are mostly negative, the object in Lorentz

force included orbit, on an average, lags behind the object in Lorentz force excluded orbit.

For group 1 orbit under low-charge plasma conditions, the order of in-track perturbations

is 10−4 m, whereas it is an order higher for group 2 and group 3 orbits. Under high-

charge plasma conditions, for group 1 orbit, the order of in-track perturbations is 10−1 m,

which is two orders of magnitude higher than group 2 and group 3 orbits. This opposite

trend for group 1 orbit under high-charge plasma condition is due to body voltage reaching

approximately -40 kV in the shadow under high-charge plasma condition; as the simulations

are run near the equinox, higher inclined orbits do not enter Earth’s shadow region and

hence do not see a surge in Lorentz force values.

(a) In-Track Perturbations, Low-Charge
Condition.

(b) In-Track Perturbations, High-Charge
Condition.

Figure 3.4: In-track perturbations for Lorentz force perturbed orbit relative to
Lorentz force excluded orbit (HAMR object).
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Figs. 3.5(a), 3.5(b) show cross-track perturbations of Lorentz force included orbit relative

to Lorentz force excluded orbit under low-charge and high-charge plasma conditions, re-

spectively. The cross-track perturbation plots nearly exhibit a zero-mean periodic variation

with an approximate period of one day. The zero-mean periodic behavior implies that, on

average, there is no change in the orbital plane due to Lorentz force. The amplitudes of the

periodic variations in the cross-track perturbations increase with time, and a factor respon-

sible for this increasing behavior is the decreasing RAAN of the Lorentz force included orbit

relative to Lorentz force excluded orbit. Among group 2 and group 3 orbits, group 3 orbits

exhibit larger amplitudes of variations because of higher inclination. For low-charge plasma

conditions, cross-track perturbations are of the order of 10−6 m for lowly inclined group 1

orbit, whereas it is two orders of magnitude higher for higher inclined group 2 and group

3 orbits. For group 1 orbit under high-charge plasma conditions, cross-track perturbations

are of the order of 10−3 m, which is one order of magnitude higher than group 2 and group

3 orbits. The sharp change in the slope of group 1 orbit under high-charge plasma condition

(near .3 orbital period epoch) corresponds to the body entering Earth’s shadow region for

the first time.

(a) Cross-Track Perturbations, Low-
Charge Condition.

(b) Cross-Track Perturbations, High-
Charge Condition.

Figure 3.5: Cross-track perturbations for Lorentz force perturbed GEO relative to
Lorentz force excluded orbit (HAMR object).

Figs. 3.6(a), 3.6(b) show radial perturbations of Lorentz force included orbit relative to

Lorentz force excluded orbit under low-charge and high-charge plasma conditions, respec-

tively. Group 1 radial perturbation plots exhibit an increasing secular trend superimposed
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with a periodic variation. The secular trend arises out of the increasing semi-major axis

of Lorentz force included orbit relative to Lorentz force excluded orbit. The periodic vari-

ation in radial perturbations of group 1 orbit has a time-scale of approximately one day,

and the amplitude of variation increases over time. Higher inclined group 2 and group 3

orbits have a small secular (increasing) trend because of increasing relative semi-major axis.

Group 2 and group 3 orbits also have a periodic variation of one-day period with increasing

amplitude. Also, group 3 orbits have larger amplitudes of variations compared to group 2

orbits. Under low-charge plasma conditions, group 1 orbit has radial perturbations of the

order of 10−6 m, which is three orders of magnitude smaller than higher inclined group 2

and group 3 orbits. On the contrary, under high-charge plasma conditions, group 1 orbit

has perturbations of the order of 10−2 m, which is an order of magnitude larger than higher

inclined groups.

(a) Radial Perturbations, Low-Charge
Condition.

(b) Radial Perturbations, High-Charge
Condition.

Figure 3.6: Radial perturbations for Lorentz force perturbed orbit relative to
Lorentz force excluded orbit (HAMR object).

Plots corresponding to LAMR objects in GEO are not included here because of their rela-

tively small perturbation values when compared to that of HAMR objects. Table 5, how-

ever, lists the orders of in-track, cross-track, and radial perturbations of the Lorentz force

included orbit relative to Lorentz force excluded orbit for LAMR objects.
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Table 5: Orders of magnitude for in-track, cross-track and radial perturbations for
LAMR objects in GEO over a period of four days.

GEO group In-track
Perturbations

(m)

Cross-Track
Perturbations

(m)

Radial Per-
turbations
(m)

Group 1 10−7 10−9 10−7

Group 2 10−6 10−7 10−7

Group 3 10−6 10−7 10−6

3.2 Modeling Analytical Lorentz Force Perturbations in Keplerian Orbital El-
ements

Peng and Gao [21] proposed an elegant analytical technique for obtaining Lorentz perturba-

tions using multiple coordinate frame transformations. Their closed-form expressions were

derived by integrating GVE over one orbital period using a tilted magnetic dipole model

under the assumption that the components of the dipole in the equatorial plane remain con-

stant during one orbital period. This simplification makes their expressions valid only for

low Earth orbit (LEO) region, where the orbital period is typically much smaller than the

dipole rotation period of 24 hours. For the set-up given in Table 6, a comparison between

Peng’s analytical results and numerical results is shown in Fig. 3.7.

The research work carried out here extends the work by Peng and Gao [21]. New analytical

formulas for Lorentz force perturbations are developed here that applies to both the LEO

and higher Earth orbit regions, with special focus on geosynchronous Earth orbit (GEO)

region. Two sets of formulas are derived, one that is applicable for small eccentric orbits

and one that is applicable for large eccentric orbits.
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Table 6: Simulation parameters for comparison between numerical and analytical
methods for Lorentz force perturbation.

Parameter Value

Initial Semi-major Axis 42164 km

Initial Eccentricity .01

Initial Inclination 100

Initial AoP .10

Initial RAAN .10

Initial Epoch 2437582.5 JD

Propagation Period 15 years

Area 1 m2

AMR 50 m2/kg

Voltage 104 V

Capacitance 3.1387×10−11 F

(a) Semi-Major Axis. (b) Eccentricity.

(c) Inclination. (d) Argument of Perigee.

78



(e) RAAN.

Figure 3.7: Peng’s analytical results versus numerical results for a GEO object
subjected to Lorentz force perturbations.

3.2.1 Analytical Lorentz Perturbations for Small Eccentricities

The integration of GVEs requires the expressions for Lorentz acceleration components S,

T, W, which can be obtained from Peng and Gao [21]. In their derivation, the authors

start with the the expression for Lorentz acceleration, which is given by Eq. (131) (divided

by object mass). Substituting for relative velocity expression into the definition of Lorentz

acceleration, one obtains:

~aL =

(
q

m

)
(−(~ωe × ~r)× ~B + ~̇r × ~B) (188)

where ~ωe is the ECI angular velocity vector of Earth, ~r is the ECI position vector of the

object, and ~̇r is the ECI velocity vector of the object. q is the object charge, m is the object

mass, and ~B represents the Earth magnetic field in ECI coordinates. Substituting the ECI

magnetic field vector, angular velocity vector, position vector, dipole-direction unit vector

( ~̂N), velocity vector, radial-direction unit vector (~̂r) expressions:

~B =
B0

r3

[
3( ~̂N · ~̂r)~̂r − ~̂N

]
(189a)

~ωe = [0 0 ωe]
T (189b)

~r = [x y z]T (189c)

~̂N = [N̂x N̂y N̂z]
T (189d)
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~̇r = [ẋ ẏ ż]T (189e)

~̂r =

[
x

r

y

r

z

r

]T
(189f)

into Eq. (188), Peng and Gao [21] obtains the ECI components of Lorentz acceleration. In

Eq. (189a), B0 represents magnetic dipole moment of Earth, and in Eq. (189b), ωe rep-

resents the angular rotational speed of the Earth. Subsequently, the authors perform two

coordinate transformations to convert the ECI acceleration components to S-T-W accelera-

tion components. The first transformation is performed from the ECI coordinate system to

an intermediate frame, and the second transformation is performed from the intermediate

frame to the S-T-W frame. The expressions for S, T, W, as obtained by Peng and Gao [21]

after the transformations are as follows:

S =

(
q

m

)
B0

[
− ωe
r2

(sinu cosu sin i)

]
N̂x(t) +

(
q

m

)
B0

(
na

r3
√

1− e2

[sin i(1 + e cos f)]− ωe
r2

(sin2 u sin i cos i)

)
N̂y(t) +

(
q

m

)
B0(

− na

r3
√

1− e2
[cos i(1 + e cos f)] +

ωe
r2

(1− sin2 u sin2 i)

)
N̂z

(190a)

T =

(
q

m

)
B0

(
ωe
r2

(2 cos2 u sin i)

)
N̂x(t) +

(
q

m

)
B0(

na

r3
√

1− e2
(−e sin i sin f) +

ωe
r2

(sin 2u sin i cos i)

)
N̂y(t)

+

(
q

m

)
B0

(
na

r3
√

1− e2
(e cos i sin f) +

ωe
r2

(sin 2u sin2 i)

)
N̂z

(190b)

W =

(
q

m

)
B0

(
na(−3e cosu cos f − 2 cosu+ e cosω)

r3
√

1− e2

+
ωe(2 cosu cos i)

r2

)
N̂x(t) +

(
q

m

)
B0

(
na

r3
√

1− e2
cos i

(−3e sinu cos f − 2 sinu+ e sinω) +
ωe
r2

(2 sinu cos2 i)

)
N̂y(t)

+

(
q

m

)
B0

(
− na sin i[e sinω + 4 sinu+ 3e sin (u+ f)]

2r3
√

1− e2

+
ωe(sin 2i sinu)

r2

)
N̂z

(190c)
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where u is the argument of latitude, i.e., the summation of the argument of perigee and true

anomaly. The components of the dipole-direction unit vector in Eq. (190) are obtained via

the use of following equations [21, 56]:

[N̂x N̂y N̂z]
T = [sin θm cosαm sin θm sinαm cos θm]T (191a)

cos θm =
g0

1√
(g0

1)2 + (g1
1)2 + (h1

1)2
(191b)

αm = αG0 + ωet+ φm − Ω (191c)

tanφm =
h1

1

g1
1

(191d)

where θm represents the angle between dipole north pole and geographic north pole, αG0

represents the right ascension of Greenwich at reference time, which is set as the beginning

of integration period in this research, φm represents the east longitude of the dipole, and

g0
1, g1

1, h1
1 represent 12th Generation International Geomagnetic Reference Field (IGRF)

coefficients [75]. The magnetic dipole moment can be obtained from the IGRF coefficients

as [56]:

B0 = R3
E

√
(g0

1)2 + (g1
1)2 + (h1

1)2 (192)

where RE is the equatorial radius of the Earth. As a final step, Peng and Gao [21] substitute

back the expressions for Lorentz acceleration components from Eq. (190) into the GVEs

[Eq. (1)] to obtain their closed-form perturbation expressions.

In their integration of GVEs, Peng and Gao [21] assumed that the equatorial components of

the dipole-direction unit vector, i.e., N̂x(t) and N̂y(t) remain constant during the integration

period. The rationale behind the approximation is that, for low Earth orbits, the orbital

periods are much smaller compared to Earth rotation period, and hence, one can roughly

state that the dipole does not rotate at all in the inertial space during the integration

period of one orbital period. This assumption is not valid for higher Earth orbits (orbits

beyond LEO), where the orbital periods are of the same or larger orders as compared to

the Earth orbital period. This research work gets rid of the aforementioned approximation,

and hence, provides closed-form expressions valid for both low Earth orbit and higher Earth
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orbit regions. To facilitate analytical integrability, following two approximations are made:

1. Eccentricity is assumed to be small, which leads to the approximation of time in terms

of mean motion and true anomaly as:

t ≈ f

n
(193)

The above assumption comes from discarding the eccentricity terms in the Fourier

expansion of true anomaly [76]:

f = M +

(
2e− 1

4
e3

)
sinM +

5

4
e2 sin 2M +

13

12
e3 sin 3M +O(e4) (194)

where mean anomaly M = nt.

2. Since eccentricity is assumed to be small, the factor (1+e cos f)−1, which is introduced

in the derivation via the conic or orbit equation, can be approximated using Taylor

series of order two as:

1

1 + e cos f
≈ 1− e cos f + e2 cos2 f (195)

The other approximations which are assumed in this research work (as well as in [21]) are

- (1) charge-to-mass ratio, q/m, is constant (2) the orbital elements [a, e, i, ω,Ω] remain

constant during the integration period. For the integrations of GVEs, the independent

variable of choice is taken as true anomaly. Hence, it is imperative to change the independent

variable in GVEs from time to true anomaly. This is obtained using the following relations:

∆x =

∫ 2π

0

(
dx

dt

dt

df

)
df ; x :: [a, e, i, ω,Ω] (196a)

dt

df
=

1

n

(
r

a

)2 1√
1− e2

(196b)

It is to be noted that in Eq. (196b) one should ideally include the explicit effects of Lorentz

acceleration, but the errors introduced due to this approximation are of second or higher

orders, and hence, the approximation is justifiable. The elegance of the assumed approx-
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imations is that all the integrands can be written nicely as sine and cosine trigonometric

functions of the independent variable using little trigonometric manipulations. Further sim-

plification is obtained as a result of the integration limits being from 0 to 2π, which pushes

many periodic sine and cosine terms to zero. After much simplification in the integration

process, the following simple expressions are obtained for orbital element changes over one

period:

∆a = C80

[
sin (2ω − αG0 −

2πωe
n

+ Ω− φm)− sin (2ω − αG0 + Ω− φm)

]
+ C81

[
sin(2ω + αG0 +

2πωe
n
− Ω + φm)− sin (2ω + αG0 − Ω + φm)

]
+ C82

[
sin (αG0 +

2πωe
n
− Ω + φm)− sin (αG0 − Ω + φm)

]
(197)

∆e = D110

[
sin (2ω + αG0 +

2πωe
n
− Ω + φm)− sin (2ω + αG0 − Ω + φm)

]
+D111

[
sin(2ω − αG0 −

2πωe
n

+ Ω− φm)− sin (2ω − αG0 + Ω− φm)

]
+D112

[
sin (αG0 +

2πωe
n
− Ω + φm)− sin (αG0 − Ω + φm)

]
+

D1054π

na2
√

1− e2
sin 2ω (198)

∆i = J1

[
sin (2ω + αG0 +

2πωe
n
− Ω + φm)− sin (2ω + αG0 − Ω + φm)

]
+ J2

[
sin(2ω − αG0 −

2πωe
n

+ Ω− φm)− sin (2ω − αG0 + Ω− φm)

]
+ J3

[
sin (αG0 +

2πωe
n
− Ω + φm)− sin (αG0 − Ω + φm)

]
+H4

[
cos (ω + αG0 +

2πωe
n
− Ω + φm)− cos (ω + αG0 − Ω + φm)

]
+H5

[
cos(ω − αG0 −

2πωe
n

+ Ω− φm)− cos (ω − αG0 + Ω− φm)

]
+ E202

[
sin (ω + αG0 +

2πωe
n
− Ω + φm)− sin (ω + αG0 − Ω + φm)

]
+ E203

[
sin (ω − αG0 −

2πωe
n

+ Ω− φm)− sin (ω − αG0 + Ω− φm)

]
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+
π sin 2ω

na2
√

1− e2
I12 (199)

∆ω = Q142

[
cos (2ω + αG0 +

2πωe
n
− Ω + φm)− cos (2ω + αG0 − Ω + φm)

]

+Q143

[
cos(2ω − αG0 −

2πωe
n

+ Ω− φm)− cos (2ω − αG0 + Ω− φm)

]

+Q144

[
cos (αG0 +

2πωe
n
− Ω + φm)− cos (αG0 − Ω + φm)

]
+

Q145

[
cos (ω + αG0 +

2πωe
n
− Ω + φm)− cos (ω + αG0 − Ω + φm)

]

+Q146

[
cos(ω − αG0 −

2πωe
n

+ Ω− φm)− cos (ω − αG0 + Ω− φm)

]

+Q147

[
sin (ω + αG0 +

2πωe
n
− Ω + φm)− sin (ω + αG0 − Ω + φm)

]

+Q148

[
sin (ω − αG0 −

2πωe
n

+ Ω− φm)− sin (ω − αG0 + Ω− φm)

]

+
Q149π

na2
√

1− e2

[
K11 +K13 sinω

]
+

2πQ150

na2
√

1− e2

[
K12

2
+K2 sinω +K14 sin2 ω

]
+

πQ151

na2
√

1− e2

[
K15 −K11 cos 2ω +K13 sinω

]
+

π

na2
√

1− e2

[
Q43 +Q131Q133 +

Q131Q134e

2
+Q132Q134 cos 2ω

]
(200)

∆Ω = N1

[
cos (2ω + αG0 +

2πωe
n
− Ω + φm)− cos (2ω + αG0 − Ω + φm)

]

+N2

[
cos(2ω − αG0 −

2πωe
n

+ Ω− φm)− cos (2ω − αG0 + Ω− φm)

]

+N3

[
cos (αG0 +

2πωe
n
− Ω + φm)− cos (αG0 − Ω + φm)

]

+ L177

[
cos (ω + αG0 +

2πωe
n
− Ω + φm)− cos (ω + αG0 − Ω + φm)

]
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+ L178

[
cos(ω − αG0 −

2πωe
n

+ Ω− φm)− cos (ω − αG0 + Ω− φm)

]

+ J180

[
sin (ω + αG0 +

2πωe
n
− Ω + φm)− sin (ω + αG0 − Ω + φm)

]

+ J181

[
sin (ω − αG0 −

2πωe
n

+ Ω− φm)− sin (ω − αG0 + Ω− φm)

]

+
K6π

na2
√

1− e2

[
K11 +K13 sinω

]
+

2πK9

na2
√

1− e2

[
K12

2
+K2 sinω +K14 sin2 ω

]
+

πK10

na2
√

1− e2

[
K15 −K11 cos 2ω +K13 sinω

]
(201)

where the expressions for the coefficients appearing in Eqs. (197)-(201) are given in Ap-

pendix B. Some of the coefficients blow up for the exact geostationary altitude. The presence

of the term (ωe/n− 1) in the denominator can be solved by obtaining the limiting value:

[∆x]GEO = lim
n→ωe

∆x ; x :: [a, e, i, ω,Ω] (202)

The limiting expressions for geostationary altitude are given as:

∆aGEO = B0π

(
q

m

)
ωea sin i sin θm cos2 i

2e

µ(1− e2)
cos (2ω − αG0 + Ω− φm)

+B0π

(
q

m

)
sin i sin θme

na2(1− e2)

(
2− cos i

)
cos (αG0 − Ω + φm)

− 1

2
B0π

(
q

m

)
sin i sin θme

3

na2
(
1− e2

) 5
2

cos (αG0 − Ω + φm) (203)

∆eGEO = B0π

(
q

m

)
ωe sin i sin θm sin2 i

2e
2

4µ
cos (2ω + αG0 − Ω + φm)

− B0π

µ

(
q

m

)
sin i sin θm cos2 i

2
ωe

(
e2

4
− 3

2

)
cos (2ω − αG0 + Ω− φm)

+
B0π

a3n(1− e2)
3
2

(
q

m

)
sin i sin θm

(
1− e2 − e4

4

)
cos (αG0 − Ω + φm)

− B0π

a3n

(
q

m

)
sin i sin θm

(
e2

4
− 2 +

cos i

2

)
cos (αG0 − Ω + φm)

− B0ωe
µ

q

m
cos θm sin2 i

(
− e3 +

e

2

)
π sin 2ω (204)
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∆iGEO = −B0π

(
q

m

)
sin θme

3 sin2 i
2

4a3n(1− e2)
3
2

cos (2ω + αG0 − Ω + φm)

−
(B0πq

m

)sin θm cos2 i
2e(cos i

(
− e2

2 + 3
2

)
+ 3e2

4 + 3
2)

2a3n(1− e2)
3
2 cos2 i

2

cos (2ω − αG0 + Ω− φm)

−B0π

(
q

m

)
sin θm cos i cos2 i

2ωee

a3n2
cos (2ω − αG0 + Ω− φm)

−B0π

(
q

m

)
3 sin θme

(
1 + e2

2

)
2a3n(1− e2)

3
2

cos (αG0 − Ω + φm)

−B0π

(
q

m

)
sin θm cos iωee

a3n2
cos (αG0 − Ω + φm)

−B0π

(
q

m

)
e cos i sinω sin θm

a3n(1− e2)
3
2

sin (ω − αG0 + Ω− φm)

+B0π

(
q

m

)
e cosω sin θm

a3n(1− e2)
3
2

cos (ω − αG0 + Ω− φm)

+B0π

(
q

m

)
sin (2ω)e2 cos θm

4a3n

[
− 3e2 sin i

2(1− e2)
3
2

+ sin (2i)

]
(205)

∆ΩGEO = −
πB0e

3q sin θm sin2 i
2

4a3mn sin i(1− e2)
3
2

sin (2ω + αG0 − Ω + φm)

−
3πB0eq sin θm cos2 i

2(1 + e2

2 )

2a3mn sin i(1− e2)
3
2

sin (2ω − αG0 + Ω− φm)

−
πB0eq sin θm cos i cos2 i

2

a3mn sin i
sin (2ω − αG0 + Ω− φm)

−
3πB0eq sin θm cos i(1 + e2

2 )

2a3mn sin i(1− e2)
3
2

sin (αG0 − Ω + φm)

− πB0eq sin θm cos2 i

a3mn sin i
sin (αG0 − Ω + φm)

+
πB0eq cosω sin θm

a3mn sin i(1− e2)
3
2

sin (ω − αG0 + Ω− φm)

+
πB0eq cos i sinω sin θm

a3mn sin i(1− e2)
3
2

cos (ω − αG0 + Ω− φm)

−
( e

2

2 + 1)πB0q cos θm

na3m(1− e2)
3
2

[
2 +

3e2

4
− 2 cos i(1− e2)

3
2 +

e2 sin2 ω

2

]
+

πe2B0q cos θm

2na3m(1− e2)
3
2

[
5

2
+ 3 sin2 ω

]
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− πe2B0q cos θm

4na3m(1− e2)
3
2

[
3e2

4
− 2 cos 2ω − 3e2 cos 2ω

4
+ 2 cos i(1− e2)

3
2 cos 2ω

+
e2 sin2 ω

2

]
(206)

∆ωGEO = −
B0qeπ sin θm sin2 i

2

4a3mn

(
− e2 cos i

sin i(1− e2)
3
2

+ sin i

)

sin (2ω + αG0 − Ω + φm) +
2πB0q sin θm cos2 i

2

a3mn

[
3e cos i(1 + e2

2 )

4 sin i(1− e2)
3
2

+
e cos2 i

2 sin i

−
(3 + e2

2 ) sin i

4e

]
sin (2ω − αG0 + Ω− φm)− 2πB0q sin θm

a3mn
sin (αG0 − Ω + φm)[

−
3e cos2 i(1 + e2

2 )

4 sin i(1− e2)
3
2

− e cos3 i

2 sin i
+

sin i( e
3

8 + e+ 1
e )

2(1− e2)
3
2

+
sin i( e

2

4 + 2− cos i
2 )

2e

]

− πB0eq cosω sin θm cos i

a3mn sin i(1− e2)
3
2

sin (ω − αG0 + Ω− φm)

− πB0eq cos2 i sinω sin θm

a3mn sin i(1− e2)
3
2

cos (ω − αG0 + Ω− φm)

+
( e

2

2 + 1)πB0q cos θm cos i

na3m(1− e2)
3
2

[
2 +

3e2

4
− 2 cos i(1− e2)

3
2 +

e2 sin2 ω

2

]
− πe2B0q cos θm cos i

2na3m(1− e2)
3
2

[
5

2
+ 3 sin2 ω

]
+
πe2B0q cos θm cos i

4na3m(1− e2)
3
2

[
3e2

4
− 2 cos 2ω

− 3e2 cos 2ω

4
+ 2 cos i(1− e2)

3
2 cos 2ω +

e2 sin2 ω

2

]
+

πB0q cos θm

na3m(1− e2)
3
2

[
4 cos i− cos 2ω sin2 i(1− e2)

3
2

2

]
(207)

Although not included here, simplified formulas can also be obtained for low Earth orbits

by using the approximations ωe << n and e2 << 1 in Eqs. (197)-(201).

Fig. 3.8 shows how the analytical results developed here compare to the numerical simu-

lation for the set-up given in Table 6. Figs. 3.8(a)-(b) compare the temporal evolution of

semi-major axis, Figs. 3.8(c)-(d) compare eccentricity, Figs. 3.8(e)-(f) compare inclination,

Figs. 3.8(g)-(h) compare argument of perigee, and Figs. 3.8(i)-(j) compare RAAN. The

analytical semi-major axis, eccentricity, inclination, argument of perigee, and RAAN are
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able to follow the secular trend of the numerical orbital elements within an accuracy of

the order of 10−4 km, 10−8, 10−8 degrees, 10−5 degrees, 10−5 degrees, respectively, for the

assumed period.

(a) Semi-Major Axis. (b) ∆ Semi-Major Axis.

(c) Eccentricity. (d) ∆ Eccentricity.

(e) Inclination. (f) ∆ Inclination.
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(g) Argument of Perigee. (h) ∆ Argument of Perigee.

(i) RAAN

ytically
(j) ∆ RAAN

Figure 3.8: Comparison between analytical and numerical simulations for a Keple-
rian orbit perturbed by Lorentz force.

3.2.2 Analytical Lorentz Perturbations for Large Eccentricities

The analytical formulas developed in section 3.2.1 are based on the assumption of near-zero

eccentricity. This section is devoted to the development of analytical formulas applicable

to all eccentricity values. Explicit expressions for the perturbations in orbital elements are

not given here, and only the procedure for the derivation is discussed.

If one were to substitute the expressions for GVEs [Eq. (1)] into Eq. (196) with S, T, W

given by Eq. (190), and simplify, one would eventually arrive at integrals of the form:

I =

∫ 2π

0
cos (ℵ1 + ℵ2f ± ωet)df (208)

where ℵj (j = 1 : 2) are parameters that can be assumed constant over the integration

period, ωe represents Earth rotation rate, t represents time, and f represents true anomaly.
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For analytically integrating the integrand in Eq. 208, the time t needs to be written as

a function of independent variable f . Integration of Eq. (196b) w.r.t. the independent

variable f, after some trigonometric manipulation, results in:

t =
2

n

[
tan−1

(√
1 + e

1− e
tan

f

2

)
− e sin

(
tan−1

(√
1 + e

1− e
tan

f

2

))
cos

(
tan−1

(√
1 + e

1− e
tan

f

2

))] (209)

When substituting Eq. (209) into Eq. (208), it is important to take the quadrant ambiguity

of inverse tangent function into consideration. Eq. (208) can thus be re-written as:

I =

∫ 2π

0
cos

(
ℵ1 + ℵ2f ± ωe ·

2

n

[
π · floor

(
f

π + ε

)
+ tan−1

(√
1 + e

1− e
tan

f

2

)
− e sin

(
tan−1

(√
1 + e

1− e
tan

f

2

))
cos

(
tan−1

(√
1 + e

1− e
tan

f

2

))])
df

(210)

where ε is an arbitrarily selected positive number and ε → 0. Floor(x) is a function that

rounds the input x to the nearest integer towards −∞. The above integral is then ap-

proximated using 12th order Legendre-Gauss quadrature rule 6 as given in Eq. (211). A

quadrature order analysis starting from 1st order up to 15th order is carried out for deter-

mining the optimal order.

I =

∫ 2π

0
F (f)df =

12∑
k=1

wkF (fk) (211)

where F represents the integrand in Eq. (210). The weights wk and the true anomaly values

fk (nodes) between 0 and 2π at which the integrand is evaluated are listed in Table 7.

A 15-year simulation is carried out for a uniform spherical GEO object in the presence of

the Lorentz perturbation force. Orbital elements’ evolution from the analytical technique

is compared to the numerical results for validation. Table 8 lists the orbital, charging, and

6Winckel, G. von, “Legendre-gauss Quadrature Weights and Nodes,” 2004 (available online)
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Table 7: Weights and nodes for the Legendre-Gauss quadrature rule.

wk fk (degrees)

0.1482 356.6809
0.3360 342.7411
0.5029 318.5825
0.6383 285.7172
0.7335 246.2097
0.7827 202.5420
0.7827 157.4580
0.7335 113.7903
0.6383 74.2828
0.5029 41.4175
0.3360 17.2589
0.1482 3.3191

design parameters used in the simulation.

Table 8: Orbital, charging, and design parameters

Parameter Value

Initial Semi-Major Axis 42164 km
Initial Eccentricity .4
Initial Inclination 100

Initial AoP .10

Initial RAAN .10

Object Capacitance 3.1387×10−11 F
Voltage 104 V
Object Area 1 m2

AMR 50 m2/kg
Initial Epoch 2437582.5 JD
Propagation Period 15 Years

Fig. 3.9 shows how the analytical results compare to the numerical simulation for large

eccentric orbit. Figs. 3.9(a)-(b) compare the temporal evolution of semi-major axis, Figs.

3.9(c)-(d) compare the temporal evolution of eccentricity, Figs. 3.9(e)-(f) compare the tem-

poral evolution of inclination, Figs. 3.9(g)-(h) compare the temporal evolution of argument

of perigee, and Figs. 3.9(i)-(j) compare the temporal evolution of RAAN.
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(a) Semi-Major Axis. (b) ∆ Semi-Major Axis.

(c) Eccentricity. (d) ∆ Eccentricity.

(e) Inclination. (f) ∆ Inclination.

(g) Argument of Perigee. (h) ∆ Argument of Perigee.
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(i) RAAN. (j) ∆ RAAN.

Figure 3.9: Comparison between analytical and numerical simulations for a Keple-
rian orbit perturbed by Lorentz force (large eccentricity).

3.3 Concluding Remarks

To conclude, the Lorentz perturbations exhibit secular or additive behavior in the long-term

(order of decades). In a high-charge environment, the additive effect is significant and cannot

be ignored whereas in a calm low-charge environment, the effects of Lorentz force on orbital

elements can be ignored depending upon the accuracy level sought for the application.

Especially, non-conservative perturbation forces like Lorentz force are important for objects

with a high area-to-mass ratio. The main gains from this chapter are a comprehensive

methodology for determining object charge and an analytical set of formulas for computing

Lorentz perturbations for both the important LEO and GEO regions.
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4 ANALYTICAL UNCERTAINTY PROPAGATION

Investigation of long-term orbital evolution can be a challenging task as parameters have

uncertainty. To add to the uncertainty problem, orbit propagation itself is a non-linear

process where Gaussianity is not preserved. Monte Carlo (MC) particle approach is the most

precise for capturing and propagating the uncertainty as it can capture higher moments too.

However, MC based propagation is costly as it requires a large number of particles. An

alternative to the MC particle approach is the use of unscented transformation (UT) based

sigma points [30]. UT approach is remarkably advantageous over the Monte Carlo approach

as it requires much fewer points. But, are sigma points sufficiently accurate to solve the

problem at hand? Thus, this section performs: (a) long-term propagation of geosynchronous

space objects using analytical methods to investigate the evolution of orbital uncertainties

(b) a comparison between UT propagation and MC propagation to quantify the accuracy

of sigma points. Additionally, a discussion on the Gaussian uncertainty characterization is

carried out.

4.1 Sigma Points

For an n-dimensional system, the minimum number of sigma points to capture the mean

and covariance is (n+1). However, this set of points is asymmetric in the state space, and

as such, they have significant skew. This particular skew changes with change in orientation

of the sigma points. So, if the underlying distribution is Gaussian, it is wiser to choose the

zero skew (2n+1) sigma points over the skewed (n+1) sigma points to capture the behavior

of the probability distribution correctly. Mathematically, for an n-dimensional system, the

sigma points are given as [30]:

§0 = x̄(t) (212a)

§j = x̄(t) + (
√
n+ λ)

[√
P(t)

]
j

for j = 1, 2, 3, ...., n (212b)

§j+n = x̄(t)− (
√
n+ λ)

[√
P(t)

]
j

for j = 1, 2, 3, ...., n (212c)

where x̄(t) is the mean state vector, P is the state covariance matrix,
[
·]j is the jth column

of matrix, λ is a scaling parameter and is given as λ = α2(n + κ) − n, with α and κ
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being parameters that determine the spread of sigma points around the state mean vector.

These sigma points are then transformed via the associated system non-linear equation

to obtain the transformed points §0p, §1p, §2p,.....,§2np. The transformed sigma points do

not contribute equally towards computation of mean or covariance, and hence, they have

associated weights.

The weights for the computation of mean, are given as:

wm0 =
λ

n+ λ
(213a)

wmj =
1

2(n+ λ)
for j = 1, 2, 3, ...., 2n (213b)

where the superscript m stands for mean.

The weights for the computation of covariance, are given as:

wc0 =
λ

n+ λ
+ (1− α2 + β) (214a)

wcj =
1

2(n+ λ)
for j = 1, 2, 3, ...., 2n (214b)

where the superscript c stands for covariance. After the non-linear transformation, the UT

based mean and covariance are computed as:

x̄UTp = wm0 §0p + wm1 §1p + wm2 §2p + ....+ wm2n§2np (215a)

PUTp = wc0(§0p − x̄UTp)(§0p − x̄UTp)
T + wc1(§1p − x̄UTp)(§1p − x̄UTp)

T+

wc2(§2p − x̄UTp)(§2p − x̄UTp)
T + ...+ wc2n(§2np − x̄UTp)(§2np − x̄UTp)

T (215b)

The effect of the parameters α, κ, and β on the selection of sigma points, and the

transformation needs further discussion.

A two-dimensional example, a three-dimensional example, and a six-dimensional ex-

ample are shown for different values of α in Fig. 4.1. From the plots, it can be

seen that increasing α increases the distance of the symmetrically distributed sigma
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points from the mean without changing the direction of the points from the mean.

When there are strong non-linearities, it is best to keep α small to avoid sampling

the non-local effects. The standard practice is to keep α less than one but greater

than 10−4. For each of the examples, the parameter κ is kept constant with a value

equal to 3− dimension.

(a) Distribution of σ Points (n=2). (b) Distribution of σ Points (n=3).

(c) Distribution of σ Points (n=6); First
3 Elements.

(d) Distribution of σ Points (n=6); Re-
maining 3 Elements.

Figure 4.1: Effect of the parameter α on the distribution of σ points.

Just like α, the parameter κ is also a scaling factor. A two-dimensional example and

a six-dimensional example are shown for different values of κ in Fig. 4.2. The value

of κ is varied between 0 and 3− n. The parameter α is taken as 0.5 for all the plots.

As can be seen from the plots, larger the value of κ (including sign), further are the
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sigma points away from the mean. Additionally, changing κ changes the sigma points

by a smaller amount when compared to the effect of changing α.

(a) Distribution of σ points (n=2).
(b) Distribution of σ Points (n=6); First
3 Elements.

(c) Distribution of σ Points (n=6); Re-
maining 3 Elements.

Figure 4.2: Effect of the parameter κ on the distribution of σ points.

For n = 3, a couple of simulations are run with a range of β values: [0, 1, 2, 5]. Two

different non-linear transformations (sine and squared sine) of σ points are carried out.

The UT weights are then used to compute the transformed mean and covariance. Of

course, β has no effect on the mean as the weights for the mean are not dependent on

β, but changing β changes the covariance. Figs. 4.3 and 4.4 show the 3−σ ellipsoids

and semi-axes for different values of β for the two non-linear transformations. It is
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hard to deduce any specific trend or pattern from the different β value plots. Thus,

if one has any prior knowledge about the concerned variable, β is used to incorporate

that knowledge.

In this research work, the parameters α and κ are taken as 0.5 and 3-n, respectively

from standard SSA practices. The value of β is taken as 2, which is optimal for

Gaussian distributions.

(a) 3-Sigma Ellipsoid. (b) X-Radius of the Ellipsoid.

(c) Y-Radius of the Ellipsoid. (d) Z-Radius of the Ellipsoid.

Figure 4.3: β-analysis corresponding to the sine-squared non-linear transformation.

(a) 3-Sigma Ellipsoid. (b) X-Radius of the Ellipsoid.
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(c) Y-Radius of the Ellipsoid. (d) Z-Radius of the Ellipsoid.

Figure 4.4: β-analysis corresponding to the sine non-linear transformation.

4.2 Uncertainty Propagation of Testbed HAMR Objects

The uncertainty propagation carried out in this section lays the necessary background

for the propagation of HAMR objects for sensor tasking purposes discussed in the

next chapter. As a testbed for investigating uncertainty evolution, it is assumed that

the following elements have initial value uncertainty: semi-major axis, eccentricity,

inclination, AoP, RAAN, area-to-mass ratio, and diffuse reflection coefficient. Uncer-

tainty in the last two elements is realized through the product ζ = AMR(.25 + 1
9
Cd),

where AMR is the area-to-mass ratio, and Cd is the diffuse reflection coefficient. With

the focus of this research being the investigation of objects that are prone to large per-

turbations, 11 HAMR objects are assumed to be initially located in a geosynchronous

orbit with near-uniform spacing as given in Table 9. The selected area-to-mass ratio

values motivate from commonly used space materials that lead to the birth of HAMR

objects as well as the intention to span a wide range of area-to-mass ratio values. A

multivariate normal distribution with a diagonal variance-covariance matrix is cho-

sen for the uncertain parameters. The mean and standard deviations representing

the initial uncertainty are described in Table 10. A 15-years propagation is carried

out in the presence of perturbations due to Earth tesseral and zonal harmonics, Sun

gravity, Moon gravity, and solar radiation pressure.
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Table 9: Initial true anomaly and area-to-mass ratio values.

True Anomaly (Degrees) AMR (m2/kg)
0 23
33 35
66 5
99 4
132 32
165 47
198 57
231 8
264 35
297 29
330 1

Table 10: Initial distribution of the uncertain parameters.

Initial Mean Initial Standard Deviation
µa = 42164 Km σa = 1 Km

µe = .1 σe = .01
µi = 100 σi = 10

µω = .10 σω = .0010

µΩ = .10 σΩ = .0010

µζ = µAMR × (.25 + .5625/9) m2

kg σζ = .06 m2

kg

For the Monte Carlo approach, a rule of thumb states that each of the 11 objects is

represented by 106 points, but propagating such a large number of points, even using

the analytical technique, is beyond the capacity of the computing machine used in

this research work. Perhaps, a more realizable estimate of the number of points can

be obtained as [77]:

nsample = 1 + 2

(
Zβ
ε

)2

(216)

β =
1

2
[1− (1− α)

1
n ] (217)

where Zβ is obtained from the standard normal table, α is decided by the confidence

level sought, ε is a small number, and n is the dimension. Assuming α = .05 (95%

confidence interval) and ε = .1 results in nsample ≈ 1384. Rounding it to the nearest

multiple of 500 gives 1500 points. Thus, for the Monte Carlo approach, each of the

objects is approximated using 1500 points.

Fig. 4.5 compares semi-major axes for populations propagated through UT and MC

schemes, respectively. Each sub-figure contains histogram plot of MC population, and
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histogram plot of UT population. Each sub-figure also contains two normal fits: the

blue-colored probability density function (pdf) plot is created using sample mean and

standard deviation of the propagated MC points, and the magenta-colored pdf plot is

created using mean and standard deviation obtained from weighted propagated UT

points.

(a) AMR = 23 m2/kg, ν0 = 00. (b) AMR = 35 m2/kg, ν0 = 330.

(c) AMR = 5 m2/kg, ν0 = 660. (d) AMR = 4 m2/kg, ν0 = 990.

(e) AMR = 32 m2/kg, ν0 = 1320. (f) AMR = 47 m2/kg, ν0 = 1650.
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(g) AMR = 57 m2/kg, ν0 = 1980. (h) AMR = 8 m2/kg, ν0 = 2310.

(i) AMR = 35 m2/kg, ν0 = 2640. (j) AMR = 29 m2/kg, ν0 = 2970.

(k) AMR = 1 m2/kg, ν0 = 3300.

Figure 4.5: Comparison of MC and UT based methods for semi-major axis.

Comparisons for other orbital elements are given in Figs. 4.6-4.9.
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(a) AMR = 23 m2/kg, ν0 = 00. (b) AMR = 35 m2/kg, ν0 = 330.

(c) AMR = 5 m2/kg, ν0 = 660. (d) AMR = 4 m2/kg, ν0 = 990.

(e) AMR = 32 m2/kg, ν0 = 1320 (f) AMR = 47 m2/kg, ν0 = 1650.

(g) AMR = 57 m2/kg, ν0 = 1980. (h) AMR = 8 m2/kg, ν0 = 2310.
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(i) AMR = 35 m2/kg, ν0 = 2640. (j) AMR = 29 m2/kg, ν0 = 2970.

(k) AMR = 1 m2/kg, ν0 = 3300.

Figure 4.6: Comparison of MC and UT based methods for eccentricity.

(a) AMR = 23 m2/kg, ν0 = 00. (b) AMR = 35 m2/kg, ν0 = 330.
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(c) AMR = 5 m2/kg, ν0 = 660. (d) AMR = 4 m2/kg, ν0 = 990.

(e) AMR = 32 m2/kg, ν0 = 1320. (f) AMR = 47 m2/kg, ν0 = 1650.

(g) AMR = 57 m2/kg, ν0 = 1980. (h) AMR = 8 m2/kg, ν0 = 2310.

(i) AMR = 35 m2/kg, ν0 = 2640. (j) AMR = 29 m2/kg, ν0 = 2970.
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(k) AMR = 1 m2/kg, ν0 = 3300.

Figure 4.7: Comparison of MC and UT based methods for inclination.

(a) AMR = 23 m2/kg, ν0 = 00. (b) AMR = 35 m2/kg, ν0 = 330.

(c) AMR = 5 m2/kg, ν0 = 660. (d) AMR = 4 m2/kg, ν0 = 990.
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(e) AMR = 32 m2/kg, ν0 = 1320. (f) AMR = 47 m2/kg, ν0 = 1650.

(g) AMR = 57 m2/kg, ν0 = 1980. (h) AMR = 8 m2/kg, ν0 = 2310.

(i) AMR = 35 m2/kg, ν0 = 2640. (j) AMR = 29 m2/kg, ν0 = 2970.
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(k) AMR = 1 m2/kg, ν0 = 3300.

Figure 4.8: Comparison of MC and UT based methods for argument of perigee.

(a) AMR = 23 m2/kg, ν0 = 00. (b) AMR = 35 m2/kg, ν0 = 330.

(c) AMR = 5 m2/kg, ν0 = 660. (d) AMR = 4 m2/kg, ν0 = 990.
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(e) AMR = 32 m2/kg, ν0 = 1320. (f) AMR = 47 m2/kg, ν0 = 1650.

(g) AMR = 57 m2/kg, ν0 = 1980. (h) AMR = 8 m2/kg, ν0 = 2310.

(i) AMR = 35 m2/kg, ν0 = 2640. (j) AMR = 29 m2/kg, ν0 = 2970.
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(k) AMR = 1 m2/kg, ν0 = 3300.

Figure 4.9: Comparison of MC and UT based methods for right ascension of as-
cending node.

Few interesting observations can be made from Figs. 4.5-4.9. Among the five plotted

orbital elements, the sigma points were able to follow the Monte Carlo points for ec-

centricity, inclination, argument of perigee, and right ascension of ascending node, as

evident from the closely located blue and magenta pdf plots. For quantification, this is

also shown in the (log) Kullback-Leibler divergence plots for eccentricity, inclination,

argument of perigee, and RAAN (Figs. 4.10(b)-(e)), where the values are negative

(less than -1.5). For semi-major axis, however, a reasonable agreement between UT

and MC propagation is achieved mostly when the area-to-mass ratio is relatively low

(AMR = 1m2/kg, 4m2/kg, 5m2/kg, 8m2/kg). To quantify, the (log) KL divergences

are positive for semi-major axis (Fig. 4.10(a)) for many of the relatively high area

to mass ratios, thereby implying a poor agreement. This shows that the effect of

non-linearity is most prominent for the semi-major axis, especially for those objects

that have relatively high area-to-mass ratios. For semi-major axis and inclination,

the pdf values are at least an order of magnitude smaller for relatively high AMRs

as compared to the pdf values for relatively low area-to-mass ratios. This implies

that the variances in semi-major axis and inclination are much smaller for relatively

low AMRs compared to relatively high AMRs. An interesting pattern that cannot

be figured out from Figs. 4.5-4.9 but can be figured out from Fig. 4.10 is that there

is roughly an average increasing trend in KL divergences with area-to-mass ratios for
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semi-major axis, eccentricity, argument of perigee, and RAAN, whereas, there is a

decreasing trend for inclination.

(a) KL Divergence for SMA. (b) KL Divergence for Eccentricity.

(c) KL Divergence for Inclination. (d) KL Divergence for AoP.

(e) KL Divergence for RAAN.

Figure 4.10: Logarithm of Kullback-Leibler divergence from Monte Carlo based
normal distribution to Unscented Transformation based normal distribution.
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Correct modeling of uncertainties in orbital and design parameters is an essential part

of space situational awareness, and it is important to discuss the Gaussian distribution

assumption that has been adopted for the parameters in this work. The next section

sheds light on the cyclical and truncated natures of some of these parameters.

4.3 Important Considerations in the Uncertainty Quantification of Space
Objects

Two foremost concerns need to be discussed - (1) the parameters semi-major axis,

eccentricity, and τ = AMR(1/4 +Cd/9) can only take values in the range of [0,+∞],

[0, 1], and [0,+∞], respectively, whereas Gaussian distribution spans the entire range

of real numbers (both positive and negative) (2) the parameters inclination, argument

of perigee, and right ascension of ascending node are cyclic parameters, i.e., two

particular values θ and (θ + 2πk), where k is some integer and θ ∈ [0, 2π), should

have same probability density, but Gaussian distribution does not consider the cyclic

repetition.

The first concern can be addressed by using truncated Gaussian distribution. Ob-

taining expressions for mean and covariance for 1D truncated Gaussian distribution

is relatively straight forward, and they are given in John Burkardt’s presentation ti-

tled “The Truncated Normal Distribution” (available online). However, the interest

here lies in the multivariate truncated normal distribution, and obtaining expres-

sions for mean and covariance for the multivariate case is more involved. Based

on the work in [78, 79, 80, 81, 82], Stephan Wilhelm wrote a library in R called

“tmvtnorm” (available online), that can be used to compute mean and covariance

matrix for the truncated multivariate normal distribution. The inputs required for

mtmvnorm.R (the specific R function in the “tmvtnorm” library that computes the

mean and covariance) are the lower truncation limit, upper truncation limit, mean

and covariance of the non-truncated multivariate Gaussian distribution. To investi-

gate the error incurred because of Gaussian approximation, objects with area-to-mass
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ratio values of 1 m2/kg and 57 m2/kg are tested. The lower truncation limit for

(a, e, i, ω,Ω, τ) is taken as (0, 0,−∞,−∞,−∞, 0) and the upper truncation limit is

taken as (+∞, 1,+∞,+∞,+∞,+∞). The obtained results for the error (the dif-

ference between the multivariate normal distribution and the truncated multivariate

normal distribution) in the mean and covariance matrix for the two AMR values are:

∆~µ(AMR=1m2/kg) = 10−6 · [0 km 0 0.2750522315202190

0.0428575679671640 0.0428575679671640

0.030801045269868 m2/kg]

(218)

∆P(AMR=1m2/kg) = Diagonal([0 0 0.542101086242752e− 19

0 0 − 0.962532759529386e− 8]) (SI units)
(219)

∆~µ(AMR=57m2/kg) = 10−6 · [0 km 0 0.2750522315202190

0.0428575679671640 0.0428575679671640

0 m2/kg]

(220)

∆P(AMR=57m2/kg) = Diagonal([0 0 0.542101086242752e− 19

0 0 0]) (SI units)
(221)

These difference values are much smaller compared to the absolute mean and covari-

ance values, and hence, for the numerical values used in this work, it is justified to

use a multivariate Gaussian distribution instead of the truncated multivariate normal

distribution.

The second concern can be addressed by using a distribution that uses circular space

instead of the linear space for the circular variables. One such distribution is the so-

called “Partially Wrapped Normal or PWN” distribution [83], which wraps a normal

distribution around a circle. The authors in [83] defined a distribution combining

one angular variable and two linear variables. Here, it is extended to three angular
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variables (ω, Ω, i) and three linear variables (a, e, τ). The PWN distribution for 3

angular and 3 linear variables is given as:

f(x̄; µ̄,C) =
∞∑

k1=−∞

∞∑
k2=−∞

∞∑
k3=−∞

N (x̄+ [2πk1 2πk2 2πk3

0 0 0]T ; µ̄,C)

(222)

with, x̄ ∈ [0, 2π)3×R3, location parameter µ̄ ∈ [0, 2π)3×R3, and symmetric positive

definite uncertainty parameter C ∈ R6×6.

µ̄ =
[
µ1 µ2 µ3 µ4 µ5 µ6

]T
(223)

C =



C11 C12 C13 C14 C15 C16

? C22 C23 C24 C25 C26

? ? C33 C34 C35 C36

? ? ? C44 C45 C46

? ? ? ? C55 C56

? ? ? ? ? C66


(224)

where, µ1 is the circular mean of the first periodic variable, µ2 is the circular mean of

the second periodic variable, µ3 is the circular mean of the third periodic variable, µ4

is the mean of the first linear variable, µ5 is the mean of the second linear variable,

µ6 is the mean of the third linear variable, and ? represents the symmetric entries.

The matrix

Ccirc =


C11 C12 C13

? C22 C23

? ? C33

 (225)

represents the covariance of the circular part. C14, C15, C16, C24, C25, C26, C34, C35,

C36 represent the circular-linear correlation, and the matrix
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Clin =


C44 C45 C46

? C55 C56

? ? C66

 (226)

represents the covariance of the linear part. The first hybrid moment of a partially

wrapped random variable X̄ on S3 × R3 (where S3 := [0, 2π)3) is defined as [83]:

m̄1 = E([cos(X1) sin(X1) cos(X2) sin(X2) cos(X3)

sin(X3) X4 X5 X6]T ) ∈ R9
(227)

The second hybrid moment m2 ∈ R9×9 of a partially wrapped random variable X̄ on

S3 × R3 is defined as [83]:

m2 = E(([cos(X1) sin(X1) cos(X2) sin(X2) cos(X3)

sin(X3) X4 X5 X6]T − m̄1)([cos(X1) sin(X1)

cos(X2) sin(X2) cos(X3) sin(X3) X4 X5

X6]T − m̄1)T )

(228)

Following the same derivation procedure as [83], the analytic expression for the first

hybrid moment is obtained as:

m̄1 = [cosµ1exp(−C11/2) sinµ1exp(−C11/2)

cosµ2exp(−C22/2) sinµ2exp(−C22/2)

cosµ3exp(−C33/2) sinµ3exp(−C33/2)

µ4 µ5 µ6]T

(229)

One can use the knowledge of the characteristic function and obtain the analytic

expression for the second hybrid moment. The expressions for the 45 entries of the

second hybrid moment (in actuality, there are 81 entries, since it is a 9 × 9 matrix

but 36 of those entries are symmetric) are derived in this research work, and they are

given in Appendix C. The simulation scenario involving 11 objects is re-run, this time
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using the PWN distribution for capturing the initial uncertainty of the parameters.

µ̄ is taken as same as earlier, the diagonal entries of the uncertainty parameter C

are also taken as same as earlier, and the non-diagonal entries taken as zero. One

possible way to sample the sigma points would be to select 19 sigma points (2× 9D

+ 1) representative of each object from the distribution of:

X̄ = [cos(i) sin(i) cos(ω) sin(ω) cos(Ω)

sin(Ω) a e τ ]
(230)

and then convert these sigma points from the above 9D space to 6D space of [a, e, i, ω,Ω, τ ]

and subsequently propagate these 19 sigma points. An alternative way to sampling

and propagation would be to first compute the mean and covariance of [a, e, i, ω,Ω, τ ]

from the 19 sigma points using UT weights and then use that mean and covariance to

compute a new set of 13 sigma points (2×6D + 1) and subsequently propagate those

13 sigma points. It is found that for the numerical values that are used in this work,

there is a negligible difference between the final distribution of propagated sigma

points resulting from multivariate Gaussian distribution and the final distribution of

propagated sigma points resulting from PWN distribution. For the sake of brevity,

only a semi-major axis comparison for the object with an initial true anomaly value

of 2310 and AMR of 8 m2/kg is shown in Fig. 4.11. Since there is little difference be-

tween the three cases, this justifies the use of multivariate normal distribution instead

of a (hybrid) circular distribution.

(a) MC vs Gaussian UT. (b) MC vs PWN (13 σ Points).
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(c) MC vs PWN (19 σ Points).

Figure 4.11: Comparison of semi-major axis for propagated object with ν0 = 2310,
AMR = 8 m2/kg.

4.4 Concluding Remarks

To conclude, a combination of the simga points and analytical methods can be used for

uncertainty propagation in a much more computationally efficient manner compared

to traditional methods. The only limitation is the loss of information on higher

moments while using (2n+ 1) (n is the dimension) sigma points.
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5 SPACE SITUATIONAL AWARENESS APPLICATION:
SENSOR TASKING FOR OBJECT DETECTION

An important part of space situational awareness is the detection of new space debris

population for which no a priori orbital information is at our disposal. Because of

limited resources (e.g., number of sensors and sensor observation time) and the sheer

number of known objects that also need observation time, the detection of these

uncatalogued objects must be carried out in an optimal and efficient manner by

carefully tasking the sensors. Sensor tasking strategies can broadly be classified into

survey and follow-up [84, 85, 86]. Survey is the systematic way to scan the visible sky

for the detection of objects with no a priori information, whereas follow-up refers to

observation strategy meticulously designed for objects with already available orbital

information. Whether one performs just survey or performs both survey and follow-

up depends on the objective that the observer is trying to accomplish. The primary

focus of this chapter is the survey of unknown high area-to-mass ratio GEO objects.

The survey of high area-to-mass ratio objects is preceded by a testbed case of survey

cum follow-up for the detection of known low area-to-mass ratio GEO objects.

5.1 Sensor Tasking as an Optimization Problem

In this work, sensor tasking is posed as an optimization problem [36]:

max A =
l∑

g=1

rg∑
h=1

mg∑
f=1

jg∑
tg,f=1

[( n∑
i=1

µpast(αi(tg,f ), δi(tg,f )) · p(αi(tg,f ), δi(tg,f ),o, tg,f )

·d(αf,g, δf,g, αi, δi, tg,f )
)

+ w · k(αf,g, δf,g, tg,f )
]

(231)

with the following constraints:

αf,g −
1

2
FOV − αi(tg,f ) ≤ 0 (232)

−αf,g −
1

2
FOV + αi(tg,f ) ≤ 0 (233)
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δf,g −
1

2
FOV − δi(tg,f ) ≤ 0 (234)

−δf,g −
1

2
FOV + δi(tg,f ) ≤ 0 (235)

R− σ(αi, α̇i, δi, δ̇i, ρi, ρ̇i, ν) ≤ 0 (236)

where A is the cost function that needs to be maximized. In the cost function,

the sum runs over l different survey sensors, employed at rg observation intervals.

Only a specific number of viewing directions mg can be visited, assuming a steady

repositioning time independently of the actual slewing distance. Right ascension

αi(tg,f ) and declination δi(tg,f ) specify viewing direction of a particular sensor. The

parameter jg represents the number of exposures that are made for each viewing

direction. The first part of the summation is based on concrete object information

when state information is known a priori. The quantity p(αi(tg,f ), δi(tg,f ),o, tg,f )

represents the probability of detection, where the argument o shows the dependence

of the detection probability on the object orientation and the argument tg,f shows the

explicit time dependence. The function µpast(αi(tg,f ), δi(tg,f )) gives weightage to the

observations made in the past. It is responsible to trigger a good anomaly spread in

the observations. The parameter d(αf,g, δf,g, αi, δi, tg,f ) represents the object count.

The first four constraints imply that only the objects which are in the field of view

(FOV) for given viewing directions are counted. The last constraint implies that an

object contributes to the count d only if its covariance σ is above a certain threshold

R. The purpose of the last constraint is to avoid objects being observed too frequently.

The count d can be understood as a probabilistic measure, the integrated probability

density functions that overlap with the FOV. The second half of the summation

comprises of the weight w and the surface function k(αf,g, δf,g, tg,f ); they establish

viewing direction values that are independent of concrete object information.
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5.1.1 Hypothesis Surface or Surface-k

The hypothesis surface or surface-k, in the second part of Eq. (231), is used before

any object information is gathered. Traditionally, without any prior information on

the objects being tracked, if the interest lies in tracking objects that are not listed

in any existing catalogs, the usual observation strategy for optical sensors is to do

an exhaustive or brute-force search of the space. However, this strategy may not be

efficient. Hence, an optimal or pseudo-optimal mechanism needs to be in place that

guides an observer to look at specific directions or regions; the hypothesis surface

precisely provides that mechanism. In this thesis, a number of hypothesis objects

resembling actual catalog objects or possible actual objects will be generated. Since

it is assumed that these objects have uncertainties in their initial states and design

parameters, each of them will be simulated using a number of particles in order to

capture their probability distribution; the number of particles will depend on whether

Monte Carlo approach is used (more particles) or whether UT approach is used (fewer

particles). Each object (represented by a number of particles) is then propagated

over a long period using analytic formulas in order to obtain its final state and the

uncertainty surrounding that final state. For generating the surface k appearing in

Eq. (231), each final state along with its uncertainty will then be propagated over

a 24-hour period numerically in order to obtain an array of states and uncertainties

corresponding to an array of sample times. The mean and uncertainty values will then

be used to fill out grids in an appropriate coordinate system. The optical sensors can

then be pointed towards specific grid directions based on grid or surface values and

constraints for better chances of detecting objects.

5.2 Sensor Tasking for Testbed LAMR Objects

A hypothesis for the generation of LAMR objects is proposed roughly based on the

publicly available GEO catalog 7. From the GEO catalog, the number of objects

7United States Space Command (USSPACECOM) provides orbital information on GEO objects
via www.space-track.org
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is plotted against the launch year (the red plot in Fig. 5.1), and a linear-curve is

fitted through these points (green plot in Fig. 5.1). The equation of the fitted line is

y = .3823(year)−749.4. Hypothesis LAMR objects are created for each year starting

from 1964 up until 2016. The number of LAMR objects generated each year is taken

as y′ = ceiling(y), where the mathematical function ceiling gives the integer greater

than or equal to the input y. The total number of LAMR objects thus generated is

629. The black plot in Fig. 5.1 shows the number of LAMR objects generated using

the described hypothesis.

Figure 5.1: LAMR object-generation hypothesis. In red: number of GEO catalog
objects versus launch year; in green: a linear-fit through the data points in red; in
black: number of proposed hypothesis objects versus launch year.

The initial mean and standard deviations of the hypothesis objects are shown in Table

11.

Table 11: Initial distribution for LAMR objects.

Parameters Mean Standard Deviation
semi-major Axis 42164 km 1 km

eccentricity .1 .01
inclination .10 .0010

argument of peri. .10 .0010

RAAN .10 .0010

ζ = AMR( 1
4 + Cd

9 ) µAMR( 1
4 + .5625

9 ) m2

kg 1.2× 10−4 m2

kg

The mean area-to-mass ratio values for the 629 objects are sampled from a piece-wise
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function:

µAMR(j) =


U(.0001m

2

kg
, .01m

2

kg
) for 500 objects

U(.01m
2

kg
, .02m

2

kg
) for 100 objects

U(.02m
2

kg
, .1m

2

kg
) for 29 objects

(237)

where U(·, ·) represents the uniform distribution function. The initial true anomaly

value is taken as 00 for all objects. These objects are propagated from their birth

epoch until June 12, 2017, 00:00:00 UTC using analytic propagation. The propa-

gated objects are finally placed within the orbit using a random distribution for true

anomaly values. It is important to compare the propagated hypothesis LAMR objects

with actual GEO catalog objects to ensure that a realistic object population hypoth-

esis has been proposed. Fig. 5.2 compares the mean of propagated LAMR objects

with the GEO catalog population on June 12, 2017. Fig. 5.2(a) shows the compari-

son with the full GEO catalog (all GEO catalog objects) and Fig. 5.2(b) shows the

comparison with the assumed inactive GEO catalog (i.e., objects that were launched

before 2002). As seen from Fig. 5.2, the two populations have good coherence.

(a) LAMR Objects Vs. Full GEO Catalog. (b) LAMR Objects Vs. Inactive Catalog.

Figure 5.2: Inclination-right ascension of ascending node comparison between GEO
catalog and LAMR population.

The tasking goal here is to detect as many objects as possible from the GEO cata-
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log (treating them as un-tracked objects) under the applicable constraints using the

hypothesis surface. For generating the LAMR hypothesis surface, the propagated ob-

jects (where each object is represented by a group of sigma points) at June 12, 2017,

00:00:00 UTC are further propagated using numerical methods over an “averaging”

period (24 hours), and their positions are sampled every “time-step” (1 hour). For

each object, at each time-step, over the averaging period, the mean azimuth-elevation

(AZ-EL) and the corresponding covariance matrix are obtained by first computing

the AZ-EL values from the positions of the sigma points and then taking UT based

weighted averages. The normal cumulative distribution function (CDF) value for each

of these AZ-EL pairs is then computed for different bins. The bins are created by

dividing the AZ-EL observation space into grids the size of the telescope field-of-view.

Each grid represents a particular viewing direction. The total CDF value correspond-

ing to a particular bin is the summation of CDF values resulting from each object

at each time-step. The CDF values are then normalized with respect to the averag-

ing period and time-step, in order to obtain the bin value or the surface value. Fig.

5.3(a) shows the k-surface for the LAMR objects in the azimuth-elevation reference

frame created from the CDF values of the propagated objects, where the observer

is assumed to be located at Bern, Switzerland. A similar surface is also shown in

Fig. 5.3(b) where the bins are filled with the number of objects (object mean) in-

stead of the CDF values. Fig. 5.3(c) shows the surface created using inactive GEO

catalog objects. Comparison of the LAMR surface and the GEO catalog population

is done in Figs. 5.3(d) and 5.3(e). Fig. 5.3(d) plots the positive difference between

LAMR mean surface and inactive GEO catalog mean surface, whereas Fig. 5.3(e)

plots the negative difference between LAMR mean surface and inactive GEO catalog

mean surface. The number of colored grid fields in Figs. 5.3(d) and 5.3(e) are not

drastically different, thereby implying that the LAMR surface can be used for sensor

tasking leading to the detection of catalog objects. The same mechanism can also

be followed for any other coordinates; the azimuth-elevation coordinate pair is just
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one such example. Figs. 5.3(d) and 5.3(e) also point to the astrodynamic feature

that objects in real life often reside in groups or cliques (e.g., because of a break-up),

which is not considered in the modeling of hypothesis objects.

(a) LAMR Surface (Created From CDF).
(b) LAMR Surface (Created from Counting
the Means).

(c) GEO Catalog Mean Surface. (d) Overestimation Map.

(e) Underestimation Map.

Figure 5.3: k-Surface for LAMR population in the azimuth-elevation reference frame
and its comparison with GEO catalog.
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To test the surface generated from the LAMR objects, a set of 614 objects from the

publicly available TLE catalog (semi-major axis value is constrained between 41,700

km and 42,300 km for obtaining the set) are used to generate truth object orbits. The

initial states for the truth orbits are generated by propagation with SGP4 to one hour

before the start of the observation window (19:58:00 UTC, June 12, 2017) and are

sampled from the SGP4 state and a diagonal covariance with position uncertainties

σx = σy = σz = 50km and velocity uncertainties σẋ = σẏ = σż = 1m/s. These objects

are then propagated under two-body motion for the remainder of the simulations. The

observer in this scenario is located in Bern, Switzerland (Lat: 46.9◦ E, Long: 7.5◦ N).

The observer FOV is assumed to be 3◦ square, and a minimum elevation constraint

of 12◦ is imposed. The observer’s Field of Regard is discretized into 3023 possible

pointing directions based on the minimum elevation and FOV size [87].

The LAMR surface provides a value for every possible pointing direction that esti-

mates the likelihood that objects will be observed at the pointing direction during a

24 hour period. In this scenario, the LAMR surface is mapped into the Local Merid-

ian Equatorial reference frame (τ, δ) [87], where the telescope pointing directions are

defined; the angles are given by:

τ = tan−1
(ux sin θ − uy cos θ

ux cos θ + uy sin θ

)
(238a)

δ = sin−1(uz) (238b)

where θ is the local mean sidereal time of the observer location, and [ux, uy, uz]
T is

the unit (pointing) vector of the telescope. Figure 5.4 shows the LAMR grid plotted

against the possible pointing directions for the observer in the LME reference frame

[87]; the pointing directions with no color have a value of zero, indicating that they

are unlikely to produce observations of objects.

At each observation time, the optimizer will select a pointing direction. If a truth

object is detected, a candidate orbit is generated 8; for simplicity, it is assumed that

8The follow-up part for detection of GEO catalog objects is done in collaboration with Bryan
Little (Ph.D., AAE, Purdue University)
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every detection is correctly associated with the truth object (no mistagging). The

initial candidates assume circular orbits at the GEO altitude; a covariance with the

same uncertainties used to initialize the truth orbits is associated with the candidate.

These candidates (state and covariance) are propagated under two-body motion in an

Extended Kalman Filter framework. At each observation, a cumulative distribution

function (CDF) value for the candidate objects is calculated for all of the possible

pointing direction; these CDF values are combined with the LAMR surface values,

and the optimizer uses the total values to determine which pointing direction to

assign for the new observation. Assigning the same pointing direction at every time

is undesirable, but because the truth objects may move with respect to the pointing

directions, the optimizer may wish to assign the same pointing direction later in the

observation window. To accomplish this, the weights in Eq. (231) are used to adjust

the influence of the LAMR surface and the candidates; w is a vector of weights that

correspond to each of the values in the LAMR surface, while µ is a vector of weights

that correspond to each candidate. When a pointing direction is selected, the w value

for that pointing direction is set to zero; likewise, after candidate generation, if that

candidate is observed again, its µ value is set to zero. These values are then allowed

to grow slowly over time, thus allowing the LAMR surface and candidates to be used

to re-select pointing directions at a later time.

Figure 5.4: The LAMR surface provides values for the pointing directions that the
observer may choose.
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Over the observation period, 209 of the 614 GEO objects are within the field of

regard at some point. However, the objects are distributed across many viewing

directions, and there is no guarantee that all of them could be observed by the sensor

during the limited number of observations. Using the aforementioned strategy, 46

different grid fields have been selected, observing 69 unique objects, with 36 of the

objects observed twice. Fig. 5.5(a) shows the grids or observation directions selected

(against the LAMR surface) according to the sensor tasking strategy for a total of

104 observation steps. For better visualization, Fig. 5.5(b) shows just the selected

directions without the background LAMR surface. The number of objects detected

at each step is shown in Fig. 5.5(c).

(a) Selected Grids. (b) Selected Grids Without LAMR Surface.

(c) Objects Detected at Each Step.

Figure 5.5: Selected directions obtained using the sensor tasking algorithm.

Next, a comparative investigation is carried out using a combination of different ob-
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servation techniques, surface types, and re-observation criteria, and the following six

cases have been simulated:

1. Case #1: Using hypothesis LAMR surface for survey + follow-up; re-observation

of grid fields allowed

2. Case #2: Using the hypothesis LAMR surface for just survey, with re-observation

of grid fields allowed

3. Case #3: Using GEO catalog surface for survey + follow-up; re-observation of

grid fields allowed

4. Case #4: Using GEO catalog surface for just survey; re-observation of grid fields

allowed

5. Case #5: Using hypothesis LAMR surface for just survey; re-observation of grid

fields not allowed

6. Case #6: Using GEO catalog surface for just survey; re-observation of grid fields

not allowed

Table 12 lists the important parameters comparing the six cases.

Table 12: Comparison of different sensor tasking strategies.

Case No. Different Grid Fields Selected Unique Objects Observed Objects Observed Twice

1 46 69 36

2 47 72 36

3 26 80 50

4 26 83 50

5 104 92 1

6 104 111 6

From Table 12, case numbers 1 and 2 have fewer unique objects observed as well as

objects observed twice when compared to case numbers 3 and 4. Case numbers 5

and 6 perform much better than others for the number of unique objects observed

once. However, for case numbers 5 and 6, the number of objects observed twice drops

significantly. Observing an object just once in a night may not be ideal unless a

follow-up is carried out.
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5.3 Sensor Tasking for HAMR Objects

Since the LAMR surface was able to detect a surprisingly large number of GEO

catalog objects despite LAMR hypothesis objects being a rough approximation of

the true GEO catalog objects, this gives confidence in the usage of k-surface for

detection of high area-to-mass ratio objects. A surface-based survey will be carried

out for HAMR objects in this section with the future intention of using the surface

for actual object detection using an optical telescope. Little information is available

for HAMR objects as most of them are not cataloged, and hence, a heuristic method

will be followed for the generation of HAMR hypothesis objects.

Satellites are usually thermally insulated using multi-layer insulation (MLI) foil. Be-

cause of material deterioration, these MLIs de-laminate over time. It is suspected

that these MLI fragments are the main sources of high area-to-mass ratio popula-

tions in the geosynchronous region. Several factors determine the deterioration of

MLI, for example, outgassing and equivalent solar hour (ESH). ESH is defined as the

total number of hours a space object is exposed to solar radiations [88]. As a gross

approximation in this work, ESH will be considered as the main driver for delami-

nation. Once the MLI degradation starts, the rate of delamination typically goes up

with time [88].

A model for the creation of MLI is presented here. From the publicly available GEO

catalog, there are roughly 120 objects launched during 1980-1985, 133 launched during

1985-1990, and 155 launched during 1990-1995. It will be assumed that all launches

during 1980-1985 happened in the mid-year of the interval, i.e., 1982. Similarly, it

will be assumed that all 133 launches happened in 1987, and 155 launches happened

in 1992. It will further be assumed that only 70% of these objects have MLIs. Thus,

approximately 285 of these objects will be releasing MLIs. It will further be assumed

that the onset of delamination happens 20 years after the launch. Let it also be

assumed that MLI coverings deteriorate with time according to a time-increasing
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rate-law: the number of MLIs increase by an additional 10% every five years. Let it

also be assumed that on the onset of delamination, only one MLI per object is created.

Following this strategy, the 1982 launched objects will spew 84 MLIs in 2002, 92 MLIs

in 2007, and 101 MLIs in 2012. The 1987 launched objects will spew 93 MLIs in 2007

and 102 MLIs in 2012. The 1992 launched objects will spew 108 objects in 2012.

Thus, in total, there will be 580 HAMR objects in the orbit in 2017. The next step is

to create a model for their distribution within the orbit and their AMR distribution.

Objects with AMR = [23 35 5 4 32 47 57 8 35 29 1] m2/kg are considered. It will be

assumed that the number of objects follows a bi-modal Gaussian function with peaks

at 26.30 m2/kg and 111.11 m2/kg, with equal amplitudes and standard deviations

for the two Gaussian functions. Mathematically,

nAMR = λ exp

(
− (AMR− 26.30)2

2(111.11−26.30
4 )2

)
+ λ exp

(
− (AMR− 111.11)2

2(111.11−26.30
4 )2

)
(239)

where the amplitude λ is to be decided from the total number of objects. Popular ma-

terials used as MLIs include PET (AMR=111.11 m2/kg) and Kapton (AMR=26.30 m2/kg),

which are the inspiration behind the peak values. Using the bi-modal Gaussian func-

tion, the distribution for the number of objects resulting from 1982 launched objects

is given in Table 13, and the same for 1987 and 1992 launched objects are given in

Table 14.

Table 13: HAMR objects spewed off of 1982 launched objects.

AMR (m2/kg) 2002 nobjects 2007 nobjects 2012 nobjects
23 10 11 12
35 9 10 11
5 6 7 8
4 6 7 7
32 10 11 12
47 7 7 8
57 4 4 5
8 7 8 9
35 9 10 11
29 11 11 12
1 5 6 6

ntotal 84 92 101
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Table 14: HAMR objects spewed off of 1987 and 1992 launched objects.

AMR (m2/kg) 2007 nobjects; 1987 2012 nobjects; 1987 2012 nobjects; 1992

23 11 12 13

35 10 11 12

5 7 8 8

4 7 7 8

32 11 12 13

47 7 8 8

57 5 5 5

8 8 9 9

35 10 11 12

29 11 13 13

1 6 6 7

ntotal 93 102 108

The initial distribution for the Keplerian elements, and ζ = AMR(.25 + Cd/9) are

given in Table 15.

Table 15: Initial distribution for HAMR objects.

Initial Mean Initial Standard Deviation

µa = 42164 km σa = 1 km

µe = .1 σe = .01

µi = 100 σi = 10

µω = .10 σω = .0010

µΩ = .10 σΩ = .0010

µζ = µAMR × (.25 + .5625/9) m2

kg σζ = .06 m2

kg

For each AMR and spewing year, true anomalies are given by:

νamr,spewingyear = linspace
(
0, 2π − 2π

namr,spewingyear
, namr,spewingyear

)
(240)

where the function linspace(n1,n2,n3) indicates a row vector of n3 points linearly

spaced between and including n1 and n2, i.e., objects with same AMR and delamina-

tion year are uniformly spaced within the orbit. In total, 580 HAMR objects are to
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be propagated using analytic techniques. Of these, 84 objects are to be propagated

for 15 years (start epoch: June 16, 2002, 00:00:00 UTC; end epoch: June 12, 2017,

00:00:00 UTC), 185 objects are to be propagated for 10 years (start epoch: June 15,

2007, 00:00:00 UTC; end epoch: June 12, 2017, 00:00:00 UTC), and 311 objects are

to be propagated for 5 years (start epoch: June 13, 2012, 00:00:00 UTC; end epoch:

June 12, 2017, 00:00:00 UTC). Figs. 5.6(a), 5.6(b), 5.6(c) show the mean positions of

the propagated points in ECI Cartesian coordinate system. There are regions where

the objects are more cluttered and then there are regions where the object density is

relatively low. To get a more quantitative understanding of the importance of various

directions, Fig. 5.6(d) shows the angle histogram for total number of HAMR objects

corresponding to ECI-xy projection of the final population. Most number of objects

are in the projected angular range [27.690, 41.540], and least number of objects are in

the projected range [249.230, 263.080]. Fig. 5.6(e) gives the angle histogram for rela-

tively high area-to-mass ratio objects (≥ 20m2/kg) in the projected x-y plane. Most

number of objects are in the projected angular range [152.310, 166.150], and least

number of objects are in the projected angular range [1800, 193.850]. The next task

is to apply survey strategy to select the observation directions with higher chances of

object detection.

(a) Final Objects in ECI Frame.
(b) Final Objects Projected into ECI-xy
Plane.
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(c) Final Objects Projected Into ECI-yz
Plane.

(d) Angle Histogram in the ECI-xy Plane.

(e) Angle Histogram in the ECI-xy Plane.
(f) AMR to Color Mapping for Sub-Figures
a, b, c

Figure 5.6: Mean final positions of HAMR objects at 00:00:00 UTC, June 12, 2017.

The detection of 508 hypothesis objects is carried out with the help of hypothesis

surface k. The hypothesis surface is created using the same procedure as discussed

in section 5.2. Once the surface is computed, the observation duration, which is

typically dusk-to-dawn, is divided into “steps,” which represents the total time it

requires for the telescope to observe, process, and move from one-viewing direction to

the next. The sensor tasking strategy at each step is to select the viewing direction

with the highest surface value. Once a particular direction is selected, it is discarded

for further steps. Fig. 5.7(a) shows the generated input surface k. A sensor with

3.77×3.77 degrees field of view located at [4331.28, 567.55, 4633.14] km on the Earth,

is used. An exposure time of eight seconds, a readout time of seven seconds, and

seven exposures per viewing direction are chosen. A slewing time of 30 seconds is

selected for moving the satellite from the center of one viewing direction to the center
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of the next viewing direction. Observation is conducted during 12 June 2017 from

sunset to sunrise. The minimum elevation for detection is set to 100. Fig. 5.7(b)

shows chosen directions obtained using the sensor tasking strategy. The color bar

represents the bin or surface values.

(a) Surface k. (b) Chosen Directions.

Figure 5.7: Surface k and chosen directions in the azimuth-elevation frame.

From Fig. 5.7, the minimum and maximum azimuths for the chosen directions are

99.3750 and 260.6250, respectively. The minimum and maximum elevations for the

chosen directions are 13.1250 and 43.1250, respectively. The number of chosen direc-

tions in Fig. 5.7 is limited by the total observation period. Also, no direction below

the minimum set elevation level is selected.

It needs to be emphasized that the survey results for high area-to-mass ratio objects

could not be validated here because of the lack of an actual catalog consisting of

high area-to-mass ratio objects. However, the developed methodology serves as a

future basis for systematic detection of actual high area-to-mass ratio objects in

geosynchronous region using Purdue Optical Ground Station (POGS) telescope.
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5.4 Unscented Transformation Based Sensor Tasking Versus Monte Carlo
Based Sensor Tasking

Since the construction of the hypothesis surface relies on only the first two moments,

the k-surface generation and tasking results should not be significantly affected by

the usage of sigma points over Monte Carlo particles. This section investigates sensor

tasking result differences between the two uncertainty representation methods.

For the simulation set-up involving 11 HAMR objects given in Tables 9 and 10, k-

surface is generated following a similar procedure as the previous section, once using

sigma points and once using Monte Carlo points. A greedy algorithm, using the same

observation set-up as the previous section, is then applied to the hypothesis surface

for selecting the observation directions. Fig. 5.8 compares the k-surfaces computed

from sigma points and Monte Carlo particles, respectively.

(a) k-Surface (Using Monte Carlo). (b) k-Surface (Using Sigma Points).

Figure 5.8: k-surface comparison between Monte Carlo and Unscented Transforma-
tion methods.

Fig. 5.9 compares the observation directions selected for the two surfaces using the

greedy algorithm. From Fig. 5.9(a), 313 out of 318 selected directions were com-

mon between the two surfaces. Similarly, from Fig. 5.9(b), 313 out of 325 selected

directions were common between the two surfaces. This demonstrates the earlier

made exertion that the usage of computationally inexpensive sigma points in place
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of computationally expensive Monte Carlo particles is acceptable for sensor tasking

purposes.

(a) Chosen Directions From Uncertainty
Based MC Surface.

(b) Chosen Directions From Uncertainty
Based UT Surface.

Figure 5.9: Comparison of chosen directions between Monte Carlo and Unscented
Transformation methods.

5.5 Concluding Remarks

To conclude, the LAMR detection algorithm does a good job of detecting catalog

objects, especially along a thin declination band close to the exact geostationary

curve. This encourages the development of a systematic methodology for future

detection of unknown HAMR objects.
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6 SPACE SITUATIONAL AWARENESS APPLICATION:
CATEGORIZATION OF NEAR-GEO SPACE OBJECTS

In space situational awareness, categorization or classification of space objects based

on the similarity of characteristics can be used to optimize efforts or resources used

towards object identification, object maintenance, object threat perception, and can

enable prediction of future behavior. Several works exist in the literature concerning

space object categorization. Wilkins et al. [89] uses a Linnaean approach to catego-

rize resident space objects with the help of external information such as orbit class

and manufacturer of the resident space objects. Frueh et al. [90] establishes a cate-

gorization system for space objects based on Phylogenetic system using features such

as orbital state, attitude, amount of different materials, shape, size, and area-to-mass

ratio. Jia et al. [91] uses orbital energy time series, light curve time series, and texture

feature information in order to categorize space objects. Rochelle Mellish [92] uses

dynamical principles to categorize geosynchronous objects using various clustering

algorithms such as k-means, wards linkage method, particle swarm optimization, and

density-based spatial clustering of applications with noise (DBSCAN).

This dissertation focuses on combining the knowledge of object dynamics and data-

based learning approaches to categorize near-GEO space objects. This chapter is

divided into three sections - the first section discusses a dynamical criterion for object

categorization, the second section introduces the Neural Network machine learning

algorithm, and the third section presents a scheme for long-term categorization of

near-GEO objects using a combined data-dynamics approach.

6.1 Categorization of Near-GEO Objects Using Dynamical Characteris-
tics

The dynamical criterion for near-GEO object categorization developed here will be

subsequently used for generating the input data for training the Neural Network

learning algorithm. The list of objects that are studied here is obtained from the

137



“January 2019 status report on (near) geosynchronous objects” prepared by ESA

Space Debris Office. From among all the objects listed in the ESA report, a subtotal

of 1489 objects, which are also publicly listed by USSPACECOM 9 are selected for

investigation. Based on the observed dynamical behavior, the ESA report classifies

these 1489 objects into eight different categories, which are listed in Table 16. Of

these 1489 objects, 365 objects belong to the category C1, 108 objects belong to the

category C2, 696 objects belong to the category D, 112 objects belong to the category

L1, 41 objects belong to the category L2, 18 objects belong to the category L3, 20

objects belong to the category I, and 129 objects belong to the category X.

The ESA report categorization for the 1489 objects is based on continuous observation

of patterns in the orbital elements. The work carried out in this thesis is focused upon

developing a generic criterion for object categorization that does not depend upon

continuous observation of orbital elements, but rather upon the availability of orbital

data at two different time instances. The procedure for the generation of orbital data

is discussed next.

Table 16: Object categorization from ESA 2019 status report on (near) geosyn-
chronous objects.

Category Description

C1 East-west (E-W) and north-south (N-S) controlled objects

C2 East-west (E-W) controlled objects

D Drifting objects

L1 Objects librating about the Eastern stable point (750 E lon-
gitude)

L2 Objects librating about the Western stable point (1050 W
longitude)

L3 Objects librating about both the Eastern and Western stable
points

I Highly inclined objects (inclination greater than 250)

X Rocket bodies crossing GEO protected region. GEO pro-
tected region defined by longitude ∈ [−150, 150], altitude ∈
[35586, 35986] km

9United States Space Command (USSPACECOM) provides orbital information on GEO objects
via www.space-track.org
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For those of 1489 objects which have orbital data available close to both initial and final

epochs, following orbital data are generated: (i) semi-major axis, eccentricity, inclination,

argument of perigee, right ascension of ascending node at an initial epoch t1 (ii) semi-major

axis, eccentricity, inclination, argument of perigee, right ascension of ascending node at

a final epoch t2 (where, t2 = t1 + 1 year) (iii) changes in semi-major axis, eccentricity,

inclination, argument of perigee, right ascension of ascending node values between t1 and t2

(iv) object longitude at t1 (v) object longitude at t2 (vi) change in longitude value between

t1 and t2. In the first step of data generation, object orbital information corresponding to a

time close to t1, in the two-line element format, is gathered from USSPACECOM’s publicly

available TLE catalog 10. These objects are then propagated from their respective epochs to

t1 epoch using SGP4. The SGP4 output is in True Equator Mean Equinox of date (TEME)

frame [93], which is defined as follows: the z-axis is parallel to the Earth’s instantaneous

North Pole axis, the x-axis points towards average vernal equinox direction, and the y-axis

completes the right-handed orthogonal system. The SGP4 output is then converted from

TEME frame to the more commonly used mean equator mean equinox frame or J2000

frame [93], with the Earth orientation parameters available at [94]. Similarly, object orbital

information corresponding to a time close to t2 are gathered from TLE catalog. These

objects are then propagated to the epoch t2 using SGP4. From the epoch t2, a further

propagation is carried out using SGP4 such that the final true anomaly values are within

10−3 radians of the initial true anomaly values at epoch t1. The SGP4 output is then

converted to J2000 frame. Having nearly the same initial and final true anomaly values

ensures that ∆a, ∆e, ∆i, ∆ω, ∆Ω values are independent of true anomaly variations.

Orbital data from space-track with the initial epoch of 12:00:00 UTC, 30th December 2018

is processed to generate {ai, ei, ii, ωi, Ωi, af , ef , if , ωf , Ωf , ∆a, ∆e, ∆i, ∆ω, ∆Ω, longitudei,

longitudef , ∆longitude}, and a 7-step dynamical criterion is applied for categorizing them:

Step 1. Objective: create a group of objects rich in high inclination or category I objects.

Criterion: if the initial inclination is greater than 250 and initial eccentricity ≤ 0.3, it is

expected that the group will be composed of predominantly category I objects. Since some

of the rocket bodies crossing the GEO protected region have high inclination and large

10www.space-track.org
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eccentricity, the eccentricity limit is added to the criterion. Using this criterion, the objects

are divided into two groups, which are shown in Fig. 6.1. The percentage composition

of each group in terms of ESA status report categorization is also provided. All the 20

category-I objects are present in group 1. The criterion in the next step is applied to the

second group of objects.

Figure 6.1: Step 1: Separation of high inclination group 1 objects.

Step 2. Objective: create a group of objects rich in rocket bodies crossing GEO protected

region or category X objects. Condition: (a) if initial eccentricity ≥ 0.2 (b) if initial

eccentricity lies in the range [0.1, 0.2) and initial semi-major axis does not lie in the range

(37500 km, 48100 km), it is expected that the group will be composed of predominantly

category X objects. The semi-major axis limit for the relatively low eccentricity rocket

bodies comes from the rationale that a mission would probably want to reduce collision

risks with active GEO objects by avoiding the synchronous semi-major axis value of 42164

km. Fig. 6.2 shows the two groups of objects created using the criterion. All the 120

category-X objects are present in group 1. There is also one E-W, N-S controlled object

present in group 1 as a pollutant. The criterion in the next step is applied to the second

group of objects.
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Figure 6.2: Step 2: Separation of a group rich in rocket bodies crossing GEO
protected region.

Step 3. Objective: create a group of objects rich in E-W, N-S controlled or category C1

objects. Condition: if initial inclination ≤ 10 and final inclination ≤ 10, it is expected that

the group will be composed of predominantly category C1 objects. The rationale behind

the criterion is that when performing N-S control, operators try to keep the inclination low

[95]. Fig. 6.3 shows the two groups of objects created using the criterion. 339 out of 350

E-W, N-S controlled objects are present in group 1. There are also 3 E-W controlled and 1

drifting objects present in group 1 as pollutants. The criterion in the next step is applied

to the second group of objects.

Step 4: Objective: create a group of objects rich in E-W controlled or category C2 objects.

Condition: if initial and final semi-major axes ≤ 42168.3 km, if initial and final semi-major

axes ≥ 42164.1 km, if initial and final eccentricities ≤ .05, it is expected that the group

will be composed of predominantly category C2 objects. In an E-W control maneuver,

operators try to keep the semi-major axis close to the synchronous value and also try to

keep the eccentricity small, which is the motivation for the selected criterion. Fig. 6.4

shows the two groups of objects created using the criterion. 89 out of 106 E-W controlled

objects are present in group 1. There are also 7 E-W, N-S controlled objects, 6 objects

librating about the Eastern stable point, and 9 objects librating about the Western stable

point present in group 1 as pollutants. The criterion in the next step is applied to the

second group of objects.
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Figure 6.3: Step 3: Separation of a group rich in E-W, N-S controlled objects.

Figure 6.4: Step 4: Separation of a group rich in E-W controlled objects.

Step 5: Objective: create a group of objects rich in drifting or category D objects. Con-

dition: if the initial semi-major axis lies outside the range (42129 km, 42200 km), it is

expected that the group will be composed of predominantly category D objects. At the

beginning of step 5, objects are primarily librating or drifting, and it is known that librat-

ing objects have semi-major axis oscillating around the synchronous value, and that is the

motivation for the selected criterion. The second group will have some drifting objects, but

the advantage of the selected criterion is that the first group will have most of the drifting

objects. Fig. 6.5 shows the two groups of objects created using the criterion. 672 out of 689

drifting objects are present in group 1. There are no pollutants present in group 1. Also,

the second group is composed of predominantly librating objects. The criterion in the next

step is applied to the second group of objects.
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Figure 6.5: Step 5: Separation of a group rich in drifting objects.

Step 6: Objective: create a group of objects rich in category L1 objects or objects librating

about the Eastern stable point. Condition: if the initial and final longitudes lie in the range

[30, 1430], and if ∆longitude lies in the range (−1140, 1050), it is expected that the group

will be composed of predominantly category L1 objects. Since objects librating about the

Eastern stable point have their longitudes oscillating about 750E, the selected criterion

makes sense. Fig. 6.6 shows the two groups of objects created using the selected criterion.

103 out of 111 East-librating objects are present in group 1. 5 E-W controlled objects and

2 objects librating about both the stable points are also present in group 1 as pollutants.

The criterion in the next step is applied to the second group of objects.

Figure 6.6: Step 6: Separation of a group rich in objects librating about the Eastern
stable point.
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Step 7: Objective: create a group of objects rich in category L2 objects or objects librating

about the Western stable point. Condition: if the initial and final longitudes lie in the range

[1830, 3460], and if ∆longitude lies in the range (−1180, 1080), it is expected that the group

will be composed of predominantly category L2 objects. Since objects librating about

the Western stable point have their longitudes oscillating about 1050W (or 2550E), the

selected criterion makes sense. Fig. 6.7 shows the two groups of objects created using

the selected criterion. 32 out of 41 West-librating objects are present in group 1. 3 E-W

controlled objects, 2 objects librating about both the stable points, 1 object librating about

the Eastern stable point, and 1 E-W, N-S controlled object are also present in group 1 as

pollutants. Most of the objects librating about both the stable points are present in group

2, but it is difficult to separate them.

Figure 6.7: Step 7: Separation of a group rich in objects librating about the Western
stable point.

Thus, using the knowledge of orbit dynamics, the near-GEO objects are separated into

eight different groups - one group rich in category I objects, one group rich in category X

objects, one group rich in category C1 objects, one group rich in category C2 objects, one

group rich in category D objects, one group rich in category L1 objects, one group rich in

category L2 objects, and one group which is a motley of different category objects.
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6.2 Supervised Machine Learning Using Neural Network

Supervised learning is a machine learning technique in which a function relating an input

to an output is learned based on example or training sets of input-output pairs [96]. A

supervised machine learning technique that is roughly based on the working of a human

brain is the Neural Network. This section describes the Neural Network algorithm [97],

which will be used for learning the orbital parameters of space objects and their categoriza-

tion. The Neural Network algorithm is selected based on its popularity and a comparison

of the Neural Network with other existing supervised learning techniques is not a part of

this thesis.

A Neural Network is characterized by an input layer, an output layer, and layers in-between

called hidden layers. Each layer is composed of neurons or nodes, where a node is “a

computational unit that has one or more weighted input connections, a transfer function

that combines the inputs in some way, and an output connection” [98]. The number of

nodes in the input layer is the same as the dimension of the feature vector. For the object

categorization problem, the feature vector comprises of the initial and final semi-major

axes, eccentricities, inclinations, AoPs, RAANs, longitudes, change in semi-major axis,

eccentricity, inclination, AoP, RAAN, so the number of nodes in the input layer is 18.

The number of nodes in the output layer is 1 for binary classification. For multi-class

classification, the number of nodes in the output layer is equal to K, the number of classes

in the classification problem. For the object categorization problem, K = 8 since there

are eight different groups, as discussed in the last section. For the object categorization

problem, only one hidden layer with 36 nodes (two times the size of the feature vector) is

used. The common practice is to use the same number of nodes in all hidden layers, and

the number of nodes in a hidden layer is typically taken as two, three, four, or five times

the number of nodes in the input layer.

Let sl denote the number of units or nodes (not counting the bias unit, i.e., an unit with

value 1) in layer l, L denote the total number of layers, and θ(j) denote the matrix of weights

controlling function mapping from layer j to layer (j+1), where the dimension of the matrix

θ(j) is sj+1 × (sj + 1). The depiction of the mapping for a dummy 3-layer case is shown in
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Fig. 6.8.

Figure 6.8: Neural Network mapping for a dummy 3-layer case.

The parameters a
(l)
k are called activation units. a(1) represents activation for the first layer,

a(2) represents activation for the second layer, and so on. The activation units are given as:

a
(2)
1 = g(θ

(1)
10 x0 + θ

(1)
11 x1 + θ

(1)
12 x2 + θ

(1)
13 x3) (241a)

a
(2)
2 = g(θ

(1)
20 x0 + θ

(1)
21 x1 + θ

(1)
22 x2 + θ

(1)
23 x3) (241b)

a
(2)
3 = g(θ

(1)
30 x0 + θ

(1)
31 x1 + θ

(1)
32 x2 + θ

(1)
33 x3) (241c)

where x0 is the bias unit, i.e., x0 = 1. The function g is some activation function. In this

research work, g is taken as the sigmoid function, which is defined as:

g(x) =
1

1 + exp (−x)
(242)

For binary classification, the hypothesis hθ(x) is given as:

hθ(x) = a
(3)
1 = g(θ

(2)
10 a

(2)
0 + θ

(2)
11 a

(2)
1 + θ

(2)
12 a

(2)
2 + θ

(2)
13 a

(2)
3 ) (243)

where a
(2)
0 is the bias unit, i.e., a

(2)
0 = 1. The benefit of using the sigmoid function for

binary classification is that it restricts the hypothesis value between 0 and 1. For 0 − 1

binary classification, any suitable threshold T can be selected to predict:
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Predicted output =


1 if hθ(x) ≥ T

0 if hθ(x) < T

(244)

T is usually taken as 0.5. However, for the near-GEO object categorization in this work,

a slightly different procedure is followed for predicting the output. For the multi-group

near-GEO object categorization, the hypothesis is first predicted as:

hθ(x) = g

(
θ(L−1)a(L−1)

)
(245)

The result of the hypothesis is then passed through a Softmax function:

h̃θ(x) =
exp(hθ(x))∑K

j=1(exp(hθ(x)))j
(246)

where (exp(hθ(x)))j is the jth component of exp(hθ(x)). Denoting the eight category of

near-GEO objects by [1; 07×1], [0; 1; 06×1], [02×1; 1; 05×1], [03×1; 1; 04×1], [04×1; 1; 03×1],

[05×1; 1; 02×1], [06×1; 1; 0], [07×1; 1], the output is then predicted as:

ŷ = [0(j−1)×1; 1; 0(8−j)×1] if index(maximum(h̃θ(x))) = j (247)

Determination of the mapping parameter Θ (the collection of all θ(j) is referred to as Θ) is

discussed next.

If there are m number of training data sets {(x(1), y(1)), (x(2), y(2)), ...., (x(m), y(m))}, the

cost function for Neural Network is defined as:

J(Θ) = − 1

m

[ m∑
i=1

K∑
k=1

y
(i)
k log

(
hθ(x

(i))
)
k

+
(
1− y(i)

k

)
log
(
1−

(
hθ(x

(i))
)
k

)]

− λ

2m

L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
θ

(l)
ji

)2
(248)

where i=0 is not used in the
(
θ

(l)
ji

)2
term because it corresponds to the bias term.

The hypothesis hθ(x) ∈ RK and (hθ(x))i = ith component of hθ(x). λ is known as
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the regularization parameter. Regularization parameter controls the trade off be-

tween under-fitting and over-fitting. Intuitively, increasing λ will push the hypothesis

towards under-fitting and decreasing λ will push the hypothesis towards over-fitting.

The cost function given in Eq. (248) is minimized w.r.t Θ using gradient descent ap-

proach in order to obtain the optimal Θ. In gradient descent approach, one iteratively

updates Θ according to:

θ
(l)
ij = θ

(l)
ij − α

∂J(Θ)

∂θ
(l)
ij

(249)

where α is the learning rate.

In order to find the derivative ∂J(Θ)

∂θ
(l)
ij

, two tasks are performed: (1) forward propagation

(2) backward propagation. Forward propagation refers to the process of computing

the hypothesis values for each training example. In the back-propagation, one starts

with the last layer or the output layer and gradually move in towards the input layer.

Back-propagation is all about computing δ
(l)
j , error of node j in layer l.

An example of forward propagation using one training data set (x, y) and four layers

is shown in Table 17.

Table 17: An example of a forward propagation for hypothesis computation.

Step
No.

Equation

1 a(1) = x

2 z(2) = θ(1)[a
(1)
0 ; a(1)], where a

(1)
0 = 1

3 a(2) = g(z(2))

4 z(3) = θ(2)[a
(2)
0 ; a(2)], where a

(2)
0 = 1

5 a(3) = g(z(3))

6 z(4) = θ(3)[a
(3)
0 ; a(3)], where a

(3)
0 = 1

7 a(4) = hθ(x) = g(z(4))

An example of backward propagation using one training data set (x, y) and four layers

is shown in Table 18.
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Table 18: An example of a backward propagation for error computation.

Step
No.

Equation

1 δ(4) = a(4) − y

2 δ(3) =
(
θ(3)
)T
δ(4). ∗

(
a(3). ∗ (1− a(3))

)
, where .∗

is element-wise multiplication

3 δ(2) =
(
θ(2)
)T
δ(3). ∗

(
a(2). ∗ (1− a(2))

)

The complete algorithm for the computation of the derivatives ∂

∂θ
(l)
ij

J(Θ) is described

in Table 19.

Table 19: Algorithm for the computation of ∂

∂θ
(l)
ij

J(Θ).

•Given, training set {(x(1), y(1)), (x(2), y(2)), ...., (x(m), y(m))}

• Set ∆
(l)
ij = 0 for all i, j, l

For i = 1 to m

• Set a(1) = x(i)

• Perform forward propagation to compute a(l) for

l = 2, 3, ..., L

• Using y(i), compute δ(L) = a(L) − y(i)

• Compute δ(L−1), δ(L−2), ..., δ(2)

• ∆
(l)
ij :=∆

(l)
ij + a

(l)
j δ

(l+1)
i

End

• D(l)
ij = 1

m∆
(l)
ij + λθ

(l)
ij if j 6= 0

• D(l)
ij = 1

m∆
(l)
ij if j = 0

• ∂

∂θ
(l)
ij

J(Θ) = D
(l)
ij
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The learning parameter α for the gradient descent approach cannot be selected ran-

domly. Too small a value of α will lead to extremely slow convergence, and too large

a value of α may lead to divergence. A brute force approach, i.e., a series of α values

[0.0010 0.1009 0.2008 0.3007 0.4006 0.5004 0.6003 0.7002 0.8001 0.9000]

are tried in this research work. For each α, the plot of J(Θ) versus the number

of iterations is investigated, and an α value with a moderate rate of convergence is

selected.

If the features are of very different scales (e.g., semi-major axis and eccentricity in

the near-GEO object categorization problem), the gradient descent algorithm may

perform badly, and hence the features need to be scaled. In this research work, the

features are scaled as: x′i =
xi−xi,min

xi,max−xi,min , where xi,max is the largest value that xi takes

among all training data sets and xi,min is the smallest value that xi takes among all

training data sets.

Just like the learning parameter α, the regularization parameter λ appearing in the

cost function cannot be selected randomly. In this work, the following strategy for

determining λ is used: the data set is divided into three parts - the first part is taken

as the training data set, the second part is taken as the cross-validation set, and the

third part is taken as the test set. The data set is randomly shuffled before performing

this division. A series of λ values [.0007 .003 .005 .007 .05 .1 .5 1] are tried out,

and cost function minimized. The value of λ that gives the smallest cross-validation

cost function is selected.

6.3 Near-GEO Object Categorization Using Combined Data-Dynamics
Approach

A schematic is presented here that would enable one to categorize a near-GEO object

whenever a new TLE data is made available. The work here focuses on classifying ob-

jects over thirteen years, from 2001 to 2013, using Neural Network and the dynamical

criterion discussed earlier. The steps for the categorization are as follows:
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Step 1: Generate the Neural Network training data. For classifying any incoming

TLE during a particular year 20XY, where XY can vary from ‘01’ to ‘13’, the Neural

Network is trained with 2000, 2001, ....., (20XY-1) “one-year gap data”. The 20WZ

“one-year gap data” refers to the 18-dimensional orbital data and its dynamical cat-

egorization as described in section 6.1, where the initial epoch t1 is taken as 12:00:00

UTC, January 1 20WZ and the final epoch t2 is close to 12:00:00 UTC, December 30

20WZ.

Step 2: Determine the learning rate α for the Neural Network. As discussed in

section 6.2, a series of α values are tried to determine the one with a moderate

convergence rate.

Step 3: Determine the regularization parameter β for the Neural Network. As

discussed in section 6.2, a series of β values are tried to select the one that results in

the smallest cost-function for the cross-validation data set.

Step 4: Train the Neural Network. The Neural Network is trained with the training

data according to the algorithm discussed in section 6.2 to learn the optimal mapping

function.

Step 5: Categorize any incoming new TLE. Anytime a new TLE appears, a search is

made through the TLE database (list of prior TLEs) to find the initial orbital data,

which corresponds to an epoch that is roughly one year behind the epoch of the new

TLE. The 18-dimensional orbital data is then fed into the learned function in step 4

to determine the object categorization.

Step 6: Update the “near-GEO object categorization grid.” The near-GEO object

categorization grid is a 39 by 39 grid structure, as shown in Fig. 6.9, where each

grid represents one near-GEO object. In this research work, all the 1489 near-GEO
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objects are sorted according to their NORAD Catalog Number. Grid (1,1) belongs to

the object with the lowest NORAD Catalog Number, grid (1,2) belongs to the object

with the second lowest NORAD Catalog Number, all the way up to grid (39,7), which

belongs to the object with the largest NORAD Catalog Number. Each grid can have

ten different colors: (I) the red color represents that the object belongs to category

1, a category rich in high inclination objects (II) the green color represents that the

object belongs to category 2, a category rich in rocket bodies crossing GEO protected

region (III) the blue color represents that the object belongs to category 3, a category

rich in E-W, N-S controlled objects (IV) the magenta color represents that the object

belongs to category 4, a category rich in E-W controlled objects (V) the cyan color

represents that the object belongs to category 5, a category rich in drifting objects

(VI) the yellow color represents that the object belongs to category 6, a category

rich in objects librating about the Eastern stable point (VII) the color with RGB

components [0.1 0.2 0.4] represents that the object belongs to category 7, a category

rich in objects librating about the Western stable point (VIII) the color with RGB

components [0.5 0.5 0.3] represents that the object belongs to category 8, which is

a motley of different category objects, but primarily drifting or librating about both

stable points, as pointed in section 6.1 (IX) the color with RGB components [0.7 0.3

0.2] represents that the object belongs to category 9, i.e., it has no TLE in the past

one year (X) the color with RGB components [0.8 0.6 0.6] represents that the object

belongs to category 0, i.e., its categorization is undefined or not clear at this point.

The color-coding is shown in Fig. 6.10. Initially, the near-GEO object categorization

grid is filled with colors corresponding to the categorization of the training data.

Every time a new TLE appears, the color of the grid corresponding to that object is

updated with its new categorization.
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Figure 6.9: 39× 39 Grid.

Figure 6.10: Color-coding for object categorization.

The results of the categorization schematic are shown in Figs. 6.11-6.23, where snap-

shots of the near-GEO object categorization grid corresponding to four random epochs
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are shown for each year.

(a) timepassed = 0 days. (b) timepassed = 90.0109 days.

(c) timepassed = 181.0754 days. (d) timepassed = 273.0454 days.

Figure 6.11: Snapshots of near-GEO object categorization grid for the year 2001.
timepassed is the time passed since 00:00:00 UTC, January 1, 2001.

385 out of 813 objects change their categorization at least once during 2001.

(a) timepassed = 0 days. (b) timepassed = 90.2742 days.
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(c) timepassed = 181.1978 days. (d) timepassed = 273.2117 days.

Figure 6.12: Snapshots of near-GEO object categorization grid for the year 2002.
timepassed is the time passed since 00:00:00 UTC, January 1, 2002.

364 out of 840 objects change their categorization at least once during 2002.

(a) timepassed = 0 days. (b) timepassed = 90.0859 days.

(c) timepassed = 181.2794 days. (d) timepassed = 273.1158 days.

Figure 6.13: Snapshots of near-GEO object categorization grid for the year 2003.
timepassed is the time passed since 00:00:00 UTC, January 1, 2003.

369 out of 870 objects change their categorization at least once during 2003.
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(a) timepassed = 0 days. (b) timepassed = 91.1564 days.

(c) timepassed = 182.0942 days. (d) timepassed = 274.0879 days.

Figure 6.14: Snapshots of near-GEO object categorization grid for the year 2004.
timepassed is the time passed since 00:00:00 UTC, January 1, 2004.

443 out of 905 objects change their categorization at least once during 2004.

(a) timepassed = 0 days. (b) timepassed = 90.0628 days.
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(c) timepassed = 181.062 days. (d) timepassed = 273.0994 days.

Figure 6.15: Snapshots of near-GEO object categorization grid for the year 2005.
timepassed is the time passed since 00:00:00 UTC, January 1, 2005.

451 out of 931 objects change their categorization at least once during 2005.

(a) timepassed = 0 days. (b) timepassed = 90.1265 days.

(c) timepassed = 181.0623 days. (d) timepassed = 273.1666 days.

Figure 6.16: Snapshots of near-GEO object categorization grid for the year 2006.
timepassed is the time passed since 00:00:00 UTC, January 1, 2006.

320 out of 961 objects change their categorization at least once during 2006.
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(a) timepassed = 0 days. (b) timepassed = 90.0577 days.

(c) timepassed = 181.1142 days. (d) timepassed = 273.0567 days.

Figure 6.17: Snapshots of near-GEO object categorization grid for the year 2007.
timepassed is the time passed since 00:00:00 UTC, January 1, 2007.

476 out of 1001 objects change their categorization at least once during 2007.

(a) timepassed = 0 days. (b) timepassed = 91.0639 days.
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(c) timepassed = 182.0849 days. (d) timepassed = 274.0618 days.

Figure 6.18: Snapshots of near-GEO object categorization grid for the year 2008.
timepassed is the time passed since 00:00:00 UTC, January 1, 2008.

490 out of 1028 objects change their categorization at least once during 2008.

(a) timepassed = 0 days. (b) timepassed = 90.0416 days.

(c) timepassed = 181.0979 days. (d) timepassed = 273.0767 days.

Figure 6.19: Snapshots of near-GEO object categorization grid for the year 2009.
timepassed is the time passed since 00:00:00 UTC, January 1, 2009.

538 out of 1069 objects change their categorization at least once during 2009.
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(a) timepassed = 0 days. (b) timepassed = 90.0831 days.

(c) timepassed = 181.032 days. (d) timepassed = 273.0876 days.

Figure 6.20: Snapshots of near-GEO object categorization grid for the year 2010.
timepassed is the time passed since 00:00:00 UTC, January 1, 2010.

553 out of 1108 objects change their categorization at least once during 2010.

(a) timepassed = 0 days. (b) timepassed = 90.0621 days.
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(c) timepassed = 151.0777 days. (d) timepassed = 273.0862 days.

Figure 6.21: Snapshots of near-GEO object categorization grid for the year 2011.
timepassed is the time passed since 00:00:00 UTC, January 1, 2011.

569 out of 1140 objects change their categorization at least once during 2011.

(a) timepassed = 0 days. (b) timepassed = 91.0723 days.

(c) timepassed = 182.1102 days. (d) timepassed = 274.0844 days.

Figure 6.22: Snapshots of near-GEO object categorization grid for the year 2012.
timepassed is the time passed since 00:00:00 UTC, January 1, 2012.

598 out of 1176 objects change their categorization at least once during 2012. 612

out of 1230 objects change their categorization at least once during 2013.

161



(a) timepassed = 0 days. (b) timepassed = 90.0518 days.

(c) timepassed = 181.0384 days. (d) timepassed = 273.0686 days.

Figure 6.23: Snapshots of near-GEO object categorization grid for the year 2013.
timepassed is the time passed since 00:00:00 UTC, January 1, 2013.

As can be seen from Figs. 6.11-6.23, object categorization may change not only over

a longer period (of the order of years), but it may also change over a shorter duration

(less than a year). The figures also show that the learned network classifies most of the

catalog objects into three categories - category 3 (rich in E-W, N-S controlled objects),

category 5 (rich in drifting objects), and category 6 (rich in objects librating about

the Eastern stable point). The categorization scheme presented here, however, is

limited by how well the Neural Network can learn the underlying dynamics to predict

an object category. The Neural Network is able to categorize objects correctly for

roughly 80% of the objects. The Neural Network does a better job in classifying

categories 1 through 6 as compared to categories 7 and 8.

The presented scheme is best suitable for SSA purposes where there is too much

orbital data for human scrutiny or where only occasional human scrutiny is possible.
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Whenever the resources permit, the scheme should be used as a first-assessment tool

for object categorization, with manual or human scrutiny as an additional check.

6.4 Concluding Remarks

To conclude, the combination of dynamical knowledge with the Neural Network ma-

chine learning technique provides a nice framework for autonomous and large-scale

classification of space objects. Although a successful classification rate of roughly 80%

is obtained, caution is to be adopted. Most of the objects that do not change category

within a year belong to categories 1 through 6. There is a scope for improvement in

the learning function or learning technique for classifying categories 7 and 8 objects

(category 8 is not surprising since it is composed of objects from different categories).
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7 CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

This dissertation performs the following four tasks: (1) investigation of fast ana-

lytical techniques for propagation of near-GEO space objects and improving their

accuracy (2) analysis of cost-efficient methods to capture initial orbital uncertainties

and propagating them using analytical techniques (3) using analytical uncertainty

propagation to design a sensor tasking strategy for GEO space objects, with special

focus on difficult-to-track high area-to-mass ratio objects (4) categorization of near-

GEO space objects using a combined knowledge of dynamics and data-based learning

techniques.

In the first task, analytical perturbations due to J2, J3, J4 zonal harmonics of Earth’s

gravitational potential, J[2,2] tesseral harmonic of Earth’s gravitational potential, Sun

gravity, Moon gravity, solar radiation pressure, and Lorentz force are investigated.

The accuracy of an existing analytical theory for third body perturbations is im-

proved. This is achieved by retaining the r/rd terms (r is the object distance from

Earth’s center and rd is the third body distance from Earth’s center) in acceleration

components and integrating Gauss’s variational equations. Following a 15-year sim-

ulation for a GEO object with just the Moon third body perturbations, it is demon-

strated that the accuracy in eccentricity improves by one order of magnitude. The

accuracy of an existing analytical theory for solar radiation pressure perturbations

is improved. This is achieved by using the Strong-Stability Preserving Runge-Kutta

scheme of order 2 to update orbital elements instead of a Euler scheme. Following a

30-year simulation for a GEO object with just the solar radiation pressure perturba-

tions, it is demonstrated that the accuracy in eccentricity and argument of perigee

improves by one order of magnitude.

An existing analytical theory for Lorentz force perturbations applicable only for low

Earth orbits is modified to develop new analytical formulas applicable for both low
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Earth and high Earth orbits. Two sets of analytical formulas are developed: one for

low eccentric orbits, and one for orbits with any general eccentricity. The first set

of analytical formulas (for low eccentric orbits) are developed by integrating Gauss’s

variational equations using the following two approximations: (I) t = f/n (t is time, f

is true anomaly, and n is mean motion) (II) 1/(1+e cos f) (e is eccentricity) is replaced

by its second-order Taylor series expansion. The second set of analytical formulas (for

any general eccentric orbit) is developed by integrating Gauss’s variational equations

and using the Legendre-Gauss quadrature rule of order 12 to approximate some of

the tricky integrals.

In the second task, GEO space objects with initial uncertainties in semi-major axis,

eccentricity, inclination, argument of perigee, right ascension of ascending node, and

area-to-mass ratio are propagated over a 15-year period and their distributions are

analyzed. A multivariate Gaussian distribution is assumed for the initial distribution

of the uncertain parameters. Two methods are used: (I) the initial uncertainty is

captured using the traditional Monet Carlo particles and propagated using analytical

solutions (II) the initial uncertainty is captured using sigma points and propagated

using analytical solutions. The benefit of using the second method is that it requires

only (2 × dimension + 1) sigma points to capture the object mean and co-variance,

making it computationally more efficient than the Monte Carlo approach, which re-

quires a large number of particles. In the Monte Carlo method, each object is repre-

sented using 1500 points, and in the Unscented Transformation method, each object

is represented using 13 sigma points. The Monte Carlo based final distribution is then

compared to the distribution obtained through the propagation of sigma points. It is

demonstrated that the distribution from sigma points is able to follow the distribution

from Monte Carlo points for eccentricity, inclination, argument of perigee, and right

ascension of ascending node up to a logarithmic Kullback-Leibler divergence value of

roughly -2, -3, -3, -4, respectively. For semi-major axis, the sigma points are able to

follow the Monte Carlo points for relatively low area-to-mass ratios. Since Gaussian
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distribution does not take into account the circular behavior of the parameters or the

truncation in the range of the parameters, an investigation is carried out to assess the

effect of the Gaussian assumption. It is found that for the numerical values considered

in this work, the circular or the truncation behavior is not relevant to the uncertainty

propagation problem.

The third task focuses on sensor tasking for the detection of unknown object classes.

High area-to-mass ratio objects are one such class of objects that is focused upon

in this dissertation. They are important because there is no catalog information

available for high area-to-mass ratio objects because of their susceptibility to large

perturbations from non-conservative perturbation forces. As a testbed case, a survey

and follow-up of low area-to-mass ratio GEO objects using the so-called hypothesis

surface are first carried out. This surface is generated by long-term propagation

of hypothesis objects via analytic propagation techniques. A model, approximately

mimicking the publicly available GEO catalog, is proposed for the generation of low

area-to-mass ratio hypothesis objects. These hypothesis objects are assumed to have

uncertainties, which are propagated from their initial epoch to the observation epoch.

The surface is created using cumulative distributive function (CDF) values of the

propagated hypothesis objects by dividing the observation space into small grids

and subsequently filling them out with averaged CDF values. Initially, without any

a priori information of the objects, observation direction is selected based on the

surface. A 4-hour observation session is simulated to test the efficacy of the strategy.

Over the observation duration, 209 of 614 GEO objects were within the field of

regard at some point during that time window. The sensor tasking strategy selected

46 different grid fields observing 69 unique objects, 36 of which have been observed

twice. Since the surface strategy produced surprisingly good detection results despite

the approximations used in the creation of hypothesis objects, a survey strategy is

carried out for difficult-to-detect high area-to-mass ratio objects. A heuristics-based

birth-scheme is proposed for the generation of hypothesis high area-to-mass ratio
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objects. Similar to low area-to-mass ratio objects, the hypothesis-surface is created

using the cumulative distribution functions of the propagated hypothesis objects. A

greedy algorithm is then used by the sensor tasking strategy to find directions with

higher chances of object detection. Since HAMR objects are currently not in the

catalog, the next step for the proposed HAMR detection method would be to run it

with Purdue Optical Ground Station (POGS) telescope, and a successful detection

would serve as the validation for the proposed method.

In the fourth task, a schematic is developed for the categorization of near-geosynchronous

space objects. A dynamical criterion is presented to first categorize objects into eight

different groups rich in high inclination objects, rocket bodies crossing GEO protected

region, East-West and North-South controlled objects, East-West controlled objects,

drifting objects, objects librating about the Eastern stable point, objects librating

about the Western stable point, and a mixed group. The criterion is then used to

train a Neural Network to categorize any new orbital data. Incoming two-line-element

data between the years 2001 and 2013 are classified and represented in a 39×39 grid,

which gives a holistic view of the categorization of all near-geosynchronous space ob-

jects at any point in time. As demonstrated, the categories of objects can change

both over long and short periods of time. Most of the catalog objects are categorized

into expected drifting, E-W/N-S controlled, and librating (about 750 E) objects. The

Neural Network is able to classify objects correctly roughly 80% of the times. The

Neural Network does a better job at classifying object categories 1 through 6 when

compared to categories 7 and 8, thereby leaving room for improvements. The main

advantage of the proposed scheme over a traditional classification scheme is its ability

to handle large amount of space data and its ability to categorize any object without

having to continuously monitor the orbit of the object.

The improvements made in the analytical perturbation expressions for

Recommendations for future work are provided in the next section.

167



7.2 Recommendations

Using the analytical orbit propagation techniques developed here, one can perform

a variety of other SSA related tasks such as investigating the evolution of debris

resulting from an anti-satellite test, investigating the long-term collision risks among

various object populations, identification of unknown object classes besides the high

area-to-mass ratio objects discussed in this dissertation.

The current analysis uses (2×dimension+1) sigma points to represent the uncertainty

in each object. One can also use more number of sigma points per object and compare

the propagated distributions resulting from sigma points and Monte Carlo particles,

respectively.

The sensor tasking analysis in this dissertation is carried out for near-GEO objects.

Using the methodology developed here, one can carry out a similar analysis for objects

from low Earth and middle Earth orbital regions. The k-surface designed in this

dissertation can be used to detect actual high area-to-mass ratio objects using an

actual telescope. Additionally, the current sensor tasking strategy employs only one

ground-based optical sensor; the work can be extended to employ multiple ground-

based and space-based sensors.

For the object categorization purpose, Neural Network is used as the learning al-

gorithm in this work. One can also try out other learning algorithms for object

categorization and carry out a comparison between the results of the different algo-

rithms.
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[75] E. Thébault, C.C. Finlay, C.D. Beggan, P. Alken, J. Aubert, O. Barrois,

F. Bertrand, T. Bondar, A. Boness, L. Brocco, and et al. International geo-

magnetic reference field: the 12th generation. Earth, Planets and Space, 67(79),

2015.

[76] A.E. Roy. Orbital Motion. A. Hilger, Philadelphia, PA, 1988.

[77] P.L. Gupta and R.D. Gupta. Sample size determination in estimating a covari-

ance matrix. Computational Statistics and Data Analysis, 5:185–192, 1987.

[78] G.M. Tallis. The moment generating function of the truncated multinormal

distribution. Journal of the Royal Statistical Society, Series B, 23(1):223–229,

1961.

[79] N. Johnson and S. Kotz. Distribution in statistics: continuous multivariate dis-

tributions. Wiley, New York, 1972.

[80] L.-F. Lee. On the first and second moments of the truncated multi-normal

distribution and a simple estimator. Economics Letters, 3(2):165–169, 1979.

[81] P. Leppard and G.M. Tallis. Evaluation of the mean and covariance of the

truncated multinormal. Journal of the Royal Statistical Society, 38(3):543–553,

1989.

177



[82] B.G. Manjunath and S. Wilhelm. Moments calculation for the double truncated

multivariate normal density. https://arxiv.org/abs/1206.5387. 2012.

[83] G. Kurz, I. Gilitschenski, and U.D. Hanebeck. The partially wrapped normal

distribution for se(2) estimation. IEEE International Conference on Multisensor

Fusion and Information Integration, Beijing, China, 2014.

[84] R. Musci, T. Schildknecht, T. Flohrer, and G. Beutler. Concept for a catalogue of

space debris in geo. Fourth European Conference on Space Debris, pp. 601-606,

ESOC, Darmstadt, Germany, 2005.

[85] R. Musci, T. Schildknecht, M. Ploner, and G. Beutler. Orbit improvement for

GTO objects using follow-up obervations. Advances in Space Research, 35(7):

1236–1242, 2005.

[86] J. Herzog. Cataloguing of objects on high and intermediate altitude orbits. PhD

dissertation treatise, Astronomical Institute, University of Bern, 2013.

[87] B.D. Little and C. Frueh. Ssa sensor tasking: comparison of machine learning

with classical optimization methods. Advanced Maui Optical and Space Surveil-

lance (AMOS) Technologies Conference, Maui, HI, 2018.

[88] S.K. Flegel, J. Gelhaus, M. McKel, C. Wiedemann, H. Krag, H. Klinkrad,

P. Vorsmann, and M. Oswald. The master-2009 space debris environment model.

European Space Agency, (Special Publication) ESA SP. 672, 2009.

[89] M. P. Wilkins, A. Pfeffer, P. W. Schumacher, and M. K. Jah. Towards an

artificial space object taxonomy. Advanced Maui Optical and Space Surveillance

Technologies Conference (AMOS), Maui, HI, 2013.

[90] C. Frueh, M. Jah, E. Valdez, P. Kervin, and T. Kelecy. Taxonomy and clas-

sification scheme for artificial space objects. Advanced Maui Optical and Space

Surveillance Technologies Conference (AMOS), Maui, HI, 2013.

178

https://arxiv.org/abs/1206.5387


[91] B. Jia, K.D. Pham, E. Blasch, D. Shen, Z. Wang, and G. Chen. Space object

classification using fused features of time series data. Advanced Maui Optical

and Space Surveillance Technologies Conference (AMOS), Maui, HI, 2017.

[92] Rochelle Mellish. An automated space object taxonomy of geostationary objects.

PhD dissertation, School of Aeronautics and Astronautics, Purdue University,

2017.

[93] T.S. Kelso. Revisiting spacetrack report 3 AIAA 2006-6753. Available online.

[94] IERS EOP PC. Interactive search for EOP C04. Available online.

[95] Jean Kechichian. Optimal steering for north–south stationkeeping of geostation-

ary spacecraft. Journal of Guidance, Control, AND Dynamics, 20(3):435–444,

1997.

[96] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall, Englewood Cliffs, NJ, 1995.

[97] Andrew Ng. Machine Learning, Stanford University. Available online.

[98] Jason Brownlee. How to configure the number of layers and nodes in a neural

network (available online). 2018.

179



A COEFFICIENTS FOR SECOND ORDER
PERTURBATIONS IN ECCENTRICITY DUE TO

LUNI-SOLAR GRAVITY

Parameter g1:
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where,
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g17 = (e− 1)7/2 (e+ 1)7/2 (257)

where y = π− ε, with ε being an arbitrary positive number that is extremely close to

zero.
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Parameter h1:

h1 =
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where,
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where y = π− ε, with ε being an arbitrary positive number that is extremely close to

zero.

Parameter g2:
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g2 =
48 y − g21 − g22 + g23 + g24

6 e4
(267)

where,

g21 =

atanh
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tan( y2 ) (e−1)
√
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where y = π− ε, with ε being an arbitrary positive number that is extremely close to

zero.

Parameter h2:

h2 =
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6 e4
(272)

where,
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(275)

182



h24 =
e sin (y) (43 e4 − 104 e2 + 56)

(e cos (y)− 1)2 (e− 1)2 (e+ 1)2 (276)

where y = π− ε, with ε being an arbitrary positive number that is extremely close to

zero.

Parameter P9:

P9 = 56.806e9 + 106.92e8 + .40918e7 + 49.464e6 + .00038031e5

+ 13.744e4 + 5.0353× 10−8e3 − 2.3907× 10−10e2

+ 5.0403× 10−13e− 5.694× 10−16

(277)

Parameter g3:

g3 =
g31 − g32 + g33

g34 + g35 + g36

−
atanh

(
tan( y2 ) (2 e−2) (e3−3 e2+3 e−1)

2 (e−1)7/2
√
e+1

)
(3 e2 + 2)

(e− 1)7/2 (e+ 1)7/2
(278)

where,

g31 =
tan
(
y
2

)
(2 e3 − 3 e2 + 6 e)

(e+ 1) (e3 − 3 e2 + 3 e− 1)
(279)

g32 =
4 tan

(
y
2

)3
(e3 + 9 e)

3 (e+ 1)2 (e2 − 2 e+ 1)
(280)

g33 =
tan
(
y
2

)5
(2 e3 + 3 e2 + 6 e)

(e− 1) (e+ 1)3 (281)

g34 = 3 e− tan
(y

2

)6 (
e3 − 3 e2 + 3 e− 1

)
(282)
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g35 = tan
(y

2

)2 (
−3 e3 − 3 e2 + 3 e+ 3

)
(283)

g36 = −tan
(y

2

)4 (
−3 e3 + 3 e2 + 3 e− 3

)
+ 3 e2 + e3 + 1 (284)

where y = π− ε, with ε being an arbitrary positive number that is extremely close to

zero.

Parameter h3:

h3 =
h31

h32

− h33 − h34 + h35

h36 − h37 + h38

(285)

where,

h31 = atanh

(
tan
(
y
2

)
(2 e+ 2) (e3 + 3 e2 + 3 e+ 1)

2
√
e− 1 (e+ 1)7/2

) (
3 e2 + 2

)
(286)

h32 = (e− 1)7/2 (e+ 1)7/2 (287)

h33 =
tan
(
y
2

)
(2 e3 + 3 e2 + 6 e)

(e− 1) (e3 + 3 e2 + 3 e+ 1)
(288)

h34 =
4 tan

(
y
2

)3
(e3 + 9 e)

3 (e− 1)2 (e2 + 2 e+ 1)
(289)

h35 =
tan
(
y
2

)5
(2 e3 − 3 e2 + 6 e)

(e− 1)3 (e+ 1)
(290)

h36 = tan
(y

2

)6 (
e3 + 3 e2 + 3 e+ 1

)
− 3 e (291)

h37 = tan
(y

2

)2 (
−3 e3 + 3 e2 + 3 e− 3

)
(292)
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h38 = tan
(y

2

)4 (
−3 e3 − 3 e2 + 3 e+ 3

)
+ 3 e2 − e3 + 1 (293)

where y = π− ε, with ε being an arbitrary positive number that is extremely close to

zero.

Parameter g4:

g4 =
g41 − g42 − g43 + g44

g45 + g46 − g47 + g48

−
5 e atanh

(
g49
g410

)
(3 e2 + 4)

4 (e− 1)9/2 (e+ 1)9/2
(294)

where,

g41 =
tan
(
y
2

)5
(40 e4 + 27 e3 + 336 e2 + 36 e+ 72)

12 (e+ 1)3 (e2 − 2 e+ 1)
(295)

g42 =
tan
(
y
2

)3
(40 e4 − 27 e3 + 336 e2 − 36 e+ 72)

12 (e+ 1)2 (e3 − 3 e2 + 3 e− 1)
(296)

g43 =
tan
(
y
2

)7
(8 e4 + 17 e3 + 48 e2 + 12 e+ 8)

(4 e− 4) (e+ 1)4 (297)

g44 =
tan
(
y
2

)
(8 e4 − 17 e3 + 48 e2 − 12 e+ 8)

(4 e+ 4) (e4 − 4 e3 + 6 e2 − 4 e+ 1)
(298)

g45 = 4 e+ tan
(y

2

)8 (
e4 − 4 e3 + 6 e2 − 4 e+ 1

)
(299)

g46 = tan
(y

2

)2 (
−4 e4 − 8 e3 + 8 e+ 4

)
(300)

g47 = tan
(y

2

)6 (
4 e4 − 8 e3 + 8 e− 4

)
(301)

g48 = tan
(y

2

)4 (
6 e4 − 12 e2 + 6

)
+ 6 e2 + 4 e3 + e4 + 1 (302)
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g49 = e tan
(y

2

)
(2 e− 2)

(
3 e2 + 4

) (
e4 − 4 e3 + 6 e2 − 4 e+ 1

)
(303)

g410 =
(
6 e3 + 8 e

)
(e− 1)9/2

√
e+ 1 (304)

where y = π− ε, with ε being an arbitrary positive number that is extremely close to

zero.

Parameter h4:

h4 =
h41 − h42 + h43 − h44

h45 − h46 + h47 + h48

+
5 e atanh

(
h49
h410

)
(3 e2 + 4)

4 (e− 1)9/2 (e+ 1)9/2
(305)

where,

h41 =
tan
(
y
2

)5
(40 e4 − 27 e3 + 336 e2 − 36 e+ 72)

12 (e− 1)3 (e2 + 2 e+ 1)
(306)

h42 =
tan
(
y
2

)3
(40 e4 + 27 e3 + 336 e2 + 36 e+ 72)

12 (e− 1)2 (e3 + 3 e2 + 3 e+ 1)
(307)

h43 =
tan
(
y
2

)
(8 e4 + 17 e3 + 48 e2 + 12 e+ 8)

(4 e− 4) (e4 + 4 e3 + 6 e2 + 4 e+ 1)
(308)

h44 =
tan
(
y
2

)7
(8 e4 − 17 e3 + 48 e2 − 12 e+ 8)

4 (e− 1)4 (e+ 1)
(309)

h45 = tan
(y

2

)8 (
e4 + 4 e3 + 6 e2 + 4 e+ 1

)
− 4 e (310)

h46 = tan
(y

2

)2 (
4 e4 − 8 e3 + 8 e− 4

)
(311)

h47 = tan
(y

2

)6 (
−4 e4 − 8 e3 + 8 e+ 4

)
(312)
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h48 = tan
(y

2

)4 (
6 e4 − 12 e2 + 6

)
+ 6 e2 − 4 e3 + e4 + 1 (313)

h49 = e tan
(y

2

)
(2 e+ 2)

(
3 e2 + 4

) (
e4 + 4 e3 + 6 e2 + 4 e+ 1

)
(314)

h410 =
(
6 e3 + 8 e

) √
e− 1 (e+ 1)9/2 (315)

where y = π− ε, with ε being an arbitrary positive number that is extremely close to

zero.

Parameter g5:

g5 =
5 e2 atanh

(
g51
g52

)
(e2 + 6)

4 (e− 1)9/2 (e+ 1)9/2
− g53 + g54 − g55 − g56

g57 + g58 − g59 + g510

(316)

where,

g51 = e2 tan
(y

2

)
(2 e− 2)

(
e2 + 6

) (
e4 − 4 e3 + 6 e2 − 4 e+ 1

)
(317)

g52 =
(
2 e4 + 12 e2

)
(e− 1)9/2

√
e+ 1 (318)

g53 =
tan
(
y
2

)5
(33 e4 + 288 e3 + 6 e2 + 160 e+ 24)

12 (e+ 1)3 (e2 − 2 e+ 1)
(319)

g54 =
tan
(
y
2

)3
(33 e4 − 288 e3 + 6 e2 − 160 e+ 24)

12 (e+ 1)2 (e3 − 3 e2 + 3 e− 1)
(320)

g55 =
tan
(
y
2

)7
(3 e4 + 32 e3 + 18 e2 + 32 e+ 8)

(4 e− 4) (e+ 1)4 (321)

g56 =
tan
(
y
2

)
(3 e4 − 32 e3 + 18 e2 − 32 e+ 8)

(4 e+ 4) (e4 − 4 e3 + 6 e2 − 4 e+ 1)
(322)

187



g57 = 4 e+ tan
(y

2

)8 (
e4 − 4 e3 + 6 e2 − 4 e+ 1

)
(323)

g58 = tan
(y

2

)2 (
−4 e4 − 8 e3 + 8 e+ 4

)
(324)

g59 = tan
(y

2

)6 (
4 e4 − 8 e3 + 8 e− 4

)
(325)

g510 = tan
(y

2

)4 (
6 e4 − 12 e2 + 6

)
+ 6 e2 + 4 e3 + e4 + 1 (326)

where y = π− ε, with ε being an arbitrary positive number that is extremely close to

zero.

Parameter h5:

h5 =
h51 + h52 − h53 − h54

h55 − h56 + h57 + h58

−
5 e2 atanh

(
h59
h510

)
(e2 + 6)

4 (e− 1)9/2 (e+ 1)9/2
(327)

where,

h51 =
tan
(
y
2

)5
(33 e4 − 288 e3 + 6 e2 − 160 e+ 24)

12 (e− 1)3 (e2 + 2 e+ 1)
(328)

h52 =
tan
(
y
2

)3
(33 e4 + 288 e3 + 6 e2 + 160 e+ 24)

12 (e− 1)2 (e3 + 3 e2 + 3 e+ 1)
(329)

h53 =
tan
(
y
2

)
(3 e4 + 32 e3 + 18 e2 + 32 e+ 8)

(4 e− 4) (e4 + 4 e3 + 6 e2 + 4 e+ 1)
(330)

h54 =
tan
(
y
2

)7
(3 e4 − 32 e3 + 18 e2 − 32 e+ 8)

4 (e− 1)4 (e+ 1)
(331)

h55 = tan
(y

2

)8 (
e4 + 4 e3 + 6 e2 + 4 e+ 1

)
− 4 e (332)
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h56 = tan
(y

2

)2 (
4 e4 − 8 e3 + 8 e− 4

)
(333)

h57 = tan
(y

2

)6 (
−4 e4 − 8 e3 + 8 e+ 4

)
(334)

h58 = tan
(y

2

)4 (
6 e4 − 12 e2 + 6

)
+ 6 e2 − 4 e3 + e4 + 1 (335)

h59 = e2 tan
(y

2

)
(2 e+ 2)

(
e2 + 6

) (
e4 + 4 e3 + 6 e2 + 4 e+ 1

)
(336)

h510 =
(
2 e4 + 12 e2

) √
e− 1 (e+ 1)9/2 (337)

where y = π− ε, with ε being an arbitrary positive number that is extremely close to

zero.

Parameter g6:

g6 = −g61 − g62 − g63 + g64

g65 + g66 − g67 + g68

−
35 e3 atanh

(
g69
g610

)
4 (e− 1)9/2 (e+ 1)9/2

(338)

where,

g61 =
tan
(
y
2

)7
(8 e4 − 3 e3 + 48 e2 + 32 e+ 8)

(4 e− 4) (e+ 1)4 (339)

g62 =
7 tan

(
y
2

)5
(24 e4 + 9 e3 + 48 e2 − 8)

12 (e+ 1)3 (e2 − 2 e+ 1)
(340)

g63 =
tan
(
y
2

)
(8 e4 + 3 e3 + 48 e2 − 32 e+ 8)

(4 e+ 4) (e4 − 4 e3 + 6 e2 − 4 e+ 1)
(341)

g64 =
7 tan

(
y
2

)3
(24 e4 − 9 e3 + 48 e2 − 8)

12 (e+ 1)2 (e3 − 3 e2 + 3 e− 1)
(342)

189



g65 = 4 e+ tan
(y

2

)8 (
e4 − 4 e3 + 6 e2 − 4 e+ 1

)
(343)

g66 = tan
(y

2

)2 (
−4 e4 − 8 e3 + 8 e+ 4

)
(344)

g67 = tan
(y

2

)6 (
4 e4 − 8 e3 + 8 e− 4

)
(345)

g68 = tan
(y

2

)4 (
6 e4 − 12 e2 + 6

)
+ 6 e2 + 4 e3 + e4 + 1 (346)

g69 = tan
(y

2

)
(2 e− 2)

(
e4 − 4 e3 + 6 e2 − 4 e+ 1

)
(347)

g610 = 2 (e− 1)9/2
√
e+ 1 (348)

where y = π− ε, with ε being an arbitrary positive number that is extremely close to

zero.

Parameter h6:

h6 =
h61 + h62 − h63 − h64

h65 − h66 + h67 + h68

+
35 e3 atanh

(
h69
h610

)
4 (e− 1)9/2 (e+ 1)9/2

(349)

where,

h61 =
7 tan

(
y
2

)5
(24 e4 − 9 e3 + 48 e2 − 8)

12 (e− 1)3 (e2 + 2 e+ 1)
(350)

h62 =
tan
(
y
2

)
(8 e4 − 3 e3 + 48 e2 + 32 e+ 8)

(4 e− 4) (e4 + 4 e3 + 6 e2 + 4 e+ 1)
(351)

h63 =
7 tan

(
y
2

)3
(24 e4 + 9 e3 + 48 e2 − 8)

12 (e− 1)2 (e3 + 3 e2 + 3 e+ 1)
(352)
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h64 =
tan
(
y
2

)7
(8 e4 + 3 e3 + 48 e2 − 32 e+ 8)

4 (e− 1)4 (e+ 1)
(353)

h65 = tan
(y

2

)8 (
e4 + 4 e3 + 6 e2 + 4 e+ 1

)
− 4 e (354)

h66 = tan
(y

2

)2 (
4 e4 − 8 e3 + 8 e− 4

)
(355)

h67 = tan
(y

2

)6 (
−4 e4 − 8 e3 + 8 e+ 4

)
(356)

h68 = tan
(y

2

)4 (
6 e4 − 12 e2 + 6

)
+ 6 e2 − 4 e3 + e4 + 1 (357)

h69 = tan
(y

2

)
(2 e+ 2)

(
e4 + 4 e3 + 6 e2 + 4 e+ 1

)
(358)

h610 = 2
√
e− 1 (e+ 1)9/2 (359)

where y = π− ε, with ε being an arbitrary positive number that is extremely close to

zero.

Parameter g7:

g7 =
g71 + g72 + g73 − g74

g75 + g76 − g77 + g78

+
35 e4 atanh

(
g79
g710

)
4 (e− 1)9/2 (e+ 1)9/2

(360)

where,

g71 =
7 tan

(
y
2

)5
(15 e4 − 96 e3 − 48 e2 + 32 e+ 24)

12 (e+ 1)3 (e2 − 2 e+ 1)
(361)

g72 =
7 tan

(
y
2

)3
(15 e4 + 96 e3 − 48 e2 − 32 e+ 24)

12 (e+ 1)2 (e3 − 3 e2 + 3 e− 1)
(362)

191



g73 =
tan
(
y
2

)7
(−27 e4 + 32 e3 + 48 e2 + 32 e+ 8)

(4 e− 4) (e+ 1)4 (363)

g74 =
tan
(
y
2

)
(27 e4 + 32 e3 − 48 e2 + 32 e− 8)

(4 e+ 4) (e4 − 4 e3 + 6 e2 − 4 e+ 1)
(364)

g75 = 4 e+ tan
(y

2

)8 (
e4 − 4 e3 + 6 e2 − 4 e+ 1

)
(365)

g76 = tan
(y

2

)2 (
−4 e4 − 8 e3 + 8 e+ 4

)
(366)

g77 = tan
(y

2

)6 (
4 e4 − 8 e3 + 8 e− 4

)
(367)

g78 = tan
(y

2

)4 (
6 e4 − 12 e2 + 6

)
+ 6 e2 + 4 e3 + e4 + 1 (368)

g79 = tan
(y

2

)
(2 e− 2)

(
e4 − 4 e3 + 6 e2 − 4 e+ 1

)
(369)

g710 = 2 (e− 1)9/2
√
e+ 1 (370)

where y = π− ε, with ε being an arbitrary positive number that is extremely close to

zero.

Parameter h7:

h7 = −h71 + h72 + h73 − h74

h75 − h76 + h77 + h78

−
35 e4 atanh

(
h79
h710

)
4 (e− 1)9/2 (e+ 1)9/2

(371)

where,

h71 =
7 tan

(
y
2

)5
(15 e4 + 96 e3 − 48 e2 − 32 e+ 24)

12 (e− 1)3 (e2 + 2 e+ 1)
(372)
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h72 =
7 tan

(
y
2

)3
(15 e4 − 96 e3 − 48 e2 + 32 e+ 24)

12 (e− 1)2 (e3 + 3 e2 + 3 e+ 1)
(373)

h73 =
tan
(
y
2

)
(−27 e4 + 32 e3 + 48 e2 + 32 e+ 8)

(4 e− 4) (e4 + 4 e3 + 6 e2 + 4 e+ 1)
(374)

h74 =
tan
(
y
2

)7
(27 e4 + 32 e3 − 48 e2 + 32 e− 8)

4 (e− 1)4 (e+ 1)
(375)

h75 = tan
(y

2

)8 (
e4 + 4 e3 + 6 e2 + 4 e+ 1

)
− 4 e (376)

h76 = tan
(y

2

)2 (
4 e4 − 8 e3 + 8 e− 4

)
(377)

h77 = tan
(y

2

)6 (
−4 e4 − 8 e3 + 8 e+ 4

)
(378)

h78 = tan
(y

2

)4 (
6 e4 − 12 e2 + 6

)
+ 6 e2 − 4 e3 + e4 + 1 (379)

h79 = tan
(y

2

)
(2 e+ 2)

(
e4 + 4 e3 + 6 e2 + 4 e+ 1

)
(380)

h710 = 2
√
e− 1 (e+ 1)9/2 (381)

where y = π− ε, with ε being an arbitrary positive number that is extremely close to

zero.

Parameter g8:

g8 = −
g81 −

g83+g84+g85+g86+g87+g88
(e cos(y)+1)4 (e2−1)4

192 e5
(382)

where,

193



g81 =

atanh

(
tan( y2 ) (e−1)
√
e2−1

)
g82

(e2 − 1)9/2
(383)

g82 =
(
15120 e8 − 40320 e6 + 48384 e4 − 27648 e2 + 6144

)
(384)

g83 = 3072 y + 8448 e3 sin (y)− 3840 e5 sin (y)− 8016 e7 sin (y)

+ 9120 e9 sin (y)− 1170 e11 sin (y)− 5376 e2 sin (2 y)

− 3328 e3 sin (3 y)

(385)

g84 = 19072 e4 sin (2 y)− 800 e4 sin (4 y) + 12736 e5 sin (3 y)

− 23056 e6 sin (2 y) + 3080 e6 sin (4 y)

− 17808 e7 sin (3 y)

(386)

g85 = 8640 e8 sin (2 y)− 4350 e8 sin (4 y) + 10280 e9 sin (3 y)

+ 2830 e10 sin (2 y)
(387)

g86 = 2575 e10 sin (4 y)− 1250 e11 sin (3 y)− 640 e12 sin (2 y)

− 400 e12 sin (4 y)− 3072 e2 y − 17280 e4 y + 38400 e6 y

− 26880 e8 y + 4608 e10 y

(388)
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g87 = 1152 e12 y − 3072 e sin (y) + 3072 e3 y cos (3 y)

+ 384 e4 y cos (4 y)− 12288 e5 y cos (3 y)

− 1536 e6 y cos (4 y) + 18432 e7 y cos (3 y)

(389)

g88 = 2304 e8 y cos (4 y)− 12288 e9 y cos (3 y)− 1536 e10 y

cos (4 y) + 3072 e11 y cos (3 y) + 384 e12 y cos (4 y)

+ 3072 e y cos (y)
(
e2 − 1

)4 (
3 e2 + 4

)
+ 1536 e2 y cos (2 y)

(
e2 − 1

)4 (
e2 + 6

)
(390)

where y = π− ε, with ε being an arbitrary positive number that is extremely close to

zero.

Parameter h8:

h8 =
h81 +

h83+h84+h85+h86
(e cos(y)−1)4 (e2−1)4

192 e5
(391)

where,

h81 =

atanh

(
tan( y2 ) (e+1)
√
e2−1

)
h82

(e2 − 1)9/2
(392)

h82 =
(
15120 e8 − 40320 e6 + 48384 e4 − 27648 e2 + 6144

)
(393)
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h83 = 3072 y − 8448 e3 sin (y) + 3840 e5 sin (y) + 8016 e7 sin (y)

− 9120 e9 sin (y) + 1170 e11 sin (y)− 5376 e2 sin (2 y)

+ 3328 e3 sin (3 y) + 19072 e4 sin (2 y)− 800 e4 sin (4 y)

− 12736 e5 sin (3 y)− 23056 e6 sin (2 y)

(394)

h84 = 3080 e6 sin (4 y) + 17808 e7 sin (3 y) + 8640 e8 sin (2 y)

− 4350 e8 sin (4 y)− 10280 e9 sin (3 y) + 2830 e10

sin (2 y) + 2575 e10 sin (4 y) + 1250 e11 sin (3 y)

− 640 e12 sin (2 y)− 400 e12 sin (4 y)− 3072 e2 y

− 17280 e4 y + 38400 e6 y − 26880 e8 y + 4608 e10 y

+ 1152 e12 y + 3072 e sin (y)− 3072 e3 y cos (3 y)

(395)

h85 = 384 e4 y cos (4 y) + 12288 e5 y cos (3 y)− 1536 e6 y

cos (4 y)− 18432 e7 y cos (3 y) + 2304 e8 y cos (4 y)
(396)

h86 = 12288 e9 y cos (3 y)− 1536 e10 y cos (4 y)− 3072 e11 y

cos (3 y) + 384 e12 y cos (4 y)− 3072 e y cos (y)(
e2 − 1

)4 (
3 e2 + 4

)
+ 1536 e2 y cos (2 y)

(
e2 − 1

)4(
e2 + 6

)
(397)

where y = π− ε, with ε being an arbitrary positive number that is extremely close to

zero.

Parameter P̃9:
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P̃9 = −423.3e9 + 30.979e8 − 117.56e7 + .3223e6 − 24.755e5

+ .00043348e4 − 7.2094× 10−6e3 + 6.2929×−8 e2

− 2.3158× 10−10e+ 1.972× 10−13

(398)

Parameter g9:

g9 =
g91

g92

− g93 − g94 − g95 + g96

g97 + g98 − g99 + g910

(399)

where,

g91 = atanh

(
tan
(
y
2

)
(2 e− 2) (e4 − 4 e3 + 6 e2 − 4 e+ 1)

2 (e− 1)9/2√e+ 1

)
(
3 e4 + 24 e2 + 8

) (400)

g92 = 4 (e− 1)9/2 (e+ 1)9/2 (401)

g93 =
tan
(
y
2

)5
(−9 e4 + 160 e3 + 72 e2 + 288 e)

12 (e+ 1)3 (e2 − 2 e+ 1)
(402)

g94 =
tan
(
y
2

)3
(9 e4 + 160 e3 − 72 e2 + 288 e)

12 (e+ 1)2 (e3 − 3 e2 + 3 e− 1)
(403)

g95 =
tan
(
y
2

)7
(5 e4 + 32 e3 + 24 e2 + 32 e)

(4 e− 4) (e+ 1)4 (404)

g96 =
tan
(
y
2

)
(−5 e4 + 32 e3 − 24 e2 + 32 e)

(4 e+ 4) (e4 − 4 e3 + 6 e2 − 4 e+ 1)
(405)

g97 = 4 e+ tan
(y

2

)8 (
e4 − 4 e3 + 6 e2 − 4 e+ 1

)
(406)
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g98 = tan
(y

2

)2 (
−4 e4 − 8 e3 + 8 e+ 4

)
(407)

g99 = tan
(y

2

)6 (
4 e4 − 8 e3 + 8 e− 4

)
(408)

g910 = tan
(y

2

)4 (
6 e4 − 12 e2 + 6

)
+ 6 e2 + 4 e3 + e4 + 1 (409)

where y = π− ε, with ε being an arbitrary positive number that is extremely close to

zero.

Parameter h9:

h9 = −h91 − h92 + h93 − h94

h95 − h96 + h97 + h98

−
atanh

(
h99
h910

)
(3 e4 + 24 e2 + 8)

4 (e− 1)9/2 (e+ 1)9/2
(410)

where,

h91 =
tan
(
y
2

)5
(9 e4 + 160 e3 − 72 e2 + 288 e)

12 (e− 1)3 (e2 + 2 e+ 1)
(411)

h92 =
tan
(
y
2

)3
(−9 e4 + 160 e3 + 72 e2 + 288 e)

12 (e− 1)2 (e3 + 3 e2 + 3 e+ 1)
(412)

h93 =
tan
(
y
2

)
(5 e4 + 32 e3 + 24 e2 + 32 e)

(4 e− 4) (e4 + 4 e3 + 6 e2 + 4 e+ 1)
(413)

h94 =
tan
(
y
2

)7
(−5 e4 + 32 e3 − 24 e2 + 32 e)

4 (e− 1)4 (e+ 1)
(414)

h95 = tan
(y

2

)8 (
e4 + 4 e3 + 6 e2 + 4 e+ 1

)
− 4 e (415)

h96 = tan
(y

2

)2 (
4 e4 − 8 e3 + 8 e− 4

)
(416)
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h97 = tan
(y

2

)6 (
−4 e4 − 8 e3 + 8 e+ 4

)
(417)

h98 = tan
(y

2

)4 (
6 e4 − 12 e2 + 6

)
+ 6 e2 − 4 e3 + e4 + 1 (418)

h99 = tan
(y

2

)
(2 e+ 2)

(
e4 + 4 e3 + 6 e2 + 4 e+ 1

)
(419)

h910 = 2
√
e− 1 (e+ 1)9/2 (420)

where y = π− ε, with ε being an arbitrary positive number that is extremely close to

zero.
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B LORENTZ FORCE PERTURBATION COEFFICIENTS

C80 = 2B0(
q

m
)

(
ωea sin i sin θm cos2 i

2

µ(e2 − 1)

)[
1(

ωe
n − 2

) +
e

4
(
ωe
n − 1

) +
3e

4
(
ωe
n − 3

)] (421)

C81 = −2B0(
q

m
)
ωea sin i sin θm sin2 i

2

µ(e2 − 1)

[
1(

ωe
n + 2

) +
e

4
(
ωe
n + 1

) +
3e

4
(
ωe
n + 3

)] (422)

C82 = 2B0(
q

m
)

sin i sin θm
na2(1− e2)

[
eωe
2n

( 2ωe
n − cos i
ω2
ea

3

µ − 1

)
+

e3

(1− e2)
3
2( (

3− ω2
ea

3

µ

)(
1− ω2

ea
3

µ

)(
9− ω2

ea
3

µ

))+ 1

]
(423)

D110 = B0(
q

m
)
ωe sin i sin θm sin2 i

2

4µ

[
− 1

ωe
n + 1

+
1

ωe
n + 3

+
e2

2
(
ωe
n − 1

) +
e3

4
(
ωe
n − 2

)]
+B0(

q

m
)
sin i sin θm

4a3n

[
e

(1− e2)3/2
+
ωe
n

][
e2

4
(
ωe
n + 5

) +
e3

8
(
ωe
n + 6

) − e
2 − e

3

ωe
n + 4

−
eF 2

4 − 2
ωe
n + 3

]
+

B0q sin i sin θm

(
7e3

8 + e
2

)
2m
(
ωe
n + 2

) [
ωe
µ

(
1− cos i

2

)
+

e

2a3n(1− e2)3/2

]
−
B0ωeq sin i sin θm sin2 i

2

(
e2

4 − 2
)

2mµ
(
ωe
n + 1

) −
B0q sin i sin θm sin2 i

2( e2 − e
3)

2a3mn
(424)

D111 = B0
q

m

sin i sin θm cos2 i
2

µ

[
n
(
− e3 + e

2

)
2

+
ωe
(
e2

4 −
3
2

)
2
(
ωe
n − 1

) +
ωe
(
e2

4 −
5
2

)
2
(
ωe
n − 3

)
+
ωe
(
− e3 + e

2

)
2
(
ωe
n − 4

) −
ωe
(

7e3

8 + e
2

)
ωe
n − 2

− e2ωe

8
(
ωe
n + 1

) − e3ωe

16
(
ωe
n + 2

) − e2ωe

8
(
ωe
n − 5

)
− e3ωe

16
(
ωe
n − 6

)] (425)

200



D112 =
B0q sin i sin θm

2a3mn
(
1− e2

) 3
2

[
e5

32
(
ωe
n + 6

) +
e4

8
(
ωe
n + 5

) +
e5

4
(
ωe
n + 4

) +
3e4

8
(
ωe
n + 3

)
+

13e5

32
(
ωe
n + 2

) +
−1 + e2 + e4

4(
ωe
n + 1

) +
1− e2 − e4

4(
ωe
n − 1

) − 13e5

32
(
ωe
n − 2

) − 3e4

8
(
ωe
n − 3

) − e5

4
(
ωe
n − 4

)
− e4

8
(
ωe
n − 5

) − e5

32
(
ωe
n − 6

)]+
B0q sin i sin θm

2a3mn

(
ωe
n

)[
e3

8
(
ωe
n + 4

) +
e2

4
(
ωe
n + 3

)
−

e
2 − e

3(
ωe
n + 2

) +
cos i

2
(
ωe
n + 1

) − e2

4 − 2(
ωe
n + 1

) − e2

4 − 2(
ωe
n − 1

) − cos i

2
(
ωe
n − 1

) − e
2 − e

3(
ωe
n − 2

)
+

e2

4
(
ωe
n − 3

) +
e3

8
(
ωe
n − 4

)]+

(
B0q sin i sin θm

(
7e3

8 + e
2

))(
a3mn

) (426)

D1054 = −
B0ωeq cos θm sin2 i

√
1− e2

(
− e3 + e

2

)
amn

(427)

J1 =
B0q sin θm

a3mn(1− e2)
3
2

[
−

3e4 sin2 i
2

32
(
ωe
n + 6

) − e3 sin2 i
2

8
(
ωe
n + 5

) − 3e4 sin2 i
2

8
(
ωe
n + 4

) − e sin2 i
2

(
3e2

4 + 3
2

)
2
(
ωe
n + 3

)
−

sin2 i
2

(
9e4

16 + 1
)

ωe
n + 2

+
e

4
(
ωe
n + 1

)( cos i
(3

2
− e2

2

)
− 3e2

4
− 3

2

)
−

e3 sin2 i
2

8
(
ωe
n − 1

) − 3e4 sin2 i
2

32
(
ωe
n − 2

)
−

3e4 sin2 i
2n

8ωe

]
+
B0q sin θm cos i sin2 i

2ωe

a3mn2

[
e2

4
(
ωe
n + 4

) − e

2
(
ωe
n + 3

) +
e2

2 + 1
ωe
n + 2

− e

2
(
ωe
n + 1

) +
e2n

4ωe

]
(428)

J2 =
B0q sin θm cos2 i

2

a3mn(1− e2)
3
2

[
3e4

32
(
ωe
n − 6

) +
e3

8
(
ωe
n − 5

) +
3e4

8
(
ωe
n − 4

) +
3e
(
e2

2 + 1
)

4
(
ωe
n − 3

)
+

9e4

16 + 1
ωe
n − 2

+
e

4 cos2 i
2

(
ωe
n − 1

)( cos i
(
− e2

2
+

3

2

)
+

3e2

4
+

3

2

)
+

e3

8
(
ωe
n + 1

) +
3e4

32
(
ωe
n + 2

)
+

3e4n

8ωe

]
+
B0q sin θm cos i cos2 i

2ωe

a3mn2

[
− e2

4
(
ωe
n − 4

) +
e

2
(
ωe
n − 3

) − e2

2 + 1
ωe
n − 2

+
e

2
(
ωe
n − 1

) − e2n

4ωe

]
(429)
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J3 =
B0q sin θm

a3mn(1− e2)
3
2

[
− 3e4

32
(
ωe
n − 4

) − e3

8
(
ωe
n − 3

) − 3e4

8
(
ωe
n − 2

) − 3e
(
1 + e2

2

)
4
(
ωe
n − 1

)
−

3e
(
1 + e2

2

)
4
(
ωe
n + 1

) − 3e4

8
(
ωe
n + 2

) − e3

8
(
ωe
n + 3

) − 3e4

32
(
ωe
n + 4

) − (9e4

16 + 1
)
n

ωe

]
+
B0q sin θm cos iωe

a3mn2[
e2

4
(
ωe
n − 2

) − e

2
(
ωe
n − 1

) − e

2
(
ωe
n + 1

) +
e2

4
(
ωe
n + 2

) +

(
e2

2 + 1
)
n

ωe

]
(430)

H4 = −B0eq cos i sinω sin θm

2a3mn(1− e2)
3
2

[
3e3

8
(
ωe
n + 2

) +
1(

ωe
n + 1

) +
e3

8
(
ωe
n − 2

) +
e3

8
(
ωe
n + 4

)]
− 3B0e

4q cos i sinω sin θm

16a3mωe(1− e2)
3
2

(431)

H5 = −B0eq cos i sinω sin θm

2a3mn(1− e2)
3
2

[
3e3

8
(
ωe
n − 2

) +
1(

ωe
n − 1

) +
e3

8
(
ωe
n + 2

) +
e3

8
(
ωe
n − 4

)]
− 3B0e

4q cos i sinω sin θm

16a3mωe(1− e2)
3
2

(432)

E202 =
B0eq cosω sin θm

2a3mn(1− e2)
3
2

[
3e3

8
(
ωe
n + 2

) +
1(

ωe
n + 1

) +
e3

8
(
ωe
n − 2

) +
e3

8
(
ωe
n + 4

)]
+

3B0e
4q cosω sin θm

16a3mωe(1− e2)
3
2

(433)

E203 = −B0eq cosω sin θm

2a3mn(1− e2)
3
2

[
3e3

8
(
ωe
n − 2

) +
1(

ωe
n − 1

) +
e3

8
(
ωe
n + 2

) +
e3

8
(
ωe
n − 4

)]
− 3B0e

4q cosω sin θm

16a3mωe(1− e2)
3
2

(434)
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I12 =
3B0e

4q cos θm sin i

8am(e2 − 1)
+
B0e

2ωeq sin 2i cos θm
√

1− e2

4amn
(435)

N1 =
B0q sin θm sin2 i

2

a3mn sin i(1− e2)
3
2

[
3e4

32(ωen + 6)
+

e3

8(ωen + 5)
+

3e4

8(ωen + 4)
+

3e( e
2

2 + 1)

4(ωen + 3)

+
1 + 9e4

16

(ωen + 2)
+

3e(1 + e2

2 )

4(ωen + 1)
+

e3

8(ωen − 1)
+

3e4

32(ωen − 2)
+

3e4n

8ωe

]
+
B0q sin θmωe cos i sin2 i

2

a3mn2 sin i[
− e2

4(ωen + 4)
+

e

2(ωen + 3)
−

e2

2 + 1

(ωen + 2)
+

e

2(ωen + 1)
− e2n

4ωe

]
(436)

N2 =
B0q sin θm cos2 i

2

a3mn sin i(1− e2)
3
2

[
− 3e4

32(ωen − 6)
− e3

8(ωen − 5)
− 3e4

8(ωen − 4)
−

3e(1 + e2

2 )

4(ωen − 3)

−
9e4

16 + 1

(ωen − 2)
−

3e(1 + e2

2 )

4(ωen − 1)
− e3

8(ωen + 1)
− 3e4

32(ωen + 2)
− 3e4n

8ωe

]
+
B0q sin θmωe cos i cos2 i

2

a3mn2 sin i[
e2

4(ωen − 4)
− e

2(ωen − 3)
+

1 + e2

2

(ωen − 2)
− e

2(ωen − 1)
+
e2n

4ωe

]
(437)

N3 =
B0q sin θm cos i

a3mn sin i(1− e2)
3
2

[
3e4

8(ωen + 2)
+

3e(1 + e2

2 )

4(ωen + 1)
+

3e(1 + e2

2 )

4(ωen − 1)
+

3e4

8(ωen − 2)

+
e3

8(ωen − 3)
+

3e4

32(ωen − 4)
+

e3

8(ωen + 3)
+

3e4

32(ωen + 4)
+

(9e4

16 + 1)n

ωe

]
+
B0q sin θmωe cos2 i

a3mn2 sin i[
− e2

4(ωen + 2)
+

e

2(ωen + 1)
+

e

2(ωen − 1)
− e2

4(ωen − 2)
−

( e
2

2 + 1)n

ωe

]
(438)

L177 = − B0eq cosω sin θm

2a3mn sin i(1− e2)
3
2

[
3e3n

8ωe
+

3e3

8(ωen + 2)
+

1

(ωen + 1)
+

e3

8(ωen − 2)

+
e3

8(ωen + 4)

]
(439)
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L178 =
B0eq cosω sin θm

2a3mn sin i(1− e2)
3
2

[
3e3n

8ωe
+

3e3

8(ωen − 2)
+

1

(ωen − 1)
+

e3

8(ωen + 2)

+
e3

8(ωen − 4)

]
(440)

J180 = −B0eq cos i sinω sin θm

2a3mn sin i(1− e2)
3
2

[
3e3n

8ωe
+

3e3

8(ωen + 2)
+

1

(ωen + 1)
+

e3

8(ωen − 2)

+
e3

8(ωen + 4)

]
(441)

J181 = −B0eq cos i sinω sin θm

2a3mn sin i(1− e2)
3
2

[
3e3n

8ωe
+

3e3

8(ωen − 2)
+

1

(ωen − 1)
+

e3

8(ωen + 2)

+
e3

8(ωen − 4)

]
(442)

K6π

na2
√

1− e2

[
K11 +K13 sinω

]
= −

( e
2

2 + 1)πB0q cos θm

na3m(1− e2)
3
2

[
2 +

3e2

4

− ωe sin 2i(1− e2)
3
2

n sin i
+
e2 sin2 ω

2

]
(443)

2πK9

na2
√

1− e2

[
K12

2
+K2 sinω +K14 sin2 ω

]
=

πe2B0q cos θm

2na3m(1− e2)
3
2

[
5

2
+ 3 sin2 ω

]
(444)

πK10

na2
√

1− e2

[
K15 −K11 cos 2ω +K13 sinω

]
= − πe2B0q cos θm

4na3m(1− e2)
3
2

[
3e2

4
− 2 cos 2ω
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− 3e2 cos 2ω

4
+
ωe sin 2i(1− e2)

3
2 cos 2ω

n sin i
+
e2 sin2 ω

2

]
(445)

Q142 = −
B0q sin θm cos i sin2 i

2

a3mn sin i(1− e2)
3
2

[
3e4

32(ωen + 6)
+

e3

8(ωen + 5)
+

3e4

8(ωen + 4)
+
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2
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4(ωen + 3)

+
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+
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+
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+
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+
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+
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−
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+
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+
B0ωeq sin i sin θm sin2 i

2

4a3mn2[
− e

2(ωen + 5)
+
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+

e
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4a3mn
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Q143 = −
B0q sin θm cos2 i
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−
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−
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+
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4a3mn
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+
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+
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− B0q sin θmωe cos3 i
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+
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+

e

2(ωen − 1)
− e2

4(ωen − 2)
−

( e
2

2 + 1)n

ωe

]

+
B0q sin i sin θm

a3mn(1− e2)
3
2

[
− e3

32(ωen − 5)
− e3

32(ωen − 3)
+

( e
3

8 + e+ 1
e )

2(ωen − 1)
+

( e
3

8 + e+ 1
e )

2(ωen + 1)

− e3

32(ωen + 3)
− e3

32(ωen + 5)
+

2n

ωe

]
+
B0ωeq sin i sin θm

2a3mn2

[
e

4(ωen − 3)
−

1

2(ωen − 2)
+

( e
2

4 + 2− cos i
2 )

e(ωen − 1)
−

(2 + e2

4 + cos i
2 )

e(ωen + 1)
+

1

2(ωen + 2)
− e

4(ωen + 3)

]
(448)

Q145 =
B0eq cosω sin θm cos i
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[
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+
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+
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]
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2a3mn sin i(1− e2)
3
2

[
3e3n

8ωe
+
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]
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Q147 =
B0eq cos2 i sinω sin θm
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[
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8ωe
+
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+
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]
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Q148 =
B0eq cos2 i sinω sin θm
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+

3e3

8(ωen − 2)
+

1

(ωen − 1)
+

e3

8(ωen + 2)

+
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(K11 +K13 sinω) =
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3
2
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3e2

4
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2

n sin i
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e2 sin2 ω

2

]
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√
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[
K12
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+K2 sinω +K14 sin2 ω

]
= −πe

2B0q cos θm cos i
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3
2

[
5

2
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]
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πQ151
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K15 −K11 cos 2ω +K13 sinω

]
=
πe2B0q cos θm cos i
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4
+
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+
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2

]
(455)

π

na2
√
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[
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]
=

πB0q cos θm
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3
2
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3
2

]
(456)

where, a, e, i, ω represent semi-major axis, eccentricity, inclination, and argument of perigee,

respectively. B0 represents magnetic dipole moment of Earth, q represents charge of the

space object, m represents mass of the space object, n represents orbital mean motion, ωe

represents Earth’s rotation rate, µ represents standard gravitational parameter of Earth,

and θm represents angle between dipole north pole and geographic north pole.
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C ANALYTIC EXPRESSIONS FOR THE ENTRIES OF
SECOND HYBRID MOMENT OF A PARTIALLY

WRAPPED NORMAL DISTRIBUTION

m2(1, 1) =
a

2
[1− exp (−C11) cos 2µ1] (457)

where a = 1− exp(−C11).

m2(1, 2) = −a
2
exp(−C11) sin 2µ1 (458)

m2(1, 3) =
1

2
exp(−1

2
(C11 + 2C12 + C22)) cos (µ1 + µ2)

+
1

2
exp(−1

2
(C11 − 2C12 + C22)) cos (µ1 − µ2)

− cosµ1exp(−C11/2) cosµ2exp(−C22/2) (459)

m2(1, 4) =
1

2
exp(−1

2
(C11 + 2C12 + C22)) sin (µ1 + µ2)

−1

2
exp(−1

2
(C11 − 2C12 + C22)) sin (µ1 − µ2)

− cosµ1exp(−C11/2) sinµ2exp(−C22/2) (460)

m2(1, 5) =
1

2
exp(−1

2
(C11 + 2C13 + C33)) cos (µ1 + µ3)

+
1

2
exp(−1

2
(C11 − 2C13 + C33)) cos (µ1 − µ3)

− cosµ1exp(−C11/2) cosµ3exp(−C33/2) (461)

m2(1, 6) =
1

2
exp(−1

2
(C11 + 2C13 + C33)) sin (µ1 + µ3)
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− 1

2
exp(−1

2
(C11 − 2C13 + C33)) sin (µ1 − µ3)

− cosµ1exp(−C11/2) sinµ3exp(−C33/2) (462)

m2(1, 7) = −exp
(
− C11

2

)
C14 sinµ1 (463)

m2(1, 8) = −exp
(
− C11

2

)
C15 sinµ1 (464)

m2(1, 9) = −exp
(
− C11

2

)
C16 sinµ1 (465)

m2(2, 2) =
a

2

(
1 + exp(−C11) cos (2µ1)

)
(466)

m2(2, 3) =
1

2
exp(−1

2
(C11 + 2C12 + C22)) sin (µ1 + µ2)

−1

2
exp(−1

2
(C11 − 2C12 + C22)) sin (µ2 − µ1)

− cosµ2exp(−C22/2) sinµ1exp(−C11/2) (467)

m2(2, 4) =
1

2
exp(−1

2
(C11 − 2C12 + C22)) cos (µ1 − µ2)

−1

2
exp(−1

2
(C11 + 2C12 + C22)) cos (µ1 + µ2)

− sinµ1exp(−C11/2) sinµ2exp(−C22/2) (468)
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m2(2, 5) =
1

2
exp(−1

2
(C33 + 2C13 + C11)) sin (µ1 + µ3)

−1

2
exp(−1

2
(C33 − 2C13 + C11)) sin (µ3 − µ1)

− cosµ3exp(−C33/2) sinµ1exp(−C11/2) (469)

m2(2, 6) =
1

2
exp(−1

2
(C11 − 2C13 + C33)) cos (µ1 − µ3)

−1

2
exp(−1

2
(C11 + 2C13 + C33)) cos (µ1 + µ3)

− sinµ1exp(−C11/2) sinµ3exp(−C33/2) (470)

m2(2, 7) = exp(−C11/2)C14 cosµ1 (471)

m2(2, 8) = exp(−C11/2)C15 cosµ1 (472)

m2(2, 9) = exp(−C11/2)C16 cosµ1 (473)

m2(3, 3) =
b

2
[1− exp (−c22) cos 2µ2] (474)

where b = 1− exp(−C22).

m2(3, 4) = − b
2
exp(−C22) sin 2µ2 (475)
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m2(3, 5) =
1

2
exp(−1

2
(C22 + 2C23 + C33)) cos (µ2 + µ3)

+
1

2
exp(−1

2
(C22 − 2C23 + C33)) cos (µ2 − µ3)

− cosµ2exp(−C22/2) cosµ3exp(−C33/2) (476)

m2(3, 6) =
1

2
exp(−1

2
(C22 + 2C23 + C33)) sin (µ2 + µ3)

−1

2
exp(−1

2
(C22 − 2C23 + C33)) sin (µ2 − µ3)

− cosµ2exp(−C22/2) sinµ3exp(−C33/2) (477)

m2(3, 7) = −exp
(
− C22

2

)
C24 sinµ2 (478)

m2(3, 8) = −exp
(
− C22

2

)
C25 sinµ2 (479)

m2(3, 9) = −exp
(
− C22

2

)
C26 sinµ2 (480)

m2(4, 4) =
b

2

(
1 + exp(−C22) cos (2µ2)

)
(481)

m2(4, 5) =
1

2
exp(−1

2
(C33 + 2C23 + C22)) sin (µ3 + µ2)

−1

2
exp(−1

2
(C33 − 2C23 + C22)) sin (µ3 − µ2)

− cosµ3exp(−C33/2) sinµ2exp(−C22/2) (482)
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m2(4, 6) =
1

2
exp(−1

2
(C22 − 2C23 + C33)) cos (µ2 − µ3)

−1

2
exp(−1

2
(C22 + 2C23 + C33)) cos (µ2 + µ3)

− sinµ2exp(−C22/2) sinµ3exp(−C33/2) (483)

m2(4, 7) = exp(−C22/2)C24 cosµ2 (484)

m2(4, 8) = exp(−C22/2)C25 cosµ2 (485)

m2(4, 9) = exp(−C22/2)C26 cosµ2 (486)

m2(5, 5) =
c

2
[1− exp (−C33) cos 2µ3] (487)

where c = 1− exp(−C33).

m2(5, 6) = − c
2
exp(−C33) sin 2µ3 (488)

m2(5, 7) = −exp
(
− C33

2

)
C34 sinµ3 (489)

m2(5, 8) = −exp
(
− C33

2

)
C35 sinµ3 (490)
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m2(5, 9) = −exp
(
− C33

2

)
C36 sinµ3 (491)

m2(6, 6) =
c

2

(
1 + exp(−C33) cos (2µ3)

)
(492)

m2(6, 7) = exp(−C33/2)C34 cosµ3 (493)

m2(6, 8) = exp(−C33/2)C35 cosµ3 (494)

m2(6, 9) = exp(−C33/2)C36 cosµ3 (495)

m2(7, 7) = C44 (496)

m2(7, 8) = C45 (497)

m2(7, 9) = C46 (498)
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m2(8, 8) = C55 (499)

m2(8, 9) = C56 (500)

m2(9, 9) = C66 (501)
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