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ABSTRACT

Li, Yuanchen Ph.D., Purdue University, August 2020. Interaction Among Supply
Chains: Consumers, Firms and Policymakers. Major Professor: Qi Feng.

This study explores the vertical relationships in the supply chain at three different

levels, namely, firm-consumer interface, supplier-buyer interface, and firm-government

interface. We provide a brief description of the results obtained for the specific prob-

lems considered in this study.

The firm-consumer interface is examined in Chapter 2. We explore firms’ selling

strategy when dynamically competing for a common stream of consumers. In the

situation of pure price competition, a commonly studied case, it is known that the

seller with a higher stock level can compete more effectively by forcing the seller with

a lower stock level to sell out first and enjoy a monopoly power afterward. We show

that when the sellers are open to price bargaining as a way of attracting buyers, the

competition equilibrium can exhibit different outcomes. When the overall stock held

by the sellers is limited, there is a good chance that both sellers deplete the inventories

before the end of the selling season. In this case, an incoming buyer would prefer a

high inventory seller, with whom he can bargain down the price. Interestingly, such

a phenomenon only appears when the length of selling season is long enough. Thus,

our study highlights the unique role of bargaining in consumer markets, as well as

the importance of time horizon in characterizing equilibrium for dynamic games.

The supplier-buyer interface is studied in Chapter 3. In recent years, an increasing

number of studies have applied the Nash bargaining (NB) solution to study channel

relationships. However, this solution concept builds on an unrealistic axiom of inde-

pendence of irrelevant alternatives. We demonstrate that, indeed, the NB solution

can produce unreasonable outcomes in vertical negotiations. For example, a supplier
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negotiating with a monopoly retailer can end up making a higher profit than the one

negotiating with a retailer facing potential competitions. To address this issue, we

examine the Kalai-Smorodinsky (KS) solution as an alternative. Our analysis sug-

gests that in competing supply chains, the KS solution appropriately captures the

negotiation power shift induced by the decision ownership, the negotiation sequence,

the vertical relationship, the competition intensity, the contract contingency, and the

contract type. This is the first time the KS solution concept is applied to supply

chain negotiations.

The firm-government interface is explored in Chapter 4. From the policymakers’

perspective, incentives firms actions toward increasing the product consumption for

the needy group or increasing social welfare has a major influence in many supply

chains. For example, agricultural products are subsidized by many governments. In

this study, we analyze the design of government subsidy programs to induce socially

improved firm decisions. We show that subsidizing on production input can lead to

a more balanced distribution of market shares and firm profits than subsidizing on

production output. Moreover, firms with efficient production technology prefer output

subsidy, while those with inefficient production technology favor input subsidy.
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1. INTRODUCTION

This study addresses several emerging issues in supply chain management. On the one

hand, bargaining is commonly observed in practice. In business-to-business transac-

tions, deals are reached after rounds of negotiations. For consumer products, bargain-

ing is also commonly observed for large ticket items (for example, car and furniture

selling). On the other hand, subsidy programs are widely applied in both developing

and developed countries to encourage consumption of products that generate positive

economical, environmental and social benefits. In this dissertation, we examine in-

teractions among supply chain in different contexts, namely, firm-consumer interface,

supplier-buyer interface, and firm-government interface, and understand the role of

negotiation and subsidy programs in these interactions.

We first study competing firms’ dynamic pricing strategies considering the possi-

bility of bargaining. Then, we consider the negotiation outcomes in two-tier supply

chains by applying different bargaining solution concepts. Furthermore, we consider

subsidy programs for producers in a fragmented market. A brief introduction of this

dissertation is provided below.

1.1 Firm-Consumer Interface

When firms post prices to sell their products in a competitive market, buyers often

seek to bargain down the prices. The existing studies on dynamic competition, how-

ever, focus on firms’ dynamic pricing strategies without considering the possibility

of bargaining. We model a random stream of buyers with heterogeneous valuations

who may choose to negotiate for a discount from a posted price. When bargaining is

allowed, a seller firm’s competing strategy depends not only on her reservation value

(i.e., her gain from an unsold item when losing the current buyer to the opponent)



2

but also on her disagreement point (i.e., the value of an unsold item when the nego-

tiation with an arriving buyer breaks down). We show that the reservation values

and the disagreement points can play opposite roles in competition—The seller firms’

posted prices are increasing in their reservation values but are decreasing in their dis-

agreement points. In general, a seller becomes more aggressive in price competition

when her reservation value becomes lower. However, it is not always the case that

a seller with a lower reservation value can successfully win the deal from an arriving

buyer, as it is in pure price competition. Because of the possibility of bargaining,

the buyer may end up purchasing from a seller who has a higher inventory level and

a higher reservation value when the seller’s disagreement point is lower than that of

her opponent. Interestingly, such an equilibrium outcome can only arise when the

selling season is sufficiently long. Our analysis highlights the intriguing role played

by negotiation in dynamic competition for sequential selling.

1.2 Supplier-Buyer Interface

Supply chain contract negotiation has gained increasing attention in recent years,

and the studies involving negotiations in the operations literature almost exclusively

apply the concept of the Nash bargaining (NB) solution. The NB solution, however,

is derived based on the axiom of independence of irrelevant alternatives (IIA), an

unrealistic assumption widely criticized in economics. Indeed, our analysis suggests

that the NB solution can lead to unreasonable negotiation outcomes in competing

supply chains. As an alternative, the Kalai-Smorodinsky (KS) solution has been

applied in many fields, but has not been introduced to the supply chain contexts. We

apply the KS solution to study contract negotiations in competing supply chains, and

analyze its connection to and difference from the NB solution. In particular, we show

that, compared with the NB solution, the KS solution appropriately captures the

negotiation power shift induced by the decision ownership, the negotiation sequence,
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the vertical relationship, the competition intensity, the contract contingency, and the

contract type.

1.3 Firm-Government Interface

Subsidy programs for agricultural products are primarily aimed toward increasing

the market output. Two types of aids are commonly used in agricultural industry.

Planting subsidy reduces input cost for farmers and harvesting subsidy reduces cost

during the output collection and distribution process. The effects of two subsidies

on farmers’ output decisions as well as their welfare distribution, however, are not

well understood. We model a fragmented market in which farmers differ in their

productivity levels. The government can offer a combined subsidy (i.e., farmers get

payments for both plantation and harvesting) or a selective subsidy (i.e., farmers

each choose either payment). We first observe that under either combined subsidy

or selective subsidy, a higher harvesting subsidy widens the gaps among the farmers

in both their outputs and profits, while a higher planting subsidy narrows the gap

in farmers’ outputs when the plantation is not overly subsidized. Moreover, farmers’

outputs are more evenly distributed under the combined subsidy than under the

selective subsidy. Second, when the government attempts to achieve the target output

level with minimum budget, the combined subsidy is always preferred regardless of

target output level. However, the combined subsidy requires excessive needed input

and induces undesirable social welfare when the target output level is not far from

the overall output without subsidy.

1.4 Organization of the Dissertation

In Chapter 2, we consider two firms competing for a stream of incoming buyers

with the possibility of bargaining. We formulate a finite-time stochastic dynamic

game and characterize the competition equilibrium. Insights are obtained through a

detailed discussion of a four-period game.
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In Chapter 3, we consider two-tier supply chains consisting of one or two suppli-

ers selling products to one or two retailers. We derive and compare the negotiation

outcomes by applying the Nash and Kalai-Smorodinsky bargaining solutions, respec-

tively.

In Chapter 4, we consider a static competition in which farmers vary from one

another in their productivity levels. The government, aiming toward increasing the

overall market output, initiates a farmer subsidy program. We examine the incen-

tives offered via various subsidy programs on farmers’ output decisions and resulting

welfare allocation.

Chapter 5 concludes the dissertation and provides suggestions for future research.

Chapter 2 is based on Feng et al. (2020a) and Chapter 3 is based on Feng et al.

(2020b). The main results in Chapter 4 are from Feng et al. (2020c). I would like to

express my sincere appreciation to my co-authors, Professors Qi Annabelle Feng, J.

George Shanthikumar and Yifan Wu for their invaluable contributions.
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2. FIRM-CONSUMER INTERFACE: COMPETITIVE

REVENUE MANAGEMENT WITH SEQUENTIAL

BARGAINING

2.1 Synopsis

Sequential selling in a competitive market is commonly observed in practice. As

customers arrive at the market, firms often dynamically adjust their selling strate-

gies to effectively compete against one another and to earn revenue. Understanding

firms’ decisions of sequentially selling their capacities or inventories is the central

theme of revenue management (Bodea and Ferguson 2014, Phillips 2005, Talluri and

Ryzin 2004), and there is a growing attention paid to analyzing such decisions in a

competitive environment (e.g., Chen and Chen 2015, Gallego and Hu 2014, Mart́ınez-

de-Albéniz and Talluri 2011). The studies in this area heavily focus on firms’ dynamic

pricing strategies.

When firms set public posted prices, buyers often seek to bargain down the prices.

In most of the business-to-business transactions, deals are reached through rounds of

negotiations between sellers and buyers. In consumer markets, bargaining is also

prevalent for large ticket items (e.g., houses, cars, furniture, and expensive electron-

ics) and services (e.g., cleaning, moving, and maintenance). Bargained discounts off

posted prices are well documented in automobile, real estate, and retail industries (see,

e.g., Gill and Thanassoulis 2013, and references herein). Allowing for bargaining down

the posted prices, the seller firms may successfully discriminate the buyers, as buyers

with different willingness to pay would settle different negotiated prices (Arnold and

Lippman 1998, Feng and Shanthikumar 2018a). The implication of buyer negotiation

on seller firms’ competition dynamics, however, is not well understood.
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When a single firm dynamically sells to a stream of customers, the selling strategy

depends critically on the seller firm’s disagreement point (i.e., her future gain on

an unsold item when the negotiation with the buyer breaks down). As suggested

by Feng and Shanthikumar (2018a), the monopoly seller firm’s disagreement point

is lower with a higher stock level and with a shorter selling season left. A lower

disagreement point weakens the seller’s bargaining position and reduces the negotiated

price, likely lowering the final trade price. When there are competing sellers, however,

the competitive decisions also depend on the seller firms’ reservation values (i.e., their

future gains when losing the current customer to the competitor). Interestingly, the

reservation values and disagreement points affect the sellers’ posted prices in the

opposite directions—A seller firm posts a higher price when her reservation value

becomes larger, or when her disagreement point becomes smaller.

Generally speaking, the intensity of competition between the sellers is determined

by their reservation values. The lower the reservation value is, the more aggressive

the seller is in competition. A seller with an extremely low reservation value may even

price below her disagreement point. In such a situation, an arriving buyer chooses to

purchase at the posted price without entering negotiation. In the special case where

both sellers have the same disagreement points, the one with a lower reservation

value always posts a price that is no higher than that with a higher reservation value.

However, posting a price lower than the opponent does not guarantee that the seller

wins the competition. Because of the possibility of bargaining, the posted prices

become irrelevant to the final trade price if the posted prices are above the arriving

buyer’s valuation. In this case, the buyer becomes indifferent between the sellers

despite the difference in their posted prices.

When the two sellers have different disagreement points, interestingly, the seller

with a lower reservation value may post a price higher than her opponent who has

a higher reservation value. This happens when the former has a lower disagreement

point than her opponent. A lower disagreement point means more trade surplus is

available for the buyer when negotiating with that seller. The seller, in turn, can post
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a higher price and yet stay attractive to an arriving buyer. We also find that, while

in some cases the buyer chooses the seller with a lower inventory level as in the case

of pure price competition, there are exceptions. Such exceptions occur when both

sellers have a good chance to deplete their stocks by the end of the selling season.

The competition between the sellers is softened and both sellers post high prices.

High posted prices induce negotiation by an arriving buyer, who would choose the

seller with more items and thus with a lower disagreement point. It is no longer the

case that the seller with a lower initial inventory level can deplete her stocks and then

the one with a higher initial inventory level sells at the monopolist prices, as in the

situation of pure price competition (Mart́ınez-de-Albéniz and Talluri 2011). These

observations highlight that the competition dynamics in a market with bargainers

can be significantly different from those in a market without bargainers.

The remainder of the paper is organized as follows. In Section 2.2, we review

the related literature and articulate our contributions. The problem of dynamic

competition is described in Section 2.3. In Section 2.4, we present two benchmark

models, namely, the one-seller case and the one-period case of our problem. In Section

2.5, we develop a detailed formulation of the problem and characterize the competition

equilibrium. We conclude in Section 2.6. Proofs of all formal results are relegated to

the appendix A.

2.2 Literature Review

Our research is related to three streams of literature. The first stream concerns the

comparison between pricing and bargaining under a static competition, the second

stream studies bargaining under a monopoly sequential selling, and the third stream

focuses on dynamic price competition.

The comparison between pricing and bargaining as alternative selling mechanisms

that firms use to compete for customers has been extensively researched in marketing

and economics. For example, Bester (1993) models multiple symmetric sellers, who
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each decide their own product quality, compete for a single buyer. The buyer only

observes the product quality after visiting a seller and incurs a switching cost for vis-

iting each additional seller. Bester shows that all sellers should choose to bargain, as

opposed to setting a take-it-or-leave-it price, when the buyer’s switching cost is high

and the sellers’ bargaining power vis-à-vis the buyer is large. Bester (1994) studies

a variation of his earlier model by assuming that sellers provide the same product

quality but are heterogeneous in their cost to preclude bargaining. In equilibrium, all

sellers choose bargaining over pricing when it is not costly for the buyer to switch.

Adachi (1999) studies two sellers competing for buyers uniformly located over the

Hotelling line and finds sellers choose pricing in equilibrium when the buyers’ valu-

ation for the product is sufficiently high. Desai and Purohit (2004) incorporate the

fact that not all buyers may like to negotiate in Adachi’s model. They show that

sellers make more profit by pricing than by bargaining when a significant portion of

buyers are bargainers. Gill and Thanassoulis (2009, 2013) consider price competition

among multiple sellers who also allow buyers to bargain. They conclude that with an

increased portion of bargainers in the market, competing sellers would increase their

posted prices, resulting in reduced social welfare.

None of the aforementioned studies consider the effect of inventory on seller com-

petition. The role of inventory in competition has been a focus by many researchers

in the area of operations management (see, e.g., Aksoy-Pierson et al. 2013, Bernstein

and Federgruen 2004, 2005, Netessine and Shumsky 2005). The operations literature,

however, does not consider buyer-seller interaction through bargaining. Moreover, all

these studies assume a one-time competition among the sellers. In such settings, it is

without loss of generality to assume that a seller’s reservation value (i.e., her profit

when losing a buyer to her opponent) or her disagreement point (i.e., her profit in

the event of negotiation breakdown) is constant and can be normalized to zero. As

our discussion unfolds, it will become clear that reservation values and disagreement

points play crucial roles in determining sellers’ competition strategies in sequential

selling processes.
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Bilateral bargaining using the Nash bargaining solution (Nash 1950) has gained

increasing interests in supply chain research (see, e.g., Chu et al. 2019, Feng and Lu

2013a, Hsu et al. 2016, Wang et al. 2017). Allowing bargaining as an alternative

selling strategy in sequential trades has been analyzed for the case of a monopoly

seller. Wang (1995) considers a seller with one item to sell over an infinite time hori-

zon. He finds it always profitable for the seller to be open to bargain with arriving

buyers. Kuo et al. (2011) extend Wang’s model by considering a firm selling multiple

units over a finite horizon and conclude that the seller should (not) allow bargaining

when she has a large (small) inventory to sell over a short (long) horizon. Arnold

and Lippman (1998) provide an alternative formulation of Wang’s model by setting

the seller’s disagreement point for bargaining as her value of keeping the item for a

potential future sale. Following the notion of Arnold and Lippman (1998), Feng and

Shanthikumar (2018a) study the version of the problem with a finite selling season.

They show that when the buyer’s valuation is increasing (decreasing) in a certain

stochastic order, which they term the scaled pricing order, the seller should choose

pricing (bargaining) when she has a small (large) stock to sell over a long (short) hori-

zon. All these studies assume complete information and apply the Nash bargaining

solution (Nash 1950) to determine the negotiated prices. When the seller and buyers

possess private information of their trade values (see, e.g., Ayvaz-Cavdaroglu et al.

2016, Bhandari and Secomandi 2011), the outcome of negotiation is often derived

using the direct mechanism proposed by Myerson (1983). In this context, however,

there has not been any discussion on how the seller and the buyers may credibly

update their beliefs of others’ valuations based on common information (e.g., time

periods, past sales). It is important to note that a monopoly seller firm’s reservation

value equals her disagreement point in a sequential selling process. It would not be

the case in general when seller competition is introduced.

There is a growing body of literature on inventory-based or capacity-based dy-

namic price competition (see the survey by Chen and Chen 2015). One common

approach is to consider a continuous flow of consumers and formulate a differential
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game (e.g., Chintagunta and Rao 1996, Currie et al. 2008, Feichtinger and Dockner

1985, Gallego and Hu 2014, Mookherjee and Friesz 2008, Xu and Hopp 2006). An

alternative approach to tackle the problem uses robust optimization (e.g., Adida and

Perakis 2010, Perakis and Sood 2006). Both methods adopt the concept of open-loop

equilibria to preserve tractability. The equilibrium price paths are then specified as

functions of time but not those of the system states (e.g., stock levels). Thus, these

approaches do not provide much understanding on the role of inventory in dynamic

competition. Dudey (1992) studies two sellers with finite stocks competing for a fixed

size of homogeneous buyer population. The buyers are assumed to have a constant

common valuation of the product. In contrast to Bertrand-Edgeworth’s static model,

in which a pure equilibrium does not exist in general, Dudey proves the existence of

a pure equilibrium under any stock levels. Mart́ınez-de-Albéniz and Talluri (2011)

extend Dudey’s model by considering an uncertain size of buyer population and con-

clude that the seller with a lower stock level has a lower reservation value and first

depletes her inventory before the opponent can make a sale. Lin and Sibdari (2009)

consider multiple sellers with finite stocks competing over a finite horizon. Their

numerical analysis suggests that the seller with a higher stock level posts a higher

price. The sellers in all these studies post take-it-or-leave-it prices. There is a lack

of understanding of how allowing buyer negotiation may change the competition dy-

namics among the sellers. Analysis from our model reveals that when allowing for

bargaining, the seller with a higher stock level may win an arriving buyer. The intri-

cacy of such an equilibrium outcome is due to the fact that a seller’s reservation value

of losing a buyer is different from her disagreement point for negotiation breakdown

in the context of dynamic competition.
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2.3 The Problem

We consider two competing seller firms, indexed by 1 and 2, selling a certain

product to a stream of incoming buyers over a finite selling season under complete

information.

The Buyer Stream. A stream of potential buyers arrives sequentially to purchase

the product during the selling season. The selling season is divided into small enough

time intervals of equal length so that there can be at most one buyer arrival in each

time interval. We use t ∈ {T, T − 1, · · · , 1} to index the time intervals, where T is

the length of the selling season. We assume that the probability of a customer arrival

is time homogeneous and is denoted by λ ∈ (0, 1]. It is, however, straightforward to

extend our analysis to time-dependent or Markov-modulated arrivals, with which the

key insights obtained from the model remain unchanged though additional Markov

state variables appear in the profit functions. The buyers are heterogeneous in their

willingness to pay. A potential buyer’s valuation of the product is a random variable

R. The seller firms observe the value of R = r upon a buyer’s arrival. This as-

sumption, though ignores the possibility of information asymmetry and misreporting

incentive, is a good approximation in certain applications. For example, in car selling

processes, a salesperson normally starts conversations with an arriving buyer about

the latter’s planned budget, use of the car, and financing options. Such information

normally allows an experienced salesperson to have a good idea about the buyer’s val-

uation before price negotiation starts. We assume that 0 ≤ r ≤ R ≤ r̄, allowing the

possibility of r̄ =∞. Let FR(·) denote the distribution function and fR(·) the density

function of R. We also use F̄R(·) = 1 − FR(·) to denote the survival function and

hR(·) = fR(·)/F̄R(·) to denote the hazard rate function of R. An arriving buyer would

choose to purchase the product if and only if he obtains a positive trade surplus, i.e.,

the selling price is below his valuation. Without loss of generality, we assume that the

buyer, if choosing not to purchase, obtains zero value. We shall note that the existing

literature commonly assumes a constant common buyer’s valuation (e.g., Anton et al.
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2014, Dasci and Karakul 2009, Mart́ınez-de-Albéniz and Talluri 2011). Alternatively,

there are some studies that assume uniformly distributed buyer’s valuation (e.g., Liu

and Zhang 2013, Mantin et al. 2011). We do not assume any specific valuation dis-

tribution for our analysis. All we require is that the distribution has an increasing

hazard rate hR(τ). This condition, satisfied by most commonly used distributions,

allows one to establish the (quasi-)concavity of the sellers’ profit functions and thus

ensures a unique price as the best response in competition.

The Selling Mechanisms. At the beginning of each period, seller j posts a price

sj, j ∈ {1, 2}, and is open to bargain with an arriving buyer. An arriving buyer

can choose to purchase from either seller at the posted price sj, to purchase after

negotiating a price sBj with either seller, or to walk away. We assume that the buyer’s

bargaining power is θ ∈ (0, 1) and each seller’s is (1− θ). The sellers’ marginal costs

of offering the product, which may include material and labor costs, are assumed to

be zero. Consideration of positive marginal costs does not change the main insights

derived from our analysis.

The Seller Competition. At the beginning of each period, the seller firms each

review their stock levels, denoted by (n1, n2), based on which they post selling prices s1

and s2, respectively, and both are open for negotiation. An arriving buyer, observing

the posted prices, chooses to visit one or neither of the sellers. The buyer may bargain

with the chosen seller, expecting to obtain a lower trade price than the posted price.

In the event of negotiation breakdown, the buyer can always purchase the product

at the price posted by the chosen seller. The buyer has the option to walk away at

any time. In situations where a buyer finds himself indifferent between the sellers, we

assume that the buyer chooses either seller with equal probability.

The Sequence of Events. At the beginning of each period t ∈ {T, T − 1, . . . , 1},

when there are t periods to the end of the selling season, the following events happen

in sequence:

1. Each seller reviews her stock level nj and decides a price sj, j ∈ {1, 2}.
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2. With probability λ, a buyer arrives. Based on the prices posted by the sellers,

the buyer may choose to visit one of the sellers or neither.

3. Depending on the buyer’s valuation, the negotiated price of the product is

determined. The buyer either makes a purchase or walks away.

For ease of exposition, we assume that any leftover item at the end of the selling

season, i.e., t = 0, has no value to the sellers. Our analysis can be easily extended to

the case allowing for positive salvage values.

We would like to point out that the buyer in our model would carefully evaluate

his potential options when choosing a seller to interact with. This is suitable for the

situation where the sellers’ information is easily accessible by the buyer, and the cost

of visiting a seller is significant. Thus, a rational buyer would carefully evaluate the

potential purchase options, choose one seller to interact with and strike a deal, and

avoid the additional cost of switching between the sellers. The high cost of switching

can also due to the nature of the transaction. For example, if the purchase of the

product requires significant customization based on the buyer’s request, it can be

costly to go through that process several times. Moreover, if the buyer were to freely

negotiate back and forth with both sellers and leverage one bargaining against the

other, the negotiated prices would equal the sellers’ reservation values (i.e., their

values of keeping an item while losing the buyer to their opponent). This is an

analytically uninteresting outcome and is rarely observed in reality. The reason that

such an outcome is unlikely in practice is two-fold. First, a seller may often restart,

rather than resume, a negotiation with a returning buyer because a different seller

agent is working with the buyer or the trading conditions may have changed by the

time the buyer returns. Second, the buyer always pays time and effort to visit a seller

for negotiation. Our way of modeling essentially entails a significant cost of switching

sellers, as such the buyer would assess his options before choosing a seller to avoid

the switching costs.
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We use a superscript ∗ to denote the quantities derived in equilibrium. Like in

many models with price competition, a pure strategy equilibrium may not exist when

one party can always price lower than the other party. In this case, we use the

convention of the ε-equilibrium (see, e.g., Allon and Gurvich 2010, Dixon 1987, Lu

et al. 2009, Radner 1980, Tijs 1981), which allows an equilibrium to arise with one

party’s price lower than the other’s by some small positive value ε.

Before analyzing the above dynamic competition problem, we present some key

findings from two benchmark models in the next section. These benchmark models

become building blocks for formulating the dynamic problem and allow us to obtain

clear insights into the competition dynamics in section 2.5.

2.4 The Benchmark Models

In this section, we briefly summarize the observations from two benchmark models,

one concerning a monopoly seller in a dynamic setting (section 2.4.1) and the other

concerning two competing sellers in a static setting (section 2.4.2).

2.4.1 A Dynamic Model with a Monopoly Seller

When a single seller monopolizes the market, it is intuitive that a seller would

never sell an item at a price below the value of that item. This value, denoted by

w, is the seller’s reservation value. Given the dynamic selling process, the seller’s

reservation value at a given time depends on the number of items the seller has to

sell before the end of the selling season, the seller’s future decisions and the choices

of potential future buyers. By the end of the selling season, there is no future selling

opportunity and the seller’s reservation value would simply be the salvage value of

the remaining items. As we mentioned in section 2.3, we assume this value to be

zero and this assumption is not critical to our analysis of the dynamic model. The

seller posts a price s and the buyer may choose to purchase at this price, to enter
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negotiation, or to walk away. If negotiation takes place and a negotiated price sB is

agreed upon, the buyer obtains a value of r− sB and the seller obtains a value of sB.

The negotiation outcome critically depends on the trading parties’ disagreement

points. The disagreement points come from the options the parties’ have when choos-

ing not to agree on a deal. For the buyer, there are two options, purchasing at the

posted price to obtain r− s or walking away to obtain 0. Thus, the buyer’s disagree-

ment point is (r− s)+. For the seller, the only option is to walk away from the buyer,

as the seller cannot force the buyer to purchase. As a result, the seller’s disagreement

point is always v = w. The trade can then be summarized in Table 2.1.

Table 2.1.
Trading parties’ profits in a single-unit trade under a bargained price sB.

Buyer Seller

Trade Profit r − sB sB

Disagreement Point (r − s)+ v

Trade Surplus r − sB − (r − s)+ sB − v

By Nash (1950), the negotiated price sB should maximize the following Nash

product:

(sB − v)1−θ(r − sB − (r − s)+)θ.

This leads to a negotiated price of sB(r, s, v) = (1− θ)(r ∧ s) + θv and the expected

seller’s profit from a single-unit trade of

Ψ(v) = max
s≥v
{E[I{R<v}v] + E[I{v≤R}sB(R, s, v)]}. (2.1)

Lemma 2.4.1 (Price of the Monopoly Seller) The seller maximizes her single-

unit trade profit by posting a price s∗ = r̄, which makes the buyer’s disagreement point

zero.

Lemma 2.4.1 suggests that the monopoly seller would post a price that is unac-

ceptable to (almost) all buyers. This is because in any successful negotiation, the
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buyer’s surplus is no less than what he obtains by purchasing at the posted price. As

a result, the buyer always chooses to negotiate. The seller, in turn, posts the highest

possible price to keep the buyer’s disagreement point as low as possible, so that she

can maximize her trade surplus.

To derive the seller’s disagreement point and to analyze the seller’s dynamic de-

cisions, we follow the development by Feng and Shanthikumar (2018a). Let V (t, n)

denote the seller’s optimal expected profit with a stock level n when there are t pe-

riods left before the end of the selling season. Then the seller’s disagreement point

in the single-unit trade in period t is essentially her expected profit of carrying that

additional unit to the next period, i.e.,

v = V (t− 1, n)− V (t− 1, n− 1).

With this relation, we can write the recursive equation for the seller’s expected profit

as

V (t, n) = λ

(
Ψ
(
V (t− 1, n)− V (t− 1, n− 1)

)
+ V (t− 1, n− 1)

)
+ (1− λ)V (t− 1, n).

The first term corresponds to the situation when a buyer arrives. In this case, the

seller’s profit consists of her single-unit trade profit in period t and her future profit of

remaining units in period t−1. The second term is the seller’s profit if no buyer arrives.

The terminal conditions of the dynamic program are V (0, n) = 0 and V (t, 0) = 0.

A version of this problem has been analyzed in detail by Feng and Shanthikumar

(2018a). The key modeling difference lies in that they do not allow the buyer to

purchase at the posted price in the event of negotiation breakdown. Nevertheless, we

can obtain very similar observations here. In particular, a unit is worth more to the

seller when the seller has a lower stock level and/or when the seller has a longer time

to sell the items. This observation is formalized in the next lemma.

Lemma 2.4.2 (Feng and Shanthikumar (2018a)) V (t, n) ≥ 0 is increasing in

n and t, and V (t− 1, n)− V (t− 1, n− 1) is decreasing in n and increasing in t.
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The results in Lemma 2.4.2, though intuitive, would not always hold once com-

peting sellers are introduced to the market, as we will see from our discussions in

section 2.5.

2.4.2 A Static Model with Competing Sellers

A well-studied setting of seller competition is the single-period problem. The two

sellers compete to sell to a single buyer. Seller j makes a reservation value wj if the

buyer chooses not to purchase from him. This value reflects seller j’s outside option

(e.g., selling the item in the secondary market).

Seller j sets a competing price sj, j ∈ {1, 2}. The buyer, knowing the prices,

may choose one of the two sellers or neither. When seller j is chosen, the buyer may

purchase at the price sj or enter negotiation with seller j. Following the discussion

in section 2.4.1, the buyer’s disagreement point in the negotiation with seller j is

(r − sj)+. When walking away from the buyer in the negotiation, seller j can only

make a value of the item from the outside option, i.e., vj = wj. Without loss of

generality, suppose vj ≤ vi. Following a similar argument as that for Table 2.1 in the

previous subsection, we can see that a buyer would reach a negotiated price of

sBj(r, sj, vj) = (1− θ)(r ∧ sj) + θvj (2.2)

with seller j. Clearly, seller j should never price sj below vj because the seller would

be better off not selling the item than selling at a price below vj. It then follows from

the above expression sBj(r, sj, vj) ≤ sj and thus an incoming buyer should always

negotiate to obtain a lower trade price.

The buyer’s choice between the sellers essentially depends on the comparison

between the anticipated trade prices, which depend on the sellers’ disagreement points

and the prices posted by the sellers. Specifically, the buyer evaluates the sign of

∆ = sBj(r, sj, vj)− sBi(r, si, vi) = (1− θ)(r ∧ sj − r ∧ si)− θ(vi − vj). (2.3)
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The buyer chooses seller j (i) if ∆ is negative (positive), and is indifferent between

the sellers if ∆ is zero. Depending on whether the sellers have the same disagreement

points, we have two cases to consider, which are depicted in Figure 2.1.

Symmetric Disagreement Points  (ݒ௝ ൌ  (௜ݒ

No purchase
ݒ ௝ݏ

Buy through bargaining; 
indifferent between sellers

Buy through bargaining 
with seller j

௜ݏ ݎ̅

ݒ
No purchase Buy through bargaining; indifferent between sellers

௝ݏ ൌ ௜ݏ ݎ̅

ݒ
No purchase

Buy through bargaining; 
indifferent between sellers

Buy through bargaining 
with seller i

௜ݏ ௝ݏ ݎ̅

Asymmetric Disagreement Points  (ݒ௝ ൏  (௜ݒ

No purchase
௝ݒ ௝ݏ

Buy through bargaining with seller j

௜ݏ ൅
ఏ ௩೔ି௩ೕ
ଵିఏ

ݎ̅

௝ݒ

No purchase
Buy through bargaining 

with seller i
௝ݏ ௜ݏݎ̅ ൅

ఏ ௩೔ି௩ೕ
ଵିఏ

Buy through bargaining 
with seller j

௝ݒ

No purchase
Buy through bargaining; 
indifferent between sellers

௝ݏݎ̅ ൌ ௜ݏ ൅
ఏ ௩೔ି௩ೕ
ଵିఏ

Buy through bargaining 
with seller j

Figure 2.1. Summary of buyer’s choice in the static competition, as
characterized in (2.4) and (2.6).

If the sellers’ disagreement points happen to be the same, i.e., vj = vi = v, we can

easily derive

∆


> 0 if si < r ∧ sj,

< 0 if sj < r ∧ si,

= 0 if si = sj or r ≤ si ∧ sj.

(2.4)

From the above relation, the buyer would choose seller i in the first case, seller j in

the second case, and either seller with equal chance in the last case. Of course, the

sellers would not sell an item to a buyer whose valuation is below the disagreement

point v. Then, based on the left panel of Figure 2.1, we can write seller j’s pricing

problem as

ΨS
j (v, si) = max

sj≥v

{
E[I{R<v}∪{si<R∧sj}v] + E[I{sj<R∧si}sBj(R, sj, v)]

+E

[
I{v≤R}∩{si=sj or R≤si∧sj}

sBj(R, sj, v) + v

2

]}
. (2.5)

Seller i’s problem can be written symmetrically.
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When the sellers’ disagreement points are not the same, i.e., vj < vi, we can derive

from (2.3)

∆


> 0 if r ∧ sj > si +

θ(vi−vj)
1−θ ,

< 0 if r ∧ sj < si +
θ(vi−vj)

1−θ ,

= 0 if r ∧ sj = si +
θ(vi−vj)

1−θ .

(2.6)

Then, based on the right panel of Figure 2.1, the sellers’ pricing problems for vj < vi

can be written as

ΨA:s
j (vj, vi, si) = max

sj≥vj

{
E
[
I
{R<vj}∪{R∧sj>si+

θ(vi−vj)

1−θ }
vj
]

+E
[
I
{vj≤R∧sj<si+

θ(vi−vj)

1−θ }
sBj(R, sj, vj)

]
+E

[
I
{vj≤R∧sj=si+

θ(vi−vj)

1−θ }

sBj(R, sj, vj) + vj
2

]}
, (2.7)

ΨA:b
i (vi, vj, sj) = max

si≥vi

{
E
[
I
{R<vj}∪{vj≤R∧sj<si+

θ(vi−vj)

1−θ }
vi
]

+E
[
I
{R∧sj>si+

θ(vi−vj)

1−θ }
sBi(R, si, vi)

]
+E

[
I
{vj≤R∧sj=si+

θ(vi−vj)

1−θ }

sBi(R, si, vi) + vi
2

]}
. (2.8)

Proposition 2.4.1 (Static Competition) Suppose that hR(τ) = fR(τ)/F̄R(τ) is

increasing in τ . The equilibrium satisfies the following.

i) If vj = vi = v, the sellers’ equilibrium posted prices are s∗j = s∗i = v. A buyer

whose valuation is above v purchases at the negotiated price and is indifferent

between the sellers.

ii) If vj < vi < (1−θ)r̄+θvj, the sellers’ equilibrium posted prices are s∗j =
vi−θvj

1−θ −ε

and s∗i = vi. A buyer whose valuation is above vj purchases from seller j at the

negotiated price.

iii) If vj < (1− θ)r̄ + θvj ≤ vi, the sellers’ equilibrium posted prices are s∗j = r̄ and

s∗i can be any value within [vi, r̄]. A buyer whose valuation is above vj purchases

from seller j at the negotiated price.
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One immediate observation is that the buyer would never trade with a seller whose

disagreement point is higher than her opponent’s. When they have the same disagree-

ment points (Proposition 2.4.1-i), each seller posts a price equal to her disagreement

point. In this case, the buyer randomly chooses one seller to trade, provided that his

valuation is above the sellers’ disagreement points.

When seller j’s disagreement point is slightly lower than that of seller i (Propo-

sition 2.4.1-ii), seller i would choose the lowest possible price that she can post (i.e.,

s∗i = vi). This, in turn, pushes seller j to price low enough to attract the buyer. Seller

j obtains a trade surplus of (1 − θ)((vi−θvj
1−θ − ε) ∧ r − vj), which exactly reflects her

advantage in bargaining position.

When seller j’s disagreement point is much lower than that of seller i (Proposi-

tion 2.4.1-iii), seller i becomes vacuous in the competition and is indifferent to price

at any value above her disagreement point (i.e., s∗i ∈ [vi, r̄]). In this case, seller j

enjoys monopolist power and chooses the highest possible price that she can post

(i.e., s∗j = r̄). As a result, seller j obtains the maximum possible trade surplus of

(1−θ)(r−vj), which corresponds to its counterpart in the model described in section

2.4.1.

One interesting observation worth highlighting from Proposition 2.4.1 is that the

seller’s posted price is not necessarily increasing in her own disagreement point. In

particular, when seller j’s disagreement point is only slightly lower than that of seller

i (Proposition 2.4.1-ii), seller j’s equilibrium price is decreasing in vj. Such an equi-

librium outcome, very different from its counterpart in the monopoly seller model

analyzed in section 2.4.1, is a sole consequence of competition. Though a low dis-

agreement point provides the seller a weak bargaining position, it presents an advan-

tage of attracting an arriving buyer in the face of price competition, as it alleviates

the competitive pressure from the opponent seller. With softened competition, the

seller would be able to increase her price and yet gain the buyer as her disagreement

point becomes significantly lower than her opponent’s.
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2.5 A Dynamic Model with Competing Sellers

Unlike in the models of dynamic monopolist and static competition, a seller’s dis-

agreement point is generally different from her reservation value when competing with

the other seller dynamically for a stream of buyers. To see this, let Vj(t, nj, ni) be

seller j’s equilibrium expected profit when her own stock level is nj and her competi-

tor’s stock level is ni, j ∈ {1, 2} and i = {1, 2}\{j}, and there are t periods to the end

of selling season. When negotiating with an arriving buyer, seller j’s disagreement

point is her future value of carrying an extra item, as we discuss in section 2.4.1. This

value is

vj = Vj(t− 1, nj, ni)− Vj(t− 1, nj − 1, ni). (2.9)

Given that the buyer has chosen seller j, the negotiation outcome has no impact on

seller i’s stock level, which stays at ni.

Because of the competition, seller j’s strategy depends not only on her own dis-

agreement point vj, but also on her competitor’s disagreement point vi, as is in the

model discussed in section 2.4.2. However, the pair (vj, vi) alone is not sufficient to

fully describe the competition dynamics between the two sellers. We note from (2.9)

that the disagreement points are computed under the premises that the arriving buyer

has chosen the seller to negotiate.

At the stage of price competition, each seller has to evaluate her profit when the

buyer ends up choosing the opponent. Thus, seller j’s reservation value for losing a

buyer in price competition is

wj = Vj(t− 1, nj, ni − 1)− Vj(t− 1, nj − 1, ni). (2.10)

The first term on the right-hand side is the seller j’s future profit when the opponent

wins the deal with the arriving buyer and the second term is that when seller j

succeeds in gaining the arriving buyer. Intuitively, a seller with a higher reservation
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value has a less incentive to compete than her opponent does because she gains more

when losing the arriving buyer in the competition. Note that

wj − vj = Vj(t− 1, nj, ni − 1)− Vj(t− 1, nj, ni) (2.11)

is simply the seller’s marginal gain of inventory reduction by her opponent. It is thus

easy to see that vj and wj are in general different. As our discussion unfolds, we

will see that both cases wj ≥ vj and wj < vj can happen in the equilibrium of the

stochastic dynamic competition game.

By their definitions, vj, vi, wj, wi are bounded from the above by r because each

unit of stock can be sold at most at a price of r. As our discussion unfolds in the

next subsection, it becomes clear that (vj, vi, wj, wi) are critical values to determine

the sellers’ dynamic competing equilibrium.

To compute seller j’s single-unit trade profit, we apply the logic of the problem

formulation in section 2.4.1. An immediate observation is that we shall now take

into account her reservation value wj in addition to her disagreement point vj. More-

over, because of the competition, seller j’s single-unit trade profit is affected by the

opponent’s disagreement point vi and price decision si as in the static competition

setting in section 2.4.2. Define Ψ̄j(vj, vi, wj, wi) as seller j’s single-unit trade profit

in equilibrium. Then seller j’s equilibrium expected profit in period t with states

(nj, ni) must satisfy the following recursion

Vj(t, nj, ni) = λ
(
Ψ̄j(vj, vi, wj, wi) + Vj(t− 1, nj − 1, ni)

)
+ (1− λ)Vj(t− 1, nj, ni),

with wj defined in (2.10) and vj defined in (2.9). The terminal conditions are

Vj(0, nj, ni) = 0 and Vj(t, 0, ni) = 0.

To obtain the equilibrium single-unit trade profit Ψ̄j, we need to derive each

seller’s best response to the other seller’s price decision. We denote Ψj(vj, vi, wj, si)

as seller j’s optimal single-trade profit when seller i posts a price si. As our analysis



23

unfolds, it will become clear that Ψj does not depend on wi. Moreover, following the

derivation for the static competition model, we can express Ψj as

Ψj(vj, vi, wj, si) =


ΨS
j (vj, wj, si) if vj = vi,

ΨA:s
j (vj, vi, wj, si) if vj < vi,

ΨA:b
j (vj, vi, wj, si) if vj > vi.

In the next subsection, we provide a detailed derivation and analysis of ΨS
j , ΨA:s

j and

ΨA:b
j .

2.5.1 Characterization of the Sellers’ Equilibrium Strategies

In this subsection, we formulate the seller firms’ single-unit trade problems based

on the disagreement points and the reservation values. As our discussion unfolds, it

becomes evident that because of the reservation values, the single-unit trade problem

is in fact much more complex than the static competition model. It turns out that

the problem formulations can be quite different depending on whether the two sellers

have the same disagreement points.1

2.5.1.1 The Case with Symmetric Disagreement Points

We first consider the case where the sellers are symmetric in their disagreement

points, i.e., vj = v for j ∈ {1, 2}. Whether or not seller j can make a successful

sale depends not only on v, but also on the reservation values (wj, wi) and the prices

(sj, si) posted.

In the static competition model treated in section 2.4.2, a seller would never post

a price lower than her disagreement point v, which is also her reservation value in that

1Like in the static model described in Proposition 2.4.1, multiple price equilibria can arise in the dy-
namic model with the seller losing the competition indifferent over a range of prices. To simplify the
exposition for our later analysis, we would choose the price that leads to the highest off-equilibrium
profit of the losing seller in case the buyer deviates from his equilibrium strategy (e.g., in Propo-
sition 2.4.1-iii, seller i would pick s∗i = r̄). Such a choice of equilibrium makes the losing seller’s
decision robust to potentially irrational deviations made by the buyers.
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model, because v is exogenously determined. Therefore, an arriving buyer always en-

ters negotiation instead of accepting the posted price. In an essential contrast, a seller

facing dynamic competition may choose a price that is lower than her disagreement

point—Our later discussions show such a case can indeed arise in equilibrium. In

particular, when the chosen seller’s posted price is below her disagreement point, an

arriving buyer would choose to trade at the posted price, provided that his valuation

is above the posted price. Thus, we need to modify the formulation in (2.5) to obtain

seller j’s single-unit trade profit as

ΨS
j (v, wj, si) = max

sj

{
E

[
IS1v + IS2wj + IS3sBj(R, sj, v) + IS4sj

+IS5

sBj(R, sj, v) + wj
2

+ IS6

sj + wj
2

]}
, (2.12)

where S1 = {R < sj ∧ si ∧ v}, S2 = {si < R ∧ sj}, S3 = {v ≤ sj < R ∧ si},

S4 = {sj < R ∧ si ∧ v}, S5 = {v ≤ R ∧ sj ∧ si} ∩ {sj = si or R ≤ sj ∧ si} and

S6 = {sj = si < R ∧ v}. These cases are described in the left panel of Figure

D.1 in the Appendix B. Specifically, S1 represents the set of buyers who would not

purchase, S2 those who purchase from seller i, S3 those who purchase from seller j at

the negotiated price, S4 those who purchase from seller j at the posted price, S5 those

who purchase at the negotiated prices and are indifferent between the sellers, and S6

those who purchase at the posted prices and are indifferent between the sellers.

A difference between (2.12) and (2.5) is that under dynamic competition, seller

j makes an additional surplus of wj whenever the opponent seller makes a sale. It

turns out that the reservation value plays a critical role in determining the competition

outcome. We explicitly analyze two cases depending on whether wj equals wi.

Lemma 2.5.1 (Symmetric Disagreement Points and wj = wi) Suppose that vj =

vi = v, wj = wi = w and hR(τ) = fR(τ)/F̄R(τ) is increasing in τ . The equilibrium

satisfies the following.

i) If w ≥ (1 − θ)r̄ + θv, then the equilibrium posted prices are (s∗j , s
∗
i ) = (r̄, r̄).

A buyer whose valuation is above v purchases at the negotiated price and is

indifferent between the sellers.
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ii) If v ≤ w < (1 − θ)r̄ + θv, then the equilibrium posted prices are (s∗j , s
∗
i ) =(

w−θv
1−θ ,

w−θv
1−θ

)
. A buyer whose valuation is above v purchases at the negotiated

price and is indifferent between the sellers.

iii) If w < v, then the equilibrium posted prices are (s∗j , s
∗
i ) = (w,w). A buyer whose

valuation is above w purchases at the posted price and is indifferent between the

sellers.

Lemma 2.5.1-i describes an extreme situation that a seller’s reservation value w

(her value of that unsold item when the arriving buyer purchases from the opponent)

is so high that it even exceeds her maximum possible trade profit (1 − θ)r̄ + θv.

In this case, neither seller has an incentive to compete for the buyer as such they

both post the highest possible price (i.e., s∗j = s∗i = r̄), which prevents the buyer

from purchasing at the posted price and makes the buyer’s disagreement point the

lowest. The buyer, in turn, is indifferent between the two sellers and would randomly

choose one to negotiate and to trade. The chosen seller in turn obtains a trade profit of

(1−θ)r+θv. The other extreme case described in Lemma 3-iii arises when the seller’s

reservation value w is even lower than her disagreement point v for bargaining. In

this case, the seller has a strong incentive to compete for the buyer because losing the

buyer to the opponent leads to the lowest profit. Consequently, the sellers both lower

the price to w, making themselves indifferent between selling to the buyer and losing

the buyer to the opponent. An arriving buyer with valuation above w is indifferent

between trading with either seller and would purchase at the posted price without

entering negotiation. When the seller’s reservation value is in the intermediate range

specified in Lemma 3-ii, the seller would post a price between w and r̄. The buyer is

indifferent between the sellers. He would choose a seller to negotiate and make the

purchase provided that his valuation is above the seller’s disagreement point v.

The next proposition describes the equilibrium when two sellers have the same

disagreement points, but different reservation values, i.e., vj = vi = v and wj 6= wi.

Such a case does arise in the dynamic equilibrium in our later analysis in section
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2.5.2. Without loss of generality, we assume wj < wi, implying that seller j is more

likely to be aggressive in competing for the buyer than seller i is.

Proposition 2.5.1 (Symmetric Disagreement Points and wj < wi) Suppose that

vj = vi = v, wj < wi and hR(τ) = fR(τ)/F̄R(τ) is increasing in τ . Let s̄j(v, wj) =

max
{
v,max{s ∈ [

wj−θv
1−θ ∧ r̄, r̄] :

(
s − wj−θv

1−θ

)
hR(s) ≤ 2}

}
. The equilibrium satisfies

the following.

i) If wi > wj ≥ (1 − θ)s̄j(v, wj) + θv, then the equilibrium posted prices are

(s∗j , s
∗
i ) = (r̄, r̄). A buyer whose valuation is above v purchases at the negotiated

price and is indifferent between the sellers.

ii) If wj < (1− θ)s̄j(v, wj) + θv and

ii-a) wi ≥ (1− θ)s̄j(v, wj) + θv, then the equilibrium posted prices are (s∗j , s
∗
i ) =

(s̄j(v, wj), r̄);

ii-b) v < wi < (1 − θ)s̄j(v, wj) + θv, then the equilibrium posted prices are

(s∗j , s
∗
i ) =

(
wi−θv

1−θ − ε,
wi−θv

1−θ

)
.

A buyer whose valuation is above v purchases at the negotiated price. The

buyer chooses seller j if his valuation is above s∗j , and chooses either seller if

his valuation is between v and s∗j .

iii) If wj < wi ≤ v, then the equilibrium posted prices are (s∗j , s
∗
i ) = (wi − ε, wi). A

buyer whose valuation is above s∗j purchases from seller j at the posted price.

Similar to Lemma 2.5.1, the three cases characterized in Proposition 2.5.1 describe

situations where the two sellers face least (i), moderate (ii), and most competition

(iii), depending on whether both have high, medium and low reservation values,

respectively. There are, however, worth noting differences due to the asymmetry in the

sellers’ reservation values. Generally speaking, the price posted by a seller increases

when she has a higher reservation value, because she can still make a significant profit

when losing a buyer to the opponent. The seller with a lower reservation value is able
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to post a lower price to attract the buyer. However, when both sellers’ reservation

values become high enough, the posted prices are too high to grant the buyer positive

disagreement points in negotiation (recall Table 2.1). In this case, the buyer becomes

indifferent between the sellers.

In summary, when the two sellers have the same disagreement points, each seller

becomes more (less) aggressive in competition when her reservation value becomes

lower (higher). This notion continues to hold in the case that sellers become asym-

metric in their disagreement points, though the equilibrium outcomes become much

more complex, as we will see in the next subsection.

2.5.1.2 The Case with Asymmetric Disagreement Points

Now we turn to the case where the sellers have different disagreement points, i.e.,

vj 6= vi. Taking into account of the cases in (2.6), we can modify the formulation in

(2.7) and (2.8) to obtain the sellers’ single-unit trade profits for vj < vi as

ΨA:s
j (vj, vi, wj, si) = max

sj

{
E

[
IA1vj + IA2∪A3wj + IA4sBj(R, sj, vj) + IA5sj

+IA6∪A7

sBj(R, sj, vj) + wj
2

+ IA8

sj + wj
2

]}
, (2.13)

ΨA:b
i (vi, vj, wi, sj) = max

si

{
E

[
IA1vi + IA2sBi(R, si, vi) + IA3si + IA4∪A5wi

+IA6

sBi(R, si, vi) + wi
2

+ IA7∪A8

si + wi
2

]}
, (2.14)

where A1 = {R < sj∧si∧vj}, A2 = {R∧sj > si+
θ(vi−vj)

1−θ and si ≥ vi}, A3 = {R∧sj >
si−θvj

1−θ and vj ≤ si < vi} ∪ {si < R ∧ sj ∧ vj}, A4 = {vj ≤ R ∧ sj < si +
θ(si∧vi−vj)

1−θ },

A5 = {sj < R ∧ si ∧ vj}, A6 = {R ∧ sj = si +
θ(vi−vj)

1−θ and si ≥ vi}, A7 = {R ∧ sj =

si−θvj
1−θ and vj ≤ si < vi} and A8 = {si = sj < R ∧ vj}. These cases are described in

the right panel of D.1 in the Appendix B. Specifically, A1 represents the set of buyers

who would not purchase, A2 those who purchase from seller i at the negotiated price,

A3 those who purchase from seller i at the posted price, A4 those who purchase from
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seller j at the negotiated price, A5 those who purchase from seller j at the posted

price, A6 those who purchase at the negotiated price and are indifferent between the

sellers, A7 those who purchase from seller j(i) at the negotiated (posted) price and

are indifferent between the sellers, and A8 those who purchase at the posted price

and are indifferent between the sellers.

Proposition 2.5.2 (Asymmetric Disagreement Points) Suppose that vj < vi

and hR(τ) = fR(τ)/F̄R(τ) is increasing in τ . The equilibrium satisfies the following.

a) If wi ≥ (1 − θ)r̄ + θvj, then the equilibrium posted prices are (s∗j , s
∗
i ) = (r̄, r̄).

A buyer whose valuation is above vj purchases from seller j at the negotiated

price.

b) If wj < wi < (1 − θ)r̄ + θvj, then the equilibrium posted prices are (s∗j , s
∗
i ) =(wi−θ(wi∧vj)

1−θ −ε, wi−θ(wi∧vi)
1−θ

)
. When s∗j ≥ (<)vj, a buyer whose valuation is above

vj(s
∗
j) purchases from seller j at the negotiated (posted) price.

c) If wj = wi < (1 − θ)r̄ + θvj, then the equilibrium posted prices are (s∗j , s
∗
i ) =(wj−θ(wj∧vj)

1−θ , wi−θ(wi∧vi)
1−θ

)
. When s∗i < vj, a buyer whose valuation is above s∗j

purchases at the posted price and is indifferent between the sellers. When s∗i ≥ vj

and s∗i ≥ (<)vi, a buyer purchases from seller j at the negotiated price if his

valuation is between v and s∗j , purchases from seller j at the negotiated price or

purchases from seller i at the negotiated (posted) price if his valuation is above

s∗j .

d) If wi < wj < s̃i(vj, wi), then the equilibrium posted prices are (s∗j , s
∗
i ) =

(wj−θ(wj∧vj)
1−θ ,

wj−θ(wj∧vi)
1−θ − ε

)
, where

s̃i(vj, wi) = max
{
vj,max

{
s ∈ [wi ∧ ((1− θ)r̄ + θvj), (1− θ)r̄ + θvj] :(s− wi

1− θ
)
hR
(s− θvj

1− θ
)
≤ 1
}}
.

When s∗i < vj, a buyer whose valuation is above s∗i purchases from seller i at

the posted price. When s∗i ≥ vj and s∗i ≥ (<)vi, a buyer purchases from seller
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j at the negotiated price if his valuation is between vj and s∗i +
θ(vi−vj)

1−θ (
s∗i−θvj

1−θ ),

purchases from seller i at the negotiated (posted) price if his valuation is above

s∗i +
θ(vi−vj)

1−θ (
s∗i−θvj

1−θ ).

e) If wi < (1 − θ)r̄ + θvj and wj ≥ s̃i(vj, wi), then the equilibrium posted prices

are (s∗j , s
∗
i ) =

(
r̄,

s̃i(vj ,wi)−θ(s̃i(vj ,wi)∧vi)
1−θ

)
. When s∗i ≥ vj and s∗i ≥ (<)vi, a buyer

purchases from seller j at the negotiated price if his valuation is between vj and

s∗i +
θ(vi−vj)

1−θ (
s∗i−θvj

1−θ ), purchases from seller i at the negotiated (posted) price if

his valuation is above s∗i +
θ(vi−vj)

1−θ (
s∗i−θvj

1−θ ).

We interpret Proposition 2.5.2 with the help of the right panel of Figure 2.2.

Similar to the case with symmetric disagreement points (recall Proposition 2.5.1), the

seller with a lower reservation value is more competing because she makes little profit

when losing a buyer to the opponent. Of course, both sellers become noncompeting

when both have high reservation values, inducing both to set the highest possible price

r̄. Thus, cases (a) and (b) in Proposition 2.5.2 correspond to the situation where seller

i is less competing, while cases (d) and (e) correspond to that where seller j is less

competing. When the less competing seller has a very high reservation value, which

is the situation for seller i in case (a) and seller j in case (e), she would rather give

up the competition and let the opponent make a sale by setting the highest possible

price r̄. Otherwise, the less competing seller would set a competitive price, which is

the situation for seller i in case (b) and seller j in case (d).

Unlike in the situation described in Proposition 2.5.1, the less competing seller

is not necessarily less attractive to the buyer. The comparison depends also on her

disagreement point relative to that of her opponent. To see that, we first compare

cases (a) and (e) where the less competing seller sets the highest possible price r̄.

With a lower disagreement point (case a), the more competing seller has a weaker

bargaining position and offers a lower negotiated price than her opponent does. This

allows the more competing seller to set the highest possible price r̄. In contrast, when

the more competing seller has a higher disagreement point (case e), she is forced to
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set a price lower than r̄ to attract the buyer. This is because if she were to set a price

at r̄, she would offer a higher negotiated price than her opponent does in view of her

stronger bargaining position. As a result, the more competing seller sets a lower price

than her opponent to make up for her disadvantage of having a higher disagreement

point. From the buyer’s perspective, he would generally prefer a seller who posts a

lower price and has a lower disagreement point. The difference in the negotiated price

induced by the disagreement points, however, is diminishing as the buyer’s valuation

increases. Therefore, a high-valuation buyer would choose the more competing seller,

while a low-valuation one would purchase from the less competing seller.

Symmetric Disagreement Points  (𝑣௝ = 𝑣௜) Asymmetric Disagreement Points  (𝑣௝ < 𝑣௜)

𝑤
௝

𝑤௜ 𝑤௜

𝑤
௝

𝑤
௜
=
𝑣

𝑤௝ = 1 − 𝜃 𝑠௝̅ 𝑣, 𝑤௝ + 𝜃𝑣

𝑤௝ = 𝑣

𝑤
௜
=

1
−
𝜃
𝑠 ௜

𝑣
,𝑤

௜
+
𝜃
𝑣

(i)
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(buyer indifferent)

i gives up 
competition or 

competing to sell,
(buyer indifferent 

or chooses j)

(ii)

Competing 
not to sell 

(buyer 
chooses j) 

Competing to sell
(buyer chooses j)

(iii)

(a)

Competing to sell 
(buyer chooses j)

(b)

Competing to sell 
(buyer chooses j or i)

(d)

j gives up competition
(buyer chooses j or i)

𝑤௝ = 𝑣௝

𝑤
௜
=

1
−
𝜃
𝑟
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𝑤
௜
=
𝑣 ௝
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Note. An arriving buyer purchases without bargaining only in the shaded areas.

Figure 2.2. Summary of equilibrium regions with respect to (wj , wi), as
characterized in Proposition 2.5.1 (left panel) and Proposition 2.5.2 (right
panel).

Similar comparisons can be carried out between cases (b) and (d). Generally

speaking, a buyer prefers a more competing seller with a lower disagreement point,

while only buyers with high valuation would choose a more competing seller with a

higher disagreement point.

Another observation from Proposition 2.5.2 is that a buyer may not choose to

negotiate when both sellers’ reservation values are low (the shaded area in the right
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panel of Figure 2.2). In this region, both sellers become competing because losing

the buyer to the opponent leads to little profit. Consequently, sellers would set prices

even lower than their disagreement points. The buyer, in turn, may find it more

profitable to purchase at the posted price without entering negotiation.

The observation from cases (d) and (e) makes an interesting contrast to that

obtained by Mart́ınez-de-Albéniz and Talluri (2011) in their study of dynamic price

competition without negotiation. They find that the more competing seller (i.e., the

one with a lower reservation value) always wins over the competition by setting a

price equal to the opponent’s reservation value. In our model allowing seller-buyer

negotiation, it is possible that the seller with a higher reservation value wins the deal

from an incoming buyer.

In general, the price posted by a seller is increasing in her reservation value but

is decreasing in her disagreement point. This is characterized in the next corollary,

where we also show that the slopes of the posted price with respect to the reservation

value and the disagreement point are bounded.

Corollary 2.5.1 Suppose that vj < vi. In any period other than the last period, the

equilibrium prices satisfy the following.

i) s∗j(s
∗
i ) is increasing in both wj and wi with a slope not higher than 1

1−θ .

ii) s∗j(s
∗
i ) is decreasing in vj(vi) with a slope not higher than θ

1−θ ; s∗j is independent

of vi and s∗i is increasing in vj with a slope less than θ
1−θ or 1.

The observation in Corollary 2.5.1 makes an interesting contrast to that from

the static competition model discussed in section 2.4.2. In the static model, each

seller’s reservation value equals her disagreement point, and we have shown in Propo-

sition 2.4.1-ii that a seller’s equilibrium price can increase or decrease in her reser-

vation value or disagreement point. In the case of dynamic competition, the effects

of reservation value and disagreement point can be separated. Intuitively, a seller

is able to price her product high when she obtains a significant reservation value
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when losing a buyer to her opponent. Thus, the equilibrium price is increasing in the

seller’s reservation value. When the seller has a higher disagreement point, however,

she becomes less attractive to the buyer as the negotiated price is higher. In order to

compete effectively, the seller needs to lower her posted price and thus to increase the

buyer’s disagreement point. Therefore, the reservation value and the disagreement

point affect the seller’s price decision in opposite directions. Only in the last period

(or, equivalently, in the static model), the seller’s reservation value and disagreement

point become the same. In this case, the combined effects of reservation value and dis-

agreement point can lead to an increasing or decreasing posted price, as characterized

in Proposition 2.4.1-ii.

2.5.2 The Effect of Inventory on Competition Dynamics

From (2.9) and (2.10), the sellers’ reservation values and disagreement points are

determined by their stock levels. The existing development on price competition

suggests that the seller with a lower inventory level has relatively more chance to de-

plete her stocks and thus cares less about losing an arriving buyer to the competitor

(i.e., has a lower reservation value). The literature on sequential bargaining suggests

that the value of an additional item would be higher for a seller with a lower inven-

tory level, suggesting a higher disagreement point. Thus, inventory can influence the

reservation values and disagreement points in opposite directions in dynamic compe-

tition. The interaction between reservation values and disagreement points leads to

new equilibrium behaviors, as we see from the discussion below.

Intuitively, each unit of inventory should provide a nonnegative value to a seller.

As her inventory increases, we would expect that the value of an additional unit

to a seller decreases. These are consistent with our observations from the dynamic

monopolist model analyzed in section 2.4.1 (recall Lemma 2.4.2). We can formally

establish these results for a two-period competition model as suggested in the next

proposition.
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Proposition 2.5.3 Suppose T = 2.

i) wj ≥ 0 and vj ≥ 0 are weakly decreasing in nj and ni.

ii) s∗j is weakly increasing in nj when ni = 1 and t = 2, is weakly decreasing in nj

when ni ≥ 2 and t = 2, and is constant in nj otherwise; s∗j is weakly decreasing

in ni.

iii) Vj(t, nj, ni) is weakly increasing in nj when ni = 1 and t = 2, is weakly decreas-

ing in nj when ni ≥ 2 and t = 2, and is constant in nj otherwise; Vj(t, nj, ni)

is weakly decreasing in ni.

iv) If nj ≤ ni, then wj ≤ wi and an incoming buyer always weakly prefers seller j

to seller i.

In a two-period model, a seller’s reservation value and disagreement point are

both nonnegative. Also, both are decreasing in the seller’s stock level. These ob-

servations, consistent with our earlier discussion on the dynamic monopolist model

(recall Lemma 2.4.1), have been reported in studies on dynamic duopoly models (see,

e.g., Gallego and Hu 2014, Lin and Sibdari 2009). In the face of competition, the

seller’s profit becomes lower when the opponent holds more inventory. This is because

the opponent would tend to compete more aggressively as carrying inventory is less

valuable for her (i.e., wi and vi are lower with a higher ni).

The equilibrium price, however, can go either direction as inventory increases.

This is because the equilibrium price is increasing in the seller’s reservation value

but decreasing in her disagreement point (recall Corollary 2.5.1). Consequently, a

competing seller’s equilibrium profit can be increasing or decreasing in her own in-

ventory level. This observation, due to the nature of competition, is very different

from that in the dynamic monopolist model (recall Lemma 2.4.1), where the value of

an additional item is always nonnegative to the seller.

In the two-period model, a high stock level held by the opponent induces intense

competition, forcing the seller to lower the price and to make less profit. The seller
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with a lower stock level possesses competitive advantage because she can sell the item

at a lower price than her opponent. As a result, the buyer always weakly prefers to

trade with a low inventory seller, as suggested by Proposition 2.5.3(iv).

However, all the observations made in Proposition 2.5.3 fail to hold when the sell-

ing season extends to more than two periods, where we find much complex equilibrium

outcomes. This is characterized in the next proposition.

Proposition 2.5.4 Suppose T = 3, t = 3 and nj, ni ∈ {1, 2, 3}.

i) wj ≥ 0 unless (nj, ni) = (2, 3); vj ≥ 0 unless (nj, ni) ∈ {(2, 2), (2, 3)}. wj and

vj are weakly decreasing in nj unless (nj, ni) ∈ {(2, 2), (2, 3)}; wj and vj are

weakly decreasing in ni.

ii) s∗j is weakly increasing in nj when (nj, ni) = (2, 2), and is weakly decreasing in

nj when (nj, ni) = (2, 3); s∗j is weakly increasing in ni when (nj, ni) = (2, 2),

and is weakly decreasing in ni when (nj, ni) ∈ {(2, 1), (3, 2)} or when nj = 1.

iii) Vj(t, nj, ni) is weakly increasing in nj when (nj, ni) = (2, 2), and is weakly

decreasing in nj when (nj, ni) = (2, 3); Vj(t, nj, ni) is weakly decreasing in ni

when (nj, ni) ∈ {(1, 2), (2, 1)} or when nj = 3.

iv) If nj ≤ ni, then wj < wi and vj < vi when (nj, ni) = (2, 3), and wj ≤ wi and

vj ≥ vi otherwise.

An example of a three-period model is presented in Figure 2.3 (also refer to the

values for t = 3, 2, 1 in Table 2.2). We observe that the sellers’ reservation values and

disagreement points are no longer monotone in the stock levels when there are three

periods to the end of the selling season. Moreover, these values can go negative. For

example, when (nj, ni) = (2, 3), wj < 0 and vj < 0.

To explain a negative disagreement point vj < 0, we use the numbers computed

in Table 2.2 for t = 3, 2, 1. Consider seller j’s decision in period t = 3 when she has

2 units and seller i has 3 units. If seller j makes a sale in period 3, she would be left
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Notes. T = 3, t = 3, θ = 0.5, λ = 1, F̄R(r) = 1− r5, r ∈ [0, 1].

Figure 2.3. Seller j’s reservation value and disagreement point with respect to (nj , ni).

with only 1 item in period 2. As a result, seller i’s best strategy in period 2 is to set

a noncompeting price (i.e., s∗i = r̄ = 1 for (nj, ni) = (1, 3) and t = 2), hoping that

seller j would successfully deplete her stock so that seller i can enjoy the monopolist

power in the last period. Such a situation corresponds to case (ii-a) in Proposition

2.5.1 and Figure 2.2. If, however, seller j does not sell in period 3, she would be left

with 2 items in period 2. It is then impossible for seller i to become a monopolist

in the last period, making seller i aggressive in price competition (note that s∗i = 0

for (nj, ni) = (2, 3) and t = 2). Such a situation corresponds to case (ii) in Lemma

2.5.1 and Figure 2.2. Comparing the two situations, seller j finds her future profit

higher when she sells to the buyer than when she does not. As a result, seller j’s

disagreement point is negative. For a similar reason, seller j would earn less future

profit by losing a buyer to seller i in period 3, suggesting a negative reservation value.
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Table 2.2.
The effect of inventories on the dynamic equilibrium.

t = 4 t = 3 t = 2 t = 1

Vj(t, nj , ni) ni = 0 ni = 1 ni = 2 ni = 3 ni = 4 ni = 0 ni = 1 ni = 2 ni ≥ 3 ni = 0 ni = 1 ni ≥ 2 ni = 0 ni ≥ 1

nj = 1 0.7969 0.7144 0.6089 0.4309 0.4089 0.7344 0.6089 0.4175 0.3804 0.6254 0.4027 0.3243 0.4167 0

nj = 2 1.3573 1.1209 0.7902 0.6756 0.7151 1.1461 0.7995 0.4029 0.5788 0.8333 0.4035 0 0.4167 0

nj = 3 1.6147 1.2055 0.7817 0.4035 0.7061 1.25 0.7997 0.4035 0 0.8333 0.4035 0 0.4167 0

nj = 4 1.6667 1.2056 0.7791 0.4035 0 1.25 0.7997 0.4035 0 0.8333 0.4035 0 0.4167 0

s∗j ni = 0 ni = 1 ni = 2 ni = 3 ni = 4 ni = 0 ni = 1 ni = 2 ni ≥ 3 ni = 0 ni = 1 ni ≥ 2 ni = 0 ni ≥ 1

nj = 1 1 0.8598 1 0.5206 0.514 1 0.8482 0.5369 0.5296 1 0.8333 0.7784 1 0

nj = 2 1 1 0.7786 0.5085 0.5818 1 0.8605 0.4826 1 1 1 0 1 0

nj = 3 1 0.9008 1 0.2281 1 1 1 1 0 1 1 0 1 0

nj = 4 1 1 1 1 0 1 1 1 0 1 1 0 1 0

wj ni = 0 ni = 1 ni = 2 ni = 3 ni = 4 ni = 0 ni = 1 ni = 2 ni ≥ 3 ni = 0 ni = 1 ni ≥ 2 ni = 0 ni ≥ 1

nj = 1 0.7344 0.7344 0.6089 0.4175 0.3804 0.6254 0.6254 0.4027 0.3243 0.4167 0.4167 0 0 0

nj = 2 0.4117 0.5371 0.3821 0.0226 0.1985 0.2079 0.4306 0.0792 -0.3243 0 0.4167 0 0 0

nj = 3 0.1039 0.4505 0.3968 -0.1754 -0.5788 0 0.4299 0.4035 0 0 0.4167 0 0 0

nj = 4 0 0.4503 0.3962 0.4035 0 0 0.4299 0.4035 0 0 0.4167 0 0 0

vj ni = 0 ni = 1 ni = 2 ni = 3 ni = 4 ni = 0 ni = 1 ni = 2 ni ≥ 3 ni = 0 ni = 1 ni ≥ 2 ni = 0 ni ≥ 1

nj = 1 0.7344 0.6089 0.4175 0.3804 0.3804 0.6254 0.4027 0.3243 0.3243 0.4167 0 0 0 0

nj = 2 0.4117 0.1906 -0.0145 0.1985 0.1985 0.2079 0.0008 -0.3243 -0.3243 0 0 0 0 0

nj = 3 0.1039 0.0002 0.0005 -0.5788 -0.5788 0 0 0 0 0 0 0 0 0

nj = 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Buyer’s choice ni = 0 ni = 1 ni = 2 ni = 3 ni = 4 ni = 0 ni = 1 ni = 2 ni ≥ 3 ni = 0 ni = 1 ni ≥ 2 ni = 0 ni ≥ 1

nj = 1 j j, i i j, i j, i j j, i j, i j, i j j, i j, i j j, i

nj = 2 j j j, i j, i j, i j j, i j, i j j j, i j, i j j, i

nj = 3 j j, i j, i j, i j j j, i i j, i j j, i j, i j j, i

nj = 4 j j, i j, i i j, i j j, i i j, i j j, i j, i j j, i

Notes. T = 4, θ = 0.5, λ = 1, F̄R(r) = 1− r5, r ∈ [0, 1].

When the selling season is longer than two periods, a seller’s profit is not neces-

sarily decreasing in the opponent’s stock level. In particular, a seller’s profit can be

increasing or decreasing in the opponent’s stock level. The increase of the opponent’s

stock level can induce the opponent to be aggressive in competing for a buyer, poten-

tially reducing the seller’s profit. However, if the opponent’s stock level exceeds the

seller’s stock level, the seller obtains a lower reservation value, becoming more attrac-

tive to the buyer and potentially earning an increased profit. Depending on which

effect dominates, the seller’s profit can increase or decrease in the opponent’s stock

level. Consequently, a seller’s margin gain of inventory reduction by her opponent

(i.e., wj − vj) can be negative. For example, when (nj, ni) = (2, 2) and t = 3, seller

j’s profit is increasing in ni. Thus, when (nj, ni) = (2, 3) and t = 4, we have wj < vj.

When there are three or fewer periods left before the end of the selling season,

the seller with a lower stock level always has a lower reservation value and is more
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likely to be preferred by an incoming buyer. This observation has been made by

Mart́ınez-de-Albéniz and Talluri (2011) in their study of dynamic price competition.

Intuitively, the seller with fewer items in stock has relatively more opportunities to

sell each item than her opponent who has more items. Thus, the former’s expected

future profit is less affected when losing a buyer, resulting in a lower reservation value.

In our model allowing bargaining, however, this result does not hold when there are

more than three periods to the end of the selling season. An example is demonstrated

in Figure 2.4. We observe from the example that the seller with a higher inventory

level may have a lower reservation value and may make a successful sale.

Sellers’ Reservation Values Buyer’s ChoiceSellers’ Disagreement Points

4

3

2

1

0

0 1 2 3 4

4

3

2

1

0

0 1 2 3 4
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0

0 1 2 3 4

j, i
i

j

Note. T = 4, t = 4, θ = 0.5, λ = 1, F̄R(r) = 1− r5, r ∈ [0, 1].

Figure 2.4. Sellers’ reservation values (left panel), disagreement points
(middle panel) and buyer’s choice (right panel) as functions of (nj , ni).

Such a situation arises when (nj, ni) = (2, 1) in the example depicted in Figure 2.4.

There is a good chance that all three items possessed by the sellers would be sold in

the next four periods. Both sellers choose not to compete and set the highest possible

price s∗j = s∗i = 1 (from Table 2.2), which corresponds to case (a) in Proposition 2.5.2

and Figure 2.2. This makes seller j, with nj = 2, more attractive to an arriving buyer

because her disagreement point is lower than that of seller i, who has ni = 1. For

seller i, however, losing an arriving buyer to seller j would allow her to be equally

attractive to a future buyer compared with seller j, because then each seller would
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have one item in stock. Consequently, seller i, though holding a lower inventory level,

has a higher reservation value than seller j and loses the arriving buyer to seller j.

In summary, when seller firms compete repeatedly, the competition dynamics

reveals interesting phenomena that can be very different from those observed in static

competition or dynamic monopolist selling. Observations made from this subsection

highlight that analysis of a two-period or three-period game is insufficient to fully

discover the dynamics of revenue management under competition.

2.5.3 The Effect of Non-homogeneous Buyer’s Valuation

In our base model, we have assumed time-invariant buyer’s valuation distributions.

In this section, we examine the situation where buyers’ valuation distributions are

non-identical over time. Specifically, we consider the cases where buyers’ valuations

are stochastically increasing or decreasing over time. For example, airline customers

who purchase closer to the departure date may have higher valuations of the tickets

and be willing to pay more. Fashion consumers, however, may have lower valuations

of the products when it gets closer to the end of the season. To understand how the

trend of consumer evaluations affects the firms’ competition, we present a four-period

example in Table 2.3. The buyers’ valuations are stochastically increasing when the

parameter δα > 0 and stochastically decreasing when δα < 0. The absolute value

|δα| measures the magnitude of valuation change across periods. When |δα| increases,

the buyers’ valuation across all periods increases stochastically. Correspondingly, we

observe that the firms’ expected profits increase (decrease) when facing stochastically

increasing (decreasing) valuations.

A seller’s expected sales can be increasing or decreasing in the opponent’s stock

level, which is similar to our observation of the seller’s profit in the three-period model

in Section 2.5.2. However, the change of a seller’s expected sales is not necessarily

consistent with that of buyers’ valuations. In other words, a seller can sell more or

fewer units when facing a stream of buyers with stochastically increasing or decreasing



39

Table 2.3.
The effect of time-dependent buyer’s valuation on the dynamic equilibrium.

ni = 1 and t = 4 ni = 3 and t = 4 ni = 4 and t = 4

Stochastically Increasing Buyers’ Valuations

Vj(t, nj , ni) nj = 1 nj = 2 nj = 3 nj ≥ 4 nj = 1 nj = 2 nj = 3 nj ≥ 4 nj = 1 nj = 2 nj = 3 nj ≥ 4

δα = 0 0.4238 0.5984 0.6417 0.6417 0.2745 0.3351 0.2159 0.2188 0.2513 0.3621 0.3744 0

δα = 0.2 0.4763 0.6869 0.7423 0.7423 0.3133 0.3848 0.2703 0.2752 0.2799 0.4225 0.4239 0

δα = 0.4 0.5128 0.7514 0.8111 0.8111 0.3407 0.4168 0.3059 0.3125 0.2997 0.4631 0.4482 0

δα = 0.6 0.5404 0.7982 0.8619 0.8619 0.3612 0.4399 0.3313 0.3391 0.3145 0.4924 0.4640 0

δα = 0.8 0.5622 0.8342 0.9013 0.9014 0.3769 0.4580 0.3505 0.3594 0.3266 0.5147 0.4762 0

δα = 1 0.5800 0.8628 0.9331 0.9333 0.3895 0.4726 0.3655 0.3753 0.3370 0.5323 0.4857 0

Expected sales by seller j nj = 1 nj = 2 nj = 3 nj ≥ 4 nj = 1 nj = 2 nj = 3 nj ≥ 4 nj = 1 nj = 2 nj = 3 nj ≥ 4

δα = 0 1 2 3 3.0463 1 1.7554 2 1.1250 0.9537 1.9076 2.8750 2

δα = 0.2 1 2 3 3.0543 1 1.7232 2 1.1267 0.9457 1.9004 2.8733 2

δα = 0.4 1 2 3 3.0597 1 1.7065 2 1.1274 0.9403 1.8960 2.8726 2

δα = 0.6 1 2 2.99997 3.0591 0.999998 1.7043 2 1.1191 0.9409 1.9003 2.8810 2

δα = 0.8 1 2 2.99987 3.0555 0.999990 1.7039 2 1.1087 0.9445 1.9073 2.8913 2

δα = 1 1 2 2.99971 3.0513 0.999981 1.7044 2 1.1000 0.9487 1.9139 2.9000 2

Stochastically Decreasing Buyers’ Valuations

Vj(t, nj , ni) nj = 1 nj = 2 nj = 3 nj ≥ 4 nj = 1 nj = 2 nj = 3 nj ≥ 4 nj = 1 nj = 2 nj = 3 nj ≥ 4

δα = 0 0.7144 1.1209 1.2055 1.2056 0.4309 0.6756 0.4035 0.4035 0.4089 0.7151 0.7061 0

δα = −0.2 0.7072 1.1083 1.1893 1.1893 0.4262 0.6698 0.3937 0.3937 0.4062 0.7096 0.7028 0

δα = −0.4 0.6989 1.0933 1.1698 1.1699 0.4208 0.6633 0.3817 0.3817 0.4031 0.7035 0.6991 0

δα = −0.6 0.6889 1.0739 1.1460 1.1460 0.4145 0.6555 0.3668 0.3668 0.3997 0.6961 0.6951 0

δα = −0.8 0.6767 1.0480 1.1157 1.1157 0.4071 0.6459 0.3475 0.3475 0.3956 0.6864 0.6904 0

δα = −1 0.6612 1.0118 1.0756 1.0756 0.3983 0.6329 0.3210 0.3210 0.3901 0.6713 0.6811 0

Expected sales by Seller j nj = 1 nj = 2 nj = 3 nj ≥ 4 nj = 1 nj = 2 nj = 3 nj ≥ 4 nj = 1 nj = 2 nj = 3 nj ≥ 4

δα = 0 1 2 3 3.0186 1 1.8853 2 1.0714 0.9814 1.9563 2.9286 2

δα = −0.2 1 2 3 3.0192 1 1.8848 2 1.0758 0.9808 1.9538 2.9242 2

δα = −0.4 1 2 3 3.0194 1 1.8851 2 1.0807 0.9806 1.9524 2.9194 2

δα = −0.6 1 2 3 3.0188 1 1.8862 2 1.0862 0.9812 1.9516 2.9138 2

δα = −0.8 1 2 3 3.0159 1 1.8914 2 1.0827 0.9841 1.9565 2.9173 2

δα = −1 1 2 3 3.0123 1 1.8990 2 1.0741 0.9878 1.9642 2.9259 2

Notes. T = 4, θ = 0.5, λ = 1, F̄R(r) = 1− rα, r ∈ [0, 1], α = 1 + δα(T − t) for δα > 0 (upper panel)

and α = 5 + δα(T − t) for δα < 0 (lower panel).

valuations. To understand such a phenomenon, we need to compare the total number

of items against the number of selling opportunities. When the total stock level is

lower than the number of selling opportunities (e.g., (nj, ni) = (1, 2)), there is a

good chance that both sellers would fully deplete their stocks by the end of selling

season. In this case, a seller’s expected sales equals her inventory level. When the

total stock level is high (e.g., (nj, ni) = (5, 4)), it is unlikely that a seller can sell all

her stock, making them aggressive in price competition. In this case, sellers would

end up equally sharing the selling opportunities and have the same expected sales.

The subtle situation arises when only one of the sellers is likely to fully deplete her

stock within the selling season. In this case, each seller should carefully evaluate her
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potential profit by being a future monopolist, competing for the current buyer, or

competing for the future buyer. This leads to an inconsistency between the change

of a seller’s expected sales and that of buyers’ valuations (e.g., (nj, ni) = (1, 4)).

Specifically, in the case that buyers’ valuations are stochastically increasing over

time, sellers would prefer selling to a future buyer who is likely to have a high valua-

tion. On the one hand, in anticipation of high-valuation buyers in the future, a seller

may intentionally give up the selling opportunity in the current period, leading to a

decrease in her expected sales. On the other hand, given that the opponent seller

may also want to keep the stock for future buyers, the seller may find it less compet-

itive to capture the current buyer. Depending on which effect dominates, a seller’s

expected sales can be increasing or decreasing as buyers’ valuations are stochastically

increasing. Generally speaking, sellers’ expected sales depend not only on their stock

levels but also on the magnitude of how buyers’ valuations change.

We further note that sellers’ total expected sales can be smaller than the number

of selling opportunities even though they have enough inventory. Such a situation

arises when (nj, ni) = (3, 1) and δα ≥ 0.6 in Table 2.3. In this case, both sellers

have positive disagreement points and thus an arriving buyer with low valuation may

walk away without purchase. This makes an interesting contrast to the dynamic

monopolist model where the seller’s expected sales is always equal to the number of

remaining periods or her total stock level, whichever is smaller.

2.6 Concluding Remarks

We analyze the competition between two sellers in sequentially selling a certain

amount of inventory or resources to a stream of arriving buyers. Our model, allowing

arriving buyers to bargain for a price discount, brings an additional dimension to

the competition dynamics. In general, the sellers’ competing strategies not only

depend on their reservation values of losing an arriving buyer to the competitor but

also on their disagreement points of negotiation breakdown with the buyer. Low
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reservation values induce the sellers to reduce their prices to compete effectively,

while low disagreement points force the sellers to increase their prices to ensure a

certain profit. Because of the added effect of disagreement points associated with

bargaining, the sellers’ competitive equilibrium reveals very different behavior from

their counterparts in dynamic price competition without bargaining. In particular,

we characterize equilibrium regions in which the seller with a higher reservation value,

as opposed to the one with a lower reservation value, may post a higher price or may

make a successful sale. Moreover, a seller with a higher inventory level, as opposed to

the one with a lower inventory level, may have a lower reservation value. Our analysis

of different versions of the model also suggests that the insights obtained from a static

setting or a dynamic setting in two or three periods may not hold in general.

Our model and analysis can be extended along different directions. For example,

we may allow the arrival rate of the buyer stream to be Markov-modulated. The

sellers, based on the knowledge of cumulative arrivals and the observation of whether

or not an arrival occurs in the current period, can update the probability of an arrival

in the next period. In this case, each seller’s profit calculation should also include

two more state variables, i.e., the number of cumulative arrivals and an indicator

for an arrival in the current period. The equilibrium structure does not change

with this modification. Our analysis can also be extended to allow the buyers to

be heterogeneous in their bargaining powers in negotiation or to allow their valuation

distribution to be time-dependent.



42

3. SUPPLIER-BUYER INTERFACE: NEGOTIATIONS IN

COMPETITIVE SUPPLY CHAINS: THE

KALAI-SMORODINSKY BARGAINING SOLUTION

3.1 Synopsis

Bargaining is a norm rather than an exception in establishing vertical relations

(see, e.g., Draganska et al. 2010, Iyer and Villas-Boas 2003). In most of the business-

to-business transactions, deals are reached after rounds of negotiation over contract

terms between the trading parties. Applications of bilateral bargaining in operations

management have gained increasing attentions in recent years. Almost all of the

studies concerning supply chain negotiations adopt the axiomatic Nash bargaining

(NB) solution (Nash 1950) and its multi-unit extensions (Davidson 1988, Horn and

Wolinsky 1988) to understand buyer-seller interactions.

However, the NB solution assumes independence of irrelevant alternatives (IIA),

an axiom being widely criticized in the economics literature. In words, this axiom

states that the elimination of some unchosen alternatives does not affect the selection

of the best option. This assumption has been empirically invalidated, as the available

options often impact the way a decision maker evaluates the choices (Arrow 1950).

Potentially, a decision model under the IIA assumption can produce unreasonable

conclusions.

Specifically in the supply chain context, the NB solution seems to work well in

generating useful insights for one-to-one channels (i.e., bilateral monopoly settings),

because the choice of feasible profit allocation between the trading parties is deter-

mined purely by the set of feasible contracts to be chosen by the trading parties.

In competing supply chains, however, the profit allocation set in one trade depends

critically on the choice of contract to be executed in other trades. It is thus unclear
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whether the NB solution always generates appropriate negotiation outcomes. Unfor-

tunately, the answer is no. We demonstrate this through an example in Section 3.3,

in which we compare two trading scenarios for a supplier (she) and a retailer (he).

The only difference between the two trades is that the retailer in the first scenario is a

market monopoly, while the retailer in the second faces potential competition from a

rivalry. Given any feasible contract, the supplier always makes a higher profit in the

second scenario than in the first, while the NB solution grants the supplier a higher

profit in the first scenario than it does in the second. This surprising negotiation

outcome is unreasonable and goes against our observations from reality.

The inconsistency between the feasible trade profits and the negotiation outcomes

in the aforementioned example is due to the fact that the NB solution ignores the trade

prospects of the contracting parties (i.e., the geometric properties of the profit allo-

cation set) under the IIA axiom. While deriving a bargaining solution that accounts

for the complete profit allocation set is difficult, it is possible to develop a solution

concept that includes more information about the trade than the NB solution does.

The most widely applied alternative to the NB solution is the one developed by Kalai

and Smorodinsky (1975). Compared with the NB solution, the Kalai-Smorodinsky

(KS) bargaining solution takes into account not only the worst trade outcome (i.e.,

the disagreement point), but also the best trade outcome (i.e., the maximum profit)

of each negotiation party. Despite its popularity in studying bargaining problems,

the KS solution has not been introduced to the supply chain studies. The purpose

of our study is two-fold. We would like to understand, in the context of competing

supply chains, (i) when the IIA axiom may lead to unreasonable outcomes under the

NB solution, and (ii) how the KS solution works differently from the NB solution.

To answer the first question, we examine how the trade prospects (i.e., the trade

profits) change with respect to the firms’ competitive positions and compare that

against the changes in negotiated profits. This comparison allows us to identify the

inconsistency induced by the IIA axiom. To answer the second question, we compute

the bargaining power distribution implied by the negotiation equilibrium under the
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KS solution. This analysis allows us to understand how the KS solution corrects the

symmetric NB solution when accounting for the best trade outcome of each trading

party.

Specifically, we consider competing supply chains consisting of either a common

upstream supplier trading with two competing retailers (the one-to-two channel) or

two competing suppliers trading with a common downstream retailer (the two-to-one

channel). The market price of a product is the linear function of the outputs generated

from the competing channels. While economics studies on negotiations focus on gain

allocation between the trading parties, negotiations in supply chains are commonly

over specific contract terms. We focus on the wholesale-price contract, which is the

most widely used in practice and is most often studied in the operations literature.

Because of the presence of horizontal competition, there are two bargaining units,

each consisting of a supplier and a retailer, in the supply chain, and the negotiation

outcome of one unit is dependent on that of the other.

When the two contracts are negotiated simultaneously and the bilaterally agreed

contracts are executed without additional contingency terms, the equilibrium KS

solution corresponds to the NB solution with the downstream retailer’s bargaining

power being 0.6, not 0.5. This suggests that by considering the trading parties’

best prospects, the KS solution captures the retailers’ power through their ability

to set competition parameters (i.e., the output quantities). When negotiations are

conducted sequentially, however, the implied downstream bargaining powers are dif-

ferent in the two trades. The equilibrium KS solution corresponds to the NB solution

which grants the retailer in the second trade a bargaining power of 0.6. The retailer

in the first trade possesses an implied bargaining power below 0.6 in the one-to-two

channel and has a bargaining power above 0.6 in the two-to-one channel. These re-

sults suggest that, in sequential negotiations, the KS solution takes into account the

advantage enjoyed by the common trading party, who is able to leverage the antic-

ipated gain from the second trade in the first negotiation. Moreover, the implied

downstream bargaining power decreases in the one-to-two channel when the retail
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competition becomes more intense, and increases in the two-to-one channel when the

supply competition becomes more aggressive. In all the aforementioned bargaining

settings, we find that the inconsistency between the trade prospects and the negoti-

ated profits does not arise in the NB solution. Nevertheless, compared with the NB

solution, the KS solution, relaxing the IIA axiom, allows one to identify the negoti-

ation power shift induced by the decision ownership, the negotiation sequence, the

vertical relationships, and the competition intensity.

In reality, contingency terms may be imposed for contract execution. This may

happen when the upstream supplier would only establish the trading relationship

with a retailer provided that the supplier can also penetrate the market through other

retailers. Alternatively, the downstream retailer would only purchase from a supplier

if the retailer has access to carrying similar products offered by other suppliers. To

model such situations, we allow the common trading party, the supplier in the one-

to-two channel or the retailer in the two-to-one channel, to impose contingency terms

such that a negotiation contract is executed only when the negotiation in the other

trade is also successful. We show that with contingency contracts, the KS solution

tends to grant the supplier a higher equivalent bargaining power in the one-to-two

channel, while leaving the retailer a higher equivalent bargaining power in the two-

to-one channel. This implies a disadvantage faced by the competing firms when the

restriction on contract execution is imposed through the contingency terms.

We further discuss extensions of our analysis to consider general nonlinear de-

mands and demonstrate that the main insights obtained preserve. We also show that

if the wholesale-price contracts are replaced by bilateral coordinating contracts, the

KS solution always corresponds to the symmetric NB solution.

The reminder of the paper is organized as follows. In Section 3.2, we review the

related literature and articulate our contributions. In Section 3.3, we introduce the

Kalai-Smorodinsky bargaining solution. We describe the model in Section 3.4 and

derive the bargaining solutions in Section 3.5. We analyze the firms’ negotiation
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sequence preferences and discuss two model variations in Section 3.6. We conclude

in Section 3.7. Proofs of all formal results are relegated to the appendix B.

3.2 Literature Review

Supply chain contracting has been extensively researched in economics and op-

erations management. Studies in this literature examine contractual relationships

in situations where a monopoly supplier sells to a monopoly retailer (e.g., Cui et al.

2007, Taylor 2002, Tsay 1999), a common supplier selling to competing retailers (e.g.,

Bernstein and Federgruen 2005, Cachon and Lariviere 2005) and competing suppliers

selling to a common retailer (e.g., Cachon and Kök 2010, Shang et al. 2015). Most

part of this research is based on the Stackelberg framework, where a bilateral con-

tract is offered by one party as a take-it-or-leave-it offer to the other party. Under

this setting, it is generally believed that the wholesale-price contract is nearly always

found to be inefficient for the supply chain, while more sophisticated contracts, such

as two-part tariffs, revenue-sharing contracts, and quantity-flexibility contracts, can

be used to coordinate the system.

In more recent studies (e.g., Chen et al. 2016, Dukes et al. 2006, Feng and Lu 2012,

2013b, Guo and Iyer 2013, Gurnani and Shi 2006, Hsu et al. 2016, Huh and Park

2010, Lovejoy 2010, Nagarajan and Bassok 2008, Van Mieghem 1999, Zhong et al.

2016), the Nash bargaining framework has been applied to replace the Stackelberg

framework. Bernstein and Nagarajan (2012) provide a comprehensive summary of

these developments. As Feng and Lu (2013a) point out, the outcome of a Stackelberg

game does not necessarily coincide with that of a bargaining game when granting the

contract offering parties dominating power. When competition is considered, there

are multiple bilateral negotiations within the supply chain. If the negotiations take

place in parallel (e.g., Chu et al. 2019, Feng and Lu 2013b), the negotiated contracts

are the Nash equilibrium of parallel Nash bargaining solutions, which is termed the

Nash-Nash solution (Davidson 1988, Horn and Wolinsky 1988). If the negotiations
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take place sequentially (e.g., Feng and Shanthikumar 2018a), the anticipated future

bargaining outcome determines the disagreement points (i.e., the trading parties’

profits in the event of negotiation breakdown) in the current negotiation.

The Nash bargaining solution (Nash 1950) is developed based on a set of axioms

that is easy to interpret and apply. However, there is significant criticism on this solu-

tion concept, the most significant one being on the axiom of independence of irrelevant

alternatives; see the discussions in §§3.3. To address this issue, Kalai and Smorodinsky

(1975) propose an alternative axiom, called individual monotonicity. The key differ-

ence between these two solution concepts lies in the fact that the Kalai-Smorodinsky

solution accounts for more geometric properties of the profit allocation set by specif-

ically involving the trading parties’ best prospects (i.e., the maximum possible trade

profits). Moulin (1984) shows that the Kalai-Smorodinsky solution corresponds to

a subgame perfect equilibrium of a fractions of dictatorship auction game. Livne

(1989), Rachmilevitch (2014), Thomson (1983) propose different alternative axioms

to characterize the Kalai-Smorodinsky solution. The Kalai-Smorodinsky solution has

been broadly applied in various fields such as economics (e.g., Alexander 1992, Chun

and Thomson 1988, Driesen et al. 2011, Manser and Brown 1980, Monroy et al. 2017),

electrical engineering (e.g., Chee et al. 2006, Chen and Swindlehurst 2009, Fattahi

and Paganini 2005, Ibing and Boche 2007, Park and van der Schaar 2007, Shrestha

et al. 2008, Yang et al. 2010, Zhang and Zhao 2014) and green economy (e.g., Carf̀ı

and Schiliro 2012, Carf̀ı and Trunfio 2011).

The studies on supply chain contracting, however, have not adopted the Kalai-

Smorodinsky solution. The only exception is Gerchak (2015). He compares the

properties of the Nash bargaining solution and the Kalai-Smorodinsky solution in a

bilateral monopoly setting, i.e., one-to-one channel. Our study is arguably the first

to examine the differences and connections of the two bargaining solution concepts

in competing supply chains.
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3.3 Preliminaries: The Kalai-Smorodinsky Bargaining Solution

The bargaining solution concept is the key to determine the equilibrium contracts.

In the supply chain literature, the Nash bargaining solution (Nash 1950) is widely

applied because it often yields an analytically tractable solution that is easy to in-

terpret. There is, however, significant criticism on this solution concept (see, e.g.,

Osborne and Rubinstein 1990). In an attempt to (partially) address the criticism,

several authors have proposed alternative bargaining solutions. Among those, the so-

lution proposed by Kalai and Smorodinsky (1975) has been mostly applied in many

areas, but yet not in the supply chain contexts. In this section, we briefly review the

concept of the Nash bargaining (NB) solution and introduce the Kalai-Smorodinsky

(KS) solution to facilitate our comparison between the two solution concepts in the

next section.

Consider the bilateral negotiation between a supplier and a retailer. If a contract

C within the feasible set C is agreed upon, the supplier makes a profit of Π(C) and

the retailer makes a profit of π(C). Define

Π = {(Π(C), π(C)) ∈ R2
+ : C ∈ C}

as the set of feasible profit allocation. If, however, no agreement is reached, the

supplier makes a profit of D and the retailer makes a profit of d, which are termed

the disagreement points. To appropriately define the bargaining problem, one usually

assumes that Π is a compact and convex set, and (D, d) ∈ Π.

Let U denote the set of pairs (Π, (D, d)). A solution to the bilateral bargaining

problem is a mapping f : U→ Π that identifies a profit allocation (Π∗, π∗). That is,

Π∗ = f1(Π, (D, d)) and π∗ = f2(Π, (D, d)).

Definition 1 (Nash 1950) A solution f : U → Π satisfies the following axioms is

called the Nash bargaining (NB) solution:

(i) Pareto optimality. For every (Π, (D, d)) ∈ U, there does not exist any (Π′, π′) ∈

B such that (Π′, π′) ≥ f(Π, (D, d)) and (Π′, π′) 6= f(Π, (D, d)).
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(ii) Invariance with respect to affine transformations. Let A = (A1, A2) : R2 → R2

be defined by Ai(x) = αix+ βi, i = 1, 2 with αi > 0. Then f(A(Π), A(D, d)) =

A(f(Π, (D, d))).

(iii) Independence of irrelevant alternatives. If Π1 ⊆ Π2 and f(Π2, (D, d)) ∈ Π1,

then f(Π1, (D, d)) = f(Π2, (D, d)).

(iv) Symmetry. Let T : R2 → R2 be defined by T ((x1, x2)) = (x2, x1). Then for

every (Π, (D, d)) ∈ U , f(T (Π), T ((D, d))) = T (f(Π, (D, d))).

Nash shows that a solution satisfying the above axioms solves

max{Ω ≡ (π − d)(Π−D) : (Π, π) ∈ Π}.

The Nash product Ω balances off the retailer’s trade surplus (π−d) and the supplier’s

trade surplus (Π − D). Binmore et al. (1986) relax condition (iv) and introduce a

parameter θ ∈ [0, 1], which represents the retailer’s bargaining power vis-à-vis the

supplier. With this relaxation, the generalized Nash bargaining solution solves

max{Ω ≡ (π − d)θ(Π−D)1−θ : (Π, π) ∈ Π}. (3.1)

The original Nash bargaining solution, which is often termed the symmetric Nash

bargaining solution, corresponds to the situation of θ = 0.5.

Despite its elegance and wide application, the NB solution has been criticized for

the axiom of independence of irrelevant alternatives (IIA) (see, e.g., Roth 1977a,b).

The issue associated with the IIA axiom in the collective decision making is first

discussed in the seminal work by Arrow (1950). To understand the implication of

the IIA axiom in the application of supply chain contracting, we take the following

example.

Example 1 Consider a supplier negotiating with her primary retailer. The market

price for the product is p(q) = 1 − q, where q is the total output of the supplier’s

product. The production cost is c = 0 per unit. The supplier has two options:
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A. Negotiate exclusively with the primary retailer.

B. Negotiate first with the primary retailer. If a deal is agreed upon, negotiate

with a second retailer; otherwise, do not trade with any.

Intuitively, we would expect that the supplier makes a higher profit and the primary

retailer makes a lower profit under option B than under option A. This is simply

because option B introduces retail competition and allows the supplier to expand her

market presence. With some derivation (by applying Lemma 3.4.1 in the appendix

B), we can show that for a given wholesale price w ∈ [0, 1] between the supplier and

the primary retailer,

ΠB(w) =
(1− w)w

2
+

2

75
= ΠA(w) +

2

75
> ΠA(w), and

πB(w) =

(
(1− w)− 4

15

)2

4
<

(1− w)2

4
= πA(w),

where Πi(w) and πi(w) are respectively the supplier’s and the primary retailer’s profits

under option i = A,B. It is clear that for any wholesale price w, the supplier is better

off under option B while the retailer is better off under option A.

When applying the NB solution with θ = 0.6, we obtain a negotiated wholesale

price of wNBA = 0.2 and negotiated profits (ΠA(wNBA ), πA(wNBA )) = (0.08, 0.16) under

option A, and wNBB ≈ 0.118 and (ΠB(wNBB ), πB(wNBB )) ≈ (0.079, 0.095) under option

B. The supplier is worse off when the primary retailer faces potential competition.

This is a surprising outcome!

Example 1 suggests that NB solution ignores some geometric properties of the

feasible profit allocation set {(Π(w), π(w)) : w ∈ [0, 1]}. Specifically, while the negoti-

ation parties’ worst case scenarios (i.e., their disagreement points) remain unchanged,

the supplier has a better prospect and the retailer has a worse prospect under op-

tion B than under option A. The NB solution, however, is inconsistent with the trade

prospects. The issue is due to the restriction of Axiom (iii), independence of irrelevant

alternatives. This axiom, though technically appealing, may generate unreasonable
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solutions. To (partially) address this issue, Kalai and Smorodinsky (1975) propose

an alternative axiom, called individual monotonicity.

Definition 2 (Kalai and Smorodinsky 1975) A solution f : U → Π satisfying

axioms (i), (ii), (iv) in Definition 1 and the following axiom is called the Kalai-

Smorodinsky (KS) bargaining solution:

(iii’) Individual monotonicity. Let Π = max{Π : (Π, π) ∈ Π} and π = max{π :

(Π, π) ∈ Π}. For (Π1, (D, d)) and (Π2, (D, d)), if Π1 ⊆ Π2, Π1 = Π2 and

π1 ≤ π2 (or π1 = π2 and Π1 ≤ Π2), then f(Π1, (D, d)) ≤ f(Π2, (D, d)).

Kalai and Smorodinsky (1975) show that the KS solution can be derived from the

following equation:

π − d
Π−D

=
π − d
Π−D

. (3.2)

Compared with the NB solution, the KS solution allocates negotiation parties’ trade

surpluses proportionately according to their maximum trade surpluses (i.e., π−d and

Π−D). Applying the KS solution concept to Example 1, we find that under scenario

A, the KS solution coincides with the NB solution, i.e., (ΠKS
A , πKSA ) = (0.08, 0.16). Un-

der option B, the KS solution yields a profit allocation of (ΠKS
B , πKSB ) ≈ (0.087, 0.088),

suggesting that the supplier benefits and the primary retailer loses from involving a

second retailer. This outcome, compared with the NB solution, takes into account

the best prospects for the negotiation parties and appears more practical.

We shall note that the KS solution, while incorporating more information of trade

prospects than the NB solution, may not completely resolve the issue associated

with the NB solution. Ideally, a bargaining solution should be a function of all

possible trade prospects (i.e., the geometry of the entire set Π) to fully avoid the

issue associated with the IIA axiom. However, such a solution, even can be developed,

would be difficult to compute and implement.



52

3.4 The Problem of Multi-Unit Bilateral Bargaining

In supply chains, the negotiation parties’ trading prospects depend critically on

market competition. Thus, we focus our analysis of KS bargaining solutions on com-

peting channels. Specifically, we consider two-tier supply chains consisting of one or

two suppliers (she) selling products to one or two retailers (he), as shown in Figure 3.1.

Two market structures are commonly analyzed in the literature. In a one-to-two chan-

nel, a common supplier sells a product to two competing retailers. In a two-to-one

channel, two suppliers sell substitutable products to a common retailer. Though one

may also consider a general two-to-two channel that involves both supply and retail

competition, the main insights obtained from the one-to-two and two-to-one settings

are sufficient to explain the general equilibrium behaviors, as suggested by Feng and

Lu (2013b). Thus, to isolate the effects of upstream and downstream competitions

and to simplify the exposition, we focus only on these two settings.

Store 
Competition

Supplier

Retailer 1 Retailer 2

(i) one-to-two channel

Supplier 1 Supplier 2

Retailer

Product
Competition

(ii) two-to-one channel

Figure 3.1. The two-tier supply chain models: one-to-two (left panel)
and two-to-one (right panel).

The trade between a supplier and a retailer takes place through a bilateral nego-

tiation over a wholesale-price contract, denoted by wi, i ∈ {1, 2}. We focus on the

wholesale-price contract because it is widely used in practice and because it yields

interesting comparison under different negotiation frameworks. In §3.6.3, we also

discuss the implications of alternative contracts. In our models, there are two bar-

gaining pairs or bargaining units, each consisting of a supplier and a retailer. We

allow for the possibility that the two negotiations are parallel (see, e.g., Feng and



53

Lu 2013a) or sequential (see, e.g., Feng and Shanthikumar 2018a). The setting of

parallel bargaining describes the situation in which the party involved in both units

simultaneously interacts with two trading partners to determine the contracts. The

setting of sequential bargaining is suitable when one contract is determined before the

negotiation starts for the other contract. As we lay out the model in the next section,

it becomes clear that negotiation sequence has a major impact on the trading parties’

walk-away values, which in turn determine the trade outcome. We also distinguish

the situations with contingency from those without. Specifically, a trading party may

impose contingency terms on a contract that the negotiated contract will be executed

only if the other negotiation is successful (see, e.g., Chu et al. 2019). For example,

a supplier, who intends to enter a local market, may simultaneously negotiate with

two retailers with the condition that she either fully serves the market (i.e., trading

with both) or does not serve at all (i.e., trading with none). Likewise, a retailer may

only carry a product line when he has successful deals with both suppliers.

Once the contract terms are agreed upon, each retailer determines the quantity

that he orders from each supplier according to the contract terms. To isolate the

effects of channel structure and negotiation sequence, we assume that the competing

parties are symmetric. A supplier produces the product at a marginal cost of c, and a

retailer can sell the product at a price that is decreasing in his own output as well as

the opponent retailer’s output, if any. For the most of our discussion, we assume that

the price pi of product in channel i is a linear function of the quantity qi in channel

i and the quantity qj in the other channel, i.e.,

pi(qi, qj) = a− bqi − ηbqj, i = 1, 2, j 6= i,

where a > c, b > 0, and η ∈ [0, 1]. The parameter η captures the level of store

substitutability in the one-to-two channel and that of product substitutability in the

two-to-one channel. This demand function is the most commonly used in studies

of competing supply chains. (In §§3.6.2, we discuss implications of nonlinear price-

demand relationship.) Following the standard analysis (see, e.g., Davidson 1988, Feng

and Lu 2013a), we have the following result.
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Lemma 3.4.1 (Retail Quantities and Prices) Given the negotiated contracts w =

(w1, w2),

i) One-to-two channel: the competing retailers set the following equilibrium

quantities and prices: (a) if a−wi
a−wj ≤

η
2
, p∗i (w) =

2a−η(a−wj)
2

and q∗i (w) = 0; (b)

if η
2
< a−wi

a−wj <
2
η
, p∗i (w) = wi +

2(a−wi)−η(a−wj)
4−η2 and q∗i (w) =

2(a−wi)−η(a−wj)
b(4−η2)

; (c)

if a−wi
a−wj ≥

2
η
, p∗i (w) = a+wi

2
and q∗i (w) = a−wi

2b
, i, j ∈ {1, 2} and i 6= j.

ii) two-to-one channel: the common retailer sets the following quantities and

prices: (a) if a−wi
a−wj ≤ η, p∗i (w) =

2a−η(a−wj)
2

and q∗i (w) = 0; (b) if η < a−wi
a−wj <

1
η
,

p∗i (w) = a+wi
2

and q∗i (w) =
(a−wi)−η(a−wj)

2b(1−η2)
; (c) if a−wi

a−wj ≥
1
η
, p∗i (w) = a+wi

2
and

q∗i (w) = a−wi
2b

, i, j ∈ {1, 2} and i 6= j.

With the result in Lemma 3.4.1, we can compute the supplier’s and retailer’s

profits from trade i as

Ri(wi, wj) = q∗i (w)(wi − c) and ri(wi, wj) = q∗i (w)(p∗i (w)− wi), (3.3)

respectively. These expressions allow us to compute the trading parties’ profit func-

tions for our analysis of the negotiation outcomes in §3.5. For ease of exposition, we

use Πi(wi, wj) to denote the supplier’s profit and πi(wi, wj) to denote the retailer’s

profit in trade i ∈ {1, 2}, with the understanding that Π(w1, w2) = Πi(wi, wj) =

Πj(wj, wi) for the common supplier in the one-to-two channel and π(w1, w2) = πi(wi, wj) =

πj(wj, wi) for the common retailer in the two-to-one channel. Specifically, in the one-

to-two channel, we derive

Πi(wi, wj) = Πj(wj, wi) = Ri(wi, wj) +Rj(wj, wi) and πi(wi, wj) = ri(wi, wj).(3.4)

In the two-to-one channel, we have

Πi(wi, wj) = Ri(wi, wj) and πi(wi, wj) = πj(wj, wi) = ri(wi, wj) + rj(wj, wi). (3.5)

Because we are interested in the competition equilibrium, it is natural to restrict

the feasible contract parameter set to be

Ĉ =

{
(wi, wj) :

η

2
≤ a− wi
a− wj

≤ 2

η

}
and Č =

{
(wi, wj) : η ≤ a− wi

a− wj
≤ 1

η

}
(3.6)
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for the one-to-two channel and for the two-to-one channel, respectively.

We shall remark that the set of profit allocation Π under the wholesale-price

contract is not convex. In general, one needs to convexify the feasible region by

extending the negotiation to randomized contracts (i.e., specifying a distribution over

the feasible range of wholesale prices). When the contract execution does not require

contingency terms (see, e.g., Feng and Lu 2013a), the feasible profit allocation region

contains the upper boundary (i.e., the Pareto set) of the convexified region and thus

the negotiated contract is nonrandomized. As a result, convexification is not necessary

in such settings. When negotiating over contingency contracts, however, the feasible

region may not fully contain the Pareto set of the convexified region. Such a situation

only arises when the competition is intense (i.e., when η is close to 1). In this case,

we choose to extend the Pareto-dominated region, instead of convexifying the entire

feasible region, to ensure the continuity of the bargaining solution. The detailed

discussion on this can be found in the appendix E. For all of the formal results

presented below, we focus only on the situations where the equilibrium contracts are

non-randomized.

3.4.1 A Benchmark Model: The One-to-One Channel

In this subsection, we consider the channel with one supplier and one retailer.

The retailer faces an inverse demand of

p(q) = a− bq,

where a > c, b > 0, and q ≥ 0 is the output level of the retailer. Based on case

(c) of Lemma 3.4.1, the retailer’s optimal output level is q∗(w) = a−w
2b

, resulting a

price of p∗(w) = a+w
2

. We can then compute the supplier’s and the retailer’s profits,

respectively, as

Π(w) = q∗(w)(w − c) =
(a− w)(w − c)

2b
and π(w) = q∗(w)(p∗(w)− w) =

(a− w)2

4b
.
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We shall note that regardless of the bargaining framework applied, the feasible set of

profit allocation is defined by

Π = {(Π(w), π(w)) : c ≤ w ≤ a}.

The trading parties’ disagreement points are D = d = 0 and their maximum

profits are

Π = max{Π(w) : π(w) ≥ 0} = Π(
a+ c

2
) =

(a− c)2

8b
,

π = max{π(w) : Π(w) ≥ 0} = π(c) =
(a− c)2

4b
.

Proposition 3.4.1 (Benchmark: The One-to-One Channel) In the one-to-one

channel the KS solution yields a wholesale price of

wKS = c+
a− c

5
,

which corresponds to the NB solution with the retailer’s bargaining power being θKS =

0.6.

In the NB solution, the bargaining power determines the relative profit allocation

between the trading parties. The larger the bargaining power is, the more portion

of profit the firm obtains through negotiation. Proposition 3.4.1 suggests that in the

two-tier supply chain the KS solution does not coincide with the symmetric Nash

bargaining solution (i.e., that with θ = 0.5). In other words, the trading parties’ best

prospects can have a major impact on supply chain negotiation. In particular, the

retailer, who is able to influence the channel profit through his output decision, has

a higher maximum profit than the supplier does. From this perspective, the retailer

is granted more ‘control’ over the negotiation despite the symmetric structure of the

bargaining problem.

3.5 Negotiations in Competing Supply Chains

In this section, we analyze in detail the equilibrium negotiation outcomes in com-

peting channels. Section 3.5.1 focuses on the case when no contingency terms are



57

imposed on contract execution and Section 3.5.2 discusses the case with contingency

terms.

3.5.1 Negotiations without Contingencies

In this subsection, we consider the situation in which no contingency terms are

imposed on executing the negotiated contracts, which is the most studied situation in

the literature. When no contingency of contract execution is imposed, if a bargaining

unit successfully reaches an agreement, the agreed contract is implemented regardless

of the negotiation outcome in the other bargaining unit.

3.5.1.1 The Interdependence between the Trades and the NB Solution

Because there are two trades, the common trading party’s profit depends on the

outcome of both negotiations. Also, the common trading party may still make profit

from the other trade in the event of one negotiation breakdown, imposing a potential

threat to the negotiation partner. As a result, the trade prospects for the negotiation

parties involved in one bargaining unit certainly depend on the negotiation in the

other. To make the idea explicit, we consider the situation where contract wj is given

and focus on understanding the negotiation within bargaining unit i. Such a situation

arises in the simultaneous game when unit i is determining its best response to unit

j, or in the sequential negotiation when unit i is determining the negotiation outcome

after unit j has reached an agreement.

In the one-to-two channel, the retailers have zero disagreement points (i.e., di(wj) =

0), while the common supplier has a nonzero disagreement point. Given the con-

tract wj, the supplier’s disagreement point in bargaining unit i is the profit she

makes if only trading with retailer j with contract wj. Such a situation corresponds
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to Lemma 3.4.1(i-a), which is equivalent to setting a wholesale price wi such that

(a− wi)/(a− wj) ≤ η/2. Thus, the supplier’s disagreement point is

Di(wj) = Rj(wj, a− η(a− wj)/2). (3.7)

Similarly, in the two-to-one channel, the suppliers have zero disagreement points

(i.e., Di(wj) = 0). The common retailer’s disagreement point in bargaining unit i

is the profit that he makes if only selling supplier j’s product. This corresponds

to Lemma 3.4.1(ii-a) that wi satisfies (a − wi)/(a − wj) ≤ η. Thus, the retailer’s

disagreement point is

di(wj) = rj(wj, a− η(a− wj)). (3.8)

With the trading parties’ profits in (3.4)-(3.5) and disagreement points in (3.7)-

(3.8), we can apply (3.1) to derive the negotiated NB contract wNBi (wj) for bargaining

unit i as the best response to a wj chosen by bargaining unit j.

Lemma 3.5.1 (Trade Prospects and the NB Solution) Consider the trade in

bargaining unit i with the contract wj in unit j given. Suppose (wi, wj) satisfies

condition (3.6) and the profit allocation within unit i belongs to the Pareto set.

i) In the one-to-two channel, the supplier’s profit Π(wi, wj) is increasing [decreasing]

in wj for wj ≤ [>]w̄j(wi), where w̄j(·) is an increasing function, and re-

tailer i’s profit πi(wi, wj) is increasing in wj. Under the NB solution, the

supplier’s negotiated profit Π(wNBi (wj), wj) is increasing [decreasing] in wj for

wj ≤ [>]w̄j(w
NB
i ((a + c)/2)) = (a + c)/2, and retailer i’s negotiated profit

πi(w
NB
i (wj), wj) is constant in wj.

ii) In the two-to-one channel, supplier i’s profit Πi(wi, wj) is increasing in wj and

the retailer’s profit π(wi, wj) is decreasing in wj. Under the NB solution, sup-

plier i’s negotiated profit Πi(w
NB
i (wj), wj) is increasing in wj and the retailer’s

negotiated profit π(wNBi (wj), wj) is decreasing in wj.
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Because the interdependence between the two trades disappears when one of the

products monopolizes the market, we focus only on the region in which both products

have positive outputs in Lemma 3.5.1. We also restrict our attention to wholesale

prices that lead to a Pareto profit allocation, because a Pareto-dominated profit allo-

cation cannot arise in the negotiation outcome as suggested by Axiom (i). Figure 3.2

demonstrates the properties of the trade prospects (i.e., feasible trade profits). The

corresponding negotiated trade profits under the NB solution are depicted in Fig-

ure 3.3.

In the one-to-two channel, an increased wj suggests a weakened competition from

bargaining unit j, it does not necessarily lead to improved trade profits obtained by

trading parties in unit i. In particular, retailer i’s profit is always increasing in wj

due to the reduced competitive pressure, but the supplier’s profit is not necessarily

monotone in wj. On the one hand, an increased wj implies enhanced competitiveness

of the product carried by retailer i, leading to an increased trade profit of product i

to be shared by the supplier. On the other hand, an increased wj leads to a reduced

profit that the supplier can claim from the product sold in the other bargaining

unit, leading to a reduced trade profit contributed by the supplier. The first effect

dominates the second for a small wj, while the second effect is much enhanced for a

large wj. Consequently, the supplier’s profit is increasing in wj when wj is small and

is decreasing when wj is large. In the two-to-one channel, because the competition

between the products is internalized by a common retailer, an increased wj naturally

benefits the supplier i but hurts the retailer.

We observe that whenever a trading party’s profit is increasing or decreasing in wj

(for all possible choice of wi), so does the corresponding negotiated profit under the

NB solution. In other words, the potential inconsistency between the trade prospects

and the negotiation outcome due to the IIA axiom does not arise in dependent trades

when no contingencies are imposed.
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Figure 3.2. The trade profits in bargaining unit i for a given wj, as
characterized in Lemma 3.5.1.

3.5.1.2 The Connection between the KS and NB Solutions

Under simultaneous negotiations, each bargaining unit reaches an agreement as

a best response to the contract of the other unit. The game outcome is the Nash

equilibrium of the two bargaining problems. Because the NB solution for this problem

has been derived by Feng and Lu (2013a), we focus on analyzing the KS solution and

establish its connection to the NB solution.
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To derive the KS solution, we need to compute the trading parties’ maximum

profits for any given wj:

Πi(wj) = max{Πi(wi, wj) : πi(wi, wj) ≥ di(wj)}, (3.9)

πi(wj) = max{πi(wi, wj) : Πi(wi, wj) ≥ Di(wj)}. (3.10)

Substituting the trade profits in (3.4)-(3.5), the disagreement points in (3.7)-(3.8), and

the maximum profits (3.9)-(3.10) into (3.2), we can obtain the KS solution wKSi (wj)

of bargaining unit i as a best response to a given wj. The equilibrium of the best

responses wKSi (wj) and wKSj (wi) is the simultaneously negotiated KS contracts.

Proposition 3.5.1 (Simultaneous Bargaining without Contingency) Applying

the KS solution, the negotiated wholesale prices in the one-to-two and two-to-one

channel are, respectively,

ŵKSsim = c+
a− c

5
and w̌KSsim = c+

(1− η)(a− c)
5− η

,

which equal to the corresponding NB solutions with the retailers’ bargaining power

being θ̂KSsim = θ̌KSsim = 0.6.

The negotiated wholesale price in the one-to-two channel coincides with that of the

one-to-one channel, while that in the two-to-one channel is generally smaller and is

decreasing in the level of supply competition represented by η. In all these settings,

the KS solution corresponds to the NB solution with the retailer’s bargaining power

being 0.6.

Now we consider the situation of sequential negotiations. Given that bargaining

unit j reaches an agreement of wj, the solution for the second negotiation in bargaining

unit i is simply wKSi (wj), which is the same as the best response of bargaining unit

i to a given wj in the simultaneous bargaining. Thus, we only need to focus on

deriving the negotiation outcome for the first negotiation in bargaining unit j. If

the negotiation breaks down in unit j, then unit i reduces to a one-to-one channel,

suggesting wi = c + (a − c)/5 by Proposition 3.4.1. Thus, in anticipation of the
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Notes. a = 1, b = 1, c = 0, and θ = 0.6. We only compute the profits for wj values for which unit j sells a positive

quantity.

Figure 3.3. The negotiated NB profits in bargaining unit i as charac-
terized in Lemma 3.5.1.

latter negotiation within unit i, the disagreement points of bargaining unit j satisfy

Dj = Dj(c + (a − c)/5) and dj = 0 in the one-to-two channel, and Dj = 0 and
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dj = dj(c+ (a− c)/5) in the two-to-one channel. Also, the trading parties’ maximum

profits in bargaining unit j are

Πj = max{Πj(wj, w
KS
i (wj)) : πj(wj, w

KS
i (wj)) ≥ dj},

πj = max{πj(wj, wKSi (wj)) : Πj(wj, w
KS
i (wj)) ≥ Dj}.

Proposition 3.5.2 (Sequential Bargaining without Contingency) Applying the

KS solution, the equilibrium satisfies the following.

i) In the one-to-two channel, the negotiated wholesale prices in the first and second

trades are both increasing in η. This equilibrium outcome corresponds to that

under the NB solution with the retailer’s bargaining power in the first and second

trades being, respectively,

θ̂KSseq1(η) ∈ (0.5, 0.6] and θ̂KSseq2 = 0.6,

where θ̂KSseq1(·) is decreasing.

ii) In the two-to-one channel, the negotiated wholesale prices in the first and second

trades are both decreasing in η. This equilibrium outcome corresponds to that

under the NB solution with the retailer’s bargaining power in the first and second

trades being

θ̌KSseq1(η) ∈ [0.6, 1] and θ̌KSseq2 = 0.6,

where θ̌KSseq1(·) is increasing.

According to Proposition 3.5.2, an intensified retail competition leads to increased

trade prices in both negotiations, while an intensified supply competition leads to re-

duced trading prices. In the one-to-two channel, a competing retailer gains a reduced

portion of the trade surplus if he, as opposed to his opponent, negotiates first with

the common supplier. This is because the supplier can leverage her anticipated nego-

tiation with the second retailer in the first negotiation, leading to an increase in her

equivalent bargaining power (to be above 0.4). In the two-to-one channel, similarly,
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the common retailer’s equivalent bargaining power increases (to be above 0.6) in his

first negotiation. These results suggest that the KS solution, compared with the NB

solution, appropriately captures the disadvantage faced by the competing firms when

reaching early deals with common vertical partners.

3.5.2 Negotiations with Contingencies

Contingency contract negotiations are not uncommon in practice (Chu et al. 2019).

A supplier, who intends to enter a new territory, may only serve that market if she can

have significant presence. Without a large enough market potential, the investments

involved in setting up the logistics lanes, in catering for local preference, and in

dealing with local trade environment may not be justified. Thus, before entering the

negotiations, the supplier may impose a contingency term that she would also not

execute the contract with one retailer if a deal with the other retailer fails. Such

a contingency term makes the supplier’s disagreement point in either trade zero, no

matter she negotiates with the retailers in parallel or in sequence. Likewise, a retailer,

who plans to add a new product family to his assortment, would only do so if he can

carry two products. This may be due to the significant effort needed to market and

manage a new product family, which may not be justified by the sales generated from

a single product. In this case, the retailer may specify a term that an agreed-upon

contract with one supplier is only executed if the retailer also strikes a deal with the

other supplier. The contingency-negotiation problems can be formulated similarly as

their counterparts in §§3.5.1.1 with Di(wj) = di(wj) = 0 and those in §§3.5.1.2 with

Dj = dj = 0.

Intuitively, the contingency term imposes an execution constraint to both trading

parties. On the one hand, the competing firms can credibly threat each other with the

possibility of negotiation breakdown. On the other hand, the common trading party

now faces a disadvantage in that it no longer enjoys positive disagreement points to
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leverage the two trades, while still having to share its profit from both products in

each trade.

3.5.2.1 The Interdependence between the Trades and the NB Solution

When contingencies are imposed, the issue of the NB solution due to the IIA

axiom indeed arises. Both the feasible set of trade profits and the negotiated profits

in one trade depend on the contract of the other trade. However, the effects on the

feasible set and the negotiated profits can go in opposite directions as suggested by

Lemma 3.5.2. This is also evident from Figure 3.4, where we plot the negotiated

profits.

Lemma 3.5.2 (Trade Prospects and the NB solution) Consider the trade in

bargaining unit i with the contract wj in unit j given. Suppose (wi, wj) satisfies

(3.6) and the profit allocation within unit i belongs to the Pareto set. The trading

parties’ profits as functions of (wi, wj) exhibit the same property as in Lemma 3.5.1.

Moreover, the NB solution leads to the following negotiation outcomes.

i) In the one-to-two channel, the supplier’s negotiated profit Π(wNBi (wj), wj) and

the retailer i’s negotiated profit πi(w
NB
i (wj), wj) are increasing [decreasing] in

wj for wj ≤ [>](a+ c)/2.

ii) In the two-to-one channel, supplier i’s negotiated profit Πi(w
NB
i (wj), wj) and

the retailer’s negotiated profit π(wNBi (wj), wj) can be increasing or decreasing

in wj.

We relate Lemma 3.5.2 to Lemma 3.5.1 to understand the effect of contingency

terms. In the one-to-two channel, a higher wj leads to a larger profit obtained by

retailer i for any feasible wi (recall Lemma 3.5.1-i). However, the retailer’s negotiated

profit is not necessarily increasing with wj, as suggested by Lemma 3.5.2-i (see also

the demonstration in the upper right panel of Figure 3.4). In other words, despite the

improved trade prospect for the retailer, the retailer’s negotiated profit may reduce.
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Notes. a = 1, b = 1, c = 0, and θ = 0.6. We only compute the profits for wj values for which unit j sells a positive

quantity.

Figure 3.4. The negotiated NB profits in bargaining unit i for a given
wj, as characterized in Lemma 3.5.2.

Similar situations arise in the two-to-one channel. As wj increases, the supplier’s

trade profit always increases while retailer i’s trade profit always decreases (recall

Lemma 3.5.1-ii). However, both parties may end up with increased or decreased

negotiated profits.
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These findings, in direct contrast to their counterparts in contracting without con-

tingencies, suggest that the NB solution may not be appropriate for studies involving

contract contingency and channel competition.

3.5.2.2 The Connection between the KS and NB Solutions

The next proposition characterizes the equilibrium contracts under the KS solu-

tion and their relationships to the NB solution for simultaneous negotiations over

contingency contracts.

Proposition 3.5.3 (Simultaneous Bargaining with Contingency) Applying the

KS solution, the equilibrium contracts satisfy the following.

i) In the one-to-two channel, the negotiated wholesale price is decreasing in η. This

equilibrium outcome corresponds to that under the NB solution with the retailers’

bargaining power being θ̂KSsim(η) ∈ (0.57, 0.59), where θ̂KSsim(·) is decreasing.

ii) In the two-to-one channel, the negotiated wholesale price is decreasing in η.

This equilibrium outcome corresponds to that under the NB solution with the

retailers’ bargaining power being θ̌KSsim(η) ∈ (0.68, 1], where θ̌KSsim(·) is increasing.

Compared with Proposition 3.5.1, Proposition 3.5.3 suggests that the imposed con-

tingencies on contract execution effectively enhance the equivalent bargaining power

of the common trading party. Specifically, the supplier in the one-to-two channel

possesses an equivalent bargaining power above 0.4 and the retailer in the two-to-one

channel obtains an equivalent bargaining power above 0.6.

When negotiations are conducted in sequence, the analysis becomes complex and

we resort to numerical computation. Note from our earlier discussions that the implied

retailer bargaining power under the KS solution, as shown in Figure 3.5, depends

only on the competition parameter η but not on any other model inputs. We observe

that the implied retailer’s bargaining power in the second trade under the sequential

bargaining is close to that under the simultaneous bargaining. In the one-to-two
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channel, the KS solution grants a lower bargaining power to the retailer in the first

trade than to the one in the second, which is consistent with the observation from

Proposition 3.5.2 for the case without contingency terms. In the two-to-one channel,

however, the KS solution leads to a higher retailer’s bargaining power in the first

trade than that in the second only when the supply competition is not intense. This

observation makes a direct contrast to that from Proposition 3.5.2.
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Figure 3.5. The retailer’s equivalent bargaining power implied by the KS solution.

Comparing the upper and the lower panels of Figure 3.5, we observe that contin-

gency terms grant the supplier a higher equivalent bargaining power in the one-to-two
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channel, while leaving the retailer a higher equivalent bargaining power in the two-

to-one channel (unless the competition is highly intense). This suggests that the KS

solution captures the disadvantage that the competing firms face when the contract

contingency is imposed in vertical relationships.

3.6 Discussions

In this section, we discuss several aspects of our models. Section 3.6.1 analyzes

the effect of negotiation sequence, Section 3.6.2 addresses the implication of nonlinear

demand functions, and Section 3.6.3 considers negotiation outcomes under alternative

contracts.

3.6.1 The Effect of Negotiation Sequence

In competing supply chains, the sequence with which firms negotiate can have

a major implication on the negotiating firms’ power distribution, as suggested in

our analysis in the previous section. An alternative dimension to examine the effect

of negotiation sequence is the profit allocation characterized below. Following our

earlier discussions, we use the subscripts ‘sim’, ‘seq1’, ‘seq2’ to index the firms in the

simultaneous negotiation, in the first of the sequential negotiation, and in the second

of the sequential negotiation, respectively.

Proposition 3.6.1 (Bargaining Sequence: without Contingency) Regardless of

the channel structure and the bargaining solution applied, a supplier’s negotiated profit

is higher under sequential bargaining, while a retailer’s negotiated profit is higher un-

der simultaneous bargaining. Moreover, the following holds.

i) In the one-to-two channel, the negotiated retailers’ profits satisfy

π̂iseq1 ≤ π̂iseq2 = π̂isim, i ∈ {NB,KS}.
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ii) In the two-to-one channel, there exists an η̄i such that the negotiated suppliers’

profits satisfy

Π̌i
sim ≤ Π̌i

seq2 ≤ Π̌i
seq1 [Π̌i

sim ≤ Π̌i
seq1 ≤ Π̌i

seq2]

for η ≤ [≥]η̄i and i ∈ {NB,KS}. Under the NB solution, η̄NB is increasing in

θ.

Moreover, equalities hold in the above comparisons when η = 0 in (i) and η ∈ {0, 1}

in (ii).

When no contingency term is imposed on contract execution, a supplier always

prefers sequential negotiation, while a retailer always prefers simultaneous negotia-

tion, regardless of the channel structure or bargaining solution applied. The sequen-

tial negotiation, as opposed to the simultaneous negotiation, softens the competition

among the competing firm, and grants the common negotiating party the opportu-

nity to leverage the second trade as a credible threat against the first trade. In the

one-to-two channel, the common supplier can enjoy the benefit of both softened retail

competition and high negotiated wholesale prices with sequential trading. In the two-

to-one channel, the common retailer partially internalizes the competition between

the two products, because the retailer also determines the competing parameters, i.e.,

quantities. This reduces the retailer’s incentive of leveraging between the trades to

push down the wholesale prices. As a result, the effect of softened supply competition

dominates, leading to increased suppliers’ profits under sequential negotiations.

When negotiations are conducted sequentially, the competing retailers in the one-

to-two channel would like to participate in the second negotiation instead of the

first, because the common supplier can demand an aggressive wholesale price by

leveraging the second trade. This observation is in line with our earlier discussion

of Proposition 3.5.2 that the equivalent bargaining power of the retailer in the first

trade is lower than that in the second. For the competing suppliers in the two-to-

one channel, however, the preference of negotiation sequence depends also on the
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competition intensity. Despite that the implied retailer’s bargaining power is higher

(recall Proposition 3.5.2), the negotiated wholesale price is higher in the first trade

than that in the second. This is because if the first negotiation breaks down, the

supplier becomes a monopoly in the second trade, suggesting a lower disagreement

point possessed by the retailer in the first trade than that in the second. As a result,

the retailer has to agree on a higher wholesale price with the first supplier than that

with the second. When the suppliers’ products are highly differentiated (i.e., when η

is low), the first supplier enjoys a large profit due to the high wholesale price. When

the products are very similar (i.e., when η is high), the first supplier suffers a low order

quantity from the retailer, as the latter would tend to shift the allocation toward the

second, low-price supplier. These observations highlight that under either NB or KS

solution, the bargaining power alone cannot determine the negotiated profits. The

interdependence between the trades plays a crucial role in competitive environment.

Now we turn to the case with contingency terms on contract execution. In this

case, both the upstream and downstream firms may prefer either simultaneous or

sequential negotiations depending on the level of competition.

Proposition 3.6.2 (Bargaining Sequence: with Contingency) In the one-to-

two channel, there exists an η̄i such that the negotiated retailers’ profits satisfy

π̂iseq1 ≥ π̂isim ≥ π̂iseq2 [π̂iseq1 ≤ π̂isim ≤ π̂iseq2]

and the negotiated supplier’s profits satisfy Π̂i
sim ≥ [≤]Π̂i

seq for η ≤ [>]η̄i and i ∈

{NB,KS}. Under the NB solution, η̄NB is increasing in θ.

When the contract execution is contingent on the success of the other trade, the

common trading party is no longer able to leverage one trade against the other as

the disagreement point becomes zero. Therefore, the retailer in the first trade may

not necessarily earn a lower profit than that in the second trade, as suggested by

Proposition 3.6.2. When the retail competition is intense (i.e., when η is close to 1),

the retailer’s profit in the first trade is indeed lower than that in the second. When
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Figure 3.6. The profit comparison in the case with contingency.

retail competition is weak (i.e., when η is close to 0), however, the retailer in the first

trade enjoys a higher profit than that in the second.

To understand this effect, we consider the extreme case without retail competi-

tion (i.e., η = 0). If there were no contingency terms in the contract, the two trades

would become completely independent and the retailers would make the same prof-

its in the simultaneous game and in the sequential game (recall Proposition 3.6.1).
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With contingency contracts, however, the common supplier’s trade profit comes from

successfully selling to both retailers. Thus the two trades are interdependent because

part of the profit of one product is shared in the trade between the common supplier

and the other retailer. This grants the retailer in the first trade a credible threat

to the one in the first trade through the common supplier. Consequently, the first

retailer makes a higher profit than the second.

In the two-to-one channel, the comparison between simultaneous and sequential

negotiations reveals complex structure as illustrated in Figure 3.6. In general, de-

pending on the level of competition, there can be disjoint regions in which a firm

makes a higher or lower profit in one setting than that in the other.

3.6.2 Alternative Demand Functions

In our base model analyzed in §3.5, we have assumed a linear price-demand re-

lationship. In this section, we examine general nonlinear demand functions. There

are two major difficulties in dealing with general demand functions. First, unlike in

the case of linear demands where the effects of competing quantities are separable

in affecting the market prices, nonlinear demands often involve interactions among

competing quantities and prices. Second, it is often impossible to derive an explicit

form of the competing equilibrium under nonlinear demands. In view of these dif-

ficulties, we present the formal results for the one-to-one channel, while confirming

their implication to competing channels through a numerical analysis.

Consider the situation when only one product is sold in the market. The retailer’s

revenue is a concave function R(q) = p(q)q, where p(q) is the market price when

the output quantity is q. In general, a concave function Ra(·) is said to be more

(equally, less) concave than another concave function Rb(·) if R′′a(x) < (=, >)R′′b (x)

for x ∈ R, where R′′(·) is the second-order derivative of R(·). The next corollary gives

explicit results for the commonly used polynomial, log-linear and isoelastic demand
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functions. The parameter k in each example below measures the degree of concavity

of the associated revenue function.

Corollary 3.6.1 (Example Demand Functions: One-to-One Channel)

i) Polynomial demand function: Suppose p(q) = a − bqk, where a > c, b > 0

and k > 0. The KS solution yields a wholesale price of

w = c+
k

(k + 1)(k+1)/k + k
(a− c),

which corresponds to the NB solution with the retailer’s bargaining power being

θKS(k) = 1− k+1
(k+1)(k+1)/k+k

∈ (1/2, 1− 1/e), where θKS(·) is decreasing.

ii) Log-linear demand function: Suppose p(q) = a − k log q, where a > c and

k > 0. The KS solution yields a wholesale price of

w = c+
k

e
.

which corresponds to the NB solution with the retailer’s bargaining power being

θKS = 1− 1/e.

iii) Isoelastic demand function: Suppose p(q) = aq−k, where a > c and 0 < k <

1. The KS solution yields a wholesale price of

w =
1− k

1− k − k(1− k)1/k
c,

which corresponds to the NB solution with the retailer’s bargaining power being

θKS(k) = 1−k−(1−k)1/k

1−k−k(1−k)1/k ∈ (1− 1/e, 1), where θKS(·) is increasing.

The polynomial demand p(q) = a − bqk can capture a wide range of functional

shapes, as any smooth function can be approximated using polynomial functions.

The associated revenue function R(q) = p(q)q becomes more concave in q ≥ 1 as k

increases, leading to a smaller implied bargaining power of the retailer under the KS
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solution. There can be two potential extensions of the polynomial demand function

for two products:

pi(qi, qj) = a− biqki − ηbjqkj , or (3.11)

pi(qi, qj) = a− bi(qi + ηqj)
k. (3.12)

When the log-linear demand p(q) = a− k log q is applied, the associated revenue

function R(q) becomes more concave in q ≥ 0 for a larger value of k. However, the

retailer’s bargaining power implied by the KS solution does not change with k. The

two-product extensions of this demand function can take the following forms:

pi(qi, qj) = a− k log qi − kη log qj, or (3.13)

pi(qi, qj) = a− k log(qi + ηqj). (3.14)

The iso-elastic demand p(q) = aq−k induces a more concave revenue function

R(q) when q ≤ exp( 1−2k
(1−k)k

) as k increases, resulting in a smaller equivalent bargaining

power of the retailer implied by the KS solution. The two-product extensions of this

demand function can take the follow forms:

pi(qi, qj) = a(qi + ηqj)
−k, or (3.15)

pi(qi, qj) = a(qiq
η
j )−k. (3.16)

We demonstrate the results for competing channels in Figure 3.7 using the poly-

nomial demand in (3.11). The observations from other demands are similar. We find

that the equilibrium negotiation outcome resembles a similar pattern as is in the case

of one-to-one channel. Specifically, when the revenue function becomes more concave

(i.e., when k becomes larger), the retailers’ equivalent bargaining power implied by

the KS solution becomes lower.

3.6.3 Bilaterally Coordinating Contracts

In this subsection, we analyze the negotiations over alternative contracts. We

consider the two-part tariff and revenue-sharing contracts, both extensively studied
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Figure 3.7. The retailer’s equivalent bargaining power in the case
without contingency.

in the supply chain contracting literature (e.g., Cachon and Kök 2010, Cachon and

Lariviere 2005, Cai et al. 2012). It is well known that a bilaterally coordinating

contract leads to the maximized joint profit of the two negotiation parties. However,

the entire supply chain profit may not be maximized when retail competition presents

(Feng and Lu 2013a,b).
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A two-part tariff (vi, Fi), i = 1, 2, consists of a unit payment vi and a fixed payment

Fi from a retailer to a supplier. With this contract, the supplier’s and the retailer’s

profits from trade i in (3.3) become

Ri(vi, vj, Fi) = q∗i (w)(wi − c) + Fi and ri(vi, vj, Fi) = q∗i (w)(p∗i (w)− wi)− Fi.

Replacing Ri(wi, wj) by Ri(vi, vj, Fi) and ri(wi, wj) by ri(vi, vj, Fi) in the profit com-

putation, we can derive the negotiated two-part tariffs in equilibrium.

Proposition 3.6.3 (The Two-Part Tariff Contracts) Regardless of the channel

structure, negotiation sequence and contract contingency, under two-part tariffs, the

equilibrium outcome under the KS solution corresponds to that under the NB solution

with the retailer’s bargaining power being θKS = 1/2.

With the fixed payment in the two-part tariff contract, each trading party’s max-

imum trade surplus equals the joint trade surplus. As a result, the KS solution leads

to equal allocation of the joint trade surplus between the supplier and the retailer

engaged in the negotiation. Thus, the KS solution is equivalent to the symmetric NB

solution.

It is well known that a revenue sharing contract can also achieve bilateral nego-

tiation. Specifically, a revenue-sharing contract (ui, `i), i = 1, 2, consists of a unit

payment ui and a revenue sharing portion `i. Under this contract, the supplier’s and

the retailer’s profits in (3.3) are modified to

Ri(ui, uj, `i, `j) = q∗i
( ui

1− `i
,

uj
1− `j

)(
`ip
∗
i

( ui
1− `i

,
uj

1− `j
)

+ ui − c
)
,

ri(ui, uj, `i, `j) = q∗i
( ui

1− `i
,

uj
1− `j

)(
(1− `i)p∗i

( ui
1− `i

,
uj

1− `j
)
− ui

)
.

In the above expressions, we note that because a retailer retains only (1−`i) portion of

the revenue, his optimal order quantity coincides that when he retains all the revenue

while paying a unit cost of ui/(1−`i), i.e., arg maxqi≥0{(1−`i)(a−bqi−ηbqj)qi−qiui} =

arg maxqi≥0{(a−bqi−ηbqj)qi−qiui/(1−`i)}. Let ṽi = zi/(1− li) and F̃i = `iri(ṽi, ṽj).

Then, we can derive

Ri(ui, uj, `i, `j) = Ri(ṽi, ṽj, F̃i) and ri(ui, uj, `i, `j) = ri(ṽi, ṽj, F̃i).
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In other words, given any revenue sharing contract, there exists a two-part tariff that

generates the same trade profits. Thus, with the revenue sharing contract, the KS

solution corresponds to the NB solution when the trading parties are equally powerful.

Relating the above observations to those obtained with the wholesale-price con-

tracts in §3.5, we find that, under the KS solution, wholesale-price contracts generally

grant the downstream retailers more bargaining power than bilaterally coordinating

contracts do. The only exception occurs in highly competitive one-to-two channels

with sequentially contingent trades–The retailer in the first trade possesses an equiv-

alent bargaining power below 0.5 (recall Figure 3.5).

3.7 Concluding Remarks

This study introduces the Kalai-Smorodinsky (KS) bargaining solution, as an al-

ternative to the Nash bargaining (NB) solution, to study contracting in competing

supply chains. Compared with the NB solution, the KS solution takes into account

not only the worst trade scenarios, but also the best trade scenarios for the trad-

ing parties, partially fixing the issue associated with the axiom of independent of

irrelevant alternatives assumed in deriving the NB solution.

Our analysis suggests that when contracting without additional contingency terms

in competing supply chains, the firms’ negotiated profits under the NB solution change

consistently with the direction of how the firms’ trade prospects change (i.e., the set

of firms’ trade profits under all feasible contracts). When contract contingency is

imposed, however, the NB solution may grant a firm a lower negotiated profit, when

the firm’s trade profit becomes higher for all feasible contracts. This suggests that one

needs to be cautious when applying the NB solution to study vertical relationships

in supply chains when contingency terms are imposed on contract executions.

Using the equivalent bargaining power implied by the KS solution, we demonstrate

that the KS solution appropriately captures the negotiation power shift induced by
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the decision ownership, the negotiation sequence, the vertical relationship, the com-

petition intensity, the contract contingency and the contract type.

There are wide applications of Nash bargaining framework in supply chains prob-

lems including outsourcing (Feng and Lu 2013b, Wang et al. 2013), assortment plan-

ning (Aydin and Heese 2014), product line extension (Chen et al. 2016), procurement

(Chu et al. 2019, Wang et al. 2017), quality assurance (Leng et al. 2016), supplier

encroachment (Yang et al. 2018) and environmental and social responsibility (Feng

et al. 2019). Our study calls for a careful scrutiny of interpreting firms behaviors

based on Nash bargaining solutions.
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4. FIRM-GOVERNMENT INTERFACE: SUBSIDY FOR

PRODUCERS IN A FRAGMENTED MARKET

4.1 Synopsis

Subsidies to agriculture industries are common in many countries. Governments

provide aid to the producers to expand production, reduce poverty, increase local

consumption, or encourage export. The US federal government spends over $20 billion

every year on subsidizing farming.1 The Chinese government, aiming to offset the

rising production cost, initiates the general agricultural input subsidy since 2006

(Gale 2013) and the total amount has reached about 109 million dollars by 2017.2

Typically, the subsidy programs for agricultural products are aimed toward in-

creasing the output. Sufficient agricultural supply can not only help alleviate poverty

but also ensure domestic food supply security. In 2009, the Haiti government, with

the guidance of Food and Agriculture Organization of the United Nations, initiated a

$10.2 million scheme to distribute and multiply quality seeds, raising the outputs and

profits of small producers.3 In 2014, Chinese “Number One Document” emphasized

that China’s primary food sources should be domestic supplies — The government

should boost domestic production capacity to ensure self-sufficiency policy and re-

duce reliance on food import (Gale et al. 2015). Alternatively, the subsidy programs

can be adopted to promote agricultural export. For example, the dairy farmers in

India struggled with oversupply in the domestic market. To alleviate this, two state

governments offer $700 per ton for dairy exports while the national government ap-

1See https://www.downsizinggovernment.org/agriculture/subsidies (last accessed May 26, 2020)
2See http://english.agri.gov.cn/overview/201703/t20170301 247343.htm (last accessed May 26,
2020)
3See https://web.archive.org/web/20090827021358/http://www.afriquejet.com/news/africa-
news/haiti’s-seed-multiplication-programme-yields-fruits-2009082133773.html (last accessed May
26, 2020)
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proved an extra 10 percent subsidy.4 In the long term, the government intends to

improve efficiency in agricultural production. For example, the Chinese government

encourages the substitution of machinery for human labor by offering subsidies on

farming machinery purchase since 2004 (Gale 2013).

Among tremendous subsidy programs, two kinds of aids are commonly offered.

Plantation subsidies allow the producers to obtain needed inputs, including fertiliz-

ers, seeds, kerosene and machinery, at below market prices. For example, the gov-

ernments in sub-Saharan Africa offer vouchers for fertilizers and various crop seeds

including rice, maize, potatoes and oilseeds (Hemming et al. 2018, Jayne et al. 2018).

The Indian government spent over $22 million to provide farmers with support for

irrigation, fertilizers and electricity in 2017.5 Alternatively, harvesting subsidies are

provided to aid the output collection, storage, and distribution process. For example,

the Indian government approved a transport subsidy program to promote agriculture

exports in 2019,6 and the Thailand government offers 50 dollars per metric ton to

rice farmers.7

Despite the popularity of planting and harvesting subsidies, the implication of

subsidies on farmers’ output decisions as well as their welfare distribution, however,

are not well understood. Recently, Tang et al. (2019) demonstrated the differential

effects of two subsidies by showing that the harvesting subsidy always widens the

income gap between two farmers while the planting subsidy narrows the income gap.

Building on the modeling framework of Tang et al. (2019), we attempt to further

understand the impact of two subsidies on farmers’ welfare distribution by concerning

two important factors: (i) the farmers’ market is fragmented; (ii) the government

attempts to increase market output.

4See https://www.farmpolicyfacts.org/2018/10/subsidy-spotlight-india-2/ (last accessed May 26,
2020)
5See https://economictimes.indiatimes.com/news/economy/agriculture/india-refuses-to-cap-farm-
input-subsidies /articleshow/74485419.cms?from=mdr (last accessed May 26, 2020)
6See https://dipp.gov.in/programmes-and-schemes/himalayan-north-eastern/transport-subsidy-
scheme (last accessed May 26, 2020)
7See https://gain.fas.usda.gov (last accessed May 26, 2020)
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Specifically, we consider a stylized model in which farmers differ in their produc-

tivity levels, reflected by their input-to-output ratios in farming. This reflects the

fact that farmers usually face different soil, water and weather conditions, making

discrepancy among their productivity levels. The market price of the agricultural

product is the linear function of the outputs generated from all farmers. While the

aim of a subsidy program can be multi-dimensional, we focus on the the case in which

the government attempts to increase market output, as it is most commonly observed

in practice. The government would set the target for overall output and announce

the formats of subsidy program at the season beginning.

When the government offers a combined subsidy (i.e., the farmers can receive

payments for both plantation and harvesting), an increased harvesting subsidy in-

centivizes all farmers to plant more, harvest more and earn more, while an increased

planting subsidy grants farmers with lower productivity greater competitive advan-

tage, reducing the outputs from farmers with higher productivity. Consequently, a

higher harvesting subsidy widens the gaps among the farmers in both their outputs

and profits, while a higher planting subsidy leads to a more balanced output distri-

bution when the plantation is not overly subsidized. When the government offers

a selective subsidy (i.e., the farmers are forced to choose either of both payments),

intuitively, an increased harvesting subsidy benefits the high-yield farmers choosing

harvesting subsidy and hurts those low-yield farmers choosing planting subsidy. In-

terestingly, the planting subsidy only benefits the least productive farmers. Similar

to the observation under the combined subsidy, a higher harvesting subsidy widens

the output and profit discrepancy among the farmers while a higher planting subsidy

reduces the output gap, given that the planting subsidy is below planting cost.

To achieve the target output with minimum budget, the government always prefers

to implement a combined subsidy regardless of the target output level. Moreover, un-

der the combined subsidy, the overall output is the most evenly distributed among

the farmers when the target output level is either relatively low or sufficiently large.

The combined subsidy, however, may require excessive needed input or induce un-
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desirable social welfare. This suggests that although combined subsidy is appealing

to the government due to the low budget cost, alternative subsidy program can be

offered if multiple aspects besides budget are concerned. In practice, the government

may choose to offer only one payment to all farmers because offering both payments

or choice of preferred payment to farmers may incur additional administrative cost.

In this case, the government prefers planting subsidy over harvesting subsidy due to

lower budget cost and more evenly distributed farmers’ outputs only when the tar-

get output level is not too far from the overall output without subsidy. Moreover,

the harvesting subsidy always induces a more favorable overall input and net social

welfare than planting subsidy does.

The reminder of the paper is organized as follows. In Section 4.2, we review the

related literature and articulate our contributions. We describe the model in Section

4.3 and derive the farmers’ equilibrium outcomes under various subsidy programs in

Section 4.4. In Section 4.5, we analyze the government’s problem. We conclude in

Section 4.6. Proofs of all formal results are relegated to appendix C.

4.2 Literature Review

Many authors have contributed to the literature on agricultural operations (see the

survey by Lowe and Preckel 2004, Sodhi and Tang 2014). The existing studies have

taken various angles, including plantation planning (Boyabatlı et al. 2019, Maatman

et al. 2002, Zhang and Swaminathan 2020), harvesting scheduling (Allen and Schuster

2004, Lejeune and Kettunen 2017), irrigation allocation (Huh and Lall 2013), capacity

and production planning (Boyabatlı et al. 2017, Kazaz 2004, Kazaz and Webster

2011), information disclosure (Chen and Tang 2015, Chen et al. 2013a,b), strategic

behavior (Hu et al. 2019), adulteration (Levi et al. 2020), gleaning operations (Ata

et al. 2019), agricultural cooperatives (An et al. 2015), contract farming (Federgruen

et al. 2019) and data-driven operations (Devalkar et al. 2018).



84

None of the aforementioned studies consider the effect of subsidy on agricultural

operations. Recently, there is a small but growing stream of studies concerning the

role of government subsidies or interventions in agricultural operations literature. For

example, Tang et al. (2015) model two symmetric farmers, who each decide their own

outputs, choose to utilize the market information to reduce the demand uncertainty or

adopt agricultural advice to improve operations efficiency. They show that the agri-

cultural advice leads to increased farmers’ profits only when the upfront investment

is relatively low, and highlight that the government should consider offering subsidies

to reduce the investment cost. Kazaz et al. (2016) analyze different interventions

for the artemisinin-based malaria medicine supply chain and conclude that the sup-

ported price scheme can efficiently improve the supply and reduce price fluctuations

of the artemisinin-based malaria medicine. Chintapalli and Tang (2018) consider the

government offering the supported price schemes for two different crops to the strate-

gic farmers with different productivity levels. They find that there exist supported

price schemes for both crops, leading to Pareto improvements for all farmers. Guda

et al. (2019) examine the case in which the government with a budget constraint,

adopting the supported price scheme, procures the crops from farmers to support

the poor population. Gupta et al. (2017) incorporate the fact that the government’s

procurement capacity is limited and thus farmers are forced to sell their crops on the

open market due to the holding cost of their products. They predict the farmers’

welfare loss by developing a stochastic dynamic programming model and validate

it by using the real-world data. Alizamir et al. (2019) analyze two commonly-used

subsidy schemes (Price Loss Coverage (PLC) and Agriculture Risk Coverage (ARC)

programs) in the U.S. and find that PLC always incentivizes farmers to plant more

compared to the case without subsidy, while ARC may lead to a decrease in farmers’

plantation quantity. None of these studies consider the role of planting and harvesting

subsidies.

In a recent work, Tang et al. (2019) study the effects of planting and harvesting

subsidies on a local market involved two farmers. They find that a higher planting
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subsidy leads to a reduced farmers’ income gap, while a higher harvesting subsidy

exaggerates the discrepancy between the farmers’ incomes. They also show that it

is never optimal for the government to provide a combined subsidy to farmers. Our

study differs from Tang et al. (2019) along three important dimensions. First, they

assume that only two farmers compete in a local market, which is a common assump-

tion in the literature. In reality, the local farming market is usually fragmented. In

light of this, we analyze the competition among multiple farmers with different pro-

ductivity levels. This modeling change no longer allows us to compare the fairness

issue based on the difference in farmers’ profits. To address this issue, we adopt the

concept of majorization (see the discussion in Section 4.3.2). Second, we assume that

the government can overly subsidize or tax the farmers, which may lead to contrasting

equilibrium outcomes. Specifically, when the plantation subsidy is above the planting

cost, farmers with lower productivity levels produce more and a further increased

planting subsidy would lead to more dispersed output and profit distributions among

the farmers. More interestingly, when the target output level is small, subsidizing

based on plantation and taxing based on harvesting lead to more evenly distributed

outputs and profits than planting only or harvesting only subsidy. Third, we focus

on understanding the incentive via subsidies when the government aims toward im-

proving the market output. Instead, Tang et al. (2019) study the case in which the

government attempts to improve the farmers’ welfare.

There is a growing literature on studying the government subsidy in other op-

erations contexts such as improving the availability of vaccines (Adida et al. 2013,

Arifoğlu et al. 2012, Mamani et al. 2012), green technology adoption (Alizamir et al.

2016, Cohen et al. 2016, Lobel and Perakis 2011) and coordination between the parties

involved (Raz and Ovchinnikov 2015, Yu et al. 2020). Several papers are more closely

related to ours in which the government implements input-based and/or output-based

subsidies. Taylor and Xiao (2014) consider a model in which both purchase and sales

subsidies are offered to the for-profit firm for distributing malaria drugs. They find

that the government should only subsidize input for products with long life cycle.
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Berenguer et al. (2017) study the effect of purchase and sales subsidies in a newsven-

dor setting. They show that the insights from Taylor and Xiao (2014) only hold when

the for-profit firm is a price taker or the government has a budget constraint. They

also find that the government should always offer the purchase subsidy to the non-for-

profit firm. Cohen et al. (2016) consider the case in which the government provides a

sales subsidy to incentivize the for-profit firm to achieve a target consumption level.

They show that the government can significantly miss the target level when ignoring

the demand uncertainty. Yu et al. (2018) consider the case in which the government

attempts to improve consumer welfare. They find that the government can increase

consumer welfare by implementing subsidy programs that involve competing firms

with different market potentials.

4.3 The Problem

Consider the farming industry for a certain agriculture product, say a crop. The

farmers’ market is fragmented, and the farmers vary from one another in their pro-

ductivity levels, reflected by their input-to-output ratios in farming. The government,

aiming toward increasing the overall market output to alleviate the crop shortage in

the consumer market, initiates a farmer subsidy program.

The Farmers’ Market. There are n farmers in the market, index by j ∈ N =

{1, 2, . . . , n}, who may grow the crop. The farmers plant at the beginning of the

season and harvest at the end of the season. The cost for plantation (covering, e.g.,

labor, tools, seeds and fertilizers) is cP per unit of input and the cost for harvesting

(covering, e.g., labor, tools, packaging, and storage) is cH per unit of output. The

farmers vary from one another in the soil condition, capability and productivity, and

technology used, which results in different yield rates at harvesting. Specifically, for

farmer j to harvest qj units, an input of xj = zjqj units needs to be planted. In
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other words, the input-to-output ratio is zj, or the yield rate is 1/zj. Without loss of

generality, we assume

z1 ≤ z2 ≤ · · · ≤ zn.

In other words, farmer 1 is most productive, while farmer n is least productive.

We also denote

z̄ =

∑
i∈N zi

n
and vz =

∑
i∈N z

2
i

n
− z̄2 (4.1)

as the average and the variability of the productivity, respectively.

Upon harvesting, the farmers bring their outputs into the market for sale. The

market price of the crop is determined by the overall output. Specifically, the market

clearing price for the output vector q = (q1, q2, . . . , qn) ≥ 0 is

p = α− β
∑
i∈N

qi,

for α > 0 and β > 0.

The Government’s Subsidy Program. Typically, subsidy programs for agricul-

ture products aim toward increasing the output. The government may set a target

for the overall market output level and attempt to efficiently implement the pro-

gram with minimum budget. Alternatively, the government may try to maximize

the overall output while refining the subsidy spending within an allocated budget.

Mathematically, the two scenarios are dual to each other.

There are two types of subsidies widely used. One is given based on the plantation

effort, i.e., a payment of sP is offered to a farmer for each unit planted. The other

is granted based on the output, i.e., an amount of sH is paid to a farmer for each

harvested unit. The government may choose to offer a single subsidy in the form of

either the planting subsidy or the harvesting subsidy. The government may also offer a

combined subsidy of (sP , sH), with which farmers receive payments for both plantation

and harvesting. Alternatively, a selective subsidy of (sP , sH) can be implemented, with

which farmers choose to receive payments based on either the plantation quantity or
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the harvesting quantity, but not both. We use a superscript P,H,C, S to denote,

respectively, planting, harvesting, combined and selective subsidy programs.

We should also note that, while increasing the output level is the primary goal of

most subsidy programs, the resulting market evolution and wealth distribution can

be an important concern. Because the farmers’ market is often highly fragmented,

a subsidy program that induces uneven wealth distribution can be highly undesired.

Under such a program, farmers with less capabilities or less assets could be eventually

driven out of the market, leading to increased poverty or unemployment.

The Sequence of Events. The subsidy program is executed with the following

sequence of events.

1. The government sets the market output target and locates the budget for the

subsidy program. The format of the program is announced.

2. Given the subsidy program, farmer j determines a plantation quantity xj at the

beginning of the season, which leads to a harvest quantity qj = xj/zj at the end

of the season.

3. Farmers bring their output to the market for sale, and the market clearing price

is determined. Subsidy payments are made to the farmers based on the format

of the program.

4.3.1 A Benchmark Model: Without Subsidy

In this subsection, we briefly study the case when no subsidy is offered to the

farmers. We will build on these results to analyze the effect of subsidies in the next

sections. Without any subsidy, farmer j’s profit is

πj(q) =

(
α− zjcP − cH − β

∑
i∈N

qi

)
qj, j ∈ N. (4.2)

The next lemma characterizes conditions for farmers to produce.



89

Lemma 4.3.1 (Condition for Production) Farmer j ∈ N produces a positive

amount if and only if

g(j) ≤ α− cH
cP

,

where g(j) = (j + 1)zj −
∑j

i=1 zi is increasing in j.

The ratio (α − cP )/cH is an index for the profitability of the crop, as this ratio

increases with the market potential α and decreases with the farmers’ costs. The func-

tion g(j) defines farmer j’s efficiency level relative to those who are more productive

than farmer j in the crop supply market. Because both g(j) and zj are increasing

in j, the higher the farmer’s input-to-output ratio, the less efficient is the farmer.

Lemma 4.3.1 suggests that when the farmer’s efficiency level exceeds the index of

crop profitability, the farmer produces a positive amount. With this result, we can

identify a threshold j ∈ N so that farmers in the set {1, 2, . . . , j} produce, while

the remainders do not. With this observation, we can now characterize the market

equilibrium in the next proposition.

Proposition 4.3.1 (Production Equilibrium: Without Subsidy) Suppose g(n) ≤
α−cH
cP

. In equilibrium, farmer j’s output quantity is

q∗j =
1

β

(
α− cH − z̄cP

n+ 1
− (zj − z̄)cP

)
, j ∈ N,

and farmer j’s profit is

π∗j = β(q∗j )
2, j ∈ N.

The overall input quantity is

X =
n

β(n+ 1)

(
z̄(α− cH − z̄cP )− (n+ 1)vzcp

)
,

the overall output quantity is

Q =
n

β(n+ 1)

(
α− cH − z̄cP

)
,
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and the overall farmer profit is

Π =
n

β(n+ 1)2

(
(α− cH − z̄cP )2 + (n+ 1)2vzc

2
P

)
.

Moreover, the following results hold.

i) q∗j is decreasing in j and is increasing in z̄.

ii) When the average productivity z̄ increases while the variability in productivity vz

is kept constant, the overall input quantity increases [decreases] in the average

productivity z̄ when z̄ < [>](α−cH)/(2cP ), the overall output quantity decreases,

and the overall farmer profit decreases.

iii) When the variability in productivity vz increases while the average productivity z̄

is kept constant, the overall input quantity decreases, the overall output quantity

does not change, and the overall farmer profit increases.

We observe from Proposition 4.3.1 that a farmer’s output level and profit depend

on the productivity distribution among all farmers only through the average z̄. A

lower average productivity (i.e., a higher z̄) leads to a higher output from farmer j

when we keep zj unchanged. The total market output level also depends on the market

productivity distribution only through the average. Thus, neither the individual

output nor the market output is affected when the variability among the farmers’

productivity levels changes.

The overall input level X, however, exhibits a very different response to the pro-

ductivity distribution. A decrease in the average market productivity leads to an

increased market input when the average productivity level is high (i.e., z̄ is small),

making the production at the average productivity level profitable (i.e., the marginal

profit α − 2z̄cP − cH ≥ 0). In this case, the market responds to a reduced average

productivity through an increased plantation. When the average market productiv-

ity level is low (i.e., z̄ is large), producing at the average productivity level is not

profitable (i.e., the marginal profit α−2z̄cP −cH < 0). In this case, the reduced aver-

age productivity further reduces the profitability of plantation, leading to a reduced
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market input. An increased variability among farmers’ productivity, increasing the

differences between the efficient farmers and the inefficient ones, makes the inefficient

farmers less competitive in the market. As a result, the inefficient farmers reduce

their input quantities in view of the competition pressure, while the efficient farmers

also reduce their input quantities in view of the increased yields.

The equilibrium derived in Proposition 4.3.1 characterizes the overall market out-

come of farmers’ competition. From the policy maker’s standpoint, the distribution

of individual farmers’ inputs, outputs, and wealth are also important concerns. To

further understand the implication of the competition equilibrium, we discuss the

concept of majorization in the next subsection.

4.3.2 Preliminaries: The Majorization Order

The notion of fairness or evenness in distribution has always been an important

aspects in evaluating government policies. Specifically in the government subsidy

programs, the incentive provided to the farmers and the resulting wealth allocation

among the farmers need to be carefully examined to understand the strategic social

implications of the program. In studies involving only two producers (Tang et al.

2019), one can evaluate the fairness of wealth distribution by taking the difference of

the two producers’ profits. When a large number of producers are involved, however,

such an approach does not work. For our problem with a fragmented farmers’ market,

we apply the concept of majorization. This concept has been used to study resource

allocation problems (e.g., Feng and Shanthikumar 2018b, Tong 1997, Yao 1987).

Definition 3 (Majorization) A vector u of size n majorizes another vector v of

the same size, written as u ≥m v if

i) if
∑k

i=1 u[i] ≥
∑k

i=1 v[i], k = 1, . . . , n, and
∑n

i=1 u[i] =
∑n

i=1 v[i], or, equivalently,

ii) if
∑k

i=1 u(i) ≤
∑k

i=1 v(i), k = 1, . . . , n, and
∑n

i=1 u(i) =
∑n

i=1 v(i),
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where u(i) and u[i] [v(i) and v[i]] are, respectively, the i-th smallest and largest elements

in u [v].

When the condition of equal total sums is removed in (i), we say u weakly sub-

majorizes v, written as u ≥wm v. When the condition of equal total sums is removed

in (ii), we say u weakly sup-majorizes v, written as u ≥wm v.

To understand the concept of majorization, consider two otherwise identical mar-

kets with the farmers’ productivity vectors zA and zB. Suppose zA = (1, 0, . . . , 0) and

zB = ( 1
n
, . . . , 1

n
). It is clear that the average productivity levels in the two markets

are the same, i.e., z̄A = z̄B, and
∑k

i=1 zA[i] = 1 ≤ k/n =
∑k

i=1 zB[i] for k = 1, 2, . . . , n.

Thus, zA ≥m zB suggesting that the farmers in market A are more dispersed in their

productivity levels than those in market B.

Proposition 4.3.2 (Distribution among Farmers: Without Subsidy) Consider

two otherwise identical markets indexed by A and B. Suppose all farmers produce pos-

itive quantities and zA ≥m zB. The following results hold.

i) q∗A ≥m q∗B.

ii) π∗A ≥wm π∗B.

By the definition, zA ≥m zB implies that the average productivity levels are the

same in the two markets. Then, the market output levels are the same in the two

markets according to Proposition 4.3.1. The distribution of the farmers’ output,

however, becomes more balanced when their input-to-output ratios are more even,

as suggested by Proposition 4.3.2(i). Moreover, the farmers’ profits become more

evenly distributed, as suggested by Proposition 4.3.2(ii). In the next section, we

examine whether the subsidy programs may increase or decrease the disparity among

the farmers.
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4.4 The Effect of Subsidies on the Farmers’ Incentives

In this section, we analyze the farmers’ market responses to the subsidy programs.

Section 4.4.1 focuses on the case when a combined subsidy is offered and section 4.4.2

discusses the case when a selective subsidy is implemented. The planting or harvesting

subsidy can be regarded as a special case of a combined subsidy by setting sH = 0 or

sP = 0 accordingly.

4.4.1 Combined Subsidy

Under a combined subsidy, the government announces (sP , sH) with sP paid for

each unit of planting input and sP for each unit of harvesting output. Effectively, the

subsidies change a farmer’s production cost to cP −sP and harvesting cost to cH−sH .

Then, farmer j’s profit under an output vector q becomes

πj(q, sP , sH) =

(
aj(sP , sH)− β

∑
i∈N

qi

)
qj, j ∈ N, (4.3)

where

aj(sP , sH) = α− zj(cP − sP )− (cH − sH) (4.4)

is the market potential (i.e., the highest possible margin) of farmer j.

The next lemma characterizes conditions for the farmers to produce under the

combined subsidy program.

Lemma 4.4.1 (Condition for Production: Combined Subsidy) Farmer j ∈ N

produces a positive amount under a combined subsidy (sP , sH) if and only if

I{sP≤cP }g(j) + I{sP>cP }g̃(j) ≤ α− cH + sH
|cP − sP |

,

where g(j) is defined in Lemma 4.3.1 and g̃(j) =
∑n

i=j zi− (n− j+ 2)zj is decreasing

in j.
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Compared with the no-subsidy case in Lemma 4.3.1, the implementation of the

subsidy program has a direct impact on the farmers’ production incentive. Intuitively,

the subsidies reduce the farmers’ costs and induces more farmers to produce. This

is only true when the plantation subsidy is below the plantation cost (i.e., sP ≤ cP ).

In this case, the profitability index under the subsidy (i.e., (α− cH + sH)/(cP − sP ))

is higher than that without subsidy (i.e., (α − cH)/cP ), increasing the number of

farmers meeting the condition for production. Interestingly, when the farmers can

make money by just planting (i.e., sP > cP ), the farmers with lower productivity

levels would benefit more from the plantation subsidy because they need to invest

more on input than the farmers with higher productivity levels do. In this case, a fur-

ther increased planting subsidy can induce aggressive competition from the low-yield

farmers, driving the high-yield farmers out of the market. This observation suggests

that overly subsidizing the plantation can hurt the overall market productivity.

Replacing a farmer’s planting cost to cP − sP and harvesting cost to cH − sH in

Proposition 4.3.1, we can directly derive the equilibrium outcome when the combined

subsidy is offered.

Lemma 4.4.2 (Production Equilibrium: Combined Subsidy) Suppose that the

government implements a combined subsidy (sP , sH) and all farmers produce positive

quantities. In equilibrium, farmer j’s output quantity is

qCj (sP , sH) =
1

β

(
ā(sP , sH)

n+ 1
− (zj − z̄)(cP − sP )

)
, (4.5)

and farmer j’s profit is

πCj (sP , sH) = β
(
qCj (sP , sH)

)2
, j ∈ N. (4.6)

The overall input quantity is

XC(sP , sH) =
n

β(n+ 1)

(
z̄ā(sP , sH)− (n+ 1)vz(cp − sP )

)
, (4.7)

the overall output quantity is

QC(sP , sH) =
n

β(n+ 1)
ā(sP , sH), (4.8)
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and the overall profit is

ΠC(sP , sH) =
n

β(n+ 1)2

(
ā2(sP , sH) + (n+ 1)2vz(cP − sP )2

)
, (4.9)

where ā(sP , sH) = α− z̄(cP − sP )− (cH − sH).

The next proposition characterizes the properties of these quantities derived in

equilibrium.

Proposition 4.4.1 Suppose the government implements a combined subsidy (sP , sH)

and all farmers produce positive quantities. The following results hold.

i) qCj (sP , sH) is decreasing [increasing] in j for sP ≤ [>]cP .

ii) Each farmer’s input quantity, output quantity and profit is increasing [decreas-

ing] in sP when zj ≥ [≤] nz̄
n+1

. Each farmer’s input quantity, output quantity and

profit are increasing in sH .

iii) When the average productivity z̄ increases while the variability in productivity vz

remains constant, the total input quantity decreases [increases] for sP ≤ cP and

z̄ ≥ (α− cH + sH)/(2(cP − sP )) [otherwise], the total output quantity decreases

[increases] for sP ≤ [>]cP and total profit decreases [increases] sP ≤ [>]cP .

iv) When the variability in productivity vz increases while the average productivity

z̄ is kept constant, the total input quantity decreases [increases] for sP ≤ [>]cP ,

the total output quantity does not change, and total profit increases.

We demonstrate the individual farmer’s output level and profit in Figure 4.1.

When the plantation subsidy is below the planting cost, a more productive farmer

produces more and makes more money. The market output level increases with the

farmers’ average productivity level and is not affected by the variability among the

farmers’ productivity levels. These observations are consistent with their counterparts

in the case without subsidy.
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While a larger harvesting subsidy incentivizes all farmers to plant more, harvest

more and profit more, a larger plantation subsidy can discourage high-yield farmers

(with a smaller zj) to produce, as suggested by Proposition 4.4.1(ii). In this case, a

farmer’s output level and profit both decrease in his productivity level. Moreover,

when the planting subsidy exceeds the planting cost, the farmer with a lower produc-

tivity level plants more and harvest more than one with a higher productivity level.

In this case, the market input, the market output, and the total farmer profit always

increase with the average farmer productivity level. This echoes the message from

Lemma 4.4.1.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5

Farmer j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5

Farmer j

(0,0) (0.1,0.4) (0.3,0.4) (0.1,0.1)

𝜋
௝஼
(𝑠
௉
,𝑠
ு
)

𝑞
௝஼
(𝑠
௉
,𝑠
ு
)

in
cr

ea
si

ng
𝑠 ௉

in
cr

ea
si

ng
𝑠 ௉

in
cr

ea
si

ng
𝑠 ுin

cr
ea

si
ng

𝑠 ு

in
cr

ea
si

ng
𝑠 ௉

in
cr

ea
si

ng
𝑠 ு

in
cr

ea
si

ng
𝑠 ௉

in
cr

ea
si

ng
𝑠 ு

Notes. α = 3, b = 1, cP = 0.2, cH = 0.3 and z = (1, 1.5, 2.1, 2.8, 3.6).

Figure 4.1. The equilibrium output levels (left panel) and profits
(right panel) under the combined subsidy (sP , sH).

Proposition 4.4.1 characterizes the first-order effect of the subsidy program (i.e.,

how the farmers’ outputs and profits change with the subsidies). To understand

the second-order effect (i.e., how the subsidies impact the distributions among the

farmers), we evaluate the responses of the individual farmer’s output level to the

increase of planting subsidy and harvesting subsidy, i.e.,

∆sP q
C
j ≡ qCj (sP + δ, sH)− qCj (sP , sH) and ∆sHq

C
j ≡ qCj (sP , sH + δ)− qCj (sP , sH),



97

and the responses of the individual farmer’s profit, i.e.,

∆sPπ
C
j ≡ πCj (sP + δ, sH)− πCj (sP , sH) and ∆sHπ

C
j ≡ πCj (sP , sH + δ)− πCj (sP , sH).

Corollary 4.4.1 (Individual Farmer’s Response to the Combined Subsidies)

i) Planting subsidy: ∆sP q
C
j is increasing in j. When cP ≤ sP1 < sP2, qC(sP2, sH)

≥wm qC(sP1, sH) and πC(sP2, sH) ≥wm πC(sP1, sH), and when sP1 < sP2 ≤ cP ,

qC(sP1, sH) ≥wm qC(sP2, sH).

ii) Harvesting subsidy: ∆sHq
C
j is constant in j and ∆sHπ

C
j is decreasing [in-

creasing] in j for sP ≤ [>]cP . qC(sP , sH2) ≥wm qC(sP , sH1) and πC(sP , sH2) ≥wm
πC(sP , sH1) for sH1 < sH2.

We explain Corollary 4.4.1 with the reference to Figure 4.2. The farmers with

lower productivity increase their output more when the planting subsidy is larger.

This suggests that, when sP < cP (i.e., the farmer’s output level is increasing in their

productivity), the increased planting subsidy leads to a more balanced output distri-

bution among the farmers because an increased planting subsidy leads to increased

outputs from the low-yield farmers and decreased outputs from the high-yield farm-

ers. When sP > cP , the planting subsidy can overly remix the distribution, making

the high-yield farmers produce less than low-yield farmers. In this case, the increased

planting subsidy leads to a more dispersed output distribution. It is worth noting

that, when sP = cP , the farmers’ outputs are not affected by their productivity levels

and thus all farmers produce the same amounts. The distribution of the farmers’

profits exhibit similar responses to the planting subsidy as that of the farmers’ out-

puts.

An increase in the harvesting subsidy leads to the same amount of output increase

for all farmers. However, the high-yield farmers gain a larger profit increase than

the low-yield farmer only if the plantation is not overly subsidized (i.e., sP ≤ cP ).
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Figure 4.2. The increased output distribution with respect to the
increased planting (left) and harvesting (right) subsidies.

Overall, an increased harvesting subsidy widens the gaps among the farmers in both

their outputs and profits.

The next result, examining the impact of productivity distribution, extends our

earlier observation in Lemma 4.3.2.

Proposition 4.4.2 (Distribution among Farmers: Combined subsidy) Consider

two otherwise identical systems indexed by A and B. Suppose all farmers produce

positive quantities for given combined subsidies and zA ≥m zB. The following results

hold.

i) qCA(sP , sH) ≥m qCB(sP , sH), ∆sPqCA ≥m ∆sPqCB, and ∆sHqCA =m ∆sHqCB.

ii) πC
A(sP , sH) ≥wm πC

B(sP , sH), and ∆sHπ
C
A ≥m ∆sHπ

C
B .

Proposition 4.4.2 suggests that when the farmers exhibit more evenly distributed

productivity, their output levels and profits are more evenly distributed under the

subsidy programs. The subtle difference is that the majorization order can be estab-

lished for the output distribution, while only the weak majorization order is derived

for the profit distribution. Moreover, the increased outputs and profits induced by
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the increase in the subsidies are more evenly distributed among the farmers. The dif-

ference between the responses to the planting subsidies and the harvesting subsidies

lies in the fact that the effect of former on the individual farmer’s output depends on

the farmer’s productivity, but the effect of the latter does not.

4.4.2 Selective Subsidy

Under a selective subsidy, the farmers are offered (sP , sH) and each choose to

get paid based on plantation or harvesting. The farmer’s choice depends on the

comparison between the per unit plantation payment zjsP and the per unit harvesting

payment sH . Let m = max{j ∈ N : zjsP ≤ sH} (when z1 > sH/sP , we set m = 0). It

is easy to see that farmer j ∈ N chooses harvesting [planting] subsidy when j ≤ [>]m.

The next lemma characterizes the farmers’ production incentive.

Lemma 4.4.3 (Condition for Production: Selective Subsidy) Farmer j ∈ N

produces a positive amount under a selective subsidy (sP , sH) if and only if

i) when sP ≤ cP ,

g(j) ≤


α− cH + sH

cP
for j ≤ m,

α− cH −msH +
∑m

i=1 zisP
cP − sP

for j > m,

where g(j) is defined in Lemma 4.3.1.

ii) when sP > cP ,
ga(j) ≤

α− (cH − sH) + (n− ia(j))sH −
∑n

i=ia(j)+1 zisP

cP
for j ≤ m,

gb(j) ≤ α− cH − (ib(j)− 1)sH +
∑ib(j)−1

i=1 zisP
sP − cP

for j > m,

where ga(j) = (n − ia(j) + j)zj +
∑ia(j)

i=j zi − nz̄, gb(j) = nz̄ −
∑j

i=ib(j)
zi −

(n − j + ib(j))zj, i
a(j) = max{i ∈ {m + 1, . . . , n} : zi(sP − cP ) ≤ sH − zjcP}

(when zm+1(sP − cP ) > sH − zjcP , we set ia(j) = m), and ib(j) = min{i ∈
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{1, 2, . . . ,m} : zicP ≥ sH − zj(sP − cP )} (when zmcP < sH − zj(sP − cP ), we set

ib(j) = m+ 1). Moreover, ia(j) and ib(j) are decreasing in j.

When the planting subsidy is below the planting cost (i.e., sP ≤ cP ), a less produc-

tive farmer would not produce unless those with higher productivity produce (see the

left panel of Figure 4.3). Because the most productive farmers would choose the har-

vesting subsidy sH , the offered harvesting subsidy sP is irrelevant to their production

incentive, as suggested by Lemma 4.4.3(i). For farmers with lower productivity, how-

ever, their participation depends on sH , even though they would choose the planting

subsidy. This is due to the concern of competition from the more productive farmers.

When the planting subsidy is above the plantation cost (i.e., sP > cP ), Lemma 4.4.3(ii)

suggests a very different situation (see the right panel of Figure 4.3). With sP > cP ,

the least productive farmers would plant a large amount and compete aggressively

in the market. Among these farmers, the lower their productivity, the larger their

plantation amount. Thus, a high-yield farmer (j ≤ m) would need to take into ac-

count the low-yield farmers who show competitive advantage (i.e., farmer i’s with

i > ja(j)). Similarly, when a low-yield farmer (j > m) determines whether or not

to participate, he needs to take into account those highly productive farmers who

compete efficiently with him (i.e., farmer i’s with i < jb(j)). Because of the different

incentives from the two groups of the farmers, the farmers with the highest and lowest

productivity levels have the strongest incentive to produce, while the farmers with

intermediate productivity levels (i.e., those around m) may drop out of the market.

Lemma 4.4.4 (Production Equilibrium: Selective Subsidy) Suppose that the

government implements a selective subsidy (sP , sH) and all farmers produce positive

quantities. In equilibrium, farmer j’s output quantity is

qSj (sP , sH) = qCj (sP , sH)−


1

β

(
zjsP −

∑m
i=1 zisP + (n−m)sH

n+ 1

)
for j ≤ m,

1

β

(
sH −

∑m
i=1 zisP + (n−m)sH

n+ 1

)
for j > m,

(4.10)

and farmer j’s profit is

πSj (sP , sH) = β
(
qSj (sP , sH)

)2
. (4.11)
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Figure 4.3. Condition for production: selective subsidy.

The total input quantity is

XS(sP , sH) = XC(sP , sH)

− 1

β

( m∑
i=1

z2
i sP +

n∑
i=m+1

zisH −
nz̄

n+ 1

( m∑
i=1

zisP + (n−m)sH
))

(4.12)

and the total output quantity as

QS(sP , sH) = QC(sP , sH)− 1

β(n+ 1)

( m∑
i=1

zisP + (n−m)sH

)
. (4.13)

Given the farmers’ choices, the selective subsidy, unlike the combined subsidy,

segments the farmer market. The resulting equilibrium quantities depend on the

individual farmers’ productivity levels, and thus their choices of subsidies, as shown

in Lemma 4.4.4 . Thus, the overall market statistics, z̄ and vz, are no longer sufficient

to characterize the farmers’ behaviors.

Proposition 4.4.3 Suppose that the government implements a selective subsidy (sP , sH)

and all farmers produce positive quantities. The following results hold.

i) When sP ≤ cP , qSj (sP , sH) is decreasing in j. When sP > cP , qSj (sP , sH) is

decreasing [increasing] in j for j < [>]m and qSm(sP , sH) ≤ [>]qSm+1(sP , sH) for

(zm+1sP − sH) + (zm − zm+1)cP ≥ [<]0.
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ii) Each farmer’s input quantity, output quantity and profit is increasing [decreas-

ing] in sP when zj ≥
∑n
i=m+1 zi
n+1

and j > m [otherwise]. Each farmer’s in-

put quantity, output quantity and profit are increasing [decreasing] in sH when

j ≤ m [j > m].

The result in Proposition 4.4.3 is demonstrated in Figure 4.4. When the planting

subsidy is below the plantation cost, the farmers’ output levels are increasing in their

productivity levels. When planting is overly subsidized, however, this is only true for

highly productive farmers, who choose the harvesting subsidy. For those who choose

the plantation subsidy, however, the farmers’ output levels are decreasing in their

productivity levels.

It is intuitive that an increased harvesting subsidy sH benefits the farmers who

choose the harvesting subsidy, while hurts those who choose the planting subsidy. An

increased plantation subsidy sP certainly hurts the farmers who choose harvesting

subsidy, as the increase makes the other farmers more efficient in competition. Inter-

estingly, not all farmers choosing the planting subsidy benefit from an increased sP .

Rather, only the least productive ones do, as suggested by Proposition 4.4.3(ii).
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Notes. α = 3, b = 1, cP = 0.2, cH = 0.3 and z = (1, 1.5, 2.1, 2.8, 3.6).

Figure 4.4. Equilibrium outcome under the selective subsidy (sP , sH):
output level (left panel) and profit (right panel).



103

Corollary 4.4.2 (Individual Farmer’s Response to the Selective Subsidies)

Suppose sP ≤ cP .

i) Planting Subsidy: ∆sP q
S
j is increasing in j. For sP1 < sP2, qS(sP1, sH) ≥wm

qS(sP2, sH).

ii) Harvesting Subsidy: ∆sHq
S
j is decreasing in j. For sH1 < sH2, qS(sP , sH2) ≥wm

qS(sP , sH1) and, πS(sP , sH2) ≥wm πS(sP , sH1).

We explain Corollary 4.4.2 with the reference to Figure 4.5. An increased plant-

ing subsidy leads to more evenly distributed outputs, while an increased harvesting

subsidy induces a larger dispersion in the outputs, provided that the plantation is

not overly subsidized. As the planting subsidy increases, a low-yield farmer raises his

output more than a high-yield one does, leading to a reduced gap among the farmers’

outputs. This is consistent with our discussion on the planting subsidy in Corollary

4.4.1. There is, however, a worth noting difference here. Under a selective subsidy,

only the low-yield farmers receive planting subsidy, and their output levels increases

as the planting subsidy increases. This, in turn, makes the high-yield farmers less

competitive in the market.

For the same reason, when the harvesting subsidy increases, the increased amount

of output is contributed more by a high-yield farmer than by a low-yield one. As a

result, the dispersion of the output distribution increases.

Now we examine the effect of productivity distribution when the selective subsidy

is offered.

Proposition 4.4.4 (Distribution among Farmers: Selective subsidy) Consider

two otherwise identical markets indexed by A and B. Suppose all farmers produce pos-

itive quantities for given selective subsidies and zA ≥m zB. Let mk = max{j ∈ N :

zkjsP ≤ sH}, k = A,B (when zk1 > sH/sP , we set mk = 0). We assume

a) mA ≤ mB,
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Figure 4.5. The increased output distribution with respect to the
increased planting (left) and harvesting (right) subsidies.

b) 1
l

∑l
j=1(zBj−zAj)cP ≥ 1

n+1

(∑mB
i=mA+1(zAisP −sH)+

∑n
i=mB+1(zAi−zBi)sP

)
for

1 ≤ l ≤ mA.

Then the following results hold.

i) qSA(sP , sH) ≥wm qSB(sP , sH) for sP ≤ cP .

ii) πS
A(sP , sH) ≥wm πS

B(sP , sH) for sP ≤ cP .

Proposition 4.4.4 echoes the message obtained under the combined subsidy in

Proposition 4.4.2 that more evenly distributed farmers’ productivity lead to more

evenly distributed farmers’ outputs and profits. The difference is that this conclusion

is true for selective subsidy with additional conditions. In particular, more farmers

choose harvesting subsidy over the planting subsidy (condition a) when the produc-

tivity becomes more evenly distributed. At the same time, the highly productive

farmers, who would choose harvesting subsidy, obtain significantly increased planta-

tion cost (condition b).



105

4.4.3 Comparisons

In the previous section, we have derived the farmers’ equilibrium outcomes under

different subsidy programs. This allows us to compare various scenarios to understand

the incentives offered via subsidies on farmers’ output decisions.

Proposition 4.4.5 Suppose that all farmers produce positive quantities for given

combined and selective subsidy (sP , sH). The following results hold.

i) There exists a jo ≤ m such that qCj (sP , sH) ≤ [>]qSj (sP , sH) and πCj (sP , sH) ≤

[>]πSj (sP , sH) for j ≤ [>]jo.

ii) qS(sP , sH) ≥wm qC(sP , sH) for sP ≤ cP .

iii) There exists a jP such that ∆sP q
C
j ≥ [<]∆sP q

S
j for j ≤ [>]jP , and ∆sPqS ≥wm

∆sPqC if (n+ 1)z1 ≥
∑m

i=1 zi.

iv) There exists a jH such that ∆sHq
C
j ≤ [>]∆sHq

S
j for j ≤ [>]jH , and ∆sHqS ≥wm

∆sHqC.

According to Proposition 4.4.5, the highly productive farmers have a stronger

incentive to increase their outputs when offering the choice over subsidies than they

do when the combination of the same subsidies is offered to them. While these farmers

get only one payment, as opposed to two payments, their increase in plantation is

resulted from the market competition—The selective subsidy induces lower overall

outputs from farmers with low productivity than the combined subsidy does.

Under the combined subsidy, not only the overall output is more evenly distributed

among the farmers, but also the increased amount of outputs induced by either plant-

ing subsidy or harvesting subsidy are more evenly distributed among the farmer, than

under the selective subsidy.
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4.5 The Government’s Objectives and Subsidy Design

After understanding the farmers’ equilibrium behaviors, we are now ready to ana-

lyze the government’s subsidy design. As mentioned in Section 4.1, increasing market

output to meet the consumption need is a common objective in agriculture subsidy

programs. The output-oriented subsidies have been discussed in the single-firm set-

ting by Berenguer et al. (2017), Cohen et al. (2016), Taylor and Xiao (2014). In our

problem, in contrast, the farmers’ market is fragmented. Thus, the government must

take into account the fact that offering of a subsidy induces different incentives for

farmers with different productivity levels.

Given the output-oriented objective, we can formulate the government’s subsidy

design problem as

min
sP ,sH

{
bC(sP , sH) ≡ sPX

C(sP , sH) + sHQ
C(sP , sH) : QC(sP , sH) ≥ Q̄

}
.

When the government plans to offer planting only subsidy or harvesting only subsidy,

a constraint of sP = 0 or sH = 0, respectively, is added to the above optimization

problem.

If a selective subsidy is offered, the government’s problem becomes

min
sP ,sH

{
bS(sP , sH) ≡ sH

m∑
i=1

qSi (sP , sH) + sP

n∑
i=m+1

ziq
S
i (sP , sH) : QS(sP , sH) ≥ Q̄

}
.

We use sPP , sHH , (sCP , s
C
H) and (sSP , s

S
H) to denote, respectively, the government’s

optimal planting only, harvesting only, combined, and selective subsidy programs.

We should assume that Q̄ ≥ QC(0, 0) = QS(0, 0) so that the government’s target

output level cannot be achieved if no subsidy is offered. Otherwise, the problem

reduces to the one analyzed in Section 4.3.1.

4.5.1 The Optimal Subsidy Design

The next two lemmas characterize the optimal subsidy schemes for a given overall

output level Q̄.
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Lemma 4.5.1 (Subsidy Design: Combined Subsidy) The government’s optimal

subsidy scheme is characterized as follows: (Recall that ā(0, 0) = α− z̄cP − cH .)

i) When the planting only subsidy is offered, sPP = (β(n+1)
n

Q̄− ā(0, 0))/z̄.

ii) When the harvesting only subsidy is offered, sHH = β(n+1)
n

Q̄− ā(0, 0).

iii) When the combined subsidy is offered, sCP = cP/2 and sCH = β(n+1)
n

Q̄− ā(0, 0)−
cP z̄

2
.

Several interesting observations can be made from Lemma 4.5.1. It is known in

the context of subsidizing a single-firm (e.g., Berenguer et al. 2017, Taylor and Xiao

2014) that if the ratio of planting subsidy to harvesting subsidy equals to the firm’s

input-to-output ratio, then implementing either subsidy leads to the same output

level. Parts i) and ii) suggests that the same result holds in our model (as sHH = sPP z̄)

with multiple subsidized farmers. Therefore, using the average input-to-output z̄, we

can convert the planting subsidy to its output-equivalent harvesting subsidy as sPP z̄.

We further note that market competition has a major impact on the government’s

subsidy design. When the market price is more sensitive to the overall output level

(i.e., when β is large), the government needs to subsidize more per unit on planting

or harvesting. When the number of producers increases, however, the government

would reduce the per unit subsidy (as (n+ 1)/n is decreasing in n).

When the government subsidizes both planting and harvesting, the strategy is

to cover half of the farmers’ plantation cost (i.e., sCP = cP/2), while keeping the

equivalent subsidy per unit output remain unchanged (i.e., sCP z̄ + sCH = sHH = sPP z̄).

Interestingly, under the combined subsidy, the government may tax the farmers

if the target output level is not too far from the overall output without subsidy,

i.e., Q̄ ∈ [QC(0, 0), QC(cP/2, 0)] (also labeled as regions A and B in Figure 4.6). In

this case, sHC ≤ 0, suggesting a larger tax payment from the farmers with higher

productivity levels. Moreover, if the target output level is sufficiently close to the

overall output without subsidy (i.e., region A in Figure 4.6), the government even
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earns money as the tax payment from harvesting exceeds the subsidy payment to

plantation.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

2.5 2.6 2.7 2.8 2.9 3

Target Output Level

b^C(sP^C,sH^C)𝑏஼ 𝑠௉
஼, 𝑠ு

஼

𝑄ത
=
𝑄
஼
(𝑐

௉
/2
,0
)

𝑠ு
஼ < 0
𝑏஼ < 0

𝑠ு
஼ < 0
𝑏஼ > 0

𝑠ு
஼ > 0
𝑏஼ > 0

A B

Notes. α = 4, b = 1, cP = cH = 0.3, and z = (1, 1.5, 2.1, 2.8, 3.6).

Figure 4.6. The budget with respect to the overall output level under
the combined subsidy.

Lemma 4.5.2 (Subsidy Design: Selective Subsidy) Let mS = max{j ∈ N :

zjs
S
P ≤ sSH} (when z1 > sSH/s

S
P , we set mS = 0). When the selective subsidy is

offered, (sSP , s
S
H) should satisfy the following conditions:

i) When Q̄ < QS( cP
2
, 0), sSP = (β(n+1)

n
Q̄−ā(0, 0))/z̄ and sSH can be any value within

[0, z1s
S
P ] (i.e., mS = 0).

ii) When Q̄ ≥ QS( cP
2
, 0), (sSP , sSH) belongs to the set of critical points, i.e.,(sP , sH)

∣∣∣∣∣ sP = c(m)
(β(n+1)

n
Q̄− ā(0, 0)

)
/z̄ + (1− c(m))(cP/2),

sH =
(
β(n+ 1)Q̄− nā(0, 0)−

∑n
i=m+1 zisP

)
/m,

for m ∈M

 ,

where c(m) = nz̄
∑n

i=m+1 zi/
(∑n

i=m+1 z
2
im+

(∑n
i=m+1 zi

)2)
, M = {m ∈ N\{1} :

φl(m) ≤ 2(β(n+ 1)Q̄− nā(0, 0))/cP < φu(m)} and

φl(m) =
mzm +

∑n
i=m+1 zi

m
∑n

i=m+1 zi(zi − zm)

( n∑
i=m+1

z2
im−

( m∑
i=1

zi

)( n∑
i=m+1

zi

))
,

φu(m) =
mzm+1 +

∑n
i=m+1 zi

m
∑n

i=m+1 zi(zi − zm+1)

( n∑
i=m+1

z2
im−

( m∑
i=1

zi

)( n∑
i=m+1

zi

))
.
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Moreover, c(m) is decreasing in m, and mS is increasing in Q̄.

According to Lemma 4.5.2, the choice of optimal selective subsidy varies a lot, de-

pending on the target output level (also refer to Figure 4.7). When the target output

level is not too high (i.e., Q̄ ∈ [QS(0, 0), QS(cP/2, 0)]), the selective subsidy coin-

cides with the planting only subsidy, and payment for harvesting (i.e., sSH) becomes

vacuous and can be any value within the range [0, z1s
S
P ]. That is, the government

would incentivize all farmers to choose planting subsidy over harvesting subsidy (i.e.,

mS = 0). When the target output level is relatively high (i.e., Q̄ > QS(cP/2, 0)),

the strategy is to set the payment for plantation as a combination of that under the

combined subsidy and that under the planting only subsidy given the same output

level, while keeping the equivalent subsidy per unit output remain unchanged (i.e.,

sHH = sPP z̄ = sCH + sCP z̄ = (mSsSH +
∑n

i=mS+1 s
S
P z̄)/n). This observation highlights that

each subsidy program leads to the same equivalent subsidy per unit output.

Moreover, the higher the target output level, the more the farmers are motivated

to choose to receive payment based on harvesting rather than plantation (as mS is

increasing in Q̄). Interestingly, not all farmers are incentivized to choose harvesting

subsidy even though the target output level is sufficiently high. Rather, the least pro-

ductive farmer (i.e., farmer n) is always induced to choose planting subsidy, leveraging

to those farmers with higher productivity.

4.5.2 Comparisons Among Subsidy Programs

Having derived the optimal subsidy schemes in the previous section, we can now

compare different subsidy programs to understand their effects on budget, total input

and distribution among farmers.

Proposition 4.5.1 (Budget Comparison) Suppose that the government has a tar-

get output Q̄ to achieve and all farmers choose to produce. The following results hold.

i) bC(sCP , s
C
H) ≤ bS(sSP , s

S
H) ≤ bC(sPP , 0) ≤ bC(0, sHH) for Q̄ ≤ QC(cP , 0).
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Figure 4.7. The optimal selective subsidy with respect to the target output level.

ii) bC(sCP , s
C
H) ≤ bS(sSP , s

S
H) ≤ bC(0, sHH) ≤ bC(sPP , 0) for Q̄ > QC(cP , 0).

Moreover, bC(sPP , 0) = bC(0, sHH) = bC(sCP , s
C
H) = bS(sSP , s

S
H) for vz = 0.

To achieve the same overall output, the government always prefers to implement

the subsidy program with minimum cost. In the special case in which the farmers

have the same input-to-output ratios (including the case involved only a producer),

the government is indifferent between the subsidy programs and farmers each obtain

the same subsidy payment per unit output. This observation has been reported on the

study of newsvendor model (Berenguer et al. 2017). They find that when the demand

becomes deterministic, the planting and harvesting subsidies become equivalent to

the subsidized firm. In our competition model considering farmers with different

productivity levels, the combined subsidy leads to the minimum budget regardless of

the target output level. This observation highlights the importance of modeling the

heterogeneity of farmers’ input-to-output ratios.

Intuitively, a lower budget is needed under the selective subsidy than under either

planting subsidy or harvesting subsidy. Thus, the selective subsidy induces the second

lowest budget. Using the combined subsidy as the benchmark, we further note that

the increased budget induced by the selective subsidy is not significant unless the
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target output level is close to the overall output without subsidy (also refer to Figure

4.8).

In practice, the government, considering the administrative costs to implement the

subsidy program, may be in favor of uniformly offering one subsidy payment to all

farmers. In light of this, planting subsidy or harvesting subsidy can be attractive to

the policymakers. The comparison between two subsidy programs critically depends

on the target output level. When the target output level is relatively low, i.e., Q̄ ∈

[QC(0, 0), QC(cP , 0)], the planting subsidy (sPP ≤ cP ) leads to a lower budget than

the harvesting subsidy does. As suggested by Corollary 4.4.1, an increased planting

subsidy reduces the output gap among the farmers when planting subsidy is below

planting cost. Therefore, under the planting subsidy, not only the lower budget is

needed by the government, but also the overall output is more evenly distributed

among the farmers than under the harvesting subsidy. When the target output level

further increases (i.e., Q̄ > QC(cP , 0)), the harvesting subsidy induces a lower budget

as the planting subsidy excessively benefits the farmers with lower productivity (i.e.,

sPP > cP ). In the case, the budget discrepancy under selective subsidy and harvesting

subsidy also diminishes, as more farmers are motivated to receiver payment based on

output quantity rather than input quantity under the selective subsidy (recall Lemma

4.5.2).

Proposition 4.5.2 (Overall Input Comparison) Suppose that the government has

a target output Q̄ to achieve and all farmers choose to produce. The following results

hold.

i) XC(0, sHH) ≤ XS(sSP , s
S
H) = XC(sPP , 0) ≤ XC(sCP , s

C
H) for Q̄ ≤ QC( cP

2
, 0).

ii) XC(0, sHH) < XC(sCP , s
C
H) < XC(sPP , 0) and XC(0, sHH) < XS(sSP , s

S
H) < XC(sPP , 0)

for Q̄ > QC( cP
2
, 0).

iii) XC(0, sHH)/Q̄ ≤ XC(sCP , s
C
H)/Q̄ ≤ z̄, and XC(sPP , 0)/Q̄ ≤ [>]z̄ for Q̄ ≤ [>

]QC(cP , 0).
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Figure 4.8. Budget Comparison.

iv) Regardless of the subsidy program implemented, the overall input-to-output ra-

tio under subsidy is higher than that without subsidy. That is, XC(0, sHH)/Q̄,

XC(sPP , 0)/Q̄, XC(sCP , s
C
H)/Q̄ and XS(sSP , s

S
H) are higher than X∗/Q∗.

The farmers’ overall input can be an important concern from the governments

perspective. It is known that subsidies may cause overproduction, which draws the

low-quality farmland into active production. Subsidies may also encourage farmers

to overly use fertilizers and pesticides, which results in water contamination prob-

lem. Thus, the government should take into account overall input when evaluating a

subsidy program.

To achieve the same overall output level, the harvesting subsidy calls for the lowest

overall input among the subsidy programs. This is because the highly productive

farmers have the strongest incentive to plant more and harvest more under harvesting

subsidy, reducing the input from farmers with lower productivity.

Generally speaking, the overall input comparison can boil down to comparing the

unit payment to plantation among the subsidy programs. When the target output

level is relatively small (i.e., Q̄ ∈ [QC(0, 0), QC( cP
2
, 0)]), the combined subsidy leads to

the highest overall input (as sCP > sPP = sSP ). When the target level is relatively large

(i.e., Q̄ > QC( cP
2
, 0)), the planting subsidy grants the low-yield farmers the strongest
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incentive to plant more (as sPP > sSP > sCP ) and thus induces the highest overall input.

Interestingly, the selective subsidy does not necessarily require a higher overall input

than the combined subsidy does. This is true only when the target output level is

not sufficiently high. When the target output level is sufficiently high, fewer farmers

would choose planting subsidy over harvesting one, making the overall input increase

less rapidly.

Alternatively, we can compare the overall input-to-output ratios under various

subsidy programs to understand how subsidies affect the market productivity on av-

erage (also refer to Figure 4.9). Compared to the overall input-to-output ratio without

subsidy (i.e., X∗/Q∗), a subsidy program always leads to a decreased overall input-to-

output ratio because the low-yield farmers are better off and produce more under the

subsidy program. Due to the nature of competition, the high-yield farmers produce

more than those low-yield farmers, making the overall input-to-output ratio being

below z̄ (recall Proposition 4.3.1). This tuition remains when the subsidy program is

introduced. The only exception is when the government, offering the planting only

program, attempts to achieve a high target output level (i.e., Q̄ > QC(cP , 0)). In

this case, overly subsidizing the plantation induces aggressive competition from the

low-yield farmers, hurting the overall market productivity.
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Figure 4.9. Overall Input Comparison.
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Proposition 4.5.3 (Distribution among Farmers) Suppose that the government

has a target output Q̄ to achieve and all farmers choose to produce. The following

results hold.

i) qC(0, sHH) ≥m qC(sPP , 0) =m qS(sSP , s
S
H) ≥m qC(sCP , s

C
H) for Q̄ ≤ QC( cP

2
, 0);

qC(0, sHH) ≥m qC(sCP , s
C
H) ≥m qC(sPP , 0) and qC(0, sHH) ≥m qS(sSP , s

S
H) ≥m

qC(sPP , 0) for QC( cP
2
, 0) < Q̄ ≤ QC(cP , 0); qC(0, sHH) ≥m qC(sCP , s

C
H) for Q̄ >

QC(cP , 0).

ii) πC(0, sHH) ≥wm πC(sPP , 0) =m πS(sSP , s
S
H) ≥wm πC(sCP , s

C
H) for Q̄ ≤ QC( cP

2
, 0);

πC(0, sHH) ≥wm πC(sCP , s
C
H) ≥wm πC(sPP , 0) and πC(0, sHH) ≥wm πS(sSP , s

S
H) ≥wm

πC(sPP , 0) for QC( cP
2
, 0) < Q̄ ≤ QC(cP , 0); πC(0, sHH) ≥m πC(sCP , s

C
H) for Q̄ >

QC(cP , 0).

We explain Proposition 4.5.3 with the reference to Figure 4.10. One immediate

observation is that overall output is more evenly distributed among the farmers under

the combined subsidy than under the harvesting subsidy as latter one grants the low-

yield farmers more incentive to produce than the former one. We further note that the

combined subsidy leads to most balanced output distribution when the target output

level is close to the overall output without subsidy (i.e., Q̄ ∈ [QC(0, 0), QC( cP
2
, 0)]).

This makes an interesting contrast to that obtained by Tang et al. (2019). They find

that it is never optimal to provide the combined subsidy to the farmers when the

government aims towards improving the farmer’s welfare (i.e., reducing the farmers’

profit gap). In our model allowing for taxation (recall that sCH < 0 for Q̄ < QC( cP
2
, 0)

from Lemma 4.5.1), it is possible that farmers’ welfare is most evenly distributed

under the combined subsidy.

Similar comparisons can be carried out among profit distributions induced by sub-

sidy programs. The subtle difference is that the majorization order can be established

for the output distribution, while only the weak majorization order is derived for the

profit distribution.



115

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5

Cumulative Number of Farmers

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5

Cumulative Number of Farmers

Plant  Harvest Combined Selective

0.5

1

1.5

2

2.5

3

1 2 3 4 5

Cumulative Number of Farmers

C
um

ul
at

iv
e 

In
di

vi
du

al
 O

ut
pu

ts

C
um

ul
at

iv
e 

In
di

vi
du

al
 O

ut
pu

ts

C
um

ul
at

iv
e 

In
di

vi
du

al
 O

ut
pu

ts

Low Target Output Level 𝑄ത = 𝑄஼(0.3𝑐௉, 0) Medium Target Output Level 𝑄ത = 𝑄஼(0.8𝑐௉, 0) High Target Output Level 𝑄ത = 𝑄஼(2𝑐௉, 0)

Farmers’ outputs are added in descending order.

Notes. α = 4, b = 1, cP = cH = 0.3, z = (1, 1.5, 2.1, 2.8, 3.6). The farmers’ outputs are added in descending order.

Figure 4.10. The output distribution with respect to the target output level.

The next corollary characterizes how the target output level affects the distribution

among the farmers.

Corollary 4.5.1 (Response to The Increased Target Output Level)

i) ∆P qj is increasing in j, and ∆Hqj and ∆Cqj are constant in j. ∆Pq ≥m

∆Hq =m ∆Cq.

ii) ∆Hπj and ∆Cπj are decreasing in j. ∆Hπ ≥m ∆Cπ.

Corollary 4.5.1 echoes the message from Corollary 4.4.1. Under the planting sub-

sidy, the farmers with lower productivity increases their outputs more when the target

output level is higher. Under the harvesting subsidy and combined subsidy, an in-

crease in target output level leads to the same amount of output increase for all farm-

ers. As a result, the increased outputs induced by the increase in target output level

are more evenly distributed under the planting subsidy than under harvesting subsidy

and combined subsidy. Interestingly, the distribution of the farmers’ increased profits

is more balanced under the combined subsidy than under the harvesting subsidy.

4.5.3 Implications on Social Welfare

As introduced in Section 4.1, subsidy programs for agricultural products are pri-

marily aimed toward increasing the overall output. In reality, the social welfare is an
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aspect that the government cannot afford to ignore. In operations literature, some

studies have considered the effect of welfare-oriented subsidies (e.g., Cohen et al.

2016, Yu et al. 2018). In this section, rather than reformulating the problem to max-

imize social welfare, we provide some insights on how social welfare is affected by

output-oriented subsidy programs. We focus on the case when the combined subsidy

is offered.

For ease of exposition, we use CSC(sP , sH) to denote the consumer welfare under

the combined subsidy (sP , sH). We can drive

CSC(sP , sH) =
1

2

∑
i∈N

(αi(sP , sH)− p)qCi (sP , sH) =
β

2
(QC(sP , sH))2.

We then define the social welfare and net social welfare, respectively, as

WC(sP , sH) = ΠC(sP , sH) + CSC(sP , sH), (4.14)

NWC(sP , sH) = ΠC(sP , sH) + CSC(sP , sH)− bC(sP , sH). (4.15)

We observe that that consumer welfare depends on the subsidy program only through

the overall output induced by subsidy. Thus, consumer welfare is not affected by the

specific format of the output-oriented subsidy program. In other words, the effect of

subsidy programs on social welfare is equivalent to that on farmer overall profit.

The next proposition characterizes the effect of output-oriented subsidy programs

on social welfare.

Proposition 4.5.4 (Social Welfare) Suppose that the government has a target out-

put Q̄ to achieve and all farmers choose to produce. Then the following results hold.

i) When Q̄ ≤ QC( cP
2
, 0) or QC(3cP

2
, 0) ≤ Q̄ ≤ QC(2cP , 0), WC(sCP , s

C
H) ≤ WC(sPP , 0) ≤

WC(0, sHH). When QC( cP
2
, 0) ≤ Q̄ ≤ QC(3cP

2
, 0), WC(sPP , 0) ≤ WC(sCP , s

C
H) ≤

WC(0, sHH). When Q̄ ≥ QC(2cP , 0), WC(sPP , 0) ≥ WC(0, sHH) ≥ WC(sCP , s
C
H).

ii) When Q̄ ≤ QC( cP
2
, 0), NWC(sCP , s

C
H) ≤ NWC(sPP , 0) ≤ NWC(0, sHH). When

Q̄ ≥ QC( cP
2
, 0), NWC(sPP , 0) ≤ NWC(sCP , s

C
H) ≤ NWC(0, sHH).
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We explain Proposition 4.5.4 with the reference to Figure 4.11). The harvesting

subsidy leads to the most favorable social welfare when the target output level is

not too high (i.e., Q̄ ≤ QC(2cP , 0)), while the highest social welfare is achieved

under the planting subsidy when the target output level is sufficiently high (i.e.,

Q̄ > QC(2cP , 0)). The combined subsidy, however, induces the least favorable social

welfare when the target output level is either relatively low or sufficiently high (i.e.,

Q̄ ≤ QC( cP
2
, 0) or Q̄ ≥ QC(3cP

2
, 0)). Together with the observation from previous

propositions, we observe that although the combined subsidy is appealing in low cost

and fair profit allocation, it requires additional needed input and induce low social

welfare. This suggests that alternative subsidy programs can be attractive if the

government has adequate budget and concerns other aspects.

When the government gives consideration to the net social welfare, the govern-

ment’ preference over subsidy programs coincides with that in which overall input is

taken into account — The harvesting subsidy leads to the highest net social welfare,

regardless of the target output level.
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Figure 4.11. The social welfare comparison.
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4.6 Conclusion

In this study, we offer a stylized model to understand the effect of output-oriented

subsidy programs on farmers’ output decisions as well as their welfare distribution.

We consider two types of subsidies, planting subsidy and harvesting subsidy. We allow

for the possibility that a farmer receives payments for both plantation and harvesting

or chooses to receive either of them.

We observe that planting and harvesting subsidies exhibit different effects on farm-

ers’ outputs. Under the combined subsidy, a larger harvesting subsidy incentivizes all

farmers to produce more, while a larger planting subsidy can discourage high-yield

farmers to produce. Under the selective subsidy, an increased harvesting subsidy

benefits the farmers who choose the harvesting subsidy, while hurting those who

choose the planting subsidy. The planting subsidy, however, only benefits the least

productive farmers and may hurt the farmers choosing the planting subsidy. Gener-

ally speaking, an increased harvesting subsidy widens the gaps among the farmers in

both their outputs and profits, while an increased planting subsidy can lead to a more

balanced farmers’ output distribution when the plantation is not overly subsidized.

Moreover, the farmers’ overall output is more evenly distributed under the combined

subsidy than under the selective subsidy.

When the government chooses the subsidy program that minimizes the budget,

the combined subsidy leads to the minimum budget cost among subsidy programs.

However, the combined subsidy requires additional input and induces undesirable

social welfare when the target output level is relatively low. In contrast, although the

harvesting only subsidy induces the highest budget cost, it gives the most favorable

overall input as well as net social welfare.
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5. CONCLUSION AND DIRECTION FOR FUTURE

RESEARCH

This chapter concludes the findings of this research, and discusses the scope and

directions of future research. This study considered the vertical relationship in the

supply chain at different levels, namely, firm-consumer interface, supplier-buyer in-

terface, and firm-government interface. Three specific problems are examined. The

first problem considers the firms’ dynamic pricing strategies with the possibility of

bargaining. The second problem introduces the Kalai-Smorodinsky (KS) bargaining

solution to study contracting in competing supply chains. The third problem focuses

on the design of subsidy programs for producers in a fragmented market.

For the first problem, we use a dynamic programming framework to study firms’

pricing strategies. Our model, allowing arriving buyers to bargain for a price dis-

count, brings an additional dimension to the competition dynamics. In general, the

sellers’ competing strategies not only depend on their reservation values of losing an

arriving buyer to the competitor but also on their disagreement points of negotiation

breakdown with the buyer. We also show that it is not necessarily the case that the

seller with a lower stock level can deplete her inventory first, as it is in the pure price

competition. Because of the possibility of bargaining, the buyer may end up purchas-

ing from a seller who has a higher inventory level. Interestingly, such a phenomenon

only appears when the length of selling season is long enough. In view of the com-

mon occurrence of negotiation in buyer-seller interactions, our study, as a first step

to analyze dynamic competition with bargaining, calls for additional research in this

area. In our model, we have assumed that the buyers, in the event of no purchase,

would leave the market (or seek other alternatives). Consideration of returned buyers

naturally requires modeling of the strategic behavior of the buyers, an aspect exten-
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sively researched in the revenue management literature (e.g., Dasu and Tong 2010,

Levin et al. 2009, 2010, Liu and Zhang 2013, Shen and Su 2007, Zhang and Cooper

2008). Understanding the effect of bargaining in competing for strategic buyers is

important, yet challenging. Another important aspect in competitive sequential sell-

ing is the possession of private information by different parties. It is known that

bargaining under asymmetric information is a difficult problem (see, e.g., Bhandari

and Secomandi 2011, Feng et al. 2014). More research is needed to understand the

role of information in the competition dynamics.

For the second problem, we formulate a two-tier supply chain consisting of one

or two suppliers selling products to one or two retailers. Because of the axiom of in-

dependence of irrelevant alternatives, we uncover an important observation that the

Nash bargaining solution may lead to unreasonable negotiation outcomes in compet-

ing supply chains with contingency terms. Instead, we apply the Kalai-Smorodinsky

solution to study contract negotiations in competing supply chains, and analyze its

connection to and difference from the Nash bargaining solution. We find that the

KS solution appropriately captures the negotiation power shift induced by the deci-

sion ownership, the negotiation sequence, the vertical relationship, the competition

intensity, the contract contingency and the contract type.

For the third problem, we analyze the design of government subsidy programs

to induce socially improved farmers’ decisions. We find that a higher harvesting

subsidy widens the gaps among the farmers in both their outputs and profits, while

a higher planting subsidy narrows the gap in farmers’ outputs when the plantation

is not overly subsidized. Further, when the government attempts to achieve the

target output level with minimum budget, the combined subsidy is always preferred

regardless of target output level. Our model and analysis can be extended along

different directions. In our model, we have assumed that farmers’ input-to-output

ratios are deterministic. Consideration of yield certainty naturally requires modeling

the order of farmers’ productivity distributions, which requires the theory of stochastic

orders (see Shaked and Shanthikumar (2007) for commonly used orders and closure



121

properties). Understanding the effect of subsidy programs in a fragmented market

with yield uncertainty is important, yet challenging. Another potential aspect is

to consider alternative formats of subsidy programs such as supported price (e.g.,

Chintapalli and Tang 2018, Guda et al. 2019, Gupta et al. 2017) as well as PLC and

ARC programs (e.g., Alizamir et al. 2019).
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K. Arifoğlu, S. Deo, and S. M. R. Iravanis. Consumption externality and yield
uncertainty in the influenza vaccine supply chain: Interventions in demand and
supply sides. Management Science, 58(6):1072–1091, 2012.

M. A. Arnold and S. A. Lippman. Posted prices versus bargaining in markets with
asymmetric information. Economic Inquiry, 36(3):450–457, 1998.

K. J. Arrow. A difficulty in the concept of social welfare. Journal of Political
Economy, 58(4):328–346, 1950.

B. Ata, D. Lee, and E. Sönmez. Dynamic staffing of volunteer gleaning operations.
Operations Research, 67(2):295–314, 2019.



123

G. Aydin and H. S. Heese. Bargaining for an assortment. Management Science, 61
(3):542–559, 2014.

N. Ayvaz-Cavdaroglu, S. Kachani, and C. Maglaras. Revenue management with
minimax regret negotiations. Omega, 63:12–22, 2016.

G. Berenguer, Q. Feng, J. G. Shanthikumar, and L. Xu. The effects of subsidies on
increasing consumption through for-profit and not-for-profit newsvendors. Produc-
tion and Operations Management, 26(6):1191–1206, 2017.

F. Bernstein and A. Federgruen. Dynamic inventory and pricing models for com-
peting retailers. Naval Research Logistics (NRL), 51(2):258–274, 2004.

F. Bernstein and A. Federgruen. Decentralized supply chains with competing retail-
ers under demand uncertainty. Management Science, 51(1):18–29, 2005.

F. Bernstein and M. Nagarajan. Competition and cooperative bargaining models in
supply chains. Foundations and Trends R© in Technology, Information and Opera-
tions Management, 5(2):87–145, 2012.

H. Bester. Bargaining versus price competition in markets with quality uncertainty.
American Economic Review, 83(1):278–288, 1993.

H. Bester. Price commitment in search markets. Journal of Economic Behavior &
Organization, 25(1):109–120, 1994.

A. Bhandari and N. Secomandi. Revenue management with bargaining. Operations
Research, 59(2):498–506, 2011.

K. Binmore, A. Rubinstein, and A. Wolinsky. The Nash bargaining solution in
economic modelling. The RAND Journal of Economics, pages 176–188, 1986.

T. Bodea and M. Ferguson. Segmentation, Revenue Management and Pricing Ana-
lytics. Routledge, 2014.

O. Boyabatlı, J. Nguyen, and T. Wang. Capacity management in agricultural com-
modity processing and application in the palm industry. Manufacturing & Service
Operations Management, 19(4):551–567, 2017.

O. Boyabatlı, J. Nasiry, and Y. Zhou. Crop planning in sustainable agriculture:
Dynamic farmland allocation in the presence of crop rotation benefits. Management
Science, 65(5):2060–2076, 2019.

G. P. Cachon and A. G. Kök. Competing manufacturers in a retail supply chain:
On contractual form and coordination. Management Science, 56(3):571–589, 2010.

G. P. Cachon and M. A. Lariviere. Supply chain coordination with revenue-sharing
contracts: strengths and limitations. Management Science, 51(1):30–44, 2005.

G. Cai, Y. Dai, and S. X. Zhou. Exclusive channels and revenue sharing in a
complementary goods market. Marketing Science, 31(1):172–187, 2012.

D. Carf̀ı and D. Schiliro. Global green economy and environmental sustainability:
a coopetitive model. In International Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems, pages 593–606. Springer,
2012.



124

D. Carf̀ı and A. Trunfio. A non-linear coopetitive game for global green economy.
Moving from the Crisis to Sustainability-Emerging Issues in the International Con-
text, pages 421–428, 2011.

T. K. Chee, C. Lim, and J. Choi. A cooperative game theoretic framework for
resource allocation in OFDMA systems. In Communication systems, 2006. ICCS
2006. 10th IEEE Singapore International Conference on, pages 1–5. IEEE, 2006.

J. Chen and A. L. Swindlehurst. Downlink resource allocation for multi-user MIMO-
OFDMA systems: The Kalai-Smorodinsky bargaining approach. In Computational
Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2009 3rd IEEE Inter-
national Workshop on, pages 380–383. IEEE, 2009.

L. Chen, S. M. Gilbert, and Y. Xia. Product line extensions and technology licensing
with a strategic supplier. Production and Operations Management, 25(6):1121–1146,
2016.

M. Chen and Z. Chen. Recent developments in dynamic pricing research: multiple
products, competition, and limited demand information. Production and Operations
Management, 24(5):704–731, 2015.

Y. J. Chen and C. S. Tang. The economic value of market information for farmers
in developing economies. Production and Operations Management, 24(9):1441–1452,
2015.

Y. J. Chen, J. G. Shanthikumar, and Z. J. Shen. Training, production, and channel
separation in itc’s e-choupal network. Production and Operations Management, 22
(2):348–364, 2013a.

Y. J. Chen, J. G. Shanthikumar, and Z. J. Shen. Incentive for peer-to-peer infor-
mation sharing in avaaj otalo. Available at SSRN 2265855, 2013b.

P. K. Chintagunta and V. R. Rao. Pricing strategies in a dynamic duopoly: A
differential game model. Management Science, 42(11):1501–1514, 1996.

P. Chintapalli and C. S. Tang. The impact of crop minimum support prices on crop
production and farmer welfare. Working paper, 2018.

L. Y. Chu, Y. Rong, and H. Zheng. RFQ, sequencing, and the most favorable
bargaining outcome. Working paper, 2019.

Y. Chun and W. Thomson. Monotonicity properties of bargaining solutions when
applied to economics. Mathematical Social Sciences, 15(1):11–27, 1988.

M. C. Cohen, R. Lobel, and G. Perakis. The impact of demand uncertainty on
consumer subsidies for green technology adoption. Management Science, 62(5):1235–
1258, 2016.

T. H. Cui, J. S. Raju, and Z. J. Zhang. Fairness and channel coordination. Man-
agement Science, 53(8):1303–1314, 2007.

C. Currie, R. Cheng, and H. Smith. Dynamic pricing of airline tickets with compe-
tition. Journal of the Operational Research Society, 59(8):1026–1037, 2008.



125

A. Dasci and M. Karakul. Two-period dynamic versus fixed-ratio pricing in a capac-
ity constrained duopoly. European Journal of Operational Research, 197(3):945–968,
2009.

S. Dasu and C. Tong. Dynamic pricing when consumers are strategic: Analysis of
posted and contingent pricing schemes. European Journal of Operational Research,
204(3):662–671, 2010.

C. Davidson. Multiunit bargaining in oligopolistic industries. Journal of Labor
Economics, 6(3):397–422, 1988.

P. S. Desai and D. Purohit. “Let me talk to my manager”: Haggling in a competitive
environment. Marketing Science, 23(2):219–233, 2004.

S. K. Devalkar, S. Seshadri, C. Ghosh, and A. Mathias. Data science applications in
indian agriculture. Production and Operations Management, 27(9):1701–1708, 2018.

H. Dixon. Approximate bertrand equilibria in a replicated industry. The Review of
Economic Studies, 54(1):47–62, 1987.

M. Draganska, D. Klapper, and J. M. Villas-Boas. A larger slice or a larger pie? an
empirical investigation of bargaining power in the distribution channel. Marketing
Science, 29(1):51–74, 2010.

B. Driesen, A. Perea, and H. Peters. The Kalai–Smorodinsky bargaining solution
with loss aversion. Mathematical Social Sciences, 61(1):58–64, 2011.

M. Dudey. Dynamic edgeworth-bertrand competition. The Quarterly Journal of
Economics, 107(4):1461–1477, 1992.

A. Dukes, E. Gal-Or, and K. Srinivasan. Channel bargaining with retailer asymme-
try. Journal of Marketing Research, 43(1):84–97, 2006.

A. R. Fattahi and F. Paganini. New economic perspectives for resource allocation in
wireless networks. In American Control Conference, 2005. Proceedings of the 2005,
pages 3960–3965. IEEE, 2005.
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A. Proofs of Formal Results in Chapter 2

Proof of Lemma 2.4.1. By definition, sB(r, s, v) is increasing in s and hence the

result follows. �

Proof of Proposition 2.4.1. We first note that it is without loss of generality to

restrict the posted prices within [vj, r̄]. If sj > r̄, the resulting profit to seller j is the

same as sj = r̄ for any equilibrium outcome. If sj < vj, seller j would be better off

not selling the item than selling it at sj.

To see part (i), we compute seller j’s expected profit provided that her opponent

sets a price si. By (2.5), we have

ΨS
j (v, sj, si) =


ΨS
j,1(v, sj, si) for sj < si,

ΨS
j,2(v, sj, si) for sj > si,

ΨS
j,3(v, sj, si) for sj = si,

where

ΨS
j,1(v, sj, si) ≡ E[I{R<v}v] + E[I{sj<R}sBj(R, sj, v)] + E

[
I{v≤R≤sj}

sBj(R, sj, v) + v

2

]
,

ΨS
j,2(v, sj, si) ≡ E[I{R<v}∪{si<R}v] + E

[
I{v≤R≤si}

sBj(R, sj, v) + v

2

]
,

ΨS
j,3(v, sj, si) ≡ E[I{R<v}v] + E

[
I{v≤R}

sBj(R, sj, v) + v

2

]
.

We have two cases to consider to derive the best response ŝj(si) for seller j.

Case(a): si = v. We note that seller j would not post a price below v and thus

sj ≥ v = si. For any sj ≥ v, ΨS
j,2(v, sj, si) is constant in sj and ΨS

j,3(v, v, v) −

ΨS
j,2(v, sj, v) = 0. As a result, seller j is indifferent among any prices above v. In

other words, seller j’s best response is ŝj(si) ∈ [v, r̄] for si = v.

Case(b): si > v. We have

ΨS
j,3(v, si, si)−ΨS

j,2(v, sj, si) = E

[
I{si<R}

sBj(R, si, v)− v
2

]
≥ 0.
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The equality holds only if si = r̄. This implies that the best response ŝj(si) must be

within [v, si]. Also note that

∂

∂sj
ΨS
j,1(v, sj, si) =

1− θ
2

F̄R(sj)(2− (sj − v)hR(sj)).

Because (sj − v)hR(sj) is increasing in sj for sj ≥ v, the maximizer of ΨS
j,1(v, sj, si)

over sj ∈ [v, si) is unique and is denoted by s̄j(v) = max{s ∈ [v, r̄] : (s−v)hR(s) ≤ 2}.

Also note that

ΨS
j,1(v, si − ε, si)−ΨS

j,3(v, si, si)

= E

[
I{si−ε<R}

(
sBj(R, si − ε, v)− sBj(R, si, v) + v

2

)]
> 0.

Thus, seller j’s best response to an si above v is ŝj(si) = (si−ε)∧s̄j(v) for a sufficiently

small ε > 0. Hence seller j’s best response to an si ≥ v is

ŝj(si) =


[v, r̄], si = v,

si − ε, v < si ≤ s̄j(v),

s̄j(v), s̄j(v) < si ≤ r̄.

Because sellers’ disagreement points are the same, we can derive seller i’s best response

ŝi(sj) symmetrically. As a result, the sellers engage in symmetric Bertrand price

competition and the equilibrium prices are (s∗j , s
∗
i ) = (v, v).

To see part (ii) and (iii), we compute seller j(i)’s expected profit provided that

her opponent sets a price si(sj). By (2.7) and (2.8), we have

ΨA:s
j (vj, vi, sj, si) =


ΨA:s
j,1 (vj, vi, sj, si) for sj < si +

θ(vi−vj)
1−θ ,

ΨA:s
j,2 (vj, vi, sj, si) for sj > si +

θ(vi−vj)
1−θ ,

ΨA:s
j,3 (vj, vi, sj, si) for sj = si +

θ(vi−vj)
1−θ ,

ΨA:b
i (vi, vj, si, sj) =


ΨA:b
i,1 (vi, vj, si, sj) for sj < si +

θ(vi−vj)
1−θ ,

ΨA:b
i,2 (vi, vj, si, sj) for sj > si +

θ(vi−vj)
1−θ ,

ΨA:b
i,3 (vi, vj, si, sj) for sj = si +

θ(vi−vj)
1−θ ,
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where

ΨA:s
j,1 (vj, vi, sj, si) ≡ E[I{R<vj}vj] + E[I{vj≤R}sBj(R, sj, vj)],

ΨA:s
j,2 (vj, vi, sj, si) ≡ E[I

{R<vj}∪{R≥si+
θ(vi−vj)

1−θ }
vj] + E

[
I
{vj≤R<si+

θ(vi−vj)

1−θ }
sBj(R, sj, vj)

]
,

ΨA:s
j,3 (vj, vi, sj, si) ≡ E[I{R<vj}vj] + E

[
I
{vj≤R<si+

θ(vi−vj)

1−θ }
sBj(R, sj, vj)

]
+ E

[
I
{R≥si+

θ(vi−vj)

1−θ }

sBj(R, sj, vj) + vj
2

]
,

ΨA:b
i,1 (vi, vj, si, sj) ≡ vi,

ΨA:b
i,2 (vi, vj, si, sj) ≡ E[I

{R<si+
θ(vi−vj)

1−θ }
vi] + E

[
I
{R≥si+

θ(vi−vj)

1−θ }
sBi(R, si, vi)

]
,

ΨA:b
i,3 (vi, vj, si, sj) ≡ E[I

{R<si+
θ(vi−vj)

1−θ }
vi] + E

[
I
{R≥si+

θ(vi−vj)

1−θ }

sBi(R, si, vi) + vi
2

]
.

To derive seller j’s best response ŝj(si), we have two cases to consider.

Case(a): vi ≤ si < r̄ − θ(vi−vj)
1−θ . A necessary condition for this case to be valid is

that vi < (1− θ)r̄ + θvj. For any sj ≥ vj, ΨA:s
j,2 (vj, vi, sj, si) is constant in sj and

ΨA:s
j,3 (vj, vi, si +

θ(vi − vj)
1− θ

, si)−ΨA:s
j,2 (vj, vi, sj, si)

= E

[
I
{R≥si+

θ(vi−vj)

1−θ }

sBj(R, si +
θ(vi−vj)

1−θ , vj)− vj
2

]
> 0,

implying that best response ŝj(si) must be within [vj, si +
θ(vi−vj)

1−θ ]. For any sj ≥ vj,

ΨA:s
j,1 (vj, vi, sj, si) is increasing in sj and

ΨA:s
j,1 (vj, vi, si +

θ(vi − vj)
1− θ

− ε, si)−ΨA:s
j,3 (vj, vi, si +

θ(vi − vj)
1− θ

, si)

= E

[
I
{R≥si+

θ(vi−vj)

1−θ }

(
sBj(R, si +

θ(vi − vj)
1− θ

− ε, vj)−
sBj(R, si +

θ(vi−vj)
1−θ , vj) + vj

2

)]
+E

[
I
{si+

θ(vi−vj)

1−θ −ε≤R<si+
θ(vi−vj)

1−θ }

(
sBj(R, si +

θ(vi − vj)
1− θ

− ε, vj)− sBj(R, si +
θ(vi − vj)

1− θ
, vj)

)]
> 0.

Thus, seller j’s best response in this case is ŝj(si) = si +
θ(vi−vj)

1−θ − ε for a sufficiently

small ε > 0.

Case(b): si ≥ r̄ − θ(vi−vj)
1−θ . We note that seller j would not post a price above r̄

and thus sj ≤ r̄ ≤ si +
θ(vi−vj)

1−θ . Because ΨA:s
j,1 (vj, vi, sj, si) is increasing in sj, seller j’s

best response in this case is ŝj(si) = r̄.
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Combining cases (a) and (b), we obtain seller j’s best response for different values

of (vj, vi):

Case I : If vi < (1− θ)r̄ + θvj,

ŝj(si) =

 si +
θ(vi−vj)

1−θ − ε, vi ≤ si < r̄ − θ(vi−vj)
1−θ ,

r̄, r̄ − θ(vi−vj)
1−θ ≤ si ≤ r̄.

(A.1)

Case II : If vi ≥ (1− θ)r̄ + θvj,

ŝj(si) = r̄, vi ≤ si ≤ r̄. (A.2)

To derive seller i’s best response ŝi(sj), we have two cases to consider.

Case(a): sj ≤ vi +
θ(vi−vj)

1−θ . We note that seller i would not post a price below vi

and thus si ≥ vi ≥ sj − θ(vi−vj)
1−θ . For any si ≥ vi, ΨA:b

i,1 (vi, vj, si, sj) is constant in si

and

ΨA:b
i,1 (vi, vj, si, sj)−ΨA:b

i,3 (vi, vj, vi, vi +
θ(vi − vj)

1− θ
) = 0.

As a result, seller i is indifferent among any prices above vi. In other words, seller i’s

best response in this case is ŝi(sj) ∈ [vi, r̄].

Case(b): vi +
θ(vi−vj)

1−θ < sj ≤ r̄. A necessary condition for this case to be valid is

that vi < (1− θ)r̄ + θvj. We have

ΨA:b
i,3 (vi, vj, sj −

θ(vi − vj)
1− θ

, sj)−ΨA:b
i,1 (vi, vj, si, sj)

= E

[
I{R≥sj}

sBi(R, sj − θ(vi−vj)
1−θ , vi)− vi

2

]
≥ 0.

The equality holds only if sj = r̄. This implies that the best response ŝi(sj) must be

within [vi, sj − θ(vi−vj)
1−θ ]. Also note that

∂

∂si
ΨA:b
i,2 (vi, vj, si, sj) = (1− θ)F̄R

(
si +

θ(vi − vj)
1− θ

)(
1− (si − vi)hR

(
si +

θ(vi − vj)
1− θ

))
.

Because (si − vi)hR
(
si +

θ(vi−vj)
1−θ

)
is increasing in si for si ≥ vi, the maximizer of

ΨA:b
i,2 (vi, vj, si, sj) over si ∈ [vi, sj− θ(vi−vj)

1−θ ) is unique and we denote the maximizer as

s̄i(vi, vj) = max
{
s ∈

[
vi, r̄ −

θ(vi − vj)
1− θ

]
: (s− vi)hR

(
s+

θ(vi − vj)
1− θ

)
≤ 1
}
.
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Also note that

ΨA:b
i,2 (vi, vj, sj −

θ(vi − vj)
1− θ

− ε, sj)−ΨA:b
i,3 (vi, vj, sj −

θ(vi − vj)
1− θ

, sj)

= E

[
I{R≥sj}

(
sBi(R, sj −

θ(vi − vj)
1− θ

− ε, vi)−
sBi(R, sj − θ(vi−vj)

1−θ , vi) + vi

2

)]
+E

[
I{sj−ε≤R<sj}

(
sBi(R, sj −

θ(vi − vj)
1− θ

− ε, vi)− vi
)]

> 0.

Thus, seller i’s best response in this case is ŝi(sj) = (sj − θ(vi−vj)
1−θ − ε) ∧ s̄i(vi, vj) for

a sufficiently small ε > 0.

Combining cases (a) and (b), we obtain seller i’s best response for different values

of (vi, vj):

Case I : If vi < (1− θ)r̄ + θvj,

ŝi(sj) =


[vi, r̄], vj ≤ sj ≤ vi +

θ(vi−vj)
1−θ ,

sj − θ(vi−vj)
1−θ − ε, vi +

θ(vi−vj)
1−θ < sj ≤ s̄i(vi, vj) +

θ(vi−vj)
1−θ ,

s̄i(vi, vj), s̄i(vi, vj) +
θ(vi−vj)

1−θ < sj ≤ r̄.

(A.3)

Case II : If vi ≥ (1− θ)r̄ + θvj,

ŝi(sj) = [vi, r̄], vj ≤ sj ≤ r̄. (A.4)

Now we are ready to derive the equilibrium using the expressions of the best

responses ŝj(si) and ŝi(sj). In the case that a pure strategy Nash equilibrium does

not exist, we follow the notion of ε-equilibrium (Tijs 1981), which states that each

player can benefit ε by deviating from her strategy.

Case I : vi < (1 − θ)r̄ + θvj. We claim that the equilibrium prices are (s∗j , s
∗
i ) =

(
vi−θvj

1−θ − ε, vi). To verify this equilibrium, we note from (A.1), seller j’s best response

to si = vi is ŝj(vi) =
vi−θvj

1−θ −ε. Also by (A.3), seller i’s best response to sj =
vi−θvj

1−θ −ε

is ŝi(
vi−θvj

1−θ − ε) = vi ∈ [vi, r̄]. Thus, (
vi−θvj

1−θ − ε, vi) is an equilibrium.

Next we show no other equilibrium exists in this case. Suppose in equilibrium

soi ∈ (vi, r̄ − θ(vi−vj)
1−θ ). By (A.1), equilibrium price set by seller j is soj = ŝj(s

o
i ) =

soi +
θ(vi−vj)

1−θ − ε ∈ (
vi−θvj

1−θ − ε, r̄ − ε). Given seller j’s price soj , by (A.3), seller i’s best
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response is ŝi(s
o
j) = (soi − ε) ∧ s̄i(vi, vj) 6= soi . Thus, we cannot have an equilibrium

with si = soi ∈ (vi, r̄ − θ(vi−vj)
1−θ ). Similarly, we can prove that no equilibrium exists

with si = soi ∈ [r̄ − θ(vi−vj)
1−θ , r̄].

Case II : vi ≥ (1− θ)r̄+ θvj. It is immediate from (A.2) and (A.4) to see that the

equilibrium prices are (s∗j , s
∗
i ) = (r̄, [vi, r̄]). �

Proof of Lemma 2.5.1. We compute seller j’s expected profit provided that her

opponent sets a price si. By (2.12), we have

ΨS
j (v, wj, sj, si) =



ΨS
j,1(v, wj, sj, si) for v ≤ sj < si,

ΨS
j,2(v, wj, sj, si) for sj < si ∧ v,

ΨS
j,3(v, wj, sj, si) for v ≤ si < sj,

ΨS
j,4(v, wj, sj, si) for si < sj ∧ v,

ΨS
j,5(v, wj, sj, si) for v ≤ sj = si,

ΨS
j,6(v, wj, sj, si) for sj = si < v,

where

ΨS
j,1(v, wj, sj, si) ≡ E[I{R<v}v] + E[I{sj<R}sBj(R, sj, v)] + E

[
I{v≤R≤sj}

sBj(R, sj, v) + wj
2

]
,

ΨS
j,2(v, wj, sj, si) ≡ E[I{R<sj}v] + E[I{sj≤R}sj],

ΨS
j,3(v, wj, sj, si) ≡ E[I{R<v}v] + E[I{si<R}wj] + E

[
I{v≤R≤si}

sBj(R, sj, v) + wj
2

]
,

ΨS
j,4(v, wj, sj, si) ≡ E[I{R<si}v] + E[I{si≤R}wj],

ΨS
j,5(v, wj, sj, si) ≡ E[I{R<v}v] + E

[
I{v≤R}

sBj(R, sj, v) + wj
2

]
,

ΨS
j,6(v, wj, sj, si) ≡ E[I{R<sj}v] + E

[
I{sj≤R}

sj + wj
2

]
.

We have two cases to consider to derive the best response ŝj(si) for seller j.

Case(a): si ≤ v. We note that

∂

∂sj
ΨS
j,2(v, wj, sj, si) = F̄R(sj)(1− (sj − v)hR(sj)).

Because (sj−v)hR(sj) is increasing in sj for sj ≥ v, the maximizer of ΨS
j,2(v, wj, sj, si)

over sj < si is unique and is denoted by s̄j(v) = max{s ∈ [v, r̄] : (s − v)hR(s) ≤ 1}.
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We further note that s̄j(v) ≥ v and thus seller j’s best response provided that sj < si

is ŝj(si) = si − ε. For any sj > si, ΨS
j,4(v, wj, sj, si) is constant in sj and

ΨS
j,2(v, wj, si − ε, si)−ΨS

j,4(v, wj, sj, si)

= E[I{si≤R}(si − ε− wj)] + E[I{si−ε≤R<si}(si − ε− v)],

ΨS
j,2(v, wj, si − ε, si)−ΨS

j,6(v, wj, si, si)

= E

[
I{si≤R}

(
si − wj

2
− ε
)]

+ E[I{si−ε≤R<si}(si − ε− v)].

For si = v, ΨS
j,6(v, wj, v, v) = ΨS

j,5(v, wj, v, v) and ΨS
j,4(v, wj, sj, v) = ΨS

j,3(v, wj, sj, v).

Note that the right-hand sides of both equations are strictly positive only if si ∈

(wj, r̄). As a result, seller j’s best response to an si above wj is ŝj(si) = si − ε for a

sufficiently small ε > 0. Also note that

ΨS
j,4(v, wj, sj, si)−ΨS

j,6(v, wj, si, si) = E

[
I{si≤R}

wj − si
2

]
.

The right-hand side of the equation is above (equal to) zero only if si < (=)wj. As a

result, seller j’s best response is ŝj(si) ∈ [si+ε, r̄] for an si < wj, and is ŝj(si) ∈ [wj, r̄]

for si = wj. Hence seller j’s best response in this case is

ŝj(si) =


[si + ε, r̄], si < wj,

[wj, r̄], si = wj,

si − ε, wj < si < r̄.

Case(b): si > v. We have ΨS
j,1(v, wj, v, si) = v > ΨS

j,2(v, wj, v − ε, si), implying

that the best response ŝj(si) provided that sj < si must be within [v, si). Also note

that

∂

∂sj
ΨS
j,1(v, wj, sj, si) =

1− θ
2

F̄R(sj)
(
2−

(
sj −

wj − θv
1− θ

)
hR(sj)

)
.

Because (sj − wj−θv
1−θ )hR(sj) is increasing in sj for sj ≥ wj−θv

1−θ , the maximizer of

ΨS
j,1(v, wj, sj, si) over sj ∈ [v, si) is unique. We denote the maximizer as

s̄j(v, wj) = max
{
v,max

{
s ∈

[wj − θv
1− θ

∧ r̄, r̄
]

:
(
s− wj − θv

1− θ
)
hR(s) ≤ 2

}}
.
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Thus, seller j’s best response provided that sj < si is ŝj(si) = (si − ε) ∧ s̄j(v, wj) for

a sufficiently small ε > 0. For any sj ≥ v, ΨS
j,3(v, wj, sj, si) is constant in sj and

ΨS
j,1(v, wj, si − ε, si)−ΨS

j,3(v, wj, sj, si)

= E[I{si<R}(sBj(R, si − ε, v)− wj)]

+E

[
I{si−ε<R≤si}

(
sBj(R, si − ε, v)− sBj(R, si, v) + wj

2

)]
,

ΨS
j,1(v, wj, si − ε, si)−ΨS

j,5(v, wj, si, si)

= E

[
I{si−ε<R}

(
sBj(R, si − ε, v)− sBj(R, si, v) + wj

2

)]
.

For si = r̄, the first equation is not valid since seller j would not set a price above r̄.

The right-hand sides of both equations are strictly positive only if si ∈ (
wj−θv

1−θ , r̄]. As

a result, seller j’s best response to an si ∈ (
wj−θv

1−θ , r̄] is ŝj(si) = (si− ε)∧ s̄j(v, wj) for

a sufficiently small ε > 0. Also note that

ΨS
j,3(v, wj, sj, si)−ΨS

j,5(v, wj, si, si) = E

[
I{si<R}

wj − sBj(R, si, v)

2

]
.

The right-hand side of the equation is above zero only if si <
wj−θv

1−θ ∧ r̄, and equals

zero only if si =
wj−θv

1−θ < r̄. As a result, seller j’s best response is ŝj(si) ∈ [si + ε, r̄]

for an si <
wj−θv

1−θ ∧ r̄, and is ŝj(si) ∈ [
wj−θv

1−θ ∧ r̄, r̄] for si =
wj−θv

1−θ ∧ r̄. Hence seller j’s

best response in this case is

ŝj(si) =



[si + ε, r̄], si <
wj−θv

1−θ ∧ r̄,

[
wj−θv

1−θ ∧ r̄, r̄], si =
wj−θv

1−θ ∧ r̄,

si − ε, wj−θv
1−θ < si ≤ s̄j(v, wj),

s̄j(v, wj), s̄j(v, wj) < si ≤ r̄.

We note that
wj−θv

1−θ ≥ s̄j(v, wj) = r̄ if and only if wj ≥ (1 − θ)r̄ + θv. Combining

cases (a) and (b), we obtain seller j’s best response for different values of (v, wj):

Case I : If wj ≥ (1− θ)s̄j(v, wj) + θv(≥ v),

ŝj(si) =

 [si + ε, r̄], si < r̄,

r̄, si = r̄.
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Case II : If v ≤ wj < (1− θ)s̄j(v, wj) + θv,

ŝj(si) =



[si + ε, r̄], si <
wj−θv

1−θ ,

[
wj−θv

1−θ , r̄], si =
wj−θv

1−θ ,

si − ε, wj−θv
1−θ < si ≤ s̄j(v, wj),

s̄j(v, wj), s̄j(v, wj) < si ≤ r̄.

Case III : If wj ≤ v,

ŝj(si) =



[si + ε, r̄], si < wj,

[wj, r̄], si = wj,

si − ε, wj < si ≤ s̄j(v, wj),

s̄j(v, wj), s̄j(v, wj) < si ≤ r̄.

Because sellers’ disagreement points are the same, we can derive seller i’s best response

ŝi(sj) symmetrically. Now we are ready to derive the equilibrium using the expressions

of the best responses ŝj(si) and ŝi(sj). We note that because sellers are symmetric in

their reservation values and disagreement points, the equilibrium prices (if any) must

be the same. Following a similar analysis of that used in Proposition 2.4.1, we have

three cases to consider.

Case I : w ≥ (1− θ)r̄ + θv. The equilibrium prices are (s∗j , s
∗
i ) = (r̄, r̄).

Case II : v ≤ w < (1−θ)r̄+θv. The equilibrium prices are (s∗j , s
∗
i ) = (w−θv

1−θ ,
w−θv
1−θ ).

Case III : w < v. The equilibrium prices are (s∗j , s
∗
i ) = (w,w). �

Proof of Proposition 2.5.1. By definition, s̄j(v, wj) is increasing in wj and hence

s̄j(v, wj) ≤ s̄i(v, wi) for wj < wi. If (i) wi > wj ≥ (1 − θ)s̄j(v, wj) + θv, or (ii) wj <

wi < v and s̄i(v, wi) = v, then the equality is achieved (i.e., s̄j(v, wj) = s̄i(v, wi)).

Given the expressions of the best responses of ŝj(si) and ŝi(sj) derived in Lemma

2.5.1, we are ready to derive the equilibrium prices.

Case I : wi > wj ≥ (1−θ)s̄j(v, wj)+θv. The equilibrium prices are (s∗j , s
∗
i ) = (r̄, r̄).

Case II : v < wj < (1−θ)s̄j(v, wj)+θv and wi ≥ (1−θ)s̄i(v, wi)+θv. The equilib-

rium prices are (s∗j , s
∗
i ) ∈ {(sa−ε, sa) or (s̄j(v, wj), (s̄j(v, wj), r̄]) : sa ∈ (

wj−θv
1−θ , s̄j(v, wj)]}.
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Case III : v < wj < (1− θ)s̄j(v, wj) + θv and v < wi < (1− θ)s̄i(v, wi) + θv. We

have two subcases to consider.

(III-a) If wi ≥ (1− θ)s̄j(v, wj) + θv, the equilibrium prices are the same as in case

II.

(III-b) If wi < (1−θ)s̄j(v, wj)+θv, the equilibrium prices are (s∗j , s
∗
i ) = (sb−ε, sb)

for sb ∈ (
wj−θv

1−θ ,
wi−θv

1−θ ].

Case IV : wj ≤ v and wi ≥ (1 − θ)s̄i(v, wi) + θv. The equilibrium prices are

(s∗j , s
∗
i ) ∈ {(sc − ε, sc) or (s̄j(v, wj), (s̄j(v, wj), r̄]) : sc ∈ (wj, s̄j(v, wj)]}.

Case V : wj ≤ v and v < wi < (1 − θ)s̄i(v, wi) + θv. We have two subcases to

consider.

(V-a) If wi ≥ (1− θ)s̄j(v, wj) + θv, the equilibrium prices are the same as in case

IV.

(V-b) If wi < (1− θ)s̄j(v, wj) + θv, the equilibrium prices are (s∗j , s
∗
i ) = (sd− ε, sd)

for sd ∈ (wj,
wi−θv

1−θ ].

Case VI : wj ≤ v and wi ≤ v. The equilibrium prices are (s∗j , s
∗
i ) = (se − ε, se) for

se ∈ (wj, wi].

Proposition 2.5.1-i corresponds to case I; Proposition 2.5.1-ii(a) corresponds to

cases II, III-a, IV and V-a by picking (s∗j , s
∗
i ) = (s̄j(v, wj), r̄); Proposition 2.5.1-

ii(b) corresponds to cases III-b and V-b by picking (s∗j , s
∗
i ) = (wi−θv

1−θ − ε,
wi−θv

1−θ ) and

Proposition 2.5.1-iii corresponds to case VI by picking (s∗j , s
∗
i ) = (wi − ε, wi). �

Proof of Proposition 2.5.2. We compute seller j(i)’s expected profit provided that

her opponent sets a price si(sj). By (2.13) and (2.14), we have

ΨA:s
j (vj, vi, wj, sj, si) =



ΨA:s
j,1 (vj, vi, wj, sj, si) for vj ≤ sj < si +

θ(si∧vi−vj)
1−θ ,

ΨA:s
j,2 (vj, vi, wj, sj, si) for sj > si +

θ(si∧vi−vj)
1−θ and si ≥ vj,

ΨA:s
j,3 (vj, vi, wj, sj, si) for sj < si ∧ vj,

ΨA:s
j,4 (vj, vi, wj, sj, si) for si < sj ∧ vj,

ΨA:s
j,5 (vj, vi, wj, sj, si) for sj = si +

θ(si∧vi−vj)
1−θ and si ≥ vj,

ΨA:s
j,6 (vj, vi, wj, sj, si) for sj = si < vj,
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ΨA:b
i (vi, vj, wi, si, sj) =



ΨA:b
i,1 (vi, vj, wi, si, sj) for vj ≤ sj < si +

θ(si∧vi−vj)
1−θ ,

ΨA:b
i,2 (vi, vj, wi, si, sj) for sj > si +

θ(si∧vi−vj)
1−θ and si ≥ vj,

ΨA:b
i,3 (vi, vj, wi, si, sj) for sj < si ∧ vj,

ΨA:b
i,4 (vi, vj, wi, si, sj) for si < sj ∧ vj,

ΨA:b
i,5 (vi, vj, wi, si, sj) for sj = si +

θ(si∧vi−vj)
1−θ and si ≥ vj,

ΨA:b
i,6 (vi, vj, wi, si, sj) for sj = si < vj,

where

ΨA:s
j,1 (vj, vi, wj, sj, si) ≡ E[I{R<vj}vj] + E[I{vj≤R}sBj(R, sj, vj)],

ΨA:s
j,2 (vj, vi, wj, sj, si) ≡ E[I{R<vj}vj] + E[I

{vj≤R<si+
θ(si∧vi−vj)

1−θ }
sBj(R, sj, vj)]

+E[I
{R≥si+

θ(si∧vi−vj)

1−θ }
wj],

ΨA:s
j,3 (vj, vi, wj, sj, si) ≡ E[I{R<sj}vj] + E[I{R≥sj}sj],

ΨA:s
j,4 (vj, vi, wj, sj, si) ≡ E[I{R<si}vj] + E[I{R≥si}wj],

ΨA:s
j,5 (vj, vi, wj, sj, si) ≡ E[I{R<vj}vj] + E[I

{vj≤R<si+
θ(si∧vi−vj)

1−θ }
sBj(R, sj, vj)]

+E

[
I
{R≥si+

θ(si∧vi−vj)

1−θ }

sBj(R, sj, vj) + wj
2

]
,

ΨA:s
j,6 (vj, vi, wj, sj, si) ≡ E[I{R<si}vj] + E

[
I{R≥si}

sj + wj
2

]
,

ΨA:b
i,1 (vi, vj, wi, si, sj) ≡ E[I{R<vj}vi] + E[I{vj≤R}wi],

ΨA:b
i,2 (vi, vj, wi, si, sj) ≡ E[I{R<vj}vi] + E[I

{vj≤R<si+
θ(si∧vi−vj)

1−θ }
wi]

+E[I
{R≥si+

θ(si∧vi−vj)

1−θ }
(I{si<vi}si + I{si≥vi}sBi(R, si, vi))],

ΨA:b
i,3 (vi, vj, wi, si, sj) ≡ E[I{R<sj}vi] + E[I{R≥sj}wi],

ΨA:b
i,4 (vi, vj, wi, si, sj) ≡ E[I{R<si}vi] + E[I{R≥si}si],

ΨA:b
i,5 (vi, vj, wi, si, sj) ≡ E[I{R<vj}vi] + E[I

{vj≤R<si+
θ(si∧vi−vj)

1−θ }
wi]

+E

[
I
{R≥si+

θ(si∧vi−vj)

1−θ }

I{si<vi}si + I{si≥vi}sBi(R, si, vi) + wi
2

]
,

ΨA:b
i,6 (vi, vj, wi, si, sj) ≡ E[I{R<sj}vi] + E

[
I{R≥sj}

si + wi
2

]
.
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For ease of exposition, define s̄A:s
j (vj, vi, si) = I{si<vj}si+I{vj≤si<vi}

si−θvj
1−θ +I{vi≤si}(si+

θ(vi−vj)
1−θ ) and s̄A:b

i (vi, vj, sj) = I{sj<vj}sj+I{vj≤sj<
vi−θvj

1−θ }
((1−θ)sj+θvj)+I{ vi−θvj

1−θ ≤sj≤r̄}
(sj−

θ(vi−vj)
1−θ ).

To derive seller j’s best response ŝj(si), we have two cases to consider.

Case(a): si ≤ vj (i.e., s̄A:s
j (vj, vi, si) = si ≤ vj). The best response is the same as

the case (a) in the proof of Lemma 2.5.1. Specifically, seller j’s best response in this

case is

ŝj(si) =


[s̄A:s
j (vj, vi, si) + ε, r̄], si < wj,

[wj, r̄], si = wj,

s̄A:s
j (vj, vi, si)− ε, wj < si < r̄.

Case(b): si > vj (i.e., s̄A:s
j (vj, vi, si) > vj). We have ΨA:s

j,1 (vj, vi, wj, vj, si) = vj >

ΨA:s
j,3 (vj, vi, wj,

vj−ε, si), implying that the best response ŝj(si) provided that sj < s̄A:s
j (vj, vi, si) must

be within [vj, s̄
A:s
j (vj, vi, si)). For any sj ≥ vj, ΨA:s

j,1 (vj, vi, wj, sj, si) is increasing in sj

and thus the best response provided that sj < s̄A:s
j (vj, vi, si) is ŝj(si) = s̄A:s

j (vj, vi, si)−

ε for a sufficiently small ε > 0. Also note that

ΨA:s
j,1 (vj, vi, wj, s̄

A:s
j (vj, vi, si)− ε, si)−ΨA:s

j,2 (vj, vi, wj, sj, si)

= E[I{R≥s̄A:s
j (vj ,vi,si)}(sBj(R, s̄

A:s
j (vj, vi, si)− ε, vj)− wj)]

+E[I{s̄A:s
j (vj ,vi,si)−ε≤R<s̄A:s

j (vj ,vi,si)}(sBj(R, s̄
A:s
j (vj, vi, si)− ε, vj)− sBj(R, s̄A:s

j (vj, vi, si), vj))],

ΨA:s
j,1 (vj, vi, wj, s̄

A:s
j (vj, vi, si)− ε, si)−ΨA:s

j,5 (vj, vi, wj, s̄
A:s
j (vj, vi, si), si)

= E

[
I{R≥s̄A:s

j (vj ,vi,si)}

(
sBj(R, s̄

A:s
j (vj, vi, si)− ε, vj)−

sBj(R, s̄
A:s
j (vj, vi, si), vj) + wj

2

)]
+E[I{s̄A:s

j (vj ,vi,si)−ε≤R<s̄A:s
j (vj ,vi,si)}(sBj(R, s̄

A:s
j (vj, vi, si)− ε, vj)− sBj(R, s̄A:s

j (vj, vi, si), vj))].

The right-hand sides of both equations are strictly positive only if s̄A:s
j (vj, vi, si) ∈

(
wj−θvj

1−θ , r̄), i.e., si ∈ (
wj−θ(wj∧vi)

1−θ , s̃), where s̃ = I{vi≥(1−θ)r̄+θvj}((1 − θ)r̄ + θvj) +

I{vi<(1−θ)r̄+θvj}(r̄ −
θ(vi−vj)

1−θ ) =
((1−θ)r̄+θvj)−θ(((1−θ)r̄+θvj)∧vi)

1−θ . As a result, seller j’s best

response to an si ∈ (
wj−θ(wj∧vi)

1−θ , s̃) is ŝj(si) = s̄A:s
j (vj, vi, si)− ε.
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Also note that

ΨA:s
j,2 (vj, vi, wj, sj, si)−ΨA:s

j,5 (vj, vi, wj, s̄
A:s
j (vj, vi, si), si)

= E

[
I{R≥s̄A:s

j (vj ,vi,si)}
wj − sBj(R, s̄A:s

j (vj, vi, si), vj)

2

]
.

The right-hand side of the equation is above zero only if s̄A:s
j (vj, vi, si) <

wj−θvj
1−θ and

s̄A:s
j (vj, vi, si) < r̄ (i.e., si < (

wj−θ(wj∧vi)
1−θ ) ∧ s̃); equals zero if s̄A:s

j (vj, vi, si) =
wj−θvj

1−θ or

s̄A:s
j (vj, vi, si) ≥ r̄ (i.e., si = (

wj−θ(wj∧vi)
1−θ ) or si ≥ s̃). As a result, seller j’s best response

is ŝj(si) ∈ [s̄A:s
j (vj, vi, si)+ε, r̄] for an si < min{wj−θ(wj∧vi)

1−θ , s̃} and is ŝj(si) ∈ [
wj−θvj

1−θ , r̄]

for si =
wj−θ(wj∧vi)

1−θ < s̃. Finally, note that ŝj(si) = r̄ for an si ∈ [s̃, r̄]. Hence seller

j’s best response in this case is

ŝj(si) =



[s̄A:s
j (vj, vi, si) + ε, r̄], si < min{wj−θ(wj∧vi)

1−θ , s̃},

[
wj−θvj

1−θ , r̄], si =
wj−θ(wj∧vi)

1−θ < s̃,

s̄A:s
j (vj, vi, si)− ε, wj−θ(wj∧vi)

1−θ < si < s̃,

r̄, s̃ ≤ si ≤ r̄.

Combining cases (a) and (b), we obtain seller j’s best response for different values of

(vj, vi, wj):

Case I-j : If wj ≥ (1− θ)r̄ + θvj,

ŝj(si) =

 [s̄A:s
j (vj, vi, si) + ε, r̄], si < s̃,

r̄, s̃ ≤ si ≤ r̄.

Case II-j : If wj < (1− θ)r̄ + θvj,

ŝj(si) =



[s̄A:s
j (vj, vi, si) + ε, r̄], si <

wj−θ(wj∧vi)
1−θ ,

[
wj−θ(wj∧vj)

1−θ , r̄], si =
wj−θ(wj∧vi)

1−θ ,

s̄A:s
j (vj, vi, si)− ε, wj−θ(wj∧vi)

1−θ < si < s̃,

r̄, s̃ ≤ si ≤ r̄.

To derive seller i’s best response ŝi(sj), we have two cases to consider.
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Case(a): sj ≤ vj (i.e., s̄A:b
i (vi, vj, sj) = sj ≤ vj). The best response is the same as

case (a) in the proof of Lemma 2.5.1. Specifically, seller i’s best response in this case

is

si(sj) =


[s̄A:b
i (vi, vj, sj) + ε, r̄], sj < wi,

[wi, r̄], sj = wi,

s̄A:b
i (vi, vj, sj)− ε, wi < sj < r̄.

Case(b): sj > vj (i.e., s̄A:b
i (vi, vj, sj) > vj). We have ΨA:b

i,2 (vi, vj, wi, vj, sj) >

ΨA:b
i,4 (vi, vj, wi, vj−ε, sj), implying that the best response ŝi(sj) over si < s̄A:b

i (vi, vj, sj)

must be within [vj, s̄
A:b
i (vi, vj, sj)). Also note that first-order condition of ΨA:b

i,2 (vi, vj, wi, si, sj)

gives F̄R
( si−θvj

1−θ

)(
1− ( si−wi

1−θ )hR(
si−θvj

1−θ )
)
, vj ≤ si < vi,

(1− θ)F̄R
(
si +

θ(vi−vj)
1−θ

)(
1− (si − wi−θvi

1−θ )hR(si +
θ(vi−vj)

1−θ )
)
, vi ≤ si < r̄ − θ(vi−vj)

1−θ .

Because (si − wi)hR(
si−θvj

1−θ ) is increasing in si for si ≥ wi and (si − wi−θvi
1−θ )hR(si +

θ(vi−vj)
1−θ ) is increasing in si for si ≥ wi−θvi

1−θ , the maximizer of ΨA:b
i,2 (vi, vj, wi, si, sj) over

si ∈ [vj, s̄
A:b
i (vj, vi, sj)) is unique. We denote the maximizer as

s̃i(vj ,wi)−θ(s̃i(vj ,wi)∧vi)
1−θ ,

where

s̃i(vj, wi) = max
{
vj,max

{
s ∈ [wi ∧ ((1− θ)r̄ + θvj), (1− θ)r̄ + θvj] :(s− wi

1− θ
)
hR
(s− θvj

1− θ
)
≤ 1
}}
.

Thus the best response provided that si < s̄A:b
i (vi, vj, sj) is

ŝi(sj) = (s̄A:b
i (vi, vj, sj)− ε) ∧

s̃i(vj, wi)− θ(s̃i(vj, wi) ∧ vi)
1− θ

for a sufficiently small ε > 0. For any si ≥ vj, ΨA:b
i,1 (vi, vj, wi, si, sj) is constant in si

and

ΨA:b
i,2

(
vi, vj, wi, s̄

A:b
i (vi, vj, sj)− ε, sj

)
−ΨA:b

i,1 (vi, vj, wi, si, sj)

= E[I{R≥sj−ε}((1− θ)sj + θvj − wi − ε)],

ΨA:b
i,2

(
vi, vj, wi, s̄

A:b
i (vi, vj, sj)− ε, sj

)
−ΨA:b

i,5

(
vi, vj, wi, s̄

A:b
i (vi, vj, sj), sj

)
= E

[
I{R≥sj}

(
(1− θ)sj + θvj − wi

2
− ε
)]

+ E[I{sj−ε≤R<sj}((1− θ)sj + θvj − wi − ε)].
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The right-hand sides of both equations are strictly positive only if sj ∈ (
wi−θvj

1−θ , r̄]. As

a result, seller i’s best response to an sj ∈ (
wi−θvj

1−θ , r̄] is ŝi(sj) = (s̄A:b
i (vi, vj, sj)− ε) ∧

s̃i(vj ,wi)−θ(s̃i(vj ,wi)∧vi)
1−θ . Also note that

ΨA:b
i,1 (vi, vj, wi, si, sj)−ΨA:b

i,5 (vi, vj, wi, s̄
A:b
i (vi, vj, sj), sj) = E

[
I{R≥sj}

wi − ((1− θ)sj + θvj)

2

]
.

The right-hand side of the equation is above (equal to) zero only if sj < (=)
wi−θvj

1−θ ∧ r̄.

As a result, seller i’s best response is ŝi(sj) ∈ [s̄A:b
i (vi, vj, sj)+ε, r̄] for an sj <

wi−θvj
1−θ ∧r̄,

and is ŝi(sj) ∈ [wi−θ(wi∧vi)
1−θ ∧ r̄, r̄] for sj =

wi−θvj
1−θ ∧ r̄. Thus, seller i’s best response in

this case is

ŝi(sj) =



[s̄A:b
i (vi, vj, sj) + ε, r̄] sj <

wi−θvj
1−θ ∧ r̄,

[wi−θ(wi∧vi)
1−θ ∧ r̄, r̄], sj =

wi−θvj
1−θ ∧ r̄,

s̄A:b
i (vi, vj, sj)− ε, wi−θvj

1−θ < sj ≤ s̃i(vj ,wi)−θvj
1−θ ,

s̃i(vj ,wi)−θ(s̃i(vj ,wi)∧vi)
1−θ ,

s̃i(vj ,wi)−θvj
1−θ < sj ≤ r̄.

Combining cases (a) and (b), we obtain seller i’s best response for different values of

(vi, vj, wi):

Case I-i : If wi ≥ (1− θ)r̄ + θvj,

ŝi(sj) =

 [s̄A:b
i (vi, vj, sj) + ε, r̄], sj < r̄,

[s̃, r̄], sj = r̄.

Case II-i : If wi < (1− θ)r̄ + θvj,

ŝi(sj) =



[s̄A:b
i (vi, vj, sj) + ε, r̄], sj ≤ wi−θ(wi∧vj)

1−θ ,

wi−θ(wi∧vi)
1−θ , sj =

wi−θ(wi∧vj)
1−θ ,

s̄A:b
i (vi, vj, sj)− ε, wi−θ(wi∧vj)

1−θ < sj ≤ s̃i(vj ,wi)−θvj
1−θ ,

s̃i(vj ,wi)−θ(s̃i(vj ,wi)∧vi)
1−θ ,

s̃i(vj ,wi)−θvj
1−θ < sj ≤ r̄.

Now we are ready to drive the equilibrium using the expressions of the best responses

ŝj(si) and ŝi(sj).

Case I : min{wj, wi} ≥ (1 − θ)r̄ + θvj. The equilibrium prices are (s∗j , s
∗
i ) =

(r̄, [s̃, r̄]).
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Case II : wj < (1− θ)r̄ + θvj and wi ≥ (1− θ)r̄ + θvj. The equilibrium prices are

(s∗j , s
∗
i ) ∈ {(s̄A:s

j (vj, vi, sa)− ε, sa) or (r̄, [s̃, r̄]) : sa ∈ (
wj−θ(wj∧vi)

1−θ , s̃)}.

Case III : wj ≥ (1 − θ)r̄ + θvj and wi < (1 − θ)r̄ + θvj. The equilibrium prices

are (s∗j , s
∗
i ) ∈ {(sb, s̄A:b

i (vi, vj, sb) − ε) or ((
s̃i(vj ,wi)−θvj

1−θ , r̄],
s̃i(vj ,wi)−θ(s̃i(vj ,wi)∧vi)

1−θ ) : sb ∈

(
wi−θ(wi∧vj)

1−θ ,
s̃i(vj ,wi)−θvj

1−θ ]}.

Case IV : max{wj, wi} < (1− θ)r̄ + θvj. We have four subcases to consider.

(IV-a) If wj < wi, the equilibrium prices are (s∗j , s
∗
i ) = (s̄A:s

j (vj, vi, sc) − ε, sc) for

sc ∈ (
wj−θ(wj∧vi)

1−θ , wi−θ(wi∧vi)
1−θ ].

(IV-b) If wj = wi, the equilibrium prices are (s∗j , s
∗
i ) = (

wj−θ(wj∧vj)
1−θ , wi−θ(wi∧vi)

1−θ ).

(IV-c) If wi < wj < s̃i(vj, wi), the equilibrium prices are (s∗j , s
∗
i ) = (sd, s̄

A:b
i (vi, vj, sd)−

ε) for sd ∈ (
wi−θ(wi∧vj)

1−θ ,
wj−θ(wj∧vj)

1−θ ].

(IV-d) If wj ≥ s̃i(vj, wi), the equilibrium prices are the same as in case III.

Proposition 2.5.2-a corresponds to case I and II by picking (s∗j , s
∗
i ) = (r̄, r̄);

Proposition 2.5.2-b corresponds to case IV-a by picking (s∗j , s
∗
i ) = (

wi−θ(wi∧vj)
1−θ −

ε, wi−θ(wi∧vi)
1−θ ); Proposition 2.5.2-c corresponds to case IV-b by picking (s∗j , s

∗
i ) =

(
wj−θ(wj∧vj)

1−θ , wi−θ(wi∧vi)
1−θ ); Proposition 2.5.2-d corresponds to case IV-c by picking (s∗j , s

∗
i ) =

(
wj−θ(wj∧vj)

1−θ ,
wj−θ(wj∧vi)

1−θ − ε) and Proposition 2.5.2-e corresponds to cases III and IV-d

by (s∗j , s
∗
i ) = (r̄,

s̃i(vj ,wi)−θ(s̃i(vj ,wi)∧vi)
1−θ ). �

Proof of Corollary 2.5.1. The results follow immediately from Proposition 2.5.2.

�

Proof of Proposition 2.5.3. In period 1, we have wj = vj = 0 for any states

(nj, ni). For nj, ni ≥ 1, by Lemma 2.5.1, s∗j = Vj(1, nj, ni) = 0. For nj ≥ 1 and

ni = 0, by Lemma 2.1, s∗j = r̄ and Vj(1, nj, 0) = λΨ(0) = λ(1− θ)µ, where µ = E[R].

In period 2, it is immediate from (2.9) and (2.10) to see that wj and vj are constant

in nj(ni) ≥ 2 for a fixed ni(nj). As a result, s∗j and Vj(2, nj, ni) are constant in

nj(ni) ≥ 2 for a fixed ni(nj). Therefore, we can restrict (nj, ni) within nj, ni ∈ {1, 2}.

These values are summarized in Table A.1. Because most of the derivation is algebraic,

we only sketch the derivation of s∗j and Vj(2, nj, ni). We have two cases to consider.
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Table A.1.
The effect of inventories on the dynamic equilibrium in the two-period game.

t = 2 t = 1

Vj(t, nj, ni) ni = 0 ni = 1 ni ≥ 2 ni = 0 ni ≥ 1

nj = 1 λ(1− θ)
( ∫ r̄

λ(1−θ)µ F̄R(r)dr + µ
) λ(1−θ)

2

( ∫ λµ
0
F̄R(r)dr + λµ

)
λ(1−θ)

2

( ∫ s∗
0
F̄R(r)dr + s∗F̄R(s∗)

)
λ(1− θ)µ 0

nj ≥ 2 2λ(1− θ)µ λ(1−θ)
2

( ∫ s∗
0
F̄R(r)dr + (λµ− s∗)F̄R(s∗) + λµ

)
0 λ(1− θ)µ 0

s∗j ni = 0 ni = 1 ni ≥ 2 ni = 0 ni ≥ 1

nj = 1 r̄ λµ s∗ r̄ 0

nj ≥ 2 r̄ I{λµ≥sj(0,0)}r̄ + I{λµ<sj(0,0)}λµ 0 r̄ 0

wj ni = 0 ni = 1 ni ≥ 2 ni = 0 ni ≥ 1

nj = 1 λ(1− θ)µ λ(1− θ)µ 0 0 0

nj ≥ 2 0 λ(1− θ)µ 0 0 0

vj ni = 0 ni = 1 ni ≥ 2 ni = 0 ni ≥ 1

nj = 1 λ(1− θ)µ 0 0 0 0

nj ≥ 2 0 0 0 0 0

Notes. s̄j(0, 0) = max{s ∈ [0, r̄] : shR(s) ≤ 2}, s∗ = I{λµ≥s̄j(0,0)}s̄j(0, 0) + I{λµ<s̄j(0,0)}(λµ− ε).

Case (a): (nj, ni) = (1, 1). We note that vj < wj < (1−θ)r̄+θvj. By Lemma 2.5.1-

ii, s∗j = (wj − θvj)/(1− θ) = λµ and Vj(2, 1, 1) = λ(1−θ)
2

(
∫ λµ

0
F̄R(r)dr + λµ).

Case (b): (nj, ni) = (1, 2). We note that vj = vi = 0 and vj < wj < wi <

(1− θ)r̄ + θvj. By Proposition 2.5.1-ii, sellers’ equilibrium prices are

s∗j = I{λµ≥s̄j(0,0)}s̄j(0, 0) + I{λµ<s̄j(0,0)}(λµ− ε),

s∗i = I{λµ≥s̄j(0,0)}r̄ + I{λµ<s̄j(0,0)}λµ,

where s̄j(0, 0) = max{s ∈ [0, r̄] : shR(s) ≤ 2}. We define s∗ ≡ s∗j . Sellers’ equilibrium

profits are

Vj(2, 1, 2) =
λ(1− θ)

2

(∫ s∗

0

F̄R(r)dr + s∗F̄R(s∗)

)
,

Vj(2, 2, 1) =
λ(1− θ)

2

(∫ s∗

0

F̄R(r)dr + (λµ− s∗)F̄R(s∗) + λµ

)
.

Part (i), (ii) and (iv) follows immediately. To see part (iii), we note that λµ ≥ s∗ and

thus∫ λµ

0

F̄R(r)dr =

∫ s∗

0

F̄R(r)dr +

∫ λµ

s∗
F̄R(r)dr ≤

∫ s∗

0

F̄R(r)dr + (λµ− s∗)F̄R(s∗).(A.5)

From the above inequality, we have Vj(2, 2, 1) ≥ Vj(2, 1, 1) ≥ Vj(2, 1, 2). �



149

Proof of Proposition 2.5.4. To see part (i), we summarize seller j’s reservation

values and disagreement points in period 3 in Table A.2. The non-positivity of wj

and vj follows immediately.

Table A.2.
The effect of inventories on the dynamic equilibrium for t = 3.

wj ni = 1 ni = 2 ni = 3

nj = 1 λ(1− θ)
(
2µ−

∫ λ(1−θ)µ
0

F̄R(r)dr
)

λ(1−θ)
2

( ∫ λµ
0
F̄R(r)dr + λµ

) λ(1−θ)
2

( ∫ s∗
0
F̄R(r)dr + s∗F̄R(s∗)

)
nj = 2 2λ(1− θ)µ− λ(1−θ)

2

( ∫ λµ
0
F̄R(r)dr + λµ

) λ(1−θ)
2

(
(λµ− 2s∗)F̄R(s∗) + λµ

)
−λ(1−θ)

2

( ∫ s∗
0
F̄R(r)dr + s∗F̄R(s∗)

)
nj = 3 2λ(1− θ)µ− λ(1−θ)

2

( ∫ s∗
0
F̄R(r)dr + (λµ− s∗)F̄R(s∗) + λµ

) λ(1−θ)
2

( ∫ s∗
0
F̄R(r)dr + (λµ− s∗)F̄R(s∗) + λµ

)
0

vj ni = 1 ni = 2 ni = 3

nj = 1 λ(1−θ)
2

( ∫ λµ
0
F̄R(r)dr + λµ

) λ(1−θ)
2

( ∫ s∗
0
F̄R(r)dr + s∗F̄R(s∗)

) λ(1−θ)
2

( ∫ s∗
0
F̄R(r)dr + s∗F̄R(s∗)

)
nj = 2 λ(1−θ)

2

(
(λµ− s∗)F̄R(s∗)−

∫ λµ
s∗
F̄R(r)dr

)
−λ(1−θ)

2

( ∫ s∗
0
F̄R(r)dr + s∗F̄R(s∗)

)
−λ(1−θ)

2

( ∫ s∗
0
F̄R(r)dr + s∗F̄R(s∗)

)
nj = 3 0 0 0

Notes. s̄j(0, 0) = max{s ∈ [0, r̄] : shR(s) ≤ 2}, s∗ = I{λµ≥s̄j(0,0)}s̄j(0, 0) + I{λµ<s̄j(0,0)}(λµ− ε).

For ease of exposition, we define wj(nj, ni), vj(nj, ni) and s∗j(nj, ni) as seller j’s

reservation value, disagreement point and equilibrium posted price with states (nj, ni)

for t = 3, respectively. To see the non-monotonicity of wj with respect to nj, we have

three cases to consider.

Case (a): Fix ni = 1. We have
∫ λ(1−θ)µ

0
F̄R(r)dr ≤

∫ λµ
0
F̄R(r)dr ≤ λµ and thus

wj(1, 1) ≥ wj(2, 1). wj(2, 1) ≥ wj(3, 1) follows from (A.5).

Case (b): For ni = 2. We have∫ λµ

0

F̄R(r)dr ≥ λµ−
∫ r̄

s∗
F̄R(r)dr ≥ (λµ− 2s∗)F̄R(s∗). (A.6)

The first inequality follows from λµ ≥ s∗ and the second inequality follows from

s̄j(0, 0)F̄R(s̄j(0, 0))−
∫ r̄
s̄j(0,0)

F̄R(r)dr ≥ 0. This implies that wj(1, 2) ≥ wj(2, 2). From

(A.5), we have wj(3, 2) ≥ wj(1, 2).

Case (c): Fix ni = 3. It is immediate to see that wj(1, 3) > wj(3, 3)(= 0) >

wj(2, 3).

To see the monotonicity of wj with respect to ni, we have three cases to consider.

Case (a): Fix nj = 1. We note that wj(1, 1) > λ(1 − θ)µ > wj(1, 2) > wj(1, 3).

The third inequality comes from (A.5).
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Case (b): Fix nj = 2. We have wj(2, 1) > λ(1− θ)µ > wj(2, 2) > 0 > wj(2, 3).

Case (c): Fix nj = 3. We have wj(3, 1) > λ(1− θ)µ > wj(3, 2) > wj(3, 3)(= 0).

The proof of vj with respect to nj and ni follows a similar way and hence omitted.

This concludes the proof of part (i).

To see part (iv), It is immediate to see that wj = wi and vj = vi for nj = ni. For

nj < ni, we have three cases to consider.

Case (a): (nj, ni) = (1, 2). We have wj(1, 2) < λ(1−θ)µ < wj(2, 1) and vj(1, 2) >

vj(2, 1) by (A.6).

Case (b): (nj, ni) = (1, 3). We have wj(1, 3) < λ(1−θ)µ < wj(3, 1) and vj(1, 3) >

vj(3, 1)(= 0).

Case (c): (nj, ni) = (2, 3). We have wj(2, 3) < 0 < wj(3, 2) and vj(2, 3) <

vj(3, 2)(= 0). This concludes the proof of part (iv).

To see part (ii), we have s∗j(2, 2) = (wj(2, 2) − θvj(2, 2))/(1 − θ) < r̄ (which

corresponds to case (ii) in Lemma 2.5.1). Also note that s∗j(3, 2) ≥ (wj(3, 2) −

θvj(3, 2))/(1−θ), and s∗j(2, 3) = ((wj(3, 2)−θvj(2, 3))/(1−θ))∧ r̄ (which corresponds

to cases (a) and (b) in Proposition 2.5.2). Thus, s∗j(2, 2) ≤ (wj(2, 2)− vj(2, 2))/(1−

θ) = wj(3, 2)/(1− θ) ≤ s∗j(3, 2) and s∗j(2, 3) ≥ s∗j(3, 3)(= 0). This concludes the proof

of non-monotonicity of s∗j with respect to nj.

To see the non-monotonicity of s∗j with respect to ni, we have three cases to

consider.

Case (a): Fix nj = 1. We note that s∗j(1, 1) = ((wj(1, 1)− θvj(1, 1))/(1− θ)) ∧ r̄

(which corresponds to cases (i) and (ii) in Lemma 2.5.1), and s∗j(1, 2) ≤ ((wj(2, 1)−

θvj(1, 2))/(1− θ)) ∧ r̄ (which corresponds to cases (d) and (e) in Proposition 2.5.2).

Because (wj(1, 1)−θvj(1, 1))/(1−θ) ≥ (wj(2, 1)−θvj(1, 2))/(1−θ), s∗j(1, 1) ≥ s∗j(1, 2).

s∗j(1, 2) ≥ s∗j(1, 3) follows from Corollary 2.5.1.

Case (b): Fix nj = 2. We have s∗j(2, 1) ≥ (wj(2, 1) − θvj(2, 1))/(1 − θ) ≥ λµ

(which corresponds to cases (d) and (e) in Proposition 2.5.2) and sj(2, 2) = (wj(2, 2)−

θvj(2, 2))/(1− θ) ≤ λµ, and thus s∗j(2, 1) ≥ s∗j(2, 2). Because wj(2, 2) ≤ wj(3, 2) and

vj(2, 2) = vj(2, 3), s∗j(2, 2) ≤ s∗j(2, 3).
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Case (c): Fix nj = 3, it is immediate to see that s∗j(3, 2) ≥ s∗j(3, 3)(= 0). We

conclude part (ii).

To see part (iii), we have Vj(3, 2, 2) ≤ λwj(3, 2) and Vj(3, 3, 2) = λwj(3, 2) and thus

Vj(3, 2, 2) ≤ Vj(3, 3, 2). Also note that Vj(3, 2, 3) > Vj(3, 3, 3)(= 0). This concludes

the proof of non-monotonicity of Vj(3, nj, ni) with respect to nj.

Finally, we prove the non-monotonicity of Vj(3, nj, ni) with respect to ni. We have

three cases to consider.

Case (a): Fix nj = 1. We first note that when (vj, vi, wj, wi) satisfy equilibrium

conditions of cases (d) and (e) in Proposition 2.5.2 and vi < wi, seller i’s equilibrium

profit is

ΨA:b
i (vi, vj, wi, s

∗
j) = F̄R

( s̃i(vj, wi) ∧ wj − θvj
1− θ

)
(s̃i(vj, wi) ∧ wj − wi) + F̄R(vj)(wi − vi) + vi.

The right-hand side of the above equation is increasing in wj and wi. We also note

that

ΨA:b
i (vi, vj, wi, s

∗
j) ≥ F̄R

( s̃i(vj, wi) ∧ wj − θvj
1− θ

)
(s̃i(vj, wi) ∧ wj − vi) + vi.

The right-hand side of the above inequality is increasing in vj and the equality holds

if wi = vi. Combining the above equation and inequality, we observe that

ΨA:b
i (vj(1, 2), vj(2, 1), wj(1, 2), s∗j,1) ≥ ΨA:b

i (vj(1, 2), vj(2, 1), wj(1, 3), s∗j,2)

≥ ΨA:b
i (vj(1, 3), vj(3, 1), wj(1, 3), s∗j,3),

where

s∗j,1 =
s̃i(vj(2, 1), wj(1, 2)) ∧ wj(2, 1)− θvj(1, 2)

1− θ
,

s∗j,2 =
s̃i(vj(2, 1), wj(1, 3)) ∧ wj(3, 1)− θvj(1, 2)

1− θ
,

s∗j,3 =
s̃i(vj(3, 1), wj(1, 3)) ∧ wj(3, 1)− θvj(1, 3)

1− θ
.

The first inequality follows from wj(1, 2) > wj(1, 3) and wj(2, 1) > wj(3, 1). The

second inequality follows from vj(2, 1) ≥ vj(3, 1) and wj(1, 3) = vj(1, 3). Because

Vj(2, 0, 2) = Vj(2, 0, 3) = 0 and Vj(2, 1, 2) = Vj(2, 1, 3), we have Vj(3, 1, 2) ≥ Vj(3, 1, 3).
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Case (b): Fix nj = 2. We have Vj(3, 2, 2) ≤ λ(wj(2, 2)− vj(2, 2)) = λ(Vj(2, 2, 1)−

Vj(2, 2, 2)) = λVj(2, 2, 1) and Vj(3, 2, 1) ≥ Vj(2, 2, 1), and thus Vj(3, 2, 1) ≥ Vj(3, 2, 2).

Case (c): Fix nj = 3. We have Vj(3, 3, 1) ≥ Vj(2, 3, 1) ≥ λwj(3, 2), and thus

Vj(3, 3, 1) ≥ Vj(3, 3, 2) ≥ Vj(3, 3, 3) = 0. �
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B. Proofs of Formal Results in Chapter 3

Proof of Proposition 3.4.1. Substituting the expressions of Π(w), π(w), Π and π

into (3.2) yields

(1− w)2/4

w(1− w)/2
=

1/4

1/8
.

Solving for w leads to wKS = 1/5.

To compare with the NB solution, we differentiate the Nash product in (3.1) with

respect to w to obtain

∂Ω

∂w
=

(1− w)θ

2θ+1wθ
(
(1− θ)(1− w)− (1 + θ)w

)
= 0.

Solving for w leads to wNB = (1− θ)/2. Setting wKS = wNB gives θ = 0.6. �

Proof of Lemma 3.5.1. To see part (i), we first list the expressions of boundaries

of the feasible region of (wi, wj) (see the top panels of Figure 3.2). The derivation has

been provided in the proof of Lemmas F.1.1 and F.1.2. We have ŵ1
i (wj) = 1−(η/2)(1−

wj), ŵ
2
i (wj) = 1−(2/η)(1−wj), ŵ3

i (wj) = (η/2)wj and ŵ4
i (wj) = (2ηwj +2−η)/4. It

is easy to check that the second piece of Πi(wi, wj) in (F.1) is increasing (decreasing)

in wj for wj < (>)(2ηwi + 2 − η)/4 ≡ w̄j(wi) and the second piece of πi(wi, wj) in

(F.2) is increasing in wj. We then substitute the expression of (F.6) into (F.1) and

(F.2) to derive the supplier’s and retailer j’s negotiated profits as

Πi(w
NB
i (wj), wj) =

wj(1− wj)
2

+
(2− η2)(1− θ2)

8(2 + η)
and πi(w

NB
i (wj), wj) =

(1 + θ)2

4(2 + η)2

for wj < w̄aj (i.e., both products have positive outputs). It is easy to see that

Πi(w
NB
i (wj), wj) is increasing (decreasing) in wj for wj < (>)1/2 and πi(w

NB
i (wj), wj)

is constant in wj. This concludes part (i).

To see part (ii), we first list the expressions of boundaries of the feasible region of

(wi, wj) (see the bottom panels of Figure 3.2). The derivation has been provided in



154

the proof of Lemmas F.2.1 and F.2.2. We have w̌1
i (wj) = 1 − η(1 − wj), w̌2

i (wj) =

1 − (1/η)(1 − wj) and w̌3
i (wj) = (1 − η + ηwj)/2. It is easy to see that the second

piece of Πi(wi, wj) in (F.19) is increasing in wj and the second piece of πi(wi, wj) in

(F.20) is decreasing in wj. We now substitute the expression of (F.24) into (F.19)

and (F.20) to derive the supplier j’s and retailer’s negotiated profits as

Πi(w
NB
i (wj), wj) =

(1−θ2)(1−η+ηwj)
2

8(1−η2)
and πi(w

NB
i (wj), wj) =

(1+θ)2(1−η+ηwj)
2

16(1−η2)
+

(1−wj)2

4

for wj < 1 − η(1 + θ)/(2 − η2(1 − θ)). It is easy to see that Πi(w
NB
i (wj), wj) is

increasing in wj and πi(w
NB
i (wj), wj) is decreasing in wj. We conclude part (ii). �

Proof of Lemma 3.5.2. To see part (i), we substitute the expression of (B.8) into

(B.4) and (B.5) to derive the supplier’s and retailer j’s negotiated profits as

Πi(w
NB
i (wj), wj) = (1− θ)

[
(1−wj)wj

2
+

(1−θ)(2−η)+
√

(2−η)2(1+θ)2+16θ(4−η2)(1−wj)wj
16(2+η)

]
,

πi(w
NB
i (wj), wj) =

(
(1 + θ)(2− η) +

√
(2− η)2(1 + θ)2 + 16θ(4− η2)(1− wj)wj

)2

16(4− η2)2
,

for wj < (2−η)(4+η(1−θ))/(8−2η2(1−θ)). In the case that wj > (2−η)(4+η(1−

θ))/(8 − 2η2(1 − θ)), retailer j only earns ε profit and equilibrium prices never arise

under this range. Thus, we omit this range. It is easy to see that Πi(w
NB
i (wj), wj) and

πi(w
NB
i (wj), wj) are increasing (decreasing) in wj for wj < (>)1/2. This concludes

part (i). �

Proof of Proposition 3.5.1. First, we consider the one-to-two channel. By (F.6),

(F.7) and symmetry, we can derive negotiated prices under the NB and KS solutions as

ŵNBsim = (1− θ)/2 and ŵKSsim = 1/5, respectively. Setting ŵNBsim = ŵKSsim gives θ̂KSsim = 0.6.

Now we consider the two-to-one channel. By (F.24), (F.25) and symmetry, we

can derive negotiated prices under the NB and KS solutions as w̌NBsim = (1 − θ)(1 −

η)/(2− (1− θ)η) and w̌KSsim = (1− η)/(5− η), respectively. Setting w̌NBsim = w̌KSsim gives

θ̌KSsim = 0.6. �
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Proof of Proposition 3.5.2. To see part (i), we apply (F.8), (F.9), (F.10) and

dj = 0 to (3.1) and obtain the Nash product for unit j as

Ωj(wj) =

 (
wj(1−wj)

2
+

(2−η)(1−θ2
i )

8(2+η)
− 1−θ2

i

8
)1−θj(

(4+η(1−θi)−2(2+η)wj)
2

16(2+η)2 )θj wj < w̄aj ,

0 wj > w̄aj .

Setting ∂ ln Ωj(wj)/∂wj = 0 in the first case gives

(1− θj)
1− 2wj

2(2 + η)wj(1− wj)− η(1− θ2
i )

+ 2θj
−1

4 + η(1− θi)− 2(2 + η)wj
= 0.

This gives

ŵNBj =
6− 2θj + η(2− θi + θiθj)−

√
(2− ηθi)2(1 + θj)2 + 4ηθj((4 + η)θ2

i + 4θi − η)

4(η + 2)
.(B.1)

Note that the above expression has two roots within [0, 1] and the maximizer of Ωj

should be the smaller root.

We then substitute the expressions of (F.12), (F.13), (F.14), (F.15), (F.16) and

dj = 0 into (3.2) and obtain

(10 + η − 5(2 + η)wj)
2/(100(2 + η)2)

wj(1− wj)/2 + 2(2− η)/(25(2 + η))− 2/25
=

(10− 3η +
√

(50− 7η)(2 + η))2/(400(2 + η)2)

(82 + 9η)/(200(2 + η))− 2/25

for wj < 2/(2 + η). We omit the expressions for wj above the maxima that attain

Πj (i.e., wj > 1/2) as the equilibrium prices should lead to a Pareto profit allocation.

This gives

ŵKSj =
2(10− η)(2 + η)(50 + η) + (5(2 + η)(10− 3η)−

√
2∆3)

√
(50− 7η)(2 + η)

5(2 + η)(300 + 12η − 5η2 + (20− 6η)
√

(50− 7η)(2 + η))
,(B.2)

where ∆3 = (2+η)(50−7η)(100−36η+5η2)−(10−3η)(100+12η−3η2)
√

(50− 7η)(2 + η).

Note that the above expression has two roots within [0, 1] and the price should be

the smaller root. It is easy to check that ∂ŵKSj /∂η > 0 and thus ŵKSj ∈ [0.2, 0.27).

It follows that ∂ŵKSi /∂η = (η/2)∂ŵKSj /∂η + (5ŵKSj − 1)/10 > 0.

Now we consider the equivalent bargaining power. Recall that the supplier nego-

tiates with retailer j first. To see θ̂KSi , it is easy to check that θ̂KSi should lead to the
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same expression of the first pieces in (F.6) and (F.7), which implies that θ̂KSi = 0.6.

To see θ̂KSj , setting ŵNBj |θi=0.6 = ŵKSj yields

θ̂KSj (η) =
5(1− 2ŵKSj )(10 + η − 5(2 + η)ŵKSj )

50(1− ŵKSj )− η(11− 15ŵKSj )
.

It is easy to check that ∂θ̂KSj (η)/∂η < 0 for η ∈ (−2, 6) and thus θ̂KSj (η) ∈ (0.5, 0.6].

We conclude part (i).

To see part (ii), we apply (F.27), (F.28), (F.29) and Dj = 0 to (3.1) and obtain

the Nash product for unit j as

Ωj(wj) =

 (
wj((2−η2(1−θi))(1−wj)−η(1+θi))

4(1−η2)
)1−θj(

(1−wj)2

4
+

(1+θi)
2(1−η+ηwj)

2

16(1−η2)
− (1+θi)

2

16
)θj wj < wa,

0 wj > wa,

where wa = 1 − η(1 + θi)/(2 − η2(1 − θi)). Setting ∂ ln Ωj(wj)/∂wj = 0 in the first

case gives

(1−θj)((2−η2(1−θi))(1−2wj)−η(1+θi))

wj((2−η2(1−θi))(1−wj)−η(1+θi))
+

θj(−8(1−η2)wj+2η(1+θi)
2(1−η+ηwj))

(1+θi)2(1−η+ηwj)2+(1−η2)(4(1−wj)2−(1+θi)2)
= 0.

Rearranging the terms gives

Φ(wj) = Γ0 + Γ1wj + Γ2w
2
j + Γ3w

3
j , (B.3)

where Γ0 = 2(1− η)2(1− θj)(2 + η(1− θi))(2 + η(1− 2θi − θ2
i )), Γ1 = 2(1− η)

(
(1−

θi)(5 − 6θi − 3θ2
i − 2(1 − 2θi − θ2

i )θj)η
3 + (1 − θi)(11 + 4θi + θ2

i − 4θj)η
2 − 2(3 −

8θi − 3θ2
i − 2(1 − 2θi − θ2

i )θj)η − 8(2 − θj)
)
, Γ2 = (1 − η)

(
8(5 − θj) + 4(1 − θi)(7 +

2θi − (θi + 2)θj)η− 2(1− θi)(11 + θi − (1− θi)θj)η2 − (1− θi)2(3 + θi)(5− θj)η3
)

and

Γ3 = −16 + 4(1− θi)(5 + θi)η
2 − 2(1− θi)2(3 + θi)η

4.

We note that Φ(wj) is a cubic function with the coefficient of w3
j being negative

(i.e., Γ3 < 0). Also, note that Φ(wj) = Γ0 ≥ 0 and

Φ(woj ) = − (1−η)3(2+η−θiη)2
(

8+4(2+θi)(1−θi)η−2(1−θi)2η2−(1−θi)2(3+θi)η
3
)
θj

4(2−(1−θi)η2)2 < 0

for η < 1 and θj < 1, where woj = (1/2)wa. In the case that η = 1 or θj = 1, it is

easy to check that w̌NBj = 0. This implies that there exists at least one root within
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the range [0, woj ]. Note that ∂Φ(wj)/∂wj is a quadratic function with the coefficient

of w2
j being negative (i.e., 3Γ3 < 0) and is maximized at wqj = −(1/3)Γ2/Γ3 > 0.

Also, note that ∂Φ(wj)/∂wj|wj=0 = Γ1 < 0 and wqj > woj , which implies that the

sign of ∂Φ(wj)/∂wj changes at most once within the range [0, woj ] and the change is

from negative to positive. This suggests that there exists a unique root that is the

maximizer of Φ(wj) within the range [0, woj ]. Let w̌NBj denote this root.

We then substitute the expressions of (F.31), (F.32), (F.33), (F.34), (F.35) and

Dj = 0 into (3.2) and obtain

(1−wj)2/4+4(1−η+ηwj)
2/(25(1−η2))−4/25

wj((5−η2)(1−wj)−4η)/(10(1−η2))
= (41+9η)/(100(1+η))−4/25

(1−η)(5+η)2/(40(1+η)(5−η2))

for wj < 1−η. We omit the expressions for wj above the maxima that attain Πj (i.e.,

wj > (1 − η)(5 − η)/(2(5 − η2))) as the equilibrium prices should lead to a Pareto

profit allocation. This gives

w̌KSj =
(1− η)(5 + η)

(
375− 125η − 111η2 + 5η3 − 2

√
∆4

)
3125− 1075η − 1450η2 + 390η3 + 181η4 − 19η5

,

where ∆4 = (1 − η)(5 + η)(3125 + 250η − 1120η2 − 266η3 + 27η4). Note that the

above expression has two roots within [0, 1] and the price should be the smaller root.

It is easy to check that ∂w̌KSj /∂η < 0 and thus w̌KSj ∈ [0, 0.2]. It follows that

∂w̌KSi /∂η = (η/5)∂w̌KSj /∂η − (1− w̌KSj )/5 < 0.

Now we consider the equivalent bargaining power. Recall that the supplier j

negotiates with retailer first. To see θ̌KSi , it is easy to check that θ̌KSi should lead

to the same expression of the first pieces in (F.24) and (F.25), which implies that

θ̌KSi = 0.6. To see θ̌KSj , we substitute θi = 0.6 into (B.3) and obtain

125

8
Φ(wj)

∣∣∣
θi=0.6

= (1− η)2(5 + η)(25− 7η)(1− θj)

+2(1− η)
(
(2 + 7θj)η

3 + (86− 25θj)η
2 + (90− 35θj)η − 125(2− θj)

)
wj

−(1− η)
(
9(5− θj)η3 + 5(29− θj)η2 − (205− 65θj)η − 125(5− θj)

)
w2
j

−2(125− 70η2 + 9η4)w3
j = 0.
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Substituting w̌KSj into the above expression yields

θ̌KSj (η) =
((1−η)(5+η)−2(5−η2)w̌KSj )((1−η)(25−7η)−2(1−η)(25+9η)w̌KSj +(25−9η2)(w̌KSj )2)

(1−η)((1−η)(5+η)(25−7η)−2(25−7η)(5−η2)w̌KSj +(125+65η−5η2−9η3)(w̌KSj )2)
.

It is easy to check that ∂θ̌KSj (η)/∂η > 0 for η ∈ (−0.26, 1) and thus θ̌KSj (η) ∈

[0.6, 1]. We conclude part (ii). Finally, we note that parameters with subscript j (i)

correspond to those with subscript seq1 (seq2). �

Proof of Proposition 3.5.3. To see part (i), we can modify (F.1) and (F.2) to

derive the trade profits for the supplier and the retailers, respectively, as

Πi(wi, wj) =


∑2

i=1wi
2(1−wi)−η(1−wj)

4−η2
η
2
(1− wj) < 1− wi < 2

η
(1− wj),

0 1− wi ≤ η
2
(1− wj) or 1− wi ≥ 2

η
(1− wj).

(B.4)

πi(wi, wj) =


(2(1−wi)−η(1−wj))2

(4−η2)2
η
2
(1− wj) < 1− wi < 2

η
(1− wj),

0 1− wi ≤ η
2
(1− wj) or 1− wi ≥ 2

η
(1− wj).

(B.5)

The supplier’s disagreement point under simultaneous negotiation with contingency

is 0. Their maximum profits are

Πi(wj) =

 Πi(
2−η+2ηwj

4
, wj) = 2−η

8(2+η)
+ 1

2
wj(1− wj) wj < 1− η

2(2+η)
,

Πi(
2wj−2+η

η
+ ε, wj) =

(1−wj)(2wj−2+η)

η2 − ε wj > 1− η
2(2+η)

,
(B.6)

πi(wj) =

 πi(w
a, wj) =

(2−η+
√

(2−η)2+4(4−η2)(1−wj)wj)2

4(4−η2)2 wj <
2−η

2
,

πi(
2wj−2+η

η
+ ε, wj) =

(1−wj)2

η2 − ε wj >
2−η

2
,

(B.7)

where wa = (1/4)((2− η + 2ηwj)−
√

(2− η)2 + 4(4− η2)(1− wj)wj). We first note

that any feasible (wi, wj) should lead to nonnegative trade surpluses Πi(wi, wj) and

πi(wi, wj) and thus we have wi ≥ wa and 1/2 −
√

1/(2 + η) ≤ wj ≤ 1 in the first

pieces in (B.4) and (B.5), respectively.

To derive (B.6), we note that the first piece of Πi(wi, wj) in (B.4) is maximized

at wmi = (2 − η + 2ηwj)/4 and leads to a maximum value of Πm = (2 − η)/(8(2 +

η)) + (1/2)wj(1−wj). For wmi be the maxima, we must have 1−wmi < (2/η)(1−wj)

(or wj < wb ≡ 1 − η/(2(2 + η))). In the case that wj > wb, it is easy to check

that the maxima is wri = 1 − (2/η)(1 − wj) + ε and leads to a maximum value of

Πr = (1− wj)(2wj − 2 + η)/η2 − ε, where ε is a sufficiently small positive number.
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To derive (B.7), we note that the first piece of πi(wi, wj) in (B.5) is maximized at

wqi = wa and leads to a maximum value of πq = (2−η+
√

(2− η)2 + 4(4− η2)(1− wj)wj)2

/(4(4 − η2)2). For wa be the maxima, we must have 1 − wa < (2/η)(1 − wj) (or

wj < (2− η)/2). In the case that wj > (2− η)/2, it is easy to check that the maxima

is wri = 1− (2/η)(1− wj) + ε. This leads to the expression of (B.7).

Now we derive the equilibrium prices under the NB and KS solutions. Applying

(B.4), (B.5) and Di(wj) = di(wj) = 0, the Nash product for trade i is

Ωi(wi, wj) =

 (
∑2

i=1wi
2(1−wi)−η(1−wj)

4−η2 )1−θ(
(2(1−wi)−η(1−wj))2

(4−η2)2 )θ η
2
< 1−wi

1−wj <
2
η
,

0 1−wi
1−wj ≤

η
2

or 1−wi
1−wj ≥

2
η
.

Setting ∂ ln Ωi(wi, wj)/∂wi = 0 in the first case gives

(1− θ) 2(1− 2wi)− η(1− 2wj)∑2
i=1wi(2(1− wi)− η(1− wj))

+ 2θ
−2

2(1− wi)− η(1− wj)
= 0.

This gives wsi = (1/8)
(
(3−θ)(2−η)+4ηwj−

√
(2− η)2(1 + θ)2 + 16θ(4− η2)(1− wj)wj

)
.

For wsi be the best response, we must have 1 − wsi < (2/η)(1 − wj) (or wj < wc ≡

(2 − η)(4 + η(1 − θ))/(8 − 2η2(1 − θ))). In the case that wj > wc, it is easy to see

that the best response should be 1− (2/η)(1− wj) + ε. This gives

wNBi (wj) =


(3−θ)(2−η)+4ηwj−

√
(2−η)2(1+θ)2+16θ(4−η2)(1−wj)wj

8
wj <

(2−η)(4+η(1−θ))
8−2η2(1−θ) ,

2wj−2+η

η
+ ε wj >

(2−η)(4+η(1−θ))
8−2η2(1−θ) .

(B.8)

By symmetry, we have

ŵNBsim =
(2− η)(1− θ)

2(2− η + 2θ + ηθ)
. (B.9)

We then substitute (B.4), (B.5), (B.6), (B.7) and Di(wj) = di(wj) = 0 into (3.2) and

obtain

(2(1−wi)−η(1−wj))2/(4−η2)2∑2
i=1 wi(2(1−wi)−η(1−wj))/(4−η2)

=


(2−η+

√
(2−η)2+4(4−η2)(1−wj)wj)2/4(4−η2)2

(2−η)/(8(2+η))+(1/2)wj(1−wj) wj <
2−η

2
,

(1−wj)2/η2−ε
(2−η)/(8(2+η))+(1/2)wj(1−wj)

2−η
2
< wj <

4+η
2(2+η)

,

(1−wj)2/η2−ε
(1−wj)(2wj−2+η)/η2−ε wj >

4+η
2(2+η)

.

The first piece gives wmi =
(
2(2−η)2 +3(2−η)(4+3η)wj−2(2+η)(6−7η)w2

j−8η(2+

η)w3
j+(2−η+2ηwj−

√
2∆5)

√
∆6

)
/(2(6−3η+8(η+2)(1−wj)wj+2

√
∆6)), where ∆5 =
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(2−η+(2+η)(1−wj)wj)(2−η+4(2+η)(1−wj)wj)+(2−η+3(2+η)(1−wj)wj)
√

∆6

and ∆6 = (2− η)2 + 4(4− η2)(1−wj)wj. Note that the first piece has two roots and

the best response should be the smaller root.

The second piece gives wqi = ηwj/2+
(
(2−η)2(8+8η+3η2)−8(4−η2)(2−η2)wj+

2(4− 3η2)(4− η2)w2
j −
√

∆7

)
/(2(2− η)(16 + 16η+ 5η2)− 8(2 + η)(8− 3η2)wj + 16(2 +

η)(2−η2)w2
j )+ ε, where ∆7 = (1−wj)3(2−η)2(2+η)3(2−η+4(2+η)(1−wj)wj)(2+

(2 − η2)(1 − 2wj)). Note that the second piece has two roots and the best response

should be the smaller root.

The third piece gives wpi = (2wj − 2 + η)/η + ε.

Combining the above cases leads to

wKSi (wj)

=


2(2−η)2+3(2−η)(4+3η)wj−2(2+η)(6−7η)w2

j−8η(2+η)w3
j+(2−η+2ηwj−

√
2∆5)

√
∆6

2(6−3η+8(η+2)(1−wj)wj+2
√

∆6)
wj <

2−η
2
,

ηwj
2

+
(2−η)2(8+8η+3η2)−8(4−η2)(2−η2)wj+2(4−3η2)(4−η2)w2

j−
√

∆7

2(2−η)(16+16η+5η2)−8(2+η)(8−3η2)wj+16(2+η)(2−η2)w2
j

+ ε 2−η
2
< wj <

η+4
2(η+2)

,

2wj−2+η

η
+ ε wj >

η+4
2(η+2)

.

(B.10)

The first piece and symmetry (i.e., setting wj = wi = w) give

Φ(w) = 16(6− η)2(2 + η)2w5 − 16(6− η)(10− 3η)(2 + η)2w4

+8(4− η2)(28 + 32η − 7η2)w3 + 32(3− η)(2− η)2(2 + η)w2

+(2− η)3(2− 9η)w − (2− η)4. (B.11)

Note that Φ(0) = −(2 − η)4 < 0 and Φ(1/5) = (4/3125)(2 + η)(7688 − 6732η +

1350η2− 81η3) > 0, which implies that there exists at least one root within the range

[0, 1/5]. Also, note that

1

16(2 + η)

∂2Φ(w)

∂w2
= 20(2 + η)(6− η)2w3 − 12(2 + η)(6− η)(10− 3η)w2

+3(2− η)(28 + 32η − 7η2)w + 4(3− η)(2− η)2 > 0

for w ∈ [0, 1/5]. Thus, there exists a unique root within the range [0, 1/5]. Let

ŵKSsim denote this root. We have ŵKSsim|η=0 ≈ 0.1299 < 0.13, ŵKSsim|η=1/2 ≈ 0.1055,

ŵKSsim|η=1 ≈ 0.0767 > 0.07.
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Let Ψ(η) ≡ ∂Φ(w)/∂η. We have

Ψ(η) = 32(1− 3w − 20w2 + 32w3 − 64w4 + 48w5)

−16(1− 2w)2(3− 3w − 16w2 + 4w3)η

+24(1− 2w)3(1− w + 2w2)η2 − 4(1− 2w)4(1− w)η3.

Note that Ψ(η) is a cubic function with the coefficient of η3 being negative. It is easy

to check that Ψ(0) > 0, Ψ(1/2) > 0 and ∂Ψ(η)/∂η < 0. Also, Ψ(1) > (< 0) for

w < (>)0.107. We deduce that Φ(w) is increasing in η ∈ [0, 1/2] for w ∈ [0.07, 0.13]

and is increasing in η ∈ [1/2, 1] for w ∈ [0.07, 0.107]. This implies that ŵKSsim is

decreasing in η.

The second piece and symmetry give w = 1/2±2
√

16 + 32η + 18η2 + η3 − η4/(16+

16η+ 2η2−η3), which are not within the range [(2−η)/2, 1−η/(2(2 +η))]. It is easy

to check that the third piece and symmetry give no feasible solution.

Now we consider the equivalent bargaining power. Substituting (B.9) into (B.11)

yields

Φ
( (2− η)(1− θ)

2(2− η + 2θ + ηθ)

)
=

128(2− η)4

(2(1 + θ)− η(1− θ))5
Ξ(θ) = 0,

where Ξ(θ) = (1 − η)(2 − η) + (6 + 3η − 5η2)θ − 2(2 + η)(2 − 5η)θ2 − 2(2 + η)(6 +

5η)θ3 + 5(2 +η)2θ4− (2 +η)2θ5. Note that Ξ(1/2) = (1/32)(6−η)2 > 0 and Ξ(3/5) =

−(2/3125)(286 + 111η − 16η2) < 0, which implies that there exists at least one root

within the range [1/2, 3/5]. Because ŵNBsim is (strictly) decreasing in θ, there must

exist a unique root within the range. Let θ̂KSsim(η) denote this root. We note that

∂Ξ(θ)/∂η = 2η(1− θ)5 − 3 + 3θ + 16θ2 − 32θ3 + 20θ4 − 4θ5 < 0 for θ ∈ [0, 3/5]. This

implies that Ξ(θ) is decreasing in η, which is equivalent to θ̂KSsim(η) being decreasing

in η. Finally, note that θ̂KSsim(0) < 0.59 and θ̂KSsim(1) > 0.57. This concludes part (i).
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To see part (ii), we can modify (F.19) and (F.20) to derive the trade profits for

the suppliers and the retailer, respectively as

Πi(wi, wj) =

 wi
(1−wi)−η(1−wj)

2(1−η2)
η(1− wj) < 1− wi < 1

η
(1− wj),

0 1− wi ≤ η(1− wj) or 1− wi ≥ 1
η
(1− wj).

(B.12)

πi(wi, wj) =


∑2

i=1
(1−wi)((1−wi)−η(1−wj))

4(1−η2)
η(1− wj) < 1− wi < 1

η
(1− wj),

0 1− wi ≤ η(1− wj) or 1− wi ≥ 1
η
(1− wj).

(B.13)

The retailer’s disagreement point under simultaneous negotiation with contingency is

0. We can modify (F.22) and (F.23) to derive the suppliers and retailer’s maximum

profits as

Πi(wj) =

 Πi(
1−η+ηwj

2
, wj) =

(1−η(1−wj))2

8(1−η2)
wj <

(2+η)(1−η)
2−η2 ,

Πi(
wj−1+η

η
+ ε, wj) =

(1−wj)(wj−1+η)

2η2 − ε wj >
(2+η)(1−η)

2−η2 ,
(B.14)

πi(wj) =

 πi(0, wj) =
(1−wj)2−2η(1−wj)+1

4(1−η2)
wj < 1− η,

πi(
wj−1+η

η
+ ε, wj) =

(1−wj)2

4η2 − ε wj > 1− η.
(B.15)

Now we are ready to the equilibrium prices under the NB and KS solutions.

Applying (B.12), (B.13) and Di(wj) = di(wj) = 0, the Nash product for trade i is

Ωi(wi, wj) =

 (wi
(1−wi)−η(1−wj)

2(1−η2)
)1−θ(

∑2
i=1

(1−wi)((1−wi)−η(1−wj))
4(1−η2)

)θ η < 1−wi
1−wj <

1
η
,

0 1−wi
1−wj ≤ η or 1−wi

1−wj ≥
1
η
.

Setting ∂ ln Ωi(wi, wj)/∂wi = 0 in the first case gives

(1− θ) 1− 2wi − η(1− wj)
wi(1− wi − η(1− wj))

+ θ
−2(1− wi − η(1− wj))∑2

i=1(1− wi)((1− wi)− η(1− wj))
= 0.

By symmetry, we have

w̌NBsim =
(1− η)(1− θ)

2− η − θ
. (B.16)

We then substitute (B.12), (B.13), (B.14), (B.15) and Di(wj) = di(wj) = 0 into

(3.2) and obtain

∑2
i=1(1−wi)((1−wi)−η(1−wj))/(4(1−η2))

wi((1−wi)−η(1−wj))/(2(1−η2))
=


((1−wj)2−2η(1−wj)+1)/(4(1−η2))

(1−η(1−wj))2/(8(1−η2))
wj < 1− η,

(1−wj)2/(4η2)−ε
(1−η(1−wj))2/(8(1−η2))

1− η < wj <
(2+η)(1−η)

2−η2 ,

(1−wj)2/(4η2)−ε
(1−wj)(wj−1+η)/(2η2)−ε wj >

(2+η)(1−η)
2−η2 .
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The first piece and symmetry (i.e., setting w = wj = wi) give

Γ(w) = (2 + η2)w3 − (4− 6η + 3η2)w2 + (1− η)(5− 3η)w − (1− η)2. (B.17)

Note that Γ(w) is a cubic function with the coefficient of w3 being positive. For

η = 1, it is easy to check that w̌KSj = 0. For η < 1, we have Γ(w) = −(1 − η)2 < 0,

Γ((2η − 3 +
√

9− 8η)/(2η)) = (1/η3)(−27 + 27η + 5η2 − 7η3 + (9 − 5η − 3η2 +

η3)
√

9− 8η) > 0 and ∂Γ(w)/∂w > 0. This implies that there exists a unique root

within the range [0, (2η−3+
√

9− 8η)/(2η)]. Let w̌KSsim denote this root. We note that

∂Γ(w)/∂η = 2(1−w)(1− η− (3− 2η)w− ηw2) > 0 for w < (2η− 3 +
√

9− 8η)/(2η),

which is equivalent to w̌KSsim being decreasing in η.

The second piece and symmetry give w = (1−η2−η3+η4±
√

1− 4η2 + 2η3 + 3η4 − 2η5)

/(2−2η2 +η4). The smaller root is not within the range [1−η, (2+η)(1−η)/(2−η2)]

and the bigger root leads to a Pareto-dominated profit allocation. It is easy to check

that the third piece and symmetry give no feasible solution.

Now we consider the equivalent bargaining power. Substituting (B.16) into (B.17)

yields

Γ
((1− η)(1− θ)

2− η − θ
)

=
(1− θ)3

(2− η − θ)3

[
6− 2(7 + 2η)θ + 9(1 + η)θ2 − (2 + η)(1 + η)θ3

]
= 0.

Setting the second term being zero gives η(θ) = (−4+9θ−3θ2−(1−θ)
√

16− 16θ + θ2)/(2θ2).

Note that ∂η(θ)/∂θ > 0 for θ ∈ (0, 1) and η(θ) ∈ (−∞, 1], which is equivalent to

θ̌KSsim(η) being increasing in η. Finally, note that θ̌KSsim(0) > 0.68 and θ̌KSsim(1) = 1. We

conclude part (ii). �

Proof of Proposition 3.6.1. To see part (i), we first consider the case when the

KS solution is applied. By (F.1), (F.2), Lemma F.1.3 and Proposition 3.5.2, we have

Π̂KS
sim =

8

25(2 + η)
≤

(1− ŵKSseq1)ŵKSseq1
2

+
2(2− η)

25(2 + η)
= Π̂KS

seq ,

π̂KSsim = π̂KSseq2 =
16

25(2 + η)2
≥

(10 + η − 5(2 + η)ŵKSseq1)2

100(2 + η)2
= π̂KSseq1.

The inequalities follow because ŵKSseq1 ∈ [0.2, 0.27) from the proof of Proposition 3.5.2.
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Now we consider the case when the NB solution is applied. Similarly, we have

Π̂NB
sim =

(1− θ2)

2(2 + η)
≤

(1− ŵNBseq1)ŵNBseq1
2

+
(2− η)(1− θ2)

8(2 + η)
= Π̂NB

seq ,

π̂NBsim = π̂NBseq2 =
(1 + θ)2

4(2 + η)2
≥

(4 + η(1− θ)− 2(2 + η)ŵNBseq1)2

16(2 + η)2
= π̂NBseq1.

To see the inequalities, we can set θi = θj = θ into (B.1) and obtain

ŵNBseq1 =
6− 2θ + η(2− θ + θ2)−

√
(2− ηθ)2(1 + θ)2 + 4ηθ((4 + η)θ2 + 4θ − η)

4(η + 2)
.

It is easy to check that ∂ŵNBseq1/∂θ ≤ 0 and ∂ŵNBseq1/∂η ≥ 0 and thus ŵNBseq1 ≥ ŵNBseq1|η=0 =

(1− θ)/2. The inequalities then follow. We conclude part (i).

To see part (ii), we first consider the case when the KS solution is applied. By

(F.19), (F.20), Lemma F.2.3 and Proposition 3.5.2, we can compute the suppliers’

and retailer’s profits, respectively, as

Π̌KS
sim =

2(1− η)

(1 + η)(5− η)2
,

π̌KSsim =
8

(1 + η)(5− η)2
,

Π̌KS
seq1 =

w̌KSseq1((5− η2)(1− w̌KSseq1)− 4η)

10(1− η2)
,

Π̌KS
seq2 =

2(1− η + ηw̌KSseq1)2

25(1− η2)
,

π̌KSseq =
(25− 9η2)(1− w̌KSseq1)2 − 32η(1− w̌KSseq1) + 16

100(1− η2)
.

Comparing Π̌KS
sim and Π̌KS

seq1, we obtain

Π̌KS
sim − Π̌KS

seq1 =
1

10(1− η2)(5− η)2
Ξ1(η),

where Ξ1(η) = 20(1− η)2 − (5− η)2w̌KSseq1((5− η2)(1− w̌KSseq1)− 4η). Note that Ξ1(η)

is a quadratic function with the coefficient of w̌KSseq1
2

being positive. Ξ1(η) = 0 has

two roots, w(1) = (1 − η)/(5 − η) and w(2) = 20(1 − η)/((5 − η)(5 − η2)). We have

w(1) ≤ w̌KSseq1 ≤ (1− η)(5 + η)/(2(5− η2)) ≤ w(2) and thus Ξ1(η) ≤ 0.

Comparing Π̌KS
sim and Π̌KS

seq2, we obtain

Π̌KS
sim − Π̌KS

seq2 =
2η

25(1− η2)(5− η)2
Ξ2(η),
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where Ξ2(η) = (10 − η)(1 − η)2 − (5 − η)2w̌KSseq1(2(1 − η) + ηw̌KSseq1). Note that Ξ2(η)

is a quadratic function with the coefficient of w̌KSseq1
2

being negative. Ξ2(η) = 0 has

two roots, w(1) = (1 − η)/(5 − η) and w(3) = −(1 − η)(10 − η)/(η(5 − η)). We have

w(3) ≤ 0 ≤ w(1) ≤ w̌KSseq1 and thus Ξ2(η) ≤ 0.

Comparing Π̌KS
seq1 and Π̌KS

seq2, we obtain

Π̌KS
seq1 − Π̌KS

seq2 =
1

50(1− η2)
Ξ3(η),

where Ξ3(η) = −4(1− η)2 + (25− η)(3− η)w̌KSseq1− (25− η2)w̌KSseq1
2
. Note that Ξ3(η) is

a quadratic function with the coefficient of w̌KSseq1
2

being negative. Ξ3(η) = 0 has two

roots, w(1) = (1− η)/(5− η) and w(4) = 4(1− η)/(5 + η). We have w(1) ≤ w̌KSseq1 and

w̌KSseq1 < (>)w(4) for η < (>)η̄KS ≈ 0.994576 and thus Ξ3(η) ≥ (≤)0 for η ≤ (≥)η̄KS.

Comparing π̌KSsim and π̌KSseq , we obtain

π̌KSsim − π̌KSseq =
1

100(1− η2)(5− η)2
Ξ4(η),

where Ξ4(η) = −(1 − η)2(225 + 40η − 9η2) + 2(5 − η)2(25 − 16η − 9η2)w̌KSseq1 − (5 −

η)2(25 − 9η2)w̌KSseq1
2
. Note that Ξ4(η) is a quadratic function with the coefficient

of w̌KSseq1
2

being negative. Ξ4(η) = 0 has two roots, w(1) = (1 − η)/(5 − η) and

w(5) = (225−185η−49η2+9η3)/(125−25η−45η2+9η3). We have w(1) ≤ w̌KSseq1 ≤ w(5)

and thus Ξ4(η) ≥ 0.

We now consider the case when the NB solution is applied. Similarly, we can

compute the suppliers’ and retailer’s profits, respectively, as

Π̌NB
sim =

(1− η)(1− θ2)

2(1 + η)(2− η(1− θ))2
,

π̌NBsim =
(1 + θ)2

2(1 + η)(2− η(1− θ))2
,

Π̌NB
seq1 =

w̌NBseq1((2− η2(1− θ))(1− w̌NBseq1)− η(1 + θ))

4(1− η2)
,

Π̌NB
seq2 =

(1− θ2)(1− η + ηw̌NBseq1)2

8(1− η2)
,

π̌NBseq =
(1− w̌NBseq1)2

4
+

(1 + θ)2(1− η + ηw̌NBseq1)2

16(1− η2)
.
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We first note that wl ≡ (1 − θ)(1 − η)/(2 − η(1 − θ)) ≤ w̌NBseq1 ≤ (1 − η)(2 + η(1 −

θ))/(2(2 − η2(1 − θ))) ≡ wu. To see the inequality, we can set θi = θj = θ in (B.3)

and obtain Ψ(wl) ≥ 0 and Ψ(wu) ≤ 0.

Comparing Π̌NB
sim and Π̌NB

seq1, we obtain

Π̌NB
sim − Π̌NB

seq1 =
1

4(1− η2)(2− η(1− θ))2
Ξ1(η, θ),

where Ξ1(η, θ) = 2(1− η)2(1− θ2)− (2− η(1− θ))2w̌NBseq1((2− η2(1− θ))(1− w̌NBseq1)−

η(1 + θ)). Note that Ξ1(η, θ) is a quadratic function with the coefficient of w̌NBseq1
2

being positive. Ξ1(η, θ) = 0 has two roots, w(a) = (1 − θ)(1 − η)/(2 − η(1 − θ)) and

w(b) = 2(1 − η)(1 + θ)/(4 − 2η(1 + η)(1 − θ) + η3(1 − θ)2). We have w(a) = wl ≤

w̌NBseq1 ≤ wu ≤ w(b) and thus Ξ1(η, θ) ≤ 0.

Comparing Π̌NB
sim and Π̌NB

seq2, we obtain

Π̌NB
sim − Π̌NB

seq2 =
(1− θ2)

8(1− η2)(2− η(1− θ))2
Ξ2(η, θ),

where Ξ2(η, θ) = 4(1− η)2 − (2− η(1− θ))2(1− η + ηw̌NBseq1)2. Note that Ξ2(η, θ) is a

quadratic function with the coefficient of w̌NBseq1
2

being negative. Ξ2(η, θ) = 0 has two

roots, w(a) = (1− θ)(1− η)/(2− η(1− θ)) and w(c) = −(1− η)(4− η(1− θ))/(η(2−

η(1− θ))). We have w(c) ≤ 0 ≤ w(a) ≤ w̌NBseq1 and thus Ξ2(η, θ) ≤ 0.

Comparing Π̌NB
seq1 and Π̌NB

seq2, we obtain

Π̌NB
seq1 − Π̌NB

seq2 =
1

8(1− η2)
Ξ3(η, θ),

where Ξ3(η, θ) = 2w̌NBseq1((2−η2(1−θ))(1−w̌NBseq1)−η(1+θ))−(1−θ2)(1−η+ηw̌NBseq1)2.

Note that Ξ3(η, θ) is a quadratic function with the coefficient of w̌NBseq1
2

being negative.

Ξ3(η, θ) = 0 has two roots, w(a) = (1− θ)(1− η)/(2− η(1− θ)) and w(d) = (1 + θ)(1−

η)/(2 + η(1− θ)). It is easy to check that w(a) ≥ (≤)w(d) for η ≥ (≤)2θ/(1− θ). We

have two cases depending on the value of η.

Case 1: η ≥ 2θ/(1− θ). We have w(d) ≤ w(a) ≤ w̌NBseq1 and thus Ξ3(η, θ) ≤ 0.

Case 2: η < 2θ/(1− θ). By (B.3), we have

(2 + η(1− θ))3

(1− η)2(1− θ)2
Ψ(w(d)) = Γ0 + Γ1η + Γ2η

2 + Γ3η
3 + Γ4η

4 + Γ5η
5 ≡ G(η, θ),
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where Γ0 = −32θ, Γ1 = 8(2 − 19θ + θ3), Γ2 = 4(19 − 68θ − 2θ2 + 4θ3 − θ4), Γ3 =

4(1 − θ)(35 − 13θ − 7θ2 + θ3), Γ4 = 113 − 29θ + 50θ2 + 30θ3 − 3θ4 − θ5 and Γ5 =

(3 + θ)(11 + 6θ2 − θ4). We note that G(0, θ) = Γ0 ≤ 0, ∂G(η, θ)/∂η|η=0 = Γ1 ≥ (≤)0

for θ ≥ (≤)0.105, ∂2G(η, θ)/∂η2|η=0 = 2Γ2 ≥ (≤)0.278 and ∂3G(η, θ)/∂η3 = 6Γ3 +

24Γ4η + 60Γ5η
2 > 0. This implies that ∂G(η, θ)/∂η is convex in η ∈ [0, 1]. Moreover,

the sign of ∂G(η, θ)/∂η (i) is always positive or (ii) changes at most once and the

change is from negative to positive. This further implies that G(η, θ) = 0 has at most

one root within the range η ∈ [0, 1]. Let η̄NB denote this root. In the case that no root

exists within the range, we set η̄NB = 1. Similarly, we can show that ∂G(η, θ)/∂θ < 0

and thus η̄NB is increasing in θ. Thus, Ξ3(η, θ) ≥ (≤)0 for η ≤ (≥)η̄NB.

Comparing π̌NBsim and π̌NBseq , we obtain

π̌NBsim − π̌NBseq =
1

16(1− η2)(2− η(1− θ))2
Ξ4(η, θ),

where Ξ4(η, θ) = 8(1 + θ)2(1− η)− (2− η(1− θ))2(4(1− η)2(1− w̌NBseq1)2 + (1 + θ)2(1−

η+ ηw̌NBseq1)2). Note that Ξ4(η, θ) is a quadratic function with the coefficient of w̌NBseq1
2

being negative. Ξ4(η, θ) = 0 has two roots, w(a) = (1− θ)(1− η)/(2− η(1− θ)) and

w(e) = (1− η)((4− η2(1− θ)2)(3 + θ) + 4η(1− θ2))/(8− 4η(1− θ)− 2η2(3 + θ)(1−

θ) + η3(1 − θ)2(3 + θ)). We have w(a) ≤ w̌NBseq1 ≤ wu ≤ w(e) and thus Ξ4(η, θ) ≥ 0.

This concludes part (ii). �

Proof of Proposition 3.6.2. We first consider the case when the NB solution is

applied. From the proof of Lemma 3.5.2, it is easy to check that Π̂NB
sim ≥ (≤)Π̂NB

seq and

π̂NBseq1 ≥ π̂NBsim ≥ π̂NBseq2 (π̂NBseq1 ≤ π̂NBsim ≤ π̂NBseq2) for ŵNBsim ≥ (≤)ŵNBseq1. Thus, it suffices to

compare the difference between ŵNBsim and ŵNBseq1. Note that the Nash product for the

first trade in sequential negotiation is

Ω1(w1) = Π1(w1, ŵ
NB
2 (w1))1−θπ1(w1, ŵ

NB
2 (w1))θ,

where Π1(·, ·) and π1(·, ·) are respectively first pieces in (B.4) and (B.5), and ŵNB2 (·)

is given by (B.8).
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Setting ∂ ln Ω1(w1)/∂w1 = 0 gives

0 =
∂

∂w1

[
(1− θ) ln Π1(w1, w2) + θ lnπ1(w1, w2)

]
+

∂

∂w2

[
(1− θ) ln Π1(w1, w2) + θ ln π1(w1, w2)

]∂ŵNB2 (w1)

∂w1

∣∣∣∣
w2=ŵNB2 (w1)

≡ Γ1 + Γ2.

We first note that Γ1 ≥ (≤)0 for w1 ≤ (≥)ŵNBsim. Also note that the first term in Γ2

is above zero because Π1(w1, w2) and π1(w1, w2) are increasing in w2 for w2 ≤ 1/2 by

Lemma 3.5.2. The second term in Γ2 gives

∂ŵNB2 (w1)

∂w1

∣∣∣∣
w1=ŵNBsim

=
η

2
+

4(2 + η)θ2

η(1− θ)2 + 2(θ2 − 4θ − 1)
≥ 0

for η > (1 + 5θ −
√

(1 + θ)(1 + 9θ))/(1− θ) and 0 < θ < (5 + 2
√

13)/27. In the case

that θ > (5 + 2
√

13)/27, we have (1 + 5θ −
√

(1 + θ)(1 + 9θ))/(1 − θ) > 1. Thus,

we have η̄NB = ((1 + 5θ−
√

(1 + θ)(1 + 9θ))/(1− θ)) ∧ 1 and η̄NB is increasing in θ.

This implies that ŵNBsim ≤ (≥)ŵNBseq1 for η ≥ (≤)η̄NB.

Now we consider the case when the KS solution is applied. We focus on the case

when no extension of Pareto profit allocation set is needed (see the detailed discussion

in Appendix E). Thus, we restrict the range of η within [0, 0.39]. Similar to that under

the NB solution, the profit comparison boils down to compare the difference between

ŵKSsim and ŵKSseq1.

Let Π1(w1) ≡ Π1(w1, ŵ
KS
2 (w1)) and π1(w1) ≡ π1(w1, ŵ

KS
2 (w1)), where ŵKS2 (·) is

given by (B.10). By Proposition 3.5.3, we have the supplier and retailer 1’s maximum

profits as Π1 = Π1(1/2) and π1 = π1(1/2 −
√

1/(2 + η)), respectively. By (3.2), we

note that ŵKSseq1 and ŵKSsim should satisfy

π1(w1)

Π1(w1)
=
π1

Π1

and
π1(w1)

Π1(w1)
=
π1(ŵKS2 (w1))

Π1(ŵKS2 (w1))
,

respectively. Recall that Π1(·) and π1(·) are respectively first pieces in (B.6) and

(B.7). We first note that π1(w1)/Π1(w1) is decreasing in w1. We also note that

π1(ŵKS2 (w1))/Π1(ŵKS2 (w1)) is increasing in w1 for w1 ≤ 0.13 because (i) π1(w2)/Π1(w2)

is decreasing in w2 for w2 ≤ 1/2; (ii) ŵKS2 (w1) is decreasing in w1 and ŵKS2 (w1) ≤ 1/2



169

for w1 ≤ 0.13. Finally, note that π1/Π1 > π1(ŵKS2 (w1))/Π1(ŵKS2 (w1))|w1=0.13 and

thus we have ŵKSseq1 < ŵKSsim < ŵKSseq2. �

Proof of Corollary 3.6.1. To see part (i), we can compute the supplier’s and

retailer’s profits as

Π(w) = wq∗(w) = w
(1− w
k + 1

)1/k
and π(w) = q∗(w)(p∗(w)− w) = k

(1− w
k + 1

)1/k+1
,

and their maximum profits are

Π = Π
( k

k + 1

)
= k
( 1

k + 1

)2/k+1
and π = π(0) = k

( 1

k + 1

)1/k+1
.

Substituting the above expressions into (3.1) and (3.2) gives wNB = k(1− θ)/(k+ 1)

and wKS = k/((k + 1)1/k+1 + k), respectively. Setting wNB = wKS gives θKS(k) =

1− (k + 1)/((k + 1)1/k+1 + k). This concludes part (i).

To see part (ii), we can compute the supplier’s and retailer’s profits as

Π(w) = wq∗(w) = w exp
(1− k − w

k

)
and π(w) = q∗(w)(p∗(w)− w) = k exp

(1− k − w
k

)
,

and their maximum profits are

Π = Π(k) = k exp
(1− 2k

k

)
and π = π(0) = k exp

(1− k
k

)
.

Substituting the above expressions into (3.1) and (3.2) gives wNB = k(1 − θ) and

wKS = k/e, respectively. Setting wNB = wKS gives θKS(k) = 1−1/e. This concludes

part (ii).

To see part (iii), we can compute the supplier’s and retailer’s profits as

Π(w) = (w − c)q∗(w) = (w − c)
(1− k

w

)1/k
, and π(w) = q∗(w)(p∗(w)− w) = k

(1− k
w

)1/k−1
,

and their maximum profits are

Π = Π
( c

1− k
)

=
kc

1− k
((1− k)2

c

)1/k
and π = π(c) = k

(1− k
c

)1/k−1
.

Substituting the above expressions into (3.1) and (3.2) gives wNB = c(1−kθ)/(1−k)

and wKS = c/(1 − k(1 − k)1/k−1). Setting wNB = wKS gives θKS(k) = (1 − (1 −

k)1/k−1)/(1− k(1− k)1/k−1). This concludes part (iii). �
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Proof of Proposition 3.6.3. There are eight cases to analyze, depending on the

industry structures, contingency terms and negotiation sequence. We present the

detailed analysis for one case and omit the others as they follow in the similar way.

Specifically, we focus on the simultaneous bargaining without contingency in the one-

to-two channel. We consider the negotiation in unit i for a given (vj, Fj) from unit j.

The supplier’s and retailer i’s profits are

Πi(vi, vj, Fi, Fj) = Ri(vi, vj, Fi) +Rj(vj, vi, Fj) and πi(vi, vj, Fi) = ri(vi, vj, Fi).

The retailer i has zero disagreement point (i.e., di(vj, Fj) = 0) and the supplier’s

disagreement point is Di(vj, Fj) = Rj(vj, a−η(a−vj)/2, Fj). Their maximum profits

are

Π(vj, Fj) = max{Πi(vi, vj, Fi, Fj) : πi(vi, vj, Fi) ≥ di(vj, Fj)},

π(vj, Fj) = max{πi(vi, vj, Fi) : Πi(vi, vj, Fi, Fj) ≥ Di(vj, Fj)}.

We note that though trade parties’ profits and disagreement points may depend on

Fj, their total trade surplus Πi(vi, vj, Fi, Fj) + πi(vi, vj, Fi)−Di(vj, Fj)− di(vj, Fj) is

independent of Fj. This implies that total trade surplus can be allocated between

the supplier and the retailer i by varying Fi. Thus, we have Π(vj, Fj)−Di(vj, Fj) =

π(vj, Fj)− di(vj, Fj). Consequently, Fi should split the total surplus evenly between

the trade parties and unit payment vi should maximize the total trade surplus. The

KS solution, in turn, coincides with the symmetric NB solution. �



171

C. Proofs of Formal Results in Chapter 4

Proof of Lemma 4.3.1. According to Proposition 4.3.1, q∗j decreases in j. For

farmer j ∈ N to participate production, his output quantity should be positive even

when farmers j + 1, j + 2, ..., n quit the market. By Proposition 4.3.1, farmer j’s

output quantity should be

q∗j =
1

β

(
α− cH − (1

j

∑j
i=1 zi)cP

j + 1
− (zj −

1

j

j∑
i=1

zi)cP

)
.

q∗j ≥ 0 gives

g(j) ≤ α− cH
cP

,

where

g(j) = (j + 1)zj −
j∑
i=1

zi.

Let j be any positive integer where j < n,

g(j + 1)− g(j) = (j + 1)(zj+1 − zj) ≥ 0.

Thus, g(j) is increasing in j. �

Proof of Proposition 4.3.1. Note that farmer j’s profit in (4.3) is concave in qj.

Thus, farmer j’s optimal output quantity can be derived from the first-order condition

of (4.3) as

qj =
1

2β

(
α− cH − zjcP − β

∑
i∈N\{j}

qi

)
=

1

2β

(
α− cH − zjcP + βqj − β

∑
i∈N

qi

)
, j ∈ N.

The equilibrium output quantities is the unique solution of the above system of linear

equations:

q∗j =
1

β(n+ 1)

(
α− cH − z̄cP − (n+ 1)(zj − z̄)cP

)
, j ∈ N.
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In the right-hand side of the above expression, the coefficient of zj is −ncp/(β(n+1)).

Thus, q∗j is decreasing in zj, which gives rise to part (i).

The equilibrium total input quantity is

X =
∑
i∈N

ziq
∗
i =

n

β(n+ 1)

(
z̄(α− cH − z̄cP )− (n+ 1)vzcp

)
. (C.1)

We deduce that

∂X

∂z̄
=

n

β(n+ 1)

(
α− cH − 2cP z̄

)
.

It follows that X is increasing [decreasing] in z̄ when z̄ < [>](α− cH)/(2cP ).

The equilibrium total output quantity is

Q =
∑
i∈N

q∗i =
n

β(n+ 1)

(
α− cH − z̄cP

)
, (C.2)

which is clearly decreasing in z̄. Thus, we obtain part (ii).

The total farmer profit in equilibrium is

Π =
∑
i∈N

π∗i =
n

β(n+ 1)2

(
(α− cH − z̄cP )2 + (n+ 1)2vzc

2
P

)
, (C.3)

which is clearly decreasing in z̄.

Part (iii) follows immediately by inspecting (C.1), (C.2) and (C.3). �

Proof of Proposition 4.3.2. Note that q∗j is affine in zj for all j. Thus, by Theorem

A.1.f. of Marshall et al. (1979), qCA(sP , sH) ≥m qCB(sP , sH), as majorization order is

preserved under affine transformation. From Theorem A.1. of Marshall et al. (1979),

πC
A(sP , sH) ≥wm πC

B(sP , sH). This concludes the proof. �

Proof of Lemma 4.4.1. By Proposition 4.4.1, q∗j decreases in j for sP ≤ cP .

Following the lines of the proof of Lemma 4.3.1, we have g(k) ≤ (α−cH+sH)/(cP−sP ).

For sP > cP , q∗j increases in j. For farmer j ∈ N to participate production, his output

quantity should be positive even when farmers 1, 2, . . . , j − 1 quit the market. By

Proposition 4.4.2, farmer j’s output quantity should be

q∗j (sP , sH) = 1
β

(
α−(cH−sH)−

(
1

n−j+1

∑n
i=j zi

)
(cP−sP )

n−j+2
−
(
zj − 1

n−j+1

∑n
i=j zi

)
(cP − sP )

)
.
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q∗j (sP , sH) ≥ 0 gives

g̃(j) ≤ α− cH + sH
sP − cP

,

where

g̃(j) =
n∑
i=j

zi − (n− k + 2)zj.

Let j be any positive integer where j < n,

g̃(j + 1)− g̃(j) = (n− j + 2)(zj − zj+1) ≤ 0.

Thus, g̃(j) is decreasing in j. �

Proof of Lemma 4.4.2. With subsidies (sP , sH), farmer j’s profit is

πj(q; sP , sH) =

(
aj(sP , sH)− β

∑
i∈N

qi(sP , sH)

)
qj, j ∈ N.

It is clear that πj is concave in qj and the first-order condition of qj gives

qj(sP , sH) =
1

2β

(
aj(sP , sH)− β

∑
i∈N\{j}

qi(sP , sH)

)

=
1

2β

(
aj(sP , sH) + βqj(sP , sH)− β

∑
i∈N

qi(sP , sH)

)
, j ∈ N.

The equilibrium is thus obtained by solving the above system of linear equations:

qCj (sP , sH) =
1

β

(
aj(sP , sH)− 1

n+ 1

∑
i∈N

ai(sP , sH)

)
=

1

β

(
α− zj(cP − sP )− (cH − sH)− 1

n+ 1

∑
i∈N

(
α− zi(cP − sP )− (cH − sH)

))
=

1

β

(
ā(sP , sH)

n+ 1
− (zj − z̄)(cP − sP )

)
.

It follows that the farmer’s equilibrium profit can be computed as

πCj (sP , sH) = πj(q
C(sP , sH); sP , sH)

=
1

β

(
aj(sP , sH)− 1

n+ 1

∑
i∈N

ai(sP , sH)

)2

=
1

β

(
ā(sP , sH)

n+ 1
− (zj − z̄)(cP − sP )

)2

, j ∈ N.
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The total input quantity is

XC(sP , sH) =
∑
i∈N

ziq
C
i (sP , sH) =

1

β

(∑
i∈N

ziai(sP , sH)− 1

n+ 1

∑
i∈N

zi
∑
i∈N

ai(sP , sH)

)
=

n

β(n+ 1)

(
z̄ā(sP , sH)− (n+ 1)vz(cp − sP )

)
,

and the total output quantity is

QC(sP , sH) =
∑
i∈N

qCi (sP , sH) =
1

β(n+ 1)

∑
i∈N

ai(sP , sH) =
n

β(n+ 1)
ā(sP , sH),

and the total profit is

ΠC(sP , sH) =
∑
i∈N

πCi (sP , sH) =
n

β(n+ 1)2

(
ā2(sP , sH) + (n+ 1)2vz(cP − sP )2

)
.

Hence, we conclude the proof. �

Proof of Proposition 4.4.1. From (4.5), we have

qCj+1(sP , sH)− qCj (sP , sH) =
1

β
(cP − sP )(zj − zj+1)

 ≤ 0 for sP ≤ cP ,

≥ 0 for sP > cP .

Thus, we conclude (i).

To show part (ii), we differentiate (4.5) with respect to sP and sH , respectively,

to obtain

∂qCj (sP , sH)

∂sP
=

(n+ 1)zj − nz̄
β(n+ 1)

and
∂qCj (sP , sH)

∂sH
=

1

β(n+ 1)
.

It is clear that farmer j’s output quantity is increasing [decreasing] in sP for zj ≥ [≤

]nz̄/(n+ 1) and is increasing in sH . Since the input quantity and the output quantity

vary by a scale of zj, farmer j’s input quantity exhibits the same monotone property

with respect to sP and sH . Moreover, from (4.5) and (4.6), we have πCj (sP , sH) =

β(qCj (sP , sH))2. Thus, farmer j’s profit πCj exhibits the same monotone property as

qCj with respect to sP and sH . Hence we obtain part (ii).

To see part (iii), we substitute ā(sP , sH) = α− z̄(cP − sP )− (cH − sH) into (4.7)

to obtain

XC(sP , sH) =
n

β(n+ 1)

(
(sP − cP )z̄2 + (α− cH + sH)z̄ + (n+ 1)(sP − cP )vz

)
.
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Differentiating with respect to z̄ yields

∂XC(sP , sH)

∂z̄
=

n

β(n+ 1)

(
2(sP − cP )z̄ + α− cH + sH

)
.

Thus, XC(sP , sH) is increasing in z̄ when sP > cP . For sP ≤ cP , XC(sP , sH) is

increasing [decreasing] in z̄ when z̄ ≤ [≥](α− cH + sH)/(2(cP − sP )).

Now substituting ā(sP , sH) = α− z̄(cP − sP )− (cH − sH) into (4.8), we obtain

QC(sP , sH) =
n

β(n+ 1)

(
α + z̄(sP − cP )− cH + sH

)
.

It is easy to see that QC(sP , sH) decreases [increases] in z̄ for sP ≤ [>]cP . We conclude

part (iii).

To see part (iv), we note from (4.8) that QC is independent of vz. Differentiating

(4.7) with respect to vz yields

∂XC(sP , sH)

∂vz
=
n

β
(sP − cP ).

Thus, XC(sP , sH) decreases [increases] in vz for sP ≤ [>]cP . We conclude part (iv).

�

Proof of Corollary 4.4.1. To see part (i), we have

∆sP q
C
j =

δ

β

(
zj −

n

n+ 1
z̄

)
.

Thus, ∆sP q
C
j increases in j. Next, we note that

n∑
j=l

∆sP q
C
j =

δ

β

( n∑
j=l

zj −
(n− l + 1)n

n+ 1
z̄

)
> 0.

This suggests that qC(sP1, sH) weakly sup-majorizes qC(sP2, sH) for sP1 < sP2 ≤ cP ,

as qCj (sP , sH) decreases in j for sP ≤ cP . Because qCj (sP , sH) increases in j for

sP > cP , we have qC(sP2, sH) weakly sub-majorizes qC(sP1, sH) for cP ≤ sP1 < sP2.

Because πCj (sP , sH) = β(qCj (sP , sH))2, from Theorem A.1. of Marshall et al. (1979),

πC(sP2, sH) weakly sub-majorizes πC(sP1, sH).

To see part (ii), we have

∆sHq
C
j =

δ

β(n+ 1)
and ∆sHπ

C
j = 2(∆sHq

C
j )qCj (sP , sH + δ/2).
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Thus, ∆sHq
C
j is constant in j, and ∆sHπ

C
j exhibits the same monotone property as

qCj (sP , sH + δ/2) with respect to j. Because ∆sHq
C
j > 0 and ∆sHπ

C
j > 0 for all j, we

have qC(sP , sH2) ≥wm qC(sP , sH1) and πC(sP , sH2) ≥wm πC(sP , sH1) for sH1 < sH2.

This concludes the proof. �

Proof of Proposition 4.4.2. To see part (i), we note that qCj (sP , sH) is affine

in zj for all j. Thus, by Theorem A.1.f. of Marshall et al. (1979), qCA(sP , sH) ≥m

qCB(sP , sH), as majorization order is preserved under affine transformation. Because

∆sP q
C
j is affine in zj (see the proof of Corollary 4.4.1), ∆sPqCA ≥m ∆sPqCB. Because

∆sHq
C
j is independent of zj, we have ∆sHqCA =m ∆sHqCB. This concludes part (i).

To see part (ii), from Theorem A.1. of Marshall et al. (1979), πC
A(sP , sH) ≥wm

πC
B(sP , sH). Because ∆sHπ

C
j is affine in zj for all j, we have ∆sHπ

C
A ≥m ∆sHπ

C
B .

This concludes part (ii). �

Proof of Lemma 4.4.3. By Proposition 4.4.3, qSj (sp, sH) decreases in j for sP ≤ cP .

For farmer j ∈ N to participate production, his output quantity should be positive

even when farmers j + 1, j + 2, ..., n quit the market. If j ≤ m, all farmers choose

harvesting subsidy and farmer j’s output becomes

qSj (sP , sH) = qCj (0, sH) =
1

β

(
α− (1

j

∑j
i=1 zi)cP − (cH − sH)

j + 1
− (zj −

1

j

j∑
i=1

zi)cP

)
.

qSj (sP , sH) ≥ 0 gives

g(j) ≤ α− cH + sH
cP

.

If j > m, farmer j should choose planting subsidy. By Lemma 4.4.4, farmer j’s output

should be

qSj (sP , sH) =
1

β

(
α− (1

j

∑j
i=1 zi)(cP − sP )− (cH − sH)

j + 1
−
(
zj −

1

j

j∑
i=1

zi

)
(cP − sP )

)
− 1

β

(
sH −

∑m
i=1 zisP + (j −m)sH

j + 1

)
.

qSj (sP , sH) ≥ 0 gives

g(j) ≤ α− cH −msH +
∑m

i=1 zisP
cP − sP

.
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For sP > cP , qSj (sP , sH) decreases [increases] in j for j < [>]m. If j ≤ m, farmer

k’s output should be positive even when farmers j + 1, . . . , ia quit the market, where

ia = max{i ∈ {m + 1, . . . , n} : qSi (sP , sH) ≤ qSj (sP , sH)} = max{i ∈ {m + 1, . . . , n} :

zi(sP − cP ) ≤ sH − zjcP} (when zm+1(sP − cP ) > sH − zjcP , we set ia = m). The

farmer j’s output becomes

qSj (sP , sH) =
1

β

(
α− 1

n−ia+j
(nz̄ −

∑ia

i=j+1 zi)(cP − sP )− (cH − sH)

n− ia + j + 1

−
(
zj −

nz̄ −
∑ia

i=j+1 zi

n− ia + j

)
(cP − sP )

)
− 1

β

(
zjsP −

∑j
i=1 zisP + (n− ia)sH
n− ia + j + 1

)
.

qSj (sP , sH) ≥ 0 gives

(n− ia + j)zj − nz̄ +
ia∑
i=j

zi ≤
α− cH + (n− ia + 1)sH −

∑n
i=ia+1 zisP

cP
.

If j > m, farmer j’s output quantity should be positive even when farmers ib, ib +

1, . . . , j − 1 quit the market, where ib = min{i ∈ {1, 2, . . . ,m} : qSi (sP , sH) ≤

qSj (sP , sH)} = min{i ∈ {1, 2, . . . ,m} : zicP ≥ sH − zj(sP − cP )} (when zmcP <

sH − zj(sP − cP ), we set ib = m+ 1). The farmer j’s output becomes

qSj (sP , sH) =
1

β

(
α− 1

n−j+ib (nz̄ −
∑j−1

i=ib
zi)(cP − sP )− (cH − sH)

n− j + ib + 1

−
(
zj −

nz̄ −
∑j−1

i=ib
zi

n− j + ib

)
(cP − sP )

)
− 1

β

(
sH −

∑ib−1
i=1 zisP + (n− j + 1)sH

n− j + ib + 1

)
.

qSj (sP , sH) ≥ 0 gives

nz̄ −
j∑

i=ib

zi − (n− j + ib)zj ≤
α− cH − (ib − 1)sH +

∑ib−1
i=1 zisP

sP − cP
.

This concludes the proof. �
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Proof of Lemma 4.4.4. From (4.3) and (4.4), it is straightforward to see that

a farmer with zjsP < [>,=]sH would choose harvesting subsidy [choose planting

subsidy, be indifferent]. Thus, the farmer’s profit is

πj(q) =

(
aj(sP , sH)− β

∑
i∈N

qi

)
qj, j ∈ N

=


(
aj(0, sH)− β

∑
i∈N qi

)
qj, for j ≤ m,(

aj(sP , 0)− β
∑

i∈N qi
)
qj, for j > m.

Define âj(sP , sH) = aj(0, sH)I{j≤m} + aj(sP , 0)I{j>m}. Then the analysis directly

follows that for Lemma 4.4.2 with aj(sP , sH) replaced by âj(sP , sH). We also note

that

aj(0, sH) = aj(sP , sH)− zjsP and aj(sP , 0) = aj(sP , sH)− sH .

We deduce, from the proof of Lemma 4.4.2 and (4.5),

qSj (sP , sH) =


1

β

(
aj(0, sH)− 1

n+ 1

( m∑
i=1

ai(0, sH) +
n∑

i=m+1

ai(sP , 0)
))

for j ≤ m,

1

β

(
aj(sP , 0)− 1

n+ 1

( m∑
i=1

ai(0, sH) +
n∑

i=m+1

ai(sP , 0)
))

for j > m,

= qCj (sP , sH)−


1

β

(
zjsP −

∑m
i=1 zisP + (n−m)sH

n+ 1

)
for j ≤ m,

1

β

(
sH −

∑m
i=1 zisP + (n−m)sH

n+ 1

)
for j > m.

We can then compute

XS(sP , sH) =
∑
i∈N

ziq
S
i (sP , sH)

= XC(sP , sH)− 1

β

( m∑
i=1

z2
i sP +

n∑
i=m+1

zisH −
nz̄

n+ 1

( m∑
i=1

zisP + (n−m)sH
))

and

QS(sP , sH) =
∑
i∈N

qSi (sP , sH) = QC(sP , sH)− 1

β(n+ 1)

( m∑
i=1

zisP + (n−m)sH

)
.

Relating to the results in Lemma 4.4.2, we conclude the proof. �
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Proof of Proposition 4.4.3. From (4.10), we have

qSj+1(sP , sH)− qSj (sP , sH) =
1

β
×


cP (zj − zj+1) for j < m,

((cP − sP )(zm − zm+1) + (zmsP − sH)) for j = m,

(cP − sP )(zj − zj+1) for j > m.

Note that zmsP ≤ sH and zj ≤ zj+1, we have qSj+1(sP , sH) − qSj (sP , sH) ≤ 0 when

sP ≤ cP and qSj+1(sP , sH) − qSj (sP , sH) ≤ [≥]0 for j < [>]m when sP > cP . We

conclude part (i).

To see part (ii), we differentiate (4.10) with respect to sP and sH , respectively, to

obtain

∂qSj (sP , sH)

∂sP
=

 −
∑n
i=m+1 zi
β(n+1)

for j ≤ m,
(n+1)zj−

∑n
i=m+1 zi

β(n+1)
for j > m,

and
∂qSj (sP , sH)

∂sH
=

 n−m+1
β(n+1)

for j ≤ m,

− m
β(n+1)

for j > m.

It is clear that farmer j’s output quantity is increasing [decreasing] in sP for zj ≥∑n
i=m+1 zi
n+1

and j > m [otherwise], and is increasing [decreasing] in sH when j ≤ m

[j > m]. Since the input quantity and the output quantity vary by a scale of zj,

farmer j’s input quantity exhibits the same monotone property with respect to sP

and sH . Moreover, from (4.11), we have πSj (sP , sH) = β(qSj (sP , sH))2. Thus, farmer

j’s profit πSj exhibits the same monotone property as qSj with respect to sP and sH .

Hence we obtain part (ii). �

Proof of Corollary 4.4.2. To see part (i), we define mδ = max{j ∈ N : zj(sP +δ) ≤

sH} (when z1 > sH/(sP + δ), we set mδ = 0). Note that m ≥ mδ. We also define

∆P ≡
mδ∑
i=1

ziδ +
m∑

i=mδ+1

(sH − zisP ).

It is clear that 0 < ∆P <
∑m

i=1 ziδ. Note that

∆sP q
S
j =


∆P−δnz̄
β(n+1)

for j ≤ mδ,

∆P−δnz̄
β(n+1)

+
(sP+δ)zj−sH

β
for mδ < j ≤ m,

∆P−δnz̄
β(n+1)

+
δzj
β

for m < j.

The first piece is constant in j, and the second and third pieces increase in j. Because

δzm+1 − ((sP + δ)zm − sH) > δ(zm+1 − zm) > 0, ∆sP q
S
j increases in j. Because
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∆sP q
S
n > 0 and

∑
i∈N ∆sP q

S
i > 0,

∑n
j=l ∆sP q

S
j > 0 for any 1 ≤ l ≤ n. This suggests

that qS(sP1, sH) weakly sup-majorizes qS(sP2, sH) for sP1 < sP2 ≤ cP . We conclude

part (i).

To see part (ii), mδ = max{j ∈ N : zjsP ≤ (sH + δ)} (when z1 > (sH + δ)/sP , we

set mδ = 0). Note that m ≤ mδ. We also define

∆H ≡ (n−mδ)δ +

mδ∑
i=m+1

(zisP − sH).

It is clear that 0 < ∆H < (n−m)δ. Note that

∆sHq
S
j =


∆H+δ
β(n+1)

for j ≤ m,

∆H+δ
β(n+1)

− zjsP−sH
β

for m < j ≤ mδ,

∆H+δ
β(n+1)

− δ
β

for mδ < j.

The first and third pieces are constant in j, and the second piece decreases in j.

Because (zmδsP − sH) − δ < 0, ∆sHq
S
j decreases in j. Because ∆sHq

S
1 > 0 and∑

i∈N ∆sHq
S
i > 0, we have

∑l
j=1 ∆sHq

S
j > 0 for any 1 ≤ l ≤ n. This suggests that

qS(sP , sH2) sub-majorizes qS(sP , sH1). By Theorem A.2.(i) of Marshall et al. (1979),

πS(sP , sH2) sub-majorizes πS(sP , sH1), as πSj (sP , sH) = β
(
qSj (sP , sH)

)2
. We conclude

part (ii). �

Proof of Proposition 4.4.4. We define

∆ ≡
(
mAsH +

n∑
i=mA+1

zAisP

)
−
(
mBsH +

n∑
i=mB+1

zBisP

)

=
n∑

i=mB+1

(zAi − zBi)sP +

mB∑
i=mA+1

(zAisP − sH) ≥ 0.

The inequality follows from zA ≥m zB and zAisP > sH for i > mA. We note that

l∑
j=1

(
qSAj(sP , sH)− qSBj(sP , sH)

)

=


cP
β

∑l
j=1(zBj − zAj)− l∆

β(n+1)
for l ≤ mA,

(cP−sP )
β

∑l
j=1(zBj − zAj) + (n−l+1)∆

β(n+1)
+ 1

β

∑mB
j=l+1(sH − zBjsP ) for mA < l < mB,

(cP−sP )
β

∑l
j=1(zBj − zAj) + (n+1−l)∆

β(n+1)
for l ≥ mB.
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It is clear that
∑l

j=1(qSAj(sP , sH)− qSBj(sP , sH)) ≥ 0 for any 1 ≤ l ≤ n. This suggests

that qSA(sP , sH) weakly sub-majorizes qSB(sP , sH). By Theorem A.2.(i) of Marshall

et al. (1979), πS
A(sP , sH) weakly sub-majorizes πS

B(sP , sH). This concludes the proof.

�

Proof of Proposition 4.4.5. To see part (i), we have, from (4.5) and (4.10),

qCj (sP , sH)− qSj (sP , sH) =
1

β(n+ 1)
×

 (n+ 1)zjsP −
(∑m

i=1 zisP + (n−m)sH
)

for j ≤ m,

(m+ 1)sH −
∑m

i=1 zisP for j > m.

Because ((m + 1)sH −
∑m

i=1 zisP ) − ((n + 1)zmsP − (
∑m

i=1 zisP + (n − m)sH)) =

(n + 1)(sH − zmsP ) ≥ 0, qCj (sP , sH) − qSj (sP , sH) increases in j. Because the second

piece is above zero, jo ≤ m. We conclude part (i).

To see part (ii), we note that
∑

i∈N(qCj (sP , sH)−qSj (sP , sH)) > 0 and qCn (sP , sH) >

qSn (sP , sH). This suggests that
∑n

j=l(q
C
j (sP , sH)− qSj (sP , sH)) > 0 for any 1 ≤ l ≤ n.

Thus, qS(sP , sH) weakly sub-majorizes qC(sP , sH) for sP ≤ cP . We conclude part

(ii).

To see part (iii), we note that

φj ≡ ∆sP q
C
j −∆sP q

S
j =


δzj
β
− ∆P

β(n+1)
for j ≤ mδ,

sH−sP zj
β

− ∆P

β(n+1)
for mδ < j ≤ m,

− ∆P

β(n+1)
for m < j.

The first piece increases in j, the second piece decreases in j and the third piece is

constant in j. Because sH ≥ zmsP , φj decreases in j for j > mδ. Because (n+1)z1δ ≥∑m
i=1 ziδ > ∆P , we have φ1 > 0. This suggests that there exists a jP such that

φj ≥ [<]0 for j ≤ [>]jP . Note that
∑

i∈N φi > 0. We conclude that
∑l

j=1 φj > 0 for

any 1 ≤ l ≤ n and thus ∆sPqS weakly sup-majorizes ∆sPqC .

To see part (iv), we note that

ψj ≡ ∆sHq
C
j −∆sHq

S
j =


− ∆H

β(n+1)
for j ≤ m,

zjsP−sH
β

− ∆H

β(n+1)
for m < j ≤ mδ,

δ
β
− ∆H

β(n+1)
for mδ < j.
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Because ∆sHq
C
j is constant in j and ∆sHq

S
j decreases in j, ψj increases in j. Because

ψ1 < 0 and ψn > 0, there exists a jH such that ψj ≤ [>]0 for j ≤ [>]jH . Note that∑
i∈N ψi > 0. We conclude that

∑n
j=l ψj > 0 for any 1 ≤ l ≤ n and thus ∆sHqS

weakly sup-majorizes ∆sHqC . �

Proof of Lemma 4.5.1. Because QC(sP , sH) = Q̄, we have

z̄sP + sH =
β(n+ 1)

n
Q̄− ā(0, 0). (C.4)

i) When only a planting subsidy is offered (i.e., sH = 0), we must have

sPP =
1

z̄

(
β(n+ 1)

n
Q̄− ā(0, 0)

)
=

(
β(n+ 1)Q̄

n
− ā(0, 0)

)
/z̄,

and the optimal budget is

b(sPP , 0) = XC(sPP , 0)sPP = Q̄

(
β(n+ 1)

n
Q̄− ā(0, 0)

)
− nvz

β
(cP − sPP )sPP . (C.5)

ii) When only a harvesting subsidy is offered (i.e., sP = 0), we must have

sHH =
β(n+ 1)

n
Q̄− ā(0, 0),

and the optimal budget is

b(0, sHH) = QC(0, sHH)sHH = Q̄

(
β(n+ 1)

n
Q̄− ā(0, 0)

)
. (C.6)

iii) When both subsidies are given, (C.4) imply that dsH/dsP = −z̄. By Lemma 4.4.2,

we have

∂XC(sP , sH)

∂sP
=

n

β(n+ 1)

(
(n+ 1)vz + z̄2

)
and

∂QC(sP , sH)

∂sP
=

n

β(n+ 1)
z̄,

∂XC(sP , sH)

∂sH
=

n

β(n+ 1)
z̄ and

∂QC(sP , sH)

∂sH
=

n

β(n+ 1)
.

Now differentiating bC(sP , sH) with respect to sP , we have

dbC(sP , sH)

dsP
=

∂bC(sP , sH)

∂sP
+
∂bC(sP , sH)

∂sH

dsH
dsP

=
n

β(n+ 1)

(
− (n+ 1)vzcP + 2(n+ 1)vzsP

)
=

nvz
β

(−cP + 2sP ).
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Because the right-hand side is increasing in sP , b is convex in sP and is minimized at

sCP = cP/2. Substituting this into (C.4), we obtain sCH = β(n+1)
n

Q̄− ā(0, 0)− cP z̄
2

and

the optimal budget is

b(sCP , s
C
H) = Q̄

(
β(n+ 1)

n
Q̄− ā(0, 0)

)
− nvzc

2
P

4β
. (C.7)

Hence, we conclude the proof. �

Proof of Lemma 4.5.2. Because Q̂(sP , sH) = Q̄, we have(
msH + sP

n∑
i=m+1

zi

)
/n =

β(n+ 1)

n
Q̄− ā(0, 0) ≡ C. (C.8)

This implies that dsH/dsP = −
∑n

i=m+1 zi/m. By the definition of m, we have
z̄sP = C and sH < (z1/z̄)C for m = 0,(
mzm +

∑n
i=m+1 zi

)
sP ≤ nC <

(
mzm+1 +

∑n
i=m+1 zi

)
sP for 1 ≤ m < n,

znsP ≤ C and sH = C for m = n.

(C.9)

Now differentiating bS(sP , sH) with respect to sP , we have

dbS(sP , sH)

dsP
=

∂bS(sP , sH)

∂sP
+
∂bS(sP , sH)

∂sH

dsH
dsP

=
2

β

( n∑
i=m+1

z2
i sP −

n∑
i=m+1

zisH

)
+

cP
mβ

(( m∑
i=1

zi

)( n∑
i=m+1

zi

)
−

n∑
i=m+1

z2
im

)

=
1

mβ

(( n∑
i=m+1

z2
im+

( n∑
i=m+1

zi

)2)
(2sP − cP ) +

n∑
i=m+1

zin(z̄cP − 2C)

)
.

Because the right-hand side is increasing in sP for each m, bS(sP , sH) is convex in sP

and is locally minimized at sP,m = c(m)C/z̄ + (1− c(m))(cP/2) for 1 ≤ m < n. Note

that sP,m should satisfy the second piece of (C.9). Substituting sP,m into the second

piece of (C.9), we derive φl(m) ≤ 2nC/cP < φu(m). We note that φl(1) ≤ φl(m), as

φl(m) − φl(1) = (mzm −
∑m

i=1 zi)
(∑n

i=m+1 z
2
im +

(∑n
i=m+1 zi

)2)
/(m

∑n
i=m+1 zi(zi −

zm)) ≥ 0, and φu(n− 1) =∞. Also, note that

φl(m+ 1) =
(m+ 1)zm+1 +

∑n
i=m+2 zi

(m+ 1)
∑n

i=m+2 zi(zi − zm+1)

( n∑
i=m+2

z2
i (m+ 1)−

(m+1∑
i=1

zi

)( n∑
i=m+2

zi

))
= φu(m)−

(mzm+1 +
∑n

i=m+1 zi)
2(mzm+1 −

∑m
i=1 zi)

m(m+ 1)
∑n

i=m+1 zi(zi − zm+1)
.
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Since the second term is positive, we have φl(m + 1) ≤ φu(m). This suggests that

the collection of intervals {[φl(m), φu(m)) : 1 ≤ m < n} covers the range above φl(1).

Thus, we conclude that for any 2nC/cP ≥ φl(1) = nz̄, sP,m satisfies the second piece

of (C.9) for some 1 ≤ m < n. For 2nC/cP < nz̄ (or C < z̄cP/2), it is easy to see that

the optimal subsidy scheme is sSP = C/z̄ and sSH < (z1/z̄)C (i.e., mS = 0).

Next we deduce that bS(sP , sH) is not minimized at sP ≤ C/zn (i.e., mS = n) or

any kink points of bS(sP , sH). This follows from the observation that for any kink

point soP = nC/(mzm+1 +
∑n

i=m+1 zi), 1 ≤ m < n,

dbS(sP , sH)

dsP

∣∣∣
sP→soP

−

=
2

β

( n∑
i=m+2

z2
i s
o
P −

n∑
i=m+2

zizm+1s
o
P

)
+

cP
(m+ 1)β

((m+1∑
i=1

zi

)( n∑
i=m+2

zi

)
−

n∑
i=m+2

z2
i (m+ 1)

)

=
dbS(sP , sH)

dsP

∣∣∣
sP→soP

+
+

cP
m(m+ 1)β

(
mzm+1 −

m∑
i=1

zi

)(
mzm+1 +

n∑
i=m+1

zi

)
.

Since the second term is positive, the above inequality suggests that the left derivative

of bS(sP , sH) is greater than the right derivative of bS(sP , sH) at soP . For sP < C/zn,

bS(sP , sH) is constant in sP . Thus, we conclude that bS(sP , sH) is not minimized at

sP < C/zn or any kink points.

Substituting this into (C.8), we obtain sH,m =
(
nC −

∑n
i=m+1 zisP,m

)
/m and the

budget is

b(sP,m, sH,m)

= Q̄C +
1

β

(
ms2

H,m +
n∑

i=m+1

z2
i s

2
P,m −

( m∑
i=1

(zi − z̄)sH,m +
n∑

i=m+1

(zi − z̄)zisP,m

)
cP − nC2

)

= Q̄C +
n

4β

(
c(m)

∑n
i=m+1 z

2
i

z̄
∑n

i=m+1 zi
− 1

)
(2C − z̄cP )2 +

( m∑
i=1

z2
i −

1

m

( m∑
i=1

zi

)2

− nvz
)
c2
P

4β
.
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Now we focus on establishing the monotonicity of c(m). This follows from the

observation that

nz̄

c(m+ 1)
− nz̄

c(m)

=
(m+ 1)

∑n
i=m+2 z

2
i∑n

i=m+2 zi
−
m
∑n

i=m+1 z
2
i∑n

i=m+1 zi
− zm+1

=

∑n
i=m+1 z

2
i

∑n
i=m+1 zi − zm+1(

∑n
i=m+1 zi)

2 +mzm+1

∑n
i=m+1 zi(zi − zm+1)

(
∑n

i=m+1 zi)(
∑n

i=m+2 zi)

≥ zm+1

∑n
i=m+1 z

2
i (n−m)− (

∑n
i=m+1 zi)

2 +m
∑n

i=m+1 zi(zi − zm+1)

(
∑n

i=m+1 zi)(
∑n

i=m+2 zi)
≥ 0.

The first inequality follows because zj decreases in j. The second inequality fol-

lows from the fact that
∑n

i=m+1 z
2
i (n −m) ≥ (

∑n
i=m+1 zi)

2, by the Cauchy-Schwartz

inequality. Thus, we conclude that c(m) decreases in m.

Now we focus on establishing the monotonicity of mS with respect to Q̄ (or C).

We note that the third term of b(sP,m, sH,m) increases in m as(m+1∑
i=1

z2
i −

1

m+ 1

(m+1∑
i=1

zi

)2
)
−
( m∑

i=1

z2
i −

1

m

( m∑
i=1

zi

)2
)

=
(mzm+1 −

∑m
i=1 zi)

2

m(m+ 1)
≥ 0.

Thus, for m1 < m2, the sign of b(sP,m1 , sH,m1)− b(sP,m2 , sH,m2) changes at most once

and the change is from negative to positive. Consider a output level Ĉ such that

the number of farmers who choose the harvesting subsidy is m̂. We have 2nĈ/cP ∈

[φl(m̂), φu(m̂)). We deduce that for any Co ∈ [Ĉ, φu(m̂)cP/(2n)) with the number of

farmers who choose the harvesting subsidy being mo, mo ≥ m̂. If not, suppose for

some Co ∈ [Ĉ, φu(m̂)cP/(2n)), mo < m̂. Then, 2nCo/cP ∈ [φl(mo), φ
u(mo)). We have

two cases.

Case (a): 2nĈ/cP ∈ [φl(mo), φ
u(mo)). This contradicts the fact that the sign of

b(sP,mo , sH,mo) − b(sP,m̂, sH,m̂) changes at most once and change is from negative to

positive.

Case (b): 2nĈ/cP < φl(mo). Let C̃ denote the single-crossing point of b(sP,mo , sH,mo)

and b(sP,m̂, sH,m̂). We must have φl(mo) < 2nC̃/cP . Thus, mo is optimal for

C = φl(mo)cP/(2n). However, for C = φl(mo)cP/(2n), bS(sP , sH) is not minimized

at sP = sP,mo , as sP,mo is the kink point of bS(sP , sH). This leads to a contradiction.
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This suggests that for Ca ∈ [Ĉ, φu(m̂)cP/(2n)), the number of farmers who choose

the harvesting subsidy would be ma > mo. Then we can repeat the above argument

for any C ∈ [Ca, φ
u(ma)cP/(2n)). Thus, we conclude that mS increases in Q̄. This

concludes the proof. �

Proof of Proposition 4.5.1. It is straightforward to see that either combined

subsidy or selective subsidy leads to a lower budget than the planting/harvesting

only subsidy. Also, note that

b(0, sHH)− b(sPP , 0) = (nvz/β)(cP − sPP )sPP .

It is clear that b(0, sHH)− b(sPP , 0) ≥ [<]0 for sPP ≤ [>]cP . Finally, note that

b(sSP , s
S
H)− b(sCP , sCH)

=
n

4β

(
c(mS)

∑n
i=mS+1 z

2
i

z̄
∑n

i=mS+1 zi
− 1

)
(2C − z̄cP )2 +

( mS∑
i=1

z2
i −

1

mS

( mS∑
i=1

zi

)2
)
c2
P

4β
.

It is clear that the both terms are both nonnegative as (n − mS)
∑n

j=mS+1 z
2
j ≥

(
∑n

j=mS+1 zj)
2 and

∑mS

j=1 z
2
j ≥ (

∑mS

j=1 zj)
2/mS, by the Cauchy-Schwartz inequality.

Thus, b(sSP , s
S
H)− b(sCP , sCH) ≥ 0. This concludes the proof. �

Proof of Proposition 4.5.2. Substituting (sPP , 0), (0, sHH) and (sCP , s
C
H) into (4.7)

and (sSP , s
S
H) into (4.12), respectively, we obtain

XC(sPP , 0) = z̄Q̄− nvz
β

(cP − sPP ), XC(0, sHH) = z̄Q̄− nvz
β
cP ,

XC(sCP , s
C
H) = z̄Q̄− nvz

β
(cP/2),

XS(sSP , s
S
H) = z̄Q̄− nvz

β
(cP − sSP ) +

1

β

( mS∑
i=1

zi(z̄ − zi)sSP +
n∑

i=mS+1

(z̄ − zi)sSH
)
.

It is clear that XC(sPP , 0) − XC(0, sHH) = nvzs
P
P/β > 0, XC(sCP , s

C
H) − XC(0, sHH) =

nvzcP/(2β) > 0, and XC(sCP , s
C
H) − XC(sPP , 0) = nvz(cP/2 − sPP )/β ≥ [<]0 for sPP ≤

[>]cP/2. For Q̄ > QC( cP
2
, 0),

dXS(sSP , s
S
H)

dsSP
=
∂XS

∂sSP
+
∂XS

∂sSH

dsSH
dsSP

=
1

mSβ

( n∑
i=mS+1

z2
im−

( mS∑
i=1

zi

)( n∑
i=mS+1

zi

))
≥ 0.
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This suggests that XC(0, sHH) < XS(sSP , s
S
H) < XC(sPP , 0). This conclude parts i) and

ii).

To see part iii), we note that

XC(sPP , 0)

Q̄
= z̄ − nvz

βQ̄
(cP − sPP ),

XC(0, sHH)

Q̄
= z̄ − nvzcP

βQ̄
,
XC(sCP , s

C
H)

Q̄
= z̄ − nvzcP

2βQ̄
.

It is clear thatXC(sPP , 0)/Q̄ ≤ [>]z̄ for sPP ≤ [>]cP , XC(0, sHH)/Q̄ ≤ z̄ andXC(sCP , s
C
H)/Q̄ ≤

z̄. This concludes part iii).

To see part iv), it is clear that XC(0, sHH)/Q̄ is increasing in Q̄ and thus we

conclude that XC(0, sHH)/Q̄ ≥ X∗/Q∗. Because of parts i) and ii), we conclude that

XC(sPP , 0)/Q̄ ≥ X∗/Q∗, XC(sCP , s
C
H)/Q̄ ≥ X∗/Q∗ and XS(sSP , s

S
H) ≥ X∗/Q∗. This

concludes part iv). �

Proof of Proposition 4.5.3. From Lemmas 4.5.1 and 4.5.2, we have

l∑
j=1

qCj (sPP , 0) =
lQ̄

n
+
cP
β

(
lz̄ −

l∑
j=1

zj

)
− C

βz̄

(
lz̄ −

l∑
j=1

zj

)
,

l∑
j=1

qCj (0, sHH) =
lQ̄

n
+
cP
β

(
lz̄ −

l∑
j=1

zj

)
,

l∑
j=1

qCj (sCP , s
C
H) =

lQ̄

n
+
cP
2β

(
lz̄ −

l∑
j=1

zj

)
,

l∑
j=1

qSj (sSP , s
S
H) =

lQ̄

n
+
cP
β

(
lz̄ −

l∑
j=1

zj

)
+

1

β

(
(mS ∧ l)sSH + I{l>mS}

l∑
j=mS+1

zjs
S
P − lC

)
.

Because
∑l

j=1(qCj (0, sHH)− qCj (sPP , 0)) = (lz̄−
∑l

j=1 zj)C/(βz̄) ≥ 0, we have qC(0, sHH)

majorizes qC(sPP , 0). Because
∑l

j=1(qCj (sPP , 0) − qCj (sCP , s
C
H)) = (z̄cP/2 − C)(lz̄ −∑l

j=1 zj)/(βz̄) ≥ [<]0 for C ≤ [>]z̄cP/2, qC(sPP , 0) majorizes qC(sCP , s
C
H) for C ≤

z̄cP/2 (or Q̄ ≥ QC(cP/2, 0)) and qC(sCP , s
C
H) majorizes qC(sPP , 0) for z̄cP/2 < C ≤ z̄cP

(or QC(cP/2, 0) < Q̄ ≤ QC(cP , 0)).

Note that sSH < C and thus
∑l

j=1

(
qCj (0, sHH) − qSj (sSP , s

S
H)
)
≥ 0. We conclude

that qC(0, sHH) majorizes qS(sSP , s
S
H) for C ≤ z̄cP . Also note that sSH > z1C/z̄ and

sSP < C/z̄ and thus the sign of I{j≤m}s
S
H + I{j>m}zjs

S
P − zjC/z̄ changes once and the
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change is from positive to negative. Thus,
∑l

j=1

(
qSj (sSP , s

S
H)− qCj (sPP , 0)

)
≥ 0 and we

conclude that qS(sSP , s
S
H) majorizes qC(sPP , 0) for C ≤ z̄cP . This concludes part (i).

Part (ii) follows directly from Theorem A.2.(i) of Marshall et al. (1979), as πCj =

β(qCj )2 and πSj = β(qSj )2. This concludes part (ii). �

Proof of Corollary 4.5.1. To see part i), we have, from Lemmas 4.4.2 and 4.5.1,

∆P qj =

(
(n+ 1)zj

nz̄
− 1

)
δ and ∆Hqj = ∆Cqj =

δ

n
.

It is clear that ∆P qj is increasing in j, and ∆Hqj and ∆Cqj are constant in j. Note

that

l∑
j=1

(∆Hqj −∆P qj) =
(n+ 1)δ

nz̄

(
lz̄ −

l∑
j=1

zj

)
≥ 0.

The inequality follows from the fact that zj is increasing in j. Because
∑

i∈N(∆Hqi−

∆P qi) = 0 and we conclude that ∆Pq majorizes ∆Hq and ∆Cq.

To see part ii), we have

∆Hπj =
δ

n

(
β(2Q̄+ δ)

n
− 2(zj − z̄)cP

)
and ∆Cπj =

δ

n

(
β(2Q̄+ δ)

n
− (zj − z̄)cP

)
.

It is clear that both ∆Hπj and ∆Cπj are decreasing in j. Note that

l∑
j=1

(∆Hπj −∆Cπj) =
δcP
n

(
lz̄ −

l∑
j=1

zj

)
≥ 0.

This suggests that ∆Hπ majorizes ∆Cπ. We conclude the proof. �

Proof of Proposition 4.5.4. We substitute (4.8) into (4.14) to obtain

WC(sP , sH) =
1

β

(
β2(n2 + 2n)

2n2
Q̄2 + nvz(cP − sP )2

)
.

It is clear that WC(0, sHH)−WC(sCP , s
C
H) = 3nvzc

2
P/(4β) > 0. Note that

WC(sPP , 0)−WC(0, sHH) =
nvzs

P
P

β
(sPP − 2cP )

WC(sPP , 0)−WC(sCP , s
C
H) =

nvz
4β

(cP − 2sPP )(3cP − 2sPP ).
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Thus, when cP/2 ≤ sPP ≤ 3cP/2, WC(sCP , s
C
H) ≥ WC(sPP , 0). When sPP ≤ cP/2

or 3cP/2 ≤ sPP ≤ 2cP , WC(sCP , s
C
H) ≤ WC(sPP , 0) ≤ WC(0, sHH). When sPP ≥ 2cP ,

WC(sPP , 0) ≥ WC(0, sHH).

Substituting (4.8) into (4.15), we obtain

NWC(sP , sH) =
1

β

(
β2(n2 + 2n)

2n2
Q̄2 − Q̄

(β(n+ 1)

n
Q̄− ā(0, 0)

)
+ nvzcP (cP − sP )

)
.

It is clear that NWC(0, sHH) − NWC(sCP , s
C
H) = nvzc

2
P/(2β) > 0 and NWC(0, sHH) −

NWC(sPP , 0) = nvzcP s
P
P/β ≥ 0. Also note that NWC(sPP , 0) − NWC(sCP , s

C
H) =

nvzcP (cP/2− sPP )/β. Thus, NWC(sPP , 0) ≥ [<]NWC(sCP , s
C
H) for sPP ≤ [>]cP/2. �
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D. Derivation of the Sellers’ Profit Functions in Section 2.5.1

In this section, we provide the derivation of sellers’ profit functions in the dynamic

competition in Section §2.5. To do so, we need to understand the buyer’s choice

between the sellers, i.e., which seller the buyer would purchase from. Following a

similar argument as that for static competition in Section §§2.4.2, the buyer should

evaluate the sign of

∆D =
(
I{sj<vj}sj + I{sj≥vj}sBj(r, sj, vj)

)
−
(
I{si<vi}si + I{si≥vi}sBi(r, si, vi)

)
.

The buyer chooses seller j(i) if ∆D is negative (positive), and is indifferent between

the sellers if ∆D = 0. We have two cases to consider, depending on whether the sellers

have the same disagreement points.

Symmetric Disagreement Points  (ݒ௝ ൌ  (௜ݒ

No purchase
ݒ ௝ݏ

Buy through bargaining; 
indifferent between sellers

Buy through bargaining 
with seller j

௜ݏ ݎ̅

ݒ
No purchase Buy through bargaining; indifferent between sellers

௝ݏ ൌ ௜ݏ ݎ̅

ݒ
No purchase

Buy through bargaining; 
indifferent between sellers

Buy through bargaining 
with seller i

௜ݏ ௝ݏ ݎ̅

௝ݏ ௜ݏ ∧ ݒ
No purchase

ݎ̅
Buy at ݏ௝

௝ݏݒ ൌ ௜ݏ

No purchase
ݎ̅

Buy at the posted price; indifferent between sellers

௝ݏݎ̅ ∧ ௜ݏݒ

No purchase Buy at ݏ௜

Asymmetric Disagreement Points  (ݒ௝ ൏  (௜ݒ

No purchase
௝ݒ ௝ݏ

Buy through bargaining with seller j

௜ݏ ൅
ఏ ௦೔∧௩೔ି௩ೕ

ଵିఏ
ݎ̅

௝ݏ ௜ݏ ∧ ௝ݒ

No purchase
ݎ̅

Buy at ݏ௝

௝ݏ௝ݒ ൌ ௜ݏ

No purchase
ݎ̅

Buy at the posted price; indifferent between sellers

௝ݏݎ̅ ∧ ௜ݏ௝ݒ

No purchase Buy at ݏ௜

௝ݒ

No purchase
Buy through bargaining with 

seller i [at ݏ௜] if ݏ௜ ൒ ሾ൏ሿݒ௜
௝ݏ ௜ݏݎ̅ ൅

ఏ ௦೔∧௩೔ି௩ೕ
ଵିఏ

Buy through bargaining 
with seller j

௝ݒ

No purchase

Buy through bargaining with seller j 
or seller i [at ݏ௜] if ݏ௜ ൒ ൏  ;௜ݒ

indifferent between sellers

௝ݏݎ̅ ൌ ௜ݏ ൅
ఏ ௦೔∧௩೔ି௩ೕ

ଵିఏ

Buy through bargaining 
with seller j

Figure D.1. Summary of buyer’s choice in the dynamic competition,
as characterized in (2.12), (2.13) and (2.14).
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If the sellers’ disagreement points happen to be the same (i.e., vj = vi = v), the

buyer would face six potential scenarios, which are demonstrated in the left panel of

Figure D.1.

Case(a): v ≤ sj < si. If r < v, the buyer quits the market. If v ≤ r ≤ sj,

the buyer is indifferent between two sellers because sBj(r, sj, v) = (1 − θ)r + θv =

sBi(r, si, v). If sj < r, the buyer purchases from seller j at the negotiated price

because sBj(r, sj, v) = (1− θ)sj + θv < (1− θ)(r ∧ si) + θv = sBi(r, si, v).

Case(b): v ≤ si < sj. Similar to that in Case (a), if r < v, the buyer quits the

market. If v ≤ r ≤ si, the buyer purchases at the negotiated price and is indifferent

between two sellers. If si < r, the buyer purchases from seller i at the negotiated

price.

Case(c): v ≤ si = sj = s. If r < v, the buyer quits the market. If v ≤ r, the

buyer purchases at the negotiated price and is indifferent between two sellers because

sBj(r, sj, v) = (1− θ)(r ∧ s) + θv = sBi(r, si, v).

Case(d): sj < v ∧ si. If r < sj, the buyer quits the market. If sj ≤ r, the buyer

purchases from seller j at the posted price because sj < I{si<v}si + I{si≥v}sBi(r, si, v).

Case(e): si < v ∧ sj. Similar to that in Case (e), if r < si, the buyer quits the

market. If si ≤ r, the buyer purchases from seller i at the posted price.

Case(f): sj = si = s < v. If r < s, the buyer quits the market. If s ≤ r, the

buyer purchase at the posted price and is indifferent between the sellers.

In the above cases, each seller obtains a value of v if the buyer walks away. If seller

j is chosen, seller j obtains a value of the trading price sBj or sj and seller i obtains

her reservation value wi. Combining the above cases, we obtain the expressions of Si,

i ∈ {1, 2, . . . , 6} in (2.12).

If the sellers’ disagreement points are not the same (i.e., vj < vi), the buyer would

face six potential scenarios, which are demonstrated in the right panel of Figure D.1.

Case(a′): vj ≤ sj < si+
θ(si∧vi−vj)

1−θ . If r < vj, the buyer quits the market. If vj ≤ r,

the buyer purchases from seller j at the negotiated price because sBj(r, sj, vj) =
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(1− θ)(sj ∧ r) + θvj < ((1− θ)si + θ(si ∧ vi)) ∧ ((1− θ)r + θvi) = I{si<vi}(si ∧ ((1−

θ)r + θvi)) + I{si≥vi}sBi(r, si, vi).

Case(b′): vj ≤ si +
θ(si∧vi−vj)

1−θ < sj. Similar to that in Case (a′), if r < vj, the

buyer quits the market. If vj ≤ r < si +
θ(si∧vi−vj)

1−θ , the buyer purchases from seller

j at the negotiated price. If si +
θ(si∧vi−vj)

1−θ < r, the buyer purchases from seller i at

the negotiated [posted] price for si ≥ [<]vi.

Case(c′): vj ≤ sj = si +
θ(si∧vi−vj)

1−θ . If r < vj, the buyer quits the market. If

vj ≤ r < sj, the buyer purchases from seller j at the negotiated price. If sj ≤ r, the

buyer is indifferent between two sellers and purchase from seller j at the negotiated

price or from seller i at the negotiated [posted] price for si ≥ [<]vi.

Cases (d′), (e′) and (f′) are equivalent to that of Cases (d), (e) and (f). Combining

the above cases, we obtain the expressions of Ai, i ∈ {1, 2, . . . , 8} in (2.13) and (2.14).
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E. The Feasible Profit Allocation Set

In general, the feasible set of profit allocation is a curve, which is not a convex set

under the wholesale-price contract. To facilitate our analysis with the nonconvex

feasible set, the common approach is to allow randomized contracts. That is, the de-

cision becomes a choice of probability distribution over all possible wholesale prices.

This randomization convexifies the profit allocation set. When no contingency terms

are imposed on contracting (see Feng and Lu 2013a), the convexified region is deter-

mined by the original profit allocation curve and the two axis. The Pareto set of the

convexified set, where the negotiation outcome lies, is a subset of the original profit

allocation curve. Thus, it is sufficient to consider only non-randomized contracts in

this case.
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The supplier's trade surplus The supplier's trade surplus

Π

Π௉௔௥௘௧௢

KS solution

Π

Π௉௔௥௘௧௢

KS solution
Extended	Π௉௔௥௘௧௢

ሺΠଵ௄ௌ ෝ௄ௌݓ , ෝ௄ௌሻሻݓଵ௄ௌሺߨ

ሺΠଵ௄ௌሺݓଵ௄ௌሻ, ଵ௄ௌሻሻݓଵ௄ௌሺߨ

ሺΠଵ௄ௌሺݓ଴௄ௌሻ, ଴௄ௌሻሻݓଵ௄ௌሺߨ

ሺΠଵ௄ௌሺݓଵ௄ௌሻ, ଵ௄ௌሻሻݓଵ௄ௌሺߨ

ሺΠଵ௄ௌሺݓ଴௄ௌሻ, ଴௄ௌሻሻݓଵ௄ௌሺߨ
ሺΠଵ௄ௌ ෝ௄ௌݓ , ෝ௄ௌሻሻݓଵ௄ௌሺߨ

ሺΠଵ௄ௌ ഥ௄ௌݓ , ഥ௄ௌሻሻݓଵ௄ௌሺߨ ሺΠଵ௄ௌ ഥ௄ௌݓ , ഥ௄ௌሻሻݓଵ௄ௌሺߨ

Note. a = 1, b = 1, c = 0.

When contingency terms are imposed in contract execution, however, the profit

allocation set can reveal complex structure. To see that, consider the first trade in

the sequential negotiation over contingent contracts. The profit allocation set is Π =
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{(Πi
1(w1), πi1(w1)) : w̄i ≤ w1 ≤ a}, where w̄i = min{w1 : Πi

1(w1) ≥ 0}, i ∈ {NB,KS},

and the Pareto set is ΠPareto = {(ΠKS
1 (w1), πKS1 (w1)) : w̄i ≤ w1 ≤ wi0 and wi1 ≤

w1 ≤ ŵi}, where ŵi = arg max{Πi
1(w1)}, wi0 = min{w1 : dΠi

1(w1)/dw1 ≤ 0} and

wi1 = I{ŵi=wi0}w
i
0 + I{ŵi>wi0}min{w1 : w1 > wi0 and Πi

1(w1) ≥ Πi
1(wi0)}. When the level

of competition is low (i.e., when η is small), indeed ΠPareto ⊂ Π (or wi0 = wi1 = ŵi).

For a large η, however, this is not true. In this case, the convexified region for the

entire set of {Π} would make part of the original Pareto set non-Pareto, inducing

discontinuity of the bargaining solution. As we would like to focus on non-randomized

strategies, we take an alternative approach. Specifically, we extend the Pareto set

ΠPareto by including the segment connecting (Πi
1(ŵi), πi1(ŵi)) and (Πi

1(wi0), πi1(wi0)).
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F. Derivation of the Bargaining Solutions

In this section, we provide the expressions of the firms’ profit functions and the

derivation of the bargaining solutions. We shall note that under the linear demands,

the firms’ profits can be expressed as a product of (a− c)2/b and some function of η.

Thus, it is without loss of generality to take a = 1, b = 1 and c = 0 in our analysis.

For general values of a, b and c, the corresponding firms’ profits would be (a− c)2/bΠ

and (a− c)2/bπ, and the corresponding wholesale price would be c+ (a− c)w, where

Π, π and w are computed for a = 1, b = 1 and c = 0.

F.1 One-to-Two Channel

By Lemma 3.4.1, we can derive the trade profits for the supplier and the retailers,

respectively, as

Πi(wi, wj) =
2∑
i=1

wiq
∗
i (w)

=


wj

1−wj
2

1− wi ≤ η
2
(1− wj),∑2

i=1wi
2(1−wi)−η(1−wj)

4−η2
η
2
(1− wj) < 1− wi < 2

η
(1− wj),

wi
1−wi

2
1− wi ≥ 2

η
(1− wj).

(F.1)

πi(wi, wj) = (p∗i (w)− wi)q∗i (w)

=


0 1− wi ≤ η

2
(1− wj),

(2(1−wi)−η(1−wj))2

(4−η2)2
η
2
(1− wj) < 1− wi < 2

η
(1− wj),

(1−wi)2

4
1− wi ≥ 2

η
(1− wj).

(F.2)

The supplier’s disagreement point under simultaneous negotiation without contin-

gency is

Di(wj) = wj
1− wj

2
. (F.3)
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Lemma F.1.1 In the one-to-two channel without contingency, the maximum profits

of the supplier and the retailers are, respectively,

Πi(wj) =

 Πi(
2−η+2ηwj

4
, wj) = 2−η

8(2+η)
+ 1

2
wj(1− wj) wj <

1
2

+ 1
2

√
2−η
2+η

,

Πi(
1
2
, wj) = 1

8
wj >

1
2

+ 1
2

√
2−η
2+η

,
(F.4)

πi(wj) =

 πi(
ηwj

2
, wj) = 1

(2+η)2 wj <
2

2+η
,

πi(1− wj, wj) =
w2
j

4
wj >

2
2+η

.
(F.5)

Moreover, the profit allocation (Πi(wi, wj), πi(wi, wj)) is Pareto-dominated for wi

above the maxima that attain Πi(wj).

Proof. We first note that any feasible (wi, wj) should lead to nonnegative trade

surpluses Πi(wi, wj)−Di(wj) and πi(wi, wj)−di(wj), and thus we have wi ≥ ηwj/2 in

the second pieces and wi ≥ 1−wj in the third pieces in (F.1) and (F.2), respectively.

To derive (F.4), we note that Πi(wi, wj) is constant in wi in the first case in (F.1).

The second piece is maximized at wmi = (2 − η + 2ηwj)/4 and leads to a maximum

value of Πm = (2 − η)/(8(2 + η)) + (1/2)wj(1 − wj). The third piece is maximized

at wri = 1/2 and leads to a maximum value of Πr = 1/8. It is easy to check that

(2− η)/4 < wmi < (2 + η)/4 and (2− η)/4 < (1− wmi ) < (2 + η)/4.

For wri be the maxima, we must have two cases: Case (i): 1−wri > (2/η)(1−wj)

(or wj > wa ≡ 1 − η/4), 1 − wmi < (2/η)(1 − wj) (or wj < wb ≡ 1 − η/(2(2 + η)))

and Πm < Πr (or wj < wc ≡ (1/2) −
√

(2− η)/(2 + η)/2 or wj > wd ≡ (1/2) +√
(2− η)/(2 + η)/2). It is easy to show that wa < wd < wb and the above conditions

lead to wd < wj < wb. Case (ii): 1 − wri > (2/η)(1 − wj) (or wj > wa) and

1− wmi > (2/η)(1− wj) (or wj > wb), which leads to wj > wb.

For wmi to be the maxima, we can have two cases: Case (i): 1−wri > (2/η)(1−wj)

(or wj > wa), 1−wmi < (2/η)(1−wj) (or wj < wb) and Πm > Πr (or wc < wj < wd),

which leads to wa < wj < wd. Case (ii): 1 − wri < (2/η)(1 − wj) (or wj < wa) and

1− wmi < (2/η)(1− wj) (or wj < wb). These give the relation wj < wa.

Combining the above cases, we obtain the expression of (F.4).



197

Now we note that the second piece of πi(wi, wj) in (F.2) is decreasing in wi and is

maximized at wi = ηwj/2 ≡ wpi . The third piece is decreasing in wi and is maximized

at wi = 1−wj ≡ wqi . For wpi to be maxima, we must have 1−wpi < (2/η)(1−wj) (or

wj < 2/(2 + η) ≡ we). For wqi to be maxima, we must have 1 − wqi > (2/η)(1 − wj)

(or wj > we). This leads to the expression of (F.5). �

Lemma F.1.2 In the one-to-two channel without contingency, for a given wj in

bargaining unit j, the negotiated wholesale prices in unit i under the NB and KS

solutions are

wNBi (wj) =


(2−η)(1−θ)+2ηwj

4
wj < w̄aj ,

3−θ−
√

(1+θ)2−16θwj(1−wj)
4

wj > w̄aj ,
(F.6)

wKSi (wj) =



ηwj
2

+ 2−η
10

wj <
2

2+η
,

ηwj
2

+ 2−η
2+2(2+η)2w2

j

2
2+η

< wj < w̄bj ,

1
2
− −2+η+4

√
w3
j (2+η)(4wj−4(2+η)w2

j (1−wj)−2+η)

2(2−η+4(2+η)w2
j )

wbj < wj <
1
2

+ 1
2

√
2−η
2+η

,

1
2
− −(2wj−1)2+4

√
w3
j (2wj−1)3

2(1−4wj+8w2
j )

wj >
1
2

+ 1
2

√
2−η
2+η

,

(F.7)

where w̄aj is some value within [(4− η(1 + θ))/(4− η2θ), (4 + η(1− θ))/(2(2 + η))] and

w̄bj is some value within [2/(2 + η), (4− η)/4].

Proof. Applying (F.1), (F.2), (F.3) and di(wj) = 0, the Nash product for trade i is

Ωi(wi, wj) =


0 1− wi ≤ η(1−wj)

2
,

(
(2wi−ηwj)(2(1−wi)−η(1−wj))

2(4−η2)
)1−θ(

(2(1−wi)−η(1−wj))2

(4−η2)2 )θ
η(1−wj)

2
< 1− wi < 2(1−wj)

η
,

(
wi(1−wi)−wj(1−wj)

2
)1−θ( (1−wi)2

4
)θ 1− wi ≥ 2(1−wj)

η
.

Setting ∂ ln(Ω)/∂wi = 0 in the second case gives

(1− θ) 2

2wi − ηwj
+ (1 + θ)

−2

2(1− wi)− η(1− wj)
= 0.

This gives wmi = ((1− θ)(2− η) + 2ηwj)/4. We shall note that wmi ≥ ηwj/2 so that

the supplier’s surplus is nonnegative under this solution. Setting ∂ ln(Ω)/∂wi = 0 in

the third case gives

(1− θ) 1− 2wi
wi − w2

i − wj + w2
j

+ 2θ
−1

1− wi
= 0.
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This gives wri = (3− θ −
√

(1 + θ)2 − 16θwj(1− wj))/4 ≤ 1/2. Note that the above

expression has two roots within [0, 1] and the maximizer of Ωi should be the smaller

root.

For wmi be the best response, we can have two cases: Case (i): 1−wmi < (2/η)(1−

wj) (or wj < wa ≡ (4 + η(1 − θ))/(2(2 + η))) and 1 − wri < (2/η)(1 − wj) (or

wj < wb ≡ (4− η(1 + θ))/(4− η2θ)). It is easy to show that wa > wb and the above

conditions lead to wj < wb. Case (ii): 1−wmi < (2/η)(1−wj) (or wj < wa), 1−wri >

(2/η)(1 − wj) (or wj > wb) and Ωi(w
m
i , wj) > Ωi(w

r
i , wj). Note that Ωi(w

m
i , wj) =

((2− η)(1− θ2))1−θ(1 + θ)2θ/(23−θ(2 + η)1+θ) and is constant in wj. Also, note that

Ωi(w
r
i , wj) = ((1 − θ)(1 + θ − 8wj(1 − wj) +

√
(1 + θ)2 − 16θwj(1− wj)))1−θ(1 +

θ +
√

(1 + θ)2 − 16θwj(1− wj))2θ/24+2θ and is increasing in wj for wj > wa(> 1/2).

Finally, note that Ωi(w
r
i , w

b) < Ωi(w
m
i , wj) < Ωi(w

r
i , w

a). We deduce that there exists

a w̄aj such that Ωi(w
m
i , wj) > (<)Ωi(w

r
i , wj) for wj < (>)w̄aj . These give the relation

wb < wj < w̄aj .

For wri be the best response, we must have two cases: Case (i): 1 − wmi >

(2/η)(1− wj) (or wj > wa) and 1− wri > (2/η)(1− wj) (or wj > wb), which leads to

wj > wa. Case (ii): 1−wmi < (2/η)(1−wj) (or wj < wa), 1−wri > (2/η)(1−wj) (or

wj > wb) and Ωi(w
m
i , wj) < Ωi(w

r
i , wj) (or wj > w̄aj ), which leads to w̄aj < wj < wa.

Combining the above cases, we obtain the expression of (F.6).

To derive (F.7), we substitute the expressions of (F.1), (F.2), (F.4), (F.5), (F.3)

and di(wj) = 0 into (3.2) and obtain

(2(1−wi)−η(1−wj))2/(4−η2)2

(2wi−ηwj)(2(1−wi)−η(1−wj))/(2(4−η2))
= 1/(2+η)2

(2−η)/(8(2+η))
wj <

2
2+η

,

(2(1−wi)−η(1−wj))2/(4−η2)2

(2wi−ηwj)(2(1−wi)−η(1−wj))/(2(4−η2))
=

w2
j /4

(2−η)/(8(2+η))
2

2+η
< wj <

1
2

+ 1
2

√
2−η
2+η

and η
2
< 1−wi

1−wj <
2
η
,

(1−wi)2/4
(wi(1−wi)−wj(1−wj))/2 =

w2
j /4

(2−η)/(8(2+η))
2

2+η
< wj <

1
2

+ 1
2

√
2−η
2+η

and 1−wi
1−wj ≥

2
η
,

(1−wi)2/4
(wi(1−wi)−wj(1−wj))/2 =

w2
j /4

1/8−wj(1−wj)/2 wj >
1
2

+ 1
2

√
2−η
2+η

.

We omit the expressions for wi above the maxima that attain Πi(wj) as the best

response should lead to a Pareto profit allocation. Let wc ≡ 2/(2 + η) and wd ≡

(1/2) +
√

(2− η)/(2 + η)/2.

The first piece gives wpi = (2− η + 5ηwj)/10.
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The second piece gives wqi = ηwj/2 + (2 − η)/(2 + 2(2 + η)2w2
j ). For wqi be the

best response, we must have 1− wqi < (2/η)(1− wj), which yields

(4η − η3)(1 + (2 + η)2w2
j )(1− wj + 2(2 + η)w2

j − (2 + η)2w3
j ) > 0.

Note that the first and second terms are positive and the third term is a cubic function

in wj with the coefficient of w3
j being negative. Also, the third term equals η/(2+η) >

0 at wj = wc, equals −η(48− 32η− 12η2 + 8η3 − η4)/64 < 0 at wj = (4− η)/4 ≡ we,

and its first-order condition gives −1 + 4(2 +η)wj−3(2 +η)2w2
j , which is negative for

wj within [wc, we]. Hence, there exists only one root within [wc, we]. Let w̄bj denote

this root. These give the relation wc < wj < w̄bj .

The third piece gives wsi = 1/2−
(
1/(2(2− η + 4(2 + η)w2

j ))
)(
− 2 + η +

4
√
w3
j (2 + η)(4wj − 4(2 + η)w2

j (1− wj)− 2 + η)
)
. Note that the third piece has two

roots within [0, 1] and the best response should be the smaller root. For wsi be the

best response, we must have 1− wsi > (2/η)(1− wj), which implies

(1− wj)(2− η)(2− η + 4(2 + η)w2
j )(1− wj + 2(2 + η)w2

j − (2 + η)2w3
j ) < 0,

and thus wj > w̄bj . These yield the relation w̄bj < wj < wd. We shall note that for a

wj within [we, wd], the profit allocation (Πi(wi, wj), πi(wi, wj)) is not Pareto for wi ≤

(2−η+2ηwj)/4 (i.e., the maxima that attain Πi(wj)) because (Πi(wi, wj), πi(wi, wj))

is Pareto-dominated for wi ∈ (1/2, 1− (2/η)(1− wj)). Since wsi < 1/2 for wj within

[we, wd], wsi always leads to a Pareto profit allocation.

The fourth piece gives wti = 1/2− (−(2wj − 1)2 + 4
√
w3
j (2wj − 1)3)/(2(1− 4wj +

8w2
j )) < 1/2. Note that the fourth piece has two roots within [0, 1] and the best

response should be the smaller root. Combining the above cases, we obtain the

expression of (F.7). �

Lemma F.1.3 In the one-to-two channel under sequential negotiation, suppose the

supplier first negotiates with retailer j.
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i) Without contingency and the negotiated price in unit i is given by (F.6), the

supplier and retailer j’s profits are

Πj(wj) ≡ Πj(wj, w
NB
i (wj))

=


wj(1−wj)

2
+ (2−η)(1−θ2)

8(2+η)
wj < w̄aj ,

8θwj(1−wj)+(1−θ)(1+θ+
√

(1+θ)2−16θwj(1−wj))
16

wj > w̄aj ,
(F.8)

πj(wj) ≡ πj(wj, w
NB
i (wj))

=


(4+η(1−θ)−2(2+η)wj)

2

16(2+η)2 wj < w̄aj ,

0 wj > w̄aj ,
(F.9)

and the supplier’s disagreement point is

Dj =
1− θ2

8
. (F.10)

ii) With contingency and the negotiated price in unit i is given by (F.6), the sup-

plier’s profit is

Πj(wj) =


wj(1−wj)

2
+ (2−η)(1−θ2)

8(2+η)
wj < w̄aj ,

0 wj > w̄aj ,
(F.11)

and retailer j’s profit is same as that without contingency, and the supplier’s

disagreement point is 0.

iii) Without contingency and the negotiated price in unit i is given by (F.7), the

supplier and retailer j’s profits are

Πj(wj) ≡ Πj(wj, w
KS
i (wj))

=



wj(1−wj)
2

+ 2(2−η)
25(2+η)

wj <
2

2+η
,

wj(1+(3−η2)wj+(2+η)2w2
j (1−wj)(2+(2+η)2w2

j ))

2(1+(2+η)2w2
j )2

2
2+η

< wj < w̄bj ,

1
8
− (−2+η+4

√
w3
j (2+η)(4wj−4(2+η)w2

j (1−wj)−2+η))2

8(2−η+4(2+η)w2
j )2 w̄bj < wj <

1
2

+ 1
2

√
2−η
2+η

,

1
8
− (−(2wj−1)2+4

√
w3
j (2wj−1)3)2

8(1−4wj+8w2
j )2 wj >

1
2

+ 1
2

√
2−η
2+η

,

(F.12)

πj(wj) ≡ πj(wj, w
KS
i (wj))

=


(10+η−5(2+η)wj)

2

100(2+η)2 wj <
2

2+η
,

(1−wj+2(2+η)w2
j−(2+η)2w3

j )2

4(1+(2+η)2w2
j )2

2
2+η

< wj < w̄bj ,

0 wj > w̄bj ,

(F.13)
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their maximum profits are

Πj = Πj

(1

2

)
=

82 + 9η

200(2 + η)
, (F.14)

πj = πj
(1

2
− 1

10

√
50− 7η

2 + η

)
=

(
10− 3η +

√
(50− 7η)(2 + η)

)2

400(2 + η)2
, (F.15)

and the supplier’s disagreement point is

Dj =
2

25
. (F.16)

iv) With contingency and the negotiated price in unit i is given by (F.7), the sup-

plier’s profit is

Πj(wj) =


wj(1−wj)

2
+ 2(2−η)

25(2+η)
wj <

2
2+η

,
wj(1+(3−η2)wj+(2+η)2w2

j (1−wj)(2+(2+η)2w2
j ))

2(1+(2+η)2w2
j )2

2
2+η

< wj < w̄bj ,

0 wj > w̄bj ,

(F.17)

and retailer j’s profit is same as that of without contingency. Moreover, the

supplier’s maximum profit is same as that of without contingency and retailer

j’s maximum profit is

πj = πj
(1

2
− 1

10

√
82 + 9η

2 + η

)
=

(10− 3η +
√

(82 + 9η)(2 + η))2

400(2 + η)2
, (F.18)

and the supplier’s disagreement point is 0.

Moreover, the profit allocation (Πj(wj), πj(wj)) is Pareto-dominated for wj above the

maxima that attain Πj.

Proof. To see part (i), we substitute the expression of (F.6) into (F.1) and

(F.2) to derive (F.8) and (F.9), respectively. We substitute the negotiated price

wNB = (1−θ)/2 (see Proposition 3.4.1) in the one-to-one channel into (F.3) to derive

(F.10). This concludes part (i).

To see part (ii), we note that when the supplier negotiates with retailer j with

contingency, her profit becomes zero if retailer j does not order positive quantity (i.e.,
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wj > w̄aj ). Modifying the second piece in (F.8) leads to that of (F.11). We conclude

part (ii).

To see part (iii), we substitute the expression of (F.7) into (F.1) and (F.2) to

derive (F.12) and (F.13), respectively. We substitute the negotiated price wKS = 1/5

(see Proposition 3.4.1) in the one-to-one channel into (F.3) to derive (F.16).

We now consider the supplier and retailer j’s maximum profits. We shall note

that any feasible wj should lead to nonnegative trade surpluses Πj(wj) − Dj and

πj(wj)− dj and thus we have wj ≥ 1/2− (1/10)
√

(50− 7η)/(2 + η) ≡ wa in the first

pieces in (F.12) and (F.13), respectively.

To derive (F.14), we note that the first piece of Πj(wj) in (F.12) is maximized at

wmj = 1/2 and leads to a maximum value of Πm = 1/8 + (2/25)(2− η)/(2 + η). The

second piece is decreasing in wj and is maximized at wrj = 2/(2 + η), which leads to

a maximum value of Πr = η/(2 + η)2 + (2/25)(2− η)/(2 + η). It is easy to check that

the maximum values of the third and fourth pieces are both smaller than 1/8. Note

that Πm > max{1/8,Πr}, which leads to the expression of (F.14).

To derive (F.15), we note that the first piece of πj(wj) in (F.13) is decreasing in

wj and is maximized at wpj = wa, which leads to a maximum value of πp = (10−3η+√
(50− 7η)(2 + η))2/(400(2 + η)2). The second piece is convex in wj and thus the

maximum value πq < max{πj(2/(2+η)), πj(w̄
b
j)} < η2(2+η)2/(4(5+4η+η2)2) ≡ πq.

The second inequality follows from setting wj = 1 for the second piece. It is easy to

check that πp > πq. We conclude part (iii).

To see part (iv), we note that when the supplier negotiates with retailer j with

contingency, her profit becomes zero if retailer j does not order positive quantity

(i.e., wj > w̄bj), which leads to the expression of (F.17). We note that any feasi-

ble wj should lead to nonnegative trade surpluses and thus we have wj ≥ 1/2 −

(1/10)
√

(82 + 9η)/(2 + η) ≡ wc. It is then easy to see that (F.13) is maximized at

wc, which gives the expression of (F.18). We conclude part (iv). �
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F.2 Two-to-One Channel

By Lemma 3.4.1, we can derive the trade profits for the suppliers and the retailer,

respectively, as

Πi(wi, wj) = wiq
∗
i (w)

=


0 1− wi ≤ η(1− wj),

wi
(1−wi)−η(1−wj)

2(1−η2)
η(1− wj) < 1− wi < 1

η
(1− wj),

wi
1−wi

2
1− wi ≥ 1

η
(1− wj).

(F.19)

πi(wi, wj) =
2∑
i=1

(p∗i (w)− wi)q∗i (w)

=


(1−wj)2

4
1− wi ≤ η(1− wj),∑2

i=1(1−wi)((1−wi)−η(1−wj))
4(1−η2)

η(1− wj) < 1− wi < 1
η
(1− wj),

(1−wi)2

4
1− wi ≥ 1

η
(1− wj).

(F.20)

The retailer’s disagreement point under simultaneous negotiation without contingency

is

di(wj) =
(1− wj)2

4
. (F.21)

Lemma F.2.1 In the two-to-one channel without contingency, the maximum profits

of the supplier and the retailers are, respectively,

Πi(wj) =


Πi(

1−η+ηwj
2

, wj) =
(1−η(1−wj))2

8(1−η2)
wj <

(2+η)(1−η)
2−η2 ,

Πi(
wj−1+η

η
, wj) =

(1−wj)(wj−1+η)

2η2

(2+η)(1−η)
2−η2 < wj <

2−η
2
,

Πi(
1
2
, wj) = 1

8
wj >

2−η
2
,

(F.22)

πi(wj) =

 πi(0, wj) =
(1−wj)2−2η(1−wj)+1

4(1−η2)
wj < 1− η,

πi(0, wj) = 1
4

wj > 1− η.
(F.23)

Moreover, the profit allocation (Πi(wi, wj), πi(wi, wj)) is Pareto-dominated for wi

above the maxima that attain Πi(wj).

Proof. We first note that any feasible (wi, wj) should lead to nonnegative trade

surpluses Πi(wi, wj)−Di(wj) and πi(wi, wj)−di(wj), and thus we have wi ≥ 0 in the

second and third pieces in (F.19) and (F.20), respectively.
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To derive (F.22), we note that Πi(wi, wj) is constant in wi in the first case in

(F.19). The second piece is maximized at wmi = (1 − η + ηwj)/2 and leads to a

maximum value of Πm = (1− η(1− wj))2/(8(1− η2)). The third piece is maximized

at wri = 1/2 and leads to a maximum value of Πr = 1/8.

For wri be the maxima, we must have two cases: Case (i): 1−wri > (1/η)(1−wj)

(or wj > wa ≡ 1−η/2), 1−wmi < (1/η)(1−wj) (or wj < wb ≡ (2+η)(1−η)/(2−η2))

and Πm < Πr (or wj > wc ≡ 1 − (1/η)(1 +
√

1− η2) and wj < wd ≡ 1 − (1/η)(1 −√
1− η2)). It is easy to show that wb < wd < wa and wc < 0 and no feasible wi

satisfies the above conditions. Case (ii): 1 − wri > (1/η)(1 − wj) (or wj > wa) and

1− wmi > (1/η)(1− wj) (or wj > wb), which leads to wj > wa.

For wmi to be the maxima, we can have two cases: Case (i): 1−wri > (1/η)(1−wj)

(or wj > wa), 1 − wmi < (1/η)(1 − wj) (or wj < wb) and Πm > Πr (or wj < wc or

wj > wd). We note that no feasible wi satisfies the above conditions. Case (ii):

1−wri < (1/η)(1−wj) (or wj < wa) and 1−wmi < (1/η)(1−wj) (or wj < wb). These

give the relation wj < wb.

For wa < wj < wb, neither wri nor wmi is attainable and thus the maxima should

be woi = 1 − (1/η)(1 − wj), which leads to a maximum value of Πo = (1 − wj)(wj −

1 + η)/(2η2).

Combining the above cases, we obtain the expression of (F.22).

Now we note that the second and third pieces of πi(wi, wj) in (F.20) are both

decreasing in wi, and thus πi(wi, wj) is maximized at wi = 0. This leads to the

expression of (F.23). �
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Lemma F.2.2 In the two-to-one channel without contingency, for a given wj in

bargaining unit j, the negotiated wholesale prices in unit i under the NB and KS

solutions are

wNBi (wj) =


(1−θ)(1−η+ηwj)

2
wj < 1− η(1+θ)

2−η2(1−θ) ,

η−1+wj
η

1− η(1+θ)
2−η2(1−θ) < wj < 1− η(1+θ)−η3(1−θ)

2(1−η2(1−θ)) ,

wαi wj > 1− η(1+θ)−η3(1−θ)
2(1−η2(1−θ)) ,

(F.24)

wKSi (wj) =



1−η+ηwj
5

wj < 1− η,
(1−η+ηwj)

3

(1−η)2+2(4+η−5η2)wj−(4−5η2)w2
j

1− η < wj < w̄cj ,

(1−η)2+2(2+η−3η2)wj−(2−3η2)w2
j−
√

∆1

(1−η)2+2(4+η−5η2)wj−(4−5η2)w2
j

w̄cj < wj <
(2+η)(1−η)

2−η2 ,

1 +
η2(2wj−w2

j )+
√

∆2

2(1−η−(2−η+2η2)wj+(1+η2)w2
j )

(2+η)(1−η)
2−η2 < wj <

2−η
2
,

1+4wj−2w2
j−
√

1+6wj−3w2
j

1+8wj−4w2
j

wj >
2−η

2
,

(F.25)

where wαi is the unique root of (F.26) within the range [0, 1/2], ∆1 = (1 − η)4 +

2(1− η)3(3 + 7η)wj − (1− η)2(3− 38η − 67η2)w2
j − 4η(17− 14η − 28η2 + 25η3)w3

j +

η(40 − 54η − 60η2 + 75η3)w4
j − 2η(4 − 12η − 6η2 + 15η3)w5

j − η2(4 − 5η2)w6
j , ∆2 =

4(1−η)2−8(3−5η+3η2−η3)wj+4(15−20η+15η2−7η3 +η4)w2
j−4(20−20η+20η2−

9η3 + η4)w3
j + (60− 40η+ 60η2− 20η3 + η4)w4

j − 4(6− 2η+ 6η2− η3)w5
j + 4(1 + η2)w6

j

and w̄cj is some value within [1− η, (2 + η)(1− η)/(2− η2)].

Proof. Applying (F.19), (F.20), (F.21) and Di(wj) = 0, the Nash product for trade

i is

Ωi(wi, wj) =


0 1− wi ≤ η(1− wj),

(
wi(1−wi−η(1−wj))

2(1−η2)
)1−θ(

(1−wi−η(1−wj))2

4(1−η2)
)θ η(1− wj) < 1− wi < 1−wj

η
,

(wi(1−wi)
2

)1−θ(
(1−wi)2−(1−wj)2

4
)θ 1− wi ≥ 1−wj

η
.

Setting ∂ ln(Ω)/∂wi = 0 in the second case gives

(1− θ) 1

wi
+ (1 + θ)

−1

(1− wi)− η(1− wj)
= 0.

This gives wmi = (1 − θ)(1 − η + ηwj)/2. Setting ∂ ln(Ω)/∂wi = 0 in the third case

gives

(1− θ) 1− 2wi
wi(1− wi)

+ θ
−2(1− wi)

(1− wi)2 − (1− wj)2
= 0.



206

Rearranging the terms, we obtain

Φ(wi) ≡ −2w3
i + (5− θ)w2

i − 2
(
1 + (1− θ)(2wj − w2

j )
)
wi + (1− θ)(2wj − w2

j ) = 0.(F.26)

We note that Φ(wi) is a cubic function in wi with the coefficient of w3
i being negative.

Since Φ(0) = (1− θ)(2wj −w2
j ) > 0 and Φ(1/2) = −θ/4 < 0, there exists at least one

root in [0, 1/2]. Moreover,

∂

∂wi
Φ(wi) = −6

(
wi −

5− θ
6

)2

+ 2(1− θ)(1− wj)2 +
(1 + θ)2

6
.

The above function is symmetric with respect to wi = (5 − θ)/6 > 1/2 and equals

2(1− θ)(1−wj)2 − 2(2− θ) < 0 at wi = 0. Thus, the sign of ∂Φ(wi)/∂wi changes at

most once and the change is from negative to positive. This suggests that Φ(wi) has

a unique root within the range [0, 1/2] that is the maximizer of Ωi. Let wαi denote

this root.

For wmi be the best response, we can have two cases: Case (i): 1−wmi < (1/η)(1−

wj) (or wj < wa ≡ 1 − η(1 + θ)/(2 − η2(1 − θ))) and 1 − wαi < (1/η)(1 − wj) (or

Φ(1 − (1/η)(1 − wj)) > 0). It is easy to show that Φ(1 − (1/η)(1 − wj)) > 0 gives

wj < wb ≡ 1 − (η(1 + θ) − η3(1 − θ))/(2(1 − η2(1 − θ))) and wa < wb. These

give the relation wj < wa. Case (ii): 1 − wmi < (1/η)(1 − wj) (or wj < wa),

1− wαi > (1/η)(1− wj) (or wj > wb) and Ωi(w
m
i , wj) > Ωi(w

α
i , wj). It is easy to see

that no feasible wi satisfies the first two conditions.

For wαi be the best response, we must have two cases: Case (i): 1 − wmi >

(1/η)(1−wj) (or wj > wa) and 1−wαi > (1/η)(1−wj) (or wj > wb), which leads to

wj > wb. Case (ii): 1−wmi < (1/η)(1−wj) (or wj < wa), 1−wαi > (1/η)(1−wj) (or

wj > wb) and Ωi(w
m
i , wj) < Ωi(w

α
i , wj), which suggests that no feasible wi satisfies

the conditions.

For wa < wj < wb, neither wαi nor wmi is attainable and thus the maxima should

be woi = 1− (1/η)(1− wj).

Combining the above cases, we obtain the expression of (F.24).
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To derive (F.25), we substitute the expressions of (F.19), (F.20), (F.22), (F.23),

(F.21) and Di(wj) = 0 into (3.2) and obtain

(1−wi−η(1−wj))2/(4(1−η2))

wi(1−wi−η(1−wj))/(2(1−η2))
=

(1−η(1−wj))2/(4(1−η2))

(1−η(1−wj))2/(8(1−η2))
wj < 1− η,

(1−wi−η(1−wj))2/(4(1−η2))

wi(1−wi−η(1−wj))/(2(1−η2))
=

1/4−(1−wj)2/4

(1−η(1−wj))2/(8(1−η2))
1− η < wj <

(2+η)(1−η)
2−η2 and η < 1−wi

1−wj <
1
η
,

(1−wi)2/4−(1−wj)2/4

wi(1−wi)/2 =
1/4−(1−wj)2/4

(1−η(1−wj))2/(8(1−η2))
1− η < wj <

(2+η)(1−η)
2−η2 and 1−wi

1−wj >
1
η
,

(1−wi)2/4−(1−wj)2/4

wi(1−wi)/2 =
1/4−(1−wj)2/4

(1−wj)(wj−1+η)/(2η2)
(2+η)(1−η)

2−η2 < wj <
2−η

2
,

(1−wi)2/4−(1−wj)2/4

wi(1−wi)/2 =
1/4−(1−wj)2/4

1/8
wj >

2−η
2
.

We omit the expressions for wi above the maxima that attain Πi(wj) as the best

response should lead to a Pareto profit allocation. Let wc ≡ 1 − η and wd ≡ (2 +

η)(1− η)/(2− η2).

The first piece gives wpi = (1− η + ηwj)/5.

The second piece gives wqi = (1−η+ηwj)
3/
(
(1−η)2+2(4+η−5η2)wj−(4−5η2)w2

j

)
.

For wqi be the best response, we must have 1− wqi < (1/η)(1− wj), which yields

Φ(wj) = (1− η)2 − (3η2 + 4η − 7)wj + (3η2 + 2η − 12)w2
j + (4− η2)w3

j > 0.

We note that Φ(wj) is a cubic function in wj with the coefficient of w3
j being positive.

Also, Φ(wc) = η(1 − η2)2 > 0, Φ(wd) = −4η(3 − η2)(1 − η2)2/(2 − η2)3 < 0 and

∂Φ(wj)/∂wj = 3(4− η2)(1−wj)2− 4η(1−wj)− 5 < 0 for wj within [wc, wd]. Hence,

there exists only one root within [wc, wd]. Let w̄cj denote this root. These give the

relation wc < wj < w̄cj .

The third piece gives wsi =
(
(1−η)2 +2(2+η−3η2)wj−(2−3η2)w2

j −
√

∆1

)
/
(
(1−

η)2 + 2(4 + η − 5η2)wj − (4− 5η2)w2
j

)
, where ∆1 = (1− η)4 + 2(1− η)3(3 + 7η)wj −

(1 − η)2(3 − 38η − 67η2)w2
j − 4η(17 − 14η − 28η2 + 25η3)w3

j + η(40 − 54η − 60η2 +

75η3)w4
j − 2η(4 − 12η − 6η2 + 15η3)w5

j − η2(4 − 5η2)w6
j . Note that the third piece

has two roots and the best response should be the smaller root. For wsi be the best

response, we must have 1 − wsi > (1/η)(1 − wj), which implies Φ(wj) < 0 and thus

wj > w̄cj . These yield the relation w̄cj < wj < wd.

The fourth piece gives wti = 1+
(
η2(2wj−w2

j )+
√

∆2

)
/
(
2(1−η−(2−η+2η2)wj +

(1 + η2)w2
j )
)
, where ∆2 = 4(1− η)2 − 8(3− 5η + 3η2 − η3)wj + 4(15− 20η + 15η2 −
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7η3 + η4)w2
j − 4(20− 20η + 20η2 − 9η3 + η4)w3

j + (60− 40η + 60η2 − 20η3 + η4)w4
j −

4(6− 2η + 6η2 − η3)w5
j + 4(1 + η2)w6

j . Note that the fourth piece has two roots and

the best response should be the smaller root.

The fifth piece gives wui = (1 + 4wj − 2w2
j −

√
1 + 6wj − 3w2

j )/(1 + 8wj − 4w2
j ).

Note that the fifth piece has two roots and the best response should be the smaller

root.

Combining the above cases, we obtain the expression of (F.25). �

Lemma F.2.3 In the two-to-one channel under sequential negotiation, suppose the

retailer first negotiates with supplier j.

i) Without contingency and the negotiated price in unit i is given by (F.24), the

supplier j and retailer’s profits are

Πj(wj) ≡ Πj(wj, w
NB
i (wj))

=


wj((2−η2(1−θ))(1−wj)−η(1+θ))

4(1−η2)
wj < 1− η(1+θ)

2−η2(1−θ) ,

0 wj > 1− η(1+θ)
2−η2(1−θ) ,

(F.27)

πj(wj) ≡ πj(wj, w
NB
i (wj))

=


(1−wj)2

4
+

(1+θ)2(1−η+ηwj)
2

16(1−η2)
wj < 1− η(1+θ)

2−η2(1−θ) ,

(1−wj)2

4η2 1− η(1+θ)
2−η2(1−θ) < wj < 1− η(1+θ)−η3(1−θ)

2(1−η2(1−θ)) ,

(1−wαi )2

4
wj > 1− η(1+θ)−η3(1−θ)

2(1−η2(1−θ)) ,

(F.28)

and the retailer’s disagreement point is

dj =
(1 + θ)2

16
. (F.29)

ii) With contingency and the negotiated price in unit i is given by (F.24), the sup-

plier j’s profit is same as that without contingency and retailer’s profit is

πj(wj) =


(1−wj)2

4
+

(1+θ)2(1−η+ηwj)
2

16(1−η2)
wj < 1− η(1+θ)

2−η2(1−θ) ,

0 wj > 1− η(1+θ)
2−η2(1−θ) ,

(F.30)

and the retailer’s disagreement point is 0.
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iii) Without contingency and the negotiated price in unit i is given by (F.25), the

supplier j and retailer’s profits are

Πj(wj) ≡ Πj(wj, w
KS
i (wj))

=


wj((5−η2)(1−wj)−4η)

10(1−η2)
wj < 1− η,

wj(1−η−wj)
2(1−η2)

+
ηwj(1−η+ηwj)

3

2(1−η2)
[

(1−η)2+2(4+η−5η2)wj−(4−5η2)w2
j

] 1− η < wj < w̄cj ,

0 wj > w̄cj ,

(F.31)

πj(wj) ≡ πj(wj, w
KS
i (wj))

=



(1−wj)2

4
+

4(1−η+ηwj)
2

25(1−η2)
wj < 1− η,

(1−wj)2

4
+

4(1−η2)w2
j (2−wj)2(1−η+ηwj)

2

((1−η)2+2(4+η−5η2)wj−(4−5η2)w2
j )2 1− η < wj < w̄cj ,

(2(1−η2)(2wj−w2
j )+
√

∆1)2

4((1−η)2+2(4+η−5η2)wj−(4−5η2)w2
j )2 w̄cj < wj <

(2+η)(1−η)
2−η2 ,

(η2(2wj−w2
j )+
√

∆2)2

16(1−η−(2−η+2η2)wj+(1+η2)w2
j )2

(2+η)(1−η)
2−η2 < wj <

2−η
2
,

(2(2wj−w2
j )+
√

1+6wj−3w2
j )2

4(1+8wj−4w2
j )2 wj >

2−η
2
,

(F.32)

their maximum profits are

Πj = Πj

((1− η)(5− η)

2(5− η2)

)
=

(1− η)(5 + η)2

40(1 + η)(5− η2)
, (F.33)

πj = πj(0) =
41 + 9η

100(1 + η)
, (F.34)

and the retailer’s disagreement point is

dj =
4

25
. (F.35)

iv) With contingency and the negotiated price in unit i is given by (F.25), the sup-

plier j’s profit is same as that without contingency and retailer’s profit is

πj(wj) =


(1−wj)2

4
+

4(1−η+ηwj)
2

25(1−η2)
wj < 1− η,

(1−wj)2

4
+

4(1−η2)w2
j (2−wj)2(1−η+ηwj)

2

((1−η)2+2(4+η−5η2)wj−(4−5η2)w2
j )2 1− η < wj < w̄cj ,

0 wj > w̄cj ,

(F.36)

their maximum profits are respectively same as those without contingency and

the retailer’s disagreement point is 0.
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Moreover, the profit allocation (Πj(wj), πj(wj)) is Pareto-dominated for wj above the

maxima that attain Πj.

Proof. To see part (i), we substitute the expression of (F.24) into (F.19) and

(F.20) to derive (F.27) and (F.28), respectively. We substitute the negotiated price

wNB = (1 − θ)/2 (see Proposition 3.4.1) in the one-to-one channel into (F.21) to

derive (F.29). This concludes part (i).

To see part (ii), we note that when the retailer negotiates with supplier j with

contingency, his profit becomes zero if he does not order positive quantity (i.e., wj >

1 − η(1 + θ)/(2 − η2(1 − θ))), which leads to the expression of (F.30). We conclude

part (ii).

To see part (iii), we substitute the expression of (F.25) into (F.19) and (F.20) to

derive (F.31) and (F.32), respectively. We substitute the negotiated price wKS = 1/5

(see Proposition 3.4.1) in the one-to-one channel into (F.21) to derive (F.35).

Now we consider the supplier j and retailer’s maximum profits. We shall note that

any feasible wj should lead to nonnegative trade surpluses Πj(wj)−Dj and πj(wj)−dj
and thus we have wj ≥ 0 in the first pieces in (F.31) and (F.32), respectively.

To derive (F.33), we note that the first piece in (F.31) is maximized at wmj =

(1 − η)(5 − η)/(2(5 − η2)) and leads to a maximum value of Πm = (1 − η)(5 +

η)2/(40(1 + η)(5− η2)). The second piece is decreasing in wj and thus is maximized

at wrj = 1 − η, which leads to a maximum value of Πr = η(1 − η)/10. It is easy to

check that Πm > Πr, which leads to the expression of (F.33).

To derive (F.34), we note that the first piece in (F.32) is decreasing in wj and is

maximized at wpj = 0, which leads to a maximum value of πp = (41 + 9η)/(100(1 +

η)) ≥ 1/4. It is easy to check that the second piece is convex in wj for wj ∈ (1 −

η, (2 + η)(1− η)/(2− η2)) and is maximized at wqj = 1− η. This leads to a maximum

value of πq = πj(1 − η) = (9η2 + 16)/100 < πp. Note that the third, forth and fifth

pieces are degenerated to the one-to-one channel and thus the maximum value in turn

must be smaller than 1/4. This concludes part (iii).
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To see part (iv), we note that when the retailer negotiates with supplier j with

contingency, his profit becomes zero if he does not order positive quantity (i.e., wj >

w̄cj), which leads to the expression of (F.36). Also note that any feasible wj should

lead to nonnegative trade surpluses and thus we have wj ≥ 0, which implies that

the maximum profits are same as those without contingency. We conclude part (iv).

�
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