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ABSTRACT

Chaudhari, Ashish M. Ph.D., Purdue University, August 2020. Information Acquisi-
tion in Engineering Design: Descriptive Models and Behavioral Experiments. Major
Professor: Jitesh H. Panchal, School of Mechanical Engineering.

Engineering designers commonly make sequential information acquisition deci-

sions such as selecting designs for performance evaluation, selecting information sources,

deciding whom to communicate with in design teams, and deciding when to stop de-

sign exploration. There is significant literature on normative decision making for

engineering design, however, there is a lack of descriptive modeling of how designers

actually make information acquisition decisions. Such descriptive modeling is im-

portant for accurately modeling design decisions, identifying sources of inefficiencies,

and improving the design process. To that end, the primary research objective

of the dissertation is to understand how designers make sequential information acqui-

sition decisions and identify models that provide the best description of a designer’s

decisions strategies. For gaining this understanding, the research approach con-

sists of a synthesis of descriptive theories from psychological and cognitive sciences,

along with empirical evidence from behavioral experiments under different design

situations. Statistical Bayesian inference is used to determine how well alternate de-

scriptive decision models describe the experimental data. This approach quantifies

a designer’s decision strategies through posterior parameter estimation and Bayesian

model comparison.

Two research studies, presented in this dissertation, focus on assessing the effects

of monetary incentives, fixed budget, type of design space exploration, and the avail-

ability of system-wide information on information acquisition decisions. The first

study presented in this dissertation investigates information acquisition by an indi-

vidual designer when multiple information sources are available and the total budget
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is limited. The results suggest that the student subjects’ decisions are better rep-

resented by the heuristic-based models than the expected utility(EU)-based models.

While the EU-based models result in better net payoff, the heuristic models used by

the subjects generate better design performance. The results also indicate the po-

tential for nudging designers’ decisions towards maximizing the net payoff by setting

the fixed budget at low values and providing monetary incentives proportional to the

saved budget.

The second study investigates information acquisition through communication.

The focus is on designers’ decisions about whom to communicate with, and how

much to communicate when there is interdependence between subsystems being de-

signed. This study analyzes team communication of NASA engineers at a mission

design laboratory (MDL) as well as of engineering students designing a simplified

automotive engine in an undergraduate classroom environment. The results indicate

that the rate of interactions increases in response to the reduce in system-level design

performance in both settings. Additionally, the following factors seem to positively

influence communication decisions: the pairwise design interdependence, node-wise

popularity (significant with NASA MDL engineers due to large team size), and pair-

wise reciprocity.

The dissertation work increases the knowledge about engineering design decision

making in following aspects. First, individuals make information acquisition decisions

using simple heuristics based on in-situ information such as available budget amount

and present system performance. The proposed multi-discipline approach proves

helpful for describing heuristics analytically and inferring context-specific decision

strategies using statistical Bayesian inference. This work has potential application

in developing decision support tools for engineering design. Second, the comparison

of communication patterns between student design teams and NASA MDL teams

reveals that the engine experiment preserves some but not all of the communication

patterns of interest. We find that the representativeness depends not on matching

subjects, tasks, and context separately, but rather on the behavior that results from
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the interactions of these three dimensions. This work provides lessons for designing

representative experiments in the future.
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1. ELEMENTS OF INFORMATION ACQUISITION IN ENGINEERING DESIGN

Design is widely considered as a decision making process. It involves decisions such

as selection of problems to be tackled, deciding product layouts, choosing information

sources, selecting shape, size and material for products components, communicating

with other designers and manufacturers etc. These decisions are irrevocable actions

that mark substantive changes in activities that follow them [1,2]. For example, tack-

ling selected problems and communicating with others take up resources irrespective

of whether those problems are solved or not. Some decisions such as material selec-

tion can be updated in the future stages if desired outcomes are not achieved. Even

then, the resources spent following any decision are irretrievable.

The amount of resources spent in the design process can be reduced by anticipating

the interdependence between decisions and the outcomes of the design process. Given

the importance of decisions in engineering design, many esearchers have adopted the

decision based view of design, and developed methods that recognize the central role of

decision making in design processes. A design methodology based on making rational

decisions called decision-based design has been developed [3–6]. It comprises of

sub-processes such as specifying criteria and constraints, generating alternatives, and

choosing an acceptable alternative.

Various approaches are available within decision-based design, most of them are

normative approaches. Normative decision making approaches are representa-

tions of the ideal decision strategies. They typically formulate a decision as selecting

an optimal choice maximizing the expected utility for fixed performance attributes.

Existing studies propose theoretical models of normative decision making in engi-

neering design [7] with extensions for multi-fidelity design [8], high-dimensional de-

sign spaces [9–11], and multi-objective design problems [12, 13]. While the utility-

maximizing approaches prescribe systematic ways of making engineering design deci-
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sions, their application in complex problems may be time-consuming and computa-

tionally resource intensive. Moreover, normative models are not defined for all design

decisions, e.g., decision to communicate with others.

In complex design situations, human designers still make design decisions by learn-

ing from the outcomes of their past decisions [14, 15]. Empirical observations are a

great source of knowledge for studying designers’ actual decision strategies. The rep-

resentation of designers’ actual decision strategies is termed as descriptive decision

making. A descriptive decision making model describes decisions with consideration

of designers’ biases and judgments that designers use. Descriptive decision models

are more realistic as models of designers’ design strategies than normative decisions.

The true representation of designers’ decision strategies is the type of reasoning and

judgements designers use [16]. But designers’ true reasoning and judgements are dif-

ficult to infer. Then, the observations of design decisions are useful non-intrusive

options for explaining designers’ decision strategies. To that effect, this dissertation’s

overarching goal is to develop descriptive representations of engineering design deci-

sions which can act as lenses into the underlying types of reasoning that designers

commonly use.

This chapter begins with a background and motivation for studying information

acquisition in engineering design. From this background, a relevant structure of the

design process under consideration is defined as sequential information acquisition

and design decisions in this context are identified (see Section 1.1). Followed by the

specification of design decisions, the questions of how to make information acquisition

decisions are investigated beginning with literature review of decision-based design

research in Section 1.2. This investigation leads to intellectual questions surround-

ing quantitative estimation of designers’ subjective decision making strategies from

observed contextual decisions. Section 1.3 presents the research objectives of two

research studies presented in the dissertation. Connecting back with the background

and motivation, Section 1.3 details the engineering and scientific significance of the

two studies. Section 1.4 describes the outline of dissertation.
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1.1 Design as Sequential Information Acquisition Process

1.1.1 Background

Information acquisition activities are ubiquitous in the design process. The infor-

mation acquisition is not “one-shot” but rather involve repetitions. The purpose of

information acquisition is to find alternatives as well as deciding which alternatives

to select. For example, engineering authors [2, 7] posit that the following processes

constitute information acquisition in engineering design:

1. Frame a decision to be made (How does a designer realize decision is needed?)

2. Establish criteria for comparing different alternatives. (How do these relate to

higher-level goals?)

3. Evaluate the alternatives according to those criteria? (How careful should the

evaluation be?)

4. Stop evaluations and choose an acceptable alternative. (What constitutes enough

information to choose?)

5. Retract the selected alternative if it proves unsatisfactory and restart the pro-

cess. (When should a decision be reconsidered?)

Not only do technical factors but also social factors influence the sequential in-

formation acquisition in engineering design. The technical factors such as design

problem complexity, process cost, and uncertainty are important determinants

of how frequently or rarely do designers perform information acquisition. The prob-

lem complexity is based on the size of the design problem, complex coupling between

the sub-components, and solvability [17]. In addition to the nature of design problem,

the cost and uncertainty associated with the design process determine how much in-

formation can be gathered and whether all or part of the design space is explored. In

product design, the practice of prototyping is useful in learning whether design options

satisfy requirements. Its outcomes, however, depend upon uncertainties associated

with prototypes. For example, computer-based simulations such as in automotive

crash tests are flexible while relatively expensive physical prototypes detect unan-
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ticipated phenomena [18]. Also consider VLSI semiconductor manufacturing plants

where large noise in experiments due to process variability has a major influence on

how efficiently designers learn from experiments [19].

Social factors are less commonly investigated as the drivers of information acqui-

sition in engineering design. Some of the social factors are individual designers’

types of reasoning (judgement), domain knowledge, and type and amount

of communication between multiple designers on a team. First, individuals’ rea-

soning or judgments can vary based on the reliance on evidence, prior belief, view

of knowledge and concept of justification [16]. Figure 1.1 illustrates the view of

knowledge and individuals’ justification in different types of thinking type. Stages

1-3 belong to pre-reflective thinking level where knowledge is assumed to be certain.

Stages 4-5 belong to quasi-reflective thinking level where uncertainty is recognized as

a part of knowledge. And, Stages 6-7 are recognized as reflective thinking level where

designers use evidence and reason comfortably in support of their judgment. Reflec-

tive designers are most favored for solving complex, ill-structured design problems.

In reality, a designer’s thinking process is like a wave across a mixture of stages.

Prereflective
thinking

Quasireflective
thinking

Reflective
thinking

Knowledge as:

Justification as:

Absolute, Certain Contextual, Uncertain Evidence-, Inquiry-based

Unexamined, Unjustified
Context-specific,

Idiosyncratic
Evidence-based,
Comprehensive

Figure 1.1. : Types of thinking and corresponding knowledge and justification in the

reflective judgment model [16].

Further, the domain knowledge required to assess the sources of information ac-

quisition is specific to the setting in which the design is being created [20]. King and

Kitchener [16] show a relatively high degree of consistency in people’s use of epistemic

assumptions toward their reasoning about ill-structured problems. Adams et al. [21]

found that the level of expertise also impacts reasoning processes in iterative design
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activities. They observed that senior-engineering students display broader percep-

tion of design problems, measured as the number and the breadth of issues, than the

first-year engineering students.

Finally, communication with other designers an important source of information

in design teams. Bucciarelli in his book, Designing Engineers [15], emphasizes how

interactions and communication are integral to designing in engineering firms. His

observations are based on the transcripts of engineers’ conversations and from his

personal experience working on consulting projects. Some examples of communication

drivers behind information acquisition are:

1. designers resolve uncertainty through social connections, e.g., seeking advice

from others and soliciting suggestions from manufacturers,

2. individuals’ design decisions may stem from motivation to form alliances with

others,

3. individuals plan, decide, reflect together to integrate their efforts, and

4. information is processed through pieces of paper and verbal communication.

1.1.2 Decision-based Design Framework

This dissertation relies on a decision-based design framework to study the infor-

mation acquisition in engineering design. The decision-based design framework is

adapted from recent efforts to put a structure on decisions in the engineering design

process [22,23]. Panchal et al. [22] first proposed a sequential information acquisition

framework which involves few design decisions repeated in stages. Between any two

stages of the process, a designer reflects on past outcomes and updates his/her state

of belief about the performance over the problem space. The designer has control

over design decisions such as selecting detailed designs to evaluate/test their values

and stopping evaluations. Once the evaluations are terminated, the preferred detailed

design is the one among the designs that the designer evaluates with the highest value.
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Figure 1.2. : The “black-box” nature of design problems considered in the decision-

based framework of information acquisition.

In the decision-based design framework, we assume that a designer’s objective is

to find the design variables values that maximize given performance attributes (see

Figure 3.1). To achieve this objective, the designer performs iterative evaluations of

the design performance attributes. Design variables may be discrete such as material

type or continuous such as length of component. Design performance attributes

measure the value of detailed design in multiple dimensions. We assume that the

functional relationships between design variables and the performance attributes are

unknown.

The decision-based design framework involves three types of information acquisition-

related decisions: (i) design exploration, (ii) communication, and (iii) stopping.

Examples of the design exploration type decisions are selecting the number of detailed

designs to evaluate their performance attributes in parallel at any given stage, choos-

ing design points from the problem space, and selecting an information source, such

as computer simulation or physical prototype, for performance evaluations. It is also

possible that different information sources vary in the cost of evaluation, uncertainty

of outcomes, fidelity etc.

Then, the decisions related to communication are: (i) deciding how much to com-

municate with others, (ii) selecting team members for communicating, and (iii) decid-

ing which information to share with others. These communication decisions require

a designer to consider trade-offs between different communication channels available.

Face-to-face communication channels allows passage of richer information than text-
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based or numeric communication channels but face-to-face communication is time-

consuming. Similarly, communication-related decisions require a designer to consider

similarities between own design subcomponent and other subcomponents for decid-

ing whom to communicate with. Talking with all team members is not feasible at it

consumes time and resources and may not be beneficial for achieving better design

performance.

Finally, the stopping decisions include deciding whether the best performance

is achieved and deciding when to stop performance evaluations. The designer may

rely on the available budget to stop, e.g., stopping if the costs of designing exceed

the budget. However, when the total budget is not specified for finding a preferred

detailed design, the designer must exercise judgment for deciding when to stop.

Figure 1.3. : A framework for sequential decision making in design.

In summary, the decision-based design framework assumes that functional rela-

tionships between design variables and design performance attributes are uncertain.

To resolve this uncertainty, designers sequentially acquire information through design

exploration and through communicating with others on same team. The decisions

in such information acquisition process are made under limited resources and, there-

fore, they require designers balance the tradeoff between design performance and

design/communication costs. The information acquisition decisions in large part are
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dependent on the problem complexity, process uncertainty, process costs, and social

connectedness.

1.2 How Should Designers Make Decisions?

The information acquisition decisions in engineering design are difficult to make

due to uncertainty in design performance, lack of information, technical errors in

the design process, etc. To develop rational approaches for making the information

acquisition decisions, researchers have modeled the engineering design process as a

decision-making process under uncertainty.

1.2.1 Normative Frameworks of Decision-based Design

The realization of the engineering design as a decision-making process has al-

lowed researchers to borrow analytical techniques from economics and mathematics

for modeling the engineering design process. Early research has established foun-

dation for normative decision making in engineering design where rational decisions

follow the rule that the preferred decision is the option whose expectation has the

highest value, or expected utility in case of uncertain value [4,24]1. Hazelrigg [7] posits

eight axioms of engineering design, axiom of deterministic decision making, ordering

of alternatives, reduction of compound lotteries, continuity, substitutability, transitiv-

ity, monotonicity, and reality axiom. A valid application of a normative approach

requires that all of the axioms of engineering design are satisfied.

Despite the promise of mathematical structure on the decision-making process,

normative approaches suffers from validation issues, especially when modeling multi-

attribute design performance under uncertainty. In engineering design, design perfor-

mance levels are uncertain due to various sources of uncertainty such as measurement

error, lack of information, and simplified models. The multi-attribute approaches,

1We will use the word “utility” as it stands for the selection criterion in the presence of uncertainty,
while the word “value” is often interpreted as a selection criterion without uncertainty.
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which consider two or more criteria to compare decisions alternatives, are limited

in dealing with such uncertainty because assigning weights to mutually independent

attributes while maintaining preference consistency are challenging [5]. The consider-

ation of multiattribute ranking, normalization, and weighting in the multi-attribute

approaches are known to invalidate the axioms of engineering design [25]. In solu-

tion, researchers have proposed using single attribute for comparing alternative de-

signs. The net economic benefit, which is the monetary value of a product subtracted

with associated costs, is thought as a single viable criterion for decision-based de-

sign under uncertainty [26]. The single-attribute approach is based on discrete choice

modeling approach which requires designer choice data for quantifying uncertainties

about unobserved attributes and unobserved preferences.

1.2.2 Decision-based Design under Uncertainty: Applications of Bayesian

Global Optimization

In recent advances to normative decision-making approaches, the Bayesian global

optimization (BGO) has been frequently employed to manage the uncertainty in the

design performance. The complexity of design problems generally prohibits the ex-

ploration of an entire design space and alternatives for the best design point have to

be strategically selected. A BGO approach addresses this problem by modeling the

uncertainty about the design performance using probabilistic surrogate models such

as Gaussian processes. Then, a typical BGO approach quantifies the relative impor-

tance of design points in the design space using one of the information acquisition

functions such as expected improvement [27] and probability of improvement [28]. Fi-

nally, the selected design point is the point that maximizes the value of information

acquisition function. BGO approaches have been relatively successful in addressing

the information acquisition problem in engineering design [9, 10, 29]. In advancing

the BGO for complex engineering design process, the value-based global optimization

(VGO) approach incorporates the cost of design process into the decision making
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process [8]. The VGO uses the utility function as mathematical means for comparing

relative economic benefit of a particular design point. In addition to the VGO, the

extensions of BGO for high-dimensional design problems [12] and design problems

with multiple functional requirements [13] are the state of the art.

1.3 How Do Designers Make Decisions? Research Goals and Focus

While the engineering design research has taken leaps towards subjective prefer-

ence modeling and surrogate modeling in support of decision-based design framework,

there is lack of investigation of descriptive decision modeling for making decisions.

Similar to how designers rarely assemble preferences about multiple attributes in-

dependently, designers rarely make decisions maximizing the expected utility of se-

lected alternatives. There is a need to extract and understand an individual-specific

decision making strategies so as to create better alternatives to the expected utility-

maximization strategy. Undertaking this research direction may improve the trade-off

between design performance and resources spent by allowing the development of deci-

sion support tools that inform decision-making during the engineering design process.

It is well known that humans do not necessarily follow the normative models of

decision making [14, 30, 31]. Researchers in cognitive psychology and behavioral eco-

nomics have developed various descriptive models of human decision makers [32,33].

Examples of these descriptive models include bounded rationality-based models [34],

fast and frugal heuristics [33], models based on deviations from rationality [32], and

cognitive architecture-based models [35]. These descriptive models are alternatives

to the normative models, but they do not account for the nuances of information

acquisition decisions in engineering design. For example, engineering design deci-

sions require comparisons between multiple information sources (e.g., simulation and

physical prototypes), and they are constrained by budget, time, and resources.

There has been relatively modest amount of research on quantifying decision mak-

ing processes of designers in engineering design. Present studies have captured the
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sequential decisions in the design process using Markov chains [36], mined the process

heuristics using Hidden Markov Models [37], and incentives and competition using

the game theory [22, 38]. The human strategies have also been estimated in terms

of the hyperparameters of Bayesian Global Optimization (EGO) [39]. Others have

employed controlled human experiments to study the impact of problem-related fac-

tors such as complexity and scale on human decisions They observe that experiment

subjects generate lower solution quality as scale and coupling in parameteric design

tasks increases [40–42]. In the studies on design teams and design performance, the

research find that the coherent design communication is positively correlated with

the design performance [43, 44]. This experimental design research on descriptive

decision making can benefit from a systematic research approach based on computa-

tional modeling and controlled experiments, so that the descriptive decision making

approaches can be applied as widely as the normative decision making approaches.

1.3.1 Intellectual Questions for Consideration

With the need for descriptive decision making research specified, the next step

requires devising a research plan that is based on computational decision models,

driven by the prior knowledge of the design process, and uses the contextual decision

data particular to a design problem. This research plan should be able to address

intellectual questions about not only the effects of external factors related such as cost,

budget, and incentives on information acquisition decisions but also the procedure

of data acquisition and descriptive analysis. The intellectual questions are broader

than research questions in that they also reflect methodological issues in analyzing

information acquisition decisions. Table 1.1 lists a sample of intellectual questions

relevant to the analysis of descriptive decision making and the subsequent chapters

that answer those questions.
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Relevant Sections: Chapter 2 Chapter 3 Chapter 4 Chapter 5

Intellectual Questions 2.1 2.2 2.3 3.1 3.2 3.3 4.1 4.2 4.3 5.1 5.2 5.3

What are different types

of descriptive models?
x x x

How to reduce human

biases in controlled

experiments?

x x x x

How to represent group-

and individual-specific

decision strategies?

x x x

Which strategies do

individuals use for

information acquisition

decisions?

x x x x

What are the effects of

incentives and the

problem nature?

x x

How does information

acquisition evolve over

time?

x x x x

How to make

experimental insights

more representative of

real world?

x x

Table 1.1. : Intellectual questions addressed in the dissertation

1.3.2 Research Objectives of the Dissertation

From vast possibilities of research directions in descriptive decision making, this

dissertation focuses on specific research objectives related to the sequential informa-

tion acquisition and investigates the effects of few social and technical factors on
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information acquisition decisions. The primary objective in this dissertation

is to identify models that provide the best description of a designer’s se-

quential information acquisition decisions, including decisions related design

exploration, team communication and stopping. Particularly, the research questions

study the effects of problem-related and process-related factors that guide the sequen-

tial information acquisition as indicated in Section 1.1.

1. How do two factors influence a designer’s sequential information acquisition

related to design exploration and stopping: the monetary incentives pro-

portional to design performance and the amount of available fixed

budget?

2. How do two factors influence between-designers communication during the de-

sign process: i) whether designers can search for solutions using catalogs with

a limited selection of options (a discrete design space) or using a simulation

tool (a continuous design space), and ii) whether designers have access to

global information about the status of the design, such as the design

variables determined by other designers, through a shared parameter database.

The central hypothesis behind this research is that the effects of the sequential infor-

mation acquisition can be studied by quantifying individuals’ decision making strate-

gies through computational modeling and behavioral experiments. Following up on

the hypothesis, the approach involves the sub-objectives of designing simple, but

non-trivial, experimental tasks representative of the sequential information acquisi-

tion process, collecting experimental evidence on individuals’ decisions via controlled

experiments, formulating alternative models of decision strategies, and performing

statistical Bayesian inference for estimating the posterior distribution over the model

parameters and identifying the best-fit models (see Figure 1.4).
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Figure 1.4. : An overview of the research approach.

1.3.3 Engineering and Scientific Relevance of the Work

The two main components of the research approach are: (i) controlled experiments

and (ii) statistical Bayesian inference methodology. Both components have signifi-

cance in engineering practice and scientific research related to engineering design.

Controlled experiments has scientific relevance in understanding the decision-

making of designers who develop models and perform analysis under uncertainty [22].

In a multi-agency research workshop, researchers have found there is lack of knowledge

about how modelers’ decisions on spending effort and resources affect the resulting

design performance (finding C2 in Ref. [45]). The cognitive biases and human deci-

sion making in modeling and simulation are less explored in the organizational context
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due the complexity of these decisions. In addressing this gap, the dissertation demon-

strates through multiple experimental studies that the suggested research approach

can increase the scientific knowledge of complex decision making.

Besides the relevance in understanding decision-making, the statistical Bayesian

inference of descriptive decision strategies can support development of future Design

Intelligence tools. The goal of such tool would be to improve engineering design

decision-making (e.g. design of experiments) by data-driven support systems. The

data-driven support systems would take designer decision data as input and com-

putationally estimate the likelihood of alternative decision strategies. Based on the

estimated decisions strategies from the observed history, the Design Intelligence tools

then should be able to anticipate the impact of different alternatives on the design

performance and suggest decision strategies for a designer to undertake in the future.

The Design Intelligence tools are similar in the purpose to Business Intelligence

tools [46] but are not as widely developed. A possible reason for limited development

might be that design problems, especially in system engineering, are complex and

require formalized modeling to support design, analysis, verification, and validation

activities. Examples of support systems tools in the context of model-based systems

engineering are Cameo Systems Modeler [47], AnyLogic [48], IBM Rhapsody [49], and

SysML Designer [50]. The dissertation will demonstrate how the statistical inference

part of the research approach can augment and create new functionalities.

The statistical Bayesian parameter estimation and Bayesian model comparison

can facilitate an accurate characterization of simulation models for the systems en-

gineering processes. The simulation models of systems engineering processes take

into account random behaviors. Such uncertainty quantification is necessary because

agents (designers or system engineers) may randomly interact with each other, agents

exchange information through complex interactions, and not all details of the system

are modeled. When input data is available from online real-time processes or direct

observations in a time study, statistical methodologies can find the best-fit model
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parameters for given data and additionally compare the model performance between

different candidate models.

Further, researchers can quantify the design performance in terms of designers’

decision strategies with the help of estimated descriptive decision models. The ap-

plications of this include design crowdsourcing where game-theoretic models lack

design process models [51–53], and the agent-based models of engineering systems

design where characterization of quality as a function of designer effort is difficult to

achieve [54].

To envision the process of realizing the impact of descriptive decision making

research, Section 1.4 presents the research roadmap undertaken in this dissertation.

1.4 The Outline of Dissertation

The dissertation uses a research roadmap presented in Figure 1.5 to formalize the

research approach and to answer the research questions. The roadmap starts with

the development of design guidelines for experimental design tasks and

descriptive decision models. The dissertation synthesizes such design guidelines

from the literature from experimental economics, cognitive science and applied statis-

tics. Then, the next step in the research roadmap is to implement the research

approach on an individual’s sequential information acquisition decisions

regarding design exploration. For this step, the dissertation includes a research

study investigating the effects of process cost and monetary incentives on designers

to select design search points, selecting an information source and deciding when to

stop. The next step is to implement the research approach on sequential in-

formation acquisition decisions in design teams where multiple designers build

separate but interdependent subsystems and interact with each other during the du-

ration of the design process. The second research study investigates the communi-

cation decisions in design teams. The final step involves validating the research

approach to support generalization of case-specific insights. There are two
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levels to experimental validity: (i) internal validity, and (ii) external validity [55].

The interval validity of the research approach can be justified by following the design

guidelines for controlled experiments and by using explainable descriptive decision

models. For analyzing the external validity, however, researchers need to replicate

same experimental task across multiple number of subjects and across settings with

different levels of realism [55]. In this dissertation, the integral validity of both the

research studies are investigated through cross-validation techniques such as splitting

the experimental data into training and testing data set. In addition, the external

validity of the second research study on interdisciplinary communication in design

teams is investigated by comparing the communication patterns between engineering

student teams designing an automotive engine and NASA engineer teams designing

a spacecraft system.

Figure 1.5. : The roadmap of the dissertation research.
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The outline of the dissertation follows the research roadmap and is as following.

1. In Chapter 2, a synthesis of existing literature focuses on experimental design

guidelines and descriptive decision modeling for the context of information ac-

quisition decisions in engineering design.

2. In Chapter 3, a research study analyzes the best descriptive models for an

individual designer’s sequential information acquisition decisions.

3. In Chapter 4, a research study analyzes stochastic, time-series models of inter-

disciplinary communication in design teams. The posterior parameter estima-

tion in these models provides insights on individuals’ communication strategies.

4. In Chapter 5, a comparison of communication patterns between engineering

student teams and NASA engineer teams allows the investigation of external

validity and representativeness.

5. Finally, Chapter 6 presents the key conclusions of the experimental studies, lists

overall contributions of the work, and summarizes some of the remaining work

as future research directions.
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2. DOMAIN-GENERAL APPROACH FOR DESCRIPTIVE DECISION

ANALYSIS

This chapter provides technical background of computational modeling and behav-

ioral experiments for performing descriptive decision analysis. The chapter describes

a range of descriptive models, from expected utility-maximizing models to simple

heuristic. On one end, expected utility-maximizing models represent rational judge-

ments in accordance with the expected utility theory. They incorporate all informa-

tion in decision making and are also called compensatory models. On the other

hand, simple heuristic models represent simple rules that humans commonly use.

Simple heuristics use selective information to make decisions and are also called non-

compensatory models of decision making. Following up on the modeling effort, the

chapter presents guidelines for selecting appropriate subject pool and designing an

experimental task. Lastly, the chapter details the theoretical and practical considera-

tions of statistical Bayesian inference for the context of descriptive decision analysis.

The outline in Figure 2.1 shows different steps involved in the descriptive decision

analysis approach presented in this chapter.

2.1 Formulating Descriptive Decision Models

To illustrate the process of formulating descriptive decision models, we analyze

three decision making scenarios in which information acquisition decisions are per-

formed under different sampling conditions. The focus is specifically on two types of

decisions: the decision to select a design point from a given design space and

the decision of stopping design exploration. The specific examples of descrip-

tive decision models are synthesized from the existing literature. Chapter 3 and 4

build on these descriptive models to present more wide-ranging models for the infor-
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Figure 2.1. : Different elements of the descriptive decision analysis approach.
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mation acquisition decisions including for the decision to communicate with others.

The three decision making scenarios considered are as follows.

1. One-shot decision making: A decision maker evaluates the design perfor-

mance only at a single design point. Zero observations of design variables and

respective design performance attributes are available from the past.

2. Sequential decision making without recall: Prior observations of design

variables and respective design performance attributes are available but an ob-

servation from the past cannot not be selected as a solution. That is, past

observations are only useful for understanding of relationships between design

variables and design performance attributes. Consider that x ∈ X is a design

point in the space X and f(x) is one-dimensional design performance at x. If

past observations are represented by {xh, f(xh)}ih=1, then the current outcome

of the sequential decision making process without recall is yi = f(xi). Figure 2.2

presents a decision tree representation of the sequential decision making process.

3. Sequential decision making with recall: Prior observations of design vari-

ables and respective design performance attributes are available and one of the

past observations can be selected as a solution. Under the sequential decision

making process with recall, the outcome after i iterations is the best of observed

design performances from the past, yi = max{f(x1), . . . f(xi)}.

Table 2.1 presents the summary of descriptive decision models for the one-shot

decision making and sequential decision making scenarios.

2.1.1 Expected Utility Maximization

The fundamental premise of expected utility-based models is that design decisions

should be rational, i.e., design decisions should follow the rule that the preferred

decision is the option that has the highest expectation of value.
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Figure 2.2. : A decision tree representation of the sequential decision making process.

Inputs x1,x2, . . . are the selected design points, f(x1), f(x2), . . . are corresponding

design performances, y1, y2, . . . are outcomes which depend upon the design perfor-

mances, and C is a fixed cost of evaluating design performance once.
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Table 2.1. : The examples of descriptive decision models in one-shot decision making

and sequential decision making scenarios.

Scenario
Expectation

Maximization Strategy
Simple Heuristics

One-shot

decision making

Select alternative that

maximizes the weighted

average of expected utilities

(Eq.(2.3))

Dominance rule [56], Mental

list rule [57], Lexicographic

rule [56], Elimination by

aspects [56],

Take-the-best [58]

Sequential

decision making

without recall

Select an alternative that

maximizes the expectation of

gain (Eq.(2.9)) and Stop if

the maximum predictive

mean design performance is

less than an evaluation cost

(Eq.(2.10))

Representational stability

rule; Magnitude threshold

rule; Cutoff rule [?];

Successive non-candidate

cutoff rule

Sequential

decision making

with recall

Select an alternative that

maximizes the expectation of

gain (Eq.(2.9)) and Stop if

the maximum of maximum

expectation of gain is less

than an evaluation cost

(Eq.(2.11))

Difference threshold rule [59];

Fixed sample rule [60]

One-shot decision making

For the case of one-shot decision making, the decisions are made in a single time

period without observing consequences from similar decisions. One relevant frame-
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Figure 2.3. : The decision analysis framework.

work to consider such decisions is the decision analysis framework. Under this

framework, all decisions involve three basic elements, a set of two or more alternative

detailed designs (simply called alternatives) available to the decision maker, a set of

beliefs that the decision maker holds with regard to the outcomes of each available

alternative, and a set of preferences over all conceivable outcomes. The designer

may list alternatives based on existing products, or may be expected to generate

new alternatives based on ideas and prior knowledge. Similarly, the outcomes may

be a priori known, or the decision maker may be expected to anticipate uncertain

outcomes. If outcomes are uncertain, a decision maker is left to his/her personal

beliefs about what is feasible. Finally, when multiple attributes are available, the key

is to construct relationships between the overarching preference and the attributes

that define individual alternatives. For example, if a designer’s goal is to design an

all-terrain vehicle, it will be difficult to meet requirements of high speed, long range,

large payload capacity, comfortable and multiple seats, etc., as well as keep the cost

of vehicle low at the same time. If the overarching goal is to achieve mobility over

a highly rugged surface, the designer should prefer a vehicle with larger payload and

range than one with more speed and comfort.

For the decision to select the best alternative from available alternatives,

the suggested strategy is to evaluate each alternative’s expected utility to the decision
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maker and pick the alternative with the largest utility. Consider that a design perfor-

mance attribute f is uncertain and generates values y1, . . . yS for a given alternative

x with probability densities p1, . . . pS respectively, then the expected utility of x with

respect to the attribute f is:

E{f(x)} =
1

S

S

∑
n=1

ynpn. (2.1)

Further, suppose that a decision maker prefers M attributes, f1(x), . . . , fM(x) with

preferences α1, . . . , αM (∑
M
j=1αj = 1) and the attributes have respective expected util-

ities E{f1(x)}, . . ., E{fm(x)}. Then, the expected utility of alternative x is the

weighted average of expected utilities, and is given as:

E{U(x)} =
M

∑
j=1

αjE{fj(x)}. (2.2)

Finally, the preferred alternative is the one that maximizes the expected utility.

x∗ = arg max
x∈X

E{U(x)} (2.3)

In the above equation, the design space X represents the set of all available alterna-

tives.

The decision on whether to stop design exploration without any prior in-

formation is equivalent to deciding whether to proceed with selecting any alternative.

The suggested strategy for such decision is to continue selecting a new alternative if

the highest expected utility is greater than or equal to the associated cost from time

or resources to be consumed, and stop if it is not. If C is the cost associated with

making a decision and max
x

E{U(x)} is the highest expected utility possible, then the

decision strategy is:

Stop, if max
x

E{U(x)} −C < 0; Continue, otherwise. (2.4)

Sequential decision making without recall

In the sequential decision making scenario, the decision to choose the next

best design alternative or point requires quantification of the value that each
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design point holds for improvement in the design performance (output) function.

This quantification can be carried out in two steps, (i) quantifying the belief about

design performance values over the unexplored design space, and (ii) quantifying the

gain in the design performance function if it is evaluated at a selected design point.

The first step is generally performed using surrogate modeling techniques such

as Gaussian process regression. A Gaussian process is a collection of multiple

Gaussian distributions representing uncertainty in outputs over given input space [61].

A Gaussian process is a stochastic process which generate continuous output functions

over the space of inputs. In the context of a design problem in Figure 1.2, the

distribution of the design performance attribute (output) for given values of design

variables (inputs) is a normal distribution.

When no prior observed data is available, a Gaussian process sets a prior proba-

bility measure over the output function space by specifying the mean and covariance

functions ex-ante. Here, mean function m(x) represents the expected value of design

performance at x ∈ RN while the covariance function k(x,x′) models how close the

design performance is for x and x′ for given x,x′ ∈ X . The covariance is mathemat-

ically defined as k(x,x′) = E[(f(x) −m(x))(f(x′) −m(x′))]. A common form of

covariance function is radial basis function:

k(x,x′∣l, ν) = νe
− 1

2 ∑
N
d=1

(xd−x
′
d)

2

l2
d , (2.5)

where n is the number of dimensions in the design space, l are length scale parameters

of different dimensions, and ν is a variance parameter. Lengthscale parameters l rep-

resents the length of flatness/wiggles in the design performance function for different

dimensions in x. Variance ν is the is the noise in the values of design performance

function at a particular design point. Thus, model parameters l and ν capture beliefs

about the functional form of the design performance. In summary, the probability

density over z being the actual function value at x is given by normal distribution

with mean as m(x) and variance k(x,x∣l, ν):

f(x) ∼ N (m(x), k(x,x∣l, ν)). (2.6)
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When past observations of design variable values and respective design perfor-

mance are available, a Gaussian process can be used to estimate an unknown design

performance function (output) conditional on the observed data. The updated model

is referred to as Gaussian Regression Model. Assume that the past i observations

are represented as D = {xh, f(xh)}ih=1, then the point predictive distribution of the

design performance function at any x ∈ X is given as,

f(x∣D, l, ν) ∼ N (m̃(x), σ̃2(x)). (2.7)

Here, mean m̃(x) and variance deviation σ̃2(x) are estimated such that the likeli-

hood of the posterior prediction is maximized. This encodes beliefs about the design

performance (output) function values after observing the data. The expressions for

m̃(x) and σ̃2(x), and related derivations are not presented here but can be found

in [62, Ch.6].

The second step for modeling the decision to choose the next design point

requires quantification of the value that each design point holds for improvement

in the design performance function. The gain or loss over evaluating the design

performance function at any x ∈ X is quantified with respect to the current best

alternative, f∗ = max
h=1∶i

f(xh) as,

G(x∣D, l, ν) = max{f(x∣D, l, ν) − f∗,0}. (2.8)

Note that the goal here is to maximize the design performance function and thus

maximize the potential gain from selecting the next design point. Accordingly, the

next design point x∗ is selected such that the expectation of gain integrated over

possible design performance values is the largest:

EI(x) = E[G(x∣D, l, ν)]

= ∫

∞

f∗
(y − f∗)p(y∣x,D, l, ν)dy

x∗ = arg max
x∈X

EI(x)

(2.9)

This metric in widely known as the expected improvement metric in the Bayesian

global optimization literature [27]. In the above equation, p(y∣x,D, l, ν) is the pre-
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dictive probability density that the design performance at x is y and has a normal

distribution defined by Eq.(2.7).

For the decision to stop design exploration under the condition of no recall,

the expected utility maximization strategy suggest that stop if the maximum expected

design performance is less than the associated cost of evaluating another alternative.

If the design performance function has the uncertainty defined by a Gaussian process

regression in Eq.(2.6), then the maximum expected design performance is the highest

predictive mean over the design space max
x∈X

E[f(x)] = max
x∈X

m(x). If the cost of

evaluating a new design point is C, then the stopping strategy is:

Stop, if max
x∈X

m(x) −C < 0; Continue, otherwise. (2.10)

Sequential decision making with recall

In the scenario of sequential decision making with recall, a past observation of de-

sign point and the design performance function can be selected during any future time

periods. For the decision to choose next design point, this scenario is equivalent

of the the sequential decision without recall, since the learning from past observations

is available in both scenarios. Additionally, the expected gain maximization strategy

in Eq.(2.9) works on the all alternatives from the design space for selecting the next

best design point.

For the decision to stop the design exploration or not under the condition

of recall, the expected utility maximization strategy compares the current best design

performance available from prior observations with the design performance possible

from an additional evaluation. The evaluating the difference between the current

best performance and the expectation of future design performance is equivalent to

evaluating the expectation of gain in Eq.(2.9) since the the current best performance

is fixed. Therefore, the stopping strategy is to stop if the expectation of gain is less
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than to the cost associate with an additional evaluation. If the cost of evaluating a

new design point is C, then the stopping strategy is:

Stop, if max
x∈X

EI(x) −C < 0; Continue, otherwise. (2.11)

2.1.2 Heuristic Decision Making

Heuristic decision strategies for the decision to select an alternative and deciding

to stop are often correlated. This is because the simple heuristics are fast and frugal

and they aim to select alternatives as early and cheaply as possible. Simple heuristics

are ubiquitously used in decision making [58] and can have many different forms.

This section only illustrates most relevant simple heuristics in the context of informa-

tion acquisition decisions. The simple heuristics presented here are drawn from the

literature, which are appropriated referenced through out the section. This disser-

tation work also presents additional simple heuristics for the information acquisition

decisions in Chapter 3 and Chapter 4.

One shot decision making

For the decision to select a design point using one-shot decision making, some

examples of the simple heuristics are as follows.

1. Dominance Rule [56]: Choose the design alternative which is better than

other alternatives on at least one design performance attribute and not worse

than others on all other attributes. If none of the alternatives satisfy this

condition, then this strategy does not recommend any decision.

2. Mental List Rule [57]: In this variation of the dominance rule, the decision

maker compares design alternatives on few preferred design performance at-

tributes and selects the dominant alternative. The selected attributes are based

on the decision maker’s preferences and therefore the strategy is referred to as

mental list.
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3. Lexicographic Rule [56]: It is also possible that a decision maker uses a single

attribute for comparing different alternatives and selecting the alternative that

performs best on that attribute.

4. Elimination by Aspects Rule [56]: Exclude design alternatives that do not

exceed a threshold on a preferred design performance attribute. Repeat this pro-

cedure other design performance attributes in the order of importance. Select

an alternative left at end of this process. Such process will yield an alternative

that meets preset thresholds on all design performance attributes. If none of

the alternatives meet all thresholds, then no decision is recommended.

5. Take-the-best Rule [58]: When comparing two design alternatives, choose the

alternative that has a better value on the most preferred design performance

attribute. If both alternatives have the same value, repeat the procedure with

the second design performance attribute in the order of preference. This decision

making process stops as soon as the first design performance attribute that

differentiates the two attributes is found.

Simple heuristic strategies typically consider no uncertainty in the design perfor-

mance attributes. However, these strategies may still be applied to one-shot decisions

under uncertainty by replacing the design performance attributes with their utilities

as defined in Eq.(2.1). The important difference between the simple heuristic strate-

gies and the expected utility maximization strategy from Eq.(2.3) is that the simple

heuristic do not compare alternatives along all given design performance attributes.

Being selective in the useful attributes and in the order in which attributes are eval-

uated allows the simple heuristics strategies to reduce the requirement on time and

resources used. In certain circumstances, simple strategies can yield more accurate

judgments than alternative strategies such as the expectation maximization that use

more pieces of information. This effect is called the-less-is-more effect [63].
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Sequential decision making without recall

In contrast to the one-shot decision making, the sequential decision making with-

out recall queries multiple values of design variables and observes the design per-

formance attributes sequentially one after the other. In the condition of no recall,

the decision maker may not select past observations for submission without running

a query. That is, each observation is only available for one time period. Once the

decision maker decides to stop the exploration, he/she selects the latest observation

for submission. Examples of heuristic decision making strategies for this scenario are

as follows:

1. Representational Stability Rule: Choose an alternative that provides a

greatest change in the decision maker’s mental model or representation of the

design variables and design performance relations. Stop after the mental model

representations stops shifting. The focus is on the stability of the representation.

This strategies in theory can be implemented using Gaussian processes as the

representation of the design variables and design performance relations. Some

research shows that the Gaussian processes represents human function learning

much better than traditional optimization algorithms [64].

2. Magnitude Threshold Rule: Stop after the encountered design performance

is greater than the pre-defined magnitude. The magnitude threshold rule only

compares the present design performance with the pre-defined magnitude.

3. Cutoff Rule [65]: Do not stop the exploration for at least fixed k number of

observations. After k observations, stop at the first observation which has design

performance larger than the maximum design performance of first k unused

observations. When the total number of observations are fixed, say number M ,

and the all observations are equally likely to produce the best alternative, the

optimal number of unused observations should be k =M/e [66].

4. Candidate Count Rule: Select the kth observation irrespective of the de-

sign performance. This strategy ignores judgments about the design variables
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and design performance relationships as well as it fails to maximize the design

performance. However, this simplest strategy may be applicable in rare cir-

cumstances when the budget for design exploration is limited and the technical

complexity is too high for systematic exploration.

5. Successive Non-Candidate Cutoff Rule: Select the first encountered ob-

servation after observing k consecutive observations with less than desired de-

sign performance. This dynamic decision making strategy depends on the se-

quence of observations encountered unlike the previous decision making strate-

gies. Therefore, it is suitable when the properties of design point and design

performance relationship change over time are expected.

Sequential decision making with recall

With the ability to retrieve previous evaluations, a decision maker has larger

flexibility in selecting the best design performance for submission. Having access

to past observations allows stopping early if a decision maker believes no further

improvement in the design performance is possible. The decision strategies from the

sequential decision making scenario without recall still apply to this scenario because

a decision maker can always decide to ignore past observations. Heuristics that benefit

from the access to prior observations are listed below. Under these decision strategies,

the best alternative is selected at the end of the sequential decision making process

from the pool of observed evaluations.

1. Difference Threshold Rule [59]: A decision maker sets a prior difference to

gauge when the new observations produce increasingly small gains compared to

the current best design performance. This set of strategies are similar to the

stopping strategy with expectation maximization (Eq.(2.11)) but the monetary

cost of additional observation C replaced with an individual-specific threshold

value. Unlike the magnitude threshold rule, the difference threshold rule com-
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pares each encountered design performance with the best design performance

from previous observations.

2. Fixed Sample Rule [60]: Stop after querying a fixed number of design vari-

able values. Select the observation that has the best design performance. In this

strategy, a decision maker ignores the learning from past observations while de-

ciding whether to stop or not. As a result, the fixed sample rule is an extension

of one-shot decision making where more than one evaluations of design perfor-

mance are allowed and the number of evaluations must be fixed and defined

prior to the start any evaluation.

2.2 Designing Controlled Experiments

It is necessary to observe information acquisition decisions using controlled exper-

iments to test different hypotheses embed in descriptive decision models about how

individuals make these decisions. Things to consider while designing and executing

a controlled experiment include selection of human subjects, incentivization, design

of experimental design task and experimental conditions. Building on the existing

literature, this section provides guidance on different elements of experiment design.

2.2.1 Subject Pool Selection: Consideration of Design Expertise and In-

centives

The subject selection should be carried out such that the subjects’ expertise aligns

with the problem complexity and difficulty. For a general design context, Dorst [67]’s

expertise framework is useful for thinking about the representativeness of subject-task

interactions. Using the expertise framework, the answers to questions such as what

do we mean by design activity in a model world become immediately clear once we

specify subjects and tasks. Dorst categorizes such interactions into seven levels:

1. Naive designer makes one-off choice from available options
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2. Novice designer follows strict rules or a formal process to meet fixed require-

ments given by exerts

3. Advanced designer adapts a formal process for considering situational as-

pects,

4. Competent designer selects relevant situation aspects and chooses a plan to

achieve a goal,

5. Expert designer recognizes high-level patterns from years of experience and

responds to a given task intuitively,

6. Master designer represents a new knowledge in the field,

7. The visionary consciously strives to extend the domain of their work.

According to the single attribute decision making approaches in engineering de-

sign [26, 68], the economic attribute is the only attribute consistent with decision

analysis framework. Then, the incentives that subjects receive should be proportional

to the design performance they generate and inversely proportional to the total cost

of resources they spend on evaluations. Let us consider a few cases for the incentive

schemes.

1. Requirement-based incentives: Pay a subject fixed reward, but only if they

find a design point with the design performance greater than a threshold value.

This is the most common form of payment in real applications. But there are

two potential problems that should be addressed: (i) there should exist a design

point with better properties than the pre-defined threshold; subjects may not

engage in the decision making process if they believe that there is no chance

that required design performance is achievable, and (ii) the requirements-based

payment does not work in case of large uncertainties. This is because, out of

pure chance, we may get a very large posterior mean at certain points. We

should add a constraint that the incentive is to be paid only if the posterior

uncertainty at this design is smaller than the measurement noise.

2. Paying proportionally to the best design performance: The better the

discovered design, the more we pay the subject.
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In both cases, there must be some penalty for delaying to report. Of course, if the cost

is evaluated in the same units, this penalty can just be the current cost of information

acquisition to be subtracted from the design performance.

2.2.2 Experiment Design: Consideration of Human Biases

Even with appropriate subject population and setting up incentives, safeguarding

the experiment design against potential cognitive biases is important so that the

behaviors resulting from such biases do not interfere with intended behaviors. A

cognitive bias is systematic deviation from logical decisions in day-to-day human

decision making. They are likely to seep into the information acquisition decisions and

result in illogical decisions. In order to maintain the desired goals of an experiment

design, the cognitive biases should be avoided using experimental “tricks”. This

section reviews some tricks used to mitigate cognitive biases observed in the context

of economic decisions [69,70].

1. Use theory to guide the experimental design: One way to understand

the causes of human behaviors in the experiments is to start with a theory.

Following a theory allows to anticipate alternate behaviors and it allows to use

theoretical insights for designing experiments. For example, in the context of

economic decisions, a theory can be defined based on logic, probability rules,

and mathematics. The predictive behaviors from such a theory will assume that

a decision maker follows the rational constructs of probability and mathemat-

ics. A experiment based on such theory can be used to study the cases when

rationality holds and when human decision makers deviate from rationality.

2. Have a control group: For every independent variable whose effect is being

experimentally analyzed, include two experimental conditions, one where sub-

jects are treated with the study variable and other where subjects are free of

the study variable. Further, randomized treatments are important in exper-

iment design to study small effects in human behaviors. Therefore, subjects
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should be assigned to different experimental conditions randomly. If random-

ized experiment design is not possible, for example, due to a realistic, large-scale

experiments, consider quasi-experimental designs. Shadish et al. [71] present

quasi-experimental designs when one or both of a control group or pretest sam-

ples are lacking.

3. Consider the order of treatment conditions: It is advisable to repeat

an experiment with all possible orders of the experimental conditions. The

order in which experimental conditions are presented to subjects may have

unintended effects on their behaviors. For instance, if an experiment studies the

differences in learning in the design process due to two different decision support

tools, then independent sessions with two different sequences of decision support

tools should be implemented. Further, the correlated tasks between consecutive

studies should be avoided. If two consecutive conditions require conflicting

skills, e.g., using two different coding languages, then using one coding language

may inhibit the skills required for using the other coding language.

4. Provide monetary incentives at experiment’s end: Unless an experiment

design involves study of incentive effects, the payment should be provided af-

ter the completion of the experiment to avoid endowment effects [72]. Paying

subjects at the start or in middle of the experiment may discourage effort in

subsequent tasks. Also, if the payment is proportional to the performance, it

should be calculated from the performance on a randomly selected decisions.

Achieving sufficient payable performance early in the experiment may make

subsequent tasks unnecessary for subjects. Finally, subjects should be paid the

amount commensurate of the total time they spent. Paying too small payment

or delaying payment until too late after completion may prevent subjects from

participating in future experiments.
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2.3 Statistical Bayesian Inference

After defining alternate descriptive decision models and gathering data from a

controlled experiment, the final data analysis step involves defining a Bayesian work-

flow for posterior estimation of model parameters. Let {zs}1∶S denote the observations

of an information acquisition decision. LetM be one of the decision models for that

information acquisition decision, and θ be the corresponding model parameters. We

seek to estimate the marginal likelihood of the observations p(z1∶S ∣Mk) and posterior

distribution over model parameters p(θ∣z1∶S).

2.3.1 Pooled vs. Hierarchical Prior Distributions

In the Bayesian workflow, the first step is to define prior distributions over model

parameters. There are multiple ways to define a prior distribution such as pooled

model, hierarchical model, and non-centered hierarchical model. Assume there are P

individuals in the subject population and θp represents a model parameter capturing

the strategy of individual p. In a pooled model, {θp}p=1∶P are independent samples

from same distribution, say D(γ), with fixed parameters γ. Distribution D is the

collection of all individuals’ decision strategies. Fixed parameters γ mean that the

decision making strategies are constant at the population level.

θ1, . . . , θP ∼ D(γ) (2.12)

In a hierarchical model, the individual-specific strategies {θp}p=1∶P are samples

from a distribution D(γ) but the distribution’s parameters, i.e., hyperparameters γ

are uncertain. Then, hyperparameter γ is assigned a prior distribution G(αγ), called

hyperprior, which allows variations in the population-level decision strategies.

γ ∼ G(αγ);

θ1, . . . , θP ∼ D(γ)
(2.13)

In a non-centered hierarchical model, the individual-specific strategies have

systematic deviation from the average decision making strategies of the subject pop-
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ulation. This allows modeling of clusters with individuals having better and worse

decision making strategies than the average strategies of the population. Let µ be

the population mean and σ be the population standard deviation. Let τp represent

individual p’s offset from the population mean. Since these hyperparameters are un-

known, we place probability distributions over then to signify uncertainty. Let the

hyperpriors over µ,σ, and τp be Gµ,Gσ,and Gτp respectively. Then, the individual

specific strategy θp is calculated as follows:

µ ∼ Gµ(αµ);

σ ∼ Gσ(ασ);

τp ∼ Gτp(αp);

θp = µ + τpσ

(2.14)

where αmu, αsigma and αp are fixed parameters of the hyperpriors.

2.3.2 Defining Likelihood Functions

The next step is define the probability of observing a particular decision given the

model and its model parameters. Such probability function is also called likelihood

function. A likelihood function captures the errors in an individual’s information

acquisition decisions. By representing decision strategies as stochastic rather than

deterministic, the likelihood function allows for the possibility that an individual is

can deviate from intended decision strategy. There are two types of likelihood func-

tions often used for representing the information acquisition strategies: i) Logistic

function, and (ii) Softmax function. The logistic function is suitable for modeling

threshold-based decision rules where a decision is dependent whether or not greater

than than a threshold value of a predictor variable. The Softmax function is suit-

able for modeling maximization decision strategies where a decision is to select an

alternative with the maximum value of a predictor variable.

Suppose yM is a predictor variable (e.g. design performance attribute) for given

model M. The decision under consideration involves two alternatives, for example,
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an individual decides whether to stop or not. Let us say the decision is z = 1 if

the individual stops and z = 0 when he/she does not stop. Then, the probability of

stopping is a logistic function of z given by:

Pr(z = 1∣yM, a, b) =
1

1 + ea(yM−b) , (2.15)

where a and b, respectively, are the slope and threshold parameters of the logistic

function. This definition of likelihood can be extended to the multiple predictors by

using the weighted average of the individual predictors as a single variable. Further,

consider a situation where predictor variable fM(x) represents the value of alternative

x under model M. An individual decides to select the alternative with the best

value. Then, in stochastic representation, the likelihood of selecting an alternative is

proportional to its value and given by the Softmax function as:

Pr(x∗ = x) =
efM(x)

∑x′∈X e
fM(x′) , (2.16)

where X is the space of all alternatives. In case of multiple value functions, the

predictor variable can be defined as the weighted average of the value functions,

U(x) = α1f1(x) + . . . αMfM(x).

2.3.3 Posterior Estimation and Model Validation

Various Markov Chain Monte Carlo (MCMC) algorithms are commonly used [73]

for sampling from posterior distributions. It is recommend to use variational Bayes

methods for finding approximations to posterior distributions of the model param-

eters as well as estimating lower bounds to marginal log-likelihoods of the decision

models conditional on the experimental data [74]. The variational Bayes approach

is especially useful in complex stochastic models where analytical forms of posterior

distributions are intractable. The model evidence lower bound (ELBO) quantifies

the the support for a model, i.e., the accuracy with which a model represents the

experimental data. We denote ELBO, say for model M, as L.



40

The goal of inference using variational Bayes is to approximate posterior distri-

bution of model parameters θ, represented by p(θ∣z1∶S,M), using a family of dis-

tributions q(θ∣υ) with its own variational parameters. Distributions q(θ∣υ) do not

typically include the exact posterior distribution, however they are easy to sample

from. We assume that all parameters are independent of each other. Under this as-

sumption, q(θ∣υ) is factorized into distributions over individual parameters, with each

distribution being a normal distribution with υ representing its mean and variance.

This approximation is called the mean field approximation. Accordingly, rather than

maximizing the marginal log-likelihood of z1∶S directly, the inference using variational

Bayes maximizes a lower bound to it, called evidence lower bound (ELBO), calculated

as:

L = Eq[log p(z1∶S ∣M, θ)] −KL[q(θ)∣∣p(θ∣z1∶S)] (2.17)

where the first term is the expectation of log-likelihood of observations with respect

to distribution q(θ). The second term KL[q(θ)∣∣p(θ)] = Eq[ log
q(θ)

p(θ)
] is the Kullback-

Leibler (KL) divergence, which represents the closeness of distribution q(θ) and p(θ).

This setup using KL divergence enables the independence between marginal log-

likelihood p(z1∶S ∣M) and distribution q(θ). As a result of that, maximizing the ELBO

in Eq. (2.17) is equivalent to minimizing the KL divergence between q(θ) and p(θ∣z1∶S).

Therefore, the closer is q(θ) to p(θ∣z1∶S), the lower is the KL divergence between the

two, and the closer is the ELBO to log p(z1∶S ∣M), i.e., the marginal log-likelihood of

observations.

After estimating the posterior distributions of model parameters, it is important

to verify how well the model with posterior parameter estimates fits the observed

decision data. The literature on the topic provides formal and informal diagnostic

metrics for analyzing the convergence of Markov Monte Carlo Methods (MCMC) [75].

Formal MCMC diagnostic metrics such as auto-correlation plot and Raftery-Lewis

estimates [76] are important aggregate indicators of the convergence. The infor-

mal methods such as plotting the sample trace of MCMC and visualizing of poste-

rior [77] are more straightforward approaches to investigate how the MCMC searches
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the model parameter space. This section presents a mix of formal and informal the

model checking approaches relevant for the inference of decision strategies.

1. Data partition into training and testing: An important first step in model

checking is to separate out some fraction of experimental subjects’ decision

data before running statistical Bayesian inference. The separated data is called

testing data and the data used to train the model parameters is called training

data. So, the model performance is checked on the testing data which is unseen

by the model.

How to partition data depends on the experimental conditions that generated

the data. Typically, a large part of the total data such as 80 − 95% is assigned

to the training dataset and the remaining assigned to testing data. There can

be different approaches to split the data into training and testing. First, the

data can be divided based on individuals, so the model performance can be

evaluated on new individuals’ decisions. This approach however assumes that all

individuals follow the same decision strategies. Second, an individual subject’s

data can split along independent decision samples. Very often, an experimental

task on the iterative information acquisition requires an individual to repeat

the same decision, thereby generating independent samples of that decision.

2. Posterior predictive checks: Once the posterior parameter estimation is

completed, ”sanity checks” can be performed by visualizing the posterior pre-

dictions of decisions along with the observed decision data on same plot. This

step is typically referred to as posterior predictive check. It provides a visual

check for how well the model fits the data. Consider the examples of posterior

checking for logistic likelihood function and for a general case of continuous

decision alternative in Figure 2.4.

3. Accuracy score: The posterior predictive checks can be further formalized by

calculating comparison measures such as accuracy score. The accuracy score is

the fraction of posterior predictions exactly that match with the observed data.
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(a) Logistic Likelihood (b) Softmax Likelihood

Figure 2.4. : Examples of posterior predictive checks for Bayesian models.
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Let z be an observed decision and ẑ1, ẑ2, . . . , ẑS be the model predictions based

on posterior parameter estimates. Then, the accuracy score is defined as:

Accuracy Score =
1

S

S

∑
n=1

1ẑn=z, (2.18)

where the indicator function 1ẑn=z is 1 if the prediction ẑn equals the observed

value z, and 0 otherwise. The accuracy score measure is appropriate for de-

cisions with finite number of alternatives such as the threshold-based decision

strategies. For a continuous alternative space, the probability that a predictive

sample exactly equals an observed decision is always 0.

4. Information Criteria: The concept of accuracy score measure can be ex-

tended to the decisions with a continuous decision space by evaluating the

posterior log-probability of observations using the posterior samples of model

parameters. Let us consider predictive accuracy for a single data point. If

θpos
1 , θpos

2 , . . . , θpos
S represent the posterior samples of model parameters, then

the expected log-probability data z is calculated as 1
S ∑

S
n=1 log p(z∣θpos

n ), where

p(z∣θpos
n ) is the likelihood of the decision z given model parameters θpos

n . Recall

the likelihood function is defined either using logistic function (Eq.(2.15)) or

softmax function (Eq.(2.16)).

Model accuracy measures based on posterior log-probability density typically

involve a correction for the number of parameters in the model. This correction

term penalizes the model likelihood functions with large number of parameters

since such models are likely to overfit the observed data. Common information

criteria used for bias correction in practical Bayesian applications are Akaike

Information Criterion [78], Deviance Information Criterion [79, 80], and, more

recently, Wanatabe-Akaike Information Criterion [81]. Ref. [82] reviews these

information criteria from a Bayesian perspective. The implementation of these

Bayesian accuracy measures is available in PyMC3 library [83] on Python frame-

work.
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2.3.4 Model Comparison

We can formally compare how well different multiple descriptive decision mod-

els fit given data by comparing their model evidence or evidence lower bounds. Let

{Mk}1∶K be K independent candidate models for an information acquisition deci-

sion. Let {θ(k)}1∶K be the model parameters for the given models. Let p(θ(k)∣Mk)

denote the prior distribution over parameters θ(k) of modelMk. The prior probability

distribution over model parameters may be selected based on expert knowledge, or

assumed non-informative if no prior information is available. Let p(Mk) be the prior

probability of modelMk such that ∑1∶K p(Mk) = 1. If {zi}1∶S denote the observations,

then the posterior probability of model Mk is:

p(Mk∣z1∶S) =
p(z1∶S ∣Mk)p(Mk)

p(z1∶S)
, (2.19)

Under the assumption that all models are equally likely to represent the obser-

vations a priori, the prior probability of model Mk, p(Mk), is 1
K . Since p(Mk) and

p(z1∶S) are both constants in such a case, the posterior probability of model Mk can

be substituted by the marginal likelihood of observations.

p(Mk∣z1∶S)∝ p(z1∶S ∣Mk) (2.20)

Recall, evidence lower bound (ELBO) in Eq.(2.17) estimates the logarithm of the

marginal likelihood of observations.
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3. SEQUENTIAL INFORMATION ACQUISITION OF AN INDIVIDUAL

DESIGNER

The first research study in the dissertation analyzes the design exploration decisions

of an individual designer in sequential information acquisition process. The primary

research objective is to identify models that provide the best description of a de-

signer’s decisions when multiple information sources are present and the total budget

is limited. This study specifically focuses on,

1. identifying designers’ decision strategies, and

2. evaluating how the amount of fixed budget and payment incentives such as

bonuses proportional to the budget saved affect those strategies.

This work has been published as a peer-reviewed journal paper in Ref. [84].

We begin with an abstract the design process called a sequential information

acquisition process [23] where design is considered a problem solving activity with

known design parameters and evaluation criteria, but unknown mapping between the

two. Alike many design situations, a designer’s objective in this situation is to find

the design parameters values that maximize the performance (see Figure 3.1). To

achieve this objective, the designer performs iterative evaluations of performance.

This process is constrained by a fixed budget, which limits the number of design

evaluations. In general, the budget type may be financial (e.g., fixed cash or capital),

or technical (e.g., fixed computational resources, time, or energy) [85].

Many examples of this design situation exist. For example, in the control problem

for a room heating system, a designer finds the temperature setpoint that minimizes

energy consumption while maintaining thermal comfort [86]. Also consider the design

of superconducting materials such as CuxBi2Se3 where a designer finds the dopant

composition (x) that maximizes superconductivity through a series of magnetization

experiments [87]. In the airfoil shape optimization, a designer is concerned with find-
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Figure 3.1. : Sequential information acquisition process with multiple uncertain in-

formation sources and fixed budget.

ing favorable values of the maximum thickness and the angle of attack that minimize

the drag coefficient [29].

The process of iterative design evaluations, here referred to as information acquisi-

tion, is typically performed with the help of multiple prototypes (information sources)

with different cost and uncertainty. The practice of prototyping is useful in learning

whether or not the design options satisfy the requirements, however, this learning is

hindered by the uncertainty associated with prototypes. For example, in automotive

crash tests, computer-based simulations are flexible, but expensive physical proto-

types are needed to detect unanticipated phenomena [18]. This uncertainty can be

aleatory, see the major effect of the large noise due to process variability in VLSI

semiconductor manufacturing plants [19], or epistemic, see how the lack of knowl-

edge about the quantities of interest restricts the precise performance assessment for

complex systems [88].

We model the case of multiple information sources assuming that it is possible

quantify the uncertainty associated with information sources. Various front-end meth-

ods for quantifying uncertainty are available, e.g., probability distribution fitting on

performance data, Delphi approach to elicit expert knowledge, and Evidence theory

or Information Gap theory to model information deficit [89].
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First, we use X to denote the space of all possible designs and x to denote a point

in the space X . The performance function f(x) is a scalar function of the design, i.e.,

f ∶ X → R. However, the value f(x) is not directly observable. A designer can obtain

information about f(x) through the query of a costly and uncertain information

source. We assume that the designer has access to M ≥ 1 such information sources.

The information source labeled by m in {1, . . . ,M} has a cost cm ≥ 0. When this

information source is evaluated at a point x, it reports a performance measurement

y = f(x)+ εm, where εm is a random variable modeling the measurement uncertainty.

We assume that the designer performs information acquisition sequentially. At

step i the designer queries the information source mi at a point xi ∈ X using what they

have learned from the currently observed history of evaluationsHi−1 = {(xh,mh, yh)}i−1
h=1,

where H0 = ∅ along with any prior beliefs (see Figure 3.1). For a parallel design pro-

cedure, in contrast, the designer would query multiple pairs of information sources

and designs at each step without incorporating learning derived from the current

knowledge of performance observations. Though the design process may comprise of

parallel and sequential queries [90, 91], we focus on sequential queries as a first step

towards modeling information acquisition in engineering design.

After observing performance measurement at the end of each step, the designer

decides whether to continue or stop the evaluations. If they decide to continue, the

designer evaluates the performance function at a new point. The designer cannot

perform an additional evaluation if the cost of querying the information source is

larger than the available budget amount. If the designer decides to stop, the outcome

of the design process is the most recent state of knowledge about f , denoted formally

with the probability measure p(f ∣Hi).
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3.1 Experiment Design

3.1.1 Objective Function Maximization Task

In the experiment task, a designer makes design decisions, and a user interface

processes acquired information in the back-end to display the state of knowledge about

the design performance in a visual format. The designer’s objective is to find a point

that maximizes the unknown design performance. The designer receives payment as a

function of the outcomes of their decisions, while the user interface is representative of

visual and text-based aids commonly used in design of manufacturing systems [92,93].

The roles of designer and the user interface are separated to maintain uniformity in

how all designers process the acquired information.

Assumption 1 (Continuous design space). The design performance f(x) is

a one-dimensional continuous function of a single design parameter x.

Assumption 2 (Sequential evaluation process). The designer evaluates mul-

tiple designs sequentially. Each evaluation takes one unit of time to run, during which

the designer may not begin another evaluation.

Assumption 3 (Multiple uncertain information Sources). The designer

evaluates the performance using either a low fidelity or a high fidelity information

source (M = 2). We denote the low fidelity information source by m = 1 or “L”, and

the high fidelity information source with m = 2 or “H”. We denote the total number

of low (high) fidelity observations at step i by ni,L (ni,H). It is ni,L = ∑
i
j=1 1{L}(mj)

(ni,L = ∑
i
j=1 1{H}(mj)), where 1A(⋅) is the indicator function of the set A. Of course,

we have i = ni,L + ni,H . An example of a low fidelity source is a computer-based

simulation with large uncertainty due to approximations such as discretization of the

design space, computational limitations, and errors from theoretical inadequacy. An

example of a high fidelity source is a physical prototype with relatively low uncertainty

due to manufacturing defects or machining tolerances when preparing test specimen.

Assumption 4 (Gaussian measurement uncertainty). The measurement

process is modeled as a Gaussian distribution centered at the true (but unknown)
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performance function. That is, the measurement y conditioned on the design x and

the information source m is:

y∣x,m ∼ N (f(x), v2
m). (3.1)

The noise variance v2
m is constant for each source m and known to the designer. By

definition, we have that v2
L > v

2
H .

Assumption 5 (Known costs). The evaluation of the performance at any

design point costs a fixed amount, which is known a priori to the designer. If cL and

cH are the costs of the low fidelity and high fidelity observations, respectively, then

cL < cH .

Since the true performance function f(x) is unknown, we assume that the user

assigns a zero mean Gaussian prior on f(x),

f ∣H0 ∼ p(f ∣H0) ∶= GP(0, k), (3.2)

where k(x,x′) = v0 exp{−
1

2

(x − x′)2

`2
}, is a squared exponential covariance function

with parameters lengthscale ` > 0 and variance v0 > 0. After making i observations,

the state of knowledge changes to

f ∣Hi ∼ p(f ∣Hi) ∶= GP(µi, ki), (3.3)

where µi(x) = k(x,x1∶i)(Ki+Vi)−1y1∶i and ki(x,x′) = k(x,x′)−k(x,x1∶i)(Ki+Vi)−1k(x1∶i, x)′

are the posterior mean and posterior covariance functions, respectively. Here we have

defined x1∶i = (x1, . . . , xi) to be the vector of the first i designs, and y1∶i the vector of

the corresponding measurements. The 1 × i matrix k(x,x1∶i) is the cross-covariance

between x and x1∶i, Ki = k(x1∶i, x1∶i) is the i×i covariance matrix of x1∶i, and Σ is an i×i

diagonal matrix with elements, Vi = diag (v2
m1
, . . . , v2

mi
) . Then, the point predictive

probability of f(x) is:

f(x)∣Hi ∼ N (µi(x), σ
2
i (x)) , (3.4)

where the posterior predictive variance is σ2
i (x) = ki(x,x). We assume that ` and v0

are constants and independent of i.
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Assumption 6 (Visualization of the state of knowledge) The user inter-

face visualizes the state of knowledge p(f ∣Hi) by displaying the mean estimate of

true performance, the 5th and 95th percentiles. This way the acquired information

gets processed and visualized in the same manner for all subjects and observing the

subjects’ decisions remains the the focus of the experiment task.

Assumption 7 (Fixed budget) The designer can spend at most B on perfor-

mance evaluations. The designer may stop before exhausting the entire budget B, so

the total cost incurred, bi = cLni,L + cHni,H , is less than or equal to B.

Assumption 8 (Performance-based payment) The designer’s payment in-

cludes a fixed salary I0, and bonuses proportional to the best high fidelity observation

and the budget saved. The designer payment after i evaluations is:

Ii = Ii(Hi,B) = I0 + 1[1,∞)(nH) [Hf(y
∗
i ) +Hb(B − bi)] , (3.5)

where Hf is the bonus from the best high fidelity measurement y∗i = max
h∶1≤h≤i,mh=H

yh, and

Hb, the bonus from remaining budget B − bi. At least one high fidelity measurement

is required to receive bonuses because high fidelity measurements are valued more

than low fidelity observations.

3.1.2 Subjects, Treatments, and Payment

A total of 63 student subjects were recruited from an introductory machine design

class. The participation was voluntary and was not considered towards students’

grades.

In the experiment, the subjects performed 18 runs of the experimental task each

with a distinct performance function. A run of the experimental task was called a

period. The objective in each period was to find a maximum of an unknown func-

tion. The 18 distinct functions were randomly generated prior to the experiment

(see Figure 3.2) and fixed for all subjects. These functions exhibited the same level

of difficulty in finding the maximum values as they were generated from a Gaussian

process with fixed lengthscale parameter of the covariance function (see Eq.3.2). The
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Figure 3.2. : 18 functions used as unknown design performance functions in the

experiment

assignment of these functions to periods was randomized for every subject to minimize

potential confounding between functions and treatments. Some parameters of the ex-

perimental task were fixed. In particular, the evaluation costs were cL = 2, cH = 8, the

measurement variance were vL = 10, vH = 0.0, the design space was X = [−10,10], and

the fixed salary I0 = $5. The user interface was as shown in Figure 3.3. For the ease

of understanding of the subjects, we termed the low fidelity information source as a

computer simulation, and the high fidelity information source as a physical prototype.

The experiment was divided into three parts.

1. Trial part (2 periods): The first part involved two trial periods to help the

subjects get familiarized with the user interface before starting the actual ex-

periment. The outcomes of these functions were not considered towards the

subjects’ payment.
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Figure 3.3. : A screenshot of the user interface developed using oTree [94].

2. Use-it-or-lose-it part (9 periods): For this part, a subject was allocated a fixed

budget per period. Any remaining budget was discarded and not added to the

subject’s payment. In this part, a subject evaluated 9 unknown functions in 9

periods, with 3 functions each for three treatments of fixed budget per period:

(i) Treatment T1 ∶ B = 20, (ii) Treatment T2 ∶ B = 40, and (iii) Treatment

T3 ∶ B = 60.

3. Save-remaining-budget part (9 periods): This part was similar to the use-it-or-

lose-it part except any remaining budget at the end of every period was added to

the subject’s payment as a bonus Hb. A subject evaluated 9 unknown functions

in 9 periods, with 3 functions each for the three treatments of fixed budget per

period: i) Treatment T4 ∶ B = 20, ii) Treatment T5 ∶ B = 40, and iii) Treatment

T6 ∶ B = 60.

At the end of the above three parts (six treatments), the subjects completed a

survey on their computer screen where they responded to three questions asking them

to list the strategies they used for (i) choosing the next design x, (ii) choosing between

information sources, and (iii) deciding when to stop.
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The order of treatments was varied across the subjects to control for order ef-

fects [95]. The four different orders of six treatments were: (i) T1 − T2 − T3 − T4 −

T5 − T6, (ii) T3 − T2 − T1 − T6 − T5 − T4, (iii) T4 − T5 − T6 − T1 − T2 − T3, and (iv)

T6 − T5 − T4 − T3 − T2 − T1.

If y∗i was the best observation in high fidelity observations, then the gross payoff

was calculated as

G(y∗i ) = 100 − (fmax − y
∗
i ) francs, (3.6)

where fmax was the true maximum value of a given unknown function and franc was

the experimental currency unit. The gross payoff for a period was revealed only

after stopping. For the periods in save-remaining-budget treatments, any remaining

budget was added to the gross payoff, i.e., H(B − Ci) = B − Ci. For the periods in

use-it-or-lose-it treatments, H(B − Ci) equalled 0. We converted the total payment

(G(y∗i ) +H(B −Ci)) from two randomly selected periods into equivalent US dollars

for payment so as to encourage subjects to put their best effort in each period. The

bonus payment and the conversion rate between francs and US dollars was revealed

at the end of the experiment to mandate participation in all parts to receive any

payment. This rule was aimed at minimizing the wealth effect that influences future

effort once winnings from the previous periods are revealed. The rule also reduces the

selection bias which discourages participation in future treatments once the payment

from previous treatments is received.

We collected data on the choice of design point, xi ∈ X , the choice of information

source, mi ∈ {L,H}, and the choice of stopping, si which is 0 if the subject stopped

after the evaluation or 1 otherwise. We also recorded the related quantities such

as gross payoff, fixed budget, functional performances, and the index of evaluation

i associated with every evaluation. Additionally, we recorded the text of the sub-

jects’ survey responses. These descriptions inspired the formulation of some of the

descriptive decision models given in Section 3.2.
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3.2 Descriptive Models of Design Exploration Decisions

We formulate the descriptive models of information acquisition decisions based

on a range of rational and heuristic strategies, which are derived from the literature

and the subjects’ responses to the survey questions. Existing models of rational de-

cision making are rooted in the expected utility theory [8, 9, 11, 12] and the game

theory [22, 38, 52], whereas heuristic models specify simple rules that humans use to

make decisions. These rules are based on the premise that humans are cognitively

limited, and therefore more likely to use a small number of available cues (criteria)

to make decisions [58]. These simple rules are fast and frugal, in that they consume

less time and are computationally cheaper. Examples of simple rules for stopping

are “stopping if the most preferred cue is found” (take-the-best), “stopping if a fixed

number of criteria are satisfied” (mental list), or “stopping if the key amount accumu-

lated is above a threshold” (magnitude threshold) [57, 59, 60]. For selecting between

alternatives, examples of simple rules are “selecting the best alternative” (dominance

rule), “selecting the alternative with the highest utility” (addition of utilities rule),

or “eliminating alternatives that do not satisfy a criterion” (elimination by aspects

rule) [56].

Table 3.1 lists the rational and heuristic models used in this chapter. The ratio-

nal models embody rational judgments about where the expectation of information

gain is maximum and whether maximum performance has been achieved. They are

based on quantities such as the probability of improvement (PI), the expected im-

provement (EI), the expected conditional improvement (ECI), and the maxima-region

entropy. On the other hand, the heuristic models derive from cues available on the

user interface, such as predictive mean, variance, remaining budget, and the number

of evaluations. Examples of heuristic models are the upper confidence bound (UCB),

the fixed sample number (FSN), the fixed remaining budget (FSN), and the dominant

physical prototype (DPP). Readers are directed to Ref. [96] for more details on how

the survey responses helped in identifying aforementioned judgments or cues.
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In overview, we represent the descriptive decision models in two stages, (i) formu-

lating a decision strategy as an acquisition function or a feature of observed history,

and (ii) modeling deviation from the strategy using a likelihood function. Acquisition

functions and features are deterministic models which predict decisions for a given

decision strategy, while likelihood functions, with their model parameters, impose a

layer of uncertainty around those predictions. Such a construct assumes that designers

are likely to make errors and deviate from predicted decisions, irrespective of whether

their underlying strategies are rational or heuristic-based. For rational strategies, the

assumption of probabilistic decisions mirrors the limited cognitive ability of design-

ers to make accurate predictions while having their judgments aligned with rational

judgments.

3.2.1 Decision to Choose the Next Design

In selecting xi+1 for (i + 1)th evaluation, an acquisition function assigns a value

to every x ∈ X based on the observed history Hi. The acquisition function, denoted

by χi(x,Hi, ψ), has a set of designer-specific parameters, ψ. It also depends on the

number of evaluations i which represents the possibility that a strategy is likely to

adapt as more evaluations are accumulated, e.g., exploring the design space during

initial stages while exploiting regions of high performing designs at later stages. In a

deterministic setting, the best design to pick is the one that maximizes the acquisition

function, and is given by max
x∈X

χi(x,Hi, ψ). For a probabilistic setting, however, we

define the probability of picking xi+1 using Boltzmann-like likelihood function:

p(xi+1∣χi, θd,Hi)∝ exp{γχi(xi+1,Hi, ψ)} , (3.7)

where θd = {γ,ψ} denotes collectively all model parameters. This likelihood function

ensures that parts of the design space with high acquisition function values are pre-

ferred over other parts, and that points with the same value of acquisition function

have the same probability of being selected. The rate parameter γ ≥ 0 is associated

with the sensitivity of probability density to changes in the acquisition function. In
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Table 3.1. : A list of decision models for the information acquisition decisions

Decision model Underlying strategy

1. Decision to choose x

Upper confidence bound

(UCB)

Explore design space during initial evaluations while exploit

during later evaluations.

Probability of improvement

(PI)
Selection probability proportional to PI value.

Expected improvement (EI) Selection probability proportional to EI value.

Expected conditional

improvement (ECI)
Selection probability inversely proportional to ECI value.

2. Decision to choose information source

Fixed sample number (FSN) Test high fidelity source after a fixed no. of samples.

Fixed remaining budget

(FRB)

Test high fidelity source if the remaining budget is smaller than

a fixed value.

Fixed maximum-region

entropy (FME)

Test high fidelity source if the information entropy of the

location of maximum is smaller than a fixed value.

Fixed expected conditional

improvement (FECI)

Test high fidelity source when the difference between EI from

one step and EI from two steps is smaller than a fixed value.

3. Decision to stop

Fixed sample number (FSN) Stop after a fixed no. of samples.

Fixed remaining budget

(FRB)
Stop after a fixed amount of budget is remaining.

Fixed maximum-region

entropy (FME)

Stop after the entropy of the location of maximum is smaller

than a fixed value.

Dominant physical prototype

(DPP)

Stop when the best high fidelity measurement minus the largest

predictive mean is smaller than a fixed value.

Fixed expected improvement

(FEI)
Stop after expected improvement (EI) is below a fixed value.

one extreme, as γ → ∞, the model becomes equivalent to the deterministic one as

the likelihood function collapses to a Dirac delta centered at the maximum of the ac-

quisition function. In the other extreme, as γ → 0+, the likelihood function becomes
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uniform over X . Different decision models based on different acquisition functions

are discussed next.

Upper confidence bound

Under this model, design points with high values of µi(x) + αiσi(x), where αi is

an exploration parameter, are preferred. The corresponding information acquisition

function is:

χi(x,Hi, ψ) = µi(x) + ae
−biσi(x), (3.8)

where ψ = {a, b} are the model parameters. The parameter αi is modeled as a decreas-

ing exponential function of i because the model represents the strategy to explore first

and exploit later.

Probability of improvement

The acquisition function, χi(x,Hi), for this model is proportional to the probabil-

ity that the next evaluation at x will generate higher performance than the current

best performance. We take the current best to be the maximum of predictive means

at past design evaluations, µ∗i = max
1≤j≤i

µi(xj), because of the uncertain information

sources. Let ∆i(x) = max{f(x) − µ∗i ,0} be the improvement at x. Given that the

state of knowledge about performance f(x) is distributed as Eq. (3.4), the corre-

sponding information acquisition function is:

χi(x,Hi) ∶= P [∆i(x) > 0∣Hi] = 1 −Φ(
µi(x) − µ∗i
σi(x)

) , (3.9)

where Φ is the cumulative density function of the standard normal distribution.
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Expected improvement

The expected improvement model prefers design points with high expectation of

improvement relative to µ∗i from a single additional evaluation [27]. Its acquisition

function is:

χi(x,Hi) = E [∆i(x)∣Hi]

= (µi(x) − µ∗i )Φ
⎛

⎝

µi(x) − µ∗i
σi(x)

⎞

⎠

+σi(x)φ
⎛

⎝

µi(x) − µ∗i
σi(x)

⎞

⎠
,

(3.10)

where the expectation is over the state of knowledge at step i, and Φ is the cumulative

distribution function of the standard normal distribution.

Expected conditional improvement

This model formulates the strategy of looking two steps ahead and minimizing

the aggregate expectation of conditional improvement from the second step after the

next one [97]. Suppose that we are making a hypothetical observation using the hypo-

thetical next-step design, x, and the hypothetical next-choice of information source,

m. The hypothetical point predictive density is N (µi∣x,m(x̃), σ2
i∣x,m(x̃)). Assume that

this density has the mean equal to the current mean,

µi∣x,m(x̃) = µi(x̃), (3.11)

which is justifiable because the predictive density of f(x̃∣x,m) is unchanged with-

out observing the outcome y at {x,m}. Given y at {x,m} has been added to the

observations, the hypothetical predictive variance is:

σ2
i∣x,m(x̃) = σ2

i+1∣x,m,y(x̃) = σ
2
i (x̃) −

k2
i (x̃, x)

ki(x,x) + v2
m

. (3.12)

Note that σ2
i∣x,m(x̃) is equal to σ2

i+1∣x,m,y(x̃) because σ2
i+1∣x,m,y(x̃) is in fact independent

of y.
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Then, ∆i(x̃∣x,m) = max{f(x̃∣x,m) − µ̂i,0} is called the conditional improvement

at x̃. If the current maximum is taken as the maximum predictive mean over X ,

µ̂i = max
x̃∈X

µi(x̃), the following monotonicity condition is true for all x̃ ∈ X [97]:

E [∆i(x̃∣x,m)∣Hi] ≤ E [∆i(x̃)∣Hi] , (3.13)

where the expected conditional improvement, E [∆i(x̃∣x,m)∣Hi], is calculated by sub-

stituting the hypothetical mean µi∣x,m(x̃) and variance σ2
i∣x,m(x̃) in Eq. (3.10). This

means that the improvement potential of any design x̃ reduces or remains as is after

adding the design x. If the selected x is influential at reference point x̃, then the con-

ditional improvement at x̃ will be small. Then, the most influential design is the one

that minimizes the aggregate conditional improvement over all x̃ ∈ X (or maximize

the negative of the same statistic). Accordingly, we define the acquisition function as

the integrated expected conditional improvement:

χi(x,Hi∣m) = −∫
X
E [∆(x̃∣x,m)∣Hi]dx̃. (3.14)

In the analysis, we take m to be the cheap low fidelity source, “L”.

3.2.2 Decision to Choose an Information Source

Different elements of the observed history Hi influence the decision to choose

among information sources. These elements can be derived quantities such as the

sequence of different information sources used, the frequency of a particular source,

the total cost, etc. We incorporate such elements into decision models using feature

functions. Given that multiple history elements may influence decisions, a decision

strategy is specified in terms of a weighted sum of multiple independent features. The

decision models based on feature functions are threshold-based, i.e., a decision is made

based on whether the weighted sum of features is greater or less than a threshold value.

Mathematically, we characterize a particular strategy using Rm independent features

denoted by gm,i,1(Hi), . . . , gm,i,R(Hi), with wm,1, . . .wm,Rm as the weight parameters.
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The likelihood of choosing the high fidelity information source (mi+1 = 2) is defined

using the sigmoid function as:

p(mi+1 =H ∣θm,Hi) = sigm(
Rm

∑
r=1

wm,rgm,i,r(Hi)) , (3.15)

where sigm(λ) = (1+exp{−λ})−1 is the sigmoid function and θm = {wm,1∶Rm} are model

parameters. The weight parameter wm,r is positive or negative, respectively, based on

whether an increase in gm,i,r(Hi) increases or reduces the selection probability of the

high fidelity source. The likelihood of selecting the low fidelity information source is

p(mi+1 = L∣θm,Hi) = 1 − p(mi+1 =H ∣θm,Hi)).

In a threshold-based decision model for choosing among information sources, we

always include a constant, negative basis function gm,i,1(Hi) = −1 because the dif-

ference between the weighted sum and a threshold determines the decision strategy.

Furthermore, we assume that every designer’s strategy relies upon a single element

of history, and the decision model thereof uses two features (Rm = 2), one more in

addition to the constant one. This is an acceptable assumption under the premise

that people’s cognitive ability is limited and they do not consider all the relevant

information while making decisions [98].

Fixed sample number

In this model, the low fidelity information source is used for a fixed number sam-

ples, and the expensive high fidelity source is used thereafter. The feature used for

this model is:

gm,i,2(Hi) = i. (3.16)

Fixed remaining budget

In this model, the remaining budget, B − ni,LcL − ni,HcH determines the choice

between the two information sources. Low fidelity observations, if any, are collected
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during initial evaluations until a fixed amount of remaining budget is left, and high

fidelity observations are collected thereafter. The feature for this model is:

gm,i,2(Hi) = B − ni,LcL − ni,HcH . (3.17)

Fixed maximum-region entropy

A strategy is based on the judgment of whether the region of function maximum

has been sufficiently identified given the observed history. It is assumed that once the

information entropy of the posterior probability density of the performance maximum

reduces to a fixed value, the designer starts evaluations using the high fidelity infor-

mation source. To define the entropy, let X∗ be the r.v. representing the location of

the maximum, i.e., X∗ =X∗[f] = arg maxx∈X f(x). The posterior probability density

of X∗ is given formally by:

p(x∗∣Hi) = E [δ (x∗ − arg max
x∈X

f(x)) ∣Hi] . (3.18)

The entropy of this distribution is:

gm,i,2(Hi) = S(Hi) ∶= E [log p(X∗∣Hi)∣Hi]

= ∫x∗∈X log p(x∗∣Hi)p(x∗∣Hi)dx∗.
(3.19)

We estimate the entropy numerically using the maxima of 500 functions sampled from

the posterior GP, see Eq. (3.3). Specifically, we estimate p(x∗∣Hi) by building the

histogram of the sampled maxima and then performing the integration of Eq. (3.19)

numerically.

Fixed expected conditional improvement

In this model, two possible actions are compared at every evaluation for the selec-

tion between information sources, i) evaluate using the expensive high fidelity source,

or ii) evaluate using the cheap low fidelity source first and then using the expensive

high fidelity source next. The first action is desirable when only a small improve-

ment in performance is expected, whereas the second action is desirable when large
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improvements are possible and exploration of the design space is beneficial. Ac-

cordingly, this model compares the maximum expected improvement from a single

physical prototype (max
x∈X

E [∆i(x)∣Hi]) to that from one computer simulation and one

physical prototype (max
x,x̃∈X

(E [∆i(x)∣Hi]+E [∆i(x̃∣x,L)])). The cost difference between

the two actions, i.e., the cost of one computer simulation is absorbed in the constant

feature. The feature function for choosing the first action over the second one is:

gm,i,2(Hi) = max
x,x̃∈X

(E [∆i(x)∣Hi] +E [∆i(x̃∣x,L,Hi)])

−max
x∈X

E [∆i(x)∣Hi] .
(3.20)

Also consider the case when the decisions of choosing the next design and choosing

information source are interdependent. For example, a designer may use the low

fidelity information source for evaluating design points with large uncertainty (for

exploration), and the high fidelity information source to evaluate design points closer

to regions of large performance and relatively low uncertainty (for exploitation). We

call this model the conditional upper confidence bound (CUCB) model.

For the case when selecting xi+1 is conditional on the choice of information source

mi+1, the joint probability of both the decisions is p(xi+1,mi+1∣Hi) = p(mi+1∣Hi)

p(xi+1∣mi+1,Hi), where p(xi+1∣mi+1,H) is the conditional likelihood function for the

decision to choose next design,

p(xi+1∣mi+1,Hi)∝ exp{γ′ [µi(xi+1) + α
′σi(xi+1)]} . (3.21)

The exploration parameter α′ is a′e−b
′i for mi+1 = L, or 0 for mi+1 =H, where a′ and b′

are positive parameters. The conditional likelihood function is dependent on mi+1 and

independent of its probability p(mi+1∣Hi), which can take any of the forms given in

Section 3.2.2.

The joint probability can be alternatively written as: p(xi+1,mi+1∣Hi) = p(xi+1∣Hi)

p(mi+1∣xi+1,Hi). Here, the likelihood of choosing the high fidelity source (mi+1 = H)

conditional on xi+1 is:

p(mi+1 =H ∣xi+1,Hi) = sigm(
Rm

∑
r=1

wm,rgm,i,r(xi+1,Hi)) , (3.22)
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where wm,r are model parameters. In a manner similar to the models in Section 3.2.2,

we fix Rm = 2 and gm,i,1 = −1. Then, the feature that specifies the dependence between

the decisions is:

gm,i,2(xi+1,Hi) = max
x∈X

µi(x) − µi(xi+1). (3.23)

The above formulation supports picking the high fidelity information source for de-

signs that has high expectation of performance.

3.2.3 Decision to Stop

The strategies for deciding whether to stop are modeled using basis functions

in the same manner as the decision to choose information source. Assume that a

strategy for stopping after i evaluations is dependent upon Rs features of history Hi,

and characterized by basis functions gs,i,1(Hi), . . . , gs,i,Rs(Hi). Then, the likelihood of

stopping is defined using sigmoid function as follows:

p(si = 1∣θs,Hi) = sigm(
Rs

∑
r=1

ws,rgs,i,r(Hi)) , (3.24)

where θs = {ws,1∶Rs} are designer-specific model parameters. The weight parameter

ws,r can be positive or negative depending on whether an increase in gs,i,r(Hi), respec-

tively, increases or reduces the probability of stopping. Again, we take gs,i,1(Hi) = −1

and we assume that the designer only relies upon a single feature of history while

deciding whether to stop or not. Thus, Rs is 2 for all models.

Fixed sample number

According to this model, the total number of evaluations performed is fixed. Ac-

cordingly, the feature function is:

gs,i,2(Hi) = i. (3.25)
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Fixed remaining budget

In this model, we assume that evaluations are stopped when the remaining budget

B−ni,LcL−ni,HcH reduces to a fixed value. The basis function has the same following

form:

gs,i,2(Hi) = B − ni,LcL − ni,HcH . (3.26)

Dominant physical prototype

Evaluations are stopped if the difference between the largest high fidelity mea-

surement and the maximum of predictive mean is smaller than a fixed value. We

define the corresponding feature as:

gs,i,2(Hi) = max
x∈X

µi(x) − max
j∶1≤j≤i,mj=H

yj. (3.27)

Fixed expected improvement

In this model, we assume that evaluations are stopped if the maximum expected

improvement from the next sample is small. This strategy fits into Eq. (3.24) by

defining the feature function as follows:

gs,i,2(Hi) = E [∆i(x)∣Hi] , (3.28)

where the expected improvement is calculated in the same as given in Eq. (3.10).

3.3 Results and Discussion

We employ the variational Bayes approach to find approximations to posterior

distributions of the model parameters, and estimate lower bounds to marginal log-

likelihoods of the decision models conditional on the experimental data [74]. The

variational Bayes approach is useful in complex stochastic models where analytical

forms of posterior distributions are intractable. The model evidence lower bound
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(ELBO) quantifies the the support for a model, i.e., the accuracy with which a model

represents the experimental data. We denote ELBO, say for model Mk, as Lk.

We assume that all models are equally likely to represent the data a priori. To

facilitate more intuitive explanation of the parameter estimates in the results, we

transform the likelihood functions in Eq. 3.15, 3.24, and 3.22 and take the weight

parameters of the non-constant feature out of the summation. This way the thresholds

are given by
wm,1

wm,2
and

ws,1

ws,2
. The following prior distributions are placed over these

parameters.

γ, γ′, a, b, a′, b′ ∼ Gamma(1,1),

wm,2,ws,2 ∼ Gamma(1,1) for FSN,

−wm,2,−ws,2 ∼ Gamma(1,1) for all other models,

wm,1

wm,2
,
ws,1

ws,2
∼ Gamma(1,1) for FME, FECI, FEI,

wm,1

wm,2
,
ws,1

ws,2
∼ Normal(µ = 10, σ = 1) for FSN, FRB, CUCB,

ws,1

ws,2
∼ Normal(µ = 0, σ = 1) for DPP,

(3.29)

For this analysis, we group the experimental data into different treatments. We do

not address heterogeneity among designers’ strategies and assume that all subjects

share the same set of model parameter values within a treatment. We partition

the experimental data into training dataset and test dataset. The training dataset

consists of the data from randomly selected fifteen periods, and is used to estimate

model parameters using Variational inference. The decision models with posterior

parameter estimates are then validated using goodness-of-fit tests against the test

dataset consisting of the remaining three periods.

For cross-validation, we check the posterior prediction accuracy of decision models

on test dataset using Wanatabe-Akaike information criterion (WAIC) [99], which

estimates the expectation of data by averaging log pointwise predictive density over

the posterior distribution. A non-Bayesian measure, called accuracy score, is also

calculated for decision models of choosing information source and stopping which

have discrete alternatives. If ẑs is a prediction corresponding to a data point zn in

the test dataset z1∶S, then the accuracy score is 1
S ∑

S
n=1 1{zn}(ẑn).
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The posterior distribution approximations and evidence lower bound (ELBO) for

decision models were estimated using Automatic Differentiation Variational Infer-

ence [100] algorithm in PyMC3 module of Python [73]. This algorithm was run for

20000 iterations, and among those, last 5000 iterations were used to calculate the

average ELBO.

3.3.1 Models with Highest Evidence Lower Bound

To quantify the support for a model over a baseline, the ELBO for each decision

models is compared against the log-likelihood of random decisions. For the decision

to choose next design, the log-likelihood of random sampling (Lrand) is N log( 1
20)

assuming a uniform distribution function over the design space [−10,10]. For the

decisions to choose an information source and to stop, Lrand isN log(0.5) assuming the

probability of 0.5 for each of the two alternatives in both the decisions. The positive

values of log-Bayes factor Lk−Lrand in Figure 3.4 highlight that the predictions of the

decision models are more accurate than random predictions. We are able to compare

the support for any two models, say k1 and k2, by comparing the differences in log-

likelihoods, Lk1 − Lrand and Lk2 − Lrand, because Lrand remains constant in a given

treatment.

Result 1. For the decision to choose the next design, the upper confidence bound

(UCB) model and the conditional upper confidence bound (CUCB) model have the

highest ELBOs.

From this and Figure 3.4, we conclude that exploration during initial evaluations

while exploitation during later evaluations, captured by UCB and CUCB models, is

the most likely strategy for choosing the next design point. In treatments T1, T4, and

T5, the ELBO of the CUCB model is higher than that of the UCB model suggesting

low fidelity observations being used for exploration while high fidelity observations

for exploitation.
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Result 2. For the decision to select an information source, the fixed sample

number (FSN) model has the highest ELBO at low budget, whereas the fixed expected

conditional improvement (FECI) model has the highest ELBO at medium and high

budgets. The conditional upper confidence bound (CUCB) model’s ELBO in ‘save-

remaining-budget’ part with low budget is close to that of the FSN model.

Selecting the first high fidelity observation after a fixed number of evaluations is

the most likely strategy at low budget. However, with the incentive-to-save budget,

subjects also rely on predictive mean to select whether to choose the high fidelity

information source. On the other hand, comparing the expectation of improvement

between the low fidelity and the high fidelity information sources at every iteration

is the most likely strategy for medium and high budgets.

Result 3. For the decision to stop, the fixed remaining budget (FRB) model

has the highest ELBO in all treatments, except in high budget treatment of ‘save-

remaining-budget’ part where the dominant physical prototype (DPP) model has the

highest ELBO.

According to the results in Figure 3.4, the subjects stopped after exhausting the

entire or part of the available budget in treatments T1, T2, T3, T4, and T5. How-

ever, at high budget in the ’save-remaining-budget’ part (treatment T6), the subjects

stopped when the best performance from high fidelity observations was closer to the

highest mean prediction of the performance.

Results 1,2, and 3 also hold true for the test dataset based on cross-validation

using WAIC (see Figure 3.4). The lower WAIC implies better support for a model.

The differences in prediction accuracy from different models are substantial given that

WAIC is defined in logarithmic scale. For additional proof, prediction accuracy scores

for discrete choices in decisions to choose information source and stop are presented

in Figure 3.5.
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Figure 3.4. : Approximated log-Bayes factors (Lk−Lrand) relative to random selection

from training data, and Watanabe-Akaike Information Criterion (WAICk) from test

data for decision models at different treatments.

3.3.2 Effects of Fixed Budget and Payment Incentives

The amount of fixed budget as well as the incentive-to-save-budget affect the

subjects’ strategies for information acquisition. As fixed budget increases, the subjects

evaluate more design points, whereas with the incentive-to-save-budget the number of

evaluations decreases. Below, we list specific observations about the trade-off between

more evaluations and saving the budget based on the posterior distributions of model

parameters.

Result 4. Exploration of design space increases with the increase in fixed bud-

get, except when fixed budget increases from medium to high in the ‘save-remaining

budget’ part.

As observed from Figure 3.6, the mean posterior estimates of the exploration scale

α increase with fixed budget between treatments T1, T2 and T3. However, in ‘save-
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Figure 3.5. : Predictive accuracy scores of decision models on test data.

remaining-budget’ part, the mean posterior estimates of α are highest at medium

budget (treatment T5) while they decrease at high budget (treatment T6). Such

reduction in exploration at high budget is only prominent when subjects’ incentive is

to save budget and when large savings are possible.

Result 5. The probability of selecting high fidelity information source increases

with increase in fixed budget, except when fixed budget increases from med to high

in the ‘save-remaining budget’ part.

Based on the posterior distribution of the threshold parameter
wm,1

wm,2
for the FSN

model, we observe that the subjects choose a single high fidelity observation after 6

samples at low budget treatments (treatments T1 and T4). The average number of

high fidelity observations in the treatments T2 and T3 are 2.6 and 4.2 respectively.

A larger estimate of
wm,1

wm,2
for the FECI model implies a weaker threshold for choosing

the high fidelity source over the low fidelity source, i.e, larger probability for choosing

the high fidelity source. In the treatments T2 and T3, the mean posterior estimate of

wm,1

wm,2
for the FECI model is the same (mean posterior

wm,1

wm,2
= 0.5), whereas it increases

from 0.4 to 0.5 between the treatments T5 and T6.



70

Result 6. The probability of stopping at high values of remaining budget in-

creases with increase in fixed budget and with the incentive-to-save budget.

The result follows from the posterior distribution of model parameters in the FRB

model. Figure 3.7 shows the posterior probability of stopping as function of remaining

budget from the FRB model. The FRB model’s threshold parameter estimate for the

‘use-it-or-lose-it budget’ part (mean posterior
ws,1

ws,2
≈ 5) is smaller than the cost of one

high fidelity observation (cH = 8) which implies that the subjects stop after exhausting

almost the entire fixed budget. On the other hand, in ‘save-remaining budget’ part,

the mean estimates of
ws,1

ws,2
increases as fixed budget increases.

0 10 20
i

2

4

6

8

a
ex

p(
−
bi

)

UCB

T1 T2 T3 T4 T5 T6

0 10 20
i

a
′ ex

p(
−
b′
i)

CUCB

Figure 3.6. : Mean posterior estimations of the exploration scales α and α′ for the

the decision to choosing the next design.
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Figure 3.7. : Posterior predictions of the probability of stopping as a function of the

remaining budget under the FRB model.

3.3.3 Checking Model Accuracy

The results indicate that the simple heuristic models predict designers’ decisions

in the sequential information acquisition process more accurately than the expected

utility-based models. No single model captures all strategies exactly, however, the

heuristic models with the highest ELBOs provide most accurate approximations to the

subjects’ strategies. As a result of accurate predictions of the information acquisition

decisions, the heuristic models also predict the performance more accurately than
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the expected utility-based models, e.g., EI, FECI, and FEI. To verify the results,

we performed 150 simulation runs for the sequential information acquisition process

using both a triplet of highest ELBO heuristic models and a triplet of the expected

utility-based models. At each iteration i of a run, we quantified the current belief

about the design performance using normalization of the highest predictive mean

max
j=1≥j≤i

µi(xj). A comparison of the predictions of these quantities with their actual

values in the test dataset in Figure 3.8 confirms that the highest ELBO heuristic

triplet has better predictive strength than the expected-utility based triplet.

Figure 3.8. : Normalized design performance quantified as highest predictive mean.
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The heuristic models remain more likely to represent subjects’ decisions if the

assumptions about the prior state of knowledge are changed. For example, when

Gaussian priors with means 30 and 50 are implemented as the prior state of knowledge

instead of the zero mean Gaussian prior in Eq. (3.4), the ELBO of the CUCB model

still remains higher than that of the EI-based model for choosing next the design. The

ELBOs of the CUCB model in treatment T1 for means 0, 30 and 50, respectively,

are 1783, 1722, and 1771, whereas those of the EI model are 1977, 1826, and 1850. A

possible reason for the high ELBO of the CUCB model is the interdependence between

the decisions of choosing the next design and choosing an information source. Such

interdependence is inevitable as the subjects have few available cues for most of the

decisions [98].

3.3.4 Implications for Engineering Design

On the objective functions in the test dataset, the heuristic triplet model gener-

ates higher design performance (gross payoff) than the expected utility (EU)-based

triplet model. Figure 3.9 plots the gross payoff (Eq. 3.5) for both the heuristic triplet

and the EU-based triplet models. We observe that the EU-based triplet has poorer

gross performance, especially in treatment T3. The gross performance of the heuristic

triplet model improves with high fixed budget and without the incentive for saving

budget. That is because with high fixed budget and without the incentive for saving

budget the heuristic model triplet completes larger number of iterations, conducts

more design exploration, and receives better performance. Figure 3.10 provides ev-

idence for this explanation. Therefore, if the goal is to maximize the gross design

performance, the system designers should allow designers to spend a large fixed bud-

get without any incentive to reduce spending. Under this incentive structure, there

is a greater chance of finding the best design that maximizes the performance.

Despite the large gross payoff and the closeness to human design decisions, the

heuristic models are less efficient in terms of the net payoff. More iterations of the
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Figure 3.9. : The gross payoff G(Hi) and the net payoff N(Hi) after stopping for heuristic

triplet model and the expected-utility-based triplet model. The gross payoff is a

function of the best design performance y∗i calculated according to Eqs. 3.6. The net

payoff is the gross payoff minus total cost, i.e., G(Hi)−Ci.

heuristic triplet model result in higher total cost, and therefore, reduce the net payoff,

i.e., the difference in the achieved performance and the total cost incurred until stop-

ping, as shown in Figure 3.9. We observe that the EU-based triplet model provides

higher net payoff on average than the heuristic triplet models in all treatments. The
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Figure 3.10. : Total cost Ci and the number of iterations i after stopping for the

heuristic triplet model and the expected utility-based triplet model.

difference in average net payoffs from the heuristic triplet model and the EU-based

triplet model reduces with decreasing fixed budget and with the incentive to save

budget.

If the goal is to maximize the net payoff, system designers should restrict the

amount of fixed budget or implement monetary incentives proportional to the saved

budget. The latter option is more viable than the former if the appropriate amount

of fixed budget cannot be determined. Under the monetary incentives for reducing

spending, not only are the designers more likely to maximize the net payoff, but also

their decisions are more likely to be aligned with the expected utility-based models.

The prediction accuracy score of FEI model on the test data is larger in treatment T6

with the incentive-to-save budget than in treatment T3 without such an incentive.

The same holds true for the training data where the FEI model’s accuracy scores in

treatments T3 and T6 are, respectively, 0.71±0.02 and 0.76±0.024 (p−value < 0.0001).

Note that we implemented the incentive-to-save-budget by paying to the subjects the

entire remaining budget they saved. However, its effects may likely be obtained
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by paying a smaller amount proportional to the remaining budget. This is because

people have the comparative view of monetary benefits, failing to receive even a small

potential benefit is a lost opportunity. Because people are loss averse, losses loom

larger than gains for them when compared against each other [30].

The implication for our understanding of human decision making in engineering

design is that designers may be more attentive to the design performance than the

cost of design evaluations or the relative difference in two. Possible explanations of

this observed gap may include high cognitive load associated with processing predic-

tive uncertainty and estimating utility of the next design in relation to the cost of

evaluation. It is also likely that the subjects are driven by intrinsic factors such as

satisfaction from finding the best design and delivering the best outcomes for a given

task. Further research is needed to determine the root causes for this observed trend.
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4. SEQUENTIAL INFORMATION ACQUISITION OF MULTIPLE DESIGNERS

IN COLLABORATIVE TEAM

Following on the analysis of individual designer’s design exploration decisions, this

chapter studies designers decisions to communicate or not and whom to communi-

cate with. The context of the design process is a collaborative design where different

designers collaborate to design a complex system with each individual designing a

specific subsystem component (called discipline). This chapter analyzes the time

longitudinal dynamics between team communication and system-level design per-

formance in engineering design teams through stochastic modeling and behavioral

experiment data. The hypotheses about the team communication and design perfor-

mance dynamics is represented graphically in Figure 4.1. The research study has two

research objectives:

1. evaluate the effects of social and technical factors such as design interdependence

and social network properties on communication-related decisions, and

2. evaluate the influence of the amount of interdisciplinary communication on the

design performance.

In the approach, the first step is the experiment design for collection of team com-

munication data. The experiment design for this particular study is guided by the

NASA mission design laboratory (MDL) setting for the purpose of creating a rep-

resentative experiment [101, 102]. This controlled experiment mimics some features

of the reference system while it defers in other features. Table 4.1 summarizes the

differences and similarities in two settings. In second step, we present the descrip-

tive decision models for communication-related decisions. Finally, these models are

trained on the communication data from the controlled experiment as well as the

NASA MDL setting for understanding drivers of communication decisions. We thank
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Prof. Zoe Sajnfarber and Dr. Erica Gralla for providing the communication data of

NASA MDL engineers.

Figure 4.1. : A model of communication and design performance dynamics.

4.1 Experiment Design

This section describes the key elements of two experimental datasets, engine design

dataset and spacecraft design dataset, such as the context of design task undertaken

and communication pathways available, the experimental design task itself (object),

background and incentives for the participants (actors), and the design process em-

bodied in the experimental task.

The context of the two datasets is that of engineering system design where mul-

tiple designers are individually selecting properties of subsystem components and

collectively working towards meeting the prespecified system goals. The setup of

each experimental setting is such that one team member designs one subsystem com-

ponent, but two components maybe interdependent. The design task involves para-

metric design whereby a designer chooses design parameter of the respective design

component. The interdependence between a pair of subsystems is structured as the

number of shared design parameters between the pair. The overall interdependence

between all pairs of subsystems are represented using a design structure matrix in
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Table 4.1. : A comparison of the model world and the reference world

Cate-

gory

Dimen-

sion
NASA MDL (Reference)

Controlled experiment

(Model)

Task

System Conceptual spacecraft design Parametric engine design

Timescale One week One hour

Disciplines Typical aerospace disciplines Engine components

Team size
12 disciplines, 32 design

variables

5 disciplines, 10 design

variables

Design

interdepen-

dence

Theory-based mapping

betwn. design variables and

disciplines

Theory-based mapping

betwn. design variables and

disciplines

Design

objective
Satisfying requirements Optimization of objectives

Subject
Design

expertise
NASA engineers Engineering students

Context

Communi-

cation

channels

Face-to-face communication

Text-based communication

and shared parameter

database

Cultural

norms
Slightly different risks

No specific risk, flat

distribution of risk

Resource

access

Access to discipline models,

simulations, testbed

Access to component-level

simulation models and

catalogs

Incentives
Career development, fixed

salary employment

Performance-based monetary

payment

which each cell stores the number of shared variables between the corresponding row

and column subsystems, as shown in Figure 4.2.
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4.1.1 Reference Setting: Spacecraft Design Task

The spacecraft design task involves conceptual design of spacecraft systems with

close to 10 subsystems, e.g., advanced camera for survey (ACS), command and data

handling (C&DH), communications, flight dynamics (FD), etc. Such task is con-

ducted through 4-days long studies at the NASA mission design laboratory. For each

study, co-located NASA engineers with specialized knowledge of one or more subsys-

tems engage in the design of spacecraft subsystems. Additionally, a systems engineer

facilitates the design process by integrating information from different subsystems,

sharing design parameters, and resolving conflicts. One part of the design goals is

to meet some requirements on the spacecraft dry mass quantifying the total mass

of individual subsystem designs. Subsystem engineers periodically post their present

subsystem mass to a common database accessible by others.

The subjects of each study interact face-to-face for meetings. The face-to-face

meetings may include groups of two or more subjects. To maintain similarity with

the pairwise interactions in the engine design dataset, the spacecraft design dataset

converts a group talk into one-to-one undirected pairwise interactions between all

those involved.

The dataset includes timestamped observations of pairwise interactions, the iden-

tities of subsystems involved in each interaction, and the system-level spacecraft dry

mass from six different studies. The study subjects are full-time NASA engineers

and engage in the design tasks as a part of their job. Most of the six studies have

one engineer, mainly the same person, assigned to each subsystem with detailed prior

knowledge of their respective spacecraft subsystems and relevant design interdepen-

dencies.

4.1.2 Engine Design Task

The engine design task operationalizes an engineering system design of an engine

that consists of five subsystems components, viz., connecting rod, crankshaft, piston
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head, flywheel, and piston-pin. Design of each subsystem requires specification of

two design parameters while anticipating the effects of other parameters shared with

other subsystems. Figure 4.2 presents each subsystem’s design variables and the

design variables that it shares with others. The assumed design interdependence

structure has subsystems with low interdependence such as piston pin, as well as

subsystems with high interdependence such as piston and flyweel. The system-level

design objectives in the experimental task are to minimize the total mass of the

engine components and maximize the factor of safety against failure. The total mass

is sum of individual masses, whereas the system-level factor of safety is minimum of

individual factors of safety.

Members on the same team could communicate with one another through one-

to-one text messages. Face-to-face communication as well as group text messages are

restricted so that the interactions between different members on the same team can

be tracked over time.

The participants in the experimental task were undergraduate students from an

introductory machine design course. A total of 200 students participated in the

experiment. Every five students were randomly grouped into a team and each student

in a team was assigned a unique role. Another component of the team was a shared

virtual screen, called “broadcast”, that showed the current values of design objectives

(see example in Figure 4) and design parameters in certain conditions. To ensure the

experiment task was incentive compatible, the experiment paid monetary incentives

proportional to the achieved design performance as a function of the system-level

mass and the system-level factor of safety. The achieved design performance fell into

one of the five levels. All subjects on a team received the same amount in prize money,

between $10 to $20 at the end of the experiment. Figure 4.3 shows an example of

how the payment was calculated from the system performance levels achieved.

Each team belong to either of the four experimental conditions that differed in

two independent variables: i) design exploration using simulations on the continuous

design space versus a catalog with pre-evaluated design points scattered across the de-
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(a) Design structure matrix for the engine design problem

(b) Design structure matrix for the spacecraft design prob-

lem.

Figure 4.2. : Pairwise design interdependencies in the matrix cells represent the num-

ber of shared design variables
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Table 4.2. : Design interdependence structure for design of an engine assembly.

Subsystem
Subsystem

parameter 1

Subsystem

parameter 2

Shared design

parameters

Connecting

rod

I-section thickness

(tI)

Ratio of rod length

to crank length

(r1)

Piston bore

diameter (D)

Crankshaft Bearing offset (c) Pin diameter (dc)

Flywheel diameter

(ds), Flywheel

thickness (tf ),

Piston bore

diameter (D)

Flywheel
Flywheel diameter

(ds)

Flywheel thickness

(tf )
Bearing offset (c)

Piston head
Head thickness

(tH)
Bore diameter (D) –

Piston pin
Length-diameter

ratio (r2)

Ratio of

inner-diameter to

outer diameter (r3)

Bore diameter (D)

sign space, and ii) the global availability of shared design parameters on the broadcast

screen versus no such availability. The factorial design of experiment generated four

experiment treatments: i) design exploration using simulations but design parame-

ters not visible (S-P0), ii) design exploration using simulations and design parameters

are visible (S-P1), iii) design exploration using catalogs but design parameters are

not visible (C-P0), and iv) design exploration using catalogs but design parameters

are visible (C-P1). Figure 4.4 gives a snapshot of information provided during the

two different types of deign exploration At the time of design exploration, the cur-

rent values of key design parameters were either available on the broadcast screen
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Figure 4.3. : Categorization of continuous design objectives into discrete levels.

(a) Simulation-based local design search (b) Catalog-based local design search

Figure 4.4. : The user interface for two types of design exploration processes: a)

simulation-based and b) catalog-based.

(conditions P1), or this information was hidden (conditions P0). Figure 4.5 provides

a user interface showing the broadcast information. In both cases, the information

about the current state of system-level objectives such as mass and factor of safety

was present on the user interface.
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Figure 4.5. : An example of the global information shown on broadcast, which displays

key design variables for condition P1 only.



86

4.2 Descriptive Models of Communication-related Decisions

The stochastic models represent the probabilities of change in team communi-

cation and design performance for any given moment while considering their mutual

dependence. Specifically, they models the probability that a designer interacts with

fellow teammates given past communication and design performance at the time, and

the probability that such communication has an impact on the systems performance.

Team communication spans a finite space X of directed networks between a fixed

number of nodes. A sample directed network quantifies pairwise interactions (an edge

property) in terms of an adjacency matrix. The observation times of communication

are discrete, equidistant time steps t0, t1, t2, . . . , tM in a fixed time interval T . A time

series of team communication forms a discrete stochastic process {X(tm)∣ tm ∈ T } on

the network space X , where time step tm assumes values in interval T . A cell value,

say Xij(tm) ∈ Z, in the adjacency matrix at time tm denotes the number of interactions

between disciplines i and j during interval (tm−1, tm]. Additionally, a diagonal entry

Xii(tm) represents discipline i’s interactions with itself such as the count of design

searches. Therefore, note that the network represented by adjacency matrix X(tm)

is a weighted network. The constant separation between two consecutive time steps

δ = tm−1 − tm is called the sampling window. The pairwise interactions within a

sampling window are considered simultaneous and independent. Too large sampling

window δ will misclassify interactions as independent. If δ is too small, interactions

will be thinly scattered between the observation times. The adjacency matrix X(tm)

is a directed graph if identification of the source and the recipient of each interaction is

possible. Otherwise, an undirected graph converts to a directed graph by converting

each edge in an undirected graph into two edges.

At any given moment, a K dimensional vector in the space Z denotes the de-

sign performance. The design performance over time is a discrete stochastic process

{Z(tm)∣ tm ∈ T } on the space Z where time parameter tm takes values in interval T .

Each design objective that constitutes a design performance vector is discrete but
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ordered (ordinal) variable whose higher level is preferred over a lower level. Using

ordinal variables to represent design objectives implies that disciplines have a relative

understanding of the design performance and do not know the design performance on

a continuous interval.

The central hypothesis of the stochastic models is that the dynamic system con-

sisting of team communication and design performance is an outcome of a Markov

process. The Markov assumption means that the conditional distribution of future

team communication {X(tm+1) ∣ tm+1 > tm} for any time tm ∈ T given the past and

the present depends only on the present team communication X(tm) and the present

design performance Z(tm). Similarly, the distribution of future design performance

{Z(tm+1)∣ tm+1 > tm} is conditionally dependent on only the present states X(tm) and

Z(tm).

4.2.1 Deciding the Rate of Interactions

In a system design team, a discipline acquires information from multiple channels

to determine the opportunity for improvement in overall design performance and the

performance of its own subsystems. Examples of such channels are pairwise commu-

nication with other design disciplines, communication with an integrator discipline

(systems engineer), and exploration of the design space of its subsystem. The repre-

sentation of team communication as a matrix encompasses these choices by including

an integrator discipline as a part of the nodes in the adjacency matrix and including

the design search counts as diagonal entries.

This model considers that the present state of design performance affects the fre-

quency of selecting specific communication channel. If the past and present design

performance is low, then the number of interactions would increase during imme-

diately next future time step. Suppose that a discipline can access communication

channels to initiate an interaction. Let vector βc ∈ RK the effect of present design

performance on the frequency of interactions through a particular channel c. Con-



88

stant parameter γc ∈ R is an intercept parameter. Then, the expected number of

interactions through channel c is

λc(tm) = eβc⋅Z(tm)+γc . (4.1)

This time variant function λc(tm) is called the rate function of communication channel

c. The probability distribution of the number of channel c interactions during the

next time step is a Poisson distribution:

p(Nc(tm+1) = y∣βc, γc, Z(tm)) =
λ(tm)y

y!
eλ(tm). (4.2)

The implicit assumption in the communication frequency model of Eq.(4.2) is that

the interactions through different channels during any sampling window take place

independently of each other. This assumption is acceptable when a discipline can

simultaneously operate different channels without mutual interdependence.

4.2.2 Deciding Whom to Communicate With

The focus of modeling social selection is on understanding the specific reasons why

a discipline chooses to interact with other disciplines. For this purpose, this model

considers two types of factors affecting the social selection: social network factors

such as acquaintances between discipline pairs, present popularity, etc., and technical

factors such as design interdependencies. Social network factors are time-varying

and instantaneous, whereas the design interdependecies are fixed for a given design

problem. Therefore, modeling social selection would allow investigation of whether

instantaneous social factors has an equal effect as the constant technical factors on

team communication.

Suppose that discipline i’s communicates with other disciplines to maximize its

utility which is a function of some dyadic statistics such as pairwise reciprocity, nodal

popularity, and design interdependence. Discipline i’s prefers to maximize L different

dyadic network statistics that depend on the present adjacency matrix X(tm) = x.
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These network statistics are denoted by fi(x) = {fi1(x), fi2(x), . . . , fiL(x)}. Param-

eter i in the subscripts implies that the values of network statistics are different for

different disciplines. Then, from a future interaction with discipline j, discipline i can

change its dyadic network statistics by amount f(∆ijx) − f(x), where operator ∆ij

reflects the single change in the present adjacency matrix due to an interaction added

to cell value xij. Similarity, by communicating with discipline j, discipline i increases

total amount of design interdependence with the connected nodes by amount Sij.

Then, the overall utility function of discipline i for communicating with discipline j

is:

Uij(x) = β ⋅ (fi(∆ijx) − fi(x)) + γSij + εij, (4.3)

where random parameter εij changes between discipline pairs and changes with time

(which assumed implicit to make notation simpler). Parameters β ∈ RL represents

the relative preferences for different network statistics and γ is the preference for

maximizing interactions with highly-interdependent disciplines. The utility function

in Eq.(4.3) is called discipline i’s objective function.

Consider two examples of dyadic network statistics assumed to drive social se-

lection: nodal popularity and pairwise reciprocity. First, nodal popularity statistic

measures the total incoming degree of the disciplines that discipline i is connected to.

It is mathematically given by fi,1(x) = ∑j≠i 1xij>0∑h≠j xhj, where indicator function

1xij>0 is 1 if xij is a positive integer and 0 otherwise. Then, a positive preference

parameter of nodal popularity statistic in the objective function would imply that

nodes with high incoming interactions in the present are likely to be chosen for more

interactions in the future. Second, the pairwise reciprocity statistic measures the

number of mutually matched incoming and outgoing links with the connected dis-

ciplines. Mathematically, the reciprocity statistic is calculated as the minimum of

incoming and outgoing links, fi,2(x) = ∑j≠i min{xij, xji}. A positive preference pa-

rameter associated with the reciprocity statistic would imply that future interactions

are responses to present interactions from others.
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Next, the choice probability for discipline i to select a discipline for communica-

tion in the next time step is proportional to the objective function in Eq (4.3). If

we consider that εij has a standard Logistic distribution, then the probability that

discipline i selects discipline j, given that discipline i is communicating, is:

pij(x, Sij) =
eβ⋅fi(∆ijx)+γSij

∑h≠i e
β⋅fi(∆ihx)+γSih

. (4.4)

This choice probability function has a multi-logit form similar to multinomial logistic

regression and dependent on present communication state x and pairwise design in-

terdependence Sij Note that the present network statistics fi(x) from the numerator

and denominator cancel each other out. Additionally, because the interactions during

a sampling window are to be independent of each another, the choices of discipline

i during the next sampling interval (tm, tm+1] has a multinomial distribution with

independent probabilities for different discipline partners given by Eq. (4.4).

4.2.3 Effects of Team Communication on Design Performance

There are multiple reasons why team communication may affect the design per-

formance in short term and long term. One reason is that designers discover inconsis-

tencies between design parameters of different subsystems through communication.

In short term, the identification inconsistencies may result in reduction in design per-

formance. Through continued communication among the disciplines and partial or

substantial rework, the design inconsistencies may get resolved in a long term. An-

other reason for reduction in design performance over long term may be misplaced

communication leading to lost opportunity to discover inconsistencies and improve

upon the existing design.

In the dynamic model of team communication and design performance, the pre-

dictors of design performance change are different amounts of communication cor-

responding to different interaction channels. Let vector N(x) denote the numbers

of interactions through different communication channels. To model these amounts’

effect on the design performance, we consider a random utility function. The change
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from the present design performance to future performance should be in accordance

with the maximization of this utility function. The utility maximization is a matter

of conscious choice on part of a designer, rather the change occurs by the virtue of

designers’ design search decisions, subsystem models and integration of performance

at the system level. The random utility of selecting level z for the kth-dimension of

the performance vector in the next time step Z(tm+1) is:

Uk(z) = βzk ⋅N(x)z + γzkz + ζk. (4.5)

In Eq. 4.5, assuming positive values of effect parameters βzk, the correlation term

N(x)z means the larger numbers of interactions increase the design performance.

Parameter γzk represents the basic shape of the utility function. Positive γzk would

signify that the dynamic process results in large values of performance levels in gen-

eral, where as negative γzk would signify the opposite. Random variable ζk is specific

to the present time step and the dimension of design performance being considered.

From the possible levels, the dynamic process selects a particular level z for kth

performance dimension with the following probability:

pk(z,x) =
βzk ⋅N(x)z + γzkz

∑q∈Zk
βzk ⋅N(x)q + γzkq

. (4.6)

This choice probability function depends on the present communication state x. The

assumption implicit in the derivation of Eq.(4.6) is that the random variable ζk has

a standard logistic distribution.

4.3 Results and Discussion

The results are divided into four sections: (i) posterior parameter estimates for

preferences on when a subject runs local search, performs text-based interaction, or

broadcasts own parameters, (ii) posterior estimates of how a subject selects whom

to communicate with from the fellow designers working on other subsystems, (iii)

posterior parameter estimates for how the rate of interactions affect the changes in
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design performance, and (iv) model checking of the descriptive decision models on

the observed communication data.

Since the time duration of the tasks in the two settings is different, we define

unit interval time for each setting so that we can compare communication patterns

on the same timeline. The unit interval for the engine design setting is one minute

and it is one hour for the NASA MDL setting. These particular unit intervals are

selected because (i) they partition the respective task duration into a similar number

of time steps (≈ 35) in two settings, and (ii) the average number of interactions by

each discipline (average network degree) within a unit interval is approximately same

(between 3 to 5) in two settings. The results include three sets of smoothing windows

for predictor variables, no smoothing (τ = 1), moving sum over past five unit time

steps (τ = 5), and moving sum over past ten unit time steps (τ = 10).

4.3.1 Estimated Strategies for Selecting the Rate of Interactions

In the engine design experiment, the first result across multiple experimental con-

ditions is that the present system performance levels or present subsystem perfor-

mance levels has negative effects on the future number of local design searches. This

negative effect is measured by the negative parameter estimates in Figure 4.6. This

effect may be explained using two mechanisms: i) the student subjects increase local

design searches if they encounter low performance at any given time step, or ii) the

student subjects reduces the future local searches once they reach a sufficient per-

formance levels. In these two possibilities, the first possibility is more likely because

the student teams do not reach high performance levels early in the duration of the

design process. This effect is statistically significant in conditions S-P0, S-P1 and C-

P0, but not in condition C-P1. In condition C-P1, the design space search is efficient

than other conditions due to the availability of catalogs and the global availability

of design parameters. The availability of such global information may preclude the

need for repetitive exploration of the design space. Further, the student subjects’ at-
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tention differs from the subsystem performance levels in condition S-P0 to the system

performance levels in condition S-P1 and C-P0. This difference is justifiable because

the student subjects in the most information-restrictive condition S-P0 sequentially

search their own subsystem design spaces and likely understand the state of the overall

system performance from their subsystem performance. The second result observed

across the experimental conditions is that the system mass levels has negative effect

on the rate of text-based interactions. This implies that the low performance lev-

els of the system mass in the present drive more one-to-one textual interactions in

the future. Note the corresponding effect parameters for the system factor of safety

levels are statistically insignificant, hinting that the system mass levels might have

been bigger hindrance for achieving the highest possible system objectives. Indeed,

a separate analysis confirms that the total Sobal sensitivity of all design parameters

to the system mass is more than the corresponding the total Sobal sensitivity to the

system factor of safety. In condition C-P0, the observed negative effect of system mass

performance levels on text-based interactions is only significant between consecutive

time steps (τ = 1 minute) and is insignificant when system mass performance levels

are smoothed over longer past (τ = 5 and τ = 10 minutes). The reasons behind this

anomaly is not entirely clear.

In the NASA MDL teams, the present spacecraft mass performance levels has a

negative effect on the face-to-face communication between disciplines over short term

but the spacecraft mass performance levels from a longer term in the past has a posi-

tive effect. This suggests that any reduction in spacecraft dry mass level (i.e. increase

in actual mass) brings the disciplines together for communication in immediate fu-

ture (τ = 1 hour). Also, good performance levels over time still fuel more face-to-face

interactions in longer future (τ = 5 and τ = 10 hours), unlike in the student teams

where the correlation between present performance levels and future text-based in-

teractions is largely negative. The NASA engineers’ willingness continue engagement

in team communication even with large performance levels may highlight their in-

centives to focus beyond just reducing the spacecraft mass and on maintaining the
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(a) Condition S-P0 (b) Condition S-P1

(c) Condition C-P0

(d) Condition C-P1

Figure 4.6. : Predicting the rate of interactions through different channels

overall integrity of the spacecraft design. Whereas, the student subjects’ incentives

are aligned with maximizing only the performance levels of the system-level mass and

system-level factor of safety.

4.3.2 Estimated Strategies for Selecting Communication Partner

Across the experimental conditions in the engine design experiment, the design

interdependence and the pairwise reciprocity are statistically significant predictors of

how a discipline chooses a fellow discipline for text-based interactions. The positive

effect of design interdependence highlights that the number of shared design variables

is a key driver of inter-discipline communication. This positive effect of shared design

variables is stronger in the conditions S-P0 and S-P1 than in conditions C-P0 and
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Figure 4.7. : Predicting the rate of interactions through different channels

C-P1, which suggests there is more emphasize on text-based communication as a pri-

mary channel for exchange of design parameter values while sequentially simulating

the subsystem design spaces than when using catalogs. Additionally, the strong influ-

ence of the pairwise reciprocity, i.e., the inclination to interact with disciplines with

history of interactions, signifies the role of social network factors in driving interdis-

ciplinary communication. The other social network effect due to nodewise popularity

of disciplines is small and statistically insignificant, likely because of the difficulty

in forming a power-law degree distribution in small, fully-connected communication

networks such as the six-discipline engine design teams.

For the NASA MDL teams, the design interdependence, nodewise popularity, and

pairwise reciprocity all have statistically significant effects on how the spacecraft dis-

ciplines select whom to interact with. These effects are evidence of the key roles that

technical factors as well as social network factors play in driving the interdisciplinary

communication in engineering design teams. Note that the social selection analysis

models interactions among only the designing, core disciplines excluding integrative

disciplines such as customers and systems engineering.
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(a) S-P0 (b) S-P1
(c) C-P0 (d) C-P1

Figure 4.8. : Predicting the interdisciplinary social selection

Figure 4.9. : Predicting the interdisciplinary social selection

4.3.3 Estimated Effects of Team Communication on Design Performance

For the student teams designing an engine, the effects of amount of communication

on the design performance change are small across the experimental conditions and

statistically significant only in selective conditions. In condition C-P0, the number of

text-based interactions has a small but significant positive impact both on the system
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mass performance and the system factor of safety indicating benefits of communica-

tion for overall improvement in the design performance. In some cases, the number

of interactions has negative effects, e.g. the effect of text-based interactions on the

system mass performance levels in condition S-P0 and the effect of the number of

local design searches on the system factor of safety in condition S-P1. These negative

effects and the overall lack of strong positive effects may point to the downside of

too much communication in engineering design teams, especially when the commu-

nication is not directed towards resolving inconsistencies. Additionally, the problem

difficulty and the ruggedness of design space might also play roles in weak effects

of communication on the design performance. For instance, the design performance

trajectories over time in the engine design task has large variance indicating rapid

changes in design performance without consistent positive improvement.

On the other hand, for the NASA engineers designing a spacecraft system, the

number of inter-discipline interactions by core disciplines has a strong and statistically

significant effect on the performance of spacecraft dry mass over long period of time

(τ = 10 hours). The amount of communication does not appear to result in immediate

improvement in the performance levels of spacecraft dry mass (τ = 1 or (τ = 5 hours)

likely because a complex system such as a spacecraft may require longer discussions to

achieve meaningful improvement in the design performance. In a separate effect, the

number of interactions by systems engineer has a negative effect on the performance

levels of spacecraft mass. It is unclear why, nevertheless, this negative effect is smaller

that the the positive effect of the number of interactions by core disciplines.

4.3.4 Checking Model Accuracy

In order to evaluate the model performance, we randomly select one team in every

condition to form testing data, except for condition S-P0 whose testing data involves

two randomly selected teams because of large number of teams available. Then,

the stochastic models of team communication and design performance dynamics are
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(a) Condition S-P0 (b) Condition S-P1

(c) Condition C-P0

(d) Condition C-P1

Figure 4.10. : Predicting the effect of amount of communication on design perfor-

mance

trained on the training data and their performance is evaluated on the testing data,

for each setting separately.

To characterize model performance, a Bayesian measure, Wantanabe Alaike In-

formation Criterion (WAIC), is calculated on testing data, which is unseen by the

model during the training process. The metric WAIC hedges the log pointwise pre-

dictive density of the testing data through adjustment terms for the number of model

parameters, thereby penalizing a model with large number of model parameters. The

WAIC is proportional to the number of data points, and lower values of WAIC are
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Figure 4.11. : Predicting the effect of amount of communication on design perfor-

mance

preferred over lower values. Another approach for explaining the model performance

is visual posterior predictive checking in which we visually compare model predictions

with observed testing data.

Figure 4.12 presents the posterior predictive checks for the models of rates of in-

teractions in testing data. In the engine design dataset, these models predict the

amount of text messages, the mount of local searches and the amount of broadcasts

based on design performance states from past one time steps (τ = 1). In the space-

craft design dataset, they predict the amount of interactions between disciplines, by a

customer, and by a systems engineer. The models approximately capture the average

number of interactions over time for both the engine design and the spacecraft design

datasets. They also capture the variance in testing data at any time step. However,

the models in some cases do not capture increasing and decreasing trends over short

time duration. For example, the observed number of text messages in testing data for

conditions S-P1 and C-P0 increase significantly over time, but the respective model
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predictions show consistently high rate of text messages. In other cases such as condi-

tions S-P0 and C-P1, the models appears to capture increasing and decreasing trends

over time. Also, the number of face-to-face talks with the customer are large initially

and reduce to 0 over time. These results highlight that there may be changes in the

rates of communication which are not entirely described by the design performance

and which occur explicitly due to the factor of time.

Figure 4.13 compares predictions from the multinomial model of social selection

(Eq. 4.4) to the observed testing data at every time step. The Chi-squared error at

given time step tm, χ2(tm) = ∑
N
i=1∑

N
j=1;j≠i

(xij(tm)−X̃ij(tm))2
X̃ij(tm) , quantify the difference in

observed interactions between two disciplines xij(tm) and the expected interactions

X̃ij(tm) averaged from 2000 posterior model predictions. From the social selection

model in Eq. 4.4 and estimated parameters in Figure 4.8, we observe that the design

interdependence and reciprocity are significant predictor variables of interdisciplinary

communication in the engine design dataset, and the popularity effect is an additional

predictor for the spacecraft design dataset. Figure 4.13, additionally, shows that the

predictor variables are drivers of interdisciplinary selection mainly during the early

design process, especially in conditions S-P1, C-P0, and the spacecraft design study.

The large Chi-squared error suggests more dispersed communication between all dis-

ciplines. In the engine design dataset, large Chi-squared errors may be attributed to

increased interactions by all disciplines. The drivers of increased interactions late in

the process may be the changes in system design performance that is tied to the stu-

dent subjects’ payment. However, the exact reasons are unknown. In the spacecraft

design dataset, a large Chi-squared error towards the end of the design process may

be attributed to a tag-up event where all disciplines reconvene to verify their designs.

Figure 4.14 presents the posterior predictive checks for the predictions of design

performance as a function of the amounts of interactions from last time step (τ = 1

minute). In general, the amounts of communication such as text messages do not

accurately predict the design performance in testing data over short duration. The

prediction of average design performance is close to the actual levels in conditions
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(a) Engine Design Dataset

(b) Spacecraft Design Dataset

Figure 4.12. : Predictions of the rate of communication (with mean and 5th and 95th

percentile bounds) for the testing data.
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(a) Engine Design Dataset

(b) Spacecraft Design Dataset

Figure 4.13. : Time-wise Chi-squared error in the multinomial test comparing pre-

dictions of social selection to the observed social selection from the testing data.

C-P0 and C-P1. A possible reason for poor model performance may be an insufficient

number of data points (approximately 27 per each team) to train the models. Also,

the present number of text-based interactions are significant predictors of design per-

formance only in the condition C-P0. These results hint at considering the content of
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communication in addition to the amount of communication as a predictor of design

performance.

Condition S-P0 Condition S-P1

Condition C-P0 Condition C-P1

Figure 4.14. : Predicting the changes in design performance for the testing data in

the engine design dataset.
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5. EVALUATING REPRESENTATIVENESS OF THE ENGINE DESIGN

EXPERIMENT

After estimating the decision strategies for communication-related decisions in col-

laborative teams in Chapter 4, the next step is to evaluate the representativeness of

the controlled experimental setting (engine design experiment) with respect to the

NASA Mission Design Laboratory (MDL). In simple terms, representativeness means

the degree to which a controlled experimental setting mimicks desired decision making

behaviors observed in a reference setting. If criteria for representativeness are satis-

fied, the insights from a controlled setting can be used to understand the behaviors

in a reference setting. The research objective of this chapter are:

1. to evaluate the representativeness of the engine design experimental setting for

the NASA MDL reference setting with regard to team communication, and

2. to synthesize lesson learned for building representative controlled experiments.

The hypothesis is that the representativeness is meant to be judged based on subject-

task-context interrelationships rather than singular dimensions of subject, task, or

context. To test this hypothesis, we compare the communication patterns between

the engine design experimental setting and NASA MDL setting.

We begin by specifying the quantities used for measuring team communication

patterns. Since these quantities depend on the task and the context, it is necessary

to state some basic parameters of the two settings. Such parameters may be different

between the settings, but note that First, the instances of communication between

different disciplines are counted as pairwise interactions. A pairwise interaction in

the NASA MDL setting represents one instance of face-to-face talk, whereas a pair-

wise interaction in the engine design setting may represent either one text message,

one update or one check of the broadcast element. These measures are not exactly

the same, since an MDL conversation likely involves the equivalent of several text
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messages. However, we do not aim to compare these numbers directly but rather to

compare trends and relative changes in the number of interactions, such as changes

over time or relative differences in communication across subsystems. Second, dis-

cipline pairs are dichotomized into tightly-coupled and loosely-coupled pairs using a

threshold number of shared variables. The threshold divides the discipline pairs into

two similar-sized groups in either setting. The discipline pairs with the the number

of shared variables greater than the threshold are tightly-coupled pairs, and the rest

of pairs are loosely-paired. The threshold for the engine design task is 0.5 and it is

15.5 for the spacecraft design task. Third, since the time duration of the tasks in

the two settings is different, we define unit interval time for each setting so that we

can compare communication patterns on the same timeline. The unit interval for the

engine design setting is one minute and it is one hour for the NASA MDL setting.

These particular unit intervals are selected because i) they partition the respective

task duration into a similar number of time steps (≈ 35) in two settings, and ii) the

average number of interactions by each discipline (average network degree) within

a unit interval is approximately same (between 3 to 5) in two settings. Based on

these assumptions, the following quantities are used for comparing communication

patterns.

1. Technical-Communication Mirroring: This is defined as the correlation between

the number of shared variables and the number of interactions between discipline

pairs.

2. Amount of Communication: This is the total number of interactions among all

disciplines.

3. Technical-Communication Mirroring over Time: To observe changes in mirror-

ing over time, we define fractional mirrored interactions, which is the ratio of

number of interactions between tightly-coupled discipline pairs and the total

number of interactions among all disciplines. Mathematically, if N ×N matrix

S = {sij} is a design structure matrix for N disciplines, δ is a threshold for

dichotomizing the degree of coupling, and N ×N matrix X = {xij} is the matrix
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of pairwise interactions, then the fractional mirrored interactions are defined as,

Fractional Mirrored Interactions =
∑ij 1>δ(sij)xij

∑ij xij
. (5.1)

The indicator function 1>δ(sij) is 1 when sij is greater than δ and 0 otherwise.

We calculate this metric over unit time intervals and take its moving average

using a three-interval window.

4. Discipline-wise Centrality Indices: Two indices are used to quantify network

centrality of disciplines with respect to incoming and outgoing interactions. Hub

index estimates a discipline’s centrality based on outgoing interactions, whereas

authority index which estimates a discipline’s centrality based on incoming links.

The estimation procedure for the two indices is given in Ref. [103] and its

implementation is available in Python library networkx [104].

Section 5.1 describes the specific differences and similarities along the aforementioned

quantities. This works has been submitted for publication at American Society of

Mechanical Engineers (ASME) Journal of Mechanical Design [105].

5.1 Comparison of Communication Patterns

In this subsection, we present the results from quantitative comparison of commu-

nication patterns in the reference setting and the model world. Based on the results,

we make a qualitative evaluation of which key features of the reference setting are

preserved in the model world in Table 5.1.

5.1.1 Communication Among Subsystem Designers

A very basic expectation was that the design process would create a need for

communication among the subsystem designers. Due to the smaller size of the engine

design problem and design team, we expected a smaller amount of communication

in the engine case. However, surprisingly, the results suggest that the total number

of interactions is similar in the NASA MDL setting and engine experiment. This
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can be seen from Figure 5.1 which plots the empirical estimates for the probability

distribution of total pairwise interactions per team. The surprising similarity in the

number of interactions is due to the different ways in which interactions are counted

in the two settings: at NASA, a whole conversation counts as one interaction, whereas

in the engine experiment, several interactions (one-way messages) might make up a

conversation. For our purposes, the total number is not important, because we only

compare relative trends in the number of interactions. At this point, we simply note

that, indeed, the design problem did drive communication among designers.

Figure 5.1. : Estimated distributions of total pairwise interactions per team. Kernel

density estimates are found using a statistical data visualization library, seaborn [106].

5.1.2 Communication Mirroring Technical Dependencies

We expected to see greater communication among strongly coupled disciplines

than among weakly coupled disciplines; in other words, that the strength of coupling

would drive the amount of communication between pairs of disciplines. We therefore

examine the correlation between the number of shared variables and the number of

interactions between discipline pairs, in the engine and NASA MDL settings.

Figure 5.2 shows the results. As expected, the correlation between the number of

shared variables and interactions is large and significant for both the NASA MDL and

the engine case, particularly when a catalog is present. Specifically, for the NASA
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MDL teams, the estimated slope of the linear fit between the number of interactions

and the number of shared variables is 1.39 (R2 = 0.30) with a two-sided p-value is less

than 0.0001, using Wald’s test whose null hypothesis is that the slope is 0 and the

degrees of freedom (DoF) is 124. For the engine setting when catalogs are present,

the C-P0 and C-P1 conditions, the slope coefficients are 3.97 (R2 = 0.30,DoF = 52, p-

value < 0.0001) and 4.14 (R2 = 0.33,DoF = 46, p-value < 0.0001) respectively. When

a catalog is not present, the S-P0 and S-P1 conditions, the correlation is lower (the

slope coefficient is smaller). The slope coefficients are 1.91 (p-value < 0.001, DoF=82)

and 0.42 (p-value=0.1, DoF=52) for the S-P0 and S-P1 conditions, respectively. The

implications of these results, especially for condition S-P1, are explored in Section 5.2.

The implication is that, indeed, the engine design task resulted in some degree

of the mirroring seen in the reference NASA setting: communication patterns were

correlated with technical dependencies. When catalogs were not present, this effect

was diminished, which suggests that catalogs were important in enabling representa-

tiveness. This makes sense because catalogs were intended to help engine designers

spend less time searching for subsystem-optimal solutions, perhaps enabling a larger

focus on finding good solutions for the entire system by communicating with the other

subsystem designers.

Figure 5.2. : Mirroring between technical dependence and the amount of commu-

nication in the engine design experiment (left) and in the NASA concurrent design

facility (right).
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5.1.3 Expertise in Resolving Interdependencies

We expected that the students’ communication patterns should become more like

those of the experts in the NASA setting over time, after they have learned about the

problem – and in particular, learned which of the technical dependencies are most

important in driving the performance of the final system. The NASA experts should

know from the start which trades are most important and spend their communication

effort on resolving those trades, while students would need to learn this first before

their communication patterns would exhibit this characteristic.

To explore this in the data, we examine the ‘fractional mirrored interactions’

(defined earlier). Intuitively, this metric indicates what percentage of the interac-

tions were between tightly-coupled disciplines. A value near 1 indicates that nearly

all interactions were between tightly-coupled pairs and almost no interactions were

between less-coupled pairs.

Figure 5.3 shows a moving average of this metric over time for the engine study

(left) and the NASA reference setting (right). From Figure 5.3 (left), we observe that

the fractional mirrored interactions in the engine setting remains close to 1 for first 4

to 5 time steps, but it reduces to about 0.7 or 0.8 after 15 time steps and then remains

in this range. On the other hand, the NASA MDL teams start the spacecraft design

task in the range of 0.7 to 0.8, with some slight increases up to about 0.9 towards the

end of the time horizon.

The possible reason for this behavior is that the information about the design

interdependencies that the students receive through the problem statement may drive

their communication at an early stage. Indeed, they seem to communicate only about

the most important interdependencies, to the exclusion of all else. However, partway

through the task, this fraction reduces as low interdependence pairs communicate

more, perhaps to explore trades that may help improve the system objectives. On

the other hand, the NASA engineers know important interdependencies before the

start of the task, but also focus throughout the task on surfacing issues that may



110

require reconvening at the system level or coordinating with less-coupled subsystems.

Towards the end, their focus may have narrowed to resolving one or two key trades

among tightly-coupled subsystems.

The results suggest that, indeed, the students’ communication patterns became

more like those of the NASA experts after an initial learning period (the first 10-15

time steps). After this period, the fractional mirrored interactions were in the same

range of 0.7 to 0.8 for most of the study. (The students did not exhibit the same

slight rise in fractional mirrored interaction toward the end of the study.)

Figure 5.3. : Fractional mirrored interactions over time with 5th and 95th percentiles

calculated for all discipline pairs.

However, a closer look at the data suggest that a large portion of the students’

mirrored communication was through the broadcast function – which shows the state

of the global objectives and, in the P1 experimental setting, also shows shared de-

sign parameters. Figure 5.4 shows the fraction of mirrored interactions over time

excluding integrative disciplines such as broadcast (in the engine experiment) and

the systems engineer and customer (in the NASA MDL). While the students’ pro-

portion of interdependency-driven interactions went down significantly to around 0.5,

the NASA experts’ proportion remained roughly equal to its value when integrators

were included (Figure 5.3), around 0.7 to 0.8.

These results suggest that the students came to rely upon the broadcast function

for managing many of their trades, whereas the experts utilized more pairwise com-
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munication. It is possible that this difference in behavior is driven by the smaller size

of the problem and the smaller number of pairwise interdependencies in the engine

setting, and/or by the lack of a designer assigned to an integrative role in the en-

gine setting. Better representativeness might require a more similar problem size and

interdependency structure, and/or a specific integrative discipline such as systems

engineering. Further study is necessary for testing this hypothesis.

Figure 5.4. : Fractional mirrored interactions over time with 5th and 95th percentiles

calculated after excluding integrative disciplines such as systems engineer, customer

and broadcast screen.

5.1.4 Discipline-specific Communication Patterns

To further understand how the lack of a designated systems engineer might influ-

ence communication patterns in the engine experiment, we examine each discipline’s

hub and authority indices [103]. Hub and authority indices quantify how ‘central’

a discipline is in the communication network based on the number outgoing inter-

actions and the number of incoming interactions, respectively. These indices use

pairwise interactions from the entire duration of the tasks.

For NASA, Figure 5.5 suggests that the systems engineer is central to driving

communication. In the engine experiment, on the other hand, there is no systems

engineer. The broadcast function was intended to substitute for some functions of
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the systems engineer – computing the global objective value and, in the P1 condition,

sharing key design parameters. The results in Figure 5.6 show that the broadcast

function is particularly important for outgoing links (see hub indices), which represent

disciplines pulling updates about shared global objectives and design parameters.

However, the broadcast has the lowest importance in the communication network

as a receiver of information (indicated by small authority indices). Because our

NASA data did not provide the direction of communication, it is not possible to

distinguish the systems engineer’s role in outgoing versus incoming communication.

However, based on our qualitative understanding from extensive conversations with

MDL systems engineers, their role is not the same as that apparently performed

by the broadcast function – simply to update designers on objective and parameter

values. Therefore, the results suggest that the broadcast function did not fulfill the

same integrator role as the systems engineer, and that a more representative model

world might require a designated systems engineer.

Figures 5.5 and 5.6 also provide insights into the communication patterns of the

core disciplines excluding systems engineering and broadcast. The plots suggest that

the differences in discipline-wise authority and hub indices are statistically insignifi-

cant in the engine experiment because of large variance in their values. Whereas at

NASA MDL, these differences, albeit small, are statistically significant. The results

suggest that the disciplines in the engine experiment contribute equally to the com-

munication over the entire time horizon, and the NASA MDL disciplines are selective

about with whom and how much they interact, likely due to their greater knowledge

and experience in solving similar problems. Additionally, we do not observe signifi-

cant differences in the centrality indices because of conditions C, S, P0, and P1. This

suggests that the core disciplines’ relative contributions to the overall communica-

tion likely remain unchanged despite changing how they search the design space and

whether they can access global status of the design.
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Figure 5.5. : Network centrality for the NASA MDL disciplines. Hub and authority

indices [103] are the same for NASA MDL teams because pairwise communication is

undirected.

Figure 5.6. : Hub indices and authority indices [103] representing the disciplines’

network centrality based on outgoing and incoming links, respectively. These network

indices are computed using a network analysis library, networkx [104].

5.2 Generalizability of Engine Experimental Results

Next, we examine the results of the engine experimental treatments – the coun-

terfactuals that could not be tested in the NASA setting. The results provide insights
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Table 5.1. : The evaluation of whether key communication-related features are pre-

served in the model world

Category
Evalua-

tion
Evidence

Communication among

subsystem designers
Preserved

The design process creates a need for

communication in both settings.

Communication

mirroring technical

dependencies

Preserved

The correlation between the number of shared

variables and aggregate interactions is large

and significant.

Expertise resolving

interdependencies

Partially

Preserved

In the engine setting, communication mirroring

technical dependencies changes over time and

the subjects rely overly on “broadcast” instead

of textual communication.

Discipline-specific

communication

patterns

Not

Preserved

The two settings used integrative functions

differently, and in the engine setting, unlike the

NASA setting, there are no significant

differences in communication by the remaining

individual subsystems (neither across time nor

instantaneously).

about the effects of the design search method (catalogs vs. simulations) and global

information availability (presence or absence of a parameter database) on the com-

munication metrics. Subsequently, we consider the extent to which these results may

be generalized to the NASA setting based on what was learned in Section 5.1 about

which aspects of the engine experiment communication patterns matched those of the

NASA reference setting – i.e., the engine setting’s representativeness.
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5.2.1 Effects of Using Catalogs Versus Simulations

When catalogs are used, interdisciplinary communication is more frequent (both in

total across the task duration and at any given moment) as seen from Figure 5.1. The

total number of interactions in the catalog treatments is greater on average than the

total number of interactions based on an equal-variance t-test (t(38) = 6.4, p = 0.001).

Also, the correlation between the number of interactions and the number of shared

variables is also larger in the catalog treatments than the simulation treatments (see

Figure 5.2). The implications of these results are presented in Section ??.

5.2.2 Effects of Using Shared Parameter Databases

Within the engine design study, the global availability of design parameters does

not appear to affect the total number of interactions (Figure 5.1). On the other

hand, the mirroring results in Figure 5.2 show that, among all four experimental

conditions, only the S-P1 fails to exhibit mirroring (correlation between the number

of interactions and the number of shared variables is insignificant). It is not entirely

clear why this is the case. A possible reason is that more than half of the inter-

actions there occur through text-based channels, as seen from Figure 5.7. And, as

we observed before in Figures 5.3 and 5.4, the students’ text-based interactions are

in general less aligned with technical dependencies, while their interactions through

broadcast are more aligned with technical dependencies (which also include many

high-interdependence pairings). The condition S-P1 means that students have easy

access to their colleagues’ design parameters but do not have easy access to a set of

pre-computed solutions throughout their solution space. Perhaps the latter makes

them less able to iterate on their designs and the former makes them less likely to

communicate because they already have access to the information required. Further

investigation is needed to confirm and to understand this result.

Across both experimental treatments, there is more and better-aligned communi-

cation with a catalog than with search within a continuous design space. This is a



116

Figure 5.7. : The fraction of total interactions between the core disciplines, equiva-

lently text-based interactions, for the experimental conditions.
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consequence of having ex-ante evaluations of subsystem outputs available in a catalog.

Quicker design exploration when using catalogs may facilitate a better understanding

of input-output relationships, of how disciplines behave in response to the changes

from shared variables, and of which designers need to coordinate with one another.

Also, a catalog provides flexibility in broadcasting any design point from a large de-

sign space, thus encouraging more interactions with the broadcast and with other

designers.

If we believe these findings are representative of NASA, they imply that design

organizations such as NASA should consider maintaining or enabling catalog-based

search, since it appears to lead to more and better-aligned communication. It remains

to be seen, however, whether this translates into superior performance. On the other

hand, global availability of design parameters does not, surprisingly, appear to im-

prove communication patterns, suggesting that investment in IT backbones may need

to focus on information exchange beyond just sharing design parameters, particularly

in concurrent design settings with low barriers to interpersonal communication.

The key question, then, is whether we believe these findings are representative of

NASA. The major differences found were around the key role of the systems engineer

and the extent to which mirroring occurred through the broadcast function in the

engine setting. It is possible that a skilled systems engineer could, in a continuous-

search environment, compensate for the lower and less-aligned communication by

prompting the right people to talk to one another, but the apparent advantages of

catalog-based search would still be relevant, and therefore we consider it likely that

catalogs would still prompt better communication patterns in the NASA setting. On

the other hand, it is less clear why a shared parameter database made little difference

in communication, so we recommend further investigation before applying these latter

findings in practice.
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5.3 Lessons for Designing Representative Experiments

This section presents suggestions for designing representative experiments with

respect to the key features of system design process based on the “lessons learned”

from our analysis and on knowledge from extant literature.

5.3.1 Align Design Expertise and Task Complexity

The design expertise of the subjects and the task complexity should be aligned

to ensure that the subjects can achieve the given task objectives and that it prompts

the desired types of behavior. For example, expert designers deploy different search

strategies (depth-first more than breadth-first) depending on whether the design

requirements are complex [107]. Engineering students in controlled studies take

longer to complete coupled system design tasks as the number of design variables

increases [108, 109]. Our study has shown that, in the context of studying inter-

disciplinary communication for parametric design, the engine design task possesses

appropriate complexity for engineering students to successfully achieve the given ob-

jectives, as discussed in Section 4.1. Moreover, this subject-task interaction shows

strong technical-communication mirroring because the students can understand the

interdependencies of the problem and decide whom to interact with (see Figure 5.2).

One particularly important result of this subject-task interaction is the design search

behavior it prompts. This appeared crucial to driving representative communication

patterns, since the teams with access to a catalog had more representative mirroring

patterns (see Figure 5.2).

Thus, our results suggest that when designer expertise and task complexity are

appropriately calibrated, novices can behave much more like experts. The engine

problem is simpler than the spacecraft problem, but it was designed to be approx-

imately as hard for the students as the spacecraft problem is for NASA engineers,

and Section 5.1 suggests at least partial success in meeting this goal. Therefore, in

designing a model world, it is critical to focus on matching subjects’ behavior, which
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results from the interaction of the task complexity, time, information, & resources

available, and subjects’ expertise, rather than on matching task complexity or ‘ab-

solute’ expertise level. To that end, Dorst [67]’s expertise framework is useful for

thinking about the representativeness of subject-task interactions. Dorst categorizes

such interactions into seven levels, for example, i) a naive designer makes a one-off

choice from available options, ii) a novice designer follows strict rules or a formal pro-

cess to meet fixed requirements given by exerts, iii) an advanced designer adapts a

formal process for considering situational aspects, etc. If the subject-task interactions

in different settings fall under the same level of Dorst’s framework, then we can be

more confident that behavior will be representative across the settings.

5.3.2 Allow a Burn-in Period

Compare behaviors after subjects are attuned to making decisions in the given

controlled experimental setting. There are several reasons for this. First, subject

behaviors from a transient period before becoming fully aware of the setting can be a

result of framing effects or human biases such as anchoring bias and availability heuris-

tic [110]. For example in Figure 5.3, we observe a high mirroring at the beginning of

the engine design task because its problem framing indicated possible dependencies

with other subsystems. Cash et. al [111] observed similar phenomenon where their

student teams spent a lot of time initially finding information within a source such as

a website for a product, however the equivalent time spent by advanced designers on

information seeking initially was much lower (see Figure 6 in [111]). Yu et al. [112]

compared student behaviors and practitioner behaviors for the parametric design of

desalination systems. They observed that the initial jump from a given design point

towards the desired design space was significantly bigger and faster for practitioners

with high knowledge levels than for students with no knowledge.

A second reason why it is important to wait for burn-in is because it might be

necessary in order to build subject expertise in the problem, in order to appropriately
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match the expertise to task complexity as advised in Section 5.3.1. If the problem

cannot be simplified to match subjects’ expertise (in our case because it was necessary

to include a number of coupled design variables – see Section 5.3.4), then it appears

possible to build task-specific expertise within the model world, by allowing this

burn-in period. In the engine experiment, while novices did not behave like experts

initially, after a relatively short period of exploration, they learned which interactions

drove performance and settled into a pattern that better replicated expert behavior.

This is akin to a burn-in period in reliability testing.

Other reasons why burning the first few decision steps may be necessary are: i)

when subjects need to get familiar with the user interface [113]; ii) if two consecutive

conditions require conflicting skills (order effects), e.g., using two different coding

languages; initial decisions in the second condition may be tainted, because using one

coding language may inhibit the skills required for using the other coding language;

iii) if subjects receive benefits during the experiment, then the endowment effect

will influence decisions of the remaining experiment [72]. For tips on building an

environment for economic experiments, the reader may refer to Refs. [69,70].

Therefore, our results and the literature suggest that students behave more like

experts (but not exactly like experts) after they have had time to learn about the

problem setting.

5.3.3 Consider Organizational Structure and Incentives

The organizational structure and incentives must be considered for their roles in

constraining and motivating behavior. There are several aspects to this issue that

arose in our model world.

First, imposed roles or organizational structure can influence behavior. One par-

ticularly important aspect of organizational structure in this case was the formal inte-

grator role – the “systems engineer” in the NASA MDL setting. Having an integrative

discipline or designer assigned in the engine setting could have improved representa-
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tiveness with respect to the nature of system design process and interactions between

disciplines. For instance, Figures 5.2 and 5.4 suggest that incorporating the broad-

cast discipline into the engine design teams enabled stronger technical-communication

mirroring, comparable to the NASA MDL setting. However, the lack of a designated

integrator role also led to differences in some communication patterns, which might

have been better matched if such a role had been included in the engine setting. It

is well known that engineers spend 40% to 60% of their time communicating with

peers working on the same projects [114]. Among such peers, there are individuals,

called “gatekeepers” (equivalently integrative disciplines), whom others heavily de-

pend upon for internal as well as external sources of information. The “gatekeepers”

of engineering teams provide efficient means to disseminate outside and internal infor-

mation [115]. Computer-based tools can also be supportive of systems engineering for

dispersed teams if appropriate sufficient means of data exchange and communication

are incorporated [116]. Designers of future model worlds should consider the potential

importance of an integrator role or tool in prompting representative behavior.

Second, more generally, other aspects of our organizational structure and incen-

tives were more successful in constraining and motivating representative behavior.

The similarities in amount and mirroring of communication between NASA and the

engine experiment suggest that our incentives and organizational structure success-

fully motivated students to work together to find a good solution and constrained

their communication pathways to represent those of the experts. Had we enabled

the small 5-person teams to discuss things all together, rather than restricting them

to pairwise communication, the patterns would likely have been very different and

less representative of the MDL patterns. The literature bears out the importance of

appropriate incentives and their interaction with design communication. Success in

cross-functional teams requires setting appropriate project goals for effective commu-

nication [117]. Teams can address design inconsistencies through design dialogue if

common goals are identified early in the process [15]. Moreover, formal and informal
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organizational channels for communication are known to influence how communica-

tion happens [115,116], so it is important to set those up in a representative manner.

It is important to realize that “representative” does not always mean “same”. In

the MDL, the incentives for good performance revolve around career goals and em-

ployment. In the engine setting, performance was incentivized with a small monetary

reward for better-performing designs. These incentives are a relatively poor match to

the real world reference system, but it is very difficult to replicate long-term career

incentives in a classroom setting. Our results suggest that classroom incentives moti-

vated designers to design good systems and that was sufficient for representativeness.

5.3.4 Select Appropriate Degree of Design Coupling

For studying system design processes, the disciplines in a controlled setting should

be selected so that they possess between-disciplines coupling that is comparable to

the reference setting. It is well understood that a larger degree of coupling increases

individual effort and total completion time while decreasing solution quality [40,42].

In this study, to reduce effects of overly coupled problems, we used a mix of tightly

coupled and loosely coupled disciplines in the controlled experiment to match the

NASA MDL settings – see the distribution of shared design variables in Figure 4.2 –

and the results suggest that it was sufficient to generate relatively similar communi-

cation patterns. Based on our results, it is not clear what degree of match in coupling

among design variables is “enough” to generate similar communication patterns, but

roughly matching the coupling worked well in this case.

Broadly, we can compare the overall degree of coupling between two settings using

eigenvalue analysis of their design structure matrices (DSMs). Since a DSM quan-

tifies degrees of coupling between discipline pairs, eigenvectors represent directions

to different discipline groups in a latent space where nearby disciplines have similar

coupling. The eigenvalues represent the degree of separation between different disci-

plines in the latent space [118]. The larger the eigenvalue the larger is the separation
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of its discipline from other disciplines. If we normalize a DSM with the maximum

possible coupling, the eigenvalues greater than 1 represent dominant disciplines that

are highly coupled. For instance, the largest eigenvalue of the spacecraft DSM in

Figure 5.8 corresponds to systems engineering which is the most coupled discipline.

For the engine DSM, two largest eigenvalues correspond to broadcast and crankshaft.

Interestingly, when broadcast is omitted from the engine DSM, the relative differences

in eigenvalues reduce. This implies that the disciplines are less separable in the latent

space without broadcast and that broadcast enhances the degree of coupling for the

crankshaft discipline.

Figure 5.8. : Eigenvalues of the normalized design structure matrices.

5.3.5 Select Team Size Appropriate for Research Question

The size of a design team may be secondary to choosing an appropriate coupling,

because successful collaboration is possible in small teams as well as in teams with

large numbers of people [119, 120]. One can use various statistical analyses to de-

termine the team size that provides the same strength of technical-communication

mirroring between a model world and a reference setting. Suppose we are interested

in understanding the correlation between two given properties of discipline pairs, say

X and Y . The question is how many discipline pairs we need for such comparison.

This question can be answered based on some rule-of-thumb or classical statistical
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tables [121]. If tables are inaccessible, alternative methods for approximating the

sample size are available [122]. For multiple regression with m predictors and the

estimated correlation of R2 (equivalently effect size f 2 = R2

1−R2 ), the suggested number

of samples is N ≥ 6.4+1.65m−0.05m2

f2 . If the goal is to find the partial correlation of each

individual predictor, then the number of samples should be N ≥ 8/f 2 + (m − 1). For

example, consider the correlation between the number of shared variables (X) and

the number of interactions (Y ) for which m = 1. If the observed correlation from the

NASA MDL teams is R2 = 0.30 (f 2 = 0.43), then the number of samples (i.e. the

number of discipline pairs) for observing similarly significant correlation from the con-

trolled setting is N ≥ 18.6. Further, since the number of discipline pairs N = (n2−n)/2

is a function of the number of teams n, we can estimate the number of disciplines as

n ≥ 6.6. Then, in hindsight, the choice of number of disciplines (recall, total number

of components including broadcast is 6) in the engine experiment is roughly correct.

5.3.6 Gather Many Samples and Compare Aggregate Behaviors

Large number of observations of team behaviors are always preferable because

repetition is helpful for identification of noise and accurate comparison of behaviors

at the aggregate level. For instance, the results from Figure 5.1 and Figure 5.3 show

noisy communication patterns for the student teams as well as the NASA MDL teams

which are different when mean statistics are compared. However, large sample may

not be always necessary. It is possible to get estimates of the sample size using clas-

sical statistical techniques. Suppose we are comparing team property X between a

reference and a model world and interested in accessing the validity of null hypothesis

that X has the same average in both the settings. The number of teams required per

setting then can be determined from tables or using the normal cumulative distri-

bution function if we assume that observations of X have normal distribution [123].

For example, if we assume that both X’s have the same known variance σ but differ-

ent means, then, to reject the null hypothesis against an alternative hypothesis that
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the mean difference is ∆u, we require N ≥ (
zα +Φ−1(1 − β)

∆u/σ
) number of teams [123],

where Φ−1 is the inverse cumulative distribution function and zα = Φ−1(α) is the quan-

tile of probability α. This method requires a priori specification of the probability of

Type I error α and the probability of Type II error β.
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6. CONCLUSIONS

This dissertation investigated how designers make information acquisition decisions

and identified models that provide the best description of designers’ decision strate-

gies. The approach combined computational modeling and behavioral experiments

with statistical Bayesian inference to quantify designers’ decision strategies in design

exploration and team communication, which are regarded as information sources.

The two research studies found that the subjects relied upon simple heuristics shared

via graphical interfaces and communication pathways for making the information ac-

quisition decisions. The identified simple heuristics are fast and frugal in that they

consume less time and involve relatively small cognitive effort. This chapter summa-

rizes the case-specific decision strategies identified in two research studies. In addition,

the chapter provides key contributions in terms of new case-specific descriptive mod-

els and managerial insights to improve the engineering design process. Finally, we

discuss future research directions necessary for wider applicability of the proposed

approach in engineering design.

6.1 Summary of Key Results

1. Information acquisition decisions of engineering students:

The research study in Chapter 3 finds that the student subjects rely upon sim-

ple cues accessible via graphical interfaces for making the most of the design

exploration decisions. This reliance on simple cues for making design de-

cisions may be attributed to the relatively smaller cognitive effort involved in

using simple cues. For example, the subjects select design points close to the

highest upper confidence bound (UCB & CUCB models) when seeking to max-

imum design performance. The subjects mostly select a fixed number of low
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fidelity and a fixed number of high fidelity observations (FSN model) at low

budget. At large budget, they query the low fidelity source for evaluating high

uncertainty regions (exploration in CUCB model) and the high fidelity source

for low uncertainty regions (exploitation in CUCB model). For stopping evalu-

ations, the subjects exhaust entire or a fixed fraction of the fixed budget (FRB

model), unless they are incentivized to save budget in which case they stop if the

current best performance is marginally better than the mean of the predicted

performance (DPP model).

The engine design experiment in Chapter 4 provides estimates of student sub-

jects’ communication decisions. The student subjects choose whether to

performs local search or to communicate to other disciplines on the design team

based on the present state of system and subsystem performance. If the present

system performance levels or present subsystem performance levels are low (i.e.

poor performance), then the future number of local design searches increases.

The number of local searches reduces if the performance levels are high. Sim-

ilarly, if the present system mass performance is large, then the rate of text-

based interactions reduces. Finally, the student subjects select disciplines for

text-based interactions with whom they have high the design interdependence

and the pairwise reciprocity.

2. Information acquisition decisions of expert engineers:

Chapter 4 provides insights about how expert designers decide whom to com-

municate with during the design process. In the NASA MDL teams, low

spacecraft mass performance levels in the present results in larger the face-to-

face communication between disciplines, but only in immediate future and not

over a long term. The spacecraft mass performance levels from a longer term

in the past has a positive effect on face-to-face communication. This suggests

that any reduction in spacecraft dry mass level (i.e. increase in actual mass)

brings the disciplines together for communication in immediate future (τ = 1

hour). But good performance levels over time still fuel more face-to-face inter-
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actions in longer future (τ = 5 and τ = 10 hours), unlike in the student teams

where the correlation between present performance levels and future text-based

interactions is largely negative. Further, expert engineers’ choices of whom to

communicate with suggest statistically significant effects of the pairwise design

interdependence, nodewise popularity, and pairwise reciprocity.

3. Effects of incentives and restricted budget on students’ design explo-

ration decisions

From the sequential information acquisition experiment of Chapter 3, we ob-

serve that the subjects’ decisions are affected by the amount of fixed budget

and incentives to save budget. Exploration of design space increases with the

increase in fixed budget. There is an increase in the probability of selecting high

fidelity information source as the fixed budget increases, except for medium and

high budgets in the ‘save-remaining budget’ part. The probability of stopping

early at high values of remaining budget increases with increase in fixed budget

and with the incentive-to-save budget.

4. Effects of design exploration process and effects of the global avail-

ability of information on communication decisions: Within the engine

design study in Chapter 4, when catalogs are used, interdisciplinary communi-

cation is more frequent (both in total across the task duration and at any given

moment). The global availability of design parameters does not appear to affect

the total number of interactions.

5. Effects of communication on design performance

For the student teams designing an engine, the effects of amount of commu-

nication on the design performance change are small across the experimental

conditions and statistically significant only in selective conditions. On the other

hand, for the NASA engineers designing a spacecraft system, the number of

inter-discipline interactions by core disciplines has a strong and statistically

significant effect on the performance of spacecraft dry mass over long period

of time (τ = 10 hours). The amount of communication does not appear to
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result in immediate improvement in the performance levels of spacecraft dry

mass (τ = 1 or τ = 5 hours) likely because a complex system such as a spacecraft

may require longer discussions to achieve meaningful improvement in the design

performance.

6.2 Contributions

1. The primary contribution of this paper is an approach that combines com-

putational models of decision making and behavioral experiments to

understand human decision making behavior in design under uncertainty. The

methodology used for eliciting decisions and estimating decision strategies is

particularly suited for the embodiment phase of the design process. The de-

scriptive decision models and Bayesian inference methodology are general and

can be applied to more design decision-making problems.

2. The paper points to specific descriptive decision models that describe

the subjects’ information acquisition decisions better than the counterpart ex-

pected utility-based models. With the models that incorporate simple heuris-

tics, researchers can quantify design performance in terms of designers’ decision

strategies. The applications of this include design crowdsourcing where game-

theoretic models lack design process models [51–53], and the agent-based models

of engineering systems design where characterization of quality as a function of

designer effort is difficult to achieve [54]. Further, system engineers and man-

agers can set the fixed budget at low values or provide monetary incentives

for reducing spending to nudge a designer’s decisions towards expected util-

ity (EU)-based strategies, which are efficient for maximizing net payoff (design

performance minus cost of evaluation).

3. Another contribution is the insights for system engineers and managers

about nudging towards cost-effectiveness by fixing the budget at low values

and/or using an incentive to reduce budget spending. Systems engineers can
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leverage these insights for balancing the trade-off between performance and de-

sign evaluation costs in their design exploration decisions. Further, if we believe

the findings from engine design experiment are representative of NASA, they

imply that design organizations such as NASA should consider maintaining

or enabling catalog-based search, since it appears to lead to more and better-

aligned communication. It remains to be seen, however, whether this translates

into superior performance. On the other hand, global availability of design

parameters does not, surprisingly, appear to improve communication patterns,

suggesting that investment in IT backbones may need to focus on information

exchange beyond just sharing design parameters, particularly in concurrent de-

sign settings with low barriers to interpersonal communication.

6.3 Future Research Directions

There is still a long way to go before achieving wider applicability of descriptive

decision models and Bayesian methodology for the engineering design process. Future

descriptive modeling efforts need to account for context-dependent design situations,

where decision strategies depend upon the availability of problem-specific information

or the lack thereof [124], an acceptable quantification of predictive uncertainty is ab-

sent [125], and the mapping between resources expended and the value of prototypes

created varies across disciplines and knowledge domains [126]. Such design situations

should include multiple objectives and/or multidimensional design parameters [127].

Also, many factors influencing team dynamics are yet to be studied such as gen-

der, ethnicity, years of experience, and technical discipline [128]. Prior knowledge

of designers plays a role in design decisions such as evaluating similarity [129] and

responses to theory-related questions [130]. More importantly, the future research

needs to address the following issues.

1. Descriptive decision analysis workflow: The guidelines for designing de-

scriptive models and experiment design in Chapter 2 constitute a first step in
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formalizing the descriptive decision analysis approach. Further improvements in

the guidelines will benefit wide engineering design community. Future research

on this direction can investigate key questions such as: (i) which components

of the design process are suitable for descriptive decision analysis and how do

we extend the approach to more components?, (ii) how can machine learning

and artificial intelligence tools aid the automation of descriptive decision anal-

ysis?, and (iii) how can descriptive decision analysis support innovation (e.g.

better design performance, faster design convergence, better coherence in team

communication, etc.) in the engineering design process?

2. Aggregating case-specific insights for theory building: The key ques-

tion that the future research should address is: How to integrate case-specific

insights from different descriptive decision analyses for building theoretical foun-

dations of engineering design? Given the situated nature of engineering design

process, the descriptive decision analysis approach is useful for generating case-

specific insights. Also, an important benefit of the descriptive decision analysis

is its quantitative nature. However, every controlled experiment can ideally

study one or two research questions. Studying the design of complex systems

will require studying multiple research questions in many different aspects of

engineering design. Studying the effects of every factors such as prior knowl-

edge, problem specific factors such as complexity, incentives and communication

pathways available, etc., will require designing and executing different controlled

experiments. One way forward may be to develop a mathematical framework

connecting descriptive decision models from different design conditions using

hierarchical modeling. Such framework will be represented by a network graph

with different decision making scenarios as its nodes.
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