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ABSTRACT 

Every year more than fourteen-thousand adults in the United States are diagnosed with glioma, 

the most common malignant tumor of the central nervous system. Gliomas arise from glue like 

glial cells and present with a range of grade and prognosis. Glioblastoma multiforme (GBM), a 

grade IV glioma, is the most common glioma subtype and carries dismal prognosis with fewer 

than one half of patients surviving one year after diagnosis. The standard treatment for GBM is 

resection followed by a cocktail of chemo and radiation therapy. Unfortunately, complete 

surgical resection is impossible for GBM, and intra-tumor heterogeneity, a GBM hallmark, 

negatively impacts chemo and radiation therapy efficacy. This thesis contains six chapters that 

evaluate advanced imaging and statistical methods that may be used to improve glioma 

management. Chapter one presents background information to establish the relationship of four 

subsequent studies with ranging topics on advanced imaging techniques, biopsy sampling, and 

radiomic analysis. In chapter two, a case report is presented that demonstrates the importance of 

advanced magnetic resonance imaging (MRI) such as arterial spin labeled (ASL) perfusion 

sequences. In this case, a patient with a benign cerebral lesion presents with receptive aphasia 

and of the imaging data acquired, only ASL showed decrease cerebral aphasia. Chapter three 

describes the impact biopsy selection has on correlation between prognostic and histologic 

features in 35 patients with GBM. Multiple biopsy selection methods were compared, resulting 

in a wide range in correlation significance. Chapter four presents different voxel-wise radiomic 

models in adult glioma patients. From one voxel-wise radiomic model, predicted disease 

compositions (PDC) were computed in 17 glioma patients and were able to significantly (α = 

0.05) predict overall survival, tumor grade, and endothelial proliferation. Chapter five describes 

the feasibility and hardware constraints of simultaneous PET/MR imaging protocols. A dynamic 

infusion of fluorodeoxyglucose (FDG) was administered with simultaneous MR imaging 

including echo planar imaging (EPI) based sequences used for functional MRI (fMRI). Heat 

from the EPI sequences deposited in the PET detector hardware and resulted in significant 

hardware failure. Finally, chapter six provides outlook and application to glioma clinical 

management considering the methods and findings presented in each study.  
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CHAPTER ONE: BACKGROUND AND SIGNIFICANCE 

Glioma is the most common malignant tumor of the central nervous system, accounting for more 

than fourteen-thousand adult diagnoses each year in the United States1,2.  Glioblastoma (GBM) is 

the most frequent and aggressive form of glioma in adults that has not shown improved 

prognosis despite innovative diagnostic and therapeutic tools3,4. The dismal prognosis associated 

with GBM is likely related to the complex intra- and inter-tumoral heterogeneity resulting from 

an unstable microenvironment. Recent advancements in genomics, epigenetics, and quantitative 

methods, such as radiomics, have led to potential predictive biomarkers. Radiomics is a recently 

defined field that extracts quantitative features from medical imaging data by an analytic process, 

the features are then mined to generate or test a hypothesis5. This chapter will provide 

background information from the perspective of adult glioma management for glioma, advanced 

imaging techniques, and radiomics. 

Glioma diagnosis and treatment 

Gliomas arise from glue like glial cells and present with a range of intensities, prognoses, and 

genetic characteristics. Gliomas ranging World Health Organization (WHO) grades I to IV have 

a median diagnostic age of 41 years with 56.6% and 32.1% of patients surviving one and five 

years, respectively6, 7. Glioblastoma multiforme (GBM), WHO grade IV glioma, is the most 

common and aggressive subtype8. The median age at diagnosis for GBM is 64 years, and despite 

advancements in diagnostic and treatment methods the median survival is only 14.61,8.  

Similar to other neoplasms, GBM follows a diagnosis-treatment cycle (Figure 1) 

including symptom presentation, medical imaging, biopsy, resection, radiation therapy, and 

chemotherapy. Although rare, cases of recurrent GBM may present resulting in subsequent 

iterations of the diagnosis-treatment cycle. The diagnosis-treatment cycle begins with symptom 

presentation, which may vary by tumor size, location in the brain, and growth rate. Common 

symptoms of GBM include headache, nausea or vomiting, confusion, memory loss, personality 

changes, balance changes, changes in vision, speech difficulties, and/or seizures. If a 

neurological exam indicates an issue in vision, hearing, balance, coordination, strength or 

reflexes, medical imaging tests are ordered. Magnetic resonance imaging (MRI) is the preferred 
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modality due to soft tissue differentiation and sequence availability, however imaging with other 

modalities like computerized tomography (CT) and positron emission tomography (PET) may be 

used. 

 
Figure 1. Glioma diagnosis and treatment cycle. The cycle begins with symptom presentation 
and is followed by a neurological and medical imaging exam. Next, a needle biopsy is taken and 
evaluated for histologic and molecular characteristics. If diagnosed with glioma, a treatment plan 
is established including resection, radiation therapy, and chemotherapy. The cycle may repeat 
while monitoring treatment response.  

 

Next, an abnormal tissue needle biopsy is collected, localized or guided by medical 

imaging data. The biopsy undergoes histologic analysis to determine pathologic and molecular 

characteristics. Histopathology of GBM is variable due to intra-tumoral heterogeneity, however 

the most common features used to diagnose GBM is the presence of necrosis and/or prominent 

angiogenesis (microvascular proliferation)8. GBM can be classified as primary or secondary, 

where primary occurs without a prior glioma and secondary develops from a prior glioma. 

Approximately 90% of GBMs are primary and tend to be older compared to secondary GBM9. 

Although the macro- and microscopic presentations of primary and secondary GBM are 

indistinguishable, they have different trends in genomic alterations. Primary GBMs typically 
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have alterations to the RTK pathway, EGFR, PTN, and chromosome 10, where secondary GBM 

commonly have alterations to IDH1, TP53, and chromosome 19q10-13. Crucially, IDH1 mutation 

is associated with increased overall survival (OS) and is used to differentiate primary from 

secondary GBM. The hallmark therapeutic approach for GBM is surgery, however complete 

resection is impossible due to infiltrative cells. Following resection with radiotherapy and 

chemotherapy, such as temozolomide (TMZ) and bevacizumab, has improved progression free 

survival (PFS) but not OS14.  

 Regardless of ideal treatment, almost all patients experience recurrence, progression, and 

ultimately mortality. In a study by deSouza et al, survival outcomes for GBM patients were 

compared over a ten-year period, between 1999-2000 (n=133) and 2009-2010 (n=184)15. The 

one-year survival rates were 20.7% and 40.0% for patients in 1999-2000 and 2009-2010 

respectively, and statistical analysis was significant at P<0.001. The median overall survival was 

0.36 and 0.74 years in 1999-2000 and 2009-2010 respectively. The authors credit significant 

improvement in one-year survival to adopting evidence based treatment protocols, specifically 

conjunctive radiation and chemotherapy. The National Cancer Institute (NCI) of the National 

Institute of Health (NIH) established the Surveillance, Epidemiology, and End Results Program 

(SEER) to catalog incident data of various diseases between 1975 to 20176. The SEER data 

published one- and five-year survival rates for invasive cancers of the brain and nervous system 

as shown in Figure 2. The data demonstrates increased one-year survival rate between 1999-2000 

and 2009-2010 consistent with deSouza et al findings, however between 2009-2010 and 2015-

2016 one-year survival has become stagnant. Potential explanations for the recent plateau in 

survival rate may be found in the diagnosis-treatment cycle, specifically how medical imaging 

and biopsy data are used in treatment planning and management. 
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Figure 2. NIH-NCI SEER data for invasive cancers of the brain and nervous system. One-year 
survival rates span from 1995-2016, increased survival is observed from 1995 to 2006, however 
survival becomes stagnant from 2006 to 2016. Meanwhile, five-year survival rate remains 
relatively consistent from 1995 to 2012. 

Advanced imaging techniques for glioma  

As discussed above, the diagnostic gold standard for glioblastoma (GBM) includes medical 

imaging and biopsy confirmation. In GBM, the preferred imaging technique is magnetic 

resonance imaging (MRI), however protocol parameters vary greatly across institutions, 

providers, and vendors. Recently, guidelines for a standardized brain tumor imaging protocol 

have been proposed by the Jumpstarting Brain Tumor Drug Development Coalition Imaging 

Standardization Steering Committee3. The committee proposed minimum standards for GBM 

imaging to include five acquisitions: (1) pre-contrast, isotropic 3D T1-weighted (T1w); (2) pre-

contrast, axial 2D T2-weighted fluid-attenuated inversion recovery (FLAIR); (3) pre-contrast, 

axial 2D, 3-directional diffusion-weighted images (DWI); (4) post-conrast axial 2D T2-weighted 

(T2w); and (5) post-contrast, isotropic 3D T1w. Although the recommended standards improve 

parameter consistency within and across institutions, it fails to maximize quantitative imaging 

techniques. Sequences such as T1w, T2w, and FLAIR are helpful in describing qualitative 

anatomic features but cannot provide quantitative or functional insight on their own. Thus, 

explicit comparison between patient data is inappropriate, requiring additional feature extraction 
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(i.e. size, location, etc). In contrast, advanced MRI and positron emission tomography (PET) 

provide quantitative data that may be compared across a GBM cohort. 

 Advanced MRI techniques provide quantitative and functional measurements relevant to 

GBM diagnosis and prognosis. Arterial spin labelling (ASL) is a perfusion imaging technique 

that is both non-invasive and non-ionizing. In GBM, ASL can differentiate progression from 

psuedoprogression, and is a reliable alternative to extrinsic contrast methods17. DWI measures 

the diffusion (random Browniana motion) of water molecules in a voxel. The apparent diffusion 

coefficient (ADC), is a quantitative measurement calculated from DWI and correlates with 

glioma grades18. MR spectroscopy (MRS) measures the concentration of metabolites within a 

volume, and for GBM patients the spectrum is often characterized by an increased choline, 

lactate, and lipids, with decreased NAA and myoinositol19. Functional MRI (fMRI) is a task-

based technique that identifies areas of the brain with increased oxygenated blood volumes. For 

GBM, fMRI is a useful tool for resection planning since it can illuminate important regions and 

connectomes of the brain20. 

  PET is a nuclear imaging technique and provides crucial biological insight for GBM, 

unavailable in advanced MRI techniques. The most widely used, validated, available, and cost-

effective PET radiotracer is 18F-2-fluoro-2-deoxy-D-glucose (FDG)16. FDG is linked to cellular 

metabolic activity since it is a glucose analogue, generally uptake is greater in higher grade 

tumors since the metabolic needs are more aggressive. In GBM, FDG is a useful radiotracer 

during the diseases initial stage. Recently advancements in amino acid based radiotracers, such 

as O-(2-[18F]-fluoroethyl)-L-tyrosine (FET), have lead to increased use for GBM since 

sensitivity is greater compared to FDG21.  

Spatial radiomics for glioma 

Although advanced MRI sequences and genome testing have become more common and cost 

effective, GBM survival rates have remained stagnant. Potential explanations for the recent 

plateau in survival rate may be found in the diagnosis-treatment cycle, specifically how medical 

imaging and biopsy data are used in treatment planning and management. Acquiring multiple 

biopsies throughout GBM treatment and management could lead to important findings, however 

the burden and considerable risk is untenable.  
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Recently, there has been an increased interest in utilizing radiomics, an analytic method 

that applies machine learning techniques to medical imaging and biopsy derived data5. Like other 

aggressive oncologic diseases, GBM is characterized by intra-tumoral heterogeneity (ITH) 

however leading radiomics repositories, such as The Cancer Genome Atlas (TCGA) and The 

Cancer Imaging Archive (TCIA), are largely comprised of single location biopsy data assumed 

sampled from the tumor bed22. Though radiomics studies from repositories like TCGA-TCIA 

have been intriguing, spatial correlation between micro and macroscopic features is unreliable.  

This work proposes a spatial radiomics analysis to medical imaging data with spatially 

registered biopsy. As previously discussed, GBM is characterized by inter- and intra-tumoral 

heterogeneity. This heterogeneity may be observed macroscopically, through medical imaging 

and gross resection, and microscopically, through biopsy derived measures like histologic and 

genomic features. Macroscopic heterogeneity is commonly described by medical imaging 

techniques, such as MRI and PET, throughout the diagnosis-treatment cycle to measure 

intervention response. Microscopic heterogeneity is only described through biopsy. Due to 

reasonable safety constraints, biopsy sampling is commonly limited to pre-intervention or at the 

time of resection.   

A spatial radiomic approach generates unique data that spatially correlates micro- and 

macroscopic features across the neoplasm. Since biopsy in GBM is extremely invasive and 

potentially dangerous acquisition is limited. In contrast, medical imaging methods such as MRI 

and PET are non or minimally invasive. By utilizing spatially registered biopsy and medical 

imaging data, unique localized imaging features are extracted leading to correlations between 

micro- to macroscopic environments. Models derived from spatial radiomic methods will likely 

improve GBM management over the diagnosis-treatment cycle since they can quantitatively 

correlate features previously only available by biopsy.   
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CHAPTER TWO: THE CASE REPORT 

Transient neurologic deficit without vascular pathology correlates with reversible focal 
hypoperfusion on arterial spin-labeled perfusion imaging 

Citation:  
Diller E, et al. Transient Neurologic Deficit without Vascular Pathology Correlates with 
Reversible Focal Hypoperfusion on Arterial Spin Labeled Perfusion Imaging. Journal of 
Pediatric Neurology. 2019. 17(02):089-094. doi: 10.1055/s-0038-1660502 

Introduction  

The differential diagnosis for acute onset of new neurologic deficits in children is broad and 

often prompts magnetic resonance imaging (MRI) during initial evaluation. The most common 

presentations in the Pediatric Emergency Department include migraine, seizure, Bell’s palsy, 

ischemic stroke, and conversion disorder1. Diffusion and perfusion-weighted MRI are essential 

modalities for the primary evaluation of a new neurologic deficit and have high sensitivity to 

detect tissue ischemia and hypoperfusion, respectively2.   

Arterial spin-labeling (ASL) has emerged as a non-invasive technique to quantify cerebral 

perfusion without contrast injection.  Compared to other imaging modalities, such as dynamic 

contrast-enhanced (DCE) perfusion, ASL is beneficial for evaluating pediatric patients due to its 

non-invasive technique, increased safety, convenience, high labeling efficiency, high signal-to-

noise ratio, and high quantitative fidelity3,4.  Initial experiences with ASL have demonstrated 

feasibility and reliability for providing clinical information about cerebral blood flow in pediatric 

ischemic stroke5.  We report the use of ASL to demonstrate the correlation between focal 

hypoperfusion and a neurologic deficit without evidence of vascular pathology. 

Case report 

A 16 year-old male presented with acute onset encephalopathy and receptive aphasia.  His past 

medical history was significant for Type I diabetes mellitus, factor V Leiden mutation, and a 

remote history of right frontal stroke.  Additionally, he was followed for a benign left cerebellar 

tonsil lesion, stable over serial examinations, with his most recent brain MRI approximately one 



 

22 
 

month prior to presentation.  His medications included insulin glargine each evening and an 

insulin aspart sliding scale, three to five times daily.  He had no history of migraine headaches. 

On the morning of presentation, his family found him moaning and confused.  A blood glucose 

check at home was normal and he was brought by ambulance to the Emergency Department. 

After arrival he had several apneic spells and transient bradycardic events.   His blood glucose, 

electrolytes, and a toxicology screen were normal.  He would briefly open his eyes to commands, 

mumble incoherently, and quickly lay his head down.  He would not answer questions or follow 

commands consistently, but would squeeze with his left hand.  A head CT revealed no acute 

processes. He was transferred to the Pediatric Intensive Care Unit and the senior author was 

consulted.   

Upon examination, the patient’s blood pressure was 130/61, pulse 76, temperature 36.9° 

C, respirations 22, SpO2 96%.  He was warm, well perfused, well nourished, hydrated, and 

athletic appearing (height 193 cm, weight 93.5 kg).  He rested comfortably and quietly but with a 

confused expression.  He was normocephalic with normal facial features, atraumatic, with 

anicteric sclera, and patent nares and oropharynx. There was no cyanosis or clubbing and he 

spoke easily without effort.  He had normal chest symmetry and expansion during respiration.  

There was no edema of the extremities, and no abnormalities of the skin. 

He was awake, alert, and pleasant, but unable to cooperate fully with the examination 

without visual prompting.  His speech was fluent but nonsensical, with receptive errors and only 

partial understanding of posed questions.  His pupils were equal, round, and reactive to light.  

His gaze was conjugate and unrestricted, without phoria or tropia.  His face was symmetrical at 

rest and with expression.  There was no dysarthria, hoarseness, or difficulty handling secretions.  

There was no pronator drift and he had full and symmetrical strength in the upper and lower 

extremities. 

  Brain MRI was obtained at 3T (750W, GE Healthcare, Milwaukee, Wisconsin) with 

standard protocol sequences, including T1, T2, fluid-attenuated inversion recovery (FLAIR), 

proton density (PD), diffusion-weighted imaging (DWI), and ASL.  The ASL sequence used 

pseudo-continuous arterial spin labeling (pCASL)6 with inversion (tagging) pulses immediately 

inferior to the imaging volume.  Background suppression pulses were applied to reduce the 

signal of stationary tissues7, 8, 9 and improve signal-to-noise ratio of arterial blood.  The imaging 

volume was obtained with a 3D fast spin echo (3D FSE). Quantitative cerebral blood flow (CBF) 
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maps were derived from raw ASL data using PD maps and a single-compartment perfusion 

model10, 11, 12.  CBF measurements were taken in regions of interest (ROI) within gray matter 

near the vertices.   

No acute infarction or edema was found on DWI or FLAIR, as shown in Figure 1 Parts A 

and B, respectively.  A quantitative cerebral blood flow map derived from ASL showed reduced 

left hemispheric perfusion (21 ± 7 ml/100 mg/min) compared with the contralateral side (62 ± 19 

ml/100 mg/min), which was within normal limits (Figure 1C).  Bolus perfusion DCE imaging 

confirmed the asymmetric perfusion deficit (Figure 1D).  The Circle of Willis and large caliber 

cerebral arteries were patent on MRI (Figure 2A) and CT (Figure 2B) angiography, without 

evidence of occlusion or vasospasm to explain reduced perfusion in the left hemisphere.  An 

echocardiogram was normal and electroencephalography (EEG) demonstrated left posterior 

temporal slowing, but no seizures. 
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Figure 3. Cerebral MRI data from day of symptom onset. (A) DWI imaging showed no acute 
infraction; (B) FLAIR demonstrated no signal abnormalities indicative of edema; (C) ASL 
showed decreased cerebral perfusion on the left hemisphere with normal perfusion on the right 
hemisphere; (D) DCE bolus imaging confirmed asymmetric perfusion observed in ASL.  
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Figure 4. Angiography from day of symptom onset showed enlarged cerebral arteries without 
evidence of occlusion nor vasospasm in MRA (A) and CT (B) imaging modalities. 

 

During examination the following morning, the patient was awake, alert, appropriately 

conversant, pleasant and cooperative.  His speech was fluent, comprehension was intact, and he 

had full and symmetric strength in the upper and lower extremities.  A repeat brain MRI 

displayed complete resolution of the perfusion abnormality without evidence of an infarction, as 

observed in Figure 3.  Cerebral blood flow calculated by ASL was 67 ± 10 ml/100 mg/min in the 

left hemisphere and 63 ± 12 ml/100 mg/min in the right hemisphere.   

 

 
Figure 5. Cerebral MRI data one day after symptom onset. (A) ASL and (B) DCE imaging 
showed complete resolution of observed left hemisphere perfusion abnormality while (C) DWI 
demonstrated the absence of infraction. 

 

The patient was discharged home and resumed participation in school and sports activities.  

A follow-up EEG was performed two weeks later and was normal.  Repeat imaging at three 

months and again at almost 18 months confirmed his cerebral perfusion remained normal.  At 18 
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months after the incident he was doing well, although he reported one transient episode of poor 

responsiveness when his blood glucose was ~40 mg/dL, with resolution of symptoms after 

drinking some juice.  He continued to participate in school and athletic activities. 

Discussion 

This is a case of acute onset encephalopathy with receptive aphasia in a patient with insulin-

dependent diabetes mellitus and a history of transient episodes of altered mental status with 

hypoglycemia.  Although we did not have direct laboratory evidence at the time of his deficit, the 

reversible nature of his condition suggests that his symptoms were a result of transient 

hypoglycemia, which can cause focal neurologic deficits with or without seizures13, 14.  In his 

case, a prolonged reversible neurologic deficit was accompanied by hemispheric hypoperfusion 

confirmed by both ASL and DCE perfusion techniques.  

  Seizure with postictal cerebral dysfunction may be associated with altered cerebral flow 

detected with ASL15.  Migraine attacks may also be associated with hypoperfusion during an 

aura phase, followed by hyperperfusion after the onset of a headache16, 17.  A recent study on 

ASL perfusion in children with atypical aura demonstrated regional cerebral hypoperfusion in 

most cases, associated with minor cerebral vasospasm on time-of-flight MRA18. One case report 

of hemiplegic migraine studied with ASL demonstrated single hemispheric hypoperfusion with 

subtle narrowing of the corresponding middle cerebral artery19.  These pathologic processes 

remain in the differential diagnosis, although this patient had no clinical or electrographic 

evidence of seizures, and no clinical history of complex migraines.  

Apparent hypoperfusion may occur in cases of normal CBF with proximal vessel 

occlusion, resulting from underestimation in standard ASL sequences that use a single delay 

between labeling and image acquisition, a phenomenon known as “arterial transit artifact20.”  In 

this case, both CT and MRI angiography showed no evidence of large vessel occlusion indicative 

of an arterial transit artifact, and hemispheric hypoperfusion was confirmed with DCE. 

Additionally, the reversible nature of the perfusion abnormality coupled with his neurologic 

deficit are not suggestive of technical artifact.   

Cerebral perfusion and metabolism are tightly coupled since energy demands during 

brain activity are met largely through oxidative metabolism21.  Hypoglycemia may cause 

increased CBF with redistribution of blood flow to specific sites from an autonomic stress 
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response22.  There are previous reports of transient hypoglycemia mimicking acute stroke with 

reversible restricted diffusion and hyperperfusion23, in addition to cases of hypoglycemic 

hemiplegia associated with hypoperfusion24.  Animal models of hypoglycemia provide evidence 

for both hypoglycemia-related hyperperfusion and subsequent delayed hypoperfusion25.  Future 

studies on the mechanism of this phenomenon should consider hypoglycemic effects on cerebral 

metabolism. 

In this case, ASL was a valuable technique used to quantify perfusion for a pediatric 

patient. ASL provided non-invasive perfusion imaging data that rivals similar information 

obtained through xenon-133, single-photon emission computed tomography (SPECT), and DCE 

perfusion techniques. ASL is a convenient and safe MRI sequence that provides reliable 

quantitative data critical for the differential diagnosis of acute onset neurologic deficits in 

children. 

  



 

28 
 

References 

[1] Mackay MT, Yock-Corrales A, Churilov L, Monagle P, Donnan GA, Babl FE. Accuracy 

and Reliability of Stroke Diagnosis in the Pediatric Emergency Department. Stroke 

2017;48(5):1198–202. Available at: http://dx.doi.org/10.1161/STROKEAHA.116.015571 

[2] Vilela P, Rowley HA. Brain ischemia: CT and MRI techniques in acute ischemic 

stroke. European Journal of Radiology 2017;96:162–72. Available at: 

http://dx.doi.org/10.1016/j.ejrad.2017.08.014 

[3] Wang J, Licht DJ. Pediatric Perfusion MR Imaging Using Arterial Spin Labeling. 

Neuroimaging Clinics of North America 2006;16(1):149–67. Available at: 

http://dx.doi.org/10.1016/j.nic.2005.10.002 

[4] Telischak NA, Detre JA, Zaharchuk G. Arterial spin labeling MRI: Clinical 

applications in the brain. Journal of Magnetic Resonance Imaging 2014;41(5):1165–80. 

Available at: http://dx.doi.org/10.1002/jmri.24751 

[5] Chen J, Licht DJ, Smith SE, et al. Arterial spin labeling perfusion MRI in pediatric 

arterial ischemic stroke: Initial experiences. Journal of Magnetic Resonance Imaging 

2009;29(2):282–90. Available at: http://dx.doi.org/10.1002/jmri.21641 

[6] Silvia AC, Kim SG. Pseudo-continuous arterial spin labeling technique for measuring 

CBF dynamics with high temporal resolution. Magnetic Resonance in Medicine 1999; 

42(3):425-9. Available at: http://dx.doi.org/10.1002/(SICI)1522-

2594(199909)42:3<425::AID-MRM3>3.0.CO;2-S 

[7] Mani S, Pauly J, Conolly S, Meyer C, Nishimura D. Background suppression with 

multiple inversion recovery nulling: Applications to projective angiography. Magnetic 

Resonance in Medicine 1997;37(6):898–905. Available at: 

http://dx.doi.org/10.1002/mrm.1910370615 

[8] Dixon WT, Sardashti M, Castillo M, Stomp GP. Multiple inversion recovery reduces 

static tissue signal in angiograms. Magnetic Resonance in Medicine 1991;18(2):257–

68. Available at: http://dx.doi.org/10.1002/mrm.1910180202 

  



 

29 
 

[9] Ye FQ, Frank JA, Weinberger DR, McLaughlin AC. Noise reduction in 3D perfusion 

imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magnetic 

Resonance in Medicine 2000;44(1): 92–100. Available at: 

http://dx.doi.org/10.1002/1522-2594(200007)44:1<92::AID-MRM14>3.0.CO;2-M 

[10] Mutsaerts HJMM, Steketee RME, Heijtel DFR, et al. Inter-Vendor Reproducibility of 

Pseudo-Continuous Arterial Spin Labeling at 3 Tesla. PLoS ONE 2014;9(8):e104108. 

Available at: http://dx.doi.org/10.1371/journal.pone.0104108 

[11] Alsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin-

labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion 

study group and the European consortium for ASL in dementia. Magnetic Resonance in 

Medicine 2014;73(1):102–16. Available at: http://dx.doi.org/10.1002/mrm.25197 

[12] Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic 

resonance imaging of human cerebral blood flow. Journal of Cerebral Blood Flow 

Metabolism 1996; 16(6):1236-49. Available at: http://dx.doi.org/10.1097/00004647-

199611000-00019 

[13] Pocecco M, Ronfani L. Transient focal neurologic deficits associated with 

hypoglycaemia in children with insulin-dependent diabetes mellitus. Acta Paediatrica 

1998;87(5):542–4. Available at: http://dx.doi.org/10.1111/j.1651-2227.1998.tb01500.x 

[14] Wattoo MA, Liu HH. Alternating transient dense hemiplegia due to episodes of 

hypoglycemia. Western Journal of Medicine. 1999;170(3):170-171. Available at: 

http://dx.doi.org/10.1097/00004647-199611000-00019 

[15] Gaxiola-Valdez I, Singh S, Perera T, Sandy S, Li E, Federico P. Seizure onset zone 

localization using postictal hypoperfusion detected by arterial spin labelling MRI. Brain 

2017;140(11):2895–911. Available at: http://dx.doi.org/10.1093/brain/awx241 

[16] Olesen J, Larsen B, Lauritzen M. Focal hyperemia followed by spreading oligemia and 

impaired activation of rcbf in classic migraine. Annals of Neurology 1981;9(4):344–52. 

Available at: http://dx.doi.org/10.1002/ana.410090406 

[17] Olesen J, Friberg L, Olsen TS, et al. Timing and topography of cerebral blood flow, 

aura, and headache during migraine attacks. Annals of Neurology 1990;28(6):791–8. 

Available at: http://dx.doi.org/10.1002/ana.410280610 



 

30 
 

[18] Cadiot D, Longuet R, Bruneau B, et al. Magnetic resonance imaging in children 

presenting migraine with aura: Association of hypoperfusion detected by arterial spin 

labelling and vasospasm on MR angiography findings. Cephalalgia 

2017;033310241772357. Available at: http://dx.doi.org/10.1177/0333102417723570 

[19] Bosemani T, Burton VJ, Felling RJ, et al. Pediatric hemiplegic migraine: Role of 

multiple MRI techniques in evaluation of reversible hypoperfusion. Cephalalgia 

2013;34(4):311–5. Available at: http://dx.doi.org/10.1177/0333102413509432 

[20] Haller S, Zaharchuk G, Thomas DL, Lovbald KO, Barkhof F, Golay X. Arterial Spin 

Labeling Perfusion of the Brain: Emerging Clinical Applications. Radiology 

2016;281(2):337-356. Available at: http://dx.doi.org/10.1148/radiol.2016150789 

[21] Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB. Linear coupling between 

cerebral blood flow and oxygen consumption in activated human cortex. Proceedings of 

the National Academy of Sciences 1999;96(16):9403–8. Available at: 

http://dx.doi.org/10.1073/pnas.96.16.9403 

[22] Wiegers EC, Becker KM, Rooijackers HM, et al. Cerebral blood flow response to 

hypoglycemia is altered in patients with type 1 diabetes and impaired awareness of 

hypoglycemia. Journal of Cerebral Blood Flow & Metabolism 2016;37(6):1994–2001. 

Available at: http://dx.doi.org/10.1177/0271678x16658914 

[23] Cordonnier C, Oppenheim C, Lamy C, Meder J-F, Mas J-L. Serial diffusion and 

perfusion-weighted MR in transient hypoglycemia. Neurology 2005;65(1):175–175. 

Available at: http://dx.doi.org/10.1212/01.wnl.0000167128.14769.7b 

[24] 24. Shintani S, Tsuruoka S, Shiigai T. Hypoglycaemic hemiplegia: a repeat SPECT 

study. Journal of Neurology, Neurosurgery & Psychiatry 1993;56(6):700–1. Available 

at: http://dx.doi.org/10.1136/jnnp.56.6.700 

[25] Abdul-Rahman A, Agardh CD, Siesjø BK.  Local cerebral blood flow in the rat during 

severe hypoglycemia, and in the recovery period following glucose injection. Acta 

Physiologica Scandinavica 1980;109(3):307–14. Available at: 

http://dx.doi.org/10.1111/j.1748-1716.1980.tb06601.x  



 

31 
 

CHAPTER THREE: BIOPSY SELECTION 

Variation in correlation between prognosis and histologic feature based on biopsy selection 

Glioblastoma multiform carries a dismal prognosis with poor response to gold standard 

treatment1. Innovative data analysis methods have been developed to characterize tumor genomic 

expression with histologic features. In a clinical setting, biopsy selection methods may be 

constrained by time and burden to the patient. Thus, we investigate the impact of biopsy 

selection on correlation between prognostic and histologic features in 35 patients with GBM. We 

compared methods using limited volumes, moderate volumes, and enblock tumor volumes. 

Additionally, we investigated the impact of random versus strategic methods for limited and 

moderate volume biopsies. Finally, we compared correlation results by selecting one to five 

small biopsy. We observed a wide range in correlation significance across selection methods. 

These findings may aid clinical management of GBM and direct better biopsy selection 

necessary for the development and deployment of targeted therapies.   

Introduction 

Glioblastoma multiform (GBM) is the most common and worst form of glioma in terms of 

therapeutic response, aggressiveness, and prognosis1-3. The treatment gold standard for GBM 

includes surgical resection, chemotherapy, and radiotherapy, which is invasive, has unwanted 

side effects, and can have a large negative impact on quality of life1. Even with the efforts of 

gold standard treatment, tumor recurrence incidence is higher in GBM compared to other 

neoplasms4. Thus, efforts have been made to characterize the molecular and genetic profile 

within GBM so targeted therapeutic methods could be used with a more effective clinical 

approach5, 6. 

Recently, Ivy Glioblastoma Atlas Project (Ivy GAP) initiated a several studies to evaluate 

genetic expression associated with histologic and clinical features7,8. Cantanhede and Oliveira 

observed that within histologic features there are significant variations between platelet derived 

growth factor (PDGR) family genes. Additionally, they found significant differences in 

expression between left and right lobes.  Similarly, Puchalski et al observed that RNA-seq had 

significant variation across histologic structural features defined as cellular tumor, leading edge, 
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palisading necrosis, and microvascular proliferation. These works demonstrate with statistical 

confidence a link between histologic structural features and genetic expression.  

In a clinical setting, the diagnostic gold standard is medical imaging, preferably magnetic 

resonance imaging (MRI), followed by biopsy confirmation9,10. Biopsy tissue volume may vary 

across cases from needle biopsy to biopsy sectioning during resection. In either case, the tissue 

sampling is likely less than the average volume per patient, 7 cm3, used by Ivy GAP. Since a 

GBM hallmark is intratumor heterogeneity, we hypothesized that biopsy features would vary 

greatly between methods.  

Methods 

Data selection.  

Histologic features, clinical and genomic data for 35 of 41 available GBM patients was 

retrospective obtained from the Ivy GAP repository (Allen Institute for Brain Science. Ivy 

Glioblastoma Atlas Project. Available from: https://glioblastoma.alleninstitute.org/). The cohort 

was selected based on the following inclusion criteria: enbloc resection contains at least three sub 

blocks; and complete prognosis data. Histologic feature data was acquired from Ivy GAP (Allen 

Institute for Brain Science. Ivy Glioblastoma Atlas Project. Available from: 

https://glioblastoma.alleninstitute.org/static/download.html). The histologic features defined by 

Ivy GAP are: leading edge (LE); hyperplastic blood vessels in leading edge (LEhbv); infiltrating 

tumor (IT); hyperplastic blood vessels in infiltrating tumor (IThbv); cellular tumor (CT); 

perinecrotic zone (CTpnz); psuedopalisading cells but no visible necrosis (CTpnn); 

pseudopalisading cells around necrosis (CTpan); hyperplastic blood vesselsin cellular tumor 

(CThbv); microvascular proliferation (CTmvp); and necrosis (CTne). Figure 4 depicts an 

annotated slide. Histologic features were normalized to the total H&E tissue area for each slide. 

Clinical and genomic data was acquired from Ivy GAP (Allen Institute for Brain Science. Ivy 

Glioblastoma Atlas Project. Available from: 

https://glioblastoma.alleninstitute.org/static/download.html) and tabulated for the selected cohort. 
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Figure 6. An example of slide annotation from IvyGAP. The tumor feature annotation (left), the 
annotation boundary on hematoxylin and eosin slide (center), and the tumor feature legend 
(right).  

Data analysis. 

From the compiled data, we analyzed seven biopsy selection methods in MATLAB R2018b 

(www.mathworks.com). Three location methods (random, tumor center, and max necrosis) were 

applied to two volume methods (slide and block), resulting in the following six combinations: 

(A) randomly select one slide; (B) randomly select one block average; (C) one slide at tumor 

centroid; (D) one block average at tumor centroid; (E) one slide at necrosis; and (F) one block 

average at necrosis. We selected slide and block volumes to represent needle biopsy (NB) and 

surgical biopsy (SB) volumes respectively. The last method was (G) the enbloc average, 

representing the max tissue volume of data available for a patient. For methods C and E, if the 

location of interest contained more than one slide, a slide was chosen at random. For methods B, 

D, and F all the slides from the corresponding block were averaged together. For biopsy number 

analysis, we randomly selected one to five slides from unique block locations across each tumor. 

Correlation between un-censored, continuous variables overall survival (OS), progression free 

http://www.mathworks.com/
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survival (PFS) and histologic features were evaluated by Pearson’s correlation. Correlations were 

considered statistically significant if p value<0.10.  

Results 

Clinical and genomic data for cohort. 

Information from the compiled data as summarized in Table 1 reveals that the cohort has a young 

age at the time of diagnosis and comparable gender distribution. For gross primary tumor 

locations, the right frontal lobe has the highest incident, followed by left parietal and mixed right 

hemisphere. The cohort has high functioning Karnofsky Performance Status (KPS), with nearly 

half presenting neurologic defect, indicating mildly impaired quality of life and favorable 

prognosis (10,11,12). However, as common with GBM, the prognostic outcomes for the cohort 

are poor with median progression free survival (PFS) of 107 days, and median overall survival 

(OS) of 439 days. For genomic expression, Isocitrate Dehydrogenase 1 (IDH1) mutation is 

observed in three patients, consistent with the literature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

35 
 

Table 1. Clinical and genomic data for research cohort. PTEN: Phosphatase and Tensin 
Homolog; IDH1: Isocitrate Dehydrogenase 1; MGMT: O-6-Methylguanine-DNA 
Methyltransferase; PCR: Polymerase chain reaction. 
 

 

Correlation between overall survival and histologic feature vary by biopsy method. 

Correlation significance between overall survival (OS) and LE, IT, CTpnz, CTpnn, CTmvp, 

CTne vary by biopsy method as shown in Figure 5. The correlation between OS and LE is 

significant for NB methods taken at random and at max necrosis (p=0.05, and p=0.09 

respectively). For IT, correlation with OS is significant for NB method taken from max necrosis 

(p=0.08). The correlation between CTpnz and OS is significant for NB methods taken at random 

and from max necrosis (p=0.05 and 0.07 respectively). For CTpnn, the correlation is significant 
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for SB methods taken at random and at tumor centroid (p=0.008, 0.02 respectively), while for 

NB method it is significant taken from tumor center (p=0.002). Histologic feature CTmvp has 

significant correlation with OS for SB methods taken at max necrosis and enblock (p=0.06, and 

0.006 respectively). For OS and CTne SB at max necrosis has significant correlation (p=0.04). 

The correlation between OS and NB, SB, and enbloc is shown in Figure 5 A, C, and E 

respectively. 

Correlation between progression free survival and histologic feature vary by biopsy method.  

The correlation between progression free survival (PFS) and histologic features CTpnn and 

CTmvp vary based on biopsy method as shown in Figure 5. For SB based methods, the 

correlation between PFS and CTpnn is significant if the biopsy is taken from the center 

(p=0.007). The correlation between PFS and CTmvp is significant if NB biopsy from the tumor 

center or SB from random is used (p=0.03, and p=0.035 respectively). The correlation between 

PFS and NB, SB, and enbloc is shown in Figure 5 B, D, and E respectively. 
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Figure 7. Correlation between prognosis and structural features across biopsy methods. (A) 
Correlation between overall survival (OS) and histology structural features by limited volume, 
needle biopsy (NB) like methods. (B) Correlation between progression free survival (PFS) and 
histology structural features by limited volume, needle biopsy (NB) like methods. (C) Overall 
survival (OS) correlation to histologic structural features using a larger volume, surgical biopsy 
(SB) like methods. (D) Progression free survival (PFS) correlation to histologic structural 
features using a larger volume, surgical biopsy (SB) like methods. (E) Correlation between 
prognostic factors and histologic structural features using enblock method. 

Correlation between prognosis and histologic feature vary by the number of biopsies selected.  

For correlation between PFS and histologic feature CTpnz (p=0.036) there was significant 

variation from the number of biopsies. For correlation between OS and histologic features LE 
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(p=0.026), LEhbv (p=0.011), and CTmvp (p=0.003) there was significant variation from the 

number of biopsies. Variation in correlation between prognosis and histologic features due to the 

number of biopsies can be observed in Figure 6. 

 

 
Figure 8. Variation in correlation between prognosis and histology based on the number of 
biopsies taken. PFS: progression free survival; OS: overall survival. 

Discussion 

This study presents the impact of biopsy selection method on correlation between prognosis and 

histologic features. The impact of intra-tumoral heterogeneity can be observed in the correlation 

range by method. Between needle like biopsy, surgical biopsy, and enblock analysis, correlation 

with prognosis varies greatly.  

GBM has been studied widely, however to our knowledge, this is the first study to look at 

the effects of sampling technique form in-vivo data. Repositories, such as The Cancer Genome 

Atlas (TCGA) have clinical, genomic, and biopsy data, however the location of biopsy relative to 

the tumor is unknown11. Additionally, the biopsies volume used to derive histologic features 

characteristic of GBM, such as the presence of necrosis or palisading tumor, is unknown12,13. 



 

39 
 

However, multiple studies have linked, or argue such, that a relationship between histologic 

features and genomic expression and/or imaging features are reliable 14,15.  

Based on this analysis, we can observe vast variation in correlation between limited 

volume biopsies, such as needle biopsy. Between one and three samples there is a wide shift in 

correlation, consistent with intra-tumoral heterogeneity16-20. Additionally, a plateau is observed 

in limited volume biopsies between three and five samples, this appears consistent with the 

observation between random, tumor center, and necrotic core for limited volume biopsy. 

However, when moving to mid volume or max volume observed, methods B, D, F, and G, few 

correlations between OS or PFS and histologic features are significant. This appears to represent 

a “wash-out” like effect, where the heterogeneity across the tumor is no longer observed. 

Considering the presented data, select limited volume biopsy, such as needle biopsy, across the 

tumor has the most robust correlation with prognostic factors OS and PFS. Clinically, these 

methods may be applied to robustly capture histologic features consistent with GBM. Three to 

five limited volume biopsies taken from the tumor center, max necrosis, and randomly at a 

minimum of 1 cm separation results in strong correlation to prognostic features.  
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CHAPTER FOUR: VOXEL-WISE RADIOMIC MODELS 

Predicted disease compositions of human gliomas estimated from multiparametric MRI 
can predict endothelial proliferation, tumor grade, and overall survival 

Biopsy is the main determinants of glioma clinical management, but require invasive sampling 

that fail to detect relevant features because of tumor heterogeneity. The purpose of this study was 

to evaluate the accuracy of a voxel-wise, multiparametric MRI radiomic method to predict 

features and develop a minimally invasive method to objectively assess neoplasms. 

Multiparametric MRI were registered to T1-weighted gadolinium contrast-enhanced data using a 

12 degree-of-freedom affine model. The retrospectively collected MRI data included T1-

weighted, T1-weighted gadolinium contrast-enhanced, T2-weighted, fluid attenuated inversion 

recovery, and multi-b-value diffusion-weighted acquired at 1.5T or 3.0T.  Clinical experts 

provided voxel-wise annotations for five disease states on a subset of patients to establish a 

training feature vector of 611,930 observations. Then, a k-nearest-neighbor (k-NN) classifier was 

trained using a 25% hold-out design. The trained k-NN model was applied to 13,018,171 

observations from seventeen histologically confirmed glioma patients. Linear regression tested 

overall survival’s (OS) relationship to predicted disease compositions (PDC) and diagnostic age 

(α = 0.05). Canonical discriminant analysis tested if PDC and diagnostic age could differentiate 

clinical, genetic, and microscopic factors (α = 0.05). The model predicted voxel annotation class 

with a Dice similarity coefficient of 94.34% ± 2.98. Linear combinations of PDCs and diagnostic 

age predicted OS (p = 0.008), grade (p = 0.014), and endothelia proliferation (p = 0.003); but fell 

short predicting gene mutations for TP53BP1 and IDH1. This voxel-wise, multi-parametric MRI 

radiomic strategy holds potential as a non-invasive decision-making aid for clinicians managing 

patients with glioma. 

Introduction 

Every year more than 6 per 100,000 adults in the United States are diagnosed with glioma, the 

most common malignant tumor of the central nervous system.1  For clinical purposes, the World 

Health Organization (WHO) grades gliomas I to IV, based on histologic and molecular features, 

with the worst survival associated with glioblastoma, WHO grade IV, in which only one half of 
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patients survive one year after diagnosis.2 Lower grade gliomas (LGG), as defined by The 

Cancer Genome Atlas (TCGA), include WHO grades II and III gliomas and have a survival 

range of one to fifteen years.3 Grading informs various treatment protocols including resection, 

chemotherapy, radiation therapy, and long-term monitoring. Unfortunately, complete surgical 

resection may be infeasible, and both epigenetic characteristics and tumor heterogeneity may 

reduce sensitivity to chemotherapy and radiotherapy.2   

The current standard for glioma diagnosis is histopathologic evaluation after resection or 

biopsy, with refinements in tumor classification based on molecular features.  However, not all 

patients are candidates for surgery and, even with advancements in stereotaxic methods, the 

availability and quality of diagnostic tissue is constrained by procedure time, sampling error, and 

user interpretation.5, 6 Therefore, alternative non-invasive methods must be developed to 

quantitatively investigate glioma phenotypic heterogeneity, which could alter clinical 

management strategies.  

Magnetic resonance imaging (MRI) is a noninvasive imaging modality that provides 

critical information for glioma detection and diagnosis.  Routine protocols usually include the 

qualitative imaging sequences T1-weighted (T1), gadolinium contrast-enhanced T1 (T1-GD), 

T2-weighted (T2), and fluid-attenuated inversion recovery (FLAIR).7, 8 More advanced 

quantitative MRI sequences, such as diffusion-weighted imaging (DWI) and derived apparent 

diffusion coefficient (ADC) maps, have predictive potential for glioma differentiation.9 However, 

most studies focus on the power of a single MRI sequence, using measurement techniques that 

neglect heterogeneity.  

Radiomics is a recently defined discipline of medical imaging that utilizes quantitative 

feature extraction and machine-learning models to develop clinically significant predictions.10 

There have been many promising studies using radiomics principles for various cancers, often 

focused on anatomical locations such as breast, lung, and pancreas, with fewer focused on 

gliomas.11-14 The Brain Tumor Segmentation (BraTS), developed by Bakas et al, is a collection 

of glioma annotations based on T1, T1-GD, T2, and FLAIR MRI data, recently applied to predict 

overall survival (OS) and progression free survival (PFS) based on radiomic features.15-17 Inano 

et al used diffusion tensor imaging (DTI) in a voxel-by-voxel (voxel-wise) method to develop k-

means clusters that significantly differentiated WHO grade II from WHO grade III and IV 

gliomas.18 Tian et al used multiparametric MRI data from T1, T1-GD, T2, DWI, and arterial spin 
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labeling (ASL) sequences to define texture features that significantly differentiated glioma 

grades using a more complex and resource intensive support vector machine (SVM) model.19 

However, the utilization of multiparametric MRI with a voxel-wise radiomics method for 

predicting glioma grade, genetic mutations, and prognosis has not been fully verified.  

We hypothesized that a voxel-wise radiomics method using multiparametric MRI data 

could provide phenotypic classification reflecting general tumor heterogeneity (predicted disease 

compositions, PDC), with predictive utility for glioma grade and genetic mutations. We tested 

this with a non-parametric machine learning model employing k-nearest neighbor (k-NN) in a 

voxel-wise based feature vector across five MRI sequences from a publicly available data set 

(http://www.iu.edu/~mipl), with phenotype classifications defined by field experts. 

Methods 

Patient population 

We obtained anonymized medical data for 28 patients with histologic diagnoses of LGG (N = 

14) or glioblastoma multiforme (GBM, N = 14) from TCGA, in which WHO grade II and III 

glial tumors were designated as LGG.3 We excluded 11 patients: five for incomplete brain 

coverage, and six for motion or artefact. Therefore, we included 17 patients (10 LGG, 7 GBM; 

clinical characteristics summarized in Table 2).  

Imaging Data 

We obtained pre-intervention MRI data for all 17 patients from The Cancer Imaging Archive 

(TCIA). For each we selected five sequences in the axial plane: (1) T1; (2) T2; (3) FLAIR; (4) 

DWI; and (5) T1-GD. DWI data were processed into quantitative ADC maps using a custom 

script that solved the Stejskal-Tanner equation at each voxel.20 The DWI sequences used two b 

values (0, and 1000 s/mm2) over two, four, or five directions for ten, one, and six patients, 

respectively. Due to the nature of the archive, field strength, manufacturer, and coil selection 

were inconsistent across patients. Table 3 summarizes the MRI parameters across respective 

sequences. 
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Table 2. Summary of clinical characteristics with Bonferroni corrected p-values. 

 Lower Grade (LGG) Glioblastoma (GBM) p-value 
Demographics 

Patients 58.8% (10/17) 41.2% (7/17) N/A 
Age at diagnosis, years 
(mean ± SD) 

51.88 ±10.67 65.72 ±12.91 0.029 

Gender   0.653 
Male 60.0% (6/10) 71.4% (5/7)  
Female 40.0% (4/10) 28.6% (2/7)  

PFS, months  
(mean ± SD) 

20.75 ±13.30 4.95 ±7.51 0.003* 

OS, months 
(mean ± SD) 

34.72 ±15.74 15.04 ±1.05 0.016* 

Histologic subtype Oligoastrocytoma 
WHO II, 40% (4/10) 
Oligodendroglioma 
WHO II, 20% (2/10) 
Anaplastic oligoastrocytoma 
WHO III, 20% (2/10) 
Anaplastic astrocytoma 
WHO III, 20% (2/10) 

Glioblastoma  
WHO IV, 100% (7/7) 

N/A 

Genetic Mutation Status (Wild-type : Mutated) 
CDKN2A 9:1 3:4 0.037 
TP53 3:7 5:2 0.104 
EGFR 9:1 3:4 0.037 
NF1 7:3 6:1 0.484 
CDKN2B 10:0 3:4 0.004* 
CDK4 8:2 5:2 0.704 
TP53BP1 6:4 7:0 0.061 
IDH1 1:9 6:1 <0.0001* 

Histologic Expression Status (Not present : present) 
Endothelial proliferation 10:0 1:6 <0.0001* 
Palisading necrosis 10:0 4:3 0.021 
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Table 3. Summary of MR Sequence Settings 
MR Parameter T1 T1+ T2 FLAIR ADC 
TR [ms] 
(0018, 0080) 

2315.97 ±961.99 
[500.00, 3116.00] 

2645.97 ±1028.42 
[500.00, 3236.34] 

3427.45 ±449.42 
[3000.00, 4000.00] 

10002.35 ±0.79 
[10002.00, 10004.00] 

10000.00 ±0.00 
[10000.00, 10000.02] 

TE [ms] 
(0018, 0081) 

7.81 ±2.98 
[6.36, 14.00] 

7.81 ±2.98 
[6.36, 14.00] 

92.59 ±27.17 
[22.00, 104.97] 

130.51 ±11.69 
[123.50, 155.00] 

75.45 ±7.40 
[71.80, 99.00] 

Inversion Time [ms] 
(0018, 0082) 

1084.21 ±184.37 
[860.00, 1238.00] 

1211.00 ±101.02 
[860.00, 1238.00] 

0.00 ±0.00 
[0.00, 0.00] 

2241.18 ±19.65 
[2200.00, 2250.00] 

0.00 ±0.00 
[0.00, 0.00] 

Spacing between slices 
(0018, 0088) 

4.65 ±0.79 
[3.00, 5.00] 

2.59 ±0.20 
[2.50, 3.00] 

4.65 ±0.79 
[3.00, 5.00] 

2.59 ±0.20 
[2.50, 3.00] 

4.81 ±0.75 
[3.00, 6.00] 

Acquisition matrix 
(0018, 1310) 

313.60 ±17.94 
[256.00, 320.00] 

313.60 ±17.94 
[256.00, 320.00] 

317.87 ±19.00 
[256.00, 352.00] 

311.47 ±22.52 
[256.00, 320.00] 

128.00 ±0.00 
[128.00, 128.00] 

219.73 ±11.26 
[192.00, 224.00] 

219.73 ±11.26 
[192.00, 224.00] 

219.73 ±11.26 
[192.00, 224.00] 

219.73 ±11.26 
[192.00, 224.00] 

128.00 ±0.00 
[128.00, 128.00] 

Pixel spacing 
(0028, 0030) 

0.55 ±0.18 
[0.47, 0.94] 

0.55 ±0.18 
[0.47, 0.94] 

0.55 ±0.18 
[0.47, 0.94] 

0.57 ±0.19 
[0.47, 0.94] 

1.00 ±0.23 
[0.94, 1.88] 

Slice Thickness 
(0018, 0050) 

4.65 ±0.79 
[3.00, 5.00] 

2.59 ±0.20 
[2.50, 3.00] 

4.65 ±0.79 
[3.00, 5.00] 

2.59 ±0.20 
[2.50, 3.00] 

4.81 ±0.75 
[3.00, 6.00] 

Number of Averages 
(0018, 0083) 

1.31 ±0.79 
[1.00, 4.00] 

1.31 ±0.79 
[1.00, 4.00] 

2.00 ±0.00 
[2.00, 2.00] 

1.19 ±0.75 
[1.00, 4.00] 

1.00 ±0.00 
[1.00, 1.00] 

Parameters constant across sequences: 
Field strength 2.90 ±0.39 [1.50, 3.00] 
Flip angle 90.00 ±0.00 [90.00, 90.00] 
Mean ± standard deviation; [min, max] 
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Image Annotation 

Within our research team, a neurosurgeon and radiologist independently annotated regions of 

interest on a pre-selected T1-GD slice, after reviewing axial MRI data (T1, T2, FLAIR, ADC, 

T1-GD) for each patient on a local picture archiving and communication system (PACS). We 

annotated diseased regions with high confidence (>95%) in categories of (1) pure cyst without 

necrosis, (2) necrosis, (3) tumor, or (4) edema. For regions with moderate confidence of disease 

(>50%) but unknown classification, the reader could annotate the area as “suspicious” for 

disease. We also annotated uninvolved, normal appearing regions in categories of (1) white 

matter (WM), (2) gray matter (GM), (3) cerebral spinal fluid (CSF), or (4) air.   

Image Registration and Feature Vector 

We registered each MRI sequence to its respective T1-GD scan in FSL (Analysis Group, FMRIB 

v5.0, Oxford, UK) using an affine 12-parameter model with a correlation ration cost function and 

tri-linear interpolation, spatially smoothed the data with a one-mm Gaussian filter, and 

normalized the qualitative sequences (T1, T1-GD, T2, and FLAIR) to each patient’s average 

normal-appearing WM. From the annotations we created a labeled matrix of feature vectors in 

which each observation represented one voxel within an annotated region across five MRI 

sequences. For disease annotations, only voxels with agreement between our neurosurgeon and 

radiologist were included in the feature vector. The resultant matrix contained 611,930 

observations (voxels) from fourteen patients, across five feature vectors (MRI sequences), where 

each observation belonged to one of nine classes (annotation labels).  

k-NN Radiomics Algorithm 

We developed a radiomics algorithm based on the k-NN classification model in MATLAB® 

(R2017a, The MathWorks, Inc.), with model parameters listed in Table 4. Based on exploratory 

methods, the k-NN model demonstrated comparable or higher accuracy with lower 

computational requirements compared to other parametric and non-parametric machine learning 

methods. Our model trained on a randomly selected three-fourths of the labeled observations (N 

= 458,948) and tested on the remaining one-fourth (N = 152,982). The developed radiomics 
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algorithm then predicted the class of each voxel from eleven slices across five MRI contrasts as 

new observations from seventeen patients, resulting in a total of 13,018,171 class predictions. 

The predicted class slices included the disease annotation slice, and five slices superior and 

inferior to the diseased annotation slice. Next, we defined the PDC phenotypes for each 

classified slice as a distribution of percent suspicious (%Suspicious), percent edema (%Edema), 

percent tumor (%Tumor), percent cyst (%Cyst), and percent necrosis (%Necrosis). 

 

Table 4. Summary of kNN model parameters 
Property Value 
N Neighbors 10 
Distance Euclidean 
Include ties False (0) 
Distance weight Equal 
Break ties Smallest 
NS Method Kdtree 
Bucket size 50 
Standardize data True (1) 
Mu [105.77, 124.69, 144.49, 67.62, 148.69] 
Sigma [134.92, 150.77, 182.78, 74.05, 219.84] 
Prior probability [0.0177, 0.0089, 0.0831, 0.0002, 0.0002, 0.1448, 0.0447, 0.5335, 0.1665] 

Statistical Analysis 

We performed statistical analyses with SPSS (IBM, Version 25), with an a priori α significance 

level of 0.05.  We tested the assumption of normality for each continuous variable and applied 

Box-Cox transformations when necessary.  We compared values of age at diagnosis, gender, 

binary genetic mutation status (CDKN2A, TP53, EGFR, NF1, CDKN2B, CDK4, TP53BP1, 

IDH1), and binary features of endothelial proliferation (EP) and palisading necrosis (PN) 

between LGG and GBM using student’s t-test.  We compared PFS and OS between groups using 

the log rank test, and tested the relationship between both PFS and OS with PDC phenotypes 

using linear regression. Although PFS and OS are censored variables, linear regression was 

appropriately applied because all cohort subjects experienced the same events. We used 

canonical discriminant analysis with a stepwise Wilk’s lambda model that included independent 

factors with F probabilities < 0.1 and a Bonferroni correction to test differentiation power of one 

or more disease components on dependent categorical factors with significant prognostic 
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implications. The continuous variables included age at diagnosis and PDC phenotypes 

(%Suspicious, %Edema, %Tumor, %Cyst, and %Necrosis). The dependent variables included 

binary categorical factors of tumor grade (TCGA classification of LGG versus GBM), mutation 

status (wild-type versus mutant) of the abovementioned genes, and the histologic features of EP 

and PN. Genetic mutation status by patient is shown in Figure 7.  We computed prior 

probabilities based on each dependent variable’s group size and tested the final model with a 

cross-validation method. 

 
Figure 9. Selected genetic mutation status defined as wild-type (light) or mutant (dark) by patient 
and TCGA grade class. Patients above the bold black line were diagnosed as GBM. Patients 
below the bold black line were diagnosed as LGG. 
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Results 

k-NN Radiomics Algorithm Performance and Accuracy 

The k-NN model demonstrated 97.0% average accuracy on the training data.  On the five 

diseased tissue classifications, the average accuracy was 95.61 ± 1.48%, with “Suspicious” 

having the highest performance at 98.4% and “Cyst” the poorest performance at 94.29%. Figure 

8 shows the confusion matrix between the true and predicted classes for the testing data (N = 

152,982). The Dice similarity coefficient (DSC) was calculated for each classification (Table 5). 

The average DSC was 94.35 ± 2.98 across all classes, 94.39 ± 1.90 across disease classes, and 

94.29 ± 4.35 across normal tissue classes. Example expert annotations and predictions are shown 

in Figure 8. 

 
Figure 10. Radiomics algorithm k-NN Confusion Matrix. The k-NN model accuracy was tested 
using a 25% hold-out method. As observed, there is strong main axis agreement between the true 
and predicted classes. The accuracy for the entire model, including disease and normal tissue 
classes, was 97.0%. The average accuracy for the diseased classes was 95.61%. 
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Table 5. Dice similarity coefficient (DSC) computed for each class, based on the predicted class 
label and ground truth class label. 
 Suspicious Edema Tumor Cyst Necrosis GM CSF Air WM 
Ntruth 2631 1370 12697 35 22 22212 6856 81596 25563 
Npredicted 2589 1294 12122 33 21 19943 6162 81595 24646 
DSC 96.44 94.8 95.14 94.29 91.3 91.06 90.75 100 95.36 
Accuracy 98.40 94.45 95.47 94.29 95.45 89.78 89.88 100.00 96.41 

Linear Regression 

In linear regression analysis, the continuous variable %Tumor predicted OS [F(1, 15) = 7.186, p 

= 0.017] and accounted for 27.9% of the explained variability in OS. The regression equation 

was: Predicted OS=7.67-0.037(%Tumor). There was no relationship between PDC phenotypes 

and PFS. 

Canonical Discriminant Analysis 

The CDA determined that linear functions of one or more disease components differentiated the 

binary status of four out of 11 dependent categorical variables (Table 6). A linear combination 

of %Suspicious and age at diagnosis differentiated LGG from GBM with 76.5% accuracy, 85.7% 

sensitivity, and 70.0% specificity (p = 0.014). The discriminant equation to maximally separate 

discriminant score (DS) by TCGA study class was:  

DS(TCGA)=0.575(%Suspicious)-0.057(Age at Diagnosis)+2.472. 

The discriminant equation to maximally separate DS by IDH1 mutational status was: 

DS(IDH1)=0.040(%Tumor)-2.997. EP status was differentiated with 88.2% classification 

accuracy, 66.7% sensitivity, and 100% specificity by %Necrosis and Age at Diagnosis 

(p=0.003). The discriminant equation to maximally separate DS by EP status was:  

DS(EP)=2.479(%Necrosis)+0.066(Age at Diagnosis)-24.253. 
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Table 6. Summary of Canonical Discriminant Analysis statistical findings. Accuracy, sensitivity, 
specificity, positive predictive value (PPV), and negative predictive value (NPV) are reported in 
percentage. Low (-) and high (+) state defined for CDA to maximally separate derived 
discriminant scores (DS). Confidence intervals (CI) were determined for each state from the DS 
calculated by the respective CDA model coefficients. 
 TCGA EP TP53BP1 IDH1 

Accuracy (%) 76.5 88.2 82.4 70.6 

Sensitivity (%) 85.7 66.7 50.0 70.0 

Specificity (%) 70.0 100 92.3 71.4 

PPV (%) 66.7 100 66.7 77.8 

NPV (%) 87.5 84.6 85.7 62.5 

p value 0.014* 0.003* 0.097 0.054 

Wilk's λ 0.544 0.442 0.827 0.774 

χ2 8.533 11.420 2.762 3.720 

df 2 2 1 1 

R canonical 0.676 0.747 0.416 0.476 

CDA Model Coefficients 

Suspicious 0.575 - 0.711 - 

Edema - - - - 

Tumor - - - 0.040 

Necrosis - 2.479 - - 

Age at Diagnosis -0.057 0.066 - - 

Constant 2.472 -4.253 -0.989 -2.997 

CDA Model Discriminant Score ANOVA 

Low state (-) LGG Not present Wild type Wild type 

High state (+) GBM Present Mutant Mutant 

Mean (-) 0.711 -0.791 -0.239 0.630 

95% CI (-) (0.036, 1.386) (-1.432, -0.150) (-0.829, 0.352) (-0.181, 1.440) 

Mean (+) -1.041 1.412 0.774 -0.409 

95% CI (+) (-1.848, -0.234) (0.544, 2.280) (-0.291, 1.839) (-1.087, 0.269) 

p value 0.003 0.001 0.097 0.054 

Effect Size 0.457 0.558 0.173 0.226 

Observed Power 0.912 0.981 0.382 0.500 
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Discussion 

Accurate glioma grading is critical for precise therapeutic planning.21 Histopathologic glioma 

grading, the diagnostic gold standard, has inherent limitations. Biopsies are often taken from 

areas of contrast enhancement that may fail to accurately characterize intratumoral heterogeneity 

and tumoral infiltration.22, 23 Here we developed a voxel-wise radiomics method using 

multiparametric MRI data to PDC and their relevance to microscopic and molecular features. 

The major finding of this study is that PDC from multiparametric MRI data differentiates lower 

grade gliomas from GBM at the resolution of a single MRI voxel with accuracy, sensitivity, and 

specificity greater than or equal to 70%. 

 A unique tool for glioma research is BraTS: a multiparametric MRI data set of 

histologically confirmed LGG and GBM patients, which includes pre-intervention MRI data (T1, 

T2, T1Gd, FLAIR) registered to a universal, anatomical template (MNI-152) with manual 

segmentations for necrosis, edema, and contrast-enhancing tumor.15 However, previous studies 

with this have struggled to discriminate LGG from GBM with specificity greater than or equal to 

70%.24 Here we created a model with multiparametric MRI data from glioma patients in the 

TCGA, yielding strong agreement between true and predicted disease classes with 95.6% and 

94.4% average DSC.   

The continuous variable %Tumor inversely correlated with OS, which was worse in 

GBM compared to LGG (p = 0.016), as expected (Table 2). Although our CDA model did not 

find that %Tumor or %Necrosis predicted grade, GBM had higher %Tumor, %Necrosis, and age 

at diagnosis compared to LGG, which interestingly had greater %Suspicious (p = 0.035, 0.016, 

0.049, and 0.015, respectively), a classification defined during expert annotation as regions of 

moderate confidence for disease and potentially reflecting a more homogeneous abnormal 

compartment in LGG.28 Additionally, we found differential power between LGG and GBM by a 

linear function of %Suspicious, and age at diagnosis.  Specifically, with GBM being associated 

with a decrease in PDC Suspicious and an increase in age. Patients with GBM are generally 

older at diagnosis than patients with LGG.25-27   

The most common pattern of confusion occurred when the true disease classes “Cyst” 

and “Necrosis” were predicted as “Tumor” and “Edema,” and when “Tumor” was predicted as 

“normal-appearing GM”.  Such labeling confusion is expected, just as inter- and intra-observer 
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error is unavoidable,21, 22 and we attempted to mitigate this by defining disease class ground truth 

as voxels of agreement between the independent annotation of two expert clinicians. 

Despite the promising results, this study has limitations. First, this retrospective study has 

a small sample size with variations in MRI protocols, manufacturers, and field strengths across 

different institutions. Although these variations may help support the generalizability of our 

findings, a future large-scale study is required to fully assess the generalizability of this model. 

Second, due to the limited sample size, this study applied machine learning techniques to each 

voxel as an observation across sequences resulting in a train and test feature vectors with 

randomly assigned voxels across patients. Since the voxels are randomly assigned to one of two 

feature vectors, a voxel neighboring a train voxel will be assigned to the test feature vector and 

could lead to over fitting. In the future, train and test feature vectors distributed by patient instead 

of random voxel selection should be explored. Third, the disease classification is based on 

annotation agreement between two expert readers following a common protocol. In future work, 

annotations should be collected from multiple experts following an established protocol and 

annotations of high agreement across expert readers should be used for a model.  

In conclusion, we have proposed a five-feature, voxel-wise model with five phenotype 

signature described by PDC that have potential as an imaging biomarker to differentiate 

prognostic features. Non-invasive methods to reliably classify and differentiate prognostic 

features is an important development for the advancement of glioma treatment management.  

The results shown in this work demonstrate the promise and need for future development of 

computer-aided decision-making tools through multiparametric, voxel-wise radiomic algorithms. 

Utilizing the power of radiomics, gliomas may be non-invasively managed resulting in the 

advancement of treatment and care.  
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Using Nosologic Imaging Algorithms to Quantitatively Standardize Grade Differentiation 
in Adult Primary Glioma 

Purpose: Nosologic imaging algorithms (NIAs) reduce large quantities of MR data to 3D maps 

of tumor type and grade. Frequently focused on MR spectroscopy, NIAs often fail to utilize 

routine clinical MR data. This work developed a multimodal NIA using five common clinical 

contrasts (ADC, FLAIR, T1, T1+, and T2) across high (GBM) and lower grade gliomas (LGG). 

We hypothesized that GBM would demonstrate an increased percentage of tumor necrotic voxels 

compared to LGG, and that survival time would have a positive correlation to the percentage of 

voxels classified as suspicious.  

 

Methods: The NIA classified voxels based on a weighted k Nearest Neighbor machine-learning 

algorithm that trained on physician annotations of five abnormal tissue types (tumor, necrosis, 

edema, pure cyst, suspicious for tumor) across five MR contrasts (ADC, FLAIR, T1, T1+, T2) 

and predicted abnormal voxels as one of the five diseased classifications. An example of 

annotations for GBM and LGG is shown in Figure 9.  Prognosis and MR data for 7 GBM and 10 

LGG biopsy diagnosed patients were registered to the patients respective T1+ data and scaled to 

normal appearing white matter. The percent abnormal classification was analyzed in SPSS using 

a corrected multivariate general linear model (α=0.1) and correlated to prognosis by a two-tail 

bivariate correlation test and Cox regression(α=0.05).  

 

Results: The GBM patients had a higher percent of their tumor marked necrotic (p=0.079) 

compared to LGG, while LGG had a greater percent marked suspicious compared to GBM 

(p=0.07). Additionally, Percent suspicious had a positive correlation with survival time 

(R=0.579, p=0.015), shown in Figure 10.  

 

Conclusion: For a small cohort, the NIA demonstrates promising results consistent with WHO 

diagnostic standards. These results provide preliminary support for our hypothesis and 

demonstrate that NIA may hold the potential to increase the accuracy, efficiency, and 

standardization of diagnosis in a clinical setting. 
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Figure 11. Comparison of NIA classifications for GBM and LGG diagnosis. 
 

 

 

Figure 12. Statistical analysis for NIA percent abnormal classification between groups GBM and 
LGG. 
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Predicting Individual Survival Times from Multiparametric Nosologic Imaging 
Classifications of Glioblastoma 

Purpose: Predicting individual survival times for patients with glioblastoma multiforme (GBM) 

can assist in treatment planning and clinical decision making. Genomic characterization has been 

used to predict prognosis, however detecting genomic abnormalities is invasive and expensive.  

The purpose of this study was to develop and evaluate a nosologic imaging algorithm (NIA) 

based on multiparametric magnetic resonance imaging (MRI) data to predict individual 

recurrence-free and overall survival times in GBM patients. 

 

Materials and Methods: The NIA classified voxels independently using an image intensity 

decision tree based on published clinical studies. Abnormal voxels were classified as suspicious, 

low-grade, active, or necrotic. The NIA developed images and reported the percentage of voxels 

classified in each tissue types using multiparametric MRI data of 10 histologically-confirmed 

GBM patients from The Cancer Imaging Archive. MRI contrasts for each patient included: 

apparent diffusion coefficient maps generated from DWI; T1; T1+; T2; and fluid attenuated 

inversion recovery (FLAIR). Each contrast was registered to MNI-152 space using a 12 degree-

of-freedom affine transformation. T1, T1+, T2, and FLAIR images were individually scaled to 

the fractional signal intensity relative to normal appearing white matter. Prognosis was measured 

in months as survival time and time to recurrence. Multivariate analysis was conducted to 

determine the pairwise correlations between NIA percentages and prognosis measures (α=0.10). 

 

Results: Consistent with published findings, the sampled patients had a 7.13 month median 

recurrence time and a 12.94 month median survival time. Percent suspicious is positively 

correlated with time to recurrence (R=0.68, p=0.064) and percent active is negatively correlated 

with time to recurrence (R=0.89, p=0.036). Additionally, percent low grade is positively 

correlated with overall survival time (R=0.74, p=0.006), while percent active (R=0.78, p=0.042) 

and percent necrotic (R=0.83, p=0.044) are negatively correlated with survival time. Correlations 

are shown in Figure 5.  
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Figure 13. Correlation between percent of tumor in class and prognosis. 
 

Conclusions: Our results indicate that quantitative NIA phenotypes can be used effectively to 

characterize GBM tumors and predict the prognosis of patients with GBM.   

 

Clinical Relevance Statement: Simple volumetric studies with MRI data have been used to 

characterize tumor phenotypes. This study expands upon previous work to include additional 

MRI data to characterize tumor phenotypes for the prediction of prognosis in patients with GBM.  
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Integrating Cellular and Magnetic Relaxation Properties for Multimodal Nosologic 
Imaging of Gliomas 

Purpose: Nosologic imaging (NI) utilizes voxel-by-voxel analyses to reduce MR data to 3D 

maps of tumor type and grade. Often focused on MR spectroscopy, NI fails to utilize vast 

amounts of data routinely collected during clinical examination. The purpose of this work was to 

develop a multimodal NI algorithm based on common clinical scans including DWI, FLAIR, T1, 

T1+, and T2 contrasts across high (GBM) and low grade gliomas (LGG). We hypothesized that 

GBM would demonstrate increased number of tumor necrotic voxels compared to LGG. This 

abstract presents initial results from our ongoing study. 

 

Materials and Methods: The NI algorithm classified voxels independently based on 

thresholding logic of published tissue characteristics for cellular and magnetic relaxation 

properties. Voxels were categorized as normal, suspicious for tumor, low grade tumor, active 

tumor, or tumor necrotic. DWI, FLAIR, T1, T1+, and T2 MR data for 1 GBM and 3 LGG 

patients were obtained from The Cancer Imaging Archive (TCIA) and registered to MNI-152 T1 

data using a 12 degree-of-freedom affine transformation with parameters optimized according to 

a correlation ratio cost function. Apparent diffusion coefficient (ADC) maps were calculated 

from registered DWI echo-planar volumes. The registered T1, T1+, T2, and FLAIR images were 

scaled on a voxel-by-voxel basis to the fractional signal intensity relative to normal appearing 

white matter (NAWM) for each patient. 

 

Results: Consistent with World Health Organization diagnostic standards, the GBM patient had 

a marked increase in the percentage of necrotic tumor volume compared to all 3 LGG patients. 

Additionally, the LGG patients demonstrated increased suspicious and decreased active tumor 

volume compared to GBM shown in Figure 12. 
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Figure 14. Percentage of the four conditions in one patient per diagnostic grade. 
  

Conclusions: The multimodal NI algorithm correctly identified increased tumor necrotic voxels 

in GBM compared to LGG. These results provide preliminary support for our hypothesis and 

demonstrate that NI may hold the potential to increase the accuracy, efficiency, and 

standardization of diagnosis in a clinical setting. Data collection is ongoing with 13 GBM and 13 

LGG datasets identified in TCIA to further statistically evaluate the multimodal NI algorithm.  

 

Clinical Relevance Statement: This work developed automated multimodal NI for the grading 

of GBM and LGG tumors and holds the potential to spur future research to reduce the use of 

invasive biopsies of the brain. 
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CHAPTER FIVE: SIMULTANEOUS PET AND MRI 

Feasibility of simultaneous dynamic PET and functional MRI studies 

Introduction 

In recent years, technological advancement and clinical interest has grown to support 

hybridization of imaging modalities. For decades, [18-F]-fluro-deoxyglucose (FDG) has been 

used to study glucose metabolism and utilization with positron emission tomography (PET)1,2. In 

clinical FDG-PET studies, FDG is typically administered as a bolus with an uptake period 

ranging from twenty to sixty minutes3,4. The bolus method allows for dose standardization across 

patients, however critical information of early FDG uptake is lost5. Additionally, once the brain 

reaches FDG equilibrium, task-based uptake information is no longer viable. In contrast to FDG-

PET, functional magnetic resonance imaging (fMRI) has temporal resolution ranging on seconds 

and can be used to measure the brains task or stimulus-based response6. Blood oxygen level 

dependent (BOLD) fMRI sequences are used frequently for human studies, however these 

sequences are not true quantitative measurements, instead the relative changes represents the 

brains complex hemodynamic and metabolic response7. In this study, we aimed to establish 

methods for simultaneous dynamic PET and fMRI in healthy subjects.  

Methods 

Study design 

All studies involving human subjects were reviewed and approved by the Human Research 

Protection Office (HRPO) at the Department of Defense Hearing Center of Excellence 

(FSG20180031H) and by the Institutional Review Board (IRB) at Indiana University 

(1803751735) and Wright State University (06168). This study consisted of an informed consent 

session and five consecutive data collection session, requiring up to eleven hours of the subjects 

time. On day one of data collection the subject had a PET/MRI scan and was required to fast for 

six hours prior to their appointment. On days two, three, and four the subject performed some 

training exercises. On day five, the subject had another PET/MRI scan and was required to fast 
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for six hours before their appointment. Female participants were required to provide a urine 

sample for a pregnancy test on days one and five, a negative result was required to continue 

participation. All subjects underwent a blood glucose test on days one and five, a normal value 

(70-120 mg/dL) was required to continue participation.  

Subject recruitment 

Subjects were recruited through physical flyers, digital flyers available to the Indiana University 

community, and through the Indiana Clinical and Translational Sciences Institute (CTSI) in 

compliance with Indiana University IRB recruitment policies. Potential subjects were screened 

digitally through the Indiana CTSI website. If the potential subject passed the web-based 

screening, they were contacted by email to schedule a telephone eligibility appointment. During 

the telephone eligibility appointment, the study design and subject responsibilities would be 

explained, if the potential subject was interested in participation then eligibility questions were 

administered. If the potential subject was eligible and interested in participation, then an in-

person informed consent appointment was scheduled. Potential subjects were screened for MRI 

compatibility and defined inclusion and exclusion criteria, shown in Table 7.  All subjects 

enrolled in the study were required to physically sign an informed consent document in 

compliance with IRB policies.  

Table 7. Inclusion and exclusion criteria for simultaneous PET and MRI study 

Inclusion Criteria Exclusion Criteria 
• Between 18 and 50 years of age 
• Able to read and write in English 
• Right-handed 
• Able to lay supine for up to an hour 
• Normal or corrected to normal vision 
• Able to complete all training sessions  
• Signed the informed consent 

• Conditions that would preclude the 
completion of an MRI  

• Serious unstable medical or mental 
illness 

• Have been diagnosed with diabetes 
• History of brain cancer or other brain 

disease 
• Medical contradiction to any element 

of the study procedure 
• Hearing loss above 40 dB 
• Have not signed the informed consent 
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Simultaneous PET/MRI design 

All imaging studies were performed on a 3-T Siemens Biograph mMR scanner (Siemens 

Healthcare, Inc). PET data was collected continuously in large list-mode (LLM) format. 

Magnetic resonance imaging was collected with a 64 channel receive-only head and neck coil 

designed for the mMR considering photon attenuation properties (Siemens Healthcare, Inc.). A 

power injector administered a solution of FDG and saline. Auditory stimulation and instructions 

were delivered by in-ear headphones (Siemens Healthcare, Inc.) with consideration for photon 

attenuation. Functional MRI tasks were presented to the subject on a projection screen and 

formatted by Presentation (Neurobehavioral Systems, Inc.). Subject were provided with clickers 

to indicate a response to defined tasks. For temporal synchronization, the TR pulse was 

converted to a digital signal and elongated by 500 ms. The lengthened, digital TR pulse was then 

sent to the mMR as an external signal and permanently recorded in the LLM data.  A pictorial 

representation of the experiment design is shown in Figure 13. 

 

 

Figure 15. Pictorial representation of simultaneous dynamic PET and functional MRI study. A 
3T Siemens mMR scanner was used to acquire simultaneous PET/MRI data. A MEDRAD power 
injector delivered a solution of FDG and saline. The digital TR pulse was elongated by an 
Arduino then sent to the mMR scanner and recorded in the LLM data as an external signal. A 
projection screen was placed at the head of the participant. 
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PET imaging protocol 

A solution of FDG and saline was administered intravenously by power injector (MEDRAD 

MRXperion, Bayer HealthCare LLC) continuously at a rate of 0.01 ml/sec for up to 90 minutes. 

The max initial activity was 17 mCi, resulting in a max injected activity of 10 mCi per session. 

The LLM PET data was collected in one bed position consisting of 127 transverse slices of 344 x 

344 pixels (2.0863 x 2.0863 mm2) and smoothed with a 5-mm isotropic Gaussian kernel.  

MRI imaging protocol 

All MRI sequences were obtained from the Siemens library and optimized for study design. 

Anatomical studies consisted of a MR based attenuation correction (MRAC) based on a 3D 

Dixon sequence with ultra-short TE sequence (TR = 4.14 ms, TE = 1.28 ms, flip angle = 10o, and 

voxel size of 1.3 x 1.3 x 2.0 mm) and a high-resolution 3D T1-weighted IRSPGR sequence (TR 

= 1960.0 ms, TE =  2.19 ms, TI = 989 ms, flip angle = 10o, and 1.0 mm isotropic). A 2D arterial 

spin labelling (ASL) sequence (TR = 3000 ms, TE = 13.0 ms, TI = 1800.0 ms, bolus duration = 

700 ms, flip angle = 90o, and voxel size of 4.0 x 4.0 x 5.0 mm) was acquired. Functional MRI 

was acquired with a 2D EPI BOLD MOCO sequence (TR = 2000 ms, TE = 17.0 ms, flip angle = 

78o, and voxel size of 3.8 x 3.8 x 3.0 mm). The protocol paradigm timeline is described in Figure 

14. Additional information on protocol parameters can be found in Appendix A.  

 
Figure 16. Simultaneous dynamic PET and MRI protocol paradigm. The protocol begins with a 
localizer and MR based attenuation correction (MRAC) sequence, then the dynamic PET begins 
with a constant infusion rate of 0.01 ml/sec. During the dynamic PET acquisition, an anatomical 
T1, an ASL, and six functional MRIs are acquired.  
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Auditory stimulation 

The human auditory system was used for this dynamic PET and functional MRI study. To induce 

the hemodynamic and metabolic response three tasks were presented to the subject, the subject 

was given a break from the auditory stimulation during the ASL acquisition, then the three tasks 

were presented again. The three tasks (passive listening, auditory Stroop, and brain control), 

were in a block pattern and spanned 10 minutes and 14 seconds each.  

 

During the passive listening task, the subject was informed that a dot would be on the screen and 

they may hear sounds in the headphones. The subject was instructed to relax, focus on the dot, 

and keep their body still. The auditory stimulation was white noise at constant volume presented 

in an on-off block pattern, Figure 15. 

 

 
Figure 17. Passive listening on-off block design. During ‘on’ white noise sound is delivered to 
the participant through in ear headphones. During ‘off’ no sound is delivered to the participant 
through in ear headphones.  
 

During the auditory Stroop task, the subject was informed that words would be on the screen and 

they would hear words in the headphones. The subject was instructed to press buttons with their 

right or left index finger to give a response and answer as quickly while keeping their body still. 

The auditory Stroop consisted of words presented on the screen and spoken words heard in the 

headphones. If the displayed and spoken words were both soft or low (congruent) the participant 

indicated with their left index finger. If the displayed and spoken words were both loud or high 

(congruent) the participant indicated with their right index finger. An example is shown in Figure 

16. 
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Figure 18. Auditory Stroop correct response examples. The red dot represents the subject using 
the indicated finger for a response. If the sound delivered is soft or low, the subject indicates 
with the button under their left index finger. If the sound delivered is loud or high, the subject 
indicates with the button under their right index finger.  
 

For the brain control task, the participant was informed that the screen would say ‘focus on 

breathing’ or ‘focus on sound’ and they may hear sounds in the headphones. They were 

instructed to focus on their breathing and keep their body still when the screen displays ‘focus on 

breathing’ and to focus on the sound and keep their body still when ‘focus on sound’ is 

displayed. The auditory stimulation was white noise at constant volume presented in an on-off 

block pattern, see Figure 15. 

Results 

Subject recruitment 

Recruitment efforts spanned a six-month period, 5,732 total users viewing the study recruitment 

website and entering personal information. Of the total users, 705 (12.29% of total users) 

completed their contact information and 441 (7.69% of total users) qualified for the study based 
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on their web-based responses. A total of 150 (2.62% of total users) requested to be contacted by 

a study staff member for a telephone eligibility appointment and 24 (0.42% of total users) 

consented to participate.  Figure 17 shows the enrollment results by month.  

 

 
Figure 19. Enrollment results by month. Total users include potential subjects that enter some 
personal information on the Indiana CTSI study page. Completed users have completed all 
required information and the digital screener. Qualified users have completed the required 
information and passed the digital screener. Referrals are qualified users that have requested 
contact from study staff. Consented users have completed the informed consent process. 
 

 Of the twenty-four consented users, 33% (n=8) completed the study without issue. 

However, 13% (n=3) had incomplete data due to technical failure. Twenty-five percent of all 

consent users (n=6) were withdrawn from the study because they reported they no longer wanted 

to participate, or they did not attend an appointment. Unfortunately, 29% (n=7) were withdrawn 

due to novel coronavirus (COVID-19) scanning restrictions.  

Initial and residual activity 

Variability in initial dose was observed, however a students t-test showed there was no 

significant difference in the initial activity between sessions one and five (p=0.46) or residual 

activity between sessions one and five (p=0.94). 
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Table 8. Initial and residual activity by completed session 
 

Session One  
(Initial) 

Session Five  
(Initial) 

Session One 
(Residual) 

Session Five 
(Residual) 

N 11 10 11 8 
Mean activity (mCi) 15.50818 16.04 0.661636364 0.67175 
Standard deviation (mCi) 1.909224 1.224019 0.294065392 0.262880608 
Min activity (mCi) 10.39 12.9 0.21 0.435 
Max activity (mCi) 17 17 1.15 1.119 

 

Discussion 

Potential subject interest was high for this study, however the percentage of total users 

matriculating to consented subjects was less than one half percent, with one third of consented 

subjects completing the study. There are multiple factors responsible for this outcome. First, 

subjects were recruited from a university community. Potential subjects may have learned 

information, such as time requirement, and found they could not accommodate their complex 

schedule. Second, the study design may have presented unforeseen challenges for the participant 

leading to self-withdraw. Third, a global pandemic, the 2019 novel coronavirus, resulted in 

nearly one-third of subjects withdraw.  

 For many human studies, quality data hinges on consistent instructions. In this study, a 

script and power-point based tutorial was used for consistent subject instructions. An operatory 

read the instructions to the participant for each task, however for greater standardization, the 

subject instructions could be recorded and added to the imaging protocol. Although all subjects 

had a training opportunity for each task, some reported misunderstanding the instructions.  

 Imaging studies with radioactive tracers, such as FDG, require consistent administration 

and initial activity. Clinically, there is an observed range in prescribed FDG dose. For this study 

our goal was an initial activity of 16.5 +/- 0.5 mCi, however we observed an average of 15.5 +/- 

1.9 mCi and 16.0 +/- 1.2 mCi for sessions one and five respectively. Although the student’s t-test 

demonstrated the initial activities were not significantly different between sessions, additional 

efforts should be made to standardize initial activity.  

 In conclusion, simultaneous dynamic PET and fMRI can be employed in a clinical 

setting. For diseased states, significant consideration for study design and reproducibility must be 

considered. Patients may not be able to reasonably complete their imaging sessions due to 
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acquisition length or frequent scheduling. Functional tasks must be carefully considered. The 

population in this study were healthy, young, and most connected to the Indiana University 

community. Although the cohort was presented with training materials, some were confused by 

task instructions.   
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PET count variation during PET/MRI acquisition with multiple EPI sequences 

Purpose: Hybrid Positron emission tomography / magnetic resonance imaging (PET/MRI) holds 

potential to reduce total radiation dose and acquire simultaneous anatomical or functional MRI. 

However, some MRI sequences, such as echo-planar imaging (EPI), produce a considerable 

amount of heat and stress on PET detector components. We investigated if heating from an EPI 

intense MRI protocol effects normalized PET counts. 

 

Methods: PET/MRI data was acquired prospectively on a Siemens Biograph mMR using a 

Siemens Ge-68 phantom in a Siemens Head/Neck 64 coil. The protocol spanned approximately 

77 minutes acquiring: one SAG T1 IRSPGR; three EP 2D BOLD MOCO (approx. 10 min each); 

one TRA 2D ASL (approx. 10 min); and three EP 2D BOLD MOCO (approx. 10 min each). 

Data was collected under two conditions: (1) cold start, when the PET/MRI gradients were cool; 

and (2) warm start, when the PET/MRI gradients were warm from previous acquisitions. PET 

count data was normalized to a reference volume, defined as the volume of data acquired during 

the first five minutes of the protocol. Attenuation corrected (AC) and non-attenuation corrected 

(NAC) data were investigated. Decay correction over the acquisition period was not applied. 

 

Results: During the cold start acquisition, the average initial temperature was 22C +/-1.12C and 

rose to 32.31C +/-9.31C as shown in Figure 18A. During the warm start acquisition, the average 

initial temperature was 33.83C +/-10.15C and rose to 38.67C +/-8.24C as shown in Figure 18B. 

For counts comparison, during the first half of the acquisition the normalized counts increased 

for both cold and warm starts with R-squared of 0.43 and 0.61 respectively. 

 

Conclusion: EPI sequences produce a considerable amount of heat that may be deposited in PET 

detectors of hybrid PET/MRI systems. Between cold and warm start, considerable variation in 

gradient temperature is observed. 
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Figure 20. Temperature and counts changes during protocol. (A) Gantry temperatures during the protocol when the gantry started at 
homogeneous temperature (cold). (B) Gantry temperatures during the protocol when the gantry was “warm” with residual heat from 
previous protocol.  (C)  The normalized counts for the first half of the protocol for “cold” and “warm” conditions. (D)  The normalized 
counts for the second half of the protocol for “cold” and “warm” conditions.
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CHAPTER SIX: OUTLOOK 

Glioblastoma (GBM) is an aggressive neoplasm, where if left untreated has a median overall 

survival (OS) of three months1. Treatment for GBM is complex, the gold standard includes 

resection, radiation therapy, and conjunctive chemotherapy2-4. Since the breakthrough of 

Temozolomide (TMZ) chemotherapy, progression free survival (PFS) has increased while 

median OS with treatment remains at approximately 15 months4. Advances in medical imaging 

technique, genetic testing availability, and computational methods have resulted in large 

radiomic databases and increased interest in precision medicine. To advance GBM treatment and 

management, accurate models representing micro- and macroscopic intra-tumor heterogeneity 

are needed. Current models are largely based on correlations between qualitative magnetic 

resonance imaging (MRI) and single biopsy from an un-registered location. By utilizing hybrid 

imaging techniques, such as positron emission tomography (PET) and MRI, and spatially 

registered biopsy, we can establish quantitative models that may be more adaptable across 

institutions. Additionally, these radiomic models will likely provide useful insight for targeted, 

personalized therapy in GBM.  

 In 2016, the Food and Drug Administration (FDA) adapted a strategic plan to emphasis 

analytic approaches to health care5. Since then, multiple machine learning and predictive tools 

have been approved by the FDA for various disease states. For GBM treatment and management, 

quantitative computational analysis for personalized and precise treatment is in the horizon. 

However, there must be a sound ground truth that accurately describes microscopic intra-tumoral 

heterogeneity. Small animal models, such as mice, are intriguing and useful, but by nature fail to 

capture the full complexity of GBM in humans. Although complete resection of GBM is not 

possible, biopsy and resection is often spatially registered to medical imaging data by stereotaxis. 

Unfortunately, the stereotactic information is rarely saved with medical imaging data or medical 

records and thus not shared in repositories.  

To create a reliable predictive model for GBM, a new clinical standard should be adopted 

across multiple institutions. Based on the presented work, incorporating advanced MRI and PET 

imaging results in critical information that is unattainable from qualitative MRI. Unfortunately, 

there are limitations to the extent of biopsies or resections obtained while maintaining patient 

safety and quality of life.  However, relying on a single biopsy for a highly heterogenous tumor 
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like GBM is nonsensical, if available, multiple unique biopsy locations are critically important 

the capture the histologic and genomic variation. In order to improve GBM prognostic outcomes 

and develop targeted personalized treatments, future work must include critical data that 

correlates the mico to macroscopic features across space and time.  
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APPENDIX A. SIMULTANEOUS PET AND MRI PROCEDURE 
INSTRUCTIONS 
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APPENDIX B. PET/MR PROTOCOL 
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