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ABSTRACT 

Sorghum, which is grown internationally as a cereal crop that is robust to heat, drought, and disease, 

has numerous applications for food, forage, and biofuels. When monitoring the growth stages of 

sorghum, or phenotyping specific traits for plant breeding, it is important to identify and monitor 

the panicles in the field due to their impact relative to grain production. Several studies have 

focused on detecting panicles based on data acquired by RGB and multispectral remote sensing 

technologies. However, few experiments have included hyperspectral data because of its high 

dimensionality and computational requirements, even though the data provide abundant spectral 

information. Relative to analysis approaches, machine learning, and specifically deep learning 

models have the potential of accommodating the complexity of these data. In order to detect 

panicles in the field with different physical characteristics, such as colors and shapes, very high 

spectral and spatial resolution hyperspectral data were collected with a wheeled-based platform, 

processed, and analyzed with multiple extensions of the VGG-16 Fully Convolutional Network 

(FCN) semantic segmentation model. 

In order to have correct positioning, orthorectification experiments were also conducted in the 

study to obtain the proper positioning of the image data acquired by the pushbroom hyperspectral 

camera at near range. The scale of the DSM derived from LiDAR that was used for 

orthorectification of the hyperspectral data was determined to be a critical issue, and the 

application of the Savitzky-Golay filter to the original DSM data was shown to contribute to the 

improved quality of the orthorectified imagery. 

Three tuned versions of the VGG-16 FCN Deep Learning architecture were modified to 

accommodate the hyperspectral data: PCA&FCN, 2D-FCN, and 3D-FCN. It was concluded that 

all the three models can detect the late season panicles included in this study, but the end-to-end 

models performed better in terms of precision, recall, and the F-score metrics . Future work should 

focus on improving annotation strategies and the model architecture to detect different panicle 

varieties and to separate overlapping panicles based on an adequate quantities of training data 

acquired during the flowering stage. 
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  INTRODUCTION 

1.1 Research Motivation 

Sorghum is one of the most important cereal crops grown worldwide, both for its food value and 

as a biofuel, particularly in environments experiencing excessive heat and drought. Panicles, which 

are the flowering part of a sorghum plant, are important because of their relationship to the stage 

of plant growth and yield (Kumar et al., 2013). Phenotyping, which involves measuring 

characteristics of plants to obtain a quantitative description of their biophysical properties, includes 

the acquisition of information about panicles in sorghum, including the number per plot for 

different varieties (Walter et al., 2015). It is very difficult to count panicles over a large area and 

to monitor them through different periods of the reproductive cycle because their characteristics 

can vary significantly over time and across varieties. Recent development of remote sensing 

technologies is contributing to non-destructive, image-based phenotyping, seeking to reduce time-

consuming, costly manual measurements, and extend measurements over large areas using high 

spatial resolution imagery (Walter et al., 2015). For example, Olsen et al. (2018) and Oh et al., 

(2019) investigated use of RGB images via a UAV platform which covered the whole field 

multiple times per season, coupled with local weather (temperature) data to detect panicles. 

Studies have been conducted to detect rice panicles based on remote sensing multispectral imagery 

and LiDAR data (Kumar et al., 2013). However, detection of sorghum panicles based on 

hyperspectral image data remains mostly unexplored, largely because of the lack of available 

hyperspectral data at high spatial resolution. Multispectral and hyperspectral imagery provide 

chemistry-based information in multiple windows of the electromagnetic spectrum (Shimoni et al, 

2019). Multispectral data have a few disjoint bands, while hyperspectral data have hundreds of 

contiguous bands, providing the opportunity to discriminate objects with similar spectral 

signatures. Instead of acquiring imagery as a 2D array, hyperspectral data acquired by pushbroom 

sensors are essentially a 3D cube representing spectral and spatial content in a scene. Hyperspectral 

reflectance data have been shown to provide unique information for multiple applications in 

agriculture, including disease detection (Liu et al., 2010), weed detection (Okamoto et al., 2007), 

fruit quality evaluation (Nagata et al., 2004), plant phenotyping (Brugger et al., 2019) and nitrogen 

content prediction (Bruning et al., 2019) either by a hand-held spectrometer (Liu et al., 2010), in 
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controlled facilities (Nagata et al., 2004; Okamoto et al., 2007), or from mobile platforms (Change 

et al., 2017; Malambo et al., 2018, Masjedi et al., 2019). The rich spectral information provides 

potential opportunities for increased applications of hyperspectral data. Relative to panicle 

detection, both the spatial and the spectral domains provide information to distinguish panicles 

from the leaves and ground, especially in the early season when the color of panicles is similar to 

the leaves. 

In order to detect panicles, various classification strategies have been applied to RGB imagery and 

other remote sensing data such as LiDAR. Generally, the approaches are categorized as pixel-

based classification and object-based classification. Pixel-based classification assigns a label to 

each pixel by using the intensity or texture information from the image, while object-based 

classification detects the class of each object. For example, Tang et al. (2012) converted RGB data 

to the hue, saturation, intensity (HSI) color space, then performed a region growing based 

segmentation on the thresholded hue component to detect maize tassels. Malambo et al. (2018) 

applied Density-based Spatial Clustering of Applications with Noise (DBSCAN) to detect panicles 

from LiDAR data, in conjunction with object-based segmentation. This approach segments images 

into small patches first by using a clustering or a segmentation method such as Simple Linear 

Iterative Clustering (SLIC) (Xiong et al., 2017). A classifier, such as a Support Vector Machine 

(SVM) or Logistic Regression, is then applied to detect panicles. As an approach developed for 

classification of complex data, a deep learning model also yielded remarkable performance in 

detecting objects like rice panicles (Xiong et al., 2017) or leaves of individual maize plants (Jin et 

al., 2018). 

To the best of our knowledge, limited studies have investigated panicle detection using high 

dimensional hyperspectral image data. Firstly, it is difficult to acquire large quantities of calibrated 

high quality hyperspectral reference data , which is necessary for supervised classification. 

Secondly, spectral redundancy of contiguous bands makes it more difficult to analyze than RGB 

image data with only three channels, or multispectral data with a few, typically uncorrelated bands. 

Because of the potential contribution of hyperspectral data to improve panicle detection, there is 

significant justification for additional research to explore this capability. In this thesis, an end-to-

end, pixel-to-pixel deep learning model is investigated for the detection of panicles from high 

resolution hyperspectral image data. 
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1.2 Challenges to the Research 

Sorghum panicles are extremely challenging to detect because they exhibit a wide range of 

temporal and variety dependent characteristics, including color, texture, size and shape. For 

example, panicles in Figure 1.1 (a) are red, while panicles in Figure 1.1 (b) are pink on the same 

date, and their shapes are different. Even for the same variety of panicles on the same date, e.g., 

Figure 1.1 (e), the color might also vary due to the illumination or the stage of development, which 

can change rapidly during the growing season. For instance, Figures 1.1 (c) and (f) show two 

different types of panicles on the same date. In Figure 1.1 (c), senescing leaves have the same color 

as panicles, but in Figure 1.1 (f), some panicles are still green, making it difficult to discriminate 

them from leaves. Further, in Figure 1.1 (d), dry leaves might be detected as panicles, while green 

panicles are likely to be merged with a non-panicle area. These issues all increase the difficulty of 

discriminating the panicles. As a result, visible color and shape information alone from an RGB 

image might not be adequate for panicle detection. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 1.1. These figures depict panicles with different characteristics in shape and color to 

demonstrate the difficulty of detection 

Acquisitions of hyperspectral image data are more limited than for RGB and multispectral data, 

and typically have a lower spatial resolution because of the reduced energy sensed by detectors 
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within narrow spectral bands. In this thesis, extremely high spatial resolution data (~5 mm) were 

collected from a ground vehicle platform, which required special pre-processing to obtain 

orthophotos because of the perspective projection for the pushbroom sensor. Compared to other 

platforms such as Unmanned Aerial Vehicles (UAV), the lower height of the boom on the platform 

and resulting higher resolution Digital Surface Model (DSM) data made the orthorectification 

more difficult as discussed in Chapter 3. 

Pre-processing of hyperspectral data prior to analysis is complex, both because the data sets are 

large, and there is significant spectral correlation between bands in some parts of the spectrum. 

Therefore, dimensionality reduction via feature selection or extraction is typically proposed. 

However, although dimension reduction methods reduce redundant features and computation time, 

useful information may be lost during this procedure. To make full use of the spatial and spectral 

signatures, dimensionality reduction with a focus on extracting informative features is explored 

relative to the hyperspectral data acquired for panicle detection. 

Deep learning models have been demonstrated to be successful for classification of complex image 

datasets. However, large quantities of training data are required to train a deep learning model, and 

current annotation tools for object detection are problematic for hyperspectral data. Even if the 

data are labeled manually, few software packages can visualize hyperspectral data. Further, to 

build the architecture, deeper layers could potentially extract more informative features, but 

require more parameters, which might result in overfitting. For hyperspectral image data, a limited 

number of layers is not adequate because of its complexity. However, the number of parameters 

would be dramatically increased compared to RGB data (the most common data source for image-

based deep learning architectures). As a result, it is important to focus on the tradeoff between the 

number of parameters and the depth of the network. 

1.3 Thesis Overview 

Chapter 2 includes a review of relevant literature, both in the field of object detection applied to 

RGB images and hyperspectral image classification, along with a discussion of different 

approaches which were utilized for datasets with different spatial and spectral resolutions. The 

proposed data pre-possessing and post-processing methods are described in Chapter 3. The pre-

processing procedure involving orthorectification of close range hyperspectral imagery was 
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included as an additional contribution. Panicle detection, which is the main objective of the thesis, 

focused on implementation of the FCN-8s deep learning model within VGG-16. Results of the 

deep learning model are included in Chapter 4, together with a comparison of different FCN 

architectures that were investigated for the hyperspectral image data. Finally, conclusions and 

opportunities for future work are described in Chapter 5. 
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 BACKGROUND AND RELATED WORK 

In this chapter, approaches for detecting panicles and similar plant objects such as wheat ears from 

high resolution remotely sensed data are described. Both traditional and deep learning models 

developed using RGB and LiDAR remote sensing data in recent studies are discussed. Because 

few panicle/object detection studies have been based on hyperspectral image data, multiple 

approaches are considered. Object-based classification methods for hyperspectral image data that 

include proposed strategies noted in Chapter 1 are outlined, followed by a discussion of the 

weaknesses and strengths compared to their application to RGB image data. Recent research on 

hyperspectral image classification using deep learning models is summarized, and its potential 

relevance to detecting panicles is explored. Finally, a brief evaluation of different approaches is 

included to justify the architecture proposed in this thesis. 

2.1 Panicle detection studies based on traditional models using remote sensing data 

Multiple studies that have focused on panicle detection and panicle counting are based on RGB 

image data acquired in controlled facilities (Duan et al., 2015; Guo, Fukatsu, Ninomiya, 2015; Zhu 

et al., 2015). Two general categories of approaches have been used: feature selection with pixel-

based classification and object-based binary classification. In the first, images which may or may 

not contain panicles, are selected. A feature selection method is then used to identify and choose 

relevant features such as shape, color, or texture from both types of images, and a classifier is 

applied to label pixels as panicle or non-panicle. For example, Duan et al. (2015) used an I2 color 

plane to extract color features from multi-angle panicle images and applied hysteresis thresholding 

as the classifier. Guo et al. (2015) employed the Scale Invariant Feature Transform (SIFT) to 

extract features from panicle and non-panicle images, and then used a k-means classifier to 

generate visual words from the features. Flowering images were then detected by an SVM 

supervised classifier. Another more complex approach, which was developed by Zhu et al. (2016) 

to detect wheat ears, takes advantage of multiple kinds of features, including low level color 

features, as well as high level features from SIFT or the Fisher Vector (FV) from patches, followed 

by a linear SVM classifier. The disadvantages of these pixel-based approaches, which have mostly 

been applied to RGB images, are that they may not be able to extract the shape of each panicle 
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(which can vary widely), and the spectral information in RGB images is limited. It should also be 

noted that these studies are all based on images acquired in controlled facilities where the number 

of datasets is limited, and the images are in perspective projection from multiple angles with shape 

deformation. As the remote sensing technology that is suitable for outdoor environments 

developed, the strategies gradually transitioned to object based binary classification. 

Object based binary classification has been used to detect panicles in remote sensing RGB images 

which have been acquired over large areas. These approaches typically include two steps. Images 

are first converted to small objects, and a general classifier is then used to classify the objects. One 

method relies on SLIC (Xiong et al., 2017; Olsen et al., 2018). Superpixel regions are generated 

and then used to annotate panicles and segment images acquired by a UAV to create small objects. 

Olsen et al. (2018) used logistic regression to classify panicles based on the superpixels and 

constrained the number of panicles to be monotonically increasing over time. A deep learning 

model can also be used as a classifier in the second step. For example, Xiong et al. (2017) 

developed a Convolutional Neural Network (CNN) after transforming the image pixels to 

superpixels. Figure 2.1 shows the structure of the model. It contains 3 convolutional layers and 3 

pooling layers, followed by one fully connected layer to predict the class of the central pixel. A 

drawback of this method is that it requires large quantities of labeled data which are time 

consuming and tedious to obtain. In order to deal with image data with a limited number of labels, 

Ghosal et al. (2019) proposed an active learning inspired weakly supervised deep learning method. 

It trained the model on randomly selected data first and used the trained model on unlabeled data 

for human verification. Olsen et al. (2018) also adopted a semi-automatic annotation tool based on 

the color features of each superpixel. Oh et al. (2019) implemented this tool by using a feedback 

mechanism based on the detection tool, providing a density map as the output. 
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Figure 2.1. CNN model used by Xiong et al. (2017). The input of the model is the image data 

with three channels. The output of the model is the class of the central pixel. Reprinted from 

‘Panicle-SEG: a robust image segmentation method for rice panicles in the field based on deep 

learning and superpixel optimization,’ Xiong et al., 2017, Plant Methods, 13(1), 104. 

LiDAR data have also been used in panicle detection via a segmentation approach applied to 3D 

point cloud data. As noted earlier, Malambo et al. (2019) proposed DBSCAN based on some 

general spectral and morphological characteristics of LiDAR for detecting sorghum panicles, 

including height, point density and color information by using - colorized LiDAR point cloud data 

to detect panicles. Similarly, Velumani et al. (2019) applied voxel-based segmentation and a mean 

shift segmentation to the 3D point cloud, followed by an Otsu’s threshold selection method to 

classify the unlabeled segments to wheat ears. The Faster R-CNN deep learning approach was 

recently used to segment maize from the background at the individual plant level in a controlled 

facility (Jin et al., 2018). 

2.2 Segmentation of Hyperspectral Images with Deep Learning models 

To the best of our knowledge, few studies (Miao et al., 2020) have investigated panicle 

segmentation based on remote sensing multispectral and hyperspectral images. Miao et al. (2020) 

explored seven supervised classification approaches, including Multinomial Logistic Regression 

(MLR), SVM and Linear Discriminant Analysis (LDA) to segment the sorghum panicles grown 

in a greenhouse from hyperspectral images (acquired by a Headwall Photonics, Inc., Fitchburg, 

MA, hyperspectral camera), and manually labeled pixels from the images. As the development of 

remote sensing technology has advanced, collecting hyperspectral image data with extremely high 

spatial resolution from wheeled vehicles and UAVs is viable, so hyperspectral imagery can now 
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be explored to detect panicles. Several relevant studies based on hyperspectral image data provide 

insight for panicle detection. Two-step object-based binary classification approaches have been 

used to classify objects in hyperspectral images (Alam et al., 2016; Zhao et al., 2017). Similar to 

Xiong et al. (2017) and Olsen et al. (2018), this two-step approach first generates superpixels from 

hyperspectral data using SLIC, then classifies the objects. Alam et al. (2016) developed a feature 

vector for each pixel containing both spectral and spatial features following the application of 

SLIC on the feature vector, and then used a convolutional neural network to classify the superpixel 

to each land cover class. Similarly, Zhao et al. (2017) reduced dimensionality via Principal 

Component Analysis (PCA). They then performed SLIC on the first three principal components 

to generate superpixels, followed by classification via SVM, coupled with an active learning 

strategy to limit the number of training samples and perform the classification. 

Deep learning can be applied to both feature extraction and classification. As the convolutional 

layer can perform feature extraction, while the fully connected layer can serve as the classifier, an 

end-to-end model that merges the two steps for the hyperspectral data is possible. As a result, a 

deep learning model could potentially be used to classify hyperspectral data for panicle detection. 

The most common deep learning model in image analysis is CNN. In RGB images, the input of 

the CNN is usually 3×w×h, where 3 is the number of channels, and w and h are the spatial 

dimensions. In the example noted previously, after performing SLIC on the image data, Xiong et 

al. (2017) used a 2D CNN to learn the class of superpixels. For an end-to-end deep learning model 

on image data, Oh et al. (2019) investigated a tuned version of the counting CNN (CCNN) model 

on 4 input channels (RGB image and thermal time data), as shown in Figure 2.2. The model had 8 

convolutional layers and 2 pooling layers in a modified architecture, which yielded higher 

accuracies. The output was a density detection map for detecting and counting panicles. 

However, due to the high dimension of hyperspectral data, it is difficult to force hyperspectral data 

into a classical deep learning framework. In order to produce a robust deep learning architecture 

and not waste the unique information from the hyperspectral image, a different convolutional 

architecture is required. 
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Figure 2.2. Counting CNN (CCNN) used in Oh et al. (2019) The output 

channel and filter size were modified to refine the model. Reprinted from 

“Counting and Detecting Sorghums”, by Oh et al., 2019. 

2.2.1 Classification of Hyperspectral Data in Deep Learning Models 

When solar radiation interacts with objects, energy is absorbed, transmitted, and reflected. 

Reflectance is related to the chemistry-based characteristics of a target and if unique, may be 

analyzed using pattern recognition methods for classification. Based on this knowledge, each pixel 

in a hypercube can be classified by its spectral signature, especially when the spatial resolution is 

low, as texture or shape related features are difficult to extract from the image. Thus, the hypercube 

can be considered as a set of 1D spectra, and the associated input to deep learning models is a 1D 

tensor of each pixel. For example, Hu et al. (2015) used CNN to classify a hyperspectral image 

directly in the spectral domain, and it outperformed some traditional models such as SVM. 

However, using only the spectral features ignores spatial features in higher spatial resolution data, 

which can be important for discrimination. Moreover, Audebert et al. (2019) found that 1D spectra 

do not fully utilize the data and are easily affected by noise. 

2.2.2 Unsupervised Feature Extraction and Spectral-Spatial Classification in Deep 

Learning Models 

Since deep learning frameworks developed for RGB data cannot be used directly on hyperspectral 

image data because of its high dimension, an alternative approach focuses on reducing the spectral 

dimension. In particular, the most common idea is to use an unsupervised dimension reduction 

approach such as PCA or an autoencoder, and then treat the output of the first step as the input 

image followed by the CNN based classifier. 



 

 

22 

The most direct way the reduce dimensionality of hyperspectral data and exploit relevant portions 

of the spectrum is to compute indices, such as the Normalized Difference Vegetation Index (NDVI) 

as an alternative to the original spectral bands. For example, Audebert et al. (2016) used the NDVI 

as well as the DSM data and Normalized Digital Surface Model (NDSM) from LiDAR data to 

create three channel image data for urban classification. Then they proposed a deep learning model 

(SegNet) to perform the semantic segmentation on the International Society for Photogrammetry 

and Remote Sensing (ISPRS) Vaihingen 2D Semantic Labelling dataset (Rottensteiner et al., 2012). 

The selection of appropriate band indices requires prior knowledge of the object feature. Principal 

component analysis, which projects high-dimensional data into a lower-dimensional embedding 

space while retaining the variance in the original data, is the most common unsupervised feature 

extraction approach. For example, Jiao et al. (2017) used PCA on the spectral dimension for the 

whole hyperspectral image, and the first three principal components were reserved for 

classification in the FCN-8s model. Similarly, Makantasis et al. (2015) utilized PCA to project 

high dimensional hyperspectral image data to three channel RGB-like image data, followed by a 

standard 2D CNN for the classification step. However, PCA is a linear projection and cannot 

exploit the nonlinear properties in hyperspectral data, and is not related to discrimination per se. 

Khodr and Younes (2011) tested several linear and nonlinear dimension reduction methods on 

hyperspectral data and found that nonlinear techniques like Sammon Mapping (Sammon, 1969) 

and Isomap (Tenenbaum, 2000) performed better than PCA based on eight quality criteria 

including entropy, variance, first and second spectral derivatives. 

Autoencoders, which are deep learning based feature extraction techniques, seek to encode the raw 

data to achieve high fidelity reconstruction of the original data signature and allow for dimension 

reduction with minimal information loss and noise removal (Audebert et al., 2019). Xing et al. 

(2016) utilized the Stacked Denoise Autoencoder (SDAE) method, which is very robust to noise, 

to reduce the dimension of the hyperspectral data, followed by a logistic regression approach to 

complete the classification. In another study of autoencoders, Ma et al. (2016) proposed the spatial 

updated deep autoencoder (SDAE) to extract spectral-spatial information and tested the output 

features by comparing results achieved with different kinds of classifiers. However, the purpose 

of dimension reduction in hyperspectral data is to mitigate the impact of noisy bands and highly 

correlated bands, not simply to force the high-dimensional data to have the same number of inputs 

to classifiers as RGB data with three input channels. It should also be noted that unsupervised 
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dimensionality reduction can sometimes lead to worse performance than using the original data 

because it might remove information that is useful discriminant information for classification (Du, 

2003). 

2.2.3 Spectral-spatial classification in Deep Learning Models 

As noted previously, the CNN model can perform as both a feature extraction and a classification 

method. This is because CNN can be represented in two parts, the convolutional layer and the fully 

connected layer. The convolutional layer uses the kernel filter to extract features from the original 

data, while the fully connected layer classifies the feature acquired from the convolutional layer. 

As a result, using an end-to-end CNN model directly on the hypercube is possible. However, it is 

problematic to perform kernel calculations on the whole hypercube for hyperspectral data because 

of the large memory requirements. To deal with this challenge, dimension reduction can be 

implemented in the first two to three convolutional layers. Alternatively, the raw hypercube can 

be divided into small patches, which could be spatially adjacent regions of each pixel. One 

approach leverages a multi-scale filter bank such as the architecture used by Lee and Kwon (2017), 

which includes a convolutional layer with three different kernels, one to extract spectral features 

while the other two exploit spatial-spectral correlated signatures to create a joint spatial-spectral 

feature map as the input of the Fully Convolutional Network (FCN), as can be seen from Figure 

2.3. It is important to note that the FCN is able to generate predictions for all pixels from the input, 

which makes the model more efficient. Another approach, which is computationally advantageous, 

operates on small spatial patches instead of the whole image. The input size is generally k×k×b, 

where k is the number of neighborhood pixels, and b is the number of bands. The output is the 

label of the central pixel of the input matrix. The architecture depends on the dimension of the 

kernel. For example, Slavkovikj et al. (2015) flattened the spatial dimension to produce a two-

dimensional input matrix of size (k×k) ×b and then used a 2D CNN for classification. One 

promising technique directly uses 3D CNN on the input patches, operating simultaneously on the 

three dimensions. For example, Hamida et al. (2018) produced the new 3D deep learning approach 

illustrated in Figure 2.4. The model extracts the spectral features with an 1×1×b kernel and extracts 

the spatial features with a k×k×1 kernel. Instead of producing 2D feature maps, the 3D CNN 

produces 3D feature cubes that extract features like collocated spectral signatures and differences 

of absorption between bands from the convolutional layers. This is more straightforward for 
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classification and requires fewer parameters and layers. Chen et al. (2016) demonstrated that 3D 

convolution improves the quality of the classification result. Yang et al. (2018) also concluded that 

it was superior to 2D CNN for the classification of data in the same small patches. 

 

Figure 2.3. Contextual CNN proposed by Lee et al. (2017) The first layer contains three 3D 

convolutional layers to generate a feature bank. Reprinted from ‘Going deeper with contextual 

CNN for hyperspectral image classification,’ Lee et al., 2017, IEEE Transactions on Image 

Processing, 26(10), 4843-4855. 

 

Figure 2.4. 3D CNN used by Hamida et al. (2018). The input is a 3D cube. After several 3D 

convolutional layers, the output becomes a 1D vector serving as a fully connected output. 

Reprinted from ‘3-D deep learning approach for remote sensing image classification,’ Hamida et 

al., 2018,  IEEE Transactions on Geoscience and Remote Sensing, 56(8), 4420-4434. 

2.2.4 Hyperspectral image classification using other Deep Learning models 

Other deep learning models, such as Recurrent Neural Networks (RNN), can also be used for 

hyperspectral image classification. RNN uses “history” to retrieve past information and is often 

used to process time series data. In this case, the 3D hypercube can be treated as a set of sequential 

1D data. For example, Mou et al. (2017) used RNNs to classify hyperspectral data based on the 
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assumption that both long-range and short-range dependencies could be modeled in the spectral 

domain. It performs better than 1D CNN using only spectral data because it considers both local 

and global values in the spectrum. 

2.2.5 Selection of the Deep Learning model architecture 

Multiple well-validated deep learning architectures have been designed for hyperspectral image 

classification. To select the optimal model, different factors need to be considered. For example, 

as the quantity of training data increases, a deeper model can be chosen. Data quality, such as noise 

and spatial resolution, also affects deep learning model results. As noted earlier, Audebert et al. 

(2019) tested CNN models with different kinds of convolution on patches from multiple datasets 

and reported that spatial resolution impacts model results. When the spatial resolution is very 

coarse, each pixel contains a mixture of ground materials, and 1D convolution performs better. 

With a higher spatial resolution, 3D convolution on small patches from image data with size 

3×3×k begins to achieve higher performance. However, if the spatial resolution is very high, the 

qualities of both 1D and 3D convolutions are worse because spatial features of the center pixel in 

small patches are difficult to be represented. Stretching the 3D patches to a 2D matrix also 

encounters the same problem. A larger input size is required in this case, which is computationally 

intensive for 3D convolution. To reduce computation, either reducing the dimension (Jiao et al., 

2017) or modifying the model structure (Lee et al., 2017) on the larger input size (e.g., 100×100×k) 

can be used for hyperspectral data with high spatial resolution. Most labels for the deep learning 

model are pixel level classes. FCN is efficient in this respect as it predicts several pixels 

simultaneously, and the transferred 3D FCNs extract meaningful features (Audebert et al., 2019). 

Oh et al. (2019) also imply that Fully Convolutional Regression Networks (FCRN) have the 

potential to solve the down sampled problem that occurred in their research. As a result, an FCN 

using a 2D filter in a convolutional layer is proposed in this thesis. Since a traditional FCN network 

utilized for hyperspectral data requires some form of prior procedure, both dimension reduction 

and structure modification are used to make it an end-to-end model. Results from this architecture 

are presented in Chapter 4. 
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 METHODOLOGY 

In this chapter, details of the methodology used in this study to detect panicles from high resolution 

data acquired by a wheeled vehicle are introduced. Pre-processing approaches related to creating 

hyperspectral orthophotos from close-range images are also summarized. The second part of this 

chapter describes the basics of the FCN and the modification required for the analysis of 

hyperspectral image data. Specifically, the encoder used for FCN, VGG-16, and the modifications 

required to transform  from the classifier to a prediction map are introduced. 

3.1 Orthorectification of Hyperspectral Data acquired by the Purdue PhenoRover 

Hyperspectral data for this project were collected by a Headwall Photonics, Fitchburg, MA 

Machine Vision pushbroom hyperspectral sensor, which operates over the range of ~400-1000 

nanometers, on a wheeled vehicle with a custom designed sensor boom. The pushbroom scanner, 

as shown in Figure 3.1, captures a 1-D array that is perpendicular to its driving direction. The raw 

data are collected by the sensor over the field as the combination of all the strips, each of which is 

a perspective projection with a non-uniform scale and lack of coordinate information. Before 

selecting labels and classifying the images, it was necessary to generate orthophotos from the 

reflectance data, transforming the perspective projection (Figure 3.2 a) to the orthogonal projection 

(Figure 3.2 b). 

 

Figure 3.1. Representation of the perspective and image acquisition geometry of Linear Array 

Pushbroom sensors 
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(a) 

 

(b) 

 

Figure 3.2 Representation of image projections from different angles: 

(a) Perspective Projection, (b) Orthogonal Projection 

3.1.1 Point positioning function 

Each pixel from the raw image has a mathematical collinear relationship with the object point from 

the ground coordinate system and the perspective center, which can be described by the point 

positioning function in Eqn 3.1 (Habib et al., 2018). The coordinate system of the pushbroom 

sensor, which is shown in Figure 3.3, contains three coordinate systems: the mapping frame, the 

GNSS/INS body frame and the pushbroom scanner coordinate system. 

 𝑟𝐼
𝑚 = 𝑟𝑏

𝑚(𝑡) + 𝑅𝑏
𝑚(𝑡)𝑟𝑐

𝑏 + 𝜆𝑖𝑅𝑏
𝑚(𝑡)𝑅𝑐

𝑏𝑟𝑖
𝑐  3.1 

 

Figure 3.3. Schematic diagram of the collinearity equations and definition of the coordinate 

systems for a pushbroom scanner. Reprinted from ‘Boresight calibration of GNSS/INS-assisted 

push-broom hyperspectral scanners on UAV platforms,’ by Habib et al., 2018. IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote Sensing, 11(5), 1734-1749. 
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It is important to note that in Eqn 3.1, 𝑟𝑝
𝑞
 represents the spatial offset of point p relative to the 

coordinate system associated with point q, while 𝑅𝑝
𝑞
 represents the rotation matrix that transforms 

coordinate system p to coordinate system q. The first coordinate system is the ground coordinate 

system, which follows the North American Datum of 1983 (NAD 83) geodetic reference system 

in this thesis. The variable 𝑟𝐼
𝑚  refers to the object ground coordinate (XI, YI, ZI). The second 

coordinate system is the IMU body frame (b) (the coordinate of the GNSS/INS system (Xb, Yb, Zb) 

in the IMU body frame is usually the origin (0,0,0)). The variables 𝑟𝑏
𝑚  and 𝑅𝑏

𝑚  represent the 

position and orientation information of the IMU body frame relative to the mapping frame. At the 

exposure time t, 𝑟𝑏
𝑚(𝑡) is the ground coordinate of the origin of the IMU coordinate system. The 

last coordinate system is the pushbroom scanner frame; the position of the sensor is also at the 

origin of its coordinate. The ground coordinate of the perspective point is computed as  

𝑟𝑏
𝑚(𝑡) + 𝑅𝑏

𝑚(𝑡)𝑟𝑐
𝑏 in Eqn 3.1, where 𝑟𝑐

𝑏 is the lever arm relating the pushbroom sensor to the IMU 

body frame. Also, in this system, the relationship between the image and the perspective center is 

shown in Figure 3.3, and 𝑟𝑖
𝑐 (xc, yc, zc) is the vector that denotes the relationship in Eqn 3.1. In the 

pushbroom scanning system, the scan line is usually set vertically under the perspective center. In 

this case, yc is a constant zero value, while zc is the focal length, the distance between the 

perspective center to the scan line. The value of 𝜆𝑖 refers to the non-uniform scale factor. For each 

point i in the raw image, the corresponding object coordinate of I in the mapping coordinate system 

can be calculated by the point positioning function, Eqn 3.1. Conversely, given the object 

coordinate of a point I in the mapping coordinate system, the pixel coordinate i of the raw image 

can also be calculated by the inverse function. 

3.1.2 Boresight calibration 

In order to generate an accurate orthophoto, the position and orientation information need to be 

obtained via geometric calibration using targets with known positions. With the help of integrated 

Global Navigation Satellite Systems and Inertial Navigation Systems (GNSS/INS), direct 

georeferencing is possible. This means that the position and orientation of each pixel in an image 

can be directly determined instead of using a traditional bundle adjustment with a large number of 

ground control points (GCPs) (Habib et al., 2011; Kersting, Habib, & Bang, 2011). The lever arm 

and boresight matrix relating the camera and IMU mapping frame must be measured by a system 
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calibration procedure. Since the lever arm can be measured manually, the strategy is to estimate 

the boresight angles, 𝑅𝑏
𝑐  from Eqn 3.4, which is derived from Eqn 3.2. The idea is to enforce the 

perspective center, the image object and the corresponding object point to be collinear. In this 

thesis, the method proposed by Habib et al. (2018) is used to estimate the boresight angles. It takes 

advantage of the reformulated point positioning function Eqn 3.2 and decomposes the boresight 

matrix to the product of two rotation matrices, as shown in Eqn 3.3, in order to avoid gimbal lock. 

In this case, the 𝑅𝑏
𝑐′ is a nominal matrix, while 𝑅𝑐′

𝑐  is a rotation matrix which is almost parallel to 

𝑅𝑏
𝑐′. The initial value of 𝑅𝑐′

𝑐  is set to zero which is updated by an iterative Least Squares Adjustment 

(LSA). 

 
𝑟𝑖

𝑐 =
1

𝜆𝑖
𝑅𝑏

𝑐𝑅𝑚
𝑏 (𝑡)(𝑟𝐼

𝑚 − 𝑟𝑏
𝑚(𝑡)) − 𝑟𝑐

𝑏) 
3.2 

 
𝑟𝑖

𝑐 =
1

𝜆𝑖
𝑅𝑐′

𝑐 𝑅𝑏
𝑐′𝑅𝑚

𝑏 (𝑡)(𝑟𝐼
𝑚 − 𝑟𝑏

𝑚(𝑡)) − 𝑟𝑐
𝑏) 

3.3 

3.1.3 Pushbroom image orthorectification via an indirect method 

As noted previously, each pixel i in the raw image has a corresponding ground coordinate in the 

mapping frame that is determined by using a point positioning function. Either a direct or an 

indirect method can be used to generate an orthophoto from the raw image. As a direct method, 

forward projection directly finds the corresponding object coordinate, while backward projection 

(an indirect method) finds the point from the generated ortho-map to the original image data. 

Because the forward projection needs to project regular points to a set of irregular points, back 

projection is often the better choice for orthorectification (Mikhail, Bethel, and McGlone, 2001). 

In this thesis, the back projection method is used for the hyperspectral imagery acquired by the 

Machine Vision (MV) pushbroom sensor. The back projection function in Eqns 3.8 and 3.9 can be 

obtained Eqns 3.4 to 3.7 based on the point positioning function. 

 𝑟𝐼
𝑚 − 𝑟𝑏

𝑚(𝑡) = 𝑅𝑏
𝑚(𝑡)(𝑟𝑐

𝑏 + 𝜆𝑖𝑅𝑐
𝑏𝑟𝑖

𝑐)  3.4 

 𝑅𝑚
𝑏 (𝑡)(𝑟𝐼

𝑚 − 𝑟𝑏
𝑚(𝑡)) − 𝑟𝑐

𝑏 = 𝜆𝑖𝑅𝑐
𝑏𝑟𝑖

𝑐   3.5 

 𝜆𝑖𝑟𝑖
𝑐 = 𝑅𝑏

𝑐𝑅𝑚
𝑏 (𝑡)(𝑟𝐼

𝑚 − 𝑟𝑏
𝑚(𝑡)) − 𝑟𝑐

𝑏)  3.6 
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𝜆𝑖𝑟𝑖
𝑐 =

𝜆𝑖𝑥𝑖

𝜆𝑖𝑦𝑖

𝜆𝑖𝑐
=

𝑁𝑥

𝑁𝑦

𝐷

 
 

3.7 

 
𝑥𝑖 = 𝑐 ×

𝑁𝑥

𝐷
  3.8 

 
𝑦𝑖 = 𝑐 ×

𝑁𝑦

𝐷
 

 
3.9 

The steps required to generate the orthophotos are:  

1. Define a coarse orthophoto trajectory by evaluating the point positioning function on the 

first and last points of each scan line. 

2. Find the coordinates of the four corners from the minimum and maximum trajectory points. 

Generate an orthophoto map using these values. 

3. As shown in Figure 3.4, for each pixel in the orthophoto map, the ground coordinate can 

be calculated by using the corner coordinate and the resolution (5mm in our data), so the 

height value can also be derived from the DSM data. Then the back projection function 

assigns the pixel coordinate of the raw image. Because of the characteristics of the 

pushbroom scanner, the calculated y pixel coordinate should be close to zero. An iterative 

process is therefore used to find the ideal pixel coordinate. 

 

Figure 3.4. Schematic drawing that illustrates back projection using point positioning function 
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However, since our data are collected using a terrestrial vehicle platform, the distance between the 

sensor and the ground is much smaller (1-3m) than for a UAV (~ 40m for our studies), and the 

Ground Sampling Distance (GSD) is much smaller than for the sensor on the UAV platform. This 

results in a detailed, highly variable DSM, particularly over targets such as tall plants. The resulting 

higher resolution orthophoto from our platform also has a lower “overall” height than the 

corresponding DSM obtained from a UAV platform over the same area. In order to obtain a higher 

quality orthophoto that could be used for panicle detection, a locally filtered DSM is proposed to 

smooth the orthorectification result. This also improves the physical characteristics of the panicles 

observed in the image. However, additional future efforts should be focused on the generation of 

high fidelity orthophotos to obtain more precise positions. Further exploration of filters such as 

Savitzky-Golay (Savitzky &Golay, 1964) and other adaptive filtering approaches should be 

considered further for smoothing the DSM. 

3.2 Classification of Hyperspectral images 

The classification of panicles is treated as a binary detection process, determining an element as 

‘whether or not’ according to a certain quantitative property. The group with that property is a 

positive class (e.g. panicles), while the other is a negative class (e.g., soil and leaves). The two 

groups are not usually symmetric. 

3.2.1 Model selection: Fully Convolutional Network 

A CNN is used in this thesis as the classifier to perform binary classification on the hyperspectral 

image data. Recently, CNN has been demonstrated to be superior for supervised classification of 

many complex data sets, compared to other traditional classifiers like SVM. Eqn 3.10 and Eqn 

3.11 show the computational steps of CNN. It uses the convolution operations and kernels that can 

be learned from a backpropagation procedure during training. 

 𝑓(𝑥) = ∑ 𝑤𝑖𝑥𝑖

𝑚

𝑖=1

+ 𝑏 3.10 

 𝑦 = 𝑠𝑖𝑔𝑛[𝑓(𝑥)] 3.11 
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As noted in Chapter 2, the spatial resolution and spectral resolution of the hyperspectral image 

data impact the performance of the CNN. For hyperspectral images with narrow spectral bands, a 

classifier based on 1D spectra can extract the features from correlated spectra, but ignores all 

spatial information. 3D convolution learns 3D spatial-spectral features from small image patches 

with fewer parameters. High spatial resolution data provide spatial information, although it is 

minimal when the image data are subsetted to small patches. To utilize high spatial resolution 

datasets, 2D convolution from large patches seems to be promising for this application. As an end-

to-end, pixel-to-pixel model, the FCN generally performs well in image semantic segmentation 

and classification. 

An FCN can be derived from contemporary classification networks, such as AlexNet, VGGNet, 

and GoogLeNet, which are all commonly used in image analysis. Among these, AlexNet has five 

convolutional layers and three fully connected layers and utilizes the max pooling function and 

ReLU’s activation function to enhance the results and reduce the computation time. VGG-16 

utilizes very small (3×3) convolutional layers so that the model is deeper than AlexNet. Compared 

to VGG-16, GoogLeNet uses filters at different scales to extract features. An FCN naturally 

operates on an input of any size and produces an output with the same resampled spatial dimension, 

and thus can be used in semantic segmentation. It includes two structures, the encoder and decoder 

steps, where the image is first down-sampled into feature maps, followed by the up-sampling 

procedure to a coarse prediction map. To find the optimal encoder, Long et al. (2015) conducted 

tests on AlexNet, VGG-16, and GoogLeNet and found that among these three networks, FCN-

VGG-16 performed best with the 56.0 mean IU (region intersection over union metric) on 

PASCAL VOC 2011 validation sets. In this thesis, VGG-16 is used as the basic structure to build 

the fully convolutional architecture. It is a relatively deeper but simplifier architecture for a large-

scale image compared to AlexNet and GoogLeNet. 

VGG -16 contains thirteen convolutional layers, three fully connected layers, five pooling layers, 

and other nonlinear hidden layers, such as activation function and dropout layers, as shown in 

Figure 3.5. Like other CNN architectures, VGG-16 first generates a feature map, followed by a 

fully connected layer and a classifier layer to learn the label of the input. The feature map is 

developed by the combination of linear and nonlinear layers. The convolutional layer is the linear 

layer that extracts features through a kernel, which is the cross product of the input matrix and the 
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kernel as shown in Eqn 3.10. Other parameters in the convolutional layer include stride and 

padding to control the size of the output matrix. In VGG-16, the stride and padding are both set to 

1, so that the output size is the same as the input size. The pooling layer is a nonlinear layer that 

helps translate the output from a previous layer to a smaller size while maintaining valuable 

information. The relative location of a feature is assumed to be more important than its exact 

location. 

 

Figure 3.5. Network structure of VGG16 which contains 13 convolutional layers, 5 pooling 

layers and 3 fully connected layers. Reprinted from CNN Architecture: LeNet, AlexNet, VGG, 

GoogLeNet, ResNet and more…, by Siddharth Das, 2017, https://medium.com/analytics-

vidhya/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5 

Max pooling, which selects the maximum number as the representative value within a rectangular 

neighborhood, is selected in the pooling layers. As the neural network becomes deeper, some 

problems may occur, including vanishing gradients and overfitting. To avoid the vanishing 

gradient problem, an activation function is used to represent the data differently, potentially 

providing useful information. A nonlinear transformation is performed on the input, making it 

capable of learning and performing more complex tasks. VGG-16 uses the Rectified Linear Units 

(ReLu’s) function, shown in Eqn 3.12, to activate the linear convolution map result by setting 

negative values to zero. Dropout is also used to prevent overfitting in deep learning architectures. 

It randomly drops out some weights of hidden nodes in the network during training of the model, 

which can be considered as deleting a part of the network structure, but retains their weights for 

the next training epoch. A SoftMax function, which is the extension of logistic regression from a 

dichotomous classifier to a multi-class problem, is introduced to construct the loss function for the 

supervised training in VGG-16. 

To convert classification networks into fully convolutional networks, three steps are required: 
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1. Transform the fully connected layers into convolutional layers. There are three fully 

connected layers in VGG-16 as noted before, which are fc6, fc7 and fc8, shown in Figure 

3.6. The three fully connected layers output a prediction vector with the number of classes, 

which enables the feature map to output a prediction map, referred to as the heatmap. When 

using the VGG-16 classifier as the encoder of the FCN, the fully connected layer fc6, fc7 

is reconstructed to conv6 and conv7 as shown in Figure 3.6. After that, instead of 

converting fc8, a score map for all the pixels is produced. 

 

Figure 3.6. Expanding fully connected layers in VGG16 to FCN by adding prediction layers and 

deconvolutional layers. Reprinted from ‘Fully convolutional networks for semantic 

segmentation,’ Long, Shelhamer, Darelll, 2015, In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition (pp. 3431-3440). 

2. Add a deconvolutional layer to the prediction layer. The deconvolutional layer is an 

upsampling process which makes the output larger than the input(an up convolution or 

transposed convolution procedure). The objective is to generate the input signal from the 

feature map (Zeiler et al., 2010), which is a top-down decoder process compared to 

convolution. By using learned filters, the deconvolutional layer can extract mid-level 

concepts such as edges and lines. In this case, it is used to upsample the prediction map so 

that the size of the output matrix is the same as the input matrix. After step 2, it generates 

an upsampled prediction map. The most straightforward way to produce the segmentation 

map is to directly add the deconvolutional layer with stride 32 after the score map so that 
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it is the same size as the input matrix. It is referred to as FCN-32s because of the number 

of strides. 

3. Since the output of FCN-32 is quite coarse, it can be refined by combining the upsampled 

prediction layer with the score layer in a lower layer. For example, after pool-4 in Figure 

3.6, a score map can be generated by adding a convolutional layer on pool-4 with the same 

number of output channels as classes. We refer to it as score_pool4 to distinguish it from 

the final score map. The upsampled prediction layer is obtained from a transposed 

convolutional layer with stride two on the score map. The segmentation map can be built 

by implementing the deconvolutional layer with stride 16 after merging the score_pool4 

layer and the upsampled prediction layer. The same step can be performed on pool3 

together with pool4 to calculate the combination twice before applying the deconvolutional 

layer. The two architectures are FCN-16s and FCN-8s respectively as shown in Figure 3.6. 

The Figure also shows that when the stride number is smaller, the model is deeper, and 

FCN-8s has the deepest layer among the three models, FCN-8s, FCN-16s and FCN-32s. It 

is concluded that by fusing prediction layers with lower layers, FCN-8s produces a finer 

feature map for image segmentation (Long, Shelhamer, & Darell, 2015). As a result, 

VGG16-FCN-8s with a pretrained VGG-16 is used in this thesis. Stochastic gradient 

descent (SGD) with momentum is used as the optimization method in the learning 

procedure. It calculates the gradient of the loss function to determine the direction and size 

on each training sample and uses the momentum approach to enhance the relevant direction 

and decrease the oscillations. 

 
𝑓(𝑥) = {

0    𝑓𝑜𝑟 𝑥 ≤ 0
𝑥    𝑓𝑜𝑟 𝑥 > 0

  3.12 

3.2.2 Model Modification 

Because of the characteristics of hyperspectral imagery, FCN-8s cannot be applied directly, as it 

is structured to operate on a three-dimensional hypercube. To make it applicable to hyperspectral 

data, some modifications of the architecture are required. The weight of the modified layer was set 

using Glorot initialization (Glorot & Bengio, 2010) while other layers used the weight from 
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pretrained VGG-16. In this thesis, three approaches with different model modifications are 

proposed to the original deep learning model. 

PCA was investigated first as an unsupervised dimension reduction approach, following Jiao et al. 

(2017) who implemented FCN-8s as noted in Chapter 2. By using 99% of the variance as a 

threshold, seven principal components were selected as the input data, so the input channel of the 

first layer in the deep learning model was modified to seven. Reducing the dimensionality of the 

data also helps reduce the computation, although as noted previously, principal components are 

not necessarily ideal features for discrimination, as the criterion is unrelated to classification. 

To mitigate the effect of unsupervised linear dimension reduction, the second approach focused 

on changing the architecture of the deep learning model. The convolutional layer of the model can 

be seen as a feature selection procedure, while the prediction layer is related to classification. In 

this way, the most straightforward method to accommodate the hypercube is to change the first 

layer of the FCN. The first layer in a classical FCN is a convolutional layer with the kernel size of 

3. The hyperspectral image data can be considered as an image with b input channels, where b 

refers to the number of bands. This is a simple but effective method for two reasons: 1) the output 

channel of the first layer is 64, which in some way reduces the number of dimensions, and 2) it 

maintains the model as an end-to-end, pixel-to-pixel process without any other pre-processing 

procedure which could potentially lose information in the original data. 

The last approach explored the generation of a joint feature map called the multi-scale filter bank 

before applying the structure of VGG-16 to the data. It uses two convolutional filters with different 

sizes: 1×1×b, 3×3×b, where b is the number of bands. The first filter extracts the spectral features 

while the second filter seeks to incorporate spatial-spectral information. Zero padding is used to 

force the output to be the same size. The two feature maps are then combined, followed by the 

FCN. Like the previously described method, the model can be applied to the original high 

dimensional hyperspectral image data. It also reduces the dimension in a supervised way. By 

learning through backpropagation, the filter band fits filter parameters to learn the features from 

the spatial-spectral domain. 

To distinguish the second and the third approaches, the first method is called 2D-FCN, while the 

second method is referred to as 3D-FCN. These two end-to-end approaches share the same 
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disadvantage that of potentially being impacted by the data redundancy when the input data is too 

large as it is a 3D patch-wise classification. For the convolutional layer, the total number of 

parameters is (n ×m ×l+1) ×k, where n and m are the filter size, l denotes the number of input 

channels, and k represents the number of output channels. In the original FCN, the filter size of the 

first layer is 3 ×3, the number of input channels is 3 and the number of output channels is 64; thus, 

it needs to compute 1792 parameters. When the original raw data channels are used, the number 

increases to 78,796. At the same time, the number of parameters becomes 2588 with the joint 

feature map. When training on a small dataset, a more complex architecture would degrade the 

performance (Oh et al., 2019). Comparing the two approaches, they both require many more 

parameters than the original network, with the 3D-FCN having both a very large number of 

parameters and thereby requiring enormous quantities of associated training data, and the training 

rate is slower. However, the model of 3D-FCN is deeper, and the filter bank considers both spectral 

and spatial domains, so that a better result could be expected with larger datasets. 

Results related both to the pre-processing procedure and to orthorectification are included in 

Chapter 4. In panicle detection, the three deep learning models discussed in Chapter 3 are all 

explored for the hyperspectral image data in Chapter 4. 
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 EXPERIMENTAL RESULTS 

This chapter includes results from both the improved orthorectification approach for close range 

pushbroom sensors and detection of panicles from the resulting hyperspectral images. Results of 

detection using three tuned versions of FCN-8s models which include dimension reduction are 

reviewed and evaluated. 

4.1 Remote Sensing data 

Data analyzed in this thesis were collected by a high clearance tractor with a boom referred to as 

the PhenoRover. The platform has three types of sensors: two FLIR GrassHopper3 GigE 9.1 MP 

color cameras, two Velodyne HDL-32E LiDAR units, and a Headwall MV camera to semi-

automatically collect co-registered RGB, LiDAR data, and hyperspectral VNIR data. The 

Headwall MV VNIR sensor acquires data at wavelengths ranging from 400 - 1000 nm. Dual GNSS 

antennas as well as an Applanix POS LV 125 are also onboard for direct georeferencing. The RGB 

and LiDAR sensors are installed on both the left and right side of the center, and the single 

hyperspectral camera is mounted in the center of the boom as shown in Figure 4.1. The LiDAR 

sensors generate the point cloud data to characterize the physical structure of the canopy, as well 

as the DSM data for the RGB and hyperspectral data orthorectification. The hyperspectral data 

have 5mm spatial resolution at 2m above the canopy and 2.24 nm spectral resolution with 272 

bands. 

 

Figure 4.1. PhenoRover and the sensors on the platform including: (1) HDL-32E LiDAR, (2) 

Headwall MV, (3) HDL-32D LiDAR, (4) POS LV 125, (5) GNSS Antennas, (6) GNSS 

Antennas 
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A limited number of acquisitions were available for panicle detection in the 2018 growing season 

at the Purdue University Agronomy Center for Research and Education (ACRE). Three fields had 

sorghum experiments: 9D, which contained 12 sorghum geonotypes, hybrid calibration (Field 54 

middle) with 18 genotypes, and the test cross diversity panel (Field 54 South) with 630 genotypes. 

For these fields, the flowering date was observed around July 1st for Field 54, but there is no 

specific date recorded for Field 9D. It can be assumed that the flowering date of Field 9D should 

have been about at least 2 weeks later, because the planting date of Field 9D (June 4th) was about 

4 weeks later than Field 54 (May 8th). There were only four dates after July 1st: July 13th, July 17th, 

August 28th, and September 19th, for which PhenoRover data were acquired (see Table 4.1). Figure 

4.2 represents four orthorectified images from the four corresponding dates by using the 

SpectralView (Headwall Photonics, Inc) data processing software provided with the sensor. From 

Figure 4.2 it can be seen that panicles on July 13th and July 17th are still green, and are difficult to 

discriminate from leaves. Changes were made to the platform in mid-July, and only the data on 

last two dates were fully processed. Also, panicles on August 28th and September 19th are easier 

to discriminate, although it is more desirable to use data in the early season to track flowering. 

Figure 4.3 shows multiple dates of RGB UAV example data acquired over the 2017 hybrid 

calibration panel (data used by Oh et al. (2019)). Panicles in these images were distinct from late 

July and were used to develop a model for flowering time for various varieties. In future years, 

hyperspectral data should be acquired by the PhenoRover during the flowering period at least twice 

per week during flowering, if possible. 

Table 4.1Post flowering Data Acquisitions by the PhenoRover 

Data Collection Date Field Surveyed 

20180713 

Field 9D 

Field 54 Middle 

Field 54 South 

20180717 Field 54 South 

20180828 Field 9D 

20180919 Field 9D 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.2. RGB bands of hyperspectral data on four dates in 2018: (a) 20180713, Field 9D, (b) 

20180717, Field 54 South, no data available from Field 9D, (c) 20180828, Field 9D, (d) 

20180919, Field 9D. 
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Figure 4.3. Example RGB images in 2017 hybrid calibration panel from 2017/07/11 to 

2017/08/16. Reprinted from “Counting and Detecting Sorghums”, by Oh et al., 2019. 

The data selected for this thesis were collected from Field 9D on 9/19/2018 because the data for 

the boresight calibration were also collected on the same date. Half of the field was planted in 

maize, and the remainder in sorghum, as shown in Figure 4.4. Data were first pre-processed from 

digital numbers to calibrated radiances by using the SpectralView software. The Empirical Line 

Method (ELM) was used to obtain reflectance for each pixel, and the spectral bands were binned 

by two to obtain 137 bands with resolution 4.4nm. In this thesis, the ground reference data of field 
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targets for ELM-based reflectance were acquired by an SVC 1024i field spectrometer (see Figure 

4.5). 

 

Figure 4.4. Orthophoto of test field, 9D. The blue area is sorghum and the red area is maize. The 

targets at the bottom of the image were used for acquiring the ground reference spectral data. 

 

Figure 4.5. Spectroradiometer SVC HR-1024i (Spectra Vista Corporation) used for collecting the 

reflectance of ground targets. 

4.2 Evaluation Metrics 

Multiple metrics can be used to evaluate the results of classification. Long et al. (2015) used four 

metrics for semantic segmentation for a Fully Convolutional Network: pixel accuracy, mean 

accuracy, mean intersection over union (mean IU), and frequency weighted intersection over union 



 

 

43 

(weighted IU). However, since this is a binary classification, the mean accuracy provides less 

information than the accuracy of panicle and non-panicle classification, respectively. Saito and 

Rehmsmeier (2015) found that precision and recall are more relevant than other metrics in binary 

classification. Precision and recall are related, but can be balanced by an F-measure. Accuracy, 

precision, recall and F-measure are reported in this research. 

4.2.1 Confusion Matrix 

The confusion matrix, also referred to as the error matrix, provides performance of a learning 

algorithm in terms of the correctly classified and misclassified pixels by the “users” and 

“producers”. It can be used to better understand misclassified pixels, as well as identify correctly 

classified pixels. Table 4.2 represents the confusion matrix for the binary panicle classification 

problem. Rows of the confusion matrix denote the predicted class (users) while the column is 

associated with the actual class (producers). It contains four variables: True Positives (TP), False 

Positives (FP), False Negatives (FN) and True Negatives (TN). The positive instance refers to a 

panicle while a negative instance, also called the background instance is non-panicle as described 

in Chapter 3. True Positives (TP) represent the number of pixels that are correctly classified as 

panicles. False positives (FP) denote the background pixels which are classified as panicles, while 

false negatives (FN) are related to the pixels that were incorrectly classified as background. True 

Negatives (TN) represent the corresponding background pixels that are correctly classified as such. 

Table 4.2. Parameters in the confusion matrix for binary classification 

  Actual class (Producers) 

 Total Population Panicle Non-panicle 

Predicted class 

(Users) 

Panicle True Positives False Positives 

Non-panicle False Negatives True Negatives 
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4.2.2 Accuracy 

Overall accuracy reports how many pixels in total are classified correctly, including panicle and 

non-panicle pixels. However, accuracy alone is not reliable for evaluation when the dataset is 

unbalanced. For example, in our case, the non-panicle area is much larger than the panicle area, so 

that even if the model classifies all the pixels as non-panicle, the accuracy can still have a high 

value. Therefore, precision and recall are necessary in this case. 

4.2.3 Precision, Recall and F-measure 

Precision (Eqn 4.1) is defined as the accuracy of the positive class, the panicle in this thesis. Recall 

(Eqn 4.2) is the accuracy of the positive class among the relevant classification outcomes and 

relates to the sensitivity of the classification. In the context of this study, precision is the accuracy 

of panicles that are correctly classified among all the pixels that are predicted as panicles, while 

recall is the fraction of properly predicted panicles among all the true panicle pixels (See Table 

4.2). 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 4.1 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 4.2 

While precision and recall explain the rate and sensitivity of the accuracy, they interact with each 

other, (i.e. a high precision may lead to a low recall.) The F-measure includes both as shown in 

Eq. 4.3. 

 
𝐹 = 2 ∙  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 4.3 

4.3 Experimental Results 

In this section, the results related to orthorectification of the near range data from the PhenoRover 

are presented, followed by the post-processing analysis for panicle detection. The results of three 
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FCN-8s tuned versions for classification of panicles were evaluated using accuracy, precision, 

recall, and the F-metric. 

4.3.1 Geometric Correction 

Figure 4.6 and Figure 4.7 show the raw image cube in Field 9D on September 19th without any 

geometric calibration. Figure 4.6 shows the subset from a raw image cube with color targets used 

for ELM. Figure 4.7 is a subset from a raw image cube which consists of half or each of two four 

row plots, separated by an alley. The shapes of the targets in Figure 4.6 and shape of panicles and 

leaves in Figure 4.7 are distorted, especially for objects near the edge of the image cube, and when 

there are changes in heights over a small area, such as between the two plots (see Figure 4.7). 

 

Figure 4.6. A subset of a raw image cube with targets. 

 

Figure 4.7. A subset from a raw image cube over two plots acquired from east to west, separated 

by an alley 

Figure 4.8 shows two rows of a plot at nadir after orthorectification generated by back projection 

(Habib et al., 2018), using the LiDAR-based Digital Surface Model (DSM) data with 4cm 

resolution shown in Figure 4.9. Both the orthorectification result from the DSM data (Figure 4.8 

(a)) and the DSM data (Figure 4.9) are unsmoothed, which results in very low quality, noisy images. 

To obtain higher quality orthophotos, the 95th percentile DSM data associated with each cube was 

investigated, and the result is shown in Figure 4.8 (b). From this image (Figure 4.8b), the panicles 
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can be more easily recognized, and the approximate positioning of the rows in the whole field can 

be visualized better. 

(a) 

 

(b) 

 

Figure 4.8. Image resulting from orthorectification using different Digital Surface Models: (a) 

unsmoothed DSM, (b) 95 percentiles DSM over the field as the height value 

 

Figure 4.9. Side View of the Digital Surface Model (DSM) 

To obtain an orthophoto with accurate positioning and to detect the panicles in each plot, improved 

geometric correction was required. In this thesis, the image data collected for boresight calibration 

was used to quantitatively evaluate results of the orthorectification experiments. It has the 

advantage that it is a flat area with no vegetation, so that it was not affected by the height variability 

of the surface, as observed with the maize and sorghum. Several raw image data sets were acquired 

from the calibration field, and Figure 4.10 shows the orthorectification results of one of the raw 
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image cubes collected on September 19th, the same date as the data used for panicle detection. As 

shown in the three images in Figure 4.10, the white dots are the targets used for evaluation, while 

the true positions of the targets are shown as red dots. The orthorectification was evaluated by 

comparing the location of the white targets and the ground reference information. Parameters used 

in the back projection function (Habib et al., 2018) can be derived from both the Ground Control 

point (GCP)-based and Tie Point-based methods (Habib et al., 2018). Setting parameters such as 

the lever arm and focal length as fixed or flexible yielded different results. Figure 4.10 (a) and (c) 

acquired over the calibration targets show the impact of a single height, but different parameters 

as listed in Table 4.3 and Table 4.4. When inappropriate parameters are used, the targets are shifted 

from their true position. Optimal values of the eight parameters relative to minimum root-mean-

square error (RMSE) were computed and used to orthorectify the distorted image data. To 

determine the effect of the height, Figures 4.10 (a) and (b) assume different height values in 

conjunction with the parameters in Table 4.3. Figure 4.10 (a) uses the average height of the ground 

reference target (181.554 m), and Figure 4.10 (b) uses the average height from the DSM data 

(181.283 m). The targets in Figure 4.10 (b) are stretched from their accurate position due to the 

use of the wrong height value. However, field conditions with crops of variable heights at near 

range are quite variable. Using the 95 percentile DSM data (commonly assumed to be the top collar 

of the plant) resulted in the Z value in the point positioning function (Eqn 3.1) being the same for 

all the pixels in the image data. Therefore, strategy for resolving the orthorectification problem 

focused on the effect of unsmoothed height value in the DSM. 

Table 4.3. Mounting parameters derived from fixed level arm. 

 

Table 4.4. Mounting parameters derived from flexible lever arm. 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.10. Image acquired for calibration after orthorectification by using different height 

values and mounting parameters: (a) mean of target heights and mounting parameters in Table 

4.3, (b) mean DSM value and mounting parameters in Table 4.3, illustrating the stretch problem, 

(c) mean of target heights and mounting parameters in table 4.4, illustrating shift problem 
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In this thesis, the follow-up tests on orthorectification were focused on the maize in Field 9D in 

July 18th because the height of maize was more homogeneous than the sorghum. The DSM used 

for investigating the improved orthorectification strategy is shown in Figure 4.11. It should be 

noted that this research was actually conducted after the panicle detection part of the thesis, where 

the orthophoto generation was achieved using the Headwall SpectralView software. It is 

acknowledged that those orthorectified data are shifted. Because only the center two rows were 

used, distortion in the cross track direction was minimal. Figure 4.12 (a) shows results obtained 

using the original 4 cm DSM, where the image quality is very poor (analogous to the 

orthorectification results on sorghum as in Figure 4.8 (a)). Figures. 4.12 (b) to Figure 4.12 (d) show 

orthorectification results using DSMs obtained when applying average filters with 0.1×0.1 m, 

0.5×0.5 m, and 1×1 m window size, respectively to the original DSM. The orthorectified image 

result shown in Figure 4.12 (b) still has a poor image quality and a large distortion, which is 

improved in Figure 4.12 (c) and (d) with only distortions at the edge of the image and the areas 

between two plots. Among the four images, Figure 4.12 (d) has the best performance with the 1×1 

m window size, which is similar to the 30”distance between the rows. It was concluded that 

smoothing the DSM with an appropriate filter improves the quality of orthorectification result. 

(a) 

 

(b) 

 

Figure 4.11. DSM used for orthorectification from different side of view: (a) Top view, (b) 

Oblique 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.12. Maize image resulting from orthorectification with different DSMs: (a) original 

DSM, (b) smoothed DSM with 0.1*0.1m window size, (c) smoothed DSM with 0.5*0.5m 

window size, (d) smoothed DSM with 1*1m window size 

The impact of using the Savitzky-Golay (S-Golay) (Savitzky & Golay, 1964) adaptive filter was 

then investigated for smoothing the DSM. Figure 4.13 contains a plot showing the side view of the 

orthorectification results on the single transect, as shown in Figure 4.11 (b) for different window 

sizes/SG parameters. Figures 4.14 a-c shows resulting orthorectified images using the respective 

parameters. The original DSM in Figure 4.13 indicates 7 peaks are associated with the individual 

rows, as it is evident in Figure 4.11 (a). The impact of interpolated 3D point cloud from the image 

after orthorectification using the S-Golay adaptive filter with different filter sizes and the average 

filter is shown in the plots. The average 100x100 filter (red) also contains 7 peaks, but the 

positioning is shifted from the original peaks. The original 4cm DSM data (blue) exhibits high 

localized variability, which impacts the resulting orthophotos, as noted previously. The S-Golay 
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filter results show both the impact of window size and the threshold for the minimum height. For 

example, Figure 4.14 (b) and (c) have the same window size, but Figure 4.14 (b) uses the mean 

value as the minimal height while Figure 4.14 (c) uses 75 percentile DSM height. Figure 4.14 (c) 

shows that the distortion in the edge and the area between the two plots is reduced after modifying 

the minimal height. For these experiments, the adaptive filter applied to the original DSM data 

improved the image quality and decreased the cross-track distortion. This approach was used by 

subsequent research by the team on tassel detection. 

 

Figure 4.13. Cross-track view across multiple rows of the maize field 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.14. Orthorectification results by using Savitzky-Golay adaptive filter on DSM with 

different parameters: (a)window size= 51, using mean as minimal height (b) window size=101, 

using mean as minimal height (c) window size= 101, using 75% as minimal height 

4.3.2 Panicle Detection 

In the following section, the label selection and image annotation are first summarized, followed 

by discussion of performance of the architectures and the four metrics of the three models 

including the validation and test. 
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4.3.2.1 Label Selection 

After the geometric correction and conversion to reflectance, labeled data were acquired, and the 

corresponding labels were used to train the supervised deep learning model. Obtaining annotated 

reference data for panicle detection with hyperspectral data is challenging. In this thesis, the labels 

were generated manually by using the ENVI/Harris software (Figure 4.15), which can visualize 

and process multispectral and hyperspectral image data in RGB bands and select regions of interest 

(ROI) area from the image. Figure 4.16 shows an example of annotated labels. The black area 

represents the background including soil, leaf and other objects, while the white areas denotes the 

panicles. This is a tedious, time consuming process. The annotation tool adapted by Oh et al. (2019) 

was also investigated for RGB images generated from hyperspectral data, but the results were 

density maps, which were not accurate enough to be used as binary prediction maps in this thesis. 

Therefore, future work is needed to simplify the process of selecting labels in either manual or 

automatic/semi-automatic approaches. For example, a pretrained model could be used to predict 

the panicles initially, followed by editing. 

 

Figure 4.15 Manual label selection by using ENVI displaying RGB bands 



 

 

54 

 

Figure 4.16 Example labels annotated for panicle detection. 

4.3.2.2 Model Architecture 

As noted in Chapter 3, three different models based on FCN-8s were explored in this research: 

PCA&FCN, 2D-FCN and 3D-FCN. As noted in Ch 2, PCA&FCN is a two-step pixel-based 

classification approach. It reduces the dimension of the hyperspectral image, and then is adapted 

to the FCN-8s with 7 input channels, which represent 99% of the variance in the image. The other 

two approaches are end-to-end models and use the full spectral bands as input. Figures 4.17 to 

Figure 4.20 show the structure of FCN-8s, PCA&FCN, 2D-FCN and 3D-FCN. The modified part 

from the original FCN-8s is outlined in red. From the four figures, we can see that the architecture 

was modified on the first layer, so the remaining layers could use the pretrained weights of VGG-

16. The modified layer used the Glorot initialization (Glorot, Bengio, 2010). The batch size was 

set as 1 because of the large memory required by the hypercubes. The learning rate was a fixed 

number (1e-10) and was tested first to make sure the model was trainable. Three hundred thirty-

four (334) subsets of hyperspectral cubes, each of size of 256×512×137 were extracted from the 

pre-processed hyperspectral image and used for panicle detection. Among these cubes, 80% of the 

images were used as training data, 10% for validation, and 10% as test data. The test data were 

selected randomly, but contain panicles from different varieties of sorghum and images with 

different quality. Ten-fold cross-validation (10-cv) was performed to obtain the mean accuracy 

and to avoid the impact of randomly selected data for validation. The models were first trained on 

the randomly selected validation data with 500 epochs, and the results were used as the pretrained 

weight on 10-cv with 500 epochs for each fold. The model was run on multiple GPUs: the Purdue 

Gilbreth High Performance Computer (HPC), mango HPC (4 GPUs) from the VIPER Lab and 

Google Co-laboratory. The deep learning model used the Pytorch python package, and the 

principal components were extracted using the function from the Spectral Python package. 
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Figure 4.17 Structure of FCN-8s with VGG-16 as the encoder 

 

Figure 4.18 Structure of PCA&FCN, the PCA modified for the first seven principal components 

as the input data. 
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Figure 4.19 Structure of 2D-FCN, the number of the first channel was changed to the number of 

bands, which is 137 in this thesis. 

 

Figure 4.20 Structure of 3D-FCN. A filter bank (Lee, Kwon, 2017) was added before the FCN-8s 

structure. 
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For the convolutional layer, the total number of parameters is (n ×m ×l+1) ×k, where n and m are 

the 2D filter size, l denotes the number of input channels, and k represents the number of output 

channels. For the 3D convolutional layer, the filter size contains three variables. In the original 

FCN, the filter size of the first layer is 3 ×3, the number of input channels is 3 and the number of 

output channels is 64; thus, as noted in Ch 2, it needs to compute 1792 parameters. The input size 

for the FCN is 256×512×3 with 100 zero padding to ensure the size of the input matrix for the 

following layers, so the memory requirement of FCN is (256+100) × (512+100) ×3, which is 

653,616 bytes. Table 4.5 lists the memory and number of associated parameters for each of the 

models. Since the modifications of the models are on the first layer as shown in Figure 4.17 to 

Figure 4.20, PCA&FCN, 2D-FCN are calculated on the first layer, while 3D-FCN considers the 

first layer as well as the filter bank. 2D-FCN and 3D-FCN both require significantly more 

parameters than the original network. 

Table 4.5 Complexity of the three models 

Model Memory (bytes) Parameters 

PCA&FCN (conv1) 1,525,104 4,096 

2D-FCN (conv1) 29,848,464 78,796 

3D-FCN (filter bank&conv1) 49,857,536 80,832 

Since the models were processed on multiple GPUs for 10-cv, the computation time of the models 

running on the same GPU was selected for comparison. Figure 4.21 shows the training time of a 

Gilbreth GPU and a mango GPU for each epoch. For PCA&FCN, the computation time includes 

the calculation of PCA. It can be seen that the time for the first 100 epochs and the last 100 epochs 

is unstable. Among the three models, PCA&FCN requires the lowest time. In addition, the training 

time for 2D-FCN is slightly shorter than 3D-FCN, which is related to the model structure. The 

total validation loss error for all the pixels is shown in Figure 4.22. In this figure, PCA&FCN has 

much larger validation loss error than 2D-FCN and 3D-FCN, and using first 5 principal 

components (pc) is worse than 7 pc. 3D-FCN has the lowest loss error among the four models and 

2D-FCN is only slightly larger than 3D-FCN. 



 

 

58 

(1) 

 

(2) 

 

Figure 4.21 Computation time of each epoch for PCA&FCN, 2D-FCN and 3D-FCN on different 

GPUs: (1) Gilbreth, (2) mango GPU 1 
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Figure 4.22 Validation loss error of the three models. 

4.3.2.3 Panicle Detection performance on test images 

Thirty-three images, 10% of the total images, were used to test the performance of the deep 

learning model. The images were selected randomly, but it is important to note that the test images 

should contain panicles with different varieties and images with different qualities when the 

number of training samples are limited. The test data were evaluated to ensure that the required 

diversity was achieved. Figure 4.23 shows the result of panicle detection from reflectance data 

using the three approaches. Figure 4.23 (a) to (c) show detection results using PCA&FCN, 2D-

FCN and 3D-FCN, respectively. Almost all the panicles were detected by the three models. Using 

the end-to-end model also seems to yield superior results to the 2-stage process, at least for this 

dataset. However, panicles that are overlapping or too close to each other cannot be detected 

separately. This also illustrates the need for additional reference data and more advanced 

annotation tools that evaluate and possibly split clusters. 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.23. Panicle detection results by using different approaches: (a) PCA&FCN-8s (b) 2D-

FCN-8s, (c) 3D-FCN-8s 

Table 4.6 shows the results of panicle detection based on the four metrics. The standard deviations 

(std) of the four metrics are all less than 0.02, so the results of 10-cv are stable for all the three 

models. 3D-FCN performs best with the mean accuracy of 0.945, and F-measure of 0.745 among 

the three models. Results from 2D-FCN are only slightly worse than 3D-FCN in terms of precision 

and the F measure. The results obtained from the test images are shown from Figure 4.24 (a) to 

(d). From these four figures, we can see that: (1) The mean accuracies of all the images are >92% 

for all three models, among which 3D-FCN has the highest values. (2) Results are image dependent, 

and specifically impacted by shadow, overlapping panicles, and differences in varieties. Poor 

quality images, which are usually located in the corner of each plot, also have worse results. For 

example, Figure 4.25 shows three test images. Figure 4.25 (a) is test image #5 with low accuracy, 

recall and precision. Figure 4.25 (b) is test image #10 which has high recall but low precision, and 
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Figure 4.25 (c) image #23, has both high recall and high precision. Among the three images, it is 

obvious that the first image contains a lot of dead leaves which have a similar spectral signature to 

panicles within the plot, so that the panicle is difficult to be distinguished. Panicles in the last two 

images are easy to be recognized. However, the second image results still have a low precision, 

which implies that the performance of the model depends on the spectral characteristics of the 

panicles. Future work should consider variety-specific characteristics of panicles. (3) 3D-FCN has 

a higher precision but a lower recall than 2D-FCN. The F-measure for 3D-FCN is slightly higher 

than 2D-FCN. (4) The model that uses PCA as the feature extraction method and then fits the data 

to FCN consistently has the worst performance, which implies that the two step method based on 

these features is worse than the end-to-end approach. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.24. Results of 30 test images with different varieties: 

(a) Accuracy, (b) Recall, (c) Precision, (d) F-measure 



 

 

62 

(a) 

 

(b) 

 

(c) 

 

Figure 4.25. 3 images from 30 test images displayed with RGB bands: 

(a) image #5, (b) image #10, (c) image #23 



 

 

63 

Table 4.6 Classification results on test images based on four metrics 

test 
Accuracy 

(std) 

Precision 

(std) 

Recall 

(std) 

F-measure 

(std) 

2D-FCN 0.94(1.5e-3) 0.66(0.01) 0.84(0.01) 0.74(2.8e-3) 

3D-FCN 0.94(8.4e-4) 0.70(0.01) 0.80(0.01) 0.75(1.0e-3) 

PCA&FCN 0.93(1.9e-3) 0.62(8.5e-3) 0.78(0.01) 0.69(4.6e-3) 

To summarize, this chapter first introduced the dataset and some procedures of pre-processing. 

One of the pre-processing steps, orthorectification was specifically described as minor contribution. 

After transforming to the regularized 3D hypercube, the results of the three tuned version of deep 

learning models were evaluated based on four metrics. The overall contributions and future work 

are discussed in the last chapter. 
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 CONCLUSIONS AND FUTURE WORK 

The objectives of this research were to 1) to explore the potential contribution of hyperspectral 

data to the detection of sorghum panicles, and 2) to investigate deep learning architectures for 

classification of hyperspectral remote sensing data. Hyperspectral imagery with high spatial and 

spectral resolution over the VNIR portion of the spectrum were collected from a wheeled vehicle 

platform (the PhenoRover) and provided the testbed for the study. Three tuned versions of the 

FCN deep learning architecture were adapted to the 3D hypercube: 1) PCA&FCN, where PCA 

was used as the dimension reduction method followed by classification based on a modified 

architecture of FCN, 2) 2D-FCN, where the number of input channels was modified to correspond 

to the number of spectral bands, and 3) 3D-FCN, which used a filter bank to extract spatial-spectral 

features of the hyperspectral data. A secondary objective of the research was to improve the 

orthorectification of hyperspectral data acquired by a pushbroom sensor at close range. This was 

necessary, as the original orthorectified data were geometrically distorted. One component of this 

research involved investigation of spatial filters for the high resolution LiDAR DSM. 

The contributions of this research include: 

• Improved orthorectification of close range hyperspectral data. Panicle detection for 

sorghum using hyperspectral data from the PhenoRover required orthorectification to 

achieve the correct positioning of the rows in the field. When testing the back-projection 

orthorectification method used in Habib et al. (2018) for UAV data, the quality of the 

orthorectification results was unsatisfactory for panicle detection because the sensor is 

more sensitive to the mounting parameters and the changes of height over a very short 

spatial interval due to the close range of the objects to the sensor. In addition, the variation 

in the height of the objects caused a cross track stretching problem with the data, resulting 

in images with inaccurate positioning. The shifting problem was resolved by using a more 

accurate boresight calibration, and the experiments showed that applying a smoothing filter 

to the original DSM improved the quality of the orthorectified image. 

• Smoothing of the LiDAR DSM. The filter size impacted the quality of the resulting image. 

The highest quality orthorectified images were obtained using filters whose spatial extent 

was approximately the size of the row width (about 1m). Moreover, the Savitzky-Golay 
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filter not only improved the image quality, but also reduced the distortion at the edges of 

the image, and in the area between two plots. 

• Deep Learning Architectures. Results obtained for different deep learning architectures 

differed in computational requirements. PCA&FCN is a two-step pixel-based approach, 

and as such, had the lowest computational overhead. 2D-FCN and 3D-FCN are both end-

to-end models, where 2D-FCN uses the first input layer as the dimension reduction 

procedure. 3D-FCN uses a deeper network than 2D-FCN with a larger computational 

requirement (49,857,536 bytes for memory and 80832 for parameters), and the 3D kernels 

in 3D-FCN extract both spatial and spectral features. Comparing the three tuned versions 

of FCN, it was concluded that all three pixel-based approaches, PCA&FCN, 2D-FCN, and 

3D-FCN were able to detect panicles in the example images. 2D-FCN and 3D-FCN 

performed better than the PCA&FCN model in terms of the classification metrics. 

Furthermore, 2D-FCN had a higher recall than 3D-FCN, while the latter had higher 

precision. Relative to the hyperspectral input, the 3D hypercube including the full range of 

hyperspectral data yielded better results than using principal components as the input. The 

image quality and the unbalanced numbers of different varieties also have an impact on the 

results. 

Several challenges were encountered in the study. 

• The success of deep learning models is largely dependent on having large quantities of 

high quality training data. This was difficult for the PhenoRover data cubes, which are 

complex to process. 

• The approaches that were considered focused on supervised learning, requiring labels. The 

reference data in this thesis were selected manually. Visualization of hyperspectral data 

was problematic for annotation, and image annotation tools explored in this research were 

time consuming and difficult. In the future, it is advised that an automatic or semi-

automatic approach should be identified to increase annotation efficiency. A testbed of data 

should be developed to train networks. It might be possible to utilize these pretrained 

networks, with transfer learning for other fields/dates, thereby reducing the required 

training for each experiment. 

• The panicles evaluated in this study did not represent the full range of colors and shapes 

during the season, and available data was collected at the very end of the season, when they 
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were the most visible. Future acquisitions should be planned, where possible, to include 

collections during the flowering period. 

• Further studies need to consider the problem of overlapping panicles. For example, a 

density map, such as proposed by Oh et al. (2019), can be used instead of a prediction map. 

The model could also potentially be improved by modifying the architecture or using other 

feature extraction approaches. Object-based segmentation or other nonlinear dimension 

reduction methods could be also tested to determine whether improved results can be 

achieved for hyperspectral image data. 

• Because LiDAR data were collected by the platform at the same time as the hyperspectral 

data, it might be useful to take advantage of the height information to detect panicles and 

determine their volume, as well as to count the number of panicles for each plot Colorized 

LiDAR might also be effective, if the LiDAR data have adequate density. 
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