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ABSTRACT 

Underground utilities must comply with the requirements stipulated in utility regulations to 

ensure their structural integrity and avoid interferences and disruptions of utility services. 

Noncompliance with the regulations could cause disastrous consequences such as pipeline 

explosion and pipeline contamination that can lead to hundreds of deaths and huge financial loss. 

However, the current practice of utility compliance checking relies on manual efforts to examine 

lengthy textual regulations, interpret them subjectively, and check against massive and 

heterogeneous utility data. It is time-consuming, costly, and error prone. There remains a critical 

need for an effective mechanism to help identify the regulatory non-compliances in new utility 

designs or existing pipelines to limit possible negative impacts. Motivated by this critical need, 

this research aims to create an intelligent, knowledge-based method to automate the compliance 

checking for underground utilities.  

The overarching goal is to build semantic intelligence to enable knowledge-based, automated 

compliance checking of underground utilities by integrating semantic web technologies, natural 

language processing (NLP), and domain ontologies. Three specific objectives are: (1) designing 

an ontology-based framework for integrating massive and heterogeneous utility data for automated 

compliance checking, (2) creating a semi-automated method for utility ontology development, and 

(3) devising a semantic NLP approach for interpreting textual utility regulations. Objective 1 

establishes the knowledge-based skeleton for utility compliance checking. Objectives 2 and 3 build 

semantic intelligence into the framework resulted from Objective 1 for improved performance in 

utility compliance checking.  

Utility compliance checking is the action that examines geospatial data of utilities and their 

surroundings against textual utility regulations. The integration of heterogeneous geospatial data 

of utilities as well as textual data remains a big challenge. Objective 1 is dedicated to addressing 

this challenge. An ontology-based framework has been designed to integrate heterogeneous data 

and automate compliance checking through semantic, logic, and spatial reasoning. The framework 

consists of three key components: (1) four interlinked ontologies that provide the semantic schema 

to represent heterogeneous data, (2) two data convertors to transform data from proprietary formats 

into a common and interoperable format, and (3) a reasoning mechanism with spatial extensions 
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for detecting non-compliances. The ontology-based framework was tested on a sample utility 

database, and the results proved its effectiveness. 

Two supplementary methods were devised to build the semantic intelligence in the ontology-

based framework. The first one is a novel method that integrates the top-down strategy and NLP 

to address two semantic limitations in existing ontologies for utilities: lack of compatibility with 

existing utility modeling initiatives and relatively small vocabulary sizes. Specifically, a base 

ontology is first developed by abstracting the modeling information in CityGML Utility Network 

ADE through a series of semantic mappings. Then, a novel integrated NLP approach is devised to 

automatically learn the semantics from domain glossaries. Finally, the semantics learned from the 

glossaries are incorporated into the base ontology to result in a domain ontology for utility 

infrastructure. For case demonstration, a glossary of water terms was learned to enrich the base 

ontology (formalized from the ADE) and the resulting ontology was evaluated to be an accurate, 

sufficient, and shared conceptualization of the domain.  

The second one is an ontology- and rule-based NLP approach for automated interpretation 

of textual regulations on utilities. The approach integrates ontologies to capture both domain and 

spatial semantics from utility regulations that contain a variety of technical jargons/terms and 

spatial constraints regarding the location and clearance of utility infrastructure. The semantics are 

then encoded into pattern-matching rules for extracting the requirements from the regulations. An 

ontology- and deontic logic-based mechanism have also been integrated to facilitate the semantic 

and logic-based formalization of utility-specific regulatory knowledge. The proposed approach 

was tested in interpreting the spatial configuration-related requirements in utility accommodation 

policies, and results proved it to be an effective means for interpreting utility regulations to ensure 

the compliance of underground utilities.  

The main outcome of this research is a novel knowledge-based computational platform with 

semantic intelligence for regulatory compliance checking of underground utilities, which is also 

the primary contribution of this research. The knowledge-based computational platform provides 

a declarative way rather than the otherwise procedural/hard-coding implementation approach to 

automate the overall process of utility compliance checking, which is expected to replace the 

conventional costly and time-consuming skill-based practice. Utilizing this computational 

platform for utility compliance checking will help eliminate non-compliant utility designs at the 
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very early stage and identify non-compliances in existing utility records for timely correction, thus 

leading to enhanced safety and sustainability of the massive utility infrastructure in the U.S. 
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 INTRODUCTION 

Underground utilities must comply with the requirements stipulated in utility regulations to 

ensure their structural integrity and avoid interferences and disruptions of utility services. 

Noncompliance with the regulations could lead to utility incidents such as pipeline explosion and 

pipeline contamination, with disastrous consequences of property damages, environmental 

pollution, and personnel injuries and fatalities. Utility compliance checking is the action that 

examines the geospatial data of utilities and their surroundings against utility regulation data to 

identify the regulatory non-compliances in utility designs or existing records to limit possible 

negative impacts. However, the current practice of utility compliance checking relies on manual 

efforts to examine lengthy textual regulations, interpret them subjectively, and check against 

massive and heterogeneous utility data. It is time-consuming, costly, and error prone. This research 

aims to create an intelligent, knowledge-based method to automate the compliance checking of 

underground utilities. This chapter provides an overview of this research. 

 

1.1 Background and Problem Statement 

Underground utilities provide the core services such as water, electricity, gas, and fiber 

networks to the society. Their physical networks - drinking water transmission and distribution, 

wastewater collection and stormwater drainage systems, natural gas, telecommunications, 

television and electrical power – all share the underground space, as shown in Figure 1.1.  
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Figure 1.1. Various types of utility pipes sharing the underground space 

Utility regulatory documents such as design guidelines, codes, and manuals of practice 

stipulate the spatial constraints among utilities and their surroundings (e.g., road networks and 

urban developments) to ensure their structural integrity and avoid interferences and disruptions of 

utility services. For example, a minimum depth of cover of utility pipes under the roadway is 

specified to help maintain the structural integrity of the pipeline throughout its service life. Another 

example is the adequate separation between pipelines to reduce the potential of pipeline failure 

caused by a leak or failure of its neighboring pipeline. Figure 1.2 shows cases of adjacent pipeline 

failure because of inadequate separation. Noncompliance with these spatial constraints could lead 

to utility incidents such as pipeline explosion and pipeline contamination, with disastrous 

consequences of property damages, environmental pollution, and personnel injuries and fatalities 

[1,2]. For instance, the noncompliance with the regulated minimum separation between the oil 

pipeline and an urban storm drain resulted in accelerated pipeline corrosion, leakage and the 

following explosion in the City of Qingdao, China in November 2013, which caused 62 fatalities, 

136 injures, and 2,000 tons of oil leakage into the sea [1]. The direct economic loss amounted to 

US$122.23 million. Similar deficiencies were found in the 2008 Rancho Cordova pipeline 

explosion and the 2010 San Bruno pipeline explosion [3,4]. 



 

 

18 

 

(a)                                              (b)                                              (c) 

Figure 1.2. (a) waterline exposed by adjacent sewer collapse; (b) collateral utility damage 

due to sewer collapse; and (c) waterline contamination and erosion due to adjacent sewer 

line break 

The recurrent utility incidents emphasize the importance of spatial compliance with utility 

regulations. However, the current practice of utility compliance checking relies on manual efforts 

to examine lengthy textual regulations, interpret them subjectively, and check against massive and 

heterogeneous utility data. It is time-consuming, costly, and error prone. There remains a critical 

need for a compliance checking mechanism to help identify spatial non-compliances in utility new 

designs or existing records for timely correction to limit possible negative impacts. Not meeting 

this need represents an important problem because, without compliance, inadequately designed 

utilities will continue to be built and existing, deficient utilities are unlikely to be retrofitted 

appropriately. 

1.2 Review of Related Studies and Knowledge Gaps 

This section reviews the related studies and highlights the knowledge gaps. The related 

studies can be divided into three areas of knowledge each of which is respectively discussed in the 

following sub-sections. Limitations and what are needed to overcome the limitations are also 

specified. 

1.2.1 Utility compliance checking  

Utility compliance checking is the action that examines geospatial data of utilities and their 

surroundings against utility regulations [1]. However, most of the geospatial data remain in various 

geographic formats (e.g., ESRI Shapefiles [5]) or propriety databases (e.g., Oracle Spatial [6] or 
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PostGIS [7]) while utility regulations are typically textual documents. Due to the lack of unified 

standards in the utility domain, data sharing and exchange between different information systems 

become very challenging. A mechanism that integrates heterogeneous geospatial data as well as 

regulation data is the critical prerequisite to utility compliance checking. 

Research efforts have been conducted to develop open data standards to handle the mismatch 

between heterogeneous data formats. For instance, Industry Foundation Class (IFC) is the open 

standard format for BIM by establishing interoperability in the construction industry [8] while 

CityGML is the standard data model established by Open Geospatial Consortium (OGC) for 

exchange of geospatial data and the interoperability between 3D GIS systems [9]. However, these 

open standards are limited to the level of syntax and structure. Although a rich set of 

concepts/classes and relations are provided in the open standards, detailed, accurate, consistent, 

sound, and meaningful distinctions are not made among the concepts/classes and relations [10,11]. 

The lack of such declarative semantics imposes big challenges on data exchange between disparate 

sources that use different sets of vocabularies [2,10]. Therefore, there is a need to design an 

effective data exchange mechanism that can facilitate semantic integration of heterogenous utility 

data for the purpose of compliance checking. 

In terms of the implementation approach of compliance checking, computer-based 

compliance checking in the Architecture, Engineering, and Construction (AEC) domain traces 

back to 1960s when Fenves et al. [12] proposed a decision table approach to aid engineering design 

for conformance with American Institute of Steel Construction (AISC) specifications. Over the 

past decades, there have been significant advancements to automate the compliance checking 

process, such as the checking of building envelope performance [13], fire code compliance [14–

17], building safety design [18], building evacuation [19], building structural design [20], and 

construction inspection and quality control [21]. Computational implementation and tools have 

also been developed by practitioners and software developers, e.g., DesignCheck, Solibri Model 

Checker, ePlanCheck, and SMARTCodes [22]. However, most compliance checking 

environments seem forced to rely on a hard-coding implementation approach, which involves 

much arbitrary programing work and is unreachable for anyone but system programmers, whereas 

a declarative implementation approach that is based on a rule language is argued as the better 

choice for compliance checking environments [11,22–24]. Therefore, there is another need to 
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design a more transparent mechanism for utility compliance checking that are easy-to-understand 

and simple-to-implement even by non-experts.  

Recently, ontology has emerged as a promising tool to achieve semantic interoperability 

over fragmented, heterogeneous application environments [11]. An ontology describes the 

concepts, relationships, data properties and restrictions within a domain in a machine-readable 

manner [25,26], which can be utilized as the shared data format for each source to integrate data 

in heterogenous formats. An increasing number of information management/exchange 

applications in construction have been relying on ontologies to support data interoperability, 

flexible data exchange, distributed data management, and the development of reusable tools 

[11,27,28]. In the GIS community, ontology has also been exploited to integrate a large amount of 

heterogeneous geospatial data [29–31]. On the other hand, attributed to its logic foundation, 

ontology is also used in automated reasoning for compliance checking [32] [23] [33], which  

provides a more transparent paradigm rather than the otherwise procedural/hard-coding 

implementation approach. Therefore, ontology is used in this study to address the above two needs. 

1.2.2 Utility ontology development  

A few domain ontologies have been introduced for the utility domain [2,26,34–36]. 

However, they are very limited to facilitate data exchange in heterogeneous environments for the 

following two reasons. First, they are mainly implemented as a means for knowledge 

representation and neglect the compatibility with existing utility modeling initiatives [10]. Much 

laborious work is required to align the semantic schemas in the ontologies with the data schemas 

in various utility models for data exchange [26,35]. Second, their semantic vocabularies of domain 

terms and semantic relationships are relatively too small to interpret the meaning of data and avoid 

mismatches/no matches when integrating a multitude of data that have different terms [37]. There 

is a critical need in the utility domain for an ontology that can be utilized as the shared and reliable 

knowledge model to facilitate a high degree of interoperability. 

Several ontology development methodologies have been suggested [38,39]. They all 

include five key steps: (1) purpose and scope definition, (2) taxonomy building, (3) relation 

modeling, (4) ontology coding, and (5) ontology evaluation. The five-step method for ontology 

development requires significant manual efforts on knowledge retrieval and ontology construction 

and validation. In attempts to reduce laborious work on ontology development, researchers have 
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sought to design natural language processing (NLP) algorithms to build ontologies from a corpus 

of natural language text. NLP deploys artificial intelligence to enable computers to understand, 

create, and analyze human languages [40]. It contributes to ontology development in automated 

extraction of ontology contents – concepts and relations from textual documents. Since it is 

challenging to directly build an ontology from the extracted concepts and relations (higher textual 

analysis and more human work are required) [41], most studies end up building plain (or 

unstructured) dictionaries that simply archive the extracted ontology contents [37,42]. A few 

studies have adopted a top-down strategy to build ontology from the extracted concepts and 

relations [43,44]. Existing semantic models (taxonomies/ontologies) are first selected as bases, and 

enrichment follows by using the contents extracted from textual documents. For instance, Zhang 

and EI-Gohary [43] utilized rule-based NLP to extract concepts/relationships from regulatory 

documents and extended the existing IFC taxonomy with the extracted contents.  

The top-down strategy can save significant time and effort in building the knowledge 

skeletons of the ontology – the ontology directly inherited the semantics (formal definitions of 

classes and relations) provided by the existing semantic models. As such, this study adopts the top-

down strategy and devises a novel integrated NLP approach (used to extract the semantics from 

textual documents for ontology enrichment) to develop an ontology for the utility infrastructure 

domain.  

1.2.3 Interpretation of utility regulations 

Utility regulations stipulate the spatial configurations among underground utility networks 

and their surroundings to avoid interferences and disruptions of utility services [1,2,34]. In the 

current practice, practitioners perform compliance checking, with the aim of detecting violations 

in designs and existing records, by manually going through the lengthy textual regulations, 

interpreting them subjectively based on their knowledge and experience, and checking massive 

and heterogeneous utility data against them [1,45]. This practice is neither efficient, nor sustainable, 

attributed to the large size of and the heterogeneity in utility regulatory documents [1] and the 

heavy reliance of the interpretation on human knowledge and subjective judgement – different 

interpreters might entail different meanings from the same clause [15]. Therefore, there is a critical 

need for an automated approach for the consistent interpretation of textual regulations on 

underground utilities to ensure the compliance of underground utility infrastructure. 
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A number of approaches have been attempted to automate the interpretation process for 

regulatory documents in the Architecture, Engineering, and Construction (AEC) domain. 

Examples include the use of hypertext and hypermedia to aid in navigating regulatory documents 

[46,47] and the use of document markup techniques to assist in analyzing the semantic structure 

of target regulatory requirements [48]. Nevertheless, these methods require intense manual efforts 

on annotating regulatory documents for further interpretation [24,48]. Natural Language 

Processing (NLP) methods have emerged in recent years to automate the extraction of 

requirements from textual documents such as building codes [49,50] and utility regulations [1]. 

Further, NLP has also been attempted to transform the extracted requirements into a structured 

format (i.e., logic clauses) for compliance checking [51]. Technical challenges in automating the 

interpretation of utility regulations include 1) heterogeneous technical terminologies – utility 

regulations contain a variety of technical terms since different disciplines and communities of 

practice may adopt different sets of vocabularies to describe their utility assets, and 2) the 

dominance of spatial constraints in utility regulations regarding location and clearance for the 

purposes of infrastructure safety, maintainability, and constructability, and public health and safety 

[2,34]. Consequently, a successful NLP method for the efficient and consistent interpretation of 

utility regulations must have the capacity to address the heterogeneity of technical terminologies 

and understand the spatial semantics from natural language.  

Recently, ontologies have been integrated into NLP to capture the semantics from texts [52–

55]. It is reported that the use of ontology yields higher performance in information extraction for 

a specific domain [49,50,55]. This study also integrates ontologies into NLP to help capture both 

domain and spatial semantics in utility regulations and further interprets them as logic clauses for 

supporting utility compliance checking. 

 

1.3 Research Goal and Objectives 

The overarching goal is to build semantic intelligence to enable knowledge-based, 

automated compliance checking of underground utilities by integrating semantic web technologies, 

natural language processing (NLP), and domain ontologies. To achieve this goal, three specific 

objectives are formulated: (1) designing an ontology-based framework for integrating massive and 

heterogeneous utility data for automated compliance checking, (2) creating a semi-automated 
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method for utility ontology development, and (3) devising a semantic NLP approach for 

interpreting textual utility regulations. Objective 1 establishes the knowledge-based skeleton for 

utility compliance checking. Objectives 2 and 3 build semantic intelligence into the framework 

resulted from Objective 1 for improved performance in utility compliance checking. Figure 1.3 

presents the overview of the research.  

 

Figure 1.3. Research overview 

The first objective is to develop an ontology-based framework for integrating heterogeneous 

geospatial and textual data of utilities and enabling automated compliance checking of 

underground utilities through semantic, logic, and spatial reasoning. The framework will be 

composed of the following three key components: (1) the ontology interlinking module that 

consists of four interlinked ontologies to provide the semantic schema for the representation of 

heterogeneous data relevant to utility compliance checking, (2) the RDF conversion module that 

contains two data convertors for the conversion of heterogeneous data from proprietary formats 

into a common and interoperable format following the semantic schema, and (3) the compliance 

checking module - a query mechanism with spatial extensions for the detection of utility 

noncompliance. The framework has two technical challenges. First, the development of the four 

ontologies requires significant time and effort to define their concepts, relationships, and 

knowledge skeletons, and it is never possible to rely on human effort to develop an ontology that 

has a sufficient size of semantic vocabulary. Second, the processing of utility spatial constraints 

requires manual annotation to prepare the checking rules for the framework, and it is always 

imperative to develop automated methods for rule preparation from pure texts to support fully 

automated compliance checking. As such, Objectives 2 and 3 are dedicated to address these two 

challenges, respectively, The work in Objective 2 automates the development of the utility product 
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ontology (UPO) – an essential ontology in the ontology interlinking module, and the work in 

Objective 3 automates the extraction and formalization of spatial rules from textual utility 

regulatory documents – critical components in the RDF data conversion and compliance checking 

module. Jointly, they build the semantic intelligence for the framework in Objective 1 for an 

improved efficacy in utility compliance checking. 

The second objective is to devise a novel method to develop a utility ontology that is 

semantically compatible with existing utility modeling initiatives and has a sufficient or 

expandable vocabulary size to facilitate a high degree of interoperability across the utility 

infrastructure domain. The novel method will integrate a top-down strategy and NLP to develop 

the desired ontology from CityGML Utility Network ADE (a candidate open standard for 

modeling utility networks) and domain glossaries (lists of utility-specific terms and their textual 

definitions). The third objective is to design an ontology- and rule-based NLP approach to 

automate the interpretation of utility regulations – extracting the requirements from the regulations 

and further formalizing them into logic clauses – for supporting automated compliance checking 

of underground utilities. The approach will rely on ontologies to capture both domain and spatial 

semantics in utility regulations and encode pattern-matching rules for information extraction. A 

mechanism will also be designed by integrating ontologies and deontic logic (DL) to facilitate the 

semantic and logic-based formalization of utility-specific regulatory knowledge.  

To summarize, Objective 1 provides an ontology-based framework for utility compliance 

checking, under which the overall process is implemented in a more transparent manner that is 

easy-to-understand and simple-to-develop even by non-experts. It is likely to shift the skill-based 

activity to a knowledge-based paradigm. Achieving Objective 2 results in a better option of 

interoperability facilitator – the utility ontology, which is an essential ontology in the ontology 

interlinking module of Objective 1 to facilitate semantic integration of heterogeneous utility data 

for an improved efficacy in compliance checking. Objective 2 also offers an automated method 

for ontology enrichment (in terms of the semantic vocabulary) from domain glossaries to keep us 

with new semantics. Such an ontology with an expandable semantic vocabulary will enable the 

semantic interpretation of data even when integrating a multitude of data from different sources 

that use different vocabulary sets. Achieving Objective 3 results in an automated, end-to-end NLP 

pipeline for interpreting the lengthy utility regulations, which can automate the extraction and 

formalization of spatial rules from textual utility regulatory documents in the text-to-RDF 
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conversion and compliance checking modules of Objective 1. A system that consists of these three 

objectives is expected to achieve higher levels of semantic intelligence, automation, and efficiency 

in utility compliance checking, which will be demonstrated in future. 

1.4 Research Significance and Contributions 

Underground utilities must comply with the requirements stipulated in utility regulations to 

ensure their structural integrity and avoid interferences and disruptions of utility services [1,2]. 

Noncompliance with the regulations could cause disastrous consequences such as pipeline 

explosion and pipeline contamination, that leads to hundreds of death and huge financial loss [1]. 

There remains a critical need for an effective mechanism to help identify the regulatory non-

compliances in utility designs or existing records to limit possible negative impacts. The National 

Academy of Engineering identified “restore and improve urban infrastructure” as a grand 

challenge for Engineering in the 21st century. Not meeting this need represents an important 

problem because, without compliance, inadequately designed utilities will continue to be built and 

existing, deficient utilities are unlikely to be retrofitted appropriately. The research is expected to 

create a knowledge-based, computational method with semantic intelligence to automate the 

compliance checking of underground utilities. Deploying this computational method will help 

eliminate non-compliant utility designs at the very early stage and identify non-compliances in 

existing utility records for timely correction, thus leading to enhanced safety and sustainability of 

the massive utility infrastructure in the U.S.  

The primary contribution of this research is the knowledge-based computational platform 

with semantic intelligence for regulatory compliance checking of underground utilities. The 

knowledge-based computational platform provides a declarative way rather than the otherwise 

procedural/hard-coding implementation approach to automate the overall process of utility 

compliance checking, which is expected to replace the conventional costly and time-consuming 

skill-based utility compliance checking practice. Specifically, this research contributes to the body 

of knowledge in the following areas. 

First, the research develops a novel, ontology-based semantic approach that can facilitate the 

semantic integration of heterogeneous data and enable the automated compliance checking of 

underground utilities through semantic, logic, and spatial reasoning. The approach relies on four 

interlinked ontologies and two data convertors to address the issue of data heterogeneity in the 
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utility infrastructure domain. The approach also advances existing ontology-based compliance 

checking efforts by adding more advanced reasoning capabilities (e.g., spatial reasoning), which 

can support a wider range of application scenarios. Moreover, the approach enables a more 

transparent implementation of utility compliance checking that are easy-to-understand and simple-

to-implement even by non-experts, which is likely to shift this skill-based activity to a knowledge-

based paradigm.  

The next contribution is a novel integrated method for automatically building the utility 

ontology from CityGML Utility Network ADE and domain glossaries. The method that integrates 

a top-down strategy and NLP can significantly reduce the laborious work during the process of 

ontology development. The method can also be adapted to ontology development for other 

domains. The integrated NLP enables fully automated extraction of ontology contents from 

domain glossaries, which can help maintain the ontology to keep up with the growth of new 

domain knowledge. Besides, the developed ontology is a superior interoperability facilitator for 

the utility infrastructure domain as compared to the existing ones. Specifically, the ontology is 

semantically compatible with the modeling practice in the utility industry; and also, the ontology 

has an enriched semantic vocabulary (which can be expanded from domain glossaries in timely 

and automated manners), which can facilitate the semantic integration of data between disparate 

sources that use different sets of vocabularies. Relying on this ontology for utility compliance 

checking, semantic intelligence can be enabled, thus leading to an improved efficiency during 

compliance checking. 

Third, the research develops an NLP approach for interpreting the textual regulations on 

underground utility. The NLP approach integrates ontologies to allow for the extraction and formal 

representation of domain-specific and spatial information from utility regulations. It has the 

capacity to capture both domain and spatial semantics from natural language. Further, a 

mechanism is designed to transform the extracted/formalized information (unstructured 

information pieces) into logic clauses, thus providing an end-to-end pipeline for interpreting utility 

regulations. The approach enables the automated interpretation of utility regulations to provide 

ready-to-use logic rules for utility compliance checking, thus improving the level of automation in 

utility compliance checking. 
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1.5 Dissertation Organization 

This dissertation is organized into five chapters and follows the “multiple publications” 

formats. Each of the Chapters 2, 3, and 4 has its own introduction, literature review, methodology, 

implementation and results, and conclusion sections. Significant portions of these chapters have 

been published or submitted for review and publication in peer reviewed journals. Chapter 1 

introduces the background, highlights the problem statement and limitations in related studies, and 

discusses the research objectives, significance and contributions. 

Chapter 2 presents the development of the ontology-based framework for integrating 

heterogeneous geospatial and textual data of utilities and enabling automated compliance checking 

of underground utilities through semantic, logic, and spatial reasoning. This work was previously 

published in Automation in Construction. This chapter is re-printed with permission from Vol 

109, Xin Xu and Hubo Cai, “Semantic approach to compliance checking of underground 

utilities”, 03006, Copyright Elsevier (2019). Table titles and figure captions have been modified 

to maintain the form of the dissertation. 

Chapter 3 describes a novel method to develop a utility ontology that is semantically 

compatible with existing utility modeling initiatives and has a sufficient or expandable vocabulary 

size to facilitate a high degree of interoperability across the utility infrastructure domain. This 

work is under review in ASCE Journal of Computing in Civil Engineering, 2020, Xin Xu and 

Hubo Cai. “Towards a domain ontology for utility infrastructure: coupling the semantics from 

CityGML Utility Network ADE and domain glossaries”. Table titles and figure captions have 

been modified to maintain the form of the dissertation. 

Chapter 4 discusses the design of an NLP approach to automate the interpretation of utility 

regulations – extracting the requirements from the regulations and further formalizing them into 

logic clauses – for supporting automated compliance checking of underground utilities. This work 

is under review in Advanced Engineering Informatics, 2020, Xin Xu and Hubo Cai. “Ontology 

and Rule-based Natural Language Processing Approach for Interpreting Textual Regulations 

on Underground Utility Infrastructure”. Table titles and figure captions have been modified to 

maintain the form of the dissertation. 

The final chapter, Chapter 5, concludes the dissertation with the major findings and future 

research opportunities. 

  



 

 

28 

 SEMANTIC APPROACH TO COMPLIANCE CHECKING OF 

UNDERGROUND UTILITIES 

This chapter presents the development of the ontology-based framework for integrating 

heterogeneous geospatial and textual data of utilities and enabling automated compliance checking 

of underground utilities through semantic, logic, and spatial reasoning. The framework consists of 

the following key components: (1) four interlinked ontologies that provide the semantic schema 

for the representation of heterogeneous data relevant to utility compliance checking, (2) two data 

convertors for the conversion of heterogeneous data from proprietary formats into a common and 

interoperable format, and (3) a reasoning mechanism with spatial extensions for the detection of 

utility noncompliance. The ontology-based framework was tested on a sample utility database, and 

the results demonstrate the success of the framework in the integration of heterogeneous utility 

data from multiple sources and automated detection of regulatory non-compliances in underground 

utilities. 

This work was previously published in Automation in Construction. This chapter is re-

printed with permission from Vol 109, Xin Xu and Hubo Cai, “Semantic approach to compliance 

checking of underground utilities”, 103006, Copyright Elsevier (2019). Table titles and figure 

captions have been modified to maintain the form of the dissertation. 

2.1 Introduction 

Utility regulatory documents such as design guidelines, codes, and manuals of practice 

stipulate the spatial constraints among utilities and their surroundings (e.g., road networks and 

urban developments) to ensure their structural integrity and avoid interferences and disruptions of 

utility services. For example, a minimum depth of cover of pipelines under the roadway is specified 

to help maintain the structural integrity of the pipeline throughout its service life. Another example 

is the stated location-preference for utility facilities such as manholes, vaults, and pits to facilitate 

service access and minimize disruptions to transportation facilities. Noncompliance with these 

spatial constraints could lead to utility incidents such as pipeline explosion and pipeline 

contamination, with disastrous consequences of property damages, environmental pollution, and 

personnel injuries and fatalities [1,2]. For instance, the noncompliance with the regulated 
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minimum separation between the oil pipeline and an urban storm drain resulted in accelerated 

pipeline corrosion, leakage and the following explosion in the City of Qingdao, China in 

November 2013, which caused 62 fatalities, 136 injures, and 2,000 tons of oil leakage into the sea 

[56]. The direct economic loss amounted to US$122.23 million. Similar deficiencies were found 

in the 2008 Rancho Cordova pipeline explosion and the 2010 San Bruno pipeline explosion [3]. 

The recurrent utility incidents emphasize the importance of spatial compliance with utility 

regulations. There remains a critical need for a compliance checking mechanism to help identify 

spatial non-compliances in utility new designs or existing records for timely correction to limit 

possible negative impacts. Not meeting this need represents an important problem because, 

without compliance, inadequately designed utilities will continue to be built and existing, deficient 

utilities are unlikely to be retrofitted appropriately.  

Utility compliance checking is the action that examines geospatial data of utilities and their 

surroundings against utility regulations [1]. However, most of the geospatial data remain in various 

geographic formats (e.g., ESRI Shapefiles [5]) or DBMSs (e.g., Oracle Spatial [6] or PostGIS [7]) 

while utility regulations are typically textual documents. Due to a lack of unified standards in the 

utility domain, data sharing and exchange between different information systems become very 

challenging. A mechanism that integrates heterogeneous geospatial data as well as textual data is 

the critical prerequisite to the compliance checking of underground utilities.  

Research efforts have been conducted to develop open data standards to handle the mismatch 

between heterogeneous data formats. For instance, IFC is the open standard format for BIM by 

establishing interoperability in the construction industry [8] while CityGML is the standard data 

model established by Open Geospatial Consortium (OGC) for exchange of geospatial data and the 

interoperability between 3D GIS systems [9]. However, these open standards are limited to the 

level of syntax and structure. Although a rich set of concepts/classes and relations are provided in 

the open standards, detailed, accurate, consistent, sound, and meaningful distinctions are not made 

among the concepts/classes and relations [10,11]. The lack of such declarative semantics imposes 

big challenges on data exchange between disparate sources that use different sets of vocabularies 

[2,10]. Recently, ontology has emerged as a promising tool to achieve semantic interoperability 

over fragmented, heterogeneous application environments [11]. An ontology is an explicit 

formalization of a shared conceptualization: “conceptualization” refers to an abstract model of the 

relevant concepts and relationships; “explicit” means that the types of concepts used and the 
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constraints on their use are explicitly defined; “formalization” refers to the fact that the ontology 

should be machine processable [57]. In the context of semantic web, ontology plays a key role in 

providing the semantic vocabulary used to annotate websites in a way meaningful for machine 

interpretation [58]. In a similar way, ontology can fill the semantic gap in existing open data 

standards by providing a shared semantic vocabulary. From the perspective of semantic web 

applications, ontologies are usually expressed based on logic theory using modeling languages of 

Resource Description Framework Schema (RDFS) [59] and Web Ontology Language (OWL) [60] 

developed by the World Wide Web Consortium (W3C), so that declarative semantics can be 

incorporated into the concepts and relationships; semantic tools (e.g., Resource Description 

Framework (RDF) [61], SPARQL [62]) support automated reasoning using the ontologies, and 

thus provide advanced services to intelligent applications. RDF, a standard data model, offers a 

unified format for describing individual ontology instances. It can facilitate the semantic 

integration of disparate and heterogeneous data. SPARQL, a query language, enables the logic-

based manipulation of RDF data and when extended, supports more advanced reasoning (such as 

spatial reasoning) by defining custom rules [63,64]. Given that utility compliance checking 

requires both data integration from multiple sources and spatial reasoning, domain ontologies need 

to be developed to facilitate the semantic integration of heterogeneous utility data and SPARQL 

spatial extensions need to be added to realize the checking of spatial utility data against spatial 

rules. 

Towards that end, this paper creates an automated compliance checking mechanism for the 

utility domain by combining ontology and SPARQL spatial extensions. Specifically, the following 

key components are involved in the proposed mechanism: 1) four interlinked ontologies that 

provide the semantic schema for heterogeneous data relevant to utility compliance checking, 2) 

two data convertors for the conversion of heterogeneous data from proprietary formats into the 

common and interoperable format of RDF following the semantic schema, and 3) a query 

mechanism with SPARQL spatial extensions for the detection of non-compliant utility instances. 

With this new approach, the compliance checking process is comprised of retrieval of spatial 

constraints, generation of SPARQL queries, execution of SPARQL queries, and reporting. An 

experiment on a sample utility project was conducted to determine the feasibility and effectiveness 

of the proposed approach in detecting utility spatial defects. Such a mechanism would help prevent 

utility design problems from the earliest phase and increase efficiency in managing utility existing 
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defects in a timely manner, thus leading to enhanced safety and sustainability of the massive utility 

infrastructure in the society.  

2.2 Background and Review of Related Studies 

This section reviews related studies with a focus on semantic approaches to addressing the 

interoperability issue in geospatial utility data and automating compliance checking. 

2.2.1 The interoperability issue of geospatial data and the semantic solution 

Due to the segmentation of the utility industry, most of the existing geospatial utility data 

are stored and managed in propriety databases and GIS platforms, using a variety of data models 

and formats [2,34]. Example utility network models include INSPIRE Utility Networks, ArcGIS 

Utility Networks, IFC Utility model, SEDRIS, and Pipeline ML. Data exchange and 

interoperability between different data formats and utility models have been a big issue [2,34]. 

In the GIS domain, many open standards have been developed by OGC to standardize and 

hence facilitate the exchange of geospatial data across different GIS applications and systems. 

Among the existing standardbreds, Geographical Markup Language (GML) [65] and CityGML 

[66] are the ones that are mostly relevant to modeling utility networks and their surroundings. 

GML is a modeling language for geographic systems as well as an open interchange format for 

geographic transactions on the Internet. CityGML, a GML application schema, provides an open 

data model for the storage and exchange of virtual 3D city models. It defines classes and relations 

for the most relevant topographic objects with respect to their geometrical, topological, semantical, 

and appearance properties [67]. CityGML can be extended to suit various infrastructure domains; 

CityGML Utility Network Application Domain Extension (ADE) extends the CityGML model to 

define the required concepts and classes for the integration of multi-utility networks into the 3D 

urban space. It covers the topology, topography, and functional and semantic classification of 

network objects [68]. While CityGML Utility Network ADE offers a potential solution to integrate 

various utility models (e.g., data convertors developed for converting various utility models into 

CityGML Utility Network ADE such as the IFC Utility model-to-CityGML Utility Network ADE  

convertor [69]), such an integration remains at the syntactic level – heterogenous data are 

structured as loosely coupled documents that are not semantically compatible since different sets 
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of vocabulary are used by different practitioners for describing their assets. For example, different 

terms such as water pipe, water conduit, and water line could have been used for a water pipe asset. 

While their descriptions follow the same syntax, effective communications are still missing due to 

the terminological inconsistency [11,29,30]. 

Ontology and semantic tools have proven advantages in achieving semantic interoperability 

[10,11,70]. An ontology is an explicit formalization of a conceptualization that provides an abstract 

schema consisting of formal definitions of concepts and their relationships [57]. RDFS and OWL 

work together to provide most basic and more expressive elements to define concepts and 

relationships in machine-readable and explicit format. Figure 2.1 illustrates an example, where 

owl:Class and owl:ObjectProperty are used to define the ontology concept of UtilityProduct and 

the relationship of belongsToSector respectively while rdfs:subClassOf is used to define the 

concept hierarchy. Using the Subject – Predicate – Object structure in RDF, the ontology instance 

of a specific utility product X belongs to a water sector is captured as UtilityProductX – 

belongsToSector – WaterSector. The triple structure is linkable to other knowledge resources 

represented in RDF to construct semantic networks of interconnected knowledge resources. RDFS 

and OWL provide a formal way to describe the semantics of classes and properties in ontology 

and thus ensure the semantic consistency over the semantic network.  

 

Figure 2.1. An example of RDFS/OWL ontology and its RDF instance 
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Attributed to their capability in semantic interoperability, ontology and semantic tools have 

been exploited in the GIS community to integrate a large amount of heterogeneous geospatial data. 

The efforts by this community have led to the CityGML ontology [29–31]. Using CityGML 

ontology as the central platform, Métral et al. [29,30] integrated urban infrastructure data, 

transportation data, and urban planning data for creating a semantically enriched 3D city model. 

Howell et al. [35] proposed a water knowledge management platform that incorporates semantics 

into the Internet of Things (IoT) to address the heterogeneity issue of web resources and support 

smart water networks. Howell et al. [26] further integrated building and urban semantics by 

developing an ontology for the domain to empower smart water solutions. OGC developed the 

GeoSPARQL standard to define a vocabulary for representing geospatial data in RDF [71]. The 

use of ontologies also benefits the GIS-BIM integration. For instance, El-Mekawy and Östman 

[72] relied on an intermediate reference ontology, the Unified Building Model (UBM) to achieve 

the bi-directional mapping between IFC and CityGML. Hor et al. [73] integrated GIS and BIM 

using semantic web technologies and RDF graphs for building multi-scale 3D urban models. 

However, the lack of declarative semantics remains a big hurdle especially in developing 

ontology and semantic approaches to address the interoperability issue in the utility domain. Open 

utility standards such as CityGML Utility Network ADE typically do not have the semantics 

behind them explicitly defined and clearly communicated. The few domain ontologies that have 

been proposed for urban utilities [2,34] are mainly implemented as a means for knowledge 

management without detailing specific data elements. Since data exchange requires deep levels of 

detail with a focus on data elements, the current ontologies are insufficient to allow for effective 

communications between software applications. Thus, there is a need to incorporate semantics to 

existing open standards through ontologies and subsequently build an ontology-based data 

exchange mechanism to seamlessly integrate heterogeneous utility data. 

2.2.2 Automated compliance checking and the ontology-based approach 

Computer-based compliance checking in the AEC domain traces back to 1960s when Fenves 

et al. [12] proposed a decision table approach to aid engineering design for conformance with 

American Institute of Steel Construction (AISC) specifications. Over the past decades, there have 

been significant advancements to automate the compliance checking process, such as the checking 

of building envelope performance [13], fire code compliance [14–17], building safety design [18], 
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building evacuation [19], building structural design [20], and construction inspection and quality 

control [21]. Computational implementation and tools have also been developed by practitioners 

and software developers, e.g., DesignCheck, Solibri Model Checker, ePlanCheck, and 

SMARTCodes [22]. Recently, Solihin et al. [74] have proposed an approach using multiple 

representations to achieve high-performance spatial queries on 3D BIM data, which provides the 

opportunity to break the conundrum of an automated rule checking system which so far has been 

limited to relatively simple and nonspatial rules. However, most compliance checking 

environments seem forced to rely on a hard-coding implementation approach, which involves 

much arbitrary programing work and is unreachable for anyone but system programmers, whereas 

a declarative implementation approach that is based on a rule language is argued as the better 

choice for compliance checking environments [11,22–24]. 

In view of that, a number of researchers explored the development of the rule language-

based formalization of regulatory requirements to make the checking environments even more 

flexible, transparent, and portable. Domain-specific rule languages have been proposed for the 

construction domain such as the Building Environment Rule and Analysis (BERA) language [75] 

and the Drools Rule Language (DRL) [76,77] for supporting language-based compliance checking. 

Dimyadi and Amor [78] and Dimyadi et al. [79] also explored the potential of adapting the legal 

mark-up languages such as LegalDocML and LegalRuleML to accommodate the compliance 

checking-related requirements of the AEC domain. To achieve full automation in compliance 

checking, Natural Language Processing (NLP)-based approaches have also been proposed to 

facilitate the logic-based representation of regulatory and design information for building code 

checking [49,51,80]. Another more recent trend is the ontology-based approach using SPARQL 

queries or dedicated rule languages such as Semantic Web Rule Language (SWRL) [81], the Rule 

Interchange Format (RIF) [82], and N3Logic [83] to represent the requirements for semantic and 

logic-based reasoning. For example, Yurchyshyna and Zarli [32] proposed an ontology-based 

approach for the conformance checking of construction projects, in which the regulatory 

requirements were represented in the form of SPARQL queries. Pauwels et al. [23] used N3Logic 

to create the rules from acoustic performance regulations to support the semantic rule checking in 

BIM. Zhong et al. [33] proposed an ontology to automate the construction quality inspection and 

evaluation, where regulation constraints are modeled as OWL axioms and SWRL rules.  
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The ontology-based approach was used in this study not only because of its logic foundation 

that supports logic-based reasoning but also because of its capability in achieving semantic 

interoperability among different information systems (as explained in section 2.1). In this approach, 

all related data is represented in RDF and SPARQL can be used to manipulate the RDF data for 

compliance checking. Recently, researches have attempted to extend SPARQL with spatial 

functions to enable spatial query/reasoning over RDF data. The two most notable outcomes are 

GeoSPARQL [37] and BimSPARQL [19]. GeoSPARQL provides a set of topological and 

geospatial SPARQL extensions for spatial computations in the geospatial domain. BimSPARQL 

provides domain-specific SPARQL extensions for querying IFC building data in applications that 

involve spatial reasoning. While Yurchyshyna and Zarli [32] has attempted the use of ontology 

and SPARQL for the conformance checking of construction projects, it is limited in formalizing 

the regulatory requirements that contain spatial rules. Technical challenges in automating the 

compliance checking of underground utilities include 1) the heterogeneity in utility data and 2) the 

dominance of spatial constraints in utility regulations. Towards that end, this study presents an 

ontology-based approach to integrate heterogeneous utility data and further adds spatial extensions 

to SPARQL to realize the checking of spatial utility data against spatial rules.  

2.3 Proposed Semantic Approach to Compliance Checking of Underground Utilities 

Figure 2.2 illustrates the overall framework created in this study to support utility 

compliance checking. With a focus on semantics, the proposed approach employs ontology to 

integrate heterogeneous data and enables automated compliance checking through logic and spatial 

reasoning. The framework is composed of three main modules: ontology interlinking module, RDF 

conversion module, and compliance checking module, as follows. 
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Figure 2.2. The overall framework for utility compliance checking 

2.3.1 Ontology interlinking module 

Four ontologies were developed and semantically linked to build the ontology-based 

semantic schema for heterogeneous data relevant to utility compliance checking. These four 

ontologies include utility product ontology (UPO), transportation object ontology (TOO), 

geometry ontology (GEO), and utility spatial rule ontology (USRO). They were created by 

abstracting semantics from open data standards including CityGML, CityGML Utility Network 

ADE, and GeoSPARQL, and utility regulations. They were linked by defining relationships 

between applicable concepts across different ontologies. The semantic schema offers a uniform 

platform for structuring heterogeneous geospatial and textual data of utilities and meanwhile 

remains linkable to other existing or newly developed ontologies for data integration from other 

sources. The development of ontologies is presented in section 2.4.  
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2.3.2 RDF conversion module 

RDF was chosen in this study as the uniform and linkable data format for ontology instances, 

i.e., the contents of the ontologies, and RDF converters have been developed to convert 

heterogeneous data relevant to utility compliance checking (i.e., geospatial data of utilities and 

their surroundings and textual data of utility regulations) into the RDF format. RDF converters are 

typically platform-specific, such as the those for converting from relational data [84], IFC [28,85], 

and LandXML [10]. Mapping rules must be established to connect the source and target semantic 

schema in order to convert data into RDF format. Figure 2.3 illustrates the architecture of RDF 

convertors. In this study, a new set of mapping rules were established to customize the two RDF 

convertors – TripleGeo and TripleText – to transform geospatial information of urban 

infrastructure (usually stored in ESRI Shapefiles) and utility spatial constraint information (textual 

descriptions), respectively into the RDF format, following the semantic schema of the 

corresponding ontologies. The detailed RDF conversion process is presented in section 2.5. 

 

Figure 2.3. The architecture of RDF convertors 

2.3.3 Compliance checking module 

Since RDF is the uniform data format for heterogeneous data relevant to utility compliance 

checking, SPARQL, an RDF query language, was used in this module. The compliance checking 

is performed by SPARQL queries. The overall process was designed as a series of SPARQL-based 

RDF data manipulations: retrieval of spatial constraints, generation of SPARQL queries, execution 

of SPARQL queries, and reporting. To generate expressive SPARQL queries from spatial 

constraint RDF data for compliance checking, two key technical components were used: 1) a 

mechanism for mapping semantic-related RDF data (such as the mapping between utility product 
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data and regulation data) and 2) a list of SPARQL spatial extensions for spatial manipulation over 

RDF data. Section 2.6 presents more details about the compliance checking process. 

2.4 Ontology Development and Interlinking 

Ontology development methodologies have been suggested by several authors such as EI-

Gohary and EI-Diraby [86]. Although there is variation among these methods, they all include five 

key steps: (1) purpose and scope definition, (2) taxonomy building, (3) relation modeling, (4) 

ontology coding, and (5) ontology evaluation. Following the five-step procedure, four ontologies 

(i.e., UPO, TOO, GEO, and USRO) were developed to provide the semantic schema to integrate 

heterogeneous utility data for the purpose of compliance checking. The scopes of these ontologies 

were determined by developing a set of competency questions [38] that the ontology should be 

able to answer. In this study, a total of 36 competency questions were designed to capture ontology 

engineering requirements. Examples of competency questions include:  

• Which sector does utility pipe X belong to? 

• What are the dimensions (such as length, diameter, thickness, etc.) of water pipe X? 

• What type of surface material does driving lane X have? 

• What is the location of sewer manhole X? 

• What is the spatial constraint to water pipe X? 

• What are the constrained urban products in spatial constraint X?  

For taxonomy building, the main concepts/classes in the domain of interest were identified 

based on a review of relevant open standards and textual documents. The concept/class taxonomy 

was built up following the top-down (starting by defining the most abstract concepts) approach. 

For relation modeling, relationships between concepts were identified to provide detailed 

information about the defined concepts. Specifically, UPO and TOO provide the conceptualization 

of urban infrastructure products (i.e., utilities and roads) with non-spatial/thematic properties. GEO 

provides geometry-relevant concepts to capture the geometry and location of urban infrastructure 

products. USRO models the semantics behind the textual descriptions of spatial constraints and 

rules in utility regulations and specifications. The cross-ontology linkage was also established by 

defining relationships between concepts across different ontologies. The developed ontologies 

were encoded in OWL format. The evaluation of the developed ontologies was conducted in an 
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iterative manner, starting with evaluation through simple automated consistency checking to 

ensure correct syntax formalization (using the built-in Protégé reasoner), followed by conformance 

checking to the set of predefined competency questions (through SPARQL queries), and finally 

evaluation by domain experts. The developed ontologies were evaluated to be accurate, sufficient 

and shared conceptualizations of the related domains.  

2.4.1 UPO 

UPO was built based on the semantics of CityGML Utility Network ADE. Figure 2.4 

illustrates its resulting ontology structure with eight classes and eight properties defined. Following 

the semantic classification of utility network products provided in CityGML Utility Network ADE, 

the class of utilityProduct is the central concept of UPO, representing general utility products and 

is further specialized into five subclasses: distributionElement, functionalElement, 

protectiveElement, terminalElement, and device. Thematic attributes such as dimensions and 

material types are captured as specific datatype properties of utilityProduct. For instance, the 

datatype property of hasDiameter is defined to hold the diameter value of utility products. 

Additional properties (e.g., belongsToSector, encasedBy) are also introduced in UPO to establish 

domain-specific relationships among utilityProduct and relevant classes (e.g., utilitySector and 

encasement). For the utilitySector class, the list of instances includes water, sewer, stormwater, 

gas, electricity, and telecom. This list enables the sector-characterization of utility products. 

Geometric attributes of utility products are captured in a separate ontology (see section 2.4.3). 
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Figure 2.4. Utility product ontology 

2.4.2 TOO 

TOO was built based on the semantics of the CityGML transportation model. Figure 2.5 

illustrates its ontology structure with eleven classes and eight properties defined. In CityGML, the 

transportation objects are defined by classes related to geometric primitives (such as points, lines, 

and polygons) and non-geometric attributes (such as dimensions and surface material types). The 

main class is the transportation complex, which represents, for example, a road, a track, a railway, 

or a square. A transportation complex is composed of the parts: traffic area and auxiliary traffic 

area. Following the semantics of CityGML, in the newly created TOO transportationObject is the 

main class for representing the general transportation objects. It is composed of auxiliary and 

regular traffic areas, represented as trafficArea and auxiliaryTrafficArea classes, respectively. The 

isComposedOf property links transportationObject, trafficArea and auxiliaryTrafficArea classes. 

The subClassOf property is used to further specialize trafficArea into drivingLane, cyclepath, 

footpath, and intersection, and auxiliaryTrafficArea into ditch, embankment, trafficIsland, and 

shoulder. Same as UPO, non-geometric attributes are defined as datatype properties associated 

with transportation objects while geometric attributes are captured by linking to the separate GEO 

(described in section 2.4.3). 
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Figure 2.5. Transportation object ontology 

2.4.3 GEO 

OGC developed the GeoSPARQL standard to define a vocabulary for representing features, 

geometries, and their relationships. This study adopts the definitions of geometry-related concepts 

from GeoSPARQL and formulates GEO for representing the geometric attributes of urban 

infrastructure products. Figure 2.6 illustrates the ontology structure of GEO with eight classes and 

four properties defined. In GEO, the class spatialObject is defined with two primary subclasses, 

feature and geometry. Feature represents physical objects while geometry represents geometry 

objects. They are linked via the hasGeometry property: feature – hasGeometry – geometry. Typical 

geometry primitives such as point, line, and polygon are also given as subclasses of geometry to 

represent geometric details. In addition, GEO includes two different ways to represent geometry 

literals: Well Known Text (WKT) and Geography Markup Language (GML), linked to geometry 

via the asWKT and asGML properties respectively. Within the class of spatialObject, the property 

hasSpatialRelation was added to describe the spatial configurations between spatial objects. In 

GeoSPARQL, a set of topological relations (such as geo:sfIntersects, geo:sfWithin, geo:sfDisjoint, 

etc.) are provided with the capability of spatial reasoning, used to ask for certain spatial 

relationships between spatial objects. They were defined as sub properties of the 

hasSpatialRelation property. Regarding GeoSPARQL geospatial functions (such as geof:distance), 

this study also includes them as GEO spatial extensions. 



 

 

42 

 

Figure 2.6. Geometry ontology 

2.4.4 USRO 

Utility compliance checking requires the interaction with textual data of utility regulations. 

USRO is developed in this study to capture the semantics behind the spatial cognitive-linguistic 

expressions used in utility regulations at the sentence level. Figure 2.7 illustrates the ontology 

structure of USRO with two classes and twelve properties defined. The head class of this ontology 

is spatialConstraint, which refers to the original textual description of a spatial constraint (e.g., all 

pipelines must have a minimum depth of cover of 4 feet under ditches). A spatial constraint may 

specify multiple spatial configurations among entities using conjunctions (e.g., and). The 

spatialConfiguration class is therefore connected to spatialConstraint via the specifies property and 

the inConjunctionWith property is defined to indicate the logical connectives between 

spatialConfiguration. Under the inConjunctionWith property, there are two specific sub properties: 

conjunctionAnd and conjunctionOr. For those natural language expressions that are used to 

describe the specified spatial configurations, USRO models them as datatype properties. 

Specifically, the hasTrajector property holds the string value of the central object (e.g., pipeline) 

of the spatial configuration; the hasTrajectorAttribute property is used to describe the attribute of 

the trajector; the hasSpatialIndicator property holds a word or a phrase (e.g., under, depth of cover) 

for a spatial relation between spatial objects; the hasLandmark property holds the string value (e.g., 

ditch) of a secondary object of the spatial configuration, to which a possible spatial relation can be 

established; the hasLandmarkAttribute property is used to describe the attribute of the landmark; 

the hasDistanceValue and hasDistanceUnit properties capture the value (e.g., 4) and unit (e.g., feet) 



 

 

43 

of the distance between a trajector and a landmark; the hasDistanceRestriction property refers to 

the restriction set to the distance value (e.g., minimum); the hasNegation property is used to 

describe the existence of the word “no” or “not” in the sentence; and the hasRequirementIndicator 

property holds the word or phrase (e.g., must) that indicates a requirement type: obligation, 

permission, or prohibition. 

 

Figure 2.7. Utility spatial rule ontology 

2.4.5 Cross-ontology linkage 

To build the semantic framework for utility compliance checking, four developed ontologies 

are linked by defining relationships between applicable concepts across different ontologies. As in 

Figure 2.8, utilityProduct – subClassOf – feature and transportationObject – subClassOf – feature 

links are established to enable the integration of urban product data and geometry data. The 

location-related interactions between utilities and their surroundings are captured via 

utilityProduct – interactsWith – transportationObject. The mappings from utility product data and 

the text mentions in regulations are established by spatialConstraint – constrains – utilityProduct. 

In addition, the utilities meeting/not meeting the regulatory requirements can be linked to specific 

requirements via the isCompliantWith/isNonCompliantWith property. The four interlinked 

ontologies provide the ontological framework for supporting utility compliance checking. 
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Figure 2.8. Cross-ontology linkage 

2.5 RDF Data Conversion 

RDF converters were customized/developed in this study to convert heterogeneous data (i.e., 

geospatial data of utilities and their surroundings and textual data of utility regulations) into the 

RDF format. This section presents the conversion process in detail. 

2.5.1 RDF convertor for geospatial data 

The geospatial information of urban infrastructure is typically modeled in GIS formats, such 

as standard geographic format (e.g., Shapefile) or widely used spatial database format (e.g., Oracle 

Spatial or PostGIS). TripleGeo [67], an open source conversion tool, provides the capability of 

accessing both thematic attributes and geometric representations from GIS and transforming them 

into RDF and the geometry vocabulary prescribed by GeoSPARQL. In this study, TripleGeo was 

extended to convert the geospatial information of transportation infrastructure and underground 

utilities from Shapefile to UPO, TOO, and GEO-compliant RDF.  

Figure 2.9 illustrates the working process. First, the target ontology is specified (e.g., UPO 

and TOO) and the source Shapefile is loaded. The convertor reads the Shapefile and displays its 

attribute table and the classes/properties (of the target ontologies). Then, each attribute in the 

attribute table is connected to its correspondence in the ontologies (see the mapping tables in 

Figure 2.9). 
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Figure 2.9. Conversion from Shapefile to RDF 

Specifically, the convertor transforms data into RDF format by completing three tasks: 1) 

processing thematic attributes, 2) processing geometric attributes, and 3) linking UPO/TOO and 

GEO instances. For the thematic attributes, the process of converting Shapefile data to RDF is 

initiated by creating an instance of an ontology class for each row in the Shapefile attribute tables, 

followed by adding properties to the instance based on the mappings. For instance, in Figure 2.9, 

for each row of the previewed Shapefile attribute table, an ontology instance of the UPO class 

utilityProduct is generated based on the FacilityID field. The UtilSector field indicates a 

belongsToSector object property added to the utilityProduct instance. The UtilType field indicates 

a rdfs:label string property to describe the human-readable version of the instance name. The 

FucType field indicates that the generated instance is a type of the distributionElement class. The 

other attributes of UtilMat, UtilDia, FacShape and BasElev are linked to the instance via properties 

of hasMaterial, hasDiameter, hasShape and hasZValue. The Encas attribute is quite unique as it 
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stores information relevant to the UPO triple of utilityProduct – encasedBy – encasement. 

Consequently, an instance of the UPO encasement class is created and linked to the UtilityProduct 

instance via the encasedBy object property, and the encasement material attribute is described via 

the hasMaterial property. For geometric attributes, GEO geometry instances (one for each row in 

the attribute table) are first generated for the SHAPE geometry field. The geometric 

representations accessed from TripleGeo are then added as GEO properties to the geometry 

instances in GEO-compliant RDF triples. For instance, the parsed coordinates of the starting and 

ending points of the polyline geometry are serialized as WKT literals and linked to the geometry 

instance via the asWKT property. Finally, the UPO/TOO instances (also established as GEO 

feature instances) are linked to GEO instances via the hasGeometry property to achieve the 

integration of urban product data and geometry data. 

While Figure 2.9 illustrates the process using a utility file in the Shapefile format as the 

example, the same process applies to GIS data of utility and transportation from databases such as 

Oracle Spatial and Post GIS. 

Figure 2.10 provides an excerpt of the resulting RDF output in Turtle, which is a common 

format for storing RDF data in textual representations.  

 

Figure 2.10. An excerpt of the resulting RDF output in Turtle format 

2.5.2 RDF convertor for textual data 

Attributed to the overwhelming role of location and clearances in achieving most decision 

criteria and the dominance of such spatial configuration-related requirements predominate in 
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utility regulatory documents [2], textual data processed in this study are the sentences that contain 

spatial constraints. Figure 2.11 gives a collection of examples of utility spatial constraints. 

 

Figure 2.11. Examples of utility spatial constraints 

Utility spatial constraints are usually described using natural language texts. The NLP 

algorithm designed by Li et al. [1] was implemented in this study to extract all required spatial 

cognitive-linguistic elements from the textual spatial constraints and present them as 10-element 

tuples of <Trajector, Trajector attribute, Spatial indicator, Landmark, Landmark attribute, 

Requirement indicator, Negation, Distance value, Distance unit, Distance restriction>. One 10-

tuple is the structured representation of one spatial configuration specified in the spatial constraints. 

There could be multiple spatial configurations in a sentence. The NLP-based extraction results 

were evaluated by testing 30 sentences obtained from utility regulations [87,88]. It was found that 

for sentences containing no more than two spatial configurations, the extraction is 100% accurate. 

However, for sentences that contain more than two spatial configurations, only 74.24% accuracy 

was achieved and errors such as missing landmarks and incorrect spatial indicators exist. Manual 

adjustments are required in order to achieve the extraction accuracy for subsequent RDF 

conversion. Figure 2.12 illustrates the three resulting 10-tuples from two sentences that contain 

spatial constraints. 
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Figure 2.12. Extraction of spatial cognitive-linguistic elements from spatial constraint 

sentences 

An RDF convertor entitled TripleText was developed in this study to convert the extracted 

spatial rules into the RDF format, following the semantic structure of USRO. Figure 2.13 illustrates 

the mapping process of TripleText. Starting from each row in the table of spatial rules, it creates a 

USRO spatialConstraint instance for each spatial constraint (e.g., spatialConstraint1) and a USRO 

spatialConfiguration instance for each spatial configuration (e.g., spatialConfiguration11), and 

links spatialConfiguration instances to their corresponding spatialConstraint instance via the 

specifies property (e.g., spatialConstraint1 – specifies – spatialConfiguration11). The 

inConjunctionWith property between spatialConstraint instances are specified based on the 

conjunctions used in the original sentences. For example, in spatial constraint No. 1, two described 

spatial configurations are connected using the conjunction “and”, thus an RDF triple of 

spatialConfiguration11 – conjunctionAnd – spatialConfiguration12 was established. For the 

extracted spatial cognitive-linguistic elements, each of the ten elements in a tuple leads to a USRO 

datatype property that is connected to the corresponding spatialConfiguration instance. For 

example, the landmark element maps to the string property of hasLandmark, established such as 

spatialConfiguration11 – hasLandmark – “wheel path”. In such a way, utility spatial constraints 

(represented as ten-element tuples) can be converted into USRO-compliant RDF instances. 
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Figure 2.13. Mapping process of TripleText 

Figure 2.14 illustrates the resulting RDF data for the two spatial configurations under spatial 

constraint No. 1. 

 

Figure 2.14. An excerpt of the resulting RDF output in Turtle format 
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2.6 Utility Compliance Checking 

The purpose of the compliance checking module is to retrieve the spatial constraints from 

USRO and check the utility data (stored in UPO) and transportation infrastructure data (stored in 

TOO). The compliance checking is performed by SPARQL queries. Three tasks are involved to 

generate SPARQL queries: retrieving spatial constraints from USRO, mapping between USRO 

and UPO/TOO RDF data, and extensions to SPARQL. 

(1) Retrieval of spatial constraints from USRO 

USRO contains all the spatial constraints and their spatial configurations in the RDF format. 

SPARQL queries have been developed to retrieve specific data elements of spatial configurations 

for each spatial constraint. For instance, the SPARQL query in Figure 2.15 returns detailed 

information for spatial configurations under spatialConstraint1: manholes should be installed 

outside the normal wheel path and away from intersections. 

 

Figure 2.15. An example of SPARQL query for retrieval of spatial constraint information 

(2) Mapping between USRO and UPO/TOO RDF data 

Once specific information of every spatial configuration is retrieved, SPARQL queries for 

compliance are developed. A SPARQL query is an assembly of RDF triple query patterns, 

conjunctions, disjunctions (UNION), negations (NOT EXISTS), SPARQL functions, etc. The 

USRO RDF data is quite informative for formalizing these SPARQL queries. 
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First, the string values of USRO hasTrajector and hasLandmark properties indicate the type 

of UPO/TOO product RDF triple query patterns to be constructed in the target SPARQL queries. 

However, the vocabulary used for an urban infrastructure product in GIS might be different from 

that in utility regulations. For instance, water line in utility regulations could be water pipeline in 

GIS. In the newly created RDF data, the rdfs:label  literal property is used to hold the names of 

UPO and TOO instances while the USRO hasTrajector and hasLandmark properties hold the string 

values of the constrained products in regulation. Therefore, the semantic mapping of these 

terminologies is necessary in order to develop SPARQL queries. A domain semantic resource that 

archives synonyms (is-similar), hyponyms (type-of), and meronyms (part-of) of heterogeneous 

terminologies often serves as the junction to facilitate the mapping process. This study adopts two 

existing semantic resources: the list developed by Li et al. [1] which stores semantic-related terms 

for the utility domain and the digital dictionary developed by Le and Jeong [37] for the 

transportation domain. A partial view of the semantic resource is given in Figure 2.16. 

 

Figure 2.16. A partial view of the semantic resource for urban infrastructure domain 

Terminologies used in different ontologies are matched by consulting the semantic resource. 

For instance, if water line is specified in the USRO, any UPO instance whose name is in the 

synonym set or the hyponym set of water line will be checked. The corresponding SPARQL query 

is illustrated in Figure 2.17. 
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Figure 2.17. The SPARQL query for selecting the utility product of water line 

Second, the USRO hasTrajectorAttribute and hasLandmarkAttribute properties indicate the 

type of UPO/TOO product-attribute RDF triple query patterns to be constructed in the target 

SPARQL queries. Based on this, product attributive information captured in USRO needs to be 

mapped to the designated UPO/TOO attributes. For example, a trajector attribute of 6-inch in 

diameter maps to the UPO hasDiameter property while a landmark attribute of high-speed 

(exceeding 50 mph) maps to the TOO hasTrafficLimit property for constructing UPO/TOO 

product-attribute RDF triple patterns. 

Third, the USRO hasSpatialIndicator properties indicate the type of SPARQL functions to 

be used in the target SPARQL queries. Based on this, SPARQL needs to be extended as functions 

for direct use in the target queries and spatial indicators in USRO need to be mapped to the 

SPARQL functions for specific uses.  

Finally, the conjunctions, disjunctions, and negations among the mapped UPO/TOO RDF 

triples and the specific uses of the mapped SPARQL functions can be determined based on the 

USRO requirement indicators, negation information, distance information, and the specific 

conjunctions between the spatial configurations. 

(3) Spatial extensions to SPARQL 

Based on the spatial indicators in USRO, this task aims to add new case-specific spatial 

extensions to SPARQL. SPARQL queries use spatial functions for spatial reasoning over RDF 

data. While GeoSPARQL topological and geospatial functions are included in GEO as spatial 

extensions, these functions are mainly for 2D geometry with very limited capacity for spatial 

reasoning in 3D. In this study, four new functions were created and implemented through SPARQL 

Inferencing Notation (SPIN) [89] as spin:depthOfCover, spin:verticalDistance, spin:below, and 

spin:above. The spin:depthOfCover function computes the buried depth of a utility product under 
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a transportation object; the spin:verticalDistance function computes the vertical distance between 

two utility products based on their elevations; the spin:below and spin:above functions evaluate 

the vertical directional relationships (below or above) between two objects based on their 

elevations. Code excerpts in Figure 2.18 provide details regarding the implementation of these 

four new functions in SPIN. 

 

Figure 2.18. Code excerpts of extended SPARQL functions using SPIN 

USRO accommodates a variety of spatial indicators, terms relevant to spatial relationships. 

Table 2.1 illustrates the mapping from the indicators of spatial relationships in USRO to these four 

new functions and relevant functions from GeoSPARQL. 
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Table 2.1. Mappings from spatial indicators to spatial functions 

Spatial indicators in USRO Mapped SPARQL extensions 

above, over spin:above 

under, below spin:below 

vertical separation, vertical clearance, vertical buffer spin:verticalDistance 

depth of cover, depth of bury, buried depth spin:depthOfCover 

horizontal separation, horizontal clearance geof:distance 

crossing, intersect geo:sfIntersects 

away from, outside, outside of geo:sfDisjoint 

within geo:sfWithin 

 

(4) An illustrative example 

The spatial constraint of “manholes should be installed outside the normal wheel path and 

away from intersections” is used to illustrate the generation of the SPARQL query to check UPO 

and TOO instances. This spatial constraint has two spatial configurations: “manhole outside wheel 

path” and “manhole away from intersections.” Figure 2.19 illustrates the resulting SPARQL query 

where the relevant products are retrieved based on the domain semantic source through the 

FILTER blocks. Referring to Table 2.1, the spatial indicators of “outside of” and “away from” 

evoke the geo:sfDisjoint function. Since the geo:sfDisjoint function works with geometry 

instances as its function arguments, the hasGeometry property of UPO and TOO instances is used 

to retrieve their corresponding GEO instances. To meet the spatial constraint, a manhole must be 

disjoint from wheel paths and intersections. When checking a manhole, NOT EXISITS, which 

represents a way of negation to test whether a triple exists in the triple store, is used to identify 

those violations. For example, NOT EXISTS {?MHGeo geo:sfDisjoint ?INGeo.} matches the 

manhole that is not disjoint from intersections. 
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Figure 2.19. An illustrative example of generated SPARQL queries 

Executing the above SPARQL query detects all non-compliant manholes, or manholes that 

violate the constraint. Using the SPARQL CONSTRUCT method, the results of compliance 

checking are stored as relationships between checked objects and applicable spatial constraints for 

reporting and future retrieval. Specifically, the isCompliantWith relationship will be established 

between all compliant utility products and the spatial constraint while the isNonCompliantWith 

relationship will be established between all noncompliant utility products and the corresponding 

spatial constraints. 

2.7 Implementation Architecture 

Figure 2.20 illustrates the implementation architecture of the proposed approach and its data 

flow. Protégé was used to build the four interlinked ontologies and encode them in RDFS/OWL. 

Two RDF convertors – TripleGeo and TripleText – were used to convert the geospatial data of 

urban infrastructure and the textual data of utility regulations into RDF format as ontology 

instances. The RDF triple store was used to store the RDFS/OWL ontologies and their 

corresponding RDF instances. All the RDF data was then manipulated through the Apache Jena 

platform, an open source Java framework for building semantic web applications, for compliance 
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checking. Jena ARQ, a SPARQL-compliant query engine, was used to support SPARQL queries 

over RDF data. Two Jena APIs – GeoSPARQL API and SPIN API – enable the direct usage of 

extended spatial functions within SPARQL queries. The SPARQL query interface accepts input 

SPARQL queries and returns query results. Through this interface, users can 1) retrieve spatial 

constraint RDF data to formulate SPARQL queries, 2) execute SPARQL queries for compliance 

checking, 3) construct new RDF data for storage, and 4) output compliance checking results. 

 

Figure 2.20. Implementation architecture and data flow 

2.8 Case Illustration 

The newly developed compliance checking system was tested using a sample database that 

is freely downloadable from ESRI.COM [90]. This database contains records for water, sewer, and 

stormwater infrastructure in the City of Naperville, Illinois, in GIS format. It has 62 feature classes 

such as water mains, storm casings, and sewer manholes, organized under three feature datasets 

(i.e., water distribution system, stormwater network, and sewer collection system). In this case 

illustration, an area of interest (AOI) was randomly chosen to test out the newly developed method 

for compliance checking. The resulting dataset contains a total of 212 records of pipes, casings, 
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valves, fittings, and other utility products. The reference street map from OpenStreetMap [91] was 

used to generate the transportation infrastructure feature dataset in the AOI. The digitization of 

these features was based on the polygon features of the reference street map. Digitized 

transportation feature classes include driving lanes, sidewalks, curbs, and traffic intersections. The 

national elevation dataset (NED) [92] was used to correct and update the elevation information for 

urban infrastructure elements in the AOI. Figure 2.21 illustrates the AOI and urban infrastructure 

data in the GIS format. 

 

Figure 2.21. A map view of urban infrastructure in the AOI 

A collection of sentences that contain spatial rules were excerpted from utility regulations 

[87,88] to check the compliance of the utility records. Table 2.2 provides a list of these selected 

constraints. 
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Table 2.2. The sentences of spatial constraints 

No. Spatial constraints Constraint purposes 

1 
Manholes should be installed outside the normal wheel path 

and away from intersections 

Traffic impact 

/Maintainability  

2 All water lines will have a minimal depth of cover of 4 feet. Infrastructure safety 

3 
The minimum vertical separation between potable and non-

potable pipelines at crossings is 18 inches. 

Infrastructure safety 

/Public health 

4 The water line shall be located above the wastewater line. 
Infrastructure safety 

/Public health 

5 
All crossings under the high-speed (exceeding 50 mph) traffic 

lane must be encased. 

Infrastructure safety 

/Public safety 

6 
The minimum horizontal separation between 6-inch to 10-inch 

water mains and sanitary sewer mains shall be 10 feet. 

Public health/ 

Maintainability 

7 
Water service lines shall maintain a minimum horizontal 

separation of 6 feet from sanitary sewer laterals. 

Public health/ 

Maintainability 

 

Geospatial data of utilities and transportation and textual data of spatial constraints were 

processed using TripleGeo and TripleText to generate interlinked ontology instances in RDF. 

Figure 2.22 illustrates the graph view of the conversion result for the water main of WM4110, the 

driving lane of DL1, and the spatial constraint No.2.     



 

 

59 

 

Figure 2.22. A partial graph view of the conversion result 

Resulting RDF data were loaded into the Apache Jena platform for compliance checking. 

Spatial constraint RDF data was first analyzed and converted into SPARQL queries. The 

generation process is based on the description in section 2.6. Table 2.3 gives the generated 

SPARQL queries for this case study. 

Table 2.3. Generated SPARQL queries for compliance checking 

No. Checked objects SPARQL queries 

1 Manhole 

SELECT ?manhole 

WHERE { 

?manhole a upo:utilityProduct; 

         rdfs:label ?mappedTerm1. 

FILTER (?mappedTerm1 = “sewer manhole” || ?mappedTerm1 = 

“storm manhole”).                                      

?manhole geo:hasGeometry ?MHGeo. 

?wheelPath a too:transportationObject; 

           rdfs:label ?mappedTerm2. 

FILTER (?mappedTerm2 = “wheel path” || ?mappedTerm2 = 

“traffic lane” || ?mappedTerm2 = “driving lane”).        

?wheelPth geo:hasGeometry ?WPGeo. 

?intersection a too:transportationObject; 
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              rdfs:label ?mappedTerm3. 

FILTER (?mappedTerm3 = “intersection” || ?mappedTerm3 = 

“crossroad”).  

?intersection geo:hasGeometry ?INGeo.       

NOT EXISTS {?MHGeo geo:sfDisjoint ?WPGeo.}  

UNION  

NOT EXISTS {?MHGeo geo:sfDisjoint ?INGeo.} 

} 

2 Water line 

SELECT ?waterLine 

WHERE { 

?waterLine a upo:utilityProduct;    

       rdfs:label ?mappedTerm1.  

FILTER (?mappedTerm1 = “water line” || ?mappedTerm1 = 

“water pipeline” || ?mappedTerm1 = “water main” 

|| ?mappedTerm1 = “water lateral line” || ?mappedTerm1 = 

“water service line”).                                      

?roadway a too:transportationObject; 

     rdfs:label ?mappedTerm2.  

FILTER (?mappedTerm2 = “roadway” || ?mappedTerm2 = 

“travelled way” || ?mappedTerm2 = “road”).                                      

FILTER (spin:depthOfCover(?waterline, ?roadway, unit:foot) 

< 4).  

} 

3 
Potable and non-

potable pipelines 

SELECT ?waterLine ?sewerLine 

WHERE { 

?waterLine a upo:utilityProduct;    

       rdfs:label ?mappedTerm1.  

FILTER (?mappedTerm1 = “water line” || ?mappedTerm1 = 

“water pipeline” || ?mappedTerm1 = “water main” 

|| ?mappedTerm1 = “water lateral line” || ?mappedTerm1 = 

“water service line”). 

?waterLine geo:hasGeometry ?WLGeom. 

?sewerLine a upo:utilityProduct;    

       rdfs:label ?mappedTerm2.  

FILTER (?mappedTerm1 = “sewer line” || ?mappedTerm1 = 

“sewer pipeline” || ?mappedTerm1 = “sewer main” 

|| ?mappedTerm1 = “sewer lateral line” || ?mappedTerm1 = 

“sewer service line”).                                      

?sewerLine geo:hasGeometry ?SLGeom. 

?WLGeom geo:sfIntersects ?SLGeom.                                     

FILTER (spin:verticalDistance(?waterLine, ?SewerLine, 

unit:inch) < 18).  

} 

4 
Water line and 

wastewater line 

SELECT ?waterLine ?sewerLine 

WHERE { 

?waterLine a upo:utilityProduct;    

       rdfs:label ?mappedTerm1.  

FILTER (?mappedTerm1 = “water line” || ?mappedTerm1 = 

“water pipeline” || ?mappedTerm1 = “water main” 

|| ?mappedTerm1 = “water lateral line” || ?mappedTerm1 = 

“water service line”). 

?sewerLine a upo:utilityProduct;    

       rdfs:label ?mappedTerm2.  

FILTER (?mappedTerm1 = “sewer line” || ?mappedTerm1 = 

“sewer pipeline” || ?mappedTerm1 = “sewer main” 
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|| ?mappedTerm1 = “sewer lateral line” || ?mappedTerm1 = 

“sewer service line”).    

NOT EXISTS {?waterLine spin:above ?sewerLine.}                                   

} 

5 
Crossed utility 

pipes 

SELECT ?crossedLine 

WHERE { 

?crossedLine a upo:distributionElement;  

             geo:hasGeometry ?CLGeom.   

?trafficLane a too:transportationObject; 

             rdfs:label ?mappedTerm. 

FILTER (?mappedTerm = “wheel path” || ?mappedTerm = 

“traffic lane” || ?mappedTerm = “driving lane”).        

?trafficLane geo:hasGeometry ?TLGeom; 

             too:hasTrafficLimit ?trafficLimit. 

FILTER (?trafficLimit > 50). 

?CLGeom geo:sfIntersects ?TLGeom. 

?crossedLine spin:below ?trafficLane. 

NOT EXISTS {?crossedLine upo:encasedBy ?encasement.} 

}                                   

6 

Water main and 

sanitary sewer 

main 

SELECT ?waterMain ?sewerMain 

WHERE { 

?waterMain a upo:utilityProduct;    

       rdfs:label “water main”;  

       upo:hasDiameter ?WMDia; 

           geo:hasGeometry ?WMGeom. 

?sewerLine a upo:utilityProduct;    

       rdfs:label “sewer main”; 

       upo:hasDiamter ?SMDia;  

           geo:hasGeometry ?SMGeom.                                  

FILTER (?WMDia >6 && ?WMDia < 10 && ?SMDia >6 && ?SMDia < 

10 && geof:distance(?WMGeom, ?SMGeom, unit:feet) < 10).  

} 

7 

Water service 

line and sanitary 

sewer lateral 

SELECT ?waterLateral ?sewerLateral 

WHERE { 

?waterLateral a upo:utilityProduct;    

       rdfs:label ?mapperTerm1; 

           geo:hasGeometry ?WLGeom. 

FILTER (?mappedTerm1 = “water lateral line” 

|| ?mappedTerm1 = “water service line”).  

?sewerLateral a upo:utilityProduct;    

       rdfs:label ?mapperTerm2; 

           geo:hasGeometry ?SLGeom. 

FILTER (?mappedTerm2 = “sewer lateral line” 

|| ?mappedTerm2 = “sewer service line”).     

FILTER (geof:distance(?WLGeom, ?SLGeom, unit:feet) < 6).  

} 

 

The generated SPARQL queries were executed against utility and transportation data to 

detect and separate non-compliant cases from compliant cases. Besides checking spatial 

constraints based on locations, the proposed method also has the capacity to check spatial 

constraints embodied in attribute values. For example, under constraint No. 5, if a utility crossing 

is under the high-speed traffic lane, then it must meet the pipeline encasement requirement and 
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this information is captured in the attribute of “Encas.” In this case, 23 noncompliant utility 

products were detected through SPARQL query, as summarized in Table 4 (the third column). 

These products were then connected to their corresponding spatial constraints via the 

isNonCompliantWith relationship for reporting and future retrieval. 

To validate the feasibility and effectiveness of the newly developed method, the 

comparison between the results of compliance checking using the developed method and manual 

operation in ArcGIS was conducted. The authors designed a series of spatial queries in ArcGIS to 

check the data in the AOI against the spatial constraints. For example, using the “Select By 

Location” tool in ArcGIS, all the manhole that violate spatial constraint No.1 can be identified by 

selecting features in the manhole layer that fall within the driving lane or intersection layer features. 

Through spatial query in ArcGIS, 23 noncompliant features were identified as summarized in 

Table 2.4 (the fourth column). Table 2.4 illustrates the two sets of results side-by-side, organized 

under the corresponding spatial constraints. It is clear that the results match. The newly developed 

method achieves 100% performance in compliance checking.  
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Table 2.4. Comparison results 

No. Checked object Non-compliant ontology 

instances in the case study 

Non-compliant features through 

manual judgement in ArcGIS 

Comparison 

result 

1 Manhole 

SewerMH1674,  

SewerMH512, 
SewerMH1378, 

StormMH56804, 

StormMH57334, 

StormMH57335 

Sewer MH-1674, Sewer MH-512, 
Sewer MH-1378, Storm MH-56804, 

Storm MH-57334, Storm MH-

57335 

Consistent 

2 Water line / / Consistent 

3 
Potable and non-

potable pipelines 

(WM4110, SLL99090), 

(WM4110, SLL76872), 

(WM4110, SLL79618), 

(WM4110, SLL79617), 

(WM4110, SLL96288), 

(WM4110, SM214-1674) 

(Water M-4110, Sewer LL-99090), 

(Water M-4110, Sewer LL-76872), 

(Water M-4110, Sewer LL-79618), 

(Water M-4110, Sewer LL-79617), 

(Water M-4110, Sewer LL-96288), 

(Water M-4110, Sewer Main 214-

1674) 

Consistent 

4 
Water line and 

wastewater line 
/ / Consistent 

5 Crossed line 

WLL13788, 
WLL11735, 

SLL77625, 

SLL79824, 

SLL79845, 

StormM57335 

Water LL-13788, 
Water LL-11735, 

Sewer LL-77625, 

Sewer LL-79824, 

Sewer LL-79845 

Storm Main-57335 

Consistent 

6 

Water main and 

sanitary sewer 

main 

/ / Consistent 

7 

Water service 

line and sanitary 

sewer lateral 

(WLL11249, SLL76872), 

(WLL13725, SLL78543) 

(Water LL-11249, Sewer LL-

76872), 

(Water LL-13725, Sewer LL-

78543) 

Consistent 

2.9 Discussion 

The intellectual contribution of this study is threefold.  

(1) The ontology-based data exchange mechanism addresses the issue of data heterogeneity 

in the utility domain by providing a unified semantic schema and data convertors for 

heterogeneous utility data. Compared to open standard-based exchange mechanism (e.g., 

CityGML/Utility Network ADE), the main benefits of ontology-based mechanism are described 

as follows. First, although XML schemas are sufficient for exchanging data between parties who 

must have agreed to the definitions beforehand, their lack of semantics prevents machines from 

reliably performing this task with new XML vocabularies. Ontology is able to provide a shared 

vocabulary among the parties by defining abstract concepts/relationships such as the taxonomy of 

concepts, equivalent/disjoint concepts, and enumerations of terminologies. As such, data is given 
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explicit meaning, making it easier for machines to automatically process and integrate data through 

ontology. Second, using open standards, data creators and data receivers must have a deep 

understanding about the data schema (e.g., XML syntax) in order to avoid ambiguity and semantic 

inconsistency during data exchange. While using ontology, the schema definition languages – 

RDFS/OWL and data model – RDF are easy-to-understand and RDF has features that facilitate 

data integration even if the underlying schemas differ [59]. This characteristic also makes the 

conversion from proprietary formats into RDF simple-to-develop. Last, ontology is usually 

expressed in a logic-based language. Semantic tools can perform automated reasoning using the 

ontology, and thus provide advanced services to intelligent applications such as the compliance 

checking of underground utilities. 

(2) The SPARQL-based query mechanism with spatial extensions enables the semantic 

checking of spatial location-related data of utilities. Most of existing efforts of ontology-based 

compliance checking focused on querying or reasoning about non-spatial attributes of building 

data due to the limited capability of spatial reasoning when dealing with geometry data. With the 

spatial extensions, ontology-based compliance checking can be extended to more scenarios such 

as where the checking of building geometry data is required. 

(3) The framework that integrates the interlinked ontologies, data convertors, and SPARQL 

spatial extensions fills in the research gap in the area of utility compliance checking, which 

provides a more transparent paradigm rather than the otherwise procedural/hard-coding 

implementation approach. Currently, most compliance checking environments follow a hard-

coding implementation approach that involves more arbitrary programming work, which is 

unreachable for anyone but system programmers. In this study, the use of RDFS/OWL ontologies, 

RDF data model, and SPARQL facilitates a more transparent reasoning process that are easy-to-

understand and simple-to-implement even by non-experts. 

This paper mainly focuses on the checking of underground utilities against the spatial 

constraints in utility regulations. An NLP algorithm was used to extract linguistic elements from 

the sentences of spatial constraints to ease the subsequent RDF conversion. It was found that for 

sentences that contain more than two spatial configurations, errors such as missing landmarks and 

incorrect spatial indicators exist. Future research is needed to create a near 100% accurate and 

automated method for converting complex textual sentences into structured knowledge. In order 

to broaden the checking scope of underground utilities, future research is also needed to 
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incorporate/develop ontologies and data convertors for other utility disciplines such as 

construction and maintenance. As always argued by the research area of compliance checking, an 

effective mechanism that handles the mismatch between data terms used in domain engineering 

models and regulatory documents is still missing [11]. While a semantic resource serves an 

effective semantic reference, their vocabulary size is still limited. Future research is needed to 

automatically develop and maintain the semantic resource to keep up with the growth of new terms.    

2.10 Summary and Conclusions 

This paper presents an ontology-based approach to integrate heterogeneous geospatial data 

as well as textual data to enable automated compliance checking of underground utilities through 

logic and spatial reasoning. The following technical issues were addressed in this study: 1) four 

interlinked ontologies were developed to provide the semantic schema; 2) two data convertors – 

TripleGeo and TripleText – were customized to enable the conversion of heterogeneous data from 

proprietary formats into the common and interoperable format of RDF; and 3) a SPARQL-based 

query mechanism with spatial extensions was designed to detect utility spatial defects. An 

experiment on a sample utility database was also conducted to demonstrate the feasibility and 

effectiveness of the proposed approach in detecting utility spatial defects. The compliance 

checking results remain consistent with the results checked through manual judgement. 

In terms of extendibility, the ontology models the most fundamental concepts in the domain 

in a flexible format to enable future evolution and extension of the ontology for representing other 

application-specific and/or enterprise-specific knowledge. For instance, the developed USRO can 

be extended to accommodate more complex utility regulations so that a broad range of utility 

compliance checking is reachable. In addition to compliance checking, the semantic framework 

can be extended to integrate heterogeneous data from multiple sources and support applications 

where spatial and logic reasoning are required. An example is the integration and reasoning of 

multi-mode sensing data (through the incorporation of the sensor ontology) in construction for 

various project management and control tasks. 
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 TOWARDS A DOMAIN ONTOLOGY FOR UTILITY 

INFRASTRUCTURE: COUPLING THE SEMANTICS FROM 

CITYGML UTILITY NETWORK ADE AND DOMAIN GLOSSARIES 

This chapter presents a novel method to develop a utility ontology that is semantically 

compatible with existing utility modeling initiatives and has a sufficient or expandable vocabulary 

size to facilitate a high degree of interoperability across the utility infrastructure domain. The novel 

method integrates a top-down strategy and NLP to develop the desired ontology from CityGML 

Utility Network ADE (a candidate open standard for modeling utility networks) and domain 

glossaries (lists of utility-specific terms and their textual definitions). First, a base ontology is 

formalized by abstracting the modeling information in the ADE through a series of semantic 

mappings. Second, a novel integrated NLP approach is devised to automatically learn the 

semantics from the glossaries. The learning process includes the extraction of utility product terms 

using conditional random field (CRF) and the classification of semantic relationships between the 

terms using long short-term memory (LSTM) networks. Finally, the semantics learned from the 

glossaries are incorporated into the base ontology to result in a domain ontology for utility 

infrastructure. The NLP approach was evaluated using human-annotated test sets, and results show 

an average accuracy of 96% in term extraction and 86% in semantic relationship classification. 

For case demonstration, a glossary of water terms was learned to enrich the base ontology 

(formalized from the ADE) and the resulting ontology was evaluated to be an accurate, sufficient, 

and shared conceptualization of the domain. The newly developed ontology functions effectively 

as an interoperability facilitator for the utility infrastructure domain, attributed to the semantic 

compatibility with existing utility modeling initiatives and enriched/expandable (using NLP) 

semantic vocabulary. 

This work is under review in ASCE Journal of Computing in Civil Engineering, 2020, Xin 

Xu and Hubo Cai. “Towards a domain ontology for utility infrastructure: coupling the semantics 

from CityGML Utility Network ADE and domain glossaries”. Table titles and figure captions have 

been modified to maintain the form of the dissertation. 
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3.1 Introduction 

Over the last few decades, the utility infrastructure domain has grown in the amount of 

computer software, technologies, and automation to help improve the management of massive 

utility infrastructure. Object-oriented digital models (3D, 4D, and nD) have been increasingly 

implemented across the design, construction, and operation and maintenance stages for a wide 

range of purposes such as visualization, clash detection, constructability review, and digital 

inspection [10,25,93]. Such digital model-based systems are of great benefit to individual 

stakeholders (e.g., public agencies, utility owners, contractors, and asset managers); however, due 

to the fragmented nature of the utility industry, current approaches to generating these digital 

models are mostly dependent on proprietary software programs, non-compatible program 

languages, or standards specific to a single domain [34,94,95]. Data sharing and exchange among 

the heterogeneous landscape of information modeling, known as interoperability, becomes a major 

challenge for a more integrated management in utility infrastructure [34,95]. Therefore, it is 

imperative to address the interoperability issue to allow for seamless transfer of heterogeneous 

data among various sources. 

A promising approach to achieving interoperability is for each source to utilize a shared 

and reliable knowledge model, known as an ontology, which defines and standardizes domain 

knowledge to function as the semantic enabler of communication between different sources 

[27,96]. A few domain ontologies have been introduced for the utility domain [2,26,34–36]. 

However, they are very limited to facilitate data exchange in heterogeneous environments for the 

following two reasons. First, they are mainly implemented as a means for knowledge 

representation and neglect the compatibility with existing utility modeling initiatives [10]. Much 

laborious work is required to align the semantic schemas in the ontologies with the data schemas 

in various utility models for data exchange [26,35]. Second, their semantic vocabularies of domain 

terms and semantic relationships are relatively too small to interpret the meaning of data and avoid 

mismatches/no matches when integrating a multitude of data that have different terms [37]. There 

is a critical need in the utility domain for an ontology that can be utilized as the shared and reliable 

knowledge model to facilitate a high degree of interoperability. 

To fulfill that demand as well as to overcome the limitations in existing ontologies, this 

paper develops an ontology for the utility domain by coupling the semantics of CityGML Utility 

Network ADE [68], which is a candidate open standard for modeling utilities, and domain 
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glossaries, which archive important utility terms and their textual definitions. First, a base ontology 

is formalized by abstracting the modeling information in the ADE through a series of semantic 

mappings. Second, a novel integrated natural language processing (NLP) approach is devised to 

automatically learn the semantics from the glossaries. The learning process includes the extraction 

of utility product terms using conditional random field (CRF) and the classification of semantic 

relationships between the terms using long short-term memory (LSTM) networks. Finally, the 

semantics learned from the glossaries are incorporated into the base ontology to result in a domain 

ontology for utility infrastructure. In developing the proposed method, the methods for concept 

extraction, matching, and classification proposed by Zhang and EI-Gohary [43] were used and 

adapted to develop the desired ontology for the utility infrastructure domain. Please see Section 

3.2.2 for further details. The NLP approach was evaluated using human-annotated test sets. For 

case demonstration, a glossary of water terms was learned to enrich the base ontology (formalized 

from the ADE) and the resulting ontology was evaluated to be an accurate, sufficient, and shared 

conceptualization of the domain. Attributed to the semantic compatibility with existing utility 

modeling initiatives and enriched/expandable (using NLP) semantic vocabulary, the developed 

ontology functions effectively as an interoperability facilitator for the utility infrastructure domain. 

3.2 Background and Related Studies 

3.2.1 The interoperability and ontology in the utility infrastructure domain 

Due to the fragmentation of the utility industry, different stakeholders (e.g., public agencies, 

utility owners, contractors, and asset managers) may use proprietary software platforms with 

different data models to manage their own data [34,95]. Interoperability has been shown to be a 

major barrier for the seamless exchange of data between isolated and proprietary sources. Research 

efforts have been made to standardize the modeling of utility networks across the industry. 

Example standard models  include INSPIRE Utility Networks, IFC, ArcGIS Utility Networks, 

SEDRIS, PipelineML, MUDDI [97]. However, these models tend to focus on a specific network 

type (water, electric, gas, communication, etc.), and/or a specific geographic scale (building, city, 

country, etc.), and thus, a complete and unified model for heterogeneous utility networks has not 

been formulated [97]. The CityGML Utility Network ADE extends the CityGML model to provide 

the required concepts for modeling different types of utility networks (such as electricity, water, 
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wastewater, gas or telecommunication) via 3D city models [68]. While the ADE offers a potential 

common basis for the integration of the diverse models, such an integration remains at the syntactic 

level – heterogeneous data are structured as loosely coupled documents that are not semantically 

compatible as different sources may use their unique sets of vocabularies. Based on a review of 

existing alternatives for utility network modeling, Becker et al. [68] concluded that a suitable 

common/shared model does not yet exist to facilitate the interoperability among the heterogeneous 

utility network models.  

Recently, ontology has emerged as a promising tool to achieve semantic interoperability 

over fragmented, heterogeneous environments. An ontology describes the concepts, relationships, 

data properties and restrictions within a domain in a machine-readable manner [25,26], which can 

be utilized as the shared data format for each source to integrate data in heterogenous formats. An 

increasing number of information management/exchange applications in construction have been 

relying on ontologies to support data interoperability, flexible data exchange, distributed data 

management, and the development of reusable tools [11,27,28]. In the GIS community, ontology 

has also been exploited to integrate a large amount of heterogeneous geospatial data. The efforts 

by this community have led to the development of CityGML ontology [29–31]. For instance, using 

CityGML ontology as the central platform, Métral et al. [30] integrated urban infrastructure data, 

transportation data, and urban planning data for creating a semantically enriched 3D city model.  

A few ontologies have also been introduced for the utility domain [2,26,34–36]. But they 

are not suitable as domain-wide interoperability facilitators for the following two reasons. First, 

they lack semantical compatibility with existing utility modeling initiatives. For instance, some of 

the ontologies [2,34] mainly target at the knowledge representation purpose and neglect the 

alignment with existing utility data models. Additional alignments with various utility data models 

are required in order for the proposed ontologies to be the common/shared knowledge models for 

data exchange [26,35]. Second, their vocabulary sizes are too limited, which may lead to many 

mismatches or no-matches when integrating data from disparate sources that use different sets of 

vocabularies [37]. Mounce et al. [36] presented an approach for ontology enrichment (in aspects 

of domain terms and semantic relations) from domain corpora; however, their implementation still 

remains at the conceptual level without providing a practical solution to expand the ontology 

vocabularies. Therefore, in order to facilitate a high degree of interoperability across the utility 
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domain, the desired ontology must maintain semantic compatibility with existing utility modeling 

initiatives as well as a sufficient (or expandable) vocabulary size. 

3.2.2  Natural language processing in ontology development 

Several ontology development methodologies have been suggested [38,39]. They all 

include five key steps: (1) purpose and scope definition, (2) taxonomy building, (3) relation 

modeling, (4) ontology coding, and (5) ontology evaluation. Following these steps, EI-Diraby et 

al. [98] developed a formal taxonomy/ontology for construction knowledge as part of the e-

COGNOS project. On top of that, extended work has been undertaken to develop ontologies for 

knowledge management in highway construction [99], processes in infrastructure and construction 

[86], and construction concepts in urban infrastructure products [34]. The five-step method for 

ontology development requires significant manual efforts on knowledge retrieval and ontology 

construction and validation. In attempts to reduce laborious work on ontology development, 

researchers have sought to design natural language processing (NLP) algorithms to build 

ontologies from a corpus of natural language text. NLP deploys artificial intelligence to enable 

computers to understand, create, and analyze human languages [40]. In the architecture, 

engineering, and construction (AEC) domain, a number of research studies have implemented NLP 

for document classification [100,101], information retrieval [102–104], and information extraction 

[49,50,105].  

NLP contributes to ontology development in automated extraction of ontology contents – 

concepts and relations from textual documents and thus reduces laborious work on extracting 

ontology contents from textual documents. Concept extraction is a well-established filed in 

computational linguistics, which can be implemented over fully unstructured documents 

[37,43,105,106] or semi-structured/structured documents such as glossaries [107] and table of 

contents [108]. Traditional approaches often follow a two-step procedure to extract concepts: first 

to extract technical terms from textual documents utilizing syntactic patterns, and then to identify 

the important concepts based on TF-IDF, C-Value, or Termex [37]. By contrast, relation extraction 

is identified as a more difficult problem, especially for non-taxonomic relations [109]. Two main 

approaches exist for relation extraction: distributional approach and path-based approach. The 

distributional approach leverages the contexts of each concept/term – distributional representations 

of word semantics to determine the semantic relatedness between concepts [110] while the path-
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based approach considers lexico-syntactic patterns between the joint occurrences of concept/term 

pairs for relation detection [111,112]. 

In the AEC domain, Abuzir and Abuzir [42] developed the ThesWB system which utilizes 

hand-coded syntax patterns to detect lexical relations between civil engineering terms from HTML 

web pages. Rezgui [113] suggested a more sophisticated approach which relies on TF-IDF to 

identify important concepts for the domain of interest and computes the relatedness between the 

concepts using metric clusters. Le and Jeong [37] proposed an integrated method that implements 

rule-based NLP to detect domain terms from textual documents and uses machine learning (ML) 

to determine the semantic relatedness among terms using their occurrence statistics in a corpus. 

Since it is challenging to directly build an ontology from the extracted concepts and relations 

(higher textual analysis and more human work are required) [41], most studies end up building 

plain (or unstructured) dictionaries that simply archive the extracted ontology contents [37,42]. A 

few studies have adopted a top-down strategy to build ontology from the extracted concepts and 

relations [43,44]. Existing semantic models (taxonomies/ontologies) are first selected as bases, and 

enrichment follows by using the contents extracted from textual documents. For instance, Zhang 

and EI-Gohary [43] utilized rule-based NLP to extract concepts/relationships from regulatory 

documents and extended the existing IFC taxonomy with the extracted contents. The top-down 

strategy can save significant time and effort in building the knowledge skeletons of the ontology 

– the ontology directly inherited the semantics (formal definitions of classes and relations) 

provided by the existing semantic models. This study used the methods for concept extraction, 

matching, and classification proposed by Zhang and EI-Gohary [43] and adapted them for 

developing the desired ontology for the utility infrastructure domain. The following presents the 

main differences between the proposed method and the methods by Zhang and EI-Gohary [43]: 

• Addressing a different domain – utility infrastructure domain. The starting semantic model 

for ontology development/enrichment is CityGML Utility Network ADE, and the 

enrichment source texts are semi-structured textual documents – domain glossaries of 

utility terms. 

• Designing a new NLP for concept/relation extraction from textual documents. The novel 

NLP consists of a CRF model for term extraction and LSTM networks for semantic 

relationship classification, which are implemented to automate the extraction of ontology 

contents from domain glossaries. 
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• Resulting in an enriched utility ontology. A complete workflow for incorporating the 

semantics extracted from domain glossaries into the base ontology developed from the 

CityGML Utility Network ADE is presented.  This study results in the desired utility 

ontology that is semantically compatible with existing utility modeling initiatives and has 

a sufficient or expandable vocabulary size to facilitate a high degree of interoperability 

across the utility infrastructure domain. 

3.3 Study Objectives and Contributions 

This study aims to develop a utility ontology that is semantically compatible with existing 

utility modeling initiatives and has a sufficient or expandable vocabulary size to facilitate a high 

degree of interoperability across the utility infrastructure domain. A novel method that integrates 

the top-down strategy and NLP has been designed and tested to achieve the study objective. 

Departing from the CityGML Utility Network ADE, a base ontology is first formalized, 

followed by the incorporation of the semantics that are extracted from domain glossaries using 

NLP. The ADE is selected due to its candidacy as the open standard for modeling utility networks. 

This would guarantee the semantic compatibility of the target ontology with the modeling 

initiatives of the utility industry. Domain glossaries are semi-structured documents that archive 

domain important terms as well as their textual definitions. This selection would reduce the chance 

of extracting irrelevant information, and to focus on the extraction of critical ontology contents 

from the textual definitions. A novel integrated NLP that consists of a CRF model for term 

extraction and LSTM networks for semantic relationship classification is implemented to automate 

the extraction of ontology contents from domain glossaries. By coupling the semantics of the ADE 

and domain glossaries, a domain ontology for utility infrastructure is formalized. 

The contributions of this study include the following three aspects. First, the integration of 

the top-down strategy and NLP significantly reduces the laborious work during the process of 

ontology development. The approach can also be adapted to ontology development for other 

domains. Second, the integrated NLP approach enables fully automated extraction of ontology 

contents from domain glossaries, which can help maintain the ontology to keep up with the growth 

of new domain knowledge. The approach can also be customized/strengthened to extract 

meaningful information from other types of documents. Third, the ontology formalized by 

coupling the semantics of the ADE and domain glossaries is a superior interoperability facilitator 
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for the utility domain as compared to the existing ones. To be more specific, the ontology is 

semantically compatible with the modeling practice in the ADE and thus, it can serve as an 

effective intermedium for data exchange; and also, the ontology has an enriched semantic 

vocabulary (which can be expanded from domain glossaries in timely and automated manners), 

thus facilitating the semantic integration of data between disparate sources that use different sets 

of vocabularies. 

3.4 Development of a Domain Ontology for Utility Infrastructure 

Figure 3.1 presents the overall process towards the development of the utility ontology. It 

consists of three modules: base ontology development module, ontology learning module, and 

ontology enrichment module. The base ontology development module focuses on the semantic 

abstraction from the CityGML Utility Network ADE. In this module, a series of semantic 

mappings are utilized to re-structure the ADE in the format of base ontology. The ontology 

learning module implements NLP to extract the semantics from utility glossaries. It involves two 

main tasks: term extraction and semantic relationship classification. The outcome from this module 

includes a list of extracted terms and semantically classified term pairs. The ontology enrichment 

module aims to incorporate the extracted semantics from the glossaries into the base ontology to 

build the utility ontology. 

 

Figure 3.1. The development process of the utility ontology 
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3.4.1 Base ontology development 

This section gives a brief introduction of the CityGML Utility Network ADE and its 

abstraction to the base ontology in OWL. 

3.4.1.1 CityGML Utility Network ADE 

The CityGML Utility Network ADE defines concepts which allow for modeling different 

types of utility networks in 3D city models [97]. The ADE is structured into six thematic modules 

as shown in Figure 3.2: (1) Network Core – defines the central concepts for representing utility 

networks, (2) Network Components – provides the individual components of utility networks, (3) 

Network Properties – defines the types of commodities transported by networks and their 

characteristics, (4) Feature Material – defines the exterior, interior and filling materials of network 

components, (5) Functional Characteristics – provides the functional concepts of supply area, 

functional roles, and suppliability/suppliedness of city objects, and (6) Geometry of Network 

Components. Figure 3.2 also presents the defined classes, attributes, and relations under Network 

Components in Unified Modeling Language (UML). In this module, the base class 

AbstractNetworkFeature is specialized into three classes AbstractDistributionElement, 

AbstractFunctionalElement, and EnclosingElement, all of which inherit the attributes from the 

base class. The class AbstractFunctionalElement includes two subclasses: 

SimpleFunctionalComponent – the superclass for simple functional components (e.g., 

StorageComponent) and ComplexFunctionalComponent. In order to specify the type of the 

functional components explicitly, the attribute class is defined under applicable classes (e.g., 

ControllerComponent). The code lists with common values of different types of functional 

components are provided for reference. The UML associations, aggregations, and compositions 

are also defined to present the detailed relations among the classes. The readers are referred to 

Becker et al. [68] for an in-depth introduction to the different ADE modules. 
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Figure 3.2. Modules of the CityGML Utility Network ADE and the UML diagram 

(partial) of Network Components [68] 

3.4.1.2 Base ontology in OWL 

The ADE has defined its data model in UML. The base ontology is developed by re-

structuring the ADE in OWL – a machine-readable language that supports the modeling of classes, 

attributes, and relationships in ontologies. For illustration, the following introduces the OWL 

formalization of the ADE Network Components module. Table 2.1 presents the UML-to-OWL 

mappings (partial) utilized to re-structure this module. The UML classes correspond to the OWL 

classes. The UML generalizations, aggregations/compositions, and associations correspond to 

OWL object properties (built-in/user-defined) that are declared between applicable OWL classes. 

The UML attributes correspond to OWL datatype properties, whose range can be predefined XML 

schema datatypes or user-defined datatypes based on the specific datatypes of the UML attributes. 

In addition, if the UML associations have specified cardinalities, they can be expressed as OWL 

restrictions on appliable OWL object properties. The OWL has more expressive elements to 

describe the semantics that have correspondences to the ADE and meanwhile, the OWL 

formalization has formal rigidness in logic theory that can support advanced application services. 
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Table 3.1. UML-to-OWL mappings (partial) for re-structuring the Network Components module 

UML class diagram elements OWL ontology elements 

UML class 
 

OWL class 
 

UML 
generalization 

 

OWL object property 

(i.e., hasSubclass) 
 

UML 
aggregation/ 

composition  

OWL object property 

(i.e., hasParts) 
 

UML 

association 
 

OWL object property 
(e.g., isConnectedTo)  

UML attribute 

and the 
datatype  

OWL data property 
(e.g., hasClassValue) 

and datatype (e.g., 

ClassOfLineValue)  

 

Figure 3.3 presents the base ontology (that is semantically equivalent to the Network 

Components module) in graphs (partial). Following the same process, the other AED modules can 

also be re-structured in OWL. The connections among the different modules can be built by 

declaring semantic relationships between cross-module concepts, thus resulting in the base 

ontology of the ADE.   
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Figure 3.3. The base ontology (Network Components module) in graphs (partial) 

3.4.2 Ontology learning 

This section presents the ontology learning process from utility glossaries. Two 

consecutive tasks are involved: extraction of utility terms and semantic relationship classification 

of the terms. The learned semantics would serve to enrich the semantic vocabulary of the base 

ontology. 

3.4.2.1 Term extraction 

A utility glossary contains an alphabetical list of utility terms with their textual definitions, 

as structured in Figure 3.4. The glossary terms listed alphabetically (called key terms thereafter) 

can be extracted without effort while those mentioned in textual definitions (called mentioned 

terms thereafter) would be more difficult to handle. This task focuses on the extraction of 

mentioned terms relating to utility physical products (such as water pipes, electric cables, or sewer 

manholes) from textual definitions. 

Usually, a utility product term may consist of one or a sequence of words and thus, 

extraction of terms can be implemented as a sequential labeling task, in which each word along 
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the input sequence (e.g., sentence) is assigned with a label indicating whether the word begins (B), 

is inside (I), or is outside (O) of a term. Figure 4 also gives a sample labeling of a sequence of 

words using the B, I, and O labels. The sequence contains three utility product terms, control valves, 

iron-bodied gate valves, and water mains. 

 

Figure 3.4. Term extraction from the textual definitions 

CRF is a class of discriminative probabilistic model best suited to sequential labeling tasks. 

CRF can be represented as an undirected graph, conditioned on a set of observations 𝒙 to predict 

a set of output labels 𝒚. The simplest graph structure – linear-chain CRF, which was used in this 

study, is shown in Figure 3.5. A linear-chain CRF defines a conditional probability for a label 

sequence 𝒚 given an observation sequence 𝒙 to be: 

 𝑝(𝒚|𝒙) =  
1

𝑍(𝒙)
 exp (∑∑𝜆𝑘𝑓𝑘(𝑦𝑡−1, 𝑦𝑡 , 𝒙, 𝑡)

𝑘

𝑁

𝑡=1

) (1) 

where 𝑍(𝒙) is the normalization factor that makes the probability of all label sequences sum to 

one; 𝑡 ranges over the input sequence; 𝑓𝑘(𝑦𝑡−1, 𝑦𝑡 , 𝒙, 𝑡) is a feature function that measures any 

aspect of a label transition, 𝑦𝑡−1 → 𝑦𝑡, and the observation sequence 𝒙, centered at position 𝑡; 𝜆𝑘 

is a learned weight associated with feature 𝑓𝑘 . The parameters/weights can be estimated by 

maximum likelihood – maximizing the conditional probability 𝑝(𝒚|𝒙). In sequential labeling, the 

objective is to infer the most probable label sequence 𝒚∗ given an observation sequence 𝒙, which 

can be determined by the following maximization: 

 𝒚∗ = argmax
𝒚

𝑝(𝒚|𝒙) (2) 
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Figure 3.5. Linear-chain CRF graph structure 

In the setting of term extraction, a sentence is a sequence of observations (i.e., words) 𝒙, 

which can be described using the linear-chain CRF model. Each word can be represented as an 

input feature vector, and the CRF model outputs a label (e.g., B, I, or O) 𝑦 for each word in the 

sequence. To define the feature vector for each word, the following syntactic features are used: 

original words, stems, part-of-speech (POS) tags, and lower/title/upper/digit/alnum flags, all of 

which can be extracted using off-the-shelf NLP tools. A context window of size one is constructed 

to include the features of the current word, as well as the features of the preceding and succeeding 

words for representing each word in the sentence. Figure 3.6 shows the feature representation for 

each word. The intent is to provide information on how the current word should be interpreted and 

labeled based on the features of the neighboring words, not only those of the current word. Along 

the sentence, words with their represented feature vectors and actual labels are fed into the CRF 

model for training. The L-BFGS method is used to calculate the optimal set of model 

parameters/weights from the training data because of its faster convergence to the global maximum. 

The Viterbi algorithm is used to obtain the most probable label sequence (i.e., <B, I, I, …, I>) 

through Eq. (2) for extracting utility product terms. 

 

Figure 3.6. Feature representation for each word 

3.4.2.2 Semantic relationship classification 

Usually, the key terms in the glossary have their semantically related terms described in 

the textual definitions – the mentioned terms. In the previous task, mentioned terms are extracted 
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using CRF. This task aims to classify the specific semantic relationships of the key term-mentioned 

term pairs into predefined categories based on the textual definitions. 

(1) Inventory of domain-specific semantic relationships 

An inventory of domain-specific semantic relationships is defined for the key term-

mentioned term pairs. Table 3.2 lists the specific semantic relationships, which includes four 

directed relationships (i.e., Hypernym-Hyponymy, Component-Whole, Content-Container, and 

Entity-Location) and two undirected relationships (i.e., Synonymy and Connection), as well as 

their corresponding descriptions and illustrative examples. The term pair’s direction matters in a 

directed relationship, that is, R (T1, T2) differs from R (T2, T1) for a same directed relationship R 

and two different terms T1, T2. In addition, a seventh relationship – Other is included to stand for 

any relationship other than those presented in Table 3.2. Considering the directionality, a total of 

eleven semantic relationships – Hypernym-Hyponymy (T1, T2), Hypernym-Hyponymy (T2, T1), 

Component-Whole (T1, T2), Component-Whole (T2, T1), Content-Container (T1, T2), Content-

Container (T2, T1), Entity-Location (T1, T2), Entity-Location (T2, T1), Synonymy (T1, T2), 

Connection (T1, T2), and Other (T1, T2) are used for classification.  
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Table 3.2. The specific semantic relationships, descriptions, and illustrative examples 

Semantic relationships Descriptions Illustrative examples 

Directed 

Hypernym-

Hyponymy 

The semantic relationship 

between a generic term 

(Hypernym) and a specific 

instance of it (Hyponymy). 

Hypernym-Hyponymy (system valve, 

gate): Types of system valve include gate, 

plug, ball, cone, and butterfly. 

Component-

Whole 

The semantic relationship 

between a component and a 

larger whole. 

Component-Whole (main valve, gate-type 

hydrant): A gate-type hydrant is a 
hydrant having one main valve. 

Content-
Container 

The semantic relationship 

between an object (Content) 
and its physically stored area 

of space, the container. 

Content-Container (water meter, meter 

box): A meter box is the housing or 

container that encloses a water meter. 

Entity-
Location 

The semantic relationship 

between an object (Entity) 
and its located/placed/ 

installed area, the location. 

Entity-Location (venturi meter, pipe): A 

venturi meter is a flow measuring device 

placed in a pipe. 

Undirected 

Synonymy 

The semantic relationship 

between two terms that share 

the same meaning. 

Synonymy (stop box, curb stop): A stop 

box is also referred to as a curb stop. 

Connection 

The semantic relationship 

between two physically 

connected objects. 

Connection (suction pipe, wet well): The 

suction pipe of a pump may be connected 
to the wet well. 

 

(2) Feature selection – linguistic information along the shortest dependency path 

Dependency parsing is the task of extracting a dependency parse of a sentence that 

represents its grammatical structure and defines the relationships between “head” words and 

“dependent” words [114]. As such, it has been frequently used to dissect sentence and to identify 

the semantic relationship between two words/terms. Figure 3.7 presents the dependency parsing 

result of an example sentence. Dependency relations among the words are illustrated using directed, 

labeled arcs from heads to dependents (such as gate valve 
𝑛𝑠𝑢𝑏𝑗𝑝𝑎𝑠𝑠
←        installed, which means gate 

valve is the nominal subject of the passive verb installed). To determine the target term pair’s 

semantic relationship, it is mostly sufficient to use only the linguistic information along the shortest 

dependency path (SDP) of the term pair. For example, in Figure 3.7, the SDP between the terms 

gate valve and mains, represented by the red arrows, condenses most relevant information about 

the target relationship while diminishing less relevant noise such as the words is and typically and 
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the dependency relations auxpass and advmod. Moreover, the SDP is effective in capturing word 

semantic information close in context but far in sentence distance. Take the following long 

sentence as an example. For the term pair control valves and bronze valves in the sentence 

“…control valves are generally iron-bodied gate valves installed in the water mains, but also 

include many types of smaller bronze valves…”, their SDP, control valves 
𝑛𝑠𝑢𝑏𝑗
←    are 

𝑐𝑜𝑛𝑗
→   include 

𝑑𝑜𝑏𝑗
→   types 

𝑝𝑟𝑒𝑝
→   of 

𝑝𝑟𝑜𝑏𝑗
→    bronze valves, is shortened in length and is also capable of capturing the 

long distance dependency relation between them. In this study, in order to determine the semantic 

relationships between key terms and mentioned terms, the term pairs’ SDPs are first extracted from 

their occurred definition sentences and three types of linguistic information along the SDPs 

including words themselves, POS tags, and dependency relations are then used as the indicative 

features. 

 

Figure 3.7. The dependency parsing result of an example sentence 

(3) Learning architecture for classification – long short-term memory networks 

LSTM networks are used to pick up heterogeneous linguistic information along the SDPs 

for semantic relationship classification. LSTM networks are special Recurrent Neural Networks 

(RNNs) with LSTM units that are capable of not only capturing long-term dependencies in 

sequential data but also addressing the gradient vanishing or exploding problem in classical RNNs. 

Figure 3.8 (a) presents the overall learning architecture using LSTM networks.  
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Figure 3.8. (a) The overall architecture for semantic relationship classification, (b) the 

LSTM networks for feature learning along the SDPs, and (c) the structure of an LSTM 

unit 

The SDPs of the target term pairs serve as the inputs of the LSTM networks. Along the 

SDPs, linguistic features – words, POS tags, and dependency relations, are learned via their 

respective LSTM networks. The detailed process of feature learning via LSTM networks is 

depicted in Figure 3.8 (b). It is observed that an SDP can be separated into two sub-paths (left and 

right), each from the common ancestor “head” word to a target term, which provide strong hints 

for determining the directionality of the target semantic relationship. Considering this, two LSTM 

networks are designed to pick up information along the left and right sub-paths of the SDP, 

respectively, thus enabling the feature learning in a direction-sensitive manner. Take Figure 3.7 as 

an example. The target terms gate valve and mains have their common ancestor head installed, 

which separates the SDP into left sub-path installed 
𝑛𝑠𝑢𝑏𝑗𝑝𝑎𝑠𝑠
→        gate valve and right sub-path 

installed 
𝑝𝑟𝑒𝑝
→   in 

𝑝𝑟𝑜𝑏𝑗
→    mains. Sequential features (such as word sequences: installed – gate valve 

and installed – in – mains) along the left and right sub-paths are learned separately. For effective 
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information propagation and integration along the sub-paths, LSTM units are leveraged. As 

depicted in Figure 3.8 (c), all LSTM units have the same structure that contains three gates – input 

gate, forget gate, and output gate – to control the flow and modify the information in and out of 

the unit. Along the sub-paths, sequential features, e.g., words, represented using real-valued 

vectors (called embeddings), are fed into their corresponding LSTM units. The LSTM units are 

updated through the following equations. 

 𝑖𝑡 =  𝜎(𝑊𝑖 ∙ 𝑥𝑡 + 𝑈𝑖 ∙ ℎ𝑡−1 + 𝑏𝑖) (3) 

 𝑓𝑡 =  𝜎(𝑊𝑓 ∙ 𝑥𝑡 + 𝑈𝑓 ∙ ℎ𝑡−1 + 𝑏𝑓) (4) 

 𝑜𝑡 =  𝜎(𝑊𝑜 ∙ 𝑥𝑡 +𝑈𝑜 ∙ ℎ𝑡−1 + 𝑏𝑜) (5) 

 𝑔𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑔 ∙ 𝑥𝑡 +𝑈𝑔 ∙ ℎ𝑡−1 + 𝑏𝑔) (6) 

 𝑐𝑡 =  𝑖𝑡 ⨂ 𝑔𝑡 + 𝑓𝑡  ⨂ 𝑐𝑡−1 (7) 

 ℎ𝑡 = 𝑜𝑡 ⨂ 𝑡𝑎𝑛ℎ(𝑐𝑡) (8) 

where ℎ is the hidden unit; 𝑐 is the memory cell; 𝑖 is the input gate; 𝑓 is the forget gate; 𝑜 is the 

output gate; 𝑔  is the candidate cell; 𝜎  denotes the sigmoid function; ⨂  denotes element-wise 

multiplication. The three adaptive gates 𝑖𝑡, 𝑓𝑡, and 𝑜𝑡 depend on the previous state ℎ𝑡−1 and the 

current input 𝑥𝑡. 𝑔𝑡 is also calculated, serving as the candidate memory cell. The current memory 

cell 𝑐𝑡 is updated based on the previous memory cell 𝑐𝑡−1  and candidate memory cell 𝑔𝑡 . The 

output of an LSTM unit is the hidden state ℎ𝑡. 𝑊𝑖 , 𝑊𝑓 , 𝑊𝑜, 𝑊𝑔 , 𝑈𝑖, 𝑈𝑓 , 𝑈𝑜, 𝑈𝑔, 𝑏𝑖, 𝑏𝑓 , 𝑏𝑜, 𝑏𝑔 are 

the learnable parameters for each LSTM unit that control the level of information transferred from 

previous states as well as the level of information taken from the current state. A max pooling layer 

thereafter gathers information from LSTM units along each sub-path. Since the three types of 

linguistic features along the SDP do not interact with each other during recurrent propagation, their 

respective pooling layers are concatenated, and then connected to a fully connected hidden layer. 

Finally, a softmax layer takes the output of the hidden layer as input and computes the probability 

of being any particular class of semantic relationship, e.g., Hypernym-Hyponymy (T1, T2). 

3.4.3 Ontology enrichment 

Figure 3.9 illustrates the overall process of ontology enrichment using the learned 

semantics from glossaries. It includes term incorporation (including key terms and mentioned 
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terms), followed by semantic refinement towards the resulting ontology, which is detailed as 

follows. 

 

Figure 3.9. Ontology enrichment process 

3.4.3.1 Incorporation of key terms 

The key terms are first selected and defined as new concepts under 

AbstractNetworkFeature – the dedicated class in the base ontology for representing the physical 

components of utility networks. There are more specialized classes (e.g., 
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AbstractDistributionElement, ControllerComponent) under AbstractNetworkFeature to categorize 

utility physical components based on their functions/usages in the utility networks (see Figure 3.3). 

For example, ControllerComponent represents those components (e.g., valves) used to control, 

limit or influence the flow of the transported commodity. The key terms should be defined under 

appropriate classes to retain the predefined taxonomic structure in the base ontology.  

The textual definitions of the key terms contain keywords (mostly verbs) that indicate the 

functions of the defined utility products, and thus the keywords are used to determine under which 

specific classes the key terms are to be defined. For example, according to the definition of the 

term valve: a valve is a mechanical device installed in a pipeline to close off or regulate the flow 

of gas or liquid, the keywords “close off” and “regulate” indicate that valves function as flow 

controllers in the pipeline system and thus, valve should be defined under ControllerComponent. 

Table 3.3 presents a partial list of the function-indicative keywords for each specialized class under 

AbstractNetworkFeature. 

Table 3.3. A partial list of keywords for each class under AbstractNetworkFeature 

Classes in the base ontology List of keywords 

AbstractDistributionElement distribute, carry, transport, conduct, convey 

EnclosingElement enclose, support, protect, wrap, encase, sleeve 

ConnectionComponent connect, join, couple, chain, interconnect, link, interlink 

ControllerComponent 
control, shutoff, close off, regulate, stop, divert, block, 

disconnect, break   

MeasurementComponent measure, sense, check, gauge, scale  

StorageComponent store, hold, stockpile, keep, stow, house 

TerminalComponent discharge, issue, emit, release, pour 

 

As shown in Figure 3.9, for each key term that needs to be incorporated, keyword search 

is performed in the term’s textual definition. If any word in the keyword list (right column in Table 

3.3) is found in the definition, the defined term would be added as a subclass under the matched 

class in the base ontology (left column in Table 3.3). Since the classes under 

AbstractNetworkFeature are not disjoint, a key term could be defined under multiple classes after 

keyword search. If no keyword is found, the term would be temporarily defined under 

OtherComponent.  
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3.4.3.2 Incorporation of mentioned terms 

After the incorporation of key terms, the mentioned terms are incorporated into the base 

ontology following the process in Figure 3.9. For each concept of the incorporated key term, the 

semantically related mentioned terms are first selected and defined as new concepts of the base 

ontology. The concepts of mentioned terms are then linked to the concept of the key term using 

existing or newly defined object properties of the base ontology. The used object properties 

correspond to the classified semantic relationships of the key term-mentioned term pairs as the 

following: hasSubclass – Hypernym-Hyponymy, hasParts – Component-Whole, contains – 

Content-Container, hasLocation – Entity-Location, equivalentTo – Synonymy, isConnectedTo – 

Connection. For example, for the new concept Valve, which is defined from the key term valve, 

one of the semantically related mentioned terms is water valve, denoted as Hypernym-Hyponymy 

(valve, water valve); correspondingly, a new concept WaterValve is defined and a new semantic 

triple Valve–hasSubclass–WaterValve is constructed, thus enriching the base ontology with new 

semantics. Particularly, there exist some mentioned terms that are exactly the same as some key 

terms (they share the same lexical forms). Under this scenario, existing concepts of key terms are 

used to represent the mentioned terms and additional semantic links are built between the 

applicable concepts of key terms. In addition, some mentioned terms do not have specific semantic 

relationships with the key terms (the semantic relationship is classified as Other). The 

corresponding concepts thus do not have specific semantic links to other concepts.  

3.4.3.3 Semantic refinement 

New semantics – concepts and semantic relationships are added into the base ontology via 

term incorporation. The resulting semantic structure is not optimal and still needs further 

refinement as follows. 

• Duplicate concepts. Some key terms may have a same set of mentioned terms, thus 

resulting in duplicate concepts of mentioned terms defined in the enriched ontology. Under 

this scenario, all duplicate concepts are made distinct and all semantic links are retained by 

the distinct concepts. 

• Redundant semantic links. Especially there are redundant hasSubclass links in the enriched 

ontology. For example, three semantic triples Valve–hasSubclass–GateValve, Valve–
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hasSubclass–ControlValve, and GateValve–hasSubclass–ControlValve are constructed 

through enrichment. The triple Valve–hasSubclass–ControlValve is redundant, which can 

be inferred from the other two triples. Under this scenario, all redundant semantic links are 

checked and removed. 

• Empty assignments. The base ontology has defined ComplexFunctionalComponent to 

represent utility physical components that are composed of other functional components. 

Initially, no concepts are assigned under ComplexFunctionalComponent. After term 

incorporation, the concepts (especially those temporarily defined under OtherComponent) 

that are linked to other concepts via hasParts are also defined under 

ComplexFunctionalComponent. This refinement would achieve maximum compliance 

with the predefined semantic structure under AbstractNetworkFeature. 

In the end, the refined ontology is evaluated through consistency check to ensure that 1) 

the ontology does not contain contradictory semantic triples and 2) the ontology is valid in OWL 

formalization. Figure 3.10 presents a partial graph view of the resulting ontology with incorporated 

semantics. 

 

Figure 3.10. The resulting ontology with incorporated semantics (partially) 
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3.5 Experimentation and Case Demonstration 

3.5.1 Term extraction 

An experiment was conducted to evaluate the performance of the CRF-based approach in 

the extraction/labeling of mentioned utility product terms from the textual definitions in utility 

glossaries. In this experiment, a corpus was built by randomly collecting 200 definition sentences 

from utility glossaries. The corpus consists of nearly 8,100 tokens (including words and 

punctuation marks). Domain experts were invited to manually label the tokens using B, I, and O 

labels, which resulted in 912 utility product terms identified. A Python program Feature-Extractor 

was also developed to help extract the feature representations for individual tokens. 

The corpus was split into two sets: (1) training set – 140 sentences and (2) test set – 60 

sentences. By feeding the training set – a sequence of tokens’ feature representations and labels 

into the CRF model, the optimal set of parameters/weights were learned. The test set was then used 

to evaluate the performance of the trained CRF model – Term-Labeler. Table 3.4 presents the 

evaluation results in terms of precision, recall, and F-measure. Let 𝑇𝑖 denote a set of true tokens 

labeled with label 𝑖 in the test set, and  𝑇𝑖′ denote a set of tokens labeled with label 𝑖 by the Term-

Labeler. The precision (𝑃𝑖), recall (𝑅𝑖), and F-measure (𝐹𝑖) for a certain label 𝑖 are calculated using 

the following equations: 

 𝑃𝑖 = 
𝑇𝑖 ∩ 𝑇𝑖′

𝑇𝑖′
 (9) 

 𝑅𝑖 = 
𝑇𝑖 ∩ 𝑇𝑖′

𝑇𝑖
 (10) 

 𝐹𝑖 =  
2 × 𝑃𝑖 × 𝑅𝑖
𝑃𝑖 + 𝑅𝑖

 (11) 

The overall performance is evaluated based on the percentage of correctly labeled tokens 

for all types of labels relative to the total number of tokens existing in the test set. The test set 

contains a total of 2512 tokens, among which 241, 191, and 1987 tokens were correctly labeled as 

B, I, and O, respectively. As such, an average accuracy of 96.30% was achieved by the Term-

Labeler. 
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Table 3.4. Evaluation results for term extraction 

Label Precision (%) Recall (%) F-measure (%) 

B 0.870 0.880 0.875 

I 0.946 0.868 0.905 

O 0.977 0.985 0.981 

 

Figure 3.11 presents the confusion matrix for the labeling results over the test set. Error 

analysis results in the following two findings. First, some terms may have adjectives as their 

constituent parts while some may not. This situation may lead to errors in labeling the adjectives 

(confusion between B and O). For example, the word sequence “potable water distribution pipe” 

(actual label sequence is <B, I, I, I>) could be sequentially labeled as <O, B, I, I> while the word 

sequence “smaller bronze valve” (actual label sequence is <O, B, I>) could be sequentially labeled 

as <B, I, I>. In order to reduce such errors, statistical features (e.g., TF-IDF) that measure the 

degree of a word/phrase being a domain-specific term can be incorporated into the training process 

for a more accurate term labeling. Second, the textual definitions also contain some terms relating 

to transportation products (such as pavements, shoulders, or curbs), which were incorrectly labeled 

as utility product terms. The Term-Labeler is unable to differentiate them merely based on their 

syntactic features. One possible way of improving the performance is to incorporate semantic 

features (that can be captured using ontologies) to enable the semantic labeling. Therefore, future 

research is still needed to further improve the accuracy and robustness of the Term-Labeler. 

 

Figure 3.11. Confusion matrix for term extraction in the test set 
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3.5.2 Semantic relationship classification 

An experiment was conducted to evaluate the performance of the LSTM-based approach 

in classifying the specific semantic relationships of the key term-mentioned term pairs based on 

the textual definitions. In this experiment, a total of 1,000 definition sentences were collected from 

utility glossaries. For each definition sentence, the key term-mentioned term pair that needs to be 

semantically classified were marked and the true semantic relationship of the term pair was also 

assigned, thus forming the ground truth for this experiment. A Python program Path-Feature-

Extractor was developed to help extract the SDPs of the marked term pairs as well as the linguistic 

features (words, POS tags, and dependency relations) along the left and right sub-paths of the SDPs 

from the definition sentences. For feature representations, words are mapped to 100-dimensional 

real-valued vectors that were pre-trained on the English Wikipedia corpus by Glove [115], and 

both POS tags and dependency relations are mapped to 25-dimensional real-valued vectors that 

were initialized randomly. 

The collected definition sentences were split into two sets: (1) training set – 700 sentences 

and (2) test set – 300 sentences. The training set was first processed using the Path-Feature-

Extractor and then fed into the LSTM networks for training. The training objective was to 

minimize the cross-entropy error; stochastic gradient descent was applied for optimization; and 

gradients were computed by standard back propagation. Once the Semantic-Relationship-

Classifier was trained, it was evaluated using the test set. Table 3.5 presents the evaluation results 

in terms of precision, recall, and F-measure. The precision (𝑃𝑖), recall (𝑅𝑖), and F-measure (𝐹𝑖) for 

a certain semantic relationship 𝑖 are also calculated using Eq. (9–11), where 𝑇𝑖 denotes a set of true 

term pairs classified with semantic relationship 𝑖 in the test set, and  𝑇𝑖′ denotes a set of term pairs 

classified with semantic relationship 𝑖 by the classifier. The overall performance is evaluated based 

on the percentage of correctly classified term pairs for all types of semantic relationships relative 

to the total number of term pairs existing in the test set. The test set contains a total of 300 term 

pairs (one term pair per definition sentence), among which 258 pairs were correctly classified. As 

such, an average accuracy of 86% was achieved by the Semantic-Relationship-Classifier. 
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Table 3.5. Evaluation results for semantic relationship classification 

Semantic relationship Precision (%) Recall (%) F-measure (%) 

Hypernym-Hyponymy (T1, T2) 0.840 0.840 0.840 

Hypernym-Hyponymy (T2, T1) 0.875 0.903 0.889 

Component-Whole (T1, T2) 0.962 0.962 0.962 

Component-Whole (T2, T1) 0.782 0.900 0.837 

Content-Container (T1, T2) 0.833 0.556 0.667 

Content-Container (T2, T1) 0.839 0.897 0.867 

Entity-Location (T1, T2) 0.857 0.857 0.857 

Entity-Location (T2, T1) 0.778 0.583 0.667 

Synonymy (T1, T2) 0.975 0.929 0.951 

Connection (T1, T2) 0.839 0.897 0.867 

Other (T1, T2) 0.804 0.804 0.804 

 

Figure 3.12 presents the confusion matrix for the classification results over the test set. 

Error analysis leads to the following findings. First, there are no confusion between the same 

relationship but with the term order inverted, such as Hypernym-Hyponymy (T1, T2) and 

Hypernym-Hyponymy (T2, T1). This demonstrates the effectiveness of separating the SDPs into 

two sub-paths in capturing the directionality of the relationships. Second, both the relationships 

Content-Container (T1, T2) and Entity-Location (T2, T1) show the lowest F-measure (66.7%). 

This is mainly because (1) their instances are very few, only accounting for around 4% of the total 

instances – their linguistic features were not sufficiently learned and generalized by the LSTM 

networks and (2) some instances were misclassified as other relationships (for example, Content-

Container (T1, T2) was misclassified as Entity-Location (T1, T2)) – the decision boundaries 

between them were not clearly cut. Third, most confusion occurs between the ten explicitly defined 

relationships and the pseudo relationship Other (T1, T2). Other (T1, T2) stands for any relationship 

which is not one of the nine explicitly defined relationships. Adding it to the training set would 

force any model to correctly identify the decision boundaries between the explicitly defined 

relationships and “everything else”. This also encourages good generalization behavior to larger, 

noisier data sets commonly seen in real-world applications. However, the data for Other (T1, T2) 

prepared in this experiment is neither sufficient nor nonhomogeneous, thus leading to some 

confusion between the ten relationships and Other (T1, T2).  

The Semantic-Relationship-Classifier can be improved in three aspects for an even higher 

efficacy: (1) extract more features such as domain semantics (using domain ontologies) and lexical 

semantics (using lexical databases such as WordNet) along the SDPs and incorporate them into 
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the LSTM-based learning process; (2) integrate non-SDP features such as the term pairs’ 

distributional embeddings and surface string features (especially for those multiword terms that 

have common words) with the features along the SDPs and create an integrated method for feature 

learning; (3) increase the data size, improve the data quality (especially those for Other (T1, T2)), 

and provide a validation set to fine-tune the model hyperparameters during training, thus resulting 

in a more generalized model for relationship classification. 

 

Figure 3.12. Confusion matrix for semantic relationship classification in the test set 
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3.5.3 Case demonstration 

A case on the development of a domain ontology for utility infrastructure using CityGML 

Utility Network ADE and a glossary of water terms was demonstrated.  

First, the base ontology was abstracted from the ADE using a series of UML-to-OWL 

mappings, thus resulting in 73 classes, 24 object properties, 43 data properties, and 21 datatypes. 

Most of the semantic declarations remain consistent with the ADE.  

Then, additional semantics were learned from a glossary of water terms. The water 

dictionary [116] that was published by American Water Works Association (AWWA) was used, 

from which a total of 100 key terms (all related to utility physical products) as well as their textual 

definitions were randomly collected for learning. Term-Labeler was first used to extract/label the 

mentioned utility product terms from the textual definitions. As a result, 363 mentioned terms 

(excluding the key terms) were extracted and correspondingly, a total of 363 key term-mentioned 

term pairs were generated by pairing the key terms with their semantically related mentioned terms. 

Path-Feature-Extractor was then used to extract the learning features – SDPs of the term pairs from 

their co-occurred definition sentences. Finally, Semantic-Relationship-Classifier was used to 

determine the specific semantic relationships of the term pairs based on the extracted learning 

features. Figure 3.13 presents the learning results using an illustrative example. Among the 363 

term pairs, 37, 115, 45, 23, 3, 24, 17, 0, 56, 14, and 29 instances were classified as Hypernym-

Hyponymy (T1, T2), Hypernym-Hyponymy (T2, T1), Component-Whole (T1, T2), Component-

Whole (T2, T1), Content-Container (T1, T2), Content-Container (T2, T1), Entity-Location (T1, 

T2), Entity-Location (T2, T1), Synonymy (T1, T2), Connection (T1, T2), and Other (T1, T2), 

respectively. 
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Figure 3.13. Ontology learning from glossaries 

The last step was to incorporate the learned semantics into the base ontology. Following 

the process illustrated in Figure 3.9, a total of 428 terms (duplicates were made unique) and 2 

semantic relationships (the others have their correspondences in the base ontology) were 

incorporated into the base ontology as new classes and object properties, respectively. Figure 3.14 

presents the hierarchies of the classes, object properties, data properties, and datatypes in the 

resulting ontology.  
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Figure 3.14. Hierarchies of the classes, object properties, data properties, and datatypes in 

the resulting ontology 

The evaluation of the resulting ontology was conducted in an iterative manner, starting 

with evaluation through simple automated consistency checking to ensure correct syntax 

formalization (using OWL), followed by evaluation by domain experts. Preliminary consistency 

checks were successfully conducted through the built-in Protégé reasoner. As such, the ontology 

does not contain contradictory statements and are valid in the use of OWL syntax. Then, the 

ontology was assessed by domain experts to determine if they are accurate, sufficient and common 

conceptualization of the utility domain. Since (1) the base ontology inherits the semantics in the 

candidate open standard – CityGML Utility Network ADE, and (2) the ontology enrichment from 

glossaries achieves the maximum compliance with the base ontology, the majority of the detailed 

modeling in the resulting ontology was confirmed by the experts. After minor changes based on 

the feedbacks from experts, the revised ontologies were then fully agreed upon. 
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The following limitation is acknowledged. The ontology evaluation by domain experts did 

not involve enough industry experts, and the selection of the experts did not follow a strict 

screening process. In future, a sufficient number of industry experts will be selected based on the 

following criteria; 1) Years of experience within a particular sector of utility infrastructure, 2) 

Thorough knowledge of utility design issues, and 3) Familiarity with issues associated with design 

coordination among various utilities. Face-to-face interviews with experts will be conducted to 

assess the ontology contents (e.g., concepts and relationships) from the user’s point of view. On 

average each interview will be designed to take one hour to complete. The experts will be briefed 

for 20 min about the sources of gathering different concepts and how they are structured to form 

hierarchies. Following the guidelines provided by EI-Diraby et al. [98], the experts will evaluate 

the ontology from the following aspects: navigational ease through locating concepts, categorizing 

concepts, and overall assessment. 

• Navigational ease ensures knowledge access, retrieval, re-use, and maintenance. It is not 

difficult to locate concepts in an easy-to-navigate taxonomy hierarchy. Experts will be 

asked to locate ten concepts in the taxonomy with the definitions of those concepts given 

in the questionnaire to avoid any ambiguity. A six-point scale (1 being the easiest 

navigation and 6 being the most difficult navigation) will be used to record the experts’ 

responses. 

• Experts will be asked to rate their consensus with ten concepts regarding the classification 

in the ontology. Afterwards they will be presented with another set of ten concepts, till all 

the concepts in the ontology are rated. Likewise, experts will be asked to categorize these 

concepts according to the ontological model using the same six-point scale. 

• Finally, as the experts become fully aware of the ontology and the conflicting needs of 

categorization, they will be asked to make a general assessment about the ontology still 

using a six-point scale. 

Through survey analysis, the evaluation results by the experts can be used to modify the 

ontology and deliver a more acceptable outcome for the utility industry. Meanwhile, such 

evaluation will also provide a trustworthy assessment on the term extraction and semantic 

relationship classification results. 
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3.6 Summary and Conclusions 

This paper develops a domain ontology for utility infrastructure by coupling the semantics 

of CityGML Utility Network ADE and domain glossaries. Departing from CityGML Utility 

Network ADE, a base ontology is developed through a series of UML-to-OWL mappings, 

followed by the incorporation of the semantics learned from domain glossaries. As domain 

glossaries are textual documents, an integrated NLP approach is devised to automatically learn the 

semantics from them. The NLP approach consists of a CRF model for term extraction and LSTM 

networks for semantic relationship classification. The learned semantics include a list of domain 

terms and semantically classified term pairs, which are then incorporated into the base ontology 

as new semantics. The proposed NLP approach was evaluated using human-annotated test sets, 

and results show an average accuracy of 96% in term extraction and 86% in semantic relationship 

classification. A case on the development of a domain ontology for utility infrastructure using 

CityGML Utility Network ADE and a glossary of water terms was demonstrated and the resulting 

ontology was evaluated to be an accurate, sufficient and shared conceptualization of the domain. 

Unlike the traditional five-step approach that requires significant human efforts on 

knowledge retrieval, and ontology construction and validation, this paper takes a top-down 

strategy to develop the ontology for the utility infrastructure domain. An existing data model – 

Utility Network ADE was selected as the base, and thus significant time and effort were saved in 

building the knowledge skeletons of the ontology. Domain glossaries play critical roles in sharing 

and conveying domain knowledge and understanding. Full automation (using an integrated NLP 

approach) in ontology learning from domain glossaries is realized, thus enabling the automated 

enrichment of the ontology to keep up with the growth of new knowledge. Compared to the 

existing ontologies, the ontology developed in this paper is argued to be a better option as the 

interoperability facilitator for the utility domain attributed to the following two characteristics. 

First, the semantic schema in the new ontology aligns well with the CityGML extension. Plus, 

many GIS tools provide the capability of exporting data in the CityGML-compliant format. The 

new ontology can serve as an effective intermedium for the exchange of utility geospatial data in 

heterogeneous proprietary formats. Second, the semantic vocabulary in the new ontology has a 

relatively extensive coverage of concepts and relationships (which can also be expanded in timely 

and automated manners). It can help interpret the meaning of data and enable the semantic 

integration of data between disparate sources that use different sets of vocabularies. Therefore, the 
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new ontology can be utilized as the shared and reliable information source to facilitate a high 

degree of interoperability across the utility infrastructure domain. 
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 ONTOLOGY AND RULE-BASED NATURAL LANGUAGE 

PROCESSING APPROACH FOR INTERPRETING TEXTUAL 

REGULATIONS ON UNDERGROUND UTILITY INFRASTRUCTURE 

This chapter presents the design of an ontology- and rule-based NLP approach to automate 

the interpretation of utility regulations – extracting the requirements from the regulations and 

further formalizing them into logic clauses – for supporting automated compliance checking of 

underground utilities. The approach integrates ontologies to capture both domain and spatial 

semantics in utility regulations and encode pattern-matching rules for information extraction. An 

ontology- and deontic logic-based mechanism is also integrated to facilitate the semantic and logic-

based formalization of utility-specific regulatory knowledge. The proposed approach was tested 

in interpreting the spatial configuration-related requirements in utility accommodation policies, 

and results show the newly developed approach achieves 94.7% recall and 98.2% precision in 

information extraction and 93.2% accuracy in information formalization. 

In developing the proposed approach, the methods for semantic NLP-based information 

extraction by Zhang and EI-Gohary [49] and Zhou and EI-Gohary [50] were used and adapted to 

address the unique challenges in processing utility-specific regulations. The deontic logic (DL) 

representation by Salama and EI-Gohary [126] was also used and extended. Please see Section 

4.2.2 for further details.  

This work is under review in Advanced Engineering Informatics, 2020, Xin Xu and Hubo 

Cai. “Ontology and Rule-based Natural Language Processing Approach for Interpreting Textual 

Regulations on Underground Utility Infrastructure”. Table titles and figure captions have been 

modified to maintain the form of the dissertation. 

4.1 Introduction 

Underground utility infrastructure supports essential services such as water, gas, electricity, 

and telecommunication to the public. The physical complex networks share the underground space 

and must be spatially coordinated to ensure their performance and structural integrity [2,34]. 

Utility regulations stipulate the spatial configurations among underground utility networks and 

their surroundings to avoid interferences and disruptions of utility services [1,2,34]. In the current 

practice, practitioners perform compliance checking, with the aim of detecting violations in 



 

 

101 

designs and existing records, by manually going through the lengthy textual regulations, 

interpreting them subjectively based on their knowledge and experience, and checking massive 

and heterogeneous utility data against them [1,45]. This practice is neither efficient, nor sustainable, 

attributed to the large size of and the heterogeneity in utility regulatory documents [1] and the 

heavy reliance of the interpretation on human knowledge and subjective judgement – different 

interpreters might entail different meanings from the same clause [15]. Therefore, there is a critical 

need for an automated approach for the consistent interpretation of textual regulations on 

underground utilities to ensure the compliance of underground utility infrastructure.  

A number of approaches have been attempted to automate the interpretation process for 

regulatory documents in the Architecture, Engineering, and Construction (AEC) domain. 

Examples include the use of hypertext and hypermedia to aid in navigating regulatory documents 

[46,47] and the use of document markup techniques to assist in analyzing the semantic structure 

of target regulatory requirements [48]. Nevertheless, these methods require intense manual efforts 

on annotating regulatory documents for further interpretation [24,48]. Natural Language 

Processing (NLP) methods have emerged in recent years to automate the extraction of 

requirements from textual documents such as building codes [49,50] and utility regulations [1]. 

Further, NLP has also been attempted to transform the extracted requirements into a structured 

format (i.e., logic clauses) for compliance checking [51]. Technical challenges in automating the 

interpretation of utility regulations include 1) heterogeneous technical terminologies – utility 

regulations contain a variety of technical terms since different disciplines and communities of 

practice may adopt different sets of vocabularies to describe their utility assets, and 2) the 

dominance of spatial constraints in utility regulations regarding location and clearance for the 

purposes of infrastructure safety, maintainability, and constructability, and public health and safety 

[2,34]. Consequently, a successful NLP method for the efficient and consistent interpretation of 

utility regulations must have the capacity to address the heterogeneity of technical terminologies 

and understand the spatial semantics from natural language.  

Towards that end, this paper presents an ontology and rule-based NLP approach to 

automate the interpretation of utility regulations, i.e., extract the requirements from the regulations 

and formalize them into logic clauses, that can be further implemented in automated reasoning for 

utility compliance checking. The approach has the following specifics. Two ontologies have been 

developed: 1) urban product ontology (UPO) that covers the concepts related to urban physical 
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products and their varying names for capturing domain semantics from the heterogeneous 

terminologies in regulations and 2) spatial ontology (SO) that covers two layers of semantics – 

linguistic spatial expressions and formal spatial relations for understanding spatial language in 

regulations. A set of text patterns that consist of syntactic features (captured using common NLP 

techniques) and semantic features (captured using ontologies) have been defined and encoded as 

pattern-matching rules for information extraction. A mechanism by coupling ontologies and 

deontic logic (DL) has been designed to achieve the semantic and logic-based formalization of 

utility-specific regulatory knowledge, i.e., map the extracted information elements into their 

semantic correspondences and further transform them into DL clauses. The approach was tested 

in extracting and formalizing the spatial configuration-related requirements from utility 

accommodation policies. Results demonstrate its effectiveness as a means for the consistent and 

objective interpretation of textual regulations on underground utilities to ensure the compliance of 

underground utility infrastructure. 

4.2 Background and Review of Related Studies 

4.2.1 Automation in the interpretation of regulatory documents 

With the advancements in computing technologies, a number of rule-based and automated 

methods for compliance checking have been developed in the AEC domain [15,19,20,24,33,117–

121]. Despite this progressive trend, intensive manual efforts are still needed to interpret the 

regulatory documents and represent the requirements in a computable form [119]. A number of 

approaches have been taken by researchers to automate or semi-automate the interpretation process 

of regulatory documents. Examples include the use of hypertext and hypermedia to aid in 

navigating regulatory documents [46,47] and the use of document markup techniques to analyze 

the semantic structure of target regulatory requirements [48]. These efforts mainly focus on the 

analysis of the document structure, and thus, substantial manual efforts are still required to 

annotate regulatory documents for further interpretation [24,48].  

In recent years, NLP methods have emerged as an effective tool to automate the 

interpretation process of textual documents. NLP deploys artificial intelligence to enable 

computers to understand, create, and analyze human languages [40]. It has been used in 

applications such as machine translation, speech recognition, information retrieval and information 
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extraction [114]. In the construction domain, a number of important research efforts have used 

NLP techniques for document classification [100,101,122,123], information retrieval [102–

104,124], and information extraction [1,42,49,50,104,105,125]. For instance, Al Qady and Kandil 

[123] developed a text classifier to automatically classify project documents on the basis of text 

content; Zou et al. [103] utilized text mining and NLP techniques to retrieve similar cases from 

construction accident databases for risk management; and Zhang and EI-Gohary [49] proposed a 

semantic NLP approach to extract the requirements from building codes for supporting automated 

compliance checking. 

NLP methods for the interpretation of regulatory documents for the purpose of compliance 

checking involve two steps: information extraction and information formalization. A number of 

studies have developed NLP methods to automate the extraction of requirements from textual 

documents such as building codes [49,50] and utility regulations [1]. NLP has also been attempted 

to transform the extracted requirements into logic clauses that could be directly used for automated 

compliance checking [51]. These studies have demonstrated the successful application of NLP-

based approach in interpreting regulatory documents for compliance checking. However, existing 

NLP methods are highly domain specific and application dependent [126], and thus, the methods 

developed for the building sector are not suitable for the utility sector. While the method developed 

in [1] serves the utility domain, it was challenged by the lack of a comprehensive taxonomy to 

address the issue of heterogeneous terminologies and its limited capability of spatial understanding. 

Therefore, there is a need to improve existing NLP methods for the efficient and consistent 

interpretation of utility regulations to suit domain-specific application purposes (e.g., utility 

compliance checking). 

4.2.2 NLP-based information extraction 

NLP-based information extraction, one critical step towards the automated interpretation 

of textual regulations, aims to recognize meaningful information from unstructured data and 

formalize them in the structured/normalized format by deploying NLP techniques [114]. NLP-

based information extraction mainly utilizes two approaches, a rule-based approach or a machine 

learning (ML) approach. The rule-based approach relies on pattern-matching rules for text 

processing. In most of rule-based information extraction systems [127], input texts are first 

processed as a sequence of tokens, human efforts are then involved in defining text patterns over 
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the text features of these tokens, and finally the defined patterns are encoded as pattern-matching 

rules for information extraction. The ML approach uses ML algorithms such as Naïve Bayes (NB), 

Support Vector Machines (SVM), Hidden Markov Models (HMM), or Conditional Random Fields 

(CRF) to automatically learn the extraction patterns/rules from a set of annotated training texts 

[128]. While this approach eliminates human involvement in text pattern definition and extraction 

rule development, it still requires human effort to prepare a sufficiently large size of training data. 

In the construction domain, most of the NLP-based efforts adopted the rule-based approach 

to extract specific types of information based on partial analysis of textual documents. For instance, 

Abuzir and Abuzir [42] developed the ThesWB system which relied on the document structure 

and simple lexico-syntactic patterns to extract civil engineering terms and their relations from 

HTML web pages. Al Qady and Kandil [105] used limited syntactic features produced via shallow 

parsing to extract subjects, objects, and their relations from contract documents, and created a 

knowledge graph of the extracted information. Li et al. [1] utilized chunk-based rules to 

automatically extract information from utility regulations to support automated compliance 

checking of underground utilities. Lee et al. [129] integrated preprocessing, syntactic, and 

semantic rules to automatically extract poisonous clauses from international construction contracts. 

However, ML-based information extraction has been less studied in construction until recently; 

for instance, Liu and El-Gohary [130] developed a method of automated information extraction 

from bridge inspection reports based on CRFs. Kim and Chi [104] used an integrated approach – 

rule-based and CRF methods to automatically extract information from accident cases. 

Recently, ontologies have been integrated to suit domain-specific information extraction 

purposes [52–55]. Ontology is an explicit and formal specification of a conceptualization [57], 

which allows for representing domain meanings in an information system. Ontology-based 

information extraction further incorporates semantic features into rule-based or ML-based systems 

to extract information based on meaning. It is reported that the use of ontology yields higher 

performance in information extraction for a specific domain [49,50,55]. For instance, Zhang and 

EI-Gohary [49] proposed a semantic NLP-based approach, where extraction patterns are composed 

of a variety of syntactic and semantic features, to automatically extract information from building 

codes. Further, Zhou and EI-Gohary [50] advanced the aforementioned approach through several 

domain-specific preprocessing techniques, a more complex extraction procedure, and a deeper 

domain ontology, to facilitate the information extraction from building energy conservation codes. 
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In developing the proposed approach, the methods for semantic NLP-based information 

extraction by Zhang and EI-Gohary [49] and Zhou and EI-Gohary [50] were used and adapted to 

address the unique challenges in processing utility-specific regulations. The methods were adapted 

in the following three ways: 

• Using a different domain ontology for urban infrastructure – UPO. UPO captures the 

concepts related to utility and transportation physical products and also includes the 

heterogeneity of concept names. UPO-based information extraction allows for the 

extraction and formal representation of the varying technical jargons/terms from utility 

regulations.  

• Using spatial language. Existing studies did not consider spatial cognition in their NLP 

algorithms. In this study, SO captures the concepts related to linguistic spatial expressions 

(that are used in spatial language) and formal spatial relations (that are used in spatial 

models). A set of spatial mappings are used to fill the semantic gap between linguistic 

spatial expressions and formal spatial relations. SO-based information extraction allows 

for the extraction and formal representation of spatial information from utility regulations.  

• Using dedicated ontologies, UPO and SO, and DL for the semantic and logical 

formalization of utility-specific regulatory knowledge. The ontologies enable the semantic 

representation of the extracted information while DL provides a formal language with 

normative notions for the logical representation of the utility-specific regulatory 

knowledge. This study used the DL representation that was extended by Salama and EI-

Gohary [126] for the accommodation of the regulatory requirements of automated 

compliance checking in the construction domain. Jointly, they facilitate the objective and 

consistent interpretation of textual regulations on underground infrastructure.   

4.3 Ontology and Rule-based Approach for the Interpretation of Utility Regulations 

An ontology and rule-based approach has been devised to automate the interpretation of 

utility regulatory documents. Figure 4.1 illustrates the connections among the composing elements 

and the workflow of the newly developed approach. It includes five major steps: 1) text 

preprocessing, 2) annotation of regulatory sentences, 3) analysis of target information elements, 4) 

extraction of target information elements, and 5) formalization of target information elements. Due 

to the dominance of the requirements regarding the spatial configurations between utilities and 
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their surroundings in utility regulations, this study focuses on the sentence-level interpretation of 

the spatial configuration-related requirements.  

 

Figure 4.1. Proposed approach for the interpretation of utility regulations 

4.3.1 Text preprocessing 

Text preprocessing aims to extract the most basic syntactic features from input texts for 

subsequent NLP tasks. Preprocessing techniques used in this study include tokenization, sentence 

splitting, part-of-speech (POS) tagging, morphological analysis, and syntactic parsing. Many off-

the-shelf tools now provide NLP pipelines for text preprocessing such as the ANNIE system of 

GATE [131]. Figure 4.2 presents an illustrative example of text preprocessing.  
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Figure 4.2. NLP pipeline for text preprocessing 

In particular, syntactic parsing is the task of recognizing a sentence and assigning a 

syntactic structure to it according to context-free grammars (CFGs) [114]. CFGs define a set of 

rules to derive a tree structure from a given sentence. For instance, the CFG rule “Sentence → NP 

VP” indicates a sentence can be replaced as a combination of noun phrase and verb phrase. The 

derivation process continues until it reaches the individual word level. Syntactic parsing 

contributes to this study in two ways: 1) generates phrasal tags to capture more general text patterns 

and to reduce the possible number of enumerations in developing text patterns for extraction [49]; 

and 2) provides the syntactic structure of the complex sentence to support full sentence analysis 

for information extraction. 

4.3.2 Annotation of regulatory sentences 

In this step, an annotation schema was proposed to categorize different natural language 

expressions (such as a specific word, a phrase, or a chunk of text) in the regulatory sentences into 
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different annotation groups. Three main techniques (i.e., ontologies, gazetteer lists, and syntactic 

patterns) were used to enable the automated annotation of the regulatory sentences. This step aims 

to prepare intermediate text features (such as semantic features or application-specific features) 

from the preprocessed texts for the subsequent steps. 

4.3.2.1 The annotation schema for regulatory sentences 

Eight types of annotations are considered in the schema, i.e., spatial entity, spatial entity 

modifier, spatial lexical unit, deontic operator indicator, negation indicator, distance value, 

distance unit, and distance restriction. Figure 4.3 presents an example sentence annotated based on 

the schema.  

 

Figure 4.3. An annotated example of regulatory sentence 

Specifically, “spatial entity” refers to the name/label of an urban product (e.g., conduit) 

whose location or position is described in the requirement; “spatial entity modifier” refers to a 

word or a chunk of words, such as adjectives (e.g., public), adverbs, or phrases (e.g., located within 

the public right of way), that give additional descriptions about the spatial entity; “spatial lexical 

unit” is the most basic lexical unit that has spatial implications (e.g., locate, within); “deontic 

operator indicator” is a word or phrase (e.g., shall) that indicates the deontic type of the 

requirement [49,50,126]: obligation, permission, or prohibition; “negation indicator” is the word 

“not” or “no”; “distance value” refers to the quantitative measure of the specified distance by the 

requirement (e.g., 30); “distance unit” refers to the measurement unit of the “distance value” (e.g., 

feet); “distance restriction” refers to the restriction set to the “distance value”, for specifying a 

quantitative range, such as “at least”. 
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4.3.2.2 Use of ontologies 

Two ontologies, UPO and SO, were developed in this step to help annotate the spatial 

entities and spatial lexical units in the sentence. Figure 4.4 presents a partial view of the developed 

UPO and SO. UPO mainly captures the concepts related to urban physical products. It categorizes 

urban products into two main groups: utility products and transportation products. As for the 

fragmented utility industry, different sets of vocabularies are being used by different organizations 

for describing their owned products. For instance, different terms such as “cathodic protection 

anode bed”, “deep anode well”, and “deep ground bed” are often used to refer to the same utility 

product “cathodic protection well”. The existing ontologies for the utility infrastructure domain 

[2,34,132] primarily focus on concept description but neglect the heterogeneity of concept names 

and consequently, they are not sufficient to interpret the varying technical jargons/terms in utility 

regulations for the purpose of information extraction/formalization. In this study, UPO 

incorporates the term diversity and captures such diversity by assigning label property values to 

ontology concepts (see Figure 4.4). Thus, UPO-based annotation enables the annotation of spatial 

entities that have different names and meanwhile retain their correspondences to the ontology 

concepts.  
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Figure 4.4. A partial view of SO and UPO 

SO has four top-class concepts, i.e., spatial linguistic element, distance element, spatial 

indicator, and spatial relation. Existing spatial ontologies [45,63,133] merely consider the general 

concepts of spatial objects and spatial relations but do not include the linguistic spatial expressions 

that are used in natural language texts, thus preventing them from being applied in spatial 

information extraction from natural language texts. To the authors’ best knowledge, SO is the first 

attempt that includes two layers of semantics – linguistic spatial expressions and formal spatial 

relations to allow for the extraction and formal representation of spatial information from utility 

regulations. This step mainly uses the concepts under the spatial linguistic element to help annotate 

the spatial lexical units in the sentence. Under this category, there are five subcategories: spatial 

nouns, spatial adjectives, spatial adverbs, spatial prepositions, and spatial compounds. Referring 

to SO, spatial lexical units within the sentence can be identified as well as their corresponding 

semantic categories.  
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The use of UPO and SO benefits the information extraction task in this study in two main 

ways: 1) creating a list of names and assigned labels of all ontology concepts in base forms as a 

semantic vocabulary for annotation lookup; and 2) enabling the awareness of the hierarchical 

relationship between super-sub concepts in defining text patterns for extraction [49,50]. The 

implementation is enabled through the OntoRoot Gazetteer module in GATE. 

4.3.2.3 Use of gazetteer lists 

A gazetteer is a set of lists storing specific terms that share a common category. Gazetteer 

lists have been used in previous information extraction efforts [1,49,50] to find occurrences of the 

stored terms in text. For this study, three gazetteer lists were manually compiled and used: 1) 

negation gazetteer list, which includes negation words like “no” or “not”; 2) distance unit gazetteer 

list, which includes unit words like “feet” and “inch”; 3) distance restriction gazetteer list, which 

is composed of words/phrases specifying a quantitative range of a quantity value, such as “at least”, 

“at most”, “minimum”, “greater or equal”, and “less than”. They were used to facilitate the 

automatic annotation of negation indicators, distance units, and distance restrictions in the 

sentences. 

4.3.2.4 Use of syntactic patterns 

Syntactic patterns were encoded as annotation rules in this step to enable sequential 

annotations among syntactically related annotations. For instance, as spatial entity modifiers are 

to give additional descriptions of the spatial entities, from the syntactic perspective, spatial entity 

modifiers could be the adjacent sentence constituents of the spatial entities, such as adjectives, 

adverbs, phrasal modifiers, or subordinate clauses. Regular expressions [114] were used to 

characterize possible combinations of text features (such as POS tags, phrasal tags, text strings, 

and existing annotations) for syntactic pattern matching. Java Annotation Patterns Engine (JAPE), 

a regular expression-based implementation in GATE, was used to encode pattern-matching rules 

for annotation. Figure 4.5 presents one example JAPE rule for annotating spatial entity modifiers. 

In this rule, JJ, JJR and JJS are POS tags for adjective, comparative adjective, and superlative 

adjective respectively; VP, PP, SBAR are phrasal tags for verb phrase, prepositional phrase, and 

subordinate clause respectively; and spatialEntity is the annotation for spatial entity. Using the 
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JAPE operators, patterns can be alternative (|), optional (?), or matched zero or more (*), one or 

more (+) or some specified number of times. By applying this rule to the example in Figure 3, 

adjectives (such as the word “public”) preceding the spatial entities and the followed verb phrase, 

preposition phrase or subordinate clause (such as the phrase “located within the public right of 

way”) would be annotated as spatialEntityModifier.  

 

Figure 4.5. An example JAPE rule 

In addition, syntactic patterns syntactic patterns reduce ambiguities during annotation. For 

instance, CD (a POS tag for cardinal number) tagged texts are potential distance values of 

regulatory requirements. However, they could also be quantity values that describe certain 

attributes of spatial entities such as dimensions. The syntactic closeness between the distance value 

and the spatial lexical unit is quite informative in reducing such ambiguity. For instance, in the 

sentence “the 6-inch mechanical joint inlet shall be located 5 feet below the ground”, “6” should 

not be annotated as distance value while “5” should be annotated due to its syntactic closeness to 

the spatial lexical units “located” and “below”.   

Lastly, deontic operator indicators were annotated based on the MD (a POS tag for modal 

verb) tag. By following the above procedures, all annotations can be automatically added into the 

regulatory sentences. 

4.3.3 Analysis of target information elements 

This step aims to analyze the target information elements that need to be extracted from 

the sentences. First, the types of target information elements were identified based on the specific 

requirements of the application and the domain (i.e., spatial configuration-related requirements in 

utility regulations). A representation format was then proposed for structuring the identified 

information elements. Finally, the syntactic relationships among the target information elements 

were analyzed to provide guidelines on the extraction of these information elements. 



 

 

113 

4.3.3.1 Identification of target information elements and the structured representation 

Seven types of target information elements that characterize the spatial configuration-

related requirements were identified, i.e., “Trajector”, “Trajector attribute”, “Spatial indicator”, 

“Landmark”, “Landmark attribute”, “Deontic operator indicator”, and “Negation indicator”. 

Specifically, “Trajector” refers to the central object of the spatial configuration described in the 

requirement; “Spatial indicator” is the linguistic expression that signals the spatial relation in a 

spatial configuration; “Landmark” refers to the secondary object of the spatial configuration 

described in the requirement; “Trajector attribute” and “Landmark attribute” are the attributes of 

“Landmark” and “Trajector” respectively; “Deontic operator indicator” is the linguistic expression 

indicating the deontic type of the requirement: obligation, permission, or prohibition; “Negation 

indicator” is the negation word such as “not” and “no”.  

A 7-tuple - <Trajector, Trajector attribute, Spatial indicator, Landmark, Landmark attribute, 

Deontic operator indicator, Negation indicator> - was proposed to structure the identified 

information elements. One 7-tuple represents one spatial configuration described in the 

requirements. For each regulatory sentence it may describe multiple spatial configurations using 

logic conjunctions (such as “and” and “or”) in different linguistic hierarchies (such as the main 

clause and the subordinate clause), and thus, the sentence-level regulatory information can be 

represented as hierarchically structured and logically connected (HSLC) 7-tuples. As shown in 

Figure 4.6, the regulatory information in the example sentence could be represented as one 7-tuple 

in the first hierarchy and two logically connected (using OR) 7-tuples in the second hierarchy. In 

this study, the first hierarchy refers to the main clause of a regulatory sentence while the second 

hierarchy refers to the modifying phrases or subordinate clause of the sentence. 
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Figure 4.6. An example of regulatory sentence represented as HSLC 7-tuples 

4.3.3.2 Analysis of syntactic relationships among target information elements 

This section presents the analysis of the syntactic relationships among the 7-tuple elements. 

As the pivot of the 7-tuple, the spatial relation triple (SRT) - <Trajector, Spatial indicator, 

Landmark> - is the most basic unit to represent a spatial configuration; other tuple elements serve 

as additional descriptions to the SRT or its inside elements. As shown in Figure 4.7, the SRT relies 

on the expression grammar of the spatial indicator to link the trajector and the landmark; the 

trajector/landmark attribute are the syntactic modifiers of the trajector/landmark; the deontic 

operator and negation indicators share the same sentence hierarchy with the SRT. Figure 4.7 also 

presents the extraction bases (i.e., sentence annotations) of the target information elements. For 

instance, “spatial entity” is the extraction base of “Trajector” and “Landmark”, which means, the 

texts annotated as “spatial entity” could be the potential instances of “Trajector” and “Landmark”. 

Together with the syntactic analysis results, text patterns can be defined to extract the target 

information elements and subsequently structure them as HSLC 7-tuples. 
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Figure 4.7. The syntactic relationships among the 7-tuple elements and the extraction 

bases 

4.3.4 Extraction of target information elements 

This step aims to extract the target information elements and structure them as HSLC 7-

tuples. The extraction process follows the order of 1) extraction of SRTs, 2) extraction and 

assignment of attributes, and 3) extraction and assignment of deontic operator and negation 

indicators.    

4.3.4.1 Extraction of SRTs 

This section presents the process of extracting trajectors, spatial indicators, and landmarks 

from the sentences and organizing them into HSLC SRTs. 

(1) Define text patterns for spatial indicators and SRTs 

From Figure 4.7, sentence annotations of “spatial lexical unit”, “distance restriction”, 

“distance value”, and “distance unit” serve as the main bases to extract the spatial indicators. 

Examining through the development set (i.e., a collection of regulatory sentences that are used for 

determining text patterns), the combination patterns of those extraction bases were defined for 

spatial indicators. Table 4.1 lists several typical text patterns for spatial indicators and their 

corresponding matched texts in the sentences. For instance, a sequence of past participles of spatial 

verbs (optional), distance elements (optional), spatial adverbs (optional), and spatial prepositions, 

denoted as ({SV, VBN})?({D})?({SAdv})?{SP}, matches the spatial indicators in the sentences 
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such as “above”, “situated below”, “placed 5 feet under”, “located at least 10 feet from”, “one foot 

vertically above”, etc. Table 4.1 also lists several expression patterns for the SRTs corresponding 

to the spatial indicators. For instance, a sequence of “Trajector”, “Spatial indicator”, and 

“Landmark”, denoted as {T}{SI}{L}, is a type of SRT expression pattern. Matched texts include 

“conduits located within the public right of way”, “water mains crossing other utilities”, and “water 

lines installed within 5 feet of the roadway”. 

Table 4.1. Example patterns for SI and SRT and their corresponding matched texts 

Text 

patterns 

for SI 

({SV, VBN})? ({D})? 

({SAdv})? {SP} 

({SV, VBN})? 

{SP, “within”} 

{D} {“of”} 

({SV, VBN})? 

{SC, “within a 

distance of”} 

{D} {SP} 

{SV} ({SP})? 

Matched 

texts of SI 

above, situated below, 

placed 5 feet under, 

located at least 10 feet 

from, one foot 

vertically above, etc. 

within 5 feet 

of, installed 

within 25 

horizontal feet 

of, etc. 

located within a 

distance of 300 

meters below, 

etc. 

cross, crossing, 

cross above, run 

through, 

intersecting, touch, 

containing, etc. 

Expression 

patterns 

for SRT 

{T} {SI} {L} 

Matched 

texts of 

SRT 

conduits located 

within the public right 

of way, supply lines 

placed one foot 

vertically below any 

water main, etc. 

water lines 

installed 

within 5 feet of 

the roadway, 

etc. 

utility assets 

within a 

distance of 30 

feet beyond the 

travelled way, 

etc. 

water mains cross 

over sewer mains, 

water mains 

crossing other 

utilities, etc. 

--Continued-- 

Text 

patterns 

for SI 

({DR})? ({SA})? {SN} ({“of”} {D})? {SV} ({SAdj})? 

Matched 

texts of SI 

minimum vertical clearance of 18 

inches, minimum depth of 4 feet, 

horizontal separation, minimum cover, 

etc. 

cross, intersect, run parallel, etc. 

Expression 

patterns 

for SRT 

{SI} {“between”} {T} {“and”} {L},  

{SI} {“for”} {T} {implicit L} 
{T} {“and”} {L} {SI} 

Matched 

texts of 

SRT 

a horizontal separation of 10 feet 

between water mains and sewer mains, 

minimum depth for sewer mains, etc. 

gas lines and sewer lines intersect, gas 

lines and sewer lines run parallel, etc. 
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Note: SO concepts: SV – spatial verb, SP – spatial preposition, SAdv – spatial adverb, SAdj – spatial adjective, SC – 

spatial compound, SN – spatial noun; Sentence annotations: DR – distance restriction, DV – distance value, DU – 

distance unit; Target information elements: T – trajector, SI – spatial indicator, L – landmark; D – distance, i.e., 

({DR})? {DV}{DU}. 

 

(2) Define pattern-matching rules for SRT extraction 

Since the vast majority (over 75%) of spatial indicators have the grammar pattern of 

{T}{SI}{L} to express SRTs in the sentences, this section presents the process of extracting SRTs 

from the sentences based on this representative expression pattern, as shown in Figure 4.8. 

 

Figure 4.8. Extraction process of HSLC SRTs 

Given the fact that there could be multiple spatial entities and spatial indicators in one 

single sentence (such as the example sentences in Figure 4.8), which may result in multiple 
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concurrent SRTs in the same sentence, all possible combination patterns were modeled in the 

pattern-matching rules to extract these triples simultaneously. It was also observed at the first 

attempt that these rules would fail to extract SRTs from the sentences that have different 

hierarchies (such as sentences No. 2 and No. 3 in Figure 4.8). As such, extraction was performed 

separately from different hierarchies. As shown in Figure 4.8, different hierarchies have their 

corresponding SRT extraction rules. Specifically, the following JAPE rule was encoded to extract 

SRTs from the first hierarchy (i.e., the main clause of the sentence): “({SE notWithin SIL}):t 

({Token.string != “.”})* {SI within SIL, SI notWithin SEM}:s ({Token within SIL})* ({SE within 

SIL, SE notWithin SEM}):l --> t.Trajector, s.SpatialIndicator, l.Landmark”. In this rule, SE, SI, 

and SEM refer to the spatial entity, spatial indicator, and spatial entity modifier, respectively; SIL 

is an intermediate pattern that matches the combination of paralleling spatial indicators and spatial 

entities (potential landmarks), such as “under the roadway”, “under or within 5 feet of the 

roadway”, “3 feet beyond the slope, ditch, or curb lines”; within/notWithin is the contextual 

operator implemented in JAPE to match annotations within the context of other annotations. By 

specifying the control style as all, this JAPE rule will trigger all matching patterns to extract SRTs 

with all kinds of combination patterns. The extraction results are also given in Figure 4.8. 

Following the same procedure, the SRTs in the second hierarchy can be extracted. Once all SRTs 

are extracted from different hierarchies, the last step is to determine the logic connections among 

them. The conjunctions used in the sentences serve as the main basis for the determination. For 

instance, in sentence No.2, two concurrent SRTs were extracted from the second hierarchy and 

then connected using the operator OR since the conjunction “or” is used in the sentence.  

While Figure 4.8 illustrates the SRT extraction process using the {T}{SI}{L} pattern as 

the example, the same procedure applied to other patterns such as {T}{“and”}{L}{SI} and 

{SI}{“between”}{T}{“and”}{L} for extracting their corresponding SRTs from the sentences.  

4.3.4.2 Extraction and assignment of attributes 

This step aims to extract the attributes for the trajectors and landmarks and assign them to 

their corresponding SRTs. From Figure 4.7, spatial entity modifiers are the extraction bases of 

trajector and landmark attributes. Among the spatial entity modifiers there could be some related 

to spatial configurations, which have been handled during the previous step. This step mainly 

focuses on the extraction of non-spatial attributes such as dimensions and material types. Based 
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on this, the texts annotated as “spatial entity modifier” but without spatial implications would be 

the potential instances of trajector and landmark attributes. For example, in the sentence “the 6-

inch mechanical joint inlet shall be located 5 feet below the ground”, “6-inch”, as the modifier to 

“mechanical joint inlet”, was extracted as the trajector attribute while no modifier was found for 

“ground”, thus, there was no landmark attribute. The resulting tuple with the assigned attribute 

would be <mechanical joint inlet, 6-inch, located 5 feet below, ground, N/A>.  

4.3.4.3 Extraction and assignment of deontic operator and negation indicators 

This step aims to extract the deontic operator and negation indicators and assign them to 

their corresponding SRTs. From Figure 4.7, the texts annotated as “deontic operator indicator” and 

“negation indicator” can be directly extracted as the instances of “Deontic operator indicator” and 

“Negation indicator”, respectively. The extracted information elements are then assigned to the 

SRTs based on the shared sentence hierarchies. For the sentence No.3 in Figure 4.8, the deontic 

operator indicator “shall” belongs to the first hierarchy and accordingly, “shall” is assigned to the 

SRTs in the same hierarchy. Since no negation indicator was found, there would be no negation 

indicator assigned to the SRTs. Following this, together with the assignment of attributes, the 

extracted SRTs can be expanded as HSLC 7-tuples. If no attributes, deontic operator indicators, or 

negation indicators were found or no assignments were made, their corresponding information 

elements in the 7-tuples would remain empty. Therefore, for the sentence No.3, the resulting HSLC 

7-tuples would be:  

• First hierarchy: <conduits, N/A, placed outside of, ditches, N/A, shall, N/A> AND 

<conduits, N/A, at least 30 feet beyond, traveled way, N/A, shall, N/A>. 

• Second hierarchy: <conduits, N/A, located within, right of way, public, N/A, N/A>. 

4.3.5 Formalization of target information elements 

This step aims to formalize the extracted HSLC 7-tuples into logic clauses. Two specific 

tasks were involved in this step: 1) semantic formalization of the 7-tuple elements including the 

trajectors/landmarks, their attributes, and spatial indicators, and 2) logic representation of the 

HSLC 7-tuples. 
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4.3.5.1 Semantic formalization via ontologies 

In this task the trajectors/landmarks, their attributes are mapped to their semantic 

correspondences in UPO. Since UPO concepts were retained as the semantic features during the 

annotation of spatial entities, and the extracted trajectors/landmarks inherited these semantics from 

the spatial entities, the trajectors/landmarks were mapped to their corresponding UPO concepts 

according to the semantic features. Certain attributes are also modeled in UPO. For example, 

hasMaterialType is a UPO relationship used for describing the material types of urban products. 

Based on the modeled relationships, trajector/landmark attributes can be mapped to their 

corresponding representations in UPO. For example, the trajector attribute “6-inch” for the 

trajector “mechanical joint inlet” was formalized as MechanicalJointInlet(X) and hasDimension(X, 

6-inch), where MechanicalJointInlet is a UPO concept and hasDimension is a UPO relationship.   

Spatial indicators are formalized as spatial relations via SO. Figure 4.9 illustrates the 

relationships among the top-level concepts in SO: spatial linguistic elements and distance elements 

work together to form the spatial indicators that indicate spatial relations. The indicate relationship 

in SO is critical to the formalization of spatial indicators. However, spatial indicators are usually 

natural language expressions, which may be subjective for human interpretation, and thus, there is 

a semantic gap between the spatial indicators and their formal indications. 

 

Figure 4.9. The relationships among the SO concepts and the formal spatial relations 

Two types of mappings – pre-learned and hand-crafted – were used to map spatial 

indicators to spatial relation types. The pre-learned mapping relies on the connections between the 

spatial language (mostly spatial prepositions) to formal spatial relations learned through ML [133], 

e.g., the match between the spatial prepositions of “under” or “below” to the spatial relation of 
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“Below”. The hand-crafted mapping is domain-specific. For example, the spatial compound 

“depth of cover” is mapped to two spatial relations “Below” and “Distance” and the combination 

of spatial adjective and spatial noun “horizontal separation/clearance” is mapped to the spatial 

relation “H_Distance”. 

Besides, spatial indicators are composed of spatial linguistic elements (e.g., spatial 

prepositions, spatial nouns) and distance elements (e.g., distance restrictions, distance values). 

These composing elements may have their respective spatial indication, and one spatial indicator 

can be mapped to multiple spatial relations. To address this issue, for every spatial indicator the 

composing elements were mapped to their corresponding spatial relations to collectively represent 

the original spatial indicator. For example, the spatial indicator of “at least 18 inches vertically 

above” results in two spatial relations. The spatial preposition “above” corresponds to the spatial 

relation “Above”, represented as Above(TrajectorX, LandmarkX). The spatial adverb “vertically” 

corresponds to the spatial relation “V_Distance”, which is further specified by “at least”, “18”, and 

“inches” and represented as V_Distance(TrajectorX, LandmarkX, inch) ≥ 18.  

4.3.5.2 Logic representation via deontic logic 

DL is an extension of first order logic (FOL) to include normative notions for the formal 

representation and specification of laws, legal rules, and precedents [134]. DL is viewed as the 

most promising formal specification language for legal contracts [135]. DL is useful for 

representing utility regulations because its basic notations are fundamental for capturing the 

normative modalities of the requirements (e.g., what is obligated, what is permitted, and what is 

forbidden). 

A DL statement consists of a set of predicates or functions that are combined or specified 

using two types of operators: deontic modal operators (i.e., obligation “O”, permission “P”, and 

prohibition “F”) and FOL operators (i.e., conjunction “∧”, disjunction “∨”, negation “¬”, and 

implication “⊃”). In addition, quantifiers (i.e., “∀” and “∃”) are also used to make assertions about 

the variables in DL statements. The logic representation of the HSLC 7-tuples in DL is described 

as follows. 

• Formalized trajectors/landmarks and their attributes correspond to the predicates in DL 

statements. For example, WaterLine(X) and hasDimension(X, 6-inch) are two predicates: 
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WaterLine and hasDimension are predicate symbols (representing UPO concepts or 

relationships) while “X” and “6-inch” are arguments, where “X” is a variable. 

• For the formalized spatial indicators, topology and direction relations correspond to the 

predicates (e.g., Above(X, Y), where “X” and “Y” are arguments/variables) while metric 

relations correspond to the functions (e.g., Distance(X, Y, inch) = d, where “X” and “Y” 

are arguments/variables, “inch” is an argument, and “d” is the returned value) in DL 

statements.  

• Predicates/functions corresponding to the spatial indicators that pertain to the first-

hierarchy tuples appear in the RHS (succeeding the operator “⊃”) while the remaining ones 

appear in the LHS. On either side, predicates/functions generated from the same tuple are 

combined using conjunction “∧” while the combination of those from different tuples is 

determined based on the specific connections (i.e., “OR” or “AND”) among these tuples.  

• Deontic operator indicators correspond to the deontic modal operators, which are used to 

specify the normative modalities of certain predicates/functions in DL statements. For 

example, “shall” corresponds to obligation “O”, thus, O(Above(X, Y)) means that 

Above(X, Y) is obligated as per requirements. 

The following presents the resulting DL statements for the sentences No.2 and No.3 in 

Figure 4.8. 

• Sentence No.2: ∀𝑥,  𝑦,  𝑧 (𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒(𝑥) ∧ 𝑅𝑜𝑎𝑑𝑤𝑎𝑦(𝑦) ∧ 𝑃𝑎𝑣𝑒𝑚𝑒𝑛𝑡𝑆𝑢𝑟𝑓𝑎𝑐𝑒(𝑧) ∧

(𝐵𝑒𝑙𝑜𝑤(𝑥,  𝑦) ∨ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦, 𝑓𝑜𝑜𝑡) < 5)) ⊃ 𝑂(𝐵𝑒𝑙𝑜𝑤(𝑥,  𝑧) ∧

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑧, 𝑓𝑜𝑜𝑡) ≥ 4) 

• Sentence No.3: ∀𝑥,  𝑦,  𝑧, ℎ (𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒(𝑥) ∧ 𝑅𝑖𝑔ℎ𝑡𝑂𝑓𝑊𝑎𝑦(𝑦) ∧ 𝑊𝑖𝑡ℎ𝑖𝑛(𝑥,  𝑦) ∧

𝐷𝑖𝑡𝑐ℎ(𝑧) ∧ 𝑅𝑜𝑎𝑑𝑤𝑎𝑦(ℎ)) ⊃ 𝑂(𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡(𝑥,  𝑧) ∧ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, ℎ, 𝑓𝑜𝑜𝑡) ≥ 30) 

While DL formalization supports automated reasoning in compliance checking, presently 

no deontic reasoner has been developed yet [126,136,137]. An alternative is to translate DL clauses 

into SPARQL queries for utility compliance checking in the context of semantic web. SPARQL 

suits the needs that are unique to utility compliance checking due to its capabilities of semantic 

understanding and spatial extension [95]. For the illustration purpose, the corresponding SPARQL 

queries for sentence No.3 for detecting utility noncompliance is spelled out below. 
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SELECT ?x WHERE { ?x a upo:Pipeline. ?y a upo:Ditch. ?z a upo:Roadway. ?h a 

upo:RightOfWay. ?x function:Within ?h. NOT EXISTS {?x function:Disjoint ?y} UNION FILTER 

(function:Distance(?x, ?z, foot) < 30). } 

4.4 Implementation 

The proposed approach includes information extraction and formalization. Information 

extraction was implemented in GATE by configuring the following built-in/plug-in tools: ANNIE 

English Tokenizer, ANNIE Sentence Splitter, ANNIE POS Tagger, GATE Morphological 

Analyzer, Stanford Parser, ANNIE Gazetteer, OntoRoot Gazetteer, and JAPE Transducer. For this 

study, ontologies were input into the OntoRoot Gazetteer module; gazetteer lists were added to the 

ANNIE Gazetteer module; and pattern-matching rules were input into the JAPE Transducer for 

sentence annotation and information extraction. Figure 4.10 presents the implementation 

architecture. GATE outputs an XML document that contains all added annotations along with their 

corresponding features. 

 

Figure 4.10. Implementation architecture for information extraction 

A Python program that consists of three subprograms - XML parser, semantic mapper, and 

DL constructor - was developed to process the GATE XML document for information 
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formalization. The XML parser outputs the HSLC 7-tuples based on the XML annotations and 

features; the semantic mapper maps the 7-tuple elements to their semantic formalizations using 

UPO and pre-learned/hand-crafted spatial mappings; and the DL constructor finalizes the logical 

representation of the HSLC 7-tuples. 

 

Figure 4.11 presents three representative examples of the requirements (each corresponds 

to one deontic type – obligation, prohibition, and permission) to illustrate their corresponding 

processes of information extraction and formalization as well as the future application – using 

SPARQL queries for utility compliance checking. 
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Figure 4.11. Illustrative examples of information extraction and formalization 
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4.5 Experiments and Results 

4.5.1 Experiment setup – source text selection and ontology development 

Utility accommodation policies, such as INDOT Utility Accommodation Policy [138] and 

GDOT Utility Accommodation Policy and Standards [139], were selected because they contain 

numerous textual descriptions of the spatial configurations among utilities and their surroundings. 

A total of 300 sentences that contain spatial configuration-related requirements were collected. For 

each sentence, the target information elements and information formalization results (i.e., semantic 

correspondences and logic clauses) were also manually documented to form the ground truth for 

this experiment. 

The ontologies (i.e., UPO and SO) used in this experiment were developed following the 

four-step procedure: 1) purpose and scope definition, 2) taxonomy building, 3) relation modeling, 

and 4) ontology coding [86]. UPO aims to capture the main concepts related to urban products 

while SO aims to capture main concepts related to linguistic spatial expressions and spatial 

relations. The resulting UPO covers a total of 312 concepts (along with 472 term labels assigned 

to the concepts) while the SO covers a total of 69 concepts (including 44 concepts of spatial 

linguistic elements). In UPO, relationships (such as hasDimension and hasMaterialType) are 

modeled to describe the attributes of urban products, which facilitate the semantic formalization 

of the extracted attributes from text. In SO, relationships are modeled to describe the semantic 

links between the spatial concepts, which facilitate the spatial understanding from natural language. 

UPO and SO are coded in the Web Ontology Language (OWL) format. 

4.5.2 Development of text patterns for information extraction 

200 sentences were randomly selected as the development set while the rest serve as the 

test set. The development set was manually annotated and then processed to generate the syntactic 

and semantic text features. The scrutiny of the hand-annotated ground truth led the authors to 

define the patterns for annotation over the text features. Table 4.2 presents the number of defined 

annotation patterns for the development set. The use of ontologies, gazetteer lists, and phrasal tags 

reduces the possible number enumerations in defining patterns. For instance, the numbers of 

patterns for annotating spatial entities and spatial lexical units were downsized to 1 and 6, 

respectively, by merely using the super-concepts in UPO/SO to cover all sub-concepts. Once the 
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sentences were annotated, text patterns for extracting the target information elements were defined. 

The process was conducted in an iterative manner. A preliminary set of extraction patterns were 

first hand-crafted and then applied back to the development set. If the extraction results are not 

satisfactory, the process may be iterated for performance improvement, resulting in additional 

extraction patterns in the pattern target set. The pattern set may be considered as final if the 

performance is satisfactory compared to the ground truth. Table 4.2 also presents the numbers of 

extraction patterns for the development set. For instance, a total of 17 patterns (i.e., combinations 

of spatial linguistic elements and distance elements) were developed to identify spatial indicators 

from the sentences. A total of 11 patterns (such as {T}{SI}{L}) were developed to extract SRTs 

from the sentences. The developed patterns together with the sentence structures were encoded as 

pattern-matching rules for information extraction.  

Table 4.2. Number of patterns for sentence annotation and information extraction 

Sentence annotation 

Sentence 
annotations 

spatial 
entity 

spatial 

entity 

modifier 

spatial 

lexical 

unit 

deontic 

operator 

indicator 

negation 
indicator 

distance 
value 

distance 
unit 

distance 
restriction 

Number of 
annotation 

patterns 
1(312) * 9 6(44) * 1 1(2) * 7 1(8) *  1(13) * 

Information extraction 

Target 

information 

elements 

Spatial indicator 
Spatial relation 
triple 

Trajector/Landmark 
attribute 

Deontic 

operator 

indicator 

Negation 
indicator 

Number of 
extraction 

patterns 
17 11 6 1 1 

* Number in parenthesis represents the number of sub-concepts or gazetteer list elements 

4.5.3 Evaluation, results, and analysis 

The extraction performance was measured in terms of precision – the percentage of 

correctly extracted elements relative to the total number of elements extracted and recall – the 

percentage of correctly extracted elements relative to the total number of elements existing in the 

source text. The formalization performance was measured in terms of the accuracy in semantic 

formalization of the extracted elements – the percentage of correctly formalized elements relative 
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to the total number of correctly extracted elements and the accuracy in logic formalization of the 

HSLC 7-tuples – the percentage of correctly formalized sentences relative to the total number of 

positive sentences (i.e., those sentences whose contained 7-tuples were correctly extracted). 

Table 4.3 presents the evaluation results for the test set. The ground truth includes 121, 23, 

117, 136, 17, 86, and 27 elements of “Trajector”, “Trajector attribute”, “Spatial indicator”, 

“Landmark”, “Landmark attribute”, “Deontic operator indicator”, and “Negation indicator”, 

respectively, at a total of 527 elements. A performance of 94.7% recall and 98.2% precision was 

achieved in extracting information from the test set. A performance of 97.2% accuracy was 

achieved in formalizing the information elements. Regarding the DL formalization, 93.2% 

accuracy was achieved. The results demonstrate the effectiveness of the proposed approach in 

interpreting the spatial configuration-related requirements in utility regulations. 

Table 4.3. Evaluation results for the test set 

Number  Trajector 
Trajector 

attribute 

Spatial 

indicator 
Landmark 

Landmark 

attribute 

Deontic 

operator 

indicator 

Negation 

indicator 
Total 

Ground truth 121 23 117 136 17 86 27 527 

Extracted 117 21 112 131 14 86 27 508 

Correctly 

extracted 
117 19 106 131 13 86 27 499 

Correctly 

formalized 
117 17 98 131 10 86 N/A 459 

Extraction 

precision 
100.0% 90.5% 94.6% 100.0% 92.9% 100.0% 100.0% 98.2% 

Extraction 

recall 
96.7% 82.6% 90.6% 96.3% 76.5% 100.0% 100.0% 94.7% 

Formalization 

accuracy 
100.0% 89.5% 92.5% 100.0% 76.9% 100.0% N/A 97.2% 

 

The following presents the findings through the analysis of the evaluation results.  

First, 100% extraction precision of trajectors and landmarks indicates the effectiveness of 

UPO-based information extraction while the relatively low recall (96.7% and 96.3%, respectively) 

is attributed to the limited vocabulary size in UPO. In some cases, trajectors/landmarks are not 

explicitly prescribed in the sentences, which may also cause extraction errors. For example, in the 

following texts, the trajector “water line” and the landmark “ground”, both of which are not 

explicitly prescribed, were not extracted: “the horizontal separation between water and wastewater 

line” and “pipes buried underground”. Second, extraction of spatial indicators showed recall errors 
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(90.6%) mainly due to missing extraction patterns (which were not captured from the development 

set). For example, for the spatial indicator “come in contact with”, there is no matched pattern in 

the pattern set or matched spatial linguistic expression in SO. In some cases where prepositions 

such as “over”, “under”, “of” and “to” may not have spatial implications, spatial indicators that 

consist of these prepositions would also be falsely extracted. For example, in the text “urban streets 

where speed limits are under 30 mph”, “under”, which indicates a comparative relation to a speed 

value, was incorrectly extracted. There are also some uncommon spatial indicators that have 

degree adverbs such as “as near as practical to”. For these cases, only common parts of the spatial 

indicators such as “near” were extracted. As such, precision errors (94.6%) exist in extracting 

spatial indicators. Third, extraction of trajector/landmark attributes achieved the lowest recall and 

precision mainly because of missing extraction patterns and the GATE NLP tool (e.g., Stanford 

Parser) errors. There are two interesting cases of missing patterns. One is the pattern of 

trajectors/landmarks followed by prepositional phrases, and then followed by subordinate clauses, 

e.g., “in urban areas with curb and guttering where speed limits are 45 mph or greater, hydrants 

shall be placed 12 feet from the face of curb”, where the attribute “with curb and guttering” was 

extracted while the attribute of speed limit was not extracted. The other one is the pattern of 

independent subordinate clauses, e.g., “where speed limits are greater than 35 mph but less than 

45 mph, hydrants shall be placed 8 feet from the face of curb”, where the attribute of speed limit 

was not extracted because there is no explicit spatial entity that the clause is to modify. No existing 

NLP tool achieves 100% performance. If multiple modifiers (e.g., adjective phrases, prepositional 

phrases, verb phrases, subordinate clauses) coexist for trajectors/landmarks, such as “all pipelines 

greater than 4 inches in outside diameter and crossing under non-controlled access highways 

carrying hazardous materials under pressure or having a wash factor”, it is challenging to generate 

the correct syntactic structure for distinguishing these modifiers, thus leading to missed extractions 

of attributes.  

Regarding the performance in formalizing the extracted elements, 100% of trajectors and 

landmarks were correctly formalized, which is attributed to the success of UPO in capturing 

semantics in varying terms. The main errors exist in formalizing the trajector/landmark attributes 

(89.5% and 76.9%) and the spatial indicators (92.5%) due to the lack of their semantic 

correspondences in UPO/SO. For example, the attribute “public” of the landmark “right of way” 

was unformalized since there is no corresponding attribute modeled as the property of the 
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RightOfWay concept in UPO. Another example is the error of formalizing uncommon spatial 

indicators such as “placed normal to”, which do not have formal spatial relation mappings in SO. 

In certain cases, the extracted elements could be as complex as a subordinate clause, and thus, 

formalizing these elements is prone to errors. For example, for the attribute “where speed limits 

are 50 mph or greater”, its formalization was incorrect. In order to formalize these complex 

elements, additional work is required to analyze the elements, extract the key words, and map them 

to their corresponding ontology concepts/relationships. Regarding the DL-based formalization, the 

errors in formalizing the individual elements lead to the subsequent use of incorrect DL 

predicates/functions. In addition, there are some errors caused by not correctly specifying the 

negations (i.e., “¬”) to certain DL functions. Thus, human efforts are also required to help interpret 

the negations to ensure the accurate formalization of the logic clauses.     

4.6 Discussion 

The newly developed NLP approach for the interpretation of utility regulations contributes 

to the body of knowledge in four aspects. First, the UPO is a deeper ontology that has an adequate 

vocabulary size and term diversity, which allows the extraction and formal representation of 

heterogeneous terminologies in regulations. Second, the SO contains two layers of semantics: 

linguistic spatial expressions and formal spatial relations, which enables the extraction of spatial 

semantics from natural language and advances existing NLP algorithms by incorporating spatial 

cognition. Third, extraction rules are encoded based on a set of text patterns that are formulated at 

the word, phrase, and sentence levels, which can reduce text ambiguities and enhance a deeper 

understanding of the requirements. Fourth, the mapping of extracted information elements to their 

semantic correspondences and transformation to logic clauses achieve the semantic and logic-

based formalization of utility-specific regulatory knowledge, thus facilitating the objective and 

consistent interpretation of utility regulations. Jointly, the proposed NLP approach has the 

capability of spatial understanding and makes automatic spatial reasoning based on spatial 

information in texts feasible. 

The NLP approach can be improved in three aspects for an even higher efficacy: 1) expand 

the analysis of regulatory requirements from the sentence level to document level; 2) enable the 

processing of quantitative requirements and existential requirements in addition to spatial 

requirements; and 3) develop methods to extract implicit regulatory knowledge (e.g., hidden 
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assumption and multiple exceptions), which is a challenge in the current method. In addition, DL 

was used in this study for the logical formalization of utility regulatory requirements despite the 

unavailability of an off-the-shelf deontic logic reasoner as its basic notations are fundamental for 

capturing the normative modalities of the requirements. In future work, the authors will extend 

existing FOL-based reasoners to add deontic reasoning capabilities to enable the direct DL 

reasoning (without further transformation into SPARQL) for utility compliance checking. 

4.7 Summary and Conclusions 

This paper presents an ontology and rule-based NLP approach to automate the 

interpretation of utility regulations. UPO and SO have been developed to facilitate the 

understanding of domain and spatial semantics. A set of text patterns have defined and encoded as 

pattern-matching rules for information extraction. A mechanism for information formalization has 

been designed towards the semantic and logic-based analysis of regulatory knowledge. The 

proposed approach was tested in extracting and formalizing spatial configuration-related 

requirements from utility accommodation polies. Results show the newly developed approach 

achieves 94.7% recall and 98.2% precision in information extraction and 93.2% accuracy in 

information formalization.  

This study has the following conclusions. First, the ontology-based approach is effective 

in recognizing the domain technical and spatial terms from utility regulations as well as the 

semantic features attributed to the sufficiently large vocabulary size and the well-defined 

conceptualization in UPO and SO. Second, text patterns developed in this study well characterize 

the textual descriptions (e.g., words, phrases, and sentences) used in utility regulations, and thus, 

the pattern-matching rules are effective in extracting target information elements. Third, UPO and 

SO bridge the semantic gap between the natural language expressions and the formal semantics, 

and they are effective in guiding the formal representation of the extracted information; DL 

provides a logic-based format for representing the requirements; and therefore, the ontology and 

DL-based formalization enables the objective and consistent interpretation of textual regulatory 

requirements on underground utilities to ensure the compliance of underground utilities. 
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 CONCLUSIONS 

This chapter concludes the dissertation with a summary and discussions on the limitations 

and future studies.  

5.1 Summary 

Underground utilities must comply with the requirements stipulated in utility regulations to 

ensure their structural integrity and avoid interferences and disruptions of utility services. 

Noncompliance with the regulations could lead to utility incidents such as pipeline explosion and 

pipeline contamination, with disastrous consequences of property damages, environmental 

pollution, and personnel injuries and fatalities. Utility compliance checking is the action that 

examines the geospatial data of utilities and their surroundings against utility regulation data to 

identify the regulatory non-compliances in utility designs or existing records to limit possible 

negative impacts. However, the current practice of utility compliance checking mostly relies on 

manual efforts, which is time-consuming, costly, and error prone. This research offers an 

intelligent, knowledge-based method to automate the compliance checking of underground 

utilities. 

In Chapter 2, this research first describes the development of an ontology-based framework 

for integrating heterogeneous geospatial and textual data of utilities and enabling automated 

compliance checking of underground utilities through semantic, logic, and spatial reasoning. The 

framework consists of the following key components: (1) four interlinked ontologies that provide 

the semantic schema for the representation of heterogeneous data relevant to utility compliance 

checking, (2) two data convertors for the conversion of heterogeneous data from proprietary 

formats into a common and interoperable format, and (3) a reasoning mechanism with spatial 

extensions for the detection of utility noncompliance. Under this framework, a more transparent 

implementation of utility compliance checking that are easy-to-understand and simple-to-

implement even by non-experts is enabled, which is likely to shift this skill-based activity to a 

knowledge-based paradigm. 

Next in Chapter 3, the research presents a novel method to develop a utility ontology that 

is semantically compatible with existing utility modeling initiatives and has a sufficient or 
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expandable vocabulary size to facilitate a high degree of interoperability across the utility 

infrastructure domain. The novel method integrates a top-down strategy and natural language 

processing (NLP) to develop the desired ontology from CityGML Utility Network ADE (a 

candidate open standard for modeling utility networks) and domain glossaries (lists of utility-

specific terms and their textual definitions). This method contributes to increased levels of 

automation and efficiency in utility compliance checking by reducing laborious work on ontology 

development and offering a better option of interoperability facilitator for data integration. 

In Chapter 4, the research presents the design of an ontology- and rule-based NLP approach 

to automate the interpretation of utility regulations – extracting the requirements from the 

regulations and further formalizing them into logic clauses – for supporting automated compliance 

checking of underground utilities. The approach integrates ontologies to capture both domain and 

spatial semantics in utility regulations and encode pattern-matching rules for information 

extraction. An ontology- and deontic logic-based mechanism is also integrated to facilitate the 

semantic and logic-based formalization of utility-specific regulatory knowledge. An end-to-end 

pipeline for automated interpretation of utility regulations is established, thus improving the level 

of automation in utility compliance checking by providing ready-to-use logic rules. 

The methods and algorithms resulting from this research are tested using case studies and 

empirical experiments. The primary contribution of this research is the knowledge-based 

computational platform with semantic intelligence for regulatory compliance checking of 

underground utilities. The knowledge-based computational platform provides a declarative way 

rather than the otherwise procedural/hard-coding implementation approach to automate the overall 

process of utility compliance checking, which is expected to replace the conventional costly and 

time-consuming skill-based utility compliance checking practice. Deploying this computational 

platform for utility compliance checking will help eliminate non-compliant utility designs at the 

very early stage and identify non-compliances in existing utility records for timely correction, thus 

leading to enhanced safety and sustainability of the massive utility infrastructure in the U.S. 

5.2 Limitations and Future Research 

Throughout the journey of this research, several limitations have been identified, which are 

worth future research efforts. First, the ontology-based framework that is developed for integrating 

heterogeneous utility data for compliance checking has limited number of ontologies and data 
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convertors. In order to achieve a complete compliance checking through the utility asset life cycle, 

future research is needed to incorporate/develop ontologies and data convertors dedicated to other 

domains of knowledge in the utility industry, for example, utility construction, operation, and 

maintenance. Second, the semi-automated method for developing the utility ontology merely 

focuses on extracting the concepts that are relevant to utility physical products from semi-

structured textual documents – domain glossaries. Future research is needed to extend the NLP 

approach to extract other types of concepts/relations from other types of textual documents. By 

incorporating new more semantics, the developed utility ontology can facilitate a higher degree of 

interoperability across the utility infrastructure domain. Hence, an increased level of efficiency of 

utility compliance checking by using the ontology can be achieved. Third, the NLP approach for 

interpreting utility regulations only focuses on the sentence-level processing of spatial 

configuration-related requirements in utility regulations. The approach can be improved in three 

aspects for an even higher efficacy: (1) expand the analysis of regulatory requirements from the 

sentence level to document level; (2) enable the processing of quantitative requirements and 

existential requirements in addition to spatial requirements; and (3) develop methods to extract 

implicit regulatory knowledge (e.g., hidden assumption and multiple exceptions), which is a 

challenge in the current method. 

Last, one major limitation of this research is lack of an overall implementation that uses 

the ontology-based framework (as presented in Chapter 2), the developed utility ontology (as 

presented in Chapter 3), and the NLP-based interpretation of utility regulations (as presented in 

Chapter 4) for utility compliance checking. As an implementation prototype that is based on the 

ontology-based framework for utility compliance checking has been built and demonstrated as 

success (as presented in Chapter 2), future work will continue to incorporate the research outcomes 

from Chapters 3 and 4 into the prototype and use the same dataset to test the system for a higher 

level of semantics, automation, and efficiency in utility compliance checking, as illustrated in 

Figure 5.1. First, a domain ontology along with a sufficient and also expandable semantic 

dictionary (resulted from Chapter 3) establish a unified and uniform standard as the shared 

language for the utility domain. Supported by the semantic standard, all heterogeneous data such 

as geospatial data of utilities and textual data of regulations can be converted into the unified 

format of RDF (the RDF convertors resulted from Chapter 2 and the NLP approach resulted from 

Chapter 3 will be utilized), forming inter-connected RDF graphs. Further, advanced reasoning 
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algorithms can be designed to manipulate the RDF graphs via exploring, querying, and updating. 

For example, the mechanism that supports semantic, logic, and spatial reasoning as designed in 

Chapter 1 will be utilized. More importantly, the overall implementation of this research has big 

potential for practical contribution. The RDF graphs can accommodate advanced algorithms with 

adequate portability and interoperability including tools for connecting data sources, mapping and 

linking entities across digital objects, and integrating various features and applications over a 

heterogenous information network. As such, big data analytics that is embodied in semantic 

intelligence can be enabled within the RDF graphs for supporting a wide range of civil 

infrastructure applications. Utility compliance checking is such an application case.  

 

Figure 5.1. Future system implementation 

One more research direction that is worth future efforts is to continuously explore NLP to 

enhance the human-machine interaction such as using natural/spoken language to interact with the 

computational platform of utility compliance checking, as shown in Figure 5.2, thus leading to 

advanced intelligence in utility infrastructure engineering and management.  
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Figure 5.2. Spoken language-based human-machine interaction 
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