
DEEP LEARNING FAULT PROTECTION APPLIED TO SPACECRAFT

ATTITUDE DETERMINATION AND CONTROL

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Justin R. Mansell

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. David A. Spencer, Chair

School of Aeronautics and Astronautics

Dr. Daniel DeLaurentis

School of Aeronautics and Astronautics

Dr. Carolin Frueh

School of Aeronautics and Astronautics

Dr. James Garrison

School of Aeronautics and Astronautics

Approved by:

Dr. Gregory Blaisdell

Head of the School Graduate Program

iii

To my parents, Robert and Tina.

To my brother, Trevor, and my dog, Benji.

“Inspiration unlocks the future. Technology will catch up!”

- Giovanni Battista Caproni, The Wind Rises

iv

ACKNOWLEDGMENTS

I wish to express my immense gratitude to my advisor, Dr. David Spencer, for

his dedicated mentorship over the past three years and whose patience, guidance,

and encouragement are a continual source of inspiration. The countless opportunities

he entrusted to me have been instrumental to my growth as an engineer. I would

also like to thank the members of his research group, Dr. Sylvain Renevey, Rohan

Deshmukh, Jannuel Cabrera, Tom Cunningham, Arly Black, Samantha Dickmann,

Jay Iuliano, and Dr. Anthony Cofer for their collaboration and camaraderie.

I owe my sincere thanks to Purdue University and the School of Aeronautics

and Astronautics for their financial support in the form of multiple teaching and

research assistantships during my studies. Among the faculty, I would like to thank

my committee members, Dr. Daniel DeLaurentis, Dr. Carolin Frueh, and Dr. James

Garrison for their insights and suggestions regarding my work. I would also like

to recognize the invaluable assistance provided by my mentors beyond Purdue: Dr.

Joseph Bakambu and Nader Abu El Samid at MDA Corporation, Dr. J. Stephen

Herring at Idaho National Laboratory, Dr. Michael J. Grant at Sandia National

Laboratories, as well as Dr. Andrew Yau, Dr. Christoper Cully, Dr. Phil Langill,

Andrew White, and Andrew Howarth at the University of Calgary.

The results of the LightSail 2 mission have formed an important part of this

research. I am grateful to the LightSail 2 flight team, Dr. David Spencer, Dr. John

Bellardo, Dr. Bruce Betts, Barbara Plante, and Alex Diaz, as well as the members

and donors of The Planetary Society, for their collaboration and dedication to the

mission.

This work could not have been completed without the unwavering support of my

friends and family. Above all, I must express my sincerest gratitude to my parents,

Robert and Tina, for embracing my enthusiasm for space exploration and doing ev-

v

erything in their power to support it. Their unconditional love has been an enduring

source of strength. Likewise, it is with deep appreciation that I thank my brother,

Trevor, my grandmother, Mabel, my uncle, David, and my aunt, Alice, for their love

and commitment.

Finally, I wish to acknowledge the fellowship of the numerous friends who have

been by my side throughout my studies. To my girlfriend, Amrita, to the Bender

family, to my friends, Geoffrey, Alex, Imad, Katie, Jenna, Michal, and all the others

who I do not have enough room to thank personally, your support helps make my

studies worthwhile. Thank You.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

SYMBOLS . xiii

ABBREVIATIONS . xiv

GLOSSARY . xv

ABSTRACT . xvi

1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Spacecraft Faults, Failures, and Anomalies 3

1.2.1 Types of Anomalies . 4
1.2.2 Sources of Anomalies . 5

1.3 State of the Art . 8
1.3.1 Methods of Fault Detection . 8
1.3.2 Methods of Fault Isolation . 13
1.3.3 Methods of Fault Recovery . 16
1.3.4 Limitations of the Approaches 20

1.4 Contributions of This Dissertation . 22
1.4.1 Development of an ADCS Fault Simulator 23
1.4.2 Anomaly Detection of ADCS Signals 24
1.4.3 Deep Learning Fault Diagnosis 24
1.4.4 Application to LightSail 2 . 24

2 THEORY AND BACKGROUND . 26
2.1 One-Class Support Vector Machines . 26

2.1.1 Derivation . 26
2.1.2 Interpreting OCSVM Anomalies 29
2.1.3 Advantages of OCSVMs . 32

2.2 Long Short-Term Memory . 34
2.2.1 Architecture . 34
2.2.2 Fault Isolation Using LSTM . 36
2.2.3 Network Training . 38
2.2.4 Understanding LSTM’s Decisions 40

2.3 ADCS Fault Simulator . 42

vii

Page

2.3.1 Attitude Sensors and Determination 42
2.3.2 Attitude Actuators . 45
2.3.3 Guidance and Control . 45
2.3.4 Dynamics . 47
2.3.5 Fault Injection . 47

3 DESIGN AND DEMONSTRATION OF FDIR 48
3.1 Anomaly Detector Development . 48

3.1.1 Relevant Signals and Signal Processing 48
3.1.2 One-class Support Vector Machine Detectors 50
3.1.3 Rule-based Detectors . 59

3.2 LSTM Fault Isolator Development . 65
3.2.1 Generating Fault Training Data 67
3.2.2 Detailed Examples . 71
3.2.3 Assessing Overall Performance 76

3.3 Decision Theory for ADCS Fault Recovery 77
3.3.1 Introduction to Decision Theory 79
3.3.2 Developing the Utility Matrix 79
3.3.3 Detailed Examples . 84
3.3.4 Overall Performance . 87

4 FAULT MONITORING FOR LIGHTSAIL 2 91
4.1 Mission Background . 91

4.1.1 History of the LightSail Program 91
4.1.2 Mission Overview . 93
4.1.3 Mission Events . 96
4.1.4 On-orbit Anomalies . 101

4.2 LightSail 2 Anomaly Detection . 108
4.2.1 LigthSail 2 Telemetry Dataset 108
4.2.2 Detectors . 110

4.3 LightSail 2 Fault Isolation . 116
4.3.1 Fault Simulations . 116
4.3.2 LSTM Training . 120
4.3.3 Examples . 121
4.3.4 Overall Performance . 126

5 CONCLUSIONS . 132
5.1 Summary . 132
5.2 Directions for Future Work . 134

REFERENCES . 138

A NOTES ON OCSVM KERNEL FUNCTIONS 150
A.1 The Need for a Kernel Transform . 150
A.2 Determining φ(x) for a Gaussian Kernel 151

viii

Page

B LSTM BACK-PROPAGATION DERIVATION 155
B.1 Output Layer . 155
B.2 Memory Cell . 156

B.2.1 Output Gate . 157
B.2.2 Forget Gate . 158
B.2.3 Input Gate . 159
B.2.4 Aggregation and Recursion . 160

C ADCS FAULT TREES . 162

D ADDITIONAL EXAMPLES . 169
D.1 Fault Simulator Examples . 169

D.1.1 False Sun Error . 169
D.1.2 Gyro Phasing Error . 169

D.2 LightSail 2 Examples . 171
D.2.1 Reaction Wheel Fault . 171
D.2.2 Nominal Solar Sailing . 171

VITA . 175

ix

LIST OF TABLES

Table Page

1.1 Proposed and under development mega-constellations. 2

2.1 Simulated attitude control modes. 46

3.1 Relevant ADCS signals for fault detection. 48

3.2 Simulation parameters for generating nominal datasets. 51

3.3 Simulated ADCS faults for LSTM training. 67

3.4 Standard utility value categories. 80

3.5 Generalized utility matrix for ADCS mode selection. 81

3.6 Operational requirements for each ADCS mode. 82

4.1 LightSail 2 attitude control modes. 96

4.2 LightSail 2 major mission events. 99

4.3 Simulation parameters for generating fault isolation datasets for LightSail 2.117

4.4 Simulated ADCS faults for LightSail 2 LSTM training. 118

4.5 Catalog of faults in LightSail 2 telemetry segments. 129

x

LIST OF FIGURES

Figure Page

1.1 Types of anomalies in continuous signals. 4

1.2 Example of an anomaly in a sequence of discrete mode transitions. 5

1.3 Sources and impacts of AOCS failures. 7

1.4 Taxonomy of anomaly detection techniques. 9

1.5 Taxonomy of fault diagnosis and recovery methods. 14

1.6 Hierarchical architecture for spacecraft fault response from [8]. 18

1.7 Transfer learning architecture for deep learning of spacecraft FDIR. 23

2.1 Conceptual illustration of a OCSVM hyperplane decision function. 28

2.2 Example decision boundaries determined using a OCSVM with different
outlier fractions. 30

2.3 OCSVM anomaly score gradients. 33

2.4 Comparison of neural network architectures. 37

2.5 Hierarchy of fault isolation layers. 38

2.6 Propagation path for differentiating the output of the LSTM network with
respect to the current input. 41

2.7 Overview of the CubeSat attitude determination and control system sim-
ulated in the fault simulator. 43

3.1 OCSVM for detecting anomalies in the 60 sample (1-minute) variances of
the 3 gyros. 52

3.2 OCSVM for detecting anomalies in the accumulation of angular momentum.56

3.3 OCSVM for detecting anomalies in the overall magnitude of the magnetic
field. 57

3.4 OCSVM for sensing anomalies in the quaternion to B-field discrepancy. . . 58

3.5 Demonstration of a OCSVM detecting a disruption in attitude knowledge. 59

3.6 Fault isolation applied to a nominal case in nadir pointing mode. 73

3.7 Diagnosis of a failed sun sensor. 75

xi

Figure Page

3.8 The anomaly gradient of the sun sensor voting OCSVM can be used to
isolate the failed sensor. 76

3.9 Confusion matrix summarizing LSTM fault isolation performance on all
500 validation examples using the fault simulator. 78

3.10 Comparison of fault responses for a clock offset and a magnetometer ro-
tation matrix error. 85

3.11 Alternative response to a clock error based on new priorities. 86

3.12 Sequence of ADCS mode updates to respond to two faults. 88

3.13 Effectiveness of response actions over all fault–mode combinations. 89

4.1 Pre-launch photos of LightSail 2 during 2016. 94

4.2 Solar sailing strategy for LightSail 2. 97

4.3 Launch and on-orbit deployment of LightSail 2’s solar sail. 98

4.4 Examples of LightSail 2’s solar sailing performance. 100

4.5 In this image taken 15 January 2020, the shadows of the deployed solar
panels revealed that the +Y panel was only partially deployed. 102

4.6 LightSail 2 quaternion-B discrepancy angle across several mode changes. 103

4.7 Reaction wheel torque commands and RPM response during initial mode
2 testing. 104

4.8 Patterns of flight computer resets from two common causes. 106

4.9 Stuck values in the +Y magnetometer. 107

4.10 Anomaly detectors similar to the fault simulator version. 112

4.11 Given a limited amount of training data, reducing the number of dimen-
sions can help concentrate the data and reduce overfitting of the anomaly
boundary. 114

4.12 Anomaly detector for sun sensor voting on LightSail 2 with ν = 0.02. . . 115

4.13 Anomaly detector for the directional discrepancy between LightSail 2’s
magnetometers; ν = 0.02. 116

4.14 Anomaly detector for the total and peak solar power generated by Light-
Sail 2 over 2 orbits; ν = 0.05. 117

4.15 Anomalies and associated fault confidences when isolating a previously
unknown magnetometer glitch. 123

xii

Figure Page

4.16 Anomalies and fault confidences when LightSail 2 became stuck in an
attitude with low power input. 125

4.17 Diagnosing the partially deployed +Y panel on LightSail 2. 127

4.18 Prevailing diagnoses when applying anomaly detection and fault isolation
to LightSail 2 telemetry. 130

A.1 Separation of data classes using a kernel transform. 151

D.1 Isolating cases when the sun sensors are registering a non-solar bright object.170

D.2 Isolating a gyro phasing error while in no torques mode. 172

D.3 Anomalies and fault confidences when processing the reaction wheel trou-
bles encountered during LightSail 2’s checkout. 173

D.4 Successful recognition of one of LightSail 2’s best days of solar sailing. . . 174

xiii

SYMBOLS

f(x) Anomaly decision function

k Kernel similarity measure

L Total spacecraft angular momentum

L̂ Estimated spacecraft angular momentum

L Arbitrary loss function

q Attitude quaternion

w Hyperplane normal

γ Utility placeholder

µ Magnetic moment or signal mean

ν Outlier fraction

ρ Hyperplane offset

σ Sigmoid function or signal standard deviation

φ Kernel mapping function

Ω Reaction wheel rotation speed

ω Attitude rotation rate

xiv

ABBREVIATIONS

ADCS Attitude determination and control subsystem

AOCS Attitude and orbit control subsystem

CDH Command and data handling

6DOF 6 degrees of freedom

DSS Distributed satellite system

FDIR Fault detection, isolation, and recovery

FSW Flight software

IGRF International geomagnetic reference field

IMU Inertial measurement unit

LDC Long duration counter

LSTM Long short-term memory

MDP Markov decision process

MSE Mean squared error

OBCP On board control procedure

OBSW On board software

OCSVM One-class support vector machine

RNN Recurrent neural network

RPM Rotations per minute

SMART-FDIR Sequence-based mapping of anomalies to root causes from teleme-

try FDIR

TLE Two-line element

TLM Telemetry

TRAC Triangular retractable and collapsible

TTC Telemetry, tracking, and control

V&V Verification and validation

xv

GLOSSARY

Anomaly an unexpected deviation from nominal performance

Collective anomaly data points that are anomalous when compared to data points

from other signals

Contextual anomaly data points that are anomalous when compared to other data

points in the same signal

Failure the inability to perform an intended function

Fault the underlying cause of an anomaly or failure

Incipient fault a fault that emerges gradually

Kernel function a positive-definite function that defines a notion of similarity be-

tween pairs of data points

Transient fault a fault that is not persistent

Point anomaly a data point that is anomalous on its own

Utility a subjective measure of the value of an outcome

xvi

ABSTRACT

Mansell, Justin R. Ph.D., Purdue University, August 2020. Deep Learning Fault Pro-
tection Applied to Spacecraft Attitude Determination and Control. Major Professor:
Dr. David A. Spencer. Associate Professor.

The increasing numbers and complexity of spacecraft is driving a growing need for

automated fault detection, isolation, and recovery. Anomalies and failures are com-

mon occurrences during space flight operations, yet most spacecraft currently possess

limited ability to detect them, diagnose their underlying cause, and enact an appro-

priate response. This leaves ground operators to interpret extensive telemetry and

resolve faults manually, something that is impractical for large constellations of satel-

lites and difficult to do in a timely fashion for missions in deep space. A traditional

hurdle for achieving autonomy has been that effective fault detection, isolation, and

recovery requires appreciating the wider context of telemetry information. Advances

in machine learning are finally allowing computers to succeed at such tasks. This

dissertation presents an architecture based on machine learning for detecting, diag-

nosing, and responding to faults in a spacecraft attitude determination and control

system. Unlike previous approaches, the availability of faulty examples is not as-

sumed. In the first level of the system, one-class support vector machines are trained

from nominal data to flag anomalies in telemetry. Meanwhile, a spacecraft simulator

is used to model the activation of anomaly flags under different fault conditions and

train a long short-term memory neural network to convert time-dependent anomaly

information into a diagnosis. Decision theory is then used to convert diagnoses into

a recovery action. The overall technique is successfully validated on data from the

LightSail 2 mission.

1

1. INTRODUCTION

“To design a spacecraft right takes an infinite amount of effort. This is why it’s a

good idea to design them to operate when some things are wrong.”

- Akin’s second law of spacecraft design [1]

Spacecraft are complex machines that operate in a relentlessly hostile environment.

Problems are inevitable, and the history of space flight is replete with tales of ruin [2].

The goal of fault management is to ensure satellite safety by detecting anomalies,

determining their cause, and ultimately returning the satellite to a fully operational

state. The complete cycle is referred to as fault detection, isolation, and recovery

(FDIR).

1.1 Motivation

Given the finite response times and attention of human operators, a key objective

for spacecraft fault management is to provide autonomy to the FDIR cycle. Most

often this is accomplished through on board monitoring of telemetry with techniques

such as threshold limit checking [3–5]. If a threshold violation is detected, on board

control procedures (OBCP) trigger a predefined response such as switching to a re-

dundant component. If the response fails to rectify the problem, or if the anomaly

impacts multiple subsystems or a critical process, the standard procedure is to tran-

sition the satellite into safe (or “safe-hold”) mode. In safe mode, the spacecraft halts

all non-critical operations and transitions to a power-positive attitude that enables

communications with the ground [6, 7]. Depending on tracking coverage and staffing

schedules, several hours or days may be required for the operations staff to resolve

the problem and return the satellite to normal operations. Meanwhile, the satellite

is effectively disabled, impacting mission return.

2

The prevailing approach to FDIR is poorly equipped for the demands of cur-

rent and future space missions [3–6, 8, 9]. Surveys on the impact of on-orbit failures

reveal that operators are unable to fully deal with a large proportion of failures

despite apparently adequate training [10, 11]. Emerging mission concepts such as

distributed satellite systems (DSS) will exacerbate this issue. These are satellite

constellations which allocate functionality over many members rather than a few

large spacecraft [12–14]. Concepts for DSS have existed for decades, but it is only

recently that advances in small satellites, microelectronics, and inter-satellite com-

munications have elicited the development of constellations of truly enormous size.

Table 1.1 presents a summary of mega-constellations that have either been proposed

or are under development, with applications ranging from global broadband internet

to continuous reconnaissance [14–17].

Table 1.1: Proposed and under development mega-constellations.

Constellation Satellites Purpose Status

SpaceX Starlink 12,000+ Global broadband 482 operational

Amazon Kuiper 3,236 Global broadband Proposed

OneWeb 648 Global broadband 68 operational

Telesat Canada 512 Global broadband Proposed

Planet 250 High revisit time

imaging

150 operational

Spire Global 175 Maritime, aviation &

weather tracking

80 operational

Kepler Commu-

nications

140 Inter-satellite links 2 operational

In principle, the unprecedented size of these constellations establishes system re-

liability through sheer redundancy. Yet, a recent survey of planetary exploration

spacecraft found that planetary spacecraft experienced an average of 1–2 safe mode

3

entries per year [18]. For small satellites in Earth orbit the rate is likely to be higher

due to lower radiation tolerance and higher risk posture. Assuming just two safe mode

entries per year per spacecraft, a constellation of 1000 satellites can expect an average

of 5 spacecraft safing events per day. Given the typical response rates from ground

operators, it is clear that major improvements in autonomous FDIR are necessary if

operations costs are to remain sustainable.

In addition to DSS, a higher level of FDIR autonomy will benefit satellite op-

erations in hostile environments, where faults may originate from adversary attack.

In such environments it is critical to recognize when anomalies are potentially the

result of hostile actions and enact immediate countermeasures [19–21]. Spacecraft

and missions of all sizes are also becoming increasingly complex. Future missions to

the Moon and outer solar system face long signal delays and black-out periods that

will require extended periods of autonomous operation [22–25]. An FDIR system

that adapts to the priorities of different mission phases could extend fault protection

to critical events such as orbit insertion maneuvers where traditional FDIR systems

have normally been switched off [7].

1.2 Spacecraft Faults, Failures, and Anomalies

Virtually all spacecraft will experience an anomaly over the course of their mis-

sion. An anomaly in this case is defined as an unexpected deviation from nominal

performance. A failure occurs when the system becomes unable to perform an in-

tended function. Finally, a fault is the underlying source of an anomaly or failure.

Faults may occur individually or in a cascade in which faults lead to other faults. It

is the ultimate root cause that is usually of most interest to the satellite operator

because this is what the recovery response must address [26]. This section outlines

the most common types and sources of anomalies that occur on spacecraft.

4

1.2.1 Types of Anomalies

Off-nominal deviations in a signal occur in a catalogue of ways. The deviation

may appear abruptly or gradually1. Furthermore, it may be transient, in which the

anomaly appears and disappears sporadically, or it may be persistent. Figure 1.1

illustrates several common ways anomalies can appear in continuous signals [27, 28].

They include offsets, intermittent spikes, repeating values, or otherwise healthy signals

that nonetheless give conflicting results. For discrete signals, anomalies can appear

in violation of an expected sequence of transitions as illustrated in Figure 1.2, or as

a failure to transition in the expected time.

0 2 4 6 8 10
t

0

0.5

1

1.5

Si
gn
al

Offset Anomaly

0 2 4 6 8 10
t

-2

0

2

4

6

Si
gn
al

Spiking Anomaly

0 2 4 6 8 10
t

0

0.5

1

Si
gn
al

Stuck Value

0 2 4 6 8 10
t

0

0.5

1

1.5

2

Si
gn
al

Contradiction

Figure 1.1: Types of anomalies in continuous signals.

The different types of anomalies are often categorized into three classes in FDIR

literature: [27]:

• Point anomalies: wherein an individual instance of data can be considered

anomalous independently of any other data point. For example, the spiking

anomaly in Figure 1.1.

1Often called incipient

5

B

X

V

S

T

S

P

T

R

V

X

E

Valid sequence: BRXSPTSSE
Faulty sequence: BXVTXSPVE

Fault detected

Figure 1.2: Example of an anomaly in a sequence of discrete mode transitions.

• Contextual anomalies: where an instance of data is anomalous based on a com-

parison to other instances in the same signal. Examples are the offset and stuck

values in Figure 1.1, or the violation in Figure 1.2. While the individual data

points are valid, their relationship to other points in the signal is what indicates

the anomaly.

• Collective anomalies: where groups of data are only anomalous when considered

as part of a larger collection of signals. For example, the contradiction in

Figure 1.1.

1.2.2 Sources of Anomalies

There is currently no broadly accessible database of satellite anomalies due to the

proprietary nature of the data involved. However, a 2014 survey of satellite anomalies

by RAND Corporation outlines the following common root causes of anomalies [29]:

• Total ionizing dosage

• Electrostatic discharge

• Surface/internal charging

• Single event effects

• Faulty hardware or design

• Operator error

• Electromagnetic interference

• Cyberattack

6

The report states that electromagnetic interference can be intentional or mali-

cious. Additionally, the “faulty hardware/design” category is expansive and includes

subtle causes such as corrosion (particularly from atomic oxygen), outgassing, and un-

expected environmental conditions that exceed the design specifications of the space-

craft [2]. Faulty hardware and designs are particularly common for CubeSats due to

their low redundancy and accelerated development schedule [30].

The consequences of anomalies are as varied as their causes and span the spectrum

from inconsequential to total loss of the spacecraft. It is also the case that not all

anomalies are due to an underlying fault with the spacecraft. Since anomalies are

defined relative to nominal behavior, they can stem from an incorrect expectation

of what the nominal behavior is. This is particularly true for spacecraft because,

due to the limitations of ground testing, the initial checkout on orbit may be the

first time the entire spacecraft has operated in flight-like environment. Being able to

recognize when an anomaly may be a false positive is an important skill for operators

that depends greatly on intuition, experience, and understanding the wider context

in which the anomaly occurs.

Not all spacecraft subsystems contribute equally to the catalogue of faults and

anomalies either. A survey of on-orbit failures between 1980 and 2005 reports that

32% were related to attitude and orbit control subsystems (AOCS), the largest of any

single category [10]. Other major sources include the electrical power subsystem (par-

ticularly solar panels), command and data handling (CDH), and telemetry, tracking,

and control (TTC) [2, pp. 177-179] [10,11]. In the European Galileo program, AOCS,

CDH, and power account for more than half of all FDIR requirements [8].

The prevalence of AOCS among on-orbit faults is due to the complexity of this

subsystem [10]. It encompasses numerous sensors, actuators, and software functions,

many of which can be perturbed by environmental effects or faults in other sub-

systems. Accurate attitude and orbit control is often critical to mission objectives

and can even be necessary for spacecraft survival, such as for spacecraft that rely on

proper pointing to provide sufficient solar power and ground communication. Fig-

7

ure 1.3 summarizes the sources and impacts of AOCS failures from the 1980–2005

study [10]. Unlike most other subsystems, the distribution of AOCS failures is spread

nearly evenly throughout the mission life rather than being concentrated early af-

ter launch. AOCS failures resulted in total loss of the mission in 30% of cases and

degraded the ability to meet the mission objectives in 56% of cases [10].

Figure 1.3: Sources and impacts of AOCS failures. Charts reproduced based on data

from [10].

More recent studies since the proliferation of the CubeSat standard have found

CubeSat failures to be dominated by electrical and “unknown” failures rather than

AOCS [31]. However, the distribution is skewed by a large number of amateur

satellites lacking active attitude control and many of which end up “dead on ar-

rival” [32, 33]. As more CubeSats are adopted by professional organizations to carry

out missions with serious AOCS requirements, the failure distribution will likely be-

come more like that of larger spacecraft. Additionally, the complexity of onboard

8

software is rising exponentially and the infusion of autonomy is outstripping the ca-

pability of traditional V&V practices [8,34]. The proportion of AOCS failures due to

software will likely rise in the future compared to Fig. 1.3.

In summary, AOCS represents a key area to focus innovative FDIR that can

impact mission success well after launch. Nevertheless, given the diverse and evolving

assortment of anomalies, faults, and failures, techniques that are applicable to all

subsystems are desired.

1.3 State of the Art

1.3.1 Methods of Fault Detection

When a fault occurs, anomalies or failures are discovered through analysis of

spacecraft telemetry. This is the task of fault detection. In general, fault detection

need not be concerned with all of the possible ways a function can go awry, because

in order to be detected all that is needed is a deviation from normal functioning [35].

Therefore, in theory, fault detection can be performed with 100% accuracy [26]. The

terms fault detection and anomaly detection are often used interchangeably, with

anomaly detection representing a slightly broader scope since it encapsulates the

detection of all off-nominal deviations rather than only those caused by an underlying

fault.

Interest in anomaly detection spans virtually every engineering discipline and be-

yond. Important applications can be found in fields ranging from finance to cyber

security [27, 36–38]. A broad range of techniques have been explored to address

anomaly detection problems with various characteristics. Figure 1.4 categorizes the

major approaches in the literature. The techniques can focus on anomalies in indi-

vidual signals or address collective anomalies between multiple signals. The following

subsections outline the families of techniques and their applications to spacecraft

FDIR.

9

Anomaly Detection
Methods

Single
signals

Multiple
signals

Limit checking Signal models

Fixed threshold

A
daptive threshold

Statistical descriptors

Spectrum
 analysis

W
avelet analysis

Sim
ilarity m

easures

Inform
ation theory

M
arkov m

odels

R
egression

Process models

C
lustering m

ethods

O
ne-class neural netw

orks

A
utoencoders/PC

A

Support vector m
achines

N
earest neighbors

R
ule m

ining

B
ayesian netw

orks

Multivariate
analytics

A
nalytical redundancy

N
eural netw

orks

Parity equations

Figure 1.4: Taxonomy of anomaly detection techniques.

Limit Checking

The simplest and most widely applied forms of anomaly detection for individual

signals are limit checking methods [3,4,8]. Upper and lower thresholds are set to define

a range of acceptable values for a particular signal and violations are flagged as po-

tential anomalies. Sophisticated limit-checking techniques may check for persistent or

repeated violations or use “soft” and “hard” limit thresholds [39,40]. While straight-

forward to implement, the limitations of this approach motivate much of the FDIR

literature. For instance, setting thresholds typically requires detailed component-level

knowledge of the signal. Even when the necessary expertise is available, the charac-

teristics of a signal may be unknown before it is monitored in its eventual operating

environment. Thresholds are often set conservatively for this reason, causing a large

number of false positives and leading to high mission outage times [8]. The solution is

often laborious manual tuning of thresholds to balance sensitivity and false positives.

10

An alternative are adaptive threshold methods that adjust the limits based on past

trends or information external to the signal itself [41–44]. Many of these methods are

based on process models or data analytics, which are discussed later.

Where it is not possible to define suitable anomaly thresholds for the signal di-

rectly, statistical techniques using one or more moving windows can screen data for

statistically unlikely variations [27,39,45]. Thresholds on bulk window statistics such

as mean or variance can then be implemented. Other methods such as weighted

cumulative sums can sense anomalies in long term trends [28]. These methods can

address both point and contextual anomalies.

Signal Models

The signal modeling approach seeks increasingly rich representations of a signal

that can improve sensitivity to contextual anomalies. Anomalies are sensed when the

parameters modeling the signal deviate from typical values. The problem of finding

arbitrary contextual anomalies is thereby transformed into the much easier problem

of identifying point anomalies, to which any point anomaly detection method can be

applied. This approach includes moving windows of bulk statistics but also parametric

regressions of underlying probability distributions [41] and autoregressive models [27,

36]. If signals contain a uniform number of samples, a similarity measure can be

defined to create an abstract notion of distance between signals with which to search

for anomalies [27,36,37]. Spectral/wavelet analysis is yet another way of representing

signals and has been applied to FDIR for spacecraft power subsystems [46,47].

Methods applicable to symbolic as well as numerical signals include window scor-

ing, compression, and Markov models [37]. Compression finds abnormalities in the

information content of the signal while the latter construct finite state automata

similar to Fig. 1.2 that flag anomalies when sequences violate the allowed transi-

tions [37, 45,48,49].

11

Process Models

Markov models are not limited to individual signals, but can also represent com-

binations of signals [48]. The modeling of multiple simultaneous signals, often includ-

ing their inputs and interactions, forms the process model approach [50–52]. This

approach allows for the detection of collective anomalies in addition to point and

contextual anomalies. The central technique is analytical redundancy whose core

idea is this: given inputs to and/or measurements of the system, predict the behavior

of the system using the process model and compare the results with the real system.

Whereas physical redundancy compares parallel sensors for signs of a discrepancy,

analytical redundancy compares measurements to analytically derived quantities. In

the parity equations method, large residuals in the states or outputs of the model

signify and anomaly [53]. Transfer functions or state-space representations (including

Kalman filters) of the underlying system can be used for modeling [53–58]. If the

dynamics of the process model are either unknown or too complicated to implement,

neural networks can be used to approximate system behavior [44,59,60].

Multivariate Analytics

Multivariate analytics is a collection of techniques for identifying outliers of a

generic vector, X. A common assumption is that representative examples of nominal

data are readily available or that anomalies are rare in any given collection of data.

Thus, the problem is formally stated: given samples of nominal data {Xo, ...,Xn}, is

a new observation X∗ nominal? Multivariate methods come in two varieties: multi-

class and one-class. In the multi-class setting, an additional vector Y is available

corresponding to each X denoting the class to which X belongs. A classification

technique is then applied to predict the class to which a new instance X∗ belongs. If

the resulting confidence or probability for every class is low, then X∗ is flagged as an

anomaly. Classifiers applied to anomaly detection in this way include rule-mining,

neural networks, support vector machines, and Bayesian networks [36,61].

12

Several of these methods also include variants applicable to the one-class problem

where Y consists entirely of a single class (e.g. “nominal data”). Autoencoder neural

networks attempt to transform each Xi in the nominal set to itself by using a number

of input and output neurons equal to the number of features (i.e. components) of

Xi [62,63]. If the number of hidden neurons is fewer, the network is forced to compress

the information of the nominal set into an abstract representation from which it then

reconstructs an approximation of Xi at the output. If the reconstruction error of a

new input X∗ is high, it is considered an anomaly. Anomaly detection via principal

component analysis (PCA) operates on a similar principle [62]. Bayesian networks

can extend the multi-class approach by including an anomaly class and using Laplace

smoothing to remove the resulting zero prior probability (since the anomaly class has

no representatives in the training set) [27]. Lastly, one-class neural networks and one-

class support vector machines (OCSVM) use a hyperplane to separate the nominal

data from the origin in a higher dimensional space, with the hyperplane representing

the boundary to distinguish anomalies [64–67]. OCSVMs are described in more detail

in Section 2.1.

The last two multivariate methods in Fig. 1.4 both invoke the assumption that

anomalies are confined to low density regions of the feature space of X. In clustering,

nominal data is grouped into clusters and new data is evaluated based on its distance

from each of the clusters. If the new X∗ is far from any cluster, it is an anomaly.

Similarly, nearest neighbours methods compute either the distance of the new data

point to its nearest neighbor(s) or the local density to identify anomalies. Both have

been applied to anomaly detection in aerospace applications [47,68–70].

Other methods include information-theoretic and spectral techniques [27, 36, 38].

Though the various multivariate methods are fundamentally point anomaly detectors,

their generality means they can be combined with signal modeling to fully address

contextual anomalies. Multiple signals can also be combined into a single input vector

X to enable detection of collective anomalies. Yet, their most important advantage

13

is that they are implemented in a purely data-driven way that avoids the need for an

expert designer to set thresholds or develop process models.

1.3.2 Methods of Fault Isolation

Fault isolation is typically more difficult than fault detection because not all of the

information needed to uniquely identify the source of an anomaly may be present [26,

35]. Thus, the traditional approach for spacecraft has been to skip onboard fault

diagnosis altogether and instead react directly to anomalies [7,71]. Ground operators

must then assume the time-consuming task of formulating hypotheses about anomaly

root causes based on their expert knowledge and checking telemetry for clues that

confirm or reject these hypotheses [9]. Since the late 1980s, however, advances in the

field of artificial intelligence have introduced techniques for autonomously isolating

faults given observations about a system. Figure 1.5(a) presents the major methods

that have been explored in FDIR literature. The terms fault isolation and fault

diagnosis are often used interchangeably.

Propositional Logic

In the logic-based approach to fault diagnosis, expert knowledge about the rela-

tionships between faults and symptoms is represented using a catalogue of “If-Then”

rules called the knowledge base. Computer reasoning techniques such as Selective

Linear Definite (SLD) clause resolution and assumption-based truth maintenance are

then used to hypothesize faults that are consistent with the observed symptoms [72,

Chapter 5]. The first successful applications of this approach to spacecraft FDIR

were expert systems, which were initially investigated in the late 1980s as a way to

diagnose satellite anomalies induced by the space environment [73–75]. The inclusion

of fuzzy logic later allowed these systems to handle uncertainty [76]. An alternative

means of incorporating uncertainty as well as missing or contradictory information is

with Dempster-Shafer Evidence Theory [77,78]. The theory departs from traditional

14

probability by leaving some probability or “belief” unassigned amongst competing hy-

pothesis, thus representing the level of ignorance. The belief functions evolve accord-

ing to a combination rule when new evidence is collected. The technique has found

modern applications in sensor fusion, fault diagnosis, and satellite tracking [79–82].

While logic-based systems represent a mature and rigorous approach to fault di-

agnosis, they are limited by the need to assemble expert rules. In subsystems such as

AOCS, the relationships between faults and symptoms can be difficult to represent

cleanly with logical propositions. Even when this is possible, the resulting knowl-

edge base can exceed more than 200 rules [74]. Maintaining the consistency and

completeness of such a large rule base is difficult, especially if changes are necessary

late in development or during operations [42]. This motivates continuing interest in

model-based methods of fault diagnosis.

Fault Diagnosis
Methods

Propositional
logic Model based

Expert system
s

Fuzzy inference

Evidence theory

B
ayesian N

etw
orks

D
ynam

ic B
ayesian netw

orks

C
onstraint satisfaction

Param
eter estim

ation
Fault Recovery

Methods

A
ction rules

D
ecision theory

M
arkov decision processes

R
einforcem

ent learning

State m
achines

C
onflict-directed search

Classification

N
eural netw

orks

OBCP Automated
reasoning

Policy
determination

O
ther techniques

A
daptive control

D
ecision diagram

s

A
nalytical redundancy

Sym
bolic m

odel checking

(a)

Fault Diagnosis
Methods

Propositional
logic Model based

Expert system
s

Fuzzy inference

Evidence theory

B
ayesian N

etw
orks

D
ynam

ic B
ayesian netw

orks

C
onstraint satisfaction

Param
eter estim

ation
Fault Recovery

Methods

A
ction rules

D
ecision theory

M
arkov decision processes

R
einforcem

ent learning

State m
achines

C
onflict-directed search

Classification

N
eural netw

orks

OBCP Automated
reasoning

Policy
determination

O
ther techniques

A
daptive control

D
ecision diagram

s

A
nalytical redundancy

Sym
bolic m

odel checking

(b)

Figure 1.5: Taxonomy of fault diagnosis and recovery methods.

15

Model-based

Model-based methods are an attractive approach to FDIR because they can be

inspected visually and are highly modular [4]. The development of subsystem models

is an integral part of spacecraft design and these models represent rich sources of

expert knowledge. As such, there is significant interest in reusing these models to aid

fault isolation during operations [9].

A pioneering application to space flight was the “Livingstone” diagnosis system,

which was incorporated into the remote agent on Deep Space 1 in 1999 and several

missions afterwards [83–85]. Livingstone uses a qualitative process model for anomaly

detection. To diagnose discrepancies between the model and flight unit, the system

leverages the tools of propositional logic by converting fault diagnosis into a constraint

satisfaction problem and applying a conflict-directed graph search [72, Chapter 3] [86].

Other qualitative models for fault diagnosis include decision diagrams such as fault

trees and state machines [4, 87].

Bayesian networks are a quantitative model-based approach to diagnosis [72,

Chapter 8]. Bayesian networks model uncertain knowledge by representing proba-

bilistic causal dependencies as a directed acyclic graph. Nodes in the graph represent

the states of components in the system and connections between nodes convey condi-

tional probabilities about how the state of one node influences others. Given a set of

observations about the states of some nodes in the network, Bayesian inference is used

to compute probabilities for the states of other nodes that are not directly observed.

A variation are dynamic Bayesian networks, which copy a static Bayesian network

through time to model time-dependent relationships. Bayesian networks have proved

popular in diagnosing electrical systems [28,88], and applications to spacecraft FDIR

have included power systems for rovers [89], ground station monitoring systems [90],

propulsion and orbit control [42, 91], and display of critical information [92]. The

network’s structure and parameters can be designed by an expert, learned from data,

or generated automatically from fault trees [93–97].

16

Finally, analytical redundancy approaches can provide limited fault diagnosis by

identifying exactly which signals deviate from nominal operating conditions [50–52,98,

99]. However, a human operator or separate system is often still needed to interpret

the combination of deviant signals and arrive at a root cause diagnosis [60, 100]. A

closely related approach is parameter estimation, wherein sensor measurements are

used in conjunction with the model to infer properties (e.g. friction or electrical

resistance) of system components that are not directly sensed [101]. If the estimated

value of a component differs by an excessive amount, the fault can be localized to

that component. This approach allows the severity of faults to be measured, which

can influence the appropriate response [98].

Classification

In some applications, data from off-nominal scenarios may be readily available.

Fault diagnosis thus becomes a classification problem between a nominal class and

one or more fault classes. Numerous techniques have been applied in this domain, in-

cluding neural networks [98,100], clustering/nearest neighbors [4,47], and traditional

machine learning models [51, 102]. Like many methods of anomaly detection, sig-

nal processing such as PCA or wavelet analysis is usually needed to reduce complex

signals to abstract inputs for classification [98]. However, some advanced types of

neural networks can skip this step and operate on signals directly [60,103]. Given the

need for samples of faulty data, applications are mostly focused on detection of man-

ufacturing defects, but studies have been performed for spacecraft electrical power

systems [47] and rocket engines [104].

1.3.3 Methods of Fault Recovery

Once a fault has been detected and isolated, either by ground operators or by an

onboard system, the spacecraft must respond to mitigate current or imminent failures

and ultimately return the vehicle to normal operations. This is the process of fault

17

recovery. A high level of human involvement is typically required because selection of

the appropriate recovery action(s) is often highly situational. Generally it involves an

assessment of fault severity, failure prognosis, identifying response options, assessing

the likely outcomes of the response options, prioritizing responses, developing a re-

covery procedure, and ultimately executing the recovery. Potential response actions

are highly varied, but are generally drawn from four categories [26]:

• Goal change: abandoning or downgrading the current objective

• Failure recovery: such as entering safe mode or enacting a hardware reset

• Failure masking: containing the fault (e.g. by switching to a redundant com-

ponent)

• Operational avoidance: avoiding conditions that are predicted to lead to failure

The following subsections review the most prominent techniques for automating the

fault recovery process. The approaches are summarized in Fig. 1.5(b). The selection

of recovery actions in FDIR falls within the larger domain of automated planning and

the methods described here are by no means exhaustive. Extensive literature reviews

can be found in [8, 50–52,105].

Onboard Control Procedures

Reconfiguration of the spacecraft in the event of an anomaly is traditionally han-

dled by onboard control procedures (OBCP) [7,8,105]. An illustrative example is the

Solar Dynamics Observatory [71]. Response actions are sequences of pre-programmed

commands that react to anomalies in isolation. The goal is not necessarily to address

the root cause of these anomalies, but rather, “allow any cascading failures to settle

into a communicative, power-positive, thermally safe attitude” [71]. OBCPs are trig-

gered in a hierarchical fashion as depicted in Fig. 1.6. Anomalies at the lowest level

may invoke no response at all aside from dumping relevant information into an error

18

log for the ground crew to inspect [7]. Unresolved anomalies propagate upwards to

trigger increasingly extensive responses; critical or simultaneous anomalies often lead

to spacecraft safe mode. Overall, response actions are limited solely to recognized

threats to spacecraft safety and are generally conservative [105].

To counteract all these issues, new approaches in the spacecraft development process underpinned by formal modeling techniques are
necessary. Design evolution has to be carried out in unison with safety, dependability, availability, and performance analysis from the very
beginning of a project. Aneed for an integrated, system-level, comprehensive, and rigorous formalmodeling is becoming crucial. Esteve et al. [11]
investigated the use of a wide range of formal modeling and analysis techniques based on artifacts written in architecture analysis and design
language (AADL)-derivedmodel formalism [22] and executed by theCOMPASS (correctness,modeling, and performance of aerospace systems)
toolset,† which provides a framework for integration of nominal and error models, as well as simulation of the behavior of the system in the
presence of faults, and allows requirements validation, functional verification, dependability, performability, and safety assessment. This
experiment has been conducted in parallel with the actual development of a satellite platform and has highlightedmany flaws and inconsistencies
in the early design products. This effort has resulted in developing a reusable, exhaustive, and system-level formal model of the satellite platform
(i.e., covering timed hardware operations, software functions, discrete and continuous variables, and faults with probabilistic rates and effect
propagation graphs), testing the limits of the chosen toolset, developing best practices for formal modeling and analysis, and recommending some
improvements in the current software development lifecycle (see European Standard on Space Software Engineering standard ECSS-E-ST-40C
[23]). As for the formal model analysis, the following areas can be identified:

1) The first area is functional verification; e.g., system property verification via model checking and completeness issues with respect to the
responsibility of the various functional modules over the system behavior.

2) The second area is safety and dependability analysis; e.g., FTA and FMECA table automatic generation.
3) The third area includes fault detection, fault isolation, and diagnosability analysis; e.g., which observable points are triggered by a fault and

whether observable points are properly sized for the system to determine the failure state.
4) The fourth area is performability in order to assess system performance and reliability under degraded operations.
From the development process standpoint, the ECSS-based software development lifecycle [23] does not actually foresee the use of any formal

method. Esteve et al. [11] suggested the adoption of assumption spreadsheets to resolve unclear design details during the early phases of a project
and traceability tables tomap the design artifacts versus the related formalmodels. In [24], opportunities offered by an integrated system software
coengineering framework based on AADL are further discussed. The authors argue that such a framework fosters a multidisciplinary approach at
the architectural level; models the hardware and software interaction; and provides the full spectrum of required system aspects, such as safety,
dependability and performability.

The need of integrating FDIR into early design stages by means of functional models is also expressed by Kurtoglu et al. [21], who proposed
the functional fault analysis as a systematic design methodology based on a high-level functional model of a system reflecting its physical
architecture, including the physical connectivity of energy, material, and data flows within the system. The method takes into account all sensory
information, failuresmodes associatedwith each subsystem/unit, and the temporal propagation of the effects of these failuresmodes. Themodel is
used to analyze the race between the propagation of fault effects and the FDIR mechanisms designed to compensate and respond to them. This
paper uses the Ares I crew launch vehicle as case example.

B. FDIR System Architecture

During the definition and early development phases, FDIR concepts are further detailed and translated into a FDIR architecture in order to
allocate FDIR system functions and requirements. Failures and faults are usually deployed on a set of five hierarchical levels (see Fig. 2), which are
characterized by clearly defined interfaces between them, their severity, the functions involved in the detection, and the recovery sequence
([12,25]). The highest FDIR level is in charge of the execution of vital functions to ensure the S/C integrity, whereas lower-level hierarchies
operate on a subsystem or unit level and are usually software driven. A higher level is triggered by the adjacent lower level only when the latter is
not able to solve/isolate a fault. In this case, FDIR functions allocated to the higher level perform command and control functions of the next lower
level by using its housekeeping data and alarm information. The overall FDIR system is usually implemented bymeans of hardware and software
resources with a high level of interaction between them and, as a result, each S/C subsystem is part of the overall FDIR architecture. The adoption

Fig. 2 FDIR system hierarchical structure derived from [12].

†Data available online at http://compass.informatik.rwth-aachen.de/ [retrieved 2014].

TIPALDI AND BRUENJES 239

D
ow

nl
oa

de
d

by
 P

U
RD

U
E

U
N

IV
ER

SI
TY

 o
n

A
pr

il
15

, 2
01

9
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

10
.2

51
4/

1.
I0

10
30

7

Figure 1.6: Hierarchical architecture for spacecraft fault response from [8].

OBCPs are typically implemented as a rule base that becomes challenging to

manage for any complex mission. Recent work has introduced an alternative which

represents OBCPs using finite state machines [4, 5, 106–109]. The state machine

approach models a graph of the different phases/modes/conditions the satellite may

be in along with the criteria for transitioning between them. This graphical approach

is easier for engineers to specify, understand, and conduct verification and validation

(V&V) on. Instead of specifying hundreds of global rules to capture every possible

situation, designers need only specify the relevant transitions and the rules to trigger

them from each state.

19

Policy Determination

With traditional OBCPs the actions to take in the event of an anomaly are rigidly

predefined. Consequently, they struggle to cope with real aspects of the space en-

vironment such as uncertainty, contradicting information, dynamic evolution, and

partial observability of the spacecraft’s health [8, 105]. OBCPs also rarely take into

account high-level goals or capabilities, and faults can lead to abandoning objectives

that could have been safely continued. This has motivated extensive literature on

model-based approaches to fault recovery [50–52,105]. These approaches use a model

of the spacecraft and the expected effects of each action or external event to search

for actions that achieve a high-level goal. The sequence of actions is called the policy.

State machines are one such approach, but others include Markov Decision Processes

(MDP), reinforcement learning, and adaptive control. Since the latter methods do

not embed the policy within the model itself, they are grouped under the category of

policy determination.

The MDP method extends state machines to include external events and proba-

bilistic transitions between states. By formulating an objective function to represent

mission objectives, approximate dynamic programming techniques can be applied

to determine the optimal recovery policy to maximize the completion of remaining

objectives following a fault [105, 110–112]. For attitude control systems, the recov-

ery procedure can involve switching to control laws that avoid failed components.

In adaptive control, the control law is formulated such that it is robust to abrupt

changes in system parameters following a fault [52].

The complexity of spacecraft is often such that explicit modeling of the possible

states and interactions necessary to formulate an MDP can be prohibitive. Rein-

forcement learning provides a model-free approach to determining the transition and

reward functions from experience [72, Chapter 11]. Reinforcement learning can be

used to adapt a control system to new and uncertain system dynamics following a

fault [113]. It has also been used to synthesize error recoveries in computers [114]. Ap-

20

plications to spacecraft FDIR include selecting sources of assistance in human-robot

interactions [115,116].

Automated Reasoning

Logical reasoning techniques used in fault diagnosis can also be adapted to select-

ing recovery actions [105,117]. The same conflict-directed search used to isolate faults

can be applied to find the least-cost combination of recovery actions to achieve a set of

objectives. A similar approach is symbolic model checking [118,119]. Symbolic model

checking functions by representing states symbolically, thus avoiding the exploding

number of states often encountered when explicitly modeling complex systems. The

method then searches for logical formulas that produce the desired goal state. Both

conflict-directed search and symbolic model checking are model-based.

When uncertainty is involved, actions can be selected based on their expected util-

ity. Utilities define the value of different outcomes. By multiplying each utility by the

probability of the corresponding outcome, the decision maker can select an action that

will provide the highest expected utility. This approach is an elementary application

of the field of decision theory. Decision nodes can be embedded directly into Bayesian

networks to create influence diagrams [72, Chapter 9]. Decision theoretic approaches

have been applied to risk management during spacecraft development [120,121], and

to evaluating recovery options based on uncertain root cause diagnosis with dynamic

Bayesian networks [89].

1.3.4 Limitations of the Approaches

One reason that model-based approaches to all stages of FDIR are prevalent in

aerospace engineering is because the models themselves are a ubiquitous tool for anal-

ysis. FDIR aside, computer models are critical to the design and validation of space

systems because realistic conditions often cannot be simulated otherwise. Spacecraft

models thus represent a rich source of knowledge about system behavior that can be

21

leveraged for FDIR. Unfortunately, simulating a system model alongside the actual

spacecraft for the purpose of analytical redundancy is often too computationally in-

tensive to perform on board [85]. Even when approximate techniques such as neural

networks are used in place of a detailed model, interpreting root causes from combi-

nations of identified anomalies is often still left to the operator [60].

Various formal methods for diagnosing root causes from observed symptoms were

therefore reviewed in the previous subsections. In many cases, the techniques require

expert knowledge of both the technique and the system in order to implement. This

is likely out of reach for many designers and operators of small spacecraft. Indeed,

CubeSat teams are often characterized by small teams with limited expertise to spare

for extensive design of FDIR [30, 32]. Even for professionally managed spacecraft,

the increasing complexity of onboard software is a growing concern [34]. Most of the

techniques reviewed in Section 1.3.2 will only contribute to this trend.

Moreover, out of all the fault diagnosis methods reviewed in Section 1.3.2, only

dynamic Bayesian networks explicitly incorporate the time-dependent context of

anomaly information. Yet, the limitations and complexity of assembling dynamic

Bayesian networks is discussed in recent literature [122]. In real situations, data is

often missing or contradictory. Multiple faults may be present and faults often af-

fect multiple components. Anomalies can be false positives or related to each other

with arbitrarily long time dependencies. Past data could be crucial to diagnosis or

completely irrelevant. These characteristics are particularly applicable to spacecraft

attitude determination and control subsystems (ADCS), which interact directly and

extensively with the time-varying space environment. Fusing anomaly information to

arrive at a system-level root cause diagnosis requires being sensitive to temporal con-

text, but the details are difficult to quantify. When should information be forgotten?

How persistent or frequent must an anomaly be before it can no longer be considered

a false positive? Under what circumstances does one piece of information negate the

relevance of others?

22

In the past, the answers to these questions belonged solely to experienced space-

craft operators. This thesis will show how they can be addressed using deep learning.

1.4 Contributions of This Dissertation

Deep learning is a powerful trend in machine learning whereby data is processed

into hierarchical levels of abstraction by the successive layers of a neural network [38].

Different types of neural networks can be stacked together to provide a modular ar-

chitecture. The depth of these networks allows them to achieve nearly human-level

performance on tasks such as image recognition and language processing that re-

quire a highly contextual understanding of the data. An important deep learning

model is long short-term memory (LSTM), which is capable of selectively remember-

ing and forgetting information from time series to aid in time series classification or

prediction [123]. LSTM networks provide the sort of contextual processing needed to

convert time-dependent anomaly information into a high-level root cause diagnosis.

Deep learning is limited by a large need for data in order to achieve acceptable

performance [38]. This has limited its applicability to spacecraft FDIR because the

many samples of different faults needed to train a deep learning classifier are simply

not available for most missions. Software and hardware models of the spacecraft can

simulate its response to faults, but the results may not be sufficiently realistic to use

in training directly [124,125].

The primary contribution of this dissertation is to enable the application of deep

learning to spacecraft FDIR through the use of transfer learning. Transfer learning

is a technique where learning achieved by a neural network in one domain (e.g. a

simulation) is applied to a different but related domain (e.g. real life) [126,127]. This

is accomplished for FDIR by using OCSVMs to convert raw telemetry into an abstract

representation that is effectively identical for both a spacecraft simulator and the flight

unit. An LSTM network designed to diagnose faults from this common representation

can therefore train on data from the simulator and transfer its learning to operate on

23

data from the real satellite. This solves the problem of lacking representative data

from faults on board the flight unit, since an arbitrary number of faulty examples can

be generated from the spacecraft simulator. Figure 1.7 presents a schematic of the

process.

ADCS
Simulator

Real
Spacecraft

Abstracted
anomaly

information

Injected
faults

Real
faults

Simulator
OCSVMs

LSTM

Rule-based
detectors

Flight
OCSVMs

Rule-based
detectors

Fault
diagnosis

TLM TLM

Simulated
nominal

data

Real
nominal

data

Training path
Operational path

Common
representation

Figure 1.7: Transfer learning architecture for deep learning of spacecraft FDIR.

This approach to FDIR is termed: Sequence-based Mapping of Anomalies to

Root causes from Telemetry (SMART-FDIR). The architecture is applied to detect,

isolate, and recover from faults in small satellite ADCS. ADCS is chosen due to its

complexity and the historically high number of anomalies and failures associated with

this subsystem. Specific contributions are outlined below.

1.4.1 Development of an ADCS Fault Simulator

A fault simulator is developed based a high-fidelity model of the complete ADCS

for LightSail 2. The simulator is modified to represent either LightSail 2 or a generic

24

3U CubeSat. A detailed ADCS fault tree is developed and the fault simulator includes

the capability to inject up to 35 ADCS-related faults.

1.4.2 Anomaly Detection of ADCS Signals

This dissertation identifies key ADCS signals for informative fault detection.

Anomaly detectors based on OCSVMs are designed, including several based on com-

posite signals that provide novel ways of sensing anomalies. Anomaly scores from

the various detectors provide a common representation for training and operating

an LSTM diagnosis network on either the fault simulator or a real spacecraft. An

important advantage is that the anomaly signals can still be interpreted by a human

operator as a means of validating the LSTM’s diagnosis.

1.4.3 Deep Learning Fault Diagnosis

An LSTM network is designed to isolate ADCS faults based on time series inputs

from anomaly detectors. The LSTM network leverages time-dependent context in

the inputs and can isolate multiple system-level faults occurring simultaneously. In

addition to OCSVMs, the network also accepts input from several rule-based anomaly

detectors. Decision theory is applied to suggest recovery actions in the event of a fault

and the full FDIR cycle is demonstrated on the fault simulator.

1.4.4 Application to LightSail 2

Transfer learning allows an LSTM diagnosis network to train on simulations from

a fault simulator yet also operate on an actual spacecraft. This approach is applied to

detect and isolate ADCS faults on the LightSail 2 spacecraft. Both known and previ-

ously unknown faults are correctly identified. The results demonstrate the readiness

of the technology for further spacecraft and other autonomous vehicle applications.

25

Dissertation Outline

Chapter 1 has provided the motivation and literature review for current methods

of spacecraft FDIR. Chapter 2 details the development of an ADCS fault simulator

and reviews the theory of OCSVMs and LSTM networks. Chapter 3 applies these

methods along with decision theory to perform the full FDIR cycle in the fault simu-

lator. Chapter 4 extends the approach to detect and isolate anomalies on LightSail 2.

Finally, Chapter 5 summarizes significant results and suggests directions for future

work.

26

2. THEORY AND BACKGROUND

2.1 One-Class Support Vector Machines

The FDIR cycle begins with fault detection. OCSVMs are a formal method for

detecting when new telemetry is anomalous with respect to past observations. Aside

from the identification of past nominal data, no expert knowledge about the signal is

assumed. The following subsections review the mathematical basis of OCSVMs and

extend the method to yield additional insight into the causes of anomalies.

2.1.1 Derivation

The canonical support vector machine is a supervised approach to binary classi-

fication [66]. The basic notion is to find a hyperplane that separates all data points

of one class from those of the other class. OCSVMs are a variation of the standard

support vector machine method that address the problem of outlier detection. Given

a training set of vectors x1, x2, ..., x` ∈ RN from a single class (e.g. nominal data),

the goal is to find a function f(x) that is positive in a closed region capturing most of

the training data and negative elsewhere, with the boundary f(x) = 0 discriminating

between nominal data and anomalous data. What follows is a procedure for finding

f(x) as first laid out by Schölkopf [65].

The first step is to separate the data from the origin in a higher-dimensional vector

space using a kernel transformation:

k(xi, xj) = φᵀ(xi)φ(xj) (2.1)

The kernel function is positive-definite and defines a notion of similarity between

pairs of vectors. As k(xi, xj) → 0, xi and xj are increasingly dissimilar. Additional

discussion about the mapping φ(x) is provided in Appendix A.

27

The anomaly decision function is modeled as a hyperplane with normal vector

w and offset ρ which divides the transformed data from the origin as illustrated

by Fig. 2.1. This approach can be thought of a binary classifier with the origin

representing all members of the anomaly class, since it corresponds to k(xi, x) = 0 (i.e.

x is infinitely dissimilar from the training data). The hyperplane decision function is

written:

f(x) = wᵀφ(x)− ρ (2.2)

The hyperplane is found by solving the following quadratic program:

min
w,ξ,ρ

V (w, ξ, ρ) =
1

2
wᵀw +

1

ν`

∑̀
i=1

ξi − ρ (2.3a)

Subject to:

wᵀφ(xi) ≥ ρ− ξi ∀i (2.3b)

Where ξi are slack variables that have been introduced to allow some error in the

solution. This error serves to make the position of the hyperplane less sensitive to

outliers in the training data. The parameter ν ∈ (0, 1) controls this sensitivity by

setting an upper bound for the fraction of outliers. A larger ν corresponds to a tighter

decision boundary (i.e. a smaller region of f(x) > 0) as more points are permitted to

lie to the left of the hyperplane in Fig. 2.1.

Using the Wolfe duality [128], we add Lagrangian multipliers αi > 0 and represent

Eq. 2.3 in its dual form:

arg min
α,w,ξ,ρ

− V (w, ξ, ρ)−
∑̀
i=1

αi{−wᵀφ(xi) + ξi − ρ} (2.4a)

Subject to:

∇V (w, ξ, ρ) +
∑̀
i=1

αi∇{−wᵀφ(xi) + ξi − ρ} = 0 (2.4b)

Eq. 2.4b yields:

[wᵀ, (ν`)−1, ..., (ν`)−1,−1] =
∑̀
i=1

αi[φ
ᵀ(xi), 1, ..., 1,−1] (2.5)

28

= Data
= Support vector

φ2 (x)

f (x) = 0

φ1(x)

f (x)> 0

f (x)< 0

ρ

w
ξi

Figure 2.1: Conceptual illustration of a OCSVM hyperplane decision function.

From Eq. 2.5 it is clear that the optimal w solves:

wᵀ =
∑̀
i=1

αiφ
ᵀ(xi) (2.6)

Substituted into Eq. 2.2, this provides the hyperplane decision function:

f(x) =

{∑̀
i=1

αik(xi, x)

}
− ρ (2.7)

Eq. 2.5 also provides further constraints on the Lagrange multipliers, revealing:∑
i

αi = 1 (2.8a)

αi ≤
1

ν`
(2.8b)

Since f(x) contains the αi, it remains to solve for the Lagrange multipliers. Fixing

optimal w, ξi, and ρ, Eq. 2.4a reduces to:

arg min
α

∑̀
i=1

αiw
ᵀφ(xi) (2.9)

Which, upon substitution of wᵀ and multiplication of a constant, is equivalent to:

arg min
α

1

2

∑̀
i=1

∑̀
j=1

αiαjk(xi, xj) (2.10a)

29

We also collect the constraints on αi:

0 ≤ αi ≤
1

ν`
,
∑
i

αi = 1, (2.10b)

Training data with non-zero αi are called the support vectors. These vectors lie

exactly on the hyperplane if 0 < αi < (ν`)−1. The offset ρ can be recovered from any

one of these by noting that any xi on the decision boundary f(x) = 0 solves:

ρ =
∑
j

αjk(xj, xi) (2.11)

Eqs. 2.10 and 2.11 provide everything that is needed to solve for the decision

function f(x). Figure 2.2 provides an example for two different values of ν and the

Gaussian kernel:

k(x, y) = e−||x−y||
2

(2.12)

Eq. 2.12 defines φ(x) implicitly and is a popular choice of kernel which is used

throughout the rest of this dissertation. Since it is the unit Gaussian, it is important

to normalize the training vectors xi and any later inputs to be approximately in the

range (−1, 1). It is also useful to apply the logit transform to the decision output:

F (x) =
exp {−f(x)}

1 + exp {−f(x)}
(2.13)

Under this transform, F (x) represents a confidence score that a new observation x is

an anomaly. Data for which F (x) ≈ 0 are confidently nominal, while F (x) > 0.5 are

anomalies. Such anomaly scores for different ADCS signals will become the inputs to

an LSTM network for fault isolation.

2.1.2 Interpreting OCSVM Anomalies

The anomaly decision function, Eq. 2.13, provides little in the way of explanatory

power aside from simply identifying anomalies. Particularly in space flight applica-

tions, it is also important to understand why an instance of data is deemed anomalous

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

Decision Boundary
Data
Support Vector

(a) ν = 0.075

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

Decision Boundary
Data
Support Vector

(b) ν = 0.15

Figure 2.2: Example decision boundaries determined using a OCSVM with different

outlier fractions. An important property of the method is the ability to reject outliers

within the training data when forming the decision boundary.

31

by the algorithm. We can gain additional insight into the OCSVM’s anomaly deci-

sions in this regard by calculating the gradient of the anomaly score for a vector

x ∈ RN :

∇F (x) =
∂F

∂x
=
∂F

∂f
◦ ∂f
∂x

(2.14)

where ◦ denotes the Hadamard (element-wise) product. Let us concern ourselves

only with the direction of the anomaly gradient. We can then restrict our analysis to

the second term in Eq. 2.14 by noting that directions of decreasing f correspond to

directions of increasing anomaly scores. Recalling Eq. 2.7:

∂f

∂x
=
∑̀
i=1

αi
∂k(xi, x)

∂x
(2.15)

Assuming the Guassian kernel function (Eq. 2.12):

∂k(xi, x)

∂x
= −2(x− xi) exp(−||x− xi||2) (2.16)

⇒ ∇f(x) =
∂f

∂x
= −2

∑̀
i=1

αi(x− xi)k(xi, x) (2.17)

which is an N × 1 vector of derivatives.

Normalizing and taking the negative of Eq. 2.17 gives the direction in which the

anomaly score of x is increasing fastest. We will refer to this as the “anomaly gra-

dient,” and it can be interpreted as showing the relative contribution of the different

components of x to the anomaly score. If the gradient lies heavily along one axis of x,

it is an indication that the anomaly is associated with that component. Figure 2.3(a)

illustrates the anomaly gradient for the decision boundary in Fig. 2.2(a).

Far field Approximation

Unfortunately, Eq. 2.17 does not provide a foolproof way of understanding where

an anomalous vector x lies relative to the set of nominal data. Since f(x) does not

necessarily decrease monotonically away from the decision boundary, the anomaly

gradient can become reversed relative to the boundary as shown in the top right of

32

Fig. 2.3(a). A further complication is that, in practice, anomalies are often so far

removed from the set of nominal data that k(xi, x) � 1, thus causing a numerical

underflow that results in ∇f(x) = ~0.

In order to compute a sensible anomaly gradient in this regime, we introduce the

following “far field” approximation:

||x− xi||2 ≈ ||x− µ||2 (2.18)

⇒ k(xi, x) ≈ k(µ, x) (2.19)

where µ is the centroid of the nominal data, xi. Invoking this approximation allows

us to factor k(xi, x) out of the sum in Eq. 2.17 and then remove it through subsequent

normalization. This gives the approximate “far field” anomaly gradient:

− ∇f
||∇f ||

≈
∑`

i=1 αi(x− xi)
||
∑`

i=1 αi(x− xi)||
(2.20)

The approximation Eq. 2.18 is justified when the distance of x to each xi is much

larger than the distances between the xi themselves. In other words, when x is far from

any cluster of nominal data. However, it is useful even near the decision boundary,

where it can mitigate troublesome gradient reversals relative to the decision boundary.

Figure 2.3(b) compares the anomaly gradient determined with far field approximation

with Fig. 2.3(a). The far field anomaly gradient will be useful for isolating anomalies

to specific sensors and actuators in Section 3.2.2.

2.1.3 Advantages of OCSVMs

Numerous other anomaly detection techniques exist as discussed in Section 1.3.1,

but OCSVMs possess a number of advantages that make them well suited to fault

detection in ADCS signals. For one, it is not necessary to specify the number of

clusters in the training dataset as is the case for some cluster-based methods. This

is exemplified in Fig. 2.2(b) where the decision boundary bifurcates to independently

surround the separate clusters. The bifurcation is controlled by the parameter ν,

33

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

Decision Boundary
Anomaly Gradient

(a) Accurate anomaly score gradients

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

Decision Boundary
Anomaly Gradient

(b) Approximate far field gradients

Figure 2.3: OCSVM anomaly score gradients can provide insight into the anomaly

decisions of the algorithm by revealing the relative contribution of each component of

a vector to the anomaly score. The far field approximation simplifies the calculation

and ensures the gradient can still be computed when anomalies are large.

34

which is intuitive to tune. It controls how tightly the boundary should enclose the

nominal data and sets an upper-bound for the false positive rate of the anomaly

detector.

OCSVMs are also more computationally efficient to evaluate than methods such as

nearest neighbours. Since αi 6= 0 only for the support vectors, the kernel function in

Eq. 2.7 need only be evaluated for the support vectors. This efficiency is an important

consideration for anomaly detection performed on board resource-constrained flight

hardware.

Lastly, OCSVMs operate over any number of dimensions and are straightforward

to apply to anomaly detection in a diverse selection of ADCS signals (see Sections 3.1

and 4.2). Using a single method for numerous anomaly detectors simplifies the overall

FDIR design. This is a priority in FDIR research.

2.2 Long Short-Term Memory

Artificial neural networks are abstract models of animal nervous systems that

can approximate any function from input-output pairs from the function. They are

typically used in applications where the function of interest is not explicitly known

or is otherwise difficult to evaluate directly [129]. For FDIR, neural networks will be

used to model the complex relationships between anomalies and underlying faults in

spacecraft ADCS. The network will learn these relationships implicitly from examples

generated by a fault simulator rather than by explicit programming. The particular

type of network to be used is called long short-term memory. This section describes

its architecture and implementation for fault isolation.

2.2.1 Architecture

The most elementary artificial neural network is a multi-layer perceptron (MLP),

commonly known as a feed-forward neural network. MLPs arrange neurons such that

35

the output of each layer is a linear combination of the inputs passed through some

non-linear activation function ϕ:

y = ϕ(Wx+ b) (2.21)

Where xn×1 is a vector of inputs, ym×1 is a vector of outputs, Wm×n contains the

weights of the neuron connections, and bm×1 are bias terms. This is sufficient to

model a static input-output relationship.

For cases where y depends dynamically on x, recurrent neural networks (RNN)

introduce a feedback loop to one or more layers. This gives them an evolving internal

state ht that can influence the output from one time step to the next. Figure 2.4(a)

compares the architecture with an MLP. The update and output of an RNN is de-

scribed by:

ht =ϕ1(Wxt + Uht−1 + b1) (2.22a)

yt =ϕ2(V ht + b2) (2.22b)

Unfortunately, both RNNs and MLPs with many layers can be difficult to train due

to the vanishing/exploding gradients problem [130]. LSTM overcomes this problem

by introducing memory cells to the standard RNN [123]. The memory cells can

selectively save values, forget them, and influence the network’s hidden state and

hence, the network’s output. Figure 2.4(b) provides a schematic of the basic LSTM

memory cell. The following equations control the different gates inside the cell:

ft =σ(Wfxt + Ufht−1 + bf) (2.23a)

it =σ(Wixt + Uiht−1 + bi) (2.23b)

ot =σ(Woxt + Uoht−1 + bo) (2.23c)

Note that σ represents the sigmoid activation function:

σ(z) =
ez

1 + ez
(2.24)

36

The cell state and hidden state are modified by the activations of the gates according

to the following equations:

ct =ft ◦ ct−1 + it ◦ tanh (Wcxt + Ucht−1 + bc) (2.25a)

ht =ot ◦ tanh (ct) (2.25b)

In summary, the inputs and hidden state of the LSTM network actuate gates that

can selectively overwrite or read the cell’s memory. When the cell memory is read, it

modifies the hidden state. A copy of the hidden state is passed to subsequent layers

of the neural network where it is interpreted to give the final output of the network

at that time step.

2.2.2 Fault Isolation Using LSTM

During fault isolation, LSTM will be applied to perform sequence-to-sequence

regression. Given a stream of anomaly signals as input, the goal is to compute an

instantaneous confidence value for each possible underlying fault. This is different

from the sequence classification approach. In LSTM sequence classification, the class

is typically predicted only once the entire time series of inputs has been processed,

but in fault isolation the sequence of inputs streams continuously. The fault case

can also change with time as faults appear or disappear. Treating the problem as a

regression allows the LSTM network to provide a running prediction of the fault case.

Furthermore, by avoiding the softmax activation function used in most classification

architectures, the constraint that the confidence scores must sum to unity is relaxed.

This allows the network to diagnose multiple faults occurring simultaneously or leave

confidence unassigned in a manner similar to the notion of ignorance in Dempster-

Shafer evidence theory [78].

To interpret the hidden state ht of the LSTM memory cells into non-exclusive

confidence outputs in the range (0,1), we use a fully connected (a.k.a. “dense”) layer

computing Eq. 2.22b where ϕ2 = σ. One-hot encoding is used for the fault confidence

scores, meaning each element of the output vector yt contains a score representing

37

W

x

y

ht

xt

yt

V

W

U

(a) (b) (a) Architectures of a MLP and RNN

ht-1	

ct	

ht	

ct-1	

xt	

σ	

×

σ	

σ	

tanh	
×

+

×
tanh	

ht	

ƒt it

ot

Input gate
Forget
gate

Output gate

W

U

Hidden state

Cell state

Input

To output
layers

(b) LSTM memory cell

Figure 2.4: Comparison of neural network architectures. In addition to the hidden

state feedback of a traditional RNN, LSTM includes memory cells that store selected

information.

38

the network’s confidence that the corresponding fault scenario is occurring at that

moment. The target outputs during training are binary flags indicating whether each

fault is actually present in the system. Figure 2.5 depicts the entire architecture.

LSTM

Dense layer

Sigmoid
activation

Raw telemetry

#0 #1 #2 #20 #21 Fault ID

Sc
or

e
OCSVM
detectors

Other fault
checks

…	

Figure 2.5: Hierarchy of fault isolation layers.

2.2.3 Network Training

Training a neural network involves finding the optimal set of weights and biases

to minimize some loss function L assessing the accuracy of the network’s predictions.

The loss function is usually calculated in reference to target outputs yT that represent

the true output to input x based on input-output training pairs. For sequence-to-

39

sequence regression, the loss function is normally half of the mean squared error

(MSE) of the outputs at each time step:

L =
1

2s

s∑
t=1

m∑
j=1

(yjt − yTjt)2 (2.26)

Where t = 1, ..., s is the sequence of n×1 inputs and j = 1, ...,m are the possible fault

scenarios. This is the loss function used to train the LSTM network’s fault confidence

scores. Thus, L is minimized when the LSTM’s confidence for each fault at each time

matches the actual fault flag as close as possible.

The weights and biases of the neural network are initially randomized. Each

iteration of the training cycle then proceeds in three steps:

1. Forward pass: Input vectors x1, ...xs for each training sequence are provided to

the LSTM network and its outputs y1, ..., ys are computed using Eqs. 2.23, 2.25,

and 2.22b.

2. Loss computation: L and
∂L
∂yjt

are computed using Eq. 2.26.

3. Backward pass:
∂L

∂{W,U, V, b}
are found from

∂L
∂yjt

and W,U, V , and b are up-

dated via gradient descent.

The process of deriving the gradient descent parameter updates from the loss dur-

ing the backward pass is provided in Appendix B. Numerous ‘tricks’ can enhance the

convergence of W,U, V , and b. The gradients in step 3 are often multiplied by a con-

stant called the learning rate (typically� 1) to encourage smaller updates. This can

prevent gradient descent from “stepping over” good solutions or diverging altogether.

In a similar vein, gradient clipping re-normalizes gradients if they exceed a thresh-

old value. Techniques such as weight regularization and drop-out, which randomly

removes neurons during training, can also reduce overfitting by encouraging the net-

work to learn multiple representations of an input-output relationship [131]. Training

multiple networks from randomly initialized parameters can also allow multiple local

optima for W,U, V , and b to be found, and the best among them selected.

40

2.2.4 Understanding LSTM’s Decisions

Once the LSTM network is trained, insight can be gained into its fault isolation

decisions by computing the gradient of the network’s output with respect to its inputs.

This reveals exactly which inputs are having the most influence on the network’s

confidence scores and provides a way of validating that the network has learned

sensible relationships between anomaly symptoms and faults. Another advantage is

efficient fault reporting, since the gradient can reveal the subset of telemetry signals

relevant to a fault as well as localize the time when the fault first appeared.

The following equations derive the gradient of the LSTM confidence scores with

respect to the inputs at time t. This is accomplished via the chain rule of Calculus.

The current and previous states of the network and all intermediate variables (i.e.

the gates) are assumed to be known. Letting at = tanh (Wcxt + Ucht−1 + bc) in

Eq. 2.25a, Fig. 2.6 traces all of the paths through the LSTM memory cell by which

xt can influence yt.

Summing all parallel paths from yt to xt, we can derive the following equation for

the gradient of interest:

∂yt
∂xt

=
∂yt
∂ht

[
∂ht
∂ot
◦ ∂ot
∂xt

+
∂ht
∂ct
◦
(
∂ct
∂ft
◦ ∂ft
∂xt

+
∂ct
∂it
◦ ∂it
∂xt

+
∂ct
∂at
◦ ∂at
∂xt

)]
(2.27)

The left-most term is determined from Eq. 2.22b and by noting that the derivative

of the sigmoid function is σ′ = (1− σ)σ:

∂yt
∂ht

=
∂yt
∂σ

∂σ

∂ht
= (1− yt) ◦ yt ◦ V (2.28)

Moving from left to right through Fig. 2.6, the derivatives branching from ht follow

from Eq. 2.25b:

∂ht
∂ot

= tanh (ct) (2.29)

∂ht
∂ct

=ot ◦ {1− tanh2(ct)} (2.30)

41

yt ht

ot

ct

xt

ht−1

ft

it

ct−1

at

xt

ht−1

xt

ht−1

xt

ht−1

∂yt
∂ht

∂ht
∂ot

∂ot
∂xt

∂ot
∂ht−1

∂ht
∂ct

∂ct
∂ft

∂ct
∂it

∂ct
∂at

∂ct
∂ct−1

∂ft
∂xt

∂ft
∂ht−1

∂it
∂xt

∂it
∂ht−1

∂at
∂xt

∂at
∂ht−1

Figure 2.6: Propagation path for differentiating the output of the LSTM network

with respect to the current input.

The derivatives of each of the gates are determined similar to Eq. 2.28:

∂ot
∂xt

= ot ◦ (1− ot) ◦Wo (2.31)

∂it
∂xt

= it ◦ (1− it) ◦Wi (2.32)

∂ft
∂xt

= ft ◦ (1− ft) ◦Wf (2.33)

Finally, from the cell state update Eq. 2.25a we have:

∂ct
∂ft

= ct−1 (2.34)

∂ct
∂at

= (1− a2t) ◦Wc (2.35)

42

This covers all of the terms necessary to evaluate Eq. 2.27. It is also possible

to determine the gradient with respect to prior time steps

{
∂yt
∂xt−p

: p > 0

}
. The

usefulness and practicality of this is limited, however. Equation 2.27 already involves

computing an m × n tensor for every time step. To propagate the gradient back p

time steps for every one of T steps would involve computing p× T such tensors − a

significant computational and memory expense. As will be evident in Chapters 3 and

4, even just
∂yt
∂xt

can provide valuable insight into the LSTM network’s fault decisions.

2.3 ADCS Fault Simulator

The purpose of the fault simulator is to provide a reasonably complete and ac-

curate model of how a spacecraft’s ADCS operates. By interfering with or spoofing

certain signals within the model, the fault simulator can give a picture of how the

ADCS will behave when affected by different faults.

The 6DOF spacecraft ADCS model used in this research is an adaptation of the

model inherited from the LightSail 2 solar sail mission [132–135]. The model is imple-

mented in SimulinkTM and includes sensors, actuators, flight software (FSW) attitude

determination and control algorithms as well as a high-fidelity rigid body dynamics

propagator for the attitude and orbit of the satellite. To make the model more rep-

resentative of a typical 3U (30 cm × 10 cm × 10 cm) CubeSat, features specific to

LightSail 2 such as the solar sail have been disabled and the model spacecraft includes

a reaction wheel for each axis. Figure 2.7 provides an overview of the ADCS model

alongside the structural configuration of the spacecraft. Attitude quaternions are

represented by q and rates are represented by ω. The following subsections outline

the key components and capabilities of the simulation.

2.3.1 Attitude Sensors and Determination

A suite of four magnetometers, five sun sensors, and three gyros provide attitude

knowledge to the spacecraft. The magnetometers each measure the magnetic field

43

6DOF Dynamics
Model

FSW
Emulator

Gyros

Sun sensors

Magnetometers Navigation
Filter

Guidance
Generator

Reaction
Wheels

Torque
Rods

Attitude
Controller

q

ω
Sensor
outputs

Position
Velocity

qe ωe

qd

Mode

True states

State
estimates

Actuated
torques

Torque
cmds

Attitude
cmd

(a) ADCS block diagram

(b) Satellite configuration

Figure 2.7: Overview of the CubeSat attitude determination and control system

simulated in the fault simulator.

44

along 3 axes from a location halfway along each solar panel. The magnetometer out-

puts are represented in the simulation by determining the local magnetic field vector

from the 2010 International Geomagnetic Reference Field (IGRF) and transforming

it into the sensor-fixed frame of each sensor. Gaussian measurement noise, saturation,

and digitization are then applied based on the specifications of actual hardware. The

Honeywell HMC6343 magnetometer is used for this purpose [136]. The sun sensors

represent coarse sun sensors made by ELMOS [137]. Four of the sensor fields of view

(FOV) face outwards along each deployed solar panel while the final sensor is located

on the –Z panel. Note that the panels are nominally opened 165 degrees from the

spacecraft body. Finally, each gyro measures the rotation rate about one of the ge-

ometric axes of the spacecraft with measurement noise and digitization representing

those of the Analog Devices ADIS16135 model [138].

A voting mechanism helps ensure the integrity of sensor measurements before

they are used for attitude determination. Each 3-axis magnetometer measurement is

transformed into the spacecraft body frame and used to compute an average magnetic

field vector. If any sensor’s measurement differs from the average by more than the

known 3σ noise of the sensor, the sensor is marked as invalid for the current sample

period (1 second). If more than half of the sensors differ in this way, all are rejected.

A similar scheme is applied to the sun sensors with the additional consideration that

all sun sensors are ignored if the spacecraft is believed to be in eclipse based on an

estimate of its current position. In the simulation, sun sensors that do not have the

sun in their FOV give random outputs. Since the gyros each measure a different axis,

no voting is performed.

Accepted sensor measurements are transformed into the spacecraft body frame

using the appropriate rotation matrices and incorporated into an extended Kalman

filter (EKF) to estimate the spacecraft attitude quaternion in the Earth Centered

Inertial (ECI) frame [139]. The IGRF model is used to provide the reference magnetic

field vector in this frame in order to interpret the magnetometer readings. A basic

solar position model from the U.S. Naval Observatory Astronomical Almanac fulfils

45

the same purpose for any sun sensors that are accepted [140]. Querying the IGRF

model and checking for eclipse requires the spacecraft to know the universal time and

its position in the ECI frame. For small satellites in Earth orbit this is generally

provided in the form of an orbit two-line element (TLE) uplinked to the satellite

and integrated to the current time of the spacecraft clock by an onboard propagator.

For the purpose of the simulation, the spacecraft’s simulated position and time are

used, but these can be subjected to errors to represent an incorrect time or TLE.

With this combination of sensors and algorithms, attitude determination is typically

accomplished to within 15 degrees error.

2.3.2 Attitude Actuators

Attitude control is actuated by a reaction wheel and a magnetic torque rod about

each axis. The torque limits, saturation RPM, moment of inertia, and torquing errors

of the reaction wheels are based on the specifications of the RW-0.060-28 model man-

ufactured by Sinclair Interplanetary [141]. The magnetic torque rods are simulated

by including their magnetic dipoles in the calculation of the spacecraft’s magnetic

torques. The dipoles range between ±1 Am2 depending on the command and are de-

rived from specifications for torque rods produced by StrasSpace [142]. The currents

needed to produce the commanded dipole are also simulated and measurement noise

is added.

2.3.3 Guidance and Control

The 6DOF simulator incorporates the attitude control modes listed in Table 2.1.

In Sun, nadir, or velocity pointing modes, the spacecraft’s ECI position and ve-

locity (velocity pointing) or solar position (Sun pointing) are used to derive a desired

46

Table 2.1: Simulated attitude control modes.

No. Mode Description

0 Detumble Valid magnetometer readings are averaged in

the spacecraft body frame and basic B-dot con-

trol [143] is used to generate torque rod com-

mands to arrest the spacecraft’s rotation. Reac-

tion wheels are not used in this mode.

1 Magnetic alignment Similar to detumble except that the Z-axis torque

rod is set to constant maximum power. This aligns

the spacecraft Z-axis (with some precession) to the

local magnetic field vector.

2 Sun pointing All actuators are used to point the spacecraft’s –Z

panel towards the Sun.

3 No torques All actuators are disabled.

4 Nadir pointing All actuators are used to maintain nadir pointing

of the Z-axis.

5 Velocity pointing All actuators are used to align the spacecraft Z-

axis with the velocity vector.

attitude quaternion qd in the ECI frame. This is combined with the spacecraft’s

estimated quaternion qe from attitude determination to derive an error quaternion:

qε = q−1d qe (2.36)

The error quaternion along with the measured angular rates from the gyros are used

in a state feedback controller to compute control torques for each axis. These torques

are sent simultaneously to both the torque rods and reaction wheels. The resulting

pointing error with respect to the commanded quaternion is generally less than 10

degrees.

47

2.3.4 Dynamics

Propagation of the spacecraft’s rotational and orbit dynamics occurs in Simulink

using a fourth order Runge-Kutta integrator. The following disturbances are modeled:

• J2-J6 gravity harmonics

• Aerodynamic drag based on the NRLMSISE-00 atmospheric model

• Solar radiation pressure

• Third body lunar gravity

• Gravity gradient

• Magnetic torque for the residual magnetic fields of the reaction wheels

The true state of the spacecraft serves as input to the various sensor models to

simulate sensor outputs. The mass of the spacecraft is 5 kilograms.

2.3.5 Fault Injection

A key feature of the 6DOF simulator is the ability to inject faults in various parts

of the model. A collection of ADCS fault trees have been developed and provided in

Appendix C. The fault trees were assembled based on personal experience, extensive

brainstorming, and examples from literature [2].

48

3. DESIGN AND DEMONSTRATION OF FDIR

In this chapter, the Smart-FDIR approach will be developed for the ADCS Fault

Simulator. The generic 3U CubeSat detailed in Section 2.3 is considered. Section 1

details the application of OCSVMs to monitoring relevant ADCS signals for anomalies

alongside a handful of simple rule-base checks. Section 2 describes the process of

training the LSTM fault isolator and provides assessments and demonstrations of its

ability to isolate faults from anomalies. Section 3 applies decision theory to convert

uncertain fault diagnoses into an appropriate response action given the risk posture

of the mission.

3.1 Anomaly Detector Development

3.1.1 Relevant Signals and Signal Processing

Table 3.1 catalogs numerous signals relevant to monitoring for anomalies in a

CubeSat ADCS. Each signal is sampled at a rate of 1 Hz, leading to a continuously

streaming timeseries of data. These signals represent the “raw” telemetry in Fig. 1.7

and provide the basis for further processing into intermediate signals and anomaly

scores.

Table 3.1.: Relevant ADCS signals for fault detection.

ADCS Signal Description & Purpose

Gyro angular rates Spacecraft rotation rates measured by gyros. Useful for

identifying excessive rotation rates or anomalous gyro

readings.

49

Quaternion estimate Attitude quaternion estimate from the Kalman filter.

Provides the estimated transform between the space-

craft body and inertial frames.

Torque rod current error The expected current is estimated from the commanded

dipole and compared to the measured current. Useful

for identifying electrical anomalies in the torque rods.

Reaction wheel torquing

error

The commanded torque is compared to the measured

torque from the wheel in order to identify performance

anomalies.

Reaction wheel RPM The rotation speed of each reaction wheel can reveal

momentum saturation, an unexpected build-up of angu-

lar momentum, or a lack of response when commanded.

Attitude pointing error The angle between the estimated spacecraft attitude

and the commanded attitude. Useful for identifying

under-performing attitude control.

Sun sensor voting Logs of which sensors were accepted/rejected during

voting. Useful for identifying malfunctioning sensors

or incorrect measurement processing.

Magnetometer voting Logs of which sensors were accepted/rejected during

voting. Useful for identifying malfunctioning sensors

or incorrect measurement processing.

Long duration count A timer that increments for every minute of uninter-

rupted ADCS operation. Resets to zero whenever a

reboot occurs, allowing anomalous resets to be identi-

fied.

Average B-vector The average magnitude and direction (in the spacecraft

body frame) of the magnetic field across all magnetome-

ters can be used to identify an unexpected magnetic

field.

50

Average Sun vector The mean direction of the Sun vector (in the spacecraft

body frame) across all sun sensors can reveal discrepan-

cies compared to other sources of attitude knowledge.

Solar power The instantaneous total power from all solar panels.

This can reveal discrepancies in orbit knowledge if the

power is non-zero during a predicted eclipse.

Position and time The propagated position of the spacecraft and the

UNIX time. Used to query the position of the Sun and

the Earth’s magnetic field in the inertial frame. Useful

for identifying errors in orbit knowledge when compared

to other information.

3.1.2 One-class Support Vector Machine Detectors

The following subsections describe the intermediate signals and methods of pro-

cessing necessary to develop a collection of OCSVM anomaly detectors. To generate

nominal data, at least 20 runs of the fault simulator were performed under a “no fault”

case and with parameters randomized according to Table 3.2. In every case, the in-

puts X to a given OCSVM are normalized by the mean µX and standard deviation

σX of the OCSVM’s training data by:

X̄ =
X − µX
σX

(3.1)

Gyro Variance Anomalies

One of the most straightforward OCSVM detectors monitors the measurement

variance of the three gyros. Using a 1-minute sliding variance window, the variance

of the last 60 samples of each gyro is extracted and the results are compiled into

a 3 × 1 vector. Since the nominal simulations are comprised of 20 runs of 2 orbits

51

Table 3.2: Simulation parameters for generating nominal datasets.

Parameter Values

Date Randomized between January 1 − December 31, 2020

Orbit Random 700 km circular orbits at 60 deg inclination

Mode Cycled through 0 to 5

Number of orbits 2

Initial quaternion Random (-1,1) for each component, then normalized

Initial angular rate Random (-1,1) deg/sec for each axis

(approximately 5940 seconds) each, this results in 3960 vectors for training. Figure 3.1

shows the resulting OCSVM decision boundary with an outlier fraction of ν = 0.001.

The OCSVM includes 1983 support vectors.

This anomaly detector is useful for sensing changes in the measurement noise of

any one of the gyros. It is sensitive to increases in the noise but also decreases that

may occur if one of the gyros gives a stuck reading (i.e. the variance drops to zero).

Actuator Torquing Errors

Anomalous differences between the commanded and measured torques from the

spacecraft’s actuators can reveal problems with the actuators themselves. For mag-

netic torque rods, the generated magnetic dipole ~µ is related to the current I flowing

through the solenoid, the number of turns n, and the cross-sectional area A of the

solenoid:

||~µ|| ∝ nIA (3.2)

Since most magnetorquers include a ferrite core in order to boost the dipole for a given

amount of current, the exact relation is determined by the magnetic susceptibility χ

measured during ground testing of the torquer. A typical value for (1+χ)nA is 10 m2

52

0

0.05

0

0.1

0.05

0.15
G

yr
o

Z
Va

ria
nc

e
[d

eg
/s

]2

0.2

0.1 0.2

Nominal Gyro Variances

Gyro X Variance [deg/s]2

0.25

0.15 0.15

Gyro Y Variance [deg/s]2

0.3

0.10.2
0.050.25

0

Decision Boundary
Data
Support Vector

Figure 3.1: OCSVM for detecting anomalies in the 60 sample (1-minute) variances of

the 3 gyros.

and this is the value used by the fault simulator [142]. Thus, the expected current Î

for a given dipole command || ~µc|| is:

Î =
|| ~µc||

(1 + χ)nA
(3.3)

The fault simulator uses Eq. 3.3 to also compute the measured current, but adds

mean-zero Gaussian errors with σ = 10 mA and is subject to torque rod faults such

as short-circuits. Dipole commands are capped at 1 Am2 by a saturation filter in the

attitude control system. The torque rod current error is simply:

εTR = Î − I (3.4)

53

In a similar vein, the commanded torque τc for each reaction wheel can be com-

pared to the measured torque τm to give the torquing error:

εRW = τc − τm (3.5)

where τm is provided directly by the wheel software [141]. Alternatively, it can be

inferred from changes in the wheel speed Ω if the moment of inertia JRW for the wheel

is known:

τm = JRW
∆Ω

∆t
(3.6)

Eqs. 3.4 and 3.5 provide a time series of errors for each actuator. Similar to the

gyro variance OCSVM, we can use a 60-sample sliding window to extract the means

and variances of the error signals for a set of actuators1 and compile them into a

6× 1 vector of the form (µ1, σ
2
1, µ2, σ

2
2, µ3, σ

2
3)ᵀ. This allows us to create OCSVMs for

detecting anomalies in the torques of the reaction wheels or currents of the torque

rods.

Sensor Voting

The ADCS fault simulator maintains logs of which magnetometers and sun sensors

were accepted during sensor voting. In the log, each sensor is labeled with either a ‘1’

if accepted or ‘-1’ if rejected. The results of voting apply only to the current time step

and rejected sensors are eligible for acceptance at future time steps. This is useful

because even nominally operating sensors are occasionally rejected due to random

noise in excess of the 3-σ voting threshold. In contrast, if one or more sensors are

repeatedly rejected during voting, this could indicate an anomaly.

To create a OCSVM for magnetometer voting, a 4 × 1 vector is formed where

each component contains the number of times the corresponding magnetometer was

rejected during the preceding minute. For example, X = (1, 0, 0, 3)ᵀ would indicate

that magnetometer #1 was rejected once, while magnetometer #4 was rejected three

times.
1Either the set of 3 reaction wheels or 3 torque rods

54

A similar approach using a 5 × 1 vector can be followed to create a OCSVM

for sun sensor voting. An important nuance must be observed, however. Whereas

the magnetometers can make valid measurements at any time, the sun sensors only

obtain valid readings when the Sun is in their FOV. When the Sun is not in their FOV,

they tend to track the next brightest object, resulting in contradictory and unreliable

readings. Thus, given an arbitrary attitude, it is often impossible to distinguish

between a true anomaly in sensor voting and a sensor that is simply not facing

towards the Sun. Only Sun pointing mode (ADCS mode 2) reliably maintains the

Sun in view of all of the sensors simultaneously. Therefore, we restrict all training

and operation of the sun sensor voting OCSVM to mode 2.

Both the sensor voting OCSVMs and the actuator OCSVMs are difficult to vi-

sualize due to their high (> 3 dimensionality), but their successful operation will be

demonstrated in Section 3.2.2.

Angular Momentum Accumulation

Perturbation torques to the spacecraft attitude tend to impart angular momentum

to the spacecraft body. To keep the attitude aligned with the target direction, this

momentum is absorbed by the reaction wheels, and their RPM will increase over time

as more momentum is absorbed. Eventually, the wheels will reach their maximum

RPM and become unable to stabilize the attitude against further torques. This state

is referred to as momentum saturation.

When momentum saturation occurs, the wheel speeds are reset to a lower (or

zero) RPM, causing their stored angular momentum to be transferred back into the

spacecraft body. The resulting rotation can then be damped out using the torque

rods in detumble mode. Since the torque rods actuate external rather than internal

torques, angular momentum is removed from the spacecraft. This is called momentum

dumping.

55

The accumulation of angular momentum is a nominal part of spacecraft opera-

tions, but certain faults can cause the rate of accumulation to become excessive and

limit the time the spacecraft is able to operate between momentum dumps. To create

a OCSVM to monitor for anomalies in momentum accumulation, we can estimate the

total angular momentum of the spacecraft at time t as:

L =

JRW 0 0

0 JRW 0

0 0 JRW

Ω1(t)

Ω2(t)

Ω3(t)

+ JSCω (3.7)

where the Ω are the rotation rates of the three reaction wheels, JSC is the moment of

inertia tensor of the spacecraft in the body-axis frame, and ω is the vector of rotation

rates as measured by the 3 gyros. Then, letting L̂(t) be the average of ||L|| over the

preceding s samples, we can form a vector:

X =

L̂(t)− L̂(t− s)

L̂(t− s)− L̂(t− 2s)
...

L̂(t− rs+ s)− L̂(t− rs)

 (3.8)

where r is the number of sample windows over which we wish to monitor the change

in momentum.

Choosing s = 120 and r = 3, Fig. 3.2 shows the resulting OCSVM. As with the

other OCSVMs, an outlier fraction of ν = 0.001 is used. There are 3820 total data

points and 1914 support vectors.

B-field Magnitude Discrepancy

Next, we develop a OCSVM for sensing anomalies in the overall magnitude of the

magnetic field. This can be useful for identifying electromagnetic interference or an

unexpected location within the Earth’s magnetic field. Based on the spacecraft clock

and estimated position (from propagating the orbital TLE), the IGRF model can be

queried for the expected magnitude of the local magnetic field, BIGRF . This can then

56

-1

-0.5

0

1

10-3

0.5

1

Nominal Angular Momentum Accumulation

0 -110-3
-0.5

10-30-1
0.5

1-2 1.5

Decision Boundary
Data
Support Vectors

Figure 3.2: OCSVM for detecting anomalies in the accumulation of angular momen-

tum.

be compared to the average magnitude Bmeas measured by magnetometers accepted

during voting by calculating the fractional error:

fB =
Bmeas −BIGRF

BIGRF

(3.9)

Extracting the running mean and variance of fB using a 120-sample sliding win-

dow allows the creation of the OCSVM shown in Fig. 3.3. Working with 2-dimensional

vectors such as with this OCSVM enables a straightforward visualization of the de-

cision boundary that can be used to tweak the parameter ν. In this case, ν = 0.005

has been used. The OCSVM uses 3940 data points and 1972 support vectors.

57

Magnetic Field Discrepancy

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
Mean Fractional Error

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fr
ac

tio
na

l E
rro

r V
ar

ia
nc

e

Decision Boundary
Data
Support Vector

Figure 3.3: OCSVM for detecting anomalies in the overall magnitude of the magnetic

field.

Quaternion-B-field Discrepancy

Many ADCS faults affect the accuracy of the spacecraft’s attitude estimate. In

addition to the attitude quaternion, the Kalman filter also provides an estimate of the

error, but this does not take into account the integrity of the measurements flowing

into the filter. To verify the consistency of the attitude estimate with lower level

information, discrepancies between the measured direction of the magnetic field and

the predicted direction based on the IGRF model can be evaluated. The process is

depicted in Fig. 3.4(a) and proceeds as follows:

1. Compute the local magnetic field BIGRF in the inertial frame based on the

spacecraft’s position and IGRF model

2. Compute the average magnetic field vector Bmag in the spacecraft body frame

using magnetometers accepted by voting

58

3. Transform BIGRF into the spacecraft body frame using the rotation matrix

derived from the inverse of the estimated attitude quaternion q

4. Find the angular discrepancy between Bmag and BIGRF

Anomalously high error angles provide an independent indication that the atti-

tude estimate is not reliable. The mean and variance of the discrepancy angle θ are

extracted from nominal data using a 120-sample sliding window and used to create

the OCSVM in Fig. 3.4(b). The OCSVM uses ν = 0.005, 3940 data points, and 1976

support vectors.

Inertial
frame

Bmag

BIGRF
θ

q-1

Body
frame

BIGRF

(a) Quaternion discrepancy check

Quaternion to Magnetic Field Discrepancy

4 6 8 10 12 14 16 18 20
Mean Angular Error [deg]

20

40

60

80

100

120

140
An

gu
la

r E
rro

r V
ar

ia
nc

e
[d

eg
2]

Decision Boundary
Data
Support Vector

(b) Nominal quaternion discrepancies

Figure 3.4: OCSVM for sensing anomalies in the quaternion to B-field discrepancy.

To demonstrate how the OCSVM method operates in practice, Fig. 3.5 shows

an example timeseries of quaternion-B discrepancies obtained from the fault simu-

lator. Just over 80 minutes into the simulation, additional noise is added to the

gyro measurements, resulting in a significant degradation of attitude knowledge. The

stream of quaternion-B discrepancies is processed into (µ, σ2) by a 2-minute sliding

mean/variance window. Each (µ, σ2) is used to compute an anomaly score using the

59

scaled OCSVM decision function (Eqs. 2.7 and 2.13). When the degradation of atti-

tude knowledge causes (µ, σ2) to fall outside of the OCSVM decision boundary, the

anomaly scores exceed 0.5.

0 50 100 150 200
Time [min]

0

20

40

60

80

100

An
gu

la
r D

is
cr

ep
an

cy
 [d

eg
]

Quaternion-B Discrepancy Evolution Relative to OCSVM

0 10 20 30 40 50
Mean Angular Error [deg]

0

50

100

150

200

250

300

350

An
gu

la
r E

rro
r V

ar
ia

nc
e

[d
eg

2]

Decision Boundary
Sliding (, 2)

50 100 150 200
Time [min]

0

0.2

0.4

0.6

0.8

1

An
om

al
y

Sc
or

e

Quaternion Anomaly

Figure 3.5: Demonstration of a OCSVM detecting a disruption in attitude knowledge.

3.1.3 Rule-based Detectors

The OCSVMs developed in Section 3.1.2 are a powerful tool for sensing anomalies

when it is difficult to specify exactly what constitutes an anomaly. In some cases, how-

ever, the nature of an anomaly is straightforward to define with simple If-then rules.

It therefore makes sense to leverage the rule-based approach where it can provide

additional anomaly information with minimal complexity. The following subsections

60

describe signals and If-then rules that supplement the anomaly information provided

by the OCSVM detectors.

Angular Rate Checks

An immediate indication of a severe ADCS anomaly is if the spacecraft begins to

spin with an excessive angular rate. For most spacecraft, rotation rates of more than

a few degrees per second will never be encountered during nominal operations. A

simple anomaly check is thus used to implement an angular rate threshold which, if

violated by any measurement from the spacecraft’s gyros, raises an anomaly flag:

Anomaly Rule 1: Violations of a rotation rate threshold

RateThreshold (ω);

Input : Vector of measured rotation rates from gyros

Output: Anomaly flag indicating an excessive rotation rate

if any ωi > 2 deg/sec then

return ExcessiveRate = 1;

else

return ExcessiveRate = 0;

end

Opposite to an excessive angular rate is if the angular rate is exactly 0 deg/sec.

Gyro rate measurements are typically discretized, allowing small rotation rates to

become rounded down to 0 deg/sec. In practice, measurement noise and the finite

pointing stability of a CubeSat’s ADCS makes it exceptionally rare for a zero rate to

appear for more than a single measurement. Where one does persist, it is likely an

indication of a failed gyro. To capture such anomalies, we can create Rule 2.

Note that this rule does not capture a persistent zero rate and will lead to many

false positives as gyros occasionally report zero degrees/sec. This is actually not a

problem. As we will see in Section 3.2.2, the LSTM network learns to reject false

61

Anomaly Rule 2: Gyro rates exactly zero

ZeroRate (ω);

Input : Vector of measured rotation rates from gyros

Output: Anomaly flag indicating a zero rotation rate

if any ωi = 0 then

return RateIsZero = 1;

else

return RateIsZero = 0;

end

positives and search for a persistent RateIsZero flag itself, thus simplifying the rules

that we need to develop.

Eclipse-Power Discrepancy

While not directly related to ADCS, the amount of solar polar generated by the

electrical system can reveal a contradiction between where the spacecraft thinks it is

and where it actually is. Put simply: solar power should not be generated in eclipse.

If it is, this is an anomaly. This is captured in Rule 3.

Anomaly Rule 3: Power and eclipse discrepancy

EclipsePower (Power, InEclipse);

Input : Amount of solar power, eclipse flag from propagating TLE

Output: Discrepancy flag

if Power > 0.1 Watts and InEclipse then

return EclipsePowerDiscrep = 1;

else

return EclipsePowerDiscrep = 0;

end

62

The inputs to Rule 3 are the total instantaneous solar power from all solar panels

and the eclipse flag determined from propagating the spacecraft’s onboard TLE. If

the power exceeds a small finite value (necessary to reject measurement errors) when

the eclipse flag is active, an anomaly flag is raised. Note that this flag will not be

active continuously even in the presence of a fault. It can only be active when the

propagated TLE is in eclipse.

Reaction Wheel Response and Saturation

Two other simple tests are checking for responsiveness and saturation of the re-

action wheels. The wheel saturation check raises an anomaly flag when any of the

reaction wheel speeds are close to to their saturation limit. For the wheels used in

the fault simulator this is 6500 RPM [141]. Setting the threshold for the saturation

flag slightly below this (e.g. 5850 RPM) can make the anomaly flag more persistent

and provide an early warning before the wheel actually reaches saturation. This is

accomplished by Rule 4:

Anomaly Rule 4: Reaction wheel saturation threshold

WheelSaturated (Ω);

Input : Vector of rotation speeds for the reaction wheels

Output: Wheel saturation flag

if any Ωi > 5850 RPM then

return WheelSat = 1;

else

return WheelSat = 0;

end

To test that each wheel is responding to torque commands, Rule 5 checks that

the speed of each wheel changes when subjected to a non-zero torque command. If

all torque commands are zero (such as when in ADCS modes that do not operate the

63

reaction wheels), the responsiveness is unknown and the rule returns “NaN”. This

rule is designed to detect a seized reaction wheel and help distinguish the resulting

torquing anomalies from other reaction wheel faults.

Anomaly Rule 5: Reaction wheel responsiveness test

WheelResponding (τ, ∆Ω);

Input : Vector of wheel torque commands at the previous time step, vector

of changes in wheel rotation speeds between this time step and the

previous time step

Output: Wheel responding flag

if all τi = 0 then

return Responding = NaN;

else if any (τi 6= 0 and ∆Ωi = 0) then

return Responding = 0;

else

return Responding = 1;

end

Pointing Accuracy

A common rule-based anomaly flag for ADCS is to check if the pointing error

with respect to the commanded attitude is above some acceptable threshold [71].

We include this check in the form of Rule 6. The error angle is easily determined

from Eq. 2.36. In contrast to traditional implementations, Rule 6 does not include

a persistency parameter, nor does it account for the time required to settle into the

new attitude when a new ADCS mode is commanded. The LSTM network will learn

both of these implicitly, thus simplifying rule design. Note that Rule 6 can only be

evaluated when in a controlled attitude mode (ADCS modes 2, 4, and 5).

64

Anomaly Rule 6: Pointing error anomaly threshold

PointingAnomaly (ErrorAngle);

Input : Pointing error angle relative to commanded attitude

Output: Excessive attitude excursion flag

if ErrorAngle > 20 deg then

return AttitudeExcursion = 1;

else

return AttitudeExcursion = 0;

end

Average Sensor Agreement

The sensor voting OCSVMs will score an anomaly when either a single sensor is

rejected an anomalous number of times, or all of the sensors are rejected an anomalous

number of times. Since the OCSVM only outputs the final anomaly score, additional

information is needed to distinguish between these cases. A straightforward approach

is to compute the average sensor agreement over the last 60 samples, fagree. If an

anomaly affects all sensors, then fagree ∼ 0, whereas if just a single sensor is affected

fagree ∼ 0.75. This provides additional information to supplement the sensor voting

OCSVMs. It applies to both the magnetometers and sun sensors. But note that, like

the sun sensor OCSVM, it is only meaningful as a detector of sun sensor anomalies

when in Sun pointing mode.

Sun Sensor Discrepancy

The quaternion-B field OCSVM compares the measured direction of the magnetic

field in the spacecraft body frame with the anticipated direction derived from the

IGRF model and attitude quaternion. A similar discrepancy check can be performed

between the quaternion and Sun direction. Analogous to Fig. 3.4(a), using a solar

65

position model to query the Sun vector ~S in the inertial frame at the current time, ~S is

rotated into the spacecraft body frame using q−1. The discrepancy angle θSun relative

to the average of all (accepted) sun sensor measurements is then computed. Though

the process is theoretically equivalent as a test of quaternion accuracy, in practice

the sun sensors provide a smaller contribution to overall attitude knowledge. This is

because the Sun must be within the FOV of a majority of the sensors before they

have a chance of being accepted into the Kalman filter. In contrast, magnetometer

voting is not influenced by the spacecraft’s attitude or the presence of eclipse.

Rather than a gauge of overall quaternion accuracy, the sun sensor discrepancy

angle is more useful as a cross-check between the attitude knowledge provided by the

sun sensors and the attitude knowledge provided by the magnetometers. If θSun is

high despite a lack of quaternion-B anomaly, it can indicate that the sun sensors are

not providing reliable measurements. We will use θSun averaged over a 60 second

sliding window to supplement the rest of the anomaly information. If no sun sensors

are accepted during voting, θSun is defined as NaN.

Long Duration Counter

Lastly, none of the previously mentioned anomaly detectors or signals provide

information about ADCS reboots. Reboots interrupt the ADCS process and force it

to re-initialize, meaning that attitude knowledge is temporarily lost until the Kalman

filter can re-converge. The Long Duration Counter (LDC) tracks the number of

minutes of ADCS operation since the last ADCS reset. Including it alongside other

anomaly information can help identify when ADCS is being disrupted by a reset.

3.2 LSTM Fault Isolator Development

The anomaly detectors in Sections 3.1.2 and 3.1.3 provide 18 anomaly scores and

supporting signals to use as inputs for fault isolation. Summarizing them in the order

used by the LSTM network, they are:

66

1. Long duration counter

2. Magnetometer agreement

3. Magnetometer voting anomaly

4. Sun sensor agreement

5. Sun sensor voting anomaly

6. Sun sensor discrepancy

7. B-field magnitude error anomaly

8. Eclipse-power discrepancy

9. Quaternion-B anomaly

10. Excessive rotation rate

11. Zero rotation rate

12. Attitude rate variance anomaly

13. Attitude error

14. Angular momentum anomaly

15. Torque rod current anomaly

16. Reaction wheel torque anomaly

17. Reaction wheels responding

18. Reaction wheels saturated

The combination of anomaly scores, flags, and other signals across multiple time

steps provides a pattern that can be used to identify the underlying fault. This is

the purpose of the LSTM network. In addition to the nominal (no fault) case, we

consider a total of 21 unique ADCS faults for the LSTM network to isolate. These

faults are described in Table 3.3. The LSTM network will thus have 22 outputs with

each output providing a measure of confidence ∈ (0, 1) that the corresponding fault

scenario is present in the system.

This section describes development of the fault isolation LSTM network and as-

sesses its performance. Section 2.2.3 covers the process of generating fault scenario

data using the fault simulator and training the LSTM network. Section 3.2.2 pro-

vides several examples that illustrate the core strengths of the LSTM network when

applied to fault isolation. Section 3.2.3 follows with a more complete assessment of

the network’s performance.

In this Chapter, it is assumed that the faults only occur one at a time. In Chap-

ter 4, the ability of the method to diagnose multiple faults occurring simultaneously

will be demonstrated.

67

3.2.1 Generating Fault Training Data

In order to train the LSTM network, it is necessary to provide a dataset of known

inputs and outputs (called the targets). This can be obtained from the ADCS fault

simulator by simulating how the 18 anomaly input signals behave under different fault

conditions. The target outputs for each simulation are simple binary flags indicating

which fault was injected in the simulation at each time. Ideally, we want the LSTM’s

confidence outputs to match these flags.

Table 3.3 describes the 22 fault conditions simulated to create a dataset for LSTM

training. Some fault scenarios comprise multiple “subfaults” that are effectively iden-

tical given the inputs defined Section 3.1. In every case, relevant parameters pertain-

ing to the fault to be injected – including the time of injection, affected sensors,

signal characteristics, etc. – are randomized. Also randomized are the spacecraft’s

orbit, initial attitude and attitude rate, and initial epoch according to Table 3.2. The

ADCS control mode is selected randomly from applicable modes listed in the right-

most column of Table 3.3. The fault scenarios themselves are cycled through in order

to ensure equal representation in the final dataset. The total dataset consists of 1200

total simulations, of which 700 are used to train the LSTM network. The remainder

are used to validate its performance.

Table 3.3.: Simulated ADCS faults for LSTM training. Each fault scenario corre-

sponds to one of the output channels of the LSTM network.

ID Fault Scenario Applicable

Modes

0 Nominal: No faults. All

1 Magnetometer interference: Magnetometer noise means

shifted by up to 2 × 10−5 T and variance increased by up to

4× 10−10 T2.

All

68

2 Failed magnetometer: a magnetometer outputs a constant

“stuck” value following the failure.

All

3 Failed sun sensor: a sun sensor gives random readings even

when the Sun is within its FOV.

2

4 False sun: sun sensors register a bright object that is not the

Sun if the Sun is not in their FOV. The non-solar source is a

constant vector specified in the spacecraft body frame.

0,1,3,4,5

5 Orbit ephemeris or clock error: the spacecraft’s position is

off by 36− 216 degrees along its orbit or its clock is incorrect by

between 104 − 108 seconds.

All

6 Magnetometer phasing or rotation matrix error: two ran-

dom sensors are cross-wired or incorrect rotation matrices are

used to transform measurements into the spacecraft body frame.

The incorrect matrices are simply the correct ones transposed.

All

7 Sun sensor phasing or rotation matrix error: similar to

above, but applied to the sun sensors.

2

8 Panel deployment fault: a random solar panel deploys to

an anomalous angle between 0 − 120 degrees rather than the

nominal 165 degrees, invalidating rotation matrices for sensors

on that panel.

2

9 Failed gyro: a gyro ceases to register rotation. All

10 Gyro calibration error: gyro rate measurements are biased

by a random constant value of up to 1 deg/sec.

All

11 Gyro phasing error: two gyros are cross-wired. All

12 Reaction wheel phasing error: two reaction wheels are cross-

wired.

2,4,5

13 Unresponsive reaction wheel: a reaction wheel ceases to

actuate when commanded.

2,4,5

69

14 Reaction wheel torque error: measured torques do not

match the commanded torques. Either noise is added to wheel

torques, torques are reduced by a constant multiplicative factor,

or wheel friction coefficients are increased.

2,4,5

15 Reaction wheel saturated: one or more reaction wheels fail

to actuate due to a saturated RPM.

2,4,5

16 Failed torque rod or current error: measured currents do

not match the dipole command due to a damaged coil or elec-

trical problem. Either the actuated dipole of one of the rods is

set to 0 or noise is added to the currents of affected torque rods.

All

17 Torque rod polarity error: one or more torque rods actuate

in the wrong direction due to a sign error.

0

18 Excessive magnetic dipole: a constant residual magnetic

dipole from the torque rods or other source leads to unexpected

magnetic torques. To represent this, a random dipole vector in

the body frame with a magnitude of at least 0.85 Am2 is applied

to the spacecraft.

2,4,5

19 Unexpected torque: the spacecraft experiences a constant

anomalous torque of magnitude 10−5 to 2.5 × 10−5 Nm in the

spacecraft body frame.

1,2,3,4,5

20 Attitude rate jitter: mechanical vibrations result in up to

σ = 5 deg/sec of additional noise applied to the gyros.

All

21 Reboot cycle: The ADCS process enters a continuous reboot

cycle with resets occurring every 1− 50 minutes.

All

Numerical Conditioning

Several pre-processing steps are necessary to improve the training and operability

of the neural network. The first is the length of the training sequences. Even though

70

the LSTM network can operate on a continuously streaming sequence of inputs, train-

ing sequences with more than several hundred time steps can result in long training

times and vanishing gradients. It is important to keep the length of the training

sequences bounded to . 400 time steps while also ensuring that the sample time

captures the general time scale on which ADCS faults manifest. A sample period of

1 minute suits these criteria. All training and testing data from the fault simulator

and anomaly checks are thus downsampled to 1/60 Hz. This is the frequency at which

the LSTM network will process new time steps.

Second, many of the anomaly signals can be indeterminate in certain situations.

The reaction wheels do not operate in ADCS modes 0,1, or 3, for instance, and thus

cannot be tested for responsiveness or torque anomalies. Other OCSVMs can only

check for anomalies after having collected sufficient data. In any of these cases the

input signal can be set to a code to indicate missing data and the LSTM network will

learn the treat it appropriately. A value of −1 is used throughout this thesis.

Lastly, input signals should be normalized to the range of approximately (−1, 1).

As with the OCSVMs, this is accomplished by subtracting the mean and dividing by

the standard deviation of each input. A special case is needed for the LDC input.

Since this input is unbounded (it can grow indefinitely as long as the ADCS subsystem

does not reboot), it is capped at 180 minutes before normalization.

Ensuring the Integrity of Training Data

Since the inputs of the LSTM network are primarily anomaly scores, the values of

the various parameters used to simulate faults in Table 3.3 are somewhat arbitrary.

In terms of the anomaly scores and other input signals that result, a panel deploy-

ment fault with the solar panel deployed 0 degrees will be essentially identical to one

deployed to 90 degrees. Both will lead to an anomalous number of magnetometer and

sun sensor rejections during voting. There is one sense in which the parameters are

not arbitrary, however. They must be large enough to produce detectable anomalies

71

in the OCSVMs and other checks that form the inputs to the LSTM. If this is not the

case, then the inputs will not be useful for determining the fault scenario. The LSTM

will end up learning bogus correlations that are present in the training dataset but

provide no predictive value when applied to new data. Thus, it is crucial to ensure

that the injected faults manifest anomalies in the inputs to the LSTM network so

that the network’s predictions can be evaluated fairly.

3.2.2 Detailed Examples

To train the LSTM fault isolator, one selects the number of memory cells to include

in the model and solves the optimization problem described in Section 2.2.3. Selecting

the number of memory cells to be slightly larger than the number of fault outputs

generally provides the best performance. This gives the network the opportunity

to learn multiple parallel representations of each anomaly-fault relationship without

overfitting. In other words, a single input can propagate through independent paths

in the network that ultimately reinforce each other at the output. If one of the

paths is compromised2, the output is relatively unaffected. On the other hand, if the

number of cells is less than the number of outputs, the network may lose important

information as it is forced to compress the information in the inputs into an overly

compact representation.

To provide specific examples of fault isolation performance, this section and the

next are based on a 35-cell LSTM network that was trained in less than 10 minutes

using Matlab’s Deep Learning Toolbox R©. The following examples demonstrate the

key advantages of the LSTM approach to fault isolation.

Nominal Nadir Alignment

Figure 3.6 presents the inputs, evolving cell states, and outputs of the LSTM

network when applied to monitor 2 orbits of nadir pointing mode. No faults are

2For example, by a competing input that cancels out the signal of one path

72

present. Several anomaly false positives are still present, however. In Fig. 3.6(a), the

OCSVMs for magnetometer voting, magnetic field magnitude, torque rod currents,

and reaction wheel torques all report sporadic anomalies. Yet, rather than declaring

a fault, the LSTM network is able to appreciate these false positives for what they

are. Though small momentary perturbations to the “No fault” confidence around

these anomalies are visible in Fig. 3.6(c), the network ultimately converges to a high

confidence in nominal performance.

Figure 3.6(b) shows the activation of each of the 35 memory cells on a [0 − 255]

brightness scale. The increasing brightness of certain cells shows how cells associ-

ated with a nominal fault diagnosis receive higher levels of activation as evidence

supporting this diagnosis accumulates. Meanwhile, cells associated with other diag-

noses receive very low activation and remain dark. In later examples, the cell states

will show how the LSTM network accumulates and sometimes strategically dumps

evidence in order to evaluate competing diagnoses.

Sun Sensor Failure

Next we explore a sun sensor failure. This fault is triggered in the -X sensor 5000

seconds (83 minutes) into a simulation of Sun pointing mode. Anomaly inputs and

the LSTM’s response are shown in Fig. 3.7. The failed sensor immediately leads to

a drop in the average sun sensor agreement and triggers an anomaly from the sun

sensor voting OCSVM. Confidence in nominal performance plummets in 3.7(c) as

a result. The network subsequently allocates confidence to two fault hypotheses: a

failed sun sensor and a panel deployment failure. Both faults will cause an increased

number of sun sensor rejections, but the latter case should also lead to a similar result

in the magnetometers. When a drop in magnetometer agreement fails to materialize,

confidence allocated to the panel deployment failure declines while the sun sensor

failure comes to dominate. The growing activation of neurons associated with the

sun sensor fault can be see in Fig. 3.7(b).

73

0 50 100 150
0

100

200

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

100

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

(a) Anomaly inputs

20 40 60 80 100 120 140 160 180

10

20

30

(b) LSTM cell state evolution

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

No fault
Excessive magnetic dipole
Clock or TLE error
False sun reading

(c) Fault confidence outputs

Figure 3.6: Fault isolation applied to a nominal case in nadir pointing mode. The

LSTM network successfully rejects false positives in the anomaly inputs and converges

to a correct diagnosis.

74

This example demonstrates two important characteristics of the LSTM’s fault iso-

lation performance: entertaining multiple fault hypotheses and iterative refinement.

The network succeeds at distributing confidence between two reasonable explanations

for the observed anomalies. Confidence shifts between the two hypotheses as more

information becomes available, allowing the network to slowly converge to a stable

result. As with Fig. 3.6, the diagnosis is robust to false positives from the other

anomaly detectors.

To help understand the LSTM network’s confidence allocation, Fig. 3.7(a) colors

each input based on the gradient with respect to the sun sensor failure (fault ID = 4):

∂y
(ID)
t

∂xt
computed according to Eq. 2.27. An additional negative sign is introduced for

the LDC, sun sensor agreement, magnetometer agreement, and wheel responding flag,

since it is decreases in these inputs that are anomalous rather than increases.

The relative gradients show which inputs and which data points are most signif-

icant to the LSTM’s “failed sun sensor” diagnosis. In order, the highest gradients

belong to the inputs:

1. Magnetometer agreement

2. Sun sensor agreement

3. Sun sensor voting anomaly

4. Magnetometer voting anomaly

These are exactly the inputs that a human operator would focus on when isolating the

fault. Not only does the neural network highlight the anomalous signals, but it also

identifies inputs that provide a crucial source of additional information even though

those inputs are themselves nominal. This allows us to verify that the network has

learned a sensible relation between the anomaly inputs and the failed sun sensor fault.

Beyond knowing that a sun sensor failure has occurred, we may be interested in

isolating exactly which sensor is problematic. This can be accomplished using the sun

sensor voting OCSVM and the far field anomaly gradient developed in Section 2.1.2,

75

0 50 100 150
0

100

200

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0

0.05

0.1

0.15

0.2

0.25

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

100

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

(a) Anomaly inputs

20 40 60 80 100 120 140 160 180

10

20

30

(b) LSTM cell state evolution

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

No fault
Failed sun sensor
Panel deploy failure
Excessive magnetic dipole

(c) Fault confidence outputs

Figure 3.7: Diagnosis of a failed sun sensor. The LSTM network identifies two pos-

sibles causes for the anomalous drop in sun sensor agreement and converges towards

the correct diagnosis. The diagnosis gradient shows which inputs are most influential

to the network’s ultimate decision.

76

Eq. 2.18. Under nominal conditions, each sensor should have a relatively equal con-

tribution to the gradient − ∇f
||∇f ||

. When a sensor fails and triggers an anomalous

number of rejections, we expect the anomaly gradient to be positive in the direction

corresponding to the failed sensor, since it is this sensor that is causing the anomaly.

Figure 3.8 plots each component of − ∇f
||∇f ||

throughout the failed sun sensor

example. Soon after the failed sun sensor is injected, the -X component departs

from the other sensors and becomes positive. This clearly and correctly identifies

the -X sun sensor as the failed sensor. Note that in practice we should ignore the

anomaly gradient prior to the appearance of an anomaly, since it only provides useful

information when an anomaly is present.

0 20 40 60 80 100 120 140 160 180
-0.5

0

0.5
Sensor -Y
Sensor +X
Sensor +Y
Sensor -X
Sensor -Z

Figure 3.8: The anomaly gradient of the sun sensor voting OCSVM can be used to

isolate the failed sensor. A positive anomaly gradient indicates that the -X sun sensor

is the source of the voting anomaly in the failed sun sensor example.

3.2.3 Assessing Overall Performance

Appendix D provides additional examples of isolating faults on the 6DOF fault

simulator to strengthen those provided in Section 3.2.2. To provide a wider picture of

the LSTM network’s overall performance, Fig. 3.9 presents a confusion matrix that

summarizes the network’s diagnosis decisions for all 500 validation examples. The

chart shows the network’s final diagnosis on the left axis against the actual injected

fault on the bottom. Each cell contains the number of times the LSTM network

made the corresponding fault diagnosis in the corresponding fault scenario. Since

77

the LSTM fault confidences can vary over each time series, the final diagnosis by the

network is defined to be the output with the highest average confidence over the final

30 minutes of each simulation.

The average fault diagnosis accuracy over all scenarios is 96%. For individual fault

scenarios, the accuracy ranges between 59% and 100%, with the unexpected torque

fault being a particularly difficult case to diagnose. This fault is often confused with

the torque rod polarity error (ID 17) and excessive dipole faults (ID 20), both of

which also involve an anomalous build up of angular momentum. This indicates that

additional information is needed to more clearly distinguish these faults. However,

even when the network’s ultimate diagnosis is incorrect, the confusion plot shows that

it is still able to select reasonable alternatives. In addition to the unexpected torque

fault, this is also visible in column 3 of the matrix, where 4 sun sensor failures were

mis-classified as sun sensor phasing or rotation matrix errors.

Another notable result of Fig. 3.9 is the reliability with which nominal cases are

diagnosed. Out of 22 nominal cases, all were correctly identified by the LSTM network

as being devoid of faults. Of the 24 simulations diagnosed as nominal by the network,

only 2 actually possessed a fault. Thus, the LSTM method provides both a high

sensitivity (detecting a fault when one is present) and a high reliability (faults being

present when one is detected) when applied to a diverse assortment of ADCS faults.

3.3 Decision Theory for ADCS Fault Recovery

In this section, the LSTM fault isolator is combined with decision theory to demon-

strate the selection of an appropriate ADCS mode in response to a fault. This ca-

pability is referred to as the decision system. Section 3.3.1 describes a method for

selecting actions under uncertainty given tuneable mission priorities called utilities.

Section 3.3.2 develops these utilities for the fault simulator and Section 3.3.3 provides

an in-depth example. Finally, Section 3.3.4 assesses the overall performance of the

method.

78

Figure 3.9: Confusion matrix summarizing LSTM fault isolation performance on all

500 validation examples using the fault simulator.

79

3.3.1 Introduction to Decision Theory

Decision theory is a framework for selecting actions that maximize some notion

of benefit under uncertainty [72, Chapter 9]. The benefit of different outcomes is

measured by quantities called utilities. Each utility is an abstract but quantitative

measure of the value of a particular outcome if it were to manifest. By multiplying

the utilities by the probability of each outcome, we can obtain the expected utility of

taking a given action. The optimal action to take is thus the one that maximizes the

expected utility.

Decision theoretic approaches have been applied to risk management during space-

craft development [120,121], and have also been applied to evaluate recovery options

based on uncertain root cause diagnoses with Bayesian networks [89]. A clear ad-

vantage is the ability for operators to tune response logic by updating the utilities to

reflect new priorities, goals, or risk posture.

3.3.2 Developing the Utility Matrix

The fault simulator ADCS is controlled at a high level by selecting one of 6 ADCS

modes (Table 2.1). These modes are the primary way of commanding ADCS behavior

and represent the possible actions one might take in response to a fault. Since faults

impact each mode differently, we can assemble our utility values into a 22× 6 matrix

U with rows denoting possible fault scenarios (Table 3.3) and columns containing the

available ADCS modes. Each entry ui,j contains the utility for commanding mode j

when fault i is present. For simplicity, we will standardize the ui,j into the 5 categories

described in Table 3.4.

Several of the utility categories in Table 3.4 are defined relative to the current

mission objective. To see why this is necessary, consider a “no fault” scenario diag-

nosed with 100% confidence. If the utilities for each mode under the no fault case

are all equal, there is no reason to choose one mode over any other. In reality, the

spacecraft operator will have a “desired mode” that aligns with the current tasks the

80

Table 3.4: Standard utility value categories.

Category Utility Description

Dangerous −5 The fault has the potential to become unrecover-

able (resulting in loss of mission) if the spacecraft

enacts or persists in the given mode

Disruption −2 The fault disrupts the proper operation of the

given mode, potentially resulting in reduced per-

formance or loss of data

No benefit 0 The mode is unaffected by the given fault but it is

not desirable to remain in the anomalous state

Recovery 2 Enacting the mode takes an active step towards

recovering from a fault

Objective

completion

5 The mode leads to nominal performance, allowing

mission objectives to be achieved

spacecraft is performing. It is important that our utility values provide a preference

to this mode so that the spacecraft does not abandon it without an adequate reason.

With this in mind, Table 3.5 presents a generalized utility matrix U. The vari-

able γ is a placeholder that denotes either “No benefit” or “Objective completion”

depending on the desired mode of the operator:

γi,j =

0 if j 6= desired mode

5 if j = desired mode

(3.10)

The choices of utility values are generally derived from the operational criteria

outlined in Table 3.6. No torques mode has no requirements, but is not a suitable

response to an unexpected torque since this could lead to an accelerating spin rate if

left unopposed. Accelerating spin rates can also result from gyro faults or reaction

wheel phasing errors while in modes with active attitude control, or from torque

81

Table 3.5: Generalized utility matrix for ADCS mode selection.

Fault Scenario D
et

u
m

b
le

B
-a

li
gn

S
u
n

p
oi

n
t

N
o

to
rq

u
es

N
ad

ir
p

oi
n
t

V
el

o
ci

ty
p

oi
n
t

No fault γ γ γ γ γ γ

Magnetometer interference −2 −2 −2 γ −2 −2

Failed magnetometer γ γ γ γ γ γ

Failed sun sensor γ γ γ γ γ γ

False sun γ γ γ γ γ γ

Orbit ephemeris or clock error γ 2 −2 γ −2 −2

Magnetometer phasing/rotation matrix error −5 −5 −2 γ −2 −2

Sun sensor phasing/rotation matrix error γ γ γ γ γ γ

Panel deployment fault −2 −2 −2 γ −2 −2

Failed gyro γ γ −5 γ −5 −5

Gyro calibration error γ γ −5 γ −5 −5

Gyro phasing error γ γ −5 γ −5 −5

Reaction wheel phasing error γ γ −5 γ −5 −5

Unresponsive reaction wheel γ γ γ γ −2 −2

Reaction wheel torque error γ γ −2 γ −2 −2

Reaction wheel saturated 2 γ −2 γ −2 −2

Failed torque rod or current error 0 0 γ γ γ γ

Torque rod polarity error −5 −5 γ γ γ γ

Excessive magnetic dipole 2 0 −2 γ −2 −2

Unexpected torque 2 0 −2 −5 −2 −2

Attitude rate jitter γ γ −2 γ −2 −2

Reboot cycle γ γ −2 γ −2 −2

82

rod polarity errors or severe mis-interpretations of the B-field when the detumble

controller is active. In any of these cases, the utility value is −5 (dangerous).

For many of the faults considered, the root cause cannot be corrected autonomously

as it will necessarily involve further investigations and software updates by ground

operators. Two exceptions are faults resulting in a large momentum build-up and

the clock/TLE error. The former can be recovered from by entering detumble mode

to desaturate the reaction wheels while the latter can be addressed by transitioning

to B-alignment mode. This mode is ideal for downlink/uplink with the ground and

provides the best opportunity for the spacecraft to receive a TLE or clock update. In

any large constellation, it is likely that these updates would be handled automatically.

Each of these cases is assigned a utility value of 2 (recovery).

Table 3.6: Operational requirements for each ADCS mode.

Modes Requires

Detumble − Accurate B-field determination

B-align − Functioning torque rods

Sun point − Accurate attitude knowledge

Nadir align − Functioning reaction wheels

Velocity align

Mode Selection

Given a 22×1 vector of instantaneous fault confidences yt from the LSTM network,

the expected utility of each ADCS mode is given by a vector Û , computed:

Ût = Uᵀyt (3.11)

The optimal mode selection at any time is then the one corresponding to the largest

component of Ût.

83

Additional Considerations

Several considerations are necessary to ensure stable mode selection. Since the

LSTM network was only trained with a fixed ADCS mode, it is prudent to reset the

network’s internal states (both ht and ct) after each mode change. Failing to do so

can lead to incorrect confidence outputs that prompt further mode changes. Second,

the LSTM network requires a certain amount of time to converge to a robust fault

diagnosis. For the first 10 − 20 time steps the fault confidences are often low and

highly sensitive to the input signals. By instituting a mandatory waiting period of

20 time steps (20 minutes) between mode changes, it can be ensured that the LSTM

network has sufficient input to make a confident fault diagnosis. This prevents the

initial state of the LSTM network from triggering mode changes on the first few time

steps after each reset.

Finally, some faults− such as those involving reaction wheels− are only detectable

in certain ADCS modes. Enacting a mode change in response to such a fault along

with an LSTM reset can cause the fault to disappear from the LSTM’s diagnosis.

This can lead the decision system to switch back into the original mode only to

rediscover the fault and switch out again, thus becoming trapped in an oscillation

between modes where the fault is visible and modes where it is not. To prevent such

oscillations, it is necessary to retain the justification for mode changes across each

mode change. A simple approach is this: whenever a mode change is commanded,

update the desired mode to the mode being switched to. This strategy alters the

interpretation of γ in Table 3.5 in a way that favors the new mode, at least until

another fault is detected.

84

3.3.3 Detailed Examples

Priority Change

The utility values assigned in Table 3.5 are intentionally subjective. They rep-

resent the relative preferences of the spacecraft operator for different modes under

different faults. For instance, the recovery utility (u = 2) is less than the utility for

objective completion (u = 5) in order to prioritize an objective in progress, so long

as that objective is not jeopardized by whatever fault is detected.

Figure 3.10 provides a concrete example for a spacecraft in detumble mode. In

Fig. 3.10(a) the spacecraft clock is advanced by nearly 5.5 days, causing a major

disruption to attitude knowledge that is correctly diagnosed by the LSTM network.

This fault does not impact detumble performance, however, and since detumble is the

desired mode, the expected utility of this mode remains high (∼ 5). The spacecraft

stays firmly in detumble mode to complete the momentum dump.

Contrast this with Fig. 3.10(b), in which the fault disrupts the objective and the

initial mode is rightfully abandoned. Figure 3.10(b) presents the same simulation as

Fig. 3.10(a) but with the magnetometer rotation matrices transposed in place of the

clock offset. For the first 55 minutes the LSTM network attributes the various anoma-

lies to a failed magnetometer. This would not normally warrant a mode change3 based

on Table 3.5, and so the spacecraft remains in detumble mode. Nevertheless, around

56 minutes the LSTM network redistributes its confidence in the failed magnetometer

to the (correct) magnetometer rotation matrix error. Unlike the failed magnetometer

or the clock offset, this fault can seriously degrade the effectiveness of mode 0. The

expected utility of detumble mode drops to negative while “no torques” becomes the

favored mode and the spacecraft changes modes accordingly.

The balance of utilities can be modified to suit the operator’s evolving priorities.

Suppose that it is considered imperative to update the spacecraft clock rather than

3The bad magnetometer will usually be voted out, preventing it from corrupting the magnetic field
measurement

85

0 20 40 60 80 100 120 140 160 180
0

0.5

1

No fault
Clock or TLE error
Torque rod polarity error
Angular rate jitter

0 20 40 60 80 100 120 140 160 180
-2

0

2

4

6
Detumble
B-align
Sun Pointing
No Torques
Nadir Align
Velocity Align

0 20 40 60 80 100 120 140 160 180
Detumble

B-align
Sun Pointing
No Torques
Nadir Align

Velocity Align

(a) Clock offset error

0 20 40 60 80 100 120 140 160 180
0

0.5

1

No fault
Mag phasing/rot error
Failed magnetometer
Magnetic interference

0 20 40 60 80 100 120 140 160 180
-5

0

5
Detumble
B-align
Sun Pointing
No Torques
Nadir Align
Velocity Align

0 20 40 60 80 100 120 140 160 180
Detumble

B-align
Sun Pointing
No Torques
Nadir Align

Velocity Align

(b) Magnetometer rotation matrix error

Figure 3.10: Comparison of fault responses for a clock offset and a magnetometer

rotation matrix error. The clock offset does not degrade detumble performance and

the decision system takes no action. The rotation matrix error does affect this mode,

causing a transition to no torques.

86

finish a momentum dump in progress4. To reflect this change in priorities, the utili-

ties for recovery and objective completion in Table 3.4 can be swapped. Figure 3.11

repeats the simulation of Fig. 3.10(a) to show the altered response. Instead of re-

maining in detumble mode, the spacecraft switches to B-alignment mode at the first

opportunity (after the 20 minute wait period) in order to establish contact with the

ground. Hence, the fault response logic is easily modified via the utility values to

reflect the mission’s priorities and risk tolerance.

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

No fault
Clock or TLE error
Torque rod polarity error
Angular rate jitter

0 20 40 60 80 100 120 140 160 180
-4

-2

0

2

4

6

Detumble
B-align
Sun Pointing
No Torques
Nadir Align
Velocity Align

0 20 40 60 80 100 120 140 160 180
Detumble

B-align

Sun Pointing

No Torques

Nadir Align

Velocity Align

Figure 3.11: Alternative response to a clock error based on new priorities. Compared

to Fig. 3.10(a), the utility values for B-alignment mode and detumble are reversed,

thus motivating the system to prioritize addressing the fault over the current objec-

tive.

4A reasonable priority given that a clock error may affect subsequent parts of the mission timeline.

87

Combination of Faults

The next example considers a particularly insidious combination of two separate

faults to demonstrate how decision theory can enact a more sophisticated fault re-

sponse. Consider a spacecraft in velocity pointing mode. The first fault is a torque

rod polarity error on both the X and Y torque rods. This fault can easily lurk unde-

tected in modes with active attitude control because the torquer commands generally

average to zero once the reaction wheels have aligned the spacecraft with the com-

manded attitude. A reaction wheel failure will be injected near the end of the first

orbit, disrupting attitude control and causing the decision system to enact a mode

change to detumble mode. Yet, due to the torque rod polarity error, this could eas-

ily be a fatal mistake. The FDIR system must act quickly to diagnose the polarity

error and transition the spacecraft to a more survivable mode. Figure 3.12 shows its

response.

The reaction wheel failure is quickly detected and diagnosed with high confidence

immediately after the fault is injected at t = 83 minutes in Fig. 3.12(a). The space-

craft switches into detumble mode in response. As the spin rate begins to rise, the

LSTM network correctly diagnoses the torque rod polarity error with 60− 80% con-

fidence. No torques becomes the favored mode to maximize the expected utility and

the spacecraft switches as soon as the minimum wait time is reached. Even though

the LSTM network is subsequently reset, the excess angular momentum acquired

during the brief period in detumble allows the network to recover its prior diagnosis,

thus ensuring it remains settled in mode 3.

3.3.4 Overall Performance

The combination of 22 faults and 6 ADCS modes leads to 132 unique scenarios for

selecting a fault response. To gauge the effectiveness of the decision system over the

full range of scenarios, Fig. 3.13 summarizes simulations for every one. The chart plots

the injected fault against the initial ADCS mode with each cell containing the final

88

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

No fault
Torque rod polarity error
Unresponsive reaction wheel
Excessive magnetic dipole

(a) Subset of fault confidences

0 20 40 60 80 100 120 140 160 180
-5

0

5

Detumble
B-align
Sun Pointing
No Torques
Nadir Align
Velocity Align

(b) Expected utilities of ADCS modes

0 20 40 60 80 100 120 140 160 180
Detumble

B-align

Sun Pointing

No Torques

Nadir Align

Velocity Align

(c) Resulting mode selection

Figure 3.12: Sequence of ADCS mode updates to respond to two faults. The first is a

reaction wheel failure that prompts the decision system to abandon velocity pointing

mode for detumble mode. This allows the torque rod polarity error to manifest.

Smart-FDIR diagnoses the fault and enacts a safe recovery to no torques mode.

89

mode that the spacecraft settled in to at the end of 2 orbits. The appropriateness of

the final mode is measured in terms of utility regret, defined as the difference between

the highest utility that could have been obtained for the given fault and the utility

of the actual outcome. Where the regret is non-zero, the system could have obtained

a higher utility by selecting a different ADCS mode.

0 1 2 3 4 5

No Fault
Magnetic Interference
Failed Magnetometer

Failed Sun Sensor
False Sun Reading
Clock or TLE error

Mag Phasing or Rot Err
Sun Sens Phasing or Rot Err

Panel Deploy Failure
Gyro Failure

Gyro Calibration Error
Gyro Phasing Error

Reaction Wheel Phasing Error
Unresponsive Reaction Wheel
Reaction Wheel Torque Error

Reaction Wheel Saturated
Torque Rod Failure/Current Error

Torque Rod Polarity Error
Torque Rod Residual Dipole

Unexpected Torque
Angular Rate Jitter

Reboot Cycle

0
3
0
0
0
0
3
0
3
0
0
0
0
0
0
0
3
2
0
0
3
0

1
3
3
1
1
1
3
1
3
1
1
1
1
1
1
1
3
3
3
3
3
1

2
3
2
2
2
3
3
2
3
0
0
3
0
2
0
0
2
2
0
3
0
3

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

4
3
3
4
4
1
3
4
3
0
0
3
0
0
0
0
4
4
0
3
3
1

5
3
5
5
5
1
3
5
5
1
3
0
3
0
0
0
5
5
3
3
3
0

0

1

2

3

4

5

6

7

Figure 3.13: Effectiveness of response actions over all fault–mode combinations. Each

cell contains the final mode selected to respond to the corresponding fault. The regret

measures the appropriateness of each final mode.

In 119 (90%) of the scenarios, the FDIR system selected a mode that yielded the

maximum utility. Note from Table 3.5 and Eq. 3.10 that several modes may possess

identical utilities for a given fault, meaning that the optimal fault response is often

not unique. An important case is the first row (No Fault), since it shows that the

system adhered to the objective mode under nominal conditions. The initial mode is

90

also maintained in numerous cases where the fault does not impact operations (e.g.

failed sun sensor, gyro calibration error in modes 0, 1, and 3).

In the 13 cases with regret, the decision system selected a suboptimal action.

Suboptimal fault responses result primarily from one of two things:

1. The LSTM network makes an incorrect fault diagnosis

2. The utility values allow an outcome with low confidence to overpower more

confident predictions

The second case occurs when the utility values exist on very different orders of mag-

nitude. It can be tempting to assign extremely large negative values to catastrophic

outcomes when comparing them to the benefit of a single objective. This is a mistake

because it allows the expected utilities of outcomes with low confidence to outweigh

more confident ones. Decisions will thus be dominated by diagnoses with virtually

zero confidence. We must also note that the confidence outputs of the LSTM network

are not equivalent to a rigorous notion of probability. This is especially true when

considering very low and very high confidences from the network. For these reasons,

the utility values in Table 3.4 are defined within the same order of magnitude.

Instead, the 13 incorrect cases in Fig. 3.13 are due to incorrect fault diagnoses by

the LSTM network. Previously (Fig. 3.9), the LSTM’s accuracy was scored based on

the prevailing diagnosis in the final 30 time steps of each scenario. Yet, as can be

seen in the various examples, the LSTM network often trades off several competing

hypotheses before it converges to its ultimate diagnosis. When coupled with the

decision system, an incorrect diagnosis at even a single time step (after the 20 minute

wait) can result in the expected utilities triggering a mode change. This is the case

with the failed magnetometer in Fig. 3.13, where a brief allocation of confidence to the

competing “Magnetometer phasing/rotation error” fault led to modes 1 and 4 being

abandoned unnecessarily. The most troublesome case, however, is the unexpected

torque fault. This is not surprising given the low diagnosis accuracy seen in Fig. 3.9.

91

4. FAULT MONITORING FOR LIGHTSAIL 2

The FDIR technique presented in the prior chapters has thus far been developed

and tested exclusively using the 6DOF ADCS fault simulator. To demonstrate that

the method is useful in practice, this chapter applies the technique to detect and

diagnose faults on the LightSail 2 solar sail satellite, which in 2019 demonstrated

the first controlled solar sailing in Earth orbit. The author has been involved with

the mission as the flight mechanics engineer from late testing through the first year

of operations and completion of the primary mission. Section 1 provides a historical

and technical overview of the mission while Section 2 develops the anomaly detectors.

Section 3 applies the anomaly detectors along with an LSTM network to perform fault

isolation, discovering both known and unknown faults on the spacecraft.

4.1 Mission Background

4.1.1 History of the LightSail Program

The Planetary Society (TPS) is a non-profit and member-supported organization

dedicated to stimulating public interest in the peaceful exploration of outer space.

Since the early 2000’s, the Society has sought to achieve this by advancing the tech-

nology of solar sailing. Solar sails are based on the fact that radiation pressure from

the Sun exerts a force that can be used to propel a spacecraft without propellant.

The concept can be traced back to Johannes Kepler and has appeared in science

fiction stories from Jules Verne to Arthur C. Clarke [144]. The possibilities of solar

sailing were also popularized by the The Planetary Society’s founders and have been

investigated in an extensive body of scientific literature [145]. Yet, it was not until

the 21st century that the technology would be realized.

92

In 2005, TPS attempted to fly Cosmos 1, a 100 kg spacecraft with a 600 m2

solar sail. Regrettably, the satellite was destroyed when the launch vehicle failed to

reach orbit [144]. A NASA CubeSat solar sail, NanoSail D, was similarly lost in a

launch failure in 2008 [146]. The first solar sail to fly in space was the 306 kg JAXA

spacecraft, IKAROS, which demonstrated acceleration and limited attitude control1

using a 196 m2 sail while enroute to Venus in 2010 [147]. NASA’s 4 kg NanoSail D2

deployed a 10 m2 solar sail in Earth orbit the following year but did not attempt

controlled propulsion [148].

The low mass and miniaturization of CubeSats makes them ideal for solar sailing.

Following the loss of Cosmos 1, TPS reorganized their solar sailing objectives and

created the LightSail program. The new program began in 2010 and raised $7.5

million USD from 50,000 members and donors worldwide to develop a pair of 3U

CubeSats to meet the following objectives:

• Demonstrate controlled solar sail propulsion using a CubeSat platform

• Raise the public and technical profile of solar sailing

• Excite and engage the public

• Share the program results with future missions, the technical community, and

the public

Each CubeSat has a mass of 5 kg and carries a 32 m2 Mylar solar sail. Since the

characteristic acceleration of a solar sail depends on the ratio of the mass to sail area,

the LightSail satellites have the highest solar acceleration of any solar sail flown to

date.

LightSail 1 flew as a test mission in 2015 and was dedicated to performing a check-

out of CubeSat platform and validating deployment of the solar sail in space [149].

These were accomplished with successful sail deployment on June 7th, 2015. Due to

1The sail orientation was changed a fraction of a degree by varying the reflectance of 80 liquid crystal
panels

93

the low orbit altitude (356 km × 705 km) however, the spacecraft was quickly pulled

from orbit by atmospheric drag and reentered the atmosphere on June 14th, 2015.

The experience gained from LightSail 1 resulted in a number of hardware and

software changes for LightSail 2. Whereas LightSail 1 was uncontrolled, LightSail 2

incorporates a full ADCS that enables it to control its orbit via changing the orienta-

tion of the sail relative to the Sun. To better observe the effects of solar pressure, the

spacecraft was also carried to a higher orbit (709 km × 726 km, 24 deg inclination) as

part of the SpaceX STP-2 mission launched on June 25th, 2019. Initially contained

within another small spacecraft (Prox 1), it was deployed to fly on its own July 3rd,

2019 [135,150].

4.1.2 Mission Overview

Spacecraft Bus

Figure 4.1 shows the LightSail 2 spacecraft during ground testing in 2016. The

spacecraft bus is similar to the one modeled by the 6DOF fault simulator as described

in Section 2.3. Both are 3U CubeSats with nearly identical solar panel configurations,

definitions of the spacecraft body frame (see Fig. 2.7(b)), as well as mass and inertial

properties (when the solar sail is stowed). LightSail 2 does not have a solar panel

on the +Z face – it was removed to install a cluster of retro-reflectors for precision

orbit determination. The sensors and actuators of the fault simulator are based on

the hardware used by LightSail 2, but several differences are important to note. In

contrast to the fault simulator, LightSail 2 has only a single reaction wheel actuating

about the +Y axis. Additionally, only 2 (+X and +Y) of the original 4 magnetome-

ters were found to be functional prior to launch. LightSail 2 also possesses two sets of

gyros. The primary (PIB) gyros are the ADIS16135 model and measure calibrated an-

gular rates about each spacecraft body axis for attitude knowledge and control [138].

To conserve power, the PIB gyros are only operated in conjunction with the reaction

94

wheel and not in the detumble, B-align, or no torques ADCS modes. In these modes,

a secondary set of gyros built in to the spacecraft’s Intrepid motherboard is used.

(a) Spacecraft bus (b) Solar sail deployment testing

Figure 4.1: Pre-launch photos of LightSail 2 during 2016. Both show the spacecraft

with its solar panels deployed.

LightSail 2’s -X and +X solar panels are equipped with custom-made cameras

built by the Aerospace Corporation for imaging. The cameras face outwards once

the solar panels are deployed and take 2-megapixel color images using a 185 deg fish-

eye lens. This FOV is enough to capture the deployed sail along with parts of the

Earth and space. The solar sail itself consists of four triangular sheets of Aluminized

Mylar R©. Each segment is 4.6 microns thick and 5.6 m on a side, giving a total

deployed area of 32 m2. The sail is deployed by four 4 m Triangular Retractable And

Collapsible (TRAC) booms wound around a common spindle behind the +Z face of

the spacecraft. An electric motor rotates the spindle to extend the booms during

sail deployment. Deploying the sail drastically increases the moments of inertia of

LightSail 2. Since the spacecraft is equipped with only a single reaction wheel, the

95

large moments of inertia make attitude control far less precise compared the generic

3U CubeSat considered in Chapters 2 and 3.

LightSail 2’s ADCS software operates very similar to the fault simulator described

in Section 2.3 and shares many of the same control modes. LightSail 2’s ADCS modes

are summarized in Table 4.1. Note that mode 5 (velocity pointing) has not been used

at the time of writing while mode 4 (Sun pointing) has only been used for a limited

number of tests. The most important and most-used mode is mode 2 (solar sailing).

The function of this mode is summarized in Fig. 4.2 and described in the following

subsection.

Solar Sailing Concept of Operations

The central goal of LightSail 2 is to demonstrate controlled solar sail propulsion.

This is complicated by the fact that a solar sail generates thrust any time it is in

sunlight, meaning attitude control is not strictly required to modify the orbit. To

discern the effects of sail control, LightSail 2’s solar sailing mode enacts a cycle of 90

degree “On-Off” slews that switch the sail orientation between edge-on and thrusting

attitudes twice per orbit. This control strategy is illustrated in Fig. 4.2. When the

spacecraft is moving away from the Sun, LightSail 2 aligns its +Z axis to maximize

the solar radiation pressure on the sail and ensure that the projection of the thrust

onto the orbital velocity is positive. On the other half of the orbit, the “Off” or edge-

on attitude is adopted to minimize thrust from the sail and prevent it from removing

energy from the orbit. The “On-Off” control scheme thus allows the solar pressure to

contribute an increase in the orbital energy that can oppose losses due to atmospheric

drag.

96

Table 4.1: LightSail 2 attitude control modes.

No. Mode Description

0 Detumble Valid magnetometer readings are averaged in

the spacecraft body frame and basic B-dot con-

trol [143] is used to generate torque rod commands

to arrest the spacecraft’s rotation. The reaction

wheel is not used in this mode.

1 Magnetic alignment Similar to detumble except that the Z-axis torque

rod is set to constant maximum power. This aligns

the spacecraft Z-axis (with some precession) to the

local magnetic field vector.

2 Solar sailing The PIB gyros and reaction wheel are powered on

and LightSail 2 slews between thrusting and edge-

on attitudes relative to the Sun as described in

Fig. 4.2.

3 No torques All actuators are disabled.

4 Sun pointing All actuators are used to point the spacecraft’s –Z

panel towards the Sun.

5 Velocity pointing All actuators are used to align the spacecraft Z-

axis with the velocity vector.

4.1.3 Mission Events

Launch and Early Operations

Lift-off of the STP-2 mission occurred at 2:30 am EDT from Launch Complex 39A

at NASA’s Kennedy Space Center, Florida. The mission was the first night launch

of SpaceX’s Falcon Heavy rocket and delivered a payload of 24 satellites to various

orbits using four separate upper stage burns [151]. The launch was attended by the

97

Sun	

Solar	
thrust	Sail		

“Off”	
a1tude	 Sail	“On”	

a1tude	

Figure 4.2: Solar sailing strategy for LightSail 2. When moving away from the Sun

the spacecraft presents the maximum sail area to the Sun to deliver an increase in the

orbital energy. On the opposite arc, LightSail 2 transitions to an edge-on attitude to

minimize solar pressure and prevent the sail from removing energy.

author and a personal photograph is included in Fig. 4.3(a). LightSail 2 was stored

within a P-POD on Prox 1 and the pair was deployed into a 709 km × 726 km orbit

at 3:49 am EDT. Table 4.2 summarizes the timeline of major events for LightSail 2

that followed in the weeks after the launch.

Prox 1 autonomously deployed LightSail 2 exactly 7 days after its separation

from the Falcon upper stage. Following a 45 minute charging period, the spacecraft’s

Morse code identifier was received exactly on time at 4:34 am, July 2nd. The first full

telemetry beacons were decoded later that day and the influx of detailed subsystem

information marked beginning of an extensive checkout period.

ADCS testing began in earnest on July 6 following the deployment of LightSail 2’s

solar panels. This exposed the sensors to the space environment and revealed that

the two magnetometers were providing inconsistent measurements. Using mode 1

98

(a) Launch, 25 June 2019 (b) Sail deployment, 23 July 2019

Figure 4.3: Launch and on-orbit deployment of LightSail 2’s solar sail. Figure (a)

was taken by the author on the night of the launch.

(B-alignment) to provide a known direction of the local magnetic field relative to

the spacecraft (approximately aligned with the +Z axis), the +Y magnetometer was

deemed to be faulty since it showed the field in the -Z direction. Note that the

spacecraft had not detumbled at this point and the Intrepid gyros showed rates be-

tween 2−3 deg/s. A number of software and parameter updates pertaining to the

torque rods and B-dot controller were uplinked, and on July 13 the detumble mode

successfully reduced the rotation rate below 1 deg/s.

Pre-deployment testing of mode 2 (solar sailing) began on July 14 and was initially

unsuccessful. Errors with sun sensor measurement processing, sun sensor voting,

eclipse checking, and onboard orbit propagation were corrected between July 14 and

17. Gain tuning and software updates to the reaction wheel finally resulted in a

successful demonstration of mode 2 on July 22. The sail was deployed the following

day from a B-aligned attitude over Central America at 2:47 pm EDT. Fig. 4.3(b)

shows the sail towards the end of deployment. The spacecraft transitioned to solar

99

Table 4.2: LightSail 2 major mission events.

Date ADCS Events/Testing

June 25 Launch on STP-2 Falcon Heavy

July 2 Deployment from Prox 1

July 6 Momentum wheel test and solar panel deployment

July 8 +Y magnetometer taken offline, successful mode 1 alignment

July 9–13 Multiple parameter and software updates

July 13 Successful detumble

July 14–17 Sensor software updates

July 14–22 Mode 2 testing, control parameter tuning and software updates

July 22 Successful mode 2 test

July 23 Solar sail deployment

July 29 Orbit changes confirmed; mission success announced

sailing mode immediately after deployment. Changes in apogee and perigee on the

order of several hundred meters per day along with the first recognizable On-Off slews

became visible in downlinked telemetry in the days afterwards. Mission success was

announced on July 29, 2019.

Solar Sailing Performance

During the final mode 2 test prior to sail deployment, LightSail 2’s attitude control

accuracy was consistent with the performance seen in the 6DOF fault simulator. The

spacecraft maneuvered quickly between On and Off attitudes and was able to maintain

the commanded attitude generally to within 15 degrees. A plot of the -Z to Sun angle

during the test is shown in Fig. 4.4(a).

The On-Off cycle continued after sail deployment but proved difficult to maintain.

The reaction wheel saturated within a matter of hours and several desaturation strate-

100

gies were tested to find a balance between solar sailing and momentum dumping that

kept the wheel RPM within an operable range. Numerous control gain adjustments

were also iterated on, as it was found that gains tuned using the ADCS Simulink

model did not necessarily provide comparable performance on-orbit (possibly due to

the flexibility of the real sail). To further enhance spacecraft control and improve

the effectiveness of momentum dumping, mode 1 (B-align) was effectively eliminated

on August 1st. This allowed the power of the torque rods to be increased to allow

dipoles of up to 1.2 Am2. By August 4th, LightSail 2’s On-Off performance had been

refined to the point where it was consistent with the simulation model. Fig. 4.4(b)

shows an example of the spacecraft’s On-Off performance with the sail deployed.

18:00 18:30 19:00 19:30 20:00
Jul 22, 2019

0

50

100

150

-Z
 S

un
 A

ng
le

 [d
eg

] On-Off command
Flight data
Eclipse

(a) The final pre-deployment solar sailing test

00:00 02:00 04:00 06:00 08:00 10:00 12:00
Aug 04, 2019

0

50

100

150

-Z
 S

un
 A

ng
le

 [d
eg

]

(b) Sailing using the On-Off strategy with the sail deployed

Figure 4.4: Examples of LightSail 2’s solar sailing performance.

With the exception of a handful of dates in which LightSail 2’s orbital energy

increased, the spacecraft’s semi-major axis has decreased throughout the mission

101

due to atmospheric drag. However, an analysis of the orbit decay rate between late

July and November 2019 showed that the rate was demonstrably reduced by at least

10 m/day when solar sailing with regular momentum dumping [135].

4.1.4 On-orbit Anomalies

Various anomalies were encountered by LightSail 2 both during the checkout phase

as well as later operations. Many of these either originated in or otherwise affected the

spacecraft’s ADCS. The following subsections describe the most significant anomalies

that have been investigated so far during the mission. These anomalies will form the

basis for demonstrating and assessing autonomous fault detection and isolation in

Section 4.3.

+Y Panel Deployment

Among the first anomalies identified during the mission were the implausible mea-

surement readings of the +Y magnetometer. The sensor was placed in passive mode

to prevent it from corrupting the spacecraft’s attitude knowledge. In September, an

analysis of sun sensor voting statistics revealed that the +Y sun sensor was being

rejected nearly twice as often as its sister sensors. This led to speculation that the

anomalies of the +Y sun sensor and magnetometer were related. These suspicions

were confirmed in January when an image was returned showing the shadows of the

solar panels on the sail. Pictured in Fig. 4.5, the shadow of the +Y panel reveals

that this panel is deployed approximately orthogonal to the spacecraft bus instead

of the nominal 155−165 degrees of the other panels (see also Fig. 4.1(a)). Thus, the

root cause of the +Y sensor anomalies was not that these sensors were faulty, but

that the coordinate transforms used to interpret their measurements did not reflect

the actual orientation of the panel on which they were mounted. Detailed investiga-

tion determined the +Y panel to be deployed 92±6 degrees from the spacecraft bus.

102

New rotation matrices were derived and the +Y sun sensor and magnetometer were

restored to active mode.

Figure 4.5: In this image taken 15 January 2020, the shadows of the deployed solar

panels revealed that the +Y panel was only partially deployed.

Intrepid Gyro Calibration

Another anomaly identified early on was a miscalibration of the Intrepid board

gyros. This was detected by applying the quaternion-B discrepancy check described in

Fig. 3.4(a) to validate the spacecraft’s attitude knowledge. When in solar sailing mode

with the PIB gyros active, the quaternion-B discrepancy averaged around 15 degrees.

In other modes, however, attitude knowledge was severely disrupted. Figure 4.6

shows the discrepancy angle across several mode changes. A closer inspection of the

readings from the Intrepid gyros showed that the Z-axis measurement was implausibly

large, being in the range of 2−6 deg/sec. Attempts were made to cross-calibrate

the Intrepid gyros against their PIB counterparts but this was unsuccessful because

103

the offset was found to vary significantly over time. Fortunately, the impact of the

unreliable Intrepid gyros on the mission has been minimal due to the fact the PIB

gyros are used in modes were explicit attitude knowledge is required.

Sep 24 Sep 25 Sep 26 Sep 27
2019

0

50

100

150
Q

ua
te

rn
io

n
D

is
cr

ep
an

cy
 [d

eg
]

Sep 24 Sep 25 Sep 26 Sep 27
2019

0

1

2

3

AD
C

S
M

od
e

Figure 4.6: LightSail 2 quaternion-B discrepancy angle across several mode changes.

While attitude knowledge is accurate in modes that utilize the PIB gyros, the poorly

calibrated Intrepid gyros disrupt attitude determination in others.

Reaction Wheel Anomalies

The initial mode 2 tests prior to solar sail deployment failed due to a lack of

responsiveness from the reaction wheel. Despite non-zero torque commands, the

wheel’s RPM remained at 0 except for sporadic pulses as shown in Fig. 4.7. Given

the high amount of chatter in the commands, it was theorized that the signal was

simply too incoherent for the wheel’s motor to follow. A moving average filter was

instituted to smooth the commands over a 10-second window, but the wheel proved

104

even less responsive in the subsequent test. This helped reveal that the magnitudes of

the commands were too small to engage the wheel from 0 RPM. Attitude control gains

were made more aggressive for the next test so that the commanded torques during

slews were > 4×10−4 Nm. This succeeded in engaging the wheel for sustained periods

and revealed a final software error that was preventing the wheel from reversing

direction. After correcting this error, the final pre-deployment solar sailing test was

successful (Fig. 4.4(a)).

Jul 14, 23:40 Jul 14, 23:50 Jul 15, 00:00 Jul 15, 00:10
2019

-5

0

5

To
rq

ue
 [N

m
]

10-4 Wheel Torque Commands

Jul 14, 23:40 Jul 14, 23:50 Jul 15, 00:00 Jul 15, 00:10
2019

-100

-50

0

R
PM

Wheel Speed

Figure 4.7: Reaction wheel torque commands and RPM response during initial mode

2 testing. Weak commands and a software error made engaging the wheel difficult.

Shadowing and ADCS Resets

A frequent problem that appeared beginning in mid-August were cyclic flight

computer resets that impacted ADCS performance. The resets tended to follow one

of two patterns:

• A “sawtooth” pattern with resets occurring regularly every 215 minutes

105

• Resets occurring at a rapid but irregular interval

Examples of each are shown in Fig. 4.8. The cause of the sawtooth-type was traced

to corrupted databases on the spacecraft. Data corruption often occurs following a

hard reset, such as those caused by a loss of power. The corruption is detected

automatically on board and attempts are made every hour to repair it. If unsuccessful,

the repairs can be attempted at most three times before a watchdog timer reboots

the spacecraft. This is why the reboots in the top plot of Fig. 4.8 occur at regular

intervals. When this pattern of resets manifests, cycling the databases via a ground

command is usually able to correct the issue.

The second pattern of resets correlates with low battery voltages and is likely the

result of electrical brownouts. These resets most often arise during extended periods

of momentum dumping. This fact was initially perplexing because the detumble mode

draws significantly less power than mode 2. Nevertheless, the uncontrolled attitude

induced during momentum dumping leads to regular shadowing of the solar panels

by the sail. If the attitude remains uncontrolled for many hours, the spacecraft’s

rotation tends to stabilize about its Z-axis. Once this occurs, it is essentially a 50/50

draw as to whether the solar panels are on the sunlit side of the sail.2

This is precisely what happened in late October after a memory overload crashed

the ADCS software and forced the spacecraft into a tumbling attitude for several days

until memory could be freed. The panel-shadowing attitude into which LightSail 2

stabilized was indicated by the hot (> 70 deg C) temperatures on the +Z panel and

the cold (< −30 deg C) temperatures on the -Z panel. The resulting onslaught of

hard reboots triggered two secondary anomalies that took over 2 months to fully

resolve:

• The loss of power caused the spacecraft’s clock to reset to its date of manufacture

in 2010.

2Recall that there are no solar cells on the +Z face of the spacecraft.

106

Aug 16, 12:00 Aug 16, 18:00 Aug 17, 00:00 Aug 17, 06:00 Aug 17, 12:00
2019

0

100

200

Ti
m

e
[m

in
]

Corrupt Database

Sep 16, 12:00 Sep 16, 18:00 Sep 17, 00:00 Sep 17, 06:00 Sep 17, 12:00
2019

0

100

200

Ti
m

e
[m

in
]

Electrical Under-volt

Figure 4.8: Patterns of flight computer resets from two common causes. The time is

the time since the last reboot.

• While re-uplinking ADCS configuration files, the active sensor flags were set

to their pre-launch configuration. Since the partial +Y panel deployment had

yet to be identified, this caused misinterpreted measurements from the +Y

magnetometer and sun sensor to be ingested into the attitude filter. Attitude

knowledge was thus degraded until the incorrect flags were found and corrected.

Fortunately, LightSail 2 was eventually able to accept a transition into mode 2

and slew to a safe attitude to recharge its batteries. Various updates have since been

made to the spacecraft to improve the power budget and reduce the chance of the

spacecraft becoming stuck in an uncontrolled attitude for extended periods of time.

Magnetometer Glitches

Though the initial anomalies with the +Y magnetometer were ultimately due

to the partially deployed +Y solar panel, there have also been anomalies with the

sensors themselves. These have taken the form of glitches during which one of the

magnetometers outputs a constant “stuck” measurement for all three of its axes.

107

Figure 4.9 provides an example from the x-axis channel of the +Y magnetometer.

Other examples have affected the +X magnetometer. In every case so far the anomaly

is cleared by a reboot. The glitches are extremely rare and were in fact unknown prior

to their diagnosis by Smart-FDIR in Section 4.3. Their underlying cause remains

unknown and may be radiation related.

Sep 10 Sep 11 Sep 12
2019

-4

-2

0

2

4

X-
Ax

is
 F

ie
ld

 [n
T]

104

Figure 4.9: Stuck values in the +Y magnetometer. Glitches like this occurred occa-

sionally during the mission and went undetected prior to discovery by Smart-FDIR.

Other Anomalies

Numerous other anomalies and faults that had an indirect effect on ADCS were

investigated during the LightSail 2 mission. One such anomaly was with the sail

deployment itself. About halfway along the -Y axis in Fig. 4.5 is metallic artifact.

This is thought to be a TRAC boom that buckled during sail deployment. The

resulting asymmetry of the sail may explain why the reaction wheel has saturated

almost exclusively in the negative RPM direction throughout the mission.

A more serious fault mentioned briefly in the previous subsections involved Light-

Sail 2’s memory. The spacecraft stores telemetry files and images on its onboard

computer and these files need to be deleted periodically to keep the computer’s mem-

ory free. Three separate times during the mission, communication with the spacecraft

was disrupted long enough for the memory to fill up completely. When this happens,

ADCS is unable to initialize a critical configuration file and crashes. A complex set of

108

commands needs to be uplinked each time to clear memory and restore the files nec-

essary for ADCS to operate. This carries the risk of operator errors (see Shadowing

and ADCS Resets subsection).

Finally, LightSail 2’s sun sensors do not record the intensity of the light source

whose direction they are measuring. This makes them vulnerable to detecting non-

solar objects such as the Moon or limb of the Earth. While this is partially mitigated

by sensor voting, analysis of the sun sensor discrepancy (Section 3.1.3) suggested that

the sun sensors were locking on to a non-solar object almost half of the time. Though

the overall effect on LightSail’s attitude knowledge was minimal (as indicated by the

low quaternion-B discrepancy), it was eventually decided to place all sun sensors in

passive mode and rely on the two magnetometers.

4.2 LightSail 2 Anomaly Detection

4.2.1 LigthSail 2 Telemetry Dataset

There are two sources of telemetry from LightSail 2: beacons and stored telemetry.

Beacons are broadcast every 7 seconds and can be received when the spacecraft is

being tracked by one of the three stations: Cal Poly in San Luis Obispo, Purdue,

or Georgia Tech. Each beacon packet contains essential subsystem data sampled at

the time the beacon was broadcast. Thus, the resulting telemetry covers occasional

10–15 minute periods when the spacecraft was passing over the continental United

States, something that only about a third of the orbits do.

Telemetry from all of LightSail 2’s orbits is stored in onboard logs. These files are

regularly downlinked alongside the beacon packets and contain the full catalog of over

300 telemetry signals and flags. The data is nominally sampled at a rate of 1/300 Hz,

but this is sometimes increased to the high rate of 1/5 Hz. Each file contains 10–20

samples of each signal at the low rate or up to 350 samples at the high rate. To date,

more than 1800 telemetry files (1.5 GB) have been downlinked.

109

Using the Data

Some pre-processing is needed to make LightSail 2’s stored telemetry fit for

anomaly detection. Duplicate samples, missing data, and conversion of raw data

into meaningful units must all be dealt with appropriately. Individual signals are not

always sampled at consistent times and the sample rate can vary between the high

and low rates even within the same file. The files also do not span the entirety of the

mission from beginning to present. Even from early in the mission there remain gaps

in the dataset where the corresponding files were not downlinked due to the finite

data rate and need to downlink other mission products (e.g. images). Since each file

begins where the previous one left off, it is useful to merge the time series extracted

from successive files so that each contains the longest period of uninterrupted data

between gaps in the files.

The details of this conditioning are not worthy of discussion here except to note

the characteristics of the final processed dataset:

1. All telemetry is resampled at the low rate (1/300 Hz), interpolating where

necessary using a zero order hold

2. Telemetry segments span periods that are uninterrupted by either missing teleme-

try files or ADCS mode changes

Both the resampling and splitting of time series about ADCS mode changes are driven

by the needs of the LSTM network described in Section 4.3.

LightSail 2’s telemetry files generally do not provide intermediate data internal

to ADCS. An example is the results of sun sensor voting. However, the intermediate

signals can often be reconstructed a-posteriori from the raw data that is available in

the file. In the case of sun sensor voting, the raw measurements can be converted

into the spacecraft body frame using the sensor rotation matrices and compared,

ignoring sensors known to be invalid. Because the reconstruction depends on external

information like the sensor valid flags, this introduces the possibility of representing

more faults than actually occurred in flight. For example, using the rotation matrix

110

for the partially deployed +Y panel to process the magnetometers while assuming a

fully deployed panel for the sun sensors can effectively simulate a sun sensor failure,

even though such a fault never occurred. This trick will be used in Section 4.3 to

create additional examples for testing the LSTM network’s ability to diagnose sun

sensor and magnetometer faults.

4.2.2 Detectors

The following subsections catalogue the suite of OCSVM anomaly detectors that

have been developed from the LightSail 2 telemetry data. The availability of certain

signals precludes an identical set of anomaly detectors to the fault simulator version

in Section 3.1.2. For one, the telemetry files do not contain the torque rod dipole

commands. The torque rod currents are also unreliable and often read zero even when

the torque rod is actuating. This is due to the torque rods operating on a 700-ms

on/300-ms off duty cycle to avoid interfering with the magnetometer readings. If the

sample happens to fall within the 300-ms portion, the currents will read zero even if

the rod actuated during the 700-ms portion. Because of this, it is not possible to create

an effective anomaly detector for the torque rods. On the other hand, LightSail 2

regularly encountered solar panel shadowing due to the spacecraft’s large sail and

this fault was not applicable to the more generic CubeSat described in Section 2.3.

Detecting shadowing anomalies requires an entirely new type of anomaly detector.

Detectors Similar to Fault Simulator

Several of the OCSVMs developed in Section 3.1.2 are still relevant to LightSail 2.

Figure 4.10 presents four detectors analogous to those developed for the fault simu-

lator. Since there is only a single reaction wheel on LightSail 2, the torquing error

is visualized in 2-dimensions. The nominal data for each detector was selected from

several dates between August and mid-October during which solar sailing was most

successful. Figure 4.10(b) also includes data through to December, since the mea-

111

sured B-field magnitude was unaffected by the faults occurring at that time. This

illustrates an important nuance: nominal data can be obtained on a signal-by-signal

basis. It is not necessary for all signals to be nominal at the same time to acquire

useful data for training OCSVMs.

The sliding windows used to extract the means and variances are each 20 time

steps (i.e. 100 minutes ≈ 1 orbit) wide and were slid along the signals with steps of 10

time steps. Figure 4.10(b) contains 1365 total data points (689 support vectors) while

Fig. 4.10(a)-4.10(c) each have 470 data points (240 support vectors). Outlier fractions

ν were selected to give reasonable decision boundaries. The OCSVM technique of

allowing a certain fraction of outliers when solving for the anomaly boundary reveals

itself as a feature here. Consider the two support vectors near the top of the plot in

Fig. 4.10(c). When working with real data, it can be difficult to guarantee that all of

the training data is in fact nominal. If we were to insist that the decision boundary

enclose all the data, anomalies such as those in Fig. 4.10(c) would dramatically skew

the boundary and degrade sensitivity to detecting anomalies. Thus, the method is

robust to anomalies that may be accidentally ingested into the nominal training set.

In addition to the four OCSVMs in Fig. 4.10, Section 3.1.3 provides anomaly

checks that are also relevant to LightSail 2. Anomaly rules 2–5 can be applied without

any modifications to LightSail 2. Rule 1 is less applicable because the large inertia of

LightSail 2’s sail means that the spacecraft is unlikely to exceed a 2 deg/sec rotation

rate unless left uncontrolled for several weeks. Rule 6 is also less relevant due to the

spacecraft’s low pointing accuracy, even when operating nominally.

Alternate Sun Sensor Voting Anomaly Detector

The sun sensor anomaly detector developed in Section 3.1.2 is difficult to apply

to LightSail 2. In its original form, the OCSVM assumes a Sun pointing attitude.

Even though LightSail 2 has a Sun pointing ADCS mode (mode 4), this mode was

only introduced in mid-December 2019 and has only seen very limited use since then.

112

5 10 15 20
Mean Angular Error [deg]

50

100

150

200

An
gu

la
r E

rro
r V

ar
ia

nc
e

[d
eg

2]

Decision Boundary
Data
Support Vector

(a) Quaternion-B discrepancy; ν = 0.02

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Mean Fractional Error

0

0.05

0.1

0.15

Fr
ac

tio
na

l E
rro

r V
ar

ia
nc

e
(b) B-field magnitude; ν = 0.01

-3 -2 -1 0 1 2 3
Mean Torque Error [Nm] 10-4

0

0.5

1

1.5

2

2.5

3

To
rq

ue
 E

rro
r V

ar
ia

nc
e

[N
m

]2

10-6

(c) Wheel torque errors; ν = 0.001

0.6

Gyro Y Variance [deg/s]2

0.40
0

0.1

G
yr

o
Z

Va
ria

nc
e

[d
eg

/s
]2

0.2

0.2

Gyro X Variance [deg/s]2

0.2
0

(d) Gyro variances; ν = 0.02

Figure 4.10: Anomaly detectors similar to the fault simulator version. The OCSVMs

are based on nominal telemetry from LightSail 2. The elongated variances of (d)

along the Y axis are due to this axis being the slew axis.

113

To detect sun sensor anomalies, it is necessary to reformulate the detector so that it

functions in detumble, no torques, or solar sailing mode.

Instead of formulating the OCSVM input vector as a 5×1 vector containing the

number of times each individual was rejected during the sliding window, we will form

a 3× 1 vector with components:

X =

of times multiple sensors rejected

of times one sensor rejected

of times no sensors rejected

Formulating the input this way reduces the number of dimensions at the cost that

we can no longer narrow down anomalies to specific sensors. The lower number of

dimensions works to concentrate the nominal training data and reduce overfitting of

the anomaly boundary. Figure 4.11 provides an illustration. Instead of representing

individual sensors as in (a), focusing on the total number of rejections in (b) allows the

decision boundary to more completely enclose the nominal data. The downside is that

anomalies can no longer be traced to a specific sensor without further investigation.

This alternative sun sensor voting OCSVM has another advantage: we can ig-

nore or include specific sensors in the voting without having to retrain the OCSVM.

Whereas ignoring a sensor would previously reduce the input vector from 5 × 1 to

4 × 1, the new 3 × 1 representation allows us to easily toggle the valid flags of one

or more sun sensors. This is useful because it allows us to train the OCSVM on

voting data that ignores the anomalous +Y sun sensor but then apply it to data that

includes the +Y sensor if we want to attempt to detect the anomaly.

Figure 4.12 shows the OCSVM trained from voting data extracted with a sliding

window 40 time steps long. The axes show the number of instances that one or

more sensors were rejected during the last two orbits (approximately 40 samples).

The window steps are 10 steps long as before. The longer window helps average out

the occasional bad orbit where a single sensor may never have the Sun in its FOV.

Nominal data is drawn from both mode 0 and mode 2 during dates when solar sailing

was most successful. The +Y sensor is ignored when reconstructing the nominal

114

Sensor 1 Rejections

Se
ns

or
 3

 R
ej

ec
tio

ns

Total Rejections

Real anomalies
Nominal

(a)

Sensor 1 Rejections

Se
ns

or
 3

 R
ej

ec
tio

ns

Total Rejections

Real anomalies
Nominal

(b)

Figure 4.11: Given a limited amount of training data, reducing the number of dimen-

sions can help concentrate the data and reduce overfitting of the anomaly boundary.

voting data. In total there are 546 data points and 287 support vectors. The large

number of “multiple rejected” cases is due to a combination of eclipse periods and

times when none of the sensors were facing the Sun. Times where only a single sensor

was rejected are comparatively rare.

Magnetometer Discrepancy

Unlike the CubeSat in Section 2.3, LightSail 2 does not have enough functional

magnetometers to perform voting. In place of voting, we construct an intermediate

signal which is the angle between the two magnetometer B-vectors in the spacecraft

body frame. We call this the magnetometer discrepancy. Similar to other signals, a

20-sample sliding window is used to create a OCSVM for the mean and variance of

the signal. Nominal data was reconstructed by using the correct (partially deployed)

115

0
0

10

20

1010

N
on

e
re

je
ct

ed 30

40

8

Multiple rejected

50

20

One rejected

6
430 240 0

Figure 4.12: Anomaly detector for sun sensor voting on LightSail 2 with ν = 0.02.

rotation matrix for the +Y magnetometer. The result is shown in Fig. 4.13. There

are 452 total data points and 229 support vectors.

This anomaly detector serves a similar purpose to the voting anomaly detectors

developed thus far. It is sensitive to disagreements between the two magnetometers

that may be due to a failed sensor, interference, or a measurement processing error.

Solar Power Anomaly Detector

The final OCSVM for LightSail 2 considers solar power generation. While this

would normally fall under the domain of the electrical subsystem rather than ADCS,

it is relevant as an indication of whether the solar sail may be shadowing the solar

panels from the Sun. The solar power can be found by multiplying the voltages and

currents from each solar cell and summing the results. Rather than the mean and

variance of this signal, we extract the peak power and the integrated power (measured

in Watt-hours) from each 40-sample (10-sample shifts) sliding window. Figure 4.14

plots the data and associated OCSVM. Nominal data comes from carefully screened

116

10 15 20 25 30
Mean Angular Discrepancy [deg]

0

50

100

150

200

250

An
gu

la
r D

is
cr

ep
an

cy
 V

ar
ia

nc
e

[d
eg

2]

Decision Boundary
Data
Support Vector

Figure 4.13: Anomaly detector for the directional discrepancy between LightSail 2’s

magnetometers; ν = 0.02.

periods of both mode 0 and mode 2 around dates of successful solar sailing. There

are 239 total data points and 123 support vectors.

4.3 LightSail 2 Fault Isolation

4.3.1 Fault Simulations

Given the retinue of anomaly detectors trained on nominal LightSail 2 telemetry,

the task of fault isolation can now be addressed. A version of the fault simulator

was created to represent LightSail 2 instead of the generic CubeSat used in Chap-

ter 3, the main changes being the solar sail, reduced number of magnetometers and

reaction wheels, and the ADCS modes. Twins of the anomaly detectors described in

Section 4.2.2 were also trained from nominal data generated by the LightSail fault

simulator. The parameter ranges for generating the nominal data are given in Ta-

117

5 10 15 20 25 30 35
Peak Power [W]

0

5

10

15

20

25

30

In
te

gr
at

ed
 P

ow
er

 [W
h]

Decision Boundary
Data
Support Vector

Figure 4.14: Anomaly detector for the total and peak solar power generated by Light-

Sail 2 over 2 orbits; ν = 0.05.

ble 4.3. The fault simulator anomaly detectors allow high-level anomaly patterns to

be abstracted from the simulated fault cases to follow.

Table 4.3: Simulation parameters for generating fault isolation datasets for Light-

Sail 2.

Parameter Values

Date Randomized between Jan. 1, 2019 − Dec. 31, 2020

Orbit Random circular orbits between 600− 720 km altitude

at 24 deg inclination

Mode Cycled through 0,2,3

Number of orbits 4− 6

Initial quaternion Random (-1,1) for each component, then normalized

Initial angular rate Random (-0.1,0.1) deg/sec for each axis

118

Table 4.4 describes the fault scenarios simulated for LightSail 2. Faults are injected

between 0 and 5000 seconds into each simulation and the ADCS mode (either 0, 2,

or 3)3 is randomized among those applicable to the given fault. Other parameters

defining the simulation are randomized from Table 4.3.

Not all of the faults applied to the generic CubeSat in Chapter 3 (Table 3.3) are

applicable to LightSail 2. The reduced number of magnetometers makes it difficult to

distinguish a failed magnetometer from erroneous rotation matrices. The lack of Sun

pointing mode and a simplified sun sensor voting OCSVM has similar implications for

the sun sensors. Thus, the phasing and rotation matrix errors have been removed. The

lack of an anomaly detector for torque rod telemetry also necessitates the removal of

torque rod faults. The false sun fault was removed after preliminary analysis showed

that the sun sensors were locking on to a non-solar object almost 50% of the time,

resulting in a lack of nominal data for validating fault isolation performance. Lastly,

LightSail 2’s large moment of inertia, noisy gyros, and single reaction wheel makes it

challenging to assess the overall angular momentum of the spacecraft. Faults such as

the unexpected torque, excessive dipole, and torque rod polarity error have therefore

been removed.

On the other hand, several new faults have been introduced. The reboot cycle has

been split into the corrupt database fault and the electrical brownout fault in order

to distinguish the two. The solar panel shadowing fault has also been introduced by

initializing the satellite in an attitude that points the +Z axis towards the Sun. To

represent the fact that this often leads to a brownout, the electrical brownout fault

is also triggered some time into the simulation.

Table 4.4.: Simulated ADCS faults for LightSail 2 LSTM training.

ID Fault Scenario Applicable

Modes

0 Nominal: No faults. 0,2,3

3Recall that mode 1 was effectively eliminated shortly after sail deployment

119

1 Magnetometer interference: Magnetometer noise means

shifted by up to 5 × 10−5 T and variance increased by up to

1× 10−8 T2.

0,2,3

2 Failed magnetometer: As in Table 3.3. 0,2,3

3 Failed sun sensor: As in Table 3.3. 0,2

4 Orbit ephemeris or clock error: As in Table 3.3. 0,2,3

5 Failed gyro: As in Table 3.3. 0,2,3

6 Gyro calibration error: gyro rate measurements are biased

by a random constant value of up to 2 deg/sec.

0,2,3

7 Attitude rate jitter: As in Table 3.3. 0,2,3

8 Solar panel shadowing: The initial attitude aligns the +Z

axis with the Sun vector such that the sail shadows all solar

panels. An additional 0.2 to 1.2 deg/sec rotation is added to

the Z-axis rotation to maintain this orientation. The electrical

brownout fault (below) is also triggered after 0− 3 orbits.

0,3

9 Electrical brownout: ADCS resets are triggered randomly

with a probability of 0.2% each second.

0,2,3

10 Corrupted database: ADCS resets are triggered every 43

counts of the LDC.

0,2,3

11 Unresponsive reaction wheel: As in Table 3.3. 2

12 Reaction wheel torque error: As in Table 3.3. 2

13 Reaction wheel saturated: The reaction wheel’s initial speed

is set at the saturation limit.

2

14 Panel deployment fault: As in Table 3.3. 0,2

120

4.3.2 LSTM Training

The LightSail 2 fault simulator was used to run 500 simulations of the fault sce-

narios in Table 4.4 (approximately 33 for each fault). All 500 simulations were used

to train a 20-cell LSTM network with the following inputs:

1. Long duration counter

2. Sun sensor anomaly

3. B-field magnitude error anomaly

4. Eclipse-power discrepancy

5. Quaternion error anomaly

6. Magnetometer discrepancy anomaly

7. Zero rate

8. Gyro variance anomaly

9. Power anomaly

10. Reaction wheel torque anomaly

11. Reaction wheels responding

12. Reaction wheels saturated

The output channels of the network are the 15 possible fault scenarios. Note

that the LDC is capped at 100. The LSTM network operates with time steps of 300

seconds to be consistent with LightSail 2’s telemetry sampling frequency. Since each

training simulation utilizes a constant ADCS mode, it is important that the LSTM

network is not propagated across mode changes when used on flight data. This is

why the telemetry segments have been split around mode changes as described in

Section 4.2.1.

The target confidence outputs are normally set based on the time and identity of

the fault injected. As in Chapter 3, it is crucial to ensure that each fault manifests as

an anomaly in the LSTM inputs in order to fairly judge the accuracy of the network’s

fault confidence. Prior to training, the target fault flags in the training set were

adjusted based on whether the injected fault was detectable. These adjustments are

described below:

• The reaction wheel saturation target confidence is set to 1 only if the saturation

anomaly flag was raised for at least 20% of the previous orbit. Since LightSail 2

121

requires large RPM changes to maneuver, the wheel speed often crosses in and

out of the saturation threshold at a high frequency. We are mainly interested

in periods where the wheel speed persists above the saturation threshold.

• If a sun sensor failure is injected, the corresponding confidence target is elevated

only where the sun sensor voting anomaly score exceeds 0.5. This ensures the

LSTM network is only judged on its ability to isolate the fault when there is a

sun sensor anomaly. However, note that a sun sensor voting anomaly alone does

not indicate a sun sensor fault. It could be a false positive or due to another

fault.

• If a TLE/clock error is injected, the corresponding confidence target is elevated

only after the first time the eclipse-power discrepancy flag is raised. Like the

above, this helps ensure the LSTM’s confidence assignments are grounded in

evidence.

• If a panel deployment fault is injected but the sun sensor voting anomaly never

exceeds 0.5, the example is removed from the training set. It is important to

remove such cases because they are often indistinguishable from a magnetometer

fault.

With the corrected training set in hand, the LSTM network was allotted 20 mem-

ory cells and was trained until the MSE loss function plateaued. This required approx-

imately 1 minute on a typical laptop computer. The subsequent section applies the

trained network in combination with the anomaly detectors developed in Section 4.2.2

to assess its performance at diagnosing faults in flight data.

4.3.3 Examples

Magnetometer Glitch

An important demonstration of the value of Smart-FDIR is its ability to reveal

previously unknown glitches in the magnetometers. Showcased in Fig. 4.9, the glitches

122

are characterized by stuck values in the magnetometer measurements. Though tem-

porary, they have the potential to disrupt the accuracy of the spacecraft’s attitude

knowledge.

Figure 4.15 applies the anomaly detectors and LSTM network to the portion of

telemetry surrounding the glitch in Fig. 4.9. Note that the correct rotation matrix

for the +Y magnetometer is used. The final outputs of the LSTM network correctly

isolate the magnetometer fault with 80% confidence. To help justify this diagnosis,

the gradient with respect to the magnetometer fault sensibly highlights the anomaly

raised by the OCSVM monitoring the discrepancy between the two magnetometers

in Fig. 4.15(a). Before converging to the magnetometer fault, however, the LSTM

network elevates the possibility of a panel deployment fault to around 50% confidence.

This is a reasonable deduction because prior to around 07:00 the sun sensor voting

OCSVM has not accumulated enough data to produce an anomaly score. Once the

scores become available and a sun sensor anomaly fails to materialize, the panel

deployment fault is rejected in favor of the correct diagnosis.

Orbit Propagation Error and Solar Panel Shadowing

The next examples shows how Smart-FDIR may have prevented the most perilous

cascade of faults that occurred during the LightSail 2 mission. Figure 4.16 captures

the moment following the memory overload described in Section 4.1.4 when Light-

Sail 2 entered into an attitude in which the sail shadowed the solar panels during

an extended period in detumble mode. Though telemetry was still being recorded

by ADCS, the onboard orbit propagator had already crashed at this point. Evi-

dence of the incorrectly predicted spacecraft position emerges just prior to 18:00 in

Fig. 4.16(a) when the eclipse flag contradicts the small amount of solar power being

generated. This small amount of solar power triggers the power anomaly discrepancy,

which feeds through the LSTM network to the corresponding shadowing fault. To

add another fault to the backdrop, attitude knowledge in detumble mode relies on the

123

04:00 08:00 12:00 16:00 20:00
Sep 11, 2019

99

100

101

04:00 08:00 12:00 16:00 20:00
Sep 11, 2019

0

0.5

1

04:00 08:00 12:00 16:00 20:00
Sep 11, 2019

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

04:00 08:00 12:00 16:00 20:00
Sep 11, 2019

0

0.5

1

04:00 08:00 12:00 16:00 20:00
Sep 11, 2019

0

0.5

1

04:00 08:00 12:00 16:00 20:00
Sep 11, 2019

0

0.5

1

04:00 08:00 12:00 16:00 20:00
Sep 11, 2019

0

0.5

1

04:00 08:00 12:00 16:00 20:00
Sep 11, 2019

0

0.5

1

04:00 08:00 12:00 16:00 20:00
Sep 11, 2019

0

0.5

1

04:00 08:00 12:00 16:00 20:00
Sep 11, 2019

0

0.5

1

04:00 08:00 12:00 16:00 20:00
Sep 11, 2019

0

0.5

1

04:00 08:00 12:00 16:00 20:00
Sep 11, 2019

0

0.5

1

(a) Anomaly inputs

20 40 60 80 100 120 140 160 180

5

10

15

20

(b) LSTM cell state evolution

04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00
Sep 11, 2019

0

0.2

0.4

0.6

0.8

1 No fault
Magnetometer failure
Panel deployment failure

(c) Fault confidence outputs

Figure 4.15: Anomalies and associated fault confidences when isolating a previously

unknown magnetometer glitch. Highlighting the magnetometer discrepancy and dis-

tributing confidence between reasonable hypotheses demonstrates key strengths of

Smart-FDIR.

124

mis-calibrated Intrepid gyros. The resulting impact on the quaternion-B discrepancy

is visible in Fig. 4.16(a).

Fig. 4.16(c) provides the LSTM network’s fault confidences for the nominal case

and the 3 most confident fault hypotheses. Nominal confidence drops and the shad-

owing fault quickly rises to full confidence as soon as the as the solar power anomaly

scores become available around 14:00. Also visible in Fig. 4.16(c) is the rising con-

fidence in the gyro calibration error. The inputs in Fig. 4.16(a) are highlighted ac-

cording to the gradient of this fault and show that the rising confidence is driven by

the persistent quaternion-B anomaly that appears to have no other cause (such as a

magnetometer discrepancy or gyro variance anomaly). Whereas the LSTM network

was trained to isolate the solar panel shadowing simultaneously with other faults, the

fault training examples never combined simultaneous gyro calibration and TLE/Clock

errors. Thus, once evidence arises for the TLE error around 18:00, the two faults tend

to compete with each other for confidence. Nonetheless, the LSTM network is suc-

cessful at correctly identifying no less than 3 faults that occurred simultaneously on

LightSail 2.

A reset in the LDC is visible towards the end of the telemetry in Fig. 4.16(a). This

was the first in a sequence of rapid reboots due to electrical brownouts caused by the

shadowed solar panels. Had Smart-FDIR been available to alert the flight team to

the impending danger, it may have accelerated efforts to recover the satellite before

the onset of the brownouts.

Partial Solar Panel Deployment

Next we investigate the partially deployed +Y solar panel. Figure 4.17 presents an

example from late November when both the +Y magnetometer and +Y sun sensor

were being erroneously ingested into the attitude determination filter. Unlike the

previous two examples, the original (incorrect) rotation matrices for the +Y sensors

are used and the +Y sun sensor is incorporated in voting. This reflects LightSail 2’s

125

12:00 16:00 20:00
Oct 18, 2019

0

50

100

12:00 16:00 20:00
Oct 18, 2019

0

0.5

1

12:00 16:00 20:00
Oct 18, 2019

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

12:00 16:00 20:00
Oct 18, 2019

0

0.5

1

12:00 16:00 20:00
Oct 18, 2019

0

0.5

1

12:00 16:00 20:00
Oct 18, 2019

0

0.5

1

12:00 16:00 20:00
Oct 18, 2019

0

0.5

1

12:00 16:00 20:00
Oct 18, 2019

0

0.5

1

12:00 16:00 20:00
Oct 18, 2019

0

0.5

1

12:00 16:00 20:00
Oct 18, 2019

0

0.5

1

12:00 16:00 20:00
Oct 18, 2019

0

0.5

1

12:00 16:00 20:00
Oct 18, 2019

0

0.5

1

(a) Anomaly inputs

20 40 60 80 100 120

5

10

15

20

(b) LSTM cell state evolution

12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00
Oct 18, 2019

0

0.2

0.4

0.6

0.8

1 No fault
Solar panel shadowing
Clock or TLE error
Gyro calibration error

(c) Fault confidence outputs

Figure 4.16: Anomalies and fault confidences when LightSail 2 became stuck in an

attitude with low power input. The LSTM network succeeds in diagnosing the three

separate faults affecting the spacecraft.

126

ADCS during the fault. The result was that attitude knowledge averaged around 40

degrees in error rather than the more typical 20 degrees. This discrepancy triggers

the quaternion-B anomaly detector in Fig 4.17(a). A magnetometer discrepancy

anomaly also arises from its OCSVM. When the sun sensor voting anomaly score

becomes available at 05:00 the scores are initially nominal and confidence in the

panel deployment fault plateaus at around 35%. The sun sensor anomaly score soon

rises followed by a corresponding leap in confidence in the panel deployment fault.

The gradient reveals the sun sensor voting, magnetometer discrepancy, gyro variance,

and quaternion anomalies to be the most significant inputs. Indeed, all are logical

signals to focus on to understand the diagnosis.

Even though the sun sensor voting anomaly begins to disappear towards the end

of the data, the LSTM network retains confidence in the panel deployment fault. A

similar case is evident in Fig. 4.16(c) where confidence in the TLE error remains above

50% (despite some interference from the gyro calibration fault) between periods where

the eclipse anomaly is triggered. This “memory” of anomalies that may no longer be

present when computing confidence scores is one of the features of LSTM networks

and not something that non-recurrent neural networks can do.

The next most confident fault to occur in Fig. 4.17(c) is the electrical brownout.

This diagnosis is driven by the reset occurring around 03:00 in the telemetry. Confi-

dence rises to around 65% and decreases afterwards as the LDC increments without

further resets. It is likely that this one-off reboot was due not to a brownout but a

radiation-induced upset of the flight computer. Since radiation-induced faults were

not modeled by the LSTM network, the electrical brownout diagnosis represents a

sensible best guess.

4.3.4 Overall Performance

The previous section showed some of the most interesting LightSail 2 fault di-

agnoses achieved with Smart-FDIR. To assess its performance more widely, we will

127

02:00 04:00 06:00 08:00 10:00
Nov 20, 2019

0

50

100

02:00 04:00 06:00 08:00 10:00
Nov 20, 2019

0

0.5

1

02:00 04:00 06:00 08:00 10:00
Nov 20, 2019

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

02:00 04:00 06:00 08:00 10:00
Nov 20, 2019

0

0.5

1

02:00 04:00 06:00 08:00 10:00
Nov 20, 2019

0

0.5

1

02:00 04:00 06:00 08:00 10:00
Nov 20, 2019

0

0.5

1

02:00 04:00 06:00 08:00 10:00
Nov 20, 2019

0

0.5

1

02:00 04:00 06:00 08:00 10:00
Nov 20, 2019

0

0.5

1

02:00 04:00 06:00 08:00 10:00
Nov 20, 2019

0

0.5

1

02:00 04:00 06:00 08:00 10:00
Nov 20, 2019

0

0.5

1

02:00 04:00 06:00 08:00 10:00
Nov 20, 2019

0

0.5

1

02:00 04:00 06:00 08:00 10:00
Nov 20, 2019

0

0.5

1

(a) Anomaly inputs

10 20 30 40 50 60 70 80 90 100

5

10

15

20

(b) LSTM cell state evolution

02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00
Nov 20, 2019

0

0.2

0.4

0.6

0.8

1

No fault
Panel deployment failure
Electrical brownouts

(c) Fault confidence outputs

Figure 4.17: Diagnosing the partially deployed +Y panel on LightSail 2. The LSTM

network retains the correct diagnosis even once the sun sensor anomaly subsides.

128

now apply the method to all of the LightSail 2 telemetry from spacecraft checkout

through to the end of 2019. This period represents the most complete and continuous

portion of the downlinked data. In 2020, the COVID-19 pandemic and a lightning

strike on the Purdue tracking station impacted operations and significantly reduced

the amount of data being downlinked.

To perform the assessment, all the files from July 9, 2019 to December 31, 2019

have been processed into individual telemetry segments according to technique out-

lined in Section 4.2.1. Segments with less than 40 times steps (200 minutes) have been

removed because these are shorter than the time needed for several of the OCSVMs

to accumulate enough data to calculate an anomaly score.

Since some faults (e.g. sun sensor failures) depend on how intermediate data

is reconstructed from the downlinked files, it is necessary to decide which rotation

matrices and sensor valid flags to use when reconstructing sun sensor voting and

magnetometer discrepancies. For periods when the +Y magnetometer was being

incorporated into the attitude filter, it is important to use the original (165 deg

deployment angle) rotation matrix for this sensor since this was ultimately the cause

of the degraded attitude knowledge affecting these periods. For segments when the

+Y magnetometer was passive, we can use the correct (92 deg deployment angle)

matrix despite the fact that this correction was not yet onboard the spacecraft. If it

had been, there would be no effect on other ADCS signals since the +Y measurements

were not being used. This allows us to represent nominal data from these periods.

Alternatively, we can also “simulate” a failed magnetometer or panel deployment

failure by using an incorrect rotation matrix. In a similar vein, each sun sensor is

averaged with the four other sun sensors and thus has only a limited impact on the

wider ADCS. We can incorporate or ignore the +Y sun sensor in voting and/or use

the correct rotation matrix depending on whether we want to represent nominal data,

a failed sun sensor, or a panel deployment failure.

Enumerating all of the fault scenarios that can represented from the LightSail 2

telemetry, Table 4.5 summarizes the telemetry segments for validating fault isolation.

129

The segments vary widely in length, so the rightmost column shows the total amount

of time spanned by the segments. Each telemetry segment was inspected manually to

independently assess which faults were present in the segment. Some segments possess

multiple faults while others have been rejected due a lack of relevant anomalies, such

as a sun sensor voting anomaly failing to appear during a sun sensor failure segment.

Table 4.5: Catalog of faults in LightSail 2 telemetry segments.

Fault scenario Telemetry segments Total time

Nominal 17 215 hr

Gyro calibration error 6 26 hr

Sun sensor failure 7 141 hr

Corrupt database 4 87 hr

Electrical brownouts 11 137 hr

Solar panel shadowing 13 203 hr

Saturated reaction wheel 11 143 hr

Unresponsive reaction wheel 1 3 hr

Clock or TLE error 12 94 hr

Magnetometer failure 18 287 hr

Panel deployment 13 213 hr

Total 113 1549 hr

The results of applying Smart-FDIR to the segments in Table 4.5 are summarized

by the confusion plot in Fig. 4.18. The LSTM’s prevailing diagnosis for each segment

has been determined from a combination of manual inspection and simple rules cus-

tomized to the nature of the fault. Generally, the diagnosis is deemed successful if

the confidence corresponding to the correct fault persists above 50% for at least a

full orbit. Out of 113 telemetry segments, the LSTM network achieves 91% overall

accuracy. This is only slightly lower than what was achieved with the fault simulator

in Section 3.2.3.

130

0 2 3 4 6 8 9 10 11 12 13 14

0

2

3

4

6

8

9

10

11

12

13

14

100% 72% 86% 100% 100% 100% 82% 75% 0% Ø 100% 100%

100%

100%

100%

100%

100%

100%

90%

60%

Ø

 0%

100%

68%

91%

17

0

0

0

0

0

0

0

0

0

0

0

0

13

0

0

0

0

0

0

0

0

0

5

0

0

6

0

0

0

0

0

0

0

0

1

0

0

0

12

0

0

0

0

0

0

0

0

0

0

0

0

6

0

0

0

0

0

0

0

0

0

0

0

0

13

0

0

0

0

0

0

0

0

0

0

0

0

9

2

0

0

0

0

0

0

0

0

0

0

1

3

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

11

0

0

0

0

0

0

0

0

0

0

0

0

13

-

-

Figure 4.18: Prevailing diagnoses when applying anomaly detection and fault isolation

to LightSail 2 telemetry.

Like the fault simulator, the accuracy varies between fault scenarios. The nominal

case is very accurately diagnosed just as it is in the fault simulator. The most diffi-

cult cases are the magnetometer failures, corrupt databases, and the reaction wheel

difficulties encountered during the initial testing of mode 2 (similar to Fig. 4.7).

Whether the latter fault counts as an unresponsive wheel or simply a torquing error

(the LSTM’s diagnosis) is somewhat semantic. The inputs and diagnosis for this

telemetry segment are presented in Appendix D.2. Meanwhile, the corrupt database

fault can be difficult to distinguish from electrical brownouts since its anomaly pat-

tern is confined almost exclusively to the LDC. Finally, the significant fraction of

magnetometer failures that are classified as panel deployment faults suggests that the

131

sun sensor anomaly detector is not fully adequate. Thus, the LSTM network learns

to assign confidence to this fault even when only magnetometer (and not sun sensor)

anomalies are present. This is what is causing the errors in column 2 of the confusion

matrix.

132

5. CONCLUSIONS

5.1 Summary

Traditional fault management technologies have plateaued just as current trends

within the space flight industry are demanding greater autonomy for fault detection,

isolation, and recovery. This dissertation has developed a data-driven architecture

that uses transfer learning to identify anomaly patterns from a spacecraft simulator

and apply this knowledge to isolate and recover from faults on the real spacecraft.

The method was demonstrated on the full FDIR cycle for ADCS faults in a generic

CubeSat simulation and used to diagnose both known and previously unknown faults

on the LightSail 2 solar sail spacecraft.

The core idea is to make both simulated and actual faults look identical from

the perspective of fault isolation. A set of OCSVMs and rule-based checks are used

to process raw telemetry into a more abstract collection of anomaly scores. The

OCSVMs are trained exclusively from nominal data, can be applied to a variety of

ADCS signals, are efficient to evaluate, and intuitive to tune. Since the anomaly

criteria are learned implicitly from nominal data, they do not require detailed sub-

system knowledge to implement. An ADCS fault simulator is initially used to train

the OCSVMs and simulate their anomaly scores under different fault scenarios. The

patterns contain interdependent and time-dependent clues that characterize the fault

scenario.

To ensure that the temporal context of anomalies is utilized in fault isolation,

an LSTM network is trained to assign confidence scores to each possible fault based

on the signals of the anomaly detectors and the faults injected in the ADCS simu-

lator. The LSTM network assigns its confidence incrementally and does so despite

contradicting signals, multiple faults, missing data, and false positives. Unlike tradi-

133

tional fault isolation techniques, it is able to do all this without explicit programming.

Because the LSTM network makes its diagnosis based on abstract anomaly scores in-

stead of raw telemetry, it is able to train on data from the fault simulator and apply

its knowledge to an actual spacecraft once the OCSVMs are retrained on nominal

flight data. The method attained an overall fault isolation accuracy of 96% on the

ADCS simulator and 91% when applied to LightSail 2.

The diagnosis decisions of the LSTM network can be understood using the gradient

of the network’s confidence with respect to the anomaly inputs. This reveals the

subset of signals that are most important to the network’s decision. An approximation

to the OCSVM anomaly score gradient was derived to extend this explanatory power

to the level of individual anomalies and was used to isolate faults to a specific sensor

or actuator.

Decision theory can be applied to transform the uncertain fault confidences of the

LSTM network into recovery action. Recovery actions are controlled by utility values

that can be set and adjusted to reflect evolving mission priorities and risk posture.

The method was applied to select control modes in the ADCS CubeSat simulator.

Examples were provided demonstrating a successful recovery from multiple faults

and also illustrating how the response behavior can be configured by changing utility

values.

Other contributions of the investigation include an extensive fault tree for the

ADCS of Earth-orbiting satellites and diagnosis of faults that go beyond the simple

hardware failures that are typically the focus of FDIR literature.

In summary, this research has provided a new approach to FDIR that provides

value by reducing the need for expert knowledge during both design and operations.

The approach leverages a spacecraft simulator to learn the complex temporal patterns

between faults and anomalies implicitly while samples of nominal telemetry are used

to adapt anomaly criteria to the specific flight environment during operations. When

a fault occurs, the recovery action is based not on fixed action paths, but on operator

priorities that can be adjusted as the mission evolves. The architecture is more

134

flexible, more capable, and better attuned to the needs of future space missions than

current approaches.

5.2 Directions for Future Work

In addition to the main contributions, an important outcome of this investigation

has been to reveal promising avenues for further research. Several limitations of

the investigated method along with suggestions for how they might be overcome are

described below.

Improving Confidence Assignment

The single largest difficulty encountered in training LSTM networks for fault iso-

lation was ensuring that the faults injected into the fault simulator were in fact

detectable. If faults fail to manifest as meaningful anomalies in the LSTM inputs,

the network may learn questionable relationships in an effort to minimize the MSE

of its confidences on the training set. This can be a problem even if anomalies do

manifest but do so late in the training time series. In essence, it is crucial that the

LSTM’s fault confidences are scored fairly when compared to the target fault flags.

In Chapter 4 this was achieved by revising the injected fault flags so that they were

elevated only after one or more anomalies appeared in a given time series. However,

this required an expectation of what anomalies would be triggered by certain faults.

Several alternative approaches that may prove more general are:

• New loss functions: under MSE loss the LSTM network is penalized as much for

failing to assign confidence to an injected fault as it is for assigning confidence

to a fault that is not present. This kind of loss function does not adequately

capture the need to sometimes withhold confidence until sufficient evidence is

amassed to come to a firm conclusion. Loss functions that penalize confidence

assigned to absent faults more heavily or weight errors towards the end of the

135

time series may encourage the LSTM network to increment confidence more

gradually and with more stability than MSE.

• Skewing the distribution of faults: this investigation gave equal representation

to each fault scenario in the LSTM training set. In reality, some scenarios (e.g.

nominal) are much more likely than others. Skewing the training set to reflect

the higher likelihood of certain faults could prevent the LSTM network from

allotting confidence to faults until anomaly evidence suggests otherwise.

• Pruning insignificant neuron connections: even if there remain cases where tar-

get fault flags are elevated prior to anomalies, spurious anomaly patterns learned

by the LSTM are likely to be represented by weak neuron connections. Pruning

these connections with methods such as “optimal brain damage” may reduce

questionable confidence assignment and improve generalization [152].

Concurrent Training

Central to the ability of the LSTM network to learn fault patterns from the ADCS

simulator are the OCSVM anomaly detectors. Training these detectors was done sep-

arately from the LSTM network and involved two copies of each detector: one trained

from the simulation and another from flight data. Embedding the detectors directly

into the LSTM architecture could simplify development by allowing the anomaly

detectors to be trained concurrently with the LSTM network. Instead of anomaly

scores, the combined network would receive raw telemetry from the simulation and

learn its own parameters and signal processing for the detectors. One-class neural

networks will likely be better suited to this than OCSVMs [64].

Such an architecture may be able to exploit transfer learning more fully. An initial

fault detection and isolation network could be developed from simulation and refined

with further training during operations. In contrast, Smart-FDIR adapts only the

OCSVM anomaly detectors during operations and keeps the LSTM fault isolation

136

network fixed. Learning achieved from flight telemetry could also flow back to the

simulation to refine models of the spacecraft.

Robust Recovery Decisions

The decision theory approach to fault recovery developed in Section 3.3 selects

an ADCS mode based on the relative balance of the fault confidences. Hence, the

decision becomes very sensitive when two or more faults are allotted similar levels of

confidence. Modifying the method to allow the LSTM network to resolve competing

fault hypotheses before taking action could enhance the stability and robustness of

recovery decisions.

It is also recognized that many spacecraft operators will be initially reluctant to

allow an external system such as Smart-FDIR to enact fault recovery commands on

their spacecraft. A more palatable approach may be to instead use Smart-FDIR to

recommend candidate recovery actions to ground operators. In future work, reinforce-

ment learning may supersede the simplistic decision theory used in this thesis to allow

Smart-FDIR to improve its fault recovery actions based on operator feedback about

the quality of its recommendations. This would serve the dual purpose of building

operator confidence while improving performance.

Embedded Applications

Though Smart-FDIR demonstrated its value as ground software in Chapter 4, it

has significant potential to provide onboard FDIR as part of the flight software. Neu-

ral networks are inherently parallel, making them efficient to evaluate once trained,

and the LSTMs considered in Chapters 3 and 4 occupy low memory footprints

(< 50 kB). OCSVMs also occupy small footprints and are efficient to evaluate. This

makes Smart-FDIR suitable for operating on flight processors. Nevertheless, extend-

ing the system to an embedded environment will require addressing several practical

considerations, such as the need to yield priority to other processes and operate in-

137

crementally whenever processing time is available to support FDIR. This may mean

that the LSTM network must operate with time steps of non-equal length. Additional

requirements may be required to guarantee compatibility with a wide variety of flight

software cores.

138

REFERENCES

[1] D. L. Akin, “Akin’s laws of spacecraft design,” Dave Akin’s Web Site, https:
//spacecraft.ssl.umd.edu/akins laws.html, (Accessed 19 February 2020).

[2] D. M. Harland and R. D. Lorenz, Space Systems Failures. Berlin, Germany:
Springer, 2005.

[3] A. Wander and R. Förstner, “Innovative fault detection, isolation, and recovery
strategies on-board spacecraft: State of the art and research challenges,” in
Deutscher Luft- und Raumfahrtkongress, Berlin, Germany, September 2012.

[4] P. Z. Schulte, “A state machine architecture for aerospace vehicle fault protec-
tion,” Ph.D. dissertation, Georgia Institute of Technology, 2018.

[5] P. Z. Schulte and D. A. Spencer, “State machine fault protection architecture
for aerospace vehicle guidance, navigation, and control,” Journal of Aerospace
Information Systems, pp. 1–16, 2019.

[6] National Aeronautics and Space Administration, “Fault management hand-
book,” Tech. Rep. NASA-HDBK-1002, 2012.

[7] T. Uhlig, F. Sellmaier, and M. Schmidhuber, Spacecraft Operations. Wien,
Austria: Springer, 2015, pp. 240–242.

[8] M. Tipaldi and B. Bruenjes, “Survey on fault detection, isolation, and recovery
strategies in the space domain,” Journal of Aerospace Information Systems,
vol. 12, no. 2, pp. 235–256, 2015.

[9] M. Tipaldi, L. Feruglio, P. Denis, and G. D’Angelo, “On applying AI-driven
flight data analysis for operational spacecraft model-based diagnostics,” Annual
Reviews in Control, vol. 49, pp. 197 – 211, 2020.

[10] M. Tafazoli, “A study of on-orbit spacecraft failures,” Acta Astronautica,
vol. 64, no. 2, pp. 195 – 205, 2009.

[11] N. Sultan and P. Groepper, “Analyzing real cost of past orbital failures for
satellite test effectiveness and insurance,” in 18th International Communica-
tions Satellite Systems Conference and Exhibit, no. AIAA 2000-1227, Oakland,
CA, 10–14 April 2000.

[12] C. Castel, J.-F. Gabard, C. Tessier, B. Laborde, and R. Soumagne, “FDIR
strategies for autonomous satellite formations-a preliminary report,” in AAAI
Fall Symposium: Spacecraft Autonomy, 2006, pp. 35–42.

[13] D. Selva, A. Golkar, O. Korobova, I. L. i Cruz, P. Collopy, and O. L. de Weck,
“Distributed Earth satellite systems: What is needed to move forward?” Jour-
nal of Aerospace Information Systems, vol. 14, no. 8, pp. 412–438, 2017.

 https://spacecraft.ssl.umd.edu/akins_laws.html
 https://spacecraft.ssl.umd.edu/akins_laws.html

139

[14] C. Araguz, E. Bou-Balust, and E. Alarcon, “Applying autonomy to distributed
satellite systems: Trends, challenges, and future prospects,” Systems Engineer-
ing, vol. 21, pp. 401–416, 2018.

[15] D. Messier, “SpaceX wants to launch 12,000 satellites,” Parabolic Arc,
http://www.parabolicarc.com/2017/03/03/spacex-launch-12000-satellites/,
November 2017, (Accessed 01 October 2019).

[16] H. J. Kramer, “Lemur-2 nanosatellite constellation of spire global,” eo-
Portal Directory, https://directory.eoportal.org/web/eoportal/satellite-
missions/l/lemur, (Accessed 15 June 2020).

[17] M. Antoniou, A. G. Stove, A. Sayin, G. Atkinson, M. Cherniakov, H. Ma,
H. Kuschel, D. Cristallini, P. Wojaczek, C. I. Underwood, A. Moccia, A. Renga,
and G. Fasano, “Passive SAR satellite constellation for near-persistent earth
observation: Prospects and issues,” IEEE Aerospace and Electronic Systems
Magazine, vol. 33, no. 12, pp. 4–15, Dec 2018.

[18] T. Imken, T. Randolph, M. DiNicola, and A. Nicholas, “Modeling spacecraft
safe mode events,” in IEEE Aerospace Conference, Big Sky, MT, 3-10 March
2018.

[19] N. Cohen, W. A. Wheeler, R. Ewart, and J. Betser, “Spacecraft embedded cyber
defense- prototypes & experimentation,” in AIAA SPACE 2016, no. AIAA
2016-5231, Long Beach, CA, 13–16 September 2016.

[20] W. A. Wheeler, N. Cohen, J. Betser, C. Meyers, W. Snavely, S. Chaki, M. Riley,
and B. Runyon, “Cyber resilient flight software for spacecraft,” in 2018 AIAA
SPACE and Astronautics Forum and Exposition, no. AIAA 2018-5220, Orlando,
FL, 17–19 September 2018.

[21] B. Bailey, R. J. Speelman, P. A. Doshi, N. C. Cohen, and W. A. Wheeler,
“Defending spacecraft in the cyber domain,” Aerospace Corporation, Tech. Rep.
OTR202000016, November 2019.

[22] D. Sternberg, J. Essmiller, C. Colley, A. Klesh, and J. Krajewski, “Attitude
control system for the Mars Cube One spacecraft,” in 2019 IEEE Aerospace
Conference, Big Sky, MT, 2–9 March 2019, pp. 1–10.

[23] Canadian Space Agency, “Canadarm, Canadarm2, and Canadarm3
– a comparative table,” Canadian Space Agency, https://www.asc-
csa.gc.ca/eng/iss/canadarm2/canadarm-canadarm2-canadarm3-comparative-
table.asp, May 2019, (Accessed 18 February 2020).

[24] R. D. Lorenz, E. P. Turtle, J. W. Barnes, M. G. Trainer, D. S. Adams, K. E.
Hibbard, C. Z. Sheldon, K. Zacny, P. N. Peplowski, D. J. Lawrence et al.,
“Dragonfly: A rotorcraft lander concept for scientific exploration at Titan,”
Johns Hopkins APL Technical Digest, vol. 34, no. 3, p. 14, 2018.

[25] J. D. Frank, “Artificial intelligence: Powering human exploration of the Moon
and Mars,” arXiv preprint arXiv:1910.03014, 2019.

[26] S. B. Johnson, The Theory of System Health Management. John Wiley & Sons,
Ltd, 2011, ch. 1, pp. 3–27.

140

[27] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A Survey,”
University of Minnesota, Tech. Rep. TR 07-017, August 2007.

[28] B. Ricks and O. J. Mengshoel, “Methods for probabilistic fault diagnosis: An
electrical power system case study,” in Proc. 1st Annu. Conf. Prognostics Health
Manag Soc., San Diego, CA, 27 September - 1 October 2009.

[29] D. A. Galvan, B. Hemenway, W. Welser IV, D. Baiocchi et al., “Satellite anoma-
lies: Benefits of a centralized anomaly database and methods for securely shar-
ing information among satellite operators,” RAND Corporation, Santa Monica,
CA, Tech. Rep. RR-560-DARPA, 2014.

[30] C. C. Venturini, “Improving mission success of cubesats,” Aerospace Corpora-
tion, Tech. Rep. TOR-2017-01689, June 2017.

[31] M. Langer and J. Bouwmeester, “Reliability of cubesats – statistical data, de-
velopers’ beliefs and the way forward,” in 30th Annual AIAA/USU Conference
on Small Satellites, no. SSC16-X-2, Logan, UT, 6–11 August 2016, pp. 1–13.

[32] M. Swartwout, “Secondary spacecraft in 2016: Why some succeed (and too
many do not),” in 2016 IEEE Aerospace Conference, Big Sky, MT, 5–12 March
2016, pp. 1–13.

[33] M. A. Swartwout, “Cubesat database,” Saint Louis University, https:
//sites.google.com/a/slu.edu/swartwout/home/cubesat-database#refs, 2019,
(Accessed 20 February 2020).

[34] A. West, “NASA study on flight software complexity,” NASA, Tech. Rep.,
March 2009.

[35] S. B. Johnson, “Introduction to systems health management in aerospace,” in
1st Integrated Systems Health Engineering and Management Forum, Napa, CA,
7–10 November 2005.

[36] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, no. 3, pp. 1–58, 2009.

[37] ——, “Anomaly detection for discrete sequences: A survey,” IEEE Transactions
on Knowledge and Data Engineering, vol. 24, no. 5, pp. 823–839, 2012.

[38] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection:
A survey,” CoRR, vol. abs/1901.03407, 2019. [Online]. Available: http:
//arxiv.org/abs/1901.03407

[39] A. K. Carlton, “Fault detection algorithms for spacecraft monitoring and en-
vironmental sensing,” Master’s thesis, Massachusetts Institute of Technology,
2016.

[40] A. Carlton, R. Morgan, W. Lohmeyer, and K. Cahoy, “Telemetry fault-
detection algorithms: Applications for spacecraft monitoring and space envi-
ronment sensing,” Journal of Aerospace Information Systems, vol. 15, no. 5,
pp. 239–252, 2018.

https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database#refs
https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database#refs
http://arxiv.org/abs/1901.03407
http://arxiv.org/abs/1901.03407

141

[41] T. Yairi, M. Nakatsugawa, K. Hori, S. Nakasuka, K. Machida, and N. Ishi-
hama, “Adaptive limit checking for spacecraft telemetry data using regression
tree learning,” in 2004 IEEE International Conference on Systems, Man and
Cybernetics (IEEE Cat. No.04CH37583), vol. 6, Hague, Netherlands, 10–13
October 2004, pp. 5130–5135.

[42] T. Yairi, Y. Kawahara, R. Fujimaki, Y. Sato, and K. Machida, “Telemetry-
mining: a machine learning approach to anomaly detection and fault diagnosis
for space systems,” in 2nd IEEE International Conference on Space Mission
Challenges for Information Technology (SMC-IT’06), Pasadena, CA, 17–20
July 2006.

[43] A. Alkaya and I. Eker, “Variance sensitive adaptive threshold-based pca method
for fault detection with experimental application,” ISA Transactions, vol. 50,
no. 2, pp. 287 – 302, 2011.

[44] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Söderström,
“Detecting spacecraft anomalies using LSTMs and nonparametric dynamic
thresholding,” CoRR, vol. abs/1802.04431, 2018. [Online]. Available:
http://arxiv.org/abs/1802.04431

[45] C. N. Hadjicostis, “Probabilistic fault detection in finite-state machines based
on state occupancy measurements,” in Proceedings of the 41st IEEE Conference
on Decision and Control, vol. 4. Las Vegas, NV: IEEE, 10–13 December 2002,
pp. 3994–3999.

[46] J. A. Momoh and R. Button, “Design and analysis of aerospace DC arcing
faults using fast Fourier transformation and artificial neural network,” in 2003
IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491),
vol. 2, Toronto, Canada, 13–17 July 2003, pp. 788–793.

[47] G. Biswas, H. Khorasgani, G. Stanje, A. Dubey, S. Deb, and S. Ghoshal, “An
approach to mode and anomaly detection with spacecraft telemetry data,” In-
ternational Journal of Prognostics and Health Management, vol. 7, pp. 1–18,
2016.

[48] S. Sarkar, S. Sarkar, N. Virani, A. Ray, and M. Yasar, “Sensor fusion for
fault detection and classification in distributed physical processes,” Frontiers
in Robotics and AI, vol. 1, no. 16, pp. 1–9, 2014.

[49] O. Neuner, “Automatic learning of state machines for fault detection systems in
discrete event based distributed systems,” Master’s thesis, KTH Royal Institute
of Technology, 2014.

[50] A. Zolghadri, “Advanced model-based FDIR techniques for aerospace systems:
Today challenges and opportunities,” Progress in Aerospace Sciences, vol. 53,
pp. 18 – 29, 2012.

[51] J. Marzat, H. Piet-Lahanier, F. Damongeot, and E. Walter, “Model-based fault
diagnosis for aerospace systems: a survey,” Proceedings of the Institution of Me-
chanical Engineers, Part G: Journal of aerospace engineering, vol. 226, no. 10,
pp. 1329–1360, 2012.

http://arxiv.org/abs/1802.04431

142

[52] I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A survey of fault detection,
isolation, and reconfiguration methods,” IEEE transactions on control systems
technology, vol. 18, no. 3, pp. 636–653, 2009.

[53] I. Fagarasan and S. S. Iliescu, “Parity equations for fault detection and iso-
lation,” in 2008 IEEE International Conference on Automation, Quality and
Testing, Robotics, vol. 1, Cluj-Napoca, Romania, 22–25 May 2008, pp. 99–103.

[54] N. Tudoroiu and K. Khorasani, “Satellite fault diagnosis using a bank of inter-
acting Kalman filters,” IEEE Transactions on Aerospace and Electronic Sys-
tems, vol. 43, no. 4, pp. 1334–1350, 2007.

[55] F. Pirmoradi, F. Sassani, and C. de Silva, “Fault detection and diagnosis in a
spacecraft attitude determination system,” Acta Astronautica, vol. 65, no. 5,
pp. 710 – 729, 2009.

[56] M. N. Pontuschka and I. M. da Fonseca, “FDIR for the IMU component of
AOCS systems,” Mathematical Problems in Engineering, 2014.

[57] C. Pittet, A. Falcoz, and D. Henry, “A model-based diagnosis method for tran-
sient and multiple faults of AOCS thrusters,” IFAC-PapersOnLine, vol. 49,
no. 17, pp. 82–87, 2016, 20th IFAC Symposium on Automatic Control in
Aerospace.

[58] W. R. Williamson, J. L. Speyer, V. T. Dang, and J. Sharp, “Fault detection and
isolation for deep space satellites,” Journal of guidance, control, and dynamics,
vol. 32, no. 5, pp. 1570–1584, 2009.

[59] S. Tariq, S. Lee, Y. Shin, M. S. Lee, O. Jung, D. Chung, and S. S. Woo, “Detect-
ing anomalies in space using multivariate convolutional LSTM with mixtures
of probabilistic PCA,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. Anchorage, AK: ACM,
July 2019, pp. 2123–2133.

[60] W. Sun, A. R. C. Paiva, P. Xu, A. Sundaram, and R. D. Braatz, “Fault De-
tection and Identification using Bayesian Recurrent Neural Networks,” arXiv
e-prints, p. arXiv:1911.04386, Nov 2019.

[61] T. Yairi, Y. Kato, and K. Hori, “Fault detection by mining association rules
from housekeeping data,” in International Symposium on Artificial Intelligence,
Robotics, and Automation in Space, Montreal, Canada, 18–22 June 2001.

[62] M. A. Kramer, “Nonlinear principal component analysis using autoassociative
neural networks,” AIChE journal, vol. 37, no. 2, pp. 233–243, 1991.

[63] S. Hawkins, H. He, G. Williams, and R. Baxter, “Outlier detection using repli-
cator neural networks,” in International Conference on Data Warehousing and
Knowledge Discovery. Aix-en-Provence, France: Springer, 4–6 September 2002,
pp. 170–180.

[64] R. Chalapathy, A. K. Menon, and S. Chawla, “Anomaly detection using one-
class neural networks,” arXiv preprint arXiv:1802.06360, 2018.

143

[65] B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylor, and J. C. Platt, “Sup-
port vector method for novelty detection,” in Advances in Neural Information
Processing Systems 12, S. Solla, T. Leen, and K. Müller, Eds. MIT Press,
2000, pp. 582–588.

[66] K. Müller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, “An introduction
to kernel-based learning algorithms,” IEEE Transactions on Neural Networks,
vol. 12, no. 2, pp. 181–201, March 2001.

[67] S. Fuertes, G. Picart, J.-Y. Tourneret, L. Chaari, A. Ferrari, and C. Richard,
“Improving spacecraft health monitoring with automatic anomaly detection
techniques,” in 14th International Conference on Space Operations, Daejeon,
South Korea, 16–20 May 2016, p. 2430.

[68] D. L. Iverson, “System health monitoring for space mission operations,” in 2008
IEEE Aerospace Conference, Big Sky, MT, March 2008, pp. 1–8.

[69] K. Li, Y. Wu, S. Song, Y. Sun, J. Wang, and Y. Li, “A novel method for space-
craft electrical fault detection based on FCM clustering and WPSVM classifica-
tion with PCA feature extraction,” Proceedings of the Institution of Mechanical
Engineers, Part G: Journal of Aerospace Engineering, vol. 231, no. 1, pp. 98–
108, 2017.

[70] H. Izakian and W. Pedrycz, “Anomaly detection in time series data using a
fuzzy c-means clustering,” in 2013 Joint IFSA World Congress and NAFIPS
Annual Meeting (IFSA/NAFIPS). Edmonton, Canada: IEEE, 24–28 June
2013, pp. 1513–1518.

[71] S. R. Starin, M. F. Vess, T. M. Kenney, M. D. Maldondao, and W. D. Mor-
genstern, “Fault detection and correction for the Solar Dynamics Observatory
attitude control system,” in AAS 2008 Guidance and Control (GN&C) Confer-
ence, Breckenridge, CO, 1–6 February 2008.

[72] D. Poole and A. Mackworth, Artificial Intelligence, 2nd ed. Cambridge Uni-
versity Press, 2017.

[73] H. C. Koons and D. J. Gorney, “Spacecraft environmental anomalies expert
system,” Aerospace Corporation, El Segundo, CA, Tech. Rep. ATR-88(9562)-
1, 1988.

[74] M. Rolincik, M. Lauriente, H. C. Koons, and D. Gorney, “An expert system
for diagnosing environmentally induced spacecraft anomalies,” in Proc. of 5th
Annual Space Operations and Applications Research Symposium, Houston, TX,
9–11 July 1991, pp. 36–44.

[75] T. P. O’Brien, “SEAES-GEO: A spacecraft environmental anomalies expert
system for geosynchronous orbit,” Space Weather, vol. 7, no. S09003, 2009.

[76] D. Cayrac, D. Dubois, and H. Prade, “Handling uncertainty with possibility
theory and fuzzy sets in a satellite fault diagnosis application,” IEEE Transac-
tions on Fuzzy Systems, vol. 4, no. 3, pp. 251–269, 1996.

[77] A. P. Dempster, “Upper and lower probabilities induced by a multivalued map-
ping,” The Annals of Mathematical Statistics, vol. 38, no. 2, pp. 325–339, 1967.

144

[78] G. Shafer, A mathematical theory of evidence. Princeton university press, 1976,
vol. 42.

[79] X. Fan and M. J. Zuo, “Fault diagnosis of machines based on D–S evidence
theory. part 1: D–s evidence theory and its improvement,” Pattern Recognition
Letters, vol. 27, no. 5, pp. 366–376, 2006.

[80] ——, “Fault diagnosis of machines based on d–s evidence theory. part 2: Appli-
cation of the improved d–s evidence theory in gearbox fault diagnosis,” Pattern
Recognition Letters, vol. 27, no. 5, pp. 377–385, 2006.

[81] M. Song and W. Jiang, “Engine fault diagnosis based on sensor data fusion
using evidence theory,” Advances in Mechanical Engineering, vol. 8, no. 10, p.
1687814016673291, 2016.

[82] D. A. Marsillach, S. Virani, M. J. Holzinger, M. W. Chan, and P. P. Shenoy,
“Real-time telescope tasking for custody and anomaly resolution using judicial
evidential reasoning,” in 29th Space Flight Mechanics Meeting, no. 19-534, Maui,
HI, January 2019.

[83] K. Rajan, D. Bernard, G. Dorais, E. Gamble, B. Kanefsky, J. Kurien, W. Millar,
N. Muscettola, P. Nayak, N. Rouquette et al., “Remote agent: An autonomous
control system for the new millennium,” in Proceedings of the 14th European
Conference on Artificial Intelligence. Berlin, Germany: IOS Press, 20–25
August 2000, pp. 726–730.

[84] P. Robinson, M. Shirley, D. P. Fletcher, R. Alena, D. Duncavage, C. Lee, and
N. D. Ames, “Applying model-based reasoning to the FDIR of the command
and data handling subsystem of the International Space Station,” in 7th In-
ternational Symposium on Artificial Intelligence, Robotics, and Automation in
Space, Nara, Japan, 19–23 May 2003.

[85] S. C. Hayden, A. J. Sweet, and S. E. Christa, “Livingstone model-based di-
agnosis of Earth Observing One,” in Proceedings of the AIAA 1st Intelligent
Systems Conference, Chicago, IL, 20–22 September 2004.

[86] B. C. Williams and R. J. Ragno, “Conflict-directed A* and its role in model-
based embedded systems,” Discrete Appl. Math., vol. 155, no. 12, p. 1562–1595,
2007.

[87] A. Barua, P. Sinha, K. Khorasani, and S. Tafazoli, “A novel fault-tree approach
for identifying potential causes of satellite reaction wheel failure,” in Proceedings
of 2005 IEEE Conference on Control Applications. Toronto, Canada: IEEE,
28–31 August 2005, pp. 1467–1472.

[88] O. J. Mengshoel, M. Chavira, K. Cascio, S. Poll, A. Darwiche, and S. Uckun,
“Probabilistic model-based diagnosis: An electrical power system case study,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems and Humans,
vol. 40, no. 5, 2010.

[89] D. Codetta-Raiteri and L. Portinale, “Dynamic Bayesian networks for fault
detection, identification, and recovery in autonomous spacecraft,” IEEE Trans-
actions on Systems, Man., and Cybernetics: Systems, vol. 45, no. 1, pp. 13–24,
2015.

145

[90] S. Bottone, D. Lee, M. O’Sullivan, and M. Spivack, “Failure prediction and
diagnosis for satellite monitoring systems using Bayesian networks,” in 2008
IEEE Military Communications Conference, San Diego, CA, 16–19 November
2008, pp. 1–7.

[91] J. Schumann, O. J. Mengshoel, and T. Mbaya, “Integrated software and sensor
health management for small spacecraft,” in Fourth IEEE Conference on Space
Mission Challenges for Information Technology, Palo Alto, CA, 2–4 August
2011.

[92] E. Horvitz and M. Barry, “Display of information for time-critical decision
making,” in Proceedings of the 11th conference on uncertainty in artificial in-
telligence, Montréal, Canada, 18–20 August 1995.

[93] J. P. Matsuura and T. Yoneyama, “Learning Bayesian networks for fault de-
tection,” in IEEE Workshop on Machine Learning for Signal Processing, Sao
Luis, Brazil, 29 Septmeber – 1 October 2004.

[94] Z. Ghahramani, Learning dynamic Bayesian networks. Berlin, Heidlberg:
Springer, 1998.

[95] R. Daly, Q. Shen, and S. Aitken, “Learning Bayesian networks: approaches and
issues,” The Knowledge Engineering Review, vol. 26, no. 2, pp. 99–157, 2011.

[96] S. Montani, L. Portinale, and D. Codetta-Raiteri, “RADYBAN: A tool for relia-
bility analysis of dynamic fault trees through conversion into dynamic Bayesian
networks,” Reliability Engineering and System Safety, vol. 93, pp. 922–932,
2008.

[97] M. Medkour, L. Khochmane, A. Bouzaouit, and O. Bennis, “Transformation of
fault trees into Bayesian networks methodology for fault diagnosis,” Mechanika,
vol. 23, no. 6, pp. 891–899, 2017.

[98] A. A. A. M. Amiruddin, H. Zabiri, S. A. A. Taqvi, and L. D. Tufa, “Neural net-
work applications in fault diagnosis and detection: an overview of implementa-
tions in engineering-related systems,” Neural Computing and Applications, pp.
1–26, 2018.

[99] H. A. Talebi, K. Khorasani, and S. Tafazoli, “A recurrent neural-network-based
sensor and actuator fault detection and isolation for nonlinear systems with
application to the satellite’s attitude control subsystem,” IEEE Transactions
on Neural Networks, vol. 20, no. 1, pp. 45–60, Jan 2009.

[100] N. Gugulothu, T. Vishnu, P. Gupta, P. Malhotra, L. Vig, P. Agarwal, and
G. Shroff, “On practical aspects of using RNNs for fault detection in sparsely-
labeled multi-sensor time series,” in Proceedings of the Annual Conference of
the PHM Society, vol. 10, no. 1, Philadelphia, PA, 24–27 September 2018.

[101] T. Jiang, K. Khorasani, and S. Tafazoli, “Parameter estimation-based fault
detection, isolation and recovery for nonlinear satellite models,” IEEE Trans-
actions on control systems technology, vol. 16, no. 4, pp. 799–808, 2008.

[102] H. A. Nozari, P. Castaldi, H. D. Banadaki, and S. Simani, “Novel non-model-
based fault detection and isolation of satellite reaction wheels based on a mixed-
learning fusion framework,” IFAC-PapersOnLine, vol. 52, no. 12, pp. 194–199,
2019.

146

[103] A. Verner, “LSTM networks for detection and classification of anomalies in raw
sensor data,” Ph.D. dissertation, Nova Southeastern University, April 2019.

[104] Z. Feng and T. Xu, “Comparison of SOM and PCA-SOM in fault diagnosis of
ground-testing bed,” Procedia Engineering, vol. 15, pp. 1271–1276, 2011.

[105] M. Tipaldi and L. Glielmo, “A survey on model-based mission planning and
execution for autonomous spacecraft,” IEEE Systems Journal, vol. 12, no. 4,
pp. 3893–3905, 2018.

[106] P. Z. Schulte, D. A. Spencer, and M. Goggin, “Mars sample return terminal
rendezvous state-based fault protection,” Journal of Spacecraft and Rockets,
pp. 1–11, 2019.

[107] P. Z. Schulte and D. A. Spencer, “State machine fault protection for autonomous
proximity operations,” in 68th International Astronautical Congress, Adelaide,
Australia, 25–29 September 2017.

[108] M. Aguilar, “Fault management using model based system engineering (MBSE)
tools and techniques,” NASA Spacecraft Fault Management Workshop, Septem-
ber 2011.

[109] M. D. Ingham, R. D. Rasmussen, M. B. Bennett, and A. C. Moncada, “Engi-
neering complex embedded systems with state analysis and the mission data
system,” Journal of Aerospace Computing, Information, and Communication,
vol. 2, no. 12, pp. 507–536, 2005.

[110] A. Nasir, E. Atkins, and I. Kolmanovsky, “A mission based fault reconfiguration
framework for spacecraft applications,” in Infotech@ Aerospace 2012, Garden
Grove, CA, 19–21 June 2012, p. 2403.

[111] A. Nasir, E. M. Atkins, and I. V. Kolmanovsky, “Mission-based fault reconfigu-
ration for spacecraft applications,” Journal of Aerospace Information Systems,
vol. 10, no. 11, pp. 513–516, 2013.

[112] S. Müller, A. Gerndt, and T. Noll, “Synthesizing failure detection, isolation,
and recovery strategies from nondeterministic dynamic fault trees,” Journal of
Aerospace Information Systems, vol. 16, no. 2, pp. 52–60, 2019.

[113] F. Fei, Z. Tu, Y. Yang, X. Zhang, D. Xu, and X. Deng, “Learn to recover: Rein-
forcement learning-assisted fault tolerant control for quadrotor UAVs,” Purdue
University, Tech. Rep., 2018.

[114] Q. Zhu and C. Yuan, “A reinforcement learning approach to automatic error
recovery,” in 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’07), Edinburgh, UK, 25–28 June 2007, pp. 729–
738.

[115] S. McGuire, P. M. Furlong, C. Heckman, S. Julier, D. Szafir, and N. Ahmed,
“Failure is not an option: Policy learning for adaptive recovery in space oper-
ations,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1639–1646,
2018.

147

[116] S. McGuire, P. M. Furlong, T. Fong, C. Heckman, D. J. Szafir, S. Julier, and
N. Ahmed, “Everybody needs somebody sometimes: Validation of adaptive
recovery in robotic space operations,” IEEE Robotics and Automation Letters,
pp. 1–1, 2019.

[117] B. C. Williams, M. D. Ingham, S. H. Chung, and P. H. Elliott, “Model-based
programming of intelligent embedded systems and robotic space explorers,”
Proceedings of the IEEE, vol. 91, no. 1, pp. 212–237, 2003.

[118] F. Giunchiglia and P. Traverso, “Planning as model checking,” in 5th Euro-
pean Conference on Planning: Recent Advances in AI Planning. Springer,
September 1999, pp. 1–20.

[119] M. Bozzano, A. Cimatti, A. Guiotto, A. Martelli, M. Roveri, A. Tchaltsev, and
Y. Yushtein, “On-board autonomy via symbolic model-based reasoning,” in 10th
ESA Workshop on Advanced Space Technologies for Robotics and Automation
(ASTRA’2008), 11–13 November 2008, pp. 11–13.

[120] K. B. Gamble and E. G. Lightsey, “Decision analysis tool for small satellite risk
management,” Journal of Spacecraft and Rockets, pp. 420–432, 2016.

[121] D. A. Spencer and R. Tolson, “Aerobraking cost and risk decisions,” Journal
of Spacecraft and Rockets, vol. 44, no. 6, pp. 1285–1293, 2007.

[122] D. Codetta-Raiteri and L. Portinale, “Generalized continuous time Bayesian
networks as a modelling and analysis formalism for dependable systems,” Reli-
ability Engineering & System Safety, vol. 167, pp. 639–651, 2017.

[123] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput.,
vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[124] S. A. Johnson, “Introduction to complex fault protection software testing,” in
Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.
98CH36207), vol. 2. Philadelphia, PA: IEEE, 24–26 June 1998, pp. 909–911.

[125] C. L. G. Batista, E. Martins, and M. de Fátima Mattiello-Francisco, “On the use
of a failure emulator mechanism at nanosatellite subsystems integration tests,”
in 2018 IEEE 19th Latin-American Test Symposium (LATS), Sao Paulo, Brazil,
12–16 March 2018, pp. 1–6.

[126] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on
knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.

[127] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,”
Journal of Big data, vol. 3, no. 1, p. 9, 2016.

[128] P. Wolfe, “A duality theorem for non-linear programming,” Quarterly of applied
mathematics, vol. 19, no. 3, pp. 239–244, 1961.

[129] J. R. Mansell, S. Dickmann, and D. A. Spencer, “Swarm optimization of lunar
transfers from earth orbit with operational constraints,” The Journal of the
Astronautical Sciences, pp. 1–22, 2019.

[130] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE transactions on neural networks, vol. 5,
no. 2, pp. 157–166, 1994.

148

[131] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature de-
tectors,” arXiv preprint arXiv:1207.0580, 2012.

[132] R. W. Ridenoure, R. Munakata, S. D. Wong, A. Diaz, D. A. Spencer, D. A.
Stetson, B. Betts, B. A. Plante, J. D. Foley, and J. M. Bellardo, “Testing
the LightSail program: advancing solar sailing technology using a CubeSat
platform,” Journal of Small Satellites, vol. 5, no. 2, pp. 531–550, 2016.

[133] B. Plante, D. A. Spencer, D. B. Betts, S. Chait, J. M. Bellardo, A. Diaz,
and I. Pham, “LightSail 2 ADCS : From simulation to mission readiness,” in
International Solar Sailing Symposium, Kyoto, Japan, 17–20 January 2017.

[134] B. Betts, D. Spencer, J. Bellardo, B. Nye, A. Diaz, B. Plante, J. Mansell,
M. Fernandez, C. Gillespie, and D. Garber, “LightSail 2: Controlled solar sailing
propulsion using a CubeSat,” in 70th International Astronautical Congress, no.
IAC-19.C4.8-B4.5A.2.x51593, Washington, D.C., 21–25 October 2019.

[135] J. R. Mansell, D. A. Spencer, B. A. Plante, M. A. Fernandez, C. T. Gillespie,
J. M. Bellardo, A. Diaz, B. Betts, and B. Nye, “Orbit and attitude performance
of the LightSail 2 solar sail spacecraft,” in AIAA Scitech 2020 Forum, no. AIAA
2020-2177, Orlando, FL, 6–10 January 2020.

[136] “HMC6343 three-axis compass with algorithms,” Manual available on-
line: https://aerospace.honeywell.com/en/∼/media/aerospace/files/datasheet/
3-axiscompasswithalgorithimshmc6343 ds.pdf, Honeywell International Inc.,
May 2014, (Accessed 01 October 2019).

[137] “E910.86 integrated solar angle sensor,” Manual available online: http://www.
mouser.com/ds/2/594/910 86-224506.pdf, Elmos Inc., December 2010, (Ac-
cessed 01 October 2019).

[138] “ADIS16135 precision angular rate sensor,” Manual available online: https://
www.analog.com/en/products/adis16135.html#product-overview, Analog De-
vices Inc., 2014, rev. F. (Accessed 01 October 2019).

[139] E. Leffens, F. Markley, and M. Shuster, “Kalman filtering for spacecraft attitude
estimation,” Journal of Guidance, Control, and Dynamics, vol. 5, no. 5, pp.
417–429, 1982.

[140] U.S. Naval Observatory, “Approximate solar coordinates,” https://aa.usno.
navy.mil/faq/docs/SunApprox.php, November 2012, (Accessed 01 October
2019).

[141] “RW-0.060-28 microsatellite reaction wheels,” Manual available online: http:
//www.sinclairinterplanetary.com/reactionwheels, Sinclair Interplanetary Inc.,
2019, (Accessed 01 October 2019).

[142] “Torque rods model MTR-4-1,” Stras Space, January 2019, rev. 2. (Personal
communication).

[143] M. Lovera, “Magnetic satellite detumbling: The b-dot algorithm revisited,” in
2015 American Control Conference (ACC), Chicago, IL, 1–3 July 2015, pp.
1867–1872.

https://aerospace.honeywell.com/en/~/media/aerospace/files/datasheet/3-axiscompasswithalgorithimshmc6343_ds.pdf
https://aerospace.honeywell.com/en/~/media/aerospace/files/datasheet/3-axiscompasswithalgorithimshmc6343_ds.pdf
http://www.mouser.com/ds/2/594/910_86-224506.pdf
http://www.mouser.com/ds/2/594/910_86-224506.pdf
https://www.analog.com/en/products/adis16135.html#product-overview
https://www.analog.com/en/products/adis16135.html#product-overview
https://aa.usno.navy.mil/faq/docs/SunApprox.php
https://aa.usno.navy.mil/faq/docs/SunApprox.php
http://www.sinclairinterplanetary.com/reactionwheels
http://www.sinclairinterplanetary.com/reactionwheels

149

[144] L. D. Friedman, “The story of LightSail,” The Planetary Soci-
ety: https://www.planetary.org/explore/projects/lightsail-solar-sailing/
story-of-lightsail-part-1.html, 2015, (Accessed 24 May 2020).

[145] D. A. Spencer, L. Johnson, and A. C. Long, “Solar sailing technology chal-
lenges,” Aerospace Science and Technology, vol. 93, p. 105276, 2019.

[146] L. Johnson, M. Whorton, A. Heaton, R. Pinson, G. Laue, and C. Adams,
“NanoSail-D: A solar sail demonstration mission,” Acta Astronautica, vol. 68,
no. 5, pp. 571 – 575, 2011.

[147] Y. Tsuda, O. Mori, R. Funase, H. Sawada, T. Yamamoto, T. Saiki, T. Endo,
K. Yonekura, H. Hoshino, and J. Kawaguchi, “Achievement of IKAROS —
Japanese deep space solar sail demonstration mission,” Acta Astronautica,
vol. 82, no. 2, pp. 183 – 188, 2013.

[148] G. Vulpetti, L. Johnson, and G. L. Matloff, “The NanoSail-D2 NASA mission,”
in Solar Sails: A Novel Approach to Interplanetary Travel. New York, NY:
Springer New York, 2015, pp. 173–178.

[149] B. Betts, B. Nye, J. Vaughn, E. Greeson, R. Chute, D. A. Spencer, R. W.
Ridenoure, R. Munakata, S. D. Wong, A. Diaz et al., “Lightsail 1 mission
results and public outreach strategies,” in The 4th International Symposium on
Solar Sailing, Kyoto Research Park, Kyoto, Japan, Jan 17–20 2017.

[150] D. A. Spencer, B. Betts, J. M. Bellardo, A. Diaz, B. Plante, and J. R. Mansell,
“The LightSail 2 solar sailing technology demonstration,” 2020, accepted 22
June 2020 for publication in Advances in Space Research.

[151] SpaceX, “STP-2 Mission Press Kit,” https://www.spacex.com/sites/spacex/
files/stp-2 press kit.pdf, June 2019, (Accessed 2 May 2020).

[152] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in Advances
in neural information processing systems, 1990, pp. 598–605.

https://www.planetary.org/explore/projects/lightsail-solar-sailing/story-of-lightsail-part-1.html
https://www.planetary.org/explore/projects/lightsail-solar-sailing/story-of-lightsail-part-1.html
https://www.spacex.com/sites/spacex/files/stp-2_press_kit.pdf
https://www.spacex.com/sites/spacex/files/stp-2_press_kit.pdf

150

A. NOTES ON OCSVM KERNEL FUNCTIONS

The use of a kernel function k(x, y) is central to the derivation of the anomaly score

function f(x) for a one-class support vector machine. It provides a notion of similarity

between pairs of vectors x and y, and in Eq. 2.7 its representation as an inner product

φᵀ(x)φ(y) allows f(x) to be expressed as a linear function of k. The purpose of this

appendix is to provide additional information on the mapping function, φ(x).

A.1 The Need for a Kernel Transform

First, some elaboration on why φ(x) is necessary. Support vector machine methods

use a hyperplane to divide members of one class from the other. Yet, in many

problems, a linear boundary between the two classes cannot be drawn. Consider

the minimal example in Fig. A.1(a). Class A contains points x = −2 and x = +1

while class B contains the origin. Clearly there is no single boundary that can separate

x = −2 and x = +1 from x = 0.

Let us therefore project these points into a higher dimensional space using the

transform: ψ(x) = (x, x2). Class A now contains (−2, 4) and (1, 1) while class B

remains at the origin. As depicted in Fig. A.1(b), the two classes are now separable

with a linear boundary.

This illustrates the purpose of φ(x) in Eq. 2.2; by projecting the nominal data

x1, ..., x` into a higher dimensional “kernel space”, it becomes possible to divide the

data from the origin with a linear boundary. For an arbitrary φ(x), the origin has

no special meaning. However, if we define a similarity measure k(x, xi) = φᵀ(x)φ(xi),

then φ(x) = 0⇒ k(x, xi) = 0. In other words, φ(x) = 0 corresponds to a point x that

bears zero similarity to any point xi from the nominal set. Such a point is clearly an

extreme anomaly, and it makes sense to locate the decision hyperplane f(x) (Eq. 2.2)

151

+1-1 0-2 +1-1 0-2

+2

+4

B1 A2A1

A2

A1

B1

Linear
discriminator

(a)

+1-1 0-2 +1-1 0-2

+2

+4

B1 A2A1

A2

A1

B1

Linear
discriminator

(b)

Figure A.1: Separation of data classes using a kernel transform.

as far away as possible from it. This is why the offset term ρ appears with a negative

sign in the minimization objective in Eq. 2.3.

A.2 Determining φ(x) for a Gaussian Kernel

A commonly used similarity measure is the Gaussian kernel given in Eq. 2.12.

This kernel is popular because it is based on the Euclidean distance between two

points of interest as measured in their original vector space. Thus, points that are

further apart are intuitively less similar. As a comparative example, another common

kernel is the polynomial kernel, which has parameters θ and d [66]:

P (x, y) = (xᵀy − θ)d (A.1)

To use the Gaussian kernel k(x, y) for a OCSVM, it is necessary to prove that it

can be expressed as the inner product: φᵀ(x)φ(y). A derivation of the explicit form

of φ(x) follows.

152

Express k(x, y) in terms of the vector components of N -dimensional x and y:

k(x, y) = exp(−||x− y||2)

= exp

(
−

N∑
j=0

(xj − yj)2
)

= exp

(
N∑
j=0

{−x2j − y2j + 2xjyj}

)

= exp

(
−

N∑
j=0

x2j

)
exp

(
−

N∑
j=0

y2j

)
exp

(
N∑
j=0

2xjyj

)

=
N∏
j=0

e−x
2
je−y

2
j e2xjyj

(A.2)

The cross term e2xjyj is problematic for separating k(x, y) into an inner product, but

it can be expanded using a Taylor series:

e2xjyj =
∞∑
r=0

(2xjyj)
r

r!
(A.3)

This sum can equivalently be expressed as an inner product:

e2xjyj =< 1,
√

2xj,
2√
2
x2j , ... > • < 1,

√
2yj,

2√
2
y2j , ... > (A.4)

Hence:

k(x, y) =
N∏
j=0

< e−x
2
j ,
√

2xje
−x2j ,

2√
2
x2je
−x2j , ... > • < e−y

2
j ,
√

2yje
−y2j ,

2√
2
y2j e
−y2j , ... >

(A.5)

Consider the case where N = 1. Eq. A.5 reduces to a single inner product:

k(x, y) = < e−x
2

,
√

2xe−x
2

,
2√
2
x2e−x

2

, ... > • < e−y
2

,
√

2ye−y
2

,
2√
2
y2e−y

2

, ... >

=φᵀ(x)φ(y)

(A.6)

Thus, φ(x) is explicitly determined and two things are revealed: (i) φ(x) has

infinite dimensions and (ii) the interpretation of the components of φ(x) is unclear.

Nonetheless, it is noteworthy that the odd components of φ(x) are each strictly greater

153

than zero ∀x. This is important because it ensures there is at least one dimension of

the kernel space for which all data transformed from x → φ(x) are projected to one

side of the origin. Therefore, it is possible to divide the transformed data points from

the origin with a hyperplane as depicted in Fig. 2.1.

More generally, when N > 1, Eq. A.5 shows that k(x, y) is a product of inner

products. This can be reduced to a single inner product according to the following

proof.

Proof Let k1(x, y) = aᵀ(x)a(y) and k2(x, y) = bᵀ(x)b(y) be two inner product ker-

nels. Then:

k1(x, y)k2(x, y) =

(∑
p

ap(x)ap(y)

)(∑
q

bq(x)bq(y)

)

=
∑
p

∑
q

{(ap(x)bq(x))(aq(y)bp(y))}

=
∑
p

∑
q

cpq(x)cpq(y)

=cᵀ(x)c(y)

(A.7)

In the proof, c(x) is a vector containing all the combinations of ap(x) multiplied by

bq(x). Thus, it is proved that ∀N , Eq. A.5 reduces to the form:

k(x, y) = φᵀ(x)φ(y) (A.8)

It also follows from Eq. A.7 that the first component of φ(x) will be:

φ1(x) = exp

(
−

N∑
j=0

x2j

)
> 0 (A.9)

Hence, all data transformed by φ will fall to the positive side of φ1 = 0. This

guarantees that the nominal training data can be divided from the origin in the

kernel space.

Explicit expressions for φ(x) are no less inscrutable or difficult to compute for

higher N than for the N = 1 case shown in Eq. A.6. Fortunately, there is no need

154

to evaluate φ(x) explicitly. In the derivation of the OCSVM score function in Sec-

tion 3.1.2, the solution of the hyperplane normal (Eq. 2.6) allows φ(x) to be replaced

with k(xi, x) upon substitution into the score function f(x) (Eq. 2.7). Therefore,

anomaly scores can be computed based on the much more intuitive, much easier to

compute kernel function k. This is the elegance of kernel methods in traditional

machine learning.

155

B. LSTM BACK-PROPAGATION DERIVATION

This appendix provides a derivation of the weight and bias gradients for an LSTM

network with respect to a given loss function, L. Assume that there are N memory

cells, n inputs, m outputs, and s time steps in the training sequence. We will also

assume that all intermediate variables (e.g. ht, ot, etc.) are available for each time

step from a forward pass of the network through the training sequence. The goal is

to start with the output of the network and work backwards to obtain derivatives of

the total loss function with respect to the various network parameters.

B.1 Output Layer

We begin at the output layer, which is described at time t by:

yt = σ(V ht + b2) = σ(ŷt) (B.1)

We note that V is m×N and ht is N × 1. Using the chain rule, the derivative of the

loss at time t is:
∂Lt
∂V

=
∂Lt
∂yt
· ∂yt
∂σ
· ∂σ
∂ŷt
· ∂ŷt
∂V

(B.2)

Note for the sigmoid function:

∂σ

∂ŷt
={1− σ(ŷt)} ◦ σ(ŷt)

=(1− yt) ◦ yt
(B.3)

Which is m× 1 overall. Thus:

∂Lt
∂V

=
∂Lt
∂yt

(1− yt) ◦ yt ⊗ ht (B.4)

Where ⊗ is the outer product between column vectors such that the left hand side is

dimension m×N . Similarly for the bias:

∂Lt
∂b2

=
∂Lt
∂yt
· ∂yt
∂σ
· ∂σ
∂ŷt
· ∂ŷt
∂b2

(B.5)

156

⇒ ∂Lt
∂b2

=
∂Lt
∂yt

(1− yt) ◦ yt (B.6)

To aggregate the derivative over all time steps in the sequence we compute:

∂L
∂V

=
s∑
t=1

∂Lt
∂V

(B.7a)

∂L
∂b2

=
s∑
t=1

∂Lt
∂b2

(B.7b)

Finally, note that the loss for a single time step is the sum of the losses for the

individual outputs:
∂Lt
∂yt

=
m∑
j=1

∂Lt
∂yit

(B.8)

Therefore, given the LSTM memory state ht along with the loss
∂Lt
∂yt

at each time

step from the forward pass, we can compute the parameter updates for the output

layer using Eqs. B.7.

B.2 Memory Cell

Derivation of the parameter updates for the memory cells proceeds in similar

fashion. First, it is necessary to know how the hidden state ht affects the loss through

the output layer:
∂Lt
∂ht

=
∂Lt
∂yt
· ∂yt
∂σ
· ∂σ
∂ŷt
· ∂ŷt
∂ht

⇒ ∂Lt
∂ht

=
∂Lt
∂yt

V ᵀ(1− yt) ◦ yt
(B.9)

This is the contribution of ht to the loss at the current time step Lt. But since ht is

also an input to the memory cell at time t + 1, it will further contribute indirectly

to the loss at all future steps (denoted t+). Thus, the total contribution to the loss

from ht is:
∂L
∂ht

=
∂Lt
∂ht

+
∂Lt+
∂ht

(B.10)

Since the second term is initially unknown, let us begin at the final time step t = s

of the training sequence so that only the first term is required. Hence,

∂L
∂hs

=
∂Ls
∂hs

(B.11)

157

Which can be calculated from Eq. B.9. This is enough to complete an initial pass

through the equations to follow. For the sake of generality, we will assume
∂L
∂ht

is

known for an arbitrary time step then show how to obtain
∂L
∂ht−1

for earlier time

steps.

B.2.1 Output Gate

Starting at ht of Fig. 2.4(b) and tracing the output path in reverse, we reach the

output gate described by:

ht =ot ◦ tanh(ct) (B.12a)

ot =σ(Woxt + Uoht−1 + bo) = σ(ôt) (B.12b)

We compute the partial derivatives of the loss for each of the new variables en-

countered. The output activation:

∂L
∂ôt

=
∂L
∂ht
· ∂ht
∂ot
· ∂ot
∂ôt

=
∂L
∂ht
◦ tanh(ct) ◦ (1− ot) ◦ ot

(B.13)

And cell state:
∂L
∂ct

=

(
∂L
∂ct

)
ht

+

(
∂L
∂ct

)
ct+

=
∂L
∂ht
· ∂ht
∂ct

+

(
∂L
∂ct

)
ct+

=
∂L
∂ht
◦ ot ◦ {1− tanh2(ct)}+

(
∂L
∂ct

)
ct+

(B.14)

The first term represents the loss contribution of ct through its effect on ht in

Eq. B.12a. The second term arises for reasons similar to the second term in Eq. B.10

(i.e. because ct is an input to ct+1). As with Eq. B.10, we can neglect this term on

our initial pass through the equations at t = s.

We now have everything we need to compute the gradients of the weights and

biases associated with the output gate at time t:(
∂L
∂Wo

)
t

=
∂L
∂ôt
· ∂ôt
∂Wo

158

⇒
(
∂L
∂Wo

)
t

=
∂L
∂ôt
⊗ xt (B.15)

The (·)t notation indicates that this is the gradient of the total loss1 L given the

intermediate variables at time t. Similarly, for the recurrent weights:(
∂L
∂Uo

)
t

=
∂L
∂ôt
· ∂ôt
∂Uo

⇒
(
∂L
∂Uo

)
t

=
∂L
∂ôt
⊗ ht−1 (B.16)

And the bias: (
∂L
∂bo

)
t

=
∂L
∂ôt
· ∂ôt
∂bo

⇒
(
∂L
∂bo

)
t

=
∂L
∂ôt

(B.17)

B.2.2 Forget Gate

The forget gate controls the retention of the cell state from one time step to the

next. For the forward pass:

ct =ft ◦ ct−1 + it ◦ tanh (Wcxt + Ucht + bc) (B.18a)

ft =σ(Wfxt + Ufht−1 + bf) = σ(f̂t) (B.18b)

Thus:
∂L
∂f̂t

=
∂L
∂ct
· ∂ct
∂ft
· ∂ft
∂f̂t

=
∂L
∂ct
◦ ct−1 ◦ (1− ft) ◦ ft

(B.19)

Giving us: (
∂L
∂Wf

)
t

=
∂L
∂f̂t
· ∂f̂t
∂Wf

⇒
(
∂L
∂Wf

)
t

=
∂L
∂f̂t
⊗ xt (B.20)

1In contrast to Lt, which would indicate the loss calculated only at time t and neglecting the feedback
effect on future states.

159

(
∂L
∂Uf

)
t

=
∂L
∂f̂t
· ∂f̂t
∂Uf

⇒
(
∂L
∂Uf

)
t

=
∂L
∂f̂t
⊗ ht−1 (B.21)

(
∂L
∂bf

)
t

=
∂L
∂f̂t
· ∂f̂t
∂bf

⇒
(
∂L
∂bf

)
t

=
∂L
∂f̂t

(B.22)

B.2.3 Input Gate

Similarly, for the input gate, it = σ(Wixt + Uiht−1 + bi):

∂L
∂ît

=
∂L
∂ct
· ∂ct
∂it
· ∂it
∂ît

=
∂L
∂ct
◦ tanh (Wcxt + Ucht−1 + bc) ◦ (1− it) ◦ it

(B.23)

Giving: (
∂L
∂Wi

)
t

=
∂L
∂ît
· ∂ît
∂Wi

⇒
(
∂L
∂Wi

)
t

=
∂L
∂ît
⊗ xt (B.24)

(
∂L
∂Ui

)
t

=
∂L
∂ît
· ∂ît
∂Ui

⇒
(
∂L
∂Ui

)
t

=
∂L
∂ît
⊗ ht−1 (B.25)

(
∂L
∂bi

)
t

=
∂L
∂ît
· ∂ît
∂bi

⇒
(
∂L
∂bi

)
t

=
∂L
∂ît

(B.26)

160

The input gate controls the absorption of information into the cell state via the

tanh term in Eq. B.18a. Let at = tanh (Wcxt + Ucht−1 + bc) = tanh (ât). Then we

can also obtain:
∂L
∂ât

=
∂L
∂ct
· ∂ct
∂at
· ∂at
∂ât

=
∂L
∂ct
◦ it ◦ (1− a2t)

(B.27)

This provides the loss gradients with respect to the cell state weights and biases:(
∂L
∂Wc

)
t

=
∂L
∂ât
· ∂ât
∂Wc

⇒
(
∂L
∂Wc

)
t

=
∂L
∂ât
⊗ xt (B.28)(

∂L
∂Uc

)
t

=
∂L
∂ât
· ∂ât
∂Uc

⇒
(
∂L
∂Uc

)
t

=
∂L
∂ât
⊗ ht−1 (B.29)(

∂L
∂bc

)
t

=
∂L
∂ât
· ∂ât
∂bi

⇒
(
∂L
∂bc

)
t

=
∂L
∂ât

(B.30)

B.2.4 Aggregation and Recursion

The loss gradients over the entire training sequence can be found by summing the

gradients contributed by individual time steps. For example:

∂L
∂Wc

=
s∑
i=1

(
∂L
∂Wc

)
t

(B.31)

In order to compute the gradients for times t < s, however, it is necessary to determine
∂Lt+
∂ht

in Eq. B.10 and

(
∂L
∂ct

)
ct+

in Eq. B.14. Since ht−1 is used in the activation of the

input, output, and forget gates, we can solve for its effect on the loss at the current

time step and those afterwards by writing:

∂Lt−1+
∂ht−1

=
∂L
∂ôt
· ∂ôt
∂ht−1

+
∂L
∂f̂t
· ∂f̂t
∂ht−1

+
∂L
∂ît
· ∂ît
∂ht−1

+
∂L
∂ât
· ∂ât
∂ht−1

161

⇒ ∂Lt−1+
∂ht−1

= Uo
∂L
∂ôt

+ Uf
∂L
∂f̂t

+ Ui
∂L
∂ît

+ Uc
∂L
∂ât

(B.32)

This provides
∂Lt+
∂ht

in the next iteration of Eq. B.10 for an earlier time.

To prepare Eq. B.14 at the next time step we similarly solve:(
∂L
∂ct−1

)
ct−1+

=
∂L
∂ct
· ∂ct
∂ct−1

⇒
(

∂L
∂ct−1

)
ct−1+

= ft ◦
∂L
∂ct

(B.33)

Therefore, starting at the final time step of the training sequence, we can recur-

sively compute Eqs. B.9 − B.33 in order to generate all of the summation terms to

obtain
∂L

∂{W,U, b}
in the manner of Eq. B.31. The gradients

∂L
∂{V, b2}

are provided

independently from Eqs. B.7.

162

C. ADCS FAULT TREES

This appendix provides a fault tree covering 90 different faults for a CubeSat ADCS.

The CubeSat is assumed to be Earth-orbiting. Circles located underneath events are

basic events while triangles represent lower-level fault trees given on another page.

ADCS
Fault

ADCS process
halted

Attitude
determination

fault

Attitude
guidance

fault

Attitude control
fault

AC
software

fault

AC
actuator

fault

Missing or
corrupt

files

Insufficient
memory

Attitude
guidance

fault

Attitude
command error

Unexpected
ADCS mode

Incorrect
clock

Incorrect
orbit

knowledge

Other fault
triggers safe

mode

Excessive
angular rate

triggers
mode switch

Reaction wheel
saturation
triggers

momentum
dump

ADCS reset
resets mode

163

Attitude
determination

fault

AD filter

Sensor
processing

error

Invalid
readings
ingested

Insufficient
readings to
converge

Recent
ADCS
reset

Incorrect
Kalman

gain

Not enough
valid

readings

Incorrect
sensor

valid flags

Valid
sensors

voted out

Failure to reject
invalid readings

AD sensor
fault

Sensor
processing

error
(multiple)

AD
sensor
fault

(multiple)

Incorrect
voting

threshold

Incorrect
voting

threshold

164

Sensor
processing

error

Magneto-
meters

IMU
Star

trackers
Sun

sensors

Calibration
error

Incorrect
clock

Incorrect
reference

field

Incorrect
orbit

knowledge

Incorrect
dipole model

Incorrect
coordinate

frame
transform

Calibration
error

Insufficient
sample rate

leads to
aliasing

Incorrect
clock

Incorrect
solar

position

Incorrect
solar position

model

Incorrect
coordinate

frame
transform

Calibration
error

Star
catalog
error

Incorrect
coordinate

frame
transform

Calibration
error

Star
matching

error

165

Incorrect
coordinate

frame
transform

Incorrectly
derived

transform

Transform does not
match sensor

deployment status

Incorrect
deployment flag

Deployment
failure

AC software
fault

Inappropriate
control gains

AC version
error

Unmodeled
dynamics

Inertial properties
different than

expected

Propellant
slosh

Insufficient SNR
for actuator
commands

Flexibility
effects

Other
dynamics

AD sensor
fault

Sun sensor
fault

Star tracker
fault

Magnetometer
fault

IMU fault

166

Sun sensor
fault

Non-solar
source

Other
celestial
object

Glint from
spacecraft

Phasing
error

Failed/
damaged
sensor

Star tracker
fault

Excessive
dark current
affects SNR

Hot
pixels

Phasing
error

Failed/
damaged
sensor

Contaminated
lens

Image contains
non-stellar

objects

Radiation
particle
streaks

Stuck lens
cover

Material shed
from

spacecraft

Lens blocked

Lens shuts due
to bright object
near aperture

Excessive
rotation rate
smears image

Magnetometer
fault

Phasing
error

Insufficient
sensitivity

Magnetic
interference

Failed/
damaged
sensor

Reaction
wheel dipole

Other
interference

Measurement
while torque
rods actuating

167

IMU fault

Gyro fault Accelerometer
fault

Insufficient
sensitivity

Insufficient
sensitivity

Phasing
error

Jitter
corrupts

measurement

Phasing
error

Failed/
damaged
sensor

Failed/
damaged
sensor

Axis mis-
alignment

Bias
drift

AC actuator
fault

Reaction
wheel fault

Torque rod
fault

Reaction
control thruster

fault

Reaction
wheel fault

Motor
fault

Excessive
friction

RPM
saturated

Polarity
error

Phasing
error

Wheel
software

error

Center of
pressure for
aero/solar

torques not
as expected

Routine
saturation

Excessive
saturation

Excessive
magnetic

dipole from
spacecraft

Propellant
leak

Impact
with

external
object

Outgassing
Deployment

activity
causes

rotation

Increased
drag due to
solar activity

168

Torque rod
fault

Phasing
error

Incorrect B-
field

produced

Polarity
error

Damaged
coil

Remnant
field in core

Command
software

error

Low supply
voltage

Insufficient strength to
overcome spacecraft

magnetic moment

Reaction
control

thruster fault

Shutdown due
to excessive

firing

Incorrect
thrust

produced

Thrust plume
impingement on

spacecraft

Phasing
error

Valve stuck
on/off

Propellant
depleted

Propellant
frozen

Thruster
misalignment

Incorrect
thrust

magnitude

169

D. ADDITIONAL EXAMPLES

D.1 Fault Simulator Examples

D.1.1 False Sun Error

Figure D.1 showcases the LSTM’s ability to isolate an intermittent fault. Whether

the sun sensors register a non-solar source depends on the spacecraft’s attitude. In

this example the attitude is uncontrolled (detumble mode), allowing the fault to

appear and disappear at irregular intervals.

D.1.2 Gyro Phasing Error

This example reverses the X and Z-axis gyros and simulates the resulting ADCS

behavior in no torques mode. Figure D.2 shows the resulting anomalies alongside

the LSTM network’s diagnosis. Although the network initially classifies the fault as

a gyro calibration error, it eventually converges to the correct “Gyro phasing error”

diagnosis. This is an interesting example because the difference between the two

faults is extremely subtle when operating in a mode with an uncontrolled attitude.

In fact, on first inspection it is not at all clear how the LSTM network manages to

reject the initial gyro calibration error and achieve the correct diagnosis. This is

where the gradient with respect to the inputs proves useful. It reveals that the three

most important signals to the network’s ultimate diagnosis are:

• The zero rotation rate

• The quaternion anomaly

• The gyro variance anomaly

170

0 50 100 150
0

100

200

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

100

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

(a) Anomaly inputs

20 40 60 80 100 120 140 160 180

10

20

30

(b) LSTM cell state evolution

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

No fault
False Sun Reading
Torque Rod Polarity Error
Reboot Cycle

(c) Fault confidence outputs

Figure D.1: Isolating cases when the sun sensors are registering a non-solar bright

object. The LSTM network is able to identify the affected intervals even though the

fault is highly intermittent.

171

Focusing on these signals explains the network’s decision. Zero rotation rates are

unlikely to occur under a gyro calibration error because this fault most often leads

to higher-than-actual estimates of the rotation rate. The diagnosis therefore quickly

switches once the zero rate first appears in Fig. D.2(a). The lack of a gyro variance

anomaly despite the consistent quaternion-B discrepancy helps to further distinguish

the gyro phasing error from a calibration error or attitude jitter.

D.2 LightSail 2 Examples

D.2.1 Reaction Wheel Fault

Figure D.3 applies the LSTM network to diagnose the issues that were encoun-

tered with LightSail 2’s reaction wheel during testing of the spacecraft’s solar sailing

mode prior to sail deployment. The wheel actuates only sporadically, causing torque

anomalies and a lack of response to commands. The LSTM network interprets these

anomalies as the result of a reaction wheel torque fault. This does not match the

expected diagnosis of “unresponsive reaction wheel,” but in reality the fault is more

aptly described as a combination of both faults. The pattern of anomalies does not fit

fully with either case. As a result, the LSTM’s neurons accumulate little activation

(visible by the dark colors) and the confidence of all fault hypotheses decays to nearly

zero. When this occurs, it suggests that the anomalies may be due to a new fault

that the network has not learned to diagnose in training.

D.2.2 Nominal Solar Sailing

Finally, Fig. D.4 shows a lengthy interval of mostly nominal solar sailing. Except

for a brief discrepancy between the two magnetometers, the LSTM network correctly

recognizes the nearly 24 hours of nominal performance.

172

0 50 100 150
0

100

200

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

100

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

0 50 100 150
0

0.5
1

(a) Anomaly inputs

20 40 60 80 100 120 140 160 180

10

20

30

(b) LSTM cell state evolution

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

No fault
Gyro phasing error
Gyro calibration error
Torque rod polarity error

(c) Fault confidence outputs

Figure D.2: Isolating a gyro phasing error while in no torques mode. Inspection of

the diagnosis gradient reveals how the LSTM network is able to isolate the correct

diagnosis from similar faults.

173

18:00 19:00 20:00
Jul 21, 2019

99

100

101

18:00 19:00 20:00
Jul 21, 2019

0

0.5

1

18:00 19:00 20:00
Jul 21, 2019

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

18:00 19:00 20:00
Jul 21, 2019

0

0.5

1

18:00 19:00 20:00
Jul 21, 2019

0

0.5

1

18:00 19:00 20:00
Jul 21, 2019

0

0.5

1

18:00 19:00 20:00
Jul 21, 2019

0

0.5

1

18:00 19:00 20:00
Jul 21, 2019

0

0.5

1

18:00 19:00 20:00
Jul 21, 2019

0

0.5

1

18:00 19:00 20:00
Jul 21, 2019

0

0.5

1

18:00 19:00 20:00
Jul 21, 2019

0

0.5

1

18:00 19:00 20:00
Jul 21, 2019

0

0.5

1

(a) Anomaly inputs

5 10 15 20 25 30 35 40

5

10

15

20

(b) LSTM cell state evolution

17:30 18:00 18:30 19:00 19:30 20:00 20:30
Jul 21, 2019

0

0.2

0.4

0.6

0.8

1 No fault
Reaction wheel torque error
Corrupt database

(c) Fault confidence outputs

Figure D.3: Anomalies and fault confidences when processing the reaction wheel

troubles encountered during LightSail 2’s checkout.

174

Sep 26, 00:00 Sep 26, 12:00
2019

99

100

101

Sep 26, 00:00 Sep 26, 12:00
2019

0

0.5

1

Sep 26, 00:00 Sep 26, 12:00
2019

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

Sep 26, 00:00 Sep 26, 12:00
2019

0

0.5

1

Sep 26, 00:00 Sep 26, 12:00
2019

0

0.5

1

Sep 26, 00:00 Sep 26, 12:00
2019

0

0.5

1

Sep 26, 00:00 Sep 26, 12:00
2019

0

0.5

1

Sep 26, 00:00 Sep 26, 12:00
2019

0

0.5

1

Sep 26, 00:00 Sep 26, 12:00
2019

0

0.5

1

Sep 26, 00:00 Sep 26, 12:00
2019

0

0.5

1

Sep 26, 00:00 Sep 26, 12:00
2019

0

0.5

1

Sep 26, 00:00 Sep 26, 12:00
2019

0

0.5

1

(a) Anomaly inputs

50 100 150 200 250

5

10

15

20

(b) LSTM cell state evolution

Sep 25, 20:00 Sep 26, 00:00 Sep 26, 04:00 Sep 26, 08:00 Sep 26, 12:00
2019

0

0.2

0.4

0.6

0.8

1

No fault
Corrupt database
Reaction wheel torque error
Magnetometer failure

(c) Fault confidence outputs

Figure D.4: Successful recognition of one of LightSail 2’s best days of solar sailing.

175

VITA

Justin Rhys Mansell

Justin Mansell is a doctoral candidate at Purdue University. His research interests

include space mission design, machine learning, and space flight operations. He has

completed internships at Idaho National Laboratory and Maxar technologies where

he investigated methods of streamlining radioisotope generator fueling and mission

planning for Canadarm2. Since 2018, he has served as the flight mechanics engineer

for the LightSail 2 solar sail satellite. His hometown is Calgary, Canada.

Education

Ph.D. Aeronautics and Astronautics, Purdue University, August 2020. Thesis

title: “Deep Learning Fault Protection Applied to Spacecraft Attitude

Determination and Control.”

M.S. Aeronautics and Astronautics, Purdue University, May 2017. Thesis title:

“Adaptive Continuation Strategies for Indirect Trajectory Optimization.”

B.Sc. Physics, University of Calgary, June 2015.

Journal Publications

J. Mansell, N. Kolencherry, K. Hughes, A. Arora, H.S. Chye, K. Coleman, J. El-

liott, S. Fulton, N. Hobar, B. Libben, Y. Lu, J. Millane, A. Mudek, L.

Podesta, J. Pouplin, E. Shibata, G. Smith, B. Tackett, T. Ukai, P. Wits-

berger, S. Saikia, “Oceanus: A multi-spacecraft flagship mission concept

to explore Saturn and Uranus,” Advances in Space Research, vol. 59, no.

9, pp. 2407–2433, 2017.

176

J.R. Mansell and M.J. Grant, “Adaptive Continuation Strategy for Indirect Hy-

personic Trajectory Optimization,” Journal of Spacecraft and Rockets, vol.

55, no. 4, pp. 818–828, 2018.

J.R. Mansell, S. Dickmann, and D.A. Spencer, “Swarm optimization of lunar

transfers from Earth orbit with operational constraints,” The Journal of

the Astronautical Sciences, pp. 1–22, 2019.

D.A. Spencer, B. Betts, J.M. Bellardo, A. Diaz, B. Plante, and J.R. Mansell, “The

LightSail 2 solar sailing technology demonstration,” Advances in Space Re-

search, accepted 22 June 2020.

Conference Publications

J.R. Mansell, J. Berry, J. Quint, and M.J. Wang, “Optimizing MMRTG Fueling

and Testing For Future Campaigns,” Nuclear and Emerging Technologies

for Space 2018, Las Vegas, NV Feb. 26 – Mar. 1, 2018.

J.R. Mansell, S. Dickmann, and D.A. Spencer, “Swarm Optimization of Lu-

nar Transfers From Earth Orbit with Radiation Dose Constraints,” 29th

AAS/AIAA Space Flight Mechanics meeting, AAS 19-244, Ka’anapali, HI,

13–17 January, 2019.

J.R. Mansell and D.A. Spencer, “Data-driven Fault Detection and Isolation for

Small Spacecraft,” 70th International Astronautical Congress, Washing-

ton, DC, 21–25 October, 2019.

J.R. Mansell, D.A. Spencer, B. Plante, A. Diaz, J.M. Bellardo, and B. Betts,

“Orbit and Attitude Performance of the LightSail 2 Solar Sail Spacecraft,”

AIAA SciTech Forum, AIAA 2020-2177, Orlando, FL, 6–10 January, 2020.

	LIST OF TABLES
	LIST OF FIGURES
	SYMBOLS
	ABBREVIATIONS
	GLOSSARY
	ABSTRACT
	INTRODUCTION
	Motivation
	Spacecraft Faults, Failures, and Anomalies
	Types of Anomalies
	Sources of Anomalies

	State of the Art
	Methods of Fault Detection
	Methods of Fault Isolation
	Methods of Fault Recovery
	Limitations of the Approaches

	Contributions of This Dissertation
	Development of an ADCS Fault Simulator
	Anomaly Detection of ADCS Signals
	Deep Learning Fault Diagnosis
	Application to LightSail 2

	THEORY AND BACKGROUND
	One-Class Support Vector Machines
	Derivation
	Interpreting OCSVM Anomalies
	Advantages of OCSVMs

	Long Short-Term Memory
	Architecture
	Fault Isolation Using LSTM
	Network Training
	Understanding LSTM's Decisions
	ADCS Fault Simulator
	Attitude Sensors and Determination
	Attitude Actuators
	Guidance and Control
	Dynamics
	Fault Injection

	DESIGN AND DEMONSTRATION OF FDIR
	Anomaly Detector Development
	Relevant Signals and Signal Processing
	One-class Support Vector Machine Detectors
	Rule-based Detectors

	LSTM Fault Isolator Development
	Generating Fault Training Data
	Detailed Examples
	Assessing Overall Performance

	Decision Theory for ADCS Fault Recovery
	Introduction to Decision Theory
	Developing the Utility Matrix
	Detailed Examples
	Overall Performance

	FAULT MONITORING FOR LIGHTSAIL 2
	Mission Background
	History of the LightSail Program
	Mission Overview
	Mission Events
	On-orbit Anomalies
	LightSail 2 Anomaly Detection
	LigthSail 2 Telemetry Dataset
	Detectors
	LightSail 2 Fault Isolation
	Fault Simulations
	LSTM Training
	Examples
	Overall Performance

	CONCLUSIONS
	Summary
	Directions for Future Work

	REFERENCES

	NOTES ON OCSVM KERNEL FUNCTIONS
	The Need for a Kernel Transform
	Determining (x) for a Gaussian Kernel
	LSTM BACK-PROPAGATION DERIVATION
	Output Layer
	Memory Cell
	Output Gate
	Forget Gate
	Input Gate
	Aggregation and Recursion
	ADCS FAULT TREES
	ADDITIONAL EXAMPLES
	Fault Simulator Examples
	False Sun Error
	Gyro Phasing Error
	LightSail 2 Examples
	Reaction Wheel Fault
	Nominal Solar Sailing
	VITA

