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ABSTRACT

Zirkle, Joel Ph.D., Purdue University, August 2020. Modeling Temporal Patterns
of Neural Synchronization: Synaptic Plasticity and Stochastic Mechanisms. Major
Professor: Leonid Rubchinsky.

Neural synchrony in the brain at rest is usually variable and intermittent, thus

intervals of predominantly synchronized activity are interrupted by intervals of desyn-

chronized activity. Prior studies suggested that this temporal structure of the weakly

synchronous activity might be functionally significant: many short desynchronizations

may be functionally different from few long desynchronizations, even if the average

synchrony level is the same. In this thesis, we use computational neuroscience meth-

ods to investigate the effects of (i) spike-timing dependent plasticity (STDP) and (ii)

noise on the temporal patterns of synchronization in a simple model. The model is

composed of two conductance-based neurons connected via excitatory unidirectional

synapses. In (i) these excitatory synapses are made plastic, in (ii) two different types

of noise implementation to model the stochasticity of membrane ion channels is con-

sidered. The plasticity results are taken from our recently published article [47], while

the noise results are currently being compiled into a manuscript.

The dynamics of this network is subjected to the time-series analysis methods

used in prior experimental studies. We provide numerical evidence that both STDP

and channel noise can alter the synchronized dynamics in the network in several

ways. This depends on the time scale that plasticity acts on and the intensity of

the noise. However, in general, the action of STDP and noise in the simple network

considered here is to promote dynamics with short desynchronizations (i.e. dynam-

ics reminiscent of that observed in experimental studies) over dynamics with longer

desynchronizations.
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1. INTRODUCTION

This thesis concerns itself with the inherent temporal patterns of synchronization

within neural systems. This is a numerical modeling study, where we adapt a

conductance-based model to our neural network to study the resulting synchrony

in a simple and general setting. Since our model is highly nonlinear and the param-

eters we are interested in are not small, it is natural to use numerical methods. To

understand the construction of the mathematical model that will be used throughout

this thesis, it is necessary to understand some basic neuronal electrophysiology. This

is very briefly summarized in section 1.1 and is largely based on [1–3]. In section 1.3,

a brief introduction to synchronization of oscillators is given. Lastly, in section 1.4

the problem that is studied in this thesis is stated and previous studies conducted on

experimental data are mentioned as motivation.

1.1 Basic Neuronal Electrophysiology and its Mathematical Modeling

In this thesis we only consider single-compartment models. This means that we

neglect all spatial components and model the neuronal membrane voltage using a sys-

tem of ordinary differential equations. Naturally, a real biological neuron is composed

of different sections (e.g. soma, axon, dendrite tree), and the overall geometry of a

neuron may be quite complicated. While this geometry can affect some properties of

the neuron [2], we wish to study synchronicity in a more general setting.

The membrane of a neuron is composed of a lipid bilayer that acts as a physical

barrier to the movement of ionic species. Generally speaking, in a neuron at rest there

is an excess of negatively charged ions within the neuron, and a net positive charge
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in the extracellular medium. Due to this setup, the neuronal membrane effectively

acts as a capacitor and we may model it using (1.1).

C
dv

dt
=

dQ

dt
(1.1)

Here C is the membrane capacitance, v is the potential difference across the mem-

brane (aka the neural voltage) and the time-derivative of Q represents current moving

across the membrane.

Transmembrane current is generated by the movement of ions through ion chan-

nels: large proteins that bridge the neural membrane and allow ions to move into,

and out of, the cell. There is a large number of currents at play, however, we will

restrict ourselves to three: a leak current, a delayed-rectified potassium current and

a persistent sodium current. We use Ohm’s Law to describe the amount of current

that flows through these ion channels, (1.2).

I = g(V − E) (1.2)

Where I is the current, g = 1/r is the reciprocal of resistance and is called the

conductance of the ion channel, and V − E is a potential difference that acts as a

driving force for the current. E is the reversal potential for the specific ionic species

and is often calculated using the Nernst equation. Physically it describes the potential

at which the current would reverse the direction of its flow. Ion channels are often

selective for a single ionic species, e.g. a sodium ion channels will only allow sodium

ions to move through them. This means that we need a separate term for each type

of current we use. In our case we have the three currents listed in (1.3).

INa = gNa(V − ENa), IK = gK(V − EK), IL = gL(V − EL) (1.3)

The first two currents are the sodium and potassium currents, respectively. In the last

term, the subscript L refers to the so-called ”leakage current”. This current accounts

for all the time-independent processes that affect the neural voltage, e.g. ion pumps
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that exchange certain ratios of ions across the neural membrane and are responsible

for maintaining the resting potential of the neuron.

At this point we summarize our discussion by drawing what is often called the

”equivalent circuit”. That is, we are modeling a neuron as a circuit where the mem-

brane is a capacitor, the ion channels are resistors and each ionic species provides an

electromotive force. The equivalent circuit for the mathematical model that we will

be using, the Morris-Lecar (ML) model, is given in Figure 1.1.

C

ENa

gNa

INa

extracellular

intracellular

gL

EL

gK

EK

ILIK CV̇

Figure 1.1. Equivalent circuit for a Morris-Lecar neuron. Adapted from [1]

Before we write down the differential equations that will govern the neural volt-

age, there is one additional feature of ion channels that we need to address. In

Figure 1.1 it is seen that the conductances for the sodium and potassium chan-
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nels are time-varying. This is because these types of channels are voltage-gated:

the channel conductance depends on the neural voltage. Furthermore, ion channels

have two mechanisms by which they either activate/deactivate (open/close) or in-

activate/deinactivate (close/open). The conductance of an ion channel can then be

modeled as:

gi = gim
ahb. (1.4)

The quantity g represents the maximal conductance of that ion channel (the con-

ductance if every ion channel of that type was open), m is the probability that the

mechanism that activates is open and h is the probability that the mechanism that

inactivates is open. a and b are positive integers that represent the number of each

mechanism of each type in a single ion channel. The variables m and h are dynamic

quantities that are modeled according to the first-order kinetic equation (1.5).

dX

dt
= αX(v)(1−X)− βX(v)X (1.5)

X is a generic variable representing either an activating or inactivating probability.

The coefficients αX(v) and βX(v) are voltage-dependent opening and closing rates,

respectively, for the ion channel. We can rewrite (1.5) as:

τX(v)
dX

dt
= X∞(v)−X. (1.6)

(1.6) says that the quantity X approaches it’s steady-state value, X∞, on the time-

scale τX . Using an argument based on thermodynamics [3], we expect both αX and

βX to be proportional to a decaying exponential function, i.e. αX , βX ∝ exp(−f(v)).

Hence the steady-state function X∞ is sigmoidal, and the time-constant τX is uni-

modal.

In the ML model we have two voltage-dependent conductances. The sodium

conductance is given in (1.7), the potassium conductance in (1.8). To arrive at (1.7)

we make the assumption that the sodium current activates instantaneously relative

to the activation of the potassium current. Comparison of the time-constants τNa
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and τK shows that this is generally a good approximation. The benefit of replacing

the dynamic variable m with its steady-state value m∞ reduces the dimension needed

for the system of differential equations. The variable w represents the proportion of

potassium channels that are open; it is governed by an equation of the form of (1.6).

gNa = gNam∞(v) (1.7)

gK = gKw (1.8)

We are now ready to write down the system of differential equations that is the ML

model, see (1.9) and (1.10). In chapter 2 we expand on the mathematical description

of the ML model, so for now it is enough to understand where each term in the model

is derived from. From the equivalent circuit (see Figure 1.1) and Kirchoff’s Law we

obtain the voltage equation (1.9), the variable v represents the neuronal membrane

voltage. The activation variable for potassium is controlled by equation (1.10).

dv

dt
= −ḡNam∞(v)(v − vNa)− ḡKw(v − vK)− ḡL(v − vL) + I (1.9)

dw

dt
=
w∞(v)− w

τ(v)
(1.10)

The term I in (1.9) represents any external current to the neuron. It is this external

action that perturbs a neuron’s membrane potential and allows it to deviate from its

resting value.

1.2 The Action Potential

Using our basic understanding of neural electrophysiology, we now give a detailed

description of the generation of an action potential. Briefly, an action potential is a

sharp and dramatic increase (depolarization) of the membrane potential followed by

a sharp decrease (hyperpolarization) that brings the membrane potential back to rest.

In Figure 1.2 we simulate a ML neuron and inject a current pulse (plot D). This

externally applied current is sufficiently strong to evoke an action potential, as seen in
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plot A. We split the action potential into two parts: the upstroke and the downstroke.

Before we begin, we mention that we have the following ordering of reversal potentials:

EK < Erest < ENa, where Erest is the resting potential of the neuron. The reversal

potential helps determine the driving force of a current, which leads to two important

consequences. The first is that sodium current tends to depolarize a neuron’s mem-

brane, while the potassium current wants to hyperpolarize the membrane. In other

words, as we shall see, the sodium current will be responsible for the upstroke of an

action potential while the potassium current will be responsible for the downstroke.

The second consequence is the sign convention for currents. If v < E the current cor-

responding to E will be negative, and if v > E the current is positive. Physiologically,

if EK < v < ENa then Na+ ions tend to flow into the cell while K+ ions tends to flow

out of the cell. Since we classify current as the flow of positive charges, we use the

convention that a current is positive if it flows out of the cell. The exception here is

that we say a current that is injected from outside directly into the neuron is positive.

In Figure 1.2 the externally applied current is positive which causes a depolar-

ization of the neuron’s membrane. As the membrane depolarizes, the voltage-gated

sodium channels begin to open, as demonstrated in the conductances plot (plot B).

This allows Na+ ions to flow into the cell, causing further depolarization. This posi-

tive feedback loop is what causes the rapid depolarization during the upstroke of an

action potential.

As the neuron’s voltage approaches the reversal potential for sodium, the driving

force for the sodium current approaches zero. During this time, the slower potassium

channels have opened, allowing K+ ions to flow out of the cell. For a short period

of time, the opposite effects of the sodium and potassium currents somewhat cancel

each other, making the hyperpolarization slow.
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As the potassium current continues to activate and hyperpolarize the membrane,

the sodium current (which is very fast comparatively) deactivates. This leaves be-

hind the potassium current, which rapidly hyperpolarizes the cell. In fact, because

EK < Erest and because the potassium current is slow to deactivate, the membrane

potential is pushed below its resting potential and the neuron experiences a refractory

period.

Lastly, given enough time, the potassium current deactivates and the potential of

the membrane is brought back to its resting value via the leak current (physiologically

through ion pumps). A constant current applied for a long enough time, or some other

varying form of current impulse, could induce multiple spikes.

1.3 Synchrony

The notion of synchronization is well-documented in the natural and physical

sciences. In particular, the evidence of synchronization in biological systems ranges

from some species of fireflies that flash in synchrony in certain areas in southeast

Asia [24] to human circadian rhythms to the interaction of glucose and insulin in the

human body [4] to the different gaits that animals use for movement [25]. Within the

context of neuroscience, synchrony is pervasive and plays a role in sensory systems (vi-

sual, auditory, olfactory), some cognitive functions such as holding attention, motor

control such as breathing or walking, generation of electroencephalography (EEG)

and magnetoencephalography (MEG) signals, and memory [26–33]. In the public

health domain there are several well-known neurological disorders - such as epilepsy,

Alzheimer’s disease, Parkinson’s disease, and schizophrenia - that are associated with

abnormal synchrony (either too weak or too strong) [4, 34–38].

The phenomenon of synchronization described in this thesis is that between two

weakly coupled self-sustained limit cycle oscillators (neurons). They are self-sustained
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Figure 1.2. Demonstration of an action potential in a ML neuron. On each
subplot the horizontal axis represents time and the vertical axes from top
to bottom are voltage, conductances, membrane currents and externally
applied current pulse. We note that the model is scaled such that voltage
is mV, time is ms, the conductances are mS/mm2 and the current is mA.
However, it is conventional here to not use units for the conductances.
Adapted from [1].

in the sense that they have an energy source (an externally applied current) that coun-

teracts the natural energy dissipation that occurs in non-conservative systems. Since

these are non-conservative systems, the oscillations are described by limit cycles. And

the coupling takes the form of two unidirectional chemical synapses that connect the

two neurons to each other. This coupling is made weak by setting the synaptic con-
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ductance (analogous to an ion channel conductance) to a value significantly smaller

than the conductances that control the inherent currents of each neuron.

For the definition of synchrony we take the phase-locking approach. First this

requires that we define what phase is. There are several definitions that one may use

to reconstruct the phase of an oscillator, the most common of which are the Hilbert

transform, a geometric definition based on the inverse tangent, or a periodic piece-

wise linear function defined between certain events. However one wishes to define

the phase function, it describes the same occurrence in the state space: the phase

function tracks a state point on the limit cycle of the oscillator as the point makes

one full cycle. Note that all phase functions are periodic, usually with a period of 2π

or 1.

If φ1(t) describes the phase of one neuron and φ2(t) describes the phase of the

second neuron, then phase-locking between the neurons is described as:

pφ1 − qφ2 < constant (1.11)

where p, q are integers. The choice of the constant on the right-hand side of the in-

equality above is chosen based upon the specific problem being studied (see chapter

3). Often, (1.11) holds only for certain intervals of time [4, 39], which leads to the

notion of transient synchrony: a system may exhibit synchronous behavior according

to (1.11), interspersed with periods of desynchronous behavior. If we plot the un-

wrapped (not periodic) phase difference between two oscillators as a function of time,

then transient synchrony presents itself as horizontal epochs separated by phase-slips,

see Figure 1.3.

Another way to detect synchrony in a system is with what is commonly known

as a first-return map (aka a Poincaré map). In chapter 3, where we detail the exact

numerical methods used to quantify synchrony, we refer to this as a stroboscopic

map. We opt to use this terminology as it evokes an intuitive sense of how the map
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Figure 1.3. The unwrapped phase difference between two oscillators plot-
ted as a function of time.

is created. A rigorous mathematical definition is given in [45, 46], along with simple

examples where the first-return map can be expressed analytically. We find the stro-

boscopic map numerically, so here we only provide a quick sketch of the mathematical

ideas.

We are given some periodic orbit of an n-dimensional dynamical system. In our

case, we look at the periodic phase of our planar system. At an arbitrarily chosen

location on the periodic orbit, we intersect the orbit with a hypersurface of dimen-

sion n − 1. This hypersurface should be oriented such that the flow of the orbit is

transverse to it. Then as the dynamical system evolves, the sequence of points of

intersection between the hypersurface and the periodic orbit comprise the first-return

map.
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When we have two dynamical systems coupled together (as we do in this thesis),

we slightly modify the above description. Now we have two periodic oscillatory quan-

tities; the phase of each dynamical system. We again intersect the periodic orbit of

the phase of one system at an arbitrary location with a hypersurface. At the time

when the periodic orbit intersects this hypersurface, we record the value of the phase

of the second dynamical system. This sequence of phase values is what we call the

stroboscopic map. The idea behind the word ”stroboscopic” is that we only view the

phases of the two systems during brief flashes of time, in the same way that a dark

room is illuminated by a strobe light only for brief flashes of time. Since the phase

of the first system is relatively fixed, synchronization between the oscillators presents

itself as fixed points of the stroboscopic map.

1.4 Motivation

Recent developments in time-series analysis allowed for the exploration of the tem-

poral patterning of synchronized activity in brain dynamics on very short time-scales.

Studies of different brain signals in different conditions and species suggest an appar-

ently universal feature: synchronous activity is interrupted by very short (although

potentially numerous) intervals of desynchronized dynamics (as opposed to few longer

desynchronized episodes). This phenomenon was observed in the synchrony between

local field potentials (LFPs) and spikes in different parts of the basal ganglia and EEG

in Parkinson’s disease [40–42], in synchronization between LFPs recorded in the pre-

frontal cortex and hippocampus of normal and amphetamine-sensitized mice [43],

in the EEG of healthy human subjects [14], and in EEGs in autism spectrum dis-

orders [44]. The differences in the temporal patterning are correlated with certain

behavioral features, but the prevalence of short desynchronizations persisted never-

theless [42–44]. Therefore, short desynchronizations may be functionally important

and the properties and mechanisms of desynchronization durations merit study.
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These observations of the persistence of short desynchronizations naturally sug-

gests the question about the biological mechanism(s) behind this phenomenon. The

modeling study [11] suggested one possible mechanism: the short desynchronization

dynamics was promoted by the substantial difference in the time-scales of spike-

producing sodium and potassium currents. The relative slowness of the potassium

delayed-rectifier current may be one of the reasons for why short desynchronizations

are observed in different neural systems. However, there may also be other mech-

anisms. This thesis is aimed at the exploration of two potential mechanisms: one

related to synaptic plasticity, and the other to the inherent stochasticity of real neu-

ral systems.

Chapters 2 and 3 provide the necessary details about the mathematical model and

the method of sychronization analysis. Chapter 4 briefly summarizes the previous

results of the modeling study [11], and explains the effects of certain parameters on

the model. The intent of chapter 4 is to provide the reader with some intuition for

the subsequent chapters. In chapter 5 we use computational modeling to explore

how spike-timing dependent plasticity (STDP) can affect the temporal patterning of

neural synchrony on short timescales. Then in chapter 6 we explore the effect of one

source of noise in neural systems on the temporal patterns of synchrony.
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2. MATHEMATICAL MODEL

2.1 Neuronal Model

Throughout the entirety of this thesis we will model each neuron using a two-

dimensional conductance-based system of ordinary differential equations (ODEs).

Izhikevich in [1] refers to this model as the ”persistent sodium plus potassium model”,

and while this is very descriptive, it is mathematically equivalent to the more well-

known Morris-Lecar (ML) model and will be referred to as such henceforth [1,2]. The

model is given in equations (2.1) and (2.2) and is described below.

dvi
dt

= −INa − IK − IL − Isyn + Iapp (2.1)

dwi
dt

=
w∞(vi)− wi

τ(vi)
(2.2)

The variable vi in equation (2.1) describes the time-evolution of the i-th neuron’s

voltage. The first three terms are the sodium current, delayed rectifier potassium

current and leak current, respectively. The expressions for these currents are given

below in equations (2.3)–(2.5).

INa = ḡNam∞(vi)(vi − vNa) (2.3)

IK = ḡKwi(vi − vK) (2.4)

IL = ḡL(vi − vL) (2.5)

The sodium current is assumed to activate instantaneously and also to have no

inactivation (hence the naming ”persistent sodium...” in [1]). We can see this in

equation (2.3) where in place of a dynamical variable m, that would describe the

activation of the sodium current, instead we see the steady-state function m∞(vi).

The activation of potassium current is much slower and is controlled by the variable

w in (2.2), which represents the proportion of potassium ion channels that are open.
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The leak current is an Ohmic current, i.e. the conductance gL is constant.

The variables ḡNa, ḡK and ḡL are the maximal conductances for the sodium,

potassium and leak currents, respectively. The steady-state functions for the gating

variables of the sodium and potassium currents are given in equations (2.6) and (2.7).

m∞(vi) =
1

1 + exp

(
−2

vi − vm1

vm2

) (2.6)

w∞(vi) =
1

1 + exp

(
−2

vi − vw1

β

) (2.7)

The voltage-dependent activation time constant of the potassium current is given in

(2.8).

τ(vi) =
2

εi

(
exp

(
vi − vw1

2β

)
+ exp

(
vw1 − vi

2β

)) (2.8)

The functions in equations (2.6)–(2.8) are plotted in Figure 2.1. Figure 2.1(a)

shows the steady-state functions m∞ and w∞. There are two features to point out

here. First, the functions are sigmoidal; this means that at low voltages the currents

are inactivated and only activate once the neuron starts becoming depolarized. The

second feature is that the potassium steady-state function (the red dashed curve)

is delayed (i.e. shifted to higher voltages) relative to the steady-state function for

sodium. This indicates that as a neuron is depolarized, the sodium current will ac-

tivate first and then, after a short delay, the potassium current will activate. This

delay is where the term ’delayed rectifier potassium current’ is from. In effect, this

delay controls the shape of the action potential: without a delay the action potential

will appear quasi-sinusoidal, but with a delay the action potential will have its generic

’spikiness’. Of course, mathematically, the shape and arrangement of nullclines in the

state space are often used to determine if a system is a relaxation oscillator. Through-

out this thesis we will vary parameters that affect this delay and in turn see how this



15

affects synchrony properties.

Figure 2.1(b) shows the activation time constant of the potassium current. The

curve is unimodal with a maximum value of 1
εi

(the curve was plotted with ε = 0.01,

hence a maximum of 100). The value of τ(vi) corresponds to how quickly w will

approach its steady-state value w∞. Therefore shifting τ(vi) horizontally can also

affect the delay described above.

(a) The steady-state functions m∞ and w∞

plotted over a relevant voltage domain.

(b) The activation time constant of potas-

sium current plotted over a relevant voltage

domain.

Figure 2.1. Plots of (a) steady-state functions and (b) the activtion time
constant for K+.

2.2 Synaptic Current

In (2.1), the term Isyn represents the synaptic current. All synapses in this thesis

are excitatory, i.e. their effect is to depolarize the postsynaptic neuron. If we consider

the i-th neuron, then the incoming synaptic current is given by (2.9).

Isyn,i = (vi − vsyn)
∑
j 6=i

ḡsyn,jsj (2.9)
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Here ḡsyn is the maximal conductance of the synapse, sj is the synaptic variable for

the j-th neuron and the summation is taken over all neurons that are connected to the

i-th neuron. The synaptic variable s represents the proportion of synaptic channels

that are open and is controlled by (2.10).

ds

dt
= αs(1− s)H∞(v − θv)− βss (2.10)

The first term describes the probability that closed channels will open, and the second

term describes the probability that open channels will close. Therefore βs determines

the rate of closing, while αsH∞(v − θv) determines the rate of opening [3]. H∞ is

another sigmoidal function whose input is the presynaptic neuronal voltage and is

given in (2.11), for a plot of H∞ refer to Figure 2.2.

H∞(v) =
1

1 + exp

(
− v

σs

) (2.11)

If we view a sigmoidal function as an on/off switch, then this figure tells us that the

synaptic variable s is largest when an action potential has occurred (in the presynaptic

neuron) and is close to zero when the presynaptic neuron is at (or near) its resting

potential.

2.3 Plasticity

In chapter 4, we consider a network that has plastic synapses. The type of plas-

ticity that we implement is called spike-timing dependent plasticity (STDP). STDP

comes in a variety of forms [15], so we implement what is perhaps the most common

type. Roughly speaking, this rule states that the closer together (in time) that the

spikes of a presynaptic and postsynaptic neuron are, then the greater the change in

the synaptic conductance from the presynaptic to postsynaptic neuron. Specifically

the modeling follows [8] and experimental evidence for this type of modelling can be

found in [6, 7]. If the i-th neuron spikes at a time ti, and the j-th neuron spikes at a
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Figure 2.2. H∞(v) plotted over a relevant voltage domain.

time tj, then the conductance of the synapse from the i-th neuron to the j-th neuron

is additively updated by the amount given in equation (2.12).

∆gsyn = sgn(∆t)A exp
(
−k|∆t|

)
(2.12)

here ∆t = tj − ti. Simultaneously, the synaptic conductance from the j-th neuron

to the i-th neuron is updated by −∆gsyn. The nature of this update rule is shown

below in Figure 2.3. From this figure we can see that the conductance from the pre-

to postsynaptic neuron is positively increased if the presynaptic neuron fires before

the postsynaptic neuron. The magnitude of the update increases exponentially the

closer the firing times. Similarly, the conductance from the pre- to postsynatic neuron

is negatively increased if the presynaptic neuron fires after the postsynaptic neuron.

From Figure 2.3 it is clear that our update rule is symmetric with respect to time,

however this need not be the case, depending on the type of neuron that one is

modeling [15].
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∆t

A

−A

Figure 2.3. STDP update rule plotted as a function of time, ∆t.

2.4 Noise

There are various sources of noise present in the nervous system [9, 19, 23]. Here

we consider two ways of adding channel noise to the ML model, as described in [10].

2.4.1 Multiplicative Noise

To account for the inherent stochasticity of the potassium ion channels, we add

a zero-mean Gaussian white noise term, ξ(t), to the potassium gating variable w in

equation (2.4). Hence the potassium current is now given by (2.13). The rest of the

neuronal model described in sections 2.1 and 2.2 remains the same.

IK = gK(w + ξ(t))(v − vK) (2.13)

Inserting (2.13) into (2.1) we obtain the following Langevin-type voltage equation.

dv

dt
= A(v) +B(v)ξ(t) (2.14)
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A(v) and B(v) are given below.

A(v) = −INa − IL − Isyn + Iapp − gKw(v − vK) (2.15)

B(v) = −INa − IL − Isyn + Iapp − gKξ(t)(v − vK) (2.16)

2.4.2 Additive Noise

We also simulate the neurons with a current noise instead of a conductance-based

noise. This is a simpler, but perhaps more naive, approach to modeling channel noise

than that described above. For example, one drawback is that since the ion channels

are voltage-gated, the stochastic process should probably depend not only on time,

but also on the membrane voltage [10]. However, the exact dependence on voltage

may not be known. The only change to the neuronal model described in sections 2.1

and 2.2 is that equation (2.1) now has an additive zero-mean Gaussian white noise

term, ξ(t). Here ξ(t) is also meant to model the stochastic nature of the ion channels

in the neuron’s membrane [10]. The new voltage equation is given in (2.17).

dv

dt
= −INa − IK − IL − Isyn + Iapp + ξ(t) (2.17)

2.5 Network Model

Throughout this thesis we utilize a simple neural network consisting of two neurons

coupled via unidirectional excitatory synapses, see Figure 2.4. The two neurons have

a slightly different firing rate, i.e. their respective ε values differ slightly (cf. section

2.6). The initial value of the maximal synaptic conductance is gsyn = 0.005, so that

the coupling is weak. This heterogeneity and weak synaptic coupling ensures that

synchrony between the two neurons is present, but is relatively weak.
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N1 N2

gsyn,1

gsyn,2

Figure 2.4. Schematics of the network: two neurons coupled with mutually
excitatory synapses.

2.6 Parameter Values

The cellular and synaptic parameter values used are given in Table 2.1. These

are the same parameter values that were used in [11]. The plastic parameters will be

given in section 4.1, and the stochastic parameter is given in section 6.1.

Table 2.1.
List of cellular and synaptic parameter values.

gNa = 1 gK = 3.1 gL = 0.5 vNA = 1 vK = −0.7 vL = −0.4

vm1 = −0.01 vm2 = 0.15 vw1 = 0.08 β = 0.145 Iapp = 0.045 ε1 = 0.02

ε2 = 1.2ε1 vsyn = 0.5 αs = 2 βs = 0.2 θv = 0.0 σs = 0.2
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3. SYNCHRONIZATION METHODS AND ANALYSIS

Detection of synchronized dynamics within the network follows the time-series meth-

ods outlined in [11,12]. The experimental studies mentioned in section 1.4 made use

of a similar analysis. The reason for a similar, but not identical, analysis stems from

the experimental nature of the data. For instance, in [14] the data was collected

via electroencephalograms (EEGs). This represents a collective signal from a large

number of neurons, as opposed to the system of two neurons in this modeling study.

Naturally their recorded signal is capable of much more complex dynamics than are

possible in our system. Other key differences include filtering the signal to certain

frequency bands of interest, and reconstructing the phase using the Hilbert transform.

As described below, we use a more geometric definition of the phase because we have

access to all the state variables, and it is also computationally less expensive. We

outline the procedure below in detail.

3.1 Phase and Averaged Synchrony Strength

We use a phase-locking definition of synchrony. The phase, φ(t), of a neuron is

defined geometrically as in (3.1).

φ(t) = arctan

(
v(t)− v̂
w(t)− ŵ

)
(3.1)

Here (ŵ, v̂) is an arbitrary point within the neuron’s limit cycle in the (w, v)−plane.

The implementation of (3.1) in Python used numpy’s arctan2 function. This allows

the phase to be defined over the entire closed interval [−π, π]; in particular, it allows

w(t)− ŵ = 0.



22

Once the phase of each neuron within the network has been computed, an average

synchrony strength can be calculated, as in (3.2). This index is often referred to as

the mean phase coherence.

γ =

∣∣∣∣∣∣ 1

N

N∑
j=1

ei∆φ(tj)

∣∣∣∣∣∣
2

(3.2)

where ∆φ(tj) = φ1(tj) − φ2(tj) is the difference of the phases of neurons 1 and 2 at

time tj. N is the number of data points. The value of γ is bounded between 0 and 1,

where the former represents a complete lack of synchrony and the latter represents

perfect synchrony.

For the following procedure to be applicable, the network must have a synchro-

nized state [12]. This means there should be some degree of phase-locking present,

i.e. there is a preferred value of the phase difference ∆φ. A preliminary way to check

this would be to simply plot the histogram of phase differences. A more analytical

method would be to compare the synchrony strength γ to some chosen significance

value [12]. As will be seen in the sections below, the necessity of having a synchro-

nized state lies in the fact that we will be detecting when the phase variable leaves,

and subsequently, re-enters the synchronized state.

3.2 Stroboscopic Map

The synchrony strength γ represents an average value of phase-locking over the

time interval [t1, tN ]. Yet to describe the pattern of synchrony within a system, one

needs to look at the transitions to and from the synchronized state. This is best

done on shorter time scales to give a better temporal resolution. The methodology

in the next couple paragraphs develops a definition of synchrony on a single cycle of

oscillation time scale.
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To accomplish this we construct the points within a stroboscopic map. Specifi-

cally, we view φ1 when it increases past zero, say at time tj, and record the value of

φ2(tj) ≡ Φj. This generates a sequences of numbers {Φj}Mj=1. Due to the existence of

some level of phase-locking, there is a clustering of points around some phase value,

say Φ̃. To find this point numerically, we create a histogram of Φj with 10 bins. Then

we take the center of the bin with the highest population as Φ̃. An illustration of the

strobscopic map is given below in Figure 3.1. Here it can be seen that Φ̃ is close to −π.

Figure 3.1. Top: phase variable for neuron 1. The horizontal line is when
φ1 increases past zero. Bottom: phase variable for neuron 2. The points
indicate the values of Φj. ε1 = 0.005, the rest of parameter values given
in section 2.6.

We will say the system is in a desynchronized state when a point Φj in the stro-

boscopic map differs from the preferred phase value of Φ̃ by more than π
2
. Otherwise

the system is said to be in a synchronized state. As can be seen in Figure 3.1 there

are several sequences of 4–5 points where the phase of neuron 2 is relatively constant.

During these cycles, the system would be considered in synchrony. In between the

synchronized states the phase of neuron 2 deviates considerably from Φ̃, hence during
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these cycles the system is in a desynchronized state. We note that the choice of π
2

is

arbitrary, yet convenient in that it will partition the (Φj,Φj+1)−space into quadrants.

The choice of π
2

was also used in the previous studies using experimental data (cf.

section 1.4).

3.3 Phase Space and Lengths of Desynchronization Events

We now translate our definition of synchrony to the (Φj,Φj+1)−space. To do this

we take our sequence {Φj}Mj=1 and plot the points (Φj,Φj+1) for j = 1, . . . ,M − 1.

Synchrony will present itself as a grouping around the diagonal Φj = Φj+1, i.e. when

the future phase is close to the current phase. Naturally this can happen in either the

first or the third quadrant, so for consistency we shift the center of the grouping to the

center of the first quadrant, i.e. to
(
π
2
, π

2

)
. Since the phase space is [−π, π]× [−π, π]

(a torus), this can be accomplished by translating {Φj} an appropriate amount and

then taking that modulo 2π. An illustration of the sequence {Φj} before and after

the shift is given in Figure 3.2.

(a) Stroboscopic map before shifting. (b) Stroboscopic map after shifting.

Figure 3.2. The point in the first quadrant is at
(
π
2
, π

2

)
. ε = 0.005, the

rest of parameters as given in section 2.6.
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The phase space is naturally partitioned into four quadrants (due to our definition

of synchrony from the previous section). Since the preferred phase angle Φ̃ has been

shifted to the center of the first quadrant, we label this quadrant as the region where

the system is in a synchronized state. The remaining three quadrants are labeled as

the regions where the system is in a desynchronized state.

To study the dynamics of the system in the phase space, we need to understand

how the system can transition from one region to another. Since the second coordi-

nate of each point in the phase space is the future phase, only some transitions are

possible. Figure 3.3 shows all possible transitions between regions. Notice that the

regions are numbered in a clockwise fashion because the direction of the dynamics is

primarily in this direction.

We now define the length of a desynchronization event to be the number of cycles

that the system spends outside the synchronization region (quadrant 1). This can

be rephrased as the number of points (Φj,Φj+1) outside the first qudrant minus one.

The shortest possible desynchronization event is length one; the system spends one

cycle in the desynchronization region. This is illustrated in 3.4(a). Length two is the

next shortest possible desynchronization event, this is illustrated in 3.4(b). For both

length one and length two events there is only one possible trajectory (those shown

in Figure 3.4). Length three and higher events have multiple possible trajectories.

An illustration of different desynchronization durations and dynamics with differ-

ent modes of desynchronizations is provided in Figure 3.5. Voltages and distributions

of desynchronization durations for mode one dynamics are in the left column, the ones

for mode two dynamics are in the right column. The synchronization is not perfect,

and synchronized dynamics (i.e. the phase difference is close to the preferred one) are

interspersed with desynchronized intervals. Note that the preferred phase difference
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−π π−π

π
I

IIIII

IV

Φj

Φj+1

Figure 3.3. Diagram illustrating all possible transitions between quadrants
in the (Φj,Φj+1)−space. Beginning of the arrow indicates quadrants that
the system starts in, arrowhead indicates quadrant that the system ends
in. Adapted from [14].

is not necessarily zero, so the zero-lag state is not necessarily a synchronized state.

During the numerical simulation of a system we record the lengths of all desyn-

chronization events and then reconstruct the distribution of these durations. We

characterize a system’s temporal patterning of synchrony by taking the mode of this
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π−π

π

−π

1

2

3

4

(a) Length one desynchronization event.

π−π

π

−π

1

2

3

4 5

(b) Length two desynchronization event.

Figure 3.4. Illustrations of two desynchronization events.

distribution. For later reference, we call a system ”mode n” if the mode of the lengths

of all desynchronization events is n. Therefore a mode one system has more length

one desynchronization events than any other length; the synchronized dynamics are

interrupted by predominantly short desynchronizations. The larger the mode, the

more likely it is for a system to experience longer desynchronizations.

In closing, there are two items to mention. First, the lengths of desynchronization

events are measured in number of cycles of oscillations of a neuron, not in absolute

time units. This allows one to compare systems that have different frequencies. Sec-

ond, the synchrony strength γ can be independent of the mode of the system. That

is, a mode one system and a mode four system could have the same amount of overall

synchrony. This is because it is not just the lengths of the desynchronization events

that affect the synchrony strength, but also the number of such desynchronization

events.
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Figure 3.5. Illustration of mode one and mode two dynamics. A—D depict
voltage traces of two partially synchronized neurons (solid and dashed
lines). When the phase difference is close to the preferred phase difference
the voltage traces are thin lines indicating proximity to a synchronized
state. When the phase difference is not close to the preferred one, the
lines are thick to indicate the desynchronizations. A and C illustrate
short desynchronizations (lasting one cycle of oscillation), B and D show
longer desynchronizations (lasting two cycles of oscillation). A and B are
artificially generated examples, while C and D are examples generated by
the network considered in the section below. In a longer time-series, the
desynchronizations of different durations may coexist, however, usually
one duration will prevail. The distributions showing relative frequency of
different desynchronizations for the dynamics with predominantly short
desynchronizations (like A and C) and with longer desynchronizations
(like B and D) are presented in E and F respectively. We see the first
column represents mode one dynamics while column two represents mode
two dynamics.
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4. DESCRIPTION OF PARAMETERS AND PREVIOUS

RESULTS

The focus of this chapter is to:

1. briefly introduce the reader to previous results from [11] where the neural model

is both non-plastic and non-noisy. This will allow the reader to better under-

stand the results given in chapters 5 and 6.

2. explain the effect that varying certain cellular parameters has on the relative

timing of the sodium and delayed-rectifier potassium currents during the course

of an action potential.

The neural network is as described in section 2.5 with parameter values given in

section 2.6. Both neurons in the network are mathematically described by equations

(2.1)-(2.11). For a given set of parameter values, we numerically solve the system of

differential equations. Then we calculate the mode of desynchronization durations,

the synchronization strength γ, and the mean firing frequency of the neurons. In

the sections below, each cellular parameter that is varied affects the timing of the

delayed-rectified potassium current. The effect of each parameter will be described in

detail. Note that all the figures in this chapter are recreations of the results from [11],

and while there are minor differences (due to numerical implementations) the figures

are qualitatively the same.

4.1 Effect of the Peak Value of the Activation Time Constant (i.e. ε)

Recall from (2.8) that τ(v) ∝ 1
ε
, indeed the global maximum of the activation

time-constant τ is 1
ε
. Hence as ε is increased, τ decreases across its entire domain,

see Figure 4.1. The effect of decreasing τ is to accelerate the activation of potassium
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current because dw
dt
∝ 1

τ(v)
(see (2.2)). In summary, a larger value of ε acts to speed up

the activation of potassium current, while a smaller value of ε delays the activation

of potassium current. The effect of different values of ε on the shape of the action

potential is seen in Figure 4.2. In 4.2(a) the value of ε is quite small and we see that

the action potential has generic spikiness; a very quick up- and down-stroke. Whereas

in 4.2(b) the value ε is much larger and the action potential is more quasi-sinusoidal.

We also note that if we compare the scales on the horizontal axes in Figure 4.2 we

see that the firing frequency increases as ε increases, this is simply because the rate

of change of w is proportional to ε.

Figure 4.1. The activation time-constant τ(v) for potassium current plot-
ted over a relevant voltage domain.

As the ε value of each neuron in the system increases, the pattern of synchroniza-

tion changes as shown in Figure 4.3. In 4.3(a) we see that small ε values promote

mode one dynamics, while larger ε values promote modes greater than one. This

indicates that a delayed potassium current tends to promote short desynchroniza-

tion events, while a potassium current that activates sooner tends to promote longer



31

(a) ε = 0.001 (b) ε = 0.5

Figure 4.2. Simulation of isolated ML neuron with different ε values.

desynchronization events. In 4.3(b) we see that the synchrony strength γ is relatively

constant, hence we may conclude that systems with inherently different dynamics (i.e.

different modes) may yet have the same synchrony strength on the average. As will be

seen throughout the following results, γ and the mode will sometimes vary with each

other, and sometimes they are independent (as they are here). This independence

has also been observed in studies on experimental data, e.g. [44]. 4.3(c) shows the

increase in frequency as ε increases.

(a) Mode of system. (b) Synchrony strength γ. (c) Mean firing frequency.

Figure 4.3. Effect of varying ε1 and ε2.
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4.2 Effect of the Width of the Activation Time Constant (i.e. β)

We remind the reader that β appears in the equation for w∞(v) ((2.7), a sigmoidal

function), and in the equation for τ(v) ((2.8), a unimodal function). As β increases,

the derivative of w∞ evaluated at its half-height (v = 0) decreases and the width of

the peak of τ decreases. These effects are illustrated in 4.4. The result of these effects

is to delay the activation of potassium current because dw
dt
∝ 1

τ(v)
.

(a) (b)

Figure 4.4. Effect of β on activation of potassium current. In (a) we
see the steady-state value w∞(v), with vw1 fixed, plotted over a relevant
voltage domain. In (b) we see the activation time-constant τ(v), with
fixed ε and vw1, plotted over a relevant voltage domain.

As the value of β in the system increases, the pattern of synchroniztion changes as

shown in Figure 4.5. In 4.5(a) we see that small β values promote modes greater than

one, while a larger β value will promote mode one dynamics. Hence a delayed potas-

sium current tends to promote shorter desynchronization events, while a potassium

current that activates faster tends to promote longer desynchronization events. In

4.5(b) we see that as the mode of the system increases, the synchronization strength

γ decreases. The mean firing frequency of the system decreases as β increases because

dw
dt
∝ 1

τ(v)
, see 4.5(c).
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(a) Mode of system. (b) Synchrony strength γ. (c) Mean firing frequency.

Figure 4.5. Effect of varying β.

4.3 Effect of the Voltage of Half Activation and Maximal Activation for

the Activation Time Constant (i.e. vw1)

The parameter vw1 appears in the equation for w∞(v), (2.7), and in the equation

for τ(v), (2.8). As can be seen in Figure 4.6, the result of varying vw1 is to affect a

horizontal translation in both the w∞ and τ functions. Specifically, as vw1 is increases,

both functions are shifted towards higher voltage values. As vw1 varies, the amplitude

of the action potentials remains relatively constant, i.e. the voltage range that the

neuron operates within remains relatively constant; roughly in the interval [−0.5, 0.4].

Therefore as the functions w∞ and τ are shifted towards higher voltages, their values

decreases over this voltage interval which causes potassium current to activate sooner

because dw
dt
∝ 1

τ(v)
.

As the value of vw1 in the system increases, the pattern of synchronization changes

as shown in Figure 4.7. In 4.7(a) we see that small vw1 values promote mode one dy-

namics, while larger vw1 values will promote modes greater than one. In terms of the

potassium current, this means that a delayed potassium currents tends to promote

dynamics with shorter desynchronizations, while a potassium current that activates

quicker promotes dynamics that tend towards longer desynchronization events. In

4.7(b) we see that systems with smaller modes are associated with a higher synchro-
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(a) (b)

Figure 4.6. Effect of vw1 on activation of potassium current. In (a) we see
the steady-state value w∞(v), with β fixed, plotted over a relevant voltage
domain. In (b) we see the activation time-constant τ(v), with fixed ε and
β, plotted over a relevant voltage domain.

nization strength γ, while in 4.7(c) we see that the mean firing frequency of the system

is relatively constant with respect to vw1.

(a) Mode of system. (b) Synchrony strength γ. (c) Mean firing frequency.

Figure 4.7. Effect of varying vw1.

4.4 Effect of Simultaneous Changes in βw and βτ

In Figure 4.5 we saw that the variation of β induced a change in the mode of the

system as well as a change in both the synchrony strength γ and the frequency of the
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system. If we take the parameter β and split it into two independent parameters, βw

and βτ , it is possible to affect the mode of the system while maintaining a constant

synchrony strength γ and frequency. We modify equations (2.8) and (2.8) as:

w∞(v) =
1

1 + exp

(
−2

v − vw1

βw

) (4.1)

τ(v) =
2

ε

(
exp

(
v − vw1

2βτ

)
+ exp

(
vw1 − v

2βτ

)) . (4.2)

The effect of β on the activation of potassium current is now also split: βw controls

the slope at the half-height of the steady-state value w∞ while βτ controls the width

of the peak of the activation time-constant τ .

(a) (b)

Figure 4.8. Effect of varying βw and βτ on activation of potassium current.
In (a) we see the steady-state value w∞(v), with vw1 fixed, plotted over
a relevant voltage domain. The activation time-constant τ(v), with fixed
vw1 and ε, plotted over a relevant voltage domain.

As βw and βτ are varied in opposing directions (one increases while the other

decreases), the pattern of synchronization changes as seen in Figure 4.9. In 4.9(a)

we see that a small βw and a larger βτ promotes mode one dynamics, and as βw is

increased and βτ is simultaneously decreased the mode of the system grows. In 4.9(b)
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and 4.9(c) the synchrony strength γ and the mean firing frequency is held relatively

constant, which was the desired effect.

(a) Mode of system. (b) Synchrony strength γ. (c) Mean firing frequency.

Figure 4.9. Effect of varying βw and βτ .
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5. PLASTIC MODEL

In this chapter we implement a neural network consisting of two neurons connected

via excitatory synapses with spike-timing dependent plasticity (STDP), as described

in chapter 2. STDP is a common neural phenomenon [16] that, among other things,

can lead to an enhancement of neural synchrony [17, 18]. In the following sections

we provide evidence that STDP may affect not only the overall synchrony strength

γ, but also the temporal patterning of the synchronization. In particular, we show

that there are regions of the parameter space where STDP will drive the system to be

mode one, i.e. STDP will tend to promote short desynchronization dynamics. The

non-plastic variant of this system is discussed in chapter 4.

5.1 Numerical Implementation

The system of differential equations was solved numerically in Python using the

built-in odeint function from the SciPy module (v.1.4.1). This function implements

either the Adams method or a backward differentiation formula (BDF) method de-

pending on the stiffness of the problem. The solution was reported at multiples of the

time step dt = 0.1 (assuming the time units are milliseconds), however the function

uses an adaptive step size and there was no lower bound on the length of the inter-

mediate time steps that may be used (similarly, there was no upper bound restriction

on the number of intermediate steps that were taken). The absolute and relative

tolerances for the method were kept at the default value of 1.49 × 10−8. While the

solution depends on the initial conditions, its statistical properties (such as the firing

rate, synchrony pattern characteristics etc...) do not. The initial conditions were

v1,0 = 0.1, w1,0 = 0.376, s1,0 = 0.86, v2,0 = −0.29, w2,0 = 0.127, s2,0 = 0.64. These

were the same initial conditions as used in the previous study of [11]. The system was
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solved on the time interval [0, 25000], the first 20% of the time-series was removed

from analysis. The removal of the initial part of the time-series is necessary because

we are not interested in the transient behavior of the system before it displays some

stationary dynamics (i.e. regular oscillatory behavior).

We remind the reader that there are two plasticity parameters, k and A (cf.

section 2.3). The amplitude of the update rule is A, while k represents the recip-

rocal of the timescale on which the magnitude of the plastic update rule decays

exponentially. To explore the parameter space we vary A from 0.0001 to 0.01 us-

ing 40 linearly spaced points (endpoints included). k took on the following values:

{0.01, 0.05, 0.1, 0.3, 0.7, 1, 2, 5, 10, 20, 50}. We also vary cellular parameters, hence for

each cellular parameter value there are 440 numerical simulations canvasing the re-

gion of parameter space described above. To implement plasticity, the integration was

paused after each time step and, if necessary, the synaptic strengths were updated

according to (2.12). Specifically, the voltage threshold to define an action potential

was set at 0.2.

Lastly we mention that the synaptic conductance gsyn is bounded below by zero,

but there is no upper bound. While the synaptic conductances often display some

initial transient behavior (e.g. slow growth or decay or very slow large oscillation),

they generally settle down to some stationary variations, see Figure 5.1.

5.2 Results of Plasticity on Synchrony Patterns

5.2.1 Effect of the Peak Value of the Activation Time Constant (i.e. ε)

The parameter ε was varied from 0.005 to 0.2 using 40 linearly spaced points

(endpoints included). However we will only present results from two parameter val-

ues that are representative of mode one and mode two dynamics.
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0.00

0.05

0.10

0.15

0.20

0.25

gsyn

Figure 5.1. An example of a typical temporal evolution of synaptic weights
in a network with plasticity (ε = 0.15, A = 0.009, k = 0.3). Color and line
type distinguish the conductances of the two synapses in the network.

For ε = 0.05, the non-plastic system is mode one. Now the non-plastic system is

changed to include STDP. The changes in the temporal patterning of synchroniza-

tion dynamics are illustrated in Figure 5.2. Figure 5.2A is a diagram of the mode of

the desynchronization durations in the space of plasticity parameters, A and k. The

plasticity effects are negligible across the top (very large k implies a quick decay of

the change in synaptic strength), and especially in the upper left corner (large k and

a small amplitude A). In these areas the values of the plasticity parameters are such

that the magnitude of the update, ∆gsyn, is negligible (the average update is usu-

ally in the interval [0.0, 10−5], on the larger end this corresponds to about 0.2% of the
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initial value of gsyn. Hence, the plastic system continues to be mode one in these areas.

The rest of the parameter space, in particular the central region, displays a high

proportion of mode one dynamics as well. In these areas plasticity is not negligible, as

the synaptic strength can vary to a substantial degree. However, even in the presence

of STDP, mode one dynamics persist. For the diagram in Figure 5.2A, about 85% of

the parameter space points correspond to mode one systems.
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Figure 5.2. A system exhibiting mode one dynamics in the non-plastic case
is subjected to plasticity (ε = 0.05). A: Mode is colored via gray scale, see
legend on the right of the diagram. The amplitude of the synaptic update,
A, is varied along the horizontal axis. The reciprocal of the timescale of
the synaptic update, k, is varied along the vertical axis. B, C and D show
the changes in the histogram of desynchronization durations as plasticity
becomes stronger. B: The system without plasticity. C: The system with
very weak plasticity: A = 0.0047, k = 20.0. D: The system with moderate
plasticity: A = 0.0047, k = 0.05.
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To illustrate the effect of plasticity on a distribution of desynchronization dura-

tions, refer to Figure 5.2B, C and D. Plasticity effects increase from left to right.

The distribution of durations changes: at a weak level of plasticity the durations are

exclusively length one, while at a stronger level of plasticity some longer durations

are observed. We note that STDP clearly has a non-zero effect on the system, yet

the preponderance of length one desynchronization events is preserved.

Now let us look at the effect of plasticity on the dynamics in systems with a mode

larger than one. We consider ε = 0.15. The non-plastic system is mode two (the

synchronization index γ is virtually unchanged from that of ε = 0.05, although the

frequency of oscillations increases by several times [11]). Mode two means the desyn-

chronizations tend to be longer than those of the mode one case.

Figure 5.3 shows the effect of STDP on the system that is mode two in the non-

plastic case. As explained earlier, the plasticity effects are negligible across the top of

Figure 5.3A, and especially in the upper left corner. We note that this region of the

parameter space exhibits mode two dynamics (as expected). However, throughout

the entire parameter space it is seen that a majority of parameter values correspond

to mode one systems (the large central region in Figure 5.3A). Overall, about 20% of

the parameter space points stay mode two, while over 65% exhibit mode one dynam-

ics (and less than 15% correspond to larger than mode two systems).

To illustrate the effect of plasticity on the distribution of desynchronization dura-

tions, refer to Figure 5.3B, C and D. Plasticity effects increase from left to right. Here

we see that the introduction of weak plasticity can be sufficient to shift the system

from mode two to mode one (Figure 5.3C). This means desynchronizations tend to

become shorter in the plastic case. At stronger levels of plasticity (Figure 5.3D), the

distribution widens, however the vast majority of desynchronization events remain

length one.
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Figure 5.3. A system exhibiting mode two dynamics in the non-plastic case
is subjected to plasticity (ε = 0.15). A: Mode is colored via gray scale, see
legend on the right of the diagram. The amplitude of the synaptic update,
A, is varied along the horizontal axis. The reciprocal of the timescale of
the synaptic update, k, is varied along the vertical axis. B, C and D show
the changes in the histogram of desynchronization durations as plasticity
becomes stronger. B: The system without plasticity. C: The system with
very weak plasticity: A = 0.0047, k = 20.0. D: The system with moderate
plasticity: A = 0.0047, k = 0.7.

5.2.2 Effect of the Width of the Activation Time Constant (i.e. β)

The parameter β was varied between 0.05 and 0.15 using 40 linearly spaced points

(endpoints included). However we will only present results from two parameter values

that are representative of mode one and mode two dynamics.

A larger value of β promotes shorter desynchronization durations [11]. For β =

0.124, the non-plastic system is mode one. The effect of STDP on this system is pre-
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sented in Figure 5.4. Across the top and in the upper left corner of Figure 5.4A we see

that virtually every point corresponds to a mode one system, as expected. Indeed, a

substantial portion of the entire parameter space displays mode one dynamics; about

80% of the parameter space studied.
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Figure 5.4. A system exhibiting mode one dynamics in the non-plastic case
is subjected to plasticity (β = 0.124). A: Mode is colored via gray scale,
see legend on the right of the diagram. The amplitude of the synaptic
update, A, is varied along the horizontal axis. The reciprocal of the
timescale of the synaptic update, k, is varied along the vertical axis. B, C
and D show the changes in the histogram of desynchronization durations
as plasticity becomes stronger. B: The system without plasticity. C: The
system with very weak plasticity: A = 0.0052, k = 20.0. D: The system
with moderate plasticity: A = 0.0052, k = 0.7.

To illustrate the effect of plasticity on a distribution of desynchronization dura-

tions, refer to Figure 5.4B, C and D. Plasticity effects increase from left to right. The

introduction of plasticity has a minimal effect on the distribution; there is very little
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change visibly. Indeed, the proportion of desynchronization durations of length one

increases with plasticity.

Decreasing β increases the mode of a system. If β = 0.091, the non-plastic system

is mode two. With the introduction of very weak plasticity (across the top and the

upper left corner of Figure 5.5A) we see that the dynamics are relatively unchanged,

i.e. the mode of most systems remains two. However, if plasticity is not very weak,

the dynamics shift to mode one in a significant portion of the parameter space. The

effect is not as substantial as in the previous section, but about 35% of parameter

space becomes mode one (about 45% remains mode 2, i.e. the mode is unchanged).

To illustrate the effect of plasticity on a distribution of desynchronization dura-

tions, refer to Figure 5.5B, C and D. Plasticity effects increase from left to right.

We see that the vast majority of desynchronization durations become length one as

plasticity becomes stronger.

5.2.3 Effect of the Voltage of Half Activation and Maximal Activation

for the Activation Time Constant (i.e. vw1)

The parameter vw1 was varied between 0.06 and 0.18 using 100 linearly spaced

points (endpoints included). However we will only presents results from two param-

eter values that are representative of mode one and mode two dynamics.

Smaller values of vw1 result in short desynchronization durations [11]. For vw1 =

0.102, the non-plastic system is mode one. The effect of STDP on this system is

presented in Figure 5.6. We see that mode one dynamics is observed not only for the

weak plasticity region (top and upper left corner of Figure 5.6A), but for most of the

parameter space (about 85% of the parameter space studied).
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Figure 5.5. A system exhibiting mode two dynamics in the non-plastic case
is subjected to plasticity (β = 0.091). A: Mode is colored via gray scale,
see legend on the right of the diagram. The amplitude of the synaptic
update, A, is varied along the horizontal axis. The reciprocal of the
timescale of the synaptic update, k, is varied along the vertical axis. B, C
and D show the changes in the histogram of desynchronization durations
as plasticity becomes stronger. B: The system without plasticity. C: The
system with very weak plasticity: A = 0.0047, k = 20.0. D: The system
with moderate plasticity: A = 0.0047, k = 0.7.

To illustrate the effect of plasticity on a distribution of desynchronization dura-

tions, refer to Figure 5.6B, C and D. Plasticity effects increase from left to right.

We see that as plasticity increases to a higher level, the prevalence of mode one is

unchanged.

Varying vw1 to larger values leads to shorter desynchronization events becoming

less prevalent. For vw1 = 0.161, the non-plastic system is mode two. The effect of

STDP is presented in Figure 5.7. When plasticity is added we see that the dynamics
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Figure 5.6. A system exhibiting mode one dynamics in the non-plastic
case is subjected to plasticity (vw1 = 0.102). A: Mode is colored via
gray scale, see legend on the right of the diagram. The amplitude of the
synaptic update, A, is varied along the horizontal axis. The reciprocal of
the timescale of the synaptic update, k, is varied along the vertical axis. B,
C and D show the changes in the histogram of desynchronization durations
as plasticity becomes stronger. B: The system without plasticity. C: The
system with very weak plasticity: A = 0.0047, k = 20.0. D: The system
with moderate plasticity: A = 0.0047, k = 0.7.

are similar to the non-plastic case when plasticity is weak enough (top and upper

left corner of Figure 5.7A). However, when the plasticity effects are moderate, the

system exhibits mode one dynamics frequently (central region of Figure 5.7A). For the

domain of parameter space studied, the majority of points (about 45%) correspond

to mode one systems, the rest are either mode two (about 40%) or higher.

To illustrate the effect of plasticity on a distribution of desynchronization dura-

tions, refer to Figure 5.7B, C and D. Plasticity effects increase from left to right. We
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Figure 5.7. A system exhibiting mode two dynamics in the non-plastic
case is subjected to plasticity (vw1 = 0.161). A: Mode is colored via
gray scale, see legend on the right of the diagram. The amplitude of the
synaptic update, A, is varied along the horizontal axis. The reciprocal of
the timescale of the synaptic update, k, is varied along the vertical axis. B,
C and D show the changes in the histogram of desynchronization durations
as plasticity becomes stronger. B: The system without plasticity. C: The
system with very weak plasticity: A = 0.0047, k = 20.0. D: The system
with moderate plasticity: A = 0.0054, k = 1.0.

see that the mode of the system shifts down from two to one as plasticity becomes

stronger.

5.2.4 Effect of Simultaneous Changes in βw and βτ

The parameter βw was varied from 0.134 down to 0.94 with 100 linearly spaced

points (endpoints included), while βτ was simultaneously varied from 0.061 up to

0.081 with 100 linearly spaced points. However we will only present results from two
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parameter sets that are representative of mode one and mode two dynamics.

Smaller βw and larger βτ result in shorter desynchronization durations [11]. For

βw = 0.098, βτ = 0.079, the non-plastic system is mode one. Figure 5.8 illustrates

the impact of STDP on this system. Mode one dynamics is observed not only for the

weak plasticity region (top and upper left corner of Figure 5.8A), but for the majority

of the parameter space (about 60% of the parameter space studied).
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Figure 5.8. A system exhibiting mode one dynamics in the non-plastic case
is subjected to plasticity (βw = 0.098, βτ = 0.079). A: Mode is colored via
gray scale, see legend on the right of the diagram. The amplitude of the
synaptic update, A, is varied along the horizontal axis. The reciprocal of
the timescale of the synaptic update, k, is varied along the vertical axis. B,
C and D show the changes in the histogram of desynchronization durations
as plasticity becomes stronger. B: The system without plasticity. C: The
system with very weak plasticity: A = 0.0049, k = 50.0. D: The system
with moderate plasticity: A = 0.0052, k = 0.7.
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To illustrate the effect of plasticity on a distribution of desynchronization dura-

tions, refer to Figure 5.8B, C and D. Plasticity effects increase from left to right. We

see that as plasticity progresses to a moderate level, the proportion of short desyn-

chronizations stays largely unchanged. In particular, the system is still mode one.

If βw = 0.115, βτ = 0.071, the non-plastic system is mode two. Figure 5.9 il-

lustrates the impact of STDP on this system. With the addition of plasticity, we

see that the system is largely mode two if the plasticity is weak (top and upper

left corner of Figure 5.9A). However, stronger plasticity shifts the dynamics to mode

one for a substantial portion of the parameter space (about 55% of points considered).

To illustrate the effect of plasticity on a distribution of desynchronization dura-

tions, refer to Figure 5.9B, C and D. Plasticity effects increase from left to right.

We see that the distribution is largely unchanged for very weak plasticity, but as

plasticity increases, the system becomes mode one.

5.3 Systems with Larger Modes

While results were only presented for systems that were either mode one or mode

two in the non-plastic case, the effect of STDP on higher mode systems is generally

the same. That is, STDP tends to shift the mode down to one. For example, if

ε = 0.175 then the non-plastic system is mode three. Figure 5.10 shows the distri-

bution of desynchronization durations when plasticity is added to the system. We

fixed the amplitude of the update rule at A = 0.0024 and decreased the reciprocal of

the timescale k from 50 (5.10(a)) to 20 (5.10(b)) to 10 (5.10(c)). We see that as k

decreases (this makes the plasticity effect on the system more prominent) the mode

of the system shifts from three to two to one.
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Figure 5.9. A system exhibiting mode two dynamics in the non-plastic case
is subjected to plasticity (βw = 0.115, βτ = 0.071). A: Mode is colored via
gray scale, see legend on the right of the diagram. The amplitude of the
synaptic update, A, is varied along the horizontal axis. The reciprocal of
the timescale of the synaptic update, k, is varied along the vertical axis. B,
C and D show the changes in the histogram of desynchronization durations
as plasticity becomes stronger. B: The system without plasticity. C: The
system with very weak plasticity: A = 0.0049, k = 50.0. D: The system
with moderate plasticity: A = 0.0054, k = 0.7.

Finally, we would like to note that there are several points in the parameter

space (see Figure 5.2A–Figure 5.9A) that have very large modes. For example, in

Figure 5.2 when A = 0.0006, k = 0.01, the resulting system is mode 38 (i.e. the

most common desynchronizations are very long). In these situations the system

experiences very long desynchronization events, as opposed to the predominantly

short desynchronization durations found in experiments. Generally, these cases have

a wide distribution of desynchronization durations, see Figure 5.11. Therefore, while

these systems have a large mode, the mode does not present a strong tendency in the
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(a) A = 0.0024, k = 50.0. (b) A = 0.0024, k = 20.0. (c) A = 0.0024, k = 10.0.

Figure 5.10. Distribution of desynchronization durations for ε1 = 0.175.

distribution. Nevertheless, these situations are relatively rarely found. For example,

when ε = 0.05 there are only three out of the 440 simulations that result in a system

with a mode of 10 or higher.

Figure 5.11. Distribution of desynchronization durations for ε1 = 0.05,
A = 0.0006 and k = 0.01. The mode of this system is 38.

5.4 Discussion of Plasticity Impact on Synchrony Patterns

This chapter considered intermittent synchronous dynamics in a small network of

simple conductance-based model neurons. While strong synaptic strength can pro-

mote synchronization between neurons, moderate values of synaptic coupling lead to

dynamics with relatively weak synchronization. It also leads to situations where the

episodes of synchronization are interspersed with episodes of desynchronized dynam-

ics. Intermittent synchronization in the presence of moderate (and fixed in time)
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coupling is quite typical for coupled oscillatory systems [4]. In other words, temporal

variability of correlations is observed due to the relative weakness of a fixed coupling

strength. The temporal signatures of this variability have been previously modeled

in [11], and were in good agreement with the analysis of the temporal variability

observed in experimental data (cf. section 1.4).

However, many actual synapses are plastic and thus the synaptic coupling between

neurons experiences temporal variations. This variation may contribute to the tem-

poral variability of intermittent synchrony as well. This chapter considered how one

common type of neural plasticity – spike-timing dependent plasticity – might affect

this temporal variability. Experimental data ubiquitously points to the prevalence of

short desynchronization dynamics in neural synchrony. This kind of dynamics is natu-

rally generated in synaptically coupled conductance-based model neurons. We showed

here that the introduction of STDP, under quite general conditions, preserves this re-

alistic fine temporal structure of intermittent neural synchrony. Moreover, when the

non-plastic system parameters are selected in such a way as to predominantly express

longer desynchronizations, STDP changes the intermittently synchronous dynamics

back to one with short desynchronizations. This was observed while varying sev-

eral different parameters, so that STDP may reverse dynamics from long to short

desynchronizations regardless of how the desynchronizations were obtained in the

non-plastic system.

The overall dependence of the dynamics on the characteristics of plasticity is quite

complicated. Numerical simulations indicate that some plasticity parameter values

may promote very unrealistic synchronized dynamics. However, under the conditions

considered, the short desynchronization dynamics were obtained in large regions of

the parameter space. This was regardless of whether the corresponding non-plastic

system was mode one, or had a higher mode.
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The results of these numerical simulations suggest that STDP may be one of the

contributing factors behind experimentally observed short desynchronization dynam-

ics. Moreover, STDP and cellular mechanisms proposed in [11] may act cooperatively

in promoting short desynchronizations.

The results discussed here were obtained in the framework of relatively simple

modeling. The actual neuronal synchrony is, of course, a much more complicated

phenomenon than the model considered here, and there were multiple factors not

included in the model. For example, inhibitory synapses (e.g. [26]). The experimen-

tal observations of short desynchronizations were mostly done with LFP and EEG

signals, and the network considered here is too simple to adequately model these

signals. However, the similarity between experimentally observed intermittent neu-

ral synchrony and the temporal patterning of synchrony observed in our study with

a relatively simple model with STDP may speak to the very general nature of this

phenomenon.

The variability of the dynamics on short time-scales may also be a functionally

beneficial phenomenon. Short desynchronization dynamics (which is essentially a high

degree of variability of synchrony on very short time-scales) has been conjectured to

be conducive for quick and efficient formation and break-up of neural assemblies

[11, 14]. As was noted in these studies, the ease of formation and disappearance of

synchronized states at rest may suggest that a transient synchronized assembly may

be easily formed whenever needed to facilitate a particular function. The results of

this chapter suggest that the temporal variability of synaptic strength due to STDP

may potentially further facilitate this phenomenon.
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6. STOCHASTIC MODEL

In this chapter we implement a neural network consisting of two noisy neurons con-

nected via excitatory synapses, as described in chapter 2. We simulate channel noise,

the inherently stochastic nature of the neuronal membrane’s ion channels, using first a

multiplicative noise term and then an additive term (cf. section 2.4). We will provide

evidence that the introduction of noise to the neural network can induce changes in

the temporal patterns of synchronization. Specifically, a noise of sufficient strength

can shift the distribution of desynchronization durations towards lower values; i.e.

noise can promote short desynchronization dynamics over longer desynchronization

dynamics. In particular, noise is capable of promoting mode one dynamics. The

deterministic variant of this system is discussed in chapter 4. The framework of this

chapter is the same as that of chapter 5, except that the mechanism we explore here

is noise instead of plasticity.

6.1 Numerical Implementation

Multiplying out the voltage equation from the multiplicative noise section 2.4.1,

we obtain the following Langevin-type equation.

dvi
dt

= A(v) +B(v)ξi(t) (6.1)

where A(v) and B(v) are the drift and diffusion terms, respectively. In the case of

additive noise we simply have

dvi
dt

= A(v) + ξi(t). (6.2)

We then solve the system numerically using the Euler-Maruyama method, which is

the stochastic analog of the deterministic forward Euler method [20–22]. Here ξ(t)
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is white noise that is distributed as σ
√
dtN(0, 1), where σ ∈ [0.0, 0.02] is the noise

strength. This strength interval was chosen such that the noise could be strong enough

to effect a change in the network dynamics, yet not completely destroy the inherent

spiking dynamics. The noise term for each neuron is generated with a different seed,

i.e. the noise terms for the two neurons are uncorrelated.

The initial conditions were v1,0 = 0.1, w1,0 = 0.376, s1,0 = 0.86, v2,0 = −0.29,

w2,0 = 0.127, s2,0 = 0.64. These were the same initial conditions as used in the

previous study of [11]. The system was solved on the time interval [0, 20000] with a

time step of dt = 0.01. To account for the initial transient behavior the first 5% of

the time-series was discarded. We note that this is sufficient for the system to evolve

to some stationary dynamics. We also mention that while an individual solution de-

pends on the initial conditions, the statistical properties that we’re interested in (e.g.

distribution of desynchronization durations) do not.

Depending on which cellular parameter value was varied, the voltage threshold to

define an action potential was set at either 0.20, 0.25 or 0.30. The voltage threshold

was initially set at 0.30, however the variation of some parameters induced a decrease

in amplitude of the action potentials, which necessitated a change in the voltage

threshold. To eliminate the possibility of detecting an action potential immediately

after a neuron has fired (caused by the channel noise driving the membrane voltage

back over the threshold), a window of 15 ms was set after each neuron’s action

potential in which we do not count threshold crossings. Since the highest recorded

frequency was approximately 40 Hz, a window of 15 ms is appropriate.

6.2 Results of Noise on Synchrony Patterns

In the sections below we present the effects of a multiplicative and an additive

noise simultaneously, for each cellular parameter that was varied. The presentation
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includes a graph of the mode of the system versus noise strength, synchrony strength

versus noise strength, and mean firing frequency versus noise strength. The frequency

graph is included as a reminder that certain parameters affect the firing frequency

and so the desynchronization durations measured in absolute time units (not cycles

of oscillation) may change.

6.2.1 Effect of the Peak Value of the Activation Time Constant (i.e. ε)

The parameter ε was varied from 0.005 to 0.2 using 100 linearly spaced points

(endpoints included). However we will only present results from two parameter val-

ues that are representative of mode one and mode two dynamics.

For ε1 = 0.044, the deterministic system is mode one (i.e. the mode of the dis-

tribution of all desynchronization event lengths is one cycle of oscillation). Now we

include a noise term in the system, one a conductance-based term and the other an

additive current term. As the strength of the noise is increased, we see from Fig-

ure 6.1 that the system remains mode one. This is true for both the multiplicative

and the additive noise case. In addition, the average synchrony index γ and the mean

frequency of firing of the system are both approximately constant with respect to the

noise strength, see Figures 6.1(b), 6.1(c) and Figures 6.1(e),6.1(f). We also note that

these γ and frequency values are very similar to those obtained in [11]. While noise,

at a certain intensity, will affect the synchrony strength γ, in our system it appears

that noise affects the shape of the waveform first. This could be because our neurons

are relaxation oscillations. In any case, this helps explain why γ can be independent

of noise, at least for a certain range of noise strengths.

From the previous study of [11] we know that smaller values of ε promote shorter

desynchronization events. Hence as we increase ε to 0.132, the mode of the determin-

istic system increases to two. From Figure 6.2, we see that as the noise strength is
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(f) Mean firing frequency.

Figure 6.1. A system (ε1 = 0.044) exhibiting mode one dynamics in the
deterministic case is subjected to a multiplicative noise in the top row,
and an additive noise in the bottom row. The strength of the noise, σ, is
varied along the horizontal axes.

increased the mode of the system clearly shifts from two down to one. Once again

the average synchrony strength γ and the frequency of firing are nearly constant with

respect to the noise strength. Hence the mode of a system can be shifted indepen-

dently from the synchrony strength γ and the frequency. This indicates that while an

input noise may not be sufficiently strong to influence certain properties of the system

(such as average synchrony strength or average firing frequency), it may nevertheless

influence the dynamics of desynchronization events.

We note that the same trend was observed for systems with larger modes; the

addition of a strong enough noise, either conductance-based or an additive current,
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Figure 6.2. A system (ε1 = 0.132) exhibiting mode one dynamics in the
deterministic case is subjected to a multiplicative noise in the top row,
and an additive noise in the bottom row. The strength of the noise, σ, is
varied along the horizontal axes.

served to shift the mode of a system down to one. For example, for ε1 = 0.184 the

deterministic system is mode four. However the addition of even a small noise quickly

shifted the system to mode one; only 16% of the systems simulated had a mode higher

than one. Overall we see that the introduction of a white noise not only preserves

mode one dynamics, but at a sufficient strength it can switch mode two (and higher)

dynamics down to mode one.

6.2.2 Effect of the Width of the Activation Time Constant (i.e. β)

The parameter β was varied between 0.05 and 0.15 using 100 linearly spaced points

(endpoints included). However we will only present results from two parameter values
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that are representative of mode one and mode two dynamics.

For β = 0.131, the deterministic system is mode one. We see in Figure 6.3 that the

mode of the system is unchanged as noise is added and its strength is increased. This

is true for both the multiplicative and additive noise case. The synchrony strength

γ and the frequency of the system are likewise virtually unchanged from that of the

deterministic system, see Figures 6.3(b),6.3(c) and Figures 6.3(e),6.3(f).
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(f) Mean firing frequency.

Figure 6.3. A system (β = 0.131) exhibiting mode one dynamics in the
deterministic case is subjected to a multiplicative noise in the top row,
and an additive noise in the bottom row. The strength of the noise, σ, is
varied along the horizontal axes.

From the previous study of [11] we know that a larger value of β promotes shorter

desynchronization durations. When we set β = 0.080, the deterministic system is

mode two. We see in Figure 6.4 that for small noise strengths the system remains
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Figure 6.4. A system (β = 0.080) exhibiting mode two dynamics in the
deterministic case is subjected to a multiplicative noise in the top row,
and an additive noise in the bottom row. The strength of the noise, σ, is
varied along the horizontal axes.

mode two, but once the strength reaches a sufficiently large value the system becomes

mode one. Again, the shift in mode is independent of the average synchrony index or

the mean firing frequency, see Figures 6.4(c),6.4(b) and Figures 6.4(f),6.4(e).

6.2.3 Effect of the Voltage of Half Activation and Maximal Activation

for the Activation Time Constant (i.e. vw1)

The parameter vw1 was varied between 0.06 and 0.18 using 100 linearly spaced

points (endpoints included). However we will only presents results from two param-

eter values that are representative of mode one and mode two dynamics.
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For vw1 = 0.096, the deterministic system is mode one. The effect of introducing

a noise term to the system is shown in Figure 6.5. In Figures 6.5(a) and 6.5(d) we see

that the mode one dynamics is preserved for all noise strengths, regardless of whether

the noise is multiplicative or additive.
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Figure 6.5. A system (vw1 = 0.096) exhibiting mode one dynamics in the
deterministic case is subjected to a multiplicative noise in the top row,
and an additive noise in the bottom row. The strength of the noise, σ, is
varied along the horizontal axes.

Smaller values of vw1 result in shorter desynchronization durations [11]. Hence if

we let vw1 = 0.169, the deterministic system becomes mode two. In the stochastic

system, a strong enough noise will shift the mode to one, this is illustrated in Fig-

ure 6.6. While the shift in the graph is perhaps not as clean as in previous figures, it

is still a definitive shift. Definitive meaning that a stronger noise tends to push the
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system towards mode one dynamics, and rarely increases the mode.
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Figure 6.6. A system (vw1 = 0.169) exhibiting mode two dynamics in the
deterministic case is subjected to a multiplicative noise in the top row,
and an additive noise in the bottom row. The strength of the noise, σ, is
varied along the horizontal axes.

6.2.4 Effect of Simultaneous Changes in βw and βτ

The parameter βw was varied from 0.134 down to 0.94 with 100 linearly spaced

points (endpoints included), while βτ was simultaneously varied from 0.061 up to

0.081 with 100 linearly spaced points. However we will only present results from two

parameter sets that are representative of mode one and mode two dynamics.

Variation of the previous parameters, i.e. ε, β and vw1, can affect the average syn-

chronization strength and frequency of firing in addition to changing the durations
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of desynchronizations. For example, a typical stochastic system with a parameter of

β = 0.065 has a frequency of about 41 Hz and was either mode one, two or three

depending on the noise strength. While a typical stochastic system with a parameter

of β = 0.131 has a frequency of about 14 Hz and was constantly mode one, irregard-

less of the noise strength used. To control the mode of a deterministic system while

keeping both the average synchrony strength and firing frequency near constant, one

can take the parameter β and separate it into two independent parameters, βτ and

βw. The result is that the mode of the system is nearly independent of the synchrony

strength and frequency and value of the cellullar parameters βw, βτ [11]. From the

same study we know that smaller βw and larger βτ will result in shorter desynchro-

nization durations.

For βw = 0.098 and βτ = 0.079 the deterministic system is mode one. As il-

lustrated in Figure 6.7, the mode remains one as the strength of the noise in the

stochastic system is increased.

For βw = 0.120 and βτ = 0.068 the deterministic system is mode two. In the

stochastic version of this system the mode is switched from two to one with a suffi-

ciently large noise strength, see Figure 6.8. We point out that the frequencies and

synchrony strengths seen in Figure 6.7 and Figure 6.8 are nearly identical, as was the

goal in creating the βw, βτ parameters.

6.3 Discussion of Noise Impact on Synchrony Patterns

Here we have simulated a small network of weakly coupled conductance-based

neurons, and what was observed was a weak synchronization that varied in time.

That is to say, the network experienced periods of synchrony that were interspersed

with periods of desynchronized activity. This is consistent with the previous study

of [11] where the network was the same as here, only deterministic. It is also consis-
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Figure 6.7. A system (βw = 0.098, βτ = 0.079) exhibiting mode one
dynamics in the deterministic case is subjected to a multiplicative noise
in the top row, and an additive noise in the bottom row. The strength of
the noise, σ, is varied along the horizontal axes.

tent with the findings from previous studies using experimental data (see section 1.4).

Naturally, real biological neurons are noisy oscsillators, and there may be many

sources of this noise [9, 19, 23]. To understand whether this stochasticity affects the

temporal variations in the intermittent synchrony of the network, we considered two

methods of adding noise resulting from the opening and closing of ion channels. The

first, was directly adding a zero mean Gaussian process to the activation variable for

potassium current. The second was to add a zero mean Gaussian process directly to

the voltage equation. One main difference between the methods is that the first is

a multiplicative noise and the second is additive. While there may not be a general
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Figure 6.8. A system (βw = 0.120, βτ = 0.068) exhibiting mode two
dynamics in the deterministic case is subjected to a multiplicative noise
in the top row, and an additive noise in the bottom row. The strength of
the noise, σ, is varied along the horizontal axes.

consensus, we note that [10] recommend using a multiplicative noise as it can be

mathematically related back to Markov chain models. Regardless, we used both and

found that their introduction preserved the temporal variability in the intermittent

synchrony that was found in previous studies. In addition, if the deterministic system

had a mode higher than one (i.e. the desynchronization durations tended to be longer)

then the introduction of noise (at a sufficient strength) could shift the network down

to mode one dynamics. This was found across all cellular parameters that were varied.

Another potentially significant source of noise is that from the synapses. However,

since we consider very weak coupling between the neurons (gsyn is orders of magnitude
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less than gK) no addition of noise to the synaptic variable (which is bounded between

zero and one) could induce a significant change in the system. This was verified

numerically across a wide range of synaptic noise strengths.
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7. CONCLUSION

This thesis studied the synchronous dynamics in a neural network consisting of two

simple conductance-based model neurons. The dynamics are inherently intermittent,

or variable in time, due to the weak synaptic coupling. This means that the network

exhibits episodes of synchronization that are separated by episodes of desynchro-

nization. This is not a unique phenomenon, indeed it is quite common in coupled

oscillatory systems [4]. What is interesting is that a particular type of intermittent

synchronous dynamics is prevalent in real neural systems across multiple species and

brain areas (cf. section 1.4). This particular type is a regime where the neural sys-

tem leaves its synchronized state frequently, but only remains desynchronized for a

short period of time. We again mention that we measure ”time” in terms of cy-

cles of oscillations. The previous work of [11] modeled this phenomenon in a simple

and general setting. The results presented in this thesis extend this previous work by

adding complexities to the model in the form of synaptic plasticity and channel noise.

Incorporating spike-timing dependent plasticity (a very common variety of synap-

tic plasticity) to the model allows the synaptic conductances (a measure of the

strength of the coupling) to vary with time. Since many actual synapses are plastic,

it is possible that the temporal variations in the synaptic conductances influence the

temporal variations in the patterns of synchrony. The numerical results presented in

chapter 5 indicate that the addition of STDP does affect the synchronization dynam-

ics in our model network. It was observed that STDP preserved mode one dynamics

if the non-plastic system was mode one, and that STDP tended to depress the mode

of the system towards one if the non-plastic system had a mode greater than one.

These results were consistent across large regions of the two-dimensional plasticity

parameter space. These results were also observed while varying several different
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cellular parameters. Hence it seems a general phenomenon that plasticity promotes

predominantly short desynchronization dynamics over longer desynchronizations, at

least under certain conditions.

The exact relationship between the synchronization dynamics and the properties

of plasticity is probably quite complicated and, at this moment, unknown. For exam-

ple, there were isolated points in the parameter space where the numerical analysis

showed unrealistically large mode values. It is not known why this occurs, perhaps

it is a result of our particular definition of synchrony and the partitioning of the

phase space into quadrants (as versus a different partition). However it was generally

observed that for these large mode cases, the distribution of desynchronization du-

rations is usually quite broad; hence the mode of the distribution is not necessarily

very descriptive.

Next, we return to the non-plastic model and add a stochastic term meant to

model ion channel noise that is inherent in real biological neurons. This was done in

two separate ways: a conductance-based noise and a current noise. Noise has been

shown to have the ability to either enhance or degrade properties, including synchro-

nization, of neural systems [23]. Again, since actual neurons are inherently noisy,

it is possible that noise could affect the synchronization dynamics. The numerical

results presented in chapter 6 show that both types of channel noise preserve the

mode one dynamics that was observed in their deterministic counterpart systems.

In addition, if the deterministic system favored longer desynchronization durations

over shorter ones (i.e. the mode of the system was greater than one), then a suffi-

ciently strong noise could induce a shift towards mode one dynamics. These results

were observed consistently across the variation of several different cellular parameters.

There are various sources of noise in neural systems, a significant one being chan-

nel noise. Another significant source is that from the synaptic channels. However,
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since we consider very weak coupling between the neurons (gsyn is orders of magni-

tude less than gK) no addition of noise to the synaptic variable (which is bounded

between zero and one) could induce a significant change in the system.

The models used throughout this thesis are simple and therefore have their lim-

itations. For instance, the effect of inhibitory synapses was not studied. The scale

of the model is quite small which limits the complexity of dynamics that it is able

to produce. The synchronization dynamics within a stochastic and simultaneously

plastic neural system was not studied. Only one type of plasticity was implemented.

Only two ionic species were included in the model. Yet despite these limitations, these

models were able to recreate the short desynchronization dynamics that is observed

in real neural systems.

Synaptic plasticity, noise and synchronization are all ubiquitous throughout neural

systems. Here we have used mathematical modeling to study the impact of synap-

tic plasticity, and separately, noise on the temporal patterning of synchronization

within these neural systems. We provide numerical evidence that synaptic plasticity

and channel noise may be potential mechanisms behind the observed short desyn-

chronization dynamics. This, along with previous experimental evidence, indicates

that this specific temporal patterning of synchronization is a very general and robust

phenomenon within neural systems.
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